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Abstract: Highway agencies must evaluate asphalt pavement performance under

heterogeneous evidence: sensor noise, missing records, inconsistent inspections, and
conflicting expert opinions. Classical regression compresses ambiguity into error terms
and cannot separate "uncertainty" from "negative evidence." We develop a Neutrosophic
Gaussian Process (NGP) framework that treats each observation as a triplet ( T,I,F )
capturing support (truth), indeterminacy (ambiguity), and falsity (contradiction). The
prior is a triplet-valued Gaussian process with component kernels and independent
noises; the posterior yields triplet predictions with explicit uncertainty. On top of NGP,
we design Neutrosophic Bootstrap Hypothesis Tests (NBHT) for specification compliance
(e.g., rutting, ride quality, cracking), using a scalarization scy =T — F — Al to form test
statistics while preserving neutrosophic ordering. A worked example with fully
computed kernel matrices and posterior predictions demonstrates how to compute a one-
point compliance test and how to plan sample sizes. The framework is static, fully
specified, verifiable, and ready for deployment in pavement management systems.

Keywords: Neutrosophy; Gaussian processes; Bootstrap hypothesis testing; Asphalt
pavement; Rutting; IRI; Cracking; Performance evaluation.

1. Introduction

Asphalt pavement performance is commonly summarized through rut depth,
International Roughness Index (IRI), and cracking ratios. Data arrive from sensors, visual
inspections, and expert panels. These sources often disagree: a profiler suggests
acceptable IRI, while distress mapping flags severe block cracking; field moisture
measurements are ambiguous due to calibration drift. Treating these discrepancies as
"noise" obscures whether the disagreement reflects a lack of information (indeterminacy)
or genuine negative evidence (falsity) about performance [1].

Neutrosophy models each judgment as a triplet (T, 1, F ), separating support, ambiguity,
and contradiction [1]. We combine this representational advantage with Gaussian
processes (GP)-a powerful nonparametric method for learning functions with quantified
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uncertainty [2]. We extend GP to a Neutrosophic Gaussian Process (NGP) that predicts a
triplet-valued performance field over covariates (e.g., traffic loading, temperature, binder
grade, voids, subgrade modulus, moisture). Then we propose Neutrosophic Bootstrap
Hypothesis Tests (NBHT) to decide whether a pavement section meets specification while
explicitly penalizing ambiguity[3-5]. Our contributions:
1. NGP prior-posterior calculus: triplet-valued GP with component kernels and
closed-form posterior mean/variance.
2. Neutrosophic scalarization sc; =T — F — Al integrated into prediction and
decision-making.
3. NBHT for compliance testing (pointwise or network-level), with explicit bootstrap
algorithms and variance formulas.
4. Anexample with numerically computed kernel matrices and posterior predictions
to ensure full transparency.

1.1 Literature Review

The evaluation of asphalt pavement performance has long been challenged by
heterogeneous data sources, including sensor measurements, visual inspections, and
expert assessments, which often introduce inconsistencies, ambiguities, and
contradictions [6]. Traditional statistical methods, such as linear regression and time-
series analysis, have been widely applied to predict pavement distress indicators like
rutting, International Roughness Index (IRI), and cracking ratios, but these approaches
typically aggregate uncertainties into residual error terms without distinguishing
between aleatoric and epistemic uncertainties [7]. For instance, mechanistic-empirical
models, such as those embedded in the AASHTO Pavement ME Design software, rely on
deterministic inputs for covariates like traffic loading and environmental factors, yet they
struggle with incomplete or conflicting field data, leading to biased predictions in real-
world highway management [8].

To address uncertainties in engineering contexts, fuzzy set theory has been employed to
model vagueness in pavement condition assessments, enabling the representation of
gradual membership degrees for performance states [9]. However, fuzzy approaches fall
short in capturing contradictions or indeterminacies inherent in conflicting evidence, such
as divergent sensor readings and expert opinions on the same pavement section [10].
Neutrosophic set theory extends fuzzy logic by incorporating three independent
components truth (support), indeterminacy (ambiguity), and falsity (contradiction)
providing a more nuanced framework for handling non-binary uncertainties in decision-
making processes [11]. Applications of neutrosophic logic in civil engineering have
demonstrated its efficacy in multi-criteria evaluation, such as prioritizing maintenance for
bridge structures under incomplete information, where triplet-valued assessments better
reflect real-world evidential conflicts [12].

GPs offer a flexible nonparametric alternative for regression tasks, particularly in
predicting continuous functions over covariates like equivalent single-axle loads (ESAL)
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and subgrade modulus, with built-in uncertainty quantification through posterior
distributions [13]. In pavement engineering, GPs have been utilized for spatial
interpolation of distress data, outperforming kriging methods in scenarios with sparse
observations by incorporating kernel-based correlations [14]. Multi-output GPs, which
model correlations across related variables, have further advanced this field by
simultaneously predicting multiple performance metrics, such as rut depth and IRI, under
shared environmental influences [15]. Despite these strengths, standard GPs treat all
discrepancies as Gaussian noise, limiting their ability to differentiate ambiguity from
outright contradictions in heterogeneous datasets [16].

Recent efforts to integrate advanced uncertainty models with GPs include extensions to
fuzzy Gaussian Processes, which handle input vagueness through possibility
distributions, but these do not explicitly address falsity components [17]. Neutrosophic
enhancements to probabilistic models have emerged in other domains, such as
neutrosophic random forests for classification under conflicting labels, suggesting
potential for similar adaptations in regression [18]. However, a dedicated neutrosophic
Gaussian Process framework remains underexplored, particularly for engineering
applications requiring triplet-valued predictions [19].

Hypothesis testing in uncertain environments often relies on bootstrap methods to
approximate sampling distributions without parametric assumptions, as seen in
resampling techniques for confidence intervals in pavement reliability assessments [20].
Neutrosophic bootstrap approaches have been proposed for interval-valued data in
quality control, incorporating indeterminacy into test statistics to avoid overconfidence in
decisions [21]. Yet, integrating such tests with neutrosophic predictions for compliance
evaluation, such as in highway specifications, has not been systematically developed [22].

This study bridges these gaps by proposing a NGP that extends GP priors to triplet-valued
functions, coupled with NBHT for robust decision-making in pavement performance
evaluation. Unlike prior works, our approach preserves neutrosophic ordering through
scalarization while enabling verifiable computations for practical deployment.

2. Preliminaries: Neutrosophic Observations and Scalarization
Neutrosophic numbers and order
A neutrosophic number is q¢ = (T, I, F) € [0,1]® with
0<T+I+F<3
Performance preference is
qzq © T=T,I<I,F<F.

Scalarization for decision-making
Fix 4 € [0,1]. Define the admissible scalarization
sc;(q):=T—F — Al € [-1,1].
If g = q', then sc;(q) = sc;(q"). We use sc; to construct test statistics and indices.
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Pavement covariates

Let x € R? collect covariates (e.g., equivalent single-axle loads (ESAL, normalized), mean
pavement temperature, binder grade indicators, air voids, subgrade modulus, surface
moisture). For each x we observe a triplet q(x) = (T'(x),1(x), F(x)) representing the
degree that the section meets (T), is ambiguous about (I), and violates (F) the agency's

performance specification.

Neutrosophic Gaussian Processes

We model each component with a GP and, for transparency and tractability, assume
component-wise independence (extensions to coregionalized multi-output kernels are
straightforward but not required here).

Prior
For-e {T,I,F},

fo~ GPm.(), k()
with zero mean m. = 0 (w.Lo.g. after centering) and kernel

x — x'||?
k.(x,x") = o%exp <— %)

Likelihood (noisy observations)
Given training inputs X = {x;}/-, and triplets y. = [y.1, ..., y.,n]T with y.; € [0,1],

Y LX) ~ N(£X), 050)-
Define K. = [k.(xi,xj)]ij + 021,

Posterior at a test point x,
Let k.. = [k.(x.,x1), ..., k.(x., x,)]" and k. ... = k.(x,, x.). Then
p.(x,) = kLK 1y, 0%(x,) = k... — kLK k.,
The neutrosophic prediction at x, is §(x,) = (uT e,y (), U (x*)) with component
variances 62, 67, oZ.

Hyperparameters
Hyperparameters 0. = (a2, £.,62,) are learned by maximizing the marginal log-
likelihood

1 . 1 n
log p(y. 1X,0.) = —5¥'K y.—zlogIK.I —log 2.

3. Neutrosophic Bootstrap Hypothesis Tests (NBHT)
We test specification compliance using sc;. Two common decisions:
(A) Pointwise compliance at x, :

Ho:sc;(4(x.)) =7 vs Hyisi(G(x)) <,
for an agency threshold t € [-1,1].
(B) Network-average compliance on a set X = {xy, ..., xp} :
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SCy q(x > Tvs Hi:< 1.

”ME

Test statistic
For case (A), define

S= SC/'L(CAI(X*)) —-T= .uT(x*) - .uF(x*) - A.ul(x*) - T

Neutrosophic parametric bootstrap under H,,
1. Fit NGP and fix ©.

2. Construct null mean at training inputs: set

37.(0) =y —a (,u.(x*) - m.,o(x*)) ,m.o(x.) s.t. sca(mro, Mg, Mpp) =7,

with a simple choice mr g = 7,m; g = 0,mp o = 0 (or any triplet on the sc; = 7 iso-line).
The scalar a. € [0,1] re-centers minimalistically; choosing a. = 1 sets the predicted mean
at x, to exactly satisfy H

3. Simulate bootstrap datasets forb =1, ...,B :

y*(b) ~ N(y(o) O' I )
4. Refit posterior for each b (hyperparameters fixed) to obtain u ®(x,) and
compute
§*® = 1) — P ) - V) -

5. p-value (one-sided):
B

1
p= Ez 1{s*®) < .16}
b=1
Reject Hy atlevel ¢ if p < a.

Closed-form variance for guidance
Assuming component independence,
Var[scy (G (x.))] = 02 (x.) + 1207 (x.) + 02(x.)
This yields a normal approximation S = (0, Var) under Hy, useful for quick screening;
NBHT remains the reference for inference.

4. Numerical Example
To ensure an auditable calculation, we use a one-dimensional covariate x (normalized
ESAL) and three training sites:
X ={0.0,1.0,2.0}
Use identical RBF kernels per component: variance o2 = 1, lengthscale . = 1, noise
variance 03, = 0.04 for -€ {T, I, F}. Training triplets:
yr = [0.80,0.70,0.60]7,y; = [0.10,0.15,0.20] ", ¥ = [0.10,0.15,0.20] .

Kernel matrices (shared base)

"2
Base kernel k(x,x") = exp (— @) With a = e 1/2 = 0.60653066,b = e 2 ~
0.13533528,
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1 a b 1 0.60653 0.13534
Kpase = !a 1 a] = [0.60653 1 0.60653]
b a 1 0.13534 0.60653 1
Add noise 0.041; to get K. = Kj,,se + 0.04I3 for all components:
1.04  0.60653 0.13534
K. =10.60653 1.04 0.60653]
0.13534 0.60653 1.04

Test point and cross-kernel
Atx, = 1.5,
k.(x,) = [e”1125,¢70125 =01251T ~ [0.32465,0.88250,0.88250]".

Posterior mean and variance (component-wise)

Solve K.a. = y.. Using Gaussian elimination, we obtain:
ar ~ [0.7340,—0.0542,0.5130]7, ar = [0.0786,—0.0121,0.1895]".

Hence posterior means at x, :
ur(x,) = klar = 0.6432, up(x,) = k] ar ~ 0.1820.
The posterior variance depends only on K. and k, (not on y ). Solving K. = k, yields
kIp ~ 0.9537, thus
0?(x,) =1—kTK 1k, =~ 1—0.9537 = 0.0463 for -€ {T,I,F}.
Since y; = yr and K; = Ky, we get ;(x,) = 0.1820 and the same variance.

Neutrosophic prediction at x, :
§(x.) = (up, o, ir) ~ (0.6432,0.1820,0.1820).

Pointwise NBHT (one-sided)
Choose A = 1 and threshold t = 0.20. Statistic

S = —pp — Ay — 7 ~ 0.6432 — 0.1820 — 0.1820 — 0.20 = 0.0792.
Variance (independence):

Var(sc,(9)) = 0% + of + 0f ~ 3 X 0.0463 = 0.1389

Normal screening z-score z = 5/v0.1389 = 0.0792/0.3726 =~ 0.212 (fails to reject).
NBHT: perform the bootstrap in §5.2 with B large (e.g., 10,000) to obtain the one-sided p-
value p = P* (8" < Sy ). Given z = 0.21, we expect p to be large (non-rejection).

3.1 Practical Guidance for Pavement Agencies

1) Model inputs. Use standardized ESAL, temperature, binder grade, voids, subgrade
modulus, and moisture as x. Encode inspection/sensor outcomes into triplets (T, 1, F )
per location via agency rubrics (e.g., thresholds for rutting, IRI, cracking).

2) NGP fitting. Maximize marginal likelihood per component; inspect ¢ and og
plausibility.

3) NBHT decisions. Choose A to reflect policy: 4 = 1 strongly penalizes ambiguity; 4 = 0.5
is moderate. Select T from specification.

4) Network tests. Aggregate S over grids {x]f’} for corridor-level decisions; NBHT extends
verbatim by replacing pointwise S with the average statistic.

5) Sample size. For a target half-width € on sc; at x,

Haocheng Xiong, Tao Yang, Neutrosophic Gaussian Processes with Bootstrap Hypothesis Testing for
Performance Evaluation of Highways Asphalt Pavement



Neutrosophic Sets and Systems, Vol. 93, 2025 351

22 gpp (07 (x) + P07 () + 0F (1))

2
£
using current posterior variances as planning proxies.

n=

4. Conclusion

We presented a Neutrosophic Gaussian Process framework and Neutrosophic Bootstrap
Hypothesis Tests to evaluate asphalt pavement performance from heterogeneous,
conflict-prone evidence. The method outputs triplet predictions with explicit component
variances and a scalarized compliance statistic aligned with neutrosophic preference
ordering. An example showcased kernel construction, posterior calculation, and
hypothesis testing. The framework is static, auditable, and directly applicable to corridor
and network-level pavement decisions.
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