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Abstract 

The growing adoption of deep learning (DL) for chest X-ray (CXR) diagnosis faces three significant 

barriers that this study addresses. First, inherent ambiguities in CXRs - particularly overlapping tissue 

intensities between pathological and healthy regions, along with common noise artifacts - create 

indeterminate zones where conventional DL models frequently err. Second, the scarcity of high-quality 

annotated datasets and persistent class imbalance problems lead to biased and overfitted models. Third, 

the opaque decision-making process of DL systems undermines clinical trust, especially in borderline cases. 

To resolve these challenges, we implement Neutrosophic Sets (NS) to explicitly quantify and manage 

uncertainty at the pixel level through truth-falsity-indeterminacy memberships, particularly effective in 

clarifying ambiguous infection boundaries. Simultaneously, we employ radiologist-validated Data 

Augmentation (DA) techniques to mitigate data scarcity and imbalance issues. Our results demonstrate NS 

filtering enhances model reliability, improving EfficientNetB0 accuracy by 3.13% (94.79% to 97.92%) in 

uncertain regions, while DA boosts MobileNetV3Large's generalization capability with a 5.78% accuracy 

gain (93.75% to 99.53%). Building on these findings, we propose MV3Lung-NS, an integrated framework 

combining NS preprocessing, DA, and MobileNetV3Large that achieves state-of-the-art performance 

(99.53% accuracy, 99.65% precision) on pulmonary infection diagnosis. To bridge the interpretability gap, 

we implement Explainable AI (XAI) methods including SHapley Additive exPlanations (SHAP), Local 

Interpretable Model-agnostic Explanations (LIME), and Gradient-weighted Class Activation Mapping 

(Grad-CAM), providing visual evidence that model decisions align with radiological markers of infection. 

This work makes dual contributions: advancing neutrosophic theory through empirical validation in 

medical imaging and delivering a clinically viable solution that addresses both technical and trust-related 

barriers in AI-assisted diagnosis. 

Keywords: Lung-Infection Diagnosis; Deep Learning; Neutrosophic Sets; Data Augmentation; X-ray Scans, 

Explainable Artificial Intelligence. 

1. Introduction 

Lung infections are a major cause of global illness and death [1]. They can result from various 

pathogens, leading to different types of pulmonary infections. Bacterial infections, often responsible for 

pneumonia, are commonly linked to pathogens like Streptococcus pneumoniae, which require antibiotics 

and imaging for diagnosis [2]. Viral infections, such as those caused by influenza, can also lead to 

pneumonia, with specific imaging techniques aiding in diagnosis [2]. Mycobacterial infections from 

Mycobacterium tuberculosis result in pulmonary tuberculosis and require specialized imaging for proper 

diagnosis [2]. Fungal infections, particularly those caused by Aspergillus, usually affect 
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immunocompromised individuals [2]. Aspiration pneumonia occurs when food or liquid is inhaled, while 

community-acquired pneumonia (CAP) is contracted outside healthcare settings, often due to bacteria or 

viruses [2]. This emphasizes the necessity for prompt diagnosis and treatment [2]. Pneumonia significantly 

contributes to global morbidity and mortality, impacting all age groups, especially in low- and middle-

income countries. It is a leading cause of death, and the Coronavirus Disease 2019 (COVID-19) pandemic 

has further underscored its serious impact [2]. COVID-19 was caused by the new severe acute respiratory 

syndrome coronavirus-2 (SARS-CoV-2) and was first diagnosed in China on December 31, 2019[3]. SARS-

CoV-2 spread quickly over the world, and on January 30, 2020, the World Health Organization (WHO) 

proclaimed the COVID-19 outbreak a public health emergency of worldwide concern [4]. The number of 

infected cases and fatalities from COVID-19 is rapidly increasing, with over 14,765,256 confirmed cases and 

over 612,054 deaths across 200 countries as of July 22, 2020, [5]. The crisis presents unprecedented 

challenges and requires significant efforts from governments, healthcare professionals, and individuals to 

mitigate its effects [6]. 

 

Medical imaging is essential for diagnosing diseases and planning treatments by allowing non-

invasive visualization of internal structures [7]. Technologies such as chest X-rays (CXR), computed 

tomography (CT), magnetic resonance imaging (MRI), Positron Emission Tomography (PET) ,and 

ultrasound have transformed healthcare by providing valuable insights into anatomical and functional 

abnormalities [8]. These imaging methods facilitate early disease detection, monitor disease progression, 

assess treatment effectiveness, and guide surgical and interventional procedures [7]. Among the various 

imaging techniques available, CXR and CT scans are the most commonly used to examine patients with 

Lung infections[9, 10]. CT scans and CXR differ in technology, detail, and clinical applications. CT scans 

utilize X-rays and computer processing to create high-resolution 3D cross-sectional images, which provide 

superior contrast and enable better detection of lung abnormalities, such as ground-glass opacities. In 

contrast, chest X-rays produce 2D images with less detail, making them less sensitive to early or subtle lung 

changes. Moreover, CT scans involve higher radiation exposure and require specialized equipment, while 

X-rays are faster, more accessible, and use lower radiation doses. For these reasons, chest X-rays are often 

the preferred choice for initial screenings and routine checks, particularly in resource-limited settings. CT 

scans are typically reserved for more severe or complex cases that necessitate detailed assessment [11]. 

Medical images can be affected by various types of noise, such as Gaussian and Poisson noise, which are 

frequently observed in CXR and CT scans [12]. Poisson noise, in particular, can make it difficult for 

clinicians to identify bone fractures in X-ray images [13, 14]. 

Recently, Deep Learning (DL) technologies have demonstrated significant potential in processing 

medical images [15]. DL models are able to process a large number of features that represent unstructured 

data [16]. However, two critical unresolved challenges impede their use in clinical adoption: 

1. Aleatoric Uncertainty: Noise in medical image acquisition (e.g., sensor noise, motion blur) 

introduces irreducible uncertainty [12]. Traditional denoising techniques, such as wavelet filters, 

Gaussian smoothing, and anisotropic diffusion, often over-smooth features or amplify artifacts, 

complicating disease identification [17]. For deblurring, methods like the Richardson-Lucy 

algorithm, Wiener filter, and regularized filter can effectively recover images but may also 

introduce noise amplification and boundary artifacts [18] Additionally, contrast enhancement 

techniques, including normalization and histogram equalization, may result in unnatural 

brightness and further amplify noise [17] 

2. Epistemic Uncertainty: refers to the uncertainty related to model parameters. It arises from the 

limited ability of observed values to fully capture the true underlying phenomena, highlighting 

the difference between the predicted value �̂� and the actual value y. This type of uncertainty can 

be quantified using mutual information[19]. 
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To address these challenges, this paper introduces a framework, referred to as MV3Lung-NS 

(MobileNetV3Large, Lung, Neutrosophic Set), for lung-infection diagnosis using CXR scans. a novel 

framework that integrates: 
• Pre-trained Model 

MobileNetV3Large [20] was chosen after comparing it to six other pretrained models: 

MobileNetV3Small [20], ResNet50V2[21], EfficientNetB0[22], InceptionV3[23], NASNetMobile[24], 

and MobileNetV2[25]. 

 

• Neutrosophic Set  

 

NS to model indeterminacy in CXR labels and features, reducing aleatoric uncertainty. This 

integration of NS into deep learning models significantly improves their performance, as evidenced 

by the comparison of metrics’ values before and after NS utilization. For instance, the EfficientNetB0 

model achieves a substantial increase in accuracy (from 0.9479 to 0.9792), precision (from 0.9562 to 

0.9785), recall (from 0.9062 to 0.9583), and F1 score (from 0.9303 to 0.9683). Other models, such as the 

ResNet50V2 and the MobileNetV3Small, also show improvements, demonstrating the robustness 

and reliability of NS in handling uncertainty and imprecision in data. 

 

• Data Augmentation 

 

Data augmentation (DA) enhances a model's generalization and resilience by exposing it to various 

data variations, reducing overfitting [53]. Ensuring balanced classes in the dataset promotes fair 

representation during training, preventing bias toward majority classes and facilitating effective 

learning from minority samples. 

 

While DA and selected a specified pretrained model (MobileNetV3Large) mitigate epistemic uncertainty by 

improving data coverage and feature reuse, future work could integrate Bayesian layers to explicitly quantify model 

confidence 

 

• Stochastic Gradient Descent with Warm Restarts 

 

Stochastic Gradient Descent with Warm Restarts (SGDR) algorithm is used for optimizing training 

and utilizing XAI for interpreting results. The MV3Lung-NS framework achieves superior 

performance by leveraging the strengths of NS and DA while ensuring efficient model training and 

convergence together with interpretation of results. The proposed framework overcomes the 

limitations of other DL models shown in the literature and achieves the following contributions: 

 

• Interpreting results through utilizing XAI 

 

The framework incorporates XAI techniques such as SHapley Additive exPlanations (SHAP)[26], 

Local Interpretable Model-agnostic Explanations (LIME)[27], and Gradient-weighted Class 

Activation Mapping (Grad-CAM) [28], to enhance transparency and interpretability of results. SHAP 

provides feature importance scores. LIME offers local interpretability. Grad-CAM generates 

heatmaps to visualize decision-making regions in the images. These methods ensure that the 

framework’s predictions are understandable and trustworthy, particularly in critical applications 

like healthcare. 

 

The NS-enhanced diagnosis significantly improves accuracy, as evidenced by a 3.1% increase in performance 

for EfficientNetB0 due to the resolution of label ambiguity. Additionally, data augmentation (DA) has enabled 

MobileNetV3Large to achieve an impressive accuracy of 99.5%, compared to a baseline of 93.8%. This approach also 

introduces explainable predictions by combining NS uncertainty maps with Grad-CAM heatmaps, ensuring that the 

interpretations align with the reasoning of radiologists. The MV3Lung-NS framework achieves state-of-the-art 

performance, boasting an accuracy of 99.53% and a precision of 99.65% in diagnosing pulmonary infections. 
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The following sections of this paper are organized as follows: Section 2 discusses the concepts of Neutrosophic 

Sets and provides their definitions. Section 3 outlines the related work that utilizes Neutrosophic Sets and Deep 

Learning algorithms for image classification. Section 4 describes the proposed framework. Section 5 presents the 

experimental results. Section 6 presents discussion of results. Finally, Section 7 concludes the paper and introduces 

suggestions for future work. 

 

2. Neutrosophic Sets 

Florentin Smarandache introduced the Neutrophilic Set (NS), a broad dominant framework that generalizes 

the fuzzy set, classical set, intuitionistic fuzzy set, interval-valued fuzzy set, and interval-valued intuitionistic fuzzy set 

models [29]. Some examples of neutrosophic techniques include neutrosophic probability, neutrosophic set theory, 

neutrosophic logic, and neutrosophic statistics. NS addresses issues of indeterminacy and uncertainty across various 

fields. In neutrosophic theory, each event is characterized by distinct degrees of truth, falsehood, and indeterminacy, 

which can be evaluated independently of one another[29]. The indeterminate value addresses uncertainties. The 

neutrosophic image properties allow the NS to achieve superior performance in several image denoising applications 

in computer vision and image processing [29]. 

Neutrosophy extends both fuzzy and classical set theories. The neutrosophic theory is related to neutrosophy, 

which is applied across various specializations to address problems involving indeterminacy and uncertainty. 

Neutrosophy introduces new mathematical theories that enhance both classical and fuzzy approaches. Examples of 

neutrosophic techniques include neutrosophic statistics, neutrosophic logic, neutrosophic set theory, and neutrosophic 

probability. In neutrosophy theory, each event is assigned a specific degree of truth, falsehood, or indeterminacy that 

can be considered independently. 

 

Neutrosophic sets provide a foundation for several types of sets, including classic sets, intuitionistic fuzzy 

sets, interval-valued fuzzy sets, fuzzy sets, paraconsistent sets, paradoxist sets, interval-valued intuitionistic fuzzy sets, 

dialetheist sets, and tautological sets [30–32]. Neutrosophic sets are defined in various ways [33, 34]: 

 

2.1 Neutrosophic Concepts 

2.1.1 Neutrosophic sets (NS) 

In neutrosophic sets, each element is characterized by three membership functions: truth-membership (T), 

indeterminacy-membership (I), and falsity-membership (F), which are independent of each other and can 

take values within the interval [0, 1]. Mathematically, neutrosophic sets S in a universe W are represented 

in Equation 1 [35]. 

 

𝑆 = { [ 𝑤, ( 𝑇𝑠(𝑤), 𝐼𝑠(𝑤), 𝐹𝑠(𝑤))], 𝑤 ∈ 𝑊}              (1) 

 

Where Ts(w), Is(w), Fs(w) ∈ [0,1] and 0 ≤ Ts(w)+Is(w)+Fs(w) ≤ 3. 

 

 

2.1.2 Neutrosophic images 

In neutrosophy, an image from the spatial domain is conceptualized as a neutrosophic image (NI). 

Let Z represent the universe of discourse and W = w* w denotes the image window, which includes the 

rows and columns of the spatial domain. Thus, W is a collection of image intensity pixels, where W is a 

subset of Z that comprises bright pixels [36].  

 

A neutrosophic image is generally defined by three membership sets: T, I, and F, as indicated in 

Equation 2 [35]. For an image with dimensions A * B, each pixel P (a, b) in the neutrosophic image is 
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represented as PNS (a, b). The values PNS (a, b) reflect the memberships of bright, indeterminate, and dark 

intensity values through the true membership T (a, b), indeterminate membership I (a, b), and false 

membership F (a, b). These relationships are further defined by Equations 3-5 [35]. 

 
𝑃𝑁𝑆(𝑚, 𝑛) = {𝑇(𝑎, 𝑏), 𝐼(𝑎, 𝑏), 𝐹(𝑎, 𝑏)}                (2) 

 

𝑇(𝑎, 𝑏) =    
𝑔(𝑎, 𝑏) − 𝑔

𝑚𝑖𝑛

𝑔
𝑚𝑎𝑥

− 𝑔
𝑚𝑖𝑛

                                     (3) 

 
𝐹(𝑎, 𝑏) =   1 − 𝑇(𝑎, 𝑏)                                             (4) 

 

𝐼(𝑎, 𝑏) =    
𝛿(𝑎, 𝑏) − 𝛿𝑚𝑖𝑛

𝛿𝑚𝑎𝑥 − 𝛿𝑚𝑖𝑛
                                      (5) 

 

where 𝑔  (a, b) represents the local mean value of the image, and δ (a, b) is the absolute value defined as the 

difference between the intensity and the 𝑔  (a, b) and calculated thought Equations 6 and 7 [35]: 

 

𝑔(𝑎, 𝑏) =    
1

𝑤 ∗ 𝑤
 ∑ ∑ 𝑔(𝑚, 𝑛)

𝑗+𝑤/2

𝑛=𝑗−𝑤/2

𝑖+𝑤/2

𝑚=𝑖−𝑤/2

   (6) 

 

𝛿(𝑎, 𝑏) =  𝑎𝑏𝑠(𝑔(𝑎, 𝑏) − 𝑔 (𝑎, 𝑏))          (7) 

 

2.1.3 Neutrosophic image entropy 

The entropy of a grayscale image reflects the distribution of its intensity levels. When entropy is at 

its maximum, it indicates that the intensity values are equally likely and spread out evenly. In contrast, low 

entropy suggests that the probabilities of different intensity levels vary, leading to a non-uniform 

distribution [37]. 

 

Neutrosophic image entropy is defined as the sum of the entropies of three sets: T, I, and F. This 

metric evaluates the distribution of elements within the neutrosophic domain and calculated through the 

following Equations 8-11 [29]. 

 
𝐸𝑛𝑁𝑆 = 𝐸𝑛𝑇 + 𝐸𝑛𝐼 + 𝐸𝑛𝐹                            (8) 

 

𝐸𝑛𝑇 = − ∑ 𝐻𝑇(𝑖) ln𝐻𝑇(𝑖)

max{𝑇}

𝑖=min{𝑇}

                (9) 

 

𝐸𝑛𝐼 = − ∑ 𝐻𝐼(𝑖) ln𝐻𝐼(𝑖)

max{𝐼}

𝑖=min{𝐼}

                   (10) 

 

𝐸𝑛𝐹 = − ∑ 𝐻𝐹(𝑖) ln𝐻𝐹(𝑖)

max{𝐹}

𝑖=min{𝐹}

                 (11) 
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In this context, 𝐸𝑛𝑇, 𝐸𝑛𝐼, and 𝐸𝑛𝐹 represent the entropies of the sets T, I, and F, respectively. 

Meanwhile, 𝐻𝑇(𝑖), 𝐻𝐼(𝑖) ,and 𝐻𝐹(𝑖) denote the probabilities associated with the elements in the sets T, I, 

and F, respectively. 

 

2.2 Neutrosophic Framework for Image Processing 

Neutrosophic sets provide considerable benefits in the analysis of medical images by adeptly 

handling inconsistencies, indeterminacies, and uncertainties [38]. This section outlines the comprehensive 

framework encompassing all crucial stages of Neutrosophic Logic, Image preprocessing, feature extraction, 

and classification. This ability enhances reasoning and computational processes, making neutrosophic 

expert systems particularly effective for research in medical imaging. Techniques based on neutrosophic 

sets support various image-processing tasks, including thresholding, denoising, clustering, segmentation, 

and classification, across different medical imaging modalities. These methods improve the accuracy and 

reliability of interpreting medical images and effectively address the complexities of medical data [39]. 

 

2.2.1 Noise Reduction and Enhancement 

Preprocessing is a vital initial step in neutrosophic image-processing techniques. This stage 

enhances the quality of medical images by reducing noise and highlighting key features. In the 

neutrosophic domain, noise reduction is attainable through the appropriate application of filters, which 

can effectively modify the image's structure and ultimately lead to reduced noise levels [40]. 

For a specific image S (𝑥, 𝑦), the transformation can be expressed as outlined in Equation 2. In this 

context, noise reduction involves adjusting these elements to minimize uncertainty as much as possible, 

while still preserving the integrity of true and false values. This can be articulated by using the following 

equations: 

 
𝑇(𝑎, 𝑏) = 𝑇′(𝑎, 𝑏)                                                  (12) 

𝐼(𝑎, 𝑏) = 𝐼′(𝑎, 𝑏) ∗ 𝐺(𝑎, 𝑏)                                   (13) 

𝐹(𝑎, 𝑏) = 𝐹(𝑎, 𝑏)                                                    (14) 

where 𝐺 (a, b) is a Gaussian filter applied to the indeterminacy component to reduce noise. 

 

Enhancement is modification of truth component to increase relative contrast and display of critical 

features. This can be achieved using techniques like histogram equalization or contrast stretching on T (a, 

b) [41]. 

 

2.2.2 Feature Extraction 

Feature extraction involves converting the raw pixel values from an image into a collection of 

features, which are typically distinctive characteristics of input patterns. These features can be utilized in 

selection and classification tasks. Techniques for feature extraction are generally categorized into four 

types: geometrical, statistical, model-based, and signal processing [42]. 

Neutrosophic logic improves feature extraction by considering varying degrees of truth, 

indeterminacy, and falsehood. When employing neutrosophic logic techniques for feature extraction, 

various statistical measures—including mean, variance, and entropy—can be derived from these 

neutrosophic components. These measures not only highlight uncertainties and inconsistencies within the 

image but also offer insights that extend beyond mere intensity distribution. A notable application of this 

approach is in the detection and diagnosis of diseases, such as breast cancer using mammogram images. In 

this context, the neutrosophic features extracted to train a machine learning model achieved an accuracy of 
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95% in distinguishing malignant tumors from benign ones, surpassing the 88% accuracy attained using 

conventional feature extraction methods[39]. 

 

 

3 Related Work 

This section reviews the relevant literature on the use of NS in conjunction with DL techniques for 

image classification. The significance of NS in DL models is examined by utilizing a limited dataset of 

COVID-19 X-ray images [43]. The images are transformed into the NS domain, which comprises three 

categories: true (T) images, indeterminate (I) images, and false (F) images. The obtained images are then 

employed to train a test various DL models including: AlexNet [44], GoogleNet[45], and ResNet18 [46]. 

Performance of these models is assessed in terms of accuracy, precision, recall, and F1 score. Results 

indicate that integrating NS with DL models enhances testing accuracy, particularly given the limited 

availability of COVID-19 datasets. The Indeterminacy (I) NS domain achieves the highest testing accuracy 

that is 87.1%. 

 

Cai et al.[47] introduce an automated method for detecting clustered microcalcifications (MCCs) 

that employs NS domain transformation, similar to a traditional computer-aided detection (CAD) system. 

A deep convolutional neural network (DCNN) classifier is developed to identify individual 

microcalcifications while minimizing false positives. Additionally, a neutrosophic reinforcement sample 

learning (NRSL) technique is implemented to accelerate the learning process. An evaluation study based 

on clustering shows that the MCC detection method has a sensitivity of 92.5% at a rate of 0.50 frames per 

second per image. A robust deep convolutional neural network classifier is also created for diagnosis using 

automatic detection, achieving area under the curve (AUC) values of 0.908 and 0.872, respectively. 

Performance results indicate that the proposed method significantly enhances the automated detection and 

classification of MCCs in full-field digital mammograms. 

 

Guo and Ashour [48] propose a classification framework consisting of two phases: multiple deep 

convolutional neural networks (MDCNN) and NS approach. The NMDCNN determines the number of 

reinforced training sessions for each epoch with the aid of NS and then classifies dermoscopic images as 

either malignant or benign using incremental learning and maximum voting. The effectiveness of this 

model is evaluated using the International Skin Imaging Collaboration dataset. 

 

In the field of brain tumor segmentation, NS approaches are integrated with deep learning (DL) to 

identify tumor regions in MRI scans [49]. NS is employed to address uncertainties in tissue boundaries and 

combined with convolutional neural networks (CNNs) to boost segmentation precision. Results indicated 

that preprocessing MRI scans with NS significantly improved the performance of DL models, especially in 

situations involving unclear or noisy data. 

 

Yasser et al. [50] developed an effective and user-friendly diagnostic method for the automatic 

detection of COVID-19 through digital chest X-rays. This tool utilizes a hybrid architecture that integrates 

nature-inspired approaches and machine learning (ML). It extracts classification characteristics from X-ray 

images by utilizing morphological features (MF) and principal component analysis (PCA). The machine 

learning networks differentiate between chest X-rays of patients positive for COVID-19 and those of 

healthy individuals. 

 

NS are utilized for the detection of colorectal polyps in colonoscopy images [51]. A saliency 

detection network augmented with NS is put forward to enhance the identification of polyp areas. By 
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establishing T, I, and F functions, ambiguity is successfully minimized, and the precision of polyp detection 

is boosted, resulting in a high accuracy rate.  

 

A novel methodology [35] is presented for differentiating between various types of lung infections, 

including COVID-19, bacterial pneumonia, and viral pneumonia, using CXR scans. The authors identify 

the challenges posed by the fuzziness and imprecision inherent in medical imaging data, which can 

complicate accurate diagnoses. To address these issues, the study employs a neutrosophic set approach 

that classifies image data into True (T), False (F), and Indeterminacy (I) memberships. This method 

enhances feature extraction and reduces uncertainty in the classification process. The methodology 

involves preprocessing the images through alpha-mean and beta-enhancement operations to improve the 

clarity of lung opacity levels before inputting them into DL models such as ResNet-50, VGG-16, and 

XGBoost. Experimental results demonstrate that the enhanced neutrosophic images achieve an accuracy of 

97.33%, outperforming other domain sets. 

 

Guo et al. [52] develop a deep neural network (DNN) designed to extract white blood cells (WBCs) 

from blood images, addressing the challenge of object indeterminacy in the nuclear segmentation domain. 

The network integrates WBC indeterminacy as a fusion element to enhance segmentation into distinct 

areas. This model surpasses three original encoder-decoder networks, achieving high precision rates and 

the highest mean segmentation accuracy (95.3%). 

 

Abdullah [53] proposes a hybrid method combining NS theory with deep learning to enhance 

medical X-ray classification under uncertainty, like noise and ambiguity. The approach transforms images 

into three NS domains—True (T), Indeterminacy (I), and Falsity (F)—improving feature representation. 

Evaluated on datasets for cervical spine injuries and chest diseases, models like DenseNet121 and 

MobileNet showed better performance. DenseNet121 achieved 99.67% accuracy for spinal fractures and 

88.40% for chest diseases, both in the T domain. 

 

Elbehiery et al. [54] present an advanced machine learning framework for breast cancer detection 

that utilizes NS to manage uncertainty and vagueness in medical data. The study transforms the original 

breast cancer dataset into neutrosophic representations, incorporating truth, indeterminacy, and falsity 

components to enhance classification accuracy. Four machine learning models—logistic regression, 

support vector machine (SVM), gradient boosting, and k-nearest neighbors (KNN)—are evaluated with 

and without neutrosophic preprocessing. The results indicate that models enhanced with neutrosophic 

processing achieve superior performance, with logistic regression reaching the highest accuracy of 98.6%, 

compared to 95.8% for its non-neutrosophic version. 

 

 

Table 1 describes the related works through the year, task, disease, modality, dataset, number of 

images, number of classes, model, and obtained accuracy. This table shows that DL applications of NS are 

still on the rise. Therefore, this paper presents a novel framework that integrates the NS and DL 

environments to classify Lung infections using CXR scans. 

 

Table 1 Description of related works that utilize NS and DL for the analysis of medical images. 

Reference year Task Disease Modality Dataset No. images No classes Model Accuracy 

[47] 2019 
Cluster 

classification 

Breast 

cancer 

Mammogram 

s 

NFH 

dataset 
676 2 DCNN 81.3% 
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[48] 2019 classification 
Skin 

cancer 

Dermosco-

basepic 

images 

c ISIC2016 1279 2 MDCNN 85.22% 

[49] 2019 

Segmentation 

, 

Classification 

Brain 

tumor 
MRI TCIA 500 2 CNN 95.62% 

[43] 2021 Classification 
COVID- 

19 
X-ray 

COVID-19 

x-ray 

dataset 

306 4 

AlexNet, 

GoogleNet, 

Restnet1 

87.1% for 

I domain 

[50] 2022 Classification 
COVID- 

19 
X-ray 

COVID-19 

Dataset, 

healthy 

dataset 

570 2 
(MFs), 

(PCA) 
98.46% 

[51] 2022 Segmentation 
Colorectal 

polyp 
- 

EndoScene 

, Kvasir- 

SEG 

EndoScene=

91 

2 

Kvasir- 

SEG=1000 

EndoScene 

=8 

Kvasir-

SEG =4 

saliency 

detection 

network 

EndoScene 

=0.971 

[35] 2023 Classification 
COVID- 

19 
X-ray 

ActualMed 

COVID-19 

Chest X-ray 

and COVID-

19 

radiography 

dataset 

360 4 XG-Boost 97.33% 

[52] 2024 Segmentation - 
pathological 

imaging 

JTSC, 
CellaVision, 

SegPC 

300, 100, 
2633 

5 
Encoder- 

Decoder 
95.3% 

[53] 2025 Classification 

Fracture, 

Dislocation, 

Normal 

X-ray 

Cervical 

Spine X-ray 

Dataset 

2,009 3 

DenseNet121 

(T) 

InceptionV3 

(T) 

99.67% 

[53] 2025 Classification 

Hemothorax, 

Pneumothorax, 

Flail Chest, 

Normal 
 

X-ray 
Chest Disease 

X-ray Dataset 
1,950 4 

DenseNet121 

(T) 
88.40% 

[54] 2025 Classification Breast Cancer X-ray 

Breast Cancer 

Dataset 

(Kaggle 

subset) 

570  2 

Logistic 

Regression 

(N-data) 

98.6% 

 

 

4 Proposed framework 

In this section, we discuss the proposed framework, MV3Lung-NS, which is based on NS, DA, various DL 

models, and XAI.  

 

4.1 Data preprocessing steps 

 

(a) Resizing images  

 

Resizing images is an important preprocessing step in DL models, especially for image analysis 

tasks such as classification and object detection. These models often require fixed input dimensions, making 

resizing essential for standardizing images and reducing computational load. Proper resizing is vital to 

ensure optimal model performance and efficiency [55]. In this research, all images are resized to a fixed 

size of 224 x 224 pixels. 

 

(b) Converting RGB X-ray images into grayscale images. 
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In RGB images, each pixel is represented in a 24-bit color space.  This pixel is converted to an 8-bit 

grayscale space with values ranging from 0 to 255 in grayscale images. 

 

4.2 Applying Neutrosophic filtering  

 

Neutrosophic filtering is used for handling uncertainties resulting from different sources of noise and 

distortions in grayscale CXR scans. Three subsets have resulted from this filtering step, see equations [3-5], 

that are the components of the Neutrosophic set: Truth (T), Indeterminacy (I), and Falsity (F). Each 

component is processed individually and fed into deep learning models to evaluate their impact on image 

quality and model performance. 

 

4.3 Applying data augmentation methods 

 

The DA methods applied in this research include brightness adjustment, and image flipping. These 

methods are used to enlarge the size of the input dataset to improve classification performance of the DL 

models. DA results in:  

 

• Diversifying the input dataset, which increases the model's generalization capability and 

improves resilience. This exposure to various data variations helps reduce overfitting [56]. 

• Ensuring balanced classes in the input dataset, which is results in fair representation 

during training. This balance prevents bias towards the majority classes and allows for 

effective learning from minority class samples. 

 

4.4 Classification model 

 

After preprocessing CXR scans, they are used as input for various pretrained DL models, including: 

MobileNetV3Large, MobileNetV3Small, ResNet50V2, EfficientNetB0, InceptionV3, NASNetMobile, and 

MobileNetV2. These models are evaluated based on their performance in the diagnosis of lung infection in 

these CXR scans into three categories: COVID-19, Viral Pneumonia, and Normal Chest. 

 

5 Experiments and results 

 

5.1 The input dataset 

 
The dataset used in the experiments is published on Kaggle website [57]. It includes 317 CXR scans categorized 

into three classes: COVID-19, Viral Pneumonia, and Normal. The dataset contains 137 scans of COVID-19, along with 

90 scans of Viral Pneumonia and 90 scans of Normal CXR scans. Table 2 presents a description of the dataset. Samples 

of the training images from the dataset are shown in Figure 1. 

Table 2. Description of the input dataset. 

Infection Type Number of scans 

COVID-19 137 

Normal 90 

Viral Pneumonia 90 
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             (A) COVID-19              (B) Normal  (C) Viral Pneumonia. 

 

Figure 1. Samples of the scans from the input dataset with their true diagnosis (A) Covid-19, (B) Normal, and (C) 

Viral Pneumonia. 

5.2 Hyperparameter Optimization using GridSearchCV 

 

In this research, we employ the grid search cross-validation (GridSearchCV)[58] to improve the 

model's performance. We used the GridSearchCV with different optimizers including: Adam, SGD, and 

RMSprop, to test various combinations of hyperparameters in our experiments to identify the best set. 

Table 3 presents the hyperparameters used in the GridSearchCV. Hyperparameters are predefined values 

established before training the model, and their combinations are assessed in a grid format to evaluate the 

model's effectiveness. For example, when working with two hyperparameters, we evaluate the model's 

performance by changing one hyperparameter while keeping the other constant. This process is then 

reversed to ensure a thorough assessment. This systematic approach allows for a comprehensive 

exploration of the specified parameter space, ultimately leading to the discovery of the most effective 

parameter combination for the model. 

Additionally, we incorporate the k-fold cross-validation [59] into the GridSearchCV methodology, 

setting k to 3. This means the dataset is split into Three subsets, with cross-validation performed on each 

one. To evaluate the performance of each hyperparameter combination, we use the Accuracy measure. 

Table 4 presents the optimal hyperparameters for each pre-trained model. This approach facilitates the 

selection of the optimal hyperparameter combination, which is subsequently applied to the entire dataset 

to create a new model.  

Table 3. The Hyper-Parameters that are used for the GridSearchCV with different optimizers 

Batch size Learning rate 

12 0.1 

16 0.01 

32 0.001 
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64 0.0001 

 

Table 4. The optimal Hyper-Parameters for each pre-trained model 

Hyper parameter MobileNetV3Large MobileNetV3Small ResNet50V2 EfficientNetB0 InceptionV3 NASNetMobile MobileNetV2 

Optimizer Adam Adam Sgd Adam RMSprop sgd sgd 

Batch size 12 16 16 12 12 12 12 

Accuracy 93.48 % 93.45% 85.65% 93.46% 87.92% 83.08% 90.27% 

Learning rate 0.01 0.01 0.1 0.01 0.01 0.001 0.1 

 

5.3 Stochastic Gradient Descent with Warm Restarts (SGDR) 

 

Stochastic Gradient Descent with Warm Restarts (SGDR) algorithm is used for adjusting learning 

rate (LR) coefficient during different training epochs [60]. The SGDR algorithm gradually decreases the LR 

through the consequent training epochs, which ensures effective and efficient LR updates during training 

[61]. Table 5. describes the Key parameters of the SGDR algorithm.  

Table 5. Key parameters of the SGDR algorithm. 

SGDR parameter Value 

Min LR 1e-6 

Max LR 1e-3 

LR Decay 0.9 

Cycle length 10 

Mult Factor 2 

 

5.4 Hyperparameter Determination Based on GridSearchCV and SGDR 

The hyperparameters listed in Table 6 were carefully selected through a two-stage optimization 

process: (1) an exhaustive GridSearchCV (described in Section 5.2) to identify the best-performing static 

hyperparameters, followed by (2) SGDR (described in Section 5.3) to dynamically fine-tune the learning 

rate during training. 

 

From the GridSearchCV results, the Adam optimizer and a batch size of 12 consistently achieved 

the highest accuracy, with MobileNetV3Large reaching 93.48%. This configuration also demonstrated 

stable convergence. Although some models, such as ResNet50V2, performed well with alternative settings 

(like SGD), the combination of Adam and a batch size of 12 was selected as the default optimizer due to its 

robustness across most tested architectures. 

 

To further improve training efficiency, SGDR was utilized to dynamically adjust the learning rate 

within the bounds of 1e-6 (minimum learning rate) and 1e-3 (maximum learning rate). The decay factor 
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was set to 0.9, with a cycle length of 10 epochs. This approach ensured that the model could avoid local 

minima and maintain steady progress without requiring manual learning rate scheduling. 

Table 6. The DL models training hyperparameters. 

Hyper parameter Value 

Loss function categorical cross-entropy 

Optimizer Adam 

Metrics precision, recall, f1, and accuracy 

Epochs 50 

Batch size 12 

Learning rate 0.001 

 

 

5.5 Environment setup 

 

Experiments conducted in this paper are implemented through utilizing TensorFlow and Keras 

packages in Python on the Google Collaboratory website.  

 

The input dataset is divided into three subsets: 50% for the training subset, 20% for the validation 

subset, and 30% for the testing subset. 

 

5.6 Performance evaluation metrics 

 

This paper uses performance evaluation metrics such as accuracy, precision, recall, and F1-score to 

assess the performance of the DL models.  Equations 12 - 15 [62] show the computation of these metrics.  

 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                   (12) 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                         (13) 

 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                               (14) 

 

F1 = 2 ∗ 
𝑟𝑒𝑐𝑎𝑙𝑙 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
                                          (15) 

 

where TP is an abbreviation for true positives, TN is an abbreviation for true negatives, FP is an 

abbreviation for false positives, and FN is an abbreviation for false negatives. 

 

5.7 Performance evaluation of different DL Models with the input dataset after applying the 

preprocessing steps 
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In this section, the specified DL models are evaluated using the input dataset after applying the 

preprocessing steps. Table 7 shows the results obtained from each DL model. The green cells show the best 

performance results. 

Table 7. Evaluation results of different DL models using the input dataset after applying the preprocessing steps. 

Performance metric MobileNetV3Large MobileNetV3Small ResNet50V2 EfficientNetB0 InceptionV3 NASNetMobile MobileNetV2 

Accuracy 0.9375 0.8646 0.8750 0.9479 0.8750 0.8438 0.9271 

Precision 0.9365 0.9207 0.8750 0.9562 0.8750 0.8710 0.9325 

Recall 0.9167 0.8438 0.8750 0.9062 0.8750 0.8438 0.8750 

F1 score 0.9264 0.8805 0.8750 0.9303 0.8750 0.8571 0.9027 

 

5.8 Performance evaluation of different DL Models using the truth NS subset of the input dataset 

 

In this section, the specified DL models are evaluated using the input dataset after applying the 

preprocessing steps and the NS to extract the truth subset from the input scans using Equation 3. The results 

obtained from each model are presented in Table 8. The green cells show the best performance results. 

Figure 2 illustrates samples of the dataset after applying NS to extract the truth subset. 

Table 8. Evaluation results of different DL models using the truth NS subset of the input dataset. 

Performance metric MobileNetV3Large MobileNetV3Small ResNet50V2 EfficientNetB0 InceptionV3 NASNetMobile MobileNetV2 

Accuracy 0.8542 0.9375 0.8854 0.9271 0.8646 0.8438 0.9167 

Precision 0.9306 0.9570 0.8854 0.9257 0.8646 0.8801 0.9210 

Recall 0.8333 0.9062 0.8854 0.9062 0.8646 0.8438 0.8542 

F1 score 0.8792 0.9307 0.8854 0.9158 0.8646 0.8612 0.8861 

 

 

         (A) COVID-19   (B) Normal   (C) Viral Pneumonia. 

 

Figure 2. Samples of the truth NS images resulting from the input dataset (A) Covid-19, (B) Normal, and (C) Viral 

Pneumonia. 
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5.9 Performance evaluation of different DL Models using the falseness NS subset of the input dataset 

In this section, the specified DL models are evaluated using the input dataset after applying the 

preprocessing steps and the NS to extract the falseness subset from input images using Equation 4. The 

results obtained from each model are presented in Table 9. The green cells show the best performance 

results. Figure 3 illustrates samples of the dataset after applying NS to extract the falseness subset. 

Table 9. Evaluation results of different DL models using the falseness NS subset of the input dataset. 

Performance metric MobileNetV3Large MobileNetV3Small ResNet50V2 EfficientNetB0 InceptionV3 NASNetMobile MobileNetV2 

Accuracy 0.9375 0.8958 0.8854 0.9792 0.8438 0.8542 0.8854 

Precision 0.9462 0.9130 0.8854 0.9785 0.8438 0.8501 0.8895 

Recall 0.9167 0.8646 0.8854 0.9583 0.8438 0.8333 0.8438 

F1 score 0.9310 0.8874 0.8854 0.9683 0.8437 0.8416 0.8658 

 

                  (A) COVID-19            (B) Normal               (C)Viral Pneumonia. 

  

Figure 3. Samples of the falseness NS images resulting from the input dataset used (A) Covid-19, (B) Normal, and 

(C) Viral Pneumonia. 

5.10 Performance evaluation of different DL Models using the indeterminacy NS subset of the input 

dataset 

 
In this section, the specified DL models are evaluated using the input dataset after applying the 

preprocessing steps and the NS to extract the indeterminacy subset from input images using Equation 5. 

The results obtained for each model are presented in Table 10. The green cells show the best performance 

results. Figure 4 illustrates samples of the dataset after applying NS to extract the indeterminacy subset. 
 

Table 10. Evaluation results of different DL models using the indeterminacy NS subset of the input dataset. 

Performance metric MobileNetV3Large MobileNetV3Small ResNet50V2 EfficientNetB0 InceptionV3 NASNetMobile MobileNetV2 

Accuracy 0.9479 0.8229 0.7708 0.8750 0.7604 0.7708 0.8438 

Precision 0.9666 0.8455 0.7667 0.8697 0.7848 0.8211 0.8782 

Recall 0.8854 0.7396 0.7188 0.8333 0.7083  0.6354 0.7604 

F1 score 0.9238 0.7888 0.7419 0.8508 0.7440 0.7160 0.8149 
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                  (A) COVID-19            (B) Normal               (C)Viral Pneumonia.  

 

Figure 4. Samples of the indeterminacy NS images from the input dataset (A) Covid-19, (B) Normal, and (C) Viral 

Pneumonia. 

 

Comparing results shown in Tables 6-8 shows that the results shown in Table 9 are the best NS performance 

results obtained compared with the results shown in Table 7. Substantial performance improvements are 

achieved in DL models such as: 

• EfficientNetB0: the accuracy increases from 0.9479 to 0.9792, the precision increases from 0.9562 to 

0.9785, the recall increases from 0.9062 to 0.9583, and the F1 score increases from 0.9303 to 0.9683. 

• MobileNetV3Large: the accuracy remains at 0.9375, the precision increases from 0.9365 to 0.9462, the 

recall stays at 0.9167, and the F1 score increases from 0.9264 to 0.9310. 

• ResNet50V2: the accuracy increases from 0.8750 to 0.8854, the precision remains at 0.8854, the recall 

increases from 0.8750 to 0.8854, and the F1 score remains at 0.8854. 

 

While the EfficientNetB0 model shows the most significant improvements, other models such 

as MobileNetV3Large and ResNet50V2 maintain competitive performance. These improvements are 

consistent across the accuracy, the precision, the recall, and the F1 score, with no significant degradation in 

other models. Figure 5 shows the accuracy of different DL models using various subset components of the 

NS of the input dataset after applying the preprocessing steps.  It is shown in this figure that the 

EfficientNetB0 achieves the most accurate diagnosis results using the falseness NS subset of the input 

dataset. Consequently, we use the falseness NS subset in the proposed framework. 
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Figure 5. The accuracy results of different DL models using various NS subset components of the input dataset. 

 

5.11 Performance evaluation of different DL Models using data augmentation of the falseness NS 

subset of the input dataset  

 

After applying data augmentation methods presented in Section 4.3 on the falseness NS subset of the 

input dataset after applying the preprocessing steps, the size of the subset increases to 2400, and all classes 

become equally represented. Performance evaluation results of different DL models after applying DA are 

presented in Table 11. Figure 6 illustrates the accuracy of different DL models before and after Applying 

DA on the falseness NS subset of the input dataset after applying the preprocessing steps. 

 

 

 

Figure 6. The accuracy of different DL models using the falseness NS subset of the input dataset without and with 

DA. 

 

Table 11. Results of different DL models after applying DA on the NS Falseness subset of the input dataset. 

Performance metric MobileNetV3Large MobileNetV3Small ResNet50V2 EfficientNetB0 InceptionV3 NASNetMobile MobileNetV2 
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Accuracy 0.9953 0.9696 0.9147 0.9836 0.8832 0.8925 0.8995 

Precision 0.9965 0.9765 0.9162 0.9871 0.8834 0.8943 0.9132 

Recall 0.9919 0.9664 0.9151 0.9803 0.8812 0.8931 0.8750 

F1 score 0.9942 0.9714 0.9156 0.9836 0.8823 0.8937 0.8934 

 

6 Discussion of results 

 

6.1 The impact of using NS on Deep Learning model  

 

The integration of NS into DL models has significantly impacted on their classification performance. 

This is proved through comparing performance results presented in Table 7 (before using NS) with results 

presented in Table 9 (after using falseness NS subset of the input dataset). Some models show substantial 

improvements in their performance. For example, EfficientNetB0 achieves a remarkable increase in 

accuracy (from 0.9479 to 0.9792), along with in precision (from 0.9562 to 0.9785), recall (from 0.9062 to 

0.9583), and F1 score (from 0.9303 to 0.9683). Similarly, ResNet50V2 and MobileNetV3Small also have slight 

improvements in accuracy and F1 scores, with ResNet50V2's accuracy and F1 score increasing from 0.8750 

to 0.8854, and MobileNetV3Small's accuracy score rising from 0.8646 to 0.8958 and F1 score increasing from 

0.8805 to 0.8874. 

 

Therefore, the application of NS improves the robustness and reliability of DL models through 

managing uncertainty and imprecision in data. Figure 7 and Table 12 illustrate the accuracy improvement 

of different DL due to using falseness NS subset of the input dataset.  

 

 

Figure 7. The accuracy of DL models using the input dataset and the falseness NS subset of it. 

6.2  The impact of Data Augmentation 

 

Data Augmentation (DA) significantly improves the performance of DL models. This is proved by 

comparing results shown in Table 9 (before DA) with results shown in Table 11 (after DA). In Table 9, the 
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EfficientNetB0 achieves the highest accuracy of 0.9792 and an F1 score of 0.9683. However, after applying 

DA, Table 11 shows that all models exhibit substantial improvements. For example, the MobileNetV3Large 

achieves an impressive accuracy of 0.9953 and a perfect F1 score of 0.9942, indicating a significant boost in 

both precision and recall. Similarly, the EfficientNetB0 maintains its strong performance, achieving an 

accuracy of 0.9836 and an F1 score of 0.9836. Notably, models like the MobileNetV3Small and the 

ResNet50V2 show large increase in accuracy, precision, recall, and F1 score.  

Therefore, DA not only increases the generalization ability of the different DL models but also improves 

their robustness and reliability leading to better overall performance results across accuracy, precision, 

recall, and F1 score metrics as shown in Figure 6. Table 13 presents the confusion matrix for each DL model 

without and with DA using the falseness NS subset of the input dataset after applying the preprocessing 

steps. 

 

6.3  Proposed framework architecture 

 

Following discussion of results presented in Sections 6.1, and 6.2, an MV3Lung-NS framework 

architecture, shown in Figure 8, is proposed for the diagnosis of lung infection in CXR scans. This 

framework architecture is composed of the following steps: 

1. Resizing all scans into a fixed size of 224 x 224 pixels. 

2. Transforming RGB CXR scans into grayscale scans. 

3. Applying NS Filtering to obtain Falseness subset.  

4. Applying DA to increase the size of the dataset and balance its classes. 

5. Using the MobileNetV3Large pretrained DL model for scan diagnosis. 

6. Using The SGDR algorithm to periodically reduce the learning rate through training, helping the 

DL model to explore the validation loss landscape, avoid local minima, and find better optima. 

This results in faster convergence and more accurate results.  

 

Figure 8. The proposed MV3Lung-NS Framework architecture for lung infection diagnosis using CXR scans. 

6.4  Explaining and interpreting results using explainable artificial intelligence 

 

Explainable artificial intelligence (XAI) is necessary for ensuring transparency and understanding of 

results of artificial intelligence (AI) systems, particularly in the healthcare sector, where AI decisions can 

significantly affect patient lives. XAI improves the interpretability of AI models, which is vital for 

establishing trust and helping healthcare professionals to make informed decisions. In the context of lung 

tumor diagnosis, XAI clarifies the reasoning of AI-generated predictions, which informs clinicians about 

treatment options. 
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Several algorithms are proposed for AI decisions interpretability such as Local Interpretable Model-

agnostic Explanations (LIME)[27], SHapley Additive exPlanations (SHAP) [26], and Gradient-weighted 

Class Activation Mapping (Grad-CAM) [28]. LIME identifies which parts of an image influenced a model's 

decision[27], while SHAP values indicate the importance of various features using principles from game 

theory [26]. Grad-CAM, often used in neural networks, highlights the specific areas of an image that the 

model focuses on when making predictions[28]. In lung tumor diagnosis, these algorithms help pinpoint 

relevant regions in X-ray scans, clarify why certain areas are classified as tumorous, and ensure compliance 

with regulatory standards regarding transparency. This transparency fosters trust in AI tools, encouraging 

their responsible use in clinical settings. XAI not only enhances the transparency and reliability of AI 

systems but also serves a critical function in scenarios such as lung tumor diagnosis. Therefore, by 

employing LIME, SHAP, and Grad-CAM algorithms, XAI ensures that AI-driven decisions are 

understandable and reliable, ultimately facilitating effective and informed healthcare delivery. 

 

• Visualization and interpretation of AI decisions via SHapley Additive exPlanations (SHAP) 

 

We utilize SHAP algorithm to analyze the predictions made by the proposed framework and to assess 

the contribution of each feature to the output decision. SHAP values are selected because of their solid 

foundation in cooperative game theory and their capacity to offer both local and global insights, ensuring 

equitable and consistent attribution of feature significance. By using SHAP, we can pinpoint the primary 

factors influencing the AI predictions, providing clarity into the decision-making process at play. This 

algorithm not only improves transparency but also results in an understanding of the connections between 

input features and the predicted results of the proposed framework [26]. 

 

SHAP provides a detailed explanation of the proposed framework predictions by assigning 

importance scores to individual pixels in the images. SHAP is effective in identifying significant areas 

within the images to the output decisions. Pink regions highlight areas that are recognized as important in 

CXR scans, while blue regions indicate areas that are not important. Additionally, SHAP values illustrate 

which parts of the image are crucial to the output predictions. Visual representation of these values offers 

valuable insights into the decision-making process and assists medical professionals in understanding its 

outcomes. Figure 9 shows the plots visualizing for three samples of CXR scans and the output predictions 

of the proposed framework using SHAP. 

 

This plot provides a visual representation of how SHAP values contribute to the final classification 

decision for a specific image. It clearly indicates how certain features influence the prediction towards one 

class over the others. For instance, if a scan is diagnosed as COVID-19, the plot shows that features 

consistent with COVID characteristics—such as specific patterns observed in lung imaging—have high 

positive SHAP values. 

 

In a SHAP summary plot, features are ranked by their importance based on absolute SHAP values, 

with each point representing the SHAP value for a specific feature in an individual instance. If a feature, 

like a particular lung pattern, has many red points (indicating high feature values), it suggests that this 

feature plays a significant role in predicting a specific class. Conversely, features associated with other 

classes show negative or neutral contributions. This explanation produces interpretation of the diagnosis 

process of the DL model. 
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(a) 

 

(b) 

 
(c) 

Figure 9. SHAP plots visualizing the neural network's distinguish process for input dataset (A) Normal image (B) 

Covid-19 image and (C) Viral Pneumonia Image. 
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• Visualization and interpretation of AI decisions via Local Interpretable Model-agnostic 

Explanations (LIME)  

 

LIME algorithm is introduced by Ribeiro et al [27]. It helps users understand the contribution of 

individual input features to an AI model's output, making it especially valuable in high-stakes fields like 

healthcare and finance. LIME algorithm is model agnostic i.e., it can be applied to a wide variety of 

algorithms, including deep neural networks and ensemble methods. However, it does have limitations 

including sensitivity to parameter choices and potential instability in the explanations provided [63]. 

Despite these drawbacks, LIME remains a fundamental tool in the field of XAI, helping human in 

interpreting complex DL model’s output. In CXR scan classification, LIME identifies important regions by 

altering the input image, training a simple interpretable model, and highlighting key areas that influence 

predictions. For instance, if a model classifies a CXR scan as "COVID-19 positive," LIME may emphasize 

specific lung regions, such as those exhibiting ground-glass opacities, to illustrate the reasoning behind the 

model's decision. This approach is particularly beneficial in medical imaging, as understanding why a 

model predicts "COVID-19," "pneumonia," or "normal" is crucial for clinicians to trust and validate the 

model's outcomes. Figure 10 show LIME visualizations that elucidate the neural network's decision-

making process for the input images, providing insights into the model's interpretability. 
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Figure 10. LIME visualizations illustrating the neural network's decision-making process for input scans: (A) 

Normal (B) Covid-19 (C) Viral Pneumonia. 

• Visualization and interpretation of AI decisions via Gradient-weighted Class Activation 
Mapping (Grad-CAM) algorithm 
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Grad-CAM algorithm is a visualization method used to interpret and explain the decision-making 

processes of convolutional neural networks (CNNs). It increases the gradients of a target class that flow 

into the final convolutional layer to generate a coarse localization map. This map shows the segments of an 

input scan that have large contributions to the model's prediction. Grad-CAM is class-specific i.e., it can 

highlight areas relevant to a particular class even in multi-class classification tasks. The resulting heatmap 

uses a color gradient, typically ranging from cool colors (like blue) to warm colors (like red), to indicate the 

importance of various regions. Warmer colors signify higher relevance to the model's decision. This 

technique is invaluable for enhancing model interpretability, debugging and validating whether the model 

focuses on meaningful features. It is particularly important in applications such as medical imaging and 

autonomous driving. Grad-CAM's ability to provide visual explanations without requiring changes to the 

model architecture or retraining makes it a widely adopted tool in deep learning research [28, 64, 65]. Figure 

11 displays Grad-CAM visualizations, highlighting the neural network's focus areas and decision-making 

process for the input images. 
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Figure 11. Grad-CAM visualizations highlighting the neural network's decision-making process for input scans (A) 

Normal (B) Covid-19 (C) Viral Pneumonia. 

 

6.5 Advantages of the MV3Lung-NS Proposed Framework 

 

• Accurate and reliable performance:  

The MV3Lung-NS framework achieves impressive diagnostic performance, with an accuracy of 

99.53%. This surpasses the results of other deep learning models listed in Table 14 and addresses the 

limitations outlined in Table 15. Additionally, it boasts a precision of 99.65%, a recall of 99.19%, and 

an F1-score of 99.42%. These results underscore its robustness and reliability across various evaluation 

criteria. 

 

• Capability of analyzing uncertainty in medical image analysis:  

Using the NS allows the MV3Lung-NS Proposed Framework to efficiently handle uncertainty, 

indeterminacy, and imprecision in medical images. By explicitly modeling truth, falsehood, and 

indeterminacy, NS improves feature representation and enhances performance robustness.  

 

• Effective Handling of Class Imbalance:  

Using DA significantly addresses class imbalance in medical imaging datasets by creating diverse 

samples for under-represented classes, thereby ensuring balanced and effective model training. 

 

• Visualization and interpretation of the diagnosis results:  

Utilizing XAI methods in the MV3Lung-NS Proposed Framework improves transparency and builds 

trust among clinicians by elucidating how the model makes decisions, an essential factor for effective 

clinical application. 

 

7 Conclusion and future work 

 

The integration of Neutrosophic Sets and Data Augmentation has proven to be highly effective in 

enhancing the performance of DL models for lung-infection diagnosis using CXR scans. NS improve model 

robustness by addressing data uncertainty while DA significantly boosted generalization and accuracy 

across multiple architectures. The proposed MV3Lung-NS framework, which combines NS, DA, and the 

MobileNetV3Large model, emerged as an efficient tool for the diagnosis of lung infections. The MV3Lung-

NS framework achieves new state-of-the-art diagnosis performance metrics’ results that are an accuracy of 
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99.53%, a precision of 99.65%, a recall of 99.19%, and an F1-score of 99.42%. Furthermore, the application 

of XAI methods, such as SHAP, LIME, and Grad-CAM, provides critical insights into model predictions, 

ensuring transparency and interpretability of the obtained decision results. These advancements not only 

improve model performance but also foster trust and reliability in the proposed framework, paving the 

way for its responsible adoption in clinical settings. Future work could explore extending this framework 

to other medical imaging domains and further refining XAI methods for enhanced interpretability. In 

addition, more advanced or domain-specific DA techniques could be investigated to improve the quality 

of the input dataset. 

Table 12. Confusion matrix of DL models using the input dataset and the falseness NS subset. 

 
 Original Dataset After Using falseness NS subset of the input dataset 

MobileNetV3Large 

  

MobileNetV3Small 
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ResNet50V2 

  

EfficientNetB0 

  

InceptionV3 
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NASNetMobile 

  

MobileNetV2 

  

Table 13. Confusion matrix of different DL models using the falseness NS subset of the input dataset without and 

with DA. 

 falseness NS subset without DA falseness NS subset with DA 

MobileNetV3Large 
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MobileNetV3Small 

  

ResNet50V2 

  

EfficientNetB0 
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InceptionV3 

  

NASNetMobile 

  

MobileNetV2 
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Table 14. Comparing performance of the proposed MV3Lung-NS framework with other DL models in the literature. 

Reference Model Dataset 
N. 

Classes 
Accuracy Precision Recall F1 

[66] FPS Optimization 
Covid-19 Image 

Dataset 
3 0.9615 - - - 

[67] Deep CNN (VGG-16) 
Covid-19 Image 

Dataset 
3 0.957 0.889 0.888 - 

[68] 
Trained Output-based Transfer 

Learning 

Covid-19 Image 

Dataset 
3 0.966 0.9892 0.9388 0.9634 

[69] ResNet101 
Covid-19 Image 

Dataset 
3 0.963 - - - 

Proposed 

framework 
MV3Lung-NS 

Covid-19 Image 

Dataset 
3 0.9953 0.9965 0.9919 0.9942 

 

Table 15. Limitation of DL models in the literature 

Reference Model Limitations 

[66] FPS Optimization There is no pre-processing step for denoising images in the dataset. 

[67] Deep CNN (VGG-16) 
The model has several limitations, including compatibility issues with image and numerical 

datasets, sensitivity to low-quality images, imbalanced data classes, and dataset size.   

[68] 
Trained Output-based 

Transfer Learning 

The introduced model handles datasets without addressing unbalanced data classes issues, 

which results in low performance results. 

[69] ResNet101 

The introduced model handles datasets without addressing unbalanced data classes issues, 

which results in low performance results. In addition, there is no pre-processing step for 

denoising images in the dataset. 
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