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Abstract: Atrial fibrillation, characterized by chaotic rhythms and electrical complexity, presents a diagnostic 

challenge that requires innovative approaches to uncover its underlying biomarkers. This study proposes a 

hybrid predictive model based on multinomial logistic regression and neutrosophic logic, aiming to identify 

clinically significant patterns associated with this condition. Using the Knowledge Discovery in Databases 

(KDD) methodology, large volumes of cardiovascular data are analyzed to distinguish meaningful signals from 

background noise, revealing hidden connections and validating medical hypotheses. The implementation of 

the model through a digital prototype reflects a convergence of advanced statistics, artificial intelligence, and 

cardiovascular medicine, promoting a multidisciplinary approach. The findings of this work not only enhance 

diagnostic accuracy but also open new avenues for personalized treatment, emphasizing the value of scientific 

integration in modern medical research. 

Keywords: Atrial fibrillation; Electrocardiogram; Predictive models; Biomarkers; Artificial intelligence; Clinical 

data. 

 

1. Introduction. 

Atrial fibrillation (AF) manifests as a complex cardiac symphony involving considerable risks 

such as stroke and heart failure, while casting a shadow on quality of life [1]. Although its diagnosis 

and treatment manifest as colossal challenges due to the complex structure of constituent factors, 

Atrial Fibrillation emerges as the central focus of this study. Through a bold multidisciplinary 

methodology, integrating comprehensive literature reviews, rigorous clinical analyses, and the 

implementation of innovative predictive models, this study delves into the depths of the Faculty of 

Care [2]. The interrelationship between the fields of cardiology, medical informatics, and genetics 

manifests itself as the guiding beacon, illuminating the winding paths that envelop this cardiac 

condition. In its glow, one senses the promise of unexplored routes to personalized interventions and 

optimized outcomes for individuals immersed in the intricate web of this condition. 
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2. Materiales y Métodos. 

2.1. Data collection and literature review 

A comprehensive scientific evaluation was performed to collect the most pertinent information in 

the expansive domain of cardiology. This encompassed the examination of prominent journals 

including Circulation, European Heart Journal, and Journal of the American College of Cardiology 

[3]. Furthermore, pertinent fields such as medical informatics and genetics were examined, utilizing 

resources such as Procedia Computer Science and Frontiers in Genetics. Key variables related to atrial 

fibrillation (AF) were identified through this technique [4]. The selected variables were meticulously 

arranged, yielding a solid and valuable dataset that will underpin future scientific research. 

2.2. Acquisition and structuring of datasets. 

The Kaggle digital platform was utilized to get two critical datasets: one comprising general 

patient information and the other consisting of twelve-lead electrocardiogram (ECG) recordings [5]. 

The datasets were amalgamated using unique identifiers to provide a comprehensive analysis. The 

statistical analysis indicated considerable variability within the examined sample, encompassing 

disparities in age, height, weight, gender, engagement with medical personnel, documentation 

techniques, and the direction of the cardiac electrical axis. The findings underscore the complexity 

and diversity of the examined group, necessitating customized analytical methodologies. 

2.3. Knowledge database discovery (KDD) process 

The knowledge discovery in databases (KDD) process applied to clinical data was executed in 

multiple steps. During the preprocessing phase, ECG signals were purified to eliminate noise, while 

maintaining the integrity of cardiac cycles through sophisticated procedures. During the feature 

extraction phase, feature engineering was employed to identify the most pertinent properties for 

diagnosing atrial fibrillation (AF), hence enhancing model accuracy considerably. The hybrid 

predictive model was constructed utilizing multinomial logistic regression, naïve Bayes, and 

neutrosophic computation, facilitating the detection of concealed patterns and intricate interactions 

within the data. The models' robustness and dependability were confirmed via cross-validation and 

performance metrics, including accuracy, sensitivity, specificity, and ROC curves, thereby affirming 

their significance in clinical practice and cardiovascular disease management [6]. 

2.4. Hybrid predictive modeling 

A hybrid model was created by integrating multinomial logistic regression, naïve Bayes, and 

neutrosophic computation to improve the precision and efficacy of predictions concerning atrial 

fibrillation (AF) [7]. The design of well-structured features was important in precisely expressing the 

data, resulting in significant enhancements in prediction performance in clinical settings. Advanced 

noise reduction techniques were employed to improve the quality and readability of ECG data. The 

triangle membership function from fuzzy logic was employed to distinguish the P, Q, R, S, and T 

waves across several ECG leads, facilitating precise detection of crucial cardiac events and enhancing 
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data classification accuracy [8]. This methodology markedly enhanced the model's efficacy in the 

identification and diagnosis of atrial fibrillation. 

2.5. SHAP and LIME contributions 

Advancements in model interpretation methodologies, including SHAP (SHapley Additive 

exPlanations) and LIME (Local Interpretable Model-agnostic Explanations), have markedly enhanced 

our comprehension of machine learning models in medical contexts, especially regarding the analysis 

and prediction of atrial fibrillation (AF). SHAP, developed by Arboleda Florez et al. in 2023, offers a 

methodology for elucidating model outputs by uniformly attributing significance to each input 

feature [9]. Simultaneously, LIME, introduced by Melo et al. in 2021, emphasizes the creation of local, 

model-agnostic explanations, rendering it applicable to intricate models such as neural networks [10]. 

Within the framework of the developed AF prediction tool, both methodologies are integral. SHAP 

allows researchers and doctors to ascertain which medical variables, such as resting heart rate or R-

R interval variability, most significantly impact predictions by explicitly and transparently 

quantifying their contributions. LIME elucidates the rationale for a patient's classification as high-

risk by the model, providing insights that are comprehensible to healthcare professionals. This 

interpretability is crucial for establishing confidence and facilitating the integration of machine 

learning systems in clinical practice. 

2.6. Neutrosophic Values Management (SVN) 

The created method incorporates Single-Valued Neutrosophic Numbers (SVN), improving 

analytical precision by mitigating the uncertainty present in medical data. The figures pertain to 

essential characteristics associated with atrial fibrillation (AF), including heart rate and R-R interval 

variability, employing decision-making methodologies based on neutrosophic sets. M. L. Vázquez 

asserts that SVNs are crucial for navigating ambiguity in intricate medical environments where 

measurements can fluctuate due to many influencing factors. Additionally, the program utilizes 

Weighted Single-Valued Neutrosophic Numbers (SVNWA) to allocate varying significance levels to 

each attribute, facilitating a more nuanced and precise analysis of AF-related data [11]. This method 

facilitates improved distinction among cardiac health conditions and enhances individualized 

prediction and therapy approaches. The integration of SVNWA into the system enhances clinical 

decision-making by evaluating the relative significance of each feature. 

. 

Fw(𝐴1, 𝐴2, … , 𝐴𝑛) = ⟨1 − ∏ 𝑗 = 1𝑛(1 − 𝑇𝐴𝑗(𝑥))𝑤𝑗, ∏ 𝑗 = 1𝑛(𝐼𝐴𝑗(𝑥))𝑤𝑗, ∏ 𝑗 = 1𝑛(𝐹𝐴𝑗(𝑥))𝑤𝑗⟩  (1) 

2.7. Euclidean distance 

In addition to Single-Valued Neutrosophic Numbers (SVN) and their weighted variants 

(SVNWA), the tool incorporates Euclidean distance as a metric to assess similarity between different 

patient records. According to A. Sharif et al. (2019), this approach is effective in identifying common 

patterns and relationships within the data, significantly enhancing the accuracy of medical 

predictions [12]. Euclidean distance enables meaningful comparisons between historical and current 

cases, offering deeper insights into disease progression and supporting more informed clinical 

decision-making. 
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𝑑(𝐴𝑖, 𝐼) = √
1

3
((𝑇𝑈𝑖 − 𝑇𝑈𝐼)2 + (𝐼𝑈𝑖 − 𝐼𝑈𝐼)2 + (𝐹𝑈𝑖 − 𝐹𝑈𝐼)2)      (2) 

 

2.8. Identification of the criteria for determining the presence of atrial fibrillation 

This article explores ten crucial evaluative criteria for diagnosing AF based on 

electrocardiographic data. In addition, an SVN number-based approach is used to assess biomarker 

severity and determine AF risk in patients. 

Table 1. Criteria for determining the presence of atrial fibrillation. 

 

The ten selected criteria were evaluated using a system based on Single-Valued Neutrosophic 

Numbers (SVN), with each criterion weighted according to its relative importance in predicting atrial 

fibrillation (AF). For this analysis, the weight vector was defined using the absolute values of 

importance: W = (0.3, 0.3, 0.2, 0.2, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0). The following table presents the linguistic 

terms used to describe each criterion, along with their corresponding SVN values: 

 

No Evaluation criteria 

𝐶1 

Extremely elevated heart rate: Monitoring of heart rates above 100 to 180 beats per minute at rest 

is essential for the detection of atrial fibrillation [13]. This condition may manifest with elevated 

rates, which may be indicative of arrhythmic episodes. 

𝐶2 

Median R-peaks: Measurement of the median R-peaks on an ECG provides critical information 

about the regularity of the heart rhythm. Significant variations in the median can indicate possible 

irregularities in the electrical conduction of the heart [14]. This parameter is essential for 

identifying abnormal heart rhythm patterns. 

𝐶3 

Intervals between heartbeats differing by more than 50 milliseconds: Measurement of RR interval 

variability on an electrocardiogram emerges as an essential pilot in the diagnostic navigation of 

atrial fibrillation [15]. Exceeding 50 milliseconds in variations becomes a beacon that reveals the 

irregular tides of the heart rhythm. 

𝐶4 

Percentage of irregular R-R intervals: the percentage of irregular RR intervals relative to total 

intervals is a marker of heart rate variability [16]. Elevated values may indicate an increased 

likelihood of atrial fibrillation or other arrhythmias. 

𝐶5 
Standard deviation of R-R intervals: The standard deviation of RR intervals reflects heart rate 

variability [17]. High values may indicate heart rate irregularities that require further evaluation. 

𝐶6 

Root mean square of the mean of the squared differences of the R-R intervals: This measure 

provides information on the short-term variability of the heart rate, being useful for detecting atrial 

fibrillation and other arrhythmias [18]. 

𝐶7 
Median Q-peaks: evaluation of median Q-peaks on an ECG may reveal abnormalities that indicate 

the presence of atrial fibrillation or other cardiac conditions [19]. 

𝐶8 

Median S-peaks: The median of the S-peaks in an ECG is important for assessing the regularity of 

the heart rhythm [20]. Significant variations may indicate possible irregularities in ventricular 

repolarization. 

𝐶9 

Median T-peaks: Evaluation of the median T-peaks on an ECG provides information about the 

electrical activity of the heart [21]. Abnormalities may suggest cardiac problems, including the 

presence of atrial fibrillation. 

𝐶10 

Absence of P-peaks: The evaluation of the absence of the p-wave in an ECG is revealed as a crucial 

act in the accurate detection of atrial fibrillation [22]. The P wave, symbolizing atrial 

depolarization, constitutes a vital marker of cardiac electrical activity. 
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Table 2. Scale of linguistic terms 
 

Linguistic terms SVN numbers 

Extremely good (EB) (1,0,0) 

Very very good (MMB) (0.9,0.1,0.1) 

Very good (MB) (0.8,0.15,0.20) 

Good(B) (0.70,0.25,0.30) 

Medium good (MDB) (0.60,0.35,0.40) 

Medium(M) (0.50,0.50,0.50) 

Moderately bad (MDM) (0.40,0.65,0.60) 

Poor (MA) (0.30,0.75,0.70) 

Very bad (MM) (0.20,0.85,0.80) 

Very very bad (MMM) (0.10,0.90,0.90) 

 

Process of translating linguistic values into clinical decisions using SVNs 

 

1. Assigning neutrosophic numbers to linguistic terms:  

Each linguistic term is represented as a single-valued neutrosophic number with three 

components: 

T (truth-membership): degree of truth (e.g., 0.9 for “Extremely good”) 

I (indeterminacy-membership): degree of indeterminacy or uncertainty 

F (falsity-membership): degree of falsity. 

 

For example: 

“Extremely good” → SVN = (T = 0.9, I = 0.05, F = 0.05) 

“Good” → SVN = (0.8, 0.1, 0.1) 

“Fair” → SVN = (0.6, 0.2, 0.2). 

 

2. Multicriteria evaluation: 

Clinical criteria relevant to the diagnosis of AF are defined (e.g., avg_hr, sdnn, rmssd, etc.), and 

each is evaluated using linguistic terms. These terms are translated into their corresponding SVNs. 

 

3. Weighting using SVNWA (Single-Valued Neutrosophic Weighted Averaging): 

Weights are applied to each criterion according to their relative importance (e.g., 0.3, 0.2, etc.). 

Neutrosophic aggregation is then performed for each patient using the SVNWA formula, which 

combines the weighted T, I, and F values. 

 

4. Calculation of similarity to the ideal: 

• The neutrosophic Euclidean distance between the patient's SVN vector and an ideal vector 

(e.g., one with T = 1, I = 0, F = 0) is calculated. 

• The closer a patient is to the ideal vector, the greater their similarity to the optimal health 

state. 

 

5. clinical decision-making: 

• The resulting similarity score is interpreted as an indicator of the patient's risk or clinical 

status. 
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• For example, an aggregate result with a high T value and low I and F values is translated 

as a positive or controlled clinical status. 

• Conversely, if the aggregate result shows a low T value and a high F value, it is interpreted 

as an increased risk of AF, which guides the physician to more intensive intervention or 

monitoring. 

 

Practical example of the process: 

Suppose a patient has characteristics assessed as: 

avg_hr: “Good” → (0.8, 0.1, 0.1) 

sdnn: “Fair” → (0.6, 0.2, 0.2) 

With weights: W = (0.6, 0.4) 

The SVNWA formula is applied: 

 

𝑆𝑉𝑁𝑊𝐴 = (∑ 𝑤𝑖𝑇𝑖, ∑ 𝑤𝑖𝐼𝑖 , ∑ 𝑤𝑖𝐹𝑖 )           (3) 

 

T aggregate = 0.6 × 0.8 + 0.4 × 0.6 = 0.72 

I aggregate = 0.6 × 0.1 + 0.4 × 0.2 = 0.14 

F aggregate = 0.6 × 0.1 + 0.4 × 0.2 = 0.14 

 

This result (0.72, 0.14, 0.14) indicates a relatively favorable but suboptimal state, which can be 

interpreted as a low risk or controlled condition, useful for making individualized clinical 

decisions. 

 

 
Figure 1. The chart shows that the evaluation outcome has a high degree of truth (0.72), with low levels of 

indeterminacy (0.14) and falsity (0.14), indicating strong support for a favorable clinical decision. 

 

Once the evaluation framework was established and the specific criteria were defined, a 

thorough collection of relevant data was carried out. The table below displays the assessment of ten 

criteria (c1 to c10) used to determine the presence of atrial fibrillation (AF) in three different patients, 

identified as X1, X2, and X3. 
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Table 3. Resultados de la recogida de información 

  x1 x2 x3 

c1 EM MMM MDM 

c2 MMM MM MDM 

c3 M MA MDM 

c4 M MA MDM 

c5 M MDM MDM 

c6 M M MDM 

c7 M M M 

c8 M M M 

c9 M M M 

c10 M M M 

 

The clinical characteristics of the three evaluated patients are detailed below.  

Patient 1 shows an average heart rate (avg_hr) of 375, nn50 of 9, P wave median (p_median) of 

0.00, pnn50 of 75, q_median of 0.31, r_median of 0.68, rmssd of 0.13, s_median of 0.10, sdnn of 0.09, 

and t_median of 0.44.  

Patient 2 presents with an avg_hr of 300, nn50 of 11, p_median of 0.59, pnn50 of 73, q_median of 

0.58, r_median of 0.96, rmssd of 0.22, s_median of 0.51, sdnn of 0.15, and t_median of 0.58. Finally,  

Patient 3 has an avg_hr of 286, nn50 of 8, p_median of 0.00, pnn50 of 57, q_median of 0.43, 

r_median of 0.82, rmssd of 0.30, s_median of 0.04, sdnn of 0.18, and t_median of 0.36. 

To consolidate the assessments of the different decision makers into a single representative value, 

the SVNWA aggregation operator was used. This operator allows the uncertainty and indeterminacy 

of the individual evaluations to be managed by appropriately weighting the different characteristics 

of each patient. The results of the aggregation, the corresponding scoring and the ranking of the 

patients based on these evaluations are presented below. 

Table 4. Evaluation results 

Patient Aggregation 

X1 (0.05, 0.95, 0.95) 

X2 (0.22, 0.81, 0.78) 

X3 (0.40, 0.65, 0.60) 

 

As a reference, we have identified the ideal alternative represented by the vector: 

 

𝐸+ = (EM, MMM, MA, MA, MDM, MDM, MDM, MDM, MDM, MDM) 

 

This vector defines the optimal or desirable attributes in our data, setting a standard that we aspire 

to achieve in the evaluation of individual profiles. The Euclidean distances calculated for the patients 

evaluated are presented below: 

Table 5. Calculation of distance 

Patient Euclidean distance 

X1 0.42 

X2 0.3 

X3 0.55 
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These distances reflect the proximity or divergence of each profile with respect to our ideal 

represented by 𝐸+ El The system uses these metrics to guide clinical decisions, providing a detailed 

and objective assessment of each case. 

3. Results 

3.1. Descriptive Analysis 

Initial descriptive analysis of the dataset provided a comprehensive view of the measured cardiac 

characteristics, which include: 

• Average heart rate (avg_hr) 

• Median of R-R intervals (r_median) 

• Number of successive differences of R-R intervals greater than 50 ms (nn50) 

• Percentage of nn50 (pnn50) 

• Standard deviation of the R-R intervals (sdnn) 

• Root mean square of the mean of the squared differences of the R-R intervals (rmssd) 

• Median of peak Q (q_median) 

• Median of peak S (s_median) 

• Median of peak T (t_median) 

• Mediana del pico P (p_median) 

• Rhythm classification (ritmi) 

 

 

Figure 2. Matrix of scatter plots and variable distributions. 
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The figure displays a matrix of plots illustrating the distribution and dispersion of several 

variables in the dataset. Each cell contains a scatter plot showing the relationship between two 

variables, while the diagonal plots depict their individual distributions. The categorical variable 

"ritmi" is used to assign point colors: blue represents normal sinus rhythm (0), and orange indicates 

atrial fibrillation (1). This visualization served as a foundational tool for subsequent analysis, aiding 

in the detection of significant patterns and irregularities in cardiac activity. 

 

I. Diagonal distributions: 

The plots along the diagonal display the distribution of each individual variable. Some variables 

show skewed or bimodal distributions, reflecting internal differences among patient subgroups. This 

suggests that these variables may carry useful signals for diagnostic analysis. 

 

II. Relationships between variables: 

The off-diagonal cells reveal bivariate relationships between variables. In several pairings, the 

blue and orange dots tend to form distinct clusters, indicating that certain variable combinations may 

help distinguish between normal sinus rhythm and atrial fibrillation. This visual separation is 

valuable for guiding feature selection in predictive models. 

 

III. Density and dispersion: 

Variables display varying levels of dispersion—some are tightly clustered while others are more 

spread out. This variability can influence the importance of each variable within a model, as it affects 

the stability of their values. More stable, less dispersed variables tend to be more reliable in clinical 

classification processes. 

 

IV. Potentially relevant variables: 

Variables such as avg_hr, rmssd, sdnn, and pnn50 show clearer separation between classes, 

making them strong candidates as key predictors of atrial fibrillation. This distinction suggests that 

these physiological features may reflect significant cardiac abnormalities. Including them in models 

can enhance diagnostic sensitivity. 

 

V. Visual overlap: 

While some variables show clear separation, many others exhibit substantial overlap between the 

orange and blue dots. This indicates that no single variable is fully decisive, supporting the use of 

multivariate or hybrid approaches. Combining multiple variables is essential for improving 

analytical accuracy. 

3.2. Multinomial Logistic Regression 

Multinomial logistic regression is a technique used to classify observations into more than two 

categories, making it particularly valuable in clinical settings where cardiac conditions may vary. The 

model is configured with key parameters, such as the number of classes, the optimization method 

(e.g., newton-cg), and a maximum number of iterations to ensure convergence. Once defined, it is 

trained using a feature matrix representing relevant physiological variables and a label vector 

containing the corresponding classes. This process enables the model to identify statistical patterns 

that link clinical indicators with the presence or absence of atrial fibrillation (AF) or other related 

conditions. 

Once trained, the model is used to make predictions on new data. For each observation in the test 

set, the probability of belonging to each class is calculated using the multinomial logistic function. 
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The class with the highest probability is then assigned as the predicted label. This ensures that each 

patient is classified based on the most likely condition, taking all clinical variables into account. The 

predictions are stored for subsequent analysis or validation, allowing researchers to assess the 

model’s accuracy on real-world data. Overall, the algorithm provides a robust decision-support tool 

grounded in multivariate clinical data. 

Mathematical Model of Multinomial Logistic Regression  

Below is the mathematical model of Multinomial Logistic Regression, also known as SoftMax 

Regression, formulated for a classification problem with multiple classes (in this case, to predict atrial 

fibrillation or other cardiac conditions): 

Suppose you have a set of possible classes 

C= {1, 2, ..., K}, 

and a feature vector x ∈ Rn. 

Probability function (softmax): 

𝑃(𝑦 = 𝑘 𝑥⁄ ) =  
exp(𝛽𝑘𝑥)

∑ exp (𝛽𝑗𝑥)𝑘
𝑗=1

            (4) 

Where: 

• Βk ∈ Rn is the coefficient vector associated with class k, 

• Βt k X is the dot product between the coefficients and the input features, 

• exp (⋅) is the exponential function, 

• The denominator ensures that the probabilities sum to 1 (normalization). 

 

Class prediction: 

𝒚̂ =  arg 𝑚𝑎𝑥
𝑘 𝜀 𝐶

 𝑃(𝑦 = 𝑘 𝑥⁄ )           (5) 

3.3 Naive Bayes Gaussiano 

The Gaussian Naive Bayes model operates under the premise of variable independence and posits 

that each characteristic adheres to a normal distribution within each class. In the training phase, the 

model computes the mean and standard deviation of each variable for every class utilizing the 

training dataset. These factors are utilized to formulate Gaussian density functions that assess the 

probability of detecting particular feature values for a designated class. This computational simplicity 

renders it an effective and rapid model, particularly advantageous for high-dimensional clinical 

datasets.  

Once trained, the model evaluates new observations by computing the probability of class 

membership, taking into account all available clinical variables. It then assigns the class with the 

highest probability as the final prediction. Although it assumes independence among features—

which may not always hold in medical contexts—its performance is often competitive in practice, 

particularly for initial classification tasks. This technique is useful for identifying general patterns in 

the data and supporting early clinical decision-making through a solid and easily interpretable 

probabilistic approach. 

Mathematical Model of Gaussian Naive Bayes 

Given a feature vector x = (x1, x2, ..., xn) and a set of possible classes C = {c1, c2, ..., ck}, the goal 

is to predict the most probable class for a given observation. 
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Bayes' Theorem: 

𝑃(𝐶𝑘 𝑥⁄ ) =  
𝑃(𝐶𝑘)∗𝑃(𝑥 𝐶𝑥⁄ )

𝑃(𝑥)
            (6) 

Since 𝑷(𝒙) is constant across all classes, classification is based on: 

 

𝑃(𝐶𝑘 𝑥⁄ )  ∝  𝑃(𝐶𝑘) ∗ 𝑃(𝑥 𝐶𝑥⁄ ) 

 

Conditional Independence Assumption (Naive): 

𝑃(𝑥 𝑐𝑘) =  
1

√2 𝜋 𝜎𝑗𝑘
2 exp(− 

(𝑥𝑗− 𝜇𝑗𝑘)
2

2 𝜎𝑗𝑘
2 )

⁄          (7) 

Where: 

𝜇𝑗𝑘 is the mean of feature 𝒙𝒌 for class ck, 

𝜎𝑗𝑘
2  is the corresponding variance. 

Class Prediction Rule: 

𝒚̂ =  arg 𝑚𝑎𝑥
𝑐𝑘∈𝐶

 𝑃(𝑐𝑘) ∗ ∏ 𝑃(𝑥𝑗 𝑐𝑘 )⁄𝑛
𝑗=1           (8) 

Interpretation: 

 

This model is simple yet powerful. It works well when feature distributions are approximately 

normal and is computationally efficient even with high-dimensional data. While the independence 

assumption rarely holds perfectly in practice, Gaussian Naive Bayes often performs remarkably well 

in classification tasks. 

 

Confusion Matrix Analysis for Model Performance Comparison 

The confusion matrices offer a comprehensive visual comparison of the classification efficacy of 

Multinomial Logistic Regression and Gaussian Naive Bayes in identifying atrial fibrillation (AF). 

These matrices encapsulate model predictions for two categories—normal sinus rhythm and atrial 

fibrillation—utilizing criteria like precision, recall, and F1-score. Multinomial Logistic Regression 

exhibited somewhat improved class equilibrium and reduced misclassifications, especially among 

healthy patients. Concurrently, Gaussian Naive Bayes demonstrated robust recall for AF cases, 

underscoring its sensitivity. Together, the visual analysis emphasizes each model’s strengths and 

supports their potential use in clinical decision support systems. 
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Figure 3. Ranking report for the multinomial and naive Bayes logistic regression models; (a) The image shows 

a ranking report evaluating the performance of the multinomial logistic regression model; (b) The image 

shows a ranking report comparing the performance of the naive Bayes model. 

 

In both cases, key metrics such as accuracy, recall, F1-score, and support are included for each 

class. These metrics are fundamental to evaluate the accuracy and efficiency of each model in 

classifying data. 

Multinomial Logistic Regression: Este modelo mostró un desempeño destacado con una 

precisión del 94.51%. La matriz de confusión reveló una alta capacidad de clasificación correcta para 

ambas clases, fibrilación auricular y ritmo sinusal normal. El reporte de clasificación indicó una alta 

precisión, recall y f1-score para ambas clases, con una precisión global del modelo del 95%. La curva 

ROC, con un área bajo la curva (AUC) de 0.98, subraya la excelente capacidad del modelo para 

distinguir entre las dos clases. El Coeficiente de Correlación de Matthews (MCC) de 0.8889 refuerza 

la robustez del modelo en términos de equilibrio entre las clases positivas y negativas. 

El modelo Naive Bayes Gaussiano también demostró un rendimiento competente con una 

precisión del 93.11%. La matriz de confusión y el reporte de clasificación indicaron una alta precisión 

y recall para ambas clases, aunque ligeramente inferior al modelo de Regresión Logística 

Multinomial. La curva ROC con un AUC de 0.97 destaca una capacidad de discriminación efectiva. 

El MCC de 0.8624 sugiere un rendimiento equilibrado, aunque ligeramente menor comparado con la 

Regresión Logística Multinomial. 

3.4. Model Evaluation. 

The performance of both models was thoroughly compared using evaluation metrics such as 

precision, recall, F1-score, ROC curve AUC, and Matthews Correlation Coefficient (MCC). 

Multinomial Logistic Regression achieved slightly better overall accuracy and class balance. 

However, Gaussian Naive Bayes also proved to be an effective model, especially for handling data 

that follow a normal distribution. 
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Figure 4. ROC curves for the multinomial and Naive Bayes logistic regression models; (c) The image shows 

the ROC curve evaluating the performance of the multinomial logistic regression model; (d) The image shows 

the ROC curve comparing the performance of the Naive Bayes model. In both cases, key metrics such as the 

area under the curve (AUC) are included, which is fundamental to evaluate the ability of each model to 

distinguish between classes 

 

The ROC curve comparison demonstrates that both models—Multinomial Logistic Regression 

and Gaussian Naive Bayes—exhibit exceptional classification performance in detecting atrial 

fibrillation, with areas under the curve (AUC) around 1.00 and 0.99, respectively. The Logistic 

Regression curve consistently surpasses that of Naive Bayes at most thresholds, demonstrating a 

superior balance of sensitivity and specificity. Although both models are effective, the superior AUC 

of the Logistic Regression model indicates it offers more precise and dependable differentiation 

between normal sinus rhythm and atrial fibrillation, rendering it a more favorable option in clinical 

decision-making scenarios. 

4. Applications. 

In the extensive realm of cardiac data, data integrity commences with meticulous preparation. 

This entails addressing absent values and standardizing ranges to uncover concealed patterns in the 

heart's electrical activity, facilitating a more profound and significant comprehension of atrial 

fibrillation (AF). Advanced methodologies, including noise reduction and peak detection, facilitated 

accurate analysis and the early discovery of potential anomalies. Structuring the processed data into 

tabular formats improved clarity and accessibility for subsequent study and simulations.  

Moreover, employing analytical instruments like Euclidean distance and similarity metrics to an 

ideal reference offers an objective and quantifiable method for evaluating the degree to which 

individual profiles align with optimal patterns. The incorporation of machine learning techniques 

and predictive algorithms enhanced the capacity to identify latent trends in cardiac signals and 

increased the precision of atrial fibrillation risk assessment, facilitating the formulation of 

individualized treatment regimens tailored to each patient's unique profile. 
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5. Conclusion 

The creation of a novel intelligent platform seeks to surpass conventional methods by addressing 

the difficulty of identifying biomarkers for atrial fibrillation (AF). This development combines 

neutrosophic statistical techniques with machine learning, utilized on anonymised ECG data. The 

system's technological core comprises a meticulously organized framework utilizing React.js, React 

Router, Flask, Node.js, and CouchDB, rather than merely a collection of tools. Each element facilitates 

a cohesive user experience and permits the adaptive handling of cardiac data in accordance with 

contemporary cardiovascular diagnostics requirements. 

This method enhances the accuracy and efficacy of atrial fibrillation identification while enabling 

the lucid interpretation of intricate data, hence bolstering evidence-based clinical decision-making, 

and progressing cardiovascular diagnostics in practical medical environments. This innovation 

signifies a significant advancement in the realm of digital cardiology. The platform establishes a 

robust foundation for future research by incorporating advanced tools for data analysis and 

processing, so creating new opportunities for more effective treatments of atrial fibrillation and other 

cardiac arrhythmias. Its versatility and scalability facilitate its use in various therapeutic settings, 

potentially revolutionizing medical practice by enabling more personalized and accurate therapies 

adapted to individual patient needs. 
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