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Abstract-With the proliferation of smart agricultural initiatives in the digital economy, a significant 

increase in uncertainties has arisen in how stakeholders interact across different dimensions. 

Existing neutrosophic models, including neutrosophic graphs, failed to model structural realities 

that govern these interactions. To address this challenge, this study presents a novel mathematical 

framework, topology-aware neutrosophic graphs, that integrates neutrosophic graph theories with 

domain-specific topological constraints for modeling enterprise connectivity. Our key 

contributions include: 1) providing formal definition of topology-aware neutrosophic graphs 

theory that integrate neutrosophic uncertainty with structural constraints; 2) presenting 

customized operations and analytical tools for exploring graph properties under topological 

constraints; and 3) demonstrating through a detailed case study how our framework reduces 

uncertainty and improves interpretability compared to custom approaches. We study the 

applicability of the proposed framework on a real case study, and the results show the ability to 

capture uncertainty more realistically while filtering implausible relationships. Based on 

comparative analysis against topology-agnostic models, we prove the benefits of our framework 

in reducing network ambiguity and enhancing interpretability. 

Keywords: Neutrosophic Sets; Neutrosophic Graph Theory; Uncertainty Modeling; Graph 
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1. Introduction 

Agricultural enterprises encompass a broad range of entities involved in the production, 

processing, distribution, and commercialization of agricultural goods and services [1]. These 

enterprises form the backbone of national and global food systems, involving actors such as 

farmers, cooperatives, agri-processors, distributors, agri-tech companies, and policy regulators [2], 

[3]. Traditionally, these enterprises have operated in siloed and often manual environments with 

limited automation, data sharing, or systemic coordination. 
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The rapid advancement of digital technologies has initiated a paradigm shift across agricultural 

value chains [4], [5]. The integration of tools such as Internet of Things (IoT) devices, remote 

sensing, data analytics, cloud computing, blockchain, and artificial intelligence has led to the 

emergence of smart agricultural enterprises. In this context, “smart” refers to the ability of 

enterprises to use real-time data and digital intelligence for optimizing decisions, automating 

operations, enhancing collaboration, and increasing adaptability across interconnected agricultural 

systems, as shown in Figure 1. 

Modeling uncertainty in such interconnected systems is crucial for ensuring robust 

decision-making, adaptability, and operational resiliency. Traditional mathematical and graph-

based models often fall short in modeling the multifaceted nature of uncertainty that stems from 

incomplete, imprecise, or conflicting information inherent in the agricultural enterprise ecosystem. 

Motivated by that, we explore more expressive frameworks that can handle degrees of 

indeterminacy. 

Figure 1. Visualization of core components and interactions in a smart agricultural enterprise. 

Neutrosophic graph theory [6], [7] offers a powerful extension to classical and fuzzy graph 

models by incorporating neutrosophic sets, which allow each element to have levels of truth (T), 

indeterminacy (I), and falsity (F) [8], [9]. This makes it particularly suitable for representing the 

uncertainty-laden interactions within digital agricultural networks. Furthermore, incorporating 

topological awareness into neutrosophic graph structures enables an ironic representation of 

spatial, functional, and logical connectivity among enterprise components, which enhances the 

ability to analyze multifaceted interdependencies. 

In this paper, we introduce a novel framework titled Topology-Aware Neutrosophic 

Graph Structures (TANGS), aimed at modeling and analyzing interactions in smart agricultural 

enterprises. The main contributions of this work are: 

 Formalization of TANGS theory and related properties and operations, including union, 

complement, Cartesian product, and join, according to structural conditions. 
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 Application of the proposed TANGS to scenarios in smart agricultural enterprises, 

showcasing how it captures the uncertainty and topological intricacies of digital 

interactions. 

 Quantitative and Qualitative analysis of topology-aware neutrosophic graphs 

representing real or hypothetical agri-enterprise systems to validate the expressive power 

of the framework. 

The left part of this study is structured into 4 main sections. Section 2 discusses fundamental 

concepts and operations in neutrosophic graph theory. Section 3 introduces the topology-aware 

neutrosophic graph framework. Section 4 argues the application in the modeling of smart 

agricultural enterprises. Section 5 presents a discussion, and Section 7 concludes our research and 

charts out the potential directions for future work. 

2. Preliminaries and Fundamental Definitions 

Definition 1.  Given 𝑋 be a universe of discourse. A Neutrosophic Set 𝐴 in 𝑋 is characterized by 

membership functions, including truth-membership 𝑇𝐴, an indeterminacy-membership 𝐼𝐴, and a 

falsity-membership, 𝐹𝐴, such that: 

 
𝐴 = {⟨𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)⟩: 𝑥 ∈ 𝑋}, 

where 
𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ∈ [0

−, 1+] 

(1) 

and 0−and 1+denote possible non-standard values slightly less than 0 and slightly greater than 1, 

which allow paraconsistent and over-/under-defined modeling. 

Definition 2.  Given 𝑉 be a non-empty set of vertices, a neutrosophic graph 𝔊 = 〈𝛹 , 𝛺〉 is defined 

over 𝑉 with neutrosophic vertex set 𝛹 = {〈𝑇𝜎𝛹
𝑅 (𝑣̀𝑗), 𝐼𝜎𝛹

𝑁 (𝑣̀𝑗), 𝐹𝜎𝛹
𝑆 (𝑣̀𝑗)〉: 𝑣𝑖 ∈ 𝑉} and neutrosophic edge 

set 𝛺 = {〈𝑇𝜎𝛺
𝑅  (𝑣̀𝑖 , 𝑣̀𝑗)

 , 𝐼𝜎𝛺
𝑁  (𝑣̀𝑖 , 𝑣̀𝑗)

 , 𝐹𝜎𝛺
𝑆  (𝑣̀𝑖 , 𝑣̀𝑗)〉: (𝑣̀𝑖 , 𝑣̀𝑗) ∈ 𝑉 × 𝑉}, such that 𝑇𝑅𝜎𝜳, 𝐼

𝑁𝜎𝜳, and 𝐹𝑆𝜎𝜳 denote 

membership function mappings from V to the closed interval [0,1] , for each vertex 𝑣𝑖 ∈ 𝑉 .   

The following conditions must hold for all 𝑣𝑖 ∈ 𝑉, and (𝑣̀𝑖 , 𝑣̀𝑗) ∈ 𝑉 × 𝑉: 

I. Vertex Constraint 

 
0 ≤ 𝑇𝜎𝛹

𝑅 (𝑣𝑖) + 𝐼𝜎𝛹
𝑁 (𝑣𝑖) + 𝐹𝜎𝛹

𝑆 (𝑣𝑖) ≤ 3 (2) 

II. Edge Constraints 
 

𝑇𝜎𝛺
𝑅 (𝑣̀𝑖𝑣̀𝑗) ≤ min(𝑇𝜎𝜳

𝑅 (𝑣̀𝑖), 𝑇𝜎𝜳
𝑅 (𝑣̀𝑗)), 

𝐼𝜎𝛺
𝑁 (𝑣̀𝑖𝑣̀𝑗) ≤ min(𝐼𝜎𝜳

𝑁 (𝑣̀𝑖), 𝐼𝜎𝜳
𝑁 (𝑣̀𝑗)), 

𝐹𝜎𝛺
𝑆 (𝑣̀𝑖𝑣̀𝑗) ≥ max(𝐹𝜎𝜳

𝑆 (𝑣̀𝑖), 𝐹𝜎𝜳
𝑆 (𝑣̀𝑗)) 

(3) 

III. Edge Summation Constraint 

 (4) 
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0 ≤ 𝑇𝜎𝛺
𝑅 (𝑣̀𝑖 , 𝑣̀𝑗) + 𝐼𝜎𝛺

𝑁 (𝑣̀𝑖 , 𝑣̀𝑗) + 𝐹𝜎𝛺
𝑆 (𝑣̀𝑖 , 𝑣̀𝑗) ≤ 3 

Definition 3. Given 𝔊 = 〈𝛹 , 𝛺〉 as neutrosophic graph, then, the order of this graph is computed as:  

𝑂(𝔊) = (∑ 𝑇𝑅𝜎𝛹(𝑣̀)𝑣̀∈𝑉
,∑ 𝐼𝑁𝜎𝛹(𝑣̀)𝑣̀∈𝑉

,∑ 𝐹𝑆𝜎𝛹(𝑣̀) 𝑣̀∈𝑉
)  (5) 

while the degree of each vertex 𝑣̀ in G is computed as: 

𝔇(𝔊) = (∑ 𝑇𝑅𝜎𝛺(𝑣̀, 𝜐̀)𝑣̀∈𝛺
,∑ 𝐼𝑁𝜎𝛺(𝑣̀, 𝜐̀)𝑣̀∈𝛺

,∑ 𝐹𝑆𝜎𝛺(𝑣̀, 𝜐̀)𝑣̀∈𝛺
) (6) 

 

Example 1. Given 𝐴 = {𝑎, 𝑏, 𝑐, 𝑑}  and 𝐵 = {(𝑎, 𝑏), (𝑎, 𝑐), (𝑏, 𝑐), (𝑎, 𝑑)}  on 𝔊 = 〈𝛹 , 𝛺〉  where 𝑉  is 

neutrosophic graph subset of 𝜳, and 𝐸 is a neutrosophic graph subset of 𝐸 ⊆ 𝑉 × 𝑉, as given: 

𝑉 = (
(0.32, 0.14, 0.45)

𝑎
,
(0.64, 0.42, 0.31)

𝑏
,
(0.87, 0.54, 0.31)

𝑐
,
(0.41, 0.23, 0.28)

𝑑
) 

𝐸 = (
(0.33, 0.17, 0.26)

𝑎, 𝑏
,
(0.71, 0.43, 0.38)

𝑎, 𝑐
,
(0.82, 0.51, 0.16)

𝑏, 𝑐
,
(0.53, 0.28, 0.23)

𝑎, 𝑑
) . 

Figure 2 illustrates the neutrosophic graph corresponding to Example 1, where each vertex and 

edge is characterized by a neutrosophic triplet. The set of vertices 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑} and the set of 

edges 𝐸 = {𝑎𝑏, 𝑎𝑐, 𝑏𝑐, 𝑎𝑑} are enriched with their associated neutrosophic values, providing a more 

expressive structure for modeling uncertainty in complex networks.  

The order of the neutrosophic graph is expressed as follows 𝑂(𝔊) = (2.34, 2.08, 1.95), while the 

individual degree of each vertex is given as follows: 

𝔇(𝑎)  =  (1.18, 1.05, 1.40), 𝔇(𝑏)  =  (1.60, 0.90, 0.42), 

𝔇(𝑐)  =  (0.91, 0.74, 0.82),𝔇(𝑑)  =  (0.23, 0.31, 0.68) 

Figure 2. Neutrosophic Graph Representation of Example 1 with Neutrosophic 

Triplets Assigned to Nodes and Edges. 
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0 ≤ 𝑇𝜎𝛺
𝑅 (𝑣̀𝑖𝑣̀𝑗) + 𝐼𝜎𝛺

𝑁 (𝑣̀𝑖𝑣̀𝑗) + 𝐹𝜎𝛺
𝑆 (𝑣̀𝑖𝑣̀𝑗) ≤ 3 (7) 

 

Definition 4. Given two neutrosophic graphs 𝔊1 = 〈𝛹1
 , 𝛺1〉, 𝑎𝑛𝑑 𝔊2 = 〈𝛹2

 , 𝛺2〉 defined over vertex 

sets 𝑉1 and 𝑉2, respectively; then, the Cartesian product of 𝔊1, 𝑎𝑛𝑑 𝔊2 defined as: 

𝔊1 ×𝔊2 = 〈𝛺1
 × 𝛺2

 , 𝜳1
 × 𝜳2〉, (8) 

with the following component-wise mappings: 

I. Edge Neutrosophic Components (for all (𝑣̀𝑖, 𝑣̀𝑗) ∈ 𝑉 × 𝑉) 

 
𝑇𝑅𝜎𝛺1×𝛺2(𝑣̀1, 𝑣̀2) = 𝑚𝑖𝑛{𝑇

𝑅𝜎𝛺1(𝑣̀1), 𝑇
𝑅𝜎𝛺2(𝑣̀2)}

𝐼𝑁𝜎𝛺1×𝛺2(𝑣̀1, 𝑣̀2) = 𝑚𝑖𝑛{𝐼
𝑁𝜎𝛺1(𝑣̀1), 𝐼

𝑁𝜎𝛺2(𝑣̀2)}

𝐹𝑆𝜎𝛺1×𝛺2(𝑣̀1, 𝑣̀2) = 𝑚𝑎𝑥{𝐹
𝑆𝜎𝛺1(𝑣̀1),𝐹

𝑆𝜎𝛺2(𝑣̀2)}

 
(9) 

 

II. Vertex Neutrosophic Components (for all (𝑣̀𝑖 , 𝑣̀𝑗) ∈ 𝑉 × 𝑉) 

 
𝑇𝑅𝜎𝜳1×𝜳2(𝑣̀1, 𝑣̀2) = 𝑚𝑖𝑛{𝑇𝑅𝜎𝜳1(𝑣̀1), 𝑇

𝑅𝜎𝜳2(𝑣̀2)}

𝐼𝑁𝜎𝜳1×𝜳2(𝑣̀1, 𝑣̀2) = 𝑚𝑖𝑛{𝐼𝑁𝜎𝜳1(𝑣̀1), 𝐼
𝑁𝜎𝜳2(𝑣̀2)}

𝐹𝑆𝜎𝜳1×𝜳2(𝑣̀1, 𝑣̀2) = 𝑚𝑎𝑥{𝐹𝑆𝜎𝜳1(𝑣̀1),𝐹
𝑆𝜎𝜳2(𝑣̀2)}

 

 

(10) 

III. Edge Set Mapping (for all (𝑣̀𝑖 , 𝑣̀𝑗) ∈ 𝑉 × 𝑉) 

𝑇𝑅𝜎𝜳1×𝜳2((𝑣̀1, 𝑡̀), (𝜐̀1 , 𝑡̀)) = 𝑚𝑖𝑛{𝑇𝑅𝜎𝜳1(𝑣̀1𝜐̀1), 𝑇
𝑅𝜎̀𝜳2(𝑡̀)}

𝐼𝑁𝜎𝜳1×𝜳2((𝑣̀1, 𝑡̀), (𝜐̀1, 𝑡̀)) = 𝑚𝑖𝑛{𝐼𝑁𝜎𝜳1(𝑣̀1𝜐̀1), 𝐼
𝑁𝜎̀𝜳2(𝑡̀)}

𝐹𝑆𝜎𝜳1×𝜳2((𝑣̀1, 𝑡̀), (𝜐̀1 , 𝑡̀)) = 𝑚𝑎𝑥{𝐹𝑆𝜎𝜳1(𝑣̀1𝜐̀1), 𝐹
𝑆𝜎̀𝜳2(𝑡̀)}

 (11) 

 

Example 2. Given neutrosophic graph 𝔊1  with vertex set 𝑉1 = {(0.7,0.2,0.1)⏟        
𝑎

, (0.6,0.3,0.2)⏟        
 𝑏

}, and 

Edge set  𝐸1 = (0.5,0.2,0.3)⏟        
(a,b)

; and neutrosophic graph 𝔊2  with vertex set 𝑉2 =

{(0.9,0.1,0.0)⏟        
𝑥

, (0.6,0.2,0.4)⏟        
𝑦

, (0.5,0.3,0.5)⏟        
𝑧

}, and  Edge set 𝐸2 = (0.8,0.2,0.3)⏟        
(x,y)

, (0.4,0.3,0.6)⏟        
(y,z)

. Then, the 

Vertex Set of cartesian product is formed as G1 × G2 = {(a, x), (a, y), (a, z), (b, x), (b, y), (b, z)} , as 

shown in Figure 3. 

Definition 5. Given 𝔊1 ×𝔊2 as a product neutrosophic graph. The degree of a vertex in G1 × G2 

could be computed as bellows. For any (𝑣̀1, 𝑣̀2) ∈ 𝑉1 × 𝑉2 : 

 (12) 
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𝔇𝔊1×𝔊2(𝑣̀1, 𝑣̀2) =

(

 
 
 
 

∑ 𝑇𝑅𝜎𝜳1×𝜳2((𝑣̀1, 𝑣̀2), (𝜐̀1 , 𝜐̀2)),
(𝑣̀1,𝑣̀2)(𝜐̀1,𝜐̀2)∈𝐸

∑ 𝐼𝑁𝜎𝜳1×𝜳2((𝑣̀1, 𝑣̀2), (𝜐̀1 , 𝜐̀2))
(𝑣̀1,𝑣̀2)(𝜐̀1,𝜐̀2)∈𝐸

,

∑ 𝐹𝑆𝜎𝜳1×𝜳2((𝑣̀1, 𝑣̀2), (𝜐̀1 , 𝜐̀2)).
(𝑣̀1,𝑣̀2)(𝜐̀1,𝜐̀2)∈𝐸 )
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Definition 6. Let 𝔊1 = 〈𝛹1, 𝛺1〉, and 𝔊2 = 〈𝛹2 , 𝛺2〉 be two neutrosophic graphs, the composition of 

𝔊1  and 𝔊2 , denoted as 𝔊1 ∘ 𝔊2 = 〈𝛺1
 ∘ 𝛺2

 ,  𝛹1
 ∘ 𝛹2〉 is defined on the vertex set 𝑉 = 𝑉1 × 𝑉2   with 

neutrosophic mappings constructed as follows: 

Figure 3. Cartesian product of neutrosophic graphs 〈𝔊1 ×𝔊2〉 from Example 2. 
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I. Edge-Based Composition (Pair of vertices (𝑣1, 𝑣2) ∈ 𝑉1 × 𝑉2  ): 

 

𝑇𝜎𝛺1∘𝛺2
𝑅 (𝑣1, 𝑣2) = min{𝑇𝜎_𝛺1

𝑅 (𝑣1), 𝑇𝜎𝛺1
𝑅 (𝑣2)} ,

𝐼𝜎𝛺1∘𝛺2
𝑁 (𝑣1, 𝑣2) = min{𝐼𝜎_𝛺1

𝑁 (𝑣1), 𝐼𝜎𝛺1
𝑁 (𝑣2)} ,

𝐹𝜎𝛺1∘𝛺2
𝑆 (𝑣1, 𝑣2) = max{𝐹𝜎𝛺1

𝑆 (𝑣1), 𝐹𝜎𝛺1
𝑆 (𝑣2)} .

 
(13) 

II. Vertex-Based Composition (for all 𝑣1 ∈ 𝑉1, and 𝑣2, 𝑢2 ∈ 𝑉2, with (𝑣2, 𝑢2) ∈ 𝐸2 ): 

 

𝑇𝜎𝛺1∘𝛺2
𝑅 (𝑣1, 𝑣2) = min{𝑇𝜎_𝛺1

𝑅 (𝑣1), 𝑇𝜎𝛺1
𝑅 (𝑣2)}

𝐼𝜎𝛺1∘𝛺2
𝑁 (𝑣1, 𝑣2) = min{𝐼𝜎_𝛺1

𝑁 (𝑣1), 𝐼𝜎𝛺1
𝑁 (𝑣2)}

𝐹𝜎𝛺1∘𝛺2
𝑆 (𝑣1, 𝑣2) = max{𝐹𝜎_𝛺1

𝑆 (𝑣1),𝐹𝜎𝛺1
𝑆 (𝑣2)}

 
(14) 

III. Edges from 𝔊1 with fixed vertex 𝑡 ∈ 𝑉2  : 

For all 𝑡 ∈ 𝑉2, and (𝑣1, 𝑢1) ∈ 𝐸1 : 

 

𝑇𝜎𝛺1∘𝛺2
𝑅 ((𝑣1, 𝑡), (𝑢1, 𝑡)) = min{𝑇𝜎𝛺1

𝑅 (𝑣1, 𝑢1), 𝑇𝜎𝛺2
𝑅 (𝑡)}

𝐼𝜎𝛺1∘𝛺2
𝑁 ((𝑣1, 𝑡), (𝑢1, 𝑡)) = min{𝐼𝜎𝛺1

𝑁 (𝑣1, 𝑢1), 𝐼𝜎𝛺2
𝑁 (𝑡)}

𝐹𝜎𝛺1∘𝛺2
𝑆 ((𝑣1, 𝑡), (𝑢1, 𝑡)) = max{𝐹𝜎𝛺1

𝑆 (𝑣1, 𝑢1), 𝐹𝜎𝛺2
𝑆 (𝑡)}

 
(15) 

IV. Full Composition Edges (for all (𝑣1, 𝑣2), (𝑢1, 𝑢2) ∈ 𝑉1 × 𝑉2, with (𝑣1, 𝑢1) ∈ 𝐸1 and 𝑣2 ≠

𝑢2 ): 

 

𝑇𝜎𝛺1∘𝛺2
𝑅 ((𝑣1, 𝑣2), (𝑢1, 𝑢2)) = min{𝑇𝜎𝛺2

𝑅 (𝑣2), 𝑇𝜎𝛺2
𝑅 (𝑢2), 𝑇𝜎𝛺1

𝑅 (𝑣1, 𝑢1)} ,

𝐼𝜎𝛺1∘𝛺2
𝑁 ((𝑣1, 𝑣2), (𝑢1, 𝑢2)) = min{𝐼𝜎𝛺2

𝑁 (𝑣2), 𝐼𝜎𝛺2
𝑁 (𝑢2), 𝐼𝜎𝛺1

𝑁 (𝑣1, 𝑢1)} ,

𝐹𝜎𝛺1∘𝛺2
𝑆 ((𝑣1, 𝑣2), (𝑢1, 𝑢2)) = max{𝐹𝜎𝛺2

𝑆 (𝑣2), 𝐹𝜎𝛺2
𝑆 (𝑢2), 𝐹𝜎𝛺1

𝑆 (𝑣1, 𝑢1)} .

 
(16) 

 

Definition 7. Given 𝔊1 ∘ 𝔊2  as a neutrosophic graph, then the degree of a vertex in 𝔊1 ∘ 𝔊2  is 

defined as follows: for any (𝑣̀1, 𝑣̀2) ∈ 𝑉1 ∘ 𝑉2 , 

 

𝔇𝔊1∘𝔊2(𝑣̀1, 𝑣̀2) =

(

 
 
 
 

∑ 𝑇𝑅𝜎𝜳1∘𝜳2((𝑣̀1, 𝑣̀2), (𝜐̀1 , 𝜐̀2)),
(𝑣̀1,𝑣̀2)(𝜐̀1,𝜐̀2)∈𝐸

∑ 𝐼𝑁𝜎𝜳1∘𝜳2((𝑣̀1, 𝑣̀2), (𝜐̀1 , 𝜐̀2))
(𝑣̀1,𝑣̀2)(𝜐̀1,𝜐̀2)∈𝐸

,

∑ 𝐹𝑆𝜎𝜳1∘𝜳2((𝑣̀1, 𝑣̀2), (𝜐̀1, 𝜐̀2))
(𝑣̀1,𝑣̀2)(𝜐̀1,𝜐̀2)∈𝐸

.
)

 
 
 
 

 
(17) 
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Example 3. Given neutrosophic graph 𝔊1  with vertex set 𝑉1 = {(0.7,0.2,0.1)⏟        
𝑎

, (0.6,0.3,0.2)⏟        
 𝑏

},  and 

Edge set  𝐸1 = (0.5,0.2,0.3)⏟        
(a,b)

; and neutrosophic graph 𝔊2  with vertex set 𝑉2 =

{(0.9,0.1,0.0)⏟        
𝑥

, (0.6,0.2,0.4)⏟        
𝑦

}, and  Edge set 𝐸2 = {(0.8,0.1,0.4)⏟        
(x,y)

} , their composition, their composition 

𝔊1 ∘ 𝔊2  is shown in Figure 4. 

 

Definition 8.  Let 𝔊1 = 〈𝛹1 , 𝛺1〉, and 𝔊2 = 〈𝛹2, 𝛺2〉 be two neutrosophic graphs, the union of 𝔊1 

and 𝔊2 , denoted as 𝔊1 ∪ 𝔊2 = 〈Ω1
 ∪  Ω2

 ,  Ψ1
 ∪ Ψ2〉  is defined on the vertex set 𝑉 = 𝑉1 × 𝑉2   as 

described below: 

Vertex Membership Functions 

I. If 𝑣 ∈ 𝑉1 ∖ 𝑉2, then: 

 
𝑇𝛺1∪𝛺2
𝑅 (𝑣) = 𝑇𝜎𝛺1

𝑅 (𝑣)

𝐼𝛺1∪𝛺2
𝑁 (𝑣) = 𝐼𝜎𝛺1

𝑁 (𝑣)

𝐹𝛺1∪𝛺2
𝑆 (𝑣) = 𝐹𝜎𝛺1

𝑆 (𝑣)

 
(18) 

II. If 𝑣 ∈ 𝑉2 ∖ 𝑉1, then: 

Figure 4. Composition of neutrosophic graphs  𝔊1 ∘ 𝔊2 from Example 3. 
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𝑇𝜎𝛺1∪𝛺2
𝑅 (𝑣) = 𝑇𝜎𝛺2

𝑅 (𝑣)

𝐼𝜎𝛺1∪𝛺2
𝑁 (𝑣) = 𝐼𝜎𝛺2

𝑁 (𝑣)

𝐹𝜎𝛺1∪𝛺2
𝑆 (𝑣) = 𝐹𝜎𝛺2

𝑆 (𝑣)

 
(19) 

III. If 𝑣 ∈ 𝑉1 ∩ 𝑉2, then: 

 

𝑇𝜎𝛺1∪𝛺2
𝑅 (𝑣) = max{𝑇𝜎𝛺1

𝑅 (𝑣), 𝑇𝜎𝛺2
𝑅 (𝑣)}

𝐼𝜎𝛺1∪𝛺2
𝑁 (𝑣) = max{𝐼𝜎𝛺1

𝑁 (𝑣), 𝐼𝜎𝛺2
𝑁 (𝑣)}

𝐹𝜎𝛺1∪𝛺2
𝑆 (𝑣) = min{𝐹𝜎𝛺1

𝑆 (𝑣), 𝐹𝜎𝛺2
𝑆 (𝑣)}

 
(20) 

Edge Membership Functions: Let (𝑣,𝜔) ∈ 𝐸1 ∪ 𝐸2, then, 

I. If (𝑣,𝜔) ∈ 𝐸1 ∖ 𝐸2, then: 

 
𝑇𝜎𝛺1∪𝛺2
𝑅 (𝑣,𝜔) = 𝑇𝜎𝛺1

𝑅 (𝑣,𝜔)

𝐼𝜎𝛺1∪𝛺2
𝑁 (𝑣,𝜔) = 𝐼𝜎𝛺1

𝑁 (𝑣, 𝜔)

𝐹𝜎𝛺1∪𝛺2
𝑆 (𝑣,𝜔) = 𝐹𝜎𝛺1

𝑆 (𝑣, 𝜔)

 
(21) 

II. If (𝑣,𝜔) ∈ 𝐸2 ∖ 𝐸1, then: 

 
𝑇𝜎𝛺1∪𝛺2
𝑅 (𝑣,𝜔) = 𝑇𝜎𝛺2

𝑅 (𝑣,𝜔)

𝐼𝜎𝛺1∪𝛺2
𝑁 (𝑣,𝜔) = 𝐼𝜎𝛺2

𝑁 (𝑣, 𝜔)

𝐹𝜎𝛺1∪𝛺2
𝑆 (𝑣,𝜔) = 𝐹𝜎𝛺2

𝑆 (𝑣, 𝜔)

 
(22) 

III. If (𝑣,𝜔) ∈ 𝐸1 ∩ 𝐸2, then: 

 

𝑇𝜎𝛺1∪𝛺2
𝑅 (𝑣,𝜔) = max{𝑇𝜎𝛺1

𝑅 (𝑣, 𝜔), 𝑇𝜎𝛺2
𝑅 (𝑣, 𝜔)}

𝐼𝜎𝛺1∪𝛺2
𝑁 (𝑣,𝜔) = max{𝐼𝜎𝛺1

𝑁 (𝑣, 𝜔), 𝐼𝜎𝛺2
𝑁 (𝑣,𝜔)}

𝐹𝜎𝛺1∪𝛺2
𝑆 (𝑣,𝜔) = min{𝐹𝜎𝛺1

𝑆 (𝑣,𝜔), 𝐹𝜎𝛺2
𝑆 (𝑣,𝜔)}

 
(23) 

 

Example 4. Given neutrosophic graph 𝔊1  and 𝔊2  presented in Figure 5, with vertex set 𝑉1 =

{(0.7,0.2,0.1)⏟        
𝑎

, (0.6,0.3,0.2)⏟        
 𝑏

}, and Edge set  𝐸1 = (0.5,0.2,0.3)⏟        
(a,b)

; while neutrosophic graph 𝔊2  with 

vertex set 𝑉2 = {(0.8,0.1,0.4)⏟        
𝑏

, (0.5,0.2,0.3)⏟        
𝑐

}, and  Edge set 𝐸2 = {(0.6,0.1,0.2)⏟        
(𝑏,𝑐)

} , their union  𝔊1 ∪ 𝔊2  

is shown in Figure 5. 
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Definition 9 ([10]). Let 𝔊1 = 〈𝛹1 , 𝛺1〉, and 𝔊2 = 〈𝛹2, 𝛺2〉 be two neutrosophic graphs such that their 

vertex sets are disjoint, i.e., 𝑉1 ∩ 𝑉2 = ∅ ; Then, the join of 𝔊1  and 𝔊2 , denoted by 𝔊1 +𝔊2 =

⟨𝛹1 + 𝛹2 , 𝛺1 +𝛺2⟩, and is defined by the following neutrosophic membership functions: 

I. Vertex Memberships 

For every vertex 𝑣 ∈ 𝑉1 ∪ 𝑉2The truth, indeterminacy, and falsity values in the join graph are 

inherited from the union: 

 
𝑇𝜎𝛺1+𝛺2
𝑅 (𝑣) = 𝑇𝜎𝛺1∪𝛺2

𝑅 (𝑣)

𝐼𝜎𝛺1+𝛺2
𝑁 (𝑣) = 𝐼𝜎𝛺1∪𝛺2

𝑁 (𝑣)

𝐹𝜎𝛺1+𝛺2
𝑆 (𝑣) = 𝐹𝜎𝛺1∪𝛺2

𝑆 (𝑣)

 
(24) 

II. Edge Memberships 

Figure 5. Union of neutrosophic graphs  𝔊1 ∪𝔊2 from Example 4. 
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Let (𝑣,𝜔) ∈ 𝐸1+2 , the edge set of the join graph. Then: 

a) If (𝑣,𝜔) ∈ 𝐸1 ∪ 𝐸2 (original edges of 𝔊1 or 𝔊2 ): 

 
𝑇𝜎𝛺1+𝛺2
𝑅 (𝑣,𝜔) = 𝑇𝜎𝛺1∪ 𝛺2

𝑅 (𝑣, 𝜔)

𝐼𝜎𝛺1+𝛺2
𝑁 (𝑣,𝜔) = 𝐼𝜎𝛺1∪ 𝛺2

𝑁 (𝑣,𝜔)

𝐹𝜎𝛺1+𝛺2
𝑆 (𝑣,𝜔) = 𝐹𝜎𝛺1∪ 𝛺2

𝑆 (𝑣,𝜔)

 
(25) 

b) If (𝑣,𝜔) ∈ 𝐸, where 𝑣 ∈ 𝑉1, 𝜔 ∈ 𝑉2 (i.e., a newly added edge connecting 𝔊1 and 𝔊2 ), then: 

 

𝑇𝜎𝛺1+𝛺2
𝑅 (𝑣, 𝜔) = min {𝑇𝜎𝛺1

𝑅 (𝑣), 𝑇𝜎𝛺2
𝑅 (𝜔)}

𝐼𝜎𝛺1+𝛺2
𝑁 (𝑣, 𝜔) = min {𝐼𝜎𝛺1

𝑁 (𝑣), 𝐼𝜎𝛺2
𝑁 (𝜔)}

𝐹𝜎𝛺1+𝛺2
𝑆 (𝑣, 𝜔) = max{𝐹𝜎𝛺1

𝑆 (𝑣), 𝐹𝜎𝛺2
𝑆 (𝜔)}

 
(26) 

 

Definition 10. Let 𝔊1 = ⟨𝛹1
ℳ , 𝛺1⟩ and 𝔊2 = ⟨𝛹2

ℳ , 𝛺2⟩ be two neutrosophic graphs such that vertex 

set 𝑉 = 𝑉1 × 𝑉2. Then, the mapping 𝜑: 𝑉1 → 𝑉2 is called a neutrosophic graph homomorphism from 

𝔊1 to 𝔊2symbolized as 𝜑:𝔊1 → 𝔊2, when the following conditions hold: 

I. Vertex Conditions 

For all 𝑣1 ∈ 𝑉1 : 

𝑇𝜎𝛺1
𝑅 (𝑣1) ≤ 𝑇𝜎𝛺2

𝑅 (𝜑(𝑣1)),

𝐼𝜎𝛺1
𝑁 (𝑣1) ≤ 𝐼𝜎𝛺2

𝑁 (𝜑(𝑣1)),

𝐹𝜎𝛺1
𝑆 (𝑣1) ≥ 𝐹𝜎𝛺2

𝑆 (𝜑(𝑣1)).

 (27) 

II. Edge Conditions 

For all (𝑣1, 𝑢1) ∈ 𝐸1 : 

𝑇𝜎𝛺1
𝑅 (𝑣1, 𝑢1) ≤ 𝑇𝜎𝛺2

𝑅 (𝜑(𝑣1),𝜑(𝑢1)),

𝐼𝜎𝛺1
𝑁 (𝑣1, 𝑢1) ≤ 𝐼𝜎𝛺2

𝑁 (𝜑(𝑣1), 𝜑(𝑢1)),

𝐹𝜎𝛺1
𝑆 (𝑣1, 𝑢1) ≥ 𝐹𝜎𝛺2

𝑆 (𝜑(𝑣1), 𝜑(𝑢1)).

 (28) 

 

Weak Isomorphism: A bijective homomorphism 𝜑: 𝑉1 → 𝑉2 is called a weak isomorphism if: 

 

𝑇𝜎𝛺1
𝑅 (𝑣1) = 𝑇𝛺2

𝑅 (𝜑(𝑣1)),

𝐼𝜎𝛺1
𝑁 (𝑣1) = 𝐼𝛺2

𝑁 (𝜑(𝑣1)),  for all 𝑣1 ∈ 𝑉1 .

𝐹𝜎𝛺1
𝑆 (𝑣1) = 𝐹𝛺2

𝑆 (𝜑(𝑣1)),

 
(29) 

 

Strong Co-Isomorphism: the obijective homomorphism 𝜑: 𝑉1 → 𝑉2  is called a strong co-

isomorphism if: 

 (30) 
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𝑇𝜎𝛺1
𝑅 (𝑣1, 𝑢1) = 𝑇𝜎𝛺2

𝑅 (𝜑(𝑣1), 𝜑(𝑢1))

𝐼𝜎𝛺1
𝑁 (𝑣1, 𝑢1) = 𝐼𝜎𝛺2

𝑁 (𝜑(𝑣1),𝜑(𝑢1)),  for all (𝑣1, 𝑢1) ∈ 𝐸1

𝐹𝜎𝛺1
𝑆 (𝑣1, 𝑢1) = 𝐹𝜎𝛺2

𝑆 (𝜑(𝑣1), 𝜑(𝑢1))

 

 

 

Definition 11. Given 𝔊 = 〈𝛹,𝛺〉  be a weak neutrosophic graph, where 𝔊∗ = ⟨𝑉, 𝐸⟩  is its 

underlying crisp graph, and 𝔊 = ⟨𝛹,𝛺‾⟩ be the complement of 𝔊, denoted as a complement of weak 

neutrosophic graph 𝔊∗. Then, the vertex set remains unchanged. For every vertex 𝑣 ∈ 𝑉, the truth, 

indeterminacy, and falsity values are preserved:  

 
𝑇𝜎𝛺̅
𝑅 (𝑣) = 𝑇𝛺

𝑅(𝑣)

𝐼𝜎𝛺̅
𝑁 (𝑣) = 𝐼𝛺

𝑁(𝑣)

𝐹𝜎𝛺̅
𝑆 (𝑣) = 𝐹𝛺

𝑆(𝑣)

 
(31) 

Also, for every pair (𝑣, 𝑢) ∈ 𝑉 × 𝑉 , the edge values in the complement graph 𝛺‾  are defined as 

follows: 

𝑇𝜎𝛺̅
𝑅 (𝑣, 𝑢) = {

0,  if 𝑇𝜎𝛺
𝑅 (𝑣, 𝑢) ≠ 0

min{𝑇𝜎𝛺
𝑅 (𝑣), 𝑇𝜎𝛺

𝑅 (𝑢)},  if 𝑇𝜎𝛺
𝑅 (𝑣, 𝑢) = 0

 

𝐼𝜎𝛺̅
𝑁 (𝑣, 𝑢) = {

0,  if 𝐼𝜎𝛺
𝑁 (𝑣, 𝑢) ≠ 0

min{𝐼𝜎𝛺
𝑁 (𝑣), 𝐼𝜎𝛺

𝑁 (𝑢)},  if 𝐼𝜎𝛺
𝑁 (𝑣, 𝑢) = 0

 

𝐹𝜎𝛺̅
𝑆 (𝑣, 𝑢) = {

0,  if 𝐹𝜎𝛺
𝑆 (𝑣, 𝑢) ≠ 0

max{𝐹𝜎𝛺
𝑆 (𝑣), 𝐹𝜎𝛺

𝑆 (𝑢)},  if 𝐹𝜎𝛺
𝑆 (𝑣, 𝑢) = 0

 

(32) 

 

Definition 12: A neutrosophic graph 𝔊 = ⟨𝛹,𝛺⟩ is said to be self-complementary if its complement 

𝔊 is neutrosophically isomorphic to 𝔊, that is, 𝔊 ≈ 𝔊. Let 𝑉 be the vertex set of 𝔊. Then, 𝔊 is self-

complementary if and only if the following aggregate conditions hold over all unordered vertex 

pairs (𝑣, 𝑢) ∈ 𝑉 × 𝑉, 𝑣 ≠ 𝑢 : 

 

∑ 
𝑣≠𝑢

𝑇𝐵
𝑅(𝑣, 𝑢) = ∑  

𝑣≠𝑢

min{𝑇𝐴
𝑅(𝑣), 𝑇𝐴

𝑅(𝑢)} 

∑ 
𝑣≠𝑢

𝐼𝐵
𝑁(𝑣, 𝑢) = ∑  

𝑣≠𝑢

min{𝐼𝐴
𝑁(𝑣), 𝐼𝐴

𝑁(𝑢)} 

∑ 
𝑣≠𝑢

𝐹𝐵
𝑆(𝑣, 𝑢) =∑  

𝑣≠𝑢

max{𝐹𝐴
𝑆(𝑣), 𝐹𝐴

𝑆(𝑢)} 

 

(33) 

These conditions reflect the complement symmetry of neutrosophic edge memberships. 

Alternatively, a neutrosophic graph 𝔊 = ⟨𝛹, 𝛺⟩ is self-complementary if for every pair of 

distinct vertices 𝑣, 𝑢 ∈ 𝑉 , the following relations hold for the edge (𝑣, 𝑢) ∈ 𝐸  : 

 
𝑇𝐵
𝑅(𝑣, 𝑢) = min{𝑇𝐴

𝑅(𝑣), 𝑇𝐴
𝑅(𝑢)}, 

𝐼𝐵
𝑁(𝑣, 𝑢) = min{𝐼𝐴

𝑁(𝑣), 𝐼𝐴
𝑁(𝑢)},  

(34) 
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𝐹𝐵
𝑆(𝑣, 𝑢) = max{𝐹𝐴

𝑆(𝑣), 𝐹𝐴
𝑆(𝑢)} 

That is, each edge's neutrosophic truth, indeterminacy, and falsity values are directly derived from 

the vertex memberships, mimicking those that would appear in its complement. 

3. Topology-Aware Neutrosophic Graph Structures 

In this section, we introduce Topology-aware modeling approach to provides a dual-layer 

representation including semantic uncertainty, as well as structural Validity based on domain-

specific topological consteraints. With the inclusion of topological constraints, we enable the graph 

structure to be sensitive to neighborhoods, connectivity classes, cluster membership, and path-

based logic. 

Definition 13. Let 𝑉 denote a finite set of vertices and 𝐸 ⊆ 𝑉 × 𝑉 a set of edges. A Topology-

Aware Neutrosophic Graph, denoted by 

𝔊𝑇 = ⟨𝛹,𝛺, 𝜏⟩, 

is a triplet comprising the neutrosophic vertex set 

 

𝛹 = {⟨𝑇𝜎𝛹
𝑅 (𝑣), 𝐼𝜎𝛹

𝑁 (𝑣), 𝐹𝜎𝛹
𝑆 (𝑣)⟩: 𝑣 ∈ 𝑉} 

satisfying: 

0 ≤ 𝑇𝜎𝛹
𝑅 (𝑣) + 𝐼𝜎𝛹

𝑁 (𝑣) + 𝐹𝜎𝛹
𝑆 (𝑣) ≤ 3 

(35) 

neutrosophic edge set 

 

𝛺 = {⟨𝑇𝜎𝛺
𝑅 (𝑣, 𝑢), 𝐼𝜎𝛺

𝑁 (𝑣, 𝑢), 𝐹𝜎𝛺
𝑆 (𝑣, 𝑢)⟩: (𝑣, 𝑢) ∈ 𝐸′ ⊆ 𝐸} (36) 

where each edge (𝑣, 𝑢) connects two vertices if and only if the topological constraint function 

𝜏(𝑣, 𝑢) = true, and the values of 𝑇, 𝐼, 𝐹 ∈ [0,1] satisfy: 

 

𝑇𝜎𝑅
𝑅 (𝑣, 𝑢) ≤ min{𝑇𝜎𝛹

𝑅 (𝑣), 𝑇𝜎𝛹
𝑅 (𝑢)}, 𝐼𝜎𝑅

𝑁 (𝑣, 𝑢) ≤ min{𝐼𝜎𝛹
𝑁 (𝑣), 𝐼𝜎𝛹

𝑁 (𝑢)}, 

𝐹𝜎𝑅
𝑆 (𝑣, 𝑢) ≥ max{𝐹𝜎𝛹

𝑆 (𝑣), 𝐹𝜎𝛹
𝑆 (𝑢)} 

(37) 

where 𝜏: 𝑉 × 𝑉 → {0,1} is the topological constraint function, which determines whether an edge 

between two vertices 𝑣 and 𝑢 is structurally valid.  

Definition 14. Topological Constraint Function. Let 𝑽 be the vertex set of a neutrosophic graph. A 

topological constraint function is a mapping: 

 
𝜏: 𝑉 × 𝑉 → {0,1} (38) 
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such that 𝜏(𝑣, 𝑢) = 1 if the pair (𝑣, 𝑢) satisfies a specified topological condition, and 0 otherwise. 

 Distance Constraint: For given metric 𝑑: 𝑉 × 𝑉 → 𝑅+ and threshold 𝛿, 

 

𝜏𝑑(𝑣, 𝑢) = {
1   if 𝑑(𝑣, 𝑢) ≤ 𝛿

0   otherwise
 (39) 

 Role Constraint: Given role mapping 𝜌: 𝑉 → 𝑅 and allowed relation set 𝐻 ⊆ 𝑅 × 𝑅, 

 

𝜏𝑑(𝑣, 𝑢) = {
1   if(𝜌(𝑣), 𝜌(𝑢)) ∈ 𝐻
0   otherwise

 (40) 

Definition 15. Topology-Aware Edge Filter. Given 𝝉 and neutrosophic vertex set 𝑨𝑴 , the edge 

filter generates the set of permissible edges: 

 
𝐸′ = { (𝑣, 𝑢) ∈ 𝑉 × 𝑉 ∣ 𝑣 ≠ 𝑢, 𝜏(𝑣, 𝑢) = 1 } 

Each permissible edge (𝑣, 𝑢) is assigned neutrosophic values: 
𝑇𝜎𝑅
𝑅 (𝑣, 𝑢) = min {𝑇𝜎𝛹

𝑅 (𝑣), 𝑇𝜎𝛹
𝑅 (𝑢)}

𝐼𝜎𝑅
𝑁 (𝑣, 𝑢) = min {𝐼𝜎𝛹

𝑁 (𝑣), 𝐼𝜎𝛹
𝑁 (𝑢)}

𝐹𝜎𝑅
𝑆 (𝑣, 𝑢) = max {𝐹𝜎𝛹

𝑆 (𝑣), 𝐹𝜎𝛹
𝑆 (𝑢)}

 

 

(41) 

Theorem 1. Existence of Maximal Topology-Aware Neutrosophic Graph. Given a finite vertex set 

V and topological constraint function 𝜏 , there exists a unique maximal topology-aware 

neutrosophic graph 𝔊𝑇
∗  containing all permissible edges defined by 𝜏. 

In practice, multiple constraints may apply simultaneously. Let 𝜏1, 𝜏2, … , 𝜏𝑘 be constraint functions. 

A combined constraint function 𝜏𝑐 is defined by: 

 

𝜏𝑐(𝑣, 𝑢) =∏𝜏𝑖(𝑣, 𝑢)

𝑘

𝑖=1

 (42) 

Thus, an edge is permitted only if all constraints are satisfied simultaneously. 

Example 5: Given a small smart agricultural enterprise network (SAEN) with 3 entities: 𝑣₁ =

 𝐹𝑎𝑟𝑚𝑒𝑟, 𝑣₂ =  𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟, 𝑣₃ =  𝐷𝑖𝑔𝑖𝑡𝑎𝑙 𝐴𝑑𝑣𝑖𝑠𝑜𝑟 , where each node has associated neutrosophic 

membership values: 
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𝑇𝜎𝛹
𝑅 (𝑣1) = 0.8, 𝐼𝜎𝛹

𝑁 (𝑣1) = 0.1, 𝐹𝜎𝛹
𝑆 (𝑣1) = 0.1

𝑇𝜎𝛹
𝑅 (𝑣2) = 0.6, 𝐼𝜎𝛹

𝑁 (𝑣2) = 0.3, 𝐹𝜎𝛹
𝑆 (𝑣2) = 0.1

𝑇𝜎𝛹
𝑅 (𝑣3) = 0.7, 𝐼𝜎𝛹

𝑁 (𝑣3) = 0.2, 𝐹𝜎𝛹
𝑆 (𝑣3) = 0.1

 

Let 𝜏(𝑣, 𝑢) = 1 if role(𝑣) → role(𝑢) ∈ ℋ, where ℋ = { (Farmer → Supplier), (Farmer → Digital 

Advisor)}  , then, 𝜏(𝑣1, 𝑣2) = 1, 𝜏(𝑣1, 𝑣3) = 1, and 𝜏(𝑣2, 𝑣3) = 0 → edge not allowed. 

Edge Construction Using Topological Filter: 

For (𝑣1, 𝑣2) : 

𝑇𝜎𝑅
𝑅 (𝑣1, 𝑣2) = min(0.8,0.6) = 0.6

𝐼𝜎𝑅
𝑁 (𝑣1, 𝑣2) = min(0.1,0.3) = 0.1

𝐹𝜎𝑅
𝑆 (𝑣1, 𝑣2) = max(0.1,0.1) = 0.1

 

For (𝑣1, 𝑣3) : 

𝑇𝜎𝑅
𝑅 (𝑣1, 𝑣3) = min(0.8,0.7) = 0.7

𝐼𝜎𝑅
𝑁 (𝑣1, 𝑣3) = min(0.1,0.2) = 0.1

𝐹𝜎𝑅
𝑆 (𝑣1, 𝑣3) = max(0.1,0.1) = 0.1

 

For (𝑣2, 𝑣3) : 

Since 𝜏(𝑣2, 𝑣3) = 0, the edge is filtered out → not included in 𝐸′, then the resulting topology-

aware neutrosophic graph is presented in Figure 6. 

 

Remark 1 (Flexible Constraint Modeling). One can model domain knowledge in smart 

agricultural enterprises by defining appropriate constraints reflecting spatial range, functional 

hierarchy, or dynamic interaction conditions. 

Figure 6. Process of applying topological constraints to a neutrosophic graph 
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In this following, we re-define operations on neutrosophic graphs — union, complement, join, 

and Cartesian product — by incorporating topological constraints, ensuring each operation 

respects the structural properties. 

Definition 16. The union of two topology-aware neutrosophic graphs is 𝔊1, and 𝔊2 defined as, 

𝔊1 ∪ 𝔊2 = ⟨Ψ1 ∪Ψ2, Ω1 ∪Ω2, 𝜏⟩,  where: 

 

𝜏(𝑣, 𝑢) = {
𝜏1(𝑣, 𝑢), 𝑣, 𝑢 ∈ 𝑉1
𝜏2(𝑣, 𝑢), 𝑣, 𝑢 ∈ 𝑉2
 undefined,  otherwise 

 (43) 

Vertex-level Memberships: 

For any 𝑣 ∈ 𝑉1 ∪ 𝑉2 : 

𝑇𝑅(𝑣) = {
𝑇1
𝑅(𝑣), 𝑣 ∈ 𝑉1
𝑇2
𝑅(𝑣), 𝑣 ∈ 𝑉2

, 𝐼𝑁(𝑣) = {
𝐼1
𝑁(𝑣), 𝑣 ∈ 𝑉1
𝐼2
𝑁(𝑣), 𝑣 ∈ 𝑉2

, 𝐹𝑆(𝑣) = {
𝐹1
𝑆(𝑣), 𝑣 ∈ 𝑉1
𝐹2
𝑆(𝑣), 𝑣 ∈ 𝑉2

 
(44) 

 

Edge-level Memberships: 

For any (𝑣, 𝑢) ∈ 𝐸1 ∪ 𝐸2 : 

 

𝑇𝑅(𝑣, 𝑢) = {
𝑇1
𝑅(𝑣, 𝑢), (𝑣, 𝑢) ∈ 𝐸1
𝑇2
𝑅(𝑣, 𝑢), (𝑣, 𝑢) ∈ 𝐸2

𝐼𝑁(𝑣, 𝑢) = {
𝐼1
𝑁(𝑣, 𝑢), (𝑣, 𝑢) ∈ 𝐸1
𝐼2
𝑁(𝑣, 𝑢), (𝑣, 𝑢) ∈ 𝐸2

, 

𝐹𝑆(𝑣, 𝑢) = {
𝐹1
𝑆(𝑣, 𝑢), (𝑣, 𝑢) ∈ 𝐸1
𝐹2
𝑆(𝑣, 𝑢), (𝑣, 𝑢) ∈ 𝐸2

 

 

(45) 

Definition 17. Topology-Aware Complement. Given 𝔊 = ⟨𝛹,𝛺, 𝜏⟩, its complement 𝔊 is: 

 

𝔊 = ⟨𝛺,𝛺, 𝜏⟩ 

where for all 𝑣, 𝑢 ∈ 𝑉, 𝑣 ≠ 𝑢, with 𝜏(𝑣, 𝑢) = 1 : 

𝑇𝛺
𝑅(𝑣, 𝑢) = {

0, 𝑇𝛺
𝑅(𝑣, 𝑢) ≠ 0

min{𝑇𝑅(𝑣), 𝑇𝑅(𝑢)}, 𝑇𝛺
𝑅(𝑣, 𝑢) = 0

𝐼𝛺
𝑁(𝑣, 𝑢) = {

0, 𝐼𝛺
𝑁(𝑣, 𝑢) ≠ 0

min{𝐼𝑁(𝑣), 𝐼𝑁(𝑢)}, 𝐼𝛺
𝑁(𝑣, 𝑢) = 0

𝐹𝛺
𝑆(𝑣, 𝑢) = {

0, 𝐹𝛺
𝑆(𝑣, 𝑢) ≠ 0

max{𝐹𝑆(𝑣), 𝐹𝑆(𝑢)}, 𝐹𝛺
𝑆(𝑣, 𝑢) = 0

 

 

(46) 
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Definition 18. Topology-Aware Join. The join operation creates edges between all vertices in 𝑉1 

and 𝑉2 that satisfy the topological constraint 𝜏(𝑣, 𝑢) = 1: 

 

𝔊1 +𝔊2 = ⟨Ψ1 ∪Ψ2, 𝛺1 ∪ 𝛺2 ∪ 𝛺join , 𝜏⟩ 

Where For 𝑣 ∈ 𝑉1 , 𝑢 ∈ 𝑉2  with 𝜏(𝑣, 𝑢) = 1 : 

𝑇𝑅(𝑣, 𝑢) = min{𝑇𝑅(𝑣), 𝑇𝑅(𝑢)}

𝐼𝑁(𝑣, 𝑢) = min{𝐼𝑁(𝑣), 𝐼𝑁(𝑢)}

𝐹𝑆(𝑣, 𝑢) = max{𝐹𝑆(𝑣), 𝐹𝑆(𝑢)}

 

(47) 

Definition 19. Given two topology-aware neutrosophic graphs is 𝔊1, and 𝔊2,  then, th Cartesian 

product graph 𝔊1 ×𝔊2 with vertex set 𝑉1 × 𝑉2 . An edge exists between (𝑣1, 𝑣2) and (𝑢1, 𝑢2) if: 

 𝑣1 = 𝑢1 and (𝑣2, 𝑢2) ∈ 𝐸2 with 𝜏2(𝑣2, 𝑢2) = 1, or 

 𝑣2 = 𝑢2 and (𝑣1, 𝑢1) ∈ 𝐸1 with 𝜏1(𝑣1, 𝑢1) = 1. 

In such cases: 

If 𝑣2 = 𝑢2 : 

 

𝑇𝑅((𝑣1, 𝑣2), (𝑢1, 𝑣2)) = min{𝑇1
𝑅(𝑣1, 𝑢1), 𝑇2

𝑅(𝑣2)}

𝐼𝑁((𝑣1, 𝑣2), (𝑢1, 𝑣2)) = min{𝐼1
𝑁(𝑣1, 𝑢1), 𝐼2

𝑁(𝑣2)}

𝐹𝑆((𝑣1, 𝑣2), (𝑢1, 𝑣2)) = max{𝐹1
𝑆(𝑣1, 𝑢1), 𝐹2

𝑆(𝑣2)}

 (48) 

If 𝑣1 = 𝑢1 : 

 

𝑇𝑅((𝑣1, 𝑣2), (𝑣1, 𝑢2)) = min{𝑇2
𝑅(𝑣2, 𝑢2), 𝑇1

𝑅(𝑣1)}

𝐼𝑁((𝑣1, 𝑣2), (𝑣1, 𝑢2)) = min{𝐼2
𝑁(𝑣2, 𝑢2), 𝐼1

𝑁(𝑣1)}

𝐹𝑆((𝑣1, 𝑣2), (𝑣1, 𝑢2)) = max{𝐹2
𝑆(𝑣2, 𝑢2), 𝐹1

𝑆(𝑣1)}

 (49) 

Theorem 2 Edge Membership Boundaries under Join. For 𝑣 ∈ 𝑉1 , 𝑢 ∈ 𝑉2 with 𝜏(𝑣, 𝑢) = 1, the edge 

membership values in 𝔊1 + 𝔊2 satisfy: 

 
𝑇𝑅(𝑣, 𝑢) ≤ min{𝑇𝑅(𝑣), 𝑇𝑅(𝑢)}

𝐼𝑁(𝑣, 𝑢) ≤ min{𝐼𝑁(𝑣), 𝐼𝑁(𝑢)}

𝐹𝑆(𝑣, 𝑢) ≥ max{𝐹𝑆(𝑣), 𝐹𝑆(𝑢)}

 (50) 

Proof: 

By definition of the join operation (4.4.3), for each added edge (𝑣, 𝑢) : 

𝑇𝑅(𝑣, 𝑢) = min{𝑇𝑅(𝑣), 𝑇𝑅(𝑢)} 

which implies: 
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𝑇𝑅(𝑣, 𝑢) ≤ 𝑇𝑅(𝑣), 𝑇𝑅(𝑣, 𝑢) ≤ 𝑇𝑅(𝑢) 

hence: 

𝑇𝑅(𝑣, 𝑢) ≤ min{𝑇𝑅(𝑣), 𝑇𝑅(𝑢)} 

𝐼𝑁(𝑣, 𝑢) = min{𝐼𝑁(𝑣), 𝐼𝑁(𝑢)} ≤ min{𝐼𝑁(𝑣), 𝐼𝑁(𝑢)} 

𝐹𝑆(𝑣, 𝑢) = max{𝐹𝑆(𝑣), 𝐹𝑆(𝑢)} ≥ max{𝐹𝑆(𝑣), 𝐹𝑆(𝑢)} 

 

Corollary 1 (Complementarity Preservation). If 𝕲 is self-complementary under the topological 

constraint function 𝜏, then the following equalities hold between the sums of edge membership 

values and the corresponding minimum or maximum of the vertex membership values:    

 

∑ 𝑇𝑅(𝑣, 𝑢)

 

𝑣≠𝑢,
𝜏(𝑣,𝑢)=1

= ∑ 𝑚𝑖𝑛{𝑇𝑅(𝑣), 𝑇𝑅(𝑢)}

 

𝑣≠𝑢,
𝜏(𝑣,𝑢)=1

 

∑ 𝐹𝑅(𝑣, 𝑢)

 

𝑣≠𝑢,
𝜏(𝑣,𝑢)=1

= ∑ 𝑚𝑖𝑛{𝐼𝑅(𝑣), 𝐼𝑅(𝑢)}

 

𝑣≠𝑢,
𝜏(𝑣,𝑢)=1

 

∑ 𝐹𝑅(𝑣, 𝑢)

 

𝑣≠𝑢,
𝜏(𝑣,𝑢)=1

= ∑ 𝑚𝑖𝑛{𝐹𝑅(𝑣), 𝐹𝑅(𝑢)}

 

𝑣≠𝑢,
𝜏(𝑣,𝑢)=1

 

(51) 

4. Application to Smart Agricultural Enterprises 

The agricultural sector has increasingly embraced digital transformation initiatives, driving the 

emergence of smart agricultural enterprises [11], [12]. These enterprises integrate heterogeneous 

actors such as farmers, suppliers, processors, distributors, and advisory services through digital 

platforms that facilitate real-time data exchange, predictive analytics, and collaborative decision-

making [13]. To illustrate the practical application of our proposed framework, we construct a case 

study involving a SAEN. The network consists of twelve nodes, each representing a critical 

stakeholder or digital component in the agri-enterprise ecosystem, as shown in Table 1. 

Table 1. summary of SAEN with 12 nodes categorized into five functional roles. 

Role Nodes Description 

Farmers F1–F4 Producers managing cultivation and harvesting 

Suppliers S1–S2 Providers of agricultural inputs and services 

Advisors A1–A2 Experts/digital platforms providing guidance 

Processors P1–P2 Facilities converting raw goods into products 

Distributors D1–D2 Logistics agents connecting goods to markets 

 

Indeed, each node is assigned a neutrosophic triplet based on four experts’ assessments, as shown 

in Table 2, which summarizes the node-level statistics. 
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Table 2. Neutrosophic Vertex Membership Values from Four Experts 

Node Role Expert 1 Expert 2  Expert 3  Expert 4  

F1 Farmer (0.75, 0.20, 0.10) (0.72, 0.22, 0.12) (0.78, 0.18, 0.14) (0.74, 0.21, 0.11) 

F2 Farmer (0.60, 0.25, 0.15) (0.58, 0.28, 0.14) (0.62, 0.24, 0.16) (0.61, 0.26, 0.15) 

F3 Farmer (0.70, 0.15, 0.20) (0.72, 0.14, 0.18) (0.69, 0.16, 0.19) (0.71, 0.15, 0.20) 

F4 Farmer (0.65, 0.30, 0.10) (0.66, 0.28, 0.12) (0.67, 0.29, 0.11) (0.64, 0.31, 0.13) 

S1 Supplier (0.85, 0.10, 0.05) (0.82, 0.12, 0.06) (0.86, 0.09, 0.05) (0.84, 0.11, 0.05) 

S2 Supplier (0.80, 0.15, 0.10) (0.78, 0.16, 0.09) (0.79, 0.14, 0.11) (0.81, 0.13, 0.10) 

A1 Advisor (0.70, 0.20, 0.15) (0.68, 0.21, 0.14) (0.71, 0.19, 0.16) (0.72, 0.18, 0.13) 

A2 Advisor (0.75, 0.15, 0.10) (0.73, 0.17, 0.11) (0.74, 0.16, 0.12) (0.76, 0.14, 0.11) 

P1 Processor (0.80, 0.10, 0.10) (0.79, 0.11, 0.09) (0.82, 0.09, 0.10) (0.81, 0.10, 0.08) 

P2 Processor (0.78, 0.12, 0.15) (0.76, 0.13, 0.14) (0.77, 0.11, 0.16) (0.79, 0.12, 0.13) 

D1 Distributor (0.65, 0.25, 0.15) (0.66, 0.24, 0.16) (0.64, 0.26, 0.15) (0.65, 0.25, 0.14) 

D2 Distributor (0.68, 0.22, 0.20) (0.69, 0.20, 0.19) (0.67, 0.23, 0.21) (0.68, 0.22, 0.20) 

The connections of these nodes are governed by structural rules grounded in domain knowledge. 

First, role-based constraints, where Farmers may directly connect to suppliers, advisors, and 

processors. On the other hand, Distributors may connect only with processors, while advisors 

connect primarily to farmers and suppliers. Second, spatial clusters, which is summarized in Table 

3. 

Table 3. Cluster Membership 

Cluster Nodes 

Cluster A F1, F2, S1, A1, P1 

Cluster B F3, F4, S2, A2, P2 

Cross-Cluster D1, D2 
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In addition, hierarchy constrained imposed that edges must respect the flow from upstream 

(producers/suppliers) to downstream (processors/distributors). Figure 7 illustrates the topology-

aware neutrosophic graph of the SAEN. Nodes represent diverse roles, positioned evenly on a 

hendecagon to improve clarity. Directed edges, annotated with neutrosophic triplets, indicate role-

constrained interactions whose uncertainty characteristics were derived from expert assessments. 

Table 4 show all edges in the SAEN, showing the source and destination nodes along with their 

associated neutrosophic triplets. 

Table 4. Topology-Aware Neutrosophic Edge Information 

Edge  
Neutrosophic Triplet  

(T, I, F) 

Edge  

 

Neutrosophic Triplet  

(T, I, F) 

(F1, S1) (0.75, 0.10, 0.12) (A1, F1) (0.70, 0.20, 0.14) 

(F1, S2) (0.75, 0.14, 0.12) (A1, F2) (0.60, 0.20, 0.15) 

(F1, A1) (0.70, 0.20, 0.14) (A1, F3) (0.70, 0.15, 0.19) 

(F1, A2) (0.74, 0.15, 0.12) (A1, F4) (0.66, 0.20, 0.14) 

(F1, P1) (0.75, 0.10, 0.12) (A1, S1) (0.70, 0.10, 0.14) 

(F1, P2) (0.75, 0.12, 0.14) (A1, S2) (0.70, 0.14, 0.14) 

(F2, S1) (0.60, 0.10, 0.15) (A2, F1) (0.74, 0.15, 0.12) 

(F2, S2) (0.60, 0.14, 0.15) (A2, F2) (0.60, 0.15, 0.15) 

(F2, A1) (0.60, 0.20, 0.15) (A2, F3) (0.70, 0.15, 0.19) 

(F2, A2) (0.60, 0.15, 0.15) (A2, F4) (0.66, 0.15, 0.12) 

Figure 7. Topology-aware neutrosophic graph of the SAEN. 
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(F2, P1) (0.60, 0.10, 0.15) (A2, S1) (0.74, 0.10, 0.11) 

(F2, P2) (0.60, 0.12, 0.15) (A2, S2) (0.74, 0.14, 0.11) 

(F3, S1) (0.70, 0.10, 0.19) (P1, F1) (0.75, 0.10, 0.12) 

(F3, S2) (0.70, 0.14, 0.19) (P1, F2) (0.60, 0.10, 0.15) 

(F3, A1) (0.70, 0.15, 0.19) (P1, F3) (0.70, 0.10, 0.19) 

(F3, A2) (0.70, 0.15, 0.19) (P1, F4) (0.66, 0.10, 0.12) 

(F3, P1) (0.70, 0.10, 0.19) (P1, D1) (0.65, 0.10, 0.15) 

(F3, P2) (0.70, 0.12, 0.19) (P1, D2) (0.68, 0.10, 0.20) 

(F4, S1) (0.66, 0.10, 0.12) (P2, F1) (0.75, 0.12, 0.14) 

(F4, S2) (0.66, 0.14, 0.12) (P2, F2) (0.60, 0.12, 0.15) 

(F4, A1) (0.66, 0.20, 0.14) (P2, F3) (0.70, 0.12, 0.19) 

(F4, A2) (0.66, 0.15, 0.12) (P2, F4) (0.66, 0.12, 0.14) 

(F4, P1) (0.66, 0.10, 0.12) (P2, D1) (0.65, 0.12, 0.15) 

(F4, P2) (0.66, 0.12, 0.14) (P2, D2) (0.68, 0.12, 0.20) 

 

Based on the above topology-aware neutrosophic graph structure, we recomputed the 

neutrosophic degrees of nodes based on both incoming and outgoing edges, as shown in Table 5. 

The cluster analysis and visualization presented in Figure 8 highlight the structural and 

uncertainty-based characteristics of the SAEN. 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝐴 , consisting primarily of upstream 

production and input nodes (farmers, suppliers, and processors), demonstrates relatively higher 

Figure 8. Visualization of cluster analysis of the SAEN. 
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average truth degrees and lower indeterminacy, indicating stronger and more reliable interactions 

within tightly coupled local ecosystems. 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝐵 , which mirrors structure of 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝐴  in a 

separate spatial region, exhibits similar patterns but with slight variations in uncertainty measures 

reflecting regional operational differences. As shown, cross-cluster nodes (D1 and D2) connect both 

clusters and show moderately elevated indeterminacy and falsity levels, consistent with the 

inherent risks and variability associated with downstream distribution and logistics. 

Table 5. Topology-aware neutrosophic degrees of each node. 

 Node Role ∑ 𝑻𝑹𝝈𝜴(𝒗̀, 𝝊̀)
𝒗̀∈𝜴

, ∑ 𝑰𝑵𝝈𝜴(𝒗̀, 𝝊̀)
𝒗̀∈𝜴

 ∑ 𝑭𝑺𝝈𝜴(𝒗̀, 𝝊̀)
𝒗̀∈𝜴

 

0 F1 Farmer 7.3800 1.39 1.285 

1 F2 Farmer 6.0250 1.39 1.500 

2 F3 Farmer 7.0450 1.29 1.925 

3 F4 Farmer 6.5500 1.39 1.270 

4 S1 Supplier 4.1575 0.63 0.830 

5 S2 Supplier 4.1575 0.87 0.830 

6 A1 Advisor 6.7300 1.72 1.555 

7 A2 Advisor 6.9050 1.48 1.370 

8 P1 Processor 6.7500 1.00 1.500 

9 P2 Processor 6.7500 1.20 1.615 

10 D1 Distributor 1.3000 0.22 0.300 

11 D2 Distributor 1.3600 0.22 0.400 

 

The results in Table 5 reveal that farming nodes representing farmer generally exhibit high truth 

degrees (∑ 𝑇𝑅𝜎𝛺(𝑣̀, 𝜐̀)𝑣̀∈𝛺
), which indicate strong and reliable connectivity within the SAEN. This 

aligns with their central role in initiating interactions with other stakeholders. Conversely, supplier 

and distributor nodes show lower indeterminacy ( ∑ 𝐼𝑆𝜎𝛺(𝑣̀, 𝜐̀)𝑣̀∈𝛺
 ) and falsity degrees ( 

∑ 𝐹𝑆𝜎𝛺(𝑣̀, 𝜐̀)𝑣̀∈𝛺
 ),  which indicate clearer and more definitive interactions, possibly due to more 

structured and contrectual relationships. The low falsity values across various roles reflect a well-

integrated enterprise topology, with advisors and processors acting as bridges that reduce 

uncertainty across domains. The findings demonstrate the utility of TANGS in capturing both the 

structural and uncertain dynamics of systems. 

5. Conclusion 

In this article, we introduced a novel TANGS framework for modeling complex and uncertain 

interactions in SAEN. This framework creatively integrate domain-specific topological 

conditions—such as role-based, spatial, and hierarchical relationships— into neutrosophic 

uncertainty handling power to build a unified approach for providing more realistic and 

representation of enterprise dynamics. We also present a detailed case study to conduct proof of 

concept analysis, which demonstrated the effectiveness of topology-aware modeling for improving 

clarity, filters implausible connections, which indeed contribute informed decision-making. This 

work lays a foundation for future research on scalable, adaptive, and intelligent graph-based 

systems in precision agriculture and the broader digital economy. 
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