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Abstract: 
A finite commutative ring involution is the multiplicative inverse of the element attribute R is the 

element itself. This classical characteristic of a finite commutative ring makes Neutrosophic 

involutions possible, which are counted, listed and assessed in this work. Assume that the 

Neutrosophic ring R(I) is the finite commutative ring with unity 1 over the ring R under the 

indeterminate 𝑰 . We first establish some useful necessary and sufficient conditions for the 

Neutrosophic components of the type 𝒂 + 𝒃𝑰 is involutory in order to understand how to count 

Neutrosophic involutions of R(I). The behavior of the Neutrosophic composition table for 

identifying Neutrosophic involutions and counting the number of 1s that appear on the primary 

diagonal of the composition table of R(I) is also investigated in this work. 

Keywords: Involutions, Neutrosophic Involutions, Neutrosophic Units, Pure Neutrosophic 

Involution, Neutrosophic Ring. 

 

 

1. Introduction 

An involution is a special element in any ring 𝑅 with unity and it is a self-multiplicative inverse 

element under multiplication defined over 𝑅 . For a finite ring 𝑅 , let ℐ𝑛(𝑅) denote the set of 

involutions of𝑅, and  |ℐ𝑛(𝑅)| represents the number of involutions of 𝑅. Because R's involutions 

are systematically arranged mathematical objects that don't require any additional resources to 

implement, they have received a great deal of attention for their potential applications in security 

systems, coding-decoding systems, combinatorial designs, the creation of self-intelligent systems, 

etc. [1–11].Due to the fact that involutions have been crucial to the development, interpretation, and 

design of electronic devices. Every commutative ring with unity is known to contain at least one 

involution. However, the theory of finite commutative rings has two intriguing subcategories. One is 

cyclic rings and theother is non-cyclic rings. A ring 𝑅 is called cyclic if the group (𝑅, +) is a cyclic 

group under addition defined by 𝑅. Otherwise, it is called a noncyclic ring. Every cyclic ring is 
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commutative, and a finite cyclic ring with unity of order 𝑛  is isomorphic to the ring 𝑍𝑛 , 

integersunder addition and multiplication modulo 𝑛.On the other hand, the rings 𝑍𝑚 × 𝑍𝑛  and 

𝑍𝑛[𝑖] are all noncyclic rings for every integer𝑚, 𝑛 > 1. 

In 1987, Smarandache and Vasantha Kandasamy introduced a basic setup of the theory of 

Neutrosophic structures through indeterminacy 𝐼, because simply they had a natural and necessary 

role of  𝐼 to play in the development of the Neutrosophic algebraic systems. Now a days, they 

rapidly become flourishing systems, because the structure 𝑅  and indeterminate𝐼 are needful in 

modern mathematical systems and many intelligent systems like Neutrosophic decision systems, 

Neutrosophic error detection systems, algorithms for digital communication systems [12-15];all 

these typesof systems employ the Neutrosophic structure 𝑅(𝐼). 

Because they had a natural and essential role for indeterminate 𝐼 to play in the growth of 

the Neutrosophic algebraic systems, Smarandache and Vasantha Kandasamy established the theory 

of Neutrosophic structures through indeterminacy 𝐼 in 1987. They are now developing rapidly 

because many smart systems and quality systems, such as product quality systems, Neutrosophic 

virtual reality systems, and uncertainty systems [16–18], all use the Neutrosophic structure and 

logic, which is necessary in modern mathematical systems. 

The classic Neutrosophic Rings, written by Florentin Smarandache and Vasantha 

Kandasamy, and published in 2006, sparked the growth of two contemporary mathematics fields 

that are closely related to one another: The mathematical concept of "Neutrosophic ring" and 

Neutrosophic logic. The value of the symbols T(True), F(False), and I(Indeterminate) and their 

corresponding laws was illustrated in Chapter 2 of Florentin Smarandache and Vasantha 

Kandasamy's book [19].Neutrosophic logic is interested in how we think in order to draw 

conclusions about mathematics. That book will help us in studying this paper. Now starts a simple 

introduction about the structure𝑅(𝐼). Mathematically, a Neutrosophic ring is a system with the 

following components: a ring R, an indeterminate I, two Neutrosophic binary operations on R, and a 

set of axioms that the elements of R satisfy via the indeterminate I. For any ring 𝑅, there exists a new 

structure 𝑅(𝐼), called a Neutrosophic ring, and is engendered by 𝑅 and 𝐼, which is represented by a 

Neutrosophic set "𝑅(𝐼) = 〈𝑅, 𝐼〉 = {𝑎 + 𝑏𝐼: 𝑎, 𝑏 ∈ 𝑅 𝑎𝑛𝑑 𝐼2 = 𝐼}", where 𝐼  is the indeterminate of 

the system with algebraic properties: 0𝐼 = 0 , 1𝐼 = 𝐼 , 𝐼2 = 𝐼 , and 𝐼−1 does not exist The 

Neutrosophic set 𝑅(𝐼) = 〈𝑅, 𝐼〉 of Neutrosophic elements of the form 𝑎 + 𝑏𝐼 forms a Neutrosophic 

ring under Neutrosophic addition "(𝑎 + 𝑏𝐼) + (𝑐 + 𝑑𝐼) = (𝑎 + 𝑐) + (𝑏 + 𝑑)𝐼" , and Neutrosophic 

multiplication "(𝑎 + 𝑏𝐼)(𝑐 + 𝑑𝐼) = 𝑎𝑐 + (𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑)𝐼", for every 𝑎 + 𝑏𝐼 and 𝑐 + 𝑑𝐼 in 𝑅(𝐼).` 

In Neutrosophic algebra, the algebraic structures 𝑅 and 𝑅(𝐼) areplaying dominant roles, 

and they are also specific mathematical tools for developing and studying many Neutrosophic 

research fields like QuadrupleNeutrosophic rings, Neutrosophic zero rings, Neutrosophic number 

theory, Neutrosophic Boolean rings, Neutrosophic vector spaces, Refined Neutrosophic rings, and 

so on. For example, see [20]. 

The purpose of this paper is to prepare and enumerate the Neutrosophic involutions in the 

Neutrosophic group of units of a finite commutative Neutrosophic ring with unity and to examine 



Neutrosophic Sets and Systems, Vol. 58, 2023 127  

 

 

Chalapathi T, Kumaraswamy Naidu K, Harish Babu D, Enumeration of Neutrosophic Involutions over Finite Commutative 

Neutrosophic Rings 

and compare the properties of the classical involutions in a group of units. For this first, we shall 

define involutions in various fields of mathematics and their other related algebraic concepts. 

Generally, in modern mathematics and other related computational systems, involution is a map 𝑓 

and it is equal to its inverse. This means that 𝑓(𝑓(𝑥)) = 𝑥 for all 𝑥 in the domain of a function 𝑓. So, the 

involution is a bijection. For this reason, many fields in modern mathematics contain the term 

involution such as Group theory, Ring theory, and Vector spaces. Moreover, in the Euclidean and 

the Projective geometry, the involution is a reflection through the origin, and an involution is a 

projectivity of period 2, respectively. In mathematical logic, the operation of complement in Boolean 

algebra is called Boolean involution, and in classical logic, the negation that satisfies the law of 

double negation is called involution. Lastly, in Computer science, the XOR bitwise operation with a 

given value for one constraint is also an involution, and RC4 cryptographic cipher is involution, as 

encryption and decryption operations use the same map. 

 In [21-23],there is a classical and simple problem between the composition table and the 

corresponding finite ring 𝑅 with unity1, that is, how many 1𝑠 appear in the principle diagonal of 

the composition table of𝑅? This question produces the number of solutions of the equation𝑎2 = 1 in 

a finite ring 𝑅 with unity1. This paper extends this procedure to Neutrosophic rings 𝑅(𝐼) for 

enumerating Neutrosophic involutions, and we shall show that the Neutrosophic involutions to the 

Neutrosophic ring 𝑅(𝐼) over the finite commutative 𝑅 with unity 1come in a multiple of four 

through the relations ℐ𝑛(𝑅(𝐼)) = ℐ𝑛(𝑅) ∪ (1 − 2𝐼)ℐ𝑛(𝑅) and |ℐ𝑛(𝑅(𝐼))| = 2|ℐ𝑛(𝑅)|. 

2. Properties of Finite Neutrosophic Fields 

This section introduces the concept of Neutrosophic involution and shows how to determine the 

number of such Neutrosophic involutions. Recall that the element 𝑎 in 𝑅 is involution if 𝑎2 = 1, 

and the set of involutions of 𝑅 is ℐ𝑛(𝑅) and notated as ℐ𝑛(𝑅) = {𝑎 ∈ 𝑅: 𝑎 = 𝑎−1}. For conveniently, 

it can be defined asℐ𝑛(𝑅) = {𝑎 ∈ 𝑅: 𝑎2 = 1}. For example, ℐ𝑛(𝑍8) = {1,3,5,7}, ℐ𝑛(𝑍10) = {1,9}, and 

ℐ𝑛(𝑍12) = {1,5,7,11}. Consequently, any undefined notions and results of classical involutions are 

standard as in [21]. 

Our next definition provides a considerably more efficient variant of this classical involution of a 

finite commutative ring 𝑅 with unity 1. 

Definition 2.1.We say that a Neutrosophic element 𝑎 + 𝑏𝐼  of a Neutrosophic ring 𝑅(𝐼)  is a 

Neutrosophic involution if(𝑎 + 𝑏𝐼)2 = 1, where 1 = 1 + 0𝐼 is the unity in𝑅(𝐼).  

The set of Neutrosophic involutions of 𝑅(𝐼) is denoted by ℐ𝑛(𝑅(𝐼)) with the conditions 

(1) ℐ𝑛(𝑅) ⊆ ℐ𝑛(𝑅(𝐼)) 

(2) ℐ𝑛(𝑅(𝐼)) = ℐ𝑛(𝑈(𝑅)) ∪ ℐ𝑛 (𝑈(𝑅(𝐼))), 

where 𝑈(𝑅) and 𝑈(𝑅(𝐼)) are units and Neutrosophic units of 𝑅 and 𝑅(𝐼), respectively. 

Now we begin our discussion with two simple examples. 
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Example 2.2.Neutrosophic involution, by definition, the involutions of the Neutrosophic ring 

𝑍3(𝐼) = {𝑎 + 𝑏𝐼: 𝑎, 𝑏 ∈ 𝑍3 𝑎𝑛𝑑 𝐼2 = 𝐼} is the set ℐ𝑛(𝑍3(𝐼)) = {1,2,1 − 2𝐼, 2 − 𝐼}, where 12 = 1, 22 =

1, (1 − 2𝐼)2 = 1, and (2 − 𝐼)2 = 1. 

Example 2.3. Because 12 = 1 , 32 = 1 , (1 − 2𝐼)2 = 1 , and (3 − 2𝐼)2 = 1 , the involutions of the 

Neutrosophic ring 𝑍4(𝐼) = {𝑎 + 𝑏𝐼: 𝑎, 𝑏 ∈ 𝑍4 𝑎𝑛𝑑 𝐼2 = 𝐼} is the set ℐ𝑛(𝑍3(𝐼)) = {1,3,1 − 2𝐼, 3 − 2𝐼}. 

The above examplespresent the following two confluences of involutions and Neutrosophic 

involutions. 

(1) (𝑎 + 𝑏𝐼)2 = 1 in 𝑅(𝐼) if and only if 𝑎2 = 1 in 𝑅. 

(2) 𝑎 + 𝑏𝐼 is a Neutrosophic involution implies 𝑏 + 𝑎𝐼 need not be a Neutrosophic involution, 

and vice versa. 

These two confluences proposed the following necessary and sufficient conditions on 𝑎 and 𝑏 for 

𝑎 + 𝑏𝐼 is a Neutrosophic involution. 

Theorem 2.4. A necessary and sufficient condition for the Neutrosophic element 𝑎 + 𝑏𝐼  is a 

Neutrosophic involution in 𝑅(𝐼) is (𝑎 − 2𝑎𝐼)2 = 𝑎2 . 

Proof. Let𝑎 + 𝑏𝐼 be a nonzero element in 𝑅(𝐼). Then there exists (𝑎 + 𝑏𝐼)2 in 𝑅(𝐼) such that  

  𝑎 + 𝑏𝐼 be a Neutrosophic involution in 𝑅(𝐼) ⇔ (𝑎 + 𝑏𝐼)2 = 1 

       ⇔ 𝑎2 + 𝑏2𝐼 + 2𝑎𝑏𝐼 = 1 

       ⇔ 𝑎2 = 1, and 𝑏2 + 2𝑎𝑏 = 0 

       ⇔ 𝑎2 = 1, and 𝑏(𝑏 + 2𝑎) = 0 in 𝑅. 

Let us starts two cases on the element 𝑏 in 𝑅. 

Case 1. Suppose 𝑏 = 0 in 𝑅 . Then the Neutrosophic form reduces to classical form. This case 

concludes that  

  𝑎 + 𝑏𝐼 be a Neutrosophic involution in 𝑅(𝐼) ⇔ 𝑎2 = 1, and 𝑏 = 0 in 𝑅. 

Case 1. Suppose 𝑏 ≠ 0 in 𝑅. Then  

  𝑎 + 𝑏𝐼 be a Neutrosophic involution in 𝑅(𝐼) ⇔ 𝑎2 = 1, and 𝑏 + 2𝑎 = 0  in 𝑅. 

Therefore, 𝑎2 = 1, and 𝑏 = −2𝑎  in 𝑅. These two conditions confirm that 

  (𝑎 − 2𝑎𝐼)2 = 𝑎2, 

and clearly 𝑎2 = 1 in 𝑅  if and only if  (−2𝑎)2 ≠ 1 in 𝑅 . Hence, we end up with 𝑎 − 2𝑎𝐼as a 

Neutrosophic involution in 𝑅(𝐼) whenever 𝑎 is an involution in 𝑅. This completes the proof. ∎ 

Corollary 2.5. There is no Neutrosophic involution of the form 𝑎 + 𝑏𝐼, 𝑏 ≠ 0 in 𝑅(𝐼) if and only if  

𝑐ℎ𝑎𝑟(𝑅) is 2. In other words, ℐ𝑛(𝑅) = ℐ𝑛(𝑅(𝐼)) if and only if 𝑐ℎ𝑎𝑟(𝑅) is 2. 

Proof.The widely recognized outcome makes it abundantly clear that 

  𝑐ℎ𝑎𝑟(𝑅) is 2 ⇔ −2 ∉ 𝑅 

   ⇔ −2𝑎𝐼 ∉ 𝑅(𝐼)  

   ⇔ 𝑎 − 2𝑎𝐼 ∉ 𝑅(𝐼) 

   ⇔ (𝑎 − 2𝑎𝐼)2 ≠ 𝑎2 in 𝑅(𝐼). 

By the Theorem [2.4 ],we clear that there is no Neutrosophic involution of the form 𝑎 + 𝑏𝐼, 𝑏 ≠ 0 in 

𝑅(𝐼) if and only if  𝑐ℎ𝑎𝑟(𝑅) is 2. Hence, we conclude that 
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ℐ𝑛(𝑅) = ℐ𝑛(𝑅(𝐼)) if and only if 𝑐ℎ𝑎𝑟(𝑅) is 2,  

because ℐ𝑛(𝑅) ⊆ ℐ𝑛(𝑅(𝐼))∎ 

The next example establishes the correctness of the above result. 

Example 2.6.Since𝔽4 = {0,1, 𝛼, 1 + 𝛼: 𝛼2 + 𝛼 + 1 = 0} is a field of characteristic 2. So, there exists a 

Neutrosophic field 𝔽4(𝐼)same characteristic 2such that 

  𝔽4(𝐼) = {𝑎 + 𝑏𝐼: 𝑎, 𝑏 ∈ 𝔽4 𝑎𝑛𝑑 𝐼2 = 𝐼}. 

Obviously, ℐ𝑛(𝔽4(𝐼)) = ℐ𝑛(𝔽4) because (𝑎 + 𝑏𝐼)2 = 1 in 𝔽4(𝐼) if and only if 𝑏 = 0 in 𝔽4. 

In the classical ring theory, it is well known that ℐ𝑛(𝑅) ⊆ 𝑈(𝑅) and  𝑈(𝑅) ⊈ ℐ𝑛(𝑅) for any 

finite commutative ring that 𝑅 with unity, and similar manner, in the theory of Neutrosophic rings, 

these subset inclusions are both true, that is, ℐ𝑛(𝑅(𝐼)) ⊆ 𝑈(𝑅(𝐼)) and  𝑈(𝑅(𝐼)) ⊈ ℐ𝑛(𝑅(𝐼)), where 

𝑈(𝑅(𝐼)) is the set of Neutrosophic units of  𝑅(𝐼). However, ℐ𝑛(𝑅(𝐼)) ⊆ 𝑈(𝑅(𝐼)) and  𝑈(𝑅(𝐼)) ⊆

ℐ𝑛(𝑅(𝐼)) are both true, that is, 𝑈(𝑅(𝐼)) = ℐ𝑛(𝑅(𝐼))  if an only if  𝑎 + 𝑏𝐼 is in 𝑈(𝑅(𝐼)) with 𝑏 ≠ 0. 

For example, if  𝑏 ≠ 0 in 𝑎 + 𝑏𝐼, we have 𝑈(𝑍8(𝐼)) can be written as 

 𝑈(𝑍8(𝐼)) = ℐ𝑛(𝑍8(𝐼)) = {1 − 2𝐼, 3 − 6𝐼, 5 − 2𝐼, 7 − 6𝐼}, 

and which is equal to ℐ𝑛(𝑍8(𝐼))
𝑏≠0

, because 1 − 2𝐼 , , 3 − 6𝐼 , 5 − 2𝐼 , and 7 − 6𝐼  are all 

Neutrosophic involutions with 𝑏 ≠ 0, that is  

ℐ𝑛(𝑍8(𝐼))
𝑏≠0

= {1 − 2𝐼, 3 − 6𝐼, 5 − 2𝐼, 7 − 6𝐼}. 

This illustration supports the following definition. 

Definition 2.7.A Neutrosophic involution 𝑎 + 𝑏𝐼 in 𝑅(𝐼) is called pureNeutrosophic involution if 

𝑏 ≠ 0. 

The set of pure Neutrosophic involutions of 𝑅(𝐼) is denoted by of  

ℐ𝑛(𝑅(𝐼))
𝑏≠0

= {𝑎 + 𝑏𝐼 ∈ 𝑅(𝐼): (𝑎 + 𝑏𝐼)2 = 𝑎 + 𝑏𝐼 𝑎𝑛𝑑 𝑏 ≠ 0} 

The following theorem supports this observation. 

Theorem 2.8. Let 𝑅 be a finite commutative ring with unity 1 and let |𝑅| > 2. Then ℐ𝑛(𝑅(𝐼)) =

𝑈(𝑅(𝐼)) if and only if 𝑎 + 𝑏𝐼 is pure in 𝑅(𝐼).  

Proof. Because of  ℐ𝑛(𝑅(𝐼)) ⊆ 𝑈(𝑅(𝐼)) , it is enough to prove that the other subset inclusion 

𝑈(𝑅(𝐼)) ⊆ ℐ𝑛(𝑅(𝐼)) . For this, we shall show that every Neutrosophic unit is a Neutrosophic 

involution. Suppose 𝑎 + 𝑏𝐼is pure in 𝑅(𝐼). Then there exists 𝑐 + 𝑑𝐼 in 𝑈(𝑅(𝐼)) such that 𝑎 + 𝑏𝐼 ≠

𝑐 + 𝑑𝐼 and  

   (𝑎 + 𝑏𝐼)(𝑐 + 𝑑𝐼) = 1 

   ⇔ 𝑎𝑐 + (𝑏𝑐 + 𝑏𝑑 + 𝑎𝑑)𝐼 = 1 

   ⇔ 𝑎𝑐 = 1 and 𝑏𝑐 + 𝑏𝑑 + 𝑎𝑑 = 0 

   ⇔ 𝑎𝑐 = 1 and 𝑏𝑐 + 𝑏𝑑 + 𝑎𝑑 + 𝑎𝑐 = 1 

   ⇔ 𝑎𝑐 = 1 and (𝑎 + 𝑏)(𝑐 + 𝑑) = 1 

   ⇔ 𝑎 = 1, 𝑏 = 0, 𝑐 = 1 and 𝑑 = 0 in the ring 𝑅. 

Consequently, 𝑅 = {0,1}, and |𝑅| = 2, which is a contradiction to our hypothesis that|𝑅| > 2. Thus 

𝑎 + 𝑏𝐼 = 𝑐 + 𝑑𝐼 is always true in 𝑈(𝑅(𝐼)) if and only if 𝑏 ≠ 0 in 𝑅. This implies that 

   (𝑎 + 𝑏𝐼)(𝑎 + 𝑏𝐼) = 1 for every 𝑎 + 𝑏𝐼 in 𝑈(𝑅(𝐼)). 

   ⇔ (𝑎 + 𝑏𝐼)2 = 1 for every 𝑎 + 𝑏𝐼 in 𝑈(𝑅(𝐼)). 
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   ⇔ 𝑎 + 𝑏𝐼 ∈ ℐ𝑛(𝑅(𝐼)) for every 𝑎 + 𝑏𝐼 in 𝑈(𝑅(𝐼)). 

Therefore, 𝑈(𝑅(𝐼)) ⊆ ℐ𝑛(𝑅(𝐼)) is true in 𝑈(𝑅(𝐼)), and hence ℐ𝑛(𝑅(𝐼)) = 𝑈(𝑅(𝐼)). ∎ 

 The subsequent description helps us to estimate the cardinality of  ℐ𝑛(𝑅(𝐼)). 

First, we construct two tableswhich are employed Neutrosophic involutions along with the earlier 

results. 

The first table describes Neutrosophic involutions arising in the cyclic Neutrosophic ring 𝑍𝑛(𝐼) 

from  𝑛 = 1 to 10. 

𝑛 ℐ𝑛(𝑍𝑛(𝐼)) 

1 ∅ 

2 {1} 

3 {1,2} ∪ {1 − 2𝐼, 2 − 𝐼} 

4 {1,3} ∪ {1 − 2𝐼, 3 − 2𝐼} 

5 {1,4} ∪ {1 − 2𝐼, 4 − 3𝐼} 

6 {1,5} ∪ {1 − 2𝐼, 5 − 4𝐼} 

7 {1,6} ∪ {1 − 2𝐼, 6 − 5𝐼} 

8 {1,3,5,7} ∪ {1 − 2𝐼, 3 − 6𝐼, 5 − 2𝐼, 7 − 6𝐼} 

9 {1,8} ∪ {1 − 2𝐼, 8 − 7𝐼} 

10 {1,3,7,9} ∪ {1 − 2𝐼, 3 − 6𝐼, 7 − 4𝐼, 9 − 8𝐼} 

 

We now turn to noncyclic Neutrosophic rings over cyclic rings for determining Neutrosophic rings. 

For some positive integer 𝑛, there exists finite commutative ring 𝑍𝑛[𝑖] such that 

  𝑍𝑛[𝑖] = {𝑧 = 𝑥 + 𝑖𝑦: 𝑥, 𝑦 ∈ 𝑍𝑛  𝑎𝑛𝑑 𝑖2 = −1} 

And also for each 𝑍𝑛[𝑖] there exists Neutrosophic ring 𝑍𝑛[𝑖, 𝐼] such that 

  𝑍𝑛[𝑖, 𝐼] = {𝑧 + 𝑧′𝐼: 𝑧, 𝑧′ ∈ 𝑍𝑛 [𝑖] 𝑎𝑛𝑑 𝐼2 = 𝐼}. 

It is clear that 𝑍𝑛[𝑖, 𝐼] is also non cyclic Neutrosophic ring, because 

𝑍𝑛[𝑖] = 𝑍𝑛 + 𝑖𝑍𝑛, and 𝑍𝑛[𝑖, 𝐼] = 𝑍𝑛 + 𝑖𝑍𝑛 + 𝑖𝐼𝑍𝑛. 

Here we notice that |𝑍𝑛| = 𝑛, |𝑍𝑛[𝑖]| = 𝑛2and |𝑍𝑛[𝑖, 𝐼]| = 𝑛4, and for more information about 𝑍𝑛[𝑖] 

reader refer to [21].Next, the following second table illustrates the Neutrosophic Gaussian 

involutions from 𝑛 = 1 to 5. 

𝑛 ℐ𝑛(𝑍𝑛[𝑖, 𝐼]) 

1 ∅ 

2 {1, 𝑖} 

3 {1,2} ∪ {1 − 2𝐼, 2 − 𝐼} 

4 {1,3,1 + 2𝑖, 3 + 2𝑖} ∪ {1 − 2𝐼, 3 − 2𝐼, (1 + 2𝑖) − 2𝐼, (3 + 2𝑖) − 2𝐼} 

5 {1,4,2𝑖, 3𝑖} ∪ {1 − 2𝐼, 4 − 3𝐼, 2𝑖 − 4𝑖𝐼, 3𝑖 − 𝑖𝐼} 

 

By virtueofthe above tables, there are exact powers of 2 Neutrosophic involutionsthat exist in𝑅(𝐼), 

these being related to the classical involutions in𝑅 . Also, the collection ℐ𝑛(𝑅(𝐼))  contains a 

Neutrosophic element 1 − 2𝐼 as an element in 𝑅(𝐼) if and only if |𝑅| > 2. So, one consequence of 
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what has just been observed is that, in those finite commutative Neutrosophic ring 𝑅(𝐼) with unity 

cases in which a Neutrosophic involution exists, we can now state exactly how many there are. 

Theorem 2.9. Let𝑐ℎ𝑎𝑟(𝑅) ≠ 2. Then ℐ𝑛(𝑅(𝐼)) = (1 − 2𝐼)ℐ𝑛(𝑅), where ℐ𝑛(𝑅) = {𝑎 ∈ 𝑅: 𝑎2 = 1}. 

Proof. By the theorem [2.4], it is well known that 𝑏 = 0 in ℐ𝑛(𝑅(𝐼)) if and only if  𝑎2 = 1 in ℐ𝑛(𝑅) 

if and only if ℐ𝑛(𝑅) ≠ ℐ𝑛(𝑅(𝐼)). Now suppose 𝑏 ≠ 0 in ℐ𝑛(𝑅(𝐼)). Then  

  ℐ𝑛(𝑅(𝐼)) = {𝑎 + 𝑏𝐼 ∈ 𝑅(𝐼): (𝑎 + 𝑏𝐼)2 = 1, 𝑏 ≠ 0 } 

   = {𝑎 + 𝑏𝐼 ∈ 𝑅(𝐼): 𝑎 ∈ ℐ𝑛(𝑅), 𝑎𝑛𝑑 𝑏 + 2𝑎 = 0 } 

   = {𝑎 − 2𝑎𝐼 ∈ 𝑅(𝐼): 𝑎 ∈ ℐ𝑛(𝑅)} 

   = {𝑎(1 − 2𝐼) ∈ 𝑅(𝐼): 𝑎 ∈ ℐ𝑛(𝑅)} 

   = ℐ𝑛(𝑅) ∪ (1 − 2𝐼)ℐ𝑛(𝑅), since ℐ𝑛(𝑅) ⊆ ℐ𝑛(𝑅(𝐼)). ∎ 

The next theorem illustrates an extremely useful enumerating technique for enumerating 

Neutrosophic involutions, often used next results. First, we notice that ℐ𝑛(𝑅) = ℐ𝑛(𝑅(𝐼)) if and only 

if  𝑐ℎ𝑎𝑟(𝑅) = 2. 

Theorem 2.10. Let 𝑐ℎ𝑎𝑟(𝑅) ≠ 2. Then|ℐ𝑛(𝑅(𝐼))| = 2|ℐ𝑛(𝑅)|. 

Proof. Let ℐ𝑛(𝑅) ≠ ℐ𝑛(𝑅(𝐼)) . Then 𝑐ℎ𝑎𝑟(𝑅) ≠ 2  and 𝑐ℎ𝑎𝑟𝑅(𝐼) ≠ 2  but 𝑐ℎ𝑎𝑟(𝑅) = 𝑐ℎ𝑎𝑟𝑅(𝐼) . So 

there exists an element −2 ∈ 𝑅 such that −2𝐼 ∈ 𝑅(𝐼). Therefore, 1 − 2𝐼 ∈ 𝑅(𝐼), and we have  

   (1 − 2𝐼)2 = (1 − 2𝐼)(1 − 2𝐼) = 1 − 4𝐼 + 4𝐼 = 1 in 𝑅(𝐼). 

This yields the order |1 − 2𝐼| of the Neutrosophic element 1 − 2𝐼 in 𝑅(𝐼) is 2. Using ℐ𝑛(𝑅(𝐼)) =

ℐ𝑛(𝑅) ∪ (1 − 2𝐼)ℐ𝑛(𝑅) and also there is a one to one correspondence 𝑓: ℐ𝑛(𝑅) ⟶ (1 − 2𝐼)ℐ𝑛(𝑅) 

defined by the relation 

  𝑓(𝑎) = (1 − 2𝐼)𝑎 

for every element 𝑎 in ℐ𝑛(𝑅). So that |ℐ𝑛(𝑅)| = |(1 − 2𝐼)ℐ𝑛(𝑅)|. Hence  

   |ℐ𝑛(𝑅(𝐼))| = |ℐ𝑛(𝑅) ∪ (1 − 2𝐼)ℐ𝑛(𝑅)| 

    = |ℐ𝑛(𝑅)| + |(1 − 2𝐼)ℐ𝑛(𝑅)|, since ℐ𝑛(𝑅) ∩ (1 − 2𝐼)ℐ𝑛(𝑅) = ∅. 

    = |ℐ𝑛(𝑅)| + |ℐ𝑛(𝑅)| = 2|ℐ𝑛(𝑅)|. ∎ 

Let's apply the aforementioned to a concrete example now. 

The cardinalities of ℐ𝑛(𝑅) and ℐ𝑛(𝑅(𝐼)) are shown in the following brief table. 

 

 

Let us attention to the fact that, in the above table, it is necessary to stipulate that |ℐ𝑛(𝑅(𝐼))| ≤

|ℐ𝑛(𝑆(𝐼))| whenever 𝑅 is a cyclic ring and 𝑆 is a noncyclic ring. Further attention depends on finite 

fields.Since only finite Neutrosophic fields  𝔽2𝑛(𝐼) of characteristic2 is of even order, and in this 

sense the Neutrosophic equation (𝑎 + 𝑏𝐼)2 = 1 has no Neutrosophic solution in 𝔽2𝑛(𝐼), because 

Involutions 

↓ 

𝑛 = 1

→ 

2 3 4 5 6 7 8 9 10 

|ℐ𝑛(𝑍𝑛)| 0 1 2 2 2 2 2 4 2 4 

|ℐ𝑛(𝑍𝑛(𝐼))| 0 1 4 4 4 4 4 8 4 8 

|ℐ𝑛(𝑍𝑛[𝑖])| 0 2 2 4 4 4 2 8 2 8 

|ℐ𝑛(𝑍𝑛[𝑖, 𝐼])| 0 2 4 8 8 8 4 16 4 16 
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−2 ∉ 𝔽2𝑛(𝐼). In this case ℐ𝑛(𝔽2𝑛) = ℐ𝑛(𝔽2𝑛(𝐼)). Moreover, since the finite Neutrosophic field 𝔽𝑝𝑛(𝐼) 

of characteristic 𝑝 has order 𝑝2𝑛 for some odd prime 𝑝and for some positive integer 𝑛. In this 

system 𝔽𝑝𝑛(𝐼) , the Neutrosophic equation (𝑎 + 𝑏𝐼)2 = 1  is solvable and it has Neutrosophic 

solutions, because −2 ∈ 𝔽𝑝𝑛(𝐼). This theorem proves that there are an infinite number of solutions to 

the quadratic equation(𝑎 + 𝑏𝐼)2 = 1 over a finite Neutrosophic field of odd order. 

 

Theorem 2.11. Over the finite Neutrosophic field 𝔽𝑝𝑛(𝐼) corresponding to the odd prime 𝑝 and the 

integer 𝑛 ≥ 1, the Neutrosophic equation 

   (𝑎 + 𝑏𝐼)2 = 1 

has exactly four solutions. In particular, |ℐ𝑛 (𝔽𝑝𝑛(𝐼))| = 4. 

Proof. For any odd prime 𝑝, there exists field 𝔽𝑝𝑛  and Neutrosophic field 𝔽𝑝𝑛(𝐼) of odd orders 𝑝𝑛 

and 𝑝2𝑛, respectively. Classically, you always the equation 𝑎2 = 1 exists 𝔽𝑝𝑛  and is also factorable, 

like 

(𝑎 − 1)(𝑎 + 1) = 0 

in 𝔽𝑝𝑛 . Since 𝔽𝑝𝑛  is a field with no zero divisors, we must have 𝑎 = ±1. Thus, ℐ𝑛(𝔽𝑝𝑛) = {1, −1}. 

Further, since −2 ∈ 𝔽𝑝𝑛(𝐼), there exists a Neutrosophic element 1 − 2𝐼 in 𝔽𝑝𝑛(𝐼) such that 

  (1 − 2𝐼)2 = 1 

in 𝔽𝑝𝑛(𝐼). Using the Theorem [2.4], 

  ℐ𝑛 (𝔽𝑝𝑛(𝐼)) =  ℐ𝑛(𝔽𝑝𝑛) ∪ (1 − 2𝐼)ℐ𝑛(𝔽𝑝𝑛) 

   = {1, −1} ∪ (1 − 2𝐼){1, −1} 

   =  {1, −1,1 ⋅ (1 − 2𝐼), −1 ⋅ (1 − 2𝐼)} 

   =  {1, −1,1 − 2𝐼, −1 + 2𝐼}. 

Hence, |ℐ𝑛 (𝔽𝑝𝑛(𝐼))| = 4. ∎ 

 Further on the total number of Neutrosophic involutions to the 𝑅(𝐼) over 𝑅  we have the 

subsequent result. 

Theorem 2.12.Neutrosophic involutions to the ring 𝑅(𝐼) over the finite commutative 𝑅 with unity 

1 come in multiple of four. 

Proof.Let𝑅 be any finite commutative with unity 1 and let 𝑐ℎ𝑎(𝑅) ≠ 2. Then there exists at least 

two involutions in 𝑅, namely unity 𝑢 and its additive inverse – 𝑢 whenever 𝑢2 = 1.This means 

that the least number of involutions in a finite commutative ring 𝑅 with unity 1 is two if and only if 

𝑐ℎ𝑎(𝑅) ≠ 2. Consequently, 

 ℐ𝑛(𝑅) = 〈𝑢, −𝑢: 𝑢2 = 1 𝑖𝑛 𝑅〉, 

and similarly 

  (1 − 2𝐼)ℐ𝑛(𝑅) = 〈(1 − 2𝐼)𝑢, −(1 − 2𝐼)𝑢: 𝑢2 = 1 𝑖𝑛 𝑅〉. 

 

Therefore,  
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|ℐ𝑛(𝑅)| = |〈𝑢, −𝑢: 𝑢2 = 1〉| ≥ 2, and |(1 − 2𝐼)ℐ𝑛(𝑅)| = |〈(1 − 2𝐼)𝑢, −(1 − 2𝐼)𝑢: 𝑢2 = 1〉| ≥ 2. 

By the Theorem [2.4 ],the structure ℐ𝑛(𝑅(𝐼)) can be written as 

   ℐ𝑛(𝑅(𝐼)) = ℐ𝑛(𝑅) ∪ (1 − 2𝐼)ℐ𝑛(𝑅) 

    = 〈𝑢, −𝑢: 𝑢2 = 1〉 ∪ 〈(1 − 2𝐼)𝑢, −(1 − 2𝐼)𝑢: 𝑢2 = 1〉. 

This shows that |ℐ𝑛(𝑅(𝐼))| ≥ (2)(2) = 4 , and also |ℐ𝑛(𝑅(𝐼))| = 2|ℐ𝑛(𝑅)| . Hence, Neutrosophic 

involutions to the Neutrosophic ring 𝑅(𝐼) over the finite commutative 𝑅 with unity 1 comes in 

multiple of four. ∎ 

Corollary 2.13. The least number of Neutrosophic involutions of𝑅(𝐼)is four if and only if  𝑐ℎ𝑎(𝑅) ≠

2. 

Proof. This is easily understood based on a common observation.For any 𝑅(𝐼)with𝑐ℎ𝑎𝑟(𝑅(𝐼)) ≠ 2, 

you always have the four Neutrosophic involutions𝑢,−𝑢 , (1 − 2𝐼)𝑢 and −(1 − 2𝐼)𝑢  whenever 

𝑢2 = 1in 𝑅, and viceversa. ∎ 

3. Neutrosophic Involutions of 𝑹(𝑰) × 𝑺(𝑰) 

In this section, we give some procedures of the determination of Neutrosophic involutions of  

𝑅(𝐼) × 𝑆(𝐼) along with the involutions of𝑅 × 𝑆. It is well known that if  𝑅 and 𝑆 are commutative 

rings with unity, then their Cartesian product 𝑅 × 𝑆 of 𝑅 and 𝑆 is also commutative rig with unity 

under the usual component-wise addition and component-wise multiplication. So for each 

system𝑅 × 𝑆, there exists a Neutrosophic system 𝑅(𝐼) × 𝑆(𝐼) such that  

  𝑅(𝐼) × 𝑆(𝐼) = {(𝑎 + 𝑏𝐼, 𝑐 + 𝑑𝐼): 𝑎 + 𝑏𝐼 ∈ 𝑅(𝐼), 𝑐 + 𝑑𝐼 ∈ 𝑆(𝐼)} 

which is a commutative Neutrosophic ring with unity (1,1)  under the component-wise 

Neutrosophic addition and Neutrosophic multiplication. 

 The following basic result associates the set of Neutrosophic involutions of  𝑅(𝐼) × 𝑆(𝐼) to 

Neutrosophic involutions of 𝑅(𝐼)  and 𝑆(𝐼) , and this association depends on component-wise 

Neutrosophic multiplication. 

Theorem 3.1. Let 𝑅 and 𝑆 be commutative rigs with the same unity 1. Then  

ℐ𝑛(𝑅(𝐼) × 𝑆(𝐼)) = ℐn(𝑅(𝐼)) × ℐ𝑛(𝑆(𝐼)). 

Proof. It is sufficient to prove that a Neutrosophic element of  (𝑎 + 𝑏𝐼, 𝑐 + 𝑑𝐼) in of  𝑅(𝐼) × 𝑆(𝐼) is a 

Neutrosophic involution if and only if of  𝑎 + 𝑏𝐼 is a Neutrosophic involution in of  𝑅(𝐼), and of  

𝑐 + 𝑑𝐼 is a Neutrosophic involution in of  𝑆(𝐼). Indeed, 

  (𝑎 + 𝑏𝐼, 𝑐 + 𝑑𝐼)2 = (1,1) ⇔ (𝑎 + 𝑏𝐼, 𝑐 + 𝑑𝐼)(𝑎 + 𝑏𝐼, 𝑐 + 𝑑𝐼) = (1,1) 

      ⇔ ((𝑎 + 𝑏𝐼)2, (𝑐 + 𝑑𝐼)2) = (1,1) 

      ⇔ (𝑎 + 𝑏𝐼)2 = 1 and (, (𝑐 + 𝑑𝐼)2) = 1 

      ⇔ 𝑎 + 𝑏𝐼 ∈ ℐn(𝑅(𝐼)) and 𝑐 + 𝑑𝐼 ∈ ℐn(𝑆(𝐼)). ∎ 

 The next example presents one to one corresponding involution behavior between 

ℐ𝑛(𝑅(𝐼) × 𝑆(𝐼)) and ℐn(𝑅(𝐼)) × ℐ𝑛(𝑆(𝐼)) for computing their corresponding cardinalities. 

Example 3.2. Consider the Neutrosophic involution structures ℐ𝑛(𝑍4(𝐼) × 𝑍8(𝐼)) andℐ𝑛(𝑍4(𝐼)) ×

ℐ𝑛(𝑍8(𝐼)), where 
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ℐ𝑛(𝑍4(𝐼) × 𝑍8(𝐼)) = {(1,1),(1,7),(1,1 − 2𝐼),(1,7 − 6𝐼),(3,1),(3,7),(3,1 − 2𝐼),(3,7 − 6𝐼),(1 − 2𝐼, 1),(1 −

2𝐼, 7),(1 − 2𝐼, 1 − 2𝐼),(1 − 2𝐼, 7 − 6𝐼),(3 − 2𝐼, 1),(3 − 2𝐼, 7),(3 − 2𝐼, 1 − 2𝐼),(3 − 2𝐼, 7 − 6𝐼)},and 

ℐ𝑛(𝑍4(𝐼)) × ℐ𝑛(𝑍8(𝐼)) = {1, 3, 1 − 2𝐼,3 − 2𝐼} × {1, 7,1 − 2𝐼,7 − 6𝐼} 

   = {(1,1),(1,7),(1,1 − 2𝐼),(1,7 − 6𝐼),(3,1),(3,7),(3,1 − 2𝐼),(3,7 − 6𝐼), 

   (1 − 2𝐼, 1),(1 − 2𝐼, 7),(1 − 2𝐼, 1 − 2𝐼),(1 − 2𝐼, 7 − 6𝐼),(3 − 2𝐼, 1), 

   (3 − 2𝐼, 7),(3 − 2𝐼, 1 − 2𝐼),(3 − 2𝐼, 7 − 6𝐼)}. 

 Let 𝑚 and 𝑛 be any two positive integers greater 1. Then 𝑍𝑚 × 𝑍𝑛 is a commutative ring 

with unity. So the following statement associates the set of involutions of 𝑍𝑚 × 𝑍𝑛to involutions of 

𝑍𝑚and𝑍𝑛. In the light of this basic argument, the following theorem is necessary and the proof is 

clear. 

  (𝑎, 𝑏) ∈ ℐ𝑛(𝑍𝑚 × 𝑍𝑛) ⇔ 𝑎 ∈ ℐn(𝑍𝑚) and 𝑏 ∈ ℐ𝑛(𝑍𝑛). 

Now the following result of the immediate consequence of the above statement. 

Theorem 3.3. Let 𝑚 and 𝑛 be any two positive integers greater 1. Then 

   |ℐ𝑛(𝑍𝑚(𝐼) × 𝑍𝑛(𝐼))| = |ℐ𝑛(𝑍𝑚(𝐼))||ℐ𝑛(𝑍𝑛(𝐼))|. 

Proof. Define a map 𝑓: ℐ𝑛(𝑍𝑚(𝐼) × 𝑍𝑛(𝐼)) →  ℐ𝑛(𝑍𝑚(𝐼)) × ℐ𝑛(𝑍𝑛(𝐼)) by the relation 

  𝑓((𝑎 + 𝑏𝐼, 𝑐 + 𝑑𝐼)) = {
(𝑎, 𝑐)  𝑖𝑓 𝑏 = 0, 𝑑 = 0

((1 − 2𝐼)𝑎, (1 − 2𝐼)𝑐)  𝑖𝑓 𝑏 ≠ 0, 𝑑 ≠ 0
 

Let us suppose  𝑏 = 0 and 𝑑 = 0. Then there is nothing to prove because the map 𝑓: ℐ𝑛(𝑍𝑚(𝐼) ×

𝑍𝑛(𝐼)) →  ℐ𝑛(𝑍𝑚(𝐼)) × ℐ𝑛(𝑍𝑛(𝐼)) is trivially a Neutrosophic ring isomorphism. Now we can prove 

that this for the case 𝑏 ≠ 0 and 𝑑 ≠ 0.  

𝒇 is one to one. Let (𝑎 + 𝑏𝐼, 𝑐 + 𝑑𝐼), (𝑎′ + 𝑏′𝐼, 𝑐′ + 𝑑′𝐼) ∈ ℐ𝑛(𝑍𝑚(𝐼) × 𝑍𝑛(𝐼)). Then  

 

 𝑓((𝑎 + 𝑏𝐼, 𝑐 + 𝑑𝐼)) = 𝑓((𝑎′ + 𝑏′𝐼, 𝑐′ + 𝑑′𝐼)) ⇒ ((1 − 2𝐼)𝑎, (1 − 2𝐼)𝑐) = ((1 − 2𝐼)𝑎′ , (1 −

2𝐼)𝑐′) 

      ⇒ (1 − 2𝐼)𝑎 = (1 − 2𝐼)𝑎′, (1 − 2𝐼)𝑐 = (1 − 2𝐼)𝑐′ 

      ⇒ 𝑎 − 2𝑎𝐼 = 𝑎′ − 2𝑎′𝐼, 𝑐 − 2𝑐𝐼 = 𝑐′ − 2𝑐′𝐼 

      ⇒ 𝑎 + 𝑏𝐼 = 𝑎′ + 𝑏′𝐼, 𝑐 + 𝑑𝐼 = 𝑐′ + 𝑑′𝐼, 

where 𝑏 = −2𝑎, 𝑏′ = −2𝑎′, 𝑑 = −2𝑐, and 𝑑′ = −2𝑐′. So, the map 𝑓 is one to one. 

𝒇 is onto.The range of the function 𝑓: ℐ𝑛(𝑍𝑚(𝐼) × 𝑍𝑛(𝐼)) →  ℐ𝑛(𝑍𝑚(𝐼)) × ℐ𝑛(𝑍𝑛(𝐼)) is defined by 

 𝑓 (ℐ𝑛(𝑍𝑚(𝐼) × 𝑍𝑛(𝐼))) = {𝑓((𝑎 + 𝑏𝐼, 𝑐 + 𝑑𝐼)): (𝑎 + 𝑏𝐼, 𝑐 + 𝑑𝐼) ∈ ℐ𝑛(𝑍𝑚(𝐼) × 𝑍𝑛(𝐼))} 

   = {𝑓((𝑎 + 𝑏𝐼, 𝑐 + 𝑑𝐼)): (𝑎 + 𝑏𝐼, 𝑐 + 𝑑𝐼) ∈ ℐ𝑛(𝑍𝑚(𝐼) × 𝑍𝑛(𝐼))} 

   = {((1 − 2𝐼)𝑎, (1 − 2𝐼)𝑐): 𝑎 ∈ ℐ𝑛(𝑍𝑚), 𝑐 ∈ ℐ𝑛(𝑍𝑛)} 

   = {(1 − 2𝐼)𝑎: 𝑎 ∈ ℐ𝑛(𝑍𝑚)} × {(1 − 2𝐼)𝑐: 𝑐 ∈ ℐ𝑛(𝑍𝑛)} 

   = ℐ𝑛(𝑍𝑚) ∪ (1 − 2𝐼)ℐ𝑛(𝑍𝑚) × ℐ𝑛(𝑍𝑛) ∪ (1 − 2𝐼)ℐ𝑛(𝑍𝑛) 

   = ℐ𝑛(𝑍𝑚(𝐼)) × ℐ𝑛(𝑍𝑛(𝐼)), 

where ℐ𝑛(𝑍𝑚(𝐼)) = ℐ𝑛(𝑍𝑚) ∪ (1 − 2𝐼)ℐ𝑛(𝑍𝑚)  and ℐ𝑛(𝑍𝑛(𝐼)) = ℐ𝑛(𝑍𝑛) ∪ (1 − 2𝐼)ℐ𝑛(𝑍𝑛) . 

Consequently the map 𝑓 is onto. 
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𝒇 is a Neutrosophic ring isomorphism. For this let 𝛼 = (𝑎 + 𝑏𝐼, 𝑐 + 𝑑𝐼), 𝛽 = (𝑎′ + 𝑏′𝐼, 𝑐′ + 𝑑′𝐼) ∈

ℐ𝑛(𝑍𝑚(𝐼) × 𝑍𝑛(𝐼)), then 

  𝑓(𝛼 + 𝛽) = 𝑓((𝑎 + 𝑏𝐼, 𝑐 + 𝑑𝐼) + (𝑎′ + 𝑏′𝐼, 𝑐′ + 𝑑′𝐼)) 

   = 𝑓 (((𝑎 + 𝑎′) + (𝑏 + 𝑏′)𝐼, (𝑐 + 𝑐′) + (𝑑 + 𝑑′)𝐼)) 

   = ((1 − 2𝐼)(𝑎 + 𝑎′), (1 − 2𝐼)(𝑐 + 𝑐′)) 

   = ((1 − 2𝐼)𝑎 + (1 − 2𝐼)𝑎′ , (1 − 2𝐼)𝑐 + (1 − 2𝐼)𝑐′) 

= ((1 − 2𝐼)𝑎, (1 − 2𝐼)𝑐) + ((1 − 2𝐼)𝑎′ , (1 − 2𝐼)𝑐′) 

   = 𝑓((𝑎 + 𝑏𝐼, 𝑐 + 𝑑𝐼)) + 𝑓(𝑎′ + 𝑏′𝐼, 𝑐′ + 𝑑′𝐼) = 𝑓(𝛼) + 𝑓(𝛽), 

and similarly we can show that  

   𝑓(𝛼𝛽) = 𝑓(𝛼)𝑓(𝛽) for every  𝛼 and 𝛽 in ℐ𝑛(𝑍𝑚(𝐼) × 𝑍𝑛(𝐼)). 

Thus the map 𝑓 is a Neutrosophic ring isomorphism from ℐ𝑛(𝑍𝑚(𝐼) × 𝑍𝑛(𝐼)) onto the ℐ𝑛(𝑍𝑚(𝐼)) ×

ℐ𝑛(𝑍𝑛(𝐼)) with 𝑓(1,1) = (1 − 2𝐼, 1 − 2𝐼), and hence  

   ℐ𝑛(𝑍𝑚(𝐼) × 𝑍𝑛(𝐼)) ≅ ℐ𝑛(𝑍𝑚(𝐼)) × ℐ𝑛(𝑍𝑛(𝐼)). 

This identity implies that  

   |ℐ𝑛(𝑍𝑚(𝐼) × 𝑍𝑛(𝐼))| = |ℐ𝑛(𝑍𝑚(𝐼))||ℐ𝑛(𝑍𝑛(𝐼))|. ∎ 

4.Diagonal Property of Neutrosophic Elements in 𝑹(𝑰) 

This section introduces the diagonal property of finite commutative Neutrosophicrings.First of all 

we have, for any finite commutative Neutrosophic ring 𝑅(𝐼) with unity, there exists a multiplicative 

composition table of all elements of 𝑅(𝐼), and this table is associated to one to one correspondence of  

the matrix network 𝑅(𝐼) × 𝑅(𝐼) with the size |𝑅(𝐼)| × |𝑅(𝐼)|. Classically, it is well known that there 

is an element 1 at the position of the entry (𝑎, 𝑏) in the composition table of 𝑅. Then obviously 

𝑎𝑏 = 1 = 𝑏𝑎  in 𝑅 . So automatically there a connection between 1𝑠  in 𝑅  and entries of the 

composition table of 𝑅, see [22,23 ].Here, we can establish same theory on to Neutrosophic rings. 

Definition 4.1.A Neutrosophic ring 𝑅(𝐼) with unity 1 has diagonal property if all 1𝑠 appeared in 

the main diagonal of the composition table of 𝑅(𝐼). 

In [ 23],the author Sunil proved the following necessary and sufficient condition for 1𝑠 appeared in 

the main diagonal of the composition table of 𝑍𝑛 and divisors of 24. 

Theorem 4.2.[23].The multiplication table for the cyclic ring 𝑍𝑛 contains 1𝑠 only on the diagonal of 

the multiplicative composition table of 𝑍𝑛 if and only if 𝑛 is a divisor of 24. 

Consequently, this result also obviously true in Neutrosophic rings, that is it can be stated as follows. 

Theorem 4.3. The multiplication table for the Neutrosophic cyclic ring 𝑍𝑛(𝐼) contains 1𝑠 only on 

the diagonal of the multiplicative composition table if and only if 𝑛 is a divisor of 24. 

Subsequently, if 𝑛 is not a divisor of 24, then the above results are not true. For example, 𝑛 is 5 

which is not a divisor of  24, then there exists a Neutrosophic ring 𝑍5(𝐼) = {𝑎 + 𝑏𝐼: 𝑎, 𝑏 ∈ 𝑍5; 𝐼2 =

𝐼}, which does not satisfies diagonal property, because (2 + 0𝐼)(3 + 0𝐼) = 6 + 0𝐼 = 1 under modulo 

5. This failure concept concludes that the condition𝑏 = 0exists in the form 𝑎 + 𝑏𝐼. However, all 

elements of Neutrosophic system 𝑍5(𝐼) = {𝑎 + 𝑏𝐼: 𝑎, 𝑏 ∈ 𝑍5; 𝐼2 = 𝐼}  is also satisfies diagonal 
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property whenever 𝑏 ≠ 0 in the form𝑎 + 𝑏𝐼, and this success illustrates the following Neutrosophic 

composition table for 𝑍5(𝐼)with𝑏 ≠ 0. 

 For𝑏 ≠ 0, the pure Neutrosophic involutions of𝑍5(𝐼) can be written as 

   ℐ𝑛(𝑍5(𝐼))
𝑏≠0

= ℐ𝑛 (𝑈(𝑍5(𝐼))) − ℐ𝑛(𝑈(𝑍5)) = {1 − 2𝐼, 4 − 3𝐼}. 

⨀5 1 − 2𝐼 4 − 3𝐼 

1 − 2𝐼 𝟏 4 

4 − 3𝐼 4 𝟏 

Consequently the following result is more eminent for satisfying diagonal property of 

anyNeutrosophic ring𝑅(𝐼). 

Theorem 4.5. The multiplication table for Neutrosophic units 𝑈(𝑅(𝐼)) − 𝑈(𝑅) = {𝑎 + 𝑏𝐼 ∈

𝑅(𝐼): 𝑎, 𝑏 ∈ 𝑅, 𝑎𝑛𝑑 𝑏 ≠ 0} of any finite commutative Neutrosophic ring𝑅(𝐼) contains 1𝑠 only on 

the diagonal of the multiplicative composition table if and only if 𝑐ℎ𝑎𝑟(𝑅) ≠ 2. 

Proof. It is clear by theTheorem [2.8],we have 

ℐ𝑛(𝑅(𝐼)) = 𝑈(𝑅(𝐼)) if and only if 𝑎 + 𝑏𝐼 is in 𝑈(𝑅(𝐼)) with 𝑏 ≠ 0. 

ℐ𝑛(𝑅(𝐼)) = 𝑈(𝑅(𝐼)) if and only if 𝑎 + 𝑏𝐼 is a pure Neutrosophic involutions of 𝑅(𝐼). 

Hence, the number of 1s appear on the principal diagonal of the table of  

𝑈(𝑅(𝐼)) = {𝑎 + 𝑏𝐼 ∈ 𝑅(𝐼): 𝑎, 𝑏 ∈ 𝑅, 𝑎𝑛𝑑 𝑏 ≠ 0} 

is equal to 2𝑘 for some integer 𝑘 ≥ 1, because the cardinality of 𝑈(𝑅(𝐼)) = {𝑎 + 𝑏𝐼 ∈ 𝑅(𝐼): 𝑎, 𝑏 ∈

𝑅, 𝑎𝑛𝑑 𝑏 ≠ 0} is even and it is greater than or equal to the power of2. ∎ 

5. Conclusions 

In this paper, we have analytically studied Neutrosophic involutory behavior of the Neutrosophic 

elements of the finite commutative Neutrosophic ring 𝑅(𝐼). A necessary and sufficient for the 

Neutrosophic element𝑎 + 𝑏𝐼 being a Neutrosophic involution has been obtained. From this criterion 

we have developed a general procedure to enumerate Neutrosophic involutions of the form 𝑎 + 𝑏𝐼 

over 𝑅(𝐼) from given classical involutions over the corresponding finite commutative ring 𝑅. The 

proposed technique can be used to determine more desired Neutrosophic involutions of 𝑅(𝐼). 

6. Future Work 

A Neutrosophic involution over a finite commutative Neutrosophic ring 𝑅(𝐼)  is an element 

property whose multiplicative inverse is itself. Owing to this property, we will prepare and produce 

techniques for enumerating Neutrosophic involutions which are applied in Computational systems 

like the XOR bitwise operations with a given value for one parameter with indeterminate, and 

develop RC4 cryptographic ciphers, further we will use these Neutrosophic involutions for studying 

liminalities and minimalities of Reversible Rings. 
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