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Abstract 

Ethnic sports tourism involves complex cultural, social, and economic interactions, where 

uncertainty arises not only from randomness but also from incomplete and contradictory 

information. Classical probability models cannot fully capture these features. In this 

paper, we develop a novel Neutrosophic Monte Carlo framework to model participation 

patterns and cultural impacts in ethnic sports tourism events. Each event is represented 

by a neutrosophic probability triple (T, I, F), where T measures truth-membership, I 

measures indeterminacy, and F measures falsity. We introduce a Neutrosophic Expected 

Value and a Triple-Component Monte Carlo Estimator, and prove strong convergence 

theorems and variance bounds for the proposed estimators. To enhance efficiency, we 

design variance reduction techniques adapted to neutrosophic uncertainty, including 

stratified sampling over cultural and temporal layers and control variates derived from 

simplified cultural models. A fully computed case study on simulated ethnic sports 

tourism scenarios demonstrates the accuracy and robustness of our approach, with 

detailed numerical calculations and tables linking each neutrosophic measure to practical 

interpretations. The framework establishes a mathematically rigorous and culturally 

relevant foundation for decision-making in uncertain, heterogeneous tourism systems. 
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1. Introduction 

Ethnic sports tourism represents a unique intersection between cultural heritage and 

recreational activity. It includes traditional games, indigenous competitions, and 

culturally embedded sports festivals that attract both domestic and international visitors. 

While such events generate significant socio-cultural and economic benefits, they also 

University of New Mexico 

mailto:lxl1654805103@126.com


Neutrosophic Sets and Systems, Vol. 91, 2025                                                                      546 

 

__________________________________________________________________________ 

Chaolumen Ge, Xuelian Liu, A Neutrosophic Monte Carlo Framework for Modeling Indeterminate Participation and 

Cultural Impact in Tourism Service Quality of Ethnic Sports Events 

involve uncertainty from multiple sources: fluctuating attendance, inconsistent cultural 

engagement, unpredictable weather, and subjective visitor perceptions. Classical 

probability theory can represent randomness, but it cannot fully capture indeterminacy-

the state in which information is incomplete, vague, or even contradictory. 

 

The Neutrosophic framework, originally introduced to extend fuzzy and intuitionistic 

models, incorporates three components for any statement or event: truth-membership 

(𝑇), indeterminacy (𝐼), and falsity (𝐹) [1,2]. This triple representation allows for richer 

modeling of real-world phenomena, particularly in tourism systems where cultural 

interpretations and participation decisions cannot be reduced to binary or crisp 

probabilities. For instance, the event "A tourist from cultural group 𝐶 attends the final 

match of an indigenous wrestling festival" may have a high degree of truth (based on 

ticket data), a moderate degree of indeterminacy (due to unconfirmed reservations), and 

a small but non-zero falsity (some tourists leave before the match). 

 

In this paper, we propose a Neutrosophic Monte Carlo (NMC) framework for modeling 

participation patterns and cultural impacts in ethnic sports tourism. We define a 

Neutrosophic Expected Value operator: 
𝑁𝐸[𝑈] = (𝐸𝑇[𝑈], 𝐸𝐼[𝑈], 𝐸𝐹[𝑈]), 

where 𝐸𝑇 , 𝐸𝐼, and 𝐸𝐹  represent expectations under the truth, indeterminacy, and falsity 

measures, respectively. This operator generalizes the classical expectation and enables 

triple-valued performance evaluation in tourism systems. 

 

Our main contributions are: 

1. Theoretical formulation of a triple-component Monte Carlo estimator: 

𝜃̂𝑁 = (𝑇‾𝑁 , 𝐼‾𝑁 , 𝐹‾𝑁), 

With rigorous proofs of strong consistency and asymptotic normality under mild 

assumptions. 

2. Variance analysis for each component, showing explicit bounds: 

Var(𝑇‾𝑁) ≤
𝜎𝑇

2

𝑁
, Var(𝐼‾𝑁) ≤

𝜎𝐼
2

𝑁
, Var(𝐹‾𝑁) ≤

𝜎𝐹
2

𝑁
. 

These bounds guide sampling decisions in cultural event analysis. 

3. Variance reduction strategies adapted to neutrosophic uncertainty, including: 

a) Stratified sampling by ethnic group and event phase. 

b) Control variates using simplified cultural interaction models. 

c) Conditional Monte Carlo for partial deterministic structures in event schedules. 

4. Case study with fully computed examples, linking each neutrosophic component to 

cultural and operational interpretations in an ethnic sports festival context. 

 

By integrating neutrosophic probability theory with advanced Monte Carlo techniques, 

we create a framework capable of handling truth, indeterminacy, and falsity in both 

participation modeling and cultural impact estimation. The proposed model aims to fill a 



Neutrosophic Sets and Systems, Vol. 91, 2025                                                                      547 

 

__________________________________________________________________________ 

Chaolumen Ge, Xuelian Liu, A Neutrosophic Monte Carlo Framework for Modeling Indeterminate Participation and 

Cultural Impact in Tourism Service Quality of Ethnic Sports Events 

gap in the literature where neither traditional statistics nor fuzzy models adequately 

capture the complexity of ethnic tourism sports systems [3,4]. 

 

2. Preliminaries 

This section establishes the mathematical foundations of our proposed framework. We 

recall and extend concepts from neutrosophic probability, neutrosophic measure, and 

neutrosophic expectation, adapting them to the context of ethnic sports tourism. 

 

2.1 Neutrosophic Probability Space 

Let (Ω, ℱ) be a measurable space, where Ω is the set of all possible outcomes in the tourism 

event, e.g., attendance configurations, match results, visitor interactions, and ℱ  is a 𝜎-

algebra of events. A Neutrosophic Probability (NP) is a mapping 

𝑁𝑃: ℱ → [0,1]3, 𝐴 ↦ (𝑇(𝐴), 𝐼(𝐴), 𝐹(𝐴)),                                                                  (2.1) 

where: 

𝑇(𝐴) = truth-membership degree (extent event 𝐴 is true). 

𝐼(𝐴) = indeterminacy-membership degree (extent event 𝐴 is indeterminate). 

𝐹(𝐴) = falsity-membership degree (extent event 𝐴 is false). 

We require that: 

0 ≤ 𝑇(𝐴) + 𝐼(𝐴) + 𝐹(𝐴) ≤ 3, ∀𝐴 ∈ ℱ                                                                        (2.2) 

The equality 𝑇(𝐴) + 𝐼(𝐴) + 𝐹(𝐴) = 1 represents the normalized case, which is sometimes 

desirable for cultural participation modeling [1,2]. 

 

Example 2.1: 

Let 𝐴 =  "Tourist from ethnic group 𝐺  attends the closing ceremony of a wrestling festival." 

Possible NP values: 
𝑁𝑃(𝐴) = (0.72,0.20,0.08) 

meaning: 72% truth (confirmed presence), 20% indeterminate (uncertain reservations), 

8% falsity (ticket holders who will not attend). 

 

2.2 Neutrosophic Measure 

A neutrosophic measure is a set function: 

𝜈: ℱ → [0, ∞)3                                                                                                            (2.3) 

Satisfying: 

1. Null set: 𝜈(∅) = (0,0,0). 

2. Monotonicity: If 𝐴 ⊆ 𝐵 then 𝑇(𝐴) ≤ 𝑇(𝐵), 𝐼(𝐴) ≤ 𝐼(𝐵), 𝐹(𝐴) ≤ 𝐹(𝐵). 

3. Countable additivity: If 𝐴𝑖 ∩ 𝐴𝑗 = ∅ for 𝑖 ≠ 𝑗, then 

𝜈(⋃  ∞
𝑛=1  𝐴𝑛) = ∑  ∞

𝑛=1 𝜈(𝐴𝑛)                                                                                      (2.4) 

(component-wise addition). 

In ethnic sports tourism, 𝜈(𝐴)  could represent the triple measure of cultural benefit, 

uncertainty in perception, and cultural disbenefit for a given activity 𝐴 . 

 

2.3 Neutrosophic Random Variables 
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A neutrosophic random variable (NRV) is a function 

𝑋: Ω → ℝ3, 𝑋(𝜔) = (𝑋𝑇(𝜔), 𝑋𝐼(𝜔), 𝑋𝐹(𝜔)),                                                          (2.5) 

where 𝑋𝑇 , 𝑋𝐼 , and 𝑋𝐹  are measurable concerning the underlying probability space. 

Example: 𝑋(𝜔)  could represent the satisfaction score triple of a specific tourist 𝜔 , 

decomposed into truth (confirmed aspects), indeterminacy (unclear aspects), and falsity 

(negative aspects). 

 

2.4 Neutrosophic Expectation 

The Neutrosophic Expectation of an NRV 𝑋 for NP is: 

𝑁𝐸[𝑋] = (𝐸𝑇[𝑋𝑇], 𝐸𝐼[𝑋𝐼], 𝐸𝐹[𝑋𝐹]),                                                                        (2.6) 

Where: 

𝐸𝑇[𝑋𝑇] = ∫  
Ω

 𝑋𝑇(𝜔)𝑑𝑃𝑇(𝜔)

𝐸𝐼[𝑋𝐼] = ∫  
Ω

 𝑋𝐼(𝜔)𝑑𝑃𝐼(𝜔)

𝐸𝐹[𝑋𝐹] = ∫  
Ω

 𝑋𝐹(𝜔)𝑑𝑃𝐹(𝜔)

                                                                                   (2.7) 

Here 𝑃𝑇 , 𝑃𝐼 , 𝑃𝐹 are the truth, indeterminacy, and falsity components of NP. 

 

2.5 Neutrosophic Variance and Covariance 

For an NRV 𝑋, we define the component variances: 

Var𝑇(𝑋) = 𝐸𝑇[(𝑋𝑇 − 𝐸𝑇[𝑋𝑇])2],

Var𝐼(𝑋) = 𝐸𝐼[(𝑋𝐼 − 𝐸𝐼[𝑋𝐼])2],

Var𝐹(𝑋) = 𝐸𝐹[(𝑋𝐹 − 𝐸𝐹[𝑋𝐹])2].

                                                                             (2.8) 

Similarly, cross-component covariances can be defined, which are useful when truth and 

indeterminacy are not independent. 

 

2.6 Link to Monte Carlo Approximation 

If we draw 𝑁 independent samples 𝜔1, … , 𝜔𝑁 From Ω, the Monte Carlo estimator of 

𝑁𝐸[𝑋] is: 

𝜃̂𝑁 = (
1

𝑁
∑  𝑁

𝑗=1  𝑋𝑇(𝜔𝑗),
1

𝑁
∑  𝑁

𝑗=1  𝑋𝐼(𝜔𝑗),
1

𝑁
∑  𝑁

𝑗=1  𝑋𝐹(𝜔𝑗)).                                     (2.9) 

From the Neutrosophic Law of Large Numbers (proved in Section 4), we will show: 

𝜃̂𝑁 →
 a.s.  

𝑁𝐸[𝑋]  as 𝑁 → ∞.                                                                                     (2.10) 

 

3. Neutrosophic Monte Carlo Framework 

3.1 Problem Setting 

Consider an ethnic sports tourism festival composed of 𝐾 events 𝐸1, 𝐸2, … , 𝐸𝐾. Each event 

has a neutrosophic participation probability. 

𝑁𝑃(𝐸𝑘) = (𝑇𝑘 , 𝐼𝑘 , 𝐹𝑘), 𝑘 = 1, … , 𝐾.                                                                       (3.1) 

Let 𝑈𝑘(𝜔)  denote a neutrosophic utility triple for tourist 𝜔  attending the event 𝐸𝑘 , 

decomposed into truth, indeterminacy, and falsity components. Our goal is to estimate 

the overall neutrosophic expected utility: 

Θ =
1

𝐾
∑  𝐾

𝑘=1 𝑁𝐸[𝑈𝑘].                                                                                               (3.2) 

3.2 Monte Carlo Estimator 
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We sample 𝑁 tourists 𝜔1, … , 𝜔𝑁 According to a probability distribution over Ω. The 

Neutrosophic Monte Carlo Estimator is: 

Θ̂𝑁 = (
1

𝑁𝐾
∑  𝑁

𝑗=1  ∑  𝐾
𝑘=1  𝑈𝑇,𝑘(𝜔𝑗),

1

𝑁𝐾
∑  𝑁

𝑗=1  ∑  𝐾
𝑘=1  𝑈𝐼,𝑘(𝜔𝑗),

1

𝑁𝐾
∑  𝑁

𝑗=1  ∑  𝐾
𝑘=1  𝑈𝐹,𝑘(𝜔𝑗)).          (3.3) 

 

3.3 Strong Consistency 

Theorem 3.1 (Neutrosophic Law of Large Numbers) 

If 𝐸𝑇[|𝑈𝑇,𝑘|] < ∞, 𝐸𝐼[|𝑈𝐼,𝑘|] < ∞, and 𝐸𝐹[|𝑈𝐹,𝑘|] < ∞ for all 𝑘, then: 

Θ̂𝑁 →
 a.s.  

Θ  as 𝑁 → ∞.                                                                                             (3.4) 

Proof : Apply the classical Strong Law of Large Numbers separately to each component; 

the triple convergence follows component-wise. 

 

3.4 Variance Bounds 

Let 𝜎𝑇
2 = Var𝑇(𝑈𝑇,𝑘), etc. Then: 

Var𝑇(Θ̂𝑁) =
𝜎𝑇

2

𝑁𝐾
, Var𝐼(Θ̂𝑁) =

𝜎𝐼
2

𝑁𝐾
, Var𝐹(Θ̂𝑁) =

𝜎𝐹
2

𝑁𝐾
                                              (3.5) 

These bounds guide the required 𝑁 to achieve a given precision for each component. 

 

3.5 Variance Reduction Techniques 

3.5.1 Stratified Sampling 

Partition Ω into strata {Ω𝑔}
𝑔=1

𝐺
 according to ethnic group and event phase (e.g., 

preliminaries, finals). 

Allocate samples 𝑛𝑔 to stratum 𝑔 proportional to within-stratum variance: 

𝑛𝑔 = 𝑁 ⋅
𝜎𝑔

∑  𝐺
ℎ=1  𝜎ℎ

.                                                                                                 (3.6) 

Estimate each component in each stratum, then combine via weighted averages. 

 

3.5.2 Control Variates 

Let 𝑉(𝜔) be an auxiliary neutrosophic variable with known expectation 𝑁𝐸[𝑉]. Define 

adjusted estimator: 

Θ̃𝑁 = Θ̂𝑁 − 𝛽(𝑉̂𝑁 − 𝑁𝐸[𝑉]),                                                                               (3.7) 

where 𝛽 is chosen separately for each component to minimize variance: 

𝛽𝑇 =
Cov𝑇(𝑈𝑇,𝑉𝑇)

Var𝑇(𝑉𝑇)
,  etc.                                                                                         (3.8) 

 

3.5.3 Conditional Neutrosophic Monte Carlo 

If part of 𝑈𝑘 can be evaluated exactly, given some variable 𝑌, condition on 𝑌 to reduce 

randomness. For example, given confirmed ticket sales 𝑌, the truth-component can be 

computed without sampling, while indeterminacy/falsity is sampled from the residual 

uncertainty. 

 

3.6 Numerical Example 

Scenario: 
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a) 𝐾 = 3 events: indigenous wrestling ( 𝐸1 ), traditional boat race ( 𝐸2 ), ethnic archery ( 

𝐸3 ). 

b) 𝑁𝑃(𝐸𝑘) and utilities simulated for 𝑁 = 6 sampled tourists. 

Tourist 𝝎𝒋 𝑼𝑻,𝟏 𝑼𝑰,𝟏 𝑼𝑭,𝟏 𝑼𝑻,𝟐 𝑼𝑰,𝟐 𝑼𝑭,𝟐 𝑼𝑻,𝟑 𝑼𝑰,𝟑 𝑼𝑭,𝟑 

1 0.80 0.15 0.05 0.75 0.20 0.05 0.90 0.05 0.05 

2 0.70 0.25 0.05 0.68 0.20 0.12 0.85 0.10 0.05 

3 0.95 0.03 0.02 0.88 0.10 0.02 0.92 0.05 0.03 

4 0.60 0.30 0.10 0.65 0.25 0.10 0.78 0.15 0.07 

5 0.85 0.10 0.05 0.80 0.15 0.05 0.88 0.08 0.04 

6 0.77 0.18 0.05 0.72 0.22 0.06 0.83 0.12 0.05 

Using Eq. (3.3), the truth-component estimate: 

𝑇‾𝑁 =
1

18
∑  6

𝑗=1 ∑  3
𝑘=1 𝑈𝑇,𝑘(𝜔𝑗) =

14.26

18
≈ 0.7922                                                      (3.9) 

Similarly, 𝐼‾𝑁 ≈ 0.1544, 𝐹‾𝑁 ≈ 0.0534. 
 

These estimates are interpreted as, on average, 79.22% of assessed utility is confirmed 

truth, 15.44% is uncertain, and 5.34% is adverse. 

 

4. Case Study: Neutrosophic Monte Carlo for an Ethnic Sports Tourism Festival 

This section gives a complete, reproducible case study using the proposed NMC  

framework. All numbers are fully computed by simulation with a fixed seed. We analyze 

three ethnic sports events-Wrestling, Boat Race, Archery-across Prelim, Semi, Final 

phases, and four ethnic groups 𝐺 ∈ {𝐺𝐴, 𝐺𝐵 , 𝐺𝐶 , 𝐺𝐷} . The case study demonstrates: (i) 

baseline NMC estimation, (ii) stratified NMC with optimal allocation, (iii) control variates, 

and (iv) conditional Monte Carlo. The entire setup is neutrosophic from the ground up 

[1,2,3] . 

 

4.1 Data-Generating Assumptions (Neutrosophic) 

We simulate 𝑁total = 3000  tourist-event observations. For each record, we generate a 

neutrosophic utility triple  𝑈(𝜔) = (𝑈𝑇(𝜔), 𝑈𝐼(𝜔), 𝑈𝐹(𝜔)) ∈ [0,1]3, which represents 

(truth, indeterminacy, falsity) contributions to the cultural utility of the event for a single 

tourist 𝜔. The means depend on ethnic group 𝑔, event 𝑒, and phase 𝑝. Baselines are group-

event dependent, while phases adjust clarity/uncertainty (Finals increase 𝑇, decrease 𝐼, 

and slightly increase 𝐹 due to pressure). 

 

Table 1 lists the base neutrosophic parameters (Mean  𝑇 , Mean  𝐼 , Mean  𝐹)  for each 

(Group, Event). We use Beta distributions for each component with concentration tuned 

by phase. These parameters guide the Monte Carlo generator and keep everything 

consistently neutrosophic. 
 

Table 1 – Base Neutrosophic Parameters by Group and Event 

Group Event Mean_T Mean_I Mean_F 

G_A Wrestling 0.72 0.18 0.10 

G_A Boat Race 0.65 0.25 0.10 
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G_A Archery 0.70 0.20 0.10 

G_B Wrestling 0.68 0.22 0.10 

G_B Boat Race 0.60 0.30 0.10 

G_B Archery 0.66 0.24 0.10 

G_C Wrestling 0.75 0.15 0.10 

G_C Boat Race 0.70 0.20 0.10 

G_C Archery 0.72 0.18 0.10 

G_D Wrestling 0.69 0.21 0.10 

G_D Boat Race 0.64 0.26 0.10 

G_D Archery 0.68 0.22 0.10 

 

Larger Mean  𝑇  suggests clearer cultural engagement for that group-event pair; larger 

Mean  𝐼 reflects indeterminate or ambiguous experiences; Mean  𝐹 Captures negative or 

conflicting aspects. 
  

4.2 Baseline Neutrosophic Monte Carlo Estimator 

Given the simulated dataset {𝜔𝑗}
𝑗=1

𝑁total 
, the baseline NMC estimator for the grand 

neutrosophic expected utility is 

Θ̂(0) = (𝑇‾ , 𝐼‾, 𝐹‾) = (
1

𝑁
∑  𝑁

𝑗=1  𝑈𝑇(𝜔𝑗),
1

𝑁
∑  𝑁

𝑗=1  𝑈𝐼(𝜔𝑗),
1

𝑁
∑  𝑁

𝑗=1  𝑈𝐹(𝜔𝑗)).                       (4.1) 

The component variances of Θ̂(0) are estimated by 

Var̂(𝑇‾) =
𝑠𝑇

2

𝑁
, Var̂(𝐼‾) =

𝑠𝐼
2

𝑁
, Var̂(𝐹‾) =

𝑠𝐹
2

𝑁
,                                                                          (4.2)              

where 𝑠∙
2 are the usual unbiased sample variances of 𝑈𝑇 , 𝑈𝐼 , 𝑈𝐹. 

Under mild conditions [3], asymptotic 95% neutrosophic confidence intervals are 

𝑇‾ ± 𝑧0.975√Var̂(𝑇‾), 𝐼‾ ± 𝑧0.975√Var̂(𝐼‾), 𝐹‾ ± 𝑧0.975√Var̂(𝐹‾),                                          (4.3) 

with 𝑧0.975 = 1.96. Table 2 reports the baseline means, component variances, and 95% 

CIs. 

 

Table 2 establishes the benchmark we try to beat (lower variances and tighter CIs). 𝑇‾  is 

the confirmed utility, 𝐼‾ captures unresolved/ambiguous utility, and 𝐹‾  captures adverse 

utility. Together, they characterize neutrosophic performance. 

 
Table 2. Estimator comparison (means, variances, Cls) 

Estimato

r 

Mean_

T 

Var_T CI_T_lo

w 

CI_T_hig

h 

Mean_

I 

Var_I CI_I_lo

w 

CI_I_hig

h 

Mean_

F 

Var_F CI_F_lo

w 

CI_F_hig

h 

Baseline 

NMC 

0.7085 0.0001

2 

0.7016 0.7154 0.2112 0.0000

9 

0.2054 0.2170 0.0803 0.0000

5 

0.0769 0.0837 

Stratifie

d NMC 

0.7087 0.0000

9 

0.7026 0.7148 0.2110 0.0000

7 

0.2059 0.2161 0.0803 0.0000

4 

0.0771 0.0835 

CMC 

(Truth 

adjusted

) 

0.7084 0.0000

6 

0.7032 0.7136 0.2113 0.0000

9 

0.2055 0.2171 0.0803 0.0000

5 

0.0769 0.0837 

  

4.3 Stratified Neutrosophic Monte Carlo (Optimal Allocation) 
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We define strata by ethnic group × phase: 𝒮 = {(𝑔, 𝑝): 𝑔 ∈ {𝐺𝐴, … , 𝐺𝐷}, 𝑝 ∈ {Prelim, Semi, 

Final}}. Let 𝑛𝑔,𝑝 be the sample allocation to stratum ( 𝑔, 𝑝 ) with total 𝑁𝑠 = ∑  (𝑔,𝑝) 𝑛𝑔,𝑝. We 

choose Neyman-type allocation using a composite standard deviation: 

𝑛𝑔,𝑝 ∝
𝜎𝑔,𝑝

(𝑇)
+𝜎𝑔,𝑝

(𝐼)
+𝜎𝑔,𝑝

(𝐹)

3
,                                                                       (4.4) 

where 𝜎𝑔,𝑝
(𝑇)

 is the within-stratum SD of 𝑈𝑇 (similarly for 𝐼, 𝐹 ). We then estimate the 

overall triple by the stratum-weighted average: 

Θ̂(strat) = ∑  (𝑔,𝑝)∈𝒮 𝑤𝑔,𝑝Θ̂𝑔,𝑝, 𝑤𝑔,𝑝 =
𝑛𝑔,𝑝

𝑁𝑠
.                                      (4.5) 

 

4.4 Control Variates (Neutrosophic) 

Let 𝑉(𝜔) = (𝑉𝑇 , 𝑉𝐼 , 𝑉𝐹) be an auxiliary neutrosophic variable with known expectations 

𝑁𝐸[𝑉] = ( 𝜇𝑇
𝑉 , 𝜇𝐼

𝑉 , 𝜇𝐹
𝑉 ). We define component-wise control variates: 

Θ̃𝑇 = 𝑇‾ − 𝛽𝑇(𝑉‾𝑇 − 𝜇𝑇
𝑉), Θ̃𝐼 = 𝐼‾ − 𝛽𝐼(𝑉‾𝐼 − 𝜇𝐼

𝑉), Θ̃𝐹 = 𝐹‾ − 𝛽𝐹(𝑉‾𝐹 − 𝜇𝐹
𝑉),             (4.6) 

with optimal coefficients 𝛽∙ =
Cov(𝑈∙,𝑉∙)

Var(𝑉∙)
[3]. 

Here we set 𝑉𝑇 to the known phase confirmation probability (Prelim 0.78, Semi 0.84, 

Final 0.90 ), and define 𝑉𝐼 , 𝑉𝐹 from 1 − 𝑉𝑇 (still neutrosophic; no need to sum to one). 

 

Table 3 reports 𝛽 values, adjusted means, and adjusted variances for both Baseline and 

Stratified settings. Strong positive 𝛽𝑇 means the known phase signal explains much of the 

truth-utility variability. 
Table 3. Control Variates: Betas, Adjusted Means, Adjusted Variances 

Component Beta Mean_adj Var_adj 

Truth (T) 0.82 0.7086 0.00007 

Indet. (I) 0.15 0.2111 0.00008 

Falsity(F) 0.09 0.0803 0.00004 

 

4.5 Conditional Neutrosophic Monte Carlo (CMC) for Truth 

We model the truth component as 

𝑈𝑇 = 𝛼𝑌 + (1 − 𝛼)𝑍                                                            (4.7) 

where 𝑌 ∈ {0,1} is a ticket confirmation indicator, and 𝑍 captures the residual truth 

utility. Given the known phase-level expectation 𝔼[𝑌 ∣ phase ] = 𝑝phase ∈

{0.78,0.84,0.90}, we form the conditional estimator 

𝑇‾CMC = 𝛼 𝔼[𝑌]⏟
known 

+ (1 − 𝛼)𝑍‾,                                               (4.8) 

which replaces the noisy sample-average of 𝑌 by its known expectation. We set 𝛼 = 0.5. 

This reduces variance by removing the Bernoulli randomness of 𝑌. 

 

4.6 Results (All Numbers Computed) 

The core outcomes are summarized in Table 2 (means, variances, confidence intervals). 

To directly quantify efficiency gains, Table 4 reports variance reduction (VR) 

percentages for each component relative to the baseline: 

 VR. ( Method ) = 100 × (1 −
 Var ̂∙( Method )

 Var. ∙̂ ( Baseline )
) %.                                  (4.9) 
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Table 4. Variance Reduction Percentages Relative to Baseline 

Estimator VR_T_percent VR_I_percent VR_F_percent 

Stratified vs Baseline 25.0% 22.2% 20.0% 

CMC vs Baseline 50.0% 0.0% 0.0% 

 

In Table 4, the Stratified NMC row shows reductions in Var𝑇 , Var𝐼 , and Var𝐹 , because 

stratification targets heterogeneity across groups and phases. The CMC row shows the 

largest reduction in Var𝑇 (by design), while Var𝐼 and Var𝐹  stay at baseline levels (we did 

not condition them). 

 

4.7 Discussion of the Case Study   

The case study maintains a strict neutrosophic structure throughout, representing every 

outcome as a triple ( 𝑇, 𝐼, 𝐹 ) and preserving the interpretation of truth, indeterminacy, and 

falsity in every stage of analysis. At no point are these dimensions reduced to a single 

scalar value; instead, estimation and variance control are handled component-wise, in line 

with established neutrosophic theory [1,2]. 

 

From a methodological perspective, the framework is distinctive in its integration of three 

complementary strategies-stratified sampling, control variates, and conditional Monte 

Carlo-within a single neutrosophic estimation process. This triple-layer design has not 

been reported in the context of ethnic sports tourism before and provides a systematic 

way to reduce uncertainty while retaining the interpretive richness of the neutrosophic 

model [3]. 

 

From a practical standpoint, the interpretation of the results is straightforward yet 

informative. A higher mean truth value 𝑇‾  accompanied by a narrow confidence interval 

reflects a strong and reliable cultural benefit from the event. A moderate mean 

indeterminacy value 𝐼‾  alerts planners to ongoing ambiguity in visitor perceptions, 

suggesting the need for better communication or more immersive cultural experiences. 

Meanwhile, a small but non-zero mean falsity value 𝐹‾  indicates the presence of negative 

reactions-perhaps due to scheduling conflicts or cultural misunderstandings-which 

require targeted mitigation measures such as improved briefing materials or adjustments 

in program timing. 

 

5. Formulas and Checks   

Below are explicit formulas used in constructing Tables 2-4, so any reader can replicate: 

Baseline means (component-wise): 

𝑇‾ =
1

𝑁
∑  𝑁

𝑗=1 𝑈𝑇(𝜔𝑗), 𝐼‾ =
1

𝑁
∑  𝑁

𝑗=1 𝑈𝐼(𝜔𝑗), 𝐹‾ =
1

𝑁
∑  𝑁

𝑗=1 𝑈𝐹(𝜔𝑗).                            (5.1) 

Unbiased sample variances (component-wise): 

𝑠𝑇
2 =

1

𝑁−1
∑  𝑁

𝑗=1 (𝑈𝑇(𝜔𝑗) − 𝑇‾)
2

, Var̂(𝑇‾) =
𝑠𝑇

2

𝑁
,                                                        (5.2) 

(similar for 𝐼, 𝐹 ). 
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Stratified estimator (weighted): 

Θ̂∙
(strat )

= ∑  (𝑔,𝑝) 𝑤𝑔,𝑝𝑈‾∙,(𝑔,𝑝), 𝑤𝑔,𝑝 =
𝑛𝑔,𝑝

𝑁𝑠
.                                                               (5.3) 

Control variates (each component ∙∈ {𝑇, 𝐼, 𝐹} ): 

Θ‾ ∙ = 𝑈‾∙ − 𝛽∙(𝑉‾∙ − 𝜇∙
𝑉), 𝛽∙ =

Cov(𝑈∙,𝑉∙)

Var(𝑉∙)
.                                                                      (5.4) 

Conditional MC for truth: 

𝑇‾CMC = 𝛼 𝔼[𝑌]⏟
known by phase 

+ (1 − 𝛼)𝑍‾, 𝑈𝑇 = 𝛼𝑌 + (1 − 𝛼)𝑍.                                 (5.5) 

Cls (component-wise): use (4.3). 

You can verify the exact numeric values in the CSVs. The Python notebook calculations 

are deterministic (fixed seed), so your numbers will match exactly. 

 

6. Theoretical Results 

We denote by 𝑈(𝜔) = (𝑈𝑇(𝜔), 𝑈𝐼(𝜔), 𝑈𝐹(𝜔))⊤ ∈ ℝ3 a neutrosophic random vector (truth, 

indeterminacy, falsity). Let Θ = 𝑁𝐸[𝑈] = (𝜃𝑇 , 𝜃𝐼 , 𝜃𝐹)⊤ be the triple expectation (Section 

2). The baseline NMC estimator from 𝑁 i.i.d. draws 𝜔1, … , 𝜔𝑁 is 

Θ̂𝑁 =
1

𝑁
∑  𝑁

𝑗=1 𝑈(𝜔𝑗) = (𝑈‾𝑇 , 𝑈‾𝐼 , 𝑈‾𝐹)⊤.                                                                  (6.1) 

Throughout, assume finite second moments 𝐸‖𝑈‖2 < ∞ and measurability under each 

neutrosophic component [1,2]. 

 

6.1 Strong Consistency (Neutrosophic SLLN) 

Theorem 6.1 (Component-wise SLLN). 

If 𝐸[|𝑈𝑇|] < ∞, 𝐸[|𝑈𝐼|] < ∞, and 𝐸[|𝑈𝐹|] < ∞, then 

Θ̂𝑁 →
 a.s.  

Θ  as 𝑁 → ∞.                                                                                          (6.2) 

Proof (sketch). Apply the classical SLLN separately to 𝑈𝑇 , 𝑈𝐼 , 𝑈𝐹. The triple convergence 

follows component-wise [3]. 

Remark 6.1. No normalization constraint 𝑇 + 𝐼 + 𝐹 = 1 is required. If normalization 

holds, the limit remains the same, but the three components are linearly linked [1]. 

 

6.2 Asymptotic Normality (Neutrosophic CLT) 

Define the covariance matrix 

Σ = Cov(𝑈) = (

𝜎𝑇𝑇 𝜎𝑇𝐼 𝜎𝑇𝐹

𝜎𝐼𝑇 𝜎𝐼𝐼 𝜎𝐼𝐹

𝜎𝐹𝑇 𝜎𝐹𝐼 𝜎𝐹𝐹

) , 0 ⪯ Σ ∈ ℝ3×3.                                          (6.3) 

Theorem 6.2 (Vector CLT). 

If 𝐸‖𝑈‖2 < ∞ and the samples are i.i.d., then 

√𝑁(Θ̂𝑁 − Θ) →
𝑑 

𝒩3(0, Σ).                                                                                 (6.4) 

Consequences. For large 𝑁, marginally 

𝑈‾∙ ≈ 𝒩 (𝜃∙,
𝜎∙∙

𝑁
) ,∙∈ {𝑇, 𝐼, 𝐹},                                                                               (6.5) 

which justifies the component-wise confidence intervals used in the case study (Eq. 4.3) 

[3]. 
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Corollary 6.1 (Triple confidence ellipsoid). 

An asymptotic 1 − 𝛼 joint Cl for Θ is 

ℰ1−𝛼 = {𝜃 ∈ ℝ3: 𝑁(Θ̂𝑁 − 𝜃)
⊤

Σ̂−1(Θ̂𝑁 − 𝜃) ≤ 𝜒3,1−𝛼
2 }                                (6.6) 

with Σ̂ the sample covariance of {𝑈(𝜔𝑗)} and 𝜒3,1−𝛼
2  the chi-square quantile. 

 

6.3 Stratified Neutrosophic Monte Carlo 

Partition the population into 𝐺 neutrosophic strata {𝒮𝑔}
𝑔=1

𝐺
 (e.g., ethnic group × phase, 

as in the case study). Let 𝜋𝑔 be the stratum weight, 𝑛𝑔 the allocated sample size, and 

Θ𝑔 = 𝑁𝐸[𝑈 ∣ 𝒮𝑔]. The stratified estimator is 

Θ̂str = ∑  𝐺
𝑔=1 𝜋𝑔Θ̂𝑔, Θ̂𝑔 =

1

𝑛𝑔
∑  𝑗⊂𝒮𝑔

𝑈(𝜔𝑗).                                                   (6.7) 

Variance (first order): 

Var(Θ̂str ) ≈ ∑  𝐺
𝑔=1

𝜋𝑔
2

𝑛𝑔
Σ𝑔, Σ𝑔 = Cov(𝑈 ∣ 𝒮𝑔)                                                 (6.8) 

To optimize allocation across the triple, choose weights 𝑤𝑇 , 𝑤𝐼 , 𝑤𝐹 ≥ 0, 𝑤𝑇 + 𝑤𝐼 + 𝑤𝐹 = 1, 

and minimize the scalarized objective 

Φ(𝑛1, … , 𝑛𝐺) = 𝑤𝑇Var(𝑈‾𝑇
str ) + 𝑤𝐼Var(𝑈‾𝐼

str ) + 𝑤𝐹Var(𝑈‾𝐹
str ).                   (6.9) 

 

Theorem 6.3 (Triple Neyman allocation). 

Let 𝑆𝑔,0
2  be the within-stratum variance of 𝑈. Then a near-optimal allocation is 

𝑛𝑔 ∝ 𝜋𝑔√𝑤𝑇𝑆𝑔,𝑇
2 + 𝑤𝐼𝑆𝑔,𝐼

2 + 𝑤𝐹𝑆𝑔,𝐹
2                                                               (6.10) 

Sketch. Differentiate (6.9) under ∑  𝑔 𝑛𝑔 = 𝑁𝑠 and apply Cauchy-Schwarz; this generalizes 

classical Neyman allocation to a triple-component loss [3]. Equation (6.10) explains why 

the case study's stratification (Section 4.3) reduces all three variances in Table 2 and yields 

positive VR% in Table 4. 

 

6.4 Control Variates  

Let 𝑉 = (𝑉𝑇 , 𝑉𝐼 , 𝑉𝐹)⊤ be an auxiliary neutrosophic variable with known 𝑁𝐸[𝑉] = 𝜇𝑉. 

Define the adjusted estimator 

Θ̃ = Θ̂𝑁 − 𝐵(𝑉̂𝑁 − 𝜇𝑉), 𝐵 = diag(𝛽𝑇 , 𝛽𝐼 , 𝛽𝐹),                                                        (6.11) 

where 𝛽∙ =
Cov(𝑈∙,𝑉∙)

Var(𝑉∙)
. Then 

Var(Θ̃) = Var(Θ̂𝑁) − 𝐵Cov(𝑉̂𝑁 , 𝑈̂𝑁)
⊤

− Cov(𝑈̂𝑁 , 𝑉̂𝑁)𝐵 + 𝐵Var(𝑉̂𝑁)𝐵               (6.12) 

 

Corollary 6.2 (Non-negativity of variance drop). 

For each component, 

Var(Θ̃∙) =
1

𝑁
𝜎∙∙(1 − 𝜌∙

2), 𝜌∙
2 =

Cov(𝑈∙,𝑉∙)
2

Var(𝑈∙)Var(𝑉∙)
.                                                          (6.13) 

Hence Var(Θ‾ ∙) ≤ Var(Θ̂∙), with equality iff 𝜌∙ = 0[3]. 

Link to case study. Table 3 shows 𝛽 and adjusted variances; Table 4 reports the realized 

VR%. 

 



Neutrosophic Sets and Systems, Vol. 91, 2025                                                                      556 

 

__________________________________________________________________________ 

Chaolumen Ge, Xuelian Liu, A Neutrosophic Monte Carlo Framework for Modeling Indeterminate Participation and 

Cultural Impact in Tourism Service Quality of Ethnic Sports Events 

6.5 Conditional Neutrosophic Monte Carlo (CMC) 

Suppose 

𝑈𝑇 = 𝛼𝑌 + (1 − 𝛼)𝑍, 0 ≤ 𝛼 ≤ 1,                                                                            (6.14) 

with 𝑌 observable and 𝜇𝑌: = 𝐸[𝑌 ∣ ℐ] known (e.g., phase-level rate), and 𝑍 independent 

of ℐ. Define 

𝑇‾CMC = 𝛼𝜇𝑌 + (1 − 𝛼)𝑍‾, 𝑇‾ = 𝛼𝑌‾ + (1 − 𝛼)𝑍‾                                                        (6.15) 

 

Theorem 6.4 (Variance dominance). 

Var(𝑇‾CMC) = (1 − 𝛼)2Var(𝑍‾) ≤ 𝛼2Var(𝑌‾) + (1 − 𝛼)2Var(𝑍‾) = Var(𝑇‾),           (6.16) 

with strict inequality if 𝛼 > 0 and Var(𝑌‾) > 0. 

Link to case study. This is exactly the reduction we observe for Var𝑇 in the CMC row of 

Table 2 and the VR% for 𝑇 in Table 4. 

 

6.6 Joint Efficiency Comparison 

Let ℳ ∈ { Baseline, Stratified, CV, CMC }. Define component-wise relative efficiency. 

RE∙(ℳ;  Base ) =
Var̂∙( Base )

Var̂∙(ℳ)
,∙∈ {𝑇, 𝐼, 𝐹}.                                                                 (6.17) 

The variance-reduction percentage is VR. = 100(1 − 1/RE∙)%. In Table 4, VR𝑇 is largest 

for CMC, while the Stratified estimator improves all three components simultaneously-

consistent with (6.8)-(6.10) and (6.16). 

 

6.7 Normalization and Robustness 

Neutrosophic triples need not satisfy 𝑇 + 𝐼 + 𝐹 = 1  in general [1,2] . All results above 

remain valid without normalization, because the estimators act component-wise and the 

CLT is multivariate. Under normalization, Σ  in (6.3) has reduced rank, but marginal 

Cls(6.5) and the ellipsoid (6.6) still hold with the empirical Σ̂. 

8. Conclusion 

This paper introduced a Neutrosophic Monte Carlo framework for modeling cultural 

participation and impact in ethnic sports tourism under uncertainty and indeterminacy. 

By representing each outcome as a triple (T,I,F) truth, indeterminacy, and falsity we 

provided a component-wise estimation theory supported by strong consistency, 

asymptotic normality, and variance-reduction results. 

The case study demonstrated that: 

a) Stratified sampling across cultural and temporal layers lowers all component 

variances. 

b) Control variates further improve precision when auxiliary neutrosophic signals 

are available. 

c) Conditional Monte Carlo yields the largest variance reduction for the truth 

component when part of it is analytically predictable. 

The proposed framework is fully mathematical, yet flexible enough to incorporate diverse 

cultural contexts and event structures. It also supports practical decision-making: high 

truth-values with narrow intervals signal robust cultural benefits, while large 

indeterminacy or falsity components highlight areas needing clarification or mitigation. 
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Limitations 

The framework relies on accurate specification of neutrosophic measures and may require 

expert input for realistic parameterization in new cultural settings. Also, sampling designs 

assume reasonable independence within strata. 

Future Work 

Potential extensions include: 

1. Dynamic neutrosophic models for multi-day festivals. 

2. Integration with neutrosophic Bayesian updating for real-time decision support. 

3. Coupling with optimization algorithms for scheduling and resource allocation 

under triple uncertainty. 

By uniting neutrosophic logic with advanced Monte Carlo methods, this research sets a 

rigorous foundation for analyzing and improving ethnic sports tourism events in settings 

where both randomness and indeterminacy matter. 
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