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Abstract. Lung cancer (LC) remains one of the most lethal diseases globally, necessitating the development

of advanced predictive models for early detection and accurate diagnosis. Traditional classification techniques

often struggle with uncertainty and indeterminacy in medical data, which can lead to misdiagnosis and reduced

diagnostic reliability. To address this issue, we propose an Enhanced Neutrosophic Set (ENS) framework

integrated with machine learning algorithms to improve the prediction accuracy of lung cancer. Neutrosophic

Set (NS) theory extends classical and fuzzy logic by introducing three independent membership components:

truth, indeterminacy, and falsity, which enable more effective modeling of uncertainty in clinical datasets.

The proposed ENS model enhances decision-making by optimizing feature selection and minimizing ambiguity

in patient data representation. We apply machine learning classifiers including Logistic Regression (LR), K-

Nearest Neighbors (KNN), and Random Forest (RF) to evaluate the performance of the ENS-transformed

dataset in predicting lung cancer risk. Experimental results indicate that the ENS-based models outperform

traditional approaches in terms of classification accuracy, sensitivity, and specificity. This study demonstrates

the effectiveness of neutrosophic-based AI frameworks in medical diagnostics and highlights their potential in

developing reliable, early detection systems for lung cancer and other critical diseases.

keywords: Lung Cancer Prediction, Enhanced Neutrosophic Set, Machine Learning, Medical

Diagnosis, Uncertainty Modeling, Random Forest, Logistic Regression, K-Nearest Neighbors,

Neutrosophic Logic, Clinical Data Analysis

1. Introduction

Lung cancer is one of the most critical health concerns worldwide, ranking as the second

most commonly diagnosed cancer and the leading cause of cancer-related deaths [1,2]. Despite
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significant improvements in public health, tobacco cessation programs, and medical interven-

tions, lung cancer continues to account for millions of deaths annually. Smoking is the primary

risk factor, responsible for 80% to 90% of cases, yet a significant portion of patients are non-

smokers. If considered separately, lung cancer in non-smokers would rank as the 11th most

common cancer and the 7th leading cause of cancer-related death globally [4].

Early diagnosis is key to improving survival outcomes. Technologies such as low-dose com-

puted tomography (LDCT) have shown promise in detecting tumors at an early stage [3], and

targeted therapies and immunotherapies have contributed to better disease management [8,20].

However, several challenges remain. Diagnosis often relies on imaging, biopsy, and clinical

judgment, all of which are prone to uncertainties due to noise, image artifacts, and subjective

interpretation. As a result, patients are often diagnosed at a later stage, which drastically

reduces survival chances.

Traditional diagnostic tools and classical machine learning models often fail to handle the

vagueness and ambiguity inherent in clinical data. Medical datasets commonly contain incom-

plete, imprecise, or inconsistent information, which affects classification accuracy. Standard

fuzzy and intuitionistic fuzzy systems improve uncertainty handling to an extent but are lim-

ited in expressing higher-order indeterminacy [30].

To overcome such challenges, Neutrosophic Set Theory (NST), introduced by Smaran-

dache [28, 29, 32, 41], offers a powerful extension of fuzzy and intuitionistic fuzzy set theo-

ries. It introduces three independent membership functions: truth (T), indeterminacy (I), and

falsity (F), allowing for a more comprehensive modeling of uncertain and conflicting informa-

tion. These properties make neutrosophic sets especially suitable for medical diagnosis, where

decisions often involve ambiguity and incomplete knowledge [13,14,16,42,43].

In this study, we propose a novel Enhanced Neutrosophic Set (ENS)-based methodology

combined with machine learning (ML) to improve lung cancer diagnosis. The originality of

our approach lies in transforming the conventional lung cancer dataset into a neutrosophic

dataset (N-dataset), where each attribute is expressed using the (T, I, F) structure. This

transformation enables machine learning algorithms to learn from data more effectively by

preserving and utilizing uncertainty rather than discarding it. To validate this method, we

apply popular classifiers—Random Forest (RF) [27], Logistic Regression (LR), and K-Nearest

Neighbors (KNN)—to both the original and transformed datasets.

The integration of Enhanced Neutrosophic Sets with machine learning addresses a critical

need in current medical data science—managing imprecise, uncertain, and inconsistent clinical

data. As lung cancer diagnosis becomes increasingly dependent on complex data (e.g., medical

images, patient records), the ability to accurately model uncertainty is essential for developing
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reliable diagnostic tools. The proposed ENS-based system offers improved classification perfor-

mance, ultimately supporting early diagnosis, reducing misdiagnoses, and enhancing patient

outcomes.

Key Contributions

The main contributions of this paper are as follows:

• We develop an Enhanced Neutrosophic Set (ENS) framework to transform traditional

lung cancer datasets into uncertainty-aware representations (N-dataset).

• We integrate ENS with standard ML classifiers including Logistic Regression, Random

Forest, and KNN, and evaluate their performance.

• We analyze and compare the results of classification on the original dataset versus the

neutrosophic-transformed dataset.

• We demonstrate the superiority of the proposed approach in terms of accuracy, sensi-

tivity, and specificity for early lung cancer prediction.

This study establishes a robust hybrid framework combining uncertainty modeling and

machine learning, contributing to the advancement of intelligent diagnostic systems for lung

cancer and potentially other medical applications.

2. Methods and Experiments

The following section presents a comprehensive overview of the materials and methods

employed in the study.

2.1. Proposed methodology

The objective of this study is to enhance lung cancer prediction by integrating Neighborhood

Selection (NS) with machine learning (ML) [35, 36] algorithms. The NCRP dataset (ID) was

initially obtained from the Kaggle Machine Learning Repository [15, 37] and subsequently

underwent careful preprocessing (ODpp) to ensure data quality and consistency.

ID = LC (1)

ODpp = fpp(ID) (2)

The dataset was then converted into an N-representation (ON), in which each data point

was defined not only by its original attributes but also by associated degrees of Truth (T ),

Indeterminacy (I), and Falsity (F ). This method offers a more sophisticated representation

of the uncertainty and variability typically present in medical datasets.

ON = fT,I,F (ODpp) (3)

Subsequent to the transformation, the N-dataset (ON(s)
) was partitioned into training and
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testing subsets.

ONs = s(fON
) = s(Xtain, Xtest, Ytrain, Ytest)

The N-dataset was normalized (ONNor
) to a range of 0 to 1 using a Min-Max scaler.

ONNor
= fNor(ONs) (5)

The normalized N-training dataset was utilized to train machine learning classifiers

(ON(ML)
), including K-nearest neighbors, Random Forest (RF), and Logistic Regression. These

classifiers were chosen for their ability to manage complex feature interactions and detect subtle

patterns, thereby supporting accurate lung cancer diagnosis.

ONML
= fML(ON(Nor)

) = OML(DTO(Nor)
, RFO(Nor)

, ABO(Nor)
)

The primary performance metrics, denoted as ONmetrics including accuracy, precision, recall,

and F1 score, were employed to evaluate the classifier’s effectiveness and offer a comprehensive

assessment of its predictive capabilities.

ONMetrics
= ON(ML)

(MetricsAcc,Pr,Rc,F1)

Finally, a comparative analysis (OCA) was conducted between the N-representation dataset

and the original dataset to evaluate the effect of integrating Neighborhood Selection (NS) on

the accuracy and reliability of lung cancer prediction models

OCA = CA(ID;ON )

The workflow is depicted in Figure 1.

LC dataset Data preprocessing

Neutrosophic representationML models

Models evaluation Comparison

Figure 1. The flowchart of LC dataset prediction.
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2.2. Dataset description

The Lung Cancer (LC) dataset, a widely utilized resource in machine learning and statistical

analysis, was compiled by the University of Wisconsin–Madison. It serves as a valuable tool

for lung cancer prediction and classification. Derived from digitized images of lung tumor

samples, the dataset contains a range of attributes, including radius, texture, area, perimeter,

smoothness, compactness, concavity, concave points, symmetry, and fractal dimension. It

comprises 310 instances, each labeled as either malignant (indicating the presence of cancer)

or benign (indicating its absence). This dataset provides a strong basis for developing accurate

models that can effectively differentiate between malignant and benign lung cancer cases based

on comprehensive tumor features.

2.3. Preprocessing of data

The lung cancer dataset underwent preprocessing to facilitate effective machine learning

analysis. Initially, it was separated into feature attributes describing tumor characteristics

and a categorical target variable indicating whether cases were benign or malignant. The

categorical target was then encoded into numerical values to enhance model interpretability.

To ensure consistency and improve prediction accuracy, all feature values were normalized

using Min-Max scaling. This preprocessing step significantly enhanced the performance of the

machine learning models in diagnosing lung cancer while maintaining data integrity.

2.4. Neutrosophic Sets

Let X be a universal set comprising various elements or entities, and let x ∈ X be any

arbitrary element. A Neutrosophic Set (NS) [18, 20–22, 24, 25, 28, 33, 40] is described by

three separate membership functions assigned to each element x ∈ X:

• Truth-membership function: TA(x)

• Indeterminacy-membership function: IA(x)

• Falsity-membership function: FA(x)

These functions are defined as mappings into the extended non-standard interval
]
0−, 1+

[
,

specifically:

TA : X →
]
0−, 1+

[
, IA : X →

]
0−, 1+

[
, FA : X →

]
0−, 1+

[
In this context, the values TA(x), IA(x), and FA(x) represent the respective degrees of

truth, indeterminacy, and falsity associated with the element x. These values are mutually

independent, and collectively satisfy the condition:

0 ≤ TA(x) + IA(x) + FA(x) ≤ 3
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This generalized structure allows Neutrosophic Sets to handle incomplete, ambiguous, and

conflicting information more effectively than classical sets, fuzzy sets, or intuitionistic fuzzy

sets. Such capability is particularly beneficial in practical applications involving uncertainty,

such as medical diagnosis, multi-criteria decision-making, and pattern recognition.

Example: Medical Diagnosis with Conflicting Evidence

Consider a patient being evaluated for lung cancer. Based on several test results and expert

opinions, the diagnosis is not straightforward:

• A senior radiologist strongly believes the CT scan indicates cancer, assigning a high

truth-membership: TA(x) = 0.95

• However, due to inconclusive biopsy and family history, there is considerable uncer-

tainty: IA(x) = 0.40

• Another specialist believes the symptoms could be due to a lung infection rather than

cancer, assigning some falsity: FA(x) = 0.30

Hence, the neutrosophic evaluation of the diagnosis is:

A(x) = ⟨0.95, 0.40, 0.30⟩

The sum:

TA(x) + IA(x) + FA(x) = 0.95 + 0.40 + 0.30 = 1.65

This indicates the presence of overlapping evidence—high support for the cancer diagnosis,

yet considerable uncertainty and partial opposition—something classical logic or fuzzy logic

cannot effectively model. Neutrosophic Sets thus offer a powerful framework to handle such

complex and contradictory scenarios.

2.5. Neutrosophic Dataset Formation

To effectively address the uncertainties associated with the Lung Cancer (LC) dataset in

binary classification, a Neutrosophic Dataset (N-dataset) was introduced as a more gener-

alized and inclusive representation [11, 31]. This formulation extends the traditional binary

classification scheme by incorporating a neutral perspective in addition to the usual positive

and negative categories. Each element in the dataset is expressed in the form ⟨TA, IA, FA⟩,
where the domain X = (x1, x2, x3, . . . , xn) consists of data points, and each x ∈ X is repre-

sented as a triplet x(t, i, f), with t, i, and f being real-valued degrees corresponding to truth,

indeterminacy, and falsity, respectively.

To incorporate this structure, an additional neutrosophic component is integrated into the

original dataset. The first step involves computing the mean vectors of the entire training set,
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the positive class, and the negative class, denoted by ρall, ρ+, and ρ−, respectively. These are

defined as follows:

ρall =
1

n

nall∑
k=1

xk, ρ+ =
1

n

n+∑
k=1

xk, ρ− =
1

n

n−∑
k=1

xk (1)

Using the above mean vectors, the degrees of truth T , indeterminacy I, and falsity F for

any given data point x are computed using the following expressions:

T = 1− ∥x− ρ+∥
max (∥Xtrain − ρ+∥)

(2)

I = 1− ∥x− ρall∥
max (∥Xtrain − ρall∥)

(3)

F = 1− ∥x− ρ−∥
max (∥Xtrain − ρ−∥)

(4)

These computations are applied to each sample in both the training and testing datasets,

thereby transforming them into neutrosophic representations. The resulting N-dataset incor-

porates semantic nuances by reflecting the degree to which a sample belongs to the positive

class, is ambiguous, or belongs to the negative class. This enriched representation improves the

robustness of machine learning classifiers in handling data that exhibits inherent ambiguity,

inconsistency, or incompleteness. The transformation process ultimately leads to the con-

struction of an N-representation dataset ON , which is better suited for uncertain and complex

biomedical applications.

2.6. Classification Algorithms

2.6.1. Logistic Regression

Logistic Regression is a widely used supervised learning technique designed for solving clas-

sification problems [26]. It estimates the probability that a given input instance falls into a

particular class, typically in binary settings. Unlike linear regression, which predicts contin-

uous outputs, logistic regression models the relationship between the dependent variable and

one or more independent variables using a logistic function.

This method is particularly suited for binary classification tasks, where the response vari-

able can assume only two possible outcomes. The core mathematical component of logistic

regression is the sigmoid (or logistic) function, which transforms linear combinations of in-

put features into values constrained between 0 and 1, representing probabilities. The sigmoid

function is defined as:
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σ(z) =
1

1 + e−z
(5)

In this equation, z represents the linear combination of input variables and their corre-

sponding coefficients. The output of the sigmoid function is interpreted as the probability of

the instance belonging to the positive class. Logistic regression does not produce class labels

directly but assigns probabilities, which are then thresholded (commonly at 0.5) to assign class

labels.

Instead of fitting a straight line, logistic regression fits an S-shaped curve, allowing it to

effectively model classification boundaries between two classes, typically labeled as 0 and 1.

2.6.2. Random Forest

Random Forest (RF) [27] is an ensemble-based supervised learning algorithm that enhances

prediction performance by constructing a collection of decision trees and aggregating their

results. Each tree in the forest is trained on a bootstrap sample drawn randomly with re-

placement from the original training set. Furthermore, during the construction of each node,

a random subset of features is considered for splitting, which introduces decorrelation among

trees and enhances model robustness.

In classification tasks, the final prediction is determined through majority voting among the

individual trees, whereas in regression problems, the average of all tree outputs is computed.

This ensemble strategy reduces the model’s variance and mitigates the risk of overfitting that

is often encountered in single decision trees.

Random Forest excels in handling high-dimensional datasets and can effectively model com-

plex, non-linear relationships. It is particularly suitable for domains involving noisy, incom-

plete, or heterogeneous data. One of its key strengths lies in its ability to estimate feature

importance by evaluating the impact of each feature on the overall prediction accuracy, offering

valuable insights into the underlying data structure.

Additionally, Random Forest is known for its scalability, robustness to outliers, and minimal

requirement for parameter tuning. Due to these advantages, it has become a widely adopted

approach in a variety of real-world applications, including bioinformatics, medical diagnosis,

environmental modeling, and financial forecasting.

2.6.3. K-Nearest Neighbors

K-Nearest Neighbors (KNN) [14] is a non-parametric, instance-based learning algorithm

commonly employed for both classification and regression tasks. The core principle of KNN

involves identifying the k nearest data points in the training set to a given input sample, based
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on a chosen distance metric (typically Euclidean distance), and inferring the output based on

these neighbors. In classification, the algorithm assigns the most frequent class among the k

neighbors, while in regression, it predicts the average of their target values.

KNN is categorized as a lazy learning algorithm because it does not involve an explicit

training phase or model construction. Instead, it stores the training data and defers compu-

tation until a prediction is requested, at which point it performs distance-based retrieval and

aggregation. This characteristic allows KNN to adapt flexibly to complex decision boundaries,

as it makes no assumptions about the underlying data distribution.

Despite its conceptual simplicity, KNN is effective in a variety of practical applications,

especially where the local structure of data plays a significant role. However, its performance

is sensitive to the choice of k, the distance metric, and the presence of irrelevant or noisy

features. To address such limitations, dimensionality reduction techniques and feature scaling

are often employed in preprocessing.

2.7. Performance Evaluation

To comprehensively evaluate the effectiveness of the proposed classification approaches,

four key performance metrics were employed: accuracy, precision, recall, and F1-score. These

metrics offer a balanced perspective on the model’s predictive ability, especially in binary

classification tasks.

Accuracy measures the overall proportion of correctly predicted instances among the total

number of samples, providing a general indication of the classifier’s success.

Accuracy =
True Positives + True Negatives

Total Number of Instances

Precision quantifies the ratio of correctly predicted positive instances to all instances pre-

dicted as positive, reflecting the classifier’s exactness in labeling positive cases.

Precision =
True Positives

True Positives + False Positives

Recall, also referred to as sensitivity, captures the proportion of actual positive cases that

were correctly identified, emphasizing the model’s ability to detect relevant instances.

Recall =
True Positives

True Positives + False Negatives

F1-score is the harmonic mean of precision and recall, offering a single metric that balances

both aspects, particularly useful when the class distribution is imbalanced.

F1 Score = 2 · Precision · Recall
Precision + Recall

These metrics together provide a robust framework for assessing the strengths and limitations

of each classification model, ensuring a thorough and reliable performance analysis.
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3. Results

3.1. Experimental Setup

In this study, three distinct tree-based machine learning classifiers [17] were utilized to pre-

dict lung cancer outcomes using the LC dataset. Prior to model training, the original dataset

was transformed into an N-dataset format to better capture and manage inherent uncertainty

within the data. Each classifier was trained separately on this N-dataset, and their predictive

performances were evaluated using commonly accepted metrics. Furthermore, the outcomes

achieved using the N-dataset were systematically compared against those obtained from the

unmodified original dataset. All computational experiments were performed on the Google Co-

lab platform, leveraging GPU acceleration to efficiently process the data and expedite model

training.

3.2. Experimental Results

Table [1,2,3] summarizes the comparative performance of the employed machine learning

algorithms on both the original and N-transformed datasets. Here, N-LR, N-RF, and N-KNN

correspond to logistic regression, random forest, and K-nearest neighbors models trained on the

N-dataset, respectively. This comparison highlights the impact of incorporating neutrosophic

components on classification accuracy and robustness.

Table 1. Comparative evaluation of N-Logistic Regression Model and Logistic

Regression Model

Metrics N-LR LR

Accuracy 90.03 87.5

Precision 92.89 91

Recall 83.67 79.5

F1 score 82.73 80.5

Table 2. Comparative evaluation of N-Random Forest Classifier and Random

Forest Classifier

Metrics N-RF RF

Accuracy 87.79 85.71

Precision 93.05 90

Recall 79.74 76.5

F1 score 82.04 77
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Table 3. Comparative evaluation of N-K Nearest Neighbors Model and K

Nearest Neighbors Model

Metrics N-KNN KNN

Accuracy 94.35 92.86

Precision 93.87 92.5

Recall 92.45 89.5

F1 score 93.67 89.5
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Figure 2. Classification of the following models on Accuracy, Precision, Re-

call, and F1 Score

4. Discussion

The proposed hybrid framework, which integrates Enhanced Neutrosophic Sets (ENS) with

machine learning (ML) classifiers, demonstrates significant promise in advancing the early

diagnosis of lung cancer. By modeling uncertainty, indeterminacy, and fuzziness through

neutrosophic logic, the ENS framework addresses one of the key challenges in medical data

analysis—handling imprecise and ambiguous information.
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Advantages: One of the major strengths of this approach is its ability to enhance pre-

dictive accuracy and robustness across different ML classifiers. Among the tested models,

the Neutrosophic K-Nearest Neighbors (N-KNN) consistently outperformed others, including

Logistic Regression (LR) and Random Forest (RF), particularly in terms of accuracy and pre-

cision. This superior performance can be attributed to the neutrosophic representation, which

effectively captures subtle variations and uncertainty present in clinical and imaging datasets.

Additionally, the ENS framework refines the feature selection process by converting raw input

into a structured format, thereby facilitating improved decision-making. The model’s adapt-

ability and extensibility make it suitable for other diagnostic applications where uncertainty

is prevalent.

Limitations: Despite these advantages, the proposed approach has certain limitations. The

transformation of data into neutrosophic space introduces computational complexity, which

may hinder real-time deployment in resource-constrained clinical settings. Furthermore, the

model’s success is highly dependent on the completeness and quality of the dataset; missing or

biased data may adversely impact its performance. Another challenge is the necessity of tuning

the membership functions for truth, indeterminacy, and falsity, which often requires expert

domain knowledge. Finally, while the experimental results are promising, the framework has

not yet been validated on large-scale clinical datasets or through real-world hospital trials,

which is essential before practical implementation.

In conclusion, the fusion of neutrosophic theory with machine learning techniques presents a

promising direction for improving diagnostic accuracy in complex medical applications. How-

ever, future work should focus on optimizing computational efficiency, automating parameter

selection, and validating the model in clinical environments to fully realize its potential.

5. Conclusion

This study introduces an advanced framework based on Enhanced Neutrosophic Sets (ENS)

integrated with machine learning techniques to improve the accuracy and reliability of lung

cancer prediction. By transforming the original lung cancer dataset into its neutrosophic

representation [25,29], the performance of multiple classifiers was significantly enhanced.

The experimental results, as presented in Tables 1, 2, and 3, clearly demonstrate that models

trained on the neutrosophic dataset consistently outperform those trained on the conventional

dataset. For instance, the N-KNN classifier achieved an impressive accuracy of 94.35% and an

F1-score of 93.67, surpassing the traditional KNN model which recorded 92.86% accuracy and

an F1-score of 89.5 (see Table 3). Similarly, the N-Logistic Regression and N-Random Forest

models exhibited notable improvements in precision and recall, as shown in Tables 1 and 2.
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These results highlight the strength of the ENS framework in handling uncertainty [16, 28,

30] and improving classification performance in medical data analysis. By incorporating the

three membership components—truth, indeterminacy, and falsity—the ENS-based approach

provides a more nuanced and comprehensive interpretation of patient information [32, 34],

thereby enhancing the reliability of diagnostic decisions in lung cancer detection [12,14].

Future research can explore the extension of this methodology to other areas of biomedical

prediction, including early cancer screening and patient risk stratification, with a focus on

real-time clinical applicability [11,17].

5.1. Acknowledgment:

We thank the editor and referees for valuable comments and suggestions for improving

the paper. The second authors would like to thank the Council of Scientific and Industrial

Research (CSIR), Government of India for JRF(File N0. 09/0112(18967)/2024-EMR-I).

References

[1] Jett, J.R.; Cortese, D.A.; Fontana, R.S. Lung cancer: Current concepts and prospects. CA 1983, 33,

74–86.

[2] Davies, D.F. A review of detection methods for the early diagnosis of lung cancer. J. Chronic Dis. 1966,

19, 319–845.

[3] Russell, W.O.; Neihardt, H.W.; Mountain, C.F.; et al. Cytodiagnosis of lung cancer: A report of a four-

year laboratory, clinical, and statistical study with a review of the literature on lung cancer and pulmonary

cytology. Acta Cytol. 1963, 7, 1–44.

[4] Brett, G.Z. Earlier diagnosis and survival in lung cancer. Br Med J 1969, 4, 260–262.

[5] Lilienfeld, A.; Archer, P.G.; Burnett, L.H. et al. An evaluation of radiologic and cytologic screening for

early detection of lung cancer: A cooperative pilot study of the American Cancer Society and Veterans

Administration. Cancer Res 1966, 26, 2083–2121.

[6] Hulka, B.S. Screening for cancer: Lessons learned. J Occup Med 1986, 28, 687–691.

[7] Berlin, N.I.; Buncher, C.R.; Fontana, R.S. et al. The National Cancer Institute Cooperative Early Lung

Cancer Detection Program: Results of the initial screen (prevalence). Introduction. Am Rev Respir Dis

1984, 130, 545–549.

[8] Fontana, R.S.; Sanderson, D.R.; Taylor, W.F. et al. Early lung cancer detection: Results of the initial

(prevalence) radiologic and cytologic screening in the Mayo Clinic Study. Am Rev Respir Dis 1984, 130,

561–565.

[9] Frost, J.K.; Ball, W.C. Jr.; Levin, M.L. et al. Early lung cancer detection: Results of the initial (prevalence)

radiologic and cytologic screening in the Johns Hopkins study. Am Rev Respir Dis 1984, 130, 549–554.

[10] Flehinger, B.J.; McLamed, M.R.; Zaman, M.B. et al. Early lung cancer detection: Results of the initial

(prevalence) radiologic and cytologic screening in the Memorial Sloan-Kettering study in New York. Am

Rev Respir Dis 1984, 130, 555–560.

[11] Amin, B.; Salama, A.A.; El-Henawy, I.M.; Mahfouz, K.; Gafar, M.G. Intelligent neutrosophic diagnostic

system for cardiotocography data. Comput. Intell. Neurosci. 2021, 2021, 6656770.

[12] Jennifer, J.S.; Sharmila, T.S. A neutrosophic set approach on chest X-rays for automatic lung infection

detection. Inf. Technol. Control 2023, 52, 37–52.

Khan, Asheesh, Arshad, Akhtar, Lung Cancer Prediction Using an Enhanced Neutrosophic
Set Combined with a Machine Learning Approach

Neutrosophic Sets and Systems, Vol. 88, 2025                                                                              985



[13] Saqlain, M.; Garg, H.; Kumam, P.; Kumam, W. Uncertainty and decision-making with multi-polar interval-

valued neutrosophic hypersoft set: A distance, similarity measure and machine learning approach. Alex.

Eng. J. 2023, 84, 323–332.

[14] Akbulut, Y.; Sengur, A.; Guo, Y.; Smarandache, F. NS-k-NN: Neutrosophic set-based k-nearest neighbors

classifier. Symmetry 2017, 9, 179.

[15] https://www.kaggle.com/code/hasibalmuzdadid/lung-cancer-analysis

[16] Nguyen, G.N.; Son, L.H.; Ashour, A.S.; Dey, N. A survey of the state-of-the-arts on neutrosophic sets in

biomedical diagnoses. Int. J. Mach. Learn. Cybern. 2019, 10, 1–13.

[17] Ahmed, R.; Nasiri, F.; Zayed, T. A novel Neutrosophic-based machine learning approach for maintenance

prioritization in healthcare facilities. J. Build. Eng. 2021, 42, 102480.

[18] Khan, V.A.; Arshad, M.; Khan, M.D. Some Results on Neutrosophic Normed Spaces via Tribonacci Con-

vergent Sequence Spaces. J. Inequal. Appl. 2022, 42 (1), 1–27.

[19] Khan, V.A.; Arshad, M. On Some Properties of Nörlund Ideal Convergence of Sequence in Neutrosophic

Normed Spaces. Ital. J. Pure Appl. Math. 2023, 50, 352–373.

[20] Khan, V.A.; Arshad, M. On Neutrosophic Normed Spaces of I-Convergence Difference Sequences Defined

by Modulus Function. Neutrosophic Sets Syst. 2024, 73, 178–190.

[21] Khan, V.A.; Arshad, M. Application of Neutrosophic Normed Spaces to Analyze the Convergence of

Sequences Involving Neutrosophic Operators. Math. Found. Comput. 2025.

[22] Fetanat, A.; Tayebi, M. Sustainability and reliability-based hydrogen technologies prioritization for decar-

bonization in the oil refining industry: A decision support system under single-valued neutrosophic set.

Int. J. Hydrog. Energy 2024, 52, 765–786.
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