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Abstract: Highway agencies must evaluate asphalt pavement performance under 

heterogeneous evidence: sensor noise, missing records, inconsistent inspections, and 

conflicting expert opinions. Classical regression compresses ambiguity into error terms 

and cannot separate "uncertainty" from "negative evidence." We develop a Neutrosophic 

Gaussian Process (NGP) framework that treats each observation as a triplet ( 𝑇, 𝐼, 𝐹  ) 

capturing support (truth), indeterminacy (ambiguity), and falsity (contradiction). The 

prior is a triplet-valued Gaussian process with component kernels and independent 

noises; the posterior yields triplet predictions with explicit uncertainty. On top of NGP, 

we design Neutrosophic Bootstrap Hypothesis Tests (NBHT) for specification compliance 

(e.g., rutting, ride quality, cracking), using a scalarization sc𝜆 = 𝑇 − 𝐹 − 𝜆𝐼 to form test 

statistics while preserving neutrosophic ordering. A worked example with fully 

computed kernel matrices and posterior predictions demonstrates how to compute a one-

point compliance test and how to plan sample sizes. The framework is static, fully 

specified, verifiable, and ready for deployment in pavement management systems. 

 

Keywords: Neutrosophy; Gaussian processes; Bootstrap hypothesis testing; Asphalt 
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1. Introduction 

Asphalt pavement performance is commonly summarized through rut depth, 

International Roughness Index (IRI), and cracking ratios. Data arrive from sensors, visual 

inspections, and expert panels. These sources often disagree: a profiler suggests 

acceptable IRI, while distress mapping flags severe block cracking; field moisture 

measurements are ambiguous due to calibration drift. Treating these discrepancies as 

"noise" obscures whether the disagreement reflects a lack of information (indeterminacy) 

or genuine negative evidence (falsity) about performance [1]. 

 

Neutrosophy models each judgment as a triplet ( 𝑇, 𝐼, 𝐹 ), separating support, ambiguity, 

and contradiction [1]. We combine this representational advantage with Gaussian 

processes (GP)-a powerful nonparametric method for learning functions with quantified 
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uncertainty [2]. We extend GP to a Neutrosophic Gaussian Process (NGP) that predicts a 

triplet-valued performance field over covariates (e.g., traffic loading, temperature, binder 

grade, voids, subgrade modulus, moisture). Then we propose Neutrosophic Bootstrap 

Hypothesis Tests (NBHT) to decide whether a pavement section meets specification while 

explicitly penalizing ambiguity[3-5]. Our contributions: 

1. NGP prior-posterior calculus: triplet-valued GP with component kernels and 

closed-form posterior mean/variance. 

2. Neutrosophic scalarization sc𝜆 = 𝑇 − 𝐹 − 𝜆𝐼  integrated into prediction and 

decision-making. 

3. NBHT for compliance testing (pointwise or network-level), with explicit bootstrap 

algorithms and variance formulas. 

4. An example with numerically computed kernel matrices and posterior predictions 

to ensure full transparency. 

 

1.1 Literature Review 

The evaluation of asphalt pavement performance has long been challenged by 

heterogeneous data sources, including sensor measurements, visual inspections, and 

expert assessments, which often introduce inconsistencies, ambiguities, and 

contradictions [6]. Traditional statistical methods, such as linear regression and time-

series analysis, have been widely applied to predict pavement distress indicators like 

rutting, International Roughness Index (IRI), and cracking ratios, but these approaches 

typically aggregate uncertainties into residual error terms without distinguishing 

between aleatoric and epistemic uncertainties [7]. For instance, mechanistic-empirical 

models, such as those embedded in the AASHTO Pavement ME Design software, rely on 

deterministic inputs for covariates like traffic loading and environmental factors, yet they 

struggle with incomplete or conflicting field data, leading to biased predictions in real-

world highway management [8]. 

 

To address uncertainties in engineering contexts, fuzzy set theory has been employed to 

model vagueness in pavement condition assessments, enabling the representation of 

gradual membership degrees for performance states [9]. However, fuzzy approaches fall 

short in capturing contradictions or indeterminacies inherent in conflicting evidence, such 

as divergent sensor readings and expert opinions on the same pavement section [10]. 

Neutrosophic set theory extends fuzzy logic by incorporating three independent 

components truth (support), indeterminacy (ambiguity), and falsity (contradiction) 

providing a more nuanced framework for handling non-binary uncertainties in decision-

making processes [11]. Applications of neutrosophic logic in civil engineering have 

demonstrated its efficacy in multi-criteria evaluation, such as prioritizing maintenance for 

bridge structures under incomplete information, where triplet-valued assessments better 

reflect real-world evidential conflicts [12]. 

 

GPs offer a flexible nonparametric alternative for regression tasks, particularly in 

predicting continuous functions over covariates like equivalent single-axle loads (ESAL) 
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and subgrade modulus, with built-in uncertainty quantification through posterior 

distributions [13]. In pavement engineering, GPs have been utilized for spatial 

interpolation of distress data, outperforming kriging methods in scenarios with sparse 

observations by incorporating kernel-based correlations [14]. Multi-output GPs, which 

model correlations across related variables, have further advanced this field by 

simultaneously predicting multiple performance metrics, such as rut depth and IRI, under 

shared environmental influences [15]. Despite these strengths, standard GPs treat all 

discrepancies as Gaussian noise, limiting their ability to differentiate ambiguity from 

outright contradictions in heterogeneous datasets [16]. 

 

Recent efforts to integrate advanced uncertainty models with GPs include extensions to 

fuzzy Gaussian Processes, which handle input vagueness through possibility 

distributions, but these do not explicitly address falsity components [17]. Neutrosophic 

enhancements to probabilistic models have emerged in other domains, such as 

neutrosophic random forests for classification under conflicting labels, suggesting 

potential for similar adaptations in regression [18]. However, a dedicated neutrosophic 

Gaussian Process framework remains underexplored, particularly for engineering 

applications requiring triplet-valued predictions [19]. 

 

Hypothesis testing in uncertain environments often relies on bootstrap methods to 

approximate sampling distributions without parametric assumptions, as seen in 

resampling techniques for confidence intervals in pavement reliability assessments [20]. 

Neutrosophic bootstrap approaches have been proposed for interval-valued data in 

quality control, incorporating indeterminacy into test statistics to avoid overconfidence in 

decisions [21]. Yet, integrating such tests with neutrosophic predictions for compliance 

evaluation, such as in highway specifications, has not been systematically developed [22]. 

 

This study bridges these gaps by proposing a NGP that extends GP priors to triplet-valued 

functions, coupled with NBHT for robust decision-making in pavement performance 

evaluation. Unlike prior works, our approach preserves neutrosophic ordering through 

scalarization while enabling verifiable computations for practical deployment. 

 

2. Preliminaries: Neutrosophic Observations and Scalarization 

Neutrosophic numbers and order 

A neutrosophic number is 𝑞 = (𝑇, 𝐼, 𝐹) ∈ [0,1]3 with 
0 ≤ 𝑇 + 𝐼 + 𝐹 ≤ 3 

Performance preference is 
𝑞 ⪰ 𝑞′  ⟺  𝑇 ≥ 𝑇′, 𝐼 ≤ 𝐼′, 𝐹 ≤ 𝐹′. 

 

Scalarization for decision-making 

Fix 𝜆 ∈ [0,1]. Define the admissible scalarization 
sc𝜆(𝑞): = 𝑇 − 𝐹 − 𝜆𝐼 ∈ [−1,1]. 

If 𝑞 ⪰ 𝑞′, then sc𝜆(𝑞) ≥ sc𝜆(𝑞′). We use sc𝜆 to construct test statistics and indices. 
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Pavement covariates 

Let 𝑥 ∈ ℝ𝑑 collect covariates (e.g., equivalent single-axle loads (ESAL, normalized), mean 

pavement temperature, binder grade indicators, air voids, subgrade modulus, surface 

moisture). For each 𝑥  we observe a triplet 𝑞(𝑥) = (𝑇(𝑥), 𝐼(𝑥), 𝐹(𝑥))  representing the 

degree that the section meets (T), is ambiguous about (I), and violates (F) the agency's 

performance specification. 

 

Neutrosophic Gaussian Processes  

We model each component with a GP and, for transparency and tractability, assume 

component-wise independence (extensions to coregionalized multi-output kernels are 

straightforward but not required here). 

 

Prior 

For ∙∈ {𝑇, 𝐼, 𝐹}, 
𝑓∙ ∼ 𝒢𝒫(𝑚∙(⋅), 𝑘∙(⋅,⋅)), 

with zero mean 𝑚∙ ≡ 0 (w.l.o.g. after centering) and kernel 

𝑘∙(𝑥, 𝑥′) = 𝜎∙
2exp (−

‖𝑥 − 𝑥′‖2

2ℓ∙
2

). 

 

Likelihood (noisy observations) 

Given training inputs 𝑋 = {𝑥𝑖}𝑖=1
𝑛  and triplets 𝑦∙ = [𝑦∙,1, … , 𝑦∙,𝑛]

⊤
 with 𝑦∙,𝑖 ∈ [0,1], 

𝑦∙ ∣ 𝑓∙(𝑋) ∼ 𝒩(𝑓∙(𝑋), 𝜎∙,𝑛
2 𝐼𝑛). 

Define 𝐾∙ = [𝑘∙(𝑥𝑖 , 𝑥𝑗)]
𝑖,𝑗

+ 𝜎∙,n
2 𝐼𝑛. 

 

Posterior at a test point 𝒙∗ 

Let 𝑘∙,∗ = [𝑘∙(𝑥∗, 𝑥1), … , 𝑘∙(𝑥∗, 𝑥𝑛)]⊤ and 𝑘∙,∗∗ = 𝑘∙(𝑥∗, 𝑥∗). Then 

𝜇∙(𝑥∗) = 𝑘∙,∗
⊤ 𝐾∙

−1𝑦∙, 𝜎∙
2(𝑥∗) = 𝑘∙,∗∗ − 𝑘∙,∗

⊤ 𝐾∙
−1𝑘∙,∗ 

The neutrosophic prediction at 𝑥∗ is 𝑞̂(𝑥∗) = (𝜇𝑇(𝑥∗), 𝜇𝐼(𝑥∗), 𝜇𝐹(𝑥∗)) with component 

variances 𝜎𝑇
2, 𝜎𝐼

2, 𝜎𝐹
2. 

 

Hyperparameters 

Hyperparameters Θ∙ = (𝜎∙
2, ℓ∙, 𝜎∙,n

2 ) are learned by maximizing the marginal log-

likelihood 

log 𝑝(𝑦∙ ∣ 𝑋, Θ∙) = −
1

2
𝑦∙

⊤𝐾∙
−1𝑦∙ −

1

2
log |𝐾∙| −

𝑛

2
log 2𝜋. 

 

3. Neutrosophic Bootstrap Hypothesis Tests (NBHT) 

We test specification compliance using sc𝜆. Two common decisions: 

(A) Pointwise compliance at 𝑥∗ : 

𝐻0: sc𝜆(𝑞̂(𝑥∗)) ≥ 𝜏  vs  𝐻1: sc𝜆(𝑞̂(𝑥∗)) < 𝜏, 

for an agency threshold 𝜏 ∈ [−1,1]. 

(B) Network-average compliance on a set 𝒳 = {𝑥1
⋄, … , 𝑥𝑀

⋄ } : 
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𝐻0:
1

𝑀
∑  

𝑀

𝑗=1

sc𝜆 (𝑞̂(𝑥𝑗
⋄)) ≥ 𝜏  vs  𝐻1: < 𝜏. 

Test statistic 

For case (A), define 

𝑆 = sc𝜆(𝑞̂(𝑥∗)) − 𝜏 = 𝜇𝑇(𝑥∗) − 𝜇𝐹(𝑥∗) − 𝜆𝜇𝐼(𝑥∗) − 𝜏. 

 

Neutrosophic parametric bootstrap under 𝑯𝟎 

1. Fit NGP and fix Θ̂. 

2. Construct null mean at training inputs: set 

𝑦̃∙
(0)

= 𝑦∙ − 𝛼∙ (𝜇∙(𝑥∗) − 𝑚∙,0(𝑥∗)) , 𝑚∙,0(𝑥∗) s.t. sc𝜆(𝑚𝑇,0, 𝑚𝐼,0, 𝑚𝐹,0) = 𝜏, 

with a simple choice 𝑚𝑇,0 = 𝜏, 𝑚𝐼,0 = 0, 𝑚𝐹,0 = 0 (or any triplet on the sc𝜆 = 𝜏 iso-line). 

The scalar 𝛼∙ ∈ [0,1] re-centers minimalistically; choosing 𝛼∙ = 1 sets the predicted mean 

at 𝑥∗ to exactly satisfy 𝐻0 

3. Simulate bootstrap datasets for 𝑏 = 1, … , 𝐵 : 

𝑦∙
∗(𝑏)

∼ 𝒩 (𝑦̃∙
(0)

, 𝜎∙,𝑛
2 𝐼𝑛). 

4. Refit posterior for each 𝑏 (hyperparameters fixed) to obtain 𝜇∙
∗(𝑏)(𝑥∗) and 

compute 

𝑆∗(𝑏) = 𝜇𝑇
∗(𝑏)(𝑥∗) − 𝜇𝐹

∗(𝑏)(𝑥∗) − 𝜆𝜇𝐼
∗(𝑏)(𝑥∗) − 𝜏 

5. p-value (one-sided): 

𝑝 =
1

𝐵
∑  

𝐵

𝑏=1

1{𝑆∗(𝑏) ≤ 𝑆obs} 

Reject 𝐻0 at level 𝛼 if 𝑝 < 𝛼. 

 

Closed-form variance for guidance 

Assuming component independence, 

Var[sc𝜆(𝑞̂(𝑥∗))] = 𝜎𝑇
2(𝑥∗) + 𝜆2𝜎𝐼

2(𝑥∗) + 𝜎𝐹
2(𝑥∗) 

This yields a normal approximation 𝑆 ≈ 𝒩(0, Var) under 𝐻0, useful for quick screening; 

NBHT remains the reference for inference. 

 

4. Numerical Example   

To ensure an auditable calculation, we use a one-dimensional covariate 𝑥 (normalized 

ESAL) and three training sites: 
𝑋 = {0.0,1.0,2.0} 

Use identical RBF kernels per component: variance 𝜎∙
2 = 1, lengthscale ℓ∙ = 1, noise 

variance 𝜎∙,n
2 = 0.04 for ∙∈ {𝑇, 𝐼, 𝐹}. Training triplets: 

𝑦𝑇 = [0.80,0.70,0.60]⊤, 𝑦𝐼 = [0.10,0.15,0.20]⊤, 𝑦𝐹 = [0.10,0.15,0.20]⊤. 

 

Kernel matrices (shared base) 

Base kernel 𝑘(𝑥, 𝑥′) = exp (−
(𝑥−𝑥′)

2

2
). With 𝑎 = 𝑒−1/2 ≈ 0.60653066, 𝑏 = 𝑒−2 ≈

0.13533528, 
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𝐾base = [
1 𝑎 𝑏
𝑎 1 𝑎
𝑏 𝑎 1

] = [
1 0.60653 0.13534

0.60653 1 0.60653
0.13534 0.60653 1

] 

Add noise 0.04𝐼3 to get 𝐾∙ = 𝐾base + 0.04𝐼3 for all components: 

𝐾∙ = [
1.04 0.60653 0.13534

0.60653 1.04 0.60653
0.13534 0.60653 1.04

] 

Test point and cross-kernel 

At 𝑥∗ = 1.5, 

𝑘∗(𝑥∗) = [𝑒−1.125, 𝑒−0.125, 𝑒−0.125]⊤ ≈ [0.32465,0.88250,0.88250]⊤. 

 

Posterior mean and variance (component-wise) 

Solve 𝐾∙𝛼∙ = 𝑦∙. Using Gaussian elimination, we obtain: 

𝛼𝑇 ≈ [0.7340, −0.0542,0.5130]⊤, 𝛼𝐹 ≈ [0.0786, −0.0121,0.1895]⊤. 

 

Hence posterior means at 𝑥∗ : 

𝜇𝑇(𝑥∗) = 𝑘∗
⊤𝛼𝑇 ≈ 0.6432, 𝜇𝐹(𝑥∗) = 𝑘∗

⊤𝛼𝐹 ≈ 0.1820. 

The posterior variance depends only on 𝐾∙ and 𝑘∗ (not on 𝑦 ). Solving 𝐾∙𝛽 = 𝑘∗ yields 

𝑘∗
⊤𝛽 ≈ 0.9537, thus 

𝜎∙
2(𝑥∗) = 1 − 𝑘∗

⊤𝐾∙
−1𝑘∗ ≈ 1 − 0.9537 = 0.0463 for ∙∈ {𝑇, 𝐼, 𝐹}. 

Since 𝑦𝐼 = 𝑦𝐹 and 𝐾𝐼 = 𝐾𝐹, we get 𝜇𝐼(𝑥∗) ≈ 0.1820 and the same variance. 

Neutrosophic prediction at 𝑥∗ : 
𝑞̂(𝑥∗) = (𝜇𝑇 , 𝜇𝐼 , 𝜇𝐹) ≈ (0.6432,0.1820,0.1820). 

 

Pointwise NBHT (one-sided) 

Choose 𝜆 = 1 and threshold 𝜏 = 0.20. Statistic 
𝑆 = 𝜇𝑇 − 𝜇𝐹 − 𝜆𝜇𝐼 − 𝜏 ≈ 0.6432 − 0.1820 − 0.1820 − 0.20 = 0.0792. 

Variance (independence): 

Var(sc1(𝑞̂)) = 𝜎𝑇
2 + 𝜎𝐼

2 + 𝜎𝐹
2 ≈ 3 × 0.0463 = 0.1389 

Normal screening z-score 𝑧 = 𝑆/√0.1389 ≈ 0.0792/0.3726 ≈ 0.212  (fails to reject). 

NBHT: perform the bootstrap in §5.2 with 𝐵 large (e.g., 10,000) to obtain the one-sided 𝑝-

value 𝑝 = ℙ∗(𝑆∗ ≤ 𝑆obs ). Given 𝑧 ≈ 0.21, we expect 𝑝 to be large (non-rejection). 

 

3.1 Practical Guidance for Pavement Agencies 

1) Model inputs. Use standardized ESAL, temperature, binder grade, voids, subgrade 

modulus, and moisture as 𝑥. Encode inspection/sensor outcomes into triplets ( 𝑇, 𝐼, 𝐹 ) 

per location via agency rubrics (e.g., thresholds for rutting, IRI, cracking). 

 

2) NGP fitting. Maximize marginal likelihood per component; inspect ℓ  and 𝜎n
2 

plausibility. 

3) NBHT decisions. Choose 𝜆 to reflect policy: 𝜆 = 1 strongly penalizes ambiguity; 𝜆 = 0.5 

is moderate. Select 𝜏 from specification. 

4) Network tests. Aggregate 𝑆 over grids {𝑥𝑗
⋄} for corridor-level decisions; NBHT extends 

verbatim by replacing pointwise 𝑆 with the average statistic. 

5) Sample size. For a target half-width 𝜀 on sc𝜆 at 𝑥∗,  
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𝑛 ≥
𝑧1−𝛼/2

2 (𝜎𝑇
2(𝑥∗) + 𝜆2𝜎𝐼

2(𝑥∗) + 𝜎𝐹
2(𝑥∗))

𝜀2
 

using current posterior variances as planning proxies. 

 

4. Conclusion 

We presented a Neutrosophic Gaussian Process framework and Neutrosophic Bootstrap 

Hypothesis Tests to evaluate asphalt pavement performance from heterogeneous, 

conflict-prone evidence. The method outputs triplet predictions with explicit component 

variances and a scalarized compliance statistic aligned with neutrosophic preference 

ordering. An example showcased kernel construction, posterior calculation, and 

hypothesis testing. The framework is static, auditable, and directly applicable to corridor 

and network-level pavement decisions. 
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