

University of New Mexico

Embedding Norms into Neutrosophic Multi Fuzzy Subrings

B. Anitha 1,* and P. Tharini 2

¹ Department of Mathematics, Annamalai University, Annamalai Nagar, Chidambaram, India

(Deputed to Government Arts College, Chidambaram, India); anibhavan05@gmail.com

² Department of Mathematics, Annamalai University, Annamalai Nagar, Chidambaram, India; tharinip15@gmail.com

* Correspondence: anibhavan05@gmail.com

Abstract. We have embedded the concept norm with the proposed notion Neutrosophic multifuzzy Subrings. This conception was manipulated with Neutrosophic multifuzzy ideals and level sets. Furthermore, some propositions and theorems related to them were explored. Eventually, direct product and homomorphic properties of Neutrosophic multifuzzy Subrings were derived.

Keywords: Neutrosophic fuzzy set (NFS); Neutrosophic multisets (NMS); Neutrosophic multi fuzzy set (NMFS); T norms (T_n) and T conorms (T_c); Neutrosophic multifuzzy subring (NMFSR); Neutrosophic multifuzzy left(right) ideals (NMFL(R)I).

1. Introduction

There is a lack of certainty that couldn't be manipulated by classical set. To overcome the complication, fuzzy set was enlightened by L.A.Zadeh [4]. Smarandache [5] initiated Neutro-sophic set to build upon the thought of Atanassovs [11] intuitionistic fuzzy sets very convenient and effectively which is the part of philosophy. In Neutrosophic logic every hypothesis having degree of validity, neutral and non-validity is represented independently. The notion norm is a sort of dual operation tracking down numerous applications in fuzzy sets, probability and statistics and other areas. A t-norm interprets intersection of fuzzy sets and conjunction in logics. There were some essential properties like Archimedean, strict and nilpotent t-norm that exist.

The Application of group theory to fuzzy set was originated by Rosenfield [10]. In view of the fuzzy set hypothesis, Multifuzzy set was initiated by Sebastian and Ramakrishnan [8]. The unified notions of Multifuzzy set and Group called as multifuzzy group was examined by

B. Anitha and P. Tharini, Embedding Norms into Neutrosophic Multi Fuzzy Subrings

Muthuraj [1]. Also, he has discussed its Level Subgroups. The combined concepts Intuitionistic Fuzzy sets and Fuzzy Multisets together were developed as Intuitionistic Fuzzy multisets by Shinoj [9].

The thought of Intuitionistic fuzzy groups along with homomorphism and direct product had been explored by Sharma [15, 16]. Rasul Rasuli [2, 7, 18, 19] investigated his thought on Intuitionistic fuzzy subgroups and subrings regarding norms and reached out into fuzzy Multigroups. Abu Osman [12] explored products of fuzzy subgroups. Intuitionistic fuzzy multiset was initiated by Shinoj and John [9]. Then, Wang [14] gave the comparative activities and outcomes of single esteemed neutrosophic set hypothesis. To elaborate the neutrosophic set theory, the conception neutrosophic multiset was originated by Deli [13] and Ye [21, 22] for modelling vagueness and uncertainty. VakkasUlucay [3] proposed the notion of Neutrosophic Multi Groups. Hemabala [6] gave the thought of gamma near ring applied into Anti Neutrosophic Multi fuzzy set. The extension principle was defined by Sahin[20] using neutrosophic multi-sets.

The scope of this work is predicated upon the notion of Neutrosophic set and multifuzzy set together with rings .We have characterized here a thought of Neutrosophic multifuzzy subrings along with triangular norms and made sense of certain outcomes connected with them.

2. Preliminaries

This part consists of, fundamental definitions are referred to that are essential.

Definition 2.1. [5] A NFSA on the space of points X is characterized by a truth membership $\mu_{\mathcal{A}}(x)$, an indeterminancy $\mathcal{N}_{\mathcal{A}}(x)$, and falsity membership $\mathcal{F}_{\mathcal{A}}(x)$ is defined as

 $\mathcal{A} = \langle x, \mu_{\mathcal{A}} \left(x \right), \mathcal{N}_{\mathcal{A}} \left(x \right), \mathcal{F}_{\mathcal{A}} (x) : x \in X \rangle \text{ where } \mu_{\mathcal{A}}, \mathcal{N}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}} : X \to [0, 1] \text{ and } \mathbb{I}_{\mathcal{A}}$

$$0 \le \mu_{\mathcal{A}}(x) + \mathcal{N}_{\mathcal{A}}(x) + \mathcal{F}_{\mathcal{A}}(x) \le 3$$

Definition 2.2. [13] A NMS \mathcal{A} on X be defined as follows:

 $\mathcal{A} = \{ \langle x, (\mu_{\mathcal{A}}^{1}(x), \ \mu_{\mathcal{A}}^{2}(x), \dots, \mu_{\mathcal{A}}^{n}(x)), \ (\mathcal{N}_{\mathcal{A}}^{1}(x), \ \mathcal{N}_{\mathcal{A}}^{2}(x), \dots, \mathcal{N}_{\mathcal{A}}^{n}(x), \ (\mathcal{F}_{\mathcal{A}}^{1}(x), \ \mathcal{F}_{\mathcal{A}}^{2}(x), \dots, \mathcal{F}_{\mathcal{A}}^{n}(x)) >: x \in X \},$ where, $\mu_{\mathcal{A}}^{i}(x), \mathcal{N}_{\mathcal{A}}^{i}(x), \ \mathcal{F}_{\mathcal{A}}^{i}(x) : X \to [0, 1], \ 0 \leq \sup \mu_{\mathcal{A}}^{i}(x) + \sup \mathcal{N}_{\mathcal{A}}^{i}(x) + \sup \mathcal{F}_{\mathcal{A}}^{i}(x) \leq 3$ $(i = 1, 2, \dots, n)$ and for any x, truth membership $\mu_{\mathcal{A}}^{1}(x) \geq \mu_{\mathcal{A}}^{2}(x) \geq \dots \geq \mu_{\mathcal{A}}^{n}(x)$ as decreasing order but no restrictions for indeterminacy and falsity membership. Futher more, n is called the dimension of \mathcal{A} , denoted $d(\mathcal{A})$.

Definition 2.3. [12] A function $T_n : [0,1] \times [0,1] \to [0,1]$ is a t-norm possess the following axioms.

- $1.T_n \ (x,1) = x$
- $2.T_n (x, y) = T_n (x, z) \text{ if } y \le z$

B. Anitha and P. Tharini, Embedding Norms into Neutrosophic Multi Fuzzy Subrings

 $\begin{aligned} 3.T_n \ (x,y) = &T_n \ (y,x) \\ 4.T_n \ (x,T_n \ (y,z)) = &T_n \ (T_n \ ((x,y) \ ,z)) \ \forall x,y,z \in [0,1] \end{aligned}$

Definition 2.4. [17] A function $T_c : [0,1] \times [0,1] \to [0,1]$ is a t-conorm possess the following axioms

$$\begin{split} &1.T_{c}~(x,0)=x\\ &2.T_{c}~(x,y)=T_{c}~(x,z) \text{ if } y\leq z\\ &3.T_{c}~(x,y)=T_{c}~(y,x)\\ &4.T_{c}~(x,T_{c}~(y,z))=T_{c}~(T_{c}~((x,y)~,z))~\forall x,y,z\in[0,1] \end{split}$$

Recollect if T_n is idempotent function $T_n(x, x) = x$. Similarly, if T_c is idempotent function $T_c(x, x) = x, \forall x \in [0, 1].$

3. Neutrosophic Multifuzzy Subring with respect to T_n and T_c

Definition 3.1. A NMFS $\mathcal{A} = \{ \langle (x, \mu^{i}_{\mathcal{A}}(x), \mathcal{N}^{i}_{\mathcal{A}}, \mathcal{F}^{i}_{\mathcal{A}}(x)) \rangle, x \in \mathbb{R}, i = 1, 2, ..., n \}$ of a ring \mathbb{R} is said to be NMFSR with respect to T_n and T_c of \mathbb{R} if

(i) $\mu_{\mathcal{A}}^{i}(x-y) \geq T_{n}\left(\mu_{\mathcal{A}}^{i}(x), \mu_{\mathcal{A}}^{i}(y)\right); \mathcal{N}_{\mathcal{A}}^{i}(x-y) \leq T_{c}\left(\mathcal{N}_{\mathcal{A}}^{i}(x), \mathcal{N}_{\mathcal{A}}^{i}(y)\right);$ $\mathcal{F}_{\mathcal{A}}^{i}(x-y) \leq T_{c}\left(\mathcal{F}_{\mathcal{A}}^{i}(x), \mathcal{F}_{\mathcal{A}}^{i}(y)\right)$ (ii) $\mu_{\mathcal{A}}^{i}(xy) \geq T_{n}\left(\mu_{\mathcal{A}}^{i}(x), \mu_{\mathcal{A}}^{i}(y)\right); \mathcal{N}_{\mathcal{A}}^{i}(xy) \leq T_{c}\left(\mathcal{N}_{\mathcal{A}}^{i}(x), \mathcal{N}_{\mathcal{A}}^{i}(y)\right);$ $\mathcal{F}_{\mathcal{A}}^{i}(xy) \leq T_{c}\left(\mathcal{F}_{\mathcal{A}}^{i}(x), \mathcal{F}_{\mathcal{A}}^{i}(y)\right)$ $\forall x, y \in R, i = 1, 2 ..., n.$

Example 3.2. Let $(Z_3, +, \cdot)$ be a ring. For all $x \in Z_3$, we define a NMFS \mathcal{A} over T_n and T_c of Z_3 as

 $\begin{aligned} \mathcal{A} &= (<0(0.9, 0.7, 0.5), (0.2.0.4, 0.8), (0.3, 0.4, 0.6) >, \\ &< 1(0.9, 0.5, 0.4), (0.2, 0.5, 0.7), (0.3, 0.5, 0.7) >, < 2(0.8, 0.5, 0.4), (0.2, 0.5, 0.7), (0.4, 0.5, 0.7) >). \\ &\text{Let } T_n(x, y) = xy \text{ and } T_c(x, y) = x + y - xy, \quad \forall x, y \in Z_3 \text{ then } \mathcal{A} \text{ is a NMFSR of } Z_3 \text{ over } \\ T_n \text{ and } T_c \end{aligned}$

Proposition 3.3. If \mathcal{A} is a NMFSR of R with T_n and T_c , where T_n , T_c are idempotent then $\forall \mathbf{x} \in R \& i = 1, 2, ..., n$

(i)
$$\mu_{\mathcal{A}}^{i}(0) \geq \mu_{\mathcal{A}}^{i}(x)$$
; $\mathcal{N}_{\mathcal{A}}^{i}(0) \leq \mathcal{N}_{\mathcal{A}}^{i}(x)$; $\mathcal{F}_{\mathcal{A}}^{i}(0) \leq \mathcal{F}_{\mathcal{A}}^{i}(x)$
(ii) $\mu_{\mathcal{A}}^{i}(-x) = \mu_{\mathcal{A}}^{i}(x)$; $\mathcal{N}_{\mathcal{A}}^{i}(-x) = \mathcal{N}_{\mathcal{A}}^{i}(x)$; $\mathcal{F}_{\mathcal{A}}^{i}(-x) = \mathcal{F}_{\mathcal{A}}^{i}(x)$

Proof. If $x \in \mathbb{R}$. (i) $\mu_{\mathcal{A}}^{i}(0) = \mu_{\mathcal{A}}^{i}(x-x) \geq T_{n}\left(\mu_{\mathcal{A}}^{i}(x), \mu_{\mathcal{A}}^{i}(x)\right) = \mu_{\mathcal{A}}^{i}(x)$ $\mathcal{N}_{\mathcal{A}}^{i}(0) = \mathcal{N}_{\mathcal{A}}^{i}(x-x) \leq T_{c}\left(\mathcal{N}_{\mathcal{A}}^{i}(x), \mathcal{N}_{\mathcal{A}}^{i}(x)\right) = \mathcal{N}_{\mathcal{A}}^{i}(x)$ Similarly, $\mathcal{F}_{\mathcal{A}}^{i}(0) \leq \mathcal{F}_{\mathcal{A}}^{i}(x)$

(*ii*) $\mu^{i}_{\mathcal{A}}\left(-x\right) = \mu^{i}_{\mathcal{A}}\left(0-x\right)$

B. Anitha and P. Tharini, Embedding Norms into Neutrosophic Multi Fuzzy Subrings

$$\geq T_{n} \left(\mu_{\mathcal{A}}^{i}(0), \mu_{\mathcal{A}}^{i}(x) \right)$$

$$\geq T_{n} \left(\mu_{A}^{i}(x), \mu_{A}^{i}(x) \right)$$

$$= \mu_{A}^{i}(x) = \mu_{A}^{i}(0 - (-x))$$

$$\geq T_{n}(\mu_{A}^{i}(0), \mu_{A}^{i}(-x))$$

$$\geq T_{n} \left(\mu_{A}^{i}(-x), \mu_{A}^{i}(-x) \right)$$

$$\geq T_{A}^{i}(-x))$$

So that, $\mu_{\mathcal{A}}^{i}(x) = \mu_{\mathcal{A}}^{i}(-x)$

$$\begin{split} \mathcal{N}_{\mathcal{A}}^{i}\left(-x\right) &= \mathcal{N}_{\mathcal{A}}^{i}\left(0-x\right) \\ &\leq T_{c}\left(\mathcal{N}_{\mathcal{A}}^{i}\left(0\right), \mathcal{N}_{\mathcal{A}}^{i}\left(x\right)\right) \\ &\leq T_{c}\left(\mathcal{N}_{\mathcal{A}}^{i}\left(x\right), \mathcal{N}_{\mathcal{A}}^{i}\left(x\right)\right) \\ &= \mathcal{N}_{\mathcal{A}}^{i}\left(x\right) = \mathcal{N}_{\mathcal{A}}^{i}\left(0-\left(-x\right)\right) \\ &\leq T_{c}\left(\mathcal{N}_{\mathcal{A}}^{i}\left(0\right), \mathcal{N}_{\mathcal{A}}^{i}\left(-x\right)\right) \\ &\leq T_{c}\left(\mathcal{N}_{\mathcal{A}}^{i}\left(-x\right), \mathcal{N}_{\mathcal{A}}^{i}\left(-x\right)\right) \\ &\leq \mathcal{N}_{\mathcal{A}}^{i}\left(-x\right) \end{split}$$

So that, $\mathcal{N}_{\mathcal{A}}^{i}(x) = \mathcal{N}_{\mathcal{A}}^{i}(-x)$.

Similarly, $\mathcal{F}^{i}_{\mathcal{A}}(x) = \mathcal{F}^{i}_{\mathcal{A}}(-x)$. $\forall x \in R \text{ and } i = 1, 2 \dots n$ Hence the result. \Box

Proposition 3.4. Let \mathcal{A} be a NMFSR of R over T_n and T_c , $x \in R$ $\forall i = 1, 2 \dots n$ then

$$\mu_{\mathcal{A}}^{i}(x-y) = 1 \Rightarrow \mu_{\mathcal{A}}^{i}(x) \ge \mu_{\mathcal{A}}^{i}(y); \mathcal{N}_{\mathcal{A}}^{i}(x-y) = 0 \Rightarrow \mathcal{N}_{\mathcal{A}}^{i}(\mathbf{x}) \le \mathcal{N}_{\mathcal{A}}^{i}(y)$$
$$\mathcal{F}_{\mathcal{A}}^{i}(x-y) = 0 \Rightarrow \mathcal{F}_{\mathcal{A}}^{i}(x) \le \mathcal{F}_{\mathcal{A}}^{i}(y)$$

Proof. Let $x, y \in R$ and $i = 1, 2 \dots n$. Then

(i) $\mu_{\mathcal{A}}^{i}(x) = \mu_{\mathcal{A}}^{i}(x - y + y) \geq T_{n}(\mu_{\mathcal{A}}^{i}(x - y), \mu_{\mathcal{A}}^{i}(y)) = T_{n}(1, \mu_{\mathcal{A}}^{i}(y)) = \mu_{\mathcal{A}}^{i}(y)$ (ii) $\mathcal{N}_{\mathcal{A}}^{i}(x) = \mathcal{N}_{\mathcal{A}}^{i}(x - y + y) \leq T_{c}\left(\mathcal{N}_{\mathcal{A}}^{i}(x - y), \mathcal{N}_{\mathcal{A}}^{i}(y)\right) = T_{c}\left(0, \mathcal{N}_{\mathcal{A}}^{i}(y)\right) = \mathcal{N}_{\mathcal{A}}^{i}(x)$ Similarly, $\mathcal{F}_{\mathcal{A}}^{i}(x) \leq \mathcal{F}_{\mathcal{A}}^{i}(y)$. Hence the result. \Box

Proposition 3.5. Let \mathcal{A} be a NMFSR of R with respect to T_n and T_c where T_n , T_c are idempotent. Then $\mathcal{A}(x-y) = \mathcal{A}(y)$ iff $\mathcal{A}(x) = \mathcal{A}(0), \forall x, y \in R$ and $i = 1, 2, 3 \dots n$.

Proof. Let $\mathcal{A}(x-y) = \mathcal{A}(y)$. If $y = 0, \Rightarrow \mathcal{A}(x) = \mathcal{A}(0)$ Conversely, if $\mathcal{A}(x) = \mathcal{A}(0)$, Then, (i). $\mu^{i}_{\mathcal{A}}(x) = \mu^{i}_{\mathcal{A}}(0) \ge \mu^{i}_{\mathcal{A}}(x-y)$ $\mu^{i}_{\mathcal{A}}(x) = \mu^{i}_{\mathcal{A}}(0) \ge \mu^{i}_{\mathcal{A}}(y)$ (by proposition 3.3)

Now,

$$\begin{aligned}
\mu_{\mathcal{A}}^{i}\left(x-y\right) &\geq T_{n}\left(\mu_{\mathcal{A}}^{i}\left(x\right),\mu_{\mathcal{A}}^{i}\left(y\right)\right) \\
&\geq T_{n}\left(\mu_{\mathcal{A}}^{i}\left(y\right),\mu_{\mathcal{A}}^{i}\left(y\right)\right) \\
&= \mu_{\mathcal{A}}^{i}\left(y\right) \\
&= \mu_{\mathcal{A}}^{i}\left(-y\right) \\
&= \mu_{\mathcal{A}}^{i}\left(x-y\right) \\
&\geq T_{n}\left(\mu_{\mathcal{A}}^{i}\left(x-y\right),\mu_{\mathcal{A}}^{i}\left(x\right)\right) \\
&\geq T_{n}\left(\mu_{\mathcal{A}}^{i}\left(x-y\right),\mu_{\mathcal{A}}^{i}\left(x-y\right)\right) \\
&= \mu_{\mathcal{A}}^{i}\left(x-y\right)
\end{aligned}$$

So, we get $\mu_{\mathcal{A}}^{i}(x-y) = \mu_{\mathcal{A}}^{i}(y)$ (ii). $\mathcal{N}_{\mathcal{A}}^{i}(x) = \mathcal{N}_{\mathcal{A}}^{i}(0) \leq \mathcal{N}_{\mathcal{A}}^{i}(x-y)$ $\mathcal{N}_{\mathcal{A}}^{i}(x) = \mathcal{N}_{\mathcal{A}}^{i}(0) \leq \mathcal{N}_{\mathcal{A}}^{i}(y)$ Now,

$$\mathcal{N}_{\mathcal{A}}^{i}(x-y) \leq T_{c}\left(\mathcal{N}_{\mathcal{A}}^{i}(x), \mathcal{N}_{\mathcal{A}}^{i}(y)\right)$$

$$\leq T_{c}\left(\mathcal{N}_{\mathcal{A}}^{i}(y), \mathcal{N}_{\mathcal{A}}^{i}(y)\right)$$

$$= \mathcal{N}_{\mathcal{A}}^{i}(y)$$

$$= \mathcal{N}_{\mathcal{A}}^{i}(-y) \text{ (by theorem 3.3)}$$

$$= \mathcal{N}_{\mathcal{A}}^{i}(x-y-x)$$

$$\leq T_{c}\left(\mathcal{N}_{\mathcal{A}}^{i}(x-y), \mathcal{N}_{\mathcal{A}}^{i}(x)\right)$$

$$\leq T_{c}\left(\mathcal{N}_{\mathcal{A}}^{i}(x-y), \mathcal{N}_{\mathcal{A}}^{i}(x-y)\right)$$

$$= \mathcal{N}_{\mathcal{A}}^{i}(x-y)$$

$$. \mathcal{N}_{\mathcal{A}}^{i}(x-y) = \mathcal{N}_{\mathcal{A}}^{i}(y)$$

Similarly, $\mathcal{F}^{i}_{\mathcal{A}}(x-y) = \mathcal{F}^{i}_{\mathcal{A}}(y)$ $\therefore \mathcal{A}(x-y) = \mathcal{A}(y) \text{ if } \mathcal{A}(x) = \mathcal{A}(0) \forall \mathbf{x}, \mathbf{y} \in R \text{ and } i = 1, 2..., n. \square$

4. Neutrosophic Multifuzzy ideal and level set

Definition 4.1. Let \mathcal{A} and \mathcal{B} be two NMS of R. Define

$$\mathcal{A} \cap \mathcal{B} = \left(\mu^{i}_{\mathcal{A} \cap \mathcal{B}}, \mathcal{N}^{i}_{\mathcal{A} \cap \mathcal{B}}, \mathcal{F}^{i}_{\mathcal{A} \cap \mathcal{B}}\right) \text{ as } \mu^{i}_{\mathcal{A} \cap \mathcal{B}}(x) = T_{n}(\mu^{i}_{\mathcal{A}}(x), \mu^{i}_{\mathcal{B}}(x))$$
$$\mathcal{N}^{i}_{\mathcal{A} \cap \mathcal{B}}(x) = T_{c}(\mathcal{N}^{i}_{\mathcal{A}}(x), \mathcal{N}^{i}_{\mathcal{B}}(x)); \mathcal{F}^{i}_{\mathcal{A} \cap \mathcal{B}}(x) = T_{c}(\mathcal{F}^{i}_{\mathcal{A}}(x), \mathcal{F}^{i}_{\mathcal{B}}(x));$$
$$\mathcal{A} \cup \mathcal{B} = (\mu^{i}_{\mathcal{A} \cup \mathcal{B}}, \mathcal{N}^{i}_{\mathcal{A} \cup \mathcal{B}}, \mathcal{F}^{i}_{\mathcal{A} \cup \mathcal{B}}) \text{ as } \mu^{i}_{\mathcal{A} \cup \mathcal{B}}(x) = T_{c}(\mu^{i}_{\mathcal{A}}(x), \mu^{i}_{\mathcal{B}}(x))$$
$$\mathcal{N}^{i}_{\mathcal{A} \cup \mathcal{B}}(x) = T_{n}(\mathcal{N}^{i}_{\mathcal{A}}(x), \mathcal{N}^{i}_{\mathcal{B}}(x)); \mathcal{F}^{i}_{\mathcal{A} \cup \mathcal{B}}(x) = T_{n}(\mathcal{F}^{i}_{\mathcal{A}}(x), \mathcal{F}^{i}_{\mathcal{B}}(x)), \forall x \in \mathbb{R}.$$

Example 4.2. Consider the ring $(Z_2, +, \cdot)$. For all $\mathbf{x} \in Z_2$, we define NMFS \mathcal{A} and \mathcal{B} of Z_2 as $\mathcal{A} = (< 0(0.9, 0.7), (0.1.0.3), (0.4, 0.6) >; < 1(0.8, 0.6), (0.1, 0.4), (0.4, 0.7) >$ $\mathcal{B} = (< 0(0.9, 0.6), (0.2.0.1), (0.5, 0.4) >; < 1(0.7, 0.4), (0.3, 0.4), (0.6, 0.7) >$ Let $T_n(x, y) = xy$ and $T_c(x, y) = x + y - xy$, $\forall x, y \in Z_2$. Then $\mathcal{A} \cup \mathcal{B} = \{< 0, (0.98, 0.88), (0.02, 0.03), (0.20, 0.24) > < 1(0.94, 0.76), (0.03, 0.16), (0.24, 0.0.49) >\}$

 $\mathcal{A} \cap \mathcal{B} = (\langle 0(0.72, 0.43), (0.28, 0.37), (0.7, 0.76) \rangle; \langle 1(0.56, 0.24), (0.37, 0.64), (0.76, 0.91) \rangle).$

Theorem 4.3. If \mathcal{A} and \mathcal{B} are NMFSR of ring R, then $\mathcal{A} \cap \mathcal{B}$ also a NMFSR of R with respect to T_n and T_c , where T_n and T_c are idempotent.

Proof. Let $x, y \in R$ and i = 1, 2, 3, ..., n

$$(i) \ \mu^{i}_{\mathcal{A}\cap\mathcal{B}}(x-y) = T_{n}(\mu^{i}_{\mathcal{A}}(x-y),\mu^{i}_{\mathcal{B}}(x-y))$$

$$\geq T_{n}\left\{T_{n}(\mu^{i}_{\mathcal{A}}(x),\mu^{i}_{\mathcal{A}}(y)),T_{n}(\mu^{i}_{\mathcal{B}}(x),\mu^{i}_{\mathcal{B}}(y))\right\}$$

$$= T_{n}\left\{T_{n}(\mu^{i}_{\mathcal{A}}(x),\mu^{i}_{\mathcal{B}}(x)),T_{n}(\mu^{i}_{\mathcal{A}}(y),\mu^{i}_{\mathcal{B}}(y))\right\}$$

$$= T_{n}(\mu^{i}_{\mathcal{A}\cap\mathcal{B}}(x),\mu^{i}_{\mathcal{A}\cap\mathcal{B}}(y))$$

$$\mathcal{N}^{i}_{\mathcal{A}\cap\mathcal{B}}(x-y) = T_{c}(\mathcal{N}^{i}_{\mathcal{A}}(x-y),\mathcal{N}^{i}_{\mathcal{B}}(x-y))$$

$$\leq T_{c}\left\{T_{c}(\mathcal{N}^{i}_{\mathcal{A}}(x),\mathcal{N}^{i}_{\mathcal{A}}(y)),T_{c}(\mathcal{N}^{i}_{\mathcal{B}}(x),\mathcal{N}^{i}_{\mathcal{B}}(y))\right\}$$

$$= T_{c}\left\{T_{c}(\mathcal{N}^{i}_{\mathcal{A}}(x),\mathcal{N}^{i}_{\mathcal{B}}(x)),T_{c}(\mathcal{N}^{i}_{\mathcal{A}}(y),\mathcal{N}^{i}_{\mathcal{B}}(y))\right\}$$

$$= T_{c}(\mathcal{N}^{i}_{\mathcal{A}\cap\mathcal{B}}(x),\mathcal{N}^{i}_{\mathcal{A}\cap\mathcal{B}}(y))$$

Similarly, $\mathcal{F}_{\mathcal{A}\cap\mathcal{B}}^{i}(x-y) \leq T_{c}(\mathcal{F}_{\mathcal{A}}^{i}(x), \mathcal{F}_{\mathcal{B}}^{i}(y))$

$$\begin{aligned} (ii) \ \mu^{i}_{\mathcal{A}\cap\mathcal{B}}(xy) &= T_{n}(\mu^{i}_{\mathcal{A}}(xy), \mu^{i}_{\mathcal{B}}(xy)) \\ &\geq T_{n} \left\{ T_{n}(\mu^{i}_{\mathcal{A}}(x), \mu^{i}_{\mathcal{A}}(y)), T_{n}(\mu^{i}_{\mathcal{B}}(x), \mu^{i}_{\mathcal{B}}(y)) \right\} \\ &= T_{n} \left\{ T_{n}(\mu^{i}_{\mathcal{A}}(x), \mu^{i}_{\mathcal{B}}(x)), T_{n}(\mu^{i}_{\mathcal{A}}(y), \mu^{i}_{\mathcal{B}}(y)) \right\} \\ &= T_{n}(\mu^{i}_{\mathcal{A}\cap\mathcal{B}}(x), \mu^{i}_{\mathcal{A}\cap\mathcal{B}}(y)) \\ \mathcal{N}^{i}_{\mathcal{A}\cap\mathcal{B}}(xy) &= T_{c}(\mathcal{N}^{i}_{\mathcal{A}}(xy), \mathcal{N}^{i}_{\mathcal{B}}(xy)) \\ &\leq T_{c} \left\{ T_{c}(\mathcal{N}^{i}_{\mathcal{A}}(x), \mathcal{N}^{i}_{\mathcal{A}}(y)), T_{c}(\mathcal{N}^{i}_{\mathcal{B}}(x), \mathcal{N}^{i}_{\mathcal{B}}(y)) \right\} \\ &= T_{c} \left\{ T_{c}(\mathcal{N}^{i}_{\mathcal{A}}(x), \mathcal{N}^{i}_{\mathcal{B}}(x)), T_{c}(\mathcal{N}^{i}_{\mathcal{A}}(y), \mathcal{N}^{i}_{\mathcal{B}}(y)) \right\} \\ &= T_{c}(\mathcal{N}^{i}_{\mathcal{A}\cap\mathcal{B}}(x), \mathcal{N}^{i}_{\mathcal{A}\cap\mathcal{B}}(y)) \end{aligned}$$

Similarly, $\mathcal{F}^{i}_{\mathcal{A}\cap\mathcal{B}}(xy) \leq T_{c}(\mathcal{F}^{i}_{A}(x), \mathcal{F}^{i}_{\mathcal{B}}(y))$ Hence $\mathcal{A}\cap\mathcal{B}$ is a NMFSR of R w.r.t T_{n} and $T_{c} \forall x, y \in R$ and i = 1, 2, ..., n. \Box **Example 4.4.** Consider the ring $(Z_2, +, \cdot)$. For all $\mathbf{x} \in Z_2$, we define NMFSR \mathcal{A} and \mathcal{B} of Z_2 as $\mathcal{A} = (< 0(0.9, 0.7), (0.1.0.3), (0.4, 0.6) >; < 1(0.8, 0.6), (0.1, 0.4), (0.4, 0.7) >)$ $\mathcal{B} = (< 0(0.8, 0.6), (0.2.0.1), (0.5, 0.4) >; < 1(0.7, 0.4), (0.3, 0.4), (0.6, 0.7) >)$ $\mathcal{A} \cap \mathcal{B} = (<0(0.7, 0.3), (0.3.0.4), (0.9, 1)>; <1(0.5, 0), (0.4, 0.3), (1, 1) >).$ Let $T_n(\mathbf{x}, \mathbf{y}) = \max(\mathbf{x} + \mathbf{y} - 1, 0)$ and $T_c(x, y) = \min(1, x + y) \forall x, y \in Z_2$ then $\mathcal{A} \cap \mathcal{B}$ is NMFSR of Z_2 over T_n & T_c .

Remark 4.5. In general, if \mathcal{A}, \mathcal{B} are NMFSR of R with respect to T_n and T_c , then $\mathcal{A} \cup \mathcal{B}$ will always not be a NMFSR of R with respect to T_n and T_c . The accompanying example will show our case.

Example 4.6. Let $(Z_4, +, \cdot)$ be a ring of integers.

Let us define $\mathcal{A} = \{(<0(0.9, 0.6, 0.4) \ (0.2, 0.4, 0.4) \ (0.3, 0.5, 0.6) >, <1(0.7, 0.5, 0.4) \ (0.2, 0.5, 0.6) \}$ (0.3, 0.6, 0.7) >, <2(0.6, 0.5, 0.4) (0.3, 0.6, 0.7) (0.3, 0.6, 0.7) >, <3(0.9, 0.5, 0.3) (0.2, 0.5, 0.7) $(0.3, 0.6, 0.7) > \}$ $\mathcal{B} = \{ < (0, 0.9, 0.8, 0.7), (0.1, 0.2, 0.3), (0.2, 0.4, 0.6), < 1, (0.8, 0.4, 0.3), (0.2, 0.3, 0.3), (0.3, 0.5, 0.6) > , 0.3, 0.5, 0.6 \}$ <2 (0.9,0.5,0.4), (0.3,0.4,0.5), (0.4,0.5,0.6)>, <3 (0.5,0.2,0.1), (0.3,0.4,0.5), (0.4,0.5,0.6)> } be two NMFSR of Z_4 under T_n and T_c . Let us consider $T_n(x, y) = \min(x, y); T_c(x, y) = \max(x, y)$ then \mathcal{A}, \mathcal{B} are NMFSR of Z_4 . $\mathcal{A} \cup \mathcal{B} = \{ < 0, \ (0.9, 0.8, 0.7), \ (0.1, 0.2, 0.3), \ (0.2, 0.4, 0.6) > < 1 \\ (0.8, 0.5, 0.4), \ (0.2, 0.3, 0.3), \ (0.2, 0.3, 0.3) \\ (0.2, 0.3, 0.3), \ (0.2, 0.4, 0.6) > < 1 \\ (0.3, 0.5, 0.4), \ (0.2, 0.3, 0.3), \ (0.3, 0.3, 0.3) \\ (0.3, 0.3, 0.3), \ (0.3, 0.3$ (0.3, 0.5, 0.7) >, < 2(0.9, 0.5, 0.4), (0.3, 0.4, 0.5), (0.3, 0.5, 0.6) >, 3(0.9, 0.5, 0.3), (0.2, 0.4, 0.5), $(0.3, 0.5, 0.6) > \}$ Then for x = 3; y = 2. $\mu^i_{\mathcal{A} \cup \mathcal{B}}(3-2) = (0.8, 0.5, 0.4)$ Again, if \mathcal{A} is a NMFSR with respect to T_n and T_c of R then $\forall x, y \in Z_4$; $\mu_{\mathcal{A}\cup\mathcal{B}}^{i}(x-y) \geq T_{n}(\mu_{\mathcal{A}\cup\mathcal{B}}^{i}(x),\mu_{\mathcal{A}\cup\mathcal{B}}^{i}(y))$ But for x = 3; y = 2 $T_n\left\{\mu^i_{A\cup\mathcal{B}}(x),\mu^i_{A\cup\mathcal{B}}(y)\right\} = T_n(\mu^i_{A\cup\mathcal{B}}(3),\mu^i_{A\cup\mathcal{B}}(2)) = T_n\{(0.9,0.5,0.3),(0.9,0.5,0.4)\} = (0.9,0.5,0.3)$ $\therefore \mu^{i}_{A \cup B}(3-2) = (0.8, 0.5, 0.4); T_n\{\mu^{i}_A(3), \mu^{i}_A(2)\} = (0.9, 0.5, 0.3)$ $\mu_{\mathcal{A}\cup\mathcal{B}}^{i}(3-2) \not\geq T_{n}\{\mu_{\mathcal{A}\cup\mathcal{B}}^{i}(2), \mu_{\mathcal{A}\cup\mathcal{B}}^{i}(3)\}$ Hence $\mathcal{A} \cup \mathcal{B}$ is not NMFSR of Z_4 over T_n and T_c .

Corollary 4.7. If \mathcal{A}, \mathcal{B} are NMFSR of R then $\mathcal{A} \cup \mathcal{B}$ is a NMFSR of R if one is contained in other.

Proof. Let $\mathbf{x}, \mathbf{y} \in R$ and $i = 1, 2, 3 \dots, n$

(i)
$$\mu^{i}_{\mathcal{A}\cup\mathcal{B}}(x-y) = T_{c}(\mu^{i}_{\mathcal{A}}(x-y), \mu^{i}_{\mathcal{B}}(x-y))$$

$$\geq T_{c}\{T_{n}(\mu^{i}_{\mathcal{A}}(x), \mu^{i}_{\mathcal{A}}(y)), T_{n}(\mu^{i}_{\mathcal{B}}(x), \mu^{i}_{\mathcal{B}}(y))\}$$

B. Anitha and P. Tharini, Embedding Norms into Neutrosophic Multi Fuzzy Subrings

$$= T_n \{ T_c(\mu^i_{\mathcal{A}}(x), \mu^i_{\mathcal{B}}(x)), T_c(\mu^i_{\mathcal{A}}(y), \mu^i_{\mathcal{B}}(y)) \}$$

$$= T_n(\mu^i_{\mathcal{A}\cup\mathcal{B}}(x), \mu^i_{\mathcal{A}\cup\mathcal{B}}(x))$$

$$\mathcal{N}^i_{\mathcal{A}\cup\mathcal{B}}(x-y) = T_c(\mathcal{N}^i_{\mathcal{A}}(x-y), \mathcal{N}^i_{\mathcal{B}}(x-y))$$

$$\leq T_c \{ T_c(\mathcal{N}^i_{\mathcal{A}}(x), \mathcal{N}^i_{\mathcal{A}}(y)), T_c(\mathcal{N}^i_{\mathcal{B}}(x), \mathcal{N}^i_{\mathcal{B}}(y)) \}$$

$$= T_c \{ T_c(\mathcal{N}^i_{\mathcal{A}}(x), \mathcal{N}^i_{\mathcal{B}}(x)), T_c(\mathcal{N}^i_{\mathcal{A}}(y), \mathcal{N}^i_{\mathcal{B}}(y)) \}$$

$$= T_c(\mathcal{N}^i_{\mathcal{A}\cup\mathcal{B}}(x), \mathcal{N}^i_{\mathcal{A}\cup\mathcal{B}}(y))$$

Similarly, $\mathcal{F}^{i}_{\mathcal{A}\cup\mathcal{B}}(x-y) \leq T_{c}(\mathcal{F}^{i}_{\mathcal{A}}(x), \mathcal{F}^{i}_{\mathcal{B}}(y))$

$$\begin{aligned} f(ii) \ \mu^{i}_{\mathcal{A}\cup\mathcal{B}}(xy) &= T_{c}(\mu^{i}_{\mathcal{A}}(xy), \mu^{i}_{\mathcal{B}}(xy)) \\ &\geq T_{c}\{T_{n}(\mu^{i}_{\mathcal{A}}(x), \mu^{i}_{\mathcal{A}}(y)), T_{n}(\mu^{i}_{\mathcal{B}}(\mathbf{x}), \mu^{i}_{\mathcal{B}}(\mathbf{y}))\} \\ &= T_{n}\{T_{c}(\mu^{i}_{\mathcal{A}}(x), \mu^{i}_{\mathcal{B}}(x)), T_{c}(\mu^{i}_{\mathcal{A}}(y), \mu^{i}_{\mathcal{B}}(y))\} \\ &= T_{n}(\mu^{i}_{\mathcal{A}\cup\mathcal{B}}(x), \mu^{i}_{\mathcal{A}\cup\mathcal{B}}(y)) \\ \mathcal{N}^{i}_{\mathcal{A}\cup\mathcal{B}}(xy) &= T_{c}(\mathcal{N}^{i}_{\mathcal{A}}(xy), \mathcal{N}^{i}_{\mathcal{B}}(xy)) \\ &\leq T_{c}\{T_{c}(\mathcal{N}^{i}_{\mathcal{A}}(x), \mathcal{N}^{i}_{\mathcal{A}}(y)), T_{c}(\mathcal{N}^{i}_{\mathcal{B}}(x), \mathcal{N}^{i}_{\mathcal{B}}(y))\} \\ &= T_{c}\{T_{c}(\mathcal{N}^{i}_{\mathcal{A}}(x), \mathcal{N}^{i}_{\mathcal{B}}(x)), T_{c}(\mathcal{N}^{i}_{\mathcal{A}}(y), \mathcal{N}^{i}_{\mathcal{B}}(y))\} \\ &= T_{c}(\mathcal{N}^{i}_{\mathcal{A}\cup\mathcal{B}}(x), \mathcal{N}^{i}_{\mathcal{A}\cup\mathcal{B}}(y)) \end{aligned}$$

Similarly, $\mathcal{F}^{i}_{\mathcal{A}\cup\mathcal{B}}(xy) \leq T_{c}(\mathcal{F}^{i}_{\mathcal{A}}(x), \mathcal{F}^{i}_{\mathcal{B}}(y))$ Hence $\mathcal{A}\cup\mathcal{B}$ is a NMFSR of R w.r.t T_{n} and $T_{c} \forall x, y \in R$ and $i = 1, 2..., n_{\Box}$

Definition 4.8. Let $\mathcal{A} = \{ \langle (x, \mu_{\mathcal{A}}^{i}(y), \mathcal{N}_{\mathcal{A}}^{i}(x), \mathcal{F}_{\mathcal{A}}^{i}(x) \rangle \}$; $x \in \mathbb{R}$ and $i = 1, 2, ..., n \}$ be a NMFSR of \mathbb{R} . Let $\alpha_{i}, \beta_{i}, \gamma_{i} \in [0, 1]$. With $0 \leq \alpha_{i} + \beta_{i} + \gamma_{i} \leq 3$. Then the set $\mathcal{A}_{\alpha,\beta,\gamma}$ is called a level set of \mathcal{A} , where for any $x \in \mathcal{A}_{\alpha,\beta,\gamma}$ the following inequalities hold $\mu_{\mathcal{A}}^{i}(x) \geq \alpha_{i}$; $\mathcal{N}_{\mathcal{A}}^{i}(x) \leq \beta_{i}$; $\mathcal{F}_{\mathcal{A}}^{i}(x) \leq \gamma_{i}$;

Theorem 4.9. If \mathcal{A} is said to be a NMFSR of R with respect to T_n and T_c iff $\mathcal{A}_{\alpha,\beta,\gamma}$ is a subring of R with respect to T_n and T_c for all $\alpha_i, \beta_i, \gamma_i \in [0,1]$ with $\mu_{\mathcal{A}}(x) \geq \alpha_i$; $\mathcal{N}_{\mathcal{A}}(x) \leq \beta_i$; $\mathcal{F}_{\mathcal{A}}(x) \leq \gamma_i$; i = 1, 2, ..., n and assume that T_n and T_c are idempotent.

Proof. Since $\mu_{\mathcal{A}}(x) \geq \alpha$; $\mathcal{N}_{\mathcal{A}}(x) \leq \beta$; $\mathcal{F}_{\mathcal{A}}(x) \leq \gamma$; $\forall x \in \mathcal{A}_{\alpha,\beta,\gamma}$. (ie) $A_{\alpha,\beta,\gamma}$ is non-empty. Then for all i, $\mu_{A}^{i}(x) \geq \alpha_{i}$; $\mathcal{N}_{A}^{i}(x) \leq \beta_{i}$; $\mathcal{F}_{A}^{i}(x) \leq \gamma_{i}$; Now, let \mathcal{A} be NMFSR of R with respect to T_{n} and T_{c} and $x, y \in \mathcal{A}_{\alpha,\beta,\gamma}$ To show that, $x - y, xy \in \mathcal{A}_{\alpha,\beta,\gamma}$. (i) $\mu_{\mathcal{A}}^{i}(x-y) \geq T\left(\mu_{\mathcal{A}}^{i}(x), \mu_{\mathcal{A}}^{i}(y)\right) \geq T_{n}\left(\alpha_{i}, \alpha_{i}\right) = \alpha_{i}$ Again, $\mu_{\mathcal{A}}^{i}(xy) \geq T\left(\mu_{\mathcal{A}}^{i}(x), \mu_{\mathcal{A}}^{i}(y)\right) \geq T_{n}\left(\alpha_{i}, \alpha_{i}\right) = \alpha_{i}$

(ii) $\mathcal{N}_{\mathcal{A}}^{i}(x-y) \leq T_{c}\left(\mathcal{N}_{\mathcal{A}}^{i}(x), \mathcal{N}_{\mathcal{A}}^{i}(y)\right) \leq T_{c}\left(\beta_{i}, \beta_{i}\right) = \beta_{i}$ Again, $\mathcal{N}_{\mathcal{A}}^{i}(x) \leq T_{c}\left(\mathcal{N}_{\mathcal{A}}^{i}(x), \mathcal{N}_{\mathcal{A}}^{i}(y)\right) \leq T_{c}\left(\beta_{i}, \beta_{i}\right) = \beta_{i}$ Similarly, $F_{\mathcal{A}}^{i}(x-y) \leq \gamma_{i}$; $F_{\mathcal{A}}^{i}(xy) \leq \gamma_{i}$ $\therefore \mu_{\mathcal{A}}(x) \geq \alpha; \mathcal{N}_{\mathcal{A}}(x) \leq \beta; F_{\mathcal{A}}(x) \leq \gamma;$ Thus $x - y, xy \in \mathcal{A}_{\alpha,\beta,\gamma}$ is a subring of R. Conversely, let $\mathcal{A}_{\alpha,\beta,\gamma}$ be a subring of R. To show that, \mathcal{A} is a NMFSR of R with respect to T_{n} and T_{c} . Let $x, y \in R$ then there exist $\alpha_{i} \in [0, 1]$ such that $T_{n}\left(\mu_{\mathcal{A}}^{i}(x), \mu_{\mathcal{A}}^{i}(y)\right) = \alpha_{i}$ So, $\mu_{\mathcal{A}}^{i}(x) \geq \alpha_{i}; \ \mu_{\mathcal{A}}^{i}(y) \geq \alpha_{i}$ Also, let there exist $\beta_{i}, \gamma_{i} \in [0, 1]$ such that $T_{c}\left(\mathcal{N}_{\mathcal{A}}^{i}(x), \mathcal{N}_{\mathcal{A}}^{i}(y)\right) = \beta_{i}; T_{c}\left(F_{\mathcal{A}}^{i}(x), F_{\mathcal{A}}^{i}(y)\right) = \gamma_{i}.$ Then $x, y \in \mathcal{A}_{\alpha,\beta,\gamma}.$ Again as $\mathcal{A}_{\alpha,\beta,\gamma}$ is a subring of $R. \ x - y, xy \in \mathcal{A}_{\alpha,\beta,\gamma}$ Hence,

$$\mu_{\mathcal{A}}^{i}(x-y) \geq \alpha_{i} = T_{n}\left(\mu_{\mathcal{A}}^{i}(x), \mu_{\mathcal{A}}^{i}(y)\right)$$
$$\mu_{\mathcal{A}}^{i}(xy) \geq \alpha_{i} = T_{n}\left(\mu_{\mathcal{A}}^{i}(x), \mu_{\mathcal{A}}^{i}(y)\right)$$

Similarly,

$$\mathcal{N}_{\mathcal{A}}^{i}(x-y) \leq \beta_{i} = T_{c}\left(\mathcal{N}_{\mathcal{A}}^{i}(x), \mathcal{N}_{\mathcal{A}}^{i}(y)\right); \mathcal{N}_{\mathcal{A}}^{i}(xy) \leq \beta_{i} = T_{c}\left(\mathcal{N}_{\mathcal{A}}^{i}(x), \mathcal{N}_{\mathcal{A}}^{i}(y)\right)$$
$$\mathcal{F}_{\mathcal{A}}^{i}(x-y) \leq \gamma_{i} = T_{c}\left(\mathcal{F}_{\mathcal{A}}^{i}(x), \mathcal{F}_{\mathcal{A}}^{i}(y)\right); \mathcal{F}_{\mathcal{A}}^{i}(xy) \leq \gamma_{i} = T_{c}\left(\mathcal{F}_{\mathcal{A}}^{i}(x), \mathcal{F}_{\mathcal{A}}^{i}(y)\right)$$

 $\therefore \mathcal{A}$ is a NMFSR of R with respect to T_n and T_c .

Proposition 4.10. Let \mathcal{A} be a NMFSR of R w.r. t. T_n and T_c where T_n, T_c are idempotent then $S = \{ x \in R/\mu_A^i(x) = 1, \mathcal{N}_{\mathcal{A}}^i(x) = 0, \mathcal{F}_A^i(x) = 0; i = 1, 2..., n \}$ is a subring of R.

Proof. Let $x, y \in S$. Then,

(i) $\mu_{\mathcal{A}}^{i}(x-y) \geq T_{n}\left(\mu_{\mathcal{A}}^{i}(x), \mu_{\mathcal{A}}^{i}(y)\right) = T(1, 1) = 1$ $\mathcal{N}_{\mathcal{A}}^{i}(x-y) \leq T_{c}\left(\mathcal{N}_{\mathcal{A}}^{i}(x), \mathcal{N}_{\mathcal{A}}^{i}(y)\right) = T_{c}(0, 0) = 0$ Similarly, $F_{\mathcal{A}}^{i}(x-y) \leq 0$. hence $x-y \in S$. Also, (ii) $\mu_{\mathcal{A}}^{i}(xy) \geq T_{n}\left(\mu_{\mathcal{A}}^{i}(x), \mu_{\mathcal{A}}^{i}(y)\right) = T(1, 1) = 1$ $\mathcal{N}_{\mathcal{A}}^{i}(xy) \leq T_{c}\left(\mathcal{N}_{\mathcal{A}}^{i}(x), \mathcal{N}_{\mathcal{A}}^{i}(y)\right) = T_{c}(0, 0) = 0$ Similarly, $\mathcal{F}_{\mathcal{A}}^{i}(xy) \leq 0$. Hence $xy \in S$. Thus $S = \{x \in R/\mu_{\mathcal{A}}^{i}(\mathbf{x}) = 1, \mathcal{N}_{\mathcal{A}}^{i}(x) = 0, \mathcal{F}_{\mathcal{A}}^{i}(x) = 0\}$ is a subring of R w. r. t T_{n} and T_{c} . \Box

Definition 4.11. Let \mathcal{A} be a NMFS of R. Then \mathcal{A} is Said to be NMFLI of R w.r.t, T_n and T_c if

(i) $\mu_{\mathcal{A}}^{i}(x-y) \geq T_{n}(\mu_{\mathcal{A}}^{i}(x), \mu_{\mathcal{A}}^{i}(y)); \quad \mathcal{N}_{\mathcal{A}}^{i}(x-y) \leq T_{c}(\mathcal{N}_{\mathcal{A}}^{i}(x), \mathcal{N}_{\mathcal{A}}^{i}(y));$ $\mathcal{F}_{\mathcal{A}}^{i}(x-y) \leq T_{c}(\mathcal{F}_{\mathcal{A}}^{i}(x), \mathcal{F}_{\mathcal{A}}^{i}(y))$ (ii) $\mu_{\mathcal{A}}^{i}(xy) \geq \mu_{\mathcal{A}}^{i}(y); \quad \mathcal{N}_{\mathcal{A}}^{i}(xy) \leq \mathcal{N}_{\mathcal{A}}^{i}(y); \quad \mathcal{F}_{\mathcal{A}}^{i}(xy) \leq \mathcal{F}_{\mathcal{A}}^{i}(y) \quad \forall x, y \in \mathbb{R}, \quad i = 1, 2..., n$

Example 4.12. Let $(Z_2, +, \cdot)$ be a ring. Define $\mathcal{A} = \{ (< (0, (0.9, 0.7), (0.1, 0.5), (0.2, 0.3)), (1, (0.8, 0.6), (0.2, 0.5), (0.3, 0.6)) > \}$ Let us consider $T_n(x, y) = xy; T_c(x, y) = x + y - xy$. Then \mathcal{A} is NMFLI of Z_2 with T_n and T_c

Definition 4.13. Let \mathcal{A} be a NMFS of R w. r. t T_n and T_c . Then \mathcal{A} is NMFRI of R w. r. t T_n and T_c if

(i) $\mu_{\mathcal{A}}^{i}(x-y) \geq T_{n}\left(\mu_{\mathcal{A}}^{i}(x), \mu_{\mathcal{A}}^{i}(y)\right); \quad \mathcal{N}_{\mathcal{A}}^{i}(x-y) \leq T_{c}(\mathcal{N}_{\mathcal{A}}^{i}(x), \mathcal{N}_{\mathcal{A}}^{i}(y));$ $\mathcal{F}_{\mathcal{A}}^{i}(x-y) \leq T_{c}(\mathcal{F}_{\mathcal{A}}^{i}(x), \mathcal{F}_{\mathcal{A}}^{i}(y))$ (ii) $\mu_{\mathcal{A}}^{i}(xy) \geq \mu_{\mathcal{A}}^{i}(x); \quad \mathcal{N}_{\mathcal{A}}^{i}(xy) \leq \mathcal{N}_{\mathcal{A}}^{i}(\mathbf{x}); \quad \mathcal{F}_{\mathcal{A}}^{i}(xy) \leq \mathcal{F}_{\mathcal{A}}^{i}(x), \quad \forall x, y \in \mathbb{R}, i = 1, 2..., n.$

Example 4.14. Consider the ring $(Z_3, +, \cdot)$. For all $x \in Z_3$, we define NMFS \mathcal{A} of Z_3 as $\mathcal{A} = (< 0(0.9, 0.7), (0.1.0.3), (0.4, 0.6) >; < 1(0.8, 0.6), (0.1, 0.4), (0.4, 0.7) >; < 2(0.7, 0.4), (0.1.0.4), (0.4, 0.6) >)$

Let us consider $T_n(x, y) = \min(x, y)$; $T_c(x, y) = \max(x, y)$ then \mathcal{A} is NMFRI of Z_3 over T_n & T_c .

Definition 4.15. Let \mathcal{A} be a NMFS of R with respect to T_n and T_c . Then \mathcal{A} is Said to be NMFI with respect to T_n and T_c of R if

(i) $\mu_{\mathcal{A}}^{i}(x-y) \geq T_{n}(\mu_{\mathcal{A}}^{i}(x), \mu_{\mathcal{A}}^{i}(y)); \quad \mathcal{N}_{\mathcal{A}}^{i}(x-y) \leq T_{c}(\mathcal{N}_{\mathcal{A}}^{i}(x), \mathcal{N}_{\mathcal{A}}^{i}(y))$ $\mathcal{F}_{\mathcal{A}}^{i}(x-y) \leq T_{c}(\mathcal{F}_{\mathcal{A}}^{i}(x), \mathcal{F}_{\mathcal{A}}^{i}(y))$ (ii) $\mu_{\mathcal{A}}^{i}(xy) \geq T_{c}(\mu_{\mathcal{A}}^{i}(x), \mu_{\mathcal{A}}^{i}(y)); \quad \mathcal{N}_{\mathcal{A}}^{i}(xy) \leq T_{n}(\mathcal{N}_{\mathcal{A}}^{i}(x), \mathcal{N}_{\mathcal{A}}^{i}(y))$ $\mathcal{F}_{\mathcal{A}}^{i}(xy) \leq T_{n}(\mathcal{F}_{\mathcal{A}}^{i}(x), \mathcal{F}_{\mathcal{A}}^{i}(y)), \quad \forall x, y \in R.$

Example 4.16. Consider the ring $(Z_2, +, \cdot)$. For all $x \in Z_2$, we define NMFS \mathcal{A} of Z_2 as $\mathcal{A} = (< 0(0.8, 0.7), (0.2.0.3), (0.1, 0.4) >; < 1(0.7, 0.6), (0.2, 0.3), (0.2, 0.5) >$ Let us consider $T_n(x, y) = \min(x, y); T_c(x, y) = \max(x, y)$ then \mathcal{A} is NMFI of Z_2 over $T_n \& T_c$.

Theorem 4.17. Let \mathcal{A} be a NMFS of R with respect to T_n and T_c where, T_n, T_c are idempotent. Then \mathcal{A} is said to be NMFLI(NMFRI) of R with T_n and T_c iff $\mathcal{A}_{\alpha,\beta,\gamma}$ is a LI(RI) of R, $\forall \alpha_i, \beta_i, \gamma_i \in [0,1]$. with $\mu^i_{\mathcal{A}}(\mathbf{x}) \geq \alpha_i$; $\mathcal{N}^i_{\mathcal{A}}(x) \leq \beta_i$; $\mathcal{F}^i_{\mathcal{A}}(x) \leq \gamma_i$ and $\alpha_i + \beta_i + \gamma_i \leq 3$, where $\mu^i_{\mathcal{A}}(0) \geq \alpha_i$; $\mathcal{N}^i_{\mathcal{A}}(0) \leq \beta_i$; $\mathcal{F}^i_{\mathcal{A}}(0) \leq \gamma_i$, i = 1, 2..., n.

Proof. Let \mathcal{A} be a NMFLI of R with respect to T_n and T_c .

If $x, y \in \mathcal{A}_{\alpha,\beta,\gamma}, i = 1, 2, ..., n$ Then by $\mu_{\mathcal{A}}^{i}(x-y) \geq T_{n}(\mu_{\mathcal{A}}^{i}(x), \mu_{\mathcal{A}}^{i}(y)) \geq T_{n}(\alpha_{i}, \alpha_{i}) = \alpha_{i}$ $\mathcal{N}_{\mathcal{A}}^{i}(x-y) \leq T_{C}(\mathcal{N}_{\mathcal{A}}^{i}(x), \mathcal{N}_{\mathcal{A}}^{i}(x)) \leq T_{C}(\beta_{i}, \beta_{i}) = \beta_{i}$

B. Anitha and P. Tharini, Embedding Norms into Neutrosophic Multi Fuzzy Subrings

Similarly, $F_{\mathcal{A}}^{i}(x-y) \leq \gamma_{i}$. $\therefore \mu_{\mathcal{A}}(x-y) \geq \alpha$; $\mathcal{N}_{\mathcal{A}}(x-y) \leq \beta$; $\mathcal{F}_{\mathcal{A}}(x-y) \leq \gamma$; We obtain that $x-y \in \mathcal{A}_{\alpha,\beta,\gamma}$ Now let $x \in \mathcal{A}_{\alpha,\beta,\gamma}$ and $\mathbf{r} \in \mathbf{R}$. Then from $\mu_{\mathcal{A}}^{i}(rx) \geq \mu_{\mathcal{A}}^{i}(x) \geq \alpha_{i}$

$$\mathcal{N}_{\mathcal{A}}^{i}(rx) \leq \mathcal{N}_{\mathcal{A}}^{i}(x) \leq \beta_{i}$$

$$F^{i}_{\mathcal{A}}(rx) \leq F^{i}_{\mathcal{A}}(x) \leq \gamma_{i}$$

Therefore $rx \in \mathcal{A}_{\alpha,\beta,\gamma}$. Hence $\mathcal{A}_{\alpha,\beta,\gamma}$ is a LI of R. Similarly, we can prove it for right ideal (ie) $xr \in \mathcal{A}_{\alpha,\beta,\gamma}$. Conversely, let $\mathcal{A}_{\alpha,\beta,\gamma}$ be a LI of R and $x, y \in \mathcal{A}_{\alpha,\beta,\gamma}$ such that $\mu^{i}_{\mathcal{A}}(x) = \mu^{i}_{\mathcal{A}}(y) = \alpha_{i}; \mathcal{N}^{i}_{\mathcal{A}}(x) = \mathcal{N}^{i}_{\mathcal{A}}(y) = \beta_{i}; \mathcal{F}^{i}_{\mathcal{A}}(x) = \mathcal{F}^{i}_{\mathcal{A}}(y) = \gamma_{i}$ $\therefore x - y \in \mathcal{A}_{\alpha,\beta,\gamma}$ so

$$\mu_{\mathcal{A}}^{i}(x-y) \geq \alpha_{i} = T(\alpha_{i}, \alpha_{i}) = T_{n}\left(\mu_{\mathcal{A}}^{i}(x), \mu_{\mathcal{A}}^{i}(y)\right)$$

$$\mathcal{N}_{\mathcal{A}}^{i}\left(x-y\right) \leq \beta_{i} = T_{c}\left(\beta_{i},\beta_{i}\right) = T_{c}\left(\mathcal{N}_{\mathcal{A}}^{i}\left(x\right),\mathcal{N}_{\mathcal{A}}^{i}\left(y\right)\right)$$

Similarly, we get $\mathcal{F}_{\mathcal{A}}^{i}(x-y) \leq T_{c}\left(\mathcal{F}_{\mathcal{A}}^{i}(x), \mathcal{F}_{\mathcal{A}}^{i}(y)\right)$. Also $\because xy \in \mathcal{A}_{\alpha,\beta,\gamma}$ then

$$\mu_{\mathcal{A}}^{i}(xy) \geq \alpha_{i} = \mu_{\mathcal{A}}^{i}(y)$$
$$\mathcal{N}_{\mathcal{A}}^{i}(xy) \leq \beta_{i} = \mathcal{N}_{\mathcal{A}}^{i}(y)$$
$$\mathcal{F}_{\mathcal{A}}^{i}(xy) \leq \gamma_{i} = \mathcal{F}_{\mathcal{A}}^{i}(y), x, y \in \mathcal{A}_{\alpha,\beta,\gamma}.$$

 $\therefore \mathcal{A}$ is a NMFLR of R with T_n and T_c are idempotent. Similarly, we can prove it for RI. \Box

Theorem 4.18. Let \mathcal{A} be a NMFS of R with respect to T_n and T_c where T_n , T_c be idempotent. Then \mathcal{A} is said to be NMFI of R with T_n and T_c iff $\mathcal{A}_{\alpha,\beta,\gamma}$ is an ideal of $R \forall \alpha_i, \beta_i, \gamma_i \in [0,1]$ with $\mu^i_{\mathcal{A}}(x) \ge \alpha_i$; $\mathcal{N}^i_{\mathcal{A}}(x) \le \beta_i$; $\mathcal{F}^i_{\mathcal{A}}(x) \le \gamma_i$ and $0 \le \alpha_i + \beta_i + \gamma_i \le 3$, where $\mu^i_{\mathcal{A}}(0) \ge \alpha_i$; $\mathcal{N}^i_{\mathcal{A}}(0) \le \beta_i$; $\mathcal{F}^i_{\mathcal{A}}(0) \le \gamma_i$, i=1, 2..., n.

Proof. Follows from the above theorem. \Box

Theorem 4.19. If \mathcal{A} and \mathcal{B} are NMFLI(NMFRI) of R with respect to T_n and T_c then $\mathcal{A} \cap \mathcal{B}$ also a NMFLI(NMFRI) of R with respect to T_n and T_c where, T_n and T_c are idempotent.

Proof. Let $x, y \in R.\mathcal{A} \cap \mathcal{B}$ is NMFSR with respect to T_n and T_c . (By theorem 4.2).

It is enough to show,

$$\begin{aligned} (\mathbf{i})\mu^{i}_{\mathcal{A}\cap\mathcal{B}}(xy) &= T_{n}(\mu^{i}_{\mathcal{A}}(xy),\mu^{i}_{\mathcal{B}}(xy))\\ &\geq T_{n}(\mu^{i}_{\mathcal{A}}(y)),\mu^{i}_{\mathcal{B}}(y))\\ &= T_{n}(\mu^{i}_{\mathcal{A}\cap\mathcal{B}}(y))\\ \mathcal{N}^{i}_{\mathcal{A}\cap\mathcal{B}}(xy) &= T_{c}(\mathcal{N}^{i}_{\mathcal{A}}(\mathbf{xy}),\mathcal{N}^{i}_{\mathcal{B}}(\mathbf{xy}))\\ &\leq T_{c}(\mathcal{N}^{i}_{\mathcal{A}}(y),\mathcal{N}^{i}_{\mathcal{B}}(y))\\ &= \mathcal{N}^{i}_{\mathcal{A}\cap\mathcal{B}}(\mathbf{y})\end{aligned}$$

Similarly, $\mathcal{F}^{i}_{\mathcal{A}\cap\mathcal{B}}((\mathbf{xy}) \leq \mathcal{F}^{i}_{\mathcal{A}\cap\mathcal{B}}(\mathbf{y})$. Therefore $\mathcal{A}\cap\mathcal{B}$ is a NMFLI with respect to T_n and T_c . In the similar way we can easily prove for NMFRI. \Box

Remark 4.20. In general, if \mathcal{A}, \mathcal{B} are NMFLI(NMFRI) of R with respect to T_n and T_c , then $\mathcal{A} \cup \mathcal{B}$ will always not be a NMFLI(NMFRI) of R with respect to T_n and T_c . The accompanying example will show our case.

Example 4.21. Let $(Z_4, +, \cdot)$ be a ring of integers.

Let us define $\mathcal{A} = \{(<0(0.9,0.6) \ (0.2,0.4) \ (0.3,0.5)>, <1(0.8,0.5) \ (0.3,0.6) \ (0.3,0.6)>, <2(0.8,0.5) \ (0.3,0.6) \ (0.3,0.6)>, <3(0.9,0.5) \ (0.2,0.5) \ (0.3,0.6)>\}$

 $\mathcal{B} = \{ < (0 \ (0.9, 0.8), \ (0.1, 0.2), \ (0.2, 0.4), \ < 1 \ (0.8, 0.4), \ (0.3, 0.4), \ (0.4, 0.5) >, \ < 2 \ (0.9, 0.5), \\ (0.3, 0.4), \ (0.4, 0.5) >, \ < 3 \ (0.8, 0.4), \ (0.3, 0.4), \ (0.4, 0.5) > \} \text{ be two NMFS of } Z_4 \text{ under } T_n \text{ and } T_c.$

Let us consider $T_{n}(\mathbf{x}, \mathbf{y}) = \min(\mathbf{x}, \mathbf{y}); T_{c}(\mathbf{x}, \mathbf{y}) = \max(\mathbf{x}, \mathbf{y})$ then \mathcal{A} , and \mathcal{B} be NMFSR of Z_{4} . $\mathcal{A} \cup \mathcal{B} = \{ < 0, (0.9, 0.8), (0.1, 0.2), (0.2, 0.4) > < 1(0.8, 0.5), (0.2, 0.3), (0.3, 0.5) >, < 2(0.9, 0.5), (0.3, 0.4), (0.3, 0.5) >, 3(0.9, 0.5), (0.2, 0.4), (0.3, 0.5) > \}$ Then for $\mathbf{x} = 3; \mathbf{y} = 2$. $\mu^{i}_{\mathcal{A} \cup \mathcal{B}}(3 - 2) = (0.8, 0.5)$ Again, if \mathcal{A} is a NMFLI with respect to T_{n} and T_{c} of R then $\forall \mathbf{x}, \mathbf{y} \in Z_{4}$ $\mu^{i}_{\mathcal{A} \cup \mathcal{B}}(\mathbf{x} - \mathbf{y}) \ge T_{n}(\mu^{i}_{\mathcal{A} \cup \mathcal{B}}(\mathbf{x}), \mu^{i}_{\mathcal{A} \cup \mathcal{B}}(\mathbf{y})) \mu^{i}_{\mathcal{A}}(\mathbf{x}y) \ge \mu^{i}_{\mathcal{A}}(\mathbf{y}); \quad \mathcal{N}^{i}_{\mathcal{A}}(\mathbf{x}y) \le \mathcal{N}^{i}_{\mathcal{A}}(\mathbf{y}); \quad \mathcal{F}^{i}_{\mathcal{A}}(\mathbf{x}y) \le$ $F^{i}_{\mathcal{A}}(\mathbf{y}) \forall \mathbf{x}, y \in R, \quad i = 1, 2..., n$ But for $\mathbf{x} = 3; \mathbf{y} = 2$ $T_{n} \{\mu^{i}_{\mathcal{A} \cup \mathcal{B}}(\mathbf{x}), \mu^{i}_{\mathcal{A} \cup \mathcal{B}}(y)\} = T_{n}(\mu^{i}_{\mathcal{A} \cup \mathcal{B}}(3), \mu^{i}_{\mathcal{A} \cup \mathcal{B}}(2)) = T_{n}\{(0.9, 0.5), (0.9, 0.5)\} = (0.9, 0.5)$ $\therefore \mu^{i}_{\mathcal{A} \cup \mathcal{B}}(3 - 2) = (0.8, 0.5); T_{n}\{\mu^{i}_{\mathcal{A}}(3), \mu^{i}_{\mathcal{A} \cup \mathcal{B}}(2)\} = (0.9, 0.5)$ $\mu^{i}_{\mathcal{A} \cup \mathcal{B}}(3 - 2) \not\geq T_{n}\{\mu^{i}_{\mathcal{A} \cup \mathcal{B}}(3), \mu^{i}_{\mathcal{A} \cup \mathcal{B}}(2)\}$

Hence $\mathcal{A} \cup \mathcal{B}$ is not NMFLI of Z_4 over T_n and T_c .

Theorem 4.22. If \mathcal{A} and \mathcal{B} are NMFI of ring R with respect to T_n and T_c then $\mathcal{A} \cap \mathcal{B}$ also a NMFI of R w. r. t T_n and T_c where T_n and T_c are idempotent.

Proof. Follows from above theorem. \Box

Corollary 4.23. Let $\{ A_i, i = 1, 2..., n \}$ be a NMFSR of R with respect to T_n and T_c . Then $\cap A_i$ is also NMFSR of R.

Definition 4.24. Let \mathcal{A} and \mathcal{B} be the two NMFS in R. Then $\mathcal{A} \circ \mathcal{B}$ is defined as , $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}$,

$$(\mathcal{A} \circ \mathcal{B})(\mathbf{x}) = \begin{cases} \underbrace{\sup_{\mathbf{x}=\mathbf{y}z}}_{\mathbf{x}=\mathbf{y}z} & T_n\left(\mu_{\mathcal{A}}^i\left(\mathbf{y}\right), \mu_{\mathcal{B}}^i\left(z\right)\right) \\ \underbrace{\inf_{\mathbf{x}=\mathbf{y}z}}_{\mathbf{x}=\mathbf{y}z} & T_c(\mathcal{N}_{\mathcal{A}}^i\left(\mathbf{y}\right), \mathcal{N}_{\mathcal{B}}^i\left(z\right)) & \text{if } \mathbf{x}=\mathbf{y}\mathbf{z} \\ \underbrace{\inf_{\mathbf{x}=\mathbf{y}z}}_{(0,1,1)} & T_c(\mathcal{F}_{\mathcal{A}}^i\left(\mathbf{y}\right), \mathcal{F}_{\mathcal{B}}^i\left(z\right)) \\ & \text{if } \mathbf{x}\neq\mathbf{y}z \end{cases}$$

Theorem 4.25. Let \mathcal{A} , \mathcal{B} be the two NMS in R. If \mathcal{A} and \mathcal{B} are NMFI of R with respect to T_n and T_c then $\mathcal{A} \circ \mathcal{B} \subset \mathcal{A} \cap \mathcal{B}$.

Proof. Let $\mathbf{x} \in R$. Suppose $\mathcal{A} \circ \mathcal{B} = (0, 1, 1)$ then there is nothing to prove. Suppose $\mathcal{A} \circ \mathcal{B} \neq (0, 1, 1)$ Then,

$$(\mathcal{A} \circ \mathcal{B})(\mathbf{x}) = \begin{cases} \underbrace{\sup_{x=yz}}_{x=yz} & T_n\left(\mu_{\mathcal{A}}^i\left(\mathbf{y}\right), \mu_{\mathcal{B}}^i\left(z\right)\right) \\ \underbrace{\inf_{x=yz}}_{x=yz} & T_c(\mathcal{N}_{\mathcal{A}}^i\left(\mathbf{y}\right), \mathcal{N}_{\mathcal{B}}^i\left(z\right)) & \text{if } \mathbf{x} = \mathbf{yz} \\ \underbrace{\inf_{x=yz}}_{x=yz} & T_c(\mathcal{F}_{\mathcal{A}}^i\left(\mathbf{y}\right), \mathcal{F}_{\mathcal{B}}^i\left(z\right)) \end{cases}$$

Since \mathcal{A}, \mathcal{B} are NMFI of R with T_n and T_c .

(i) $\mu_{\mathcal{A}}^{i}(\mathbf{y}) \leq \mu_{\mathcal{A}}^{i}(\mathbf{y}z) = \mu_{\mathcal{A}}^{i}(\mathbf{x}); \quad \mathcal{N}_{\mathcal{A}}^{i}(\mathbf{y}) \geq \mathcal{N}_{\mathcal{A}}^{i}(\mathbf{y}z) = \mathcal{N}_{\mathcal{A}}(\mathbf{x}); \quad \mathcal{F}_{\mathcal{A}}^{i}(\mathbf{y}) \geq \mathcal{F}_{\mathcal{A}}^{i}(\mathbf{y}z) = \mathcal{F}_{\mathcal{A}}^{i}(\mathbf{x})$ (ii) $\mu_{\mathcal{B}}^{i}(z) \leq \mu_{\mathcal{B}}^{i}(\mathbf{y}z) = \mu_{\mathcal{B}}^{i}(\mathbf{x}); \quad \mathcal{N}_{\mathcal{B}}^{i}(z) \geq \mathcal{N}_{\mathcal{B}}^{i}(\mathbf{y}z) = \mathcal{N}_{\mathcal{B}}^{i}(\mathbf{x}); \quad \mathcal{F}_{\mathcal{B}}^{i}(z) \geq \mathcal{F}_{\mathcal{B}}^{i}(\mathbf{y}z) = \mathcal{F}_{\mathcal{B}}^{i}(\mathbf{x})$ Thus,

$$\mu_{\mathcal{A}\circ\mathcal{B}}^{i}(\mathbf{x}) = \underbrace{\sup_{x=\mathbf{y}z} \{T_{n}(\mu_{\mathcal{A}}^{i}(\mathbf{y}), \mu_{\mathcal{B}}^{i}(z)\}}_{= = \mathbf{y}z}$$

$$\leq T_{n}(\mu_{\mathcal{A}}^{i}(\mathbf{x}), \mu_{\mathcal{B}}^{i}(\mathbf{x}))$$

$$= \mu_{\mathcal{A}\cap\mathcal{B}}^{i}(\mathbf{x})$$

$$\mathcal{N}_{\mathcal{A}\circ\mathcal{B}}^{i}(\mathbf{x}) = \underbrace{\inf_{x=yz} \{T_{c}(\mathcal{N}_{\mathcal{A}}^{i}(\mathbf{y}), \mathcal{N}_{\mathcal{B}}^{i}(z)\}}_{z=yz}$$

$$\geq T_{c}(\mathcal{N}_{\mathcal{A}}^{i}(\mathbf{y}), \mathcal{N}_{\mathcal{B}}^{i}(z))$$

$$= \mathcal{N}_{\mathcal{A}\cap\mathcal{B}}^{i}(\mathbf{x})$$

Similarly, $\Gamma^{i}_{\mathcal{A} \circ \mathcal{B}}(\mathbf{x}) \geq \Gamma^{i}_{\mathcal{A} \cap \mathcal{B}}(\mathbf{x})$. Hence $\mathcal{A} \circ \mathcal{B} \subset \mathcal{A} \cap \mathcal{B}$.

5. Direct product and Homomorphism on Neutrosophic Multifuzzy subrings over norms

Definition 5.1. Let R_1 and R_2 be the two rings. Let \mathcal{A} and \mathcal{B} be the two NMFS of R_1 and R_2 respectively with T_n and T_c . Then $\mathcal{A} \times \mathcal{B} = \{ < ((\mathbf{x}, \mathbf{y}), \mu^i_{\mathcal{A} \times \mathcal{B}}(\mathbf{x}, \mathbf{y}), \mathcal{N}^i_{\mathcal{A} \times \mathcal{B}}(\mathbf{x}, \mathbf{y}), \mathcal{F}^i_{\mathcal{A} \times \mathcal{B}}(\mathbf{x}, \mathbf{y}) > / \mathbf{x} \in R_1, \mathbf{y} \in R_2, i = 1, 2, ..., n \}$ Where $\mu^i_{\mathcal{A} \times \mathcal{B}}(\mathbf{x}, \mathbf{y}) = T_n(\mu^i_{\mathcal{A}}(\mathbf{x}), \mu^i_{B}(\mathbf{y}))$ $\mathcal{N}^i_{\mathcal{A} \times \mathcal{B}}(\mathbf{x}, \mathbf{y}) = T_c(\mathcal{N}^i_{\mathcal{A}}(\mathbf{x}), \mathcal{N}^i_{B}(\mathbf{y})), \mathcal{F}^i_{\mathcal{A} \times \mathcal{B}}(\mathbf{x}, \mathbf{y}) = T_c(\mathcal{F}^i_{\mathcal{A}}(\mathbf{x}), \mathcal{F}^i_{\mathcal{B}}(\mathbf{y}))$

Theorem 5.2. Let R_1 and R_2 be the two rings with \mathcal{A} and \mathcal{B} are respectively NMFSR of R_1 and R_2 over T_n and T_c . Then $\mathcal{A} \times \mathcal{B}$ is also a NMFSR of $R_1 \times R_2$ With respect to T_n and T_c .

Proof. Let \mathcal{A} and B are respectively NMFSR of R_1 and R_2 respectively over T_n and T_c . Let $(\mathbf{x}_1, \mathbf{y}_1) (\mathbf{x}_2, \mathbf{y}_2) \in \mathcal{A} \times B$.

Then,
$$\mu_{\mathcal{A}\times\mathcal{B}}^{i}[(\mathbf{x}_{1},\mathbf{y}_{1}) - (\mathbf{x}_{2},\mathbf{y}_{2})] = \mu_{\mathcal{A}\times\mathcal{B}}^{i}((\mathbf{x}_{1} - \mathbf{x}_{2}), (\mathbf{y}_{1} - \mathbf{y}_{2}))$$

$$= T_{n} \left\{ \mu_{A}^{i}((\mathbf{x}_{1} - \mathbf{x}_{2})), \mu_{B}^{i}(\mathbf{y}_{1} - \mathbf{y}_{2})) \right\}$$

$$\geq T_{n} \{T_{n}(\mu_{A}^{i}(\mathbf{x}_{1}), \mu_{A}^{i}(\mathbf{x}_{2})), T_{n}(\mu_{B}^{i}(\mathbf{y}_{1}), \mu_{B}^{i}(\mathbf{y}_{2}))\}$$

$$\geq T_{n} \{T_{n}(\mu_{A}^{i}(\mathbf{x}_{1}), \mu_{B}^{i}(\mathbf{y}_{1})), T_{n}(\mu_{A}^{i}(\mathbf{x}_{2}), \mu_{B}^{i}(\mathbf{y}_{2}))\}$$

$$\geq T_{n} \{\mu_{\mathcal{A}\times\mathcal{B}}^{i}((\mathbf{x}_{1}, \mathbf{y}_{1})), \mu_{\mathcal{A}\times\mathcal{B}}^{i}((\mathbf{x}, \mathbf{y}_{2}))\}.$$

$$\mu_{\mathcal{A}\times\mathcal{B}}^{i}[(\mathbf{x}_{1}, \mathbf{y}_{1}) \cdot (\mathbf{x}_{2}, \mathbf{y}_{2})] = \mu_{\mathcal{A}\times\mathcal{B}}^{i}((\mathbf{x}_{1}.\mathbf{x}_{2}), (\mathbf{y}_{1}.\mathbf{y}_{2}))$$

$$= T_{n} \{\mu_{\mathcal{A}}^{i}((\mathbf{x}_{1}.\mathbf{x}_{2})), \mu_{\mathcal{B}}^{i}(\mathbf{y}_{1}.\mathbf{y}_{2}))\}$$

$$\geq T_{n} \{T_{n}(\mu_{\mathcal{A}}^{i}(\mathbf{x}), \mu_{\mathcal{A}}^{i}(\mathbf{x}_{2})), T_{n}(\mu_{\mathcal{B}}^{i}(\mathbf{y}_{1}), \mu_{\mathcal{B}}^{i}(\mathbf{y}_{2}))\}$$

$$\geq T_{n} \{T_{n}(\mu_{\mathcal{A}}^{i}(\mathbf{x}_{1}), \mu_{\mathcal{B}}^{i}(\mathbf{y}_{1})), T_{n}(\mu_{\mathcal{A}}^{i}(\mathbf{x}_{2}), \mu_{\mathcal{B}}^{i}(\mathbf{y}_{2}))\}$$

$$\begin{aligned} \operatorname{Again}, \mathcal{N}_{\mathcal{A}\times\mathcal{B}}^{i}\left[\left(\mathbf{x},\mathbf{y}_{1}\right)-\left(\mathbf{x}_{2},\mathbf{y}_{2}\right)\right] &= \mathcal{N}_{\mathcal{A}\times\mathcal{B}}^{i}\left(\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right),\left(\mathbf{y}_{1}-\mathbf{y}_{2}\right)\right) \\ &= T_{c}\left\{\mathcal{N}_{\mathcal{A}}^{i}(\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)),\mathcal{N}_{\mathcal{B}}^{i}\left(\mathbf{y}_{1}-\mathbf{y}_{2}\right)\right)\right\} \\ &\leq T_{c}\left\{T_{c}(\mathcal{N}_{\mathcal{A}}^{i}\left(\mathbf{x}\right),\mathcal{N}_{\mathcal{A}}^{i}\left(\mathbf{x}_{2}\right)),T_{c}(\mathcal{N}_{\mathcal{B}}^{i}\left(\mathbf{y}_{1}\right),\mathcal{N}_{\mathcal{B}}^{i}\left(\mathbf{y}_{2}\right))\right\} \\ &\leq T_{c}\left\{T_{c}(\mathcal{N}_{\mathcal{A}}^{i}\left(\mathbf{x}_{1}\right),\mathcal{N}_{\mathcal{B}}^{i}\left(\mathbf{y}_{1}\right)),T_{c}(\mathcal{N}_{\mathcal{A}}^{i}\left(\mathbf{x}_{2}\right),\mathcal{N}_{\mathcal{B}}^{i}\left(\mathbf{y}_{2}\right))\right\} \\ &\leq T_{c}\left\{\mathcal{N}_{\mathcal{A}\times\mathcal{B}}^{i}\left(\mathbf{x}_{1},\mathbf{y}_{1}\right),\mathcal{N}_{\mathcal{A}\times\mathcal{B}}^{i}\left(\mathbf{x}_{2},\mathbf{y}_{2}\right)\right\} \\ &\mathcal{N}_{\mathcal{A}\times\mathcal{B}}^{i}\left[\left(\mathbf{x}_{1},\mathbf{y}_{1}\right),\left(\mathbf{x}_{2},\mathbf{y}_{2}\right)\right]\mathcal{N}_{\mathcal{A}\times\mathcal{B}}^{i}\left(\left(\mathbf{x}_{1}.\mathbf{x}_{2}\right),\left(\mathbf{y}_{1}.\mathbf{y}_{2}\right)\right) \\ &= T_{c}\left\{\mathcal{N}_{\mathcal{A}}^{i}(\left(\mathbf{x}_{1}),\mathcal{N}_{\mathcal{B}}^{i}\left(\mathbf{y}_{1}\right),\mathcal{N}_{\mathcal{B}}^{i}\left(\mathbf{y}_{2}\right)\right)\right\} \\ &\leq T_{c}\left\{T_{c}(\mathcal{N}_{\mathcal{A}}^{i}\left(\mathbf{x}_{1}\right),\mathcal{N}_{\mathcal{B}}^{i}\left(\mathbf{x}_{2}\right)),T_{c}(\mathcal{N}_{\mathcal{B}}^{i}\left(\mathbf{x}_{2}\right),\mathcal{N}_{\mathcal{B}}^{i}\left(\mathbf{y}_{2}\right))\right\} \\ &\leq T_{c}\left\{T_{c}(\mathcal{N}_{\mathcal{A}}^{i}\left(\mathbf{x}_{1}\right),\mathcal{N}_{\mathcal{B}}^{i}\left(\mathbf{x}_{2}\right)),T_{c}(\mathcal{N}_{\mathcal{B}}^{i}\left(\mathbf{x}_{2}\right),\mathcal{N}_{\mathcal{B}}^{i}\left(\mathbf{y}_{2}\right))\right\} \end{aligned}$$

$$\leq T_c \left\{ \mathcal{N}^i_{\mathcal{A} \times \mathcal{B}}((\mathbf{x}_1, \mathbf{y}_1)), \mathcal{N}^i_{\mathcal{A} \times \mathcal{B}}((\mathbf{x}_2, \mathbf{y}_2)) \right\}.$$

Similarly, we get,

$$\mathcal{F}^{i}_{\mathcal{A}\times\mathcal{B}}\left[(\mathbf{x}_{1},\mathbf{y}_{1})-(\mathbf{x}_{2},\mathbf{y}_{2})\right] \leq T_{c}\left\{\mathcal{F}^{i}_{\mathcal{A}\times\mathcal{B}}((\mathbf{x}_{1},\mathbf{y}_{1})),\mathcal{F}^{i}_{\mathcal{A}\times\mathcal{B}}((\mathbf{x}_{2},\mathbf{y}_{2}))\right\}$$
$$\mathcal{F}^{i}_{\mathcal{A}\times\mathcal{B}}\left[(\mathbf{x}_{1},\mathbf{y}_{1}).(\mathbf{x}_{2},\mathbf{y}_{2})\right] \leq T_{c}\left\{\mathcal{F}^{i}_{\mathcal{A}\times\mathcal{B}}((\mathbf{x}_{1},\mathbf{y}_{1})),\mathcal{F}^{i}_{\mathcal{A}\times\mathcal{B}}((\mathbf{x}_{2},\mathbf{y}_{2}))\right\}$$

Hence $\mathcal{A} \times \mathcal{B}$ is also a NMFSR of $R_1 \times R_2$ over T and T_c .

Remark 5.3. However, $\mathcal{A} \times \mathcal{B}$ is a NMFSR of $R_1 \times R_2$ over T_n and T_c . Then both \mathcal{A} and \mathcal{B} are need not be NMFSR of R_1 and R_2 respectively over T_n and T_c which is obvious from the accompanying case.

Example 5.4. Let $(Z_4, +, \cdot)$ and $(Z_2, +, \cdot)$ be a ring. Let T_n (**x**, **y**) = min(**x**, **y**) and $T_c(\mathbf{x}, \mathbf{y}) = max(\mathbf{x}, \mathbf{y})$. We define a NMFS \mathcal{A} and \mathcal{B} of Z_4 and Z_2 as $\mathcal{A} = (< 0(0.9, 0.8), (0.1.0.2), (0.5, 0.6) > ; < 1(0.9, 0.7), (0.1, 0.2), (0.5, 0.6) > < 2(0.8, 0.6), (0.2, 0.3), (0.6, 0.7) > , < 3(0.7, 0.5), (0.3, 0.2), (0.7, 0.6)$ $\mathcal{B} = (< 0(0.8, 0.7), (0.2.0.3), (0.6, 0.7) >; < 1(0.7, 0.7), (1, 0) (0.3, 0.4), (0.7, 0.8) >).$ $\mathcal{A} \times \mathcal{B} = \{ < (0, 0) (0.8, 0.7) > , < (0, 1) (0.7, 0.7) > , < (1, 0) (0.8, 0.7) > , < (1, 1) (0.7, 0.7) >, < (2, 0) (0.8, 0.6) > , < (2, 1) (0.7, 0.6) > , < (3, 0) (0.7, 0.5) >, < (3, 1) (0.7, 0.5) >)$ It is clear that $\mathcal{A} \times \mathcal{B}$ a NMFSR of $Z_4 \times Z_2$. But \mathcal{A} is not a NMFSR of Z_2 as $\mathcal{N}^i_{\mathcal{A}}$ (1 \cdot 0) = (0.1, 0.3); $T_c\{\mathcal{N}^i_{\mathcal{A}}(1), \mathcal{N}^i_{\mathcal{A}}(0)\} = (0.1, 0.2) \mathcal{N}^i_{\mathcal{A}}(1 \cdot 0) \leq T_c\{\mathcal{N}^i_{\mathcal{A}}(1), \mathcal{N}^i_{\mathcal{A}}(0)\}$

Corollary 5.5. Let, for all $i \in \{1, 2, ..., n\}$, $(R_i, +, \cdot)$ are rings and A_i is a NMFSR of R_i over T_n and T_c . Then $A_1 \times A_2 \times ..., A_n$ is a NMFSR of $R_1 \times R_2 \ldots \times R_n$ over T_n and T_c , where $n \in N$

Theorem 5.6. If \mathcal{A} and \mathcal{B} are NMFLI(NMFRI) of R_1 and R_2 over T_n and T_c . Then $\mathcal{A} \times \mathcal{B}$ is also a NMFLI(NMFRI) of $R_1 \times R_2$ With respect to T_n and T_c .

Proof. Let $(x_1, y_1) (x_2, y_2) \in \mathcal{A} \times \mathcal{B}$. Assume \mathcal{A}_1 and \mathcal{A}_2 are NMFLI of R_1 and R_2 respectively over T_n and T_c .

We have to show that $\mathcal{A} \times \mathcal{B}$ is also a NMFLI of $R_1 \times R_2$ over T_n and T_c

By theorem 5.2,

 $\mathcal{A} \times \mathcal{B}$ is also a NMFSR of $R_1 \times R_2$ over T_n and T_c .

It is enough to show

$$\mu_{\mathcal{A}\times\mathcal{B}}^{i}\left[\left(\mathbf{x}_{1},\mathbf{y}_{1}\right)\left(\mathbf{x}_{2},\mathbf{y}_{2}\right)\right] \geq \mu_{\mathcal{A}\times\mathcal{B}}^{i}(\left(\mathbf{x}_{2},\mathbf{y}_{2}\right))$$
$$\mathcal{N}_{\mathcal{A}\times\mathcal{B}}^{i}\left[\left(\mathbf{x}_{1},\mathbf{y}_{1}\right)\left(\mathbf{x}_{2},\mathbf{y}_{2}\right)\right] \leq \mathcal{N}_{\mathcal{A}\times\mathcal{B}}^{i}(\left(\mathbf{x}_{2},\mathbf{y}_{2}\right))$$
$$\mathcal{F}_{\mathcal{A}\times\mathcal{B}}^{i}\left[\left(\mathbf{x}_{1},\mathbf{y}_{1}\right)\left(\mathbf{x}_{2},\mathbf{y}_{2}\right)\right] \leq \mathcal{F}_{\mathcal{A}\times\mathcal{B}}^{i}(\left(\mathbf{x}_{2},\mathbf{y}_{2}\right))$$

B. Anitha and P. Tharini, Embedding Norms into Neutrosophic Multi Fuzzy Subrings

$$(ie)\mu_{\mathcal{A}\times\mathcal{B}}^{i}\left[\left(\mathbf{x}_{1},\mathbf{y}_{1}\right)\left(\mathbf{x}_{2},\mathbf{y}_{2}\right)\right] = \mu_{\mathcal{A}\times\mathcal{B}}^{i}\left[\left(\left(\mathbf{x}_{1}\mathbf{x}_{2},\mathbf{y}_{1}\mathbf{y}_{2}\right)\right)\right]$$

$$= T_{n}(\mu_{\mathcal{A}}^{i}\left(\mathbf{x}_{1}\mathbf{x}_{2}\right),\mu_{\mathcal{B}}^{i}(\mathbf{y}_{1}\mathbf{y}_{2}))$$

$$\geq T_{n}(\mu_{\mathcal{A}}^{i}\left(\mathbf{x}_{2}\right),\mu_{\mathcal{B}}^{i}(\mathbf{y}_{2}))$$

$$= \mu_{\mathcal{A}\times\mathcal{B}}^{i}\left[\left(\mathbf{x}_{1},\mathbf{y}_{1}\right)\left(\mathbf{x}_{2},\mathbf{y}_{2}\right)\right] = \mathcal{N}_{\mathcal{A}\times\mathcal{B}}^{i}\left[\left(\left(\mathbf{x}_{1}\mathbf{x}_{2},\mathbf{y}_{1}\mathbf{y}_{2}\right)\right)\right]$$

$$= T_{c}(\mathcal{N}_{\mathcal{A}}^{i}\left(\mathbf{x}_{1}\mathbf{x}_{2}\right),\mathcal{N}_{\mathcal{B}}^{i}(\mathbf{y}_{1}\mathbf{y}_{2}))$$

$$\leq T_{c}(\mathcal{N}_{\mathcal{A}}^{i}\left(\mathbf{x}_{2}\right),\mathcal{N}_{\mathcal{B}}^{i}(\mathbf{y}_{2}))$$

$$= \mathcal{N}_{\mathcal{A}\times\mathcal{B}}^{i}(\left(\mathbf{x}_{2},\mathbf{y}_{2}\right))$$

Similarly, $\mathcal{F}_{\mathcal{A}\times\mathcal{B}}^{i}[(\mathbf{x}_{1},\mathbf{y}_{1})(\mathbf{x}_{2},\mathbf{y}_{2})] \leq \mathcal{F}_{\mathcal{A}\times\mathcal{B}}^{i}((\mathbf{x}_{2},\mathbf{y}_{2}))$ Hence $\mathcal{A}\times\mathcal{B}$ is also a NMFLI of $R_{1}\times R_{2}$ over T_{n} and T_{c} Similarly, we can show it for NMFRI. \Box

Theorem 5.7. If \mathcal{A} and \mathcal{B} are NMFI of R_1 and R_2 over T_n and T_c . Then $\mathcal{A} \times \mathcal{B}$ is also a NMFI of $R_1 \times R_2$ with respect to T_n and T_c .

Proof. Follows from above theorem. \Box

Example 5.8. Let $(Z_2, +, \cdot)$ be a ring. Define $\mathcal{A} = \{(< (0, (0.9, 0.7), (0.1, 0.5), (0.2, 0.3)), (1, (0.8, 0.6), (0.2, 0.5), (0.3, 0.6)) > \}$ $\mathcal{B} = \{ < (0, (0.8, 0.7), (0.2, 0.3), (0.1, 0.4)), (1, (0.7, 0.6), (0.2, 0.3), (0.2, 0.5)) > \}$ be two NMFS of Z_2 under T_n and T_c . Let us consider $T_n(\mathbf{x}, \mathbf{y}) = \mathbf{x}\mathbf{y}; T_c(\mathbf{x}, \mathbf{y}) = \mathbf{x} + \mathbf{y} - \mathbf{x}\mathbf{y}$. Then $\mathcal{A} \times \mathcal{B}$ is NMFI with T_n and T_c of $Z_2 \times Z_2$.

Corollary 5.9. Let, for all $i \in \{1, 2, ..., n\}$, $(R_i, +, \cdot)$ are rings and A_i is a NMFI of R_i . Then $A_1 \times A_2 \times ... \times A_n$ is a NMFI of $R_1 \times R_2 \dots \times R_n$ where $n \in N$.

Definition 5.10. If $\mathcal{A} = (\mu^{i}_{\mathcal{A}}, \mathcal{N}^{i}_{\mathcal{A}}, \mathcal{F}^{i}_{\mathcal{A}})$ is a NMFS in R, then $\mathcal{F}(\mathcal{A}) = \mathcal{B}$, is the NMFS defined by

$$\begin{aligned} \mathcal{F}\left(T_{\mathcal{A}}^{i}\right)\left(\mathbf{y}\right) &= \begin{cases} \sup_{\mathbf{x}\in\mathcal{F}^{-1}(\mathbf{y})}\left(\mu_{\mathcal{A}}^{i}\right)\left(\mathbf{x}\right), & \text{if } \mathcal{F}^{-1}(\mathbf{y})\neq 0\\ 0, & \text{otherwise} \end{cases} \\ \mathcal{F}\left(\mathcal{N}_{\mathcal{A}}^{i}\right)\left(\mathbf{y}\right) &= \begin{cases} \sup_{\mathbf{x}\in\mathcal{F}^{-1}(\mathbf{y})}\left(\mathcal{N}_{\mathcal{A}}^{i}\right)\left(\mathbf{x}\right), & \text{if } \mathcal{F}^{-1}(\mathbf{y})\neq 0\\ 1, & \text{otherwise} \end{cases} \\ \mathcal{F}\left(\mathcal{F}_{\mathcal{A}}^{i}\right)\left(\mathbf{y}\right) &= \begin{cases} \inf_{\mathbf{x}\in\mathcal{F}^{-1}(\mathbf{y})}\left(\mathcal{F}_{\mathcal{A}}^{i}\right)\left(\mathbf{x}\right), & \text{if } \mathcal{F}^{-1}(\mathbf{y})\neq 0\\ 1, & \text{otherwise} \end{cases} \end{aligned}$$

Where \mathcal{F} is ring homomorphism of R onto R_1 . Also $\mathcal{F}^{-1}(\mathcal{B}) = \{ \langle \mathbf{x}, \mathcal{F}^{-1}(\mu_{\mathcal{B}}^i)(\mathbf{x}), \mathcal{F}^{-1}(\mathcal{N}_{\mathcal{B}}^i)(\mathbf{x}), \mathcal{F}^{-1}(\mathcal{F}_{\mathcal{B}}^i)(\mathbf{x}) \rangle : \mathbf{x} \in \mathcal{A} \}$ where $\mathcal{F}^{-1}(\mathcal{B})(\mathbf{x}) = (\mathcal{B})(\mathcal{F}(\mathbf{x}))$.

Theorem 5.11. Let R and R_1 be any two rings and \mathcal{F} be a homomorphism from R onto R_1 . If $\mathcal{A} \in NMFSR$ of R under T_n and T_c then $\mathcal{F}(\mathcal{A}) \in NMFSR$ of R_1 over T_n and T_c .

Proof. Let $\mathbf{x}_1, \mathbf{x}_2 \in R$ and $\mathbf{y}_1, \mathbf{y}_2 \in R_1$. If $\mathcal{A} \in \text{NMFSR}$ of R. Then

$$(i) \mathcal{F}\left(\left(\mu_{\mathcal{A}}^{i}\right)(\mathbf{y}_{1}-\mathbf{y}_{2})\right) = \sup_{\mathbf{x}\in\mathcal{F}^{-1}(\mathbf{y})} \mu_{\mathcal{A}}^{i}\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)$$

$$\geq \sup_{\mathbf{x}\in\mathcal{F}^{-1}(\mathbf{y})} \left(T_{n}\left(\mu_{\mathcal{A}}^{i}\left(\mathbf{x}_{1}\right),\mu_{\mathcal{A}}^{i}\left(\mathbf{x}_{2}\right)\right)\right)$$

$$= T_{n}\left(\sup_{\mathbf{x}\in\mathcal{F}^{-1}(\mathbf{y})}\left(\mu_{\mathcal{A}}^{i}\left(\mathbf{x}_{1}\right),\sup_{\mathbf{x}\in\mathcal{F}^{-1}(\mathbf{y})}\mu_{\mathcal{A}}^{i}\left(\mathbf{x}_{2}\right)\right)\right)$$

$$= T_{n}\left(\mathcal{F}\left(\mu_{\mathcal{A}}^{i}(\mathbf{y}_{1})\right),\mathcal{F}\left(\mu_{\mathcal{A}}^{i}(\mathbf{y}_{2})\right)\right)$$
Similarly, $\mathcal{F}\left(\mathcal{N}_{\mathcal{A}}^{i}(\mathbf{y}_{1}-\mathbf{y}_{2})\right) \leq T_{c}\left(\mathcal{F}\left(\mathcal{N}_{\mathcal{A}}^{i}(\mathbf{y}_{1})\right),\mathcal{F}\left(\mathcal{N}_{\mathcal{A}}^{i}(\mathbf{y}_{2})\right)\right)$

$$\mathcal{F}\left(\mathcal{F}_{\mathcal{A}}^{i}(\mathbf{y}_{1}-\mathbf{y}_{2})\right) \leq T_{c}\left(\mathcal{F}\left(\mathcal{F}_{\mathcal{A}}^{i}(\mathbf{y}_{1})\right),\mathcal{F}\left(\mathcal{F}_{\mathcal{A}}^{i}(\mathbf{y}_{2})\right)\right).$$

$$(ii) \ \mathcal{F}\left(\left(\mu_{\mathcal{A}}^{i}\right)(\mathbf{y}_{1}\mathbf{y}_{2})\right) = \sup_{\mathbf{x}\in\mathcal{F}^{-1}(\mathbf{y})} \mu_{\mathcal{A}}^{i}\left(\mathbf{x}_{1}\mathbf{x}_{2}\right)$$

$$\geq \sup_{\mathbf{x}\in\mathcal{F}^{-1}(\mathbf{y})} T_{n}\left(\mu_{\mathcal{A}}^{i}\left(\mathbf{x}_{1}\right),\mu_{\mathcal{A}}^{i}\left(\mathbf{x}_{2}\right)\right)$$

$$= T_{n}\left(\sup_{\mathbf{x}\in\mathcal{F}^{-1}(\mathbf{y})} \mu_{\mathcal{A}}^{i}\left(\mathbf{x}_{1}\right),\sup_{\mathbf{x}\in\mathcal{F}^{-1}(\mathbf{y})} \mu_{\mathcal{A}}^{i}\left(\mathbf{x}_{2}\right)\right)$$

$$= T_{n}\left(\mathcal{F}\left(\mu_{\mathcal{A}}^{i}\left(\mathbf{y}_{1}\right)\right),\mathcal{F}\left(\mu_{\mathcal{A}}^{i}\left(\mathbf{y}_{2}\right)\right)\right)$$

$$Similarly, \ \mathcal{F}\left(\mathcal{N}_{\mathcal{A}}^{i}(\mathbf{y}_{1}\mathbf{y}_{2})\right) \leq T_{c}\left(\mathcal{F}\left(\mathcal{N}_{\mathcal{A}}^{i}\left(\mathbf{y}_{1}\right)\right),\mathcal{F}\left(\mathcal{N}_{\mathcal{A}}^{i}(\mathbf{y}_{2})\right)\right)$$

$$\mathcal{F}\left(\mathcal{F}_{\mathcal{A}}^{i}(\mathbf{y}_{1}\mathbf{y}_{2})\right) \leq T_{c}\left(\mathcal{F}\left(\mathcal{F}_{\mathcal{A}}^{i}\left(\mathbf{y}_{1}\right)\right),\mathcal{F}\left(\mathcal{F}_{\mathcal{A}}^{i}(\mathbf{y}_{2})\right)\right)$$

Hence then $\mathcal{F}(\mathcal{A}) \in \text{NMFSR}$ of R_1 over T_n and T_c .

Theorem 5.12. Let R and R_1 be any two rings and \mathcal{F} be a homomorphism from R onto R_1 . If $\mathcal{B} \in NMFSR$ of R_1 under T_n and T_c then $\mathcal{F}^{-1}(\mathcal{B})$ NMFSR of R under T and T_c

Proof. Let $\mathbf{x}, \mathbf{y} \in R$. Let $B \in \text{NMFSR}$ of R_1 . Then

(i)
$$\mathcal{F}^{-1}\left(\left(\mu_{\mathcal{B}}^{i}\right)(\mathbf{x}-\mathbf{y})\right) = \mu_{\mathcal{B}}^{i}\left(\mathcal{F}(\mathbf{x}-\mathbf{y})\right)$$

$$= T_{\mathcal{B}}^{i}\left(\mathcal{F}(\mathbf{x}) - \mathcal{F}(\mathbf{y})\right)$$

$$\geq T_{n}(\mu_{\mathcal{B}}^{i}\left(\mathcal{F}(\mathbf{x})\right), \mu_{\mathcal{B}}^{i}\left(\mathcal{F}(\mathbf{y})\right))$$

$$= T_{n}(\mathcal{F}^{-1}\left(\mu_{\mathcal{B}}^{i}\right)(\mathbf{x}), \mathcal{F}^{-1}\left(\mu_{\mathcal{B}}^{i}\right)(\mathbf{y}))$$

Similarly, $\mathcal{F}^{-1}\left(\mathcal{N}_{\mathcal{B}}^{i}\right)\left(\mathbf{x}-\mathbf{y}\right) \leq T_{c}\left(\mathcal{F}^{-1}\left(\mathcal{N}_{\mathcal{B}}^{i}\right)\left(\mathbf{x}\right), \mathcal{F}^{-1}\left(\mathcal{N}_{\mathcal{B}}^{i}\right)\left(\mathbf{y}\right)\right)$

$$\mathcal{F}^{-1}\left(\mathcal{F}_{\mathcal{B}}^{i}\right)\left(\mathbf{x}-\mathbf{y}\right) \leq T_{c}\left(\mathcal{F}^{-1}\left(\mathcal{F}_{\mathcal{B}}^{i}\right)\left(\mathbf{x}\right), \mathcal{F}^{-1}\left(\mathcal{F}_{\mathcal{B}}^{i}\right)\left(\mathbf{y}\right)\right)$$

B. Anitha and P. Tharini, Embedding Norms into Neutrosophic Multi Fuzzy Subrings

$$(ii) \quad \mathcal{F}^{-1}\left(\left(\mu_{\mathcal{B}}^{i}\right)(\mathbf{x}\mathbf{y})\right) = \mu_{\mathcal{B}}^{i}\left(\mathcal{F}\left(\mathbf{x}\mathbf{y}\right)\right)$$
$$= \mu_{\mathcal{B}}^{i}\left(\mathcal{F}\left(\mathbf{x}\right)\mathcal{F}\left(\mathbf{y}\right)\right)$$
$$\geq T_{n}\left(\mu_{\mathcal{B}}^{i}\left(\mathcal{F}\left(\mathbf{x}\right)\right), \mu_{\mathcal{B}}^{i}(\mathcal{F}\left(\mathbf{y}\right), \right)\right)$$
$$= T_{n}\left(\mathcal{F}^{-1}\left(\mu_{\mathcal{B}}^{i}\right)(\mathbf{x}), \mathcal{F}^{-1}\left(\mu_{\mathcal{B}}^{i}\right)(\mathbf{y})\right)$$
$$\stackrel{(\mathbf{x}\mathbf{y}) \leq T_{c}\left(\mathcal{F}^{-1}\left(\mathcal{N}_{\mathcal{B}}^{i}\right)(\mathbf{x}), \mathcal{F}^{-1}\left(\mathcal{N}_{\mathcal{B}}^{i}\right)(\mathbf{y})\right)$$

Similarly, $\mathcal{F}^{-1}(\mathcal{N}^i_{\mathcal{B}})$

$$\mathcal{F}^{-1}\left(\boldsymbol{F}_{\mathcal{B}}^{i}\right)(\mathbf{x}\mathbf{y}) \leq T_{c}\left(\mathcal{F}^{-1}\left(\boldsymbol{F}_{\mathcal{B}}^{i}\right)(\mathbf{x}), \mathcal{F}^{-1}\left(\boldsymbol{F}_{\mathcal{B}}^{i}\right)(\mathbf{y})\right)$$

Hence $\mathcal{F}^{-1}(\mathcal{B})$ is a NMFSR of R under T_n and T_c .

6. Conclusion

We deliberated neutrosophic multifuzzy subrings and ideals along with triangular norm and made use of the concepts of direct product, image and inverse image of homomorphism. We have established some theorems and results. This study will give base for our upcoming work.

References

- [1] Muthuraj, R.; Balamurugan, S. Multi-Fuzzy Group and its Level Subgroups.Gen. Math. Notes, (2013), (17), 1, (74-81).
- [2] Rasuli, R. Norms over intuitionistic fuzzy subrings and ideals of a ring. Notes on intuitionistic fuzzy sets, (2016), (22), 5, (72-83).
- [3] Ulucay, V.; and Memet sahin, Neutrosophic Multi Groups and Applications. New challenges in Neutrosophic theory and Applications, (2019) 7, (50).
- [4] Zadeh.L. A.; Fuzzy Sets. Inform. and Control, (1965) (8), (338-353).
- [5] Smarandache, F.; Neutrosophy, A new branch of Philosophy logic in multiple-valued logic. An International Journal, (2002) (8), 3, (297-384).
- [6] Hemabala,K.; Srinivasakumar,B., Anti Neutrosophic Multi fuzzy ideals of gamma near Ring. Neutrosophic sets and systems (2022), (48), (66-85).
- [7] Rasul Rasuli., Norms on intuitionistic fuzzy Multigroup. Yogoslav journal of operations research, (2021)31(3), (339-362).
- [8] Sebastian.S, Ramakrishnan.T, Multi fuzzy sets.Int.Math.Forum, (2010)5,(50),(2471-2476).
- [9] Shinoj, T.K., john,S.S. Intutionistic fuzzy multisets and its application in Medical diagnosis. World Acad.Sci.Eng.Technol. (2012), (6), (1418-1421).
- [10] Rosenfield, A., Fuzzy Groups. Journal of mathematics analysis and applications, (1971), (35), (512-517)
- [11] Atanassov, K.T., Intuitionistic fuzzy sets. Fuzzy sets and systems, (1986), (20), (87-96).
- [12] Abu Osman, M.T., On some products of fuzzy subgroups, Fuzzy sets and systems, (1987), (24),1,(79-86).
- [13] Deli, I.; Broumi,S.Samarandache,F., On Neutrosophic multisets and its application in medical diagnosis. J.New Theory, (2015), (6),(88-98).
- [14] Wang, H.; samarandache, F., YZhang, Q., Sunderraman, R., Single valued Neutrosophic Sets. .Multispace Multistruct., (2010),4,(410-413).
- [15] Sharma, P.K., Homomorphism of Intuitionistic fuzzy groups. Int. Math. Forum, (2011), (6), 64 (31693178).
- [16] Sharma, P.K. On the direct product of Intuitionistic fuzzy subgroups. Int. Math. Forum, (2012), (7)11, (523530).
- B. Anitha and P. Tharini, Embedding Norms into Neutrosophic Multi Fuzzy Subrings

- [17] Bukley, J.J.& Eslami, E. An introduction to fuzzy logic and fuzzy sets, Springer-verlag, Berlin Heidelberg GmbH, (2002)
- [18] Rasul Rasuli, Direct product of fuzzy multigroups under T-norms, open J. Appl.Math (2020),3(1), (75-85).
- [19] Rasul Rasuli, Intuitionistic fuzzy subgroups with respect to norms (T, S), Eng.Appl.Sci.Lett. (2020) 3(2), (40-53).
- [20] ahin, M.; Deli, I.; Ulucay, V. Extension principle based on neutrosophic multi-sets and algebraic operations. J. Math. Ext., (2018), 12, (6990).
- [21] Ye, S.; Ye, J., Dice Similarity Measure between Single Valued Neutrosophic Multisets and Its Application in Medical Diagnosis. Neutrosophic Sets Syst., (2014) 6, (4954).
- [22] Ye, S.; Fu, J.; Ye, J. Medical Diagnosis Using Distance-Based Similarity Measures of Single Valued Neutrosophic Multisets. Neutrosophic Sets Syst. (2015) ,7, (4752).

Received: Oct 5, 2023. Accepted: Jan 12, 2024