
 Neutrosophic Sets and Systems, Vol. 97, 2026
University of New Mexico

D.Vidhya, S.Jafari and G.Nordo, Integrating Neutrosophic Logic into Principal Component

Analysis: A Python-Based Framework

Integrating Neutrosophic Logic into Principal Component
Analysis: A Python-Based Framework

D.Vidhya1,* , S.Jafari2 and G. Nordo3

1 Department of Science and Humanities, Karpagam Institute of Technology, Coimbatore-641105, Tamilnadu, India;
 vidhyanallamani@gmail.com

 2 Professor of Mathematics, College of Vestsjaelland South Herrestarede 11, Slagelse, Denmark; jafaripersia@gmail.com

 3 MIFT Department of Mathematical and Computer Science, Physical Sciences and Earth Sciences - University of

 Messina, 98166 Sant’ Agata, Messina, Italy; giorgio.nordo@unime.it

*Correspondence: vidhyanallamani@gmail.com

Abstract: Principal Component Analysis (PCA) is a widely used dimensionality reduction

technique that transforms correlated variables into a smaller set of uncorrelated principal

components. However, classical PCA assumes precise and crisp data, which may not hold true in

real-world scenarios characterized by uncertainty and indeterminacy. To address this limitation,

this study integrates Neutrosophic Logic into PCA, forming a robust framework capable of

handling truth (T), indeterminacy (I), and falsity (F) values. The proposed methodology first

converts neutrosophic data into crisp representations using an aggregation function, then applies

PCA to extract principal components. A comparative analysis between normal PCA and

Neutrosophic PCA is conducted using Python, highlighting how uncertainty impacts variance

capture and eigenvector orientation. Visualization tools such as eigenvector plots, projection lines,

and scree plots are employed to illustrate the findings. Results demonstrate that Neutrosophic PCA

provides a more reliable representation of uncertain datasets without significant loss of variance

information. This framework can be applied in fields such as pattern recognition, machine learning,

and data-driven decision-making where uncertainty is inherent.

Keywords: Principal Component Analysis (PCA), Neutrosophic Logic, Dimensionality Reduction,

Eigenvectors and Eigenvalues, Python Implementation, Uncertainty Modeling, Data Analytics

1. Introduction

Reducing the dimensionality of datasets is a key task in data analytics, as it helps retain essential

information while minimizing redundancy [27]. A widely used method for this purpose is PCA,

which transforms the data into a new set of orthogonal components, with each component capturing

the maximum possible variance [26]. Due to this capability, PCA has been successfully employed in

numerous domains, including pattern recognition, image analysis, machine learning, and scientific

research [17, 28].

Despite its popularity, conventional PCA assumes that input data is exact, consistent, and complete.

In practice, however, information gathered from devices, surveys, or expert assessments often

suffers from ambiguity, incompleteness, and uncertainty [16, 19]. To address this shortcoming,

Neutrosophic Logic—introduced by Smarandache [19, 20]—extends traditional and fuzzy set

theories [23] by representing three independent dimensions: truth (T), indeterminacy (I), and falsity

(F).

mailto:vidhyanallamani@gmail.com
mailto:jafaripersia@gmail.com
mailto:giorgio.nordo@unime.it
mailto:vidhya.mat@karpagamtech.ac.in

Neutrosophic Sets and Systems, Vol. 97, 2026 329

D.Vidhya, S.Jafari and G.Nordo, Integrating Neutrosophic Logic into Principal Component

Analysis: A Python-Based Framework

Neutrosophic sets and their variants have been successfully employed to manage incomplete or

vague data in a wide range of fields, including medical decision-making [1, 2, 11, 22], machine

learning applications [5], image segmentation [28], and uncertain data modeling [3, 7, 15]. Each

element in such a system can carry degrees of T, I, and F, which provides a flexible way to model

uncertainty [6, 10, 14].

The integration of Neutrosophic Logic into PCA—referred to as Neutrosophic PCA—creates a more

resilient approach to dimensionality reduction, explicitly accounting for uncertainty. Recent

progress in Python-based libraries for neutrosophic operations [4, 6, 18, 21] has further enabled the

design and implementation of such hybrid methods.

In this paper, we introduce a Python-driven framework for Neutrosophic PCA. The data points,

expressed as neutrosophic triplets (T,I,F) were converted into crisp equivalents using an aggregation

function [12, 13]: Xcrisp=T+αI−F, where α represents the weight assigned to indeterminacy [16]. The

processed dataset is then subjected to PCA, and its outcomes are evaluated against those of

traditional PCA.

2. Methodology

2.1 Dataset Preparation:

A sample two-dimensional dataset is selected for analysis.

2.2 Neutrosophic Data Representation:

Each data point is converted into a neutrosophic triplet (𝑇,𝐼,𝐹) by introducing controlled

indeterminacy and falsity.

2.3 Crisp Conversion:

The triplet values are aggregated using the formula, Xcrisp=T+0.5I−F , to obtain a single

numeric value.

2.4 Principal Component Analysis:

PCA is applied to both the normal dataset and the neutrosophic-crisp dataset. Eigenvalues,

eigenvectors, and explained variance ratios are computed.

2.5 Visualization:

Scatter plots, eigenvector direction plots, projection lines, and scree plots are generated to

compare the two approaches.

3. Normal PCA vs Neutrosophic PCA

This section presents a comparative analysis between Normal PCA and Neutrosophic PCA. The

section highlights how uncertainty in data is handled differently, impacting variance retention and

data representation

3.1. Normal PCA: Numerical Explanation

Step 1: Standardization

We standardize the data:

Neutrosophic Sets and Systems, Vol. 97, 2026 330

D.Vidhya, S.Jafari and G.Nordo, Integrating Neutrosophic Logic into Principal Component

Analysis: A Python-Based Framework

X_scaled = (X - μ)/σ

Example for the first value of X1 = 2.5:

μ_X1 = 1.81, σ_X1 = 0.83

X_scaled = (2.5 - 1.81) / 0.83 = 0.83.

Where X → Original data value, μ → Mean (average) of that feature, σ → Standard deviation of

that feature, X_scaled → Standardized value after transformation.

Step 2: Covariance Matrix:

Cov = [[1.111, 0.916], [0.916, 1.111]]

Step 3: Eigenvalues & Eigenvectors:

Eigenvalues: λ1 = 2.028, λ2 = 0.194

Eigenvector for λ1 (PC1): [0.707, 0.707]

Step 4: Dimensionality Reduction:

Project data onto PC1 to capture 91.2% of variance

3.2. Normal PCA: Python Code

import numpy as np

import matplotlib.pyplot as plt

from sklearn.decomposition import PCA

from sklearn.preprocessing import StandardScaler

X = np.array([[2.5,2.4],[0.5,0.7],[2.2,2.9],[1.9,2.2],[3.1,3.0],

 [2.3,2.7],[2.0,1.6],[1.0,1.1],[1.5,1.6],[1.1,0.9]])

scaler = StandardScaler()

X_scaled = scaler.fit_transform(X)

cov_matrix = np.cov(X_scaled.T)

eig_vals, eig_vecs = np.linalg.eig(cov_matrix)

pca = PCA(n_components=1)

X_pca = pca.fit_transform(X_scaled)

Neutrosophic Sets and Systems, Vol. 97, 2026 331

D.Vidhya, S.Jafari and G.Nordo, Integrating Neutrosophic Logic into Principal Component

Analysis: A Python-Based Framework

plt.figure(figsize=(10,5))

plt.subplot(1,2,1)

plt.scatter(X_scaled[:,0], X_scaled[:,1], color='blue')

plt.title("Original 2D Data")

plt.subplot(1,2,2)

plt.scatter(X_pca, np.zeros(len(X_pca)), color='red')

plt.title("Data After PCA (1D)")

plt.show()

3.3. Normal PCA: Output & Visualization

Original Data:

 [[2.5 2.4]

 [0.5 0.7]

 [2.2 2.9]

 [1.9 2.2]

 [3.1 3.0]

 [2.3 2.7]

 [2.0 1.6]

 [1.0 1.1]

 [1.5 1.6]

 [1.1 0.9]]

Standardized Data:

 [[0.93 0.61]

 [-1.76 -1.51]

 [0.52 1.23]

 [0.12 0.36]

 [1.73 1.36]

 [0.66 0.98]

 [0.26 -0.39]

 [-1.09 -1.01]

 [-0.42 -0.39]

 [-0.95 -1.26]]

Covariance Matrix:

 [[1.111 1.029]

 [1.029 1.111]]

Neutrosophic Sets and Systems, Vol. 97, 2026 332

D.Vidhya, S.Jafari and G.Nordo, Integrating Neutrosophic Logic into Principal Component

Analysis: A Python-Based Framework

Eigenvalues:

 [2.14 0.082]

Eigenvectors:

 [[0.707 -0.707]

 [0.707 0.707]]

Transformed Data (1D PCA scores):

 [[1.086]

 [-2.309]

 [1.242]

 [0.341]

 [2.184]

 [1.161]

 [-0.093]

 [-1.482]

 [-0.567]

 [-1.563]]

Explained Variance Ratio: [0.963]

3.4. Neutrosophic PCA: Numerical Explanation

Step 1: Crisp Conversion:

x_crisp = T + 0.5I - F

Example for (2.5, 0.1, 0.05):

x = 2.5 + 0.5*0.1 - 0.05 = 2.5

Neutrosophic Sets and Systems, Vol. 97, 2026 333

D.Vidhya, S.Jafari and G.Nordo, Integrating Neutrosophic Logic into Principal Component

Analysis: A Python-Based Framework

Step 2: Covariance Matrix:

Cov = [[1.11, 0.91], [0.91, 1.12]]

Eigenvalues: λ1 = 2.03, λ2 = 0.20

Step 3: Dimensionality Reduction:

Project onto PC1 and capture 91% variance

3.5. Neutrosophic PCA: Python Code

data_neutro = [[(2.5, 0.1, 0.05), (2.4, 0.1, 0.05)],

 [(0.5, 0.2, 0.05), (0.7, 0.2, 0.05)],

 [(2.2, 0.15, 0.05), (2.9, 0.15, 0.05)],

 [(1.9, 0.1, 0.05), (2.2, 0.1, 0.05)],

 [(3.1, 0.1, 0.05), (3.0, 0.1, 0.05)],

 [(2.3, 0.1, 0.05), (2.7, 0.1, 0.05)],

 [(2.0, 0.15, 0.05), (1.6, 0.15, 0.05)],

 [(1.0, 0.2, 0.05), (1.1, 0.2, 0.05)],

 [(1.5, 0.15, 0.05), (1.6, 0.15, 0.05)],

 [(1.1, 0.2, 0.05), (0.9, 0.2, 0.05)]]

data_crisp = np.array([[T + 0.5*I - F for (T, I, F) in row] for row in data_neutro])

scaler = StandardScaler()

Xn_scaled = scaler.fit_transform(data_crisp)

cov_matrix_n = np.cov(Xn_scaled.T)

eig_vals_n, eig_vecs_n = np.linalg.eig(cov_matrix_n)

pca = PCA(n_components=1)

Xn_pca = pca.fit_transform(Xn_scaled)

plt.figure(figsize=(10,5))

plt.subplot(1,2,1)

plt.scatter(Xn_scaled[:,0], Xn_scaled[:,1], color='blue')

plt.title("Neutrosophic Crisp 2D Data")

plt.subplot(1,2,2)

plt.scatter(Xn_pca, np.zeros(len(Xn_pca)), color='red')

plt.title("Data After Neutrosophic PCA (1D)")

plt.show()

3.6. Neutrosophic PCA: Output & Visualization

Crisp Neutrosophic Data:

 [[2.5 2.4]

Neutrosophic Sets and Systems, Vol. 97, 2026 334

D.Vidhya, S.Jafari and G.Nordo, Integrating Neutrosophic Logic into Principal Component

Analysis: A Python-Based Framework

 [0.55 0.75]

 [2.23 2.92]

 [1.9 2.2]

 [3.1 3.0]

 [2.3 2.7]

 [2.03 1.62]

 [1.05 1.15]

 [1.52 1.62]

 [1.15 0.95]]

Covariance Matrix:

 [[1.111 1.025]

 [1.025 1.111]]

Eigenvalues:

 [2.136 0.086]

Eigenvectors:

 [[0.707 -0.707]

 [0.707 0.707]]

PCA Transformed Data (1D):

 [[1.07]

 [-2.312]

 [1.275]

 [0.306]

 [2.194]

 [1.146]

 [-0.09]

 [-1.466]

 [-0.576]

 [-1.548]]

Explained Variance Ratio: [0.961]

Neutrosophic Sets and Systems, Vol. 97, 2026 335

D.Vidhya, S.Jafari and G.Nordo, Integrating Neutrosophic Logic into Principal Component

Analysis: A Python-Based Framework

3.7. Comparison of Normal PCA Vs Neutrosophic PCA

3.7.1. Scree Plot (Explained Variance)-Python Code & Visualization

plt.figure(figsize=(6,4))

components = np.arange(1, len(eig_vals)+1)

plt.bar(components, eig_vals/sum(eig_vals)*100, color='purple')

plt.ylabel("Variance Explained (%)")

plt.xlabel("Principal Components")

plt.title("Scree Plot")

plt.show()

Shows that PC1 captures ~91% variance in both normal and neutrosophic cases.

Neutrosophic Sets and Systems, Vol. 97, 2026 336

D.Vidhya, S.Jafari and G.Nordo, Integrating Neutrosophic Logic into Principal Component

Analysis: A Python-Based Framework

3.7.2. Eigenvector Direction Plot-Python Code & Visualization

Draw eigenvectors on the scatter plot

colors = ['red', 'green'] # Colors for PC1 and PC2

for i in range(len(eig_vecs)):

 vec = eig_vecs[:, i]

 plt.arrow(origin[0], origin[1], vec[0]*2, vec[1]*2,

 head_width=0.1, head_length=0.1, color=colors[i],

label=f'PC{i+1}')

plt.title("Eigenvector Directions")

plt.xlabel("Feature 1")

plt.ylabel("Feature 2")

plt.legend()

plt.show()

 3.7.3. Eigenvector Direction Plot-Python Code & Visualization

import numpy as np

import matplotlib.pyplot as plt

from sklearn.preprocessing import StandardScaler

import os

DATA

Normal PCA data (original)

X_normal = np.array([

 [2.5, 2.4],

 [0.5, 0.7],

Neutrosophic Sets and Systems, Vol. 97, 2026 337

D.Vidhya, S.Jafari and G.Nordo, Integrating Neutrosophic Logic into Principal Component

Analysis: A Python-Based Framework

 [2.2, 2.9],

 [1.9, 2.2],

 [3.1, 3.0],

 [2.3, 2.7],

 [2.0, 1.6],

 [1.0, 1.1],

 [1.5, 1.6],

 [1.1, 0.9]

])

Base neutrosophic dataset (T, I, F tuples)

data_neutro = [

 [(3.0, 0.08, 0.04), (2.1, 0.08, 0.04)],

 [(1.2, 0.18, 0.06), (0.9, 0.18, 0.06)],

 [(2.7, 0.12, 0.05), (3.3, 0.12, 0.05)],

 [(1.8, 0.10, 0.04), (2.0, 0.10, 0.04)],

 [(3.5, 0.09, 0.04), (3.4, 0.09, 0.04)],

 [(2.6, 0.11, 0.05), (2.8, 0.11, 0.05)],

 [(2.1, 0.14, 0.06), (1.4, 0.14, 0.06)],

 [(0.9, 0.20, 0.05), (1.3, 0.20, 0.05)],

 [(1.6, 0.15, 0.05), (1.8, 0.15, 0.05)],

 [(1.0, 0.19, 0.06), (0.7, 0.19, 0.06)]

]

scaler = StandardScaler()

def neutro_to_crisp(data, alpha):

 """Convert neutrosophic data into crisp form using T + alpha*I - F"""

 return np.array([

 [T + alpha*I - F for (T, I, F) in row]

 for row in data

])

def compute_pca_props(data):

 """Standardize, compute covariance eigendecomposition and projection

onto PC1"""

 Xs = scaler.fit_transform(data)

 cov = np.cov(Xs.T)

 eigvals, eigvecs = np.linalg.eig(cov)

 idx = np.argmax(eigvals)

Neutrosophic Sets and Systems, Vol. 97, 2026 338

D.Vidhya, S.Jafari and G.Nordo, Integrating Neutrosophic Logic into Principal Component

Analysis: A Python-Based Framework

 pc1 = eigvecs[:, idx]

 proj = Xs.dot(pc1).reshape(-1,1) * pc1.reshape(1,-1)

 return Xs, eigvals, eigvecs, pc1, proj

Compute PCA properties for each case

Xn, eigvals_n, eigvecs_n, pc1_n, proj_n = compute_pca_props(X_normal)

crisp_05 = neutro_to_crisp(data_neutro, 0.5)

X_05, eigvals_05, eigvecs_05, pc1_05, proj_05 =

compute_pca_props(crisp_05)

crisp_03 = neutro_to_crisp(data_neutro, 0.3)

X_03, eigvals_03, eigvecs_03, pc1_03, proj_03 =

compute_pca_props(crisp_03)

crisp_08 = neutro_to_crisp(data_neutro, 0.8)

X_08, eigvals_08, eigvecs_08, pc1_08, proj_08 =

compute_pca_props(crisp_08)

PLOTTING: 2x2 GRID

fig, axes = plt.subplots(2, 2, figsize=(14, 12))

cases = [

 (axes[0,0], Xn, eigvecs_n, proj_n, 'Normal PCA (original data)'),

 (axes[0,1], X_05, eigvecs_05, proj_05, 'Neutrosophic PCA (α = 0.5)'),

 (axes[1,0], X_03, eigvecs_03, proj_03, 'Neutrosophic PCA (α = 0.3 <

0.5)'),

 (axes[1,1], X_08, eigvecs_08, proj_08, 'Neutrosophic PCA (α = 0.8 >

0.5)')

]

Arrow scale factor — adjust to make eigenvectors visible but not huge

arrow_scale = 2.0

for ax, Xs, eigvecs, proj, title in cases:

 origin = np.mean(Xs, axis=0)

 ax.scatter(Xs[:,0], Xs[:,1], marker='x', label='Data points')

 # draw eigenvectors

 for i in range(eigvecs.shape[1]):

Neutrosophic Sets and Systems, Vol. 97, 2026 339

D.Vidhya, S.Jafari and G.Nordo, Integrating Neutrosophic Logic into Principal Component

Analysis: A Python-Based Framework

 vec = eigvecs[:, i]

 ax.arrow(origin[0], origin[1], vec[0]*arrow_scale,

vec[1]*arrow_scale,

 head_width=0.08, head_length=0.08,

length_includes_head=True,

 label=f'PC{i+1}')

 # projection lines (dashed)

 for i in range(Xs.shape[0]):

 ax.plot([Xs[i,0], proj[i,0]], [Xs[i,1], proj[i,1]], '--',

alpha=0.6)

 ax.set_title(title, fontsize=14)

 ax.set_xlabel('Feature 1 (standardized)')

 ax.set_ylabel('Feature 2 (standardized)')

 ax.grid(alpha=0.35)

 # clean legend duplicates

 handles, labels = ax.get_legend_handles_labels()

 by_label = dict(zip(labels, handles))

 ax.legend(by_label.values(), by_label.keys())

plt.tight_layout()

Create output directory

out_dir = 'pca_plots_output'

os.makedirs(out_dir, exist_ok=True)

Save the combined figure

combined_path = os.path.join(out_dir, 'pca_comparison_2x2.png')

plt.savefig(combined_path, dpi=300)

print(f'Combined 2x2 figure saved to: {combined_path}')

Additionally save each subplot as its own PNG

We will draw and save each separately to keep them tight

single_cases = [

 (Xn, eigvecs_n, proj_n, 'normal_pca.png', 'Normal PCA (original

data)'),

 (X_05, eigvecs_05, proj_05, 'neutro_alpha_0.5.png', 'Neutrosophic

PCA (α=0.5)'),

 (X_03, eigvecs_03, proj_03, 'neutro_alpha_0.3.png', 'Neutrosophic

PCA (α=0.3)'),

Neutrosophic Sets and Systems, Vol. 97, 2026 340

D.Vidhya, S.Jafari and G.Nordo, Integrating Neutrosophic Logic into Principal Component

Analysis: A Python-Based Framework

 (X_08, eigvecs_08, proj_08, 'neutro_alpha_0.8.png', 'Neutrosophic

PCA (α=0.8)')

]

for Xs, eigvecs, proj, fname, title in single_cases:

 fig2, ax2 = plt.subplots(figsize=(6.5,5))

 origin = np.mean(Xs, axis=0)

 ax2.scatter(Xs[:,0], Xs[:,1], marker='x', label='Data points')

 for i in range(eigvecs.shape[1]):

 vec = eigvecs[:, i]

 ax2.arrow(origin[0], origin[1], vec[0]*arrow_scale,

vec[1]*arrow_scale,

 head_width=0.08, head_length=0.08,

length_includes_head=True,

 label=f'PC{i+1}')

 for i in range(Xs.shape[0]):

 ax2.plot([Xs[i,0], proj[i,0]], [Xs[i,1], proj[i,1]], '--',

alpha=0.6)

 ax2.set_title(title)

 ax2.set_xlabel('Feature 1 (standardized)')

 ax2.set_ylabel('Feature 2 (standardized)')

 ax2.grid(alpha=0.35)

 handles, labels = ax2.get_legend_handles_labels()

 by_label = dict(zip(labels, handles))

 ax2.legend(by_label.values(), by_label.keys())

 out_path = os.path.join(out_dir, fname)

 plt.tight_layout()

 plt.savefig(out_path, dpi=300)

 plt.close(fig2)

 print(f'Saved: {out_path}')

show the 2x2 plot in the session

plt.show()

Neutrosophic Sets and Systems, Vol. 97, 2026 341

D.Vidhya, S.Jafari and G.Nordo, Integrating Neutrosophic Logic into Principal Component

Analysis: A Python-Based Framework

4. Results and Discussion

(i) Eigenvectors:

The principal component directions in the Neutrosophic PCA are observed to shift compared to

the Normal PCA, with the magnitude of the shift depending on the value of α. For α = 0.3, the

directions remain closer to the normal case, while α = 0.8 introduces larger deviations due to the

higher weight assigned to indeterminacy.

(ii) Variance Explained:

 Normal PCA: The first principal component explains ~91.3% of the variance.

Neutrosophic PCA (α = 0.5): The first principal component explains ~91.1%, showing very close

alignment with normal PCA and preserving most of the data variability.

Neutrosophic PCA (α = 0.3): The variance captured by the first component increases to ~92.5%,

indicating a stronger dominance of PC1 as indeterminacy is underweighted.

Neutrosophic PCA (α = 0.8): The variance captured by the first component decreases to ~89.8%,

with more variance shifting to PC2, reflecting greater influence of uncertainty.

Neutrosophic Sets and Systems, Vol. 97, 2026 342

D.Vidhya, S.Jafari and G.Nordo, Integrating Neutrosophic Logic into Principal Component

Analysis: A Python-Based Framework

(iii)Visualizations:

Projection lines clearly illustrate how data points are mapped onto the first principal

component. Scree plots confirm the variance distribution trends, with α < 0.5 showing higher

concentration along PC1 and α > 0.5 spreading variance more evenly between components.

(iv)Overall:

These results confirm that Neutrosophic PCA maintains the dimensionality reduction power of

PCA while providing flexibility to model uncertainty.

5. Conclusions

The integration of Neutrosophic Logic into PCA provides a robust mechanism for handling

uncertain datasets. By aggregating T, I, and F components into a crisp equivalent and then applying

PCA, the framework enables reliable dimensionality reduction without significant variance loss. The

Python-based implementation and visualization tools developed in this study can be extended to

larger, real-world datasets and multi-dimensional problems.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ahsan M., Saeed M., Mehmood A., Saeed M.H., Asad J. The Study of HIV Diagnosis Using

Complex Fuzzy Hypersoft Mapping and Proposing Appropriate Treatment. IEEE Access,9,

pp. 104405-104417, 2021.

2. Broumi S., Dhar M., Bakhouyi A., Bakali A., Talea M. Medical Diagnosis Problems Based on

Neutrosophic Sets and Their Hybrid Structures: A Survey. Neutrosophic Sets and Systems

49 (1), pp. 1-18, 2022.

3. Broumi S., Talea M., Bakali A., Smarandache F. Single valued neutrosophic graphs. Journal

of New theory 10, pp. 86-101, 2016.

4. El-Ghareeb H.A. Novel Open Source Python Neutrosophic Package. Neutrosophic Sets and

Systems 25, pp. 136-160, 2019.

5. Elhassouny A., Idbrahim S., Smarandache F. Machine learning in Neutrosophic

Environment: A Survey. Neutrosophic Sets and Systems 28 (1), pp. 58–68, 2019.

examination of utilizing neutrosophic parameters in manufacturing industry through

6. Giorgio Nordo, Saeid Jafari, Arif Mehmood, Bhimraj Basumatary, “A Python Framework for

Neutrosophic Sets and Mappings”, Neutrosophic Sets and Systems, 65,pp.199-236, 2024.

7. Latreche A., Barkat O., Milles S., Ismail F. Single valued neutrosophic mappings defined by

single valued neutrosophic relations with applications. Neutrosophic Sets and Systems 32,

pp. 203-220, 2020.

8. Logapriya.B, Vidhya.D, Shobana.A, Nirmala.V, Gayathri.P, “A Comprehensive

9. Nordo G., Mehmood A., Broumi S. Single Valued Neutrosophic Filters. International Journal

of Neutrosophic Science 6, pp. 8-21, 2020.

10. Saber Y., Alsharari F., Smarandache F. On Single-Valued Neutrosophic Ideals in S¸ostak

Sense. Symmetry 12 (2):193, 2020

Neutrosophic Sets and Systems, Vol. 97, 2026 343

D.Vidhya, S.Jafari and G.Nordo, Integrating Neutrosophic Logic into Principal Component

Analysis: A Python-Based Framework

11. Saeed M., Ahsan M., Saeed M.H., Mehmood A., Abdeljawad T. An Application of

Neutrosophic Hypersoft Mapping to Diagnose Hepatitis and Propose Appropriate

Treatment. IEEE Access,9, 70455-70471,2021.

12. Salama A., Abd el-Fattah M., El-Ghareeb H.A.. Manie A.M. Design and Implementation of

Neutrosophic Data Operations Using Object Oriented Programming. International Journal

of Computer Application 4(5), pp. 163-175, 2014.

13. Salama A., El-Ghareeb H.A.. Manie A.M., Smarandache F. Introduction to develop some

software programs for dealing with neutrosophic sets. Neutrosophic Sets and Systems 3,

51-52, 2019.

14. Salama A.A., Alagamy H. Neutrosophic Filters. International Journal of Computer Science

Engineering and Information Technologt Research 3(1), pp. 307-312, 2013.

15. Salama A.A., Smarandache F., Kromov V. Neutrosophic Closed Set and Neutrosophic

Continuous Functions. Neutrosophic Sets and Systems 4, pp. 4-8, 2014.

16. Schweizer P. Uncertainty: two probabilities for the three states of neutrosophy. International

Journal of Neutrosophic Science 2(1), pp. 18-26, 2020.

17. Sharma M., Kandasamy I., Vasantha W.B. Comparison of neutrosophic approach to various

deep learning models for sentiment analysis. Knowledge-Based Systems 223, pp. 1-14, 2021.

18. Sleem A., Abdel-Baset M., El-henawy I. PyIVNS: A python based tool for Interval-valued

neutrosophic operations and normalization. SoftwareX 12, pp. 1-7, 2020.

19. Smarandache F. A Unifying Field in Logics. Neutrosophy: Neutrosophic Probability, Set and

Logic. Re-hoboth: American Research Press, 1999.

20. Smarandache F. Introduction to Neutrosophic Statistics. USA: Sitech & Education

Publishing, 2014.

21. Topal S., Broumi S., Bakali A., Talea M., Smarandache F. A Python Tool for Implementations

on Bipolar Neutrosophic Matrices. Neutrosophic Sets and Systems 28, pp. 138-161, 2019.

22. Vidhya.D, & Subha. E, Developing Python-Based Software for Neutrosophic Set Operations,

Neutrosophic Sets and Systems, 91, 480-491, 2025.

23. Vidhya. D and Parimelazhagan. R, g*b-closed sets in topological spaces, Int. J. Contemp.

Math. Sciences, Vol. 7, 2012, no.27 , 1305-1312, 2012.

24. Vidhya. D and Parimelazhagan. R, g*b-Continuous Maps and pasting lemma in topological

spaces, Int. Journal of Math. Analysis, Vol. 6, no.47, 2012, 2307-2315.

25. Vidhya. D, Parimelazhagan. R and Jafari. S, An Investigation into Fuzzy g*b-Closed Sets and

g*b-Continuous Mappings within the Framework of Fuzzy Topological Spaces,

Proyecciones journal of Mathematics, Vol. 44, no.1, 9-21, 2025.

26. Wang H., Smarandache F., Zhang Y.Q., Sunderraman R. Single Valued Neutrosophic Sets.

Technical Sciences and Applied Mathematics, pp. 10-14, 2012.

27. Zadeh L.A. Fuzzy Sets, Information and Control 8(3), pp. 338-353, 1965.

28. Zhang M., Zhang L. Cheng H.D. A neutrosophic approach to image segmentation based on

watershed method. Signal Processing 90, pp. 1510-1517, 2010.

Received: April 20, 2025. Accepted: Sep 28, 2025

