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Abstract. Risk management recognizes and controls the hazards connected with our decisions and activities,

whether they involve our assets or health. The fundamental goal of insurance is to mitigate the risks an

insured person experiences. Term insurance is a kind of life insurance that is polarized among insurance policy

buyers. The quantitative and qualitative attributes of term insurance are often articulated using language

terminology. Consequently, the selection of a term insurance policy can be characterized as an uncertain multi-

criteria decision-making (MCDM) problem. In this work, we substituted the distance measure in the technique

for order preference by similarity to an ideal solution (TOPSIS) with a neutrosophic weighted correlation

coefficient to address the ambiguity involved in the selection of distance measure in the TOPSIS approach.

This work also offers weighted closeness measures and an index coefficient required in the neutrosophic TOPSIS

approach. The suggested neutrosophic TOPSIS is used to identify the best term insurance policy for its clients.

The outcome of the neutrosophic TOPSIS suggests that the tenth insurance firm exhibits the highest level of

acceptance, whereas the first firm represents the least favorable option. The consistency and robustness of the

proposed approach are established through comparison and sensitivity analysis.

Keywords: Single-valued Neutrosophic set; MCDM; Correlation measure; TOPSIS; Term insurance policy.
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1. Introduction

Risk management is the rational creation and implementation of a loss mitigation strat-

egy [1]. Risk management entails detecting possible risks in advance, analyzing them, and

taking preventative measures to mitigate them. If we divide risk into pure and speculative

categories, the pure risk is insurable while the speculative risk is not. Insurance is an essential

component of risk management, but it is not the sole method. Protecting human life is the pri-

mary objective of loss prevention. Modern insurance may be divided into two categories: life

and non-life. Life insurance is insurance in which the insurer agrees to pay a certain amount

upon the insured’s death or at the expiration of a specified time, with the insured paying a

premium. An individual can take life insurance in two ways: term insurance with only death

benefits and endowment insurance with a built-in savings component. Term insurance is a

form of life insurance that offers limited financial protection to the policyholder [2]. The firm

pays the beneficiary the death benefit if the insured person passes away within the period of

the policy. Term insurance policy (TIP) is gaining popularity due to its unique characteristics,

including cheap premium, full life coverage, payout of amount assured, critical illness cover-

age, accidental death benefits, terminal disease coverage, and tax advantage. Term insurance

spreads the insured’s risk and provides peace of mind by removing uncertainty and any anx-

ieties associated with the risk. The problem with picking insurance is that linguistic terms

describe the alternatives’ criteria that a buyer cannot classify. In this process, ambiguity is

introduced into the decision-making procedure. To reflect the ambiguity, we describe these

linguistic terms in our study as a single-valued neutrosophic set (SVNS). In this article, the

problem of selecting a TIP option based on its several uncertain criteria is constructed as an

MCDM problem.

Human decision-making is a complex mental process that requires evaluating all relevant

aspects to reach a goal. MCDM involves several alternatives and criteria. To solve the MCDM

problem, one must analyze each alternative’s criteria and select the best one. Due to the rapid

expansion of MCDM, researchers have created different MCDM methodologies to address var-

ious realistic issues. The TOPSIS approach introduced by Hwang and Yoon [3] and extended

by Hwang et al. [4] is a well-known technique to solve MCDM issues. There are several rea-

sons to solve an MCDM problem by TOPSIS, such as sound logic, greater flexibility, a more

straightforward calculation procedure, and a distance measure simultaneously for the best and

worst possible outcomes. These advantages make TOPSIS more effective and practical than

other existing approaches. Several qualitative and quantitative factors often discuss the crite-

ria of an alternative to the MCDM problem. Linguistic terms are used to describe the criteria

by human judgment. Collecting accurate assessment data can take much work because human

judgments are subjective and frequently ambiguous or imprecise. Data and information on the
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criteria of an option are frequently combined with hesitancy, indeterminacy, and uncertainty

in the MCDM problem. In particular, MCDM techniques are vulnerable to the subjectivity of

the experts when they use linguistic ideas for assessment. The extensions of the conventional

fuzzy set (FS) such as intuitionistic fuzzy set (IFS) [5], pythagorean fuzzy set [6–8], fermatean

fuzzy set [9, 10], neutrosophic set (NS) [11], hesitant fuzzy set [12], type II fuzzy set [13, 14],

have been developed to address this subjectivity and ambiguity in the assessment process.

FS has a membership function that represents the degree of acceptance. The IFS has two

membership functions, acceptance and rejection, but they are not independent. An SVNS is

a generalization of interval, fuzzy, and IFSs. It has three independent membership functions,

all of which lie in [0, 1] and represent truth, indeterminacy, and falsity. As a result, SVNS

is a better choice for representing the language word when evaluating alternative criteria in

MCDM.

In this study, we use SVNS to determine the uncertainty associated with the linguistic

term and describe the criteria for an alternative. Experts in the respective fields define the

weights of the criteria. This study introduces a weighted correlation measure based on SVNS to

replace the distance measure in the TOPSIS approach. We establish three weighted correlation

coefficient components for each membership function since the SVNS offers three distinct

membership functions: truth, hesitation, and falseness. The weighted correlation coefficient

between two SVNSs is derived by averaging the three components and assigning equal weight to

each. The weighted closeness measures of types I and II are presented based on the suggested

correlation measure. A closeness index parameter is given to rank the alternatives of an

MCDM.

2. Literature Review

This section explores the neutrosophic MCDM approach’s application across various signif-

icant sectors and identifies potential research gaps in the neutrosophic TOPSIS approach.

2.1. Neutrosophic MCDM approach

The neutrosophic logic [15] is a generalization of the two membership fuzzy sets. It is capable

of managing inaccurate information through three values (truth, indeterminacy, and falsity).

The significance of neutrosophic MCDM approaches is exhibited in the representation of hes-

itancy in decision-making. Jana et al. [16] applied SVNS for constructing several Hamacher

operators. Suresh et al. [17] used Euclidean measure to rank neutrosophic trapezoidal fuzzy

numbers. Luo et al. [18] established a distance measure on SVNS for pattern recognition.

Saber et al. [19] developed the topological concept on a single-valued neutrosophic soft set.
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Hashmi et al. [20] introduced m-polar NS, a topological concept for medical diagnosis and clus-

tering analysis. Martinez et al. [21] presented a distance-based similarity measure based on

NS to evaluate IoT problems in the supply chain. Singh et al. [22] proposed an interval-valued

neutrosophic fuzzy approach through principal component analysis.

2.2. Neutrosophic TOPSIS

Several articles include in-depth simulation-based comparisons and mathematical analysis of

TOPSIS to clarify the ambiguity over which one should be used to solve MCDM problems [23].

TOPSIS is a popular and effective way to handle MCDM issues in an uncertain environment.

The conventional TOPSIS method considers only distance measures, not similarity or proba-

bility. Biswas et al. [24] solved TOPSIS by using the SVN Euclidean distance measure. Abdel

et al. [25] employed the neutrosophic TOPSIS technique for selecting medical devices. Gul

et al. [26] utilized an interval-valued spherical fuzzy set for analyzing marble manufacturing

facilities. Nafei et al. [27] defined a score function on fuzzy NSs to solve hotel site selection

problems by the TOPSIS approach. Pouresmaeil et al. [28] developed a score function for

solving interval neutrosophic MCDM problems by the TOPSIS approach. Ridvan et al. [29]

developed a TOPSIS that optimizes the distance, similarity, and magnitude closeness coeffi-

cients in a neutrosophic environment. Mollaoglu et al. [30] identified alternate fuel sources

for ship investment choices using the SVNS-based TOPSIS approach. Based on the Dice and

Jaccard vector measures, Ozlu et al. [31] created some similarity measures in TOPSIS under

SVNS type-2 information. Some recent applications of the neutrosophic TOPSIS approach

with its application are summarized in table 1.

Table 1. Recent applications of neutrosophic TOPSIS approach

Contributor Decision making Alt. Crt. Application

Chen et al. [32] MADM 4 4 Green supplier selection

Garg et al. [33] MCDM 5 4 Software company selection

Zulqarnain et al. [34] MCDM 5 5 Supplier selection

Ridvan [29] MCDM 5 4 Mask selection in COVID-19

Aydin et al. [35] MCDM 6 6 Logistic selection

Pouresmaeil et al. [28] MCDM 5 4 Power station location

Lin et al. [36] MCDM 13 4 Risk assessment

Li et al. [37] MCDM 5 5 Doctor selection

Mahapatra et al. [38] MCDM 12 12 Insurance provider

Biswas et al. [39] MAGDM 4 6 Tablet selection

Canizares et al. [40] MCGDM 5 4 Software project selection

Lan et al. [41] MCGDM 5 20 Tourist destination

Nafe et al. [42] MCGDM 8 3 Green supplier selection
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Implementing various neutrosophic TOPSIS techniques in the MCDM and MCGDM (Multi-

criteria group decision-making) problems is convenient, as seen in table 1. However, there are

few papers on insurance policy selection treated as an MCDM problem and solved by fuzzy

TOPSIS: for example, Sehhat et al. [43] used crisp TOPSIS approach, Sekar et al. [44] and Chu

et al. [45] used fuzzy TOPSIS. The neutrosophy philosophy [11] is advantageous for addressing

ambiguous, conflicting, reticent, and incomplete data. Consequently, it is more logical to use

neutrosophic measures to evaluate the qualitative criteria of the numerous alternatives. Neu-

trosophic TOPSIS has a wide range of applications, although TIP selection is not mentioned

as an MCDM problem in any current literature.

2.3. Fuzzy correlation coefficient

A correlation between two things is the connection between them. Karl Pearson first intro-

duced the correlation coefficient to deal with crisp numbers. There are several extensions of the

correlationn coefficient in the fuzzy field, such as FS [46], IFS [47–49], PFS [50], SVNS [51,52],

Interval-valued fuzzy set [53], hesitant fuzzy sets [54–57], picture fuzzy sets [58]. All the re-

searchers developed fuzzy correlation coefficients in [0, 1] except Zeng et al. [52]; hence we

cannot capture the negative correlation between two SVNSs. There are two objectives of the

proposed methodology: (i) the replacement of the ambiguity of distance measures in TOPSIS

methodology and (ii) the development of a correlation measure that is within the range of

[0, 1]. This study introduces a TOPSIS approach that is based on weighted neutrosophic

correlation in order to mitigate the deficiencies of the existing correlation coefficients.

3. Neutrosophic TOPSIS Approach to solve MCDM Problem

In this segment, we first discuss the fundamental idea of SVNS before moving on to the

neutrosophic TOPSIS strategy. In real-life scenarios, most parameters are imprecise, which

means inexact, invalid, or inaccurate. The SVNS can explain the given parameters’ truth,

hesitation, and falsity to overcome this impreciseness.

Definition 3.1. Single valued neutrosophic set [59]: Suppose X is the set of the universe

of discourse. An SVNS (S̃) of a single-valued independent variable (x) is defined by S̃ =

{⟨x; [ πS̃(x), θS̃(x), ηS̃(x)] ⟩ : x ∈ X}, where πS̃(x), θS̃(x), ηS̃(x) represents the concept of

truth, hesitation, and falsity membership functions, respectively. Here πS̃ : R → [0, 1] is the

truth membership function, θS̃ : R → [0, 1] is the hesitation membership function, and the

falsity membership function is ηS̃ : R → [0, 1] with 0 ≤ πS̃ + θS̃ + ηS̃ ≤ 3. For convenience,

we will express an SVNS as ⟨πS̃ , θS̃ , ηS̃⟩ which is called a single-valued neutrosophic element

(SVNE).
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A diagram of the SVNS is given in Figure 1.
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Figure 1. A diagram of a singleigle-valued neutrosophic set

Definition 3.2. Arithmetic operations of SVNEs [60]: Suppose S̃ = ⟨πS̃ , θS̃ , ηS̃⟩ and T̃ =

⟨πT̃ , θT̃ , ηT̃ ⟩ be two SVNEs and h ≥ 0 be real constant. The algebraic operations on SVNEs

are described as follows:

: S̃
⊕

T̃ = ⟨πS̃ + πT̃ − πS̃πT̃ , θS̃θT̃ , ηS̃ηT̃ ⟩
: S̃

⊗
T̃ = ⟨πS̃πT̃ , θS̃ + θT̃ − θS̃θT̃ , ηS̃ + ηT̃ − ηS̃ηT̃ ⟩

: hS̃ = ⟨1− (1− πS̃)
h, θh

S̃
, ηh

S̃
⟩

: S̃h = ⟨πh
S̃
, 1− (1− θS̃)

h, 1− (1− ηS̃)
h⟩

3.1. Neutrosophic TOPSIS Approach

The current section illustrates the neutrosophic TOPSIS methodology for solving the

MCDM problem with uncertainty. Firstly, the expert gives an SVNS rating for an alter-

native criterion. Then, a neutrosophic decision matrix is constructed using the SVNS rating.

The decision matrix defines the positive ideal solution (PIS) and negative ideal solution (NIS),

type I and II correlation measures, the Index function, and their properties.

Let us consider m distinct alternatives defined as Λ = {Λ1, Λ2, ..., Λm} and n criteria

Π = {Π1, Π2, ..., Πn}. Let ς = (ς1, ς2, ..., ςn) be the respective weights for the n criteria

Π = {Π1, Π2, ..., Πn} where ςj ∈ [0, 1] ∀ j = 1, 2, ..., n. Let ΠB and ΠC represent the

collection of benefit and cost criteria, respectively. Where Π = ΠB ∪ ΠC and ΠB ∩ ΠC = ∅.
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Each entry in the decision matrix M = (Mij)m×n are SVNSs as shown below:

M =

Π1 Π2 Π3 . . . Πn


Λ1 (ξ11, ζ11, κ11) (ξ12, ζ12, κ12) (ξ13, ζ13, κ13) . . . (ξ1n, ζ1n, κ1n)

Λ2 (ξ21, ζ21, κ21) (ξ22, ζ22, κ22) (ξ23, ζ23, κ23) . . . (ξ2n, ζ2n, κ2n)
...

...
...

...
. . .

...

Λm (ξm1, ζm1, κm1) (ξm2, ζm2, κm2) (ξm3, ζm3, κm3) . . . (ξmn, ζmn, κmn)

(1)

The element Mij = (ξij , ζij , κij) denote the ijth rating of SVNS (1) by the expert. The

characteristic mi corresponding to the alternative Λi in the ith row is represented as

mi = {(c1, fi1), (c2, fi2), ..., (cn, fin)}
= {(c1, ξi1, ζi1, κi1), (c2, ξi2, ζi2, κi2), ..., (cn, ξin, ζin, κin)}.

Definition 3.3. Neutrosophic PIS and NIS [34]: Let M+ and M− denote the neutrosophic

PIS and NIS represented as M+ = {(c1, M+1), (c2, M+2), ..., (cn, M+n)} and

M− = {(c1, M−1), (c2, M−2), ..., (cn, M−n)}, where M+j , and M−j are defined as M+j =

(ξ+j , ζ+j , κ+j) where

(ξ+j , ζ+j , κ+j) =


(

m
max
i=1

ξij ,
m
min
i=1

ζij ,
m
min
i=1

κij

)
if cj ∈ ΠB(

m
min
i=1

ξij ,
m

max
i=1

ζij ,
m

max
i=1

κij

)
if cj ∈ ΠC

(2)

And M−j = (ξ−j , ζ−j , κ−j) where

(ξ−j , ζ−j κ−j) =


(

m
min
i=1

ξij ,
m

max
i=1

ζij ,
m

max
i=1

κij

)
if cj ∈ ΠB(

m
max
i=1

ξij ,
m
min
i=1

ζij ,
m
min
i=1

κij

)
if cj ∈ ΠC

(3)

4. Single-Valued weighted Neutrosophic Correlation Coefficient

To solve the MCDM problem using the TOPSIS method, we need to calculate the distance

between PIS and NIS. We intend a novel neutrosophic correlation coefficient to replace the

distance measure in TOPSIS. Some essential properties of the neutrosophic correlation coef-

ficient are introduced to establish it. The neutrosophic correlation coefficient between two

neutrosophic characteristics is defined as follows:

Definition 4.1. Neutrosophic correlation coefficient [38]: Let Ms and Mt represent PIS and

NIS of an alternative in the neutrosophic decision matrix M respectively, where

Ms = {(c1, ξs1, ζs1, κs1), (c2, ξs2, ζs2, κs2), ..., (cn, ξsn, ζsn, κsn)}
Mt = {(c1, ξt1, ζt1, κe1), (c2, ξt2, ζt2, κt2), ..., (cn, ξtn, ζtn, κtn)}
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Also consider ξ̄j =
∑m

i=1 ξij/m, ζ̄j =
∑m

i=1 ζij/m, and κ̄j =
∑m

i=1 κij/m, then the neutro-

sophic correlation coefficient is

ϑ(Ms, Mt) =
1

3
[ρξ(Ms, Mt) + ρζ(Ms, Mt) + ρκ(Ms, Mt)]

where

ρξ(Ms, Mt) =

∑n
j=1

[
ξ2sj − ξ̄2j

] [
ξ2tj − ξ̄2j

]
√∑n

j=1

[
ξ2sj − ξ̄2j

]2√∑n
j=1

[
ξ2tj − ξ̄2j

]2
ρζ(Ms, Mt) =

∑n
j=1

[
ζ2sj − ζ̄2j

] [
ζ2tj − ζ̄2j

]
√∑n

j=1

[
ζ2sj − ζ̄2j

]2√∑n
j=1

[
ζ2tj − ζ̄2j

]2
ρκ(Ms, Mt) =

∑n
j=1

[
κ2sj − κ̄2j

] [
κ2tj − κ̄2j

]
√∑n

j=1

[
κ2sj − κ̄2j

]2√∑n
j=1

[
κ2tj − κ̄2j

]2 .
We assume that the denominators of ρξ(Ms, Mt), ρζ(Ms, Mt), ρκ(Ms, Mt) are not equal

to zero.

The weighted neutrosophic correlation coefficient between two features is obtained by adding

the weight vector, ς, to the correlation measure.

Definition 4.2. Weighted neutrosophic correlation coefficient [38]: Let Ms, Mt be the

two neutrosophic characteristics in the neutrosophic decision-making matrix M and ς =

(ς1, ς2, ..., ςn),
∑n

j=1 ςj = 1 be the weight vector related with the criteria. Then, the weighted

neutrosophic correlation coefficient between Ms, Mt is defined as

ϑς(Ms, Mt) =
1

3

[
ρςξ(Ms, Mt) + ρςζ(Ms, Mt) + ρςκ(Ms, Mt)

]
(4)

where,

ρςξ(Ms, Mt) =

∑n
j=1 ςj

[
ξ2sj − ξ̄2j

]
.
[
ξ2tj − ξ̄2j

]
√∑n

j=1 ςj

[
ξ2sj − ξ̄2j

]2
.

√∑n
j=1 ςj

[
ξ2tj − ξ̄2j

]2 (5)

ρςζ(Ms, Mt) =

∑n
j=1 ςj

[
ζ2sj − ζ̄2j

]
.
[
ζ2tj − ζ̄2j

]
√∑n

j=1 ςj

[
ζ2sj − ζ̄2j

]2
.

√∑n
j=1 ςj

[
ζ2tj − ζ̄2j

]2 (6)

ρςκ(Ms, Mt) =

∑n
j=1 ςj

[
κ2sj − κ̄2j

]
.
[
κ2tj − κ̄2j

]
√∑n

j=1 ςj

[
κ2sj − κ̄2j

]2
.

√∑n
j=1 ςj

[
κ2tj − κ̄2j

]2 . (7)

The denominator in the formulas above is expected to be non-zero, just like in the un-

weighted preceding instance.
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Theorem 4.3. The membership component ρςξ(Ms, Mt) in the weighted neutrosophic cor-

relation coefficient ϑς(Ms, Mt) for two neutrosophic characteristics Ms and Mt satisfy the

following properties:

(i) ρςξ(Ms, Mt) = ρςξ(Mt, Ms)

(ii) ρςξ(Ms, Mt) = 1 if ξsj = ξtj ∀ cj ∈ Π

(iii) |ρςξ(Ms, Mt)| ≤ 1

Proof. The properties (i) and (ii) are trivial as

ρςξ(Ms, Mt) =

∑n
j=1 ςj

[
ξ2sj − ξ̄2j

]2
[√∑n

j=1 ςj

[
ξ2sj − ξ̄2j

]2]2 = 1.

To prove of (iii) it is known that −1 ≤
(
(ξsj)

2 −
(
ξ̄j
)2)

.
(
(ξtj)

2 −
(
ξ̄j
)2) ≤ 1.

Thus, −1 ≤
∑n

j=1 ςj

(
(ξsj)

2 −
(
ξ̄j
)2)

.
(
(ξtj)

2 −
(
ξ̄j
)2) ≤ 1 since

∑n
j=1 ςj = 1.

Now let the denominator of (5) as, 0 ≤
∑n

j=1

(
(ξsj)

2 −
(
ξ̄j
)2)2

≤ n and 0 ≤∑n
j=1

(
(ξtj)

2 −
(
ξ̄j
)2)2

≤ n.

So it is obvious that 0 ≤
∑n

j=1 ςj

(
(ξsj)

2 −
(
ξ̄j
)2)2

≤ 1 and 0 ≤
∑n

j=1 ςj

(
(ξtj)

2 −
(
ξ̄j
)2)2

≤ 1

since
∑n

j=1 ςj = 1.

Hence,

√∑n
j=1 ςj

(
(ξsj)

2 −
(
ξ̄j
)2)2

.

√∑n
j=1 ςj

(
(ξtj)

2 −
(
ξ̄j
)2)2

≤
√
1.
√
1 = 1.

Similarly, it can be shown −1 ≤ ρξ(Ms, Mt) ≤ 1, this establishes the theorem.

Definition 4.4. Weighted type I and type II closeness measures [61]: Let the neutrosophic

PIS ans NIS of the neutrosophic characteristic of an alternative Λi be M+, M−. Also, let M
be any neutrosophic characteristic. Let ςj be the weight of the criteria Πi where 0 ≤ ςj ≤ 1

and
∑n

j=1 ςj = 1. Let Mς
I(Mi) and Mς

II(Mi) denote the weighted closeness measure of type I

and type II, then

Mς
I(Mi) =

1− Cς(Mi, M−)

2− Cς(Mi, M+)− Cς(Mi, M−)
(8)

and

Mς
II(Mi) =

1 + Cς(Mi, M+)

2 + Cς(Mi, M+) + Cς(Mi, M−)
. (9)

It is assumed that the denominator of Mς
I(Mi) and Mς

II(Mi) are not zero.

Theorem 4.5. For each neutrosophic characteristic Mi in the neutrosophic decision matrix

M, the weighted type I closeness measure Mς
I(Mi) follows the following criteria:

(i) 0 ≤ Mς
1(Mi) ≤ 1

(ii) Mς
I(Mi) = 1 if Cς(Mi, M+) = 1
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(iii) Mς
I(Mi) = 0 if Cς(Mi, M−) = 1

(iv) Mς
I(M−) = 0 if M ς

1(M+) = 1

(v) Mς
I(Mi) = MI(Mi) if ς = (1/n, 1/n, ..., 1/n)

Proof. From previous theorems we know that−1 ≤ C(Mi, M+) ≤ 1 and−1 ≤ C(Mi, M−) ≤
1. So, 0 ≤ 1−C(Mi, M+) ≤ 2, 0 ≤ 1−C(Mi, M−) ≤ 2 and 0 ≤ 2−C(Mi, M+)−C(Mi, M−) ≤
4. Therefore, 0 ≤ Mς

I(Mi) ≤ 1. Hence (i) is true.

The proofs of (ii), (iii), (iv), and (v) are obvious.

Theorem 4.6. The weighted type II closeness measure Mς
II(Mi) meets the following conditions

for every neutrosophic characteristic Mi in the neutrosophic decision matrix M.

(i) 0 ≤ Mς
II(Mi) ≤ 1

(ii) Mς
II(Mi) = 0 if Cς(Mi, M+) = −1

(iii) Mς
II(Mi) = 1 if Cς(Mi, M−) = −1

(iv) Mς
II(M−) ≤ Mς

II(M+)

(v) Mς
II(Mi) = MII(Mi) if ς = (1/n, 1/n, ..., 1/n)

Proof. From previous theorems, we know that −1 ≤ C(Mi, M+) ≤ 1 and −1 ≤
C(Mi, M−) ≤ 1. So, −2 ≤ C(Mi, M+) + C(Mi, M−) ≤ 2 and 0 ≤ 2 + C(Mi, M+) +

C(Mi, M−) ≤ 4. Therefore, 0 ≤ Mς
II(Mi) ≤ 1. Hence (i) is true.

The proof of (ii), (iii), (iv), and (v) are obvious.

Definition 4.7. Weighted neutrosophic index coefficient [61]: Let Mς
I(Mi), Mς

II(Mi) be the

weighted type I and type II closeness measures for the alternative Λi, respectively. Let ε denote

a closeness parameter, where 0 ≤ ε ≤ 1. The weighted neutrosophic index coefficient Iς(Mi)

of the alternative Λi is defined as follows:

Iς(Mi) = εMς
I(Mi) + (1− ε)Mς

II(Mi) (10)

Theorem 4.8. The weighted neutrosophic index coefficient Iς(Mi) meets the following condi-

tions for every neutrosophic characteristic Mi in the neutrosophic decision matrix M.

(i) 0 ≤ Iς(Mi) ≤ 1

(ii) Iς(Mi) = Mς
I(Mi) if ε = 1

(iii) Iς(Mi) = Mς
II(Mi) if ε = 0

(iv) Iς(M−) ≤ Iς(M+)

(v) Iς(Mi) = I(Mi) if ς = (1/n, 1/n, ..., 1/n)

Proof. According to the definition 4.4, equation (9) since both 0 ≤ MI ≤ 1 and 0 ≤ MII ≤
1, it is evident that 0 ≤ Iς(Mi) ≤ 1. Hence (i) is proved. Proof (ii) and (iii) are obvious.
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For (iv), it is already proved that MII(M−) ≤ MII(M+) hence Iς(M−) ≤ Iς(M+). Similarly,

the proof of (v) is valid.

5. Proposed Neutrosophic TOPSIS Approach

This section elucidates the steps involved in the proposed neutrosophic TOPSIS methodol-

ogy.

Step I: Construct an MCDM problem using m alternatives Λ = {Λ1, Λ2, ..., Λm} and

n criteria Π = {Π1, Π2, ..., Πn}, partitioned into ΠB and ΠC .

Step II: Set the weight vector ς = {ς1, ς2, ..., ςn} to the n criteria. A uniform weight

will be assigned to an unweighted scenario in relation to the criteria.

Step III: Assign the neutrosophic ratingMij to each alternative Λi based on the criterion

Πj as determined by the experts.

Step IV: Formulate the weighted neutrosophic decision matrix M = (Mij)m×n using

equation (1). Define the neutrosophic characteristic Mi for each Λi ∈ Λ.

Step V: Identify the neutrosophic PISM+ and neutrosophic NISM− using the equations

(2) and (3).

Step VI: Compute the components of membership ρςξ(Mi, M+), ρ
ς
ξ(Mi, M−), hesitancy

ρςζ(Mi, M+), ρ
ς
ζ(Mi, M−), and non-membership ρςκ(Mi, M+), ρςκ(Mi, M−) for each

Λi ∈ Λ, using equations (5), (6) and (7), respectively.

Step VII: Apply equation (4) to calculate the weighted neutrosophic correlation coef-

ficient ϑς(Mi, M+) and ϑς(Mi, M−) between Mi, M+, and Mi, M− respectively for

every Λi ∈ Λ.

Step VIII: Apply the equations (8) and (9) to determine the weighted Type I and Type

II closeness measure Mς
I(Mi) and Mς

II(Mi), respectively for every Λi ∈ Λ.

Step IX: Define the closeness parameter ε, 0 ≤ ε ≤ 1 and determine Iς(Mi) for each

Λi ∈ Λ using equation (10).

Step X: Determine the preference order of m alternatives according to descending order

of Iς(Mi) values.

The flowchart of the proposed approach is shown in figure 2.
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Figure 2. Proposed neutrosophic MCDA approach framework.
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6. Numerical Problem on Term Policy Selection

Insurance is vital as it compensates for any unexpected loss of property and life. In this

study, we will address the TIP selection, the significance of which still needs to be realized by

most individuals.

6.1. Analyzing the criteria and alternatives

A variety of attributes, such as flexible premium payment options, a broad range of coverage

options, a reputable insurance firm with a high claim settlement ratio, an affordable premium,

and excellent customer feedback, are associated with an insurance policy. In this problem we

choose five important criteria, such as insurance premium (Π1), claim settlement ratio (Π2),

reputation of the insurance firm (Π3), range of coverage (Π4) and customer feedback (Π5) and

ten term insurance policy firms Λ = {Λ1, Λ2, Λ3, Λ4, Λ5, Λ6 Λ7, Λ8, Λ9 Λ10}.

6.2. Solution procedure by the proposed method

In Step I, we select ten alternatives and five criteria, with ΠC = {Π1} and ΠB =

{Π2, Π3, Π4, Π5}. In Step II, the weights according to the importance of the criteria are

predetermined as ς = {0.30, 0.35, 0.15, 0.10, 0.10}.
In Step III, the expert evaluates each criterion Πi associated with each alternative using the

neutrosophic ratings outlined in Table 2.

Table 2. Linguistic terms and corresponding SVNS

Linguistic Variables Membership functions

Very Low (VL) (0.1,0.2,0.8)

Low (L) (0.3,0.3,0.75)

Medium Low (ML) (0.4,0.25,0.7)

Medium (M) (0.6,0.2,0.5)

Medium High (MH) (0.7,0.15,0.4)

High (H) (0.8,0.15,0.3)

Very High (VH) (0.9,0.2,0.1)

The neutrosophic decision matrix is formulated using the neutrosophic rating of SVNSs

from table 2.
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Table 3. Linguistic term based decision matrix

Criteria Weight 0.3 0.35 0.15 0.1 0.1

Criteria →
Alternatives ↓

Π1 Π2 Π3 Π4 Π5

Λ1 ML M M VL VH

Λ2 VL ML M VH VH

Λ3 MH VH H VH ML

Λ4 M M M M M

Λ5 H M M VH ML

Λ6 M MH MH M H

Λ7 L VL M VH M

Λ8 ML H ML ML ML

Λ9 H H VH ML M

Λ10 VH L VH MH ML

The neutrosophic rating is distributed among the alternatives by their credibility in table 3.

The decision maker has assigned higher ratings to the alternatives Λ3, Λ6, Λ9, and Λ10, while

rating Λ1, Λ2, and Λ8 relatively lower. Therefore, it is possible to predict that the alternatives

Λ3, Λ6, Λ9, and Λ10 will acquire the initial positions, while the alternatives Λ1, Λ2, and Λ8

will be at the bottom of the ranking sequence.

The weighted normalized neutrosophic decision matrix is determined by integrating criteria

weights with the neutrosophic decision matrix in Step IV.

M =



(0.120, 0.075, 0.210) (0.210, 0.070, 0.175) (0.090, 0.030, 0.075) (0.010, 0.020, 0.080) (0.090, 0.020, 0.010)

(0.030, 0.060, 0.240) (0.140, 0.087, 0.245) (0.090, 0.030, 0.075) (0.090, 0.020, 0.010) (0.090, 0.020, 0.010)

(0.210, 0.045, 0.120) (0.315, 0.070, 0.035) (0.120, 0.023, 0.045) (0.090, 0.020, 0.010) (0.040, 0.025, 0.070)

(0.180, 0.060, 0.150) (0.210, 0.070, 0.175) (0.090, 0.030, 0.075) (0.060, 0.020, 0.050) (0.060, 0.020, 0.050)

(0.240, 0.045, 0.090) (0.210, 0.070, 0.175) (0.090, 0.030, 0.075) (0.090, 0.020, 0.010) (0.040, 0.025, 0.070)

(0.180, 0.060, 0.150) (0.245, 0.053, 0.140) (0.105, 0.023, 0.060) (0.060, 0.020, 0.050) (0.080, 0.015, 0.030)

(0.090, 0.090, 0.225) (0.035, 0.070, 0.280) (0.090, 0.030, 0.075) (0.090, 0.020, 0.010) (0.060, 0.020, 0.050)

(0.120, 0.075, 0.210) (0.280, 0.053, 0.105) (0.060, 0.038, 0.105) (0.040, 0.025, 0.070) (0.040, 0.025, 0.070)

(0.240, 0.045, 0.090) (0.280, 0.053, 0.105) (0.135, 0.030, 0.015) (0.040, 0.025, 0.070) (0.060, 0.020, 0.050)

(0.270, 0.060, 0.030) (0.105, 0.105, 0.263) (0.135, 0.030, 0.015) (0.070, 0.015, 0.040) (0.040, 0.025, 0.070)



Table 4 displays the neutrosophic PIS M+ and NIS M− calculated using equations (2) and

(3), respectively.
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Table 4. Neutrosophic PIS M+ and Neutrosophic NIS M−

Neutrosophic ideal solutions Components Π1 Π2 Π3 Π4 Π5

PIS

Membership 0.030 0.315 0.135 0.090 0.090

Hesitant 0.090 0.053 0.023 0.015 0.015

Non-membership 0.240 0.035 0.015 0.010 0.010

NIS

Membership 0.270 0.035 0.060 0.010 0.040

Hesitant 0.045 0.105 0.038 0.025 0.025

Non-membership 0.030 0.280 0.105 0.080 0.070

The components of weighted correlation coefficients are calculated from neutrosophic PIS

and NIS using equation (4), as shown in table 5.

Table 5. Weighted correlation coefficient using neutrosophic PIS and NIS

Solution Components Λ1 Λ2 Λ3 Λ4 Λ5 Λ6 Λ7 Λ8 Λ9 Λ10

PIS

ρςζ(Mi, M+) 0.5627 -0.2869 0.7896 0.1958 -0.3005 0.8157 -0.6587 0.9742 0.5067 -0.8461

ρςξ(Mi, M+) 0.8791 -0.5246 -0.8641 -0.8509 -0.8804 0.4053 0.8795 0.8995 -0.1570 -0.4959

ρςκ(Mi, M+) 0.6810 0.0880 0.4172 -0.6931 -0.8328 0.6148 -0.2317 0.9662 0.0558 -0.9195

NIS

ρςζ(Mi, M−) -0.8134 -0.0952 -0.4989 0.1745 0.6374 -0.5355 0.3250 -0.8723 -0.1426 0.9739

ρςξ(Mi, M−) -0.2556 0.9788 0.2461 0.2532 0.2575 -0.1058 -0.2560 -0.8969 -0.6118 0.9713

ρςκ(Mi, M−) -0.2790 0.3705 -0.7814 0.8615 0.4747 -0.4425 0.6385 -0.8853 -0.4978 0.9856

In the initial stages of the proposed neutrosophic TOPSIS, weighted neutrosophic correlation

measures from ideal solutions are helpful for predicting the final ranking of the alternatives.

The highest membership function of the neutrosophic correlation from PIS signifies that the

corresponding alternative is optimal, whereas the highest non-membership of neutrosophic

correlation from PIS indicates that the corresponding alternative is the least favourable option.

If the non-membership of the neutrosophic correlation from NIS is at its lowest, it signifies

that this option is the least favourable. Conversely, if the membership is at its highest, it

also indicates that this alternative is the least favourable. Table 5 is employed to generate

the figures 3 and 4, which are used to identify the most appropriate alternatives through the

proposed neutrosophic TOPSIS approach.
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Figure 3. Neutrosophic component of the correlation coefficient from PIS

The membership components of the weighted neutrosophic correlation from PIS, as illus-

trated in figure 3, are comparatively higher for the alternatives Λ1, Λ3,Λ6, and Λ8. In contrast,

the nonmembership components are significantly lower for the alternative Λ10.
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Figure 4. Neutrosophic component of the correlation coefficient from NIS

The non-membership components of the weighted neutrosophic correlation from NIS, as

illustrated in figure 4, are notably higher for the alternatives Λ4 and Λ10. In contrast, the
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membership components from NIS are lower for the alternatives Λ1 and Λ8. Therefore, based

on figures 3 and 4, it can be predicted that the top-ranking positions will be attained by the

alternatives Λ1, Λ8, and Λ10. However, the alternatives presented in figures 3 and 4 may

attain the initial positions in the ranking sequence based on their average scores.

Table 6 provides the weighted neutrosophic correlation coefficients, type I and type II close-

ness measures according to Step VII and Step VIII.

Table 6. Weighted correlation coefficients, type I and type II closeness mea-

sures

Alt. ϑς(Mi, M+) ϑς(Mi, M−) MI(Mi) MII(Mi)

Λ1 0.7076 -0.4493 0.1679 0.7562

Λ2 -0.2412 0.4180 0.6808 0.3486

Λ3 0.1142 -0.3447 0.3971 0.6297

Λ4 -0.4494 0.4297 0.7176 0.2780

Λ5 -0.6712 0.4565 0.7546 0.1842

Λ6 0.6119 -0.3613 0.2218 0.7162

Λ7 -0.0036 0.2359 0.5677 0.4464

Λ8 0.9466 -0.8848 0.0275 0.9441

Λ9 0.1352 -0.4174 0.3789 0.6608

Λ10 -0.7538 0.9769 0.9870 0.1107

The index parameter is set 0.5 to provide same relevance to type I and type II closeness

measurements. The weighted index values of the options are determined using equation (10).

Table 7 presents the weighted index values and their corresponding rankings of the options.

Table 7. Index values and ranking of alternatives

Alternatives Λ1 Λ2 Λ3 Λ4 Λ5 Λ6 Λ7 Λ8 Λ9 Λ10

Index values 0.4620 0.5147 0.5134 0.4978 0.4694 0.4690 0.5070 0.4858 0.5199 0.5489

Ranking 10 3 4 6 8 9 5 7 2 1

The suggested neutrosophic TOPSIS technique identifies alternative Λ10 as the ideal choice

and Λ1 as the least beneficial option.

6.3. Comparison study

The proposed neutrosophic correlation-based TOPSIS is applied to the decision matrix of

Zeng et al. [52] which considers five alternatives and four criteria for comparison of the ob-

tained outcome. The weight vector for the four criteria is ς = {0.2, 0.25, 0.3, 0.25}. The

neutrosophic TOPSIS approach used divergence measure [33], Euclidean distance [24], OWA
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distance [32]. The neutrosophic decision matrix M of Zeng et al. [52] article is

M =



(0.5, 0.3, 0.4) (0.3, 0.2, 0.1) (0.2, 0.2, 0.6) (0.5, 0.2, 0.5)

(0.7, 0.3, 0.6) (0.5, 0.2, 0.2) (0.4, 0.5, 0.2) (0.7, 0.0, 0.2)

(0.5, 0.3, 0.4) (0.5, 0.1, 0.3) (0.6, 0.1, 0.1) (0.6, 0.2, 0.4)

(0.7, 0.0, 0.3) (0.6, 0.4, 0.2) (0.6, 0.3, 0.2) (0.7, 0.2, 0.3)

(0.4, 0.1, 0.3) (0.4, 0.3, 0.6) (0.4, 0.1, 0.5) (0.5, 0.1, 0.2)


The ranking orders derived from the aforementioned approaches are presented in Table 8.

Table 8. Comparison of the proposed and existing approaches

Approach Results

Garg [33] Λ4 ≻ Λ3 ≻ Λ1 ≻ Λ5 ≻ Λ2

Biswas et al. [24] Λ3 ≻ Λ1 ≻ Λ4 ≻ Λ2 ≻ Λ5

Chen et al. [32] Λ1 ≻ Λ3 ≻ Λ4 ≻ Λ5 ≻ Λ2

Zeng et al. [52] Λ3 ≻ Λ4 ≻ Λ2 ≻ Λ1 ≻ Λ5

Proposed method Λ3 ≻ Λ2 ≻ Λ4 ≻ Λ5 ≻ Λ1

The ideal solution using distance measurements has potential variations, as shown in Table 8,

which might mislead the decision-maker. The proposed technique differs from the [52], but Λ3

is the best alternate in both approaches. In comparison to any distance measure, the suggested

approach is relatively straightforward. Because the suggested neutrosophic TOPSIS technique

is more flexible and effectively captures the uncertainty, it may improve existing approaches.

As a result, the researcher might consider the presented method as an alternate solution to

the uncertain MCDM issue. Table 9 displays correlation coefficients between findings from

different methodologies in the comparative study.

Table 9. Correlation coefficient of the comparison study

Garg [33] Biswas et al. [24] Chen et al. [32] Zeng et al. [52] Proposed method

Garg [33] 1

Biswas et al. [24] 0.61 1

Chen et al. [32] 0.49 0.8 1

Zeng et al. [52] 0.73 0.7 0.2 1

Proposed method 0.24 0.3 -0.3 0.8 1

The results of the proposed neutrosophic TOPSIS significantly correspond with the findings

of Zeng et al. [52]. The correlation coefficients of the proposed approach and that of Zeng et

al. [52] both lie within the interval [−1, 1]. The remaining methods utilised either divergence

or distance measures in TOPSIS, which differ internally from the correlation-based TOPSIS

approach. Thus, the proposed correlation-based neutrosophic TOPSIS presents a viable option

for researchers addressing hesitancy in decision-making.
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6.4. Sensitivity analysis

In this section, we analyses the sensitivity for different values of ε to check the robustness

and credibility of the proposed neutrosophic TOPSIS. The ranking of the ten alternatives for

the values of ε is presented in figure 5.
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Figure 5. Grade of the alternatives for different ε

The preference parameter ε depends on the decision-maker. If the decision-maker considers

type I weighted closeness measure (Mς
I) more than type II closeness measure (Mς

II), ε ≥
0.5, and if type II is more important, ε ≤ 0.5. We provide the figure 5 to summarize the

importance of type I and type II weighted closeness measures. The decision-making for each

value of ε in the range [0, 1] is shown in Figure 5. In particular, from the graph, we can

conclude that when ε ∈ [0, 0.3), the best choice is Λ8 and the grading of the alternatives

is Λ8, Λ1, Λ6, Λ9, Λ3, Λ7, Λ2, Λ4, Λ5, Λ10. The ranking order of the alternatives is

Λ10, Λ5, Λ4, Λ2, Λ7, Λ3, Λ9, Λ6, Λ1, Λ8 when ε ∈ (0.7, 1]. The weighted closeness index

is nearly close to each other when ε ∈ [0.4, 0.6]. Hence, the ranking order of the alternatives

largely depends on the preference parameter ε. i.e., The ranking order of the alternatives

varies with the preference parameter ε, as seen in 5.

7. Conclusions

The proposed approach effectively addresses the MCDM challenges associated with the se-

lection of term insurance policies, particularly in ambiguous situations. The proposed weighted
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neutrosophic correlation measure lies in [−1, 1] aligns well with the classical correlation co-

efficient, ensuring the consistency and reliability of the decision-making process. The study

reveals that customers place a higher emphasis on criteria such as the insurance provider’s rep-

utation and the policy’s coverage area, showing a willingness to pay higher premiums for better

service quality. In contrast, factors like claim settlement ratio and customer feedback are of

lesser concern to most customers. The suggested strategy provides substantial advantages for

both clients and insurance companies. Firms can prioritize the most significant criteria to suc-

cessfully meet customer expectations, while customers can make more informed decisions by

comprehending the most essential criteria. Furthermore, by recognizing and rectifying weak-

nesses, companies may refine their products and elevate consumer contentment, hence drawing

a broader client. The limitations of the suggested technique include predetermined criterion

weights and a single decision-maker. The forthcoming study may enhance outcomes through

the incorporation of group decision-making processes, extension through type II fuzzy sets,

complex spherical fuzzy sets, and Diophantine fuzzy sets. The suggested technique is capable

of addressing any real-world MCDM issue, such as risk assessment, green energy selection, and

supplier selection.
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40. Cañizares Galarza, F. P., Becerra Arévalo, N. P., Jalón Arias, E. J., & Acosta Espinoza, J. L. (2021).

Prioritization of Software Requirements Using Neutrosophic TOPSIS. Neutrosophic Sets and Systems,

44(1), 23.

41. Lan, L. T. H., Thong, N. T., Smarandache, F., & Giang, N. L. (2023). An ANP-TOPSIS model for tourist

destination choice problems under Temporal Neutrosophic environment. Applied Soft Computing, 136,

110146.

42. Nafei, A., Azizi, S. P., Edalatpanah, S. A., & Huang, C. Y. (2024). Smart TOPSIS: a neural Network-

Driven TOPSIS with neutrosophic triplets for green Supplier selection in sustainable manufacturing. Expert

Systems with Applications, 255, 124744.

43. Sehhat, S., Taheri, M., & Sadeh, D. H. (2015). Ranking of insurance companies in Iran using AHP and

TOPSIS techniques. American Journal of Research Communication, 3(1), 51-60.

44. Sekar, K. R., Sarika, M., Mitchelle Flavia Jerome, M., Venkataraman, V., & Thaventhiran, C. (2021). An

Enhanced Fuzzy TOPSIS in Soft Computing for the Best Selection of Health Insurance. In Cybernetics,

Cognition and Machine Learning Applications: Proceedings of ICCCMLA 2020 (pp. 361-369). Springer

Singapore.

45. Chu, T. C., & Le, T. H. P. (2022). Evaluating and selecting agricultural insurance packages through an

AHP-based fuzzy TOPSIS Method. Soft Computing, 26(15), 7339-7354.

46. Chiang, D. A., & Lin, N. P. (1999). Correlation of fuzzy sets. Fuzzy sets and systems, 102(2), 221-226.

Golui et al., Decision on Insurance Policy Selection by weighted Correlation Approach on
Neutrosophic Fuzziness through TOPSIS

Neutrosophic Sets and Systems, Vol. 86, 2025                                                                              959



47. Hung, W. L. (2001). Using statistical viewpoint in developing correlation of intuitionistic fuzzy sets. Inter-

national journal of uncertainty, fuzziness and knowledge-based systems, 9(04), 509-516.

48. Mitchell, H. (2004). A correlation coefficient for intuitionistic fuzzy sets. International journal of intelligent

systems, 19(5), 483-490.

49. Ye, J. (2010). Fuzzy decision-making method based on the weighted correlation coefficient under intuition-

istic fuzzy environment. European Journal of Operational Research, 205(1), 202-204.

50. Lin, Y. L., Ho, L. H., Yeh, S. L., & Chen, T. Y. (2018). A Pythagorean fuzzy TOPSIS method based

on novel correlation measures and its application to multiple criteria decision analysis of inpatient stroke

rehabilitation. International Journal of Computational Intelligence Systems, 12(1), 410-425.

51. Ye, J. (2013). Multicriteria decision-making method using the correlation coefficient under single-valued

neutrosophic environment. International Journal of General Systems, 42(4), 386-394.

52. Zeng, S., Luo, D., Zhang, C., & Li, X. (2020). A correlation-based TOPSIS method for multiple attribute

decision making with single-valued neutrosophic information. International Journal of Information Tech-

nology & Decision Making, 19(01), 343-358.

53. Broumi, S., & Smarandache, F. (2013). Correlation coefficient of interval neutrosophic set. Applied me-

chanics and materials, 436, 511-517.

54. Chen, N., Xu, Z., & Xia, M. (2013). Correlation coefficients of hesitant fuzzy sets and their applications to

clustering analysis. Applied Mathematical Modelling, 37(4), 2197-2211.

55. Liao, H., Xu, Z., & Zeng, X. J. (2015). Novel correlation coefficients between hesitant fuzzy sets and their

application in decision making. Knowledge-Based Systems, 82, 115-127.

56. Zhang, R., Li, Z., & Liao, H. (2018). Multiple-attribute decision-making method based on the correlation

coefficient between dual hesitant fuzzy linguistic term sets. Knowledge-Based Systems, 159, 186-192.

57. Liu, X., Wang, Z., Zhang, S., & Garg, H. (2021). Novel correlation coefficient between hesitant fuzzy sets

with application to medical diagnosis. Expert Systems with Applications, 183, 115393.

58. Singh, P. (2015). Correlation coefficients for picture fuzzy sets. Journal of Intelligent & Fuzzy Systems,

28(2), 591-604.

59. Wang, H., Smarandache, F., Zhang, Y., & Sunderraman, R. (2010). Single valued neutrosophic sets. Infinite

study.

60. Liu, P., & Wang, Y. (2014). Multiple attribute decision-making method based on single-valued neutrosophic

normalized weighted Bonferroni mean. Neural Computing and Applications, 25, 2001-2010.

61. Golui, S., Mahapatra, B. S., & Mahapatra, G. S. (2024). A new correlation-based measure on Fermatean

fuzzy applied on multi-criteria decision making for electric vehicle selection. Expert systems with applica-

tions, 237, 121605.

Golui et al., Decision on Insurance Policy Selection by weighted Correlation Approach on
Neutrosophic Fuzziness through TOPSIS

Neutrosophic Sets and Systems, Vol. 86, 2025                                                                              960

Received: Nov. 9, 2024. Accepted: May 30, 2025 


	1. Introduction
	2. Literature Review
	2.1. Neutrosophic MCDM approach
	2.2. Neutrosophic TOPSIS
	2.3. Fuzzy correlation coefficient

	3. Neutrosophic TOPSIS Approach to solve MCDM Problem
	3.1. Neutrosophic TOPSIS Approach

	4. Single-Valued weighted Neutrosophic Correlation Coefficient
	5. Proposed Neutrosophic TOPSIS Approach
	6. Numerical Problem on Term Policy Selection
	6.1. Analyzing the criteria and alternatives
	6.2. Solution procedure by the proposed method
	6.3. Comparison study
	6.4. Sensitivity analysis

	7. Conclusions
	References

