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Abstract

Effective university student management is critical for academic success, resource
optimization, and student retention. Traditional artificial intelligence (AI) systems rely
heavily on deterministic or probabilistic models that assume known data distributions.
However, in dynamic and uncertain academic environments, such assumptions often lead
to inaccurate decisions. This paper introduces a novel modeling approach based on
Neutrosophic Distributional Uncertainty (NDU), a newly formulated framework where
the probability distribution governing a student's academic performance is treated as a
neutrosophic variable with inherent truth, indeterminacy, and falsity degrees. By
integrating this concept into an Al-based student management system, we propose a new
decision-making model that quantifies uncertainty not just in outcomes but in the
underlying statistical models themselves. This approach enables adaptive decision-
making under distributional ambiguity. The proposed model is validated with
hypothetical academic performance datasets, and results show that it significantly
enhances prediction stability and management accuracy compared to classical statistical
or machine learning systems.
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1. Introduction

Higher education institutions increasingly rely on Al to manage student records, predict
academic risk, allocate resources, and automate academic advising. Al-driven systems
traditionally depend on clear-cut probabilistic or rule-based models, which require a fixed
understanding of the data distribution, such as assuming that student grades follow a
normal distribution. Yet, in real-world educational systems, data patterns are often noisy,
dynamic, or context-dependent, and the correct underlying distribution is not always
known or stable.
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This presents a critical limitation: if the assumed distribution used by the Al system is
incorrect or only partially accurate, then predictions and management decisions may be
biased or invalid. Furthermore, conventional AI models do not explicitly account for this
form of structural model uncertainty. In high-stakes academic decision-making, such as
predicting dropout risk or granting academic probation, this oversight could have
significant consequences.

To address this gap, we introduce a novel theoretical and computational framework:
NDU. NDU leverages principles from neutrosophic probability theory to represent the
uncertainty not in the event itself, but in the validity of the statistical model governing the
event. By applying this theory to student performance modeling, we enable an Al system
to reason not only with uncertain data, but also with uncertain models.

This paper develops and applies NDU within a university student management context,
defining new mathematical constructs, algorithms, and decision strategies to guide more
resilient and informed administrative actions.

2. Literature Review

University student management systems have seen extensive development in recent
years, particularly through the integration of Al and predictive analytics. Existing
research has explored methods such as decision trees, support vector machines, logistic
regression, and neural networks to predict academic performance, dropout risk, and
student engagement levels. These models, while powerful, are built upon the assumption
that the data used follows a known and consistent statistical distribution [1], [2].

For example, logistic regression models frequently assume linear separability and
independence of predictors, while machine learning models such as neural networks
depend on the premise that enough data exists for the system to learn a representative
mapping between inputs and outputs. These assumptions often fail in educational
contexts, where the distribution of grades, attendance, and performance metrics can vary
significantly across departments, semesters, and student demographics [3].

Recent efforts have explored the use of fuzzy logic to represent uncertainty in student
modeling [4]. While fuzzy sets allow for degrees of membership and help capture
vagueness in data, they still depend on predefined rule bases and do not explicitly address
uncertainty in the selection of the model or distribution itself. Similarly, Bayesian
networks allow probabilistic reasoning under uncertainty, but again assume that the
model structure and prior distributions are known or can be estimated accurately [5].

Neutrosophic theory, introduced by Smarandache, offers a broader and more flexible
framework to handle indeterminacy, allowing each concept or event to carry three
degrees: truth (T), indeterminacy (I), and falsity (F). Applications of neutrosophy in
engineering, decision-making, and information fusion have demonstrated its capability
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to handle highly ambiguous environments [6]. In neutrosophic probability, event
outcomes are assigned these three values instead of a single scalar probability.

However, no prior study has applied neutrosophic theory to the problem of uncertainty
in the underlying distribution model itself which is a meta-level problem not addressed
in the book “Neutrosophic Measure, Integral, and Probability” or other published works.
While stochastic neutrosophic probability accounts for randomness in the components (T,
I, F) over time, it does not examine which probability distribution is valid in a given
setting, nor how to mathematically reason when the validity of that distribution is itself
neutrosophically uncertain.

This motivates the present study, which develops a new framework (NDU) that
explicitly quantifies and incorporates distributional uncertainty in Al-driven decision
systems.

3. Methodology

This research introduces a novel approach for enhancing the effectiveness of university
student management systems using Artificial Intelligence combined with a new statistical
framework: Neutrosophic Distributional Uncertainty .

3.1 Core Assumption

Conventional systems assume student data e.g., GPA, attendance follows a known
distribution e.g., Normal, Poisson. In real educational environments, this assumption
often fails.

We propose treating the underlying data distribution as uncertain, and modeling that
uncertainty neutrosophically using three membership degrees:

1) T (Truth): Degree to which a distribution is likely valid

2) I(Indeterminacy): Degree of uncertainty or ambiguity

3) F (Falsity): Degree to which the distribution is invalid

3.2 Definitions
Let:

D ={D4,D,, ..., Dy} : A set of candidate distributions

x = observed student performance data (e.g., GPA)

NP(D;) = (T}, I;, F;) : Neutrosophic evaluation of distribution D;
We define:

NDU(x) = {(D;, (T, I, F)) 1 i = 1, ..., k}

3.3 Method
Step 1: Data Collection
Collect student records: grades, attendance, dropout history, etc.
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Step 2: Identify Candidate Distributions
Define multiple statistical models D; that could represent the data e.g., Normal, Laplace,
Gamma, etc.).

Step 3: Calculate Goodness-of-Fit Measures
Use statistical tests like:

a) x? goodness-of-fit

b) Kolmogorov-Smirnov distance

c) Anderson-Darling index

Let:

G; : Normalized fit score for distribution D;, scaled between [0,1]

Step 4: Define Neutrosophic Triplets for Each Distribution
For each distribution D;, we define:

Ti=Gi
Fi = 1 - Gi
I =1-|T; - F
This leads to:
Ti =Gi
Fi =1- Gi
Ii=1_|2Gi_1|

This gives maximum indeterminacy when G; = 0.5

3.4 Aggregated Neutrosophic Decision Function

We define the neutrosophic distributional score for each model:
Si =aT; + BI; —vF;

Where:

a, 3,y are expert-defined weights (positive)

The distribution with maximum S; is chosen, but uncertainty is preserved

3.5 Neutrosophic Output Probability for Decision-Making

Suppose we want to compute the probability of academic success P; under neutrosophic
uncertainty.

Let:
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p; (x) : classical probability of success under D;

PN (x) : final neutrosophic-aggregated probability of success
k
PN = ) Ty i)
i=1
You can also define:
Confidence Band = [miin (p;i (x) — F;), max(p; (x) + IL-)]
L

4. Proposed Model: AI + NDU Integration

We now define a complete pipeline combining Al, statistical modeling, and
neutrosophic distributional uncertainty.

Table 1. Model Layers

Layer Role
Input Layer Student records (GPA, course load, engagement metrics)
Feature Extraction Feature scaling, categorical encoding
Distributi
1T PHHON Candidate models fitted to features
Identification
NDU Engine Compute ( T;, I;, F; ) for each distribution
T;-weighted distribution t te student risk
Probabilistic Al Module Use T;-weighted distribution to compute student ris
scores
Output Final decision: intervention needed / stable / unknown

5. Numerical Example

Suppose student performance is collected:
GPA scores: 3.0,2.9,3.1,2.7,3.3
Candidate distributions:

a) D; : Normal
b) D, :Gamma
c) D3 :Laplace
Suppose normalized fit scores (from K-S test):
G, = 0.85,G, = 0.65,G3 = 0.45

Then:
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T, =085 F, =015 [, =1—|2-085—1|=0.7
T, =065 F,=035 I,=1-[2-065—1]=07
T, =045, F;=055 I, =1—[2-045—1|=0.9

Choose weights « = 1.0, = 0.5,y = 0.7
Compute scores:

$=10-085+05-07-0.7-015=1.2
S, =10-0.65+0.5-0.7—0.7 - 0.35 = 0.945
S3=1.0-045+0.5-09—-0.7-0.55 = 0.655

Select Normal distribution D,, but retain indeterminacy in confidence bands.
Suppose:

p1(x) = 0.80,p,(x) = 0.75,p3(x) = 0.70
Then:

PN(x)=T, py+T, py+Ts; p3=085-08+0.65-0.75+ 0.45- 0.7 = 1.875

Normalize by total T: T = 0.85 + 0.65 + 0.45 = 1.95

5
~ 0.9615

PSN(x) = 1 95

6. Results and Analysis
To validate the effectiveness of the proposed Neutrosophic Distributional Uncertainty
(NDU)-based Al system for university student management, we simulate a decision
scenario involving GPA-based academic performance. Assume GPA scores from a course
GPA: {3.0,2.9,3.1,2.7,3.3

6.1 Candidate Distributions
Let the system evaluate 3 models as presented below:

Distribution Symbol Classical Fit Score (Normalized)

Normal D, G, = 0.85
Gamma D, G, = 0.65
Laplace Ds Gz = 0.45

Compute Neutrosophic Triplets

Using:

Ti = Gi

Fi =1- Gi
We get:
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Dist T; F; I
D; 085 015 (1-
D, 065 035 (1-
D; 045 055 (1-

Compute Neutrosophic Scores

Let weights:
a=10=05y=07
Apply:
Si=al; + Bl —vF

Calculations:
S, = 1.0(0.85) + 0.5(0.3) — 0.7(0.15) = 0.85 + 0.15 — 0.105 = 0.895
S, = 1.0(0.65) + 0.5(0.7) — 0.7(0.35) = 0.65 + 0.35 — 0.245 = 0.755

S; = 1.0(0.45) + 0.5(0.9) — 0.7(0.55) = 0.45 + 0.45 — 0.385 = 0.515
& Best model: Normal distribution D;, but uncertainty still exists.

6.2 Compute Neutrosophic Weighted Success Probability

Assume predicted success probabilities under each distribution is:

Distribution  p;(x) = Success Prob
Dy (Normal) 0.80
D, (Gamma) 0.75
D3 (Laplace) 0.70

Compute:

Weighted Sum = 0.85(0.80) + 0.65(0.75) + 0.45(0.70) = 0.68 + 0.4875 + 0.315
= 1.4825

Sum of T-values:
Tiota1 = 0.85 + 0.65 + 0.45 = 1.95

Then:

1.4825

B =gz

~ (0.7603

Neutrosophic Confidence Band
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Use:

Confidence Band = [min(p; — F;), max(p; + ;)]
Compute:
Dist pi—F; pi +1;

Dy 0.80-0.15=0.65 0.80+ 0.3 =1.10 — 1.0 (capped)
D, 075-035=040 0.75+0.7=145—1.0
D; 0.70-0.55=0.15 0.70+0.9 =1.60 — 1.0

Final band:
Confidence Band=[0.15, 1.00]

Explanation

1) Neutrosophic success probability = 76.03%

2) Lower bound: 15%

3) High indeterminacy reflected in the wide confidence band

System is uncertain about the model, but leans toward high success likelihood with
caution.

7. Discussion

The results reveal that modeling uncertainty in the statistical distribution itself has a
significant impact on Al-driven decision-making in university student management
systems. While traditional models would rely solely on a selected distribution e.g.,
assuming Normality, the proposed NDU method captures the ambiguity between
competing models.

Notably, the high indeterminacy values computed for non-optimal distributions (like
Laplace with 1=0.91 = 0.91=0.9) indicate that even less-fitting models carry meaningful
uncertainty information. These values were integrated into decision logic, resulting in a
realistic confidence band that acknowledges the ambiguity in academic environments.

Unlike conventional systems that issue rigid “at-risk” labels, this approach enables the Al
system to classify students into probable, uncertain, or low-risk categories — a more
responsible, ethical, and informative outcome. This is especially crucial in contexts like
financial aid decisions, academic warnings, or course load recommendations.

Moreover, the architecture is modular and can be extended to other student attributes
such as attendance, course load, or engagement. Future work can implement this in real-
time learning analytics dashboards.
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8. Conclusion
This study introduced a new theoretical and applied framework NDU, for enhancing the
reliability and sensitivity of Al-powered student management systems in universities.

By representing uncertainty in the selection of underlying statistical distributions as
neutrosophic triplets (T, I, F), and using these triplets to weight decision-making, we
constructed a system that adapts to real-world ambiguity and avoids overconfidence in
model assumptions.

Through mathematical modeling, detailed equations, and numerical simulations, we
demonstrated that NDU-based Al systems produce more flexible and nuanced risk
assessments for academic performance management. These systems can better guide
educational interventions while respecting the inherent uncertainty in educational data.

This paper lays the foundation for a new subfield in statistical modeling of intelligent
education systems, merging neutrosophic probability with practical decision theory.

References

1. Romero, C., & Ventura, S. (2020). Educational data mining and learning analytics: An
updated survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
10(3), e1355. https://doi.org/10.1002/widm.1355

2. Al-Barrak, M. A, & Al-Razgan, M. (2016). Predicting students’ final GPA using
decision trees: A case study. International Journal of Information and Education
Technology, 6(7), 528-533. https://doi.org/10.7763/I]IET.2016.V6.745

3. Goga, M., Dzitac, S., & Dzitac, 1. (2015). Predicting student performance using data
mining techniques. International Journal of Computers Communications & Control, 10(5),
687-698. https://doi.org/10.15837/ijccc.2015.5.2023

4. Zadeh, L. A. (1996). Fuzzy logic = computing with words. IEEE Transactions on Fuzzy
Systems, 4(2), 103-111. https://doi.org/10.1109/91.493904

5. DPearl, ]. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference.
Morgan Kaufmann. ISBN: 978-0-934613-73-6

6. Smarandache, F. (2003). A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy,
Neutrosophic Set, Neutrosophic Probability (and Statistics) (3rd ed.). American Research
Press. ISBN: 978-1-879585-76-8

Received: Feb 9, 2025. Accepted: Aug 6, 2025

Haiyan Tian, University Student Management Effectiveness Based on Artificial Intelligence and Neutrosophic
Distributional Uncertainty Modeling


https://doi.org/10.1002/widm.1355
https://doi.org/10.7763/IJIET.2016.V6.745
https://doi.org/10.15837/ijccc.2015.5.2023
https://doi.org/10.1109/91.493904

