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Abstract  

This research paper presents an innovative approach for determining the minimum 

spanning tree (MST) in an undirected neutrosophic graph using Prim's Algorithm, 

which is extensively used in addressing network optimization problems. We analyze 

the effectiveness of Prim's method for constructing the minimum spanning trees in 

undirected neutrosophic networks, where edge weights are denoted by neutrosophic 

numbers. Neutrosophic numbers with components reflecting truth, uncertainty, and 
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falsehood provide a more sophisticated method of expressing uncertainty in network 

modeling. Here, we use a score function to contrast different NMSTs based on weights 

calculated by adding neutrosophic numbers. This method is particularly beneficial for 

use in transportation, communication networks, and logistics, where uncertain 

properties frequently define network configurations. Numerical illustrations prove the 

effectiveness of the proposed method, showing its efficiency in handling neutrosophic 

graphs and keeping it computationally feasible. The results indicated that the 

suggested Prim's algorithm efficiently produces the minimum spanning trees in 

uncertain environments and is advantageous for network design and optimization in 

these scenarios.  

Keywords: Minimum Spanning Tree; Neutrosophic Graph; Neutrosophic Number; 

Prim’s Algorithm; Score Function. 

1. Introduction          

Zadeh [1] grounded the Fuzzy Sets (FSs) in 1965 to represent the inherent 

imprecision and unpredictability of real-world phenomena. A FS is 

characterized by its membership function that assumes a value for each element 

in [0, 1] reflecting the belonging degree in the set. Since its introduction, several 

industries have widely used FS theory to address a multitude of real-world 

difficulties.  

Traditional FSs, or type-1 FSs, exhibit significant difficulties in effectively 

addressing the various forms of uncertainty seen in real-world scenarios, since 

they assign a single membership value to each element. Turksen [2] developed 

interval-valued FSs to address these shortcomings; Atanassov [3, 4] grounded 

the intuitionistic FSs that include non-membership degrees as an independent 

component that characteristic is absent in traditional FSs. 
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While FSs and fuzzy logic have proven effective in wide applications, they still 

fall short in capturing certain types of uncertainty—particularly those arising 

from inconsistent or indeterminate information. For example, consider a 

situation where a decision-maker evaluates the truth of a statement and 

expresses the following: the probability of the neutrosophic statement being 

true is 0.7, false is 0.4, and the degree of indeter4minacy is 0.2. Such scenarios 

reflect real-world complexities that cannot be adequately represented using 

classical fuzzy models. This highlights the need for a more comprehensive 

framework capable of capturing such multi-faceted uncertainty. 

To address this gap, Smarandache [5, 6] grounded the Neutrosophic Set (NS) 

in 1998 to deal with indeterminate and inconsistent information often 

encountered in real-life problems. NS is characterized by three distinct and 

independent Membership Functions (MFs): a truth-MF (t), an indeterminacy-

MF (i), and a falsehood-MF (f). These functions are defined over non-standard 

unit interval allowing for greater flexibility in representing uncertainty. 

Comprehensive analyses of NS development and applications are presented in 

the studies [7-15].  The NS based models have proven to be a powerful tool in 

handling a wide range of scientific and engineering problems such as Multi- 

Criteria Decision Making (MCDM) [16-35], machine learning [36, 37], graph 

theory [38, 39, 40] and so on.  Overview of  Neutrosophic Graph (NG) has 

been documented in the studies [41, 42]. NSs effectively accommodate 

incomplete and inconsistent data, as demonstrated in the studies [43-48]. 

The Minimum Spanning Tree (MST) problem represents a major application 

area, widely studied in graph theory for its optimization significance. The goal 

of the MST problem is to identify the minimum-weight spanning tree in a 

connected, weighted graph.  MST algorithm is widely used in real-world 



Neutrosophic Sets and Systems, Vol. 85, 2025 364  

 

Sukanta Ghadei, Amaresh Chandra Panada,Surapati,Pramanik, Nihar Ranjan Panda, Prasanta 

Kumar Raut, Evaluating the Minimum Spanning Trees Using Prim's Algorithm with Undirected Neutrosophic Graphs 
 

scenarios, including designing efficient communication networks, road 

systems, electrical grids.  

Traditionally, MST problems assume that arc lengths (or weights) are precise 

and fixed. However, in practical applications, arc lengths often correspond to 

uncertain parameters such as demand, cost, time, traffic conditions, or capacity. 

In FS environment several studies have been made [49-53]  In transportation 

networks, despite static spatial distances, travel times are dynamic due to 

exogenous factors like traffic volatility and weather-induced delays [54-58]. 

Over the past several decades, the MST problem has attracted significant 

attention from researchers, leading to the development of various algorithms 

for deterministic graphs—such as those proposed by Kruskal [59], Prim [60], 

Dijkstra [6`1], and Harel & Tarjan [62]. Among these, Kruskal’s algorithm  

[59] is known for its simplicity and efficiency when arc costs are fixed. 

However, in real-life applications, uncertainty in arc weights—arising from 

randomness or vagueness—poses additional challenges. While randomness can 

often be addressed using probability theory, vagueness and incomplete 

information require more flexible mathematical frameworks, such as 

neutrosophic sets. 

To address these challenges, we have developed a modified Prim’s algorithm 

to deal with the Neutrosophic MST (NMST) issues. The developed algorithm 

calculates both the MST of a NG and its corresponding cost. To identify the 

minimum arc, we employ a score-based ranking method that selects the arc with 

the lowest score value. We improve upon existing NMST methods by 

optimizing the efficiency of Single-Valued Neutrosophic Numbers ( SVNNs) 

[63] and ranking processes. A numerical example is provided to demonstrate 

the applicability and effectiveness of the developed algorithm. 
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The paper is organized as follows: 

➢ Section 2 provides a brief overview of NSs, SV and the score function for 

Single-Valued Neutrosophic Numbers ( SVNNs) [63]. 

➢ Section 3 presents the mathematical formulation of the NMST problem. 

➢ Section 4 presents a Adaptation of Prim’s Algorithm for NMST 

➢ Section 5 introduces a novel approach to determine the MST of a 

neutrosophic undirected graph. 

➢ Section 6 offers an illustrative example to demonstrate the developed 

method. 

➢ Section 7 concludes the paper. 

                                                                                                                                 

2. Preliminaries 

 

2.1  SVNS  

Wang et al. [63] presented a mathematical framework called Single Valued NS 

(SVNS) to address uncertainty, imprecision, ambiguity, and partial knowledge.  

Every component of an SVNS is expressed as  

 

A = {(p, T(p), I(p), F(p)) ∣ p ∈ U}  

And the condition satisfies three membership values: 

0 ≤ T(p) + I(p) + F(p) ≤ 3 

 

2.2  Score function  

 

If  𝐴 = (  T(p), I(p), F(p)) is a NB. Then the Score function is defined as  

                    𝑆(𝐴) =
1+(T(p)−2I(p)−F(p))(2−T(p)−F(p))

2  
 

 

3. Problem formulation for NMST using prim’s algorithm 
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A spanning tree of a connected graph G is a connected, acyclic maximum subgraph 

that includes all the nodes of GG. Every spanning tree contains exactly 𝑛 − 1 arcs, 

where 𝑛 is the number of nodes in G. The MST problem seeks to identify a spanning 

tree such that the total sum of its arc lengths is minimized. 

In classical graph theory, MST algorithms operate on graphs with precise edge 

weights. However, real-world problems often involve imprecise, uncertain, or 

indeterminate edge weights due to incomplete data, measurement errors, or varying 

conditions. To model such uncertainty, we consider NGs, in which arc weights are 

represented by SVNNs instead of crisp values. 

Let G be a NG consisting of a finite set of nodes 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} and a finite set 

of arcs 𝐸 ⊆ 𝑉 × 𝑉. Each arc 𝑒 is denoted as an ordered pair (𝑖, 𝑗) where 𝑖, 𝑗 ∈ 𝑉 . 

If arc 𝑒 is included in the NMST, we define a decision variable 𝑥𝑒 such that 

𝑥𝑒 = {
1,    if e is included in the NMST
0,           otherwise                          

 

 

The cost of all arcs in 𝐺 is represented by that allow for a more flexible representation 

of uncertainty in MST problems. 

Mathematical formulation of NMST 

The NMST problem is expressed as: 

Objective function 

𝑚𝑖𝑛 ∑ 𝐴𝑒𝑥𝑒

𝑒∈E

   

where  𝐴𝑒 is an SVNN representing the arc length of 𝑒, and the summation operation 

refers to the addition of SVNNs. 
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Constraints: 

1. Spanning Tree Constraint: 

∑ 𝑥𝑒

𝑒∈E

= 𝑛 − 1    

 

This ensures that the NMST contains exactly 𝑛 − 1 edges, forming a spanning tree. 

2. Connectivity constraint: 

∑ 𝑥𝑒 ≥ 1

e∈δ(s)

, ∀s ⊂ V, s ≠ V 

 

where 𝛿(𝑠) represents the cutset of a subset of vertices s, i.e., the set of edges with 

one endpoint in 𝑠 and the other outside 𝑠. This constraint ensures that the spanning 

tree remains connected. 

3. Binary decision constraint: 

𝑥𝑒 ∈ {0,1}, ∀𝑒 ∈ 𝐸 

This ensures that each arc is either included in the NMST or excluded. 

 

4. Adaptation of Prim’s algorithm for NMST 

Unlike Kruskal’s algorithm, which sorts edges globally and builds the MST in a 

greedy fashion, Prim’s algorithm follows an incremental approach, expanding a 

connected tree one node at a time. The proposed neutrosophic adaptation of Prim’s 

algorithm follows these steps: 

1. Initialization: Start with an arbitrary node as the initial MST vertex. 
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2. Edge Selection: Identify the edge with the smallest neutrosophic score function 

value that connects the MST to a new vertex. 

3. Tree Expansion: Add the selected edge and the corresponding vertex to the 

MST. 

4. Iteration: Repeat until all vertices are included in the NMST. 

The neutrosophic score function is utilized to compare edges. The incorporation of 

neutrosophic numbers ensures that uncertainty and imprecision are effectively 

managed while constructing the MST. 

The proposed model and algorithm are suitable for real-world applications in network 

design, transportation, logistics, and communication systems, where uncertainties 

frequently affect edge weights. By extending Prim’s algorithm to NGs, this research 

enhances decision-making capabilities in uncertain environments. 

5. Proposed algorithm for NMST using prim’s algorithm 

The proposed algorithm extends Prim’s algorithm to determine the NMST in an 

undirected NG. Unlike Kruskal’s algorithm, which sorts edges and constructs the 

MST by selecting the smallest edges first, Prim’s algorithm grows the MST 

dynamically, starting from an initial node and expanding iteratively by adding the 

minimum-cost edge that connects a new vertex to the existing tree. 

In this neutrosophic extension of Prim’s algorithm, we incorporate SVNNs to 

represent edge weights, allowing us to model uncertainty, indeterminacy, and 

imprecision in MST computation. The score function of SVNN is used to compare 

edge weights and make selection decisions. 

Steps to Modify prim’s algorithm for NMST 

The classical Prim’s algorithm follows a greedy approach, selecting the smallest 

weight edge at each step. To extend it for NGs, we address the following: 



Neutrosophic Sets and Systems, Vol. 85, 2025 369  

 

Sukanta Ghadei, Amaresh Chandra Panada,Surapati,Pramanik, Nihar Ranjan Panda, Prasanta 

Kumar Raut, Evaluating the Minimum Spanning Trees Using Prim's Algorithm with Undirected Neutrosophic Graphs 
 

1. Edge Weight Representation: Use SVNNs as arc weights, incorporating truth, 

indeterminacy, and falsity components. 

2. Edge Comparison: Apply a score function to evaluate and compare edges. 

3. Tree Expansion: Ensure that each step adds the least uncertain edge that 

maintains tree connectivity without forming cycles. 

Algorithm: Neutrosophic prim’s algorithm for NMST 

Input 

• A connected, undirected, weighted NG 𝐺 =  (𝑉, 𝐸) 

• Neutrosophic edge weights represented using neutrosophic numbers 

• A function to compute score values of neutrosophic numbers 

Output 

• NMST (T), a minimum spanning tree with neutrosophic weights 

Step-by-Step Procedure 

1. Initialization 

o Select an arbitrary node as the starting node of NMST. 

o Define an empty set T to store the selected edges of NMST. 

o Define a priority queue to track candidate edges, initialized with edges 

connected to the starting node. 

2. Compute Score Values 

o Compute the score function for each edge using the SVNN formula. 

o Use these scores as a basis for selecting edges. 

3. Iterative MST Expansion 
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o While the NMST has fewer than 𝑛 − 1 edges: 

▪ Select the edge with the minimum score value from the priority 

queue. 

▪ If adding this edge does not form a cycle, include it in the NMST. 

▪ Add the newly connected vertex’s edges to the priority queue. 

▪ Update edge scores dynamically. 

4. Stopping Condition 

o The algorithm terminates when the NMST contains 𝑛 − 1 edges. 

 

Pseudocode for neutrosophic prim’s algorithm 

Algorithm neutrosophic_prims (G) 

Input: A connected undirected weighted NG 𝐺 

Output: NMST 𝑇 

1: Begin 

2: 𝑇 ←  {∅}  // Initialize NMST as an empty set 

3: Select an arbitrary node 𝑣_𝑠𝑡𝑎𝑟𝑡 ∈  𝑉 

4: 𝑃𝑄 ←  {𝐴𝑙𝑙 𝑒𝑑𝑔𝑒𝑠 (𝑣_𝑠𝑡𝑎𝑟𝑡, 𝑣)  ∈  𝐸}   // Initialize priority queue with edges 

from starting node 

5: while |T| < n-1 do 

6:     Select edge e = (u, v) with minimum score from PQ 

7:     if v is not already in T then 

8:         Add edge e to NMST: 𝑇 ←  𝑇 ∪  {𝑒} 
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9:         Add vertex v to the MST 

10:        Add all edges (v, w) where 𝑤 ∉  𝑇 𝑡𝑜 𝑃𝑄 

11:    endif 

12:    Remove e from PQ 

13: end while 

14: return T 

15: End 

 

Computational complexity 

The classical Prim’s algorithm has a “time complexity of 𝑂(𝑉2)” using an adjacency 

matrix and 𝑂(𝐸𝑙𝑜𝑔𝑉) using a priority queue with a min-heap. Since our algorithm 

incorporates neutrosophic number operations, the complexity remains 𝑂(𝑉2) in an 

adjacency matrix implementation. 

 

Advantages of neutrosophic prim’s algorithm 

• Handles Uncertainty: Incorporates neutrosophic numbers to model real-

world imprecisions. 

• Efficient for Dense Graphs: Performs well when the graph has many edges, 

unlike Kruskal’s algorithm, which sorts edges globally. 

• Incremental Decision-Making: Expands the MST dynamically, ensuring an 

adaptive approach to uncertainty. 

6. Numerical Example for NMST Using Prim’s Algorithm 

We illustrate the NMST using Prim’s Algorithm with a step-by-step numerical 

example. The example considers an undirected NG where edge weights are 

represented as neutrosophic numbers to handle uncertainty. 
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Graph Representation 

Consider a NG Fig-1with four nodes: 

𝑉 = {𝐴, 𝐵, 𝐶, 𝐷}  

The graph has five edges, with neutrosophic edge costs represented as triplets 

(T, I, F) , where: 

• T (Truth) represents a definite weight, 

• I (Indeterminacy) represent uncertainty, 

• F (Falsity) represents an opposing weight component. 

 

The neutrosophic edge weights are as follows: 

Edge Neutrosophic Weight (T, I, F) Score Value 𝑺(𝑨) 

(A, B) (0.8, 0.4, 0.2) 0.4 

(A, C) (0.7, 0.3, 0.2) 0.495 
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(A, D) (0.6, 0.3, 0.1) 0.585 

(B, C) (0.7, 0.3, 0.5) 0.36 

(C, D) (0.8, 0.5, 0.2) 0.3 

The score function is computed as: 

𝑆(𝐴) =
1 + (�̂�𝑆(�̂�) − 2𝐼𝑆(�̂�) − �̂�𝑆(�̂�))(2 − �̂�𝑆(�̂�) − �̂�𝑆(�̂�))

2
 

Step-by-Step Execution of Prim’s Algorithm for NMST 

Step 1: Initialize NMST 

• Start from an arbitrary vertex (let's choose A). 

• Initialize T =  {∅}, and PQ (Priority Queue)  =  {Edges connected to A}. 

• Candidate Edges from A: 

o (A, B)  →  Score =  0.4 

o (A, C)  →  Score =  0.495 

o (A, D)  →  Score =  0.585 

Step 2: Select the Minimum Score Edge 

• The smallest edge is (A, B) with score 0.4. 

• Add (A, B) to the NMST. 

• T =  {(A, B)}. 

• Add edges connected to B to PQ: 

o (B, C)  →  Score =  0.36 
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Step 3: Select the Next Minimum Score Edge 

• The next smallest edge is (B, C) with score 0.36 

• Add (B, C) to NMST. 

• T =  {(A, B), (B, C)}. 

• Add edges connected to D to PQ: 

o (C, D)  →  Score =  0.3 

            we ignore (C, A) Because if we connect it, then it forms a cycle. 

Step 4: Select the Next Minimum Score Edge 

• The next smallest edge is (C, D) with score 0.3 

• Add (C, D) to NMST. 

• T =  { (A, B), (B, C), (C, D)}. 

Step 5: Stop Condition 

NMST contains 3 edges (n - 1 = 3 for 4 nodes). 

Final NMST =  { (A, B), (B, C), (C, D)}. 

Final Cost of NMST 

S(T) = S(A, B) + S(B, C) + S(C, D) = 0.4 + 0.36 + 0.3 = 1.06 

➢ The computed NMST for the given NG is {(A, C), (C, D), (B, D)}. 

➢ The total cost based on neutrosophic score function is 3.8. 

➢ This example demonstrates Prim’s Algorithm extended to NGs, ensuring an 

optimal spanning tree under uncertainty. 
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7. Conclusion 

This research article explores the MST problem in undirected NGs using 

neutrosophic numbers to denote edge weights. In this research paper, we 

present a modified version of Prim's algorithm to deal with the MST problem 

in uncertain environments by using neutrosophic scoring functions to choose 

edges. The Neutrosophic Prim's algorithm efficiently evaluates the MST by 

selecting the minimum- edge and avoiding the cycles. The method ensures a 

practical, computationally efficient, and optimal solution for spanning tree 

problems under uncertainty. Future applications include transportation 

networks, supply chain optimization, and communications systems. Improving 

the method to control dynamic environments where edge weights change over 

time may increase its relevance for decision-making under uncertainty. 
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