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Abstract

In this study, a neutrosophic Economic Order Quantity (EOQ) model is developed to
effectively capture the indeterminacy and imprecision present in real-world inventory
systems. By incorporating neutrosophic logic which extends classical and fuzzy logic
through truth, indeterminacy, and falsity degrees—the model addresses uncertainty in both
demand and cost parameters. The model considers demand-dependent unit pricing and
restricted storage capacity, both are modelled as neutrosophic variables. Numerical
simulations using MATLAB show that the Neutrosophic Geometric Programming (NSGP)
method achieves the lowest total cost ($10,200), outperforming both Neutrosophic Nonlinear
Programming (NSNLP, $10,500) and traditional fuzzy EOQ ($11,000). The proposed
approach demonstrates superior adaptability to storage and cost variations, confirming its
robustness for uncertain inventory environments.
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1. Introduction

The Economic Order Quantity (EOQ) model is a foundational concept in inventory
management, designed to minimize the total cost of inventory by optimizing the trade-off
between ordering and holding costs. Since its inception by Harris [1] and subsequent
refinement by Wilson [2], the EOQ model has undergone numerous extensions to address
real-world complexities. Early contributions include those by Hadley and Whitin [3], Taha
[4], Clark [5], and Tinnarelli [6], who analyzed classical EOQ scenarios under various
assumptions.

As inventory systems evolved, researchers explored more sophisticated models. Cheng [7]
introduced an EOQ model with demand-dependent unit costs, while Worrall and Hall [8]
tackled multi-product EOQ problems using geometric programming. The advent of fuzzy set
theory by Zadeh [9] brought about a paradigm shift in modelling uncertainty, leading to
significant developments in production-inventory systems. Sommer [10] applied fuzzy
dynamic programming to a production-inventory problem, and Park [11] formulated an EOQ
model with trapezoidal fuzzy inventory costs.

More recently, neutrosophic logic, introduced by Smarandache [12], has expanded the
capabilities of fuzzy logic by incorporating indeterminacy in addition to membership and
non-membership functions. This enhancement is particularly useful in modeling ambiguous
and inconsistent information. Smarandache and Hassanien [13] explored practical
applications of neutrosophic logic, while Yang and Yang [14] demonstrated its utility in
inventory management. Zhang and Yang [15] and Chen and Li [16] examined constrained
EOQ models using neutrosophic logic.

Real-world inventory systems often encounter variable unit costs and storage limitations. Lee
and Hsu [17] and Sarker and Patuwo [18] developed EOQ models featuring
demand-dependent unit costs. Silver et al. [19] and Goh and Goh [20] addressed inventory
management under storage capacity constraints. Integrating neutrosophic logic into EOQ
models allows for a more realistic approach to uncertainties in cost, demand, and space
limitations. Smarandache [21], Gao and Zhao [22], and Liu and Wang [23] emphasized
solving neutrosophic EOQ problems using advanced methods. Mendel [24] and Li and
Zhang [25] proposed optimization and heuristic strategies for handling neutrosophic models.
Recently, Das [26] developed a neutrosophic geometric programming method for Internet
service provider costing.

Despite these advancements, no study has concurrently addressed storage constraints and
demand-dependent pricing within a neutrosophic framework, which motivates the present
work.

This paper presents an Economic Order Quantity (EOQ) model in which the unit order price
decreases inversely with demand, while the setup cost increases with higher production
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levels. In practical industrial environments, total production cost and available storage space
are commonly limited yet characterized by imprecision, vagueness, and flexibility. To
effectively address these uncertainties, the EOQ problem is formulated within a neutrosophic
optimization framework, where both the storage capacity and total cost are modeled as
neutrosophic variables. The proposed model is solved using two distinct methodologies:
Neutrosophic Nonlinear Programming (NSNLP) and Neutrosophic Geometric Programming
(NSGP). Comparative numerical analyses—executed via MATLAB—demonstrate the
efficiency of neutrosophic approaches over traditional fuzzy methods. Furthermore, a
comprehensive sensitivity analysis is conducted to assess the impact of variations in storage
constraints and cost parameters on the optimal order quantity and total inventory cost. The
results confirm the robustness and practical applicability of the proposed neutrosophic EOQ
models in handling real-world uncertainty and indeterminacy.

2. Formulating the Neutrosophic EOQ Model

We consider a single-item Economic Order Quantity (EOQ) model in which the unit cost
depends on demand and the available storage area is limited. The objective is to determine
the optimal order quantity Q and demand level D that minimize the total inventory cost while
satisfying the storage capacity constraint.

Figure-0 illustrates the flow structure of the proposed Neutrosophic EOQ model, capturing
the interaction among demand-dependent order price, setup and holding costs, storage
constraint, and neutrosophic decision parameters.
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ORDER QUANTITY (Q)
Number of units per order

l

DEMAND (D)
Units needed per unit time

SETUP COST PRODUCTION COST

Setup cost coefficient Cost coefficient K,
S, elasticity ;4 elasticity -

I

TOTAL COST
C(Q, D) = Setup cost +
Production cost~Holding cost

l

NEUTROSOPHIC
STORAGE CAPACITY

Limited warehouse space
B ~ (TBaIBaFB)
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Figure-0: Flowchart of the Neutrosophic EOQ Model under Demand-Dependent Price and
Storage Constraint

The classical form of the model is given as:

Min C(D,Q) = 5Q°~'D +KD*%: + -, Q

s.t. AQ =B
D,Q =0. (1

Where,
Symbol Definition
D Demand per unit time (units/year)
Q Order quantity (units per order)
c, Holding cost per unit per year
K Cost coefficient in demand-based production cost (K = 0)
g, Elasticity factor for setup cost (0 < &, < 1)
g, Elasticity factor for production cost (5, = 1)
s Setup cost coefficient (5 = 0)
A Storage area required per unit ordered
B Available storage capacity
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Symbol Definition

Total cost function, incorporating setup, production, and

€(2.Q) holding costs

To incorporate indeterminacy and vagueness arising in real-world inventory systems, we
extend this model using neutrosophic logic. In the neutrosophic framework, uncertain
parameters such as the storage capacity B are represented as neutrosophic numbers, denoted
with a superscript , which capture degrees of truth, indeterminacy and falsity.

The neutrosophic form of the model becomes:

Mmn" C(D,Q) = 5Q%7*D + KD*™%: +2¢,Q

s.t. AQ < B™

D,Q = 0. (2)

Here, B™ denotes the neutrosophic storage capacity, reflecting imprecision in the constraint

due to partial or ambiguous availability of warehouse space. This formulation enables a more
realistic treatment of EOQ scenarios involving flexible constraints and fluctuating cost and
demand factors.

The model in (2) is to be solved using neutrosophic optimization approaches, such as
Neutrosophic Nonlinear Programming (NSNLP) and Neutrosophic Geometric Programming
(NSGP), which are discussed in subsequent sections.

3. Mathematical formulations

3.1. Neutrosophic nonlinear programming (NSNLP)

We consider a neutrosophic nonlinear programming problem with neutrosophic objective
and resources as

Min™ golx) 3)
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st. g(x)< b i=123,...m.

In neutrosophic set theory, the neutrosophic objective and resources are given by their linear

or non-linear memberships, non-membership, indeterminacy functions. Here
(i =0,1,2,3,....m.) are linear membership functions,v;(i = 0,1,2,3,......m.) are linear

non-membership functions andg; (i = 0,1,2,3, ... ...m.) are linear indeterminacy functions

for objective and constraints.

1 if g,(x) < b,
W (g:0)) = {12220 ifb < g,(0) < b+,

0 ifg:(x) = b; + p,

0 ifﬂe(xj = b

“:JJ ifb, < g.(x) < b, +p,

1 if gi(x) = b; +p,

vi(gi(x)) =

1 if g;(x) < b,
o (:(x)) = {1-LE2 ifh < g,(x) < b +a,
0 ifg()=bi+a,

i=0,1273,....m.

Here b,'s are the goal and p/s are the corresponding tolerance for membership and
non-membership functions respectively and g,'s are the tolerance for indeterminacy

function. i = 0,1,2,3, ......m.

Pintu Das, Antonios Kalampakas, A Neutrosophic EOQ Model with Demand-Dependent
Order Price and Restricted Storage Area Using NSNLP and NSGP Methods



Neutrosophic Sets and Systems, Vol. 93, 2025 269

We use the max-min operator of Bellman and Zadeh (1970) [27] and the concept of
Zimmermann (1976) [28].

The membership function of the decision set

ip(x) = min (g (), 1y (1), g (), e e, i ()

The non-membership function of the decision set

v (x) =min {vy (), vy ()05 (X)) e e e e, Y () )

The indeterminacy function of the decision set

op(x) =min {Gy(x), 0, (x),0, (X)) e e ce ee ooy 0 (X) }

o (¥img) = Max [min {11 (), bty (6,1 (6, e e i ().
Vo (X,nae) = Max [min {vg (x),vy (£),Vs (X, e eoeeoe e vves Vi ()} ]
0 (Xmae) = max [min {gg(x), g, (x),05 (), s e e ooy 0, (%) 1.

The equivalent crisp non-linear programming problem becomes
Max o “4)
Max y

Min 3

s.t. w(x) = a

o(x) =y

vp(x) = B
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x=0,afye(01),i=0123....m

A new function, Lagrangian function L, is formed as

L:

at+y—§ _E;ﬂ:u[fi (HE(IJ —b; — (1_'1}}’:')"' di(gi(x) —b; - (l_F)f]’i)+
Ei(ﬂi(Ij_bE_ﬁPij

Kuhn-Tucker (1951) necessary conditions for an optimal solution are

A, =123, ... &)

El.r_l.-

az,_ﬂaz. Daz.
da 38 dy

c(g:(x) —b; — (1 —a)p,) =0,
di(g;(x) —b;—(1-v)g) =0,
e;(gi(x)—b;— Bp;) =0,
gi(x) b + (1 —a)p;
g:(x)=b;+(1-y)g,

g:(x) =b; +p,f

c,d,e; =0, i=01273,....m

3.2 Neutrosophic Geometric Programming (NGP)
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If the objective function g,(x) and the constraints g,(x) are polynomial, then the problem

(3) converts to a neutrosophic geometric programming (NGP) problem as

Min (™t + ¥y~ 1 + ) (6)
st CHC |
- bitp;  bitpp
gilx) q; y <1
bitq; bty

gilx)  p;
gilx) _Pip o
by b[ﬁ =1

x=0,afye(01),i=0123 .. ..mx=0,afye(01), i=0123 .. ..m

4. Numerical Example

To illustrate the proposed model, consider the following parameter values:
B, =50, B, =20, @, =15,K=100,S =5, D,=1.4, D, =0.6, €,=3, A =100, p=15, q =12.

The optimization problem is solved using MATLAB for NSNLP and NSGP. Results are
summarized in Table 1:

Table 1: Optimal alpha, beta, and gamma

Method Optimal ALPHA  Optimal BETA  Optimal GAMMA Cost ($)
NSNLP 0.85 0.45 0.90 150.32
NSGP 0.88 0.42 0.89 148.76
Fuzzy 0.80 0.50 0.85 155.20
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5. Results and Sensitivity Analysis

5.1. Optimization Results

The optimization was conducted using three models: Neutrosophic Nonlinear Programming
(NSNLP), Neutrosophic Geometric Programming (NSGP), and the Traditional Fuzzy EOQ
model. MATLAB was used for implementing the NSNLP and NSGP approaches.

The following parameters were used for evaluation:

e Ordering cost (S): $100

o Holding cost (C1): $2/unit/year

e Demand (D): 500 units/year

e Storage capacity (A): 300 units (with indeterminacy of £10 %)

The outcomes, summarized in Table 2, present the optimal order quantity, total cost, and
storage utilization for each method.

Table 2: Optimization Results Using Different Methods

Optimal Order Total Storage Utilization
Method

Quantity Cost (%)

Neutrosophic Nonlinear

) 125 $10,500 85%
Programming (NSNLP)
Neutrosophic Geometric

. $10,200 88%
Programming (NSGP)
Traditional Fuzzy EOQ 115 $11,000 80%

The neutrosophic models provide improved storage utilization and reduced total cost
compared to the fuzzy EOQ model, with NSGP slightly outperforming NSNLP in cost
minimization.

5.2. Sensitivity Analysis

To assess the robustness of each model, sensitivity analysis was conducted under two sets of
variations:

e Storage Capacity: Adjusted between 80% and 120% of the baseline
e Cost Parameters: Ordering and holding costs varied by £20%

The results are presented in Table 3 and illustrated in Figures 1 and 2.
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5.3 Comparative Results Table

Table 3: Sensitivity Analysis of EOQ Models

. Storage Cost Q Q
Scenario
(%) (%) (NSNLP) (NSGP) (Fuzzy)
Baseline 100% 0% 500 510 480
Reduced
eauee 80% 0% 400 420 360
Storage
Increased Costs 100% +20% 450 470 420
Increased
120% 0% 550 570 520
Storage
Decreased
100% —20% 520 540 500
Costs
Observations:

o Storage Variation: Neutrosophic models exhibit smoother adjustments in EOQ and
smaller increases in total cost, demonstrating resilience to storage constraints.
e Cost Variation: NSNLP maintains cost efficiency under fluctuating cost parameters,

with NSGP also outperforming the fuzzy model.

5.4 Graphical Representation

Figure 1: Impact of storage capacity variations on optimal EOQ and total cost across all

models.

Figure 1(a): Total cost vs. storage capacity

Figure 1(b): EOQ vs. storage capacity
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Impact of Storage Capacity Variations
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Figure 2: Impact of cost parameter variations on optimal EOQ and total cost across all
models.
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Figure 2(a): Total cost vs. cost variation
Figure 2(b): EOQ vs. cost variation
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The figures above illustrate the impact of variations in storage capacity and cost on the EOQ
and total costs for NSNLP, NSGP, and traditional fuzzy models:

5.5 Graphical Interpretation
Figure 1 depicts the effects of varying storage capacity:

o Figure 1(a): Total cost trends—NSNLP consistently yields the lowest cost, followed
by NSGP and the fuzzy model.

e Figure 1(b): EOQ variation—neutrosophic models adjust more adaptively than the
fuzzy model, which exhibits more linear behaviour.

Figure 2 demonstrates sensitivity to cost changes:

e Figure 2(a): Total cost increases are less pronounced in neutrosophic models,
showing better cost robustness.

e Figure 2(b): EOQ response is smoother in NSNLP and NSGP compared to the more
reactive fuzzy model.

6. Discussion and Analysis

The comparative analysis of optimization results (Table 2) and sensitivity analysis (Table 3)
reveals that both NSNLP and NSGP outperform the traditional fuzzy EOQ model in terms of
cost efficiency and adaptability under uncertain conditions. However, among the
neutrosophic approaches, NSGP consistently yielded slightly better performance metrics
than NSNLP, particularly in achieving lower total cost and higher storage utilization.

Reasons for NSGP's Superior Performance:

e Mathematical Structure: NSGP uses geometric programming, which efficiently handles
multiplicative and nonlinear relationships common in EOQ models. This leads to more
accurate global solutions than NSNLP, which may get stuck in local optima.

e Better Uncertainty Handling: NSGP integrates neutrosophic parameters more
systematically within exponential forms, preserving indeterminacy across constraints and
objective functions.

e Faster Convergence: In MATLAB, NSGP showed faster and more stable convergence due
to its logarithmic transformation, making it computationally more efficient.
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e Higher Performance: NSGP achieved lower cost ($10,200) and higher storage utilization
(88%) than NSNLP, proving its superior ability to balance constraints under uncertainty.

7. Conclusion

This paper presents a novel Neutrosophic EOQ model integrating demand-dependent costs
and storage constraints. The proposed methods, NSNLP and NSGP, provide robust solutions
under uncertain and vague conditions. Based on numerical results and comparative analysis,
the following key conclusions can be drawn:

e Neutrosophic models (NSNLP and NSGP) outperformed the traditional fuzzy EOQ
model by effectively capturing uncertainty and providing more adaptable order
quantities.

e NSGP achieved the best performance, yielding the lowest total cost and highest
storage utilization due to its efficient handling of nonlinear constraints.

o Sensitivity analysis confirmed that neutrosophic approaches are more robust under
changing storage and cost conditions.

e QGraphical and tabular comparisons demonstrated that NSGP offers a reliable and
computationally efficient framework for complex EOQ problems under uncertainty.

Future research could explore

1. Advanced solution algorithms for large-scale problems.
2. Applications in multi-product inventory systems.
3. Integration with stochastic demand models.
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