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Abstract: Areas in the East China Sea are often affected by bad weather such as typhoons and rainy 

seasons, so geological disasters such as road slope landslides and avalanches often occur in these 

areas. To prevent the geological disasters, it is necessary to perform comprehensive treatments of 

road slopes to ensure their stability and safety. Due to the uncertainty and vagueness of decision 

makers’ judgements and cognitions in the evaluation process of slope treatment schemes, there is a 

Single-Valued Neutrosophic Value (SvNV) uncertainty in a neutrosophic decision scenario. To 

effectively express the hybrid information of a crisp SvNV and its uncertain space (sphere with a 

radius), we need to develop a Spherical Single-Valued Neutrosophic Set/Value (S-SvNS/S-SvNV) 

and its Multi-Attribute Decision Making (MADM) technique. Therefore, this study requires the 

following new content to address the current gaps in neutrosophic research. First, we propose an S-

SvNS and the basic relations, trigonometric operation laws, and score and accuracy formulae of S-

SvNVs. Second, the S-SvNV trigonometric weighted averaging and geometric aggregation 

operators are established for the aggregation of S-SvNVs. Third, a MADM technique based on the 

established two aggregation operators and the score and accuracy formulae of S-SvNVs is 

developed for solving MADM problems with unknown attribute weights and periodicity in the 

scenario of S-SvNSs. Fourth, the developed technique is applied to an actual selection example of 

road slope treatment schemes and then its efficiency is verified by sensitivity analysis and 

comparison with the existing MADM techniques under the scenarios of SvNSs and S-SvNSs. 

Keywords: Spherical single-valued neutrosophic value; Trigonometric weighted averaging 

aggregation operator; Trigonometric weighted geometric aggregation operator; Decision making; 

Road slope treatment schemes 

 

 

1. Introduction 

The evaluation and selection of Slope Treatment Schemes (STSs) is a systematic process that 

requires comprehensive consideration of technical, economic, environmental and other factors. 

Through scientific and reasonable evaluation and selection, the risk of landslides and slope failures 

can be effectively reduced, and the safety of the surrounding environment and people can be ensured. 

Therefore, the slope stability evaluation and STS election are critical steps in ensuring slope stability 

and safety [1–4]. Since there are uncertainties and inaccuracies in the evaluation/prediction of slope 

stability and the selection of STSs, fuzzy theory [5] is a very suitable tool in uncertain scenarios. 

Therefore, a fuzzy comprehensive evaluation approach [6] and a fuzzy multi-objective and Group 

Decision Making (GDM) approach [7] were proposed for landslide treatment scheme selection. Then, 
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fuzzy or triangular fuzzy Analytic Hierarchy Processing (AHP) techniques [8, 9] were presented for 

landslide susceptibility assessment. In terms of Intuitionistic Fuzzy Sets (IFSs) including membership 

and nonmembership degrees [10], Liu et al. [11] introduced a large-scale GDM approach based on 

IFSs and three-way decision and applied it to the selection of landslide treatment schemes. In the 

scenario of simplified neutrosophic sets (SNSs) [12], including interval-valued and/or single-valued 

neutrosophic sets (IvNSs and/or SvNSs), they can be represented independently by true, false, and 

indeterminate membership degrees, extending the expressive capability of IFSs. Recently, Yong et al. 

[13] presented a Multi-Attribute Decision Making (MADM) technique using the Aczel-Alsina 

Weighted Aggregation Operators (WAOs) of SNSs and applied it to the selection of STSs. Under the 

single and interval-valued hybrid neutrosophic multivalued scenario, Ye et al. [14] developed a GDM 

model using correlation coefficients of credibility IvNSs for the choice of landslide treatment 

schemes. Ye et al. [15] also proposed a MADM model using the trigonometric WAOs of Single-Valued 

Neutrosophic Values (SvNVs) and used it for the choice of STSs. In the single-valued neutrosophic 

credibility value (SvNCV) scenario, Ye et al. [16] presented a MADM model using the trigonometric 

WAOs of SvNCVs for the selection of STSs. 

Based on another real extension of IFS, a Circular IFS (C-IFS) was proposed by Atanassov [17] 

and Atanassov and Marinov [18], where a Circular Intuitionistic Fuzzy Value (C-IFV) is composed of 

an IFV and a circle with a radius around each element to effectively describe the hybrid information 

of the exact IFV and its uncertain circle composed of membership and nonmembership degrees. Then, 

they also defined relations, operations, and distances for C-IFSs. After that, the divergence measures 

of C-IFSs were used for multi-periodic medical diagnosis [19]. The C-IFS AHP and VIKOR 

(VlseKriterijumska Optimizacija Kompromisno Resenje) approach [20] and the C-IFV TOPSIS 

(Technique for Order Preference by Similarity to an Ideal Solution) approach [21] were utilized for 

the multi-expert supplier evaluation and the choice of pandemic hospital sites, respectively. Some 

researchers developed the MADM methods based on the distances of C-IFSs [22, 23], the multiple 

criteria optimization and compromise solutions of C-IFSs [24], the score and accuracy formulae of C-

IFVs [25], the interval-valued C-IFS AHP [26], the assignment model of C-IFVs with a parameterized 

scoring rule [27], the similarity and entropy measures of C-IFSs [28], and the compromise decision 

support and median ranking models using the scoring formulae of C-IFVs [29, 30]. 

In neutrosophic decision theories and methods, SvNSs [31] have been wildly applied to 

MADM/GDM problems because they can dependently depict true, false and indeterminate 

information in uncertain and inconsistent environments. Especially SvNV WAOs show a critical 

mathematical tool in MADM/GDM applications. For example, many researchers have developed 

Single-Valued Neutrosophic Value (SvNV) Einstein WAOs [32], Dombi WAOs [33], power Muirhead 

WAOs [34], Dombi power WAOs [35], Einstein interactive WAOs [36], trigonometric WAOs [15], and 

trigonometric Dombi WAOs [37] to address MADM/GDM problems in SvNS scenarios. However, 

SvNV cannot represent its uncertain evaluation value for each attribute, i.e., it cannot contain the 

hybrid information of both an exact SvNV and an uncertain spherical space composed of true, false, 

and indeterminate membership degrees. Therefore, existing SvNV MADM methods [15, 32–37] 

cannot deal with SvNV MADM/GDM problems including the uncertain SvNV information, which 

shows their research gap. On the other hand, since C-IFS cannot independently depict true, false, and 

indeterminate information and their uncertain spherical space with a radius, the C-IFV MADM 

techniques imply their limitations/insufficiencies. To effectively express the hybrid information of 

both an exact SvNV and an uncertain space (a sphere with a radius) for any attribute evaluation in 

uncertainty, we need to extend C-IFS/C-IFV to a spherical SvNS/SvNV (S-SvNS/S-SvNV) and develop 

its MADM technique in the S-SvNS scenario. Motivated by both the emerging research needs and the 

current research gap of SvNSs, the purposes of this study are: (1) to propose S-SvNS and the basic 

relations and score and accuracy formulae of S-SvNVs in terms of the hybrid information of an SvNV 

and its uncertain sphere with a radius, (2) to present the Trigonometric Operation Laws (TOLs) of S-

SvNVs based on the sine t-norm and cosine t-conorm, (3) to establish the S-SvNV Trigonometric 

Weighted Averaging (S-SvNVTWA) and S-SvNV Trigonometric Weighted Geometric (S-SvNVTWG) 
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operators for the aggregation of S-SvNVs, (4) to develop a MADM technique utilizing the S-

SvNVTWA and S-SvNVTWG operators and score and accuracy formulae of S-SvNVs for solving 

MADM problems with unknown attribute weights and periodicity in the scenario of S-SvNSs, and 

(5) to apply the developed MADM technique to an actual selection example of Road Slope Treatment 

Schemes (RSTSs) and then to verify the efficiency of the developed technique by sensitivity analysis 

and comparison with the existing SvNV MADM techniques under the scenarios of SvNSs and S-

SvNSs. 

In order to fill the current research gap of SvNSs, this article mainly addresses the following 

problems: 

(1) The S-SVNS is proposed to adequately represent the hybrid information of an SvNV and a 

sphere with a radius under the SvNV uncertainty. Its advantage is able to contain the more 

comprehensive information of the exact SvNV and its uncertain spherical space to each attribute 

evaluation in complex MADM problems. 

(2) The basic relations and score and accuracy formulae of S-SvNVs are presented to provide a 

reasonable ranking approach for S-SvNVs. 

(3) The TOLs and S-SvNVTWA and S-SvNVTWG operators are established to address the 

periodic aggregation operation issues of S-SvNVs for the modelling of MADM in the scenario of S-

SvNSs. 

(4) The MADM technique is developed to solve MADM problems with unknown attribute 

weights and periodicity in the scenario of S-SvNSs, where the scoring entropy weight approach of S-

SvNVs can effectively derive the attribute weights to avoid the given situation of subjective weights 

in the MADM process. 

(5) The developed MADM technique is applied to the selection problem of RSTSs in Ningbo 

City, China, and then the importance of uncertain sphere information to the ranking of RSTSs in S-

SvNV decision information was verified by sensitivity analysis and comparison with the existing 

SvNV MADM techniques in SvNS and S-SvNS scenarios. 

The remaining parts of this article are presented below. The section 2 introduces the concepts of 

C-IFS and SvNS and the WAOs and ranking rules of SvNVs from the literature to clearly understand 

the new concepts and contributions of this study for the readers. The section 3 proposes the S-SvNS 

and the relations, TOLs, and score and accuracy formulae of S-SvNVs. The section 4 presents the S-

SvNVTWA and S-SvNVTWG operators of S-SvNVs and their properties. In the section 5, a MADM 

technique is developed based on the proposed trigonometric WAOs and score and accuracy formulae 

of S-SvNVs to address MADM problems with unknown attribute weights and periodicity in the S-

SvNS scenario. In the section 6, the developed MADM technique is applied to the actual selection 

sample of RSTSs in Ningbo City, China, and then its efficiency is verified by sensitivity analysis and 

comparison with the existing SvNV MADM techniques in the SvNS and S-SvNS scenarios. The 

section 7 presents the conclusions and future research. 

2. Preliminaries of C-IFS and SvNS 

This section describes S-IFS and SvNS and their related operations as preliminaries to this article. 

First, some concepts of C-IFSs and C-IFVs are introduced. 

Based on an extension of the IFS, a concept of C-IFS was first introduced by Atanassov [17] and 

Atanassov and Marinov [18]. 

A C-IFS CS in a fixed universe set G is represented by CS = {<g, std(g), sfd(g); cr>|g  G}, in which 

sfd(g), std(g): G → [0, 1] are the nonmembership and membership degrees and cr  [0, 2 ] is a circular 

radius around g for g  G and 0  std(g) + sfd(g)  1. A single element <g, std(g), sfd(g); cr> in CS is denoted 

as the C-IFV gc = <std, sfd; cr> for simplicity. However, the S-IFS degenerates to the IFS IS = {<g, std(g), 

sfd(g)>|g  G} if cr = 0. 

Then, as another extension of IFS, the notion of SvNS was introduced by Wang et al. [31]. 



Neutrosophic Sets and Systems, Vol. 97, 2026 96  

 

 

Jun Ye, Jibo Qin, Multi-Attribute Decision-Making for Road Slope Treatment Selection Based on Spherical Single-Valued 

Neutrosophic Value Triangular Aggregation Operators 

A SvNS SN in a fixed universe set G is defined as SN = {<g, std(g), sud(g), sfd(g)>|g  G}, where std(g), 

sud(g), sfd(g): E → [0, 1] are the membership degrees of the truth, indeterminacy and falsehood with 0 

 std(g) + sud(g) + sfd(g)  3. A single element <g, std(g), sfd(g), sfd(g)> in SN is denoted as the SvNV sN = <std, 

sud, sfd> for simplicity. 

Suppose that there are two SvNVs sN1 = <std1, sud1, sfd1>, sN2 = <std2, sud2, sfd2>, and q > 0. Then, their 

operational relations are defined below [12, 31, 32]: 

(1) 1 2 1 2 1 2 1 2, ,N N td td ud ud fd fds s s s s s s s     ; 

(2) 1 2 1 2 1 2,N N N N N Ns s s s s s=    ; 

(3) 1 2 1 2 1 2 1 2, ,N N td td ud ud fd fds s s s s s s s =    ; 

(4) 1 2 1 2 1 2 1 2, ,N N td td ud ud fd fds s s s s s s s =    ; 

(5) 1 2 1 2 1 2 1 2 1 2, ,N N td td td td ud ud fd fds s s s s s s s s s = + − ; 

(6) 1 2 1 2 1 2 1 2 1 2 1 2, ,N N td td ud ud ud ud fd fd fd fds s s s s s s s s s s s = + − + − ; 

(7) 1 1 1 11 (1 ) , ,q q q

N td ud fdqs s s s= − − ; 

(8) 1 1 1 1,1 (1 ) ,1 (1 )q q q q

N td ud fds s s s= − − − − ; 

(9) 1 1 1 1,1 ,c

N fd ud tds s s s= −  (Complement of sN1). 

Set sNj = <stdj, sudj, sfdj> (j = 1, 2, …, h) as a collection of SvNVs with their weight vector q = (q1, q2, 

…, qh) subject to 0  qj  1 and 
1

1
h

jj
q

=
= . Then, the SvNV weighted averaging (SvNVWA) and SvNV 

weighted geometric (SvNVWG) operators are introduced below [32]: 

( )1 2

1 1 1 1

( , ,..., ) 1 1 , ,
j j j

h h hh
q q q

N N Nh j Nj tdj udj fdj

j j j k

SvNVWA s s s q s s s s
= = = =

= = − −    , (1) 

( ) ( )1 2

1 1 1 1

( , ,..., ) ,1 1 ,1 1
j jj j

h h h h
q qq q

N N Nh Nj tdj udj fdj

j k j j

SvNVWG s s s s s s s
= = = =

= = − − − −    . (2) 

Based on the cotangent t-norm and tangent t-conorm, Ye et al. [15] proposed the SvNV 

trigonometric weighted averaging (SvNVTWA) and SvNV trigonometric weighted geometric 

(SvNVTWG) operators: 

1

1

1

1 2

1 1

1

1

2 / tan tan(0.5 ) ,

( , ,..., ) 2 / cot cot(0.5 ) ,

2 / cot cot(0.5 )

h

j tdj

j

h h

N N Nh T j Nj j udj

j j

h

j fdj

j

q s

SvNVTWA s s s q s q s

q s

 

 

 

−

=

−

= =

−

=

 
 
 

 
= =  

 

 
 
 



 



, (3) 
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1

1

1

1 2

11

1

1

2 / cot cot(0.5 ) ,

( , ,..., ) 2 / tan tan(0.5 ) ,

2 / tan tan(0.5 )

j

h

j tdj

j

h h
q

N N Nh T Nj j udj

jj

h

j fdj

j

q s

SvNVTWG s s s s q s

q s

 

 

 

−

=

−

==

−

=

 
 
 

 
= =  

 

 
 
 







. (4) 

Then, the ranking of two SvNVs sNj = <stdj, sudj, sfdj> (j = 1, 2) can be derived by their score and 

accuracy formulae [15, 32]: 

2
( )

3

tdj udj fdj

Nj

s s s
C s

+ − −
=  for ( ) [0,1]NjC s  , (5) 

( )Nj tdj fdjD s s s= −  for ( ) [ 1,1]NjD s  − . (6) 

Consequently, the ranking rules of two SvNVs are introduced below [15, 32]: 

(a) When C(sN1) > C(sN2), sN1 > sN2; 

(b) When C(sN1) = C(sN2) and D(sN1) > D(sN2), sN1 > sN2; 

(c) When C(sN1) = C(sN2) and D(sN1) = D(sN2), sN1  sN2. 

3. S-SvNSs 

This section extends the S-IFS concept [17, 18] to propose an S-SvNS that expresses the hybrid 

information of an SvNV and a sphere with a radius around each element. 

Definition 1. Set G as a finite set. An S-SvNS RSN in G is represented by the following form: 

 , ( ), ( ), ( ); ) |SN td ud fd rR g s g s g s g s g G=  , 

where std(g), sug(g), sfd(g): G → [0, 1] are the true, indeterminate, and false membership degrees, subject 

to the condition 0  std(g) + sud(g) + sfd(g)  3, and sr  [0, 3 ] is a spherical radius around an element 

g  G. 

For simplicity, the single element <g, std(g), sud(g), sfd(g); sr> in RSN is simply denoted as rSN = <std, 

sud, sfd; sr>, which is named S-SvNV. Its geometric representation in a single-valued neutrosophic cube 

is shown in Figure 1. 

 
Figure 1. Geometric representation of the S-SvNV rSN in a single-valued neutrosophic cube. 
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Definition 2. Let two S-SvNVs be rSN1 = <std1, sud1, sfd1; sr1>, rSN2 = <std2, sud2, sfd2; sr2>, and q > 0. Then, 

their relations are defined below: 

(1) 1 2 1 2 1 2 1 2 1 2, , ,SN SN td td ud ud fd fd r rr r s s s s s s s s      ; 

(2) 
1 2 1 2 1 2,SN SN SN SN SN SNr r r r r r=    ; 

(3) 
1 2 1 2 1 2 1 2 1 2, , ;SN SN td td ud ud fd fd r rr r s s s s s s s s =     ; 

(4) 
1 2 1 2 1 2 1 2 1 2, , ;SN SN td td ud ud fd fd r rr r s s s s s s s s =     ; 

(5) 1 1 1 1 1, (1 ), ; 3c

SN fd ud td rr s s s s= − −  (Complement of rSN1). 

Based on the sine t-norm HS(t, v): [0, 1]2 → [0, 1] and the cosine t-conorm HC(t, v): [0, 1]2 → [0,1] 

for t, v  [0, 1], we introduce the following trigonometric operations [16]: 
1( , ) 2 / sin (sin(0.5 )sin(0.5 ))SH t v t v  −= , (7) 

( )1( , ) 2 / cos cos(0.5 )cos(0.5 )CH t v t v  −= . (8) 

In terms of Eqs. (7) and (8), we can propose TOLs of S-SvNVs below. 

Definition 3. Let rSN1 = <std1, sud1, sfd1; sr1> and rSN2 = <std2, sud2, sfd2; sr2> be two S-SvNVs and q > 0. 

Then, they are defined as the following TOLs: 

(1) 

( )

( )

( )

( )

1

1 2

1

1 2

11 2
1 2

1

1 2

2 / cos cos(0.5 )cos(0.5 ) ,

2 / sin sin(0.5 )sin(0.5 ) ,

=
2 / sin sin(0.5 )sin(0.5 ) ;

6 / ( 3 )cos cos( 3 / 6)cos( 3 / 6)

td td

ud ud

SN T SN
fd fd

r r

s s

s s

r r
s s

s s

  

  

  

  

−

−

−

−

 ; 

(2) 

( )

( )

( )

( )

1

1 2

1

1 2

11 2
1 2

1

1 2

2 / sin sin(0.5 )sin(0.5 ) ,

2 / cos cos(0.5 )cos(0.5 ) ,

=
2 / cos cos(0.5 )cos(0.5 ) ;

6 / ( 3 )sin sin( 3 / 6)sin( 3 / 6)

td td

ud ud

SN T SN
fd fd

r r

s s

s s

r r
s s

s s

  

  

  

  

−

−

−

−

 ; 

(3) 
( ) ( )

( ) ( )

1 1

1 1

1
1 1

1 1

2 / cos cos(0.5 ) ,2 / sin sin(0.5 ) ,
=

2 / sin sin(0.5 ) ;6 / ( 3 )cos cos( 3 / 6)

q q

td ud

qSN q

fd r

s s
qr

s s

   

   

− −

− −
; 

(4) 
( ) ( )

( ) ( )

1 1

1 1

1
1 1

1 1

2 / sin sin(0.5 ) ,2 / cos cos(0.5 )
( ) =

2 / cos cos(0.5 ) ;6 / ( 3 )sin sin( 3 / 6)

q q

td ud
q

qSN q

fd r

s s
r

s s

   

   

− −

− −
. 

Example 1. Set two S-SvNVs as rSN1 = <(0.6, 0.2, 0.4; 0.3)> and rSN2 = <0.7, 0.2, 0.3; 0.2)> with q = 

0.7. Using the TOLs (1) – (4) in Definition 3, we derive the results: 

(1) 

( )

( )

( )

( )

1

1

11 2

1

2 / cos cos(0.5 0.6)cos(0.5 0.7) ,

2 / sin sin(0.5 0.2)sin(0.5 0.2) ,
=

2 / sin sin(0.5 0.4)sin(0.5 0.3) ;

6 / ( 3 )cos cos( 3 0.3 / 6)cos( 3 0.2 / 6)

0.8280, 0.0609, 0.1720; 0.3592 ;

SN T SNr r

  

  

  

  

−

−

−

−

   

   


   

   

=
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(2) 

( )

( )

( )

( )

1

1

11 2

1

2 / sin sin(0.5 0.6)sin(0.5 0.7) ,

2 / cos cos(0.5 0.2)cos(0.5 0.2) ,
=

2 / cos cos(0.5 0.4)cos(0.5 0.3) ;

6 / ( 3 )sin sin( 3 0.3 / 6)sin( 3 0.2 / 6)

0.5125, 0.2805, 0.4875; 0.0535 ;

SN T SNr r

  

  

  

  

−

−

−

−

   

   


   

   

=

 

(3) 

( ) ( )

( ) ( )

0.7 0.71 1

0.71 0.71 1

2 / cos cos(0.5 0.6) ,2 / sin sin(0.5 0.2) ,
=

2 / sin sin(0.5 0.4) ;6 / ( 3 )cos cos( 3 0.3 / 6)

0.5158, 0.2897, 0.4842; 0.2515 ;

SNqr
   

   

− −

− −

=

 

(4) 

( ) ( )

( ) ( )

0.7 0.71 1

0.71 0.71 1

2 / sin sin(0.5 0.6) ,2 / cos cos(0.5 0.2)
( ) =

2 / cos cos(0.5 0.4) ;6 / ( 3 )sin sin( 3 0.3 / 6)

0.6617, 0.1678, 0.3383; 0.4521 .

q

SNr
   

   

− −

− −

   

   

=

 

It is obvious that the above trigonometric operational results are still S-SvNVs. 

To compare the S-SvNVs rSNj = <stdj, sudj, sfdj; srj> for j =1, 2, their score and accuracy formulae are 

defined below: 

2 / 3
( )

4

tdj udj fdj rj

SNj

s s s s
T r

+ − − +
=  for ( ) [0,1]SNjT r  , (9) 

( )SNj tdj fdjZ r s s= −  for ( ) [ 1,1]SNjZ r  − . (10) 

Thus, there are the following ranking rules: 

(a) When T(rSN1) > T(rSN2), rSN1 > rSN2; 

(b) When T(rSN1) = T(rSN2) and Z(rSN1) > Z(rSN2), rSN1 > rSN2; 

(c) When T(rSN1) = T(rSN2) and Z(rSN1) = Z(rSN2), rSN1  rSN2. 

Example 2. Set two S-SvNVs as rSN1 = <0.7, 0.1, 0.2; 0.3> and rSN2 = <0.8, 0.2, 0.4; 0.2)>. Then, their 

ranking is given below. 

Using Eq. (9), the score values of rSN1 and rSN2 are T(rSN1) = (2 + 0.7 − 0.1 − 0.2 + 0.3/ 3 )/4 = 0.6433 

and T(rSN2) = (2 + 0.8 − 0.2 − 0.4 + 0.2/ 3 )/4 = 0.5789. Since T(rSN1) > T(rSN2), the ranking of both is rSN1 

> rSN2. 

4. Trigonometric WAOs of S-SvNVs 

According to the TOLs in Definition 3, this section establishes the S-SvNVTWA and S-

SvNVTWG operators of S-SvNVs in the scenario of S-SvNSs. 

First, we define the S-SvNVTWA and S-SvNVTWG operators of S-SvNVs. 

Definition 4. Let rSNj = <stdj, sudj, sfdj; srj> (j = 1, 2, …, h) be a group of S-SvNVs and S-SvNVTWA, 

S-SvNVTWG: h → . Then, the S-SvNVTWA and S-SvNVTWG operators are defined respectively 

below: 

1 2 1 1 2 2

1

( , ,..., ) ...
h

SN SN SNh SN T SN T T h SNh T j SNj

j

S SvNVTWA r r r q r q r q r q r
=

− =    = , (11) 

1 2

1 2 1 2

1

( , ,..., ) ... jh

h
qqq q

SN SN SNh SN T SN T T SNh T SNj

j

S SvNVTWG r r r r r r r
=

− =    = . (12) 

where qj (j = 1, 2, …, h) is the weight of rSNj with 0  qj  1 and 
1

1
h

jj
q

=
= . 

Theorem 1. Let rSNj = <stdj, sudj, sfdj; srj> (j = 1, 2, …, h) be a group of S-SvNVs and let qj be the weight 

of rSNj (j = 1, 2, …, h) with 0  qj  1 and . Then, the aggregated value of the S-SvNVTWA 

operator is still S-SvNV, which is derived by 

1
1

h

jj
q

=
=
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( ) ( )

( ) ( )

1 2

1

1 1

1 1

1 1

1 1

( , ,..., )

2 / cos cos(0.5 ) ,2 / sin sin(0.5 ) ,

2 / sin sin(0.5 ) ;6 / ( 3 )cos cos( 3 / 6)

j j

jj

h

SN SN SNh T j SNj

j

h h
q q

tdj udj

j j

h h qq

fdj rj

j j

S SvNVTWA r r r q r

s s

s s

   

   

=

− −

= =

− −

= =

− =

   
   
   

=
   
   
   



 

 

. (13) 

Proof: 

Mathematical induction is introduced to the proof of Eq. (13) below. 

(1) When h = 2, the TOLs (1) and (3) in Definition 3 can obtain the result: 

( )( ) ( )( )( )
( )( ) ( )

1 2

1

2

1 2 1 1 2 2

1

1 1 1

1 2

1 1 1

1 2

( , )

2 / cos cos (2 / ) ( / 2)cos cos(0.5 ) cos (2 / ) ( / 2)cos cos(0.5 ) ,

2 / sin sin (2 / ) ( / 2)sin sin(0.5 ) sin (2 / ) ( / 2)sin sin(0.5 )

SN SN SN T SN T j SNj

j

q q

td td

q

ud ud

S SvNVTWA r r q r q r q r

s s

s s

      

      

=

− − −

− − −

− =  =

 

 

=



( )( )
( )( ) ( )( )( )

( )( )
( )( )

( )

2

1 2

1

2

1

1 1 1

1 2

1

1
1

1

2

1

1

,

2 / sin sin (2 / ) ( / 2)sin sin(0.5 ) sin (2 / ) ( / 2)sin sin(0.5 ) ;

cos (6 / 3 ) ( 3 / 6)cos cos( 3 / 6)

6 / 3 cos

cos (6 / 3 ) ( 3 / 6)cos cos( 3 / 6)

2 / cos cos(0.5 ) cos(

q

q q

fd fd

q

r

q

r

q

td

s s

s

s

s

      

  



  

 

− − −

−

−

−

−

 

 
 

 
   
 

=

( )( )
( ) ( )( )

( ) ( )( )

( ) ( )( )

( ) ( )

2

1 2

1 2

1 2

2

1

1 2

1

1 2

1

1 2

2 2
1 1

1 1

0.5 ) ,

2 / sin sin(0.5 ) sin(0.5 ) ,

2 / sin sin(0.5 ) sin(0.5 ) ;

6 / ( 3 )cos cos( 3 / 6) cos( 3 / 6)

2 / cos cos(0.5 ) , 2 / sin sin(0.5 ) ,
j j

q

td

q q

ud ud

q q

fd fd

q q

r r

q q

tdj udj

j j

s

s s

s s

s s

s s



  

  

  

   

−

−

−

− −

= =

   
   
   

=

 

( ) ( )
2 2

1 1

1 1

.

2 / sin sin(0.5 ) ;6 / ( 3 )cos cos( 3 / 6)
jj

qq

fdj rj

j j

s s   − −

= =

   
   
   
 

 

(14) 

(2) When h = m, Eq. (13) can keep the formula: 

( ) ( )

( ) ( )

1 2

1

1 1

1 1

1 1

1 1

( , ,..., )

2 / cos cos(0.5 ) ,2 / sin sin(0.5 ) ,

2 / sin sin(0.5 ) ;6 / ( 3 )cos cos( 3 / 6)

j j

jj

m

SN SN SNm T j SNj

j

m m
q q

tdj udj

j j

m m qq

fdj rj

j j

S SvNVTWA r r r q r

s s

s s

   

   

=

− −

= =

− −

= =

− =

   
   
   

=
   
   
   



 

 

, (15) 

(3) When h = m+1, based on the TOLs (1) and (3) in Definition 3 and Eqs. (14) and (15), we have 

the result: 
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( ) ( )

( ) ( )

1 2 1 +1 1

1

1 1

1 1

1 1

1 1

( , ,..., , )

2 / cos cos(0.5 ) , 2 / sin sin(0.5 ) ,

2 / sin sin(0.5 ) ;6 / ( 3 )cos cos( 3 / 6)

j j

jj

m

SN SN SNm SNm T j SNj T m SNm

j

m m
q q

tdj udj

j j

m m qq

fdj rj

j j

S SvNVTWA r r r r q r q r

s s

s s

   

   

+ +

=

− −

= =

− −

= =

− = 

   
   
   

=
  
  
  



 

 

( ) ( )

( ) ( )

+1 1

1 1
1 1

1 1

1 1
1 1

1 1

2 / cos cos(0.5 ) , 2 / sin sin(0.5 ) ,

2 / sin sin(0.5 ) ;6 / ( 3 )cos cos( 3 / 6)

j j

jj

T m SNm

m m
q q

tdj udj

j j

m m qq

fdj rj

j j

q r

s s

s s

   

   

+

+ +
− −

= =

+ +
− −

= =






   
   
   

=
   
   
   

 

 

 

Regarding the above results, Eq. (13) can exist for all h.  

Therefore, the proof of Theorem 1 is completed. 

Theorem 2. Let rSNj = <stdj, sudj, sfdj; srj> (j = 1, 2, …, h) be a group of S-SvNVs and let qj be the weight 

of rSNj (j = 1, 2, …, h) with 0  qj  1 and 
1

1
h

jj
q

=
= . Then, the aggregated value of the S-SvNVTWG 

operator is still S-SvNV, which is derived by 

( ) ( )

( ) ( )

1 2

1

1 1

1 1

1 1

1 1

( , ,..., )

2 / sin sin(0.5 ) ,2 / cos cos(0.5 ) ,

2 / cos cos(0.5 ) ;6 / ( 3 )sin sin( 3 / 6)

j

j j

jj

h
q

SN SN SNh T SNj

j

h h
q q

tdj udj

j j

h h qq

fdj rj

j j

S SvNVTWG r r r r

s s

s s

   

   

=

− −

= =

− −

= =

− =

   
   
   

=
   
   
   



 

 

, (16) 

A similar proof way of Theorem 1 can be used for the proof of Eq. (16), which is omitted here. 

Theorem 3. The S-SvNVTWA operator of Eq. (13) and the S-SvNVTWG operator of Eq. (16) 

include the following properties: 

(1) Idempotency: Let rSNj = <stdj, sudj, sfdj; srj> (j = 1, 2, …, h) be a group of S-SvNVs. When rSNJ = rSN 

(j = 1, 2, ..., h), there are ( )1 2, ,...,SN SN SNh SNS SvNVTWA r r r r− =  and ( )1 2, ,...,SN SN SNh SNS SvNVTWG r r r r− = . 

(2) Boundedness: Let rSNj = <stdj, sudj, sfdj; srj> (j = 1, 2, …, h) be a group of S-SvNVs and let the 

minimum and maximum S-SvNVs: 

( ) ( ) ( ) ( )min min ,max ,max ;minSN tdj udj fdj rj
j jj j

r s s s s= , 

( ) ( ) ( ) ( )max max ,min ,min ;maxSN tdj udj fdj rj
j jj j

r s s s s= . 

Subsequently, there are 
min 1 2 max( , ,..., )SN SN SN SNh SNr S SvNVTWA r r r r −  and 

min 1 2 max( , ,..., )SN SN SN SNh SNr S SvNVTWG r r r r −  . 

(3) Monotonicity: Let rSNj = <stdj, sudj, sfdj; srj> and * * * * *, , ;SNj tdj udj fdj rjr s s s s=  (k = 1, 2, …, q) be two 

groups of S-SvNVs. When *

SNj SNjr r , there are 
* * *

1 2 1 2( , ,..., ) ( , ,..., )SN SN SNh SN SN SNhS SvNVTWA r r r S SvNVTWA r r r−  −  and 
* * *

1 2 1 2( , ,..., ) ( , ,..., )SN SN SNh SN SN SNhS SvNVTWG r r r S SvNVTWG r r r−  − . 

Proof: 

(1) When rSNj = rSN (j = 1, 2, ..., h), Eqs. (13) and (16) have the following results: 
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( ) ( )

( ) ( )

1 2

1

1 1

1 1

1 1

1 1

1

( , ,..., )

2 / cos cos(0.5 ) ,2 / sin sin(0.5 ) ,

2 / sin sin(0.5 ) ;6 / ( 3 )cos cos( 3 / 6)

2 / cos cos(0.5

j j

jj

h

SN SN SNh T j SNj

j

h h
q q

tdj udj

j j

h h qq

fdj rj

j j

S SvNVTWA r r r q r

s s

s s

   

   



=

− −

= =

− −

= =

−

− =

   
   
   

=
   
   
   

=



 

 

( ) ( )

( ) ( )

1 1

11

1

1 1

) , 2 / sin sin(0.5 ) ,

2 / sin sin(0.5 ) ;6 / ( 3 )cos cos( 3 / 6)

, , ; ,

h h

j j

j j

hh

jj
jj

q q

td ud

qq

fd r

td ud fd r SN

s s

s s

s s s s r

  

   

= =

==

−

− −

 



= =

, 

( ) ( )

( ) ( )

1 2

1

1 1

1 1

1 1

1 1

1

( , ,..., )

2 / sin sin(0.5 ) ,2 / cos cos(0.5 ) ,

2 / cos cos(0.5 ) ;6 / ( 3 )sin sin( 3 / 6)

2 / sin sin(0.5

j

j j

jj

h
q

SN SN SNh T SNj

j

h h
q q

tdj udj

j j

h h qq

fdj rj

j j

S SvNVTWG r r r r

s s

s s

   

   



=

− −

= =

− −

= =

−

− =

   
   
   

=
   
   
   

=



 

 

( ) ( )

( ) ( )

1 1

11

1

1 1

) , 2 / cos cos(0.5 ) ,

2 / cos cos(0.5 ) ;6 / ( 3 )sin sin( 3 / 6)

, , ; .

h h

j j

j j

hh

jj
jj

q q

td ud

qq

fd r

td ud fd r SN

s s

s s

s s s s r

  

   

= =

==

−

− −

 



= =

. 

(2) Since rSNmin and rSNmax are the minimum and maximum S-SvNVs, there is the inequality rSNmin 

 rSNj  rSNmax. Therefore, min max

1 1 1

h h h

T j SN T j SNj T j SN

j j j

q r q r q r
= = =

     and min max

1 1 1

j j j

h h h
q q q

T SN T SNj T SN

j j j

r r r
= = =

     

also exist. Based on the property (1) and the trigonometric properties, there are 

min max

1

h

SN T j SNj SN

j

r q r r
=

  and min max

1

j

h
q

SN T SNj SN

j

r r r
=

  , i.e. ( )min 1 2 max, ,...,SN SN SN SNh SNr S SvNVTWA r r r r −   

and ( )min 1 2 max, ,...,SN SN SN SNh SNr S SvNVTWG r r r r −  . 

(3) When *

SNj SNjr r , there exist *

1 1

h h

T j SNj T j SNj

j j

q r q r
= =

   and *

1 1

( )j j

h h
q q

T SNj T SNj

j j

r r
= =

  , i.e., 

( ) ( )* * *

1 2 1 2, ,..., , ,...,SN SN SNh SN SN SNhS SvNVTWA r r r S SvNVTWA r r r−  −  and 

( ) ( )* * *

1 2 1 2, ,..., , ,...,SN SN SNh SN SN SNhS SvNVTWG r r r S SvNVTWG r r r−  − . 

Consequently, all the above properties are true. 

Example 3. Set three S-SvNVs as rSN1 = <0.7, 0.3, 0.2; 0.4>, rSN2 = <0.6, 0.2, 0.2; 0.3>, and rSN3 = <0.8, 

0.4, 0.5; 0.2> subject to the weight vector q = (0.4, 0.3, 0.3). Using Eqs. (13) and (16), there are the 

aggregation results of the S-SvNVTWA and S-SvNVTWG operators: 
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( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( )

3

1 2 3

1

0.4 0.3 0.31

0.4 0.3 0.31

0.4 0.1

( , , )

2 / cos cos(0.5 0.7) cos(0.5 0.6) cos(0.5 0.8) ,

2 / sin sin(0.5 0.3) sin(0.5 0.2) sin(0.5 0.4) ,

2 / sin sin(0.5 0.2) sin(0.5 0.2)

SN SN SN T j SNj

j

S SvNVTWA r r r q r

   

   

  

=

−

−

−

− =

     

     

=
   



( )( )

( ) ( ) ( )( )

3 0.3

0.4 0.3 0.3
1

sin(0.5 0.5) ;

6 / ( 3 )cos cos( 3 0.4 / 6) cos( 3 0.3 / 6) cos( 3 0.2 / 6)

0.7120, 0.2880, 0.2593; 0.3215 ,



   −

 

      

=

 

( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( )

3

1 2 3

1

0.4 0.3 0.31

0.4 0.3 0.31

0.4 0.31

( , , )

2 / sin sin(0.5 0.7) sin(0.5 0.6) sin(0.5 0.8) ,

2 / cos cos(0.5 0.3) cos(0.5 0.2) cos(0.5 0.4) ,

2 / cos cos(0.5 0.2) cos(0.5 0.2)

jq

SN SN SN SNj

j

S SvNVTWG r r r r

   

   

  

=

−

−

−

− =

     

     

=
   



( )( )

( ) ( ) ( )( )

0.3

0.4 0.3 0.3
1

cos(0.5 0.5) ;

6 / ( 3 )sin sin( 3 0.4 / 6) sin( 3 0.3 / 6) sin( 3 0.2 / 6)

0.6885, 0.3115, 0.3281; 0.2974 .



   −

 

      

=

 

5. MADM Technique Using the S-SvNVTWA and S-SvNVTWG Operators 

This section develops a MADM technique utilizing the S-SvNVTWA and S-SvNVTWG 

operators and the score and accuracy formulae of S-SvNVs in the scenario of S-SvNSs. 

In general, a MADM problem usually needs to select the optimal alternative from a set of 

alternatives SA = {SA1, SA2, …, SAp} among those that satisfy the requirements of the multiple attributes 

(denoted as a set RS = {RE1, RE2, …, REh}). During the evaluation process, the evaluation results of the 

alternatives over the attributes can be represented by the S-SvNVs rSNij = <stdij, sudij, sfdij; srij> (j = 1, 2, …, 

h; i = 1, 2, …, p), which are composed of SvNVs and spherical radii, and constructed as their decision 

matrix RM = (rSNij)ph. Then, a MADM technique in the scenario of S-SvNSs is established and described 

by the following decision process. 

Step 1. In terms of the scoring entropy values of the evaluated S-SvNVs of each attribute across 

the alternatives provided by the decision makers, the attribute weights qj (j = 1, 2, …, h) are derived 

by the formulae: 

1
1 1
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ln ( ) ( )

p
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Sj p p
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T r T r
E

p T r T r=
= =

 
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−
, j = 1, 2, …, h. 

(18) 

Step 2. The aggregated values rSNi for SAi (i = 1, 2, …, p) are obtained by one of the S-SvNVTWA 

and S-SvNVTWG operators: 
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Step 3. The score values of T(rSNi) (accuracy values of T(rSNi) for necessity) (i = 1, 2, …, p) are 

derived by Eqs. (9) and (10). 

Step 4. Alternatives are ranked subject to a descending order of the score values and the optimal 

one is determined. 

Step 5. End. 

6. MADM Application of RSTS Selection 

In China, the city of Ningbo is located on the East China Sea, and it is often affected by bad 

weather such as typhoons and rainy seasons, so geological disasters such as road slope landslides 

and avalanches often occur in Ningbo. In order to prevent the geological disasters, it is necessary to 

carry out the comprehensive treatment of road slopes to ensure their stability and safety. In order to 

verify the effectiveness of the developed MADM technique, this section applies the developed 

MADM technique to an actual example of RSTS selection, and then compares it with the existing 

SvNV MADM techniques to show the appropriateness and advantages of the developed technique 

in the scenario of S-SvNSs. 

6.1 Selection Example of RSTSs 

To comprehensively treat the risk areas of road slopes in Ningbo City, the engineering 

department provided four RSTSs based on the previous treatment experience and actual 

requirements as follows:  

(a) The RSTS SA1: Drainage ditches, concrete retaining walls, slope protection stones, and 

protective nets; 

(b) The RSTS SA2: Masonry slope protection, retaining walls, slope trimming, and drainage 

ditches;  

(c) The RSTS SA3: Drainage ditches, retaining walls, slope cutting, and gutters;  

(d) The RSTS SA4: Drainage ditches, retaining walls, and shotgun technology (surface shotcrete 

and fixed anchors).  

Then they have to satisfy four critical factors/attributes: geological conditions (SA1), technical 

feasibility (SA2), economics (SA3), and climatic status (SA4). Regarding this MADM problem, the 

satisfactory degrees of each RSTS with respect to the four factors are assessed by decision-

makers/experts to select the optimal one among the four RSTSs.  

In the assessment process, the decision makers/experts provide the assessment values of each 

RSTS over the four factors by the S-SvNVs rSNij = <stdij, sudij, sfdij; srij> (j, i = 1, 2, 3, 4), which consist of the 

true, false and indeterminate values and spherical radii. Then, all S-SvNVs form their decision matrix 

RM = (rSNij)44: 

0.8,0.2,0.2;0.4 0.9,0.2,0.1;0.2 0.8,0.1,0.1;0.2 0.8,0.2,0.2;0.3

0.8,0.1,0.1;0.3 0.8,0.1,0.1;0.3 0.7,0.2,0.2;0.3 0.8,0.1,0.2;0.4

0.7,0.3,0.2;0.2 0.7,0.2,0.2;0.3 0.8,0.1,0.1;0.2 0.7,0.2,0.4;0.2

0.6,0.2,0.1;0.3 0.

MR =

8,0.2,0.3;0.2 0.7,0.3,0.3;0.3 0.6,0.1,0.1;0.3

 
 
 
 
 
  

. 

In this actual selection problem of RSTSs, the developed MADM technique is applied and 

represented by the following decision procedures. 

Step 1. Using Eqs. (17) and (18), the attribute weights qj (j = 1, 2, 3, 4) are derived below: 
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q1 = 0.2221, q2 = 0.2343, q3 = 0.2628, and q4 = 0.2809. 

Step 2. Applying Eq. (19) or (20), the aggregated values rSNi for SAi (i = 1, 2, 3, 4) are obtained 

below: 

rSN1 = <0.8303, 0.1664, 0.1414; 0.2846>, rSN2 = <0.7779, 0.1198, 0.1455; 0.3314>, rSN3 = <0.7308, 0.1816, 

0.2004; 0.2275>, and rSN4 = <0.6868, 0.1822, 0.1712; 0.2799>. 

Or rSN1 = <0.8182, 0.1794, 0.1587; 0.2610>, rSN2 = <0.7690, 0.1340, 0.1625; 0.3251>, rSN3 = <0.7224, 

0.2087, 0.2598; 0.2198>, and rSN4 = <0.6614, 0.2124, 0.2246; 0.2727>. 

Step 3. By Eq. (9), the score values of T(rSNi) for SAi (i = 1, 2, 3, 4) are yielded below: 

T(rSN1) = 0.6717, T(rSN2) = 0.6760, T(rSN3) = 0.6201, and T(rSN4) = 0.6237. 

Or T(rSN1) = 0.6577, T(rSN2) = 0.6650, T(rSN3) = 0.5952, and T(rSN4) = 0.5955. 

Step 4. The ranking of the four RSTSs is SA2 > SA1 > SA4 > SA3 and the optimal one is SA2. 

6.2 Sensitivity Analysis 

To analyze the sensitivity of the spherical radii in the S-SvNV matrix RM to the ranking of the 

four RSTSs, it is assumed that srij = 0 is set in all rSNij = <stdij, sudij, sfdij; srij> (j, i = 1, 2, 3, 4) in the decision 

matrix RM. In this case, the decision procedures are indicated as follows: 

Step 1. Using Eqs. (17) and (18), the attribute weights qj (j = 1, 2, 3, 4) are derived below: 

q1 = 0.1957, q2 = 0.1908, q3 = 0.4019, and q4 = 0.2115. 

Step 2. Applying Eq. (19) or (20), the aggregated values rSNi for SAi (i = 1, 2, 3, 4) are obtained 

below: 

rSN1 = <0.8250, 0.1511, 0.1324; 0>, rSN2 = <0.7651, 0.1319, 0.1527; 0>, rSN3 = <0.7457, 0.1631, 0.1736; 0>, 

and rSN4 = <0.6895, 0.2022, 0.1901; 0>. 

Or rSN1 = <0.8147, 0.1674, 0.1494; 0>, rSN2 = <0.7543, 0.1488, 0.1688; 0>, rSN3 = <0.7351, 0.1952, 0.2341; 

0>, and rSN4 = <0.6684, 0.2328, 0.2410; 0>. 

Step 3. By Eq. (9), the score values of T(rSNi) for SAi (i = 1, 2, 3, 4) are yielded below: 

T(rSN1) = 0.6354, T(rSN2) = 0.6201, T(rSN3) = 0.6022, and T(rSN4) = 0.5743. 

Or T(rSN1) = 0.6245, T(rSN2) = 0.6092, T(rSN3) = 0.5764, and T(rSN4) = 0.5486. 

Step 4. The ranking of the four RSTSs is SA1 > SA2 > SA3 > SA4 and the optimal one is SA1. 

Since there is the ranking difference when the values of the spherical radii are zero and not zero 

in the S-SvNV scenario, we see that the values of the spherical radii are sensitive to the ranking of the 

four RSTSs. Therefore, the values of the spherical radii can influence the ranking of the four RSTSs, 

which implies the importance of the spherical radius information in the S-SvNS scenario. 

6.3 Related Comparison 

To show the superiority of the proposed MADM technique in the setting of S-SvNSs, a 

comparison with the existing SvNV MADM techniques is provided by the actual example of RSTS 

selection. 

To apply the existing SvNV MADM techniques [15, 32] to the actual example, we have to ignore 

all the values of the spherical radii in the S-SvNV decision matrix RM. Based on this special case, the 

S-SvNV decision matrix RM is degenerated to the SvNV decision matrix: 

*

0.8,0.2,0.2 0.9,0.2,0.1 0.8,0.1,0.1 0.8,0.2,0.2

0.8,0.1,0.1 0.8,0.1,0.1 0.7,0.2,0.2 0.8,0.1,0.2

0.7,0.3,0.2 0.7,0.2,0.2 0.8,0.1,0.1 0.7,0.2,0.4

0.6,0.2,0.1 0.8,0.2,0.3 0.7,0.3,0.3 0.6,0.1,0.1

MR

 
 
 =
 
 
  

. 

Then, the weight vector of the four attributes is set as q = (0.1957, 0.1908, 0.4019, 0.2115). In this 

case, the existing SvNV MADM techniques [15, 32] based on the aggregation operators of Eqs. (1) − 

(4) and the score and accuracy formulae of Eqs. (5) and (6) can be applied to the actual example of 

RSTS selection, and then the decision results of the existing MADM techniques [15, 32] can be 

obtained in the SvNS scenario. All the decision results of different MADM techniques in the SvNS 

and S-SvNS scenarios are given in Table 1 for convenient comparison. 
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Table 1. All decision results based on different MADM techniques in the SvNS and S-SvNS 

scenarios. 

MADM technique Score value Ranking 
The optimal 

RSTS 

MADM technique using the 

SvNVWA operator [32] 

0.8405, 0.8373, 

0.7818, 0.7763 
SA1 > SA2 > SA3 > SA4 SA1 

MADM technique using the 

SvNVWG operator [32] 

0.8319, 0.8297, 

0.7624, 0.7537 
SA1 > SA2 > SA3 > SA4 SA1 

MADM technique using the 

SvNVTWA operator [15] 

0.8543, 0.8329, 

0.8147, 0.7811 
SA1 > SA2 > SA3 > SA4 SA1 

MADM technique using the 

SvNVTWG operator [15] 

0.8387, 0.8183, 

0.7821, 0.7426 
SA1 > SA2 > SA3 > SA4 SA1 

Developed MADM technique using 

the S-SvNVTWA operator 

0.6717, 0.6760, 

0.6201, 0.6237 
SA2 > SA1 > SA4 > SA3 SA2 

Developed MADM technique using 

the S-SvNVTWG operator 

0.6577, 0.6650, 

0.5952, 0.5955 
SA2 > SA1 > SA4 > SA3 SA2 

In the decision results in Table 1, the ranking results and the optimal RSTS based on the existing 

MADM techniques [15, 32] are completely consistent in the SvNS scenario. Then, the ranking results 

and the optimal RSTS of the existing MADM techniques and the developed MADM technique imply 

their difference between the SvNS scenario and the S-SvNS scenario. Therefore, the developed 

MADM technique not only reveals the information importance of the spherical radii for the ranking 

of the four RSTSs in the S-SvNS scenario, but also extends the existing MADM capability and scope 

since S-SvNSs are the generalization of SvNSs in decision information. Due to the fuzziness and 

uncertainty of human cognitions/judgments under the MADM complication and uncertainty, it is 

obvious that the S-SvNV evaluation values in the decision process can capture the hybrid information 

of both the SvNV and the spherical space with a radius to effectively express the crisp SvNV and its 

uncertain spherical information in a single-valued neutrosophic cube. However, the existing MADM 

techniques [15, 32] are unable to perform MADM problems with S-SvNV information and unknown 

attribute weights, then they may also lead to unreasonable/distorted decision results for RSTS 

selection due to a lack of useful spherical information in MADM applications. In general, the 

developed MADM technique not only reveals its superiority over the existing techniques, but also 

effectively improves the decision capability and scope in the S-SvNS scenario. 

7. Conclusion 

Based on an extension of C-IFS, the proposed S-SvNS can effectively express the hybrid 

information of both SvNVs and spheres with radii within a single-valued neutrosophic cube. Then, 

the presented TOLs, S-SvNVTWA and S-SvNVTWG operators, and score and accuracy formulae of 

S-SvNVs solved the operations and ranking problems of S-SvNVs. In terms of the S-SvNVTWA and 

S-SvNVTWG operators and score and accuracy formulae of S-SvNVs, the developed MADM 

technique in the S-SvNS setting can extend the MADM scope and capability and solve MADM 

problems with periodicity and unknown attribute weights in the S-SvNS scenario. Furthermore, the 

developed MADM technique was applied to the actual selection example of RSTSs, and then the 

optimal selection of RSTSs was provided in the S-SvNS scenario. Through sensitivity analysis and 

comparison with existing SvNV MADM techniques, the efficiency and superiority of the developed 

technique were verified in the S-SvNS scenario. 

Generally, this study includes the following advantages/achievements: 

(1) The proposed S-SvNV can effectively represent the hybrid information of both an SvNV 

and a spherical radius based on an exact SvNV and its uncertain spherical space. 
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(2) The proposed S-SvNVTWA and S-SvNVTWG operators can perform the S-SvNV 

aggregation operations with periodicity/multitemporal stages as an extension of the existing 

SvNVWA, SvNVWG, SvNVTWA, and SvNVTWG operators.  

(3) The developed MADM technique using the S-SvNVTWA and S-SvNVTWG operators can 

solve MADM problems with the requirement of periodicity/multitemporal stages and unknown 

attribute weights in the S-SvNS scenario based on the generalization of existing MADM techniques 

in SvNS scenarios. 

Although this study has achieved the above, in the future, more S-SvNV trigonometric 

aggregation operators will be developed based on Enistein, Aczel-Alsina, and Dombi operations and 

their decision/evaluation models will be established to tackle GDM, slope stability classification and 

evaluation, environmental risk and mine safety evaluation, as well as image processing and medical 

diagnosis in S-SvNS scenarios. 
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