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Abstract. The empirical correlation system serves as a crucial tool for unveiling the linear interconnections

between two variables. Its significance lies in providing a prominent approach to depict a straightforward

relationship without explicitly indicating a causal link between the sets involved. In the current research,

an innovative concept of correlations is introduced specifically for Neutrosophic Over Soft Sets (N o
s -sets).

This novel framework involves a meticulous examination of basic definitions and operations associated with

Neutrosophic Over Soft Sets. Furthermore, the study extends to the introduction of a groundbreaking concept:

a topological space integrated with Neutrosophic Over Soft Sets (N o
s -sets). This addition aims to broaden

the scope of understanding and application in mathematical contexts.The research does not merely establish

theoretical foundations; it also explores various properties and theorems related to the introduced concepts. This

is complemented by a series of numerical examples designed to provide clarity and facilitate a comprehensive

grasp of the material. To demonstrate the practical application of these concepts, the research utilizes the

correlation framework to present a numerical illustration. Specifically, it is applied to determine the top-

performing student at GFC School for the academic year 2022-2023, showcasing the real-world relevance and

applicability of the proposed methodologies.

—————————————————————————————————————————-

Keywords:Neutrosophic Over Soft Set and Neutrosophic Over Soft Topological Space.

1. Introduction

In the course of daily life, uncertainty is a common experience. For instance, when rolling a

die or tossing a coin onto an uneven surface, uncertainties emerge. The inception of fuzzy sets

was credited to Zadeh [23] (1965), who introduced the notion of membership degrees. Zadeh

also laid the foundation for a theory of possibility [24], whereas Bellman et al. [2] delved into

decision-making within contexts influenced by fuzziness. Expanding on Zadeh’s contributions,

Atanassov introduced intuitionist fuzzy sets, concentrating on both degrees of membership

and non-membership [1].
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Smarandache [19] is attributed with the discovery of neutrosophic sets and the exploration

of novel trends and applications within neutrosophic theory. In 1995, Bustince and Burillo [5]

investigated the correlation of intuitionist fuzzy sets in scenarios involving interval values.

Three potential utilities of neutrosophic sets were postulated by Christianto [6]. In 1999,

Molodtsov [14] brought to light the primary result concerning soft sets, with a subsequent

finding contributed by Maji et al. [12]. The year 2002 marked the introduction of neutrosophic

soft sets by Broumi [3]. Neutrosophic sets have found practicality in medical contexts, as

pursued by researchers [17, 18]and also in variouse field [7, 10, 16].Correlation measures are

harnessed to discern connections between pairs of variables.

In 2015, Broumi and Deli embarked on an exploration into correlation measures for neu-

trosophic sets [4]. Radha et al. ushered in the concept of neutrosophic Pythagorean sets and

their elevated correlation in the year 2021 [15]. An alternative facet of correlation was ushered

into the spotlight by Ye, J., back in 2013 [22]. Wang et al. [21] delved into the realm of single-

valued neutrosophic sets. The year 2020 saw Mallick, R., and Pramanik, S. [13] delve into

discussions about pentapartitioned neutrosophic sets and their inherent properties. In 2019,

Jansi et al. [11] stumbled upon the concept of neutrosophic pythagorean sets featuring both

dependent and independent components. Smarandache [20] brought forth the innovative no-

tion of neutrosophic sets replete with over, under, and off limits in 2016. Murugesan et al. [10]

(2023) undertake a comparative analysis between Fuzzy Cognitive Maps and Neutrosophic

Cognitive Maps to unravel the intricacies of Covid variants. RN Devi and G Muthumari [8]

conducted an in-depth study on the realm of topologized domination concerning NOver top

graphs in 2021. Moreover, in the subsequent year, 2022, RN Devi etal., introduced a pioneering

study on Digital Neutrosophic Topological Spaces, pushing the boundaries of mathematical

modeling [9] .

The manuscript introduces innovative concepts: N so-set and N so-topological space. It also

presents measures of correlations for neutrosophic over soft sets, elucidating foundational defi-

nitions, operations, and theorems supported by concrete numerical examples. The inclusion of

numerical illustrations, drawn from a survey involving five teachers at GFC School, adds prac-

tical relevance. This survey aims to identify the top-performing student for the academic year

2022-2023. The manuscript, thus, seamlessly integrates theoretical developments, illustrative

examples, and real-world applications, contributing comprehensively to the field of study.

2. Preliminary

This section contains basic definition for Neutrosophic Set(NS),Neutrosophic Over

Set(NOS),Neutrosophic Soft Set(NSS),Neutrosophic Topological Space(NTS) and Soft Topo-

logical Space(STS).
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Definition 2.1. Let H be an non empty set and J is said to be an NS.Then

J = {⟨h,ℵ(h), ð(h),Υ(h)⟩ : h ∈ H}

where ℵ,ð,Υ : H → [0, 1] and 0 ≤ ℵ(h)+ð(h)+Υ(h) ≤ 3. Here ℵ(h),ð(h) and Υ(h) are degree

of true membership,degree of indeterminacy and degree of falsity.

Definition 2.2. Let J be an NS in H.If J is said to be an NOS in an non-empty set H then

it has at-least one neutrosophic component is > 1 and no other component are < 0 is defined

as,

J = {⟨h,ℵ(h),ð(h),Υ(h)⟩ : h ∈ H}

Where ℵ,ð,Υ : H → [0,Ω], 0 ≤ ℵ(h) + ð(h) + Υ(h) ≤ 3 and Ω is said to be over-limit of NOS

Note: ρ(H) is a set of all the N o
s subset of an non-empty set H

Definition 2.3. Let an N o
s -set ⊙ = {e, {⟨h, 0, 0,Ω⟩ : h ∈ H} : e ∈ E} is said to be a Null N o

s

and �= {e, {⟨h,Ω,Ω, 0⟩ : h ∈ H} : e ∈ E} is said to be an universal N o
s .

Definition 2.4. Let H be an non-empty set and E be a set of parameters on H.Consider

A ⊂ E .The collection (λ,A) is an NSS then it is defined as,h

λ : A → ρ(H)

where λ is a mapping and ρ(H) is a collection of all the subsets of NS in H.

Definition 2.5. A neutrosophic topology(NT) τNT is a collection of subset of an NS W such

that

(i) ⊙,�∈τNT .

(ii) The union of an arbitrary collection τNT is in τNT .

(iii) The finite intersection of subsets τNT is in τNT .

Then (W, τNT ) is called neutrosophic topological space(NTS).An element of τNOS is called

an neutrosophic open set and τNCS is called an neutrosophic closed set.

Definition 2.6. A soft topology(ST) τST is a collection of subset of an soft set(SS) W such

that

(i) ⊙,�∈τST .
(ii) The union of an arbitrary collection τST is in τST .

(iii) The finite intersection of subsets τST is in τST .

Then (W, τST ) is called soft topological space(STS).An element of τSOS is called an soft

open set and τSCS is called an soft closed set.
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3. Neutrosophic Over Soft Topological Space

Definition 3.1. Let H be an non-empty set and E be a set of parameter on H.Then N o
s -set

is defined by a set valued function

λN o
s
: E → ρ(H)

where ρ(H) is an set of allN o
s -set onH.N o

s -set is an valued function from the set of parameter

E on H is defined as

J = (λN o
s
, E) = {(e, {⟨h,ℵJ (h),ðJ (h),ΥJ (h)⟩ : h ∈ H}) : e ∈ E}

Definition 3.2. Let J = (JN o
s
, E) and W = (WN o

s
, E) be a two N o

s -set.If J is said to be a

subset of W i.e.,J ⊆ W then

ℵJ (h) ≤ ℵW(h), ðJ (h) ≤ ðW(h),ΥJ (h) ≥ ΥW(h)

In other words W is an super set of J

Definition 3.3. Let J ⊂ W and W ⊂ J then J = W

Definition 3.4. Let J and W be two N o
s -set, Then the union,intersection and compliment

are defined by

(i)J�W = {(e, {⟨h,max(ℵJ (h),ℵW(h)),max(ðJ (h),ðW(h)),min(ΥJ (h),ΥW(h))⟩ : h ∈
H}) : e ∈ E}

(ii)J�W = {(e, {⟨h,min(ℵJ (h),ℵW(h)),min(ðJ (h), ðW(h)),max(ΥJ (h),ΥW(h))⟩ : h ∈
H}) : e ∈ E}

(iii)J$ = {(e, {⟨h,ΥJ (h),Ω− ðJ (h),ℵJ (h)⟩ : h ∈ H}) : e ∈ E}

Proposition 3.5. Let J be an N o
s -set on H. Then

(i). ⊙$ =�

(ii). �$= ⊙
(iii). (J$)$ = J

Proof. 1. ⊙$ =�

⊙ = {e, {⟨h, 0, 0,Ω⟩ : h ∈ H} : e ∈ E}

⊙$ = {⟨h,Ω,Ω, 0⟩ : h ∈ H} =�

=⇒ ⊙$ =�

2. �$= ⊙
�= {⟨h,Ω,Ω, 0⟩ : h ∈ H}

�$= {⟨h,Ω,Ω, 0⟩ : h ∈ H} = ⊙
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=⇒ �$= ⊙

3. (J$)$ = J

J$ = {(e, {⟨h,ΥJ (h),Ω− ðJ (h),ℵJ (h)⟩ : h ∈ H}) : e ∈ E}

(J$)$ = {(e, {⟨h,ℵJ (h),Ω− (Ω− ðJ (h)),ΥJ (h)⟩ : h ∈ H}) : e ∈ E} = J

=⇒ (J$)$ = J

Proposition 3.6. Let J and W be an N o
s -set on H. Then

(i). J�J = J�J = J
(ii). J�W = W�J
(iii). J�W = W�J
(iv). J�⊙ = J and J� �=�
(v). J�⊙ = ⊙ and J� �= J

Proof. The proof is obvious from the definition.

Theorem 3.7. Let J and W ∈ N o
s -set. Then

(i). (J�W)$ = J$�W$

(ii). (J�W)$ = J$�W$

Proof. (i).By the union definition,

J�W = {(e, {⟨h,max(ℵJ (h),ℵW(h)),max(ðJ (h),ðW(h)),min(ΥJ (h),ΥW(h))⟩ : h ∈ H}) : e ∈ E}

(J�W)$ = {(e, {⟨h,min(ΥJ (h),ΥW(h)),max(Ω−ðJ (h),Ω−ðW(h)),max(ℵJ (h),ℵW(h))⟩ : h ∈ H}) : e ∈ E}
(1)

By the definition of compliment

J$ = {(e, {⟨h,ΥJ (h),Ω− ðJ (h),ℵJ (h)⟩ : h ∈ H}) : e ∈ E}

W$ = {(e, {⟨h,ΥW(h),Ω− ðW(h),ℵW(h)⟩ : h ∈ H}) : e ∈ E}

J$�W$ = {(e, {⟨h,min(ΥJ (h),ΥW(h)),max(Ω−ðJ (h),Ω−ðW(h)),max(ℵJ (h),ℵW(h))⟩ : h ∈ H}) : e ∈ E}
(2)

From (1) and (2) we get,

(J�W)$ = J$�W$

(ii). By the union definition we know that,

J�W = {(e, {⟨h,min(ℵJ (h),ℵW(h)),min(ðJ (h), ðW(h)),max(ΥJ (h),ΥW(h))⟩ : h ∈ H}) : e ∈ E}
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(J�W)$ = {(e, {⟨h,max(ΥJ (h),ΥW(h)),min(Ω−ðJ (h),Ω−ðW(h)),min(ℵJ (h),ℵW(h))⟩ : h ∈ H}) : e ∈ E}
(3)

By the definition of compliment

J$ = {(e, {⟨h,ΥJ (h),Ω− ðJ (h),ℵJ (h)⟩ : h ∈ H}) : e ∈ E}

W$ = {(e, {⟨h,ΥW(h),Ω− ðW(h),ℵW(h)⟩ : h ∈ H}) : e ∈ E}

J$�W$ = {(e, {⟨h,max(ΥJ (h),ΥW(h)),min(Ω−ðJ (h),Ω−ðW(h)),min(ℵJ (h),ℵW(h))⟩ : h ∈ H}) : e ∈ E}
(4)

From (3) and (4) we get,

(J�W)$ = J$�W$

Definition 3.8. Let τN o
s
be a neutrosophic over soft topology(N o

s -topology) in N o
s -set J is a

collection of subset of an non-empty set H such that

(i) ⊙,�∈τN o
s
.

(ii) The union of an arbitrary collection τN o
s
is in τN o

s
.

(iii) The finite intersection of subsets τN o
s
is in τN o

s
.

Then (H, τN o
s
) is called neutrosophic over soft topological space(N o

s -topological space).An

element of τNOSOS is called an neutrosophic over soft open set and τNOSCS is named an

neutrosophic over soft closed set.

Example 3.9. Let H = {r1, r2} be the two students, A = {Puntuality(q)} and G ∈τNOSCS

such that,

Q(q) = {⟨r1, 1.2, 0.6, 0.5⟩, ⟨r2, 1.1, 0.3, 0.5⟩}

(Q,A) = {q = {⟨r1, 1.2, 0.6, 0.5⟩, ⟨r2, 1.1, 0.3, 0.5⟩}}.
Then,τN o

s
= {⊙,�, (Q,A)} is a N o

s -topology on W.

Theorem 3.10. Let (H, τ1N o
s
) and (H, τ2N o

s
) be two N o

s -topological space on H, then

(H, τ1N o
s
�τ2N o

s
) is a N o

s -topological space over H.

Proof. Let (H, τ1N o
s
) and (H, τ2N o

s
) be N o

s -topological space over H.

=⇒ ⊙,�∈τ1N o
s
and ⊙,�∈τ2N o

s

=⇒ ⊙,�∈τ1N o
s
�τ2N o

s
∴ (H, τ1N o

s
�τ2N o

s
) is a N o

s -topological space over H.

Remark 3.11. In the theorem 2.2 instead of the intersection operation if we use union oper-

ation the claim may not be true. It can be seen following example.
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Example 3.12. Let H = {r1, r2} be the two mobile phone and

A = {batterydurability(q1), workingspeed(q2)}.
Then (R1,A), (R2,A) ∈τNOSCS such that,

R1(q1) = {⟨r1, 1.2, 0.4, 0.6⟩, ⟨r2, 1.1, 0.3, 0.5⟩}}

R1(q2) = {⟨r1, 1.3, 0.5, 0.6⟩, ⟨r2, 1.2, 0.5, 0.6⟩}}

(R1,A) = {{q1 = {⟨r1, 1.2, 0.4, 0.6⟩, ⟨r2, 1.1, 0.3, 0.5⟩}, {q2 = {⟨r1, 1.3, 0.5, 0.6⟩, ⟨r2, 1.2, 0.5, 0.6⟩}}}

R2(q1) = {⟨r1, 1.3, 0.4, 0.5⟩, ⟨r2, 1.2, 0.3, 0.3⟩}

R2(q2) = {⟨r11.4, 0.5, 0.7⟩, ⟨r21.1, 0.6, 0.6⟩}

(R2,A) = {{q1 = {⟨r1, 1.3, 0.4, 0.5⟩, ⟨r2, 1.2, 0.3, 0.3⟩}, {q2 = {⟨r1, 1.4, 0.5, 0.7⟩, ⟨r2, 1.1, 0.6, 0.6⟩}}}

Then, τ1N o
s
= {⊙,�, (R1,A)} and τ2N o

s
= {⊙,�, (R2,A)} are two N o

s -topological space on

W.

But τ1N o
s
�τ2N o

s
= {⊙,�, (R1,A), (R2,A)}.

Because (R1,A)�(R2,A) /∈ τ1N o
s
�τ2N o

s
.So, τ1N o

s
�τ2N o

s
is not N o

s -topological space on H.

Definition 3.13. An operators of N o
s R∈τNOSCS , then neutrosophic over soft topological

interior and closure are intN o
s
(R) and clN o

s
(R) is defined as:

intN o
s
(R) = �{N : N ⊆ HandN ∈ τN o

s
} and

clN o
s
(R) = �{O : H ⊆ OandO$ ∈ τN o

s
}.

Proposition 3.14. Let (H, τN o
s
) be a N o

s -topological space and R is a subset of ⟨, then
(i) intN o

s
(R) is the largest NOS open set contained in R.

(ii) clN o
s
(R) is the smallest NOS closed set containing R.

Proof. (i) By the definition of interior, intN o
s
(R).Let N be an open set such that N ⊂ R. ∵ N

is open and N ⊂ R,then

N ⊂ intN o
s
(R) =⇒ intN o

s
(R) is the largest open set contained in R.

(ii) By the closure definition,

clN o
s
(R) = �{O : H ⊆ OandO$ ∈ τN o

s
}

clN o
s
(R) is the smallest closed set containing R.

Theorem 3.15. Let (H, τN o
s
) be a N o

s -topological space on H.Let R and Q in τNOSCS.Then,

(i) intN o
s
(⊙) = ⊙ and intN o

s
(�) =�.

(ii) intN o
s
(R) ⊆ R.

(iii) Q is a NOSOS iff Q = intN o
s
(Q).

(iv) intN o
s
(intN o

s
(R)) = intN o

s
(R)

(v) R ⊆ Q =⇒ intN o
s
(R) ⊆ intN o

s
(Q)
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(vi) intN o
s
(R)�intN o

s
(Q) ⊆ intN o

s
(R�Q)

(vii) intN o
s
(R�Q) = intN o

s
(R)�intN o

s
(Q)

Proof. (i) and (ii) are obviously true.

(iii) If Q is a NOSOS over H, then Q is itself a NOSOS over H which contains Q.

So,Q is the largest N o
s contained in Q

=⇒ intN o
s
(Q) = Q.

Conversely, suppose that intN o
s
(Q) = Q.then Q ∈ τN o

s
.

(iv) Let intN o
s
(R) = Q.

Then, intN o
s
(Q) = Q from (iii).

=⇒ intN o
s
(intN o

s
(R)) = intN o

s
(R)

(v) Suppose that R ⊆ Q.As intN o
s
(R) ⊆ R ⊆ Q.intN o

s
(R) is a Neutrosophic over soft subset

of Q
From definition (3.2) we get, intN o

s
(R) ⊆ intN o

s
(Q).

(vi) It is clear that R ⊆ R�Q and Q ⊆ R�Q.

Thus,

intN o
s
(R) ⊆ intN o

s
(R)�intN o

s
(Q) and

intN o
s
(Q) ⊆ intN o

s
(R)�intN o

s
(Q)

=⇒ intN o
s
(R)�intN o

s
(Q) ⊆ intN o

s
(R�Q) [By (v)].

(vii) Clearly w.k.t.

intN o
s
(R�Q) ⊆ intN o

s
((R)) and intN o

s
(R�Q) ⊆ intN o

s
((Q))[By (v)].

So, that intN o
s
(R�Q) ⊆ intN o

s
(R)�intN o

s
(Q)

Also,intN o
s
(R) ⊆ R and intN o

s
(Q) ⊆ Q we have

intN o
s
(R)�intN o

s
(Q) ⊆ R�Q.

=⇒ intN o
s
(R�Q) = intN o

s
(R)�intN o

s
(Q)

Example 3.16. Let H = {r1, r2} be the two team in an company and

A = {punctuality(q1), accuracy of target(q2)}. Then

(R1,A) = {q1 = {⟨r1, 1.3, 0.3, 0.1⟩, ⟨r2, 1.3, 0.5, 0.3⟩}, {q2 = {⟨r1, 1.1, 0.3, 0.1⟩, ⟨r2, 1.2, 0.5, 0.4⟩}},

{q3 = {⟨r1, 1.2, 0.3, 0.1⟩, ⟨r2, 1.1, 0.5, 0.2⟩}}}

(R2,A) = {{q1 = {⟨r1, 1.2, 1.2, 0.1⟩, ⟨r2, 1.6, 0.6, 0.5⟩}}, {q2 = {⟨r1, 1.1, 1.1, 0.1⟩, ⟨r2, 1.5, 0.5, 0.5⟩}},

{q3 = {⟨r1, 1.1, 1.2, 0.1⟩, ⟨r2, 1.4, 0.6, 0.4⟩}}}

(R3,A) = {{q1 = {⟨r1, 1.4, 1.4, 0.2⟩, ⟨r2, 1.2, 0.4, 0.2⟩}}, {q2 = {⟨r1, 1.3, 1.1, 0.2⟩, ⟨r2, 1.1, 0.4, 0.1⟩}},

{q3 =, {⟨r1, 1.3, 1.4, 0.1⟩, ⟨r2, 1.1, 0.3, 0.2⟩}}}
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Then, τN o
s
= {⊙,�, (R1,A)}.

intN o
s
(R2,A) = ⊙

intN o
s
(R3,A) = ⊙

Then, intN o
s
(R2,A)�intN o

s
(R3,A) = ⊙

intN o
s
((R2,A)�(R3,A)) = (R1,A)

∴ intN o
s
((R2,A)�(R3,A)) ̸= intN o

s
(R2,A)�intN o

s
(R3,A)

Theorem 3.17. Let (H, τN o
s
) be a N o

s -topological space on H.Let R and Q in τNOSCS.Then,

(i) clN o
s
(⊙) = ⊙ and clN o

s
(�) =�.

(ii) clN o
s
(R) ⊇ R.

(iii) Q is a NOSCS iff Q = clN o
s
(Q).

(iv) clN o
s
(clN o

s
(R)) = clN o

s
(R)

(v) R ⊆ Q =⇒ clN o
s
(R) ⊆ clN o

s
(Q)

(vi) clN o
s
(R)�clN o

s
(Q) = clN o

s
(R�Q)

(vii) clN o
s
(R�Q) ⊆ clN o

s
(R)�clN o

s
(Q)

Proof. (i) and (ii) are obviously true.

Proof of (vi) and (vii) similar to the Theorem 2.3 (vi) and (vii)

(iii) If R is a NOSCS on H then R is itself a NOSCS over H which contains R.

∴ R is a smallest NOSCS containing R. and R = clN o
s
(R).

Conversely, Suppose that R = clN o
s
(R). As. R is a NOSCS, so R is a NOSCS

over H.

(vi) R is a NOSCS then by the proof (iii)

R = clN o
s
(R)..

(v) Suppose R ⊆ Q.Then every neutrosophic over soft closed super-set of Q also

contained in R.

=⇒ super-sets of Q is also a NOSCS. Thus,

clN o
s
(R) = clN o

s
(Q).

Example 3.18. Let W = {r1, r2} be the two team in an company and

A = {punctuality(q1), accuracy of target(q2)}. Then R,Q and V ∈ τNOSOS such that

(R1,A) = {q1 = {⟨r1, 1.3, 0.3, 0.1⟩, ⟨r2, 1.3, 0.5, 0.3⟩, {q2, {⟨r1, 1.1, 0.3, 0.1⟩, ⟨r2, 1.2, 0.5, 0.4⟩}}},

{q3 = {⟨r1, 1.2, 0.3, 0.1⟩, ⟨r2, 1.1, 0.5, 0.2⟩}}}

(R2,A) = {{q1 = {⟨r1, 1.2, 1.2, 0.1⟩, ⟨r2, 1.6, 0.6, 0.5⟩}}, {q2 = {⟨r1, 1.1, 1.1, 0.1⟩, ⟨r2, 1.5, 0.5, 0.5⟩}},

{q3 = {⟨r1, 1.1, 1.2, 0.1⟩, ⟨r2, 1.4, 0.6, 0.4⟩}}}
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(R3,A) = {{q1 = {⟨r1, 1.4, 1.4, 0.2⟩, ⟨r2, 1.2, 0.4, 0.2⟩}}, {q2 = {⟨r1, 1.3, 1.1, 0.2⟩, ⟨r2, 1.1, 0.4, 0.1⟩}},

{q3 =, {⟨r1, 1.3, 1.4, 0.1⟩, ⟨r2, 1.1, 0.3, 0.2⟩}}}

Then, τN o
s
= {⊙,�, (R1,A)}.

τ$N o
s
= {�,⊙,R$}

clN o
s
(R2,A) =�

clN o
s
(R3,A) =�

Then, clN o
s
(R2,A)�clN o

s
(R3,A) =�

clN o
s
((R2,A)�(R3,A)) =�

∴ clN o
s
((R2,A)�(R3,A)) = clN o

s
(R2,A)�clN o

s
(R3,A)

4. Measure Of Correlation for Neutrosophic Over Soft Set

Definition 4.1. Let J = (JN o
s
, E) and W = (WN o

s
, E) be a N o

s -set over an non-empty set H
is of the form

J = {(e, {⟨h,ℵJ (h), ðJ (h),ΥJ (h)⟩ : h ∈ H}) : e ∈ E}

W = {(e, {⟨h,ℵW(h),ðW(h),ΥW(h)⟩ : h ∈ H}) : e ∈ E}

Then the ℵs correlation coefficient of J and W is

φ(J ,W) =
K(J ,W)

n(
√

K(J ,J ).K(W,W))
(5)

Where

K(J ,W) =
n∑

ϱ=1

(
(ℵJ (hϱ))

2.(ℵW(hϱ))
2 + (ðJ (hϱ))2.(ðW(hϱ))

2 + (ΥJ (hϱ))
2.(ΥW(hϱ))

2
)

K(J ,J ) =
n∑

ϱ=1

(
(ℵJ (hϱ))

2.(ℵJ (hϱ))
2 + (ðJ (hϱ))2.(ðJ (hϱ))2 + (ΥJ (hϱ))

2.(ΥJ (hϱ))
2
)

K(W,W) =

n∑
ϱ=1

(
(ℵW(hϱ))

2.(ℵW(hϱ))
2 + (ðW(hϱ))

2.(ðW(hϱ))
2 + (ΥW(hϱ))

2.(ΥW(hϱ))
2
)

Proposition 4.2. Let J and W be a N o
s -set on an non-empty set H. Then it satisfies the

following condition

1. 0 ≤ φ(J ,W) ≤ 1

2. φ(J ,W) = 1
n iff J = W

3. φ(J ,W) = 1 iff J = W and n = 1

4. φ(J ,W) = φ(W,J )
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Proof. 1. 0 ≤ φ(J ,W) ≤ 1

The definition of N o
s -set is conclude that ℵ, ð,Υ : H → [0,Ω] so 0 ≤ φ(J ,W)

Now we have to prove φ(J ,W) ≤ 1

K(J ,W) =
n∑

ϱ=1

(
(ℵJ (hϱ))

2.(ℵW(hϱ))
2 + (ðJ (hϱ))2.(ðW(hϱ))

2 + (ΥJ (hϱ))
2.(ΥW(hϱ))

2
)

= [(ℵJ (h1))
2.(ℵW(h1))

2 + (ðJ (h1))2.(ðW(h1))
2 + (ΥJ (h1))

2.(ΥW(h1))
2]

+[(ℵJ (h2))
2.(ℵW(h2))

2 + (ðJ (h2))2.(ðW(h2))
2 + (ΥJ (h2))

2.(ΥW(h2))
2]

+ · · ·+ [(ℵJ (hn))
2.(ℵW(hn))

2 + (ðJ (hn))2.(ðW(hn))
2 + (ΥJ (hn))

2.(ΥW(hn))
2]

By Cauchy-Schwartz inequality, we get

(K(J ,W))2 ≤
(
[(ℵJ (h1))

4 + (ðJ (h1))4 + (ΥJ (h1))
4] + [(ℵJ (h2))

4 + (ðJ (h2))4 + (ΥJ (h2))
4] + · · ·

+[(ℵJ (hn))
4 + (ðJ (hn))4 + (ΥJ (hn))

4]
)
.
(
[(ℵW(h1))

4 + (ðW(h1))
4 + (ΥW(h1))

4]

+[(ℵW(h2))
4 + (ðW(h2))

4 + (ΥW(h2))
4] + · · ·+ [(ℵW(hn))

4 + (ðW(hn))
4 + (ΥW(hn))

4]
)

≤
(
[(ℵJ (h1))

2(ℵJ (h1))
2 + (ðJ (h1))2(ðJ (h1))2 + (ΥJ (h1))

2(ΥJ (h1))
2] + [(ℵJ (h2))

2(ℵJ (h2))
2

+(ðJ (h2))2(ðJ (h2))2 + (ΥJ (h2))
2(ΥJ (h2))

2] + · · ·+ [(ℵJ (hn))
2(ℵJ (hn))

2

+(ðJ (hn))2(ðJ (hn))2 + (ΥJ (hn))
2(ΥJ (hn))

2]
)(

[(ℵW(h1))
2(ℵW(h1))

2 + (ðW(h1))
2(ðW(h1))

2

+(ΥW(h1))
2(ΥW(h1))

2] + [(ℵW(h2))
2(ℵW(h2))

2 + (ðW(h2))
2(ðW(h2))

2 + (ΥW(h2))
2(ΥW(h2))

2]

+ · · ·+ [(ℵW(hn))
2(ℵW(hn))

2 + (ðW(hn))
2 + (ðW(hn))

2 + (ΥW(hn))
2(ΥW(hn))

2]
)

= (K(J ,J ))(K(W,W))

=⇒ (K(J ,W))2 ≤ [(K(J ,W))(K(J ,W))]

=⇒ K(J ,W) ≤
√

[(K(J ,W))(K(J ,W))]

Then,

K(J ,W) ≤ n
√
[(K(J ,W))(K(J ,W))]

∴ 0 ≤ φ(J ,W) ≤ 1

2. φ(J ,W) = 1
n iff J = W

given that, J = W

=⇒ K(J ,W) = K(W,W) (6)

K(J ,J ) = K(W,W) (7)

From (6) and (7), we get
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φ(J ,W) =
K(J ,W)

n(
√

K(J ,J ).K(W,W))

φ(J ,W) =
K(W,W)

n(
√
K(W,W).K(W,W))

φ(J ,W) =
1

n
(8)

3. φ(J ,W) = 1 iff J = W and n = 1

Put n = 1 in (8) we get,

φ(J ,W) = 1

4. φ(J ,W) = φ(W,J )

φ(J ,W) =
K(J ,W)

n(
√

K(J ,J ).K(W,W))

φ(W,J ) =
K(W,J )

n(
√

K(W,W).K(J ,J ))

Only we have to prove K(J ,W) = K(W,J )

K(J ,W) =

n∑
ϱ=1

(
(ℵJ (hϱ))

2.(ℵW(hϱ))
2 + (ðJ (hϱ))2.(ðW(hϱ))

2 + (ΥJ (hϱ))
2.(ΥW(hϱ))

2
)

=
n∑

ϱ=1

(
(ℵW(hϱ))

2.(ℵJ (hϱ))
2 + (ðW(hϱ))

2.(ðJ (hϱ))2 + (ΥW(hϱ))
2.(ΥJ (hϱ))

2
)
= K(W,J )

=⇒ K(J ,W) = K(W,J )

Definition 4.3. Let J and W be a N o
s -set on an non-empty set H is of the form

J = {(e, {⟨h,ℵJ (h),ðJ (h),ΥJ (h)⟩ : h ∈ H}) : e ∈ E}

W = {(e, {⟨h,ℵW(h),ðW(h),ΥW(h)⟩ : h ∈ H}) : e ∈ E}

Then the Ÿs correlation coefficient of J and W is

φ∗(J ,W) =
K(J ,W)

n
[
min(K(J ,J ),K(W,W))

] (9)

Where

K(J ,W) =

n∑
ϱ=1

(
(ℵJ (hϱ))

2.(ℵW(hϱ))
2 + (ðJ (hϱ))2.(ðW(hϱ))

2 + (ΥJ (hϱ))
2.(ΥW(hϱ))

2
)
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K(J ,J ) =
n∑

ϱ=1

(
(ℵJ (hϱ))

2.(ℵJ (hϱ))
2 + (ðJ (hϱ))2.(ðJ (hϱ))2 + (ΥJ (hϱ))

2.(ΥJ (hϱ))
2
)

K(W,W) =
n∑

ϱ=1

(
(ℵW(hϱ))

2.(ℵW(hϱ))
2 + (ðW(hϱ))

2.(ðW(hϱ))
2 + (ΥW(hϱ))

2.(ΥW(hϱ))
2
)

Proposition 4.4. Let J and W be a N o
s -set on an non-empty set H. Then it satisfies the

following condition

1. 0 ≤ φ∗(J ,W) ≤ 1

2. φ∗(J ,W) = 1
n iff J = W

3. φ∗(J ,W) = 1 iff J = W and n = 1

4. φ∗(J ,W) = φ∗(W,J )

Proof. 1. 0 ≤ φ∗(J ,W) ≤ 1

By the definition of N o
s -set we know that ℵ, ð,Υ : H → [0,Ω] so 0 ≤ φ∗(J ,W)

Now we have to prove φ(J ,W) ≤ 1

K(J ,W) =

n∑
ϱ=1

(
(ℵJ (hϱ))

2.(ℵW(hϱ))
2 + (ðJ (hϱ))2.(ðW(hϱ))

2 + (ΥJ (hϱ))
2.(ΥW(hϱ))

2
)

= [(ℵJ (h1))
2.(ℵW(h1))

2 + (ðJ (h1))2.(ðW(h1))
2 + (ΥJ (h1))

2.(ΥW(h1))
2]

+[(ℵJ (h2))
2.(ℵW(h2))

2 + (ðJ (h2))2.(ðW(h2))
2 + (ΥJ (h2))

2.(ΥW(h2))
2]

+ · · ·+ [(ℵJ (hn))
2.(ℵW(hn))

2 + (ðJ (hn))2.(ðW(hn))
2 + (ΥJ (hn))

2.(ΥW(hn))
2]

By Cauchy-Schwartz inequality, we get

(K(J ,W))2 ≤
(
[(ℵJ (h1))

4 + (ðJ (h1))4 + (ΥJ (h1))
4] + [(ℵJ (h2))

4 + (ðJ (h2))4 + (ΥJ (h2))
4] + · · ·

+[(ℵJ (hn))
4 + (ðJ (hn))4 + (ΥJ (hn))

4]
)
.
(
[(ℵW(h1))

4 + (ðW(h1))
4 + (ΥW(h1))

4]

+[(ℵW(h2))
4 + (ðW(h2))

4 + (ΥW(h2))
4] + · · ·+ [(ℵW(hn))

4 + (ðW(hn))
4 + (ΥW(hn))

4]
)

≤
(
[(ℵJ (h1))

2(ℵJ (h1))
2 + (ðJ (h1))2(ðJ (h1))2 + (ΥJ (h1))

2(ΥJ (h1))
2] + [(ℵJ (h2))

2(ℵJ (h2))
2

+(ðJ (h2))2(ðJ (h2))2 + (ΥJ (h2))
2(ΥJ (h2))

2] + · · ·+ [(ℵJ (hn))
2(ℵJ (hn))

2

+(ðJ (hn))2(ðJ (hn))2 + (ΥJ (hn))
2(ΥJ (hn))

2]
)(

[(ℵW(h1))
2(ℵW(h1))

2 + (ðW(h1))
2(ðW(h1))

2

+(ΥW(h1))
2(ΥW(h1))

2] + [(ℵW(h2))
2(ℵW(h2))

2 + (ðW(h2))
2(ðW(h2))

2 + (ΥW(h2))
2(ΥW(h2))

2]

+ · · ·+ [(ℵW(hn))
2(ℵW(hn))

2 + (ðW(hn))
2 + (ðW(hn))

2 + (ΥW(hn))
2(ΥW(hn))

2]
)

= (K(J ,J ))(K(W,W))

=⇒ (K(J ,W))2 ≤ [(K(J ,W))(K(J ,W))]
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Then,

K(J ,W) ≤ n
[
min[(K(J ,W)), (K(J ,W))]

]
2. φ(J ,W) = 1

n iff J = W
given that, J = W

=⇒ K(J ,W) = K(W,W) (10)

K(J ,J ) = K(W,W) (11)

From (10) and (11), we get

φ∗(J ,W) =
K(J ,W)

n
[
min[K(J ,J ).K(W,W)]

]
φ∗(J ,W) =

K(W,W)

n
[
min[K(W,W).K(W,W)]

]
φ∗(J ,W) =

1

n
(12)

3. φ∗(J ,W) = 1 iff J = W and n = 1

Put n = 1 in (12) we get,

φ∗(J ,W) = 1

4. φ∗(J ,W) = φ(W,J )

φ∗(J ,W) =
K(J ,W)

n
[
min[K(J ,J ).K(W,W)]]

φ∗(W,J ) =
K(W,J )

n
[
min[K(W,W).K(J ,J )]]

Only we have to prove K(J ,W) = K(W,J )

K(J ,W) =

n∑
ϱ=1

(
(ℵJ (hϱ))

2.(ℵW(hϱ))
2 + (ðJ (hϱ))2.(ðW(hϱ))

2 + (ΥJ (hϱ))
2.(ΥW(hϱ))

2
)

=

n∑
ϱ=1

(
(ℵW(hϱ))

2.(ℵJ (hϱ))
2 + (ðW(hϱ))

2.(ðJ (hϱ))2 + (ΥW(hϱ))
2.(ΥJ (hϱ))

2
)
= K(W,J )

=⇒ K(J ,W) = K(W,J )

∴ φ∗(J ,W) = φ∗(W,J )
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5. Flow Chart To Solving N o
s -set Using Correlation Measure

6. Numerical Illustration

Assume an effective instance that helps the awarding committee to make a decision to find

top-performing student of the year 2022-2023.top-performing students are selected not only

by their education also with many criteria.

Similar situation arises for GFC school they are conducting an competition to select a top-

performing student. Now they have to superior one student out of three. So for this situation

we are applying ℵs and Ÿs correlation for the set N o
s -set.

Replacement and Criteria:

Let us take three students as S, R, Y .Required Qualities as Education,

Self Discipline, Honesty and Awards as First Place, Second Place and Third

Place.[Replacement={Students,Awards} and Criteria={Education, Self Discipline, Honesty}]
Where, Education={clearance of all subject,knowledge over subject,general knowledge,team

work,creativity in project work,involvement in school educational and sports programs}
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Self Discipline= {acceptance,willpower,hard work,persistence,punctuality,regular prac-

tice,behaviour}
Honesty={truthfulness,trust towards the student,sincere in following rules and regulation}

Analized Data:

X Education Self Discipline Honesty

S (1.8,0.7,0.6) (1.5,0.3,0.8) (1.6,0.9,0.4)

Y (1.2,0.7,0.9) (1.6,0.7,0.6) (1.4,0.6,0.3)

R (1.3,1.1,0.5) (0.8,1.5,0.6) (1.4,0.8,0.8)

Table 1. Relation between Students and Required Qualities

Z First Place Second Place Third Place

Education (0.9,1.5,0.4) (0.5,1.3,0.6) (1.5,0.5,0.6)

Self Discipline (1.1,0.5,0.3) (1.5,0.6,0.7) (1.4,0.3,0.7)

Honesty (1.3,0.7,0.8) (1.1,0.7,0.4) (0.9,0.8,0.6)

Table 2. Relation between Required Qualities and Places

φ First Place Second Place Third Place

S 0.2385 0.2420 0.3155

Y 0.2767 0.3032 0.2961

R 0.2529 0.2118 0.2161

Table 3. ℵs Correlation between Students and Places
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φ∗ First Place Second Place Third Place

S 0.3527 0.3678 0.4719

Y 0.3138 0.3535 0.3300

R 0.2947 0.2537 0.2547

Table 4. Ÿs Correlation between Students and Places

Student Place

S Third Place

Y Second Place

R First Place

Table 5. Summery

Thus the student R got first place and awarded for the top-performing student of the year

2022-2023.Also, Student Y and S got second and third place.

7. Conclusion

This manuscript breaks new ground by offering a novel perspective on correlation within

the realm of Neutrosophic Over Soft Sets, contributing to the advancement of theoretical

frameworks in this specialized mathematical field. In addition to presenting a comprehensive

exploration of various operational characteristics inherent to Neutrosophic Over Soft Sets,

the manuscript introduces a fresh analytical approach by proposing a novel formula to quan-

tify correlation. The ℵs correlation and Ÿs correlation extend beyond traditional measures,

providing a nuanced understanding of the relationships within this mathematical framework.
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Furthermore, the manuscript demonstrates the practical applicability of the introduced corre-

lation measures through an illustrative scenario. In this scenario, Students R, Y, and S secure

the first, second, and third positions, respectively, culminating in the designation of Student R

as the top-performing student for the academic year 2022-2023. This synthesis of theoretical

innovation and practical application not only adds depth to the study of Neutrosophic Over

Soft Sets but also underscores the real-world relevance of the proposed measures. As such,

this manuscript holds significant implications for both theoretical researchers and practitioners

seeking advanced analytical tools within this mathematical domain.

In a similar vein, the utilization of the N o
s -set correlation measure extends across a variety

of domains, encompassing fields like medicine, industry, and construction.
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