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Abstract. A modified version of a Neutrosophic Set (NS), a Complex Neutrosophic Set (CNS) offers a more

accurate description of ambiguous situations than established fuzzy sets (FSs). It is widely applied in uncertain

control. This study offers the idea of Single-Valued Complex Neutrophilic Graph Structure (SVCNGS). Further

research is done into the relationship between an ηJ − edge regular SVCNGS degree and the ηJ -degree of a

vertex. Also, we introduce the notions of totally ηJ − edge regular and regular ηJ − edge SVCNGS. There is

an explanation of the conditions in which ηJ − edge regular SVCNGS and totally ηJ − edge regular SVCNGS

are same. Moreover, this study several ηJ − edge regular and totally ηJ − edge regular SVCNGS properties

using an example, and we have discussed their application in SVCNGS. Finally, we develop an algorithm that

explains the fundamental workings of our application.

Keywords: SVCNGS, ηJ − edge regular, totally ηJ − edge regular, application

—————————————————————————————————————————-

1. Introduction

The phrase FSs it initially used by L.A. Zadeh [48] in 1965 to describe a way to show

the ambiguity of FSs. The business sector is vital to our daily lives because it helps us see

ambiguities and identify them in most fields of science and medicine. T. Atanassov [4] sug-

gested that Intuitionistic FSs (IFSs) may be created by deriving a new component, degree of

membership and non-membership, based on the features of the FS. As a result, it can explain

more accurately and completely than a FS. However, it can only handle partial and ambiguous
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information; it cannot manage the ambiguous and contradictory informationthat frequently

occurs in real-life situations. It can only handle partial and ambiguous information, not the

ambiguous and indeterminate information that often occurs in real-life situations. Therefore,

the terms NS, a unifying field in logics and a generalization of the IFSs are introduced by

F. Smarandache [ [27], [28], [29], [30], [31]] and is used in many different fields to deal with

ambiguous and contradictory data. If the total of these values in the NS is between 0 and

3, the terms of truth membership, indeterminacy membership, and false membership are all

done separately, and the indeterminacy value is directly quantified. Neutrosophy: Neutral

Probability, Neutral Set, and Neutral Logic Introduce the idea of NS, N probability, and

logic in more detail. Due to the broad range of description situations it covers, the NS has

quickly drawn the attention of many scholars. This new set also helps to manage the vague-

ness brought on by the N scope. Furthermore, a thorough evaluation of Xindong Peng and

Jingguo Dai [40] citation is provided. A bibliometric analysis of the neutrosophic collection is

presented, covering the period from 1998 to 2017. Ramot [18] created the idea of a Complex

FS (CFS) in 2012 by changing the range of the membership function for the amount disc for

complex and real integers. A helpful generalisation of FS is the membership grade of this

concept, which is expressed as reiθ, where r stands for the amplitude term and θ for the phase

term. Only values from the complex plane’s unit circle are permitted. The phase term of CFS

matters because it can handle cyclical problems or persistently troubling circumstances more

successful. Given that this term is a part of CFS, there will undoubtedly be circumstances

in which another dimension is required. In contrast to every other type of information that

is currently available, CFS is described in this phrase. A detailed investigation of CFS’s [43]

was performed by Yazdanbakhsh and Dick. Alkouri and Salleh [2] first introduced the ideas of

CIFSs in 2012. It is important to familiarize out with the novel forms, such as CIFSs, which

significantly expand upon CFSs; useful details regarding these kinds of structures can be dis-

covered in [ [19], [20]]. Recently, Prem Kumar Singh developed the equation of complex vague

set idea lattice and its features in his paper [16]. K. Ullah and T. Mahmood [39] presented the

concept of CPFSs in 2019 in addition to expanding the range of existing distance measures to

take into consideration CPF values. Mumtaz Ali and Florentin Smarandache developed the

concept of a CNS in 2016 [32]. A complex-valued NS is one whose real-valued amplitude terms

for truth, indeterminacy, and falsehood, along with the phase terms that go along with them,

are combined to form its complex-valued membership functions. The NS is expanded upon by

the CNS. Further, the establishment of Hypersoft Set Hybrids with CFS, CIFS, and CNS are

introduced in 2020 by Atiqe U. R., Muhammad.S, Florentin Smarandache, and Muhammad

R. A [6]. In 1975, Rosenfeld [21] developed fuzzy graph theory. Examined the Fuzzy Graphs

(FG) for which Kauffmann created the fundamental concept in 1973. He explored a number of
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basic concepts in graph theory and developed some of their characteristics. In his remarks on

FGs, Bhattacharya [7] demonstrated that the conclusions drawn from (crisp) graph theory are

not necessarily applicable to FGs. In 1994, Shannon and Atanassov proposed the ideas of IF

relations and IFGs. Rashmanlou [15] studied FGs with irregular interval values. Additionally,

they defined FGs [17], various features of very irregular interval-valued FGs [17]. The Edge

Regular IFG was first proposed by M.G. Karunambigai and K. Palanivel [10] in 2015. CFGs

were developed by Thirunavukarasu et al. [38] to manage ambiguous and uncertain relation-

ships with periodic nature. CIFGs were defined by Yaqoob et al. [44]. They looked into the

homomorphisms of CIFG and demonstrated a CIFG usage among cellular network supplier

companies to test their proposed approach. CNGs were introduced by Yaqoob and Akram to

expand the idea of NGs and CIFGs [45]. They addressed various fundamental CNG operations

and described them using specific instances. They also demonstrated CNGs’ energy. Anam

Luqman, Muhammad Akram, and Florentin Smarandache [1] further elaborate on the idea of

CN Hypergraphs: New Social Network Models in 2019. Two voting processes are the best in-

stances and source of inspiration for CNS and the example is provided in their introduction to

prove the applicability of their suggested model. The research papers Applications of graph’s

total degree with bipolar fuzzy information and Estimation of most effected cycles and busiest

network route based on complexity function of graph in fuzzy environment in 2022 by Soumi-

tra Poulik and Ganesh Ghorai [ [33], [34], [35]] is worth being referred to for more information.

Also, in 2021 proposed the idea of Determining the order of journeys based on a graph’s Wiener

absolute index using bipolar fuzzy information. Sampathkumar [23] introduced Graph Struc-

tures (GSs) in 2006 to be a generalization of signed graphs and graphs with colored or labeled

edges. The idea of a FGS was first presented by Dinesh [8], and also discussed some relevant

properties. Recently, the notions of Operations on IFGSs were introduced by Muhammad

Akram [ [12], [13], [14]]. Also, introduce the ideas of simplified Interval-Valued PFGs with

applications and a novel decision-making approach under CPF environments further. Later,

the idea of complex Pythagorean fuzzy planar graphs was created.

1.1. Framework of this research

This concept can be restated in an abstract form then applied in SVCNGS. The organization

of this work is as follows:

• This study introduces the idea of SVCNGS. In regular SVCNGS, the relationship

between vertex degree and edge degree is further investigated.

• We also define total ηJ − edge regular SVCNGS and ηJ − edge regular SVCNGS. It

is described under which conditions ηJ − edge regular SVCNGS and total ηJ − edge

regular SVCNGS are comparable.
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• Furthermore, Applications and algorithm explaining for SVCNGS were also covered.

Finally, an explanation of all these studies is provided in Conclusion and future works.

2. Preliminaries

The construction of the research studies will be aided by the discussion of some fundamental

definitions and properties in this section.

Definition 2.1. [32] An object with the form of a SVCNS Q on a non-void set X

Q = {j, TQ(j)e
iαQ(j), IQ(j)e

iβQ(j), FQ(j)e
iγQ(j) : j ∈ X}

where i =
√
−1, amplitude terms TQ(j), IQ(j), FQ(j) ∈ [0, 1] and phase terms

αQ(j), βQ(j), γQ(j) ∈ [0, 2π].

Definition 2.2. [39] Let χ = {j, Tχ(j)e
iαχ(j), Iχ(j)e

iβχ(j), Fχ(j)e
iγχ(j) : j ∈ X}, η =

{j, Tη(j)e
iαη(j), Iη(j)e

iβη(j), Fη(j)e
iγη(j) : j ∈ X} be the two SVCNS in X, then

• χ ⊆ η if and only if Tχ(j) ≤ Tη(j), Iχ(j) ≤ Iη(j) and Fχ(j) ≤ Fη(j) for amplitude

terms and αχ(j) ≤ αη(j), βχ(j) ≤ βη(j) and γχ(j) ≤ γη(j) for phase terms, for all

j ∈ X;

• χ = η if and only if Tχ(j) = Tη(j), Iχ(j) = Iη(j) and Fχ(j) = Fη(j) for amplitude

terms and αχ(j) = αη(j), βχ(j) = βη(j) and γχ(j) = γη(j) for phase terms, for all

j ∈ X;

For simplicity, the (j, T (j)eiα(j), I(j)eiβ(j), F (j)eiγ(j) : j ∈ X) is called the SVCN Number

(SVCNN), where T (j), I(j), F (j) ∈ [0, 1] such that 0 ≤ T (j) + I(j) + F (j) ≤ 3 and α, β, γ ∈
[0, 2π].

Definition 2.3. [13] On a non-empty set X, a SVCNG is a pair G = (χ, η), where χ and η

are SVCNSs on X and a SVCN relation on X, respectively, such that:

Tη(rs)e
iαη(rs) ≤ min{Tχ(r), Tχ(s)}eimin{αχ(r),αχ(s)}

Iη(rs)e
iβη(rs) ≤ max{Iχ(r), Iχ(s)}eimax{βχ(r),βχ(s)}

Fη(rs)e
iγη(rs) ≤ max{Fχ(r), Fχ(s)}eimax{γχ(r),γχ(s)}

0 ≤ Tη(rs) + Iη(rs) + Fη(rs) ≤ 3 for all r, s ∈ X. We call χ and η the SVCN vertex set and

the SVCN edge set of G, respectively.

3. Some Result on SVCNGS

The concept of SVCNGS is introduced in this section, along with definitions that are useful

in understanding the main findings. With examples, we further analyse several SVCNGS

characteristics.
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Definition 3.1. Let τ = (γ, η1, η2, ..., ηk) is referred to as an SVCNGS of GS τ∗ =

(M,W1,W2, ...,Wk) if γ = {r, γ1(r)eiα1(r), γ2(r)e
iα2(r), γ3(r)e

iα3(r)} is an SVCN set on Q and

ηJ = {rs, η1J(rs)eiβ1J (rs), η2J(rs)e
iβ2J (rs), η3J(rs)e

iβ3J (rs)} are SVCN sets on M and WJ such

that

η1J(r, s)e
iβ1J (rs) ≤ min{γ1(r), γ1(s)}eimin{α1(r),α1(s)},

η2J(r, s)e
iβ2J (rs) ≤ max{γ2(r), γ2(s)}eimax{α2(r),α2(s)},

η3J(r, s)e
iβ3J (rs) ≤ max{γ3(r), γ3(s)}eimax{α3(r),α3(s)}

such that 0 ≤ η1J(r, s) + η2J(r, s) + η3J(r, s) ≤ 3 and β1J(rs), β2J(rs), β3J(rs) ∈ [0, 2π] for

all (r, s) ∈ RJ , J = 1, 2, ..., k.

Example 3.2. An SVCNGS τ = (γ, η1, η2) of a GS τ∗ = (M,W1,W2) given figure-1 is a

SVCNGS τ = (γ, η1, η2) such that γ = {u1(.4ei1.6π, .6ei1.2π, .3ei1.4π),
u2(.5e

i1.0π, .6ei.8π, .4ei1.6π), u3(.5e
i.8π, .4ei1.0π, .6ei1.4π), u4(.3e

i.6π, .5ei1.8π, .4ei1.6π)}.

η1(.4e
i1.0π, .6ei1.2π, .4ei1.6π) u2

u3u4

u1

η1
(.3
e
i.6
π , .6

e
i1
.8
π , .4

e
i1
.6
π )

η 2
(.
5e

i0
.8
π
,.
6e

i1
.0
π
,.
6e

i1
.6
π
)

η1(.3e
i.6π, .5ei1.8π, .6ei1.6π)

η 2
(.
3e

i.
6
π
,.
6e

i1
.8
π
,.
4e

i1
.6
π
)

Figure 1. τ = (γ, η1, η2) is SVCNGS of τ∗
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Definition 3.3. Let τ = (γ, η1, η2, ..., ηk) be an SVCNGS of GS τ∗ = {M,W1,W2, ...,Wk}.
Then the vertex ηJ − degree is defined as

dηJ (f) = (dη1J (f), dη2J (f), dη3J (f)),

dη1J (f) =
∑

(f,v)∈WJ

η1J(f, v)e
i
∑

(f,v)∈RJ
β1J (f,v),

dη2J (f) =
∑

(f,v)∈WJ

η2J(f, v)e
i
∑

(f,v)∈RJ
β2J (f,v),

dη3J (f) =
∑

(f,v)∈WJ

η3J(f, v)e
i
∑

(f,v)∈WJ
β3J (f,v),

∀J = 1, 2, ..., k.

Definition 3.4. A SVCNGS τ = (γ, η1, η2, ..., ηk) is ηJ − strong if

η1J(r, s)e
iβ1J (rs) = min{γ1(r), γ1(s)}eimin{α1(r),α1(s)},

η2J(r, s)e
iβ2J (rs) = max{γ2(r), γ2(s)}eimax{α2(r),α2(s)},

η3J(r, s)e
iβ3J (rs) = max{γ3(r), γ3(s)}eimax{α3(r),α3(s)} for all (r, s) ∈ WJ , J = 1, 2, ..., k.

Example 3.5. Let τ = (γ, η1, η2, ..., ηk) be an SVCNGS. Next, for every J = 1, 2, the degree

of a ηJ − strong vertex is shown in figure-1. The η1 − strong degree of vertex ui, i=1,2,3,4 is

dη1(u1) = (dη11(u1), dη21(u1), dη31(u1))

dη1(u1) = (.4ei1.0π, .6ei1.2π, .4ei1.6π),

dη1(u2) = (.7ei1.6π, 1.2ei3.0π, .8ei3.2π),

dη1(u3) = (.3ei.6π, .5ei1.8π, .6ei1.6π),

dη1(u4) = (.6ei1.2π, 1.1ei3.6π, 1.0ei3.2π)

The η2 − strong degree of vertex ui, i=1,2,3,4 is

dη2(u1) = (dη12(u1), dη22(u1), dη32(u1))

dη2(u1) = (.3ei.6π, .6ei1.8π, .4ei1.6π),

dη2(u2) = (.5ei.8π, .6ei1.0π, .6ei1.6π),

dη2(u3) = (.5ei.8π, .6ei1.0π, .6ei1.6π),

dη2(u4) = (.3ei.6π, .6ei1.8π, .4ei1.6π)

Theorem 3.6. Let τ = (γ, η1, η2, ..., ηk) be an SVCNGS of GS τ∗ = {M,W1,W2, ...,Wk}.
Then

∑n
i=1 dηJ (ui) = (2

∑
(ui,v)∈WJ

η1J(ui, v)e
i2

∑
(ui,v)∈WJ

β1J (ui,v), 2
∑

(ui,v)∈WJ
η2J(ui, v)

e
i2

∑
(ui,v)∈WJ

β2J (ui,v), 2
∑

(ui,v)∈WJ
η3J(ui, v)e

i2
∑

(ui,v)∈WJ
β3J (ui,v)) is ηJ − strong SVCNGS for

all J = 1, 2, ..., k.
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Example 3.7. Next, we demonstrate the above theorem’s example - 3.6. Let us Consider a

SVCNGS τ = (γ, η1, η2) as shown in figure-1. Then
∑4

i=1 dηJ (ui) =

(2
∑

(ui,v)∈WJ
η1J(ui, v)e

i2
∑

(ui,v)∈WJ
β1J (ui,v), 2

∑
(ui,v)∈WJ

η2J(ui, v)e
i2

∑
(ui,v)∈WJ

β2J (ui,v),

2
∑

(ui,v)∈WJ
η3J(ui, v)e

i2
∑

(ui,v)∈WJ
β3J (ui,v)) is ηJ − strong SVCNGS for all J = 1, 2.

Twice the degree of sum of η1 − edges in τ is

2
∑

(ui,v)∈W1

η11(ui, v)e
i2

∑
(ui,v)∈W1

β11(ui,v) = 2(η11(u1, u2) + η11(u2, u4) + η11(u3, u4))

ei2(β11(u1,u2)+β11(u2,u4)+β11(u3,u4))

= 2(.4 + .3 + .3)ei2(1.0π+.6π+.6π)

= 2.0ei4.4π

2
∑

(ui,v)∈W1

η21(ui, v)e
i2

∑
(ui,v)∈W1

β21(ui,v) = 2(η21(u1, u2) + η21(u2, u4) + η21(u3, u4))

ei2(β21(u1,u2)+β21(u2,u4)+β21(u3,u4))

= 2(.6 + .6 + .5)ei2(1.2π+1.8π+1.8π)

= 3.4ei9.6π

2
∑

(ui,v)∈W1

η31(ui, v)e
i2

∑
(ui,v)∈W1

β31(ui,v) = 2(η31(u1, u2) + η31(u2, u4) + η31(u3, u4))

ei2(β31(u1,u2)+β31(u2,u4)+β31(u3,u4))

= 2(.4 + .4 + .6)ei2(1.6π+1.6π+1.6π)

= 2.8ei9.6π

Degree of η1 − strong vertices in SVCNGS is given by Example-3.5.

4∑

i=1

dη1(ui) = (
4∑

i=1

dη1J (ui),
4∑

i=1

dη2J (ui),
4∑

i=1

dη3J (ui))

= (2.0ei4.4π, 3.4ei9.6π, 2.8ei9.6π)

4∑

i=1

dη1(ui) = (2
∑

(ui,v)∈W1

η11(ui, v)e
i2

∑
(ui,v)∈W1

β11(ui,v), 2
∑

(ui,v)∈W1

η21(ui, v)

e
i2

∑
(ui,v)∈W1

β21(ui,v), 2
∑

(ui,v)∈W1

λ31(ui, v)e
i2

∑
(ui,v)∈W1

β31(ui,v))
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Similarly, we calculate

4∑

i=1

dη2(ui) = (2
∑

(ui,v)∈W2

η12(ui, v)e
i2

∑
(ui,v)∈W2

β12(ui,v), 2
∑

(ui,v)∈W2

η22(ui, v)

e
i2

∑
(ui,v)∈W2

β22(ui,v), 2
∑

(ui,v)∈W2

η32(ui, v)e
i2

∑
(ui,v)∈W2

β32(ui,v))

= (1.6ei2.8π, 2.4ei5.6π, 2.0ei6.4π)

Definition 3.8. Let τ = (γ, η1, η2, ..., ηk) be an SVCNGS of GS τ∗ = {M,W1,W2, ...,Wk}. If
dηJ (ui) = (a, b, c) for all ui ∈ Q, then for every vertex with a degree of η1J − degree, there

is an equal degree of a; similarly, for every vertex with a degree of η2J − degree, there is an

equal degree of b; and for every vertex with a degree of η3J − degree, there is an equal degree

of c. For all J = 1, 2, ..., k, τ is then considered to be ηJ regular SVCNGS.

Definition 3.9. Let τ = (γ, η1, η2, ..., ηk) be an SVCNGS of GS τ∗ = {M,W1,W2, ...,Wk}.
The total degree of ηJ vertex is defined as

tdηJ (f) = (tdη1J (f), tdη2J (f), tdη3J (f))

tdη1J (f) = (
∑

(f,v)∈WJ

η1J(f, v) + γ1(f))e
i
∑

(f,v)∈WJ
β1J (f,v)+α1(f),

tdη2J (f) = (
∑

(f,v)∈WJ

η2J(f, v) + γ2(f))e
i
∑

(f,v)∈WJ
β2J (f,v)+α2(f),

tdη3J (f) = (
∑

(f,v)∈WJ

η3J(f, v) + γ3(f))e
i
∑

(f,v)∈WJ
β3J (f,v)+α3(f)

The total degree of every vertex in η1J has the same degree. n1 and the total degree of each

vertex in η2J has the same degree. n2, and the total degree of each vertex in η3J has the same

degree n3. For all J = 1, 2, ..., k, τ is then considered to be totally ηJ regular SVCNGS.

4. Edge Regular in SVCNGS

This section introduces the idea of ηJ − edge regular SVCNGS. Moreover, some properties

of the ηJ − edge regular SVCNGS are explained with examples.

Definition 4.1. Let τ = (γ, η1, η2, ..., ηk) be an SVCNGS of GS τ∗ = {M,W1,W2, ...,Wk}
and let eij ∈ WJ be an edge in τ . Then the degree of an ηJ − edge eij ∈ WJ is defined as

dηJ (eij) = (dη1J (eij), dη2J (eij), dη3J (eij))
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dη1J (eij) = dη1J (ui) + dη1J (uj)− 2η1J(ui, uj)e
i2β1J (ui,uj) (or)

dη1J (eij) = (
∑

ℓr

η1J(ui, uk) +
∑

ℓs

η1J(uk, uj))

ei
∑

ℓr β1J (ui,uk)+
∑

ℓs β1J (uk,uj)

dη2J (eij) = (dη2J (ui) + dη2J (uj)− 2η2J(ui, uj)e
i2β2J (ui,uj) (or)

dη2J (eij) =
∑

ℓr

η2J(ui, uk) +
∑

ℓs

η2J(uk, uj))

ei
∑

ℓr β2J (ui,uk)+
∑

ℓs β2J (uk,uj)

dη3J (eij) = (dη3J (ui) + dη3J (uj)− 2η3J(ui, uj)e
i2β3J (ui,uj) (or)

dη3J (eij) = (
∑

ℓr

η3J(ui, uk) +
∑

ℓs

η3J(uk, uj))

ei
∑

ℓr β3J (ui,uk)+
∑

ℓs β3J (uk,uj),

∀ ℓr = (ui, uk) ∈ WJ , k 6= j, ℓs = (uk, uj) ∈ WJ , k 6= iand J = 1, 2, ..., k.

Notation: An ηJ − edge of an SVCNGS is denoted by eij ∈ WJ or uiuj ∈ WJ .

Note:

dηlJ (eij) = (
∑

(ui,uj)∈WJ

η1J(ui, uj) +
∑

(uj ,uk)∈WJ

η1J(uj , uk)− 2η1J(ui, uj))

e
i
∑

(ui,uj)∈WJ
βlJ (ui,uj)+

∑
(uj,uk)∈WJ

β1J (uj ,uk)−2β1J (ui,uj)
, l = 1, 2, 3. and J = 1, 2, ..., k.

Definition 4.2. Let τ = (γ, η1, η2, ..., ηk) be an SVCNGS of GS τ∗ = {M,W1,W2, ...,Wk}.
The minimum ηJ − edge degree of τ is δηJ (G) = (δη1J (G), δη2J (G), δη3J (G)), where

δη1J (G) = ∧{dη1J (eij)/eij ∈ WJ}

δη2J (G) = ∧{dη2J (eij)/eij ∈ WJ}

δη3J (G) = ∧{dη3J (eij)/eij ∈ WJ}, ∀ J = 1, 2, ...k.

The maximum ηJ − edge degree of τ is ∆ηJ (G) = (∆η1J (G),∆η2J (G),∆η3J (G)), where

∆η1J (G) = ∨{dη1J (eij)/eij ∈ WJ}

∆η2J (G) = ∨{dη2J (eij)/eij ∈ WJ}

∆η3J (G) = ∨{dη3J (eij)/eij ∈ WJ}, ∀ J = 1, 2, ...k.

Definition 4.3. Let τ = (γ, η1, η2, ..., ηk) be an SVCNGS of GS G∗ = {M,W1,W2, ...,Wk}
and let eij ∈ WJ be an edge in τ . Then the total degree of an ηJ − edge eij ∈ WJ is defined as

tdηJ (eij) = (tdη1J (eij), tdη2J (eij), tdη3J (eij)),
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tdη1J (eij) =
∑

ℓr

η1J(ui, uk) +
∑

ℓs

η1J(uk, uj) + η1J(eij)

ei
∑

ℓr β1J (ui,uk)+
∑

ℓs β1J (uk,uj)+β1J (eij),

tdη2J (eij) =
∑

ℓr

η2J(ui, uk) +
∑

ℓs

η2J(uk, uj) + η2J(eij)

ei
∑

ℓr β2J (ui,uk)+
∑

ℓs β2J (uk,uj)+β2J (eij),

tdη3J (eij) =
∑

ℓr

η3J(ui, uk) +
∑

ℓs

η3J(uk, uj) + η3J(eij)

ei
∑

ℓr β3J (ui,uk)+
∑

ℓs β3J (uk,uj)+β3J (eij),

∀ ℓr = (ui, uk) ∈ WJ , k 6= j, ℓs = (uk, uj) ∈ WJ , k 6= iand J = 1, 2, ..., k.

Definition 4.4. Let τ = (γ, η1, η2, ..., ηk) be an SVCNGS of GS τ∗ = {M,W1,W2, ...,Wk}. If
dηJ (eij) = (p, q, r) for all eij ∈ WJ for each edge of η1J has the same degree p and for each

edge of η2J has the same degree q and for each edge of η3J has the same degree r. Then τ is

said to be ηJ − edge regular SVCNGS for all J = 1, 2, ..., k.

Example 4.5. Consider an SVCNGS

tau = (γ, η1, η2) of GS τ∗ = (M,W1,W2) given Figure-2 is ηJ − edge regular SVCNGS such

that γ = {u1(.4ei.5π, .3ei.4π, .5ei.6π),
u2(.4e

i.5π, .4ei.5π, .6ei.6π), u3(.5e
i.5π, .3ei.4π, .5ei.6π), u4(.4e

i.5π, .4ei.5π, .6ei.6π)}. The degree of

η1(.4e
i.5π, .4ei.5π, .6ei.6π) u2

u3u4

u1

η 1
(0
.4
ei
0
.5
π
,0
.4
ei
0
.5
π
,0
.6
ei
0
.6
π
)

η2(.4e
i.5π, .4ei.5π, .6ei.6π)

η 2
(.
4e

i.
5
π
,.
4e

i.
5
π
,.
6e

i.
6
π
)

Figure 2. τ = (γ, η1, η2) is regular SVCNGS of τ∗
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an η1 − edge.

dη1(e12) = (dη11(e12), dη21(e12), dη31(e12))

dη11(e12) = dη11(u1) + dη11(u2)− 2η11(u1, u2)e
i2β11(u1,u2) (or)

dη11(e12) = (
∑

(u2,u4)∈W1,u4 6=u1

η11(u2, u4))e
i
∑

(u2,u4)∈W1,u4 6=u1
β11(u2,u4)

= (.4 + .8− 2(.4))ei(.5π+1.0π−2(.5π))

= .4ei.5

dη21(e12) = dη21(u1) + dη21(u2)− 2η21(u1, u2)e
i2β21(u1,u2)

= (.4 + .8− 2(0.4))ei(.5π+1.0π−2(.5π))

= .4ei.5

dη31(e12) = dη31(u1) + dη31(u2)− 2η31(u1, u2)e
i2β31(u1,u2)

= (.6 + 1.2− 2(.6))ei(.6π+1.2π−2(.6π))

= .6ei.6π

dη1(e12) = (.4ei.5π, .4ei.5π, .6ei.6π)

Similarly, we calculate

dη1(e12) = dη1(e23) = dη1(e34) = dη1(e14) = (.4ei.5π, .4ei.5π, .6ei.6π)

The degree of an η2 − edge.

dη2(e12) = dη2(e23) = dη2(e34) = dη2(e14) = (.4ei.5π, .4ei.5π, .6ei.6π)

In the above example-4.5 is ηJ − edge regular SVCNGS for all J = 1, 2.

Definition 4.6. Let τ = (γ, η1, η2, ..., ηk) be an SVCNGS of GS τ∗ = {M,W1,W2, ...,Wk}.
If tdηJ (eij) = (x, y, z) for all eij ∈ WJ for each edge of η1J has the same total degree x and

for each edge of η2J has the same total degree y and for each edge of η3J has the same total

degree z. Then τ is said to be totally ηJ − edge regular SVCNGS for all J = 1, 2, ..., k.

Example 4.7. Consider an SVCNGS τ = (γ, η1, η2) of GS τ∗ = (M,W1,W2) is given Figure-2

in example-4.5 is totally ηJ − edge regular SVCNGS for all J = 1, 2. The total degree of an

η1 − edge is

tdη1(e12) = tdη1(e23) = tdη1(e34) = tdη1(e14) = (.8ei1.0π, .8ei1.0π, 1.2ei1.2π)

The total degree of an η2 − edge is

tdη2(e12) = tdη2(e23) = tdη2(e34) = tdη2(e14) = (.8ei1.0π, .8ei1.0π, 1.2ei1.2π)

Hence, τ is totally ηJ − edge regular SVCNGS for all J = 1, 2.
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Theorem 4.8. Let τ = (γ, η1, η2, ..., ηk) be an SVCNGS of GS τ∗ = {M,W1,W2, ...,Wk} and

τ∗ is a cycle. Then
∑n

i=1 dηJ (ui) =
∑n

i=1 dηJ (eij) for all J = 1, 2, ..., k and j = i+ 1.

Proof. Given that τ = (γ, η1, η2, ..., ηk) be an SVCNGS of GS τ∗ = {M,W1,W2, ...,Wk} and

τ∗ is a cycle u1u2u3...un. Then

n∑

i=1

dηJ (eij) = (
n∑

i=1

dη1J (eij),
n∑

i=1

dη2J (eij),
n∑

i=1

dη3J (eij))

∀ J = 1, 2, ..., k and j = i+ 1.

Consider
∑n

i=1 dη1J (eij)

= dη1J (e12) + dη1J (e23) + ...+ dη1J (en1), where un+1 = u1

= dη1J (u1) + dη1J (u2)− 2η1J(u1, u2)e
i2β1J (u1,u2) + dη1J (u2) + dη1J (u3)

−2η1J(u2, u3)e
i2β1J (u2,u3) + ...+ dη1J (un) + dη1J (u1)− 2η1J(un, u1)e

i2β1J (un,u1)

= 2dη1J (u1) + 2dη1J (u2) + ...+ 2dη1J (un)

−2(η1J(u1, u2)e
i2β1J (u1,u2) + η1J(u2, u3)e

i2β1J (u2,u3) + ...+ η1J(un, u1)e
i2β1J (un,u1))

= 2
∑

ui∈M

dη1J (ui)− 2
n∑

i=1

η1J(ui, ui+1)e
i2

∑n
i=1 β1J (ui,ui+1)

=
∑

ui∈M

dη1J (ui) +
∑

ui∈M

dη1J (ui)− 2
n∑

i=1

η1J(ui, ui+1)e
i2

∑n
i=1 β1J (ui,ui+1)

=
∑

ui∈M

dη1J (ui) + 2
n∑

i=1

η1J(ui, ui+1)e
i2

∑n
i=1 β1J (ui,ui+1) − 2

n∑

i=1

η1J(ui, ui+1)e
i2

∑n
i=1 β1J (ui,ui+1)

=
∑

ui∈M

dη1J (ui)

Similarly, we derive the equation
∑n

i=1 dη2J (eij) =
∑

ui∈M
dη2J (ui),∑n

i=1 dη3J (eij) =
∑

ui∈M
dη3J (ui).

Hence,
∑n

i=1 dηJ (ui) =
∑n

i=1 dηJ (eij) for all J = 1, 2, ..., k and j = i+ 1.

Theorem 4.9. Let τ = (γ, η1, η2, ..., ηk) be an SVCNGS on a crisp graph τS of GS τ∗ =

{M,W1,W2, ...,Wk}. Then
∑

eij∈WJ
dηJ (eij) = (

∑
eij∈WJ

d∗ηJ (eij)η1J(uiuj)e
iβ1J (uiuj),

∑
eij∈WJ

d∗ηJ (eij)η2J(uiuj)e
iβ2J (uiuj),

∑
eij∈WJ

d∗ηJ (eij)η3J(uiuj)e
iβ3J (uiuj)) where d∗ηJ (eij) =

d∗ηJ (ui) + d∗ηJ (uj)− 2 for all eij ∈ WJ and J = 1, 2, ..., k.

Proof. Let τ = (γ, η1, η2, ..., ηk) be an SVCNGS on a crisp graph τS of GS τ∗ =

{M,W1,W2, ...,Wk}. We know that dηJ (eij) = (dη1J (eij), dη2J (eij), dη3J (eij)).
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Therefore, in
∑

eij∈WJ
dη1J (eij), every η1Je

iβ1J −edge contributes it’s truth membership values

exactly number of η1Je
iβ1J − edges adjacent to that η1Je

iβ1J − edge times.

Thus, in
∑

eij∈WJ
dη1J (eij), each η1J(uiuj)e

iβ1J (uiuj) appears d∗η1J (eij) times.

Hence,
∑

eij∈WJ

dη1J (eij) =
∑

eij∈WJ

d∗η1J (eij)η1J(uiuj)e
iβ1J (uiuj)

Similarly, we solve the equation

∑

eij∈WJ

dη2J (eij) =
∑

eij∈WJ

d∗η2J (eij)η2J(uiuj)e
iβ2J (uiuj)

∑

eij∈WJ

dη3J (eij) =
∑

eij∈WJ

d∗η3J (eij)η3J(uiuj)e
iβ3J (uiuj)

Hence,
∑

eij∈WJ
dηJ (eij) = (

∑
eij∈WJ

d∗ηJ (eij)η1J(uiuj)e
iβ1J (uiuj),

∑
eij∈WJ

d∗ηJ (eij)η2J(uiuj)e
iβ2J (uiuj),

∑
eij∈WJ

d∗ηJ (eij)η3J(uiuj)e
iβ3J (uiuj))

Theorem 4.10. Let τ = (γ, η1, η2, ..., ηk) be an SVCNGS on a ηJ regular crisp graph τS

of GS τ∗ = {M,W1,W2, ...,Wk}. Then
∑

eij∈WJ
dηJ (eij) = ((k − 1)

∑
ui∈M

dη1J (ui), (k −
1)

∑
ui∈M

dη2J (ui), (k − 1)
∑

ui∈M
dη3J (ui))

Proof. By Theorem-4.9,

∑

eij∈WJ

dηJ (eij) = (
∑

eij∈WJ

d∗η1(eij)η1J(uiuj),
∑

eij∈WJ

d∗ηJ (eij)η2J(uiuj),

∑

eij∈WJ

d∗ηJ (eij)η3J(uiuj))

= (
∑

ui,uj∈WJ

(d∗ηJ (ui) + d∗ηJ (uj)− 2)η1J(ui, uj)e
iβ1J (ui,uj),

∑

ui,uj∈WJ

(d∗ηJ (ui) + d∗ηJ (uj)− 2)η2J(ui, uj)e
iβ2J (ui,uj),

∑

ui,uj∈WJ

(d∗ηJ (ui) + d∗ηJ (uj)− 2)η3J(ui, uj)e
iβ3J (ui,uj))
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Since, τS is a ηJ regular crisp graph of GS, d∗ηJ (ui) = k for all ui ∈ M .

∑

eij∈WJ

dηJ (eij) = ((k + k − 2)
∑

ui,uj∈WJ

λ1J(ui, uj)e
i
∑

ui,uj∈WJ
λ1J (ui,uj)

,

(k + k − 2)
∑

ui,uj∈WJ

η2J(ui, uj)e
i
∑

ui,uj∈WJ
η2J (ui,uj)

,

(k + k − 2)
∑

ui,uj∈WJ

η3J(ui, uj)e
i
∑

ui,uj∈WJ
η3J (ui,uj)

)

= (2(k − 1)
∑

ui,uj∈WJ

η1J(ui, uj)e
i
∑

ui,uj∈WJ
η1J (ui,uj)

,

2(k − 1)
∑

ui,uj∈WJ

η2J(ui, uj)e
i
∑

ui,uj∈WJ
η2J (ui,uj)

,

2(k − 1)
∑

ui,uj∈WJ

η3J(ui, uj)e
i
∑

ui,uj∈WJ
η3J (ui,uj)

)

= ((k − 1)
∑

ui∈M

dη1J (ui), (k − 1)
∑

ui∈M

dη2J (ui),

(k − 1)
∑

ui∈Q

dη3J (ui))

Theorem 4.11. Let τ = (γ, η1, η2, ..., ηk) be an SVCNGS on a crisp graph τS of GS τ∗ =

{Q,R1, R2, ..., Rk}. Then
∑

eij∈WJ
tdηJ (eij) = (

∑
eij∈WJ

d∗ηJ (eij)η1J(uiuj)e
iβ1J (uiuj) +

∑
uiuj∈WJ

η1J(uiuj)e
i
∑

uiuj∈WJ
β1J (uiuj)

,
∑

eij∈WJ
d∗ηJ (eij)η2J(uiuj)e

iβ2J (uiuj) +
∑

uiuj∈RJ
η2J(uiuj)e

i
∑

uiuj∈WJ
β2J (uiuj)

,
∑

eij∈WJ
d∗ηJ (eij)η3J(uiuj)e

iβ3J (uiuj) +
∑

uiuj∈RJ
η3J(uiuj)e

i
∑

uiuj∈WJ
β3J (uiuj)

)

Proof. By Definition-4.3 of total degree of ηJ − edge of G̃.

tdηJ (eij) = (tdη1J (eij), tdη2J (eij), tdη3J (eij))
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∑

eij∈WJ

tdηJ (eij) = (
∑

uiuj∈WJ

tdη1J (eij),
∑

uiuj∈WJ

tdη2J (eij),
∑

uiuj∈WJ

tdη3J (eij))

= (
∑

eij∈WJ

(dη1J (eij) + η1J(uiuj)e
iβ1J (uiuj)),

∑

eij∈WJ

(dη2J (eij) + η2J(uiuj)e
iβ2J (uiuj)),

∑

eij∈WJ

(dη3J (eij) + η3J(uiuj)e
iβ3J (uiuj)))

= (
∑

eij∈WJ

dη1J (eij) +
∑

uiuj∈WJ

η1J(uiuj)e
i
∑

uiuj∈WJ
β1J (uiuj)

,

∑

eij∈WJ

dη2J (eij) +
∑

uiuj∈WJ

η2J(uiuj)e
i
∑

uiuj∈WJ
β2J (uiuj)

,

∑

eij∈WJ

dη3J (eij) +
∑

uiuj∈WJ

η3J(uiuj)e
i
∑

uiuj∈WJ
β3J (uiuj)

)

By Theorem-4.9, we get

∑

eij∈WJ

tdηJ (eij) = (
∑

eij∈WJ

d∗ηJ (eij)η1J(uiuj)e
iβ1J (uiuj) +

∑

uiuj∈WJ

η1J(uiuj)e
i
∑

uiuj∈WJ
β1J (uiuj)

,

∑

eij∈WJ

d∗ηJ (eij)η2J(uiuj)e
iβ2J (uiuj) +

∑

uiuj∈WJ

η2J(uiuj)e
i
∑

uiuj∈WJ
β2J (uiuj)

,

∑

eij∈WJ

d∗ηJ (eij)η3J(uiuj)e
iβ3J (uiuj) +

∑

uiuj∈WJ

η3J(uiuj)e
i
∑

uiuj∈WJ
β3J (uiuj)

)

Theorem 4.12. Let τ = (γ, η1, η2, ..., ηk) be an SVCNGS of GS τ∗ = {M,W1,W2, ...,Wk}. If

and only if the subsequent statements are equivalent, then ηJ is a constant functional.

(i) τ is an ηJ − edge regular SVCNGS.

(ii) τ is a totally ηJ − edge regular SVCNGS.

Proof. Let us assume that ηJ is a function that is constant. Then η1J(uiuj)e
iβ1J (uiuj) = c1,

η2J(uiuj)e
iβ2J (uiuj) = c2 and η3J(uiuj)e

iβ3J (uiuj) = c3 for every uiuj ∈ WJ , where c1, c2, c3 are

constants. (1)

Assume that τ is ηJ − edge regular SVCNGS. Then dηJ (eij) = (p, q, r) for all eij ∈ WJ . (2)

Consider

tdηJ (eij) = (dη1J (eij) + η1J(uiuj)e
iβ1J (uiuj),

dη2J (eij) + η2J(uiuj)e
iβ2J (uiuj),

dη3J (eij) + η3J(uiuj)e
iβ3J (uiuj))

= (p+ c1, q + c2, r + c3) for all uiuj ∈ WJ by (1) and (2)
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which implies τ is totally ηJ − edge regular SVCNGS.

Therefore, (i) ⇒ (ii).

Let τ be totally ηJ − edge regular SVCNGS. Then tdηJ (eij) = (x, y, z) for all eij ∈ WJ .

tdηJ (eij) = (dη1J (eij) + η1J(uiuj)e
iβ1J (uiuj), dη2J (eij) + η2J(uiuj)e

iβ2J (uiuj),

dη3J (eij) + η3J(uiuj)e
iβ3J (uiuj)).

Now,

dηJ (eij) = (dη1J (eij), dη2J (eij), dη3J (eij))

= (x− η1J(uiuj)e
iβ1J (uiuj), y − η2J(uiuj)e

iβ2J (uiuj), z − η3J(uiuj)e
iβ3J (uiuj))

= (x− c1, y − c2, z − c3) by(1)

Hence, τ is ηJ − edge regular SVCNGS.

Thus, (ii) ⇒ (i).

Conversely, suppose that (i) and (ii) are equivalent.

As a resultτ is ηJ−edge regular SVCNGS if and only if τ is totally ηJ−edge regular SVCNGS.

We have to prove that ηJ is a constant function.

Let us assume that ηJ is not a constant function. (3)

Then

η1J(ui, uj)e
iβ1J (ui,uj) = η1J(ur, us)e

iη1J (ur,us), η2J(ui, uj)e
iβ2J (ui,uj) = λ2J(ur, us)e

iλ2J (ur,us)

and λ3J(ui, uj)e
iβ3J (ui,uj) = η3J(ur, us)e

iη3J (ur,us) for at least one pair of uiuj , urus ∈ RJ .

Let τ is ηJ − edge regular SVCNGS. Then dηJ (eij) = dηJ (ers) = (p, q, r) (4)

⇒ tdηJ (eij) = (dη1J (eij) + η1J(ui, uj)e
iβ1J (ui,uj), dη2J (eij) + η2J(ui, uj)e

iβ2J (ui,uj),

dη3J (eij) + η3Je
iβ1J (ui,uj))

= (p+ η1J(ui, uj)e
iβ1J (ui,uj), q + η2J(ui, uj)e

iβ2J (ui,uj),

r + η3J(ui, uj)e
iβ3J (ui,uj)) ∀ uiuj ∈ WJ .

and

tdηJ (ers) = (dη1J (ers) + η1J(urus)e
iβ1J (urus), dη2J (ers) + η2J(urus)e

iβ2J (urus),

dη3J (ers) + η3J(urus)e
iβ3J (urus))

= (p+ η1J(urus)e
iβ1J (urus), q + η2J(urus)e

iβ2J (urus),

r + η3J(urus)e
iβ3J (urus)), ∀ urus ∈ WJ .

Since,

η1J(ui, uj)e
iβ1J (ui,uj) 6= η1J(ur, us)e

iβ1J (ur,us), η2J(ui, uj)e
iβ2J (ui,uj) 6= η2J(ur, us)e

iβ2J (ur,us)

and η3J(ui, uj)e
iβ3J (ui,uj) 6= η3J(ur, us)e

iβ3J (ur,us)

⇒ tdηJ (eij) 6= tdηJ (ers)
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⇒ Not all of τ is a totally ηJ − edge regular SVCNGS

⇒ it is a contradiction.

Hence, ηJ is a constant function.

Theorem 4.13. Let τ = (γ, η1, η2, ..., ηk) be an SVCNGS is both ηJ − edge regular and totally

ηJ − edge regular of GS τ∗ = {M,W1,W2, ...,Wk}. Then ηJ is a constant function.

Proof. The result is trivial according to Theorem-4.12.

Note: The above theorem-4.12 does not hold in its converse.

Theorem 4.14. Let ηJ be constant functions in an SVCNGS τ = (γ, η1, η2, ..., ηk) of GS

τ∗ = {M,W1,W2, ...,Wk} and if τ is ηJ regular, Then totally ηJ − edge regular.

Proof. Let τ = (γ, η1, η2, ..., ηk) be a ηJ regular SVCNGS. Then dηJ (ui) = (a, b, c) for all

ui ∈ M . Given that ηJ are constants. That is, ηJ(ui, uj) = (c1, c2, c3) for all uiuj ∈ WJ where

c1, c2, c3 are constant

We have to prove that τ is totally ηJ − edge regular SVCNGS.

By Definition-4.3 of totally ηJ − edge degree, we have

tdηJ (eij) = (tdη1J (eij), tdη2J (eij), tdη3J (eij))

where

tdη1J (eij) = dη1J (ui) + dη1J (uj)− η1J(ui, uj)e
iβ1J (ui,uj), ∀ uiuj ∈ WJ

= a+ a− c1, ∀ uiuj ∈ WJ (∴ τ is regular)

= 2a+ c1 = constant, ∀ uiuj ∈ WJ .

Similarly, we solve the equation

tdη2J (eij) = dη2J (ui) + dη2J (uj)− η2J(ui, uj)e
iβ2J (ui,uj), ∀ uiuj ∈ WJ

= b+ b− c2, ∀ uiuj ∈ WJ (∴ τ is regular)

= 2b+ c2 = constant, ∀ uiuj ∈ WJ .

tdη3J (eij) = dη3J (ui) + dη3J (uj)− η3J(ui, uj)e
iβ3J (ui,uj), ∀ uiuj ∈ WJ

= c+ c− c3, ∀ uiuj ∈ WJ (∴ τ is regular)

= 2c+ c2 = constant, ∀ uiuj ∈ WJ .

(ie) tdηJ (eij) = (2a+ c1, 2b+ c2, 2c+ c3)

⇒ τ is a totally ηJ − edge regular SVCNGS.
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Theorem 4.15. Let τ = (γ, η1, η2, ..., ηk) be an SVCNGS on a regular crisp graph τS of GS

τ∗ = {Q,R1, R2, ..., Rk}. Then ηJ is a constant if and only if τ is both ηJ regular and ηJ−edge

regular SVCNGS.

Proof. Let τ = (γ, η1, η2, ..., ηk) be an SVCNGS on a regular crisp GS τ∗ =

{M,W1,W2, ...,Wk}.
Assume that ηJ are constant functions, that is ηJ(ui, uj) = (c1, c2, c3) for all uiuj ∈ WJ where

c1, c2, c3 are constant

To prove: τ is both ηJ regular and totally ηJ − edge regular SVCNGS. By Definition-3.4 of

ηJ − degree of a vertex,

dηJ (ui) = (dη1J (ui), dη2J (ui), dη3J (ui))

= (
∑

(ui,vj)∈WJ

η1J(ui, vj)e
i
∑

(ui,vj)∈WJ
β1J (ui,vj)

,
∑

(ui,vj)∈WJ

η2J(ui, vj)e
i
∑

(ui,vj)∈WJ
β2J (ui,vj)

,

∑

(ui,vj)∈WJ

η3J(ui, vj)e
i
∑

(ui,vj)∈WJ
β3J (ui,vj)

), ∀ ui ∈ M

= (
∑

(ui,vj)∈WJ

c1,
∑

(ui,vj)∈WJ

c2,
∑

(ui,vj)∈WJ

c3)

= (xc1, yc2, zc3)

Hence, τ is ηJ regular SVCNGS.

Now,

tdηJ (eij) = (tdη1J (eij), tdη2J (eij), tdη3J (eij)),where

tdη1J (eij) =
∑

uiuk∈WJ ,k 6=j

η1J(ui, uk)e
i
∑

uiuk∈WJ,k 6=j β1J (ui,uk) +

∑

ukuj∈WJ ,k 6=i

η1J(uk, uj)e
i
∑

ukuj∈WJ,k 6=i β1J (uk,uj)
+ η1J(ui, uj)e

iβ1J (ui,uj)

=
∑

uiuk∈WJ ,k 6=j

c1 +
∑

ukuj∈WJ ,k 6=i

c1 + c1

= c1(x− 1) + c1(x− 1) + c1, ∀ uiuj ∈ WJ

= c1(2x− 1), ∀ uiuj ∈ WJ .

Similarly, we solve the equation

tdλ2J
(eij) = c2(2y − 1), ∀ uiuj ∈ WJ

tdλ3J
(eij) = c3(2z − 1), ∀ uiuj ∈ WJ

Hence, τ is also totally ηJ regular SVCNGS.

Conversely, assume that τ is both ηJ regular and ηJ − edge regular SVCNGS.

To prove: ηJ is a constant function.
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Since, τ is ηJ regular, dηJ (ui) = (a, b, c), ∀ ui ∈ M.

Also, τ is totally ηJ − edge regular.

Then tdηJ (eij) = (x, y, z, ), ∀ uiuj ∈ WJ .

By Definition-4.3 of totally ηJ − edge degree,

tdηJ (eij) = (tdη1J (eij), tdη2J (eij), tdη3J (eij)),where

tdηJ (eij) = dη1J (ui) + dη1J (uj)− η1J(ui, uj)e
iβ1J (ui,uj), ∀ uiuj ∈ WJ

x = a+ a− η1J(ui, uj)e
iβ1J (ui,uj), ∀ uiuj ∈ WJ

η1J(ui, uj)e
iβ1J (ui,uj) = 2a− x, ∀ uiuj ∈ WJ .

Similarly, we solve the equation

η2J(ui, uj)e
iβ2J (ui,uj) = 2b− y, ∀ uiuj ∈ WJ .

η3J(ui, uj)e
iβ3J (ui,uj) = 2c− z, ∀ uiuj ∈ WJ .

Hence, ηJ is a constant function.

Theorem 4.16. Let τ = (γ, η1, η2, ..., ηk) be an SVCNGS on a crisp graph τS of GS τ∗ =

{M,W1,W2, ...,Wk}. If ηJ is constant functions, then τ is an ηJ − edge regular SVCNGS if

and only if τS is an ηJ − edge regular.

Proof. Given that ηJ is constant functions. That is, ηJ(ui, uj)e
iβJ (ui,uj) = (c1, c2, c3) for all

uiuj ∈ WJ where c1, c2, c3 are constants.

Assume that τ is an ηJ − edge regular.

To Prove: τS is an ηJ − edge regular.

Suppose that τS is not an ηJ − edge regular. Then dηJ (eij) 6= dηJ (ers) for at least one pair of

eij , ers ∈ WJ .

By Definition-4.1 of an ηJ − edge degree of an SVCNGS,

dηJ (eij) = (dη1J (eij), dη2J (eij), dη3J (eij)),
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where

dη1J (eij) =
∑

uiuk∈WJ ,k 6=j

η1J(ui, uk)e
i
∑

uiuk∈WJ,k 6=j β1J (ui,uk) +

∑

ukuj∈WJ ,k 6=i

η1J(uk, uj)e
i
∑

ukuj∈WJ,k 6=i β1J (uk,uj)

=
∑

uiuk∈WJ ,k 6=j

c1 +
∑

ukuj∈WJ ,k 6=i

c1

= c1(d
∗
ηJ
(ui)− 1) + c1(d

∗
ηJ
(uj)− 1),

= c1(d
∗
ηJ
(ui) + d∗η1J (uj)− 2)

= c1(d
∗
ηJ
(eij))

Similarly, we solve the equation

dη2J (eij) = c2(d
∗
ηJ
(eij))

dη3J (eij) = c3(d
∗
ηJ
(eij))

∴ dηJ (eij) = (c1(d
∗
ηJ
(eij)), c2(d

∗
ηJ
(eij)), c3(d

∗
ηJ
(eij))),

dηJ (ejk) = (c1(d
∗
ηJ
(ejk)), c2(d

∗
ηJ
(ejk)), c3(d

∗
ηJ
(ejk)))

Since, d∗ηJ (eij) 6= d∗ηJ (ejk) ⇒ dηJ (eij) 6= dηJ (ejk). Thus, τ is not an ηJ − edge regular. Our

assumption is contradicted by this.

Hence, τS is an ηJ − edge regular.

Conversely, assume that ηJ are constant functions and τS is an ηJ − edge regular.

To prove that: τ is an ηJ − edge regular SVCNGS.

Suppose that τ is not an ηJ − edge regular SVCNGS. Then dηJ (eij) 6= dηJ (ers) for at least one

pair of uiuj , urus ∈ RJ

(dη1J (eij), dη2J (eij), dη3J (eij)) 6= (dη1J (ers), dη2J (ers), dη3J (ers))

Now,

dη1J (eij) 6= dη1J (ers),

∑

uiuk∈WJ ,k 6=j

η1J(ui, uk)e
i
∑

uiuk∈WJ,k 6=j β1J (ui,uk) +
∑

ukuj∈WJ ,k 6=i

η1J(uk, uj)e
i
∑

ukuj∈WJ,k 6=i β1J (uk,uj) 6=

∑

urut∈WJ ,t 6=s

η1J(ur, ut)e
i
∑

urut∈WJ,t 6=s η1J (ur,ut) +
∑

utus∈WJ ,t 6=r

η1J(ut, us)e
i
∑

utus∈WJ,t 6=r β1J (ut,us),

S.Angelin Kavitha Raj, S.N.Suber Bathusha, S. Satham Hussain, R. Jahir Hussain, Edge
Regular Complex Neutrosophic Graph Structure and it is Application

Neutrosophic Sets and Systems, Vol. 64, 2024                                                                              160



c1(dη1J (ui)− 1) + c1(dη1J (uj)− 1) 6= c1(dη1J (ur)− 1) + c1(dη1J (us)− 1),

c1(dη1J (ui) + dη1J (uj)− 2) 6= c1(dη1J (ur) + dη1J (us)− 2),

c1dη1J (eij) 6= c1dη1J (ers)

dη1J (eij) 6= dη1J (ers).

Similarly, we solve the equation.

dη2J (eij) 6= dη2J (ers),

dη3J (eij) 6= dη3J (ers)

∴ (dη1J (eij), dη2J (eij), dη3J (eij)) 6= (dη1J (ers), dη2J (ers), dη3J (ers))

Our assumption is contradicted by this. τS is an ηJ − edge regular.

Hence, τ is an ηJ − edge regular SVCNGS.

Theorem 4.17. Let τ = (γ, η1, η2, ..., ηk) be a ηJ regular SVCNGS of GS τ∗ =

{M,W1,W2, ...,Wk}. Then τ is an ηJ − edge regular SVCNGS if and only if ηJ is constant

functions.

Proof. Let

tau = (γ, η1, η2, ..., ηk) be a ηJ regular SVCNGS of GS τ∗ = {M,W1,W2, ...,Wk}. Then

dηJ (ui) = (a, b, c) for all ui ∈ M . Assume that ηJ is constant functions, that is ηJ(ui, uj) =

(c1, c2, c3), ∀ uiuj ∈ WJ where c1, c2, c3 are constants.

By Definition-4.1 of an ηJ − edge degree,

dηJ (eij) = (dη1J (eij), dη2J (eij), dη3J (eij)),

dη1J (eij) = dη1J (ui) + dη1J (uj)− 2η1J(ui, uj)e
i2β1J (ui,uj)

= a+ a− 2c1

= 2(a− c1)

Similarly, we solve the equation

dη2J (eij) = 2(b− c2)

dη3J (eij) = 2(c− c3)

∴ dηJ (eij) = (2(a− c1), 2(b− c2), 2(c− c3)).

Hence, τ is an ηJ − edge regular SVCNGS.

Conversely, we assume that τ is an ηJ − edge regular SVCNGS.

To prove that ηJ is constant functions.
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dηJ (eij) = (p, q, r) for all eij ∈ WJ

Now,

dη1J (eij) = dη1J (ui) + dη1J (uj)− 2η1J(ui, uj)e
i2β1J (ui,uj)

p = a+ a− 2η1J(ui, uj)e
i2β1J (ui,uj)

η1J(ui, uj)e
i2β1J (ui,uj) =

(2a− p)

2

Similarly, we solve the equation

η2J(ui, uj)e
iβ2J (ui,uj) =

(2b− q)

2

η3J(ui, uj)e
iβ3J (ui,uj) =

(2c− p)

2

∴ λJ is constant functions.

5. Application

Applications are used in this article to find ambiguities in all facets of human existence.

This article discusses the developments in all countries around the world, as well as the rea-

sons for their growth. We will compute the growth and value of fundamental needs across the

nations of the world. We will determine the value of a country based on how much education

its citizens have access to and how much the government helps the country’s poor residents.

The medical facilities provided by the government for its citizens as well as the contribution

it provides to global health, are also taken into account. Through the contribution of military

security in that country, we can ascertain the level of security that the people get. We can also

find out how much both the government and the inhabitants of that country contribute to the

development of its economy. A country’s government measures its progress based on how well

it upholds the country’s laws and works in the best interests of the people. We can determine a

country’s progress and strength using all the aforementioned variables. We regard a country’s

strength and development to be calculated as γ1e
iα1 , its weakness and underdevelopment to

be calculated as γ3e
iα3 , and we consider a country’s strength and weakness that we cannot

predict, ie., indeterminacy to be calculated as γ2e
iα2 . We’re going to use an ambiguous value

to quantify it. A set M is considered to show nations with the highest rates of strength and

development. M={United States, China, Russia, Germany, United Kingdom, Japan, France,

South Korea}. We can determine the development correlation between the United States and

other countries using our definition-3.1 (see Table-2). We can determine the development cor-

relation between Japan and other countries (see Table-3). We can determine the development

correlation between China and other countries (see Table-4). We can determine the devel-

opment correlation between Russia and other countries (see Table-5). We can determine the
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Table 1

Country γ1e
iα1 γ2e

iα2 γ3e
iα3

United States (US) .8ei.7π .4ei.6 .6ei0.71π

Japan (J) .7ei.6π .60ei.7π .51ei.6π

China (C) .8ei.8π .52ei.4π .4ei.5π

Russia (R) .62ei.5π .5ei.4π .5ei.6π

Germany (G) .5ei.6π .6ei.7π .6ei.7π

United Kingdom (U) .7ei.5π .5ei.6π .4ei.7π

France (F) .6ei.4π .7ei.5π .5ei.7π

South Korea (S) .7ei.6π .4ei.7π .6ei.5π

Table 2. United States and other countries

(US, C) (US,G) (US,S)

(.8ei.7π, .4ei.5π, .4ei.5π) (.5ei.6π, .6ei.7π, .6ei.7π) (.7ei.5π, .4ei.7π, .6ei.7π)

(.7ei.6π, .4ei.6π, .6ei.7π) (.5ei.6π, .4ei.5π, .5ei.6π) (.6ei.5π, .4ei.6π, .5ei.5π)

(.5ei.4π, .5ei.6π, .5ei.5π) (.5ei.6π, .5ei.6π, .4ei.5π) (.7ei.6π, .3ei.5π, .3ei.5π)

(.7ei.7π, .5ei.5π, .5ei.6π) (.4ei.5π, .5ei.6π, .4ei.5π) (.6ei.4π, .5ei.6π, .4ei.5π)

(.7ei.7π, .5ei.6π, .6ei.5π) (.5ei.5π, .5ei.6π, .4ei.5π) (.7ei.6π, .4ei.6π, .5ei.6π)

Table 3. Japan and other countries

(J, R) (J,U) (J,F)

(.6ei.3π, .6ei.7π, .5ei.6π) (.7ei.5π, .5ei.5π, .4ei.5π) (.6ei.4π, .7ei.7π, .5ei.7π)

(.5ei.4π, .5ei.6π, .5ei.3π) (.6ei.4π, .5ei.5π, .5ei.7π) (.6ei.3π, .6ei.6π, .5ei.3π)

(.5ei.4π, .4ei.6π, .4ei.5π) (.6ei.5π, .5ei.6π, .5ei.4π) (.5ei.3π, .6ei.5π, .5ei.2π)

(.5ei.4π, .5ei.5π, .6ei.5π) (.4ei.5π, .5ei.6π, .4ei.7π) (.6ei.4π, .4ei.3π, .4ei.5π)

(.6ei.5π, .4ei.5π, .4ei.3π) (.5ei.5π, .5ei.6π, .5ei.5π) (.6ei.4π, .7ei.6π, .5ei.4π)

Table 4. China and other countries

(C, G) (C, U) (C, S)

(.5ei.5π, .6ei.7π, .6ei.7π) (.6ei.5π, .5ei.6π, .4ei.7π) (.7ei.6π, .4ei.5π, .4ei.7π)

(.5ei.4π, .5ei.6π, .5ei.5π) (.7ei.5π, .4ei.5π, .3ei.7π) (.6ei.4π, .5ei.6π, .6ei.5π)

(.4ei.4π, .5ei.6π, .4ei.7π) (.6ei.5π, .5ei.5π, .4ei.5π) (.6ei.3π, .5ei.5π, .5ei.4π)

(.5ei.4π, .5ei.5π, .6ei.5π) (.4ei.5π, .5ei.6π, .4ei.7π) (.6ei.4π, .5ei.6π, .5ei.7π)

(.5ei.6π, .3ei.4π, .3ei.7π) (.5ei.5π, .5ei.6π, .4ei.4π) (.6ei.4π, .5ei.6π, .5ei.7π)
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Table 5. Russia and other countries

(R, G) (R, F) (R, S)

(.5ei.5π, .6ei.7π, .6ei.7π) (.6ei.4π, .7ei.5π, .5ei.7π) (.6ei.3π, .5ei.7π, .6ei.5π)

(.5ei.4π, .5ei.6π, .5ei.7π) (.5ei.4π, .5ei.5π, .5ei.5π) (.6ei.5π, .4ei.5π, .4ei.7π)

(.4ei.4π, .5ei.6π, .6ei.5π) (.6ei.4π, .4ei.3π, .4ei.5π) (.6ei.3π, .5ei.5π, .5ei.7π)

(.5ei.4π, .5ei.5π, .6ei.5π) (.4ei.4π, .5ei.5π, .5ei.4π) (.6ei.4π, .5ei.6π, .5ei.5π)

(.5ei.4π, .5ei.6π, .5ei.7π) (.5ei.4π, .5ei.4π, .5ei.7π) (.6ei.4π, .5ei.6π, .6ei.4π)

development correlation between United Kingdom and other countries (see Table-5).

Using these SVCNGS, we illustrate the severity of the development between each pair of

Table 6. United Kingdom and other countries

(U, G) (U, F) (U, S)

(.5ei.5π, .6ei.7π, .6ei.7π) (.6ei.4π, .7ei.6π, .5ei.7π) (.7ei.5π, .4ei.5π, .4ei.7π)

(.5ei.4π, .5ei.6π, .6ei.5π) (.6ei.2π, .6ei.5π, .5ei.5π) (.6ei.4π, .5ei.7π, .6ei.7π)

(.4ei.4π, .5ei.6π, .5ei.7π) (.5ei.3π, .6ei.5π, .5ei.5π) (.6ei.3π, .5ei.5π, .5ei.7π)

(.5ei.4π, .5ei.5π, .6ei.7π) (.6ei.4π, .4ei.5π, .4ei.3π) (.6ei.4π, .5ei.6π, .5ei.5π)

(.5ei.4π, .5ei.6π, .5ei.6π) (.5ei.4π, .5ei.4π, .5ei.7π) (.6ei.4π, .5ei.6π, .6ei.7π)

nations. On set M , numerous relations can be defined. Let’s explain the relationships on

M as follows: W1=education, W2=medical science, R3= military, W4= economic growth,

W5 = effected government, such that τ∗ = (Q,R1, R2, R3, R4, R5) is a GS. Each element of

the relationship exemplifies a certain stage of growth between those two countries. Due to

the fact that the GS is τ∗ = (M,W1,W2,W3,W4,W5), only one relationship can exist be-

tween two countries. Thus, it would be considered a part of that relationship, whose false

membership amount is relatively low in comparison to various other relationships, and whose

truth-membership amount is relatively high in comparison to other connections. When mea-

sured against other relationships, its truth-membership the amount is relatively high, while its

indeterminacy-membership amount is relatively low. Using the previously provided data, the

SVCNGS on W1,W2,W3,W4,W5 are formed by matching items in relations with the truth-

membership, indeterminacy, and false-membership. They are η1, η2, η3, η4, η5, respectively, of

these SVCNGS.

W1={(US, C), (J, U),(C, S),(U, S)}, W2={(C, U),(R, S)}, W3= {(US, S),(R, F)},
W4={(J, F),(U, F)}, W5={(J, R),(C, G)}.
The Corresponding SVCNGS are follows:

η1 = {(US,C)(.8ei.7π, .4ei.5π, .4ei.5π), (J, U)(.7ei.5π, .5ei.5π, .4ei.5π),

(C, S)(.7ei.6π, .4ei.5π, .4ei.7π), (U, S)(.7ei.5π, .4ei.5π, .4ei.7π)},
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types of a country’s development

education

medical science

military

economic growth

effected government

Figure 3. SVCNGS

η2 = {(C,U)(.7ei.5π, .4ei.5π, .3ei.7π), (R,S)(.6ei.5π, .4ei.5π, .4ei.7π)},
η3 = {(US, S)(.7ei.6π, .3ei.5π, .3ei.5π), (R,F )(.6ei.4π, .4ei.3π, .4ei.5π)},
η4 = {(J, F )(.6ei.4π, .4ei.3π, .4ei.5π), (U,F )(.6ei.4π, .4ei.5π, .4ei.3π)},
η5 = {(J,R)(.6ei.5π, .4ei.5π, .4ei.3π), (C,G)(.5ei.6π, .3ei.4π, .3ei.7pi)}.
Therefore, the SVCNGS are represented in Figure-3 is (γ, η1, η2, η3, η4, η5). The country with

the greatest level of development is represented by each edge of the SVCNGS in Figure-3. As

an illustration, the expansion of education, with values for truth-membership, indeterminacy-

membership, and false-membership of .8ei.7π, .4ei.5π and .4ei.5π, respectively, is what con-

tributes to the most powerful and developing relationship between the United States and

China. It should be noted that the United States has the lowest vertex degree of indeterminacy-

membership, false-membership, and the highest vertex degree of truth-membership for the

relation proliferation of education. This shows that the United States has a proliferation of

education and is developing alongside other countries. The purpose of this is article is to

identify the most developed nations in the world by examining the growth and development of

every nation in the world. This opens the way for the growth of all the nations in the world.

5.1. Algorithm

We now present the stepwise for calculation of our method which is used in this application

in the following algorithm.

Algorithm
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step 1: Input the set Q = {q1, q2, ..., qn} of countries (vertices) and put the membership val-

ues γ = (γ1e
iα1 , γ2e

iα2 , γ3e
iα3) of the nodes q′is, i = 1, 2, ..., n, γ1, γ2, γ3 ∈ [0, 1] and

α1, α2, α3 ∈ [0, 2π].

step 2: Input the mem-

bership values ηJ = (η1J(qiqj)e
iβ1J (qiqj), η2J(qiqj)e

iβ2J (qiqj), η3J(qiqj)e
iβ3J (qiqj)) of the

edges qiqj ∈ WJ such that

η1J(qiqj)e
iβ1J (qiqj) ≤ min{γ1(qi), γ1(qj)}eimin{α1(qi),α1(qj)},

η2J(qiqj)e
iβ2J (qiqj) ≤ max{γ2(qi), γ2(qj)}eimax{α2(qi),α2(qj)},

η3J(qiqj)e
iβ3J (qiqj) ≤ max{γ3(qi), γ3(qj)}eimax{α3(qi),α3(qj)}

such that 0 ≤ η1J(qiqj) + η2J(qiqj) + η3J(qiqj) ≤ 3 and β1J(qiqj), β2J(qiqj), β3J(qiqj) ∈
[0, 2π] for all (qiqj) ∈ WJ , J = 1, 2, ..., k.

step 3: Develop mutually disjoint, irreflexive and symmetric relations W1,W2, ...,Wk on the

set of countries M and give the name each relation as exemplifies a certain stage of

growth between those two countries.

step 4: Select a countries as greatest level of development from one countries to other, whose

membership value is superior to that of other nations.

step 5: Construct a graph structure on set of countries with relations, select those pairs of

countries having same kind of the highest level of development as elements of same

relation.

step 6: Write all elements of resulting relations η1, η2, ..., ηk are CNSs on W1,W2, ...,Wk, re-

spectively and (γ, η1, η2, ..., ηk) is a SVCNGS.

step 7: Draw the SVCNGS, each of whose edges indicates the best level of development for

the related Countries.

6. Conclusion and future works

The idea of an SVCNGS has been developed in this study article by the authors. In

comparison to traditional fuzzy sets, the Set SVCNS, an extension of the NS, provides a more

realistic description of uncertainty. Through fuzzy control, it can be used in a variety of

ways. In this research study, the idea of SVCNGS is introduced. Further research is done

on the relationship between the degree of a vertex and the degree of an ηJ − edge in regular

SVCNGS. We also define totally ηJ − edge regular SVCNGS and ηJ − edge regular SVCNGS.

It is described under what conditions ηJ −edge regular SVCNGS and totally ηJ −edge regular

SVCNGS are comparable. We also investigated various ηJ −edge regular and totally ηJ −edge

regular SVCNGS properties using an example. Furthermore, we have presented an application

of SVCNGS in decision-making, that is, identification of best level of development Countries.
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There are several potential areas for future research in this area, if it is possible to use the

adjacency matrix SVCNGS. Further, for developing future solutions, analyze the isomorphic

adjacency matrix, edge regular adjacency matrix, totally edge regular adjacency matrix, etc.

Future research areas include Complex Pythagorean fuzzy graph structures, Complex bipolar

fuzzy graph structures, and Complex bipolar neutrosophic graph structures, all of which are

based on the various properties of the nodes and edges in GS. The following are some of this

work’s limitations:

• This research and related network systems were mostly focused on SVCNGS.

• This approach can only be used when there are symmetric, irreflexive, and mutually

disjoint relations on the CNS.

• The SVCNGS idea is not relevant if the membership values of the characters are

provided in distinct environments.

• Sometimes it may not be possible to get real data.
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