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Abstract: Soft set theory is a valuable mathematical tool for modeling and analyzing uncertain 

systems. A neutrosophic soft set is a hybrid entity of a neutrosophic set, and a soft set that enables 

a more comprehensive analysis of uncertainty in a system. In this article, we introduce some novel 

information theoretic measures in a single-valued neutrosophic soft environment. Additionally, we 

study the data-dimensionality reduction using two-pronged approach, leveraging the score matrix 

and neutrosophic soft entropy measure. The complexity of decision-making problems involving 

numerous factors can be alleviated using the dimensionality reduction technique. Finally, the 

comparative analysis is presented with the help of an illustrative example utilizing a measure of 

performance. The comparative study highlighted the advantage of the proposed methods. 

Keywords: single-valued neutrosophic set, neutrosophic soft set, dimensionality reduction, score 

matrix, entropy measure, similarity measure. 

 

1. Introduction 

Uncertainty is an inherent part of real-world systems, and several methods are available in the 

literature for the representation of uncertain data or information. The most prevalent methods 

include probability theory, rough set theory, fuzzy set theory, and intuitionistic fuzzy set theory, and 

are utilized for modeling human-centric and expert-based systems. The real-life applications 

concerned with decision-making, clustering analysis, pattern recognition, anomaly detection, image 

analysis, and many more have been investigated using these methods. However, all these theories 

have their own limitations in varied situations. This article aims to put forth a neutrosophic soft 

information measure, and its implication. In [1], Molodtsov introduced the concept of a soft set by 

integrating the parametrization tool with the classical set. Soft set theory has been widely applied in 

a variety of fields such as decision-making [2-8], data analysis [9], forecasting [10], simulation [11], 

optimization [12], texture classification [13], etc. Afterward, by combining a Soft set [1] and a fuzzy 

set (FS) [14], Maji et al.[8] suggested the concept of Fuzzy soft sets. Similarly, Maji et al. [15] 

introduced the concept of intuitionistic fuzzy soft sets (IFSSs) due to the fusion of soft sets and 

intuitionistic fuzzy sets (IFS) [16]. Thereafter, various researchers studied diverse mathematical 

hybrid structures such as generalized intuitionistic fuzzy soft sets [17], generalized fuzzy soft sets 

[18] possibility intuitionistic fuzzy soft sets [19], vague soft sets [20], interval-valued fuzzy soft sets 

[21], interval-valued intuitionistic fuzzy soft sets [22], etc.  Furthermore, Maji [23] introduced the 

notion of the neutrosophic soft set by fusion of a neutrosophic set (NS) [24] and a soft set [1]. Maji 

[25] suggested some operations and propositions related to a weighted neutrosophic soft set. Wang 
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[26] suggested a subclass of neutrosophic soft sets. Marei [27] developed a rough set approach in 

single-valued neutrosophic soft settings. Neutrosophic soft sets (NSSs), due to their ability to deal 

with intermediate, inconsistent, and neutrosophic parameters found extensive implications in a 

variety of fields. 

The essential information theoretic measures like entropy and Knowledge measure quantify the 

information content of a fuzzy/non-fuzzy set. Furthermore, similarity and distance measures 

evaluate the extent of closeness and discrimination between two fuzzy/non-fuzzy sets. In the 

problems related to pattern recognition, the concept of similarity/distance measure is commonly 

employed to verify the authenticity of an object/document. In recent years, several studies  [28-41] 

suggested different information-theoretic measures concerned with fuzzy sets, fuzzy soft sets, 

intuitionistic fuzzy sets, intuitionistic fuzzy soft sets, single-valued neutrosophic sets, and single-

valued neutrosophic soft sets. Broumi [29] studied similarity measures for neutrosophic soft sets. Dey 

et al. [37] presented a neutrosophic soft similarity measure for selecting the suitable alternative based 

on a grey relational analysis involving multiple decision-makers. Karaaslan [38] suggested a decision-

making method and a group decision-making method in the neutrosophic soft environment. Sahin 

and Kucuk [39] suggested various distance measures between neutrosophic soft sets and introduced 

an axiomatic definition of entropy for a neutrosophic soft set. The proposed research work is aimed 

to introduce neutrosophic soft information measures, and their application to decision-making and 

data dimensionality reduction.    

The dimensionality reduction technique is instrumental in mitigating the curse of dimensionality, 

enabling the effective management of high-dimensional data sets and the elimination of irrelevant 

features. This approach offers a threefold benefit: Simplifying data, visualizing complex 

relationships, and managing multicollinearity. As a result, this method has become a vital area of 

study in diverse computational disciplines, especially those characterized by extreme data modality. 

In the fuzzy soft set, the dimension reduction technique of big data was utilized to convert soft tables 

into fuzzy soft set tables [42]. The concept of Pythagorean fuzzy soft matrix, introduced by Bajaj [43] 

has paved the way for the development of a new generation of dimensionality reduction approaches, 

tailored to address the complexities of MCDM problems. Picture fuzzy soft matrix was suggested in 

Devi et al. [44] to solve decision-making problems and the dimensionality reduction can be dealt with 

in a better and broader sense of human opinion. However, there has been rather little work completed 

for entropy, and similarity measure in the context of single-valued neutrosophic soft sets and their 

applications.  

1.1. Contribution 

The main contribution of this paper is as follows: 

• We propose novel entropy, and similarity measures for the SVNSSs to overcome the 

shortcomings of existing measures.  

• The newly proposed measures are applied for solving the MCDM problem and for data 

reduction technique.  

• Finally, a comparative analysis has been done to check the effectiveness of the proposed 

measure based on performance measures. 

1.2. Importance of neutroshopy in the present work 

 Neutrosophy provides a more rational extension to traditional fuzzy logic by explicitly modelling 

indeterminacy. It enhances data dimensionality reduction by guiding the selection of relevant, low-
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noise features and improves decision-making processes by providing a structured framework to deal 

with incomplete, contradictory, and uncertain information. The independent choice of trueness, 

falsity, and indeterminacy in a single valued neutrosophic set make the neutrosophic information 

measures more robust and indispensable tools in the real-life problems concerned with of 

classification, pattern-recognition and decision-support.       

The content of this article is organised as follows. 

Section 2 presents basic concepts relevant to this study. Section 3 introduces the similarity, and 

entropy measure in a single-valued neutrosophic soft environment. Section 4 demonstrates the 

application of the proposed measure in MCDM problem as well as in data dimensionality reduction. 

In section 5. We contrast the performance of the proposed methods with existing methods. Section 6 

concludes the article.  

 

2. Preliminaries  

 

In this section, we present some essential fundamental concepts concerned with this article. 

Definition 2.1 ([1]). Let 𝑈 be a generic universe and 𝑃 be a set of parameters in 𝑈. Consider 𝐸 ⊆

𝑃. A pair (𝐹, 𝐸) is said to be a soft set over the universe set in which 𝐹 is a mapping from 𝐸 to 2𝑈, 

where  2𝑈 is a power set of 𝑈. In short, a soft set over 𝑈 is a parameterized family of a subset of 

𝑈. 

Definition 2.2 ([8]). Suppose 𝑈 is a generic universe of objects. Consider 𝑃 be a set of parameters 

in 𝑈 and 𝐸 ⊆ 𝑃. A pair (𝐹, 𝐸) is said to be a fuzzy soft set over the universe set 𝑈,  in which 𝐹 is 

a mapping from 𝐸 to 𝐹𝑆𝑈, where  𝐹𝑆𝑈 is a set of all fuzzy subsets of the universe set 𝑈. 

Definition 2.3 ([15]). Let 𝑈 be a generic universe of objects and 𝑃 be a set of parameters in 𝑈. 

Consider 𝐸 ⊆ 𝑃 and let 𝐼𝐹𝑆𝑈 denote the collection of all intuitionistic fuzzy sets of 𝑈. A pair (𝐹, 𝐸) 

is said to be intuitionistic fuzzy soft set over the universe set 𝑈,  where 𝐹 is a mapping 𝐹: 𝐸 →

𝐼𝐹𝑆𝑈. 

Definition 2.2 ([24]). Let 𝑈 be a universe of discourse with generic element 𝑦 in 𝑈. A single-valued 

neutrosophic set 𝐵  in 𝑈  is characterized by truth-membership degree 𝑇𝐵(𝑦𝑖) , indeterminacy 

degree 𝐼𝐵(𝑦𝑖)  and falsity-membership degree 𝐹𝐵(𝑦𝑖) . For each  𝑦𝑖 ∈ 𝑌 , 𝑇𝐵(𝑦𝑖), 𝐼𝐵(𝑦𝑖), 𝐹𝐵(𝑦𝑖)  ∈

[0, 1] . A single-valued neutrosophic set 𝐵  can be denoted by a triplet i.e.,  𝐵 =

 {〈𝑇𝐵(𝑦𝑖), 𝐼𝐵(𝑦𝑖), 𝐹𝐵(𝑦𝑖)〉| 𝑦𝑖 ∈ 𝑌 } with 𝑇𝐵(𝑦𝑖) + 𝐼𝐵(𝑦𝑖) +  𝐹𝐵(𝑦𝑖)  ∈ [0, 3]. 

Definition 2.4 ([23]). Let 𝑈 be a universe of objects and 𝑃 be a set of parameters in 𝑈. Consider 

𝐸 ⊆ 𝑃 and  𝑁𝑆𝑈  denote the collection of all neutrosophic sets of 𝑈. A pair (𝐹, 𝐸) is said to be 

neutrosophic soft set over the universe set 𝑈,  where 𝐹 is a mapping 𝐹: 𝐸 → 𝑁𝑆𝑈. 

Operations on Single-Valued Neutrosophic Soft Sets: Let (𝐹, 𝐸) , (𝐺, 𝐸),  and (𝐻, 𝐸)  be three 

single-valued neutrosophic soft sets, then we have the following operations. 

Union: (𝐹, 𝐸) ∪ (𝐺, 𝐸) = (𝑚𝑎𝑥. (𝑇𝐹(𝑒)(𝑦), 𝑇𝐺(𝑒)(𝑦)) ,
𝐼𝐹(𝑒)(𝑦)+ 𝐼𝐺(𝑒)(𝑦)

2
 , 𝑚𝑖𝑛. (𝑇𝐹(𝑒)(𝑦), 𝑇𝐺(𝑒)(𝑦)))  if 𝑒 ∈

𝐴 ∩ 𝐵. 
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Intersection: (𝐹, 𝐸) ∩ (𝐺, 𝐸) = (𝑚𝑖𝑛. (𝑇𝐹(𝑒)(𝑦), 𝑇𝐺(𝑒)(𝑦)) ,
𝐼𝐹(𝑒)(𝑦)+ 𝐼𝐺(𝑒)(𝑦)

2
 , 𝑚𝑎𝑥. (𝑇𝐹(𝑒)(𝑦), 𝑇𝐺(𝑒)(𝑦)))  if 

𝑒 ∈ 𝐴 ∩ 𝐵. 

Complement: (𝐹, 𝐸)𝑐 = (𝑇𝐹𝑐(𝑒)(𝑦) = 𝐹𝐹(𝑒)(𝑦), 𝐼𝐹𝑐(𝑒)(𝑦) = 𝐼𝐹(𝑒)(𝑦), 𝐹𝐹𝑐(𝑒)(𝑦) = 𝑇𝐹(𝑒)(𝑦)). 

Subset: If  (𝐹, 𝐸) ⊆ (𝐺, 𝐸) then 𝑇𝐹(𝑒)(𝑦) ≤  𝑇𝐺(𝑒)(𝑦), 𝐼𝐹(𝑒)(𝑦) ≤  𝐼𝐺(𝑒)(𝑦), 𝐹𝐹(𝑒)(𝑦) ≥  𝐹𝐺(𝑒)(𝑦). 

Definition 2.5 ([27]). Let 𝑈 be the universal set and 𝑃 be a set of parameters. Consider 𝐸 ⊆ 𝑃 and,  

let𝑆𝑉𝑁𝑆𝑈 denote the set of all single–valued neutrosophic sets of 𝑈. The collection (𝐹, 𝐸) is said to 

be a single-valued neutrosophic soft set over the universe set 𝑈, where 𝐹 is a mapping 𝐹: 𝐸 →

𝑆𝑉𝑁𝑆𝑈. 

Example 2.1 ([23]). Let 𝑈 = {𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5}be a set of five models of car out of which one car is to 

be purchased and  𝐸 =  {𝑒1 =  elegant, 𝑒2 =  trustworthy, 𝑒3 =  sporty, 𝑒4 =  comfortable, 𝑒5 =

  modern}be the set of parameters to select the car. The SVNSS (𝐹, 𝐸)  in this example can be 

presented in the following Table 1. 

Table 1. Tabular representation of (𝑭, 𝑬) of Example 1. 

𝑼 𝒆𝟏 𝒆𝟐 𝒆𝟑 𝒆𝟒 

𝑦1 (0.6,0.3, 0.4) (0.4,0.3, 0.3) (0.1,0.1, 0.1) (0.7,0.5, 0.6) 

𝑦2 (0.4,0.3, 0.4) (0.5,0.6, 0.4) (0,0, 0.4) (0.8,0.3, 0.3) 

𝑦3 (0.6,0.5, 0.4) (0.3,0.3, 0.4) (0.2,0.3, 0.7) (0.3,0.3, 0.3) 

𝑦4 (0, 0.3, 0.4) (0.1,0.2, 0.4) (0.2,0.2, 0.4) (0.2,0.9, 0.1) 

𝑦5 (0.2,0.3, 0.1) (0.7,0.3, 0.4) (0.9,0.3, 0.3) (0.8,0.5, 0.2) 

 

Sahin and Kucuk [39] and I.Arockiarani [45] proposed entropy measures for neutrosophic soft 

environments satisfying some axiomatic requirements. An entropy measure of a SVNSS should 

satisfy axiomatic requirements given in the following definition of entropy measure. 

Definition 2.6. Let 𝑈 = {𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑚} be a generic universe and 𝐸 = {𝑒1, 𝑒2, 𝑒3, … , 𝑒𝑛} be the set 

of parameters. A function 𝐸𝑀: 𝑁𝑆𝑆(𝑌) → [0, 1] is said to be an entropy measure on 𝑁𝑆𝑆(𝑌) if 𝐸𝑀  

satisfies the following axioms: 

𝑵𝑺𝑬𝑴𝟏.𝐸𝑀(𝐹, 𝐸) = 0 ⟺ ∀𝑒 ∈ 𝐸; (𝐹, 𝐸) is a soft set; 

𝑵𝑺𝑬𝑴𝟐.𝐸𝑀(𝐹, 𝐸) =  𝐸𝑀(𝐹, 𝐸)𝑐; 

𝑵𝑺𝑬𝑴𝟑.𝐸𝑀(𝐹, 𝐸) =  1 iff 𝑇𝐹(𝑒𝑖)(𝑦𝑗) = 𝐼𝐹(𝑒𝑖)(𝑦𝑗) =  𝐹𝐹(𝑒𝑖)(𝑦𝑗) ∀ 𝑒 ∈ 𝐸, 𝑦 ∈ 𝑌; 

NSEM4. If (𝐺, 𝐸) ⊆  (𝐹, 𝐸)then 𝐸𝑀(𝐹, 𝐸) ≤  𝐸𝑀(𝐺, 𝐸). 

Definition 2.7 ([35])Let 𝑈 = {𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑚} be a generic universe and 𝐸 = {𝑒1, 𝑒2, 𝑒3, … , 𝑒𝑛} be the 

set of parameters. Let (𝐹, 𝐸), and (𝐺, 𝐸) be two neutrosophic soft sets over 𝑈 , where 𝐹, 𝐺  are 

mappings given by  𝐹, 𝐺: 𝐸 → 𝑁𝑆(𝑈) . Then 𝑆𝑀((𝐹, 𝐸), (𝐺, 𝐸))  is said to be a similarity measure 

between (𝐹, 𝐸) and (𝐺, 𝐸) if it satisfies the following axioms: 
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𝑵𝑺𝑺𝑴𝟏. 0 ≤ 𝑆𝑀((𝐹, 𝐸), (𝐺, 𝐸)) ≤ 1; 

𝑵𝑺𝑺𝑴𝟐. 𝑆𝑀((𝐹, 𝐸), (𝐺, 𝐸)) =  𝑆𝑀((𝐺, 𝐸), (𝐹, 𝐸)); 

𝑵𝑺𝑺𝑴𝟑. 𝑆𝑀((𝐹, 𝐸), (𝐺, 𝐸)) =  1 iff (𝐹, 𝐸) = (𝐺, 𝐸); 

NSSM4.   If (𝐹, 𝐸) ⊆  (𝐺, 𝐸) ⊆ (𝐻, 𝐸) then 𝑆𝑀((𝐹, 𝐸), (𝐻, 𝐸)) ≤ 𝑆𝑀((𝐺, 𝐸), (𝐻, 𝐸)). 

Definition 2.9 ([36]). The performance measure of a similarity method (say M) that satisfies the 

optimality criteria to solve an IFSS-based decision-making problem is defined as  

𝑃𝑀 = 𝑆𝑀𝑟𝑡 + 
1

∑ ∑ (1−𝑆𝑀𝑖𝑗)𝑗=𝑖+1
𝑛−1
𝑖=1 (𝑟,𝑡)≠(𝑖,𝑗)

 ; 𝑆𝑀𝑟𝑡 > 𝑆𝑀𝑖𝑗, 

where 𝑆𝑀𝑟𝑡 denotes the highest similarity value of an object and 𝑆𝑀𝑖𝑗 is the similarity value of the 

remaining object.  

Performance measure represents the sum of the highest similarity value of an object and an inverse 

of the summation of the non-similarity values of the remaining objects. 

3. The proposed Information Measure for SVNSSs 

In this section, we suggest a similarity measure, and an entropy measure in a single-valued 

neutrosophic soft environment. 

3.1 Similarity Measure 

Consider 𝑈 = {𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑚} be the universe of discourse and 𝐸 = {𝑒1, 𝑒2, 𝑒3, … , 𝑒𝑛}  be the set of 

parameters. Then similarity measure between two single-valued neutrosophic soft sets (𝐹, 𝐸), and 

(𝐺, 𝐸) is defined as 

𝑆𝑀𝑆𝑉𝑁𝑆𝑆𝑠(𝐹, 𝐺) =
1

𝑚
∑ (1 − 

1

4𝑛
∑ [|𝑆𝐹(𝑒𝑖)(𝑦𝑗) − 𝑆𝐺(𝑒𝑖)(𝑦𝑗)| + |𝑇𝐹(𝑒𝑖)(𝑦𝑗) − 𝑇𝐺(𝑒𝑖)(𝑦𝑗)| +
𝑚
𝑗=1

𝑛
𝑖=1

                                     |𝐼𝐹(𝑒𝑖)(𝑦𝑗) − 𝐼𝐺(𝑒𝑖)(𝑦𝑗)| + |𝐹𝐹(𝑒𝑖)(𝑦𝑗) − 𝐹𝐺(𝑒𝑖)(𝑦𝑗)|])                                        (1)  

Where, 𝑆𝐹(𝑒𝑖)(𝑦𝑗) =  (𝑇𝐹(𝑒𝑖)(𝑦𝑗) − 𝐼𝐹(𝑒𝑖)(𝑦𝑗) − 𝐹𝐹(𝑒𝑖)(𝑦𝑗)), and 

 𝑆𝐺(𝑒𝑖)(𝑦𝑗) =  (𝑇𝐺(𝑒𝑖)(𝑦𝑗) − 𝐼𝐺(𝑒𝑖)(𝑦𝑗) − 𝐹𝐺(𝑒𝑖)(𝑦𝑗)). 

Theorem 3.1. 𝑆𝑀𝑆𝑉𝑁𝑆𝑆𝑠(𝐹, 𝐺) is a valid similarity measure between SVNSSs (𝐹, 𝐸) and (𝐺, 𝐸). 

Proof. To check the validity of 𝑆𝑀𝑆𝑉𝑁𝑆𝑆𝑠(𝐹, 𝐺),  we verify the axiomatic requirements given in 

definition 2.7. 

NSSM1. Since 𝑆𝐹(𝑒𝑖)(𝑦𝑗)  ∈ [−1, 1]  and 𝑆𝐺(𝑒𝑖)(𝑦𝑗)  ∈ [−1, 1] . Then |𝑆𝐹(𝑒𝑖)(𝑦𝑗) − 𝑆𝐺(𝑒𝑖)(𝑦𝑗)|  ≤ 1. 

Also, |𝑇𝐹(𝑒𝑖)(𝑦𝑗) − 𝑇𝐺(𝑒𝑖)(𝑦𝑗)| ≤ 1, |𝐼𝐹(𝑒𝑖)(𝑦𝑗) − 𝐼𝐺(𝑒𝑖)(𝑦𝑗)| ≤ 1, |𝐹𝐹(𝑒𝑖)(𝑦𝑗) − 𝐹𝐺(𝑒𝑖)(𝑦𝑗)| ≤ 1,  which 

implies 𝑆𝑀𝑆𝑉𝑁𝑆𝑆𝑠(𝐹, 𝐺)  ∈ [0, 1]. 

NSSM2. 𝑆𝑀𝑆𝑉𝑁𝑆𝑆𝑠(𝐹, 𝐺) =
1

𝑚
∑ (1 − 

1

4𝑛
∑ [|𝑆𝐹(𝑒𝑖)(𝑦𝑗) − 𝑆𝐺(𝑒𝑖)(𝑦𝑗)| + |𝑇𝐹(𝑒𝑖)(𝑦𝑗) − 𝑇𝐺(𝑒𝑖)(𝑦𝑗)| +
𝑚
𝑗=1

𝑛
𝑖=1

 |𝐼𝐹(𝑒𝑖)(𝑦𝑗) − 𝐼𝐺(𝑒𝑖)(𝑦𝑗)| + |𝐹𝐹(𝑒𝑖)(𝑦𝑗) − 𝐹𝐺(𝑒𝑖)(𝑦𝑗)|]) =
1

𝑚
∑ (1 − 

1

4𝑛
∑ ([|𝑆𝐺(𝑒𝑖)(𝑦𝑗) − 𝑆𝐹(𝑒𝑖)(𝑦𝑗)| +
𝑚
𝑗=1

𝑛
𝑖=1

 |𝑇𝐺(𝑒𝑖)(𝑦𝑗) − 𝑇𝐹(𝑒𝑖)(𝑦𝑗)| + |𝐼𝐺(𝑒𝑖)(𝑦𝑗) − 𝐼𝐹(𝑒𝑖)(𝑦𝑗)| + |𝐹𝐺(𝑒𝑖)(𝑦𝑗) − 𝐹𝐹(𝑒𝑖)(𝑦𝑗)|])) = 𝑆𝑀𝑆𝑉𝑁𝑆𝑆𝑠(𝐺, 𝐹). 
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NSSM3. 𝑆𝑀𝑆𝑉𝑁𝑆𝑆𝑠(𝐹, 𝐺) = 1 ⟺
1

𝑚
∑ (1 − 

1

4𝑛
∑ [|𝑆𝐹(𝑒𝑖)(𝑦𝑗) − 𝑆𝐺(𝑒𝑖)(𝑦𝑗)| + |𝑇𝐹(𝑒𝑖)(𝑦𝑗) − 𝑇𝐺(𝑒𝑖)(𝑦𝑗)| +
𝑚
𝑗=1

𝑛
𝑖=1

|𝐼𝐹(𝑒𝑖)(𝑦𝑗) − 𝐼𝐺(𝑒𝑖)(𝑦𝑗)| + |𝐹𝐹(𝑒𝑖)(𝑦𝑗) − 𝐹𝐺(𝑒𝑖)(𝑦𝑗)|]) = 0 ⟺ |𝑆𝐹(𝑒𝑖)(𝑦𝑗) − 𝑆𝐺(𝑒𝑖)(𝑦𝑗)| = 0, |𝑇𝐹(𝑒𝑖)(𝑦𝑗) −

 𝑇𝐺(𝑒𝑖)(𝑦𝑗)| = 0, |𝐼𝐹(𝑒𝑖)(𝑦𝑗) − 𝐼𝐺(𝑒𝑖)(𝑦𝑗)| = 0, |𝐹𝐹(𝑒𝑖)(𝑦𝑗) − 𝐹𝐺(𝑒𝑖)(𝑦𝑗)| = 0 ⟺ 𝑇𝐹(𝑒𝑖)(𝑦𝑗) = 𝑇𝐺(𝑒𝑖)(𝑦𝑗), 𝐼𝐹(𝑒𝑖)(𝑦𝑗) =

𝐼𝐺(𝑒𝑖)(𝑦𝑗), 𝐹𝐹(𝑒𝑖)(𝑦𝑗) = 𝐹𝐺(𝑒𝑖)(𝑦𝑗)  ⟺ (𝐹, 𝐸) =  (𝐺, 𝐸). 

NSSM4. Consider (𝐹, 𝐸)  ⊆  (𝐺, 𝐸)  ⊆  (𝐻, 𝐸). Then  

𝑇𝐹(𝑒𝑖)(𝑦𝑗)  ≤  𝑇𝐺(𝑒𝑖)(𝑦𝑗) ≤  𝑇𝐻(𝑒𝑖)(𝑦𝑗), 

𝐼𝐹(𝑒𝑖)(𝑦𝑗)  ≤  𝐼𝐺(𝑒𝑖)(𝑦𝑗) ≤  𝐼𝐻(𝑒𝑖)(𝑦𝑗), and  

𝐹𝐹(𝑒𝑖)(𝑦𝑗)  ≥  𝐹𝐺(𝑒𝑖)(𝑦𝑗) ≥ 𝐹𝐻(𝑒𝑖)(𝑦𝑗). 

Therefore, 

|𝑇𝐹(𝑒𝑖)(𝑦𝑗) − 𝑇𝐻(𝑒𝑖)(𝑦𝑗)|  ≥  |𝑇𝐺(𝑒𝑖)(𝑦𝑗) − 𝑇𝐻(𝑒𝑖)(𝑦𝑗)| .                                                                                      (2)     

|𝐼𝐹(𝑒𝑖)(𝑦𝑗) − 𝐼𝐻(𝑒𝑖)(𝑦𝑗)|  ≥  |𝐼𝐺(𝑒𝑖)(𝑦𝑗) − 𝐼𝐻(𝑒𝑖)(𝑦𝑗)|.                                                                                      (3) 

|𝐹𝐹(𝑒𝑖)(𝑦𝑗) − 𝐹𝐻(𝑒𝑖)(𝑦𝑗)|  ≥  |𝐹𝐺(𝑒𝑖)(𝑦𝑗) − 𝐹𝐻(𝑒𝑖)(𝑦𝑗)|.                                                                                       (4)  

 

Therefore, 𝑆𝐹(𝑒𝑖)(𝑦𝑗) − 𝑆𝐻(𝑒𝑖)(𝑦𝑗) =  (𝑇𝐹(𝑒𝑖)(𝑦𝑗) − 𝐼𝐹(𝑒𝑖)(𝑦𝑗) − 𝐹𝐹(𝑒𝑖)(𝑦𝑗)) − (𝑇𝐻(𝑒𝑖)(𝑦𝑗) − 𝐼𝐻(𝑒𝑖)(𝑦𝑗) − 𝐹𝐻(𝑒𝑖)(𝑦𝑗)) 

= (𝑇𝐹(𝑒𝑖)(𝑦𝑗) − 𝑇𝐻(𝑒𝑖)(𝑦𝑗)) + (𝐼𝐻(𝑒𝑖)(𝑦𝑗) − 𝐼𝐹(𝑒𝑖)(𝑦𝑗)) + (𝐹𝐻(𝑒𝑖)(𝑦𝑗) − 𝐹𝐹(𝑒𝑖)(𝑦𝑗)) 

Similarly, 𝑆𝐹(𝑒𝑖)(𝑦𝑗) − 𝑆𝐺(𝑒𝑖)(𝑦𝑗) =  (𝑇𝐹(𝑒𝑖)(𝑦𝑗) − 𝐼𝐹(𝑒𝑖)(𝑦𝑗) − 𝐹𝐹(𝑒𝑖)(𝑦𝑗)) − (𝑇𝐺(𝑒𝑖)(𝑦𝑗) − 𝐼𝐺(𝑒𝑖)(𝑦𝑗) − 𝐹𝐺(𝑒𝑖)(𝑦𝑗)) 

= (𝑇𝐹(𝑒𝑖)(𝑦𝑗) − 𝑇𝐺(𝑒𝑖)(𝑦𝑗)) + (𝐼𝐺(𝑒𝑖)(𝑦𝑗) − 𝐼𝐹(𝑒𝑖)(𝑦𝑗)) + (𝐹𝐺(𝑒𝑖)(𝑦𝑗) − 𝐹𝐹(𝑒𝑖)(𝑦𝑗)) 

This implies,  |𝑆𝐹(𝑒𝑖)(𝑦𝑗) − 𝑆𝐻(𝑒𝑖)(𝑦𝑗)|  ≥  |𝑆𝐹(𝑒𝑖)(𝑦𝑗) − 𝑆𝐺(𝑒𝑖)(𝑦𝑗)|.                                                             (5) 

By combining (2), (3), (4), and (5), we get 

𝑆𝑀𝑆𝑉𝑁𝑆𝑆𝑠(𝐹, 𝐻)  ≤ 𝑆𝑀𝑆𝑉𝑁𝑆𝑆𝑠(𝐺, 𝐻). 

This completes the proof. 

3.2. Entropy Measure 

Suppose 𝑈 = {𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑚} be the universe of discourse and 𝐸 = {𝑒1, 𝑒2, 𝑒3, … , 𝑒𝑛}be the set of 

parameters. Then entropy measure of a single valued neutrosophic soft set  (𝐹, 𝐸) is denoted and 

defined as 

𝐸𝑀𝑆𝑉𝑁𝑆𝑆𝑠(𝐹, 𝐸) =
1

√2 − 1

1

𝑚
∑∑(√2cos(

𝑇𝐹(𝑒𝑖)(𝑦𝑗) − 𝐹𝐹(𝑒𝑖)(𝑦𝑗)

4
)𝜋 − 1)

𝑚

𝑗=1

𝑛

𝑖=1

                                             (6)    

Theorem 3.3. 𝐸𝑀𝑆𝑉𝑁𝑆𝑆𝑠(𝐹, 𝐸) is a valid entropy measure of SVNSSs  (𝐹, 𝐸). 

Proof. To check the validity of 𝐸𝑀𝑆𝑉𝑁𝑆𝑆𝑠(𝐹, 𝐸),  we verify the axiomatic requirements given in 

definition 2.6. 

𝐍𝐒𝐄𝐌𝟏. 𝐸𝑀𝑆𝑉𝑁𝑆𝑆(𝐹, 𝐸) = 0        if and only if  

1

√2 − 1
∑∑(√2cos(

𝑇𝐹(𝑒𝑖)(𝑦𝑗) − 𝐹𝐹(𝑒𝑖)(𝑦𝑗)

4
)𝜋 − 1)

𝑚

𝑗=1

𝑛

𝑖=1

= 0          

 if and only if    ∑ ∑ (√2 cos (
𝑇𝐹(𝑒𝑖)

(𝑦𝑗)− 𝐹𝐹(𝑒𝑖)
(𝑦𝑗)

4
)𝜋 − 1)𝑚

𝑗=1
𝑛
𝑖=1 = 0. 

If and only if  𝑇𝐹(𝑒𝑖)(𝑦𝑗) = 0 𝑜𝑟𝐹𝐹(𝑒𝑖)(𝑦𝑗) = 1 or 𝐹𝐹(𝑒𝑖)(𝑦𝑗) = 0 𝑜𝑟 𝑇𝐹(𝑒𝑖)(𝑦𝑗) = 1, ∀ 𝑒𝑖 ∈ 𝐸, 𝑦 ∈ 𝑈. 

NSEM2. 𝐸𝑀𝑆𝑉𝑁𝑆𝑆(𝐹, 𝐸) = 1    
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If and only if  
1

√2 − 1
∑∑(√2cos(

𝑇𝐹(𝑒𝑖)(𝑦𝑗) − 𝐹𝐹(𝑒𝑖)(𝑦𝑗)

4
)𝜋 − 1)

𝑚

𝑗=1

𝑛

𝑖=1

  =  1. 

If and only if  ∑ ∑ (√2 cos (
𝑇𝐹(𝑒𝑖)

(𝑦𝑗)− 𝐹𝐹(𝑒𝑖)
(𝑦𝑗)

4
)𝜋 − 1)𝑚

𝑗=1
𝑛
𝑖=1 = √2 − 1 . 

If and only if  𝐶𝑜𝑠 (
𝑇𝐹(𝑒𝑖)

(𝑦𝑗)− 𝐹𝐹(𝑒𝑖)
(𝑦𝑗)

4
)𝜋 = 1.  

If and only if 𝑇𝐹(𝑒𝑖)(𝑦𝑗) =  𝐹𝐹(𝑒𝑖)(𝑦𝑗). 

𝐍𝐒𝐄𝐌𝟑.  𝐸𝑀𝑆𝑉𝑁𝑆𝑆(𝐹, 𝐸) =  
1

√2−1
∑ ∑ (√2 cos (

𝑇𝐹(𝑒𝑖)
(𝑦𝑗)− 𝐹𝐹(𝑒𝑖)

(𝑦𝑗)

4
)𝜋 − 1)𝑚

𝑗=1
𝑛
𝑖=1     

=
1

√2−1
∑ ∑ (√2 cos (

𝐹𝐹𝑐(𝑒𝑖)
(𝑦𝑗)− 𝑇𝐹𝑐(𝑒𝑖)

(𝑦𝑗)

4
)𝜋 − 1) = 𝐸𝑀𝑆𝑉𝑁𝑆𝑆(𝐹, 𝐸)

𝑐𝑚
𝑗=1

𝑛
𝑖=1 . 

 

NSEM4. ∀ 𝑒𝑖 ∈ 𝐸, 𝑦 ∈ 𝑈 ,  when (𝐺, 𝐸) ⊆ (𝐹, 𝐸)  then 𝑇𝐹(𝑒𝑖)(𝑦𝑗) ≤ 𝑇𝐺(𝑒𝑖)(𝑦𝑗); 𝐼𝐹(𝑒𝑖)(𝑦𝑗) ≤

𝐼𝐺(𝑒𝑖)(𝑦𝑗); 𝐹𝐹(𝑒𝑖)(𝑦𝑗) ≥ 𝐹𝐺(𝑒𝑖)(𝑦𝑗)  which implies 𝑇𝐹(𝑒𝑖)(𝑦𝑗) − 𝐹𝐹(𝑒𝑖)(𝑦𝑗) ≤ 𝑇𝐺(𝑒𝑖)(𝑦𝑗) − 𝐹𝐺(𝑒𝑖)(𝑦𝑗)  or 

1

√2−1
∑ ∑ (√2 cos (

𝑇𝐹(𝑒𝑖)
(𝑦𝑗)− 𝐹𝐹(𝑒𝑖)

(𝑦𝑗)

4
)𝜋 − 1)𝑚

𝑗=1
𝑛
𝑖=1 ≤

1

√2−1
∑ ∑ (√2 cos(

𝑇𝐺(𝑒𝑖)
(𝑦𝑗)− 𝐹𝐺(𝑒𝑖)

(𝑦𝑗)

4
)𝜋 − 1)𝑚

𝑗=1
𝑛
𝑖=1  

and hence we get, 𝐸𝑀𝑆𝑉𝑁𝑆𝑆(𝐹, 𝐸) ⊆ 𝐸𝑀𝑆𝑉𝑁𝑆𝑆(𝐺, 𝐸). 

 

In the next section, we present some applications of our suggested measures i.e., similarity, and 

entropy measure. 

4. Applications 

In this section, we apply the suggested similarity measure to a decision-making problem. 

4.1. Application to Suitable Location of Industrial Unit 

In this subsection, we introduce a method for solving a decision-making problem based on the 

proposed similarity measure. The concept of an ideal point has been utilized to identify the most 

suitable alternative in decision-making processes. Although an ideal alternative may not exist in real-

world scenarios, it provides a valuable theoretical framework for evaluating alternatives. We define 

the ideal alternative 𝑦∗as the SVNS 𝑦∗
𝑗
= (𝑇∗, 𝐼∗, 𝐹∗) = (1, 0, 0) ∀ 𝑗. To utilize our proposed measure 

for the selection of a suitable location of an industrial unit, following algorithm is suggested. 

Algorithm 1. 

Step 1. Identify the alternatives and parameters, and obtain the single-valued neutrosophic soft set 

(𝐹, 𝐸) as shown in the Table 1. 

Table 1. Tabular representation of (𝐹, 𝐸) 

Alternative/Parameter 𝒆𝟏 𝒆𝟐 … 𝒆𝒏 

 

𝒚𝟏 𝐹(𝑒1)(𝑦1) 𝐹(𝑒2)(𝑦1) … 𝐹(𝑒𝑛)(𝑦1) 

𝒚𝟏 𝐹(𝑒1)(𝑦2) 𝐹(𝑒2)(𝑦2) … 𝐹(𝑒𝑛)(𝑦2) 

 . 

 . 

 . 

  ….  
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𝒚𝒎 𝐹(𝑒1)(𝑦𝑚) 𝐹(𝑒2)(𝑦𝑚) … 𝐹(𝑒𝑛)(𝑦𝑚) 

Where 𝐹(𝑒𝑖)(𝑦𝑗) =  (𝑇𝐹(𝑒𝑖)(𝑦𝑖), 𝐼𝐹(𝑒𝑖)(𝑦𝑗), 𝐹𝐹(𝑒𝑖)(𝑦𝑗)). 

Step 2. Normalize the SVN soft set (𝐹, 𝐸) into (𝐹′, 𝐸) using the following framework. 

{
(𝑇𝐹(𝑒𝑖)(𝑦𝑗), 𝐼𝐹(𝑒𝑖)(𝑦𝑗), 𝐹𝐹(𝑒𝑖)(𝑦𝑗)) ,  𝑒𝑖 ∈ 𝐵

(𝐹𝐹(𝑒𝑖)(𝑦𝑗), 1 − 𝐼𝐹(𝑒𝑖)(𝑦𝑗), 𝑇𝐹(𝑒𝑖)(𝑦𝑗)) , 𝑒𝑖 ∈ 𝐶
} 

Where 𝐵 is the benefit parameter set and 𝐶 is the cost parameter set. 

Step 3. Compute the similarity measure  𝑆𝑀(𝑦𝑗 , 𝑦
∗), 𝑗 = 1, 2, 3, …𝑚 by using Eq. (1). 

Step 4. Evaluate the performance measure corresponding to the similarity value of the alternatives. 

Step 5. Choose or select the suitable measure that offers a higher accuracy rate/performance measure. 

Next, we consider the following numerical example to illustrate the procedure.  

Example 4.1 Industrial site selection is a complex decision-making process that involves evaluating 

multiple factors, including technical, economic, social, environmental, and political considerations, 

highlighting the need for a robust tool and knowledge base to support data collection, analysis, and 

site management. Let us suppose a company X wants to select a suitable location for setting up an 

industry. Assume that there are four locations: location A, location B, location C, and location D. The 

company selects six parameters to evaluate the four locations. Let 𝑈 = {𝑦1 = 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐴, 𝑦2 =

 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐵, 𝑦3 =  𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐶, 𝑦4 =  𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐷} be the set of locations and 𝐸 = {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6} 

is a set of parameter, where 𝑒1 = raw material, 𝑒2 = power,  𝑒3 = labour, 𝑒4 = Transport, 𝑒5 = 

vulnerability to nature, 𝑒6 = investment climate. The decision data given by the expert is shown in 

Table 2, decision scenario is visualized in Figure 1. 

Now, we utilize the above algorithm 1 to select the suitable industry under single-valued 

neutrosophic soft information. 

 

 

Figure 1. Decision scenario for location of industrial unit 

 

 

Implementation of Algorithm 1. 
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Step 1. Select the alternatives and parameters, and obtain the single-valued neutrosophic soft set 

(𝐹, 𝐸) as shown in Table 2. 

Table 2. Tabular representation of (𝐹, 𝐸) 

 

Step 2. As all the parameters are benefit parameters, so there is no need to normalize. Therefore, the 

normalized SVNS (𝐹′, 𝐸) is similar to Table 2. 

Step 3.  Compute the similarity measure 𝑆𝑀(𝑦𝑗 , 𝑦
∗), 𝑗 = 1, 2, 3, …𝑚 by using equation (1) and (6), 

shown as follows: 

𝑆𝑀(𝑦1, 𝑦
∗) = 0.8604, 𝑆𝑀(𝑦2, 𝑦

∗) = 0.8479, 𝑆𝑀(𝑦3, 𝑦
∗) = 0.8729, 𝑆𝑀(𝑦4, 𝑦

∗) = 0.8437 

Step 4. Evaluate the performance measure corresponding to the similarity values given above. Firstly, 

we consider some existing measures which is given as below. 

𝑆𝑀1 = 
1

1+𝐿 (𝐹,𝐺 )
 ,  where 

𝐿 (𝐹, 𝐺 ) =  
1

6
∑∑|𝑇𝐹(𝑒𝑖)(𝑦𝑗) − 𝑇𝐺(𝑒𝑖)(𝑦𝑗)| +  |𝐼𝐹(𝑒𝑖)(𝑦𝑗) − 𝐼𝐺(𝑒𝑖)(𝑦𝑗)| + |𝐹𝐹(𝑒𝑖)(𝑦𝑗) − 𝐹𝐺(𝑒𝑖)(𝑦𝑗)|

𝑚

𝑗=1

𝑛

𝑖=1

 

                                                                                                                              

Mukherjee and Sarkar [34] 

𝑆𝑀2 = 
∑ ∑ {(𝑇𝐹(𝑒𝑖)(𝑦𝑗)⋀ 𝑇𝐺(𝑒𝑖)(𝑦𝑗)) + (𝐼𝐹(𝑒𝑖)(𝑦𝑗)⋀ 𝐼𝐺(𝑒𝑖)(𝑦𝑗)) + (𝐹𝐹(𝑒𝑖)(𝑦𝑗)⋀ 𝐹𝐺(𝑒𝑖)(𝑦𝑗))}

𝑚
𝑗=1

𝑛
𝑖=1

∑ ∑ {(𝑇𝐹(𝑒𝑖)(𝑦𝑗)⋁ 𝑇𝐺(𝑒𝑖)(𝑦𝑗)) + (𝐼𝐹(𝑒𝑖)(𝑦𝑗)⋁ 𝐼𝐺(𝑒𝑖)(𝑦𝑗)) + (𝐹𝐹(𝑒𝑖)(𝑦𝑗)⋁𝐹𝐺(𝑒𝑖)(𝑦𝑗))}
𝑚
𝑗=1

𝑛
𝑖=1

 

                                                                                                                                                                                                                                 

Mukherjee and Sarkar [35] 

 

𝑆𝑀3 =  
∑ ∑ {(𝑇𝐹(𝑒𝑖)(𝑦𝑗)𝑇𝐺(𝑒𝑖)(𝑦𝑗)) + (𝐼𝐹(𝑒𝑖)(𝑦𝑗)𝐼𝐺(𝑒𝑖)(𝑦𝑗)) + (𝐹𝐹(𝑒𝑖)(𝑦𝑗)𝐹𝐺(𝑒𝑖)(𝑦𝑗))}

𝑚
𝑗=1

𝑛
𝑖=1

∑ ∑ {(𝑇𝐹(𝑒𝑖)2(𝑦𝑗)⋁ 𝑇𝐺(𝑒𝑖)2(𝑦𝑗)) + (𝐼𝐹(𝑒𝑖)2(𝑦𝑗)⋁ 𝐼𝐺(𝑒𝑖)2(𝑦𝑗)) + (𝐹𝐹(𝑒𝑖)2(𝑦𝑗)⋁𝐹𝐺(𝑒𝑖)2(𝑦𝑗))}
𝑚
𝑗=1

𝑛
𝑖=1

 

                                                                                                                                                                  

Sinha and Majumdar [46] 

 

𝑆𝑀4 = 

∑ ∑ {√(𝑇𝐹𝐺(𝑒𝑖)(𝑦𝑗))
2

+ (𝐼𝐹𝐺(𝑒𝑖)(𝑦𝑗))
2

+ (𝐹𝐹𝐺(𝑒𝑖)(𝑦𝑗))
2

}𝑚
𝑗=1

𝑛
𝑖=1

𝑚𝑎𝑥(|𝛼(𝑒𝑖)|, |𝛽(𝑒𝑖)|)
 

                                                                                                                              

Binu and Paul [33] 

Alternative 

 

𝒆𝟏 𝒆𝟐 𝒆𝟑 𝒆𝟒 𝒆𝟓 𝒆𝟔 

A (0.6, 0.2, 0.3) (0.7, 0.3, 0.4) (0.4, 0.3. 0.6) (0.8, 0.2, 0.3) (0.5, 0.3, 0.2) (0.2, 0.3, 0.5) 

B (0.4, 0.1, 0.2) (0.3, 0.1, 0.2) (0.2, 0.2, 0.4) (0.3, 0.1, 0.4) (0.2, 0.1, 0.3) (0.2, 0.3, 0.5) 

C (0.7, 0.3, 0.4) (0.8, 0.2, 0.5) (0.4, 0.2, 0.5) (0.8, 0.1, 0.2) (0.5, 0.3, 0.2) (0.3, 0.2, 0.5) 

D (0.3, 0.2, 0.3) (0.2, 0.2, 0.3) (0.3, 0.1, 0.3) (0.3, 0.2, 0.3) (0.1 0.2, 0.2) (0.3, 0.2, 0.5) 
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Where  𝑇𝐹𝐺(𝑒𝑖)(𝑦𝑗) =  𝑇𝐹(𝑒𝑖)(𝑦𝑗)𝐼𝐺(𝑒𝑖)(𝑦𝑗) − 𝐼𝐹(𝑒𝑖)(𝑦𝑗)𝑇𝐺(𝑒𝑖)(𝑦𝑗), 

 

𝐼𝐹𝐺(𝑒𝑖)(𝑦𝑗) =  𝑇𝐹(𝑒𝑖)(𝑦𝑗)𝐹𝐺(𝑒𝑖)(𝑦𝑗) − 𝐹𝐹(𝑒𝑖)(𝑦𝑗)𝐼𝐺(𝑒𝑖)(𝑦𝑗), 

𝐹𝐹𝐺(𝑒𝑖)(𝑦𝑗) =  𝐹𝐹(𝑒𝑖)(𝑦𝑗)𝑇𝐺(𝑒𝑖)(𝑦𝑗) − 𝑇𝐹(𝑒𝑖)(𝑦𝑗)𝐹𝐺(𝑒𝑖)(𝑦𝑗), 

 

𝛼(𝑒𝑖) =  √(𝑇𝐹(𝑒𝑖)(𝑦𝑗))
2

+ (𝐼𝐹(𝑒𝑖)(𝑦𝑗))
2

+ (𝐹𝐹(𝑒𝑖)(𝑦𝑗))
2

, and  

𝛽(𝑒𝑖) =  √(𝑇𝐺(𝑒𝑖)(𝑦𝑗))
2

+ (𝐼𝐺(𝑒𝑖)(𝑦𝑗))
2

+ (𝐹𝐺(𝑒𝑖)(𝑦𝑗))
2

. 

 

𝑆𝑀5 = 
1

𝑚𝑛
∑ ∑ 𝑚𝑎𝑥. {|𝑇𝐹(𝑒𝑖)(𝑦𝑗) − 𝑇𝐺(𝑒𝑖)(𝑦𝑗)|, |𝐼𝐹(𝑒𝑖)(𝑦𝑗) − 𝐼𝐺(𝑒𝑖)(𝑦𝑗)|, |𝐹𝐹(𝑒𝑖)(𝑦𝑗) − 𝐹𝐺(𝑒𝑖)(𝑦𝑗)|}

𝑚
𝑗=1

𝑛
𝑖=1 . 

                            Sarkar and Ghosh [47] 

 

The computed values of the existing and proposed measures are shown in Table 3 along with their 

performance measure (given in definition 2.9 and definition 2.10). 

 

Table 3. Similarity measure values along with performance measure 

Measures A B C D PM1 

𝑺𝑴𝟏 0.8453 0.8328 0.8570 0.8283 2.882           

𝑺𝑴𝟐 0.333 0.33 0.3738 0.1659 0.8057 

𝑺𝑴𝟑 0.4444 0.743 0.4878 0.2176 0.9636 

𝑺𝑴𝟒 0.3833 0.562 0.3833 0.3166 0.8917 

𝑺𝑴𝟓 0.0205 0.55 0.0198 0.0307 0.3720 

Proposed 𝑺𝑴 0.8604 0.8479 0.8729 0.8437 3.1050 

 

Step 5. From the performance measure of the proposed measures and existing measures shown in 

Table 3, we conclude that our suggested measures have a high degree of accuracy while comparing 

with the existing measures.  

4.2. Dimensionality Reduction Technique for SVN Soft Matrix in Decision- Making 

In the present subsection, we investigate two dimensionality-reduction techniques i.e., score-based 

dimensionality reduction technique and entropy-based dimensionality-reduction technique. Firstly, 

we present some relevant definition of object-oriented SVN soft matrix, parameter-oriented SVN soft 

matrix, score matrix, and threshold value of SVN soft matrix. In the following, we present some 

essential definitions to understand the techniques of data dimensionality reduction. 

Definition 4.1 ([44]). Let  𝐸 =  {𝑒1, 𝑒2, 𝑒3, … , 𝑒𝑛}  be parametrs and 𝑈 = {𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑚}  be the 

universe of discourse, then for SVN soft set (𝐹, 𝐸),  

𝑂𝑖 = [∑
𝑇𝑖𝑗

|𝐸|
𝑗

,∑
𝐼𝑖𝑗

|𝐸|
𝑗

,∑
𝐹𝑖𝑗

|𝐸|
𝑗

] 

is known as oriented-object grade with respect to parameters.  

Also, 
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𝐸𝑗 = [∑
𝑇𝑖𝑗

|𝑈|
𝑗

,∑
𝐼𝑖𝑗

|𝑈|
𝑗

,∑
𝐹𝑖𝑗

|𝑈|
𝑗

] 

is known as oriented parameter grade with respect to objects. Where |𝑈|  and |𝐸|  denotes the 

cardinality of universal set and parameter set. 

Definition 4.2. The threshold value of the SVN soft matrix using Entropy measure is computed as 

follows.  

𝐸𝑇𝐻 = 
1

√2 − 1
∑∑(√2cos(

𝑇𝐹(𝑒𝑖)(𝑦𝑗) − 𝐹𝐹(𝑒𝑖)(𝑦𝑗)

4
)𝜋 − 1)

𝑚

𝑗=1

𝑛

𝑖=1

 

where 𝑇𝐻 = (𝑇𝑇𝐻, 𝐼𝑇𝐻, 𝐹𝑇𝐻)  =  [∑
𝑇𝑖𝑗

|𝑈×𝑃|𝑖,𝑗 , ∑
𝐼𝑖𝑗

|𝑈×𝑃|𝑖,𝑗 , ∑
𝐹𝑖𝑗

|𝑈×𝑃|𝑖,𝑗 ]. 

 

Definition 4.3.([48]) The threshold value of the SVN soft matrix from the matrix itself is computed as 

follows. 

𝑆𝑀̅̅ ̅̅ 𝑇𝐻 = [𝑠𝑖𝑗] = [𝑇𝑖𝑗 − 𝐼𝑖𝑗𝐹𝑖𝑗]            ∀ 𝑖, 𝑗 

where 𝑇𝐻 = (𝑇𝑇𝐻, 𝐼𝑇𝐻, 𝐹𝑇𝐻)  =  [∑
𝑇𝑖𝑗

|𝑈×𝑃|𝑖,𝑗 , ∑
𝐼𝑖𝑗

|𝑈×𝑃|𝑖,𝑗 , ∑
𝐹𝑖𝑗

|𝑈×𝑃|𝑖,𝑗 ]. 

The two algorithms of dimensionality reduction are as follows. 

Algorithm 2. (Score-based dimensionality reduction technique) 

Step 1. We construct the SVN neutrosophic soft matrix.  

Step 2. Using definition 4.1, compute the object-oriented matrix for the object 𝑂𝑖 and the parameter-

oriented matrix 𝐸𝑗 for the parameters. 

Step 3.  Next, compute their score matrix using definition 4.3.  

Step 4. Find the threshold element and threshold value of the neutrosophic soft matrix as presented 

in definition 4.3.  

Step 5. Remove those objects and parameters for which 𝑆𝑀̅̅ ̅̅ (𝑂𝑖) < 𝑆𝑀̅̅ ̅̅ (𝑇𝐻) and 𝑆𝑀̅̅ ̅̅ (𝐸𝑗) > 𝑆𝑀̅̅ ̅̅ (𝑇𝐻), 

respectively. 

Step 6. The new neutrosophic soft matrix is the desired dimensionality-reduced matrix. 

 

Algorithm 3. (Entropy-based dimensionality reduction technique) 

Step 1. Construct the SVN soft matrix. 

Step 2.  Compute the object-oriented and parameter-oriented SVN soft matrix by using definition 

4.1. 

Step 3. Evaluate the entropy measure of the object-oriented and parameter-oriented SVN soft matrix 

by using definition 4.2 

Step 4. Evaluate the threshold element 𝑇𝐻of the SVN soft matrix and compute its entropy measure 

given in definition 4.2. 

Step 5. Remove those objects for which  𝐸𝑀(𝑂𝑖) > 𝐸𝑀(𝑇𝐻)  and those parameters for which 

𝐸𝑀(𝐸𝑗) < 𝐸𝑀(𝑇𝐻). 

Step 6. The remaining SVN soft matrix is the desired dimensionality-reduced matrix and the object 

corresponding to the lowest entropy value is the best one. 

Fig. 2 presents the flowchart of the proposed dimensionality reduction technique. 
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Now, we consider an illustrative example to present the applicability of the proposed measure in the 

light of algorithm 2 and algorithm 3. 

Example 4.2. Let Mr. 𝑌  wants to select the most suitable house from five number of houses 

concerning five parameters. Our problem is to select the most suitable house i.e., the object which 

dominates each of the house of the spectrum of the parameters. To solve this decision-making 

problem, we consider a numerical example, which is adapted from the reference [23] and [25].  

Suppose there are five houses 𝐻 = {ℎ1, ℎ2, ℎ3, ℎ4, ℎ5} and 𝐸 ={𝑒1 = beautiful, 𝑒2= cheap, 𝑒3 = in 

good repairing, 𝑒4 = moderate, 𝑒5= wooden} be the set of parameters.  

Firstly, we solve this problem with the help of existing score-based data reduction, to check the 

consistency. 

Implementation of Algorithm 2 

Step 1. Consider the SVN soft matrix (𝑆𝑉𝑁𝑆𝑀). 

𝑒1                       𝑒2                      𝑒3                        𝑒4                      𝑒5 

ℎ1
ℎ2
ℎ3
ℎ4
ℎ5(

 
 

(0.6, 0.3, 0.8) (0.5, 0.2, 0.6) (0.7, 0.3, 0.4) (0.8, 0.5, 0.6) (0.6, 0.7, 0.2)

(0.7, 0.2, 0.6) (0.6, 0.3, 0.7) (0.7, 0.5, 0.6) (0.6, 0.8, 0.3) (0.8, 0.1, 0.8)
(0.8, 0.3, 0.4) (0.8, 0.5, 0.1) (0.3, 0.5, 0.6) (0.7, 0.2, 0.1) (0.7, 0.2, 0.6)
(0.7, 0.5, 0.6) (0.6, 0.8, 0.7) (0.7, 0.6, 0.8) (0.8, 0.3, 0.6) (0.8, 0.3, 0.8)
(0.8, 0.6, 0.7) (0.5, 0.6, 0.8) (0.8, 0.7, 0.6) (0.7, 0.8, 0.3) (0.7, 0.2, 0.6))

 
 

 

 

Step 2.  Construct the object-oriented 𝑂𝑖and the parameter-oriented SVN soft matrix  𝐸𝑗 ; 𝑖, 𝑗 =

1, 2, 3, 4, 5. 

𝑒1                            𝑒2                           𝑒3                    𝑒4                      𝑒5                       𝑂𝑖 

ℎ1
ℎ2
ℎ3
ℎ4
ℎ5
𝐸𝑗 (

 
 
 
 

(0.6, 0.3, 0.8) (0.5, 0.2, 0.6) (0.7, 0.3, 0.4) (0.8, 0.5, 0.6) (0.6, 0.7, 0.2) (0.64, 0.4, 0.56)

(0.7, 0.2, 0.6) (0.6, 0.3, 0.7) (0.7, 0.5, 0.6) (0.6, 0.8, 0.3) (0.8, 0.1, 0.8) (0.68, 0.38, 0.6)
(0.8, 0.3, 0.4) (0.8, 0.5, 0.1) (0.3, 0.5, 0.6) (0.7, 0.2, 0.1) (0.7, 0.2, 0.6) (0.66, 0.34, 0.36)
(0.7, 0.5, 0.6) (0.6, 0.8, 0.7) (0.7, 0.6, 0.8) (0.8, 0.3, 0.6) (0.8, 0.3, 0.8) (0.72, 0.5, 0.7)
(0.8, 0.6, 0.7) (0.5, 0.6, 0.8) (0.8, 0.7, 0.6) (0.7, 0.8, 0.3) (0.7, 0.2, 0.6) (0.7, 0.58, 0.6)

(0.72, 0.38, 0.62) (0.6, 0.48, 0.58) (0.64, 0.52, 0.6) (0.72, 0.52, 0.38) (0.72, 0.3, 0.6) )

 
 
 
 

 

 

Now, evaluate the score matrix of parameter and object-oriented SVN soft matrix 𝑆𝑀̅̅ ̅̅ (𝐸𝑗) and 

𝑆𝑀̅̅ ̅̅ (𝑂𝑖), as given in Guleria and Bajaj [48]. 

                    𝑒1                     𝑒2                   𝑒3                   𝑒4                     𝑒5                𝑂𝑖                 𝑆𝑀(𝑂𝑖)    

ℎ1
ℎ2
ℎ3
ℎ4
ℎ5
𝐸𝑗

𝑆𝑀(𝐸𝑗)(

 
 
 
 
 

(0.6, 0.3, 0.8) (0.5, 0.2, 0.6) (0.7, 0.3, 0.4) (0.8, 0.5, 0.6) (0.6, 0.7, 0.2) (0.64, 0.4, 0.56) (0.416)

(0.7, 0.2, 0.6) (0.6, 0.3, 0.7) (0.7, 0.5, 0.6) (0.6, 0.8, 0.3) (0.8, 0.1, 0.8) (0.68, 0.38, 0.6) (0.452)

(0.8, 0.3, 0.4) (0.8, 0.5, 0.1) (0.3, 0.5, 0.6) (0.7, 0.2, 0.1) (0.7, 0.2, 0.6) (0.66, 0.34, 0.36) (0.5376)
(0.7, 0.5, 0.6) (0.6, 0.8, 0.7) (0.7, 0.6, 0.8) (0.8, 0.3, 0.6) (0.8, 0.3, 0.8) (0.72, 0.5, 0.7) (0.37)

(0.8, 0.6, 0.7) (0.5, 0.6, 0.8) (0.8, 0.7, 0.6) (0.7, 0.8, 0.3) (0.7, 0.2, 0.6) (0.7, 0.58, 0.6) (0.352)

(0.72, 0.38, 0.62) (0.6, 0.48, 0.58) (0.64, 0.52, 0.6) (0.72, 0.52, 0.38) (0.72, 0.3, 0.6)

0.4844 0.3216 0.328 0.5244 0.54 )

 
 
 
 
 

 

 

Step 3. Compute the threshold element of the SVN soft matrix and determine its threshold value by 

using the score matrix. We have 

𝑇𝐻 = (0.68, 0.432, 0.556)  and       𝑆𝑀̅̅ ̅̅ (𝑇𝐻) = 0.4398       

Step 4. Using the values obtained in step 3, we remove those alternatives for which condition 

𝑆𝑀̅̅ ̅̅ (𝑂𝑗) < 𝑆𝑀̅̅ ̅̅ (𝑇𝐻) and those parameters for which condition 𝑆𝑀̅̅ ̅̅ (𝐸𝑗) > 𝑆𝑀̅̅ ̅̅ (𝑇𝐻) holds. Thus, the 

desired matrix is given as: 
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                    𝑒2                                     𝑒3                      𝑂𝑖                       𝑆𝑀(𝑂𝑖)    

ℎ2
ℎ3
𝐸𝑗

𝑆𝑀(𝐸𝑗)

(

(0.6, 0.3, 0.7) (0.7, 0.5, 0.6) (0.68, 0.38, 0.6) (0.452)
(0.8, 0.5, 0.1) (0.3, 0.5, 0.6) (0.66, 0.34, 0.36) (𝟎. 𝟓𝟑𝟕𝟔)

(0.6, 0.48, 0.58) (0.64, 0.52, 0.6)

0.3216 0.328

) 

From the above matrix, it can be seen that the data size has been reduced by approximately 50%. It 

can be concluded that the same decision partition stated in [23] and [25], that Mr. Y selected the house 

ℎ3. 

 

Figure 2. Flowchart of algorithm 3 for dimensionality reduction technique for SVN soft environment 

 

 

 

 

Implementation of Algorithm 2 (Entropy-based data reduction technique) 

 

Step 1. Consider the SVN soft matrix (𝑆𝑉𝑁𝑆𝑀). 
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𝑒1                  𝑒2                       𝑒3                                    𝑒4           𝑒5 

ℎ1
ℎ2
ℎ3
ℎ4
ℎ5(

 
 

(0.6, 0.3, 0.8) (0.5, 0.2, 0.6) (0.7, 0.3, 0.4) (0.8, 0.5, 0.6) (0.6, 0.7, 0.2)

(0.7, 0.2, 0.6) (0.6, 0.3, 0.7) (0.7, 0.5, 0.6) (0.6, 0.8, 0.3) (0.8, 0.1, 0.8)
(0.8, 0.3, 0.4) (0.8, 0.5, 0.1) (0.3, 0.5, 0.6) (0.7, 0.2, 0.1) (0.7, 0.2, 0.6)
(0.7, 0.5, 0.6) (0.6, 0.8, 0.7) (0.7, 0.6, 0.8) (0.8, 0.3, 0.6) (0.8, 0.3, 0.8)
(0.8, 0.6, 0.7) (0.5, 0.6, 0.8) (0.8, 0.7, 0.6) (0.7, 0.8, 0.3) (0.7, 0.2, 0.6))

 
 

 

 

 

Step 2.  Construct the object-oriented 𝑂𝑖and the parameter-oriented SVN soft matrix  𝐸𝑗 ; 𝑖, 𝑗 =

1, 2, 3, 4, 5. 

 

𝑒1                         𝑒2                            𝑒3                               𝑒4                                 𝑒5                   𝑂𝑖 

ℎ1
ℎ2
ℎ3
ℎ4
ℎ5
𝐸𝑗 (

 
 
 
 

(0.6, 0.3, 0.8) (0.5, 0.2, 0.6) (0.7, 0.3, 0.4) (0.8, 0.5, 0.6) (0.6, 0.7, 0.2) (0.64, 0.4, 0.56)

(0.7, 0.2, 0.6) (0.6, 0.3, 0.7) (0.7, 0.5, 0.6) (0.6, 0.8, 0.3) (0.8, 0.1, 0.8) (0.68, 0.38, 0.6)
(0.8, 0.3, 0.4) (0.8, 0.5, 0.1) (0.3, 0.5, 0.6) (0.7, 0.2, 0.1) (0.7, 0.2, 0.6) (0.66, 0.34, 0.36)
(0.7, 0.5, 0.6) (0.6, 0.8, 0.7) (0.7, 0.6, 0.8) (0.8, 0.3, 0.6) (0.8, 0.3, 0.8) (0.72, 0.5, 0.7)
(0.8, 0.6, 0.7) (0.5, 0.6, 0.8) (0.8, 0.7, 0.6) (0.7, 0.8, 0.3) (0.7, 0.2, 0.6) (0.7, 0.58, 0.6)

(0.72, 0.38, 0.62) (0.6, 0.48, 0.58) (0.64, 0.52, 0.6) (0.72, 0.52, 0.38) (0.72, 0.3, 0.6) )

 
 
 
 

 

 

Now, evaluate the entropy measure of parameter and object-oriented SVN soft matrix 𝐸𝑀(𝐸𝑗)and 

𝐸𝑀(𝑂𝑖) by using Definition 4.2 which is given below. 

 

                 𝑒1                             𝑒2                         𝑒3                                𝑒4                     𝑒5                      𝑂𝑖                       𝐸𝑀(𝑂𝑖) 

ℎ1
ℎ2
ℎ3
ℎ4
ℎ5
𝐸𝑗

𝐸𝑀(𝐸𝑗)(

 
 
 
 
 

(0.6, 0.3, 0.8) (0.5, 0.2, 0.6) (0.7, 0.3, 0.4) (0.8, 0.5, 0.6) (0.6, 0.7, 0.2) (0.64, 0.4, 0.56) (0.2583)

(0.7, 0.2, 0.6) (0.6, 0.3, 0.7) (0.7, 0.5, 0.6) (0.6, 0.8, 0.3) (0.8, 0.1, 0.8) (0.68, 0.38, 0.6) (0.2583)

(0.8, 0.3, 0.4) (0.8, 0.5, 0.1) (0.3, 0.5, 0.6) (0.7, 0.2, 0.1) (0.7, 0.2, 0.6) (0.66, 0.34, 0.36) (0.1472)
(0.7, 0.5, 0.6) (0.6, 0.8, 0.7) (0.7, 0.6, 0.8) (0.8, 0.3, 0.6) (0.8, 0.3, 0.8) (0.72, 0.5, 0.7) (0.2664)

(0.8, 0.6, 0.7) (0.5, 0.6, 0.8) (0.8, 0.7, 0.6) (0.7, 0.8, 0.3) (0.7, 0.2, 0.6) (0.7, 0.58, 0.6) (0.2535)

(0.72, 0.38, 0.62) (0.6, 0.48, 0.58) (0.64, 0.52, 0.6) (0.72, 0.52, 0.38) (0.72, 0.3, 0.6)

0.2535 0.2664 0.2648 0.1134 0.2476 )

 
 
 
 
 

 

 

Step 3. Compute the threshold element of the SVN soft matrix and determine its threshold value 

using Definition 4.2, we have 

 

𝑇𝐻 = (0.68, 0.432, 0.556) and   𝐸𝑀(𝑇𝐻) = 0.2463 

 

Step 4. Next, by using the values obtained in step 3, we remove those alternatives for which condition 

𝐸𝑀(𝑂𝑖) > 𝐸𝑀(𝑇𝐻) and those parameters for which condition 𝐸𝑀(𝐸𝑗) < 𝐸𝑀(𝑇𝐻) holds. Thus, the 

desired matrix is as follows. 

             𝑒1                                                𝑒2                      𝑒3                       𝑒5                            𝑂𝑖                        𝐸𝑀(𝑂𝑖)    

ℎ3
𝐸𝑗

𝐸𝑀(𝐸𝑗)
(
(0.8,0.3, 0.4) (0.8, 0.5, 0.1) (0.3, 0.5, 0.6) (0.7, 0.2, 0.6) (0.66, 0.34, 0.36) (0.0272)

(0.72,0.38, 0.62) (0.6, 0.48, 0.58) (0.64, 0.52, 0.6) (0.72, 0.3, 0.6)

0.2535 0.2664 0.2648 0.2476

) 

 

From the above matrix, it can be seen that the data size has been reduced by approximately 50%. Mr. 

Y selected house ℎ3. So, our proposed measure is consistent with the existing method. 
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5. Comparative Study 

To show the effectiveness of our proposed measure over the existing measures, we consider the 

following illustrative example. 

Example 5.1. [23]. Consider 𝑈 = {𝑦1, 𝑦2} be the universe of discourse where 𝑦1 = severe, 𝑦2  = 

mild.  Here the set of parameters 𝐸 =  {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5} is a set of certain visible symptoms, where 

𝑒1 =headache, 𝑒2 = fatigue,𝑒3 = nausea and vomiting, 𝑒4 = skin changes, 𝑒5 = weakness. In this 

example, our proposed method is applied to determine whether an ill person having some visible 

symptoms is suffering from cancer or not suffering from cancer. To illustrate and compare our 

proposed measures, we consider some existing measures which are given in section 4. The results 

obtained from the evaluation of proposed measures and existing measures are given in Table 4. 

Table 4. Similarity measure between the proposed and existing measures 

Measures          (F, G)        (G, H) PM2 

𝑺𝑴𝟏 0.69 0.31 2.139 

𝑺𝑴𝟐 0.75 0.33 2.242 

𝑺𝑴𝟑 0.335 0.743 2.248 

𝑺𝑴𝟒 0.624 0.562 2.909 

𝑺𝑴𝟓 0.09 0.55 1.64 

Proposed 𝑺𝑴 0.95 0.76 5.116 

 

Now, we consider another example to show the effectiveness of the proposed measure.  

 

Example 5.2. Let (𝐹, 𝐸), (𝐺, 𝐸),  and (𝐻, 𝐸) be three SVNSSs, whose SVN soft matrices are given as 

below. 

(𝐹, 𝐸) = (

(0.6, 0.2, 0.1) (0.4, 0.5, 0.2) (0.8, 0.1, 0.2)
(0.5, 0.3, 0) (0.7, 0.1, 0.2) (0.6, 0.3, 0.2)
(0.8, 0.2, 0.1) (0.6, 0, 0) (0.9, 0, 0.1)

), 

(𝐺, 𝐸) = (

(0.5, 0.3 0.2) (0.7, 0, 0.2) (0.6, 0.3, 0.1)
(0.6, 0.2, 0.1) (0.4, 0, 0.1) (0.5, 0.1, 0.2)
(0.9, 0, 0.1) (0.5, 0.1, 0.2) (0.8, 0, 0.2)

), and  

(𝐻, 𝐸) = (

(0.4, 0.4, 0.2) (0.6, 0.2, 0.1) (0.5, 0.1, 0.2)
(0.3, 0.2, 0.1) (0.7, 0.1, 0.2) (0.5, 0.4, 0.1)
(0.2, 0, 0.2) (0.5, 0, 0.1) (0.1, 0.8, 0)

). 

 

Now, compute the similarity measure 𝑆𝑀((𝐹, 𝐸), (𝐻, 𝐸)), 𝑆𝑀((𝐹, 𝐸), (𝐺, 𝐸)) and 𝑆𝑀((𝐺, 𝐸), (𝐻, 𝐸)) 

which is shown as 

Table 5. Similarity values between SVNSSs due to proposed and existing measures 

Measures (𝑭,𝑯) (𝑮,𝑯) (𝑭, 𝑮) PM3 

𝑺𝑴𝟏 0.6476 0.6476 0.6211 2.0150 

𝑺𝑴𝟐 0.5749 0.6176 0.5489 1.7588 

𝑺𝑴𝟑 0.7295 0.6564 0.8510 2.4793 

𝑺𝑴𝟒 0.5989 0.5710 0.5885 1.788 

𝑺𝑴𝟓 0.2883 0.5824 0.21 1.222 
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Proposed SM 0.9428 0.9335 0.9428 9.0268 

 

Now, we represent the graphical representation of the performance measures given in Table 3, Table 

4, and Table 5 of the existing and proposed measures. From Fig 3., it can be concluded that the 

proposed similarity measure boasts a significantly higher accuracy rate than existing measures. 

 

 

 

Figure 3. Graphical representation of performance measure of proposed measure and existing measure. 

6. Conclusion 

This article introduced some information theoretic measures in the SVNS framework. Our approach 

is grounded in the conviction that entropy, and similarity measures as indispensable tools to 

investigate the uncertain information with soft representation. Based on the score matrix and entropy 

measure, a new technique of dimensionality reduction has been investigated in the SVNS soft 

environment. By using two techniques of data reduction, we observed that data size has been 

substantially reduced to 50% and despite reduction techniques, the data still supports the same 

decision partition suggested in Maji ([23] [25]). Furthermore, the effectiveness of the proposed 

measures has been buttressed by illustrative examples. The evaluation of performance measure 

elucidated the higher accuracy of the proposed measures. The present study deals with applications 

of proposed methods using artificial dataset. In future, the relevant real-data can be explored to 

investigate more interdisciplinary applications. 

Acknowledgements Authors are highly thankful to the anonymous reviewers for the 

constructive suggestions to bring the paper in the present form.   
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