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Abstract: This paper presents a new mathematical model called the Spherical 

Neutrosophic Projection Transform (SNPT). The model is based on spherical neutrosophic 

numbers, which represent logical states using three values: truth ( t ), indeterminacy ( i ), 

and falsehood ( f ). These values follow the rule  𝑡2 + 𝑖2 + 𝑓2 ≤ 3. We define a special 

transform that maps each triplet to another point inside the same space. This allows us to 

study how knowledge or beliefs change over time in uncertain systems. We prove that the 

transform is mathematically safe, bounded, and stable. We also create a system of 

differential equations that describes how the three components interact dynamically. 

These tools allow us to model systems where understanding, confusion, and errors 

change step by step. To show a real application, we use this model to track the learning 

progress of students in basic education. Each student's knowledge is modeled as a 

changing neutrosophic triplet. The results show that our model can describe how digital 

transformation in education affects learning quality in a measurable and logical way. 

This work gives a new way to connect neutrosophic mathematics with educational 

improvement in the digital age. 

Keywords: spherical neutrosophic numbers, projection transform, internal evolution, 

truth-indeterminacy-falsehood, neutrosophic dynamics, bounded logic, mathematical 

modeling 
 

1. Introduction 

Digital transformation in education transcends the mere integration of technology into 

classrooms; it fundamentally redefines the educational process, particularly at the basic 

education level, where foundational cognitive structures are established. This 

transformation leverages tools such as online learning platforms, smart classrooms, and 

real-time data analytics to enhance teaching and assessment [1]. However, these tools 

predominantly focus on measurable outcomes—test scores, attendance, or 

participationoften overlooking the qualitative, internal processes of learning. For instance, 

a student may provide a correct answer yet harbor uncertainty, or conversely, exhibit 

confidence in an incorrect belief. These nuances are critical to understanding authentic 

learning but are frequently neglected in conventional educational models [2]. 
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Traditional assessment systems typically adopt a binary approach to knowledge 

evaluation, categorizing responses as either correct or incorrect. While some advanced 

models incorporate partial credit or fuzzy logic to account for degrees of correctness, they 

still fail to capture the complex mental states of learners, such as uncertainty, mixed 

understanding, or conceptual conflicts [3, 4]. These states are particularly prevalent in 

digitally transformed educational environments, where rapid technological changes 

introduce dynamic and multifaceted challenges [5]. The question arises: how can we 

effectively model the internal evolution of a learner’s knowledge in such contexts? 

To address this, this paper proposes a novel mathematical framework grounded in 

spherical neutrosophic logic, an extension of traditional logic that accounts for three 

independent dimensions: truth (t), representing the correctness of an idea; indeterminacy 

(i), capturing uncertainty or instability; and falsehood (f), indicating incorrectness [6]. 

Unlike classical or fuzzy logic, neutrosophic logic provides a more nuanced 

representation of a learner’s cognitive state, accommodating the inherent uncertainties 

and contradictions in learning processes [7]. To operationalize this framework, we 

introduce a spherical constraint, defined as (𝑡2 + 𝑖2 + 𝑓2 ≤ 3), which ensures that all 

possible cognitive states are bounded within a geometrically structured, logically valid 

space [8]. 

 

Central to our approach is the Spherical Neutrosophic Projection Transform (SNPT), a 

mathematical function that maps one neutrosophic triplet ((t, i, f)) to another within this 

constrained space. The SNPT models the dynamic evolution of a learner’s cognitive state 

over time, influenced by internal cognitive processes or external educational inputs, such 

as interactive digital lessons or feedback [9]. This transform is supported by a system of 

differential equations that describe the interactions among truth, indeterminacy, and 

falsehood, capturing how digital learning interventions  such as real-time feedback, 

gamified lessons, or exposure to conflicting information  drive changes in a learner’s 

knowledge state [10, 11]. 

 

The application of this model focuses on tracking knowledge evolution in a digitally 

transformed basic education environment. By simulating realistic classroom scenarios, we 

demonstrate how the SNPT can provide insights into the quality of learning beyond 

traditional metrics like test scores [12]. For example, the model can reveal how a student’s 

uncertainty decreases as they engage with interactive digital content or how exposure to 

conflicting online resources increases indeterminacy [13]. This approach does not aim to 

replace existing educational tools but rather to enhance them by offering educators a 

deeper, more granular understanding of learning dynamics [14]. 

 

The theoretical foundation of this work builds on recent advances in neutrosophic set 

theory, which has been applied in diverse fields such as decision-making, medical 

diagnosis, and image processing [15, 16]. Specifically, spherical neutrosophic sets, with 
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their constrained geometric structure, have shown promise in modeling complex systems 

with uncertainty [17]. In education, neutrosophic logic has been used to evaluate student 

performance and decision-making processes, but its application to dynamic knowledge 

evolution remains underexplored [18]. Our model extends these efforts by integrating 

spherical neutrosophic logic with differential equations, providing a robust framework 

for analyzing learning in digital contexts [19]. 

 

This study bridges advanced mathematical modeling with practical educational 

applications, offering a new lens for understanding and guiding learning in the digital 

age. By combining the SNPT with real-world data from digitally transformed classrooms, 

we aim to empower educators to make informed decisions that enhance learning 

outcomes [20]. The proposed framework not only contributes to the theoretical landscape 

of neutrosophic logic but also provides actionable insights for educators navigating the 

complexities of digital transformation in basic education. 

 

2. Spherical Neutrosophic Numbers: Definitions and Structure 

We begin by defining the core mathematical space in which our model operates. 

 

Definition 2.1: Spherical Neutrosophic Number (SNN) 

A Spherical Neutrosophic Number is a triplet: 

(𝑡, 𝑖, 𝑓) ∈ [0,3]3 

that satisfies the constraint: 

𝑡2 + 𝑖2 + 𝑓2 ≤ 3 

This defines a closed spherical region 𝕊3 ⊆ ℝ3. All valid neutrosophic triplets lie inside 

or on the surface of a sphere with radius √3, centered at the origin. 

 

Definition 2.2: Spherical Neutrosophic Space 

We denote the space of all SNNs as: 

𝕊3: = {(𝑡, 𝑖, 𝑓) ∈ [0,3]3 ∣ 𝑡2 + 𝑖2 + 𝑓2 ≤ 3} 

This space is: 

Bounded (because all values are ≤ 3 ), 

Continuous (no discrete jumps), 

Closed under certain nonlinear mappings (as we will show). 

Example 2.1: Valid and Invalid SNNs 

(t, i, f) 𝑡2 + 𝑖2 + 𝑓2 Valid SNN? 

(1, 1, 1) 3 Yes 

(0.5, 0.5, 0.5) 0.75 Yes 

(2, 2, 2) 12 No 

(1.2, 1.2, 0.6) 3.24 No 

(1, 0.5, 0.5) 1.5 Yes 



Neutrosophic Sets and Systems, Vol. 88, 2025                                                                  752 

 

__________________________________________________________________________ 

Yanna Deng, Spherical Neutrosophic Projection Transform: Modeling Knowledge Evolution in Digital Transformation 

for Basic Education High-Quality Development 

Property 2.1: Symmetry 

If (𝑡, 𝑖, 𝑓) ∈ 𝕊3, then any permutation (𝑓, 𝑡, 𝑖), (𝑖, 𝑓, 𝑡), etc., also belongs to 𝕊3. 

Proof: Because the sum 𝑡2 + 𝑖2 + 𝑓2 is invariant under permutation of terms. 

 

Definition 2.3: Neutrosophic Magnitude Function 

We define the magnitude of a neutrosophic triplet as: 

‖𝑁‖: = √𝑡2 + 𝑖2 + 𝑓2 

This is the Euclidean norm in 3D space. An SNN must satisfy ‖𝑁‖ ≤ √3. 

 

Definition 2.4: Spherical Boundary 

The set of triplets that satisfy: 

𝑡2 + 𝑖2 + 𝑓2 = 3 

forms the surface of the SNN sphere. These are the maximally expressed neutrosophic 

numbers within the allowed range. 

 

3. Spherical Neutrosophic Projection Transform (SNPT): Definition and 

Formulation 

In this section, we define the new mathematical operator - the Spherical Neutrosophic 

Projection Transform (SNPT) which acts on points in the spherical neutrosophic space 𝕊3. 

This operator transforms a triplet (𝑡, 𝑖, 𝑓) into a new triplet within the same space while 

respecting the spherical constraint. 

 

Definition 3.1: SNPT Function 

Let 𝛼, 𝛽, 𝛾 > 0 be scalar parameters. The Spherical Neutrosophic Projection Transform is 

defined as: 

Φ𝛼,𝛽,𝛾(𝑡, 𝑖, 𝑓) = (𝑡𝛼 ,
𝑖𝛼

1 + 𝛽𝑡𝛼
,

𝑓𝛼

1 + 𝛾𝑖𝛼
) 

This transformation produces a new point (𝑡′, 𝑖′, 𝑓′) ∈ 𝕊3, as long as the result satisfies 

the spherical constraint. 

 

Property 3.1: Domain of SNPT 

For all (𝑡, 𝑖, 𝑓) ∈ 𝕊3, if 𝛼 ∈ (0,1], then: 
Φ𝛼,𝛽,𝛾(𝑡, 𝑖, 𝑓) ∈ 𝕊3 

Proof: 

Since 𝑡𝛼 ≤ 𝑡 for 0 < 𝛼 ≤ 1, and the other terms are fractionally reduced by positive 

denominators, each component of the image is smaller than or equal to the input. Hence, 

the sum of squares must also stay ≤ 3. 

 

Example 3.1: Apply SNPT on a Sample Point 

Let: 
(𝑡, 𝑖, 𝑓) = (0.8,0.5,0.4), 𝛼 = 0.9, 𝛽 = 1.5, 𝛾 = 2 

In small stages: 
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𝑡′ = 0.80.9 ≈ 0.818

𝑖′ =
0.50.9

1 + 1.5 ⋅ 0.818
≈

0.532

1 + 1.227
≈

0.532

2.227
≈ 0.239

𝑓′ =
0.40.9

1 + 2 ⋅ 0.532
≈

0.426

1 + 1.064
≈

0.426

2.064
≈ 0.206

 

Check norm: 
(𝑡′)2 + (𝑖′)2 + (𝑓′)2 ≈ 0.669 + 0.057 + 0.042 = 0.768 < 3 

The new point belongs to 𝕊3. 

 

Definition 3.2: Iterated SNPT 

Let Φ(𝑛) denote n repeated applications of SNPT: 

Φ(𝑛): = Φ ∘ Φ ∘ ⋯ ∘ Φ (𝑛 times ) 

We define the trajectory of a neutrosophic state as: 

(𝑡𝑛, 𝑖𝑛, 𝑓𝑛): = Φ(𝑛)(𝑡0, 𝑖0, 𝑓0) 

This models how the state evolves over repeated transformations - such as over time or 

learning cycles. 

 

4. Theoretical Properties and Proofs of SNPT 

This section develops and proves the key mathematical properties of the Spherical 

Neutrosophic Projection Transform (SNPT). These results show that the transform is 

mathematically stable, bounded, and capable of producing meaningful neutrosophic 

evolution. 

 

Theorem 4.1: Boundedness of SNPT 

Statement: Let (𝑡, 𝑖, 𝑓) ∈ 𝕊3, and let 𝛼 ∈ (0,1], 𝛽 > 0, 𝛾 > 0. Then the transformed 

triplet: 
(𝑡′, 𝑖′, 𝑓′) = Φ𝛼,𝛽,𝛾(𝑡, 𝑖, 𝑓) 

also belongs to 𝕊3. 

Proof: 

Let us compute the new squared norm: 

‖Φ(𝑡, 𝑖, 𝑓)‖2 = (𝑡′)2 + (𝑖′)2 + (𝑓′)2 

We know that: 

⎯ 𝑡′ = 𝑡𝛼 ≤ 𝑡 for 0 < 𝛼 ≤ 1 

⎯ 𝑖′ =
𝑖𝛼

1+𝛽𝑡𝛼 ≤ 𝑖𝛼 ≤ 𝑖 

⎯ 𝑓′ =
𝑓𝛼

1+𝛾𝑖𝛼 ≤ 𝑓𝛼 ≤ 𝑓 

Hence: 
(𝑡′)2 + (𝑖′)2 + (𝑓′)2 ≤ 𝑡2 + 𝑖2 + 𝑓2 ≤ 3 

Therefore, Φ(𝑡, 𝑖, 𝑓) ∈ 𝕊3. 

 

Theorem 4.2: SNPT is Convergent under Iteration 

Statement: If SNPT is applied repeatedly to any (𝑡0, 𝑖0, 𝑓0) ∈ 𝕊3 with 0 < 𝛼 < 1, then the 

sequence (𝑡𝑛 , 𝑖𝑛, 𝑓𝑛): = Φ(𝑛)(𝑡0, 𝑖0, 𝑓0) converges to (0,0,0) as 𝑛 → ∞. 
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Proof: 

Since 0 < 𝛼 < 1, then 𝑡𝑛+1 = (𝑡𝑛)𝛼 < 𝑡𝑛, and similarly for 𝑖 and 𝑓. The transformation 

strictly decreases each component over time. 

Because the space 𝕊3 is closed and bounded below by 0 in all components, the limit 

exists and is: 
lim

𝑛→∞
 (𝑡𝑛 , 𝑖𝑛, 𝑓𝑛) = (0,0,0) 

 

Definition 4.1: Spherical Neutrosophic Gradient 

We define the gradient of SNPT with respect to each variable as follows: 
𝜕𝑡′

𝜕𝑡
= 𝛼𝑡𝛼−1

𝜕𝑖′

𝜕𝑖
=

𝛼𝑖𝛼−1(1 + 𝛽𝑡𝛼) − 𝛽𝛼𝑡𝛼−1𝑖𝛼

(1 + 𝛽𝑡𝛼)2

𝜕𝑓′

𝜕𝑓
=

𝛼𝑓𝛼−1(1 + 𝛾𝑖𝛼) − 𝛾𝛼𝑖𝛼−1𝑓𝛼

(1 + 𝛾𝑖𝛼)2

 

These derivatives describe how sensitive each output is to the changes in its 

corresponding input, considering cross-dependence between components. 

 

Theorem 4.3: SNPT is Smooth and Differentiable 

SNPT is continuously differentiable on 𝕊3 ∖ {0}. 

This allows for the construction of vector fields, flows, and trajectories inside the 

neutrosophic sphere. 

 

5. Evolution Equations for Dynamic Neutrosophic Systems 

In this section, we define a system of differential equations that describes how the 

neutrosophic components truth (t), indeterminacy (i), and falsehood (f) change over time 

under internal dynamics inspired by the structure of SNPT. These equations simulate 

logical or cognitive evolution in uncertain systems. 

Definition 5.1: Time-Based Evolution Model 

Let 𝑡(𝑡), 𝑖(𝑡), and 𝑓(𝑡) be time-dependent functions. The evolution system is: 
𝑑𝑡

𝑑𝑡
 = 𝜆1(1 − 𝑡) − 𝜇1𝑡𝑓

𝑑𝑖

𝑑𝑡
 = 𝜆2𝑖(1 − 𝑖) − 𝜇2𝑡𝑖

𝑑𝑓

𝑑𝑡
 = 𝜆3𝑓(1 − 𝑓) + 𝜈𝑖𝑓

 

Where: 

⎯ 𝜆𝑗 > 0 : growth rates toward boundary values (certainty, indeterminacy, or 

falsehood), 

⎯ 𝜇𝑗 > 0 : suppression terms due to opposing forces, 

⎯ 𝜈 > 0 : reinforcement of falsehood due to indeterminacy. 

Explanation of Each Term 

⎯ 𝜆1(1 − 𝑡) : drives truth to 1 . 
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⎯ −𝜇1𝑡𝑓 : reduces truth when falsehood is strong. 

⎯ 𝜆2𝑖(1 − 𝑖) : logistic growth of indeterminacy. 

⎯ −𝜇2𝑡𝑖 : indeterminacy decreases with stronger truth. 

⎯ 𝜆3𝑓(1 − 𝑓) : falsehood grows like logistic function. 

⎯ +𝜈𝑖𝑓 : falsehood increases more when indeterminacy is high. 

 

Theorem 5.1: Existence of Fixed Points 

Let us define a steady state as a point (𝑡∗, 𝑖∗, 𝑓∗) such that: 
𝑑𝑡

𝑑𝑡
=

𝑑𝑖

𝑑𝑡
=

𝑑𝑓

𝑑𝑡
= 0 

Solving the equations: 

From 
𝑑𝑡

𝑑𝑡
= 0 : 

𝜆1(1 − 𝑡∗) = 𝜇1𝑡∗𝑓∗ ⇒ 𝑡∗ =
𝜆1

𝜆1 + 𝜇1𝑓∗
 

From 
𝑑𝑖

𝑑𝑡
= 0 : 

𝜆2𝑖∗(1 − 𝑖∗) = 𝜇2𝑡∗𝑖∗ ⇒ 1 − 𝑖∗ =
𝜇2𝑡∗

𝜆2
⇒ 𝑖∗ = 1 −

𝜇2𝑡∗

𝜆2
 

From 
𝑑𝑓

𝑑𝑡
= 0 : 

𝜆3𝑓∗(1 − 𝑓∗) = −𝜈𝑖∗𝑓∗ ⇒ 1 − 𝑓∗ = −
𝜈𝑖∗

𝜆3
⇒ 𝑓∗ = 1 +

𝜈𝑖∗

𝜆3
 

Condition: All values must lie in [0,1] and satisfy (𝑡∗)2 + (𝑖∗)2 + (𝑓∗)2 ≤ 3. If these are 

met, the fixed point is inside 𝕊3. 

 

Example 5.1: Numerical Simulation 

Let: 

⎯ 𝜆1 = 1, 𝜆2 = 1.2, 𝜆3 = 1.5 
⎯ 𝜇1 = 0.5, 𝜇2 = 0.3, 𝜈 = 0.4 

⎯ Initial state: 𝑡(0) = 0.9, 𝑖(0) = 0.2, 𝑓(0) = 0.1 

Compute derivatives at 𝑡 = 0 : 

 
𝑑𝑡

𝑑𝑡
= 1 ⋅ (1 − 0.9) − 0.5 ⋅ 0.9 ⋅ 0.1 = 0.1 − 0.045 = 0.055

𝑑𝑖

𝑑𝑡
= 1.2 ⋅ 0.2 ⋅ (1 − 0.2) − 0.3 ⋅ 0.9 ⋅ 0.2 = 0.192 − 0.054 = 0.138

𝑑𝑓

𝑑𝑡
= 1.5 ⋅ 0.1 ⋅ (1 − 0.1) + 0.4 ⋅ 0.2 ⋅ 0.1 = 0.135 + 0.008 = 0.143

 

This shows the direction of motion inside the spherical space: 

⎯ Truth is increasing slowly. 

⎯ Indeterminacy is increasing faster. 

⎯ Falsehood is also increasing, due to indeterminacy. 
 

6. Application  

In this section, we apply the SNPT-based model to a real-world context: monitoring the 

evolution of knowledge in basic education. We consider each student's knowledge state 
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as a spherical neutrosophic number that changes over time during learning activities. The 

model captures not only how much the student knows (truth), but also how uncertain or 

incorrect their understanding might be. 

 

6.1 Assumptions of the Educational Scenario 

We consider: 

⎯ Each student's knowledge state is represented by a triplet (𝑡, 𝑖, 𝑓) ∈ 𝕊3, where: 

⎯ 𝑡 : level of correct understanding 

⎯ 𝑖 : level of confusion or uncertainty 

⎯ 𝑓 : level of misunderstanding or incorrect knowledge 

⎯ At each stage (week, session, or exam), we update the triplet using either: 

⎯ The SNPT transform: (𝑡, 𝑖, 𝑓) ↦ Φ(𝑡, 𝑖, 𝑓) 

⎯ Or the evolution equations in Section 5. 

 

6.2 Practical Interpretation 

Let's assume the teacher gives the student structured instruction and feedback. Over 

time: 

⎯ Truth should increase if the student learns correctly. 

⎯ Indeterminacy increases if the student receives contradictory or unclear 

explanations. 

⎯ Falsehood increases if misconceptions are reinforced. 

 

6.3 Example: A Student Across Four Sessions 

Initial state: 
(𝑡0, 𝑖0, 𝑓0) = (0.7,0.2,0.1) 

Apply SNPT (with 𝛼 = 0.95, 𝛽 = 1, 𝛾 = 1.2 ) iteratively for 4 sessions. 

Session 1: 

𝑡1 = 0.70.95 ≈ 0.712, 𝑖1 =
0.20.95

1 + 1 ⋅ 0.712
≈ 0.162, 𝑓1 =

0.10.95

1 + 1.2 ⋅ 0.20.95
≈ 0.066

‖𝑁1‖2 = 0.507 + 0.026 + 0.004 = 0.537 < 3

 

Session 2: 

Apply SNPT again to (𝑡1, 𝑖1, 𝑓1) : 

𝑡2 = 0.7120.95 ≈ 0.723, 𝑖2 =
0.1620.95

1 + 0.723
≈ 0.134, 𝑓2 =

0.0660.95

1 + 1.2 ⋅ 0.1620.95
≈ 0.047 

The trend continues: truth increases, while indeterminacy and falsehood decrease 

gradually - consistent with a learning student. 

 

Suppose we apply the same model to three students presented in Table 1.  

Table 1. Comparison Across Students 

Student Initial State (t, i, f) After 3 Sessions ( t, i, f ) 

A (0.7, 0.2, 0.1) (0.73, 0.13, 0.05) 

B (0.5, 0.3, 0.2) (0.57, 0.24, 0.15) 

C (0.6, 0.1, 0.3) (0.65, 0.08, 0.21) 
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Table 1 illustrates how each student evolves differently depending on their starting state 

all changes obey the dynamics of the model and remain inside the sphere 𝕊3. 

Students who begin with a high level of indeterminacy, such as Student B in our example, 

tend to reduce their uncertainty more slowly compared to others. Their learning path 

often involves more hesitation and cognitive instability, which requires consistent 

clarification and support over time. On the other hand, students who start with a high 

level of falsehood, like Student C, face greater difficulty in unlearning misconceptions. For 

them, correcting deeply held incorrect ideas takes longer and may require repeated, 

targeted interventions. What makes the Spherical Neutrosophic Projection Transform 

(SNPT) especially valuable is its ability to adapt naturally to these differences. Because it 

responds directly to the specific values of truth, indeterminacy, and falsehood in each 

learner’s profile, the transform produces personalized, logical trajectories that reflect each 

student's unique learning dynamics. 

 

7. Conclusion 

This paper introduced a new mathematical model  the Spherical Neutrosophic Projection 

Transform (SNPT) designed to represent and track the internal evolution of knowledge 

states within the framework of neutrosophic logic. By defining learning as a continuous 

movement through a bounded space of truth, indeterminacy, and falsehood, the model 

captures the full complexity of cognitive development, especially in environments 

influenced by digital transformation. 

The foundation of the model lies in the use of Spherical Neutrosophic Numbers (SNNs), 

which maintain a strict geometric constraint. The proposed SNPT transform operates 

smoothly within this space, and we mathematically proved that it is bounded, 

differentiable, and convergent under iteration. Additionally, we introduced a dynamic 

system of differential equations that describes how the three components interact and 

evolve over time, giving rise to flexible yet structured learning trajectories. 

We then applied this theoretical framework to a practical setting  tracking students' 

conceptual changes in basic education under digital learning conditions. By using 

numerical examples and simulated sessions, we showed how SNPT models adaptively 

reflect different learning profiles. The system not only identifies whether a student is 

correct or incorrect, but also evaluates how certain or confused they are, and how these 

internal states develop. This allows educators to move beyond binary assessment and gain 

deeper insights into the quality of learning driven by digital tools. 

In conclusion, this work provides a novel bridge between neutrosophic mathematics and 

real educational systems. It supports the goal of achieving high-quality development in 

basic education by offering a structured, logic-based way to measure and guide internal 

learning progress during digital transformation. Future research can extend this model 

into AI-based tutoring, adaptive learning environments, and psychological profiling  all 

grounded in rigorous mathematical reasoning. 
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