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Abstract: Principal Component Analysis (PCA) is a widely used dimensionality reduction
technique that transforms correlated variables into a smaller set of uncorrelated principal
components. However, classical PCA assumes precise and crisp data, which may not hold true in
real-world scenarios characterized by uncertainty and indeterminacy. To address this limitation,
this study integrates Neutrosophic Logic into PCA, forming a robust framework capable of
handling truth (T), indeterminacy (I), and falsity (F) values. The proposed methodology first
converts neutrosophic data into crisp representations using an aggregation function, then applies
PCA to extract principal components. A comparative analysis between normal PCA and
Neutrosophic PCA is conducted using Python, highlighting how uncertainty impacts variance
capture and eigenvector orientation. Visualization tools such as eigenvector plots, projection lines,
and scree plots are employed to illustrate the findings. Results demonstrate that Neutrosophic PCA
provides a more reliable representation of uncertain datasets without significant loss of variance
information. This framework can be applied in fields such as pattern recognition, machine learning,
and data-driven decision-making where uncertainty is inherent.

Keywords: Principal Component Analysis (PCA), Neutrosophic Logic, Dimensionality Reduction,
Eigenvectors and Eigenvalues, Python Implementation, Uncertainty Modeling, Data Analytics

1. Introduction

Reducing the dimensionality of datasets is a key task in data analytics, as it helps retain essential
information while minimizing redundancy [27]. A widely used method for this purpose is PCA,
which transforms the data into a new set of orthogonal components, with each component capturing
the maximum possible variance [26]. Due to this capability, PCA has been successfully employed in
numerous domains, including pattern recognition, image analysis, machine learning, and scientific
research [17, 28].

Despite its popularity, conventional PCA assumes that input data is exact, consistent, and complete.
In practice, however, information gathered from devices, surveys, or expert assessments often
suffers from ambiguity, incompleteness, and uncertainty [16, 19]. To address this shortcoming,
Neutrosophic Logic—introduced by Smarandache [19, 20]—extends traditional and fuzzy set
theories [23] by representing three independent dimensions: truth (T), indeterminacy (I), and falsity

().
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Neutrosophic sets and their variants have been successfully employed to manage incomplete or
vague data in a wide range of fields, including medical decision-making [1, 2, 11, 22], machine
learning applications [5], image segmentation [28], and uncertain data modeling [3, 7, 15]. Each
element in such a system can carry degrees of T, I, and F, which provides a flexible way to model
uncertainty [6, 10, 14].

The integration of Neutrosophic Logic into PCA —referred to as Neutrosophic PCA —creates a more
resilient approach to dimensionality reduction, explicitly accounting for uncertainty. Recent
progress in Python-based libraries for neutrosophic operations [4, 6, 18, 21] has further enabled the
design and implementation of such hybrid methods.

In this paper, we introduce a Python-driven framework for Neutrosophic PCA. The data points,
expressed as neutrosophic triplets (T,L,F) were converted into crisp equivalents using an aggregation
function [12, 13]: Xcrisp=T+al-F, where o represents the weight assigned to indeterminacy [16]. The
processed dataset is then subjected to PCA, and its outcomes are evaluated against those of
traditional PCA.

2. Methodology

2.1 Dataset Preparation:
A sample two-dimensional dataset is selected for analysis.

2.2 Neutrosophic Data Representation:
Each data point is converted into a neutrosophic triplet (T,I,F) by introducing controlled
indeterminacy and falsity.

2.3 Crisp Conversion:
The triplet values are aggregated using the formula, Xcrisp=T+0.5I-F , to obtain a single
numeric value.

2.4 Principal Component Analysis:
PCA is applied to both the normal dataset and the neutrosophic-crisp dataset. Eigenvalues,
eigenvectors, and explained variance ratios are computed.

2.5 Visualization:
Scatter plots, eigenvector direction plots, projection lines, and scree plots are generated to
compare the two approaches.

3. Normal PCA vs Neutrosophic PCA

This section presents a comparative analysis between Normal PCA and Neutrosophic PCA. The
section highlights how uncertainty in data is handled differently, impacting variance retention and
data representation

3.1. Normal PCA: Numerical Explanation
Step 1: Standardization

We standardize the data:
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X_scaled = (X - w)/o

Example for the first value of X1 =2.5:
u_X1=1.81,0_X1=0.83

X_scaled = (2.5-1.81) /0.83 =0.83.

Where X — Original data value, p — Mean (average) of that feature, 0 — Standard deviation of
that feature, X_scaled — Standardized value after transformation.

Step 2: Covariance Matrix:
Cov =[[1.111, 0.916], [0.916, 1.111]]
Step 3: Eigenvalues & Eigenvectors:
Eigenvalues: A1 =2.028, A2 =0.194
Eigenvector for A1 (PC1): [0.707, 0.707]
Step 4: Dimensionality Reduction:
Project data onto PC1 to capture 91.2% of variance
3.2. Normal PCA: Python Code
import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
X =np.array([[2.5,2.4],[0.5,0.7],[2.2,2.9],[1.9,2.2],[3.1,3.0],
[2.3,2.7],[2.0,1.6],[1.0,1.1],[1.5,1.6],[1.1,0.9]])
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
cov_matrix = np.cov(X_scaled.T)
eig_vals, eig_vecs = np.linalg.eig(cov_matrix)
pca = PCA(n_components=1)

X_pca = pca.fit_transform(X_scaled)
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plt.figure(figsize=(10,5))

plt.subplot(1,2,1)

plt.scatter(X_scaled][:,0], X_scaled][:,1], color="blue")
plt.title("Original 2D Data")

plt.subplot(1,2,2)

plt.scatter(X_pca, np.zeros(len(X_pca)), color="red’)
plt.title("Data After PCA (1D)")

plt.show()

3.3. Normal PCA: Output & Visualization

Original Data:
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Standardized Data:

[[ 0.93 0.61]
[-1.76 -1.51]
[ 0.52 1.23]
[ 0.12 0.36]
[ 1.73 1.36]
[ 0.66 0.98]
[ 0.26 -0.39]
[-1.09 -1.01]
[-0.42 -0.39]
[-0.95 -1.26]]

Covariance Matrix:
[[1.111 1.029]
[1.029 1.11171]
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Eigenvalues:

[2.14 0.082]

Eigenvectors:
[[ 0.707 -0.707]
[ 0.707 0.707]1]

Transformed Data (1D PCA scores) :
[[ 1.086]
[-2.309]
[ 1.242]
[ 0.341]
[ 2.184]
[ 1.161]
[-0.093]
[-1.482]
[-0.567]
[-1.5631]

Explained Variance Ratio: [0.963]
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3.4. Neutrosophic PCA: Numerical Explanation

Step 1: Crisp Conversion:
x_crisp=T+0.5I-F

Example for (2.5, 0.1, 0.05):
x=25+0.5%0.1-0.05=25
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Step 2: Covariance Matrix:
Cov =[[1.11, 0.91], [0.91, 1.12]]

Eigenvalues: A1=2.03, A2 =0.20

Step 3: Dimensionality Reduction:
Project onto PC1 and capture 91% variance

3.5. Neutrosophic PCA: Python Code

data_neutro =[[(2.5, 0.1, 0.05), (2.4, 0.1, 0.05)],

[(0.5, 0.2, 0.05), (0.7, 0.2, 0.05)],

[(2.2, 0.15, 0.05), (2.9, 0.15, 0.05)],

[(1.9,0.1, 0.05), (2.2, 0.1, 0.05)],

[(3.1, 0.1, 0.05), (3.0, 0.1, 0.05)],

[(2.3,0.1, 0.05), (2.7, 0.1, 0.05)],

[(2.0, 0.15, 0.05), (1.6, 0.15, 0.05)],

[(1.0,0.2,0.05), (1.1, 0.2, 0.05)],

[(1.5, 0.15, 0.05), (1.6, 0.15, 0.05)],

[(1.1, 0.2, 0.05), (0.9, 0.2, 0.05)]]
data_crisp = np.array([[T + 0.5*I - F for (T, I, F) in row] for row in data_neutro])
scaler = StandardScaler()

Xn_scaled = scaler.fit_transform(data_crisp)

cov_matrix_n = np.cov(Xn_scaled.T)

eig_vals_n, eig_vecs_n = np.linalg.eig(cov_matrix_n)

pca = PCA(n_components=1)
Xn_pca = pca.fit_transform(Xn_scaled)

plt.figure(figsize=(10,5))

plt.subplot(1,2,1)

plt.scatter(Xn_scaled][:,0], Xn_scaled[:,1], color="blue')
plt.title("Neutrosophic Crisp 2D Data")

plt.subplot(1,2,2)

plt.scatter(Xn_pca, np.zeros(len(Xn_pca)), color="red')
plt.title("Data After Neutrosophic PCA (1D)")
plt.show()

3.6. Neutrosophic PCA: Output & Visualization

Crisp Neutrosophic Data:

[[2.5 2.4 ]
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[0.55 0.75]
[2.23 2.92]
[1.9 2.2 ]
[3.1 3.0 ]
[2.3 2.7 ]
[2.03 1.62]
[1.05 1.15]
[1.52 1.62]
[1.15 0.95]]

Covariance Matrix:
[[1.111 1.025]
[1.025 1.11171])

Eigenvalues:

[2.136 0.086]

Eigenvectors:
[[ 0.707 -0.707]
[ 0.707 0.707]1]

PCA Transformed Data (1D):
[[ 1.07 ]
[-2.312]
[ 1.275]
[ 0.306]
[ 2.194]
[ 1.146]
[-0.09 ]
[-1.466]

[-0.576]
[-1.548]]

Explained Variance Ratio: [0.961]
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Neutrosophic Crisp 2D Data Data After PCA (1D)
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3.7. Comparison of Normal PCA Vs Neutrosophic PCA

3.7.1. Scree Plot (Explained Variance)-Python Code & Visualization

plt.figure(figsize=(6,4))

components = np.arange(l, len(eig vals)+1)

plt.bar (components, eig vals/sum(eig vals)*100, color='purple')
plt.ylabel ("Variance Explained (%)")

plt.xlabel ("Principal Components")

plt.title("Scree Plot")

plt.show ()

Scree Plot

100 A

80 A

60

40

Variance Explained (%)

20 A

0.75 1.00 1.25 1.50 1.75 2.00 2.25
Principal Components

Shows that PC1 captures ~91% variance in both normal and neutrosophic cases.
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3.7.2. Eigenvector Direction Plot-Python Code & Visualization

# Draw eigenvectors on the scatter plot

colors = ['red', 'green'] # Colors for PCl and PC2

for i in range(len(eig vecs)):

vec = eig vecs[:, 1i]

plt.arrow(origin[0], origin[l], wvec[0]*2,
head width=0.1, head length=0.1,

label=f'PC{i+1}")

plt.title("Eigenvector Directions")
plt.xlabel ("Feature 1")

plt.ylabel ("Feature 2")
plt.legend()

plt.show ()

Eigenvector Directions

\4
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color=colors[i],
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3.7.3. Eigenvector Direction Plot-Python Code & Visualization

import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler

import os

b o
# DATA
d
# Normal PCA data (original)
X normal = np.array ([

[2.5, 2.47,

[0.5, 0.7],

T
1.5
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(2.2, 2.91,
(1.9, 2.21,
[3.1, 3.01,
(2.3, 2.71,
[2.0, 1.6],
(1.0, 1.1],
[1.5, 1.6],
[1.1, 0.9]

~

1)

# Base neutrosophic dataset (T,

data neutro = [
[(3.0, 0.08, 0.04), (2.1,
[(1.2, 0.18, 0.06), (0.9,
[(2.7, 0.12, 0.05), (3.3,
[(1.8, 0.10, 0.04), (2.0,
[(3.5, 0.09, 0.04), (3.4,
[(2.6, 0.11, 0.05), (2.8,
[(2.1, 0.14, 0.06), (1.4,
[(0.9, 0.20, 0.05), (1.3,
[(1.6, 0.15, 0.05), (1.8,
[(1L.0, 0.19, 0.06), (0.7,

]

scaler = StandardScaler ()

O O O O O O O o o o

.08,
.18,
.12,
.10,
.09,
.11,
.14,
.20,
.15,
.19,

def neutro to crisp(data, alpha):

O O O O O O o o o

"""Convert neutrosophic data into crisp form using T + alpha*I - F"""

return np.array ([
[T + alpha*I - F for
for row in data

1)

def compute pca props(data):

(T,

I,

F)

in row]

"""Standardize, compute covariance eigendecomposition and projection

onto pPC1"""

Xs = scaler.fit transform(data)

cov = np.cov(Xs.T)

eigvals, eigvecs = np.linalg.eig(cov)

idx = np.argmax(eigvals)
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pcl = eigvecs([:, 1idx]
proj = Xs.dot(pcl).reshape(-1,1) * pcl.reshape(l,-1)
return Xs, eigvals, eigvecs, pcl, proj
# Compute PCA properties for each case
Xn, eigvals n, eigvecs n, pcl n, proj n = compute pca props (X normal)
crisp 05 = neutro to crisp(data neutro, 0.5)
X 05, eigvals 05, eigvecs 05, pcl 05, proj 05 =
compute pca props (crisp 05)
crisp 03 = neutro to crisp(data neutro, 0.3)
X 03, eigvals 03, eigvecs 03, pcl 03, proj 03 =
compute pca props (crisp 03)
crisp 08 = neutro to crisp(data neutro, 0.8)
X 08, eigvals 08, eigvecs 08, pcl 08, proj 08 =
compute pca props(crisp 08)
# _____________________
# PLOTTING: 2x2 GRID
# _____________________
fig, axes = plt.subplots (2, 2, figsize=(14, 12))
cases = |
(axes[0,0], Xn, eigvecs n, proj n, 'Normal PCA (original data)'),
(axes[0,1], X 05, eigvecs 05, proj 05, 'Neutrosophic PCA (ax=0.5)"),
(axes[1,0], X 03, eigvecs 03, proj 03, 'Neutrosophic PCA (a = 0.3 <
0.5)"),
(axes[1,1], X 08, eigvecs 08, proj 08, 'Neutrosophic PCA (a = 0.8 >

0.5)")
]

# Arrow scale factor — adjust to make eigenvectors visible but not huge

arrow_scale = 2.0

for ax, Xs, eigvecs, proj, title in cases:
origin = np.mean (Xs, axis=0)
ax.scatter(Xs[:,0], Xs[:,1], marker='x",
# draw eigenvectors

for i in range(eigvecs.shape[l]) :

label="'Data points')
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vec = eigvecs([:, 1i]
ax.arrow(origin[0], origin[1l], vec[O]*arrow scale,
vec[l]*arrow scale,
head width=0.08, head length=0.08,
length includes head=True,
label=f'PC{i+1}")
# projection lines (dashed)
for i in range (Xs.shape[0]) :
ax.plot ([Xs[i,0], projli,O011, [Xs[i,1l], projli,11], '--',
alpha=0.6)
ax.set title(title, fontsize=14)
ax.set xlabel ('Feature 1 (standardized)')
ax.set ylabel ('Feature 2 (standardized)')
ax.grid(alpha=0.35)
# clean legend duplicates
handles, labels = ax.get legend handles labels ()
by label = dict(zip(labels, handles))
ax.legend(by label.values (), by label.keys())

plt.tight layout ()

# Create output directory
out dir = 'pca plots output'

os.makedirs (out dir, exist ok=True)

# Save the combined figure

combined path = os.path.join(out dir, 'pca comparison 2x2.png')
plt.savefig(combined path, dpi=300)

print (f'Combined 2x2 figure saved to: {combined path}')

# Additionally save each subplot as its own PNG
# We will draw and save each separately to keep them tight

single cases = [

(Xn, eigvecs n, proj n, 'normal pca.png', 'Normal PCA (original
data) "),

(X 05, eigvecs 05, proj 05, 'neutro alpha 0.5.png', 'Neutrosophic
PCA (a=0.5)"),

(X 03, eigvecs 03, proj 03, 'neutro alpha 0.3.png', 'Neutrosophic
PCA (x=0.3)"),
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(X 08, eigvecs 08, proj 08, 'neutro alpha 0.8.png',
PCA (x=0.8)")
]

for Xs, eigvecs, proj, fname, title in single cases:
fig2, ax2 = plt.subplots(figsize=(6.5,5))

origin = np.mean(Xs, axis=0)

'Neutrosophic

ax2.scatter (Xs[:,0], Xs[:,1], marker='x', label='Data points')

for i in range (eigvecs.shape[l]):

vec = eigvecs[:, 1i]

ax2.arrow(origin[0], origin[l], vec[O]*arrow scale,

vec[l]*arrow_scale,

head width=0.08, head length=0.08,
length includes head=True,

label=f'PC{i+1}")

for i in range (Xs.shape[0]):

ax2.plot ([Xs[i,0], projli,0]], [Xs[i,1], proj[i,11], '--',

alpha=0.6)
ax2.set _title(title)
ax2.set xlabel ('Feature 1 (standardized)')
ax2.set ylabel ('Feature 2 (standardized)')
ax2.grid(alpha=0.35)
handles, labels = ax2.get legend handles labels ()
by label = dict(zip(labels, handles))
ax2.legend (by label.values (), by label.keys())
out path = os.path.join(out dir, fname)
plt.tight layout()
plt.savefig(out path, dpi=300)
plt.close(fig2)
print (f'Saved: {out path}')

# show the 2x2 plot in the session

plt.show ()
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Normal PCA (original data)

Neutrosophic PCA (a = 0.5)
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4. Results and Discussion

(i) Eigenvectors:

Feature 1 (standardized)

The principal component directions in the Neutrosophic PCA are observed to shift compared to
the Normal PCA, with the magnitude of the shift depending on the value of a. For a = 0.3, the
directions remain closer to the normal case, while & = 0.8 introduces larger deviations due to the

higher weight assigned to indeterminacy.

(ii) Variance Explained:

Normal PCA: The first principal component explains ~91.3% of the variance.
Neutrosophic PCA (o = 0.5): The first principal component explains ~91.1%, showing very close
alignment with normal PCA and preserving most of the data variability.

Neutrosophic PCA (o = 0.3): The variance captured by the first component increases to ~92.5%,
indicating a stronger dominance of PC1 as indeterminacy is underweighted.

Neutrosophic PCA (a = 0.8): The variance captured by the first component decreases to ~89.8%,
with more variance shifting to PC2, reflecting greater influence of uncertainty.
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(iii)Visualizations:
Projection lines clearly illustrate how data points are mapped onto the first principal
component. Scree plots confirm the variance distribution trends, with a < 0.5 showing higher
concentration along PC1 and a > 0.5 spreading variance more evenly between components.

(iv)Overall:
These results confirm that Neutrosophic PCA maintains the dimensionality reduction power of
PCA while providing flexibility to model uncertainty.

5. Conclusions

The integration of Neutrosophic Logic into PCA provides a robust mechanism for handling
uncertain datasets. By aggregating T, I, and F components into a crisp equivalent and then applying
PCA, the framework enables reliable dimensionality reduction without significant variance loss. The
Python-based implementation and visualization tools developed in this study can be extended to
larger, real-world datasets and multi-dimensional problems.
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