

Finding Minimal Units In Several Two-Fold Fuzzy Finite

Neutrosophic Rings

Raed Hatamleh^{*} Department of Mathematics, Faculty of Science and Information Technology, Jadara University, P.O. Box 733, Irbid 21110, Jordan raed@jadara.edu.jo

Ayman Hazaymeh Department of Mathematics, Faculty of Science and Information Technology, Jadara University, P.O. Box 733, Irbid 21110, Jordan aymanha@ jadara.edu.jo

Abstract:

In this paper, we have defined the concept of minimal units in finite two-fold fuzzy neutrosophic rings modulo integers as a generalization of classical elements of the group of units of the mentioned neutrosophic rings. We apply our results to characterize all minimal units in the following two-fold neutrosophic rings $(Z_n(I))_{f_I}$ for $n \in \{2,3,4,5\}$.

Keywords: two-fold algebra, finite neutrosophic ring, modulo integer ring, minimal unit.

Introduction

The determination of the invertible elements in a ring has attracted the attention of many researchers, specifically in some modern rings such as neutrosophic rings, and n-cyclic refined neutrosophic rings [6-8]. Many interesting results have been proved about the problem of classifying the group of units in a number of special solutions, and also tables that calculate the value of these units and determine their exact number [9-10].

A unit in a ring R is the concept of being an invertible element concerning multiplication operation which make a group together.

2

Two-fold neutrosophic algebras are new algebraic structures presented by Smarandache [1] by combining neutrosophic values of truth, falsity, and indeterminacy with classical algebraic sets. These ideas were used by many authors to generalize other famous algebraic structures such as two-fold fuzzy number theoretical systems [2-3], two-fold modules and spaces [4], and two-fold fuzzy rings [5]. Also, they were used in the study of some special two-fold complex functions such as Gamma function [13], and in extending n-refined neutrosophic rings [11-15]. The complex fuzzy ring initiated on complex fuzzy space was given by Al-Husban [14-17]

In this work, we define the minimal two-fold neutrosophic finite ring modulo integers, and we determine all maximal units in these rings for the special values of n between 2 and 5. We have also classified all the units that have been calculated in tables showing their values as well as their number.

Main Discussion

Definition 2.1.

Let $Z_n = \{0, 1, ..., n-1\}$ be the ring of integers modulo n, and $Z_n(I) = \{a + bI ; a, b \in Z_n, I^2 = I\}$ be the corresponding neutrosophic ring. Assume that $f:Z_n \to [0,1]$ be a fuzzy mapping with $\begin{cases} f(0) = 0\\ f(1) = 1 \end{cases}; \quad f_I:Z_n(I) \to [0,1] \text{ such that:} \end{cases}$

$$f_I(a+bI) = \min(f(a), f(b)).$$

The minimal two-fold neutrosophic ring $(Z_n(I))_{f_I}$ is defined as:

$$(Z_n(I))_{f_I} = \{(a+bI)_{f_I(c+dI)} \quad ; \ a+bI, c+dI \in Z_n(I)\}.$$

Example 2.1.

Consider $(Z_5 = \{0,1,2,3,4\}, +, \cdot)$ the ring of integers modulo 5, take $f : Z_5 \rightarrow [0,1]$;

$$f(x) = \begin{cases} 1 & ; x = 1 \\ \frac{1}{2} & ; x \in \{2,3\} \\ \frac{1}{4} & ; x = 4 \\ 0; x = 0 \end{cases}$$

 $Z_5(I) = \{0,1,2,3,4,I,2I,3I,4I,1+I,1+2I,1+3I,1+4I,2+I,2+2I,2+3I,2+4I,3+I,3+2I,3+3I,3+4I,4+I,4+2I,4+3I,4+4I\}.$

$$f_I(3+4I) = \min(f(3), f(4)) = \frac{1}{4}, f_I(1+2I) = \min(f(1), f(2)) = \frac{1}{2}.$$

By a similar approach, we can see:

$$f_I(1+4I) = f_I(2+4I) = \frac{1}{4}, \ f_I(0) = f_I(I) = f_I(2I) = f_I(3I) = f_I(4I) = 0, \ f_I(1+3I) = \frac{1}{2},$$

 $f_I(2+I) = f_I(3+I) = f_I(2) = f_I(3) = 1 \setminus 2$, and so on .

Therefor, $(Z_5(I))_{f_I} = \{(a + bI)_0, (a + bI)_1, (a + bI)_{\frac{1}{2}}, (a + bI)_{\frac{1}{4}}, for all a, b \in Z_5\}$.

Definition 2.2.

An element $X = (a + bI)_{f_I(c+dI)}$ is called a minimal unit in the minimal two-fold neutrosophic ring $(Z_n(I))_{f_I}$ if and only if there exists:

$$Y = (m+nI)_{f_I(t+kI)} \in (Z_n(I))_{f_I}$$

such that:

$$X \circ Y = [(a + bI)(m + nI)]_{f_I[(c+dI)(t+kI)]} = 1_0$$

Example 2.2.

Consider $Z_3 = \{0,1,2\}$, $Z_3(I) = \{0,1,2,I,2I,1+I,1+2I,2+I,2+2I\}$,

$$f: Z_3 \to [0,1] ; \begin{cases} f(0) = 0\\ f(1) = 1\\ f(2) = \frac{1}{2} \end{cases} , f_I: Z_n(I) \to [0,1]$$

such that:

$$f_I(0) = f_I(l) = f_I(2l) = f_I(1) = 0, f_I(1+l) = 1, f_I(2) = 0, f_I(1+2l) = f_I(2+l) = f_I(2+2l) = \frac{1}{2}.$$

Hence

$$\left(Z_{3}(I)\right)_{f_{I}} = \left\{0_{0}, 0_{1}, 0_{\frac{1}{2}}, 1_{0}, 1_{1}, 1_{\frac{1}{2}}, I_{0}, I_{1}, I_{\frac{1}{2}}, (2I)_{0}, (2I)_{1}, (2I)_{\frac{1}{2}}, (1+I)_{0}, (1+I)_{1}, (1+I)_{\frac{1}{2}}, (2+I)_{0}, (2+I)_{1}, (2+I)_{\frac{1}{2}}, (2+I)_{0}, (2+I)_{1}, (2+I)_{\frac{1}{2}}, (2+I)_{0}, (2+I)_{1}, (2+I)_{\frac{1}{2}}, 2_{0}, 2_{1}, 2_{\frac{1}{2}}\right\}.$$

Theorem 2.1.

An element $X = (a + bI)_{f_I(m+nI)} \in (Z_n(I))_{f_I}$ is a minimal unit if and only if:

1] gcd(a, n) = gcd(a + b, n) = 1.

2] $\exists t + kI \in Z_n(I)$ such that: $mt \equiv 0 \pmod{n}$ or $(m+n)(t+k) - mt \equiv 0 \pmod{n}$.

Proof.

X is a minimal unit if and only if there exists $Y = (c + dI)_{f_I(t+kI)}$ with $X \circ Y = 1_0$, so that:

$$(a+bI)(c+dI) = 1 \Longrightarrow \begin{cases} ac = 1\\ ad + bc + bd = 0 \end{cases} \Longrightarrow \begin{cases} ac = 1\\ (a+b)(c+d) - ac = 0 \end{cases}$$
$$\Longrightarrow \begin{cases} ac = 1\\ (a+b)(c+d) = ac = 1 \end{cases} \Longrightarrow \begin{cases} \gcd(a,n) = 1\\ \gcd(a+b,n) = 1 \end{cases}.$$

On the other hand:

$$f_I[(m+nI)(t+kI)] = 0 \Longrightarrow f_I[mt+I(mk+nt+nk)] = 0 \Longrightarrow f_I[mt+I[(m+n)(t+k) - mt]] = 0, \text{ thus:}$$

$$f(mt) = 0$$
 or $f[(m+n)(t+k) - mt] = 0$,

hence

$$\begin{cases} mt = 0 \equiv 0 (mod \ n) \\ or \\ (m+n)(t+k) - mt \equiv 0 (mod \ n) \end{cases}$$

Minimal units of $(Z_2(I))_{f_I}$:

 $Z_2 = \{0,1\}, \ Z_2(I) = \{0,1,I,1+I\}, \cup (Z_2) = \cup (Z_2(I)) = \{1\}.$ For any $f: \ Z_2 \to [0,1],$

we have:

$$f(0) = 0, f(1) = 1,$$

that is because (f) is a fuzzy mapping, hence: $f_I: Z_2(I) \to [0,1]$ with:

$$f_I(0) = f_I(1) = f_I(I) = 0, f_I(1+I) = 1.$$

The minimal units of $(Z_2(I))_{I_I}$ are : {1₀, 1₁}, that is because $0 \cdot (1 + I) = 0$.

Remark 2.1.

For any two-fold minimal neutrosophic ring $(Z_n(I))_{f_I}$ and for any $m + nI \in Z_n(I)$, there exists

 $0 \in Z_n(I)$ such that: $0 \cdot (m + nI) = 0$.

So that the minimal units of $Z_n(I)$ are:

$$M_u(Z_n(I)) = \{(a+bI)_x : a+bI \in \cup (Z_n(I)) , x \in f(Z_n)\}$$

Minimal units of $Z_3(I)$, $Z_4(I)$:

$$Z_3 = \{0,1,2\}, Z_3(I) = \{0,1,2,I,2I,1+I,1+2I,2+I,2+2I\},$$
$$\cup (Z_3) = \{1,2\}, \cup (Z_3(I)) = \{1,2,1+I,2+2I\}.$$

For any fuzzy mapping $f\!:\!Z_3\to[0,\!1]\,$,

we have

$$f(0) = 0, f(1) = 1, f(2) \in]0,1[,$$

 $Z_4 = \{0,1,2,3\}, Z_4(I) = \{0,1,2,3,I,2I,3I,1+I,1+2I,1+3I,2+I,2+3I,2+2I,3+I,3+2I,3+3I\},$

$$\cup (Z_4) = \{1,3\}, \cup (Z_4(I)) = \{1,3,1+2I,3+2I\}$$

For any fuzzy mapping $f: \mathbb{Z}_4(I) \to [0,1]$,

we have

$$f(0) = 0, f(1) = 1, f(2), f(3) \in]0,1[.$$

Minimal units of $(Z_3(I))_{f_I}$:

	$M_u(Z_3(I))_{f_I}$
1	10
2	11
3	$1_{f(2)}$
4	21
5	2 ₀
6	$2_{f(2)}$
7	$(1+I)_0$
8	$(1+I)_1$
9	$(1+I)_{f(2)}$
10	$(2+2I)_0$
11	$(2+2I)_1$
12	$(2+2I)_{f(2)}$

Minimal units of $(Z_4(I))_{f_I}$ in the case of f(2) = f(3):

	$M_u(Z_4(I))_{f_I}$
1	10
2	11
3	$1_{f(2)}$

4	3 ₀
5	31
6	$3_{f(2)}$
7	$(1+2I)_0$
8	$(1+2I)_1$
9	$(1+2I)_{f(2)}$
10	$(3+2I)_0$
11	$(3+2I)_1$
12	$(3+2I)_{f(2)}$

Minimal units of $(Z_4(I))_{f_I}$ in the case of $f(2) \neq f(3)$:

	$M_u(Z_4(I))_{f_I}$
1	10
2	11
3	$1_{f(2)}$
4	$1_{f(3)}$
5	3 ₀
6	31
7	3 _{f(2)}
8	$3_{f(3)}$
9	$(3+2I)_0$
10	$(3+2I)_1$
11	$(3+2I)_{f(2)}$
12	$(3+2I)_{f(3)}$
13	$(1+2I)_0$
14	$(1+2I)_1$
15	$(1+2I)_{f(2)}$
16	$(1+2I)_{f(3)}$

Raed Hatamleh, Finding Minimal Units In Several Two-Fold Fuzzy Finite Neutrosophic Rings

Minimal units of $(Z_5(I))_{f_I}$: $Z_5 = \{0,1,2,3,4\}, Z_5(I) = \{0,1,2,3,4,I,2I,3I,4I,1+I,1+2I,1+3I,1+4I,2+I,2+2I,2+3I,2+4I,3+I,3+2I,3+3I,3+4I,4+I,4+2I,4+3I,4+4I\},$ $\cup (Z_5) = \{1,2,3,4\}, \cup (Z_5(I)) = \{1,2,3,4,1+I,1+2I,1+3I,2+I,2+2I,2+4I,3+I,3+3I,3+4I,4+2I,4+3I,4+4I\}.$

Minimal units of $(Z_5(I))_{f_I}$ in the case of f(2) = f(3) = f(4):

	$M_u(Z_5(I))_{f_I}$
1	10
2	11
3	$1_{f(2)}$
4	20
5	21
6	$2_{f(2)}$
7	30
8	31
9	$3_{f(2)}$
10	4 ₀
11	41
12	$4_{f(2)}$
13	$(1+I)_0$
14	$(1+I)_1$
15	$(1+I)_{f(2)}$
16	$(1+2I)_0$
17	$(1+2l)_1$

18	$(1+2I)_{f(2)}$
19	$(1+3I)_0$
20	$(1+3I)_1$
21	$(1+3I)_{f(2)}$
22	$(2+I)_0$
23	$(2+I)_1$
24	$(2+I)_{f(2)}$
25	$(3+I)_0$
26	$(3+I)_1$
27	$(3+I)_{f(2)}$
28	$(2+2I)_0$
29	$(2+2I)_1$
30	$(2+2I)_{f(2)}$
31	$(2+4I)_0$
32	$(2 + 4I)_1$
33	$(2+4I)_{f(2)}$
34	$(3+4I)_0$
35	$(3+4I)_1$
36	$(3+4I)_{f(2)}$
37	$(4+2I)_0$
38	$(4+2I)_1$
39	$(4+2I)_{f(2)}$
40	$(4+3I)_0$
41	$(4+3I)_1$
42	$(4+3I)_{f(2)}$
43	$(4 + 4I)_0$
44	$(4 + 4I)_1$
45	$(4+4I)_{f(2)}$

Raed Hatamleh, Finding Minimal Units In Several Two-Fold Fuzzy Finite Neutrosophic Rings

46	$(3+3I)_0$
47	$(3+3I)_1$
48	$(3+3I)_{f(2)}$

Minimal units of $(Z_5(I))_{f_I}$ in the case of $f(2) \neq f(3) \neq f(4)$:

	$M_u(Z_5(I))_{f_I}$
1	10
2	11
3	$1_{f(2)}$
4	$1_{f(3)}$
5	$1_{f(4)}$
6	20
7	21
8	$2_{f(2)}$
9	$2_{f(3)}$
10	$2_{f(4)}$
11	30
12	31
13	$3_{f(2)}$
14	$3_{f(3)}$
15	$3_{f(4)}$
16	40
17	41
18	$4_{f(2)}$
19	$4_{f(3)}$
20	$4_{f(4)}$
21	$(1+I)_0$
22	$(1+I)_1$

23	$(1+I)_{f(2)}$
24	$(1+I)_{f(3)}$
25	$(1+I)_{f(4)}$
26	$(1+2I)_0$
27	$(1+2I)_1$
28	$(1+2I)_{f(2)}$
29	$(1+2I)_{f(3)}$
30	$(1+2I)_{f(4)}$
31	$(1+3I)_0$
32	$(1+3I)_1$
33	$(1+3I)_{f(2)}$
34	$(1+3I)_{f(3)}$
35	$(1+3I)_{f(4)}$
36	$(2 + I)_0$
37	$(2+I)_1$
37 38	$(2+I)_1$ $(2+I)_{f(2)}$
37 38 39	$(2+I)_{1}$ $(2+I)_{f(2)}$ $(2+I)_{f(3)}$
37383940	$(2 + I)_{1}$ $(2 + I)_{f(2)}$ $(2 + I)_{f(3)}$ $(2 + I)_{f(4)}$
 37 38 39 40 41 	$(2 + I)_{1}$ $(2 + I)_{f(2)}$ $(2 + I)_{f(3)}$ $(2 + I)_{f(4)}$ $(2 + 2I)_{0}$
 37 38 39 40 41 42 	$(2 + I)_{1}$ $(2 + I)_{f(2)}$ $(2 + I)_{f(3)}$ $(2 + I)_{f(4)}$ $(2 + 2I)_{0}$ $(2 + 2I)_{1}$
 37 38 39 40 41 42 43 	$(2 + I)_{1}$ $(2 + I)_{f(2)}$ $(2 + I)_{f(3)}$ $(2 + I)_{f(4)}$ $(2 + 2I)_{0}$ $(2 + 2I)_{1}$ $(2 + 2I)_{f(2)}$
 37 38 39 40 41 42 43 44 	$(2 + I)_{1}$ $(2 + I)_{f(2)}$ $(2 + I)_{f(3)}$ $(2 + I)_{f(4)}$ $(2 + 2I)_{0}$ $(2 + 2I)_{1}$ $(2 + 2I)_{f(2)}$ $(2 + 2I)_{f(3)}$
 37 38 39 40 41 42 43 44 45 	$(2 + I)_{1}$ $(2 + I)_{f(2)}$ $(2 + I)_{f(3)}$ $(2 + I)_{f(4)}$ $(2 + 2I)_{0}$ $(2 + 2I)_{1}$ $(2 + 2I)_{f(2)}$ $(2 + 2I)_{f(2)}$ $(2 + 2I)_{f(3)}$ $(2 + 2I)_{f(4)}$
 37 38 39 40 41 42 43 44 45 46 	$(2 + I)_{1}$ $(2 + I)_{f(2)}$ $(2 + I)_{f(3)}$ $(2 + I)_{f(4)}$ $(2 + 2I)_{0}$ $(2 + 2I)_{1}$ $(2 + 2I)_{f(2)}$ $(2 + 2I)_{f(2)}$ $(2 + 2I)_{f(3)}$ $(2 + 2I)_{f(4)}$ $(2 + 4I)_{0}$
 37 38 39 40 41 42 43 44 45 46 47 	$(2 + I)_{1}$ $(2 + I)_{f(2)}$ $(2 + I)_{f(3)}$ $(2 + I)_{f(4)}$ $(2 + 2I)_{0}$ $(2 + 2I)_{1}$ $(2 + 2I)_{f(2)}$ $(2 + 2I)_{f(2)}$ $(2 + 2I)_{f(3)}$ $(2 + 2I)_{f(4)}$ $(2 + 4I)_{0}$ $(2 + 4I)_{1}$
 37 38 39 40 41 42 43 44 45 46 47 48 	$(2 + I)_{1}$ $(2 + I)_{f(2)}$ $(2 + I)_{f(3)}$ $(2 + I)_{f(4)}$ $(2 + 2I)_{0}$ $(2 + 2I)_{1}$ $(2 + 2I)_{f(2)}$ $(2 + 2I)_{f(2)}$ $(2 + 2I)_{f(3)}$ $(2 + 2I)_{f(4)}$ $(2 + 4I)_{0}$ $(2 + 4I)_{1}$ $(2 + 4I)_{f(2)}$
 37 38 39 40 41 42 43 44 45 46 47 48 49 	$(2 + I)_{1}$ $(2 + I)_{f(2)}$ $(2 + I)_{f(3)}$ $(2 + I)_{f(4)}$ $(2 + 2I)_{0}$ $(2 + 2I)_{1}$ $(2 + 2I)_{f(2)}$ $(2 + 2I)_{f(3)}$ $(2 + 2I)_{f(3)}$ $(2 + 4I)_{0}$ $(2 + 4I)_{1}$ $(2 + 4I)_{f(2)}$ $(2 + 4I)_{f(3)}$

Raed Hatamleh, Finding Minimal Units In Several Two-Fold Fuzzy Finite Neutrosophic Rings

51	$(3 + I)_0$
52	$(3+I)_1$
53	$(3+I)_{f(2)}$
54	$(3+I)_{f(3)}$
55	$(3+I)_{f(4)}$
56	$(3+3I)_0$
57	$(3+3I)_1$
58	$(3+3I)_{f(2)}$
59	$(3+3I)_{f(3)}$
60	$(3+3I)_{f(4)}$
61	$(3+4I)_0$
62	$(3 + 4I)_1$
63	$(3+4I)_{f(2)}$
64	$(3+4I)_{f(3)}$
65	$(3+4I)_{f(4)}$
66	$(4+2I)_0$
67	$(4+2I)_1$
68	$(4+2I)_{f(2)}$
69	$(4+2I)_{f(3)}$
70	$(4+2I)_{f(4)}$
71	$(4+3I)_0$
72	$(4+3I)_1$
73	$(4+3I)_{f(2)}$
74	$(4+3I)_{f(3)}$
75	$(4+3I)_{f(4)}$
76	$(4+4I)_0$
77	$(4+4I)_1$
78	$(4+4I)_{f(2)}$

Raed Hatamleh, Finding Minimal Units In Several Two-Fold Fuzzy Finite Neutrosophic Rings

79	$(4+4I)_{f(3)}$
80	$(4+4I)_{f(4)}$

Minimal units of $(Z_5(I))_{f_I}$ in the case of $f(a) = f(b) \neq f(c)$; where $a, b, c \in \{2, 3, 4\}$:

	$M_u(Z_5(I))_{f_I}$
1	10
2	11
3	$1_{f(a)}$
4	$1_{f(c)}$
5	20
6	21
7	$2_{f(a)}$
8	$2_{f(c)}$
9	30
10	31
11	$3_{f(a)}$
12	$3_{f(c)}$
13	40
14	41
15	$4_{f(a)}$
16	$4_{f(c)}$
17	$(1+I)_0$
18	$(1+I)_1$
19	$(1+I)_{f(a)}$
20	$(1+I)_{f(c)}$
21	$(1+2I)_0$
22	$(1+2I)_1$

Raed Hatamleh, Finding Minimal Units In Several Two-Fold Fuzzy Finite Neutrosophic Rings

23	$(1+2I)_{f(a)}$
24	$(1+2I)_{f(c)}$
25	$(4+4I)_0$
26	$(4 + 4I)_1$
27	$(4+4I)_{f(a)}$
28	$(4+4I)_{f(c)}$
29	$(1+3I)_0$
30	$(1+3I)_1$
31	$(1+3I)_{f(a)}$
32	$(1+3I)_{f(c)}$
33	$(2+I)_0$
34	$(2+I)_1$
35	$(2+I)_{f(a)}$
36	$(2+I)_{f(c)}$
37	$(2+2I)_0$
38	$(2+2I)_1$
39	$(2+2I)_{f(a)}$
40	$(2+2I)_{f(c)}$
41	$(2+4I)_0$
42	$(2+4I)_1$
43	$(2+4I)_{f(a)}$
44	$(2+4I)_{f(c)}$
45	$(3 + I)_0$
46	$(3 + I)_1$
47	$(3+I)_{f(a)}$
48	$(3+I)_{f(c)}$
49	$(3+3I)_0$

Raed Hatamleh, Finding Minimal Units In Several Two-Fold Fuzzy Finite Neutrosophic Rings

51	$(3+3I)_{f(a)}$
52	$(3+3I)_{f(c)}$
53	$(3+4I)_0$
54	$(3+4I)_1$
55	$(3+4I)_{f(a)}$
56	$(3+4I)_{f(c)}$
57	$(4+2I)_0$
58	$(4+2I)_1$
59	$(4+2I)_{f(a)}$
60	$(4+2I)_{f(c)}$
61	$(4+3I)_0$
62	$(4+3I)_1$
63	$(4+3I)_{f(a)}$
64	$(4+3I)_{f(c)}$

Conclusion

In this paper, we defined the concept of minimal units in finite two-fold finite neutrosophic rings modulo integers as a generalization of classical elements of the group of units of the mentioned neutrosophic rings. We applied our results to characterize all minimal units in the following two-fold neutrosophic rings $(Z_n(I))_{f_I}$ for $n \in \{2,3,4,5\}$.

In the future, we aim to classify all minimal units for higher orders cases $n \ge 6$.

References

[1] Florentine Smarandache. "Neutrosophic Two-Fold Algebra", Plithogenic Logic and Computation, Vol.1, No.1 2024. PP.11-15.

[2] Mohammad Abobala. "On The Foundations of Fuzzy Number Theory and Fuzzy Diophantine Equations." Galoitica: Journal of Mathematical Structures and Applications, Vol. 10, No. 1, 2023 , PP. 17-25 (Doi: <u>https://doi.org/10.54216/GJMSA.0100102</u>).

[3] Mohammad Abobala. (2023). On a Two-Fold Algebra Based on the Standard Fuzzy Number Theoretical System. Journal of Neutrosophic and Fuzzy Systems, 7 (2), 24-29.

(Doi: https://doi.org/10.54216/JNFS.070202).

[4] Ahmed Hatip, Necati Olgun. (2023). On the Concepts of Two- Fold Fuzzy Vector Spaces and Algebraic Modules. Journal of Neutrosophic and Fuzzy Systems, 7 (2), 46-52.

(**Doi**: https://doi.org/10.54216/JNFS.070205).

[5] Abdallah Shihadeh, Khaled Ahmad Mohammad Matarneh, Raed Hatamleh, Randa Bashir Yousef Hijazeen, Mowafaq Omar Al-Qadri, Abdallah Al-Husban. (2024). <u>An Example of Two-Fold Fuzzy</u> <u>Algebras Based On Neutrosophic Real Numbers, Neutrosophic Sets and Systems, Vol. 67.</u>

[6] Sankari, H., and Abobala, M., " On The Group of Units Classification In 3-Cyclic and 4-cyclic Refined Rings of Integers And The Proof of Von Shtawzens' Conjectures", International Journal of Neutrosophic Science, 2023.

[7] Sankari, H., and Abobala, M., " On The Classification of The Group of Units of Rational and Real2-Cyclic Refined Neutrosophic Rings", Neutrosophic Sets and Systems, 2023.

[8] Sadiq. B., " A Contribution To The group of Units Problem In Some 2-Cyclic Refined

Neutrosophic Rings ", International Journal of Neutrosophic Science, 2022.

 [9] Nabil Khuder Salman, Maikel Leyva Vazquez, Batista Hernández Noel. On The Classification of 3-Cyclic/4-Cyclic Refined Neutrosophic Real and Rational Von Shtawzen's Group.
 International Journal of Neutrosophic Science, (2024); 23 (2): 26-31.

- [10] Katy D. Ahmad, Mikail Bal, Arwa A. Hajjari, Rozina Ali. (2021). Novel Applications of Neutrosophic AH-Isometries To The Group of Units Problem In Neutrosophic Rings and Refined Neutrosophic Rings. Journal of Neutrosophic and Fuzzy Systems,1(2), 89-98 (Doi: https://doi.org/10.54216/JNFS.010205).
- [11] Shihadeh, Abdallah; Khaled Ahmad Matarneh; Raed Hatamleh; Randa Bashir Hijazeen; Abdallah AlHusban; and Mowafaq Omar Al-Qadri. "n Example of Two-Fold Fuzzy Algebras Based On Neutrosophic Real Numbers." Neutrosophic Sets and Systems 67, 1 (2024). https://digitalrepository.unm.edu/ nss_journal/vol67/iss1/11.

[12] Shihadeh, Abdallah; Khaled Ahmad Mohammad Matarneh; Raed Hatamleh; Mowafaq Omar Al-Qadri; and Abdallah Al-Husban. "On The Two-Fold Fuzzy n-Refined Neutrosophic Rings For $2 \le n \le 3$." Neutrosophic Sets and Systems 68, 1 (2024). https://digitalrepository.unm.edu/nss_journal/vol68/iss1/2

[13] Nabil Khuder Salman, On the Special Gamma Function Over the Complex Two-FoldAlgebras, Neutrosophic Sets and Systems, Vol. 68, (2024), pp.26-38.DOI: 10.5281/zenodo.11406461.

[14] Al-Husban, A., & Salleh, A. R. (2015). Complex fuzzy ring. In 2015 International Conference on Research and Education in Mathematics (ICREM7) (pp. 241-245). IEEE.

[15] Al-Husban, A., Al-Qadri, M. O., Saadeh, R., Qazza, A., & Almomani, H. H. (2022). Multi-fuzzy rings. WSEAS Trans. Math, 21, 701-706.

[16] Al-Husban, A., Amourah, A., & Jaber, J. J. (2020). Bipolar complex fuzzy sets and their properties. Italian Journal of Pure and Applied Mathematics, 43,754-761.

[17] Alsarahead, M. O., & Al-Husban, A. (2022). Complex multi-fuzzy subgroups. Journal of discrete mathematical sciences and cryptography, 25(8), 2707-2716.

Received: March 1, 2024. Accepted: July 25, 2024