

A Neutrosophic Monte Carlo Framework for Modeling Indeterminate Participation and Cultural Impact in Tourism Service Quality of Ethnic Sports Events

Chaolumen Ge¹, Xuelian Liu^{2*}

¹Mongolia Medical University, Huhehaote City, 010000, China

²School of Physical Education, Inner Mongolia Medical University, 010000, China

*Corresponding author, E-mail: lx11654805103@126.com

Abstract

Ethnic sports tourism involves complex cultural, social, and economic interactions, where uncertainty arises not only from randomness but also from incomplete and contradictory information. Classical probability models cannot fully capture these features. In this paper, we develop a novel Neutrosophic Monte Carlo framework to model participation patterns and cultural impacts in ethnic sports tourism events. Each event is represented by a neutrosophic probability triple (T, I, F) , where T measures truth-membership, I measures indeterminacy, and F measures falsity. We introduce a Neutrosophic Expected Value and a Triple-Component Monte Carlo Estimator, and prove strong convergence theorems and variance bounds for the proposed estimators. To enhance efficiency, we design variance reduction techniques adapted to neutrosophic uncertainty, including stratified sampling over cultural and temporal layers and control variates derived from simplified cultural models. A fully computed case study on simulated ethnic sports tourism scenarios demonstrates the accuracy and robustness of our approach, with detailed numerical calculations and tables linking each neutrosophic measure to practical interpretations. The framework establishes a mathematically rigorous and culturally relevant foundation for decision-making in uncertain, heterogeneous tourism systems.

Keywords

Neutrosophic probability; Neutrosophic expected value; Monte Carlo simulation; Variance reduction; Ethnic sports tourism; Cultural impact modeling; Indeterminate information; Triple-measure framework.

1. Introduction

Ethnic sports tourism represents a unique intersection between cultural heritage and recreational activity. It includes traditional games, indigenous competitions, and culturally embedded sports festivals that attract both domestic and international visitors. While such events generate significant socio-cultural and economic benefits, they also

involve uncertainty from multiple sources: fluctuating attendance, inconsistent cultural engagement, unpredictable weather, and subjective visitor perceptions. Classical probability theory can represent randomness, but it cannot fully capture indeterminacy—the state in which information is incomplete, vague, or even contradictory.

The Neutrosophic framework, originally introduced to extend fuzzy and intuitionistic models, incorporates three components for any statement or event: truth-membership (T), indeterminacy (I), and falsity (F) [1,2]. This triple representation allows for richer modeling of real-world phenomena, particularly in tourism systems where cultural interpretations and participation decisions cannot be reduced to binary or crisp probabilities. For instance, the event "A tourist from cultural group C attends the final match of an indigenous wrestling festival" may have a high degree of truth (based on ticket data), a moderate degree of indeterminacy (due to unconfirmed reservations), and a small but non-zero falsity (some tourists leave before the match).

In this paper, we propose a Neutrosophic Monte Carlo (NMC) framework for modeling participation patterns and cultural impacts in ethnic sports tourism. We define a Neutrosophic Expected Value operator:

$$NE[U] = (E_T[U], E_I[U], E_F[U]),$$

where E_T , E_I , and E_F represent expectations under the truth, indeterminacy, and falsity measures, respectively. This operator generalizes the classical expectation and enables triple-valued performance evaluation in tourism systems.

Our main contributions are:

1. Theoretical formulation of a triple-component Monte Carlo estimator:

$$\hat{\theta}_N = (\bar{T}_N, \bar{I}_N, \bar{F}_N),$$

With rigorous proofs of strong consistency and asymptotic normality under mild assumptions.

2. Variance analysis for each component, showing explicit bounds:

$$\text{Var}(\bar{T}_N) \leq \frac{\sigma_T^2}{N}, \text{Var}(\bar{I}_N) \leq \frac{\sigma_I^2}{N}, \text{Var}(\bar{F}_N) \leq \frac{\sigma_F^2}{N}.$$

These bounds guide sampling decisions in cultural event analysis.

3. Variance reduction strategies adapted to neutrosophic uncertainty, including:

- a) Stratified sampling by ethnic group and event phase.
- b) Control variates using simplified cultural interaction models.
- c) Conditional Monte Carlo for partial deterministic structures in event schedules.

4. Case study with fully computed examples, linking each neutrosophic component to cultural and operational interpretations in an ethnic sports festival context.

By integrating neutrosophic probability theory with advanced Monte Carlo techniques, we create a framework capable of handling truth, indeterminacy, and falsity in both participation modeling and cultural impact estimation. The proposed model aims to fill a

gap in the literature where neither traditional statistics nor fuzzy models adequately capture the complexity of ethnic tourism sports systems [3,4].

2. Preliminaries

This section establishes the mathematical foundations of our proposed framework. We recall and extend concepts from neutrosophic probability, neutrosophic measure, and neutrosophic expectation, adapting them to the context of ethnic sports tourism.

2.1 Neutrosophic Probability Space

Let (Ω, \mathcal{F}) be a measurable space, where Ω is the set of all possible outcomes in the tourism event, e.g., attendance configurations, match results, visitor interactions, and \mathcal{F} is a σ -algebra of events. A Neutrosophic Probability (NP) is a mapping

$$NP: \mathcal{F} \rightarrow [0,1]^3, A \mapsto (T(A), I(A), F(A)), \quad (2.1)$$

where:

$T(A)$ = truth-membership degree (extent event A is true).

$I(A)$ = indeterminacy-membership degree (extent event A is indeterminate).

$F(A)$ = falsity-membership degree (extent event A is false).

We require that:

$$0 \leq T(A) + I(A) + F(A) \leq 3, \forall A \in \mathcal{F} \quad (2.2)$$

The equality $T(A) + I(A) + F(A) = 1$ represents the normalized case, which is sometimes desirable for cultural participation modeling [1,2].

Example 2.1:

Let A = "Tourist from ethnic group G attends the closing ceremony of a wrestling festival." Possible NP values:

$$NP(A) = (0.72, 0.20, 0.08)$$

meaning: 72% truth (confirmed presence), 20% indeterminate (uncertain reservations), 8% falsity (ticket holders who will not attend).

2.2 Neutrosophic Measure

A neutrosophic measure is a set function:

$$v: \mathcal{F} \rightarrow [0, \infty)^3 \quad (2.3)$$

Satisfying:

1. Null set: $v(\emptyset) = (0,0,0)$.
2. Monotonicity: If $A \subseteq B$ then $T(A) \leq T(B), I(A) \leq I(B), F(A) \leq F(B)$.
3. Countable additivity: If $A_i \cap A_j = \emptyset$ for $i \neq j$, then

$$v(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} v(A_n) \quad (2.4)$$

(component-wise addition).

In ethnic sports tourism, $v(A)$ could represent the triple measure of cultural benefit, uncertainty in perception, and cultural disbenefit for a given activity A .

2.3 Neutrosophic Random Variables

A neutrosophic random variable (NRV) is a function

$$X: \Omega \rightarrow \mathbb{R}^3, X(\omega) = (X_T(\omega), X_I(\omega), X_F(\omega)), \quad (2.5)$$

where X_T, X_I , and X_F are measurable concerning the underlying probability space.

Example: $X(\omega)$ could represent the satisfaction score triple of a specific tourist ω , decomposed into truth (confirmed aspects), indeterminacy (unclear aspects), and falsity (negative aspects).

2.4 Neutrosophic Expectation

The Neutrosophic Expectation of an NRV X for NP is:

$$NE[X] = (E_T[X_T], E_I[X_I], E_F[X_F]), \quad (2.6)$$

Where:

$$\begin{aligned} E_T[X_T] &= \int_{\Omega} X_T(\omega) dP_T(\omega) \\ E_I[X_I] &= \int_{\Omega} X_I(\omega) dP_I(\omega) \\ E_F[X_F] &= \int_{\Omega} X_F(\omega) dP_F(\omega) \end{aligned} \quad (2.7)$$

Here P_T, P_I, P_F are the truth, indeterminacy, and falsity components of NP.

2.5 Neutrosophic Variance and Covariance

For an NRV X , we define the component variances:

$$\begin{aligned} \text{Var}_T(X) &= E_T[(X_T - E_T[X_T])^2], \\ \text{Var}_I(X) &= E_I[(X_I - E_I[X_I])^2], \\ \text{Var}_F(X) &= E_F[(X_F - E_F[X_F])^2]. \end{aligned} \quad (2.8)$$

Similarly, cross-component covariances can be defined, which are useful when truth and indeterminacy are not independent.

2.6 Link to Monte Carlo Approximation

If we draw N independent samples $\omega_1, \dots, \omega_N$ from Ω , the Monte Carlo estimator of $NE[X]$ is:

$$\hat{\theta}_N = \left(\frac{1}{N} \sum_{j=1}^N X_T(\omega_j), \frac{1}{N} \sum_{j=1}^N X_I(\omega_j), \frac{1}{N} \sum_{j=1}^N X_F(\omega_j) \right). \quad (2.9)$$

From the Neutrosophic Law of Large Numbers (proved in Section 4), we will show:

$$\hat{\theta}_N \xrightarrow{\text{a.s.}} NE[X] \text{ as } N \rightarrow \infty. \quad (2.10)$$

3. Neutrosophic Monte Carlo Framework

3.1 Problem Setting

Consider an ethnic sports tourism festival composed of K events E_1, E_2, \dots, E_K . Each event has a neutrosophic participation probability.

$$NP(E_k) = (T_k, I_k, F_k), k = 1, \dots, K. \quad (3.1)$$

Let $U_k(\omega)$ denote a neutrosophic utility triple for tourist ω attending the event E_k , decomposed into truth, indeterminacy, and falsity components. Our goal is to estimate the overall neutrosophic expected utility:

$$\Theta = \frac{1}{K} \sum_{k=1}^K NE[U_k]. \quad (3.2)$$

3.2 Monte Carlo Estimator

We sample N tourists $\omega_1, \dots, \omega_N$ According to a probability distribution over Ω . The Neutrosophic Monte Carlo Estimator is:

$$\hat{\Theta}_N = \left(\frac{1}{NK} \sum_{j=1}^N \sum_{k=1}^K U_{T,k}(\omega_j), \frac{1}{NK} \sum_{j=1}^N \sum_{k=1}^K U_{I,k}(\omega_j), \frac{1}{NK} \sum_{j=1}^N \sum_{k=1}^K U_{F,k}(\omega_j) \right). \quad (3.3)$$

3.3 Strong Consistency

Theorem 3.1 (Neutrosophic Law of Large Numbers)

If $E_T[|U_{T,k}|] < \infty$, $E_I[|U_{I,k}|] < \infty$, and $E_F[|U_{F,k}|] < \infty$ for all k , then:

$$\hat{\Theta}_N \xrightarrow{\text{a.s.}} \Theta \text{ as } N \rightarrow \infty. \quad (3.4)$$

Proof : Apply the classical Strong Law of Large Numbers separately to each component; the triple convergence follows component-wise.

3.4 Variance Bounds

Let $\sigma_T^2 = \text{Var}_T(U_{T,k})$, etc. Then:

$$\text{Var}_T(\hat{\Theta}_N) = \frac{\sigma_T^2}{NK}, \text{Var}_I(\hat{\Theta}_N) = \frac{\sigma_I^2}{NK}, \text{Var}_F(\hat{\Theta}_N) = \frac{\sigma_F^2}{NK} \quad (3.5)$$

These bounds guide the required N to achieve a given precision for each component.

3.5 Variance Reduction Techniques

3.5.1 Stratified Sampling

Partition Ω into strata $\{\Omega_g\}_{g=1}^G$ according to ethnic group and event phase (e.g., preliminaries, finals).

Allocate samples n_g to stratum g proportional to within-stratum variance:

$$n_g = N \cdot \frac{\sigma_g}{\sum_{h=1}^G \sigma_h}. \quad (3.6)$$

Estimate each component in each stratum, then combine via weighted averages.

3.5.2 Control Variates

Let $V(\omega)$ be an auxiliary neutrosophic variable with known expectation $NE[V]$. Define adjusted estimator:

$$\tilde{\Theta}_N = \hat{\Theta}_N - \beta(\hat{V}_N - NE[V]), \quad (3.7)$$

where β is chosen separately for each component to minimize variance:

$$\beta_T = \frac{\text{Cov}_T(U_T, V_T)}{\text{Var}_T(V_T)}, \text{ etc.} \quad (3.8)$$

3.5.3 Conditional Neutrosophic Monte Carlo

If part of U_k can be evaluated exactly, given some variable Y , condition on Y to reduce randomness. For example, given confirmed ticket sales Y , the truth-component can be computed without sampling, while indeterminacy/falsity is sampled from the residual uncertainty.

3.6 Numerical Example

Scenario:

a) $K = 3$ events: indigenous wrestling (E_1), traditional boat race (E_2), ethnic archery (E_3).

b) $NP(E_k)$ and utilities simulated for $N = 6$ sampled tourists.

Tourist ω_j	$U_{T,1}$	$U_{I,1}$	$U_{F,1}$	$U_{T,2}$	$U_{I,2}$	$U_{F,2}$	$U_{T,3}$	$U_{I,3}$	$U_{F,3}$
1	0.80	0.15	0.05	0.75	0.20	0.05	0.90	0.05	0.05
2	0.70	0.25	0.05	0.68	0.20	0.12	0.85	0.10	0.05
3	0.95	0.03	0.02	0.88	0.10	0.02	0.92	0.05	0.03
4	0.60	0.30	0.10	0.65	0.25	0.10	0.78	0.15	0.07
5	0.85	0.10	0.05	0.80	0.15	0.05	0.88	0.08	0.04
6	0.77	0.18	0.05	0.72	0.22	0.06	0.83	0.12	0.05

Using Eq. (3.3), the truth-component estimate:

$$\bar{T}_N = \frac{1}{18} \sum_{j=1}^6 \sum_{k=1}^3 U_{T,k}(\omega_j) = \frac{14.26}{18} \approx 0.7922 \quad (3.9)$$

Similarly, $\bar{I}_N \approx 0.1544$, $\bar{F}_N \approx 0.0534$.

These estimates are interpreted as, on average, 79.22% of assessed utility is confirmed truth, 15.44% is uncertain, and 5.34% is adverse.

4. Case Study: Neutrosophic Monte Carlo for an Ethnic Sports Tourism Festival

This section gives a complete, reproducible case study using the proposed NMC framework. All numbers are fully computed by simulation with a fixed seed. We analyze three ethnic sports events-Wrestling, Boat Race, Archery-across Prelim, Semi, Final phases, and four ethnic groups $G \in \{G_A, G_B, G_C, G_D\}$. The case study demonstrates: (i) baseline NMC estimation, (ii) stratified NMC with optimal allocation, (iii) control variates, and (iv) conditional Monte Carlo. The entire setup is neutrosophic from the ground up [1,2,3].

4.1 Data-Generating Assumptions (Neutrosophic)

We simulate $N_{\text{total}} = 3000$ tourist-event observations. For each record, we generate a neutrosophic utility triple $U(\omega) = (U_T(\omega), U_I(\omega), U_F(\omega)) \in [0,1]^3$, which represents (truth, indeterminacy, falsity) contributions to the cultural utility of the event for a single tourist ω . The means depend on ethnic group g , event e , and phase p . Baselines are group-event dependent, while phases adjust clarity/uncertainty (Finals increase T , decrease I , and slightly increase F due to pressure).

Table 1 lists the base neutrosophic parameters (Mean T , Mean I , Mean F) for each (Group, Event). We use Beta distributions for each component with concentration tuned by phase. These parameters guide the Monte Carlo generator and keep everything consistently neutrosophic.

Table 1 – Base Neutrosophic Parameters by Group and Event

Group	Event	Mean_T	Mean_I	Mean_F
G_A	Wrestling	0.72	0.18	0.10
G_A	Boat Race	0.65	0.25	0.10

G_A	Archery	0.70	0.20	0.10
G_B	Wrestling	0.68	0.22	0.10
G_B	Boat Race	0.60	0.30	0.10
G_B	Archery	0.66	0.24	0.10
G_C	Wrestling	0.75	0.15	0.10
G_C	Boat Race	0.70	0.20	0.10
G_C	Archery	0.72	0.18	0.10
G_D	Wrestling	0.69	0.21	0.10
G_D	Boat Race	0.64	0.26	0.10
G_D	Archery	0.68	0.22	0.10

Larger Mean T suggests clearer cultural engagement for that group-event pair; larger Mean I reflects indeterminate or ambiguous experiences; Mean F Captures negative or conflicting aspects.

4.2 Baseline Neutrosophic Monte Carlo Estimator

Given the simulated dataset $\{\omega_j\}_{j=1}^{N_{\text{total}}}$, the baseline NMC estimator for the grand neutrosophic expected utility is

$$\hat{\Theta}^{(0)} = (\bar{T}, \bar{I}, \bar{F}) = \left(\frac{1}{N} \sum_{j=1}^N U_T(\omega_j), \frac{1}{N} \sum_{j=1}^N U_I(\omega_j), \frac{1}{N} \sum_{j=1}^N U_F(\omega_j) \right). \quad (4.1)$$

The component variances of $\hat{\Theta}^{(0)}$ are estimated by

$$\widehat{\text{Var}}(\bar{T}) = \frac{s_T^2}{N}, \widehat{\text{Var}}(\bar{I}) = \frac{s_I^2}{N}, \widehat{\text{Var}}(\bar{F}) = \frac{s_F^2}{N}, \quad (4.2)$$

where s^2 are the usual unbiased sample variances of U_T, U_I, U_F .

Under mild conditions [3], asymptotic 95% neutrosophic confidence intervals are

$$\bar{T} \pm z_{0.975} \sqrt{\widehat{\text{Var}}(\bar{T})}, \bar{I} \pm z_{0.975} \sqrt{\widehat{\text{Var}}(\bar{I})}, \bar{F} \pm z_{0.975} \sqrt{\widehat{\text{Var}}(\bar{F})}, \quad (4.3)$$

with $z_{0.975} = 1.96$. Table 2 reports the baseline means, component variances, and 95% CIs.

Table 2 establishes the benchmark we try to beat (lower variances and tighter CIs). \bar{T} is the confirmed utility, \bar{I} captures unresolved/ambiguous utility, and \bar{F} captures adverse utility. Together, they characterize neutrosophic performance.

Table 2. Estimator comparison (means, variances, CIs)

Estimator	Mean_T	Var_T	CI_T_lo	CI_T_high	Mean_I	Var_I	CI_I_lo	CI_I_high	Mean_F	Var_F	CI_F_lo	CI_F_high
Baseline NMC	0.7085	0.00012	0.7016	0.7154	0.2112	0.00009	0.2054	0.2170	0.0803	0.00005	0.0769	0.0837
Stratified NMC	0.7087	0.00009	0.7026	0.7148	0.2110	0.00007	0.2059	0.2161	0.0803	0.00004	0.0771	0.0835
CMC (Truth adjusted)	0.7084	0.00006	0.7032	0.7136	0.2113	0.00009	0.2055	0.2171	0.0803	0.00005	0.0769	0.0837

4.3 Stratified Neutrosophic Monte Carlo (Optimal Allocation)

We define strata by ethnic group \times phase: $\mathcal{S} = \{(g, p) : g \in \{G_A, \dots, G_D\}, p \in \{\text{Prelim, Semi, Final}\}\}$. Let $n_{g,p}$ be the sample allocation to stratum (g, p) with total $N_s = \sum_{(g,p)} n_{g,p}$. We choose Neyman-type allocation using a composite standard deviation:

$$n_{g,p} \propto \frac{\sigma_{g,p}^{(T)} + \sigma_{g,p}^{(I)} + \sigma_{g,p}^{(F)}}{3}, \quad (4.4)$$

where $\sigma_{g,p}^{(T)}$ is the within-stratum SD of U_T (similarly for I, F). We then estimate the overall triple by the stratum-weighted average:

$$\hat{\Theta}^{(\text{strat})} = \sum_{(g,p) \in \mathcal{S}} w_{g,p} \hat{\Theta}_{g,p}, w_{g,p} = \frac{n_{g,p}}{N_s}. \quad (4.5)$$

4.4 Control Variates (Neutrosophic)

Let $V(\omega) = (V_T, V_I, V_F)$ be an auxiliary neutrosophic variable with known expectations $NE[V] = (\mu_T^V, \mu_I^V, \mu_F^V)$. We define component-wise control variates:

$$\tilde{\Theta}_T = \bar{T} - \beta_T(\bar{V}_T - \mu_T^V), \tilde{\Theta}_I = \bar{I} - \beta_I(\bar{V}_I - \mu_I^V), \tilde{\Theta}_F = \bar{F} - \beta_F(\bar{V}_F - \mu_F^V), \quad (4.6)$$

with optimal coefficients $\beta_i = \frac{\text{Cov}(U_i, V_i)}{\text{Var}(V_i)}$ [3].

Here we set V_T to the known phase confirmation probability (Prelim 0.78, Semi 0.84, Final 0.90), and define V_I, V_F from $1 - V_T$ (still neutrosophic; no need to sum to one).

Table 3 reports β values, adjusted means, and adjusted variances for both Baseline and Stratified settings. Strong positive β_T means the known phase signal explains much of the truth-utility variability.

Table 3. Control Variates: Betas, Adjusted Means, Adjusted Variances

Component	Beta	Mean adj	Var adj
Truth (T)	0.82	0.7086	0.00007
Indet. (I)	0.15	0.2111	0.00008
Falsity(F)	0.09	0.0803	0.00004

4.5 Conditional Neutrosophic Monte Carlo (CMC) for Truth

We model the truth component as

$$U_T = \alpha Y + (1 - \alpha)Z \quad (4.7)$$

where $Y \in \{0,1\}$ is a ticket confirmation indicator, and Z captures the residual truth utility. Given the known phase-level expectation $\mathbb{E}[Y | \text{phase}] = p_{\text{phase}} \in \{0.78, 0.84, 0.90\}$, we form the conditional estimator

$$\bar{T}_{\text{CMC}} = \alpha \underbrace{\mathbb{E}[Y]}_{\text{known}} + (1 - \alpha)\bar{Z}, \quad (4.8)$$

which replaces the noisy sample-average of Y by its known expectation. We set $\alpha = 0.5$. This reduces variance by removing the Bernoulli randomness of Y .

4.6 Results (All Numbers Computed)

The core outcomes are summarized in Table 2 (means, variances, confidence intervals). To directly quantify efficiency gains, Table 4 reports variance reduction (VR) percentages for each component relative to the baseline:

$$\text{VR. (Method)} = 100 \times \left(1 - \frac{\widehat{\text{Var.}}(\text{Method})}{\widehat{\text{Var.}}(\text{Baseline})}\right) \%. \quad (4.9)$$

Table 4. Variance Reduction Percentages Relative to Baseline

Estimator	VR T percent	VR I percent	VR F percent
Stratified vs Baseline	25.0%	22.2%	20.0%
CMC vs Baseline	50.0%	0.0%	0.0%

In Table 4, the Stratified NMC row shows reductions in Var_T , Var_I , and Var_F , because stratification targets heterogeneity across groups and phases. The CMC row shows the largest reduction in Var_T (by design), while Var_I and Var_F stay at baseline levels (we did not condition them).

4.7 Discussion of the Case Study

The case study maintains a strict neutrosophic structure throughout, representing every outcome as a triple (T, I, F) and preserving the interpretation of truth, indeterminacy, and falsity in every stage of analysis. At no point are these dimensions reduced to a single scalar value; instead, estimation and variance control are handled component-wise, in line with established neutrosophic theory [1,2].

From a methodological perspective, the framework is distinctive in its integration of three complementary strategies-stratified sampling, control variates, and conditional Monte Carlo-within a single neutrosophic estimation process. This triple-layer design has not been reported in the context of ethnic sports tourism before and provides a systematic way to reduce uncertainty while retaining the interpretive richness of the neutrosophic model [3].

From a practical standpoint, the interpretation of the results is straightforward yet informative. A higher mean truth value \bar{T} accompanied by a narrow confidence interval reflects a strong and reliable cultural benefit from the event. A moderate mean indeterminacy value \bar{I} alerts planners to ongoing ambiguity in visitor perceptions, suggesting the need for better communication or more immersive cultural experiences. Meanwhile, a small but non-zero mean falsity value \bar{F} indicates the presence of negative reactions-perhaps due to scheduling conflicts or cultural misunderstandings-which require targeted mitigation measures such as improved briefing materials or adjustments in program timing.

5. Formulas and Checks

Below are explicit formulas used in constructing Tables 2-4, so any reader can replicate:

Baseline means (component-wise):

$$\bar{T} = \frac{1}{N} \sum_{j=1}^N U_T(\omega_j), \bar{I} = \frac{1}{N} \sum_{j=1}^N U_I(\omega_j), \bar{F} = \frac{1}{N} \sum_{j=1}^N U_F(\omega_j). \quad (5.1)$$

Unbiased sample variances (component-wise):

$$s_T^2 = \frac{1}{N-1} \sum_{j=1}^N (U_T(\omega_j) - \bar{T})^2, \widehat{\text{Var}}(\bar{T}) = \frac{s_T^2}{N}, \quad (5.2)$$

(similar for I, F).

Stratified estimator (weighted):

$$\hat{\Theta}_{\cdot}^{(\text{strat})} = \sum_{(g,p)} w_{g,p} \bar{U}_{\cdot(g,p)}, w_{g,p} = \frac{n_{g,p}}{N_s}. \quad (5.3)$$

Control variates (each component $\cdot \in \{T, I, F\}$):

$$\bar{\Theta}_{\cdot} = \bar{U}_{\cdot} - \beta_{\cdot} (\bar{V}_{\cdot} - \mu_{\cdot}^V), \beta_{\cdot} = \frac{\text{Cov}(U_{\cdot}, V_{\cdot})}{\text{Var}(V_{\cdot})}. \quad (5.4)$$

Conditional MC for truth:

$$\bar{T}_{\text{CMC}} = \alpha \underbrace{\mathbb{E}[Y]}_{\text{known by phase}} + (1 - \alpha) \bar{Z}, U_T = \alpha Y + (1 - \alpha) Z. \quad (5.5)$$

Cl's (component-wise): use (4.3).
 You can verify the exact numeric values in the CSVs. The Python notebook calculations are deterministic (fixed seed), so your numbers will match exactly.

6. Theoretical Results

We denote by $U(\omega) = (U_T(\omega), U_I(\omega), U_F(\omega))^T \in \mathbb{R}^3$ a neutrosophic random vector (truth, indeterminacy, falsity). Let $\Theta = NE[U] = (\theta_T, \theta_I, \theta_F)^T$ be the triple expectation (Section 2). The baseline NMC estimator from N i.i.d. draws $\omega_1, \dots, \omega_N$ is

$$\hat{\Theta}_N = \frac{1}{N} \sum_{j=1}^N U(\omega_j) = (\bar{U}_T, \bar{U}_I, \bar{U}_F)^T. \quad (6.1)$$

Throughout, assume finite second moments $E\|U\|^2 < \infty$ and measurability under each neutrosophic component [1,2].

6.1 Strong Consistency (Neutrosophic SLLN)

Theorem 6.1 (Component-wise SLLN).

If $E[|U_T|] < \infty$, $E[|U_I|] < \infty$, and $E[|U_F|] < \infty$, then

$$\hat{\Theta}_N \xrightarrow{\text{a.s.}} \Theta \text{ as } N \rightarrow \infty. \quad (6.2)$$

Proof (sketch). Apply the classical SLLN separately to U_T, U_I, U_F . The triple convergence follows component-wise [3].

Remark 6.1. No normalization constraint $T + I + F = 1$ is required. If normalization holds, the limit remains the same, but the three components are linearly linked [1].

6.2 Asymptotic Normality (Neutrosophic CLT)

Define the covariance matrix

$$\Sigma = \text{Cov}(U) = \begin{pmatrix} \sigma_{TT} & \sigma_{TI} & \sigma_{TF} \\ \sigma_{IT} & \sigma_{II} & \sigma_{IF} \\ \sigma_{FT} & \sigma_{FI} & \sigma_{FF} \end{pmatrix}, 0 \leq \Sigma \in \mathbb{R}^{3 \times 3}. \quad (6.3)$$

Theorem 6.2 (Vector CLT).

If $E\|U\|^2 < \infty$ and the samples are i.i.d., then

$$\sqrt{N}(\hat{\Theta}_N - \Theta) \xrightarrow{d} \mathcal{N}_3(0, \Sigma). \quad (6.4)$$

Consequences. For large N , marginally

$$\bar{U}_{\cdot} \approx \mathcal{N}\left(\theta_{\cdot}, \frac{\sigma_{\cdot\cdot}}{N}\right), \cdot \in \{T, I, F\}, \quad (6.5)$$

which justifies the component-wise confidence intervals used in the case study (Eq. 4.3) [3].

Corollary 6.1 (Triple confidence ellipsoid).

An asymptotic $1 - \alpha$ joint CI for Θ is

$$\mathcal{E}_{1-\alpha} = \left\{ \theta \in \mathbb{R}^3 : N(\hat{\Theta}_N - \theta)^\top \hat{\Sigma}^{-1}(\hat{\Theta}_N - \theta) \leq \chi^2_{3,1-\alpha} \right\} \quad (6.6)$$

with $\hat{\Sigma}$ the sample covariance of $\{U(\omega_j)\}$ and $\chi^2_{3,1-\alpha}$ the chi-square quantile.

6.3 Stratified Neutrosophic Monte Carlo

Partition the population into G neutrosophic strata $\{\mathcal{S}_g\}_{g=1}^G$ (e.g., ethnic group \times phase, as in the case study). Let π_g be the stratum weight, n_g the allocated sample size, and $\Theta_g = NE[U | \mathcal{S}_g]$. The stratified estimator is

$$\hat{\Theta}^{\text{str}} = \sum_{g=1}^G \pi_g \hat{\Theta}_g, \hat{\Theta}_g = \frac{1}{n_g} \sum_{j \in \mathcal{S}_g} U(\omega_j). \quad (6.7)$$

Variance (first order):

$$\text{Var}(\hat{\Theta}^{\text{str}}) \approx \sum_{g=1}^G \frac{\pi_g^2}{n_g} \Sigma_g, \Sigma_g = \text{Cov}(U | \mathcal{S}_g) \quad (6.8)$$

To optimize allocation across the triple, choose weights $w_T, w_I, w_F \geq 0, w_T + w_I + w_F = 1$, and minimize the scalarized objective

$$\Phi(n_1, \dots, n_G) = w_T \text{Var}(\bar{U}_T^{\text{str}}) + w_I \text{Var}(\bar{U}_I^{\text{str}}) + w_F \text{Var}(\bar{U}_F^{\text{str}}). \quad (6.9)$$

Theorem 6.3 (Triple Neyman allocation).

Let $S_{g,0}^2$ be the within-stratum variance of U . Then a near-optimal allocation is

$$n_g \propto \pi_g \sqrt{w_T S_{g,T}^2 + w_I S_{g,I}^2 + w_F S_{g,F}^2} \quad (6.10)$$

Sketch. Differentiate (6.9) under $\sum_g n_g = N_s$ and apply Cauchy-Schwarz; this generalizes classical Neyman allocation to a triple-component loss [3]. Equation (6.10) explains why the case study's stratification (Section 4.3) reduces all three variances in Table 2 and yields positive VR% in Table 4.

6.4 Control Variates

Let $V = (V_T, V_I, V_F)^\top$ be an auxiliary neutrosophic variable with known $NE[V] = \mu^V$.

Define the adjusted estimator

$$\tilde{\Theta} = \hat{\Theta}_N - B(\hat{V}_N - \mu^V), B = \text{diag}(\beta_T, \beta_I, \beta_F), \quad (6.11)$$

where $\beta_j = \frac{\text{Cov}(U, V_j)}{\text{Var}(V_j)}$. Then

$$\text{Var}(\tilde{\Theta}) = \text{Var}(\hat{\Theta}_N) - BC\text{ov}(\hat{V}_N, \hat{U}_N)^\top - \text{Cov}(\hat{U}_N, \hat{V}_N)B + B\text{Var}(\hat{V}_N)B \quad (6.12)$$

Corollary 6.2 (Non-negativity of variance drop).

For each component,

$$\text{Var}(\tilde{\Theta}_j) = \frac{1}{N} \sigma_j (1 - \rho_j^2), \rho_j^2 = \frac{\text{Cov}(U, V_j)^2}{\text{Var}(U) \text{Var}(V_j)}. \quad (6.13)$$

Hence $\text{Var}(\tilde{\Theta}_j) \leq \text{Var}(\hat{\Theta}_j)$, with equality iff $\rho_j = 0$ [3].

Link to case study. Table 3 shows β and adjusted variances; Table 4 reports the realized VR%.

6.5 Conditional Neutrosophic Monte Carlo (CMC)

Suppose

$$U_T = \alpha Y + (1 - \alpha)Z, 0 \leq \alpha \leq 1, \quad (6.14)$$

with Y observable and $\mu_Y := E[Y | \mathcal{I}]$ known (e.g., phase-level rate), and Z independent of \mathcal{I} . Define

$$\bar{T}_{\text{CMC}} = \alpha \mu_Y + (1 - \alpha)\bar{Z}, \bar{T} = \alpha \bar{Y} + (1 - \alpha)\bar{Z} \quad (6.15)$$

Theorem 6.4 (Variance dominance).

$$\text{Var}(\bar{T}_{\text{CMC}}) = (1 - \alpha)^2 \text{Var}(\bar{Z}) \leq \alpha^2 \text{Var}(\bar{Y}) + (1 - \alpha)^2 \text{Var}(\bar{Z}) = \text{Var}(\bar{T}), \quad (6.16)$$

with strict inequality if $\alpha > 0$ and $\text{Var}(\bar{Y}) > 0$.

Link to case study. This is exactly the reduction we observe for Var_T in the CMC row of Table 2 and the VR% for T in Table 4.

6.6 Joint Efficiency Comparison

Let $\mathcal{M} \in \{ \text{Baseline, Stratified, CV, CMC} \}$. Define component-wise relative efficiency.

$$\text{RE.}(\mathcal{M}; \text{Base}) = \frac{\text{Var.}(\text{Base})}{\text{Var.}(\mathcal{M})}, \in \{T, I, F\}. \quad (6.17)$$

The variance-reduction percentage is $\text{VR.} = 100(1 - 1/\text{RE.})\%$. In Table 4, VR_T is largest for CMC, while the Stratified estimator improves all three components simultaneously-consistent with (6.8)-(6.10) and (6.16).

6.7 Normalization and Robustness

Neutrosophic triples need not satisfy $T + I + F = 1$ in general [1,2]. All results above remain valid without normalization, because the estimators act component-wise and the CLT is multivariate. Under normalization, Σ in (6.3) has reduced rank, but marginal Cls(6.5) and the ellipsoid (6.6) still hold with the empirical $\hat{\Sigma}$.

8. Conclusion

This paper introduced a Neutrosophic Monte Carlo framework for modeling cultural participation and impact in ethnic sports tourism under uncertainty and indeterminacy. By representing each outcome as a triple (T,I,F) truth, indeterminacy, and falsity we provided a component-wise estimation theory supported by strong consistency, asymptotic normality, and variance-reduction results.

The case study demonstrated that:

- Stratified sampling across cultural and temporal layers lowers all component variances.
- Control variates further improve precision when auxiliary neutrosophic signals are available.
- Conditional Monte Carlo yields the largest variance reduction for the truth component when part of it is analytically predictable.

The proposed framework is fully mathematical, yet flexible enough to incorporate diverse cultural contexts and event structures. It also supports practical decision-making: high truth-values with narrow intervals signal robust cultural benefits, while large indeterminacy or falsity components highlight areas needing clarification or mitigation.

Limitations

The framework relies on accurate specification of neutrosophic measures and may require expert input for realistic parameterization in new cultural settings. Also, sampling designs assume reasonable independence within strata.

Future Work

Potential extensions include:

1. Dynamic neutrosophic models for multi-day festivals.
2. Integration with neutrosophic Bayesian updating for real-time decision support.
3. Coupling with optimization algorithms for scheduling and resource allocation under triple uncertainty.

By uniting neutrosophic logic with advanced Monte Carlo methods, this research sets a rigorous foundation for analyzing and improving ethnic sports tourism events in settings where both randomness and indeterminacy matter.

References

1. Smarandache, F. (2005). *A Unifying Field in Logics: Neutrosophic Logic, Neutrosophy, Neutrosophic Set, Neutrosophic Probability*. American Research Press.
2. Smarandache, F. (2014). *Introduction to Neutrosophic Probability and Statistics*. Pons Editions.
3. Rubinstein, R. Y., & Kroese, D. P. (2017). *Simulation and the Monte Carlo Method* (3rd ed.). Wiley.
4. Smarandache, F., & Pramanik, S. (2018). *New Trends in Neutrosophic Theories and Applications*. Pons Editions.
5. Kroese, D. P., Brereton, T., Taimre, T., & Botev, Z. I. (2014). Why the Monte Carlo method is so important today. *Wiley Interdisciplinary Reviews: Computational Statistics*, 6(6), 386–392. <https://doi.org/10.1002/wics.1314>
6. Ye, J. (2014). Multicriteria decision-making method using the correlation coefficient under single-valued neutrosophic environment. *International Journal of General Systems*, 43(4), 386–394. <https://doi.org/10.1080/03081079.2014.880408>

Received: Feb 19, 2025. Accepted: Aug 12, 2025