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Abstract In recent years, researchers have increasingly focused on neutrosophic probability distributions to handle 

incomplete data and inherent uncertainty.  A novel distribution, called the Neutrosophic Paradox Distribution (NPD), will be 

introduced in this paper, which is developed using neutrosophic algebra in a unique and innovative manner. The NPD is 

constructed from three underlying component distributions, and we thoroughly investigate its mathematical characteristics, 

such as mean, variance, and cumulative function, including a formal proof of its neutrosophic probability density function. 

To illustrate its practical utility, we present detailed examples of specific NPD components such as the Beta-Neutrosophic 

Paradox Distribution (Beta-NPD) and the Exponential-Neutrosophic Paradox Distribution (Exponential-NPD). Furthermore, 

the proposed distribution is applied to devise robust solutions for complex cybersecurity problems. In this paper, solved 

examples are presented to clarify the effectiveness and applicable to apply of NPD in real-world scenarios, highlighting its 

potential as a valuable tool in uncertain and incomplete data environments. 

Keywords: neutrosophic paradox distribution; Beta distribution; Exponential distribution; machine learning; 

cybersecurity.  

1. Introduction 

Florentine Smarandache introduced Neutrosophic logic in (1999), which is essential when dealing with incomplete, 

inconsistent, or generalizes classical, fuzzy, and intuitionistic fuzzy logics by introducing three independent components: 

these degrees called truth (T), indeterminacy (I), falsity (F) unlike traditional frameworks that consider only degrees of truth 

or membership, neutrosophic logic models uncertainty more comprehensively by explicitly incorporating indeterminacy 

contradictory information  [1-4]. 

This triadic approach has inspired the development of several neutrosophic statistical distributions, including the neutrosophic 

Weibull [5,6], neutrosophic exponential [7,8], neutrosophic normal distribution [9,10], neutrosophic multinomial distribution, 

neutrosophic binomial distribution [11], neutrosophic Poisson [12], neutrosophic beta distribution  [13] and neutrosophic 

Gamma distributions, which aim to model uncertainty and contradictions in various domains [14,15].  Neutrosophic Rayleigh  

[16]. These distributions extend classical distributions by incorporating indeterminacy (I) into the framework, allowing for 

more flexible and accurate modeling of real-world phenomena. 

For example, the Neutrosophic Generalized Pareto Distribution (NGPD) has been effectively applied to financial modeling, 

particularly in capturing extreme events and fluctuations in public debt under uncertain conditions.[17,18]. The neutrosophic 

models have been applied in cybersecurity [19, 20]. However, classical probabilistic models remain inadequate for handling 

paradoxical evidence, where data simultaneously support conflicting hypotheses, such as normal and abnormal network 

behavior in cybersecurity. To address this, the Neutrosophic Paradox Distribution (NPD) has been introduced as a novel 

statistical framework that explicitly represents contradictions and indeterminacy, making it particularly suitable for complex 

threat environments. Unlike traditional models, NPD treats contradictions as inherent system features rather than errors, 

providing a robust tool for anomaly detection and threat analysis where data is often incomplete, noisy, or conflicting. This 
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is especially relevant in scenarios like distributed denial-of-service (DDoS) attack detection, where traffic patterns may 

exhibit both benign and malicious characteristics, challenging binary classification approaches. 

While a unified formalism for neutrosophic distributions is still evolving, some researchers advocate representing parameters, 

variables, or probability density functions as triplets (T, I, F) to capture ambiguity directly within the statistical model [9]. 

This approach aligns with the broader neutrosophic philosophy of embracing uncertainty and indeterminacy, thus offering a 

powerful extension to classical and fuzzy statistical methods for diverse applications in cybersecurity, finance, and beyond. 

Furthermore, this paper is organized as follows: In Section 2, we present definitions and the formulation of the NPD. A 

derives key statistical functions, including Probability Density Function (PDF), Cumulative Distribution Function (CDF), 

and the hazard rate, presented in section 3. Section 4 offers practical examples demonstrating the application of NPD to real-

world data.  Lastly, we summarize the main findings and outline potential areas for future work in Section 5. 

2. Neutrosophic Paradox Distribution (NPD) 

Inspired by Smarandash's theory of neutrosophic probability [21] and the need to model paradoxical uncertainty, we propose 

a new distribution called the neutrosophic paradox distribution (NPD), which is designed to represent uncertain, ambiguous, 

paradoxical data by modeling three levels (true, uncertainty, and false) in a probability distribution. Let X be a random 

variable with the following properties: 

T(x): the degree of truth for x 

I(x): the degree of indeterminacy for x. 

F(x) is the degree of falsehood for x. 

 PDF for the NPD can be represented as a function of these three components, taking into account that the sum of these 

components can exceed one. 

𝑓𝑁𝑃(𝑋) =T(𝑥) +  𝐼(𝑥) +  𝐹(𝑋) 

Where: 

• 0 ≤  T, I, F ≤  1 and 0 ≤  T +  I +  F ≤  3   

  ( Smarandache (2015) 

• T(x) is probability where x represents true outcome. 

• I(x) is a probability where x represents an indeterminate outcome. 

• F(x) is the probability where x represents a false outcome. 

3. The NPD properties 

 In this section, properties of NPD, statistical properties such as variance, mean, and special cases, will be introduced. 

3.1 Non-Normalized Distribution 

The Neutrosophic Paradox Distribution is not necessarily normalized to sum to 1. This is because it includes three parts: 

truth, uncertainty, and Falsehood; each part has its value or distribution. As a result, their sum may not exactly equal one. If 

necessary, we can normalize the values by conforming them so that their sum equals one. This is done by conforming to the 

weight of each part. 

𝑓(𝑥)𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑓𝑇(𝑥) + 𝑓𝐼(𝑥) + 𝑓𝐹(𝑥)

∑ 𝑓𝑇(𝑥) + 𝑓𝐼(𝑥) + 𝑓𝐹(𝑥)
 

3.2 Flexibility in Component Distributions 

The Neutrosophic Paradox Distribution (NPD) allows for flexibility in the choice of distributions for the three components 

(Truth, Indeterminacy, and Falsehood). Each component may be modeled using different distributions, according to the 
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nature data and applications at hand. This allows the NPD to deal with a wide assortment of data types. 

For example: 

• The Truth component may follow a Beta or Normal distribution, depending on whether the data is bounded or 

unbounded. 

• The Indeterminacy component might be modeled using Gamma or Uniform distributions to capture different types 

of uncertainty. 

• The Falsehood component may follow distributions like Exponential or Weibull to model rare or decaying events. 

3.3 Parameters of the Distribution 

 Each component 𝑓𝑇(𝑥), 𝑓𝐼(𝑥, ) 𝑎𝑛𝑑𝑓𝐹(𝑥) will have its own set of parameters, depending on the chosen distribution. 

These parameters control the shape and scale of the distributions: 

• Truth (T): Parameters might include 𝛼𝑇 and𝛽𝑇  for a Beta distribution, or mean and standard deviation for a Normal 

distribution. 

• Indeterminacy (I): Parameters might include shape and scale for a Gamma distribution or a and b for a Uniform distribution. 

• Falsehood (F): Parameters might include the rate for an Exponential distribution or the scale for a Weibull distribution. 

3.4 Non-Symmetry 

 Unlike the Normal distribution, the Neutrosophic Paradox Distribution is non-symmetric by design. Since it combines 

multiple components representing truth, uncertainty, and falsehood, the performing distribution may exhibit skewness or 

asymmetry. This feature allows the distribution to model more complex real-world phenomena where data does not follow a 

symmetrical pattern 

3.5 Skewness and Kurtosis 

The Neutrosophic Paradox Distribution can exhibit skewness (the asymmetry of the distribution) and kurtosis depending on 

the choice of distributions for each component:  

• If the Truth component is modeled using a Beta distribution, the resulting distribution can be swerved according to specific 

values of its parameters.𝛼𝑇 and 𝛽𝑇 . 

• Indeterminacy components may also introduce skewness or heavy tails if they follow a Gamma or Exponential 

distribution. 

• The Falsehood component, especially when modeled with an Exponential or Weibull distribution, can yield a distribution 

with heavy tails. 

3.6 Cumulative Distribution Function (CDF) 

𝐹𝑁𝑃𝐷(𝑥) = 𝐹𝑇(𝑥) + 𝐹𝐼(𝑥) + 𝐹𝐹(𝑥) 

Where: 

• 𝐹𝑇(𝑥) is the CDF of the Truth component. 

• 𝐹𝐼(𝑥)  is the CDF of the Indeterminacy component. 

• 𝐹𝐹(𝑥) is the CDF of the Falsehood component. 

3.7 Mean and Variance 

i. The expected value (µ) and the variance (σ) of the NPD can be deduced by calculating the mean and variance of each 

of its components. Since the distribution is the sum of these components, the overall mean and variance are the sums of 

the means and variances of the individual components. 
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The mean of the NPD can be computed as: 

𝜇𝑁𝑃𝐷 = 𝜇𝑇 + 𝜇𝐼 + 𝜇𝐹 

 

Where 𝜇𝑇, 𝜇𝐼, and 𝜇𝐹 are the means of the Truth, Indeterminacy, and Falsehood components, respectively. 

ii. The variance of the NPD can be computed as: 

𝜎𝑁𝑃𝐷
2 = 𝜎𝑇

2 + 𝜎𝐼
2 + 𝜎𝐹

2 

 

Where 𝜎𝑇
2, 𝜎𝐼

2and 𝜎𝐹
2 are the variances of the Truth, Indeterminacy, and Falsehood components, respectively. 

 
3.8 Additive Nature of Components 
One of the main properties of the Neutrosophic Paradox Distribution (NPD) is its additive nature. The overall distribution is 

a sum of three distinct components, each of which contributes to the overall behavior of the system. This allows for flexible 

modeling of complex phenomena, where different levels of truth, uncertainty, and falsehood may be attended. 
 

3.8 Handling Paradoxical Data 
 
The Neutrosophic Paradox Distribution is particularly useful for paradoxical data where the standard assumptions of 

classical distributions (such as normality) do not apply. This makes it a powerful tool for modeling real-world problems in 

areas like cybersecurity, finance, and decision-making, where data often contains conflicting or contradictory information. 

3.10 The Application of NPD 

The Neutrosophic Paradox Distribution (NPD) is a versatile modeling of uncertainty, indeterminacy, and falsehood in various 

systems. Its key properties, such as flexibility in component distributions, non-normalization, and the additive nature of its 

components, make it suitable for handling complex and paradoxical data. Understanding these properties is crucial for 

applying the NPD in real-world applications and making informed decisions based on uncertain or conflicting information. 

Applications: 

• Modeling systems with inherent contradictions. 

• Decision-making under paradoxical uncertainty. 

• Complex systems where classical probability fails. 

4. Examples for Components of NPD and its Mathematical Properties 

4.1 Beta-NPD  
The Neutrosophic Paradox Distribution (NPD) is defined in terms of a tripartite distribution function for a random 

variable x, where T(x), I(x) and F(x) follow specific parametric forms. The total distribution is then a combination of these 

components. 

Probability Distribution Components: 

Let us assume each component follows a Beta distribution, which is commonly used to model uncertainty: 

𝑇(𝑥)~𝐵𝑒𝑡𝑎(𝛼𝑇 , 𝛽𝑇) 

𝐼(𝑥)~𝐵𝑒𝑡𝑎(𝛼𝐼 , 𝛽𝐼) 

𝐹(𝑥)~𝐵𝑒𝑡𝑎(𝛼𝐹 , 𝛽𝐹) 

Where 𝛼𝑇 , 𝛼𝐼 , 𝛼𝐹, and 𝛽𝑇 , 𝛽𝐼 , 𝛽𝐹 are shape parameters that govern the distribution of truth, indeterminacy, and falsehood, 

respectively. These parameters can be adjusted to simulate different levels of indeterminacy in the data. 

▪ General Mathematical formulation of Beta-NPD:  
The general form of the Neutrosophic Paradox Distribution (NPD) can be written as: 
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𝑓𝑁𝑃(𝑋) = (
𝑥𝛼𝑇−1(1 − 𝑥)𝛽𝑇−1

𝐵(𝛼𝑇 , 𝛽𝑇)
) + (

𝑥𝛼𝐼−1(1 − 𝑥)𝛽𝐼−1

𝐵(𝛼𝐼 , 𝛽𝐼)
) + (

𝑥𝛼𝐹−1(1 − 𝑥)𝛽𝐹−1

𝐵(𝛼𝐹 , 𝛽𝐹)
) , 

  0 ≤ 𝑥 ≤ 1 

Where: 

• B (α, β) is the Beta function, which normalizes the Beta distribution so that the total area under the curve is 1. 

• The components T(x), I(x), and F(x) are integrated to provide a total distribution f(x) that accounts for truth, 

indeterminacy, and falsehood. 

▪ Parameterization of Beta-NPD 

• 𝛼𝑇 , 𝛽𝑇 control the distribution of the truth component. 

• 𝛼𝐼 , 𝛽𝐼 control the distribution of the indeterminacy component. 

• 𝛼𝐹 , 𝛽𝐹 control the distribution of the falsehood component. 

Interpretation of the Parameters 

• A high value of 𝛼𝑇 and a low value of 𝛽𝑇  indicate a high confidence in the truth component of the data. 

• A high value of𝛼𝐼 and a low value of 𝛽𝐼 represent higher indeterminacy (i.e., greater uncertainty). 

• A high value of 𝛼𝐹 and a low value of 𝛽𝐹 suggest a strong presence of falsehood in the data. 

By adjusting these parameters, you can simulate different levels of paradoxical behavior, where the data simultaneously 

contains truth, indeterminacy, and falsehood. 

Important Notes 

1. The sum f(x) is not a probability distribution in the classical sense, because it can exceed 1 (since T + I + F can be > 

1 in neutrosophy). 

2. Each component (T, I, F) is a valid Beta distribution (i.e., its area = 1). 

3. We use separate parameters (α,β) for each component to model their behaviors independently. 

▪ Simulation  

   To simulate and visualize the Neutrosophic Paradox Distribution (NPD) in this case, I implemented the distribution in 

Python using the scipy.stats.beta module to generate the three-neutrosophic components: Truth (T), Indeterminacy (I), and 

Falsehood (F). Each component was modeled using a different Beta distribution: T(x) ∼ Beta (2.5, 5.0), I(x) ∼ Beta (3.0, 

3.0), and F(x) ∼ Beta (5.0, 2.0). These choices were made to reflect different probabilistic behaviors over the normalized 

feature space [0, 1]. The final NPD(x) was computed as the sum of the three components, illustrating the paradoxical overlap 

and interplay between them. The simulation was conducted in Python and visualized using matplotlib, allowing an intuitive 

comparison between the individual components and their combined effect in the NPD frame. 
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Figure 1: The simulation plot of the NPD using cybersecurity data. 

 

Figure 1: shows the Neutrosophic Paradox Distribution (NPD) using simulated cybersecurity data, where:  

• The green curve: presents the beta distribution for truth (t), which is ' benign traffic'.  

• The Orange curve: indeterminacy (I), which captures the uncertainty region, where it is not clear whether behavior 

is benign or This component is crucial because it gives paradoxical behavior, where the system is unsure, helpful 

for zero-day attacks or new, unseen patterns. Malicious.  

• The Red curve: falsehood (F) Models malicious or anomalous behavior, such as DDoS or PortScan attacks.  

The Blue curve: This is the final Neutrosophic Paradox Distribution. It combines all three components: truth, falsehood, and 

indeterminacy, and gives a holistic view of data behavior across the entire domain (e.g., normalized feature values between 

0 and 1). 

This is important because: 

• Traditional models treat either data as "normal" or "anomalous". 

• The NPD plot shows three views at once, accepting the paradox that uncertainty exists. 

• It helps in better thresholding and confidence scoring for classification: 

o High T(x) → likely normal 

o High F(x) → likely attack 

o High I(x) → suspicious or ambiguous, may require deeper analysis 

 While we previously assumed that each component follows a Beta distribution, it is important to highlight that different 

distributions can be chosen for each component. For example: 

• Truth (T): You might use a Beta, Gaussian, or Lognormal distribution, depending on whether you believe the data's 

truthfulness follows a bounded or unbounded pattern. 

Indeterminacy (I): The Gamma, Normal, or Uniform distributions might be appropriate if the indeterminacy is uniformly 

distributed or follows a skewed distribution. table 1 shows how we can choose the function model indeterminacy  

Table 1: The function indeterminacy I (t) 

Function Behaviour Recommended Applications 
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Exponential decay    𝛾𝑡𝑒−𝑡 
Indeterminacy decreases over 

time and distance 

Systems with memory ( e.g., 

mechanical wear) 

Lorentizian   
𝛾

1+𝑡2 Slow decay with long tails 
Social systems, slow-changing 

environments 

Gamma   𝛾𝑡𝑘−1𝑒−𝑡∕𝛿  Peaks then decay 
Temporary phenomena (e.g., disease 

outbreaks) 

𝛾𝑠𝑖𝑛2(𝜔𝑥) 

𝛾: Amplitude (scales max 

indeterminacy to [0, 𝛾]). 

𝜔: frequency (controls oscillation 

speed; 𝜔 =
2𝜋

𝑡
 𝑓𝑜𝑟 𝑝𝑒𝑟𝑖𝑜𝑑 𝑇 

Peaks at 𝛾 (max 

indeterminacy) when 

𝛾𝑠𝑖𝑛2(𝜔𝑥) = 1 

Drops to 0 (no indeterminacy) 

at 𝛾𝑠𝑖𝑛2(𝜔𝑥) = 0 

Periodic Attacks 

Models attacks recurring at fixed 

intervals (e.g., scheduled 

scans/campaigns). 

 

- Normalization: ensure max(I(t) ≤ 1 ) via: 

𝐼(𝑡) = 𝛾.
𝑟𝑎𝑤 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

max 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦
 

• Falsehood (F): For falsehood, you could choose distributions such as Exponential, Weibull, or Beta to capture various 

forms of decay or uncertainty. 

Thus, the components T(x), I(x), and F(x) can follow any appropriate distribution, providing flexibility for modelling the 

paradoxical behaviour of data. 

4.2 The Neutrosophic Exponential Paradox Distribution 

We now define the Neutrosophic Exponential Paradox Distribution, introducing parameters α and β to handle indeterminacy 

and paradox levels. 

Let λ>0, α, β∈ [0, 1], then: 

Probability Density Function (PDF) 

𝑓𝑁𝑃𝐷(𝑥; 𝜆, 𝛼, 𝛽) =  (1 − 𝛼 − 𝛽)𝜆𝑒−𝜆𝑥 +  𝛼. 𝛿(𝑥) + 𝛽. 𝜆2𝑥𝑒−𝜆𝑥   , 𝑥 ≥ 0 

Where: 

 

• (1 − 𝛼 − 𝛽)𝜆𝑒−𝜆𝑥Classical exponential (truth). 

• 𝛼. 𝛿(𝑥): Dirac delta function representing indeterminacy at point (uncertain/noisy) 

• 𝛽. 𝜆2𝑥𝑒−𝜆𝑥  : Paradoxical behavior modelled via gamma (2, λ). 

This distribution allows us to recover the exponential distribution when α = β = 0 and introduce uncertainty (α) and 

paradoxical influence (β).  

The Properties of the Neutrosophic Exponential Paradox Distribution: 
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1. The Cumulative Distribution Function (CDF) 

LET:    𝐹𝐸(𝑥) = 1 − 𝑒−𝜆𝑥  

And 

 𝐹𝑝(𝑥) = 1 − 𝑒−𝜆𝑥(1 + 𝜆𝑥) 

Then the CDF OF NPD is: 

𝐹𝑁𝑃𝐷(𝑥) = (1 − 𝛼 − 𝛽) 𝐹𝐸(𝑥) + 𝛽𝐹𝑝(𝑥) 

(The delta component does not contribute to the CDF science; it is a point mass.) 

- To ensure the PDF integrates with 1: 

-  (1 − 𝛼 − 𝛽) + 𝛼 + 𝛽 = 1 ⇒ 𝛼 + 𝛽 ≤ 1  

α: degree of indeterminacy (noise, incomplete info). 

β: degree of paradox (contradictory behavior). 

λ: scale parameter (same as exponential).                                      

2. The Mean of the NPD: 

𝜇𝑁𝑃𝐷 = 𝜔𝑇 . 𝐸[𝑋𝐸] + 𝜔𝐼𝐸[𝑋𝐼] + 𝜔𝑃𝐸[𝑋𝑃] 

- Given weights:  

Truth component: 𝜔𝑇 = 1 − 𝛼 − 𝛽 

Indeterminate component: 𝜔𝐼 = 𝛼 

      Paradox component: 𝜔𝑃 = 𝛽 

𝐸[𝑋𝐸] =
1

𝜆
(𝑚𝑒𝑎𝑛 𝑜𝑓 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙) 

        𝐸[𝑋𝐼] = 0 𝑑𝑖𝑟𝑒𝑐𝑡 𝑑𝑒𝑙𝑡𝑎 𝑎𝑠 𝑧𝑒𝑟𝑜 

         𝐸[𝑋𝑃] =
2

𝜆
 (𝑚𝑒𝑎𝑛 𝑜𝑓 𝐺𝑎𝑚𝑚𝑎 (2, 𝜆) 

So: 

𝜇𝑁𝑃𝐷 = (1 − 𝛼 − 𝛽)
1

𝜆
+ 0 + 𝛽

2

𝜆
 

𝜇𝑁𝑃𝐷 =
(1 − 𝛼 + 𝛽)

𝜆
 

 The Variance of the NLD: 

𝑣𝑎𝑟𝑁𝑃𝐷 = 𝜔𝑇 . 𝑉𝑎𝑟[𝑋𝐸] + 𝜔𝑃𝑉𝑎𝑟[𝑋𝑃] + 𝜔𝑇(𝜇𝐸 − 𝜇𝑁𝑃𝐷)2 + 𝜔𝑃(𝜇𝑃 − 𝜇𝑁𝑃𝐷)2   

This implementation shows how classical probability distributions can be extended to handle more complex, real-world 

situations where truth is not absolute but exists in degrees with inherent uncertainty. 
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Figure 2: The difference between the traditional exponential distribution  

 

and NPD 

 

Figure 2 shows the difference between the traditional exponential distribution and the Neutrosophic Paradox Distribution as 

shown below: 

• The traditional exponential is a pure probability distribution (values represent likelihoods) 

• The neutrosophic version is more about membership degrees (truth, uncertainty, falsity) 

• The neutrosophic approach can model systems where events have inherent uncertainty or a contradictory nature. 

5 Real-world Cybersecurity Applications of the Neutrosophic Paradox 
Distribution (NPD) 

  This application presents an innovative machine-learning framework for detecting distributed denial of service (DDoS) 

attacks, which incorporates neutrosophic logic to handle uncertainty in network traffic classification. By transforming 

traditional network features into three-valued neutrosophic components (Truth, Indeterminacy, and Falsehood), the model 

effectively captures the ambiguous nature of modern cyber threats. The system automatically optimizes decision thresholds 

and combines classical statistical features with neutrosophic logic . 

5.1 Methodology Steps: 

5.1.1 Data source:  
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"CIC-IDS2017""Friday-WorkingHours-Afternoon-PortScan.pcap_ISCX.csv" containing labelled DDoS and benign 

network traffic flows. Feature Selection: The top 5 discriminative features were selected via ANOVA F-test (p < 0.01) to 

reduce dimensionality while preserving attack patterns Figure 3.  

5.1.2 Data Preprocessing 

i. Load and clean the dataset (handle missing values, infinity, label encoding). 

   - Convert labels (BENIGN=0, DDoS=1). 

Figure 3: Top 15 important features. 

5.1.3 Neutrosophic Transformation 

o For each feature, dynamically calculate thresholds. 

o Split feature values into Truth (T), Indeterminacy (I), and Falsehood (F) components as shown in Figure 4: 

o T: Values > threshold (clear attack signatures). 

o I: Values ∈ (0.5×threshold, threshold] (ambiguous traffic). 

o F: Values ≤ 0.5×threshold (normal traffic). 

Figure 4: The threshold for some features using cybersecurity data 

5.2 Threshold Optimization 

Automatically select optimal thresholds using cross-validated F1-score. 

5.3 Model Training 

Train an XGBoost classifier using: 

• 200 trees 

• Depth of 7 
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• Learning rate = 0.05 

• Balanced class weights  

 Suitable for imbalanced data scenarios like attack detection 

Sets the number of decision trees in the ensemble.200 trees provide sufficient diversity to improve detection accuracy while 

avoiding excessive computation. 

5.4 empirically optimized  

For DDoS detection, the following hyperparameter configuration was adopted: 

o max_depth=7  

 This depth allows the model to handle intricate and nonlinear attack signatures commonly found in DDoS traffic, without 

excessively overfitting to noise or outliers. 

o n\_estimators = 200 

  Ensures a diverse and strong ensemble of decision trees for robust detection across various DDoS patterns. 

6. Visualize the confusion matrix and neutrosophic distributions 

6.1 Confusion Matrix 

 Representations, achieving enhanced detection capability, particularly for borderline cases. By integrating the degrees of 

truth, indeterminacy, and paradox, the model achieved more nuanced decision boundaries, reducing misclassification in 

ambiguous traffic flows as shown in Fig.5. 

 

 

 

 

 

 

 

 

 

Figure 5: confusion matrix 

6.2 Evaluation Metrics 

Table 2. Classification Report: Precision, Recall, F1-score. 

Table 2: Report precision/recall/F1-score achieved by the XGBoost classifier using neutrosophic representation for DDoS 

detection. 

 precision recall f1-score    support 

0 1.00 0.96 0.98 29262 
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1 0.97 1.00 0.98 38462 

Accuracy   0.98 67724 

Macro avg. 0.98 0.98 0.98 67724 

Weighted 

avg. 

0.98  0.98 0.98 67724 

 

6.3 Performance Interpretation 

It is clear from Table 2 that the proposed model exhibits a high accuracy of 98%, with a balanced precision-recall trade-off, 

achieving an F1-score of 0.98 for both benign and attack classes.  

In particular, the classifier achieves perfect recall (1.00) for DDoS attacks, which means that all attack instances were 

correctly detected. At the same time, it maintains a high precision of 0.97, indicating a low rate of false positives of 0.1%. 

This reflects the robustness of the model in detecting DDoS attacks reliably and efficiently. 

The 4% missed benign cases (that is, 96% recall for class 0) reflect a security-first design philosophy, prioritizing attack 

prevention over benign traffic throughput. This trade-off is acceptable in cybersecurity contexts where undetected attacks 

pose a greater risk than occasional benign misclassification. 

7. Conclusion 

In this paper, we demonstrate strong performance on unbalanced network datasets, suggesting that this hybrid 

approach could significantly improve real-world intrusion detection systems by providing interpretable decision 

boundaries for security analysts. This implementation relies on XGBoost with custom class balancing, which makes it 

computationally efficient in operational environments. 

Integration of neutrosophic logic with machine learning investigate for future work using natural language 

processing models and deep learning methods for optical character recognition (OCR). By integrating the strength of 

neutrosophic logic in managing uncertainty and contradictory information with these powerful models, we aim to enhance 

performance in complex and noisy data environments. This hybrid approach has the potential to create more robust, 

interpretable, and efficient AI systems applicable to cybersecurity, text analysis, and image recognition tasks. 

Additionally, optimizing the interaction between neutrosophic representations and machine learning architectures, 

including automated threshold selection, will be an important focus for practical applications. 
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