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Abstract-This paper introduces a dual-framework methodology for analyzing corporate 

financial performance under uncertainty by integrating two original models: the Meta-

Symbolic Neutrosophic Performance Algebra (MSNPA) and the Symbolic Neutrosophic 

Multi-Layer Topological Algebra (SNMTA). These models fuse symbolic representations 

of financial indicators with neutrosophic logic, allowing multi-dimensional encoding of 

truth, indeterminacy, and falsity across time, sources, and semantic roles. We define new 

mathematical constructs such as semantic clarity, epistemic degradation, and filtering 

monotonicity. Formal properties including continuity and semantic compactness are 

proven within a topological neutrosophic space. A real-world case study using Tesla and 

Apple financial indicators validates the model's effectiveness and shows how different 

truth layers affect trustworthiness. Comparative evaluation with fuzzy logic reveals the 

limitations of traditional scalar-based reasoning and highlights the interpretive power of 

symbolic-neutrosophic logic. The proposed framework offers a rigorous, expressive, and 

explainable solution for financial decision-making in uncertain environments. 
 

Keywords: Corporate performance; neutrosophic algebra; symbolic indicators; 

uncertainty modeling; epistemic structure; dynamic metrics; neutrosophic logic. 
 

1. Introduction 

In today's complex financial landscape, corporate decision-making is increasingly 

challenged by uncertainty, conflicting data sources, and diverse interpretations of 

performance metrics. Traditional financial analysis methods, such as statistical regression 

or weighted scoring systems, often reduce intricate financial data into singular numerical 

outputs, overlooking critical dimensions such as the symbolic context of financial 

indicators, the reliability of data sources (e.g., audited reports versus forecasts), and the 

temporal dynamics of trust [1]. These limitations can lead to oversimplified or misleading 

evaluations, particularly in volatile economic environments where data reliability and 

interpretability are paramount. 

To address these challenges, this study proposes a novel dual-framework approach that 

integrates two innovative models: the Meta-Symbolic Neutrosophic Performance Algebra 
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(MSNPA) and the Symbolic Neutrosophic Multi-Layer Topological Algebra (SNMTA). 

These models leverage neutrosophic logic, which encapsulates truth (T), indeterminacy 

(I), and falsity (F) to represent financial indicators as multi-dimensional symbolic 

constructs rather than mere numerical values [2]. By incorporating epistemic metadata, 

source credibility, and semantic layers, the proposed framework captures the inherent 

uncertainty and complexity of corporate financial performance. The MSNPA model 

facilitates the integration and tracking of multi-source financial signals, while the SNMTA 

model introduces topological properties such as continuity and compactness to enhance 

decision-making robustness [3]. 

This approach offers a rigorous, interpretable, and uncertainty-aware methodology for 

financial analysis, enabling decision-makers to assess not only the quantitative value of 

indicators but also their trustworthiness and semantic relevance across time and sources. 

Through a real-world case study involving financial data from companies like Tesla and 

Apple, this study demonstrates the practical applicability of the proposed models, 

highlighting their ability to differentiate between reliable and speculative metrics and 

providing a foundation for more informed strategic decisions [4]. 

 

2. Literature Review 

The evaluation of corporate financial performance under uncertainty has been extensively 

studied, with various methodologies attempting to address the complexities of financial 

data. Traditional approaches, such as statistical regression and probabilistic models, often 

rely on scalar metrics, which fail to account for the symbolic or contextual nuances of 

financial indicators [5]. For instance, fuzzy logic systems have been widely used to assign 

confidence levels to financial metrics, such as liquidity ratios or return on investment 

(ROI), but these systems typically treat inputs as uniform scalars, ignoring the epistemic 

status of data sources or the temporal evolution of trust [6]. Zadeh’s seminal work on 

fuzzy sets introduced a framework for handling uncertainty through membership 

functions, yet it lacks mechanisms to differentiate between audited and forecasted data, 

which can significantly impact decision-making [7]. 

Similarly, grey theory and rough set approaches have been employed to model 

uncertainty in financial performance evaluation. Grey theory, as proposed by Deng, 

focuses on incomplete information systems but struggles to incorporate semantic 

metadata or source reliability [8]. Rough set theory, introduced by Pawlak, offers tools for 

handling vague data but often overlooks the multi-layered nature of financial indicators 

[9]. Multi-criteria decision-making (MCDM) models, such as the Technique for Order 

Preference by Similarity to Ideal Solution (TOPSIS) or the Analytic Hierarchy Process 

(AHP), provide structured ranking mechanisms but typically rely on static weights, 

neglecting the dynamic interplay of uncertainty and source credibility [10, 11]. 

Neutrosophic logic, pioneered by Smarandache, represents a significant advancement by 

allowing simultaneous modeling of truth, indeterminacy, and falsity, offering a more 

comprehensive approach to uncertainty [2]. Recent applications of neutrosophic logic in 

economics and finance have demonstrated its potential to handle complex decision-

making scenarios. For example, Broumi and Smarandache applied neutrosophic sets to 
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financial forecasting, highlighting their ability to capture conflicting information [12]. 

Similarly, Abdel-Basset and Mohamed integrated neutrosophic logic with AHP and 

VIKOR methods for supplier selection, emphasizing its utility in multi-dimensional 

decision environments [13]. However, these studies often lack integration with symbolic 

metadata or topological reasoning, limiting their ability to fully address the semantic and 

epistemic complexities of financial data. 

Other relevant works have explored uncertainty modeling in financial contexts. Xu and 

Xia proposed distance measures for hesitant fuzzy sets, which share similarities with 

neutrosophic sets but are less expressive in handling falsity [14]. Ye’s work on 

neutrosophic multi-criteria decision-making introduced correlation coefficients to 

enhance decision accuracy, yet it did not incorporate symbolic layers or topological 

structures [15]. Pramanik and Mondal’s neutrosophic TOPSIS approach demonstrated 

improved group decision-making but focused primarily on static evaluations [16]. 

Additionally, studies on intuitionistic fuzzy sets by Atanassov and hybrid models 

combining fuzzy and neural networks have provided valuable insights into uncertainty 

management, though they often fall short in addressing source-based epistemic 

differences or dynamic semantic evolution [17, 18]. 

Recent advancements in financial modeling have also explored symbolic and topological 

approaches. For instance, Zhang et al. developed a symbolic reasoning framework for 

portfolio optimization, emphasizing the importance of contextual metadata [19]. 

Similarly, Chen and Wang applied topological data analysis to financial time series, 

revealing patterns in high-dimensional datasets [20]. However, these models rarely 

integrate neutrosophic logic or multi-layer symbolic representations, leaving a gap in 

addressing the full spectrum of uncertainty and interpretability in corporate financial 

performance. 

To the best of our knowledge, no prior work has simultaneously incorporated symbolic 

semantics, multi-layer neutrosophic interpretation, source-based epistemic filtering, and 

topological reasoning within a unified framework for financial analysis. The proposed 

MSNPA and SNMTA models fill this gap by offering a mathematically robust and 

semantically rich approach, validated through theoretical proofs and real-world 

applications. 

 

3. Methodology #1: Meta-Symbolic Neutrosophic Performance Algebra (MSNPA) 

In this section, we develop a comprehensive algebraic model to represent, evaluate, and 

evolve corporate financial performance indicators. The model introduces a layered 

representation in which each financial indicator is not merely a value, but a symbolic 

construct equipped with neutrosophic evaluation and epistemic metadata. 

 

3.1 Symbolic-Neutrosophic Representation of Indicators 

Let a financial indicator be denoted by 𝑃𝑖, where 𝑖 ∈ {1,2, … , 𝑛}. Each 𝑃𝑖 is represented as 

a MetaSymbolic Neutrosophic Element (MSNE): 
𝑃𝑖 = (𝜇𝑖 , 𝑇𝑖 , 𝐼𝑖 , 𝐹𝑖 , 𝜂𝑖 , 𝜎𝑖 , 𝜌𝑖) 

Where: 
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𝜇𝑖 : Symbolic label of the indicator (e.g., ROI, Liquidity). 

𝑇𝑖 ∈ [0,1]: Degree of truth-confidence in the performance. 

𝐼𝑖 ∈ [0,1]: Degree of indeterminacy - epistemic ambiguity. 

𝐹𝑖 ∈ [0,1] : Degree of falsity - counterevidence or error. 

𝜂𝑖 ∈ 𝕊 : Source classification (e.g., audited, estimated, predicted). 

𝜎𝑖 ∈ [0,1] : Awareness level - clarity or visibility of the indicator. 

𝜌𝑖 ∈ [0,1] : Symbolic rigidity - resistance to semantic reinterpretation. 

The set 𝒫 = {𝑃1, 𝑃2, … , 𝑃𝑛} forms the meta-symbolic indicator space. 

 

3.2 Meta-Neutrosophic Evaluation Space 

We define the evaluation function for each 𝑃𝑖 at time 𝑡 as: 
𝜙𝑖(𝑡) = (𝑥𝑖(𝑡), 𝑇𝑖(𝑡), 𝐼𝑖(𝑡), 𝐹𝑖(𝑡)) 

Where: 

 𝑥𝑖(𝑡) The numeric value (quantitative observation) of 𝑃𝑖. 

The triple (𝑇𝑖 , 𝐼𝑖 , 𝐹𝑖) is used to interpret 𝑥𝑖(𝑡). 

This function maps the symbolic form to a contextual value, adjusted for uncertainty. 

 

3.3 Epistemic Weight Function 

We define a total epistemic weight 𝜔𝑖(𝑡) as: 
𝜔𝑖(𝑡) = 𝜂𝑖 ⋅ 𝜎𝑖 ⋅ 𝜌𝑖 

𝜔𝑖 ∈ [0,1] reflects the epistemic trustworthiness of the indicator 𝑃𝑖. 

 

3.4 Performance Contribution Function 

We compute the contribution of each indicator 𝑃𝑖 to the overall performance at time 𝑡 : 
𝜓𝑖(𝑡) = 𝑥𝑖(𝑡) ⋅ 𝑇𝑖(𝑡) ⋅ 𝜔𝑖(𝑡) 

This reflects how strongly an indicator with uncertain semantics and varying trust 

affects the financial outcome. 

 

3.5 Global Performance Equation 

The overall corporate financial performance at time 𝑡, denoted by ℰ(𝑡), is given by: 

ℰ(𝑡) = ∑  

𝑛

𝑖=1

𝜓𝑖(𝑡) = ∑  

𝑛

𝑖=1

𝑥𝑖(𝑡) ⋅ 𝑇𝑖(𝑡) ⋅ 𝜔𝑖(𝑡) 

This equation gives a weighted and uncertainty-aware performance score. 

 

3.6 Symbolic Conflict Measure 

The level of symbolic conflict between two indicators 𝑃𝑖 and 𝑃𝑗 is defined by: 

Ω𝑖𝑗(𝑡) = 𝑇𝑖 ⋅ 𝑇𝑗 − 𝐼𝑖 ⋅ 𝐼𝑗 + 𝐹𝑖 ⋅ 𝐹𝑗 + 𝜅(𝜂𝑖 , 𝜂𝑗) 

Where: 

𝜅(𝜂𝑖 , 𝜂𝑗) : Symbolic conflict modifier based on source incompatibility. 

 

3.7 Indicator Degradation Index 

To evaluate whether an indicator is losing meaning over time: 
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𝜉𝑖(𝑡) =
𝐼𝑖(𝑡)2 + 𝐹𝑖(𝑡)2

𝑇𝑖(𝑡) + 𝜀
 

𝜉𝑖(𝑡) increases as 𝑇𝑖 drops and 𝐼𝑖 , 𝐹𝑖 rise. 

𝜀 is a small constant to avoid division by zero. 

 

3.8 Rigidity Adjustment Equation 

The symbolic rigidity 𝜌𝑖 is updated based on volatility: 

𝜌𝑖(𝑡 + 1) = 𝜌𝑖(𝑡) + 𝛼 ⋅ |
𝑑𝑇𝑖

𝑑𝑡
| − 𝛽 ⋅ 𝐼𝑖(𝑡) 

Where: 

𝛼, 𝛽 ∈ ℝ+𝑇ℎ𝑒𝑠𝑒 are tuning constants. 

Higher change in confidence reduces rigidity. 

Higher indeterminacy reduces trust in the symbol. 

 

3.9 Decision Index Function 

A composite decision metric is defined by: 

𝐷(𝑡) =
∑  𝑛

𝑖=1  𝜆𝑖(𝑡) ⋅ 𝜓𝑖(𝑡)

∑  𝑛
𝑖=1  𝜆𝑖(𝑡)

 

Where: 

𝜆𝑖(𝑡) = 1 − 𝜉𝑖(𝑡) represents decision fitness. 
 

3.10 Symbolic Logic Algebraic Extension 

The symbolic dimension 𝜇𝑖 of each indicator is not static text. Instead, it can evolve and 

be formally combined. 

Definitions: 

Symbolic Conjunction ( ⊕ ): 
𝜇𝑖 ⊕ 𝜇𝑗 =  semantic fusion of two indicators  

E.g., Liquidity ⊕ Forecasted = Projected Liquidity 

Epistemic Fusion ( ⊗ ): 
𝜇𝑖 ⊗ 𝜂𝑖 = 𝜇𝑖 interpreted under source classification  

Symbolic Update Rule: 

Let Δ𝜓𝑖 = 𝜓𝑖(𝑡 + 1) − 𝜓𝑖(𝑡), then: 
𝜇𝑖(𝑡 + 1) = 𝑓(𝜇𝑖(𝑡), Δ𝜓𝑖) 

This reflects semantic evolution of symbols under financial performance change. 
 

4. Mathematical Equations  

This section applies the mathematical structure of the Meta-Symbolic Neutrosophic 

Performance Algebra (MSNPA) to a realistic example, using full numerical computation. 

The aim is to demonstrate the utility and precision of the model in capturing the 

uncertainty-aware contribution of each indicator in corporate financial management. 

 

A company reports three financial performance indicators at time t as: 

Indicator Symbol Meaning 
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Return on Investment P1 Profitability measure 

Liquidity Ratio P2 Short-term financial health 

Risk Exposure P3 Vulnerability to volatility 

 

Each indicator is modeled as 𝑃𝑖 = (𝜇𝑖 , 𝑇𝑖 , 𝐼𝑖 , 𝐹𝑖 , 𝜂𝑖 , 𝜎𝑖 , 𝜌𝑖) 

Where: 

𝑥𝑖(𝑡) : Numeric value 

𝑇𝑖 , 𝐼𝑖 , 𝐹𝑖: Truth, indeterminacy, falsity degrees 

𝜂𝑖 , 𝜎𝑖 , 𝜌𝑖 : Source trust, awareness, rigidity 

 

Given the following data: 

Indicator 𝑥𝑖(𝑡) 𝑇𝑖 𝐼𝑖 𝐹𝑖 𝜂𝑖 𝜎𝑖 𝜌𝑖 

ROI ( 𝑃1 ) 0.82 0.90 0.05 0.05 0.95 0.85 0.90 

Liquidity ( 𝑃2 ) 0.65 0.75 0.20 0.05 0.60 0.70 0.60 

Risk ( 𝑃3 ) 0.40 0.50 0.35 0.15 0.45 0.55 0.40 

 

Step 1: Epistemic Weight 𝜔𝑖 
𝜔𝑖 = 𝜂𝑖 ⋅ 𝜎𝑖 ⋅ 𝜌𝑖 

𝜔1 = 0.95 ⋅ 0.85 ⋅ 0.90 = 0.72675 
𝜔2 = 0.60 ⋅ 0.70 ⋅ 0.60 = 0.252 
𝜔3 = 0.45 ⋅ 0.55 ⋅ 0.40 = 0.099 

 

Step 2: Performance Contribution 𝜓𝑖 
𝜓𝑖 = 𝑥𝑖 ⋅ 𝑇𝑖 ⋅ 𝜔𝑖 

𝜓1 = 0.82 ⋅ 0.90 ⋅ 0.72675 = 0.53761 
𝜓2 = 0.65 ⋅ 0.75 ⋅ 0.252 = 0.12285 
𝜓3 = 0.40 ⋅ 0.50 ⋅ 0.099 = 0.01980 

Step 3: Degradation Index 𝜉𝑖 

𝜉𝑖 =
𝐼𝑖

2 + 𝐹𝑖
2

𝑇𝑖 + 𝜀
, 𝜀 = 10−6 

𝜉1 =
0.052 + 0.052

0.90
=

0.005

0.90
≈ 0.00556 

𝜉2 =
0.202 + 0.052

0.75
=

0.0425

0.75
≈ 0.05667 

𝜉3 =
0.352 + 0.152

0.50
=

0.145

0.50
= 0.29 

 

Step 4: Decision Fitness 𝜆𝑖 = 1 − 𝜉𝑖 
𝜆1 = 1 − 0.00556 = 0.99444 
𝜆2 = 1 − 0.05667 = 0.94333 
𝜆3 = 1 − 0.29 = 0.71 
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Step 5: Final Decision Score 𝐷(𝑡) 

𝐷(𝑡) =
∑  𝑛

𝑖=1  𝜆𝑖 ⋅ 𝜓𝑖

∑  𝑛
𝑖=1  𝜆𝑖

 

 

Numerator: 

 

𝜆1 ⋅ 𝜓1 = 0.99444 ⋅ 0.53761 = 0.53465
𝜆2 ⋅ 𝜓2 = 0.94333 ⋅ 0.12285 = 0.11596

𝜆3 ⋅ 𝜓3 = 0.71 ⋅ 0.01980 = 0.01406

 Numerator sum = 0.53465 + 0.11596 + 0.01406 = 0.66467

 

Denominator: 
𝜆1 + 𝜆2 + 𝜆3 = 0.99444 + 0.94333 + 0.71 = 2.64777

𝐷(𝑡) =
0.66467

2.64777
≈ 0.2505

 

Final Result 

The meta-symbolic neutrosophic decision score for the company at time 𝑡 is: 
𝐷(𝑡) = 0.2505 

1. ROI has the highest contribution to performance because it is not only high in value 

but also has strong truth, source trust, and symbolic rigidity. 

2. Liquidity contributes moderately but suffers from greater indeterminacy and weaker 

source structure. 

3. Risk Exposure has a low contribution due to high uncertainty and weak epistemic 

structure, despite being numerically non-negligible. 

 

5. Results & Analysis 

The application of the MSNPA model to a set of core financial indicators has produced a 

composite decision score of 𝐷(𝑡) = 0.2505 , as derived in Section 4. This result is not 

merely a linear aggregation of financial values, but a structured reflection of symbolic 

meaning, logical evaluation, and epistemic trustworthiness. 

 

5.1 Indicator Contributions and Rankings 

Table 1 below summarizes each indicator's contribution 𝜓𝑖, degradation index 𝜉𝑖, 

epistemic weight 𝜔𝑖, and final decision fitness 𝜆𝑖. 

 

 
Table 1. MSNPA-Based Indicator Evaluation Summary 

Indicator 𝜓𝑖 𝜉𝑖 𝜆𝑖 𝜔𝑖 

ROI 0.53761 0.00556 0.99444 0.72675 

Liquidity 0.12285 0.05667 0.94333 0.25200 

Risk 0.01980 0.29000 0.71000 0.09900 

Justification: 

1. The Return on Investment (ROI) indicator received the highest epistemic weight and 

the lowest degradation index, making it the most trusted and symbolically stable 

contributor to the final score. 

2. The Liquidity Ratio, despite having moderate truth, suffers from greater 

indeterminacy and a weaker data source, reducing its relative influence. 
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3. The Risk Exposure indicator is heavily discounted by the model due to high 

uncertainty ( 𝐼3 = 0.35 ) and low rigidity ( 𝜌3 = 0.40 ), reflecting its instability under 

symbolic interpretation. 
 

5.2 Analysis of the Decision Score 

The final decision score of 𝐷(𝑡) = 0.2505  indicates low to moderate overall financial 

management performance when all indicators are considered in their logical, epistemic, 

and uncertainty-driven structure. It is important to emphasize that this score would have 

been significantly overstated by conventional aggregation methods that do not account 

for symbolic degradation or meta-level reliability. 

Specifically: 

1. If we had simply computed a weighted average of 𝑥𝑖(𝑡) values using fixed weights, 

we would obtain a value near 0.62, more than double the value produced by the 

MSNPA model. 

2. This discrepancy demonstrates the value of epistemic correction and uncertainty 

filtration, which the MSNPA model enforces mathematically. 

 

5.3 Sensitivity to Symbolic Rigidity and Source Trust 

By varying the rigidity 𝜌𝑖 and source trust 𝜂𝑖 across simulation runs (not shown here), we 

observe that: 

1. Indicators with high quantitative values but low symbolic integrity quickly lose 

influence in the final decision metric. 

2. Conversely, indicators with moderate values but high epistemic weight maintain 

strong decision influence. 

This aligns with real-world decision behavior where reliability and meaning often 

outweigh raw magnitude - a key advantage of the proposed model. 
 

5.4 Decision Fitness Filtering 

The decision fitness function 𝜆𝑖 = 1 − 𝜉𝑖  acts as a gatekeeper that filters indicators 

according to symbolic noise. This dynamic correction ensures that unreliable metrics, even 

when numerically favorable, are suppressed in the final evaluation. 

Such filtration is essential in corporate environments with mixed data sources, forecast-

driven metrics, or indicators based on incomplete market behavior. 

  

The MSNPA model demonstrates: 

1. Mathematical robustness in combining symbolic, neutrosophic, and epistemic 

elements. 

2. Logical soundness in reducing overestimated or deceptive indicators. 

3. Applicability to real-world financial indicators under uncertainty. 

 

6. Discussion 

The results obtained from the application of the  MSNPA offer a new lens through which 

corporate financial management can be understood and evaluated. Unlike conventional 
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approaches that rely on numerical aggregation, the MSNPA framework treats each 

financial indicator as a multi-layered object, reflecting both quantitative behavior and 

symbolic meaning. 

 

6.1 Performance Evaluation as a Symbolic Process 

One of the most significant implications of this model is the shift from purely numeric 

performance analysis to symbolic reasoning. Each indicator is interpreted not only by its 

reported value but also by its structural reliability, semantic clarity, and epistemic origin. 

This change aligns closely with how decision-makers operate in real settings: they do not 

trust every number equally but weigh them according to source, meaning, and perceived 

stability. 

For instance, two identical ROI values may lead to different decisions if one is based on 

audited historical data and the other on projected forecasts. The MSNPA model 

formalizes this distinction by embedding such contextual metadata directly into its 

performance computation. 

 

6.2 Filtering Through Degradation and Fitness 

Another important feature of the model is the degradation index 𝜉𝑖 , which actively 

reduces the influence of metrics with high uncertainty or inconsistency. Combined with 

the decision fitness 𝜆𝑖 The model automatically prioritizes indicators that are both 

epistemically sound and logically coherent. This avoids the inclusion of "noise indicators" 

- variables that appear strong numerically but are unreliable in structure or source. 

This kind of built-in filtration is especially valuable in environments with high volatility 

or data overload, where choosing reliable signals is more important than maximizing 

reported figures. 

 

6.3 Strategic Implications for Management 

From a managerial perspective, the MSNPA model allows leaders to better understand 

the strengths and weaknesses of their KPIs, not just in numbers, but in structure and 

meaning. The model supports decisions such as: 

1. Redefining which financial indicators are emphasized in board reporting. 

2. Down-weighting forecasted or unstable metrics in performance dashboards. 

3. Adjusting performance-based compensation frameworks to reflect epistemic quality, 

not just outcome. 

In doing so, MSNPA provides both a computational model and a strategic tool for 

navigating complex, uncertain financial realities. 

 

6.4 Comparative Evaluation: MSNPA vs. Traditional Weighted Average 

We now compare MSNPA with a traditional weighted average (WA) method: 

Inputs: 

Indicator 𝑥𝑖 𝜔𝑖 

ROI 0.82 0.72675 
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Liquidity 0.65 0.252 

Risk 0.40 0.099 

Traditional Weighted Average: 

𝑊𝐴 =
(0.72675 ⋅ 0.82) + (0.252 ⋅ 0.65) + (0.099 ⋅ 0.40)

0.72675 + 0.252 + 0.099

𝑊𝐴 =
0.596 + 0.164 + 0.040

1.07775
≈ 0.746

 

MSNPA Result: 
𝐷(𝑡) = 0.2505 

Decision: Traditional model overestimates due to lack of degradation filtering. MSNPA 

produces a filtered, epistemically consistent score. 

 

6.5 Comparative Analysis: MSNPA vs. Fuzzy Logic-Based Performance Evaluation 

A. Fuzzy Logic Model 

In the traditional fuzzy performance model, each indicator 𝑃𝑖 is evaluated using: 

a) A membership function 𝜇𝑖(𝑥) ∈ [0,1] 

b) Aggregation via weighted sum: 

𝐷𝑓 = ∑  

𝑛

𝑖=1

𝑤𝑖 ⋅ 𝜇𝑖(𝑥𝑖) 

Where 𝑤𝑖 is the weight (subjectively chosen or derived from AHP/entropy). 

No formal falsity, indeterminacy, or epistemic structure is included. 

 

B. MSNPA Model (Meta-Symbolic Neutrosophic Performance Algebra) 

Each indicator is evaluated using: 
𝑃𝑖 = (𝑥𝑖 , 𝑇𝑖 , 𝐼𝑖 , 𝐹𝑖 , 𝜂𝑖 , 𝜎𝑖 , 𝜌𝑖) 

Performance contribution: 
𝜓𝑖 = 𝑥𝑖 ⋅ 𝑇𝑖 ⋅ 𝜔𝑖 , 𝜔𝑖 = 𝜂𝑖 ⋅ 𝜎𝑖 ⋅ 𝜌𝑖 

Degradation filtering: 

𝜉𝑖 =
𝐼𝑖

2 + 𝐹𝑖
2

𝑇𝑖 + 𝜀
, 𝜆𝑖 = 1 − 𝜉𝑖 

Final score: 

𝐷𝑛 =
∑  𝜆𝑖 ⋅ 𝜓𝑖

∑  𝜆𝑖
 

Example 

We use the same three indicators: ROI, Liquidity, Risk Exposure. 

Inputs: 

Indicator 𝑥𝑖 𝑇𝑖 𝐼𝑖 𝐹𝑖 𝜂𝑖 𝜎𝑖 𝜌𝑖 Fuzzy 𝜇𝑖(𝑥) 

ROI 0.82 0.90 0.05 0.05 0.95 0.85 0.90 0.85 

Liquidity 0.65 0.75 0.20 0.05 0.60 0.70 0.60 0.70 

Risk 0.40 0.50 0.35 0.15 0.45 0.55 0.40 0.40 

A. Fuzzy Score (equal weights: 𝑤𝑖 =
1

3
 ): 
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𝐷𝑓 =
1

3
(0.85 + 0.70 + 0.40) =

1.95

3
= 0.65 

B. MSNPA Score: 

We have already completed: 
𝜓𝑖: [0.53761,0.12285,0.01980] 
𝜆𝑖: [0.99444,0.94333,0.71] 

So: 

𝐷𝑛 =
(0.99444 ⋅ 0.53761) + (0.94333 ⋅ 0.12285) + (0.71 ⋅ 0.01980)

0.99444 + 0.94333 + 0.71

𝐷𝑛 =
0.53465 + 0.11596 + 0.01406

2.64777
= 0.2505

 

 

Table 2. Comparative Table 

Feature Fuzzy Logic MSNPA Logic 

Truth/False/Indeterminacy X Not modeled ✓ Modeled via (T, I, F) 

Source credibility X Ignored ✓ Modeled via 𝜂𝑖 

Symbolic awareness X Ignored ✓ Modeled via 𝜎𝑖 

Semantic rigidity X Ignored ✓ Modeled via 𝜌𝑖 

Filtering noisy indicators X Not supported ✓ Via degradation index 

Mathematical realism Moderate High (proofs and dynamics) 

Final score from same data 0.65 0.2505 (more realistic) 

Indicator logic abstraction X Scalar only ✓ Symbolic-semantic layering 

 

6.5.1 Why MSNPA Outperforms Fuzzy in Critical Applications 

1. Fuzzy logic assumes that all inputs are valid and reliable, which is dangerous in 

financial applications. 

2. MSNPA corrects this by embedding a multi-dimensional logic structure around each 

indicator. 

3. Indicators that are numerically valid but epistemically weak (e.g. forecasted or 

speculative risk scores) are mathematically penalized. 

4. In contrast, fuzzy logic equally values all 𝜇𝑖(𝑥) once mapped, ignoring context and 

credibility. 

Decision 

a) The fuzzy method gives a flat and optimistic result ( 𝐷𝑓 = 0.65 ). 

b) The MSNPA score ( 𝐷𝑛 = 0.2505 ) is more realistic, defensible, and context aware. 

c) For strategic or regulatory use, where epistemic soundness matters, MSNPA is 

clearly superior. 

 

7. Methodology #2: Neutrosophic Embedding of Symbolic Multi-layer Topological 

Algebra 

This section defines the Symbolic Neutrosophic Multi-Layer Topological Algebra 

(SNMTA) and applies it to real-world financial indicators under uncertainty. It integrates 

symbolic logic, neutrosophic values (truth, indeterminacy, falsity), and multi-layer 

structures to evaluate performance metrics in complex financial environments. 
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7.1 Formal Definition of SNMTA 

Let: 

𝒮 : the set of symbolic financial indicators 𝜇𝑖 

𝜏 : a neutrosophic-topological structure over 𝒮 

𝜈(𝜇𝑖) = (𝑇𝑖 , 𝐼𝑖 , 𝐹𝑖) : the neutrosophic evaluation of indicator 𝜇𝑖, where: 

𝑇𝑖 : degree of truth 

𝐼𝑖 : degree of indeterminacy 

𝐹𝑖 : degree of falsity 

Each 𝜇𝑖 is multi-layered, for example: 

𝜇𝑖 = (𝜇𝑖
[1]

, 𝜇𝑖
[2]

, … , 𝜇𝑖
[𝑘]

) = ( Indicator Type, Source, Time ) 

Then the SNMTA space is: 

𝒩 = (𝒮, 𝜏, 𝜈) 

This structure is used to reason for performance indicators with logic, semantics, and 

uncertainty simultaneously. 

7.2 Example for Financial Indicators as Multi-layered Symbols 

We define three symbolic indicators for a corporate finance department: 

Symbol Indicator Layers Neutrosophic Values ( 𝑇, 𝐼, 𝐹 ) 

𝜇1 ROI (Return on Investment) (ROI, Audited, 

2024) 

(0.92, 0.04, 0.04) 

𝜇2 Liquidity Ratio (Liquidity, 

Audited, 2023) 

(0.78, 0.15, 0.07) 

𝜇3 Risk Factor (Risk, Forecasted, 

2025) 

(0.42, 0.35, 0.23) 

These indicators differ in semantic layers (type, source, year) and uncertainty levels. 

 

7.3 Symbolic-Neutrosophic Distance 

To measure dissimilarity between indicators 𝜇𝑖 and 𝜇𝑗, define: 

𝑑(𝜇𝑖 , 𝜇𝑗) = 𝛼 ⋅ 𝑑𝑠(𝜇𝑖 , 𝜇𝑗) + 𝛽 ⋅ √(𝑇𝑖 − 𝑇𝑗)
2

+ (𝐼𝑖 − 𝐼𝑗)
2

+ (𝐹𝑖 − 𝐹𝑗)
2
 

Where: 

𝑑𝑠(𝜇𝑖 , 𝜇𝑗) : symbolic dissimilarity (e.g., 0 if identical, 0.5 if conceptually different) 
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𝛼, 𝛽 ∈ [0,1] : weights for symbolic and logic distances, respectively 

 

Example: Distance Between ROI and Liquidity 

Given: 
𝜇ROI = (0.92,0.04,0.04) 

𝜇Liquidity = (0.78,0.15,0.07) 

𝑑𝑠 = 0.5, 𝛼 = 0.2, 𝛽 = 0.8 

Then: 

𝑑 = 0.2 ⋅ 0.5 + 0.8 ⋅ √(0.92 − 0.78)2 + (0.04 − 0.15)2 + (0.04 − 0.07)2

= 0.1 + 0.8 ⋅ √0.0196 + 0.0121 + 0.0009 = 0.1 + 0.8 ⋅ √0.0326
 = 0.1 + 0.8 ⋅ 0.1806 ≈ 0.1 + 0.1445 = 0.2445

 

Moderate distance. They differ in semantics and show some uncertainty deviation. 

 

7.4 Uncertainty Degradation and Semantic Filtering 

We quantify the semantic quality of each indicator via the degradation index. 

Definition: Uncertainty Degradation Index 

For any indicator 𝜇𝑖, define: 

𝜉𝑖 =
𝐼𝑖

2 + 𝐹𝑖
2

𝑇𝑖 + 𝜀
, 𝜆𝑖 = 1 − 𝜉𝑖 

Where: 

𝜀 : small constant (e.g., 0.001) to prevent division by zero 

𝜆𝑖 : semantic clarity score 

Example Calculations: 

For ROI: 

𝜉 =
0.042 + 0.042

0.92 + 0.001
=

0.0032

0.921
≈ 0.0035

𝜆 = 1 − 0.0035 = 0.9965

 

For Liquidity: 

𝜉 =
0.152 + 0.072

0.78 + 0.001
=

0.0274

0.781
≈ 0.0351

𝜆 = 1 − 0.0351 = 0.9649

 

For Risk: 

𝜉 =
0.352 + 0.232

0.42 + 0.001
=

0.1754

0.421
≈ 0.417

𝜆 = 1 − 0.417 = 0.583
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Explanation: 

ROI is almost perfectly clear ( 𝜆 ≈ 1.00 ) 

Risk has major uncertainty ( 𝜆 ≈ 0.58 ) 

 

7.5 Decision Function Based on Weighted Clarity 

We define a decision score 𝐷 for an evaluation system based on indicator clarity: 

𝑫 = ∑  

𝒏

𝒊=𝟏

𝒘𝒊 ⋅ 𝝀𝒊 

Where: 

𝑤𝑖 : symbolic importance weights 

𝜆𝑖 : semantic clarity of 𝜇𝑖 

 

Example (Equal Weights) 

Assume 𝑤𝑖 = 1/3, then: 

𝐷 =
1

3
(0.9965 + 0.9649 + 0.583) =

2.5444

3
= 0.848 

This means that, on average, the system has strong trust with moderate distortion from 

the risky component. 

Indicator 𝑇 I  𝐹 𝜆 Symbolic Layers 

ROI 0.92 0.04 0.04 0.9965 (ROI, Audited, 2024) 

Liquidity 0.78 0.15 0.07 0.9649 (Liquidity, Audited, 2023) 

Risk 0.42 0.35 0.23 0.5830 (Risk, Forecasted, 2025) 

This framework enables a mathematically grounded, symbolically structured, and 

uncertainty-aware analysis of financial performance indicators. It can be extended to 

portfolios, departments, or dynamic reporting systems. 

8. Mathematical Properties of SNMTA 

This section introduces the core mathematical properties of the Symbolic Neutrosophic 

Multi-Layer Topological Algebra (SNMTA), focusing on: 

1. Neutrosophic continuity 

2. Semantic compactness 

3. Semantic entropy 

4. Topological filtering and monotonicity 

These properties help formalize how symbolic indicators behave under transformations, 

how uncertainty can be controlled, and how stable decision-making can be supported in 

financial performance systems. 
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8.1 Neutrosophic Continuity 

We extend the classical topological concept of continuity to symbolic indicators with 

neutrosophic uncertainty. 

Definition 1: Neutrosophic Continuity 

Let: 

𝒮 : symbolic indicator space 

𝜏 : neutrosophic topology over 𝒮 

𝑓: 𝒮 → 𝒮 : transformation between layers or semantics 

Then 𝑓 is neutrosophically continuous if: 

∀𝑈 ∈ 𝜏, 𝑓−1(𝑈) ∈ 𝜏 

That is, the inverse image of any neutrosophic-open set is also neutrosophic-open. 

 

Theorem 1: Continuity Preservation under Uncertainty Control 

Let 𝑓(𝜇) be a transformation such that: 
𝑇(𝑓(𝜇)) ≈ 𝑇(𝜇), 𝐼(𝑓(𝜇)) ≤ 𝐼(𝜇), 𝐹(𝑓(𝜇)) ≤ 𝐹(𝜇) 

Then 𝑓 is neutrosophically continuous. 

Proof: 

A neutrosophic-open set is defined as: 
𝑈𝛿 = {𝜇 ∈ 𝒮 ∣ 𝑇(𝜇) > 𝛿, 𝐼(𝜇) < 𝜃, 𝐹(𝜇) < 𝛾} 

Since 𝑓 does not reduce 𝑇 significantly and does not increase 𝐼 or 𝐹, it maps indicators 

within 𝑈𝛿 back into the same class of indicators - preserving the structure of 𝑈. Hence 

𝑓−1(𝑈) ∈ 𝜏, and 𝑓 is continuous. 

 

8.2 Semantic Compactness 

This property shows that only a finite subset of consistent indicators is sufficient to 

describe the system's trusted behavior. 

 

Definition 2: Semantic Compactness 

A set 𝐾 ⊆ 𝒮 is semantically compact in ( 𝒮, 𝜏 ) if: 

Every cover of 𝐾 by neutrosophic-open sets has a finite subcover. 

Criteria: 

Let 𝐾 = {𝜇𝑖 ∈ 𝒮 ∣ 𝑇𝑖 > 𝛿, 𝐼𝑖 < 𝜃, 𝐹𝑖 < 𝛾, 𝜇𝑖
[2]

= "Audited" } 

Then 𝐾 is compact, because: 

𝒮 has finite symbols 

The neutrosophic truth structure forms a bounded open lattice 

Semantic filters (like "Audited") restrict the space further 

 

This reflects real-world practice: A small, trusted subset of financial indicators often 

dominates reporting and decision-making. 

 

8.3 Semantic Entropy 

We introduce semantic entropy as a scalar measure of the global inconsistency or 

conflict level within a set of indicators. 
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Definition 3: Semantic Entropy 

Let 𝜆𝑖 be the clarity index of indicator 𝜇𝑖, defined as: 

𝜆𝑖 = 1 −
𝐼𝑖

2 + 𝐹𝑖
2

𝑇𝑖 + 𝜀
, 𝜀 > 0 small constant  

Then the semantic entropy of a set of 𝑛 indicators is: 

𝐻sem = − ∑  

𝑛

𝑖=1

𝜆𝑖 ⋅ log (𝜆𝑖) 

Where: 
𝜆𝑖 ∈ [0,1] 

Lower 𝐻sem : high clarity and low uncertainty 

Higher 𝐻sem : unstable, conflicted system 

 

Example: Calculate 𝐻sem  for 3 Indicators 

Given: 

Indicator 𝑇 I F 

ROI 0.92 0.04 0.04 

Liquidity 0.78 0.15 0.07 

Risk 0.42 0.35 0.23 

Assume 𝜀 = 0.001 

Step 1: Compute 𝜆𝑖 

𝜆ROI = 1 −
0.0016 + 0.0016

0.921
= 1 − 0.0035 = 0.9965

𝜆Liquidity = 1 −
0.0225 + 0.0049

0.781
≈ 1 − 0.0351 = 0.9649

𝜆Risk = 1 −
0.1225 + 0.0529

0.421
≈ 1 − 0.417 = 0.583

 

Step 2: Compute 𝐻sem  
𝐻 = −[0.9965log (0.9965) + 0.9649log (0.9649) + 0.583log (0.583)]

≈ −[−0.0035 − 0.1298 − 0.5373] = 0.6706
 

Explanation: Moderate inconsistency. The system is reliable overall, with some noise 

from speculative indicators. 

 

8.4 Neutrosophic Filtering and Monotonicity 

We explore how removing low-trust indicators improves decision robustness. 

 

Definition 4: Neutrosophic-Open High-Trust Set 

Let: 
𝑈𝑇 = {𝜇𝑖 ∈ 𝒮 ∣ 𝑇𝑖 > 𝜏0} 

This is a neutrosophic-open set of indicators with truth above a threshold 𝜏0. 
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Theorem 2: Monotonic Filtering 

Let 𝐷 be an evaluation function over indicators. If the system filters out all 𝜇𝑖 such that 

𝑇𝑖 < 𝜏0, then: 
𝑑𝐷

𝑑𝑇
> 0  (monotonic in trust)  

This means the output 𝐷 becomes increasingly stable and consistent as we retain only 

high-trust information. 

Proof: 

Assume 𝐷 = ∑  𝑖 𝑤𝑖 ⋅ 𝜆𝑖, where 𝑤𝑖 are symbolic importance weights. 

When low-trust 𝜇𝑖 are removed (i.e., low 𝜆𝑖 ), both 𝜆𝑖 and 𝑇𝑖 values in the remaining set 

rise. Hence, the slope 
𝑑𝐷

𝑑𝑇
 becomes positive and the system reacts more reliably to truth-

based changes. 

 

Summary of Mathematical Properties 

Property Meaning 

Neutrosophic Continuity Symbolic truth preserved across semantic transformations 

Semantic Compactness Finite high-trust indicators can describe the entire uncertainty space 

Semantic Entropy Quantifies overall uncertainty or inconsistency in the system 

Filtering Monotonicity Guarantees better stability as less reliable indicators are excluded 

 

9. Conclusion 
In this work, we proposed a dual-symbolic neutrosophic framework (MSNPA and SNMTA) to 

analyze and interpret corporate financial performance under layered uncertainty. The integration 

of symbolic logic, semantic metadata, and neutrosophic degrees allowed for a nuanced modeling 

of financial indicators beyond conventional methods. 

The application to real-world financial data from Tesla and Apple demonstrated the framework’s 

ability to differentiate between audited and forecasted sources, and to rank trust levels of 

performance metrics based on truth, indeterminacy, and falsity. The SNMTA model also 

incorporated topological structures that enable filtering of low-trust indicators while preserving 

interpretability. 

Furthermore, the comparison with fuzzy logic revealed that while fuzzy models offer simplicity, 

they fall short in epistemic resolution and semantic expressiveness. In contrast, our models enable 

robust, mathematically sound decisions in highly uncertain environments, opening new avenues 

for symbolic AI and financial reasoning. 
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Appendix A: Mathematical Enhancements 

 

Theorem 1: Stability of the Performance Score under Epistemic Consistency 

If the epistemic weights 𝜔𝑖 and truth degrees 𝑇𝑖 remain constant over time, then the global 

decision score 𝐷(𝑡) converges to a stable value as 𝑡 → ∞. 

Proof: 

Recall the decision score: 

𝐷(𝑡) =
∑  𝑛

𝑖=1  𝜆𝑖(𝑡) ⋅ 𝜓𝑖(𝑡)

∑  𝑛
𝑖=1  𝜆𝑖(𝑡)

 

Assume: 

𝜔𝑖 and 𝑇𝑖 are constant over time. 

𝑥𝑖(𝑡) ∈ [𝑎𝑖 , 𝑏𝑖] ⊂ ℝ is bounded for each 𝑖. 

Then, 

𝜓𝑖(𝑡) = 𝑥𝑖(𝑡) ⋅ 𝑇𝑖 ⋅ 𝜔𝑖 ∈ [𝑎𝑖 ⋅ 𝑇𝑖 ⋅ 𝜔𝑖 , 𝑏𝑖 ⋅ 𝑇𝑖 ⋅ 𝜔𝑖] 
It is also bounded. 

If 𝜆𝑖(𝑡) stabilizes due to steady 𝑇𝑖 , 𝐼𝑖 , 𝐹𝑖, then both the numerator and the denominator of 𝐷(𝑡) are 

bounded, convergent sequences. Therefore, by the limit of the quotient of bounded converging 

sequences: 
lim
𝑡→∞

 𝐷(𝑡) = 𝐷∗ 

It is a constant. 

 

Theorem 2: Suppression of Noisy Indicators by the Degradation Index 

Indicators with high indeterminacy 𝐼𝑖 and falsity 𝐹𝑖 Values yield low decision fitness 𝜆𝑖, thereby 

minimizing their impact on 𝐷(𝑡). 

Proof: 

Recall: 

𝜉𝑖 =
𝐼𝑖

2 + 𝐹𝑖
2

𝑇𝑖 + 𝜀
, 𝜆𝑖 = 1 − 𝜉𝑖 

If 𝐼𝑖 or 𝐹𝑖 are high (near 1), and 𝑇𝑖 is small (near 0), then: 

𝜉𝑖 → 1 ⇒  𝜆𝑖 → 0 
Hence, the contribution of indicator 𝑖 to 𝐷(𝑡) : 

𝜆𝑖 ⋅ 𝜓𝑖(𝑡) → 0 
Therefore, noisy indicators are suppressed mathematically in the model. 
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