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Abstract: Soft set theory is a valuable mathematical tool for modeling and analyzing uncertain
systems. A neutrosophic soft set is a hybrid entity of a neutrosophic set, and a soft set that enables
a more comprehensive analysis of uncertainty in a system. In this article, we introduce some novel
information theoretic measures in a single-valued neutrosophic soft environment. Additionally, we
study the data-dimensionality reduction using two-pronged approach, leveraging the score matrix
and neutrosophic soft entropy measure. The complexity of decision-making problems involving
numerous factors can be alleviated using the dimensionality reduction technique. Finally, the
comparative analysis is presented with the help of an illustrative example utilizing a measure of
performance. The comparative study highlighted the advantage of the proposed methods.
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1. Introduction

Uncertainty is an inherent part of real-world systems, and several methods are available in the
literature for the representation of uncertain data or information. The most prevalent methods
include probability theory, rough set theory, fuzzy set theory, and intuitionistic fuzzy set theory, and
are utilized for modeling human-centric and expert-based systems. The real-life applications
concerned with decision-making, clustering analysis, pattern recognition, anomaly detection, image
analysis, and many more have been investigated using these methods. However, all these theories
have their own limitations in varied situations. This article aims to put forth a neutrosophic soft
information measure, and its implication. In [1], Molodtsov introduced the concept of a soft set by
integrating the parametrization tool with the classical set. Soft set theory has been widely applied in
a variety of fields such as decision-making [2-8], data analysis [9], forecasting [10], simulation [11],
optimization [12], texture classification [13], etc. Afterward, by combining a Soft set [1] and a fuzzy
set (FS) [14], Maji et al.[8] suggested the concept of Fuzzy soft sets. Similarly, Maji et al. [15]
introduced the concept of intuitionistic fuzzy soft sets (IFSSs) due to the fusion of soft sets and
intuitionistic fuzzy sets (IFS) [16]. Thereafter, various researchers studied diverse mathematical
hybrid structures such as generalized intuitionistic fuzzy soft sets [17], generalized fuzzy soft sets
[18] possibility intuitionistic fuzzy soft sets [19], vague soft sets [20], interval-valued fuzzy soft sets
[21], interval-valued intuitionistic fuzzy soft sets [22], etc. Furthermore, Maji [23] introduced the
notion of the neutrosophic soft set by fusion of a neutrosophic set (NS) [24] and a soft set [1]. Maji

[25] suggested some operations and propositions related to a weighted neutrosophic soft set. Wang
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[26] suggested a subclass of neutrosophic soft sets. Marei [27] developed a rough set approach in
single-valued neutrosophic soft settings. Neutrosophic soft sets (NSSs), due to their ability to deal
with intermediate, inconsistent, and neutrosophic parameters found extensive implications in a
variety of fields.
The essential information theoretic measures like entropy and Knowledge measure quantify the
information content of a fuzzy/non-fuzzy set. Furthermore, similarity and distance measures
evaluate the extent of closeness and discrimination between two fuzzy/non-fuzzy sets. In the
problems related to pattern recognition, the concept of similarity/distance measure is commonly
employed to verify the authenticity of an object/document. In recent years, several studies [28-41]
suggested different information-theoretic measures concerned with fuzzy sets, fuzzy soft sets,
intuitionistic fuzzy sets, intuitionistic fuzzy soft sets, single-valued neutrosophic sets, and single-
valued neutrosophic soft sets. Broumi [29] studied similarity measures for neutrosophic soft sets. Dey
et al. [37] presented a neutrosophic soft similarity measure for selecting the suitable alternative based
on a grey relational analysis involving multiple decision-makers. Karaaslan [38] suggested a decision-
making method and a group decision-making method in the neutrosophic soft environment. Sahin
and Kucuk [39] suggested various distance measures between neutrosophic soft sets and introduced
an axiomatic definition of entropy for a neutrosophic soft set. The proposed research work is aimed
to introduce neutrosophic soft information measures, and their application to decision-making and
data dimensionality reduction.
The dimensionality reduction technique is instrumental in mitigating the curse of dimensionality,
enabling the effective management of high-dimensional data sets and the elimination of irrelevant
features. This approach offers a threefold benefit: Simplifying data, visualizing complex
relationships, and managing multicollinearity. As a result, this method has become a vital area of
study in diverse computational disciplines, especially those characterized by extreme data modality.
In the fuzzy soft set, the dimension reduction technique of big data was utilized to convert soft tables
into fuzzy soft set tables [42]. The concept of Pythagorean fuzzy soft matrix, introduced by Bajaj [43]
has paved the way for the development of a new generation of dimensionality reduction approaches,
tailored to address the complexities of MCDM problems. Picture fuzzy soft matrix was suggested in
Devi et al. [44] to solve decision-making problems and the dimensionality reduction can be dealt with
in a better and broader sense of human opinion. However, there has been rather little work completed
for entropy, and similarity measure in the context of single-valued neutrosophic soft sets and their
applications.
1.1. Contribution
The main contribution of this paper is as follows:
e We propose novel entropy, and similarity measures for the SVNSSs to overcome the
shortcomings of existing measures.
e The newly proposed measures are applied for solving the MCDM problem and for data
reduction technique.
e Finally, a comparative analysis has been done to check the effectiveness of the proposed
measure based on performance measures.
1.2. Importance of neutroshopy in the present work
Neutrosophy provides a more rational extension to traditional fuzzy logic by explicitly modelling

indeterminacy. It enhances data dimensionality reduction by guiding the selection of relevant, low-
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noise features and improves decision-making processes by providing a structured framework to deal
with incomplete, contradictory, and uncertain information. The independent choice of trueness,
falsity, and indeterminacy in a single valued neutrosophic set make the neutrosophic information
measures more robust and indispensable tools in the real-life problems concerned with of
classification, pattern-recognition and decision-support.

The content of this article is organised as follows.

Section 2 presents basic concepts relevant to this study. Section 3 introduces the similarity, and
entropy measure in a single-valued neutrosophic soft environment. Section 4 demonstrates the
application of the proposed measure in MCDM problem as well as in data dimensionality reduction.
In section 5. We contrast the performance of the proposed methods with existing methods. Section 6

concludes the article.
2. Preliminaries

In this section, we present some essential fundamental concepts concerned with this article.

Definition 2.1 ([1]). Let U be a generic universe and P be a set of parameters in U. Consider E S
P. Apair (F,E) issaid to be a soft set over the universe set in which F isa mapping from E to 2Y,
where 2V is a power set of U. In short, a soft set over U is a parameterized family of a subset of
U.

Definition 2.2 ([8]). Suppose U is a generic universe of objects. Consider P be a set of parameters
in U and E € P. Apair (F,E) issaid to be a fuzzy soft set over the universe set U, in which F is

amapping from E to FSY, where FSY isa set of all fuzzy subsets of the universe set U.

Definition 2.3 ([15]). Let U be a generic universe of objects and P be a set of parameters in U.
Consider E € P and let IFSY denote the collection of all intuitionistic fuzzy sets of U. A pair (F,E)
is said to be intuitionistic fuzzy soft set over the universe set U, where F is a mapping F: E —
IFSY.

Definition 2.2 ([24]). Let U be a universe of discourse with generic element y in U. A single-valued
neutrosophic set B in U is characterized by truth-membership degree Ty(y;), indeterminacy
degree Iz(y;) and falsity-membership degree Fp(y;). For each 1y, €Y, Tg(y;), Iz(y:), Fe(y:) €
[0,1] . A single-valued neutrosophic set B can be denoted by a triplet ie, B =

UTp ), s (V), Fsi yi €Y } with Tp(y)) + Iz(v:) + Fs(y:) € [0,3].

Definition 2.4 ([23]). Let U be a universe of objects and P be a set of parameters in U. Consider
EcPand NSV denote the collection of all neutrosophic sets of U. A pair (F,E) is said to be

neutrosophic soft set over the universe set U, where F isamapping F: E - NSY.

Operations on Single-Valued Neutrosophic Soft Sets: Let (F,E), (G,E), and (H,E) be three

single-valued neutrosophic soft sets, then we have the following operations.

. Ipe)(M)+ 1) (¥) . .
Union: (F,E)u(G,E)=(max. (Tp(e)(y).T(,-(e)(y)),w,mm.(TF(9>(y),TG(e)(y))) if ee

ANB.
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. . Ire) )+ Ige)(¥) .
Intersection: (F,E) N (G,E) = (mm. (TF(e) ), Tse (y)) ,M , max. (TF(e)(y), Tee) (y))) if

e€ANB.
Complement: (F,E)° = (Treo)y) = Frieyoy Irc0) = Ir@oy Fre@m) = Trom)-
Subset: If (F,E) S (G, E) then Tr)(y) < Toey0) Irey ) < Iy, Frey(¥) = Fgey(0).

Definition 2.5 ([27]). Let U be the universal set and P be a set of parameters. Consider E € P and,
letSVNSY denote the set of all single-valued neutrosophic sets of U. The collection (F,E) is said to
be a single-valued neutrosophic soft set over the universe set U, where F is a mapping F: E —
SVNSY.

Example 2.1 ([23]). Let U = {y4,¥,, ¥3, V4, ¥s}be a set of five models of car out of which one car is to
be purchased and E = {e; = elegant,e, = trustworthy, e; = sporty,e, = comfortable, e; =

modern}be the set of parameters to select the car. The SVNSS (F,E) in this example can be
presented in the following Table 1.

Table 1. Tabular representation of (F,E) of Example 1.

U e; e, es €4

V. (0.6,0.3,0.4) (0.4,0.3,0.3) (0.1,0.1,0.1) (0.7,0.5,0.6)
¥V, (0.4,0.3,0.4) (0.5,0.6, 0.4) (0,0,0.4) (0.8,0.3,0.3)
Vs (0.6,0.5,0.4) (0.3,0.3,0.4) (0.2,0.3,0.7) (0.3,0.3,0.3)
Vs (0,0.3,0.4) (0.1,0.2,0.4) (0.2,0.2,0.4) (0.2,0.9,0.1)
Vs (0.2,0.3,0.1) (0.7,0.3,0.4) (0.9,0.3,0.3) (0.8,0.5,0.2)

Sahin and Kucuk [39] and I.Arockiarani [45] proposed entropy measures for neutrosophic soft
environments satisfying some axiomatic requirements. An entropy measure of a SVNSS should

satisfy axiomatic requirements given in the following definition of entropy measure.

Definition 2.6. Let U = {y;,¥,,¥3, ..., ¥m} be a generic universe and E = {ej, e, €3, ...,e,} be the set
of parameters. A function EM: NSS(Y) — [0,1] is said to be an entropy measure on NSS(Y) if EM

satisfies the following axioms:

NSEM1.EM(F,E) =0 & Ve €E; (F,E) is a soft set;

NSEM2.EM(F,E) = EM(F,E)S;

NSEM3.EM(F,E) = 1 iff Tpep)(¥;) = Ireep(Vj) = Freep(vj) Ve €E,y €Y;
NSEMA. If (G,E) < (F,E)then EM(F,E) < EM(G, E).

Definition 2.7 ([35])Let U = {y1,¥2,¥3, ..., ¥m} be a generic universe and E = {e, e,, €3, ..., ,,} be the
set of parameters. Let (F,E), and (G,E) be two neutrosophic soft sets over U, where F,G are
mappings given by F,G:E — NS(U). Then SM((F,E),(G,E)) is said to be a similarity measure

between (F,E) and (G,E) if it satisfies the following axioms:
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NSSM1.0 < SM((F,E), (G, E)) < 1;

NSSM2.SM((F,E), (G,E)) = SM((G,E), (F,E));

NSSM3.SM((F,E), (G,E)) = 1 iff (F,E) = (G,E);

NSSM4. If (F,E) € (G,E) € (H,E) then SM((F,E),(H,E)) < SM((G,E), (H,E)).

Definition 2.9 ([36]). The performance measure of a similarity method (say M) that satisfies the

optimality criteria to solve an IFSS-based decision-making problem is defined as

1

PM = SMTt + ; SMTt > SMl

2?=_11(‘r,t)¢(i,j) Yj=i+1(1-SMj) i’
where SM,,. denotes the highest similarity value of an object and SM;; is the similarity value of the

remaining object.

Performance measure represents the sum of the highest similarity value of an object and an inverse

of the summation of the non-similarity values of the remaining objects.

3. The proposed Information Measure for SVNSSs

In this section, we suggest a similarity measure, and an entropy measure in a single-valued
neutrosophic soft environment.

3.1 Similarity Measure

Consider U = {y;,¥5,V3, ..., ¥m} be the universe of discourse and E = {e;, e,, e, ..., e,} be the set of
parameters. Then similarity measure between two single-valued neutrosophic soft sets (F,E), and
(G,E) is defined as

SMsynsss(F, G) Z% iy (1 - iZ}n:ﬂlSF(ei)(yj) - SG(ei)(yi)l + |TF(ei)(yj) - TG(ei)(yi)l +
|lren () = Tocep (V)] + 1Freen () — FG(ei)(yj)l]) (1)
Where, Sp(e(y;) = (TF(ei)(yj) = Irep(y;) — FF(ei)(yj))' and

Soten(¥;) = (Tc(ei)(yj) = Locep (%) —Fc(ei)(y,-)).

Theorem 3.1. SMgyysss(F, G) is a valid similarity measure between SVNSSs (F,E) and (G,E).
Proof. To check the validity of SMgyysss(F,G), we verify the axiomatic requirements given in
definition 2.7.

NSSML. Since Spey(y;) €[~1,1] and Sgey(y;) € [-1,1]. Then [Spey(¥j) — Secep(i)| < 1.

Also,  |Tecep(¥7) = Toep D < 1 Hrep (1) = Toep )l < 1 [Freep() = Facep(y)| <1, which
implies SMsyysss(F,G) € [0,1].

NSSM2.  SMgypsss(F,G) = i =1 (1 - ﬁz;'n:ﬂ'SF(ei)(yj) - SG(ei)(Yj)| + |TF(ei)(yj) - TG(ei)(yj)l +
|leen () = Toep )| + 1Freen () — Fc(ei)(yj)ﬂ) == ?=1(1 = S (USeen () = Seen ()] +

|Teen (V1) = Teeo W)l + Maep () = Treep )| + 1Facen (1) = FF(ei)(J’j)ID) = SMgynsss(G, F).
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NSSMs. SMsynsss(F,6) =1 3y (1 = =3 [ISpeey (37) = Saceo 0|+ [Trcen () = Taceo )| +
|Teen (7)) = oo ()] + 1Frep(v)) — Fa(ei)(J’j)H) =0 & [Sreey(7) = Soeo )| = 0, |Treep () —

Toteo W) = 0. |Trep (7)) = Toceo )] = 0. |Freen (1) = Foeo )| =0 = Treen(v) = Taep (0, Ircen (%)) =
Ioeep(¥)): Freep (V) = Foeen(v;) = (F,E) = (G,E).

NSSMd4. Consider (F,E) € (G,E) € (H,E). Then

Trep (V) < Totep(V)) < Tueep ()

Irep (%)) < loeep(¥1) < Tucep(y;), and

Freep()) 2 Foep(9)) = Facep (v))-

Therefore,
|Teen () = Tuep W) 2 |Toen(¥7) = Tueep )] - 2)
|Teep () = Tncen )| = loen () = Teep )| 3)
|Frep () = Fuaep )| 2 |Facep () = Fucen )| C)

Therefore, Secey(s) = Suceo @) = (Treo () = Ireo () = Freo 1)) = (Tuo () = luteo ) = Faceo (3))
= (TF(eo(yj) - TH(ei)(yj)) + (IH(ei)(J’f) - IF(ei)(yj)) + (FH(el-)(yj) - FF(ei)(yj))
Similarly, Spey(¥) = Saeo@) = (Treo ) = Teeo 31) = Feeen ) = (Taten ) = Tacen ) = Facen )
= (TF(ei)(Yj) - TG(ei)(yj)) + (Ic(ei)(yj) - IF(ei)(yf)) + (Fa(ea(yj) - FF(eo(J’j))

This implies, ~ |Secey () = Suceo (V)| = [Sreep (1) = Socep ()] )
By combining (2), (3), (4), and (5), we get

SMsynsss(F, H) < SMsypsss(G, H).

This completes the proof.

3.2. Entropy Measure
Suppose U = {y1,¥2,¥3, ..., Ym} be the universe of discourse and E = {ej, e,, €3, ..., e, }be the set of
parameters. Then entropy measure of a single valued neutrosophic soft set (F,E) is denoted and

defined as

EMgyysss (F, E) = %Z Z ( V3 cos (Tp(ei) ) ; Frep ()’j)> o 1) ©

i=1 j=1

Theorem 3.3. EMgyysss(F, E) is a valid entropy measure of SVNSSs  (F, E).

Proof. To check the validity of EMgyysss(F,E), we verify the axiomatic requirements given in
definition 2.6.

NSEM1.EMgynss(F,E) =0 if and only if

1_ : z": i (\/z cos (TF(ei)(yj) ; FF(ei)(Yj)) o 1) _o

i=1j=1

Ta(e) )= Fr(en )
1fandonly1f Z 121 1(\/— (F( I,)(y]) F(ey) y])n—1)=0.

4

If and only if TF(ei)(yj) =0 orFF(el.)(yj) =1 or FF(ei)(yj) =0or TF(ei)(y]-) =1,Ve €E,y€eU.
NSEMZ. EMSVNSS(F! E) = 1
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n
1
V2 -1&

4

If and only if

i (‘/Ecos (TF(ei)(y}') - FF(eﬁ(yf)) ™— 1) =1L

4
J

4

Tr(e Vi)~ Frten (¥
Ifand only if Y7, Y7, (\/E COS( LOL ’)(y])) T — 1) =v2-1.

Tr(e) Vi)~ Fr(ep
If and only if Cos( F(el)(y])4 il ‘)(y])> =1
If and only if Trep (yj) = Fp(ei)(y]-).

Tr(e) Vi)~ Fpre )W)
NSEM3. EMsyyss(F, E) = ﬁ oy, (\/ECOS( Fep) Vi)~ Frep Wi )n B 1)

4

= i 2 2 (\/7 cos (FFC(B") (yj);TFc(ei)(y’)>n - 1) = EMgynss(F, E)°.
NSEM4. Ve, €E,yeU , when (G,E) < (F,E) then TF(ei)(yj) < TG(ei)(y].); IF(el-)(Yj) <
Igep (J’j); Freep (yj) 2 Fgeep (yj) which implies T (y]-) — Freep (Yj) < Toep (y]-) — Feep (}’j) or

Tr(e) Vi)~ Fren@)) TN (B NG
ey (ﬁ ( g PP ) 1) S (ﬁ( et Fote) ) )n - 1)

4 4

and hence we get, EMgyyss(F,E) S EMgyyss(G, E).

In the next section, we present some applications of our suggested measures i.e., similarity, and

entropy measure.
4. Applications

In this section, we apply the suggested similarity measure to a decision-making problem.
4.1. Application to Suitable Location of Industrial Unit

In this subsection, we introduce a method for solving a decision-making problem based on the
proposed similarity measure. The concept of an ideal point has been utilized to identify the most
suitable alternative in decision-making processes. Although an ideal alternative may not exist in real-
world scenarios, it provides a valuable theoretical framework for evaluating alternatives. We define
the ideal alternative y*as the SVNS y*j = (T"I",F*) = (1,0,0) Vj. To utilize our proposed measure
for the selection of a suitable location of an industrial unit, following algorithm is suggested.
Algorithm 1.
Step 1. Identify the alternatives and parameters, and obtain the single-valued neutrosophic soft set
(F,E) as shown in the Table 1.

Table 1. Tabular representation of (F,E)

Alternative/Parameter—» e, e, e,

v
Y1 Fey(n1) Fie,y(v1) Feepy 1)
Y1 Fiey(2) Fie,y(v2) Feey(v2)
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Ym F(el) ) F(ez) m) e F(en) )

Where Fe,(y;) = (TF(ei)(J’i)' Trcep (1), FF(ei)(J’j))-
Step 2. Normalize the SVN soft set (F,E) into (F',E) using the following framework.

(TF(ei)(yf)'IF(ei)(yf)'FF(ei)(yf)) € EB
(FF(ei)(yj)' 1- IF(ei)(yj)’TF(ei)(yj)) e €C

Where B is the benefit parameter set and C is the cost parameter set.

Step 3. Compute the similarity measure SM(y]-, y*),j =1,2,3,..m by using Eq. (1).

Step 4. Evaluate the performance measure corresponding to the similarity value of the alternatives.
Step 5. Choose or select the suitable measure that offers a higher accuracy rate/performance measure.
Next, we consider the following numerical example to illustrate the procedure.

Example 4.1 Industrial site selection is a complex decision-making process that involves evaluating
multiple factors, including technical, economic, social, environmental, and political considerations,
highlighting the need for a robust tool and knowledge base to support data collection, analysis, and
site management. Let us suppose a company X wants to select a suitable location for setting up an
industry. Assume that there are four locations: location A, location B, location C, and location D. The
company selects six parameters to evaluate the four locations. Let U = {y; = location 4,y, =
location B, y; = location C,y, = location D} be the set of locations and E = {e;,e,, 3,4, 5,66}
is a set of parameter, where e; = raw material, e, = power, e; = labour, e, = Transport, e5 =
vulnerability to nature, es =investment climate. The decision data given by the expert is shown in
Table 2, decision scenario is visualized in Figure 1.

Now, we utilize the above algorithm 1 to select the suitable industry under single-valued

neutrosophic soft information.

Power

Labour i Raw Material

Locational Factors for
Industries

T

Vulnerability to Nature Transport

Investment Climate

Figure 1. Decision scenario for location of industrial unit

Implementation of Algorithm 1.

Surender Singh and Sonam Sharma, Application of Information Theoretic Measures in Neutrosophic Soft Environment



Neutrosophic Sets and Systems, Vol. 96, 2026 85

Step 1. Select the alternatives and parameters, and obtain the single-valued neutrosophic soft set
(F,E) as shown in Table 2.
Table 2. Tabular representation of (F,E)

Altergative e; e, es ey es ee
A (0.6,02,03) (0.7,03,04) (0.4,03.0.6) (0.8,0203) (0.503,02) (0.2,03, 0.5)
B (04,0.1,02) (0.3,0.1,02) (0.2,02,04) (0.3,0.1,04) (0.20.1,03) (0.2,0.3, 0.5)
C (0.7,0.3,04) (0.8,02,05) (0.4,02,05) (08,0.1,02) (0.503,02) (0.3,0.2 0.5)
D (0.3,0.2,0.3) 0.2,0.2,0.3) (0.3,0.1,0.3) (0.3,0.2,0.3) (0.10.2,0.2) (0.3,0.2,0.5)

Step 2. As all the parameters are benefit parameters, so there is no need to normalize. Therefore, the
normalized SVNS (F',E) is similar to Table 2.

Step 3. Compute the similarity measure SM (y]-,y*), j=1,2,3,..m by using equation (1) and (6),
shown as follows:

SM(y1,y*) = 0.8604, SM(y,,y*) = 0.8479,SM(y5,y*) = 0.8729,SM(y,,y*) = 0.8437

Step 4. Evaluate the performance measure corresponding to the similarity values given above. Firstly,

we consider some existing measures which is given as below.

SM; = where

1+L(F,G)

n m
1
LGEE) = 2 ) D Teeo() = T G|+ Ireo() = loteo )|+ Feep () = Foteo )

i=1 j=1

Mukherjee and Sarkar [34]

2 { (T ONA Tecep 37)) + (o A loeep 37)) + (Frceo 1A Facep (3))}

SMZ =
D)y {(TF(EE) )V Tocep (y,-)) + (IF(ei)(yj)V lg ey (y,-)) + (FF(ei) (yf)VFG(ei)(yf))}
Mukherjee and Sarkar [35]
M. = i=1 275 {(TF(ei) () Tscen (yj)) + (IF(ei) )lscey (yj)) + (FF(ei) (i) Fsten (yj))}
s =
i=1 27121 {(TF(ei)z (y]')v Te(ep? (y]')) + (IF(ei)2 (yi)v laep? (}’j)) + (FF(Ei)2 (y]')VFG(ei)Z (y}))}
Sinha and Majumdar [46]
 om 2 2 2
i=1 2751 {\/(TFG(ei)(yj)) + (IFG(ei)(yf)) + (FFG(Ei)(yj)) }
SM4 =

max(|a(e)l, 18(e)])

Binu and Paul [33]
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Where  Trge) (%) = Treen(Vi)lacen (V) = Treep (V) Tacen (),

Iroep (V) = Trep V1) Focep (V1) = Freeo ) locep (1),
Fratep (1) = Freep(07)Tocep V) = Tecep V1) Facen (7)),

a(e;) = J (TF(ei) (yj))z + (IF(e,-> (yj))z + (FF(ea (yj))zr and
Ble) = \/(TG(ei)(yj))z + (IG(ei)(yf))z + (FG(ei)(yf))z‘

SMs = ﬁ e 2t max{|Treeny () = Taep (V)] Teen (V) = Tacep )| 1Frcep (7)) = Focep ()1}:

Sarkar and Ghosh [47]

The computed values of the existing and proposed measures are shown in Table 3 along with their

performance measure (given in definition 2.9 and definition 2.10).

Table 3. Similarity measure values along with performance measure

Measures A B C D PM1
SM, 0.8453 0.8328 0.8570 0.8283 2.882
SM, 0.333 0.33 0.3738 0.1659 0.8057
SM; 0.4444 0.743 0.4878 0.2176 0.9636
SM, 0.3833 0.562 0.3833 0.3166 0.8917
SMy 0.0205 0.55 0.0198 0.0307 0.3720

Proposed SM  0.8604 0.8479 0.8729 0.8437 3.1050

Step 5. From the performance measure of the proposed measures and existing measures shown in
Table 3, we conclude that our suggested measures have a high degree of accuracy while comparing

with the existing measures.
4.2. Dimensionality Reduction Technique for SVN Soft Matrix in Decision- Making

In the present subsection, we investigate two dimensionality-reduction techniques i.e., score-based
dimensionality reduction technique and entropy-based dimensionality-reduction technique. Firstly,
we present some relevant definition of object-oriented SVN soft matrix, parameter-oriented SVN soft
matrix, score matrix, and threshold value of SVN soft matrix. In the following, we present some
essential definitions to understand the techniques of data dimensionality reduction.

Definition 4.1 ([44]). Let E = {ej, ey €3, ..,€,} be parametrs and U = {y;,¥,,¥3, ..., ¥m} be the

universe of discourse, then for SVN soft set (F,E),

IEI ZIEI IEI

is known as oriented-object grade with respect to parameters.
Also,
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is known as oriented parameter grade with respect to objects. Where |[U| and |E| denotes the
cardinality of universal set and parameter set.
Definition 4.2. The threshold value of the SVN soft matrix using Entropy measure is computed as

follows.

1 O\ Tren (V) = Freen
Epy = ﬁ_lzz<ﬁcos( F( 1)(3’1) ; F( ,)(yj))n_l)

i=1j=1
here TH = (T, Loy, Fr) = |5 —2, 3, —d_ yr. . Fii
where = T itH, U'TH) — i'j|U><P|' i’j|U><P|' i'j|U><P| .

Definition 4.3.([48]) The threshold value of the SVN soft matrix from the matrix itself is computed as

follows.
WTH = [Sij] = [T” - IL]Fl] Vl,]

_ _ Tij Tij Fij
where TH = (Try, Iy, Fry) = [Zi,jluxpl,zi,jluxpl,Zi,j|UXP|]~

The two algorithms of dimensionality reduction are as follows.

Algorithm 2. (Score-based dimensionality reduction technique)

Step 1. We construct the SVN neutrosophic soft matrix.

Step 2. Using definition 4.1, compute the object-oriented matrix for the object 0; and the parameter-
oriented matrix E; for the parameters.

Step 3. Next, compute their score matrix using definition 4.3.

Step 4. Find the threshold element and threshold value of the neutrosophic soft matrix as presented
in definition 4.3.

Step 5. Remove those objects and parameters for which SM(0;) < SM(TH) and SM(E;) > SM(TH),
respectively.

Step 6. The new neutrosophic soft matrix is the desired dimensionality-reduced matrix.

Algorithm 3. (Entropy-based dimensionality reduction technique)

Step 1. Construct the SVN soft matrix.

Step 2. Compute the object-oriented and parameter-oriented SVN soft matrix by using definition
4.1.

Step 3. Evaluate the entropy measure of the object-oriented and parameter-oriented SVN soft matrix
by using definition 4.2

Step 4. Evaluate the threshold element THof the SVN soft matrix and compute its entropy measure
given in definition 4.2.

Step 5. Remove those objects for which EM(0;) > EM(TH) and those parameters for which
EM(E;) < EM(TH).

Step 6. The remaining SVN soft matrix is the desired dimensionality-reduced matrix and the object
corresponding to the lowest entropy value is the best one.

Fig. 2 presents the flowchart of the proposed dimensionality reduction technique.
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Now, we consider an illustrative example to present the applicability of the proposed measure in the
light of algorithm 2 and algorithm 3.

Example 4.2. Let Mr. Y wants to select the most suitable house from five number of houses
concerning five parameters. Our problem is to select the most suitable house i.e., the object which
dominates each of the house of the spectrum of the parameters. To solve this decision-making
problem, we consider a numerical example, which is adapted from the reference [23] and [25].
Suppose there are five houses H = {hy, hy, h3, hy, hs} and E ={e; = beautiful, e,= cheap, e; = in
good repairing, e, =moderate, es=wooden} be the set of parameters.

Firstly, we solve this problem with the help of existing score-based data reduction, to check the

consistency.

Implementation of Algorithm 2
Step 1. Consider the SVN soft matrix (SVNSM).

€ €z €3 €y €s

h, /(0.6,0.3,0.8) (0.5,0.2,0.6) (0.7,0.3,0.4) (0.8,0.5,0.6) (0.6,0.7,0.2)

h, [ (0.7,0.2,0.6) (0.6,0.3,0.7) (0.7,0.5,0.6) (0.6,0.8,0.3) (0.8,0.1,0.8)

hs;| (0.8,0.3,0.4) (0.8,0.5,0.1) (0.3,0.5,0.6) (0.7,0.2,0.1) (0.7,0.2,0.6)

h4\ (0.7,0.5,0.6) (0.6,0.8,0.7) (0.7,0.6,0.8) (0.8,0.3,0.6) (0.8,0.3,0.8)

hs \(0.8,0.6,0.7) (0.5,0.6,0.8) (0.8,0.7,0.6) (0.7,0.8,0.3) (0.7,0.2,0.6)
Step 2. Construct the object-oriented 0;and the parameter-oriented SVN soft matrix Ej; i,j =
1,2,3,4,5.

e e, e ey es 0;
h, / (0.6,0.3,0.8) (0.5,0.2,0.6)  (0.7,0.3,0.4) (0.8,0.5,0.6)  (0.6,0.7,0.2)  (0.64,0.4,0.56)
h, (0.7,0.2,0.6) (0.6,0.3,0.7) (0.7,0.5,0.6) (0.6,0.8,0.3) (0.8,0.1,0.8)  (0.68,0.38,0.6)
hy| (0.8,0.3,0.4) (0.8,0.5,0.1)  (0.3,0.5,0.6) (0.7,0.2,0.1)  (0.7,0.2,0.6) (0.66,0.34,0.36)
hy| (0.7,0.5,0.6) (0.6,0.8,0.7)  (0.7,0.6,0.8) (0.8,03,0.6)  (0.8,0.3,08)  (0.72,05,0.7) |

(0.8,0.6,0.7)

(0.5,0.6,0.8)

(0.8,0.7,0.6)

(0.7,0.8,0.3)

(0.7,0.2,0.6)

hs\ (0.7,0.58,0.6) /
Ej; \(0.72,0.38,0.62) (0.6,0.48,0.58) (0.64,0.52,0.6) (0.72,0.52,0.38) (0.72,0.3,0.6)

Now, evaluate the score matrix of parameter and object-oriented SVN soft matrix SM(E;) and
SM(0;), as given in Guleria and Bajaj [48].

€1 =) €3 €4 €s 0; SM(0;)
h1 (0.6,0.3,0.8) (0.5,0.2,06)  (0.7,0.3,0.4) (0.8,05,06)  (0.6,0.7,02) (0.64,0.4,056) (0.416)
hy ( (0.7,0.2,0.6) (0.6,0.3,07)  (0.7,0.5,0.6) (0.6,0.8,03)  (0.8,0.1,08) (0.68,0.38,0.6) (0.452)\|
hs (0.8,0.3,0.4) (0.8,05,01)  (0.3,0.5,0.6) (0.7,02,01)  (0.7,0.2,0.6) (0.66,0.34,0.36) (0.5376)
hy (0.7,0.5,0.6) (0.6,08,07)  (0.7,0.6,0.8) (08,03,06)  (08,03,08) (0.72,0507)  (0.37)
hs (0.8,0.6,0.7) (0.5,0.6,08)  (0.8,0.7,0.6) (0.7,0.8,03)  (0.7,02,06)  (0.7,0.58,0.6)  (0.352)
Ei | (0.72,038,0.62) (0.6,0.48,0.58) (0.64,0.52,0.6) (0.72,0.52,0.38) (0.72,0.3,0.6)
SM(E)) 0.4844 0.3216 0.328 0.5244 0.54

Step 3. Compute the threshold element of the SVN soft matrix and determine its threshold value by
using the score matrix. We have

TH = (0.68,0.432,0.556) and SM(TH) = 0.4398
Step 4. Using the values obtained in step 3, we remove those alternatives for which condition
SM(0;) < SM(TH) and those parameters for which condition SM(E;) > SM(TH) holds. Thus, the

desired matrix is given as:
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€ €3 0; SM(0,)

h, (0.6,0.3,0.7) (0.7,0.5,0.6) (0.68,0.38,0.6)  (0.452)
hs (0.8,0.5,0.1) (0.3,0.5,0.6) (0.66,0.34,0.36) (0.5376)
Ej (0.6,0.48,0.58) (0.64,0.52,0.6)
SM(E)) 0.3216 0.328
From the above matrix, it can be seen that the data size has been reduced by approximately 50%. It
can be concluded that the same decision partition stated in [23] and [25], that Mr. Y selected the house
hs.

1. Construct the SVN soft matrix

2. Find object-oriented SVN soft matrix O; and compute entropy measure
EM{O;) and the parameter-oriented SVN soft matrix £; and compute its
entropy measure EM(E)

3. Evaluate the threshold element TH of SVN soft matrix and compute EM(TH)

4. Remove those objects for which EM(0;) > EM(TH) and those parameters for
which EM(E;} = EM(TH)

5. The SVN soft matrix is the desired dimensionally reduced matrix

6. The object corresponding to the lowest entropy EM(O;) is the best one

Figure 2. Flowchart of algorithm 3 for dimensionality reduction technique for SVN soft environment

Implementation of Algorithm 2 (Entropy-based data reduction technique)

Step 1. Consider the SVN soft matrix (SVNSM).
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€1

h, 7/(0.6,0.3,0.8)
hy [ (0.7,0.2,0.6)
hs| (0.8,0.3,0.4)
hs\ (0.7,0.5,0.6)
hs \(0.8,0.6,0.7)

€z

(0.5,0.2,0.6)
(0.6,0.3,0.7)
(0.8,0.5,0.1)
(0.6,0.8,0.7)
(0.5,0.6,0.8)

€3

(0.7,0.3,0.4)
(0.7,0.5,0.6)
(0.3,0.5,0.6)
(0.7,0.6,0.8)
(0.8,0.7,0.6)

€4

(0.8,0.5,0.6)
(0.6,0.8,0.3)
(0.7,0.2,0.1)
(0.8,0.3,0.6)
(0.7,0.8,0.3)

€s

(0.6,0.7,0.2)
(0.8,0.1,0.8)
(0.7,0.2,0.6)
(0.8,0.3,0.8)
(0.7,0.2,0.6)

Step 2. Construct the object-oriented 0;and the parameter-oriented SVN soft matrix Ej; i,j =
1,2,3,4,5.
e, e, es €y es 0;
h, / (0.6,0.3,0.8) (05,0.2,0.6)  (0.7,0.3,0.4) (0.8,0.5,0.6)  (0.6,0.7,0.2)  (0.64,0.4,0.56)
h, (0.7,0.2,0.6) (0.6,0.3,0.7) (0.7,0.5,0.6) (0.6,0.8,0.3) (0.8,0.1,0.8)  (0.68,0.38,0.6)
hs (0.8,0.3,0.4) (0.8,0.5,0.1) (0.3,0.5,0.6) (0.7,0.2,0.1) (0.7,0.2,0.6)  (0.66,0.34,0.36)
hy| (0.7,0.5,0.6) (0.6,0.8,0.7)  (0.7,0.6,0.8) (0.8,0.3,0.6)  (0.8,0.3,0.8)  (0.72,0.5,0.7)
hs| (0.8,0.6,0.7) (0.5,0.6,0.8)  (0.8,0.7,0.6) (0.7,0.8,03)  (0.7,0.2,0.6)  (0.7,0.58,0.6)

7 \(0.72,0.38,0.62) (0.6,0.48,0.58) (0.64,0.52,0.6) (0.72,0.52,0.38) (0.72,0.3,0.6)

Now, evaluate the entropy measure of parameter and object-oriented SVN soft matrix EM(E;)and

EM(0;) by using Definition 4.2 which is given below.

e; e, e3 ey es 0; EM(0;)

Ry (0.6,0.3,0.8) (0.5,02,0.6)  (0.7,0.3,0.4) (08,05,0.6)  (0.6,07,0.2) (0.64,0.4,056) (0.2583)
R, (0.7,0.2,0.6) (0.6,03,0.7)  (0.7,0.5,0.6) (06,08,03)  (0.801,08) (0.6803806) (0.2583)
hy (0.8,0.3,0.4) (0.8,05,0.1)  (0.3,0.5,0.6) (07,02,01)  (0.7,02,0.6) (0.66,0.34,0.36) (0.1472)
hy (0.7,0.5,0.6) (0.6,0.8,0.7)  (0.7,0.6,0.8) (08,0.3,0.6)  (0.803,08) (0.72,050.7) (0.2664)
hs (0.8,0.6,0.7) (0.5,0.6,0.8)  (0.8,0.7,0.6) (07,08,03)  (0.7,02,06) (0.7,0.580.6) (0.2535)
Ei 1(0.72,0.38,0.62) (0.6,0.48,0.58) (0.64,0.52,0.6) (0.72,0.52,0.38) (0.72,0.3,0.6)

EM(E)) 0.2535 0.2664 0.2648 0.1134 0.2476

Step 3. Compute the threshold element of the SVN soft matrix and determine its threshold value

using Definition 4.2, we have
TH = (0.68,0.432,0.556) and EM(TH) = 0.2463

Step 4. Next, by using the values obtained in step 3, we remove those alternatives for which condition
EM(0;) > EM(TH) and those parameters for which condition EM (E]) < EM(TH) holds. Thus, the

desired matrix is as follows.

31 €; €3 és 0; EM(0;)
hs (0.8,0.3,0.4) (0.8,0.5,0.1) (0.3,0.5,0.6)  (0.7,0.2,0.6) (0.66,0.34,0.36) (0.0272)
E; 1(0.72,0.38,0.62) (0.6,0.48,0.58) (0.64,0.52,0.6) (0.72,0.3,0.6)
EM(E)) 0.2535 0.2664 0.2648 0.2476

From the above matrix, it can be seen that the data size has been reduced by approximately 50%. Mr.

Y selected house hs;. So, our proposed measure is consistent with the existing method.
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5. Comparative Study

To show the effectiveness of our proposed measure over the existing measures, we consider the
following illustrative example.

Example 5.1. [23]. Consider U = {y,,y,} be the universe of discourse where y, = severe, y, =
mild. Here the set of parameters E = {ej, e, e3,€4, €5} is a set of certain visible symptoms, where
e; =headache, e, = fatigue,e; = nausea and vomiting, e, = skin changes, e; = weakness. In this
example, our proposed method is applied to determine whether an ill person having some visible
symptoms is suffering from cancer or not suffering from cancer. To illustrate and compare our
proposed measures, we consider some existing measures which are given in section 4. The results
obtained from the evaluation of proposed measures and existing measures are given in Table 4.

Table 4. Similarity measure between the proposed and existing measures

Measures (F, G) (G, H) PM2
SM, 0.69 0.31 2.139
SM, 0.75 0.33 2.242
SM; 0.335 0.743 2.248
SM, 0.624 0.562 2.909

SM; 0.09 0.55 1.64
Proposed SM 0.95 0.76 5.116

Now, we consider another example to show the effectiveness of the proposed measure.

Example 5.2. Let (F,E),(G,E), and (H,E) be three SVNSSs, whose SVN soft matrices are given as
below.
(0.6,0.2,0.1) (0.4,0.5,0.2) (0.8,0.1,0.2)

(F,E)=| (05,03,0) (0.7,0.1,02) (0.6,0.3,0.2) |,
(0.8,02,0.1)  (0.6,0,0)  (0.9,0,0.1)

(0.5,030.2) (0.7,0,0.2) (0.6,0.3,0.1)
(G,E)=|(06,0201) (04,001) (0.50.1,02) | and
(0.9,0,0.1) (0.5,0.1,0.2) (0.8,0,0.2)

(0.4,0.4,0.2) (0.6,0.2,0.1) (0.5,0.1,0.2)
(H,E) = (0.3,02,0.1) (0.7,0.1,0.2) (0.5,0.4,0.1) |.
(0.2,0,02)  (0.5,0,0.1) (0.1,0.8,0)

Now, compute the similarity measure SM((F,E), (H,E)), SM((F,E),(G,E)) and SM((G,E),(H,E))
which is shown as

Table 5. Similarity values between SVNSSs due to proposed and existing measures

Measures (F,H) (G,H) (F, ) PM3
SM, 0.6476 0.6476 0.6211 2.0150
SM, 0.5749 0.6176 0.5489 1.7588
SM; 0.7295 0.6564 0.8510 2.4793
SM, 0.5989 0.5710 0.5885 1.788
SM; 0.2883 0.5824 0.21 1.222
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Proposed SM 0.9428 0.9335 0.9428 9.0268

Now, we represent the graphical representation of the performance measures given in Table 3, Table
4, and Table 5 of the existing and proposed measures. From Fig 3., it can be concluded that the

proposed similarity measure boasts a significantly higher accuracy rate than existing measures.

Performance Measure

20
9.0268
15 g
° " @16
2.015 .
5 2.139 — 2.479 1.788 . -
P — 2.247 2.248 2:509 05
0 0.8057 ~0.9636 M V
SM1 SM2 SM3 SM4 SM5 Proposed SM

Figure 3. Graphical representation of performance measure of proposed measure and existing measure.

6. Conclusion

This article introduced some information theoretic measures in the SVNS framework. Our approach
is grounded in the conviction that entropy, and similarity measures as indispensable tools to
investigate the uncertain information with soft representation. Based on the score matrix and entropy
measure, a new technique of dimensionality reduction has been investigated in the SVNS soft
environment. By using two techniques of data reduction, we observed that data size has been
substantially reduced to 50% and despite reduction techniques, the data still supports the same
decision partition suggested in Maji ([23] [25]). Furthermore, the effectiveness of the proposed
measures has been buttressed by illustrative examples. The evaluation of performance measure
elucidated the higher accuracy of the proposed measures. The present study deals with applications
of proposed methods using artificial dataset. In future, the relevant real-data can be explored to

investigate more interdisciplinary applications.

Acknowledgements Authors are highly thankful to the anonymous reviewers for the
constructive suggestions to bring the paper in the present form.
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