# Applications of sets and functions by using an open sets in Fuzzy neutrosophic topological spaces 

Basker $\mathbf{P}^{1}$, Broumi Said ${ }^{2}$ and Vennila $\mathbf{J}^{3, *}$<br>${ }^{1}$ Associate Professer, Department of Mathematics, Chandigarh University, Punjab-140413, India. E-Mail: mcpdbasker@gmail.com, basker.e11236@cumail.in, mcpdbasker@gmail.com<br>${ }^{2}$ Laboratory of Information Processing, Faculty of Science Ben M'Sik, University Hassan II, Casablanca, Morocco; broumisaid78@gmail.com<br>${ }^{3}$ Assistant Professer in Statistics, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal576104, India<br>* Correspondence: nilajagan22@gmail.com


#### Abstract

The definitions provided by the authors of the current study are offered together with a discussion of the recent advances that they have contributed. We begin with an introduction to $f n$ $\mathrm{Fr}_{\# \mathrm{~b}_{\mathrm{e}_{\mathrm{N}}}}$, which includes the concepts of closed and open sets. We explore characteristics in $f n-\beta \mathrm{d}^{\# \mathrm{~b}_{\mathrm{e}_{\mathrm{N}}}}$ and $f n-\mathrm{e}_{\mathrm{b}_{e_{N}}}\left(\varrho_{N}\right)$, and provide an idea of obtained results by adding the notion of $\mathrm{FNb}_{\mathrm{e}_{\mathrm{N}}} \mathrm{OS}$ and analyzing a few of their properties in fnts. We've researched the contrasts between the derived, exterior, and frontier notions that are provided. We also looked at the ideas of $\left\langle\mathcal{T}^{\left.\mathrm{b}_{e_{N}}\right\rangle C \text {-functions and }}\right.$ $\Gamma^{s}$-segregated functions and examined and determined the traits.




## 1. Introduction

Uncertainties are a major source of real-world difficulties in the fields of business, finance, medicine, engineering, and the behavioural sciences. Using conventional mathematical methods to solve the uncertainties for these data presents challenges. To avoid problems while working with ambiguous data, there exist methods like fuzzy sets, rough sets, fuzzy sets with intuitionistic properties, and vague sets that may be used as mathematical tools. Due to the inadequate parametrization tools, all of these techniques implicitly face difficulties when attempting to solve problems involving inconsistent and indeterminate data. The characteristics of n-closed sets, interior operators, closure operators, and open sets determine how neutrosophic is used in topology. Topologists explored sets next to neutrosophic closed and open sets.
L. A. Zadeh [29] proposed fuzzy sets in 1965 sand investigated various aspects of their features, A fuzzy set is a class of elements with an assortment of membership grades. Such a collection is characterised by a membership (or feature) function that assigns a membership grade, ranging from zero to one, to each item. He extended the notions of inclusion, union, intersection, complement, connection, convexity, etc. to these sets and demonstrated various aspects of these notions in relation to fuzzy sets. In particular, a separation theorem for convex fuzzy sets is proved that does not need the fuzzy sets to be disjoint.

Atanassov $[14,15,16]$ have created intuitionistic fuzzy sets and looked through numerous outcomes, he presented the concept of the "Generalised Net" and examined its fundamental characteristics along
with a few of its uses in the fields of artificial intelligence, systems theory, health, economics, transportation, and the chemical industry.

He spearheaded most of the applied research in the field of generalised nets and was the driving force behind its theoretical investigation. Many of the operations and interactions he has established over generalised nets have parallels in the theory of regular Petri nets. Nevertheless, there is no counterpart in Petri net theory for the topological and logical operators he has presented. Atanassov's other primary area of study is fuzzy sets, originally established by Zadeh, which he developed further by presenting the concept of "Intuitionistic Fuzzy Sets" and investigating the elements that make up its foundation. He is also recognised as a pioneer in the use of intuitionistic fuzzy sets to expert systems, systems theory, decision-making, and other domains.
F.Smarandache $[9,10,24]$ examined the idea of using a neutrosophic set as a technique for resolving problems involving persistent, unpredictable, and unreliable data. He also noted the features of the generalisation of intuitionistic fuzzy logic. The study of the nature, origin, and scope of neutralities as well as their interactions with other ideational spectra is done within a branch of neutrosophy called the neutrosophic set. The neutrosophic set is a robust universal formal framework that was introduced lately. However, from a technical point of view, the neutrosophic set has to be specified.
P. Basker and Broumi Said [5, 6, 7] Investigators investigated the idea of $N \Psi_{\alpha}^{\# 0}$ and $N \Psi_{\alpha}^{\#}{ }^{1}$-spaces and neutrosophic functions in neutrosophic topological spaces, and neutrosophic homeomorphisms from which the notion of $\left(\beta_{\rho n}\right)$-OS in pythagorean neutrosophic topological spaces

Neurosophic topological spaces and the resulting neutrosophic set were studied in 2012 by A. A. Salama and S. A. Alblowi [23]. The concepts of fuzzy neutrosophic topological spaces and fuzzy neutrosophic sets were examined in 2014 by I. Arockiarani and J. Martina Jency [4]. In 2018, Fatimah M. Mohammed, Anas A. Hijab, and Shaymaa F. Matar [8] implemented fuzzy neutrosophic weaklygeneralized closed sets in fuzzy neutrosophic topological spaces.

The concept of sharp, weakly neutrosophic closed functions was introduced by Ali Hussein Mahmood Al Obaidi, Qays Hatem Imran, and Murtadha Mohammed Abdulkadhim [1]. Hypersoft topological spaces were employed by Sagvan Y. Musa and Baravan A. Asaad [22] to connect the concepts.

In 2023, the neutrosophic soft generalised b-closed sets in neutrosophic soft topological spaces were created by Alkan Özkan, \eyda Yazgan, and Sandeep Kaur [2], Muthumari G et al. [20] the neutrosophic over topologized graphs' homomorphism and isomorphism were derived, Tomasz Witczak [27], Interior and closure of anti-minimal and anti-biminimal areas in the framework of antitopology. The authors developed and examined a novel class of neutrosophic open and closed maps in neutrosophic topological spaces. P.Anbarasi Rodrigo et al. [3] and P. Thangaraja et al. [28]. Separation Axioms, Neighbourhood and Continuity were discussed in [21, 25, 26]. A few descriptions of both new and Neutrosophic objects were covered in [11, 12, 13]. An application of neutrosophic theory and computation of neutrosophic were generalized in [17, 18, 19].

This paper's Section 1 lists the definitions cited by the authors as well as recent advances that they have provided. We introduce the concept of $\mathrm{FNb}_{\mathrm{e}_{\mathrm{N}}} \mathrm{OS}$ in Section 2 using fnts. $\mathrm{FNb}_{\mathrm{e}_{\mathrm{N}}}$ have determined $\mathrm{Fr}_{\# b_{e_{N}}}, \beta d^{\# b_{e_{N}}}, \mathrm{e}_{\mathrm{b}_{e_{N}}}\left(\varrho_{N}\right)$ and $E^{F N b_{e_{N}}}\left(\varrho_{N}\right)$ studied some of their properties by using the above concepts we have derived the applications of $f n$-open and closed sets. In this study, FNS, FNTS, MN and MX stand for $f n$-set, $f n$-Topological Spaces, Minimum and Maximum respectively.

The following are the main novelties of this paper.

- $\quad f n$-open and closed sets
- $\mathrm{FNb}_{\mathrm{e}_{\mathrm{N}}}$ - point of interior
- $f n-\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}$-border
- $f n-\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}$-frontier
- $\quad f n-\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}$-exterior
- $\quad f n-\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}$-derived
- $f n-\Gamma^{S}$-segregated
- $f n-\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}$-Totally-Continuous

The essential definitions listed below will aid in understanding this research work.
Definition 1.1.[4] A $\boldsymbol{f} \boldsymbol{n}$-set $\boldsymbol{A}$ on X is defined as A is equal to $\left\langle\boldsymbol{\boldsymbol { \sigma }}, \boldsymbol{I}_{\boldsymbol{A}}(\boldsymbol{\varpi}), \boldsymbol{J}_{\boldsymbol{A}}(\boldsymbol{\varpi}), \boldsymbol{K}_{\boldsymbol{A}}(\boldsymbol{\varpi})\right\rangle, \boldsymbol{\pi}$ belongs to $\boldsymbol{X}$ where $\boldsymbol{I}, \boldsymbol{J}, \boldsymbol{K}$ from $\boldsymbol{X}$ to $[\mathbf{0}, \mathbf{1}]$ and $\mathbf{0} \leq \operatorname{sum}$ of $\left\{\boldsymbol{I}_{\boldsymbol{A}}(\boldsymbol{\varpi}), \boldsymbol{J}_{A}(\boldsymbol{\pi}), \boldsymbol{K}_{A}(\boldsymbol{\pi})\right\} \leq \mathbf{3}$.

Definition 1.2. [4] A $\boldsymbol{f} \boldsymbol{n}$-set, A belongs to the subset of a $\boldsymbol{f} \boldsymbol{n}$-set B (i.e.,) $\boldsymbol{A} \subseteq \boldsymbol{B} \forall \boldsymbol{\varpi}$ if $\boldsymbol{I}_{\boldsymbol{A}}(\boldsymbol{\varpi}) \leq \boldsymbol{I}_{\boldsymbol{B}}(\boldsymbol{\varpi})$ $\boldsymbol{J}_{\boldsymbol{A}}(\boldsymbol{\pi}) \leq \boldsymbol{J}_{\boldsymbol{B}}(\boldsymbol{\pi}) \boldsymbol{K}_{\boldsymbol{A}}(\boldsymbol{\pi}) \geq \boldsymbol{L}_{\boldsymbol{B}}(\boldsymbol{\varpi})$

Definition 1.3. [4] Let $\boldsymbol{X}$ must represent a non-empty set., and $\boldsymbol{A}=\left\langle\boldsymbol{\varpi}, \boldsymbol{I}_{\boldsymbol{A}}(\boldsymbol{\varpi}), \boldsymbol{J}_{\boldsymbol{A}}(\boldsymbol{\varpi}), \boldsymbol{K}_{\boldsymbol{A}}(\boldsymbol{\pi})\right\rangle, \boldsymbol{B}=$ $\left\langle\boldsymbol{\pi}, \boldsymbol{I}_{\boldsymbol{B}}(\boldsymbol{\varpi}), \boldsymbol{J}_{\boldsymbol{B}}(\boldsymbol{\varpi}), \boldsymbol{K}_{\boldsymbol{B}}(\boldsymbol{\varpi})\right\rangle$ be two $\boldsymbol{f} \boldsymbol{n}$-set. Then
Union of $\boldsymbol{A}$ and $\boldsymbol{B}$ is $\left\langle\boldsymbol{\varpi}, \mathbf{M X}\right.$ of $\left\{\boldsymbol{I}_{\boldsymbol{A}}(\boldsymbol{\varpi}), \boldsymbol{I}_{\boldsymbol{B}}(\boldsymbol{\varpi})\right\}, \mathbf{M N}$ of $\left\{\boldsymbol{J}_{\boldsymbol{A}}(\boldsymbol{\varpi}), \boldsymbol{J}_{\boldsymbol{B}}(\boldsymbol{\varpi})\right\}$, MN of $\left.\left\{\boldsymbol{K}_{\boldsymbol{A}}(\boldsymbol{\varpi}), \boldsymbol{K}_{\boldsymbol{B}}(\boldsymbol{\varpi})\right\}\right\rangle$ and Intersection of $\quad \boldsymbol{A} \quad$ and $\quad \boldsymbol{B} \quad$ is $\left\langle\boldsymbol{\varpi}, \mathbf{M N}\right.$ of $\left\{\boldsymbol{I}_{\boldsymbol{A}}(\boldsymbol{\varpi}), \boldsymbol{I}_{\boldsymbol{B}}(\boldsymbol{\varpi})\right\}, \mathbf{M N}$ of $\left\{\boldsymbol{J}_{\boldsymbol{A}}(\boldsymbol{\varpi}), \boldsymbol{J}_{\boldsymbol{B}}(\boldsymbol{\varpi})\right\}, \mathbf{M X}$ of $\left.\left\{\boldsymbol{K}_{\boldsymbol{A}}(\boldsymbol{\varpi}), \boldsymbol{K}_{\boldsymbol{B}}(\boldsymbol{\varpi})\right\}\right\rangle$.

Definition 1.4. [4] The difference between two $\boldsymbol{f} \boldsymbol{n}$-set A and B is defined as
Differ from $\boldsymbol{A} \quad$ to $\quad \boldsymbol{B} \quad$ is $\quad\left\langle\boldsymbol{\pi}, \mathbf{M N}\right.$ of $\left\{\boldsymbol{I}_{\boldsymbol{A}}(\boldsymbol{\varpi}), \boldsymbol{K}_{\boldsymbol{B}}(\boldsymbol{\varpi})\right\}, \mathbf{M N}$ of $\left\{\boldsymbol{J}_{\boldsymbol{A}}(\boldsymbol{\varpi}), \mathbf{1}-\right.$ $\left.\boldsymbol{J}_{\boldsymbol{B}}(\boldsymbol{\varpi})\right\}, \mathbf{M N}$ of $\left.\left\{\boldsymbol{K}_{\boldsymbol{A}}(\boldsymbol{\varpi}), \boldsymbol{I}_{\boldsymbol{B}}(\boldsymbol{\varpi})\right\}\right\rangle$.

Definition 1.5. [4] A $\boldsymbol{f} \boldsymbol{n}$-set it is said that $\boldsymbol{A}$ over the universe $\boldsymbol{X}$ equals

- Null or empty $\boldsymbol{f} \boldsymbol{n}$-set if $\mathbf{0}_{\boldsymbol{N}}=\langle\boldsymbol{\varpi}, \mathbf{0}, \mathbf{0}, \mathbf{1}\rangle \forall \boldsymbol{\varpi} \in \boldsymbol{X}$.
- Absolute (universe) $\boldsymbol{f} \boldsymbol{n}$-set if $\mathbf{1}_{N}=\langle\boldsymbol{\varpi}, \mathbf{1}, \mathbf{1}, \mathbf{0}\rangle \forall \boldsymbol{\pi} \in \boldsymbol{X}$.

Definition 1.6. [4] $\boldsymbol{A}^{\boldsymbol{c}}$ represents the complement of a $\boldsymbol{f} \boldsymbol{n}$-set $\boldsymbol{A}$, which is defined as $\boldsymbol{A}^{\boldsymbol{c}}=$
 Another way to define the complement of a $\boldsymbol{f n}$-set A is as $\boldsymbol{A}^{\boldsymbol{c}}=\mathbf{1}_{\boldsymbol{N}}-\boldsymbol{A}$.

## 2. Applications of Fuzzy Neutrosophic open and closed sets

Definition 2.1. A $f n s, \varrho_{\mathrm{N}}=\left\langle\mathrm{H}, \zeta_{\mathrm{e}_{\mathrm{N}}}, \eta_{\mathrm{e}_{\mathrm{N}}}, \theta_{\lambda_{\mathrm{N}}}\right\rangle$ in a $f n t s \Gamma$ is to be
(i) $f n-\mathrm{b}_{\mathrm{\varrho}_{\mathrm{N}}}-\mathrm{OS}(\mathrm{FNbOS}), \operatorname{FNi}\left(\mathrm{FNc}\left(\varrho_{\mathrm{N}}\right)\right) \cup \operatorname{FNc}\left(\operatorname{FNi}\left(\varrho_{\mathrm{N}}\right)\right) \supseteq \varrho_{\mathrm{N}}$
(ii) $f n-\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}-\mathrm{CS}(\mathrm{FNbCS}), \operatorname{FNi}\left(\mathrm{FNc}\left(\varrho_{\mathrm{N}}\right)\right) \cap \operatorname{FNc}\left(\mathrm{FNi}\left(\varrho_{\mathrm{N}}\right)\right) \subseteq \varrho_{\mathrm{N}}$

We'll utilize shortened versions of $\mathrm{FNb}_{\mathrm{e}_{\mathrm{N}}}-\mathbb{N b h d}$, for the word $\mathrm{FNb}_{\mathrm{e}_{\mathrm{N}}}$-neighbourhood
Definition 2.2. Let $\Gamma$ be an $f n t s$ and let $\varrho_{n}^{1} \in \Gamma$. A part of $\mathbb{N}$ of $\Gamma$ is $\mathrm{FNb}_{\mathrm{e}_{\mathrm{N}}}-\mathbb{N b h d}$ of $\varrho_{\mathrm{n}}^{1}$, if $\exists$ a $\mathrm{FNb}_{\mathrm{e}_{\mathrm{N}}}-\mathrm{OS}, \mathrm{E}$ such that $\varrho_{\mathrm{n}}^{1} \in \mathrm{E} \subset \mathbb{N}$.

Definition 2.3. Let $\varrho_{N}$ be a subset of $\Gamma$. Then, if $\varrho_{N}$ is a $\mathbf{F N b}_{\mathbf{\varrho}_{N}}-$ Nbhd of $\varrho_{n}^{1}$, then $\varrho_{n}^{1} \in \varrho_{N}$ is to be $\mathbf{F N b}_{\boldsymbol{\varrho}_{\mathbf{N}}}$-point of interior $\varrho_{\boldsymbol{N}}$. $\mathbf{F N b}{\mathbf{\varrho _ { N }}}$-interior $\varrho_{N}$ is the whole set $\mathbf{F N b}{\boldsymbol{\varrho _ { N }}}$-point of interior $\varrho_{N}$, and it is $\mathbf{b}_{\mathbf{\varrho}_{\mathbf{N}}}-\operatorname{int}\left(\mathbf{\varrho}_{\mathbf{N}}\right), \mathbf{I N}_{\mathbf{b}_{\mathbf{e}_{\mathbf{N}}}}\left(\mathbf{\varrho}_{\mathbf{N}}\right)=U\left\{\mathbf{E}: \mathbf{E}\right.$ is $\left.\mathbf{F N b}_{\mathbf{\varrho}_{\mathbf{N}}} \mathbf{O S}, \mathbf{E} \subset \mathbf{\varrho}_{\mathbf{N}}\right\}$

Let be the part of a space $\varrho_{N} \Gamma$. The meeting point for all $\mathbf{F N b} \mathbf{\varrho}_{\boldsymbol{N}}$-closed sets containing $\boldsymbol{\varrho}_{\boldsymbol{N}}$ is defined as the $\mathbf{F N b}_{\mathbf{\varrho}_{\mathbf{N}}}$-closure of $\boldsymbol{\varrho}_{\boldsymbol{N}}, \mathbf{C L}_{\mathbf{b}_{\mathbf{e}_{\mathbf{N}}}}\left(\mathbf{\varrho}_{\mathbf{N}}\right)=\cap\left\{\mathbf{E}: \mathbf{\varrho}_{\mathbf{N}} \subset \mathbf{E} \in \mathbf{F N b} \mathbf{\varrho}_{\mathbf{\varrho}_{\mathbf{N}}}(\boldsymbol{\Gamma})\right\}$

Definition 2.4. An $\varrho_{N}$ be a space that has a group of individuals. $\Gamma$, an element $\varrho_{n}^{1} \in \Gamma$ is to be $b_{\varrho_{N}}{ }^{-}$ point of $\varrho_{N}$ if for all $\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}-O S, \Gamma_{1}$ containing $\varrho_{\mathrm{n}}^{1}, \Gamma_{1} \cap\left(\varrho_{N}-\left\{\varrho_{N}^{1}\right\}\right) \neq \phi$. The whole set $\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}$-point of $\varrho_{N}$ is $b_{\varrho_{N}}$-derived (briefly. $\mathrm{e}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}$ ) of $\varrho_{\mathrm{N}}$ as indicated by $\mathrm{e}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right)$.

Example 2.5. Let $\Gamma=\{\alpha, \beta, \gamma\}$ and $\Upsilon=\left\{0_{N}, 1_{N}, \varrho_{N_{1}}, \varrho_{N_{2}}, \varrho_{N_{3}}, \varrho_{N_{4}}\right\}$ where
$\varrho_{\mathrm{N}_{1}}=\{\langle\Gamma(\alpha) 0.82, \Gamma(\alpha) 0.79, \Gamma(\alpha) 0.59\rangle,\langle\Gamma(\beta) 0.4, \Gamma(\beta) 0.61, \Gamma(\beta) 0.4\rangle,\langle\Gamma(\gamma) 0.39, \Gamma(\gamma) 0.4, \Gamma(\gamma) 0.5\rangle\}$,
$\varrho_{\mathrm{N}_{2}}=\{\langle\Gamma(\alpha) 0.69, \Gamma(\alpha) 0.59, \Gamma(\alpha) 0.39\rangle,\langle\Gamma(\beta) 0.78, \Gamma(\beta) 0.2, \Gamma(\beta) 0.3\rangle,\langle\Gamma(\gamma) 0.99, \Gamma(\gamma) 0.39, \Gamma(\gamma) 0.19\rangle\}$,
$\varrho_{\mathrm{N}_{3}}=\{\langle\Gamma(\alpha) 0.82, \Gamma(\alpha) 0.78, \Gamma(\alpha) 0.49\rangle,\langle\Gamma(\beta) 0.8, \Gamma(\beta) 0.51, \Gamma(\beta) 0.4\rangle,\langle\Gamma(\gamma) 0.9, \Gamma(\gamma) 0.7, \Gamma(\gamma) 0.2\rangle\}$,
$\varrho_{\mathrm{N}_{4}}=\{\langle\Gamma(\alpha) 0.69, \Gamma(\alpha) 0.59, \Gamma(\alpha) 0.59\rangle,\langle\Gamma(\beta) 0.59, \Gamma(\beta) 0.21, \Gamma(\beta) 0.4\rangle,\langle\Gamma(\gamma) 0.39, \Gamma(\gamma) 0.3, \Gamma(\gamma) 0.4\rangle\}$
Here $\varrho_{\mathrm{N}_{3}}$ be a subset of a space $\Gamma$ and a point $\alpha \in \Gamma$ and $\Gamma_{1}$ a $\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}-O S$, then it is a $\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}$-point of $\varrho_{\mathrm{N}}$ is $\mathrm{e}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}(\{\langle\Gamma(\alpha) 0.82, \Gamma(\alpha) 0.79, \Gamma(\alpha) 0.49\rangle,\langle\Gamma(\beta) 0.8, \Gamma(\beta) 0.51, \Gamma(\beta) 0.4\rangle,\langle\Gamma(\gamma) 0.9, \Gamma(\gamma) 0.7, \Gamma(\gamma) 0.2\rangle\})$.

Theorem 2.6. As for segments $\varrho_{N_{1}}, \varrho_{N_{2}}$ of a space $\Gamma$, all of the following claims are true::
If $\varrho_{N_{2}} \supset \varrho_{N_{1}}$, then
a) $\mathrm{e}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}_{2}}\right) \supset \mathrm{e}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}_{1}}\right)$
b) $e_{b_{\varrho_{N}}}\left(\varrho_{N_{1}} \cup \varrho_{N_{2}}\right) \supset e_{b_{e_{N}}}\left(\varrho_{N_{1}}\right) \cup e_{b_{\varrho_{N}}}\left(\varrho_{N_{2}}\right)$
c) $e_{b_{\varrho_{N}}}\left(\varrho_{N_{1}}\right) \supset e_{b_{\varrho_{N}}}\left(e_{b_{\varrho_{N}}}\left(\varrho_{N_{1}}\right)\right)-\varrho_{N_{1}}$
d) $\varrho_{\mathrm{N}_{1}} \cup e_{\mathrm{b}_{\varrho_{N}}}\left(\varrho_{\mathrm{N}_{1}}\right) \supset \mathrm{e}_{\mathrm{b}_{\varrho_{N}}}\left(\varrho_{\mathrm{N}_{1}} \cup \mathrm{e}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}_{1}}\right)\right)$.

Proof. (a) It is obvious. (b) It is an immediate consequence of (c).
(c) If $\varrho_{n}^{1} \in e_{b_{e_{N}}}\left(e_{b_{e_{N}}}\left(\varrho_{N_{1}}\right)\right)-\varrho_{N_{1}}$ and $\Gamma_{1}$ is a $b_{\varrho_{N}}-O S$, offering $\varrho_{n}^{1}, \Gamma_{1} \cap\left(e_{b_{e_{N}}}\left(\varrho_{N_{1}}\right)-\left\{\varrho_{n}^{1}\right\}\right) \neq \phi$. Permit $\varrho_{n}^{2} \in \Gamma_{1} \cap\left(e_{b_{e_{N}}}\left(\varrho_{N_{1}}\right)-\left\{\varrho_{n}^{1}\right\}\right)$. Then due to the fact $\varrho_{n}^{2} \in e_{b_{e_{N}}}\left(\varrho_{N_{1}}\right), \varrho_{n}^{2} \in \Gamma_{1}, \Gamma_{1} \cap\left(\varrho_{N_{1}}-\right.$ $\left.\left\{\varrho_{n}^{2}\right\}\right) \neq \phi$. Permit $\Gamma^{\#} \in \Gamma_{1} \cap\left(\varrho_{N_{1}}-\left\{\varrho_{n}^{2}\right\}\right), \Gamma^{\#} \neq \varrho_{n}^{1}$ to be for $\Gamma^{\#} \in \varrho_{N_{1}}, \varrho_{n}^{1} \notin \varrho_{N_{1}}$. Accordingly $\Gamma_{1} \cap\left(\varrho_{N_{1}}-\left\{\varrho_{n}^{1}\right\}\right) \neq \phi$. Consequently $\varrho_{n}^{1} \in \mathrm{C}_{\mathrm{b}_{\varrho_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}_{1}}\right)$.
(d) Let's Take $\varrho_{n}^{1} \in e_{b_{\varrho_{N}}}\left(\varrho_{N} \cup e_{b_{\varrho_{N}}}\left(\varrho_{N}\right)\right)$. If $\varrho_{n}^{1} \in \varrho_{N}$, The ultimate result is clear. Let $\varrho_{n}^{1} \in$ $e_{b_{e_{N}}}\left(\varrho_{N} \cup e_{b_{e_{N}}}\left(\varrho_{N}\right)\right)-\varrho_{N}$, for $b_{\varrho_{N}}-O S, \Gamma_{1} \subset \varrho_{n}^{1}, \Gamma_{1} \cap\left(\varrho_{N} \cup e_{b_{\varrho_{N}}}\left(\varrho_{N}\right)-\left\{\varrho_{n}^{1}\right\}\right) \neq \phi$. Consequently $\Gamma_{1} \cap\left(\varrho_{N}-\left\{\varrho_{n}^{1}\right\}\right) \neq \phi$ or $\Gamma_{1} \cap\left(e_{\mathrm{b}_{\varrho_{N}}}\left(\varrho_{N}\right)-\left\{\varrho_{n}^{1}\right\}\right) \neq \phi$. It eventually follows (c) that $\Gamma_{1} \cap\left(\varrho_{N}-\left\{\varrho_{n}^{1}\right\}\right) \neq \phi$. So $\varrho_{n}^{1} \in e_{b_{\varrho_{N}}}\left(\varrho_{N}\right)$. So, whatever the circumstance, $\varrho_{N} \cup e_{b_{\varrho_{N}}}\left(\varrho_{N}\right) \supset e_{b_{\varrho_{N}}}\left(\varrho_{N} \cup e_{b_{\varrho_{N}}}\left(\varrho_{N}\right)\right)$.

Theorem 2.7. In any subset that exists $\varrho_{N}$ of a $\Gamma, b_{\varrho_{N}} \operatorname{CLof}\left(\varrho_{N}\right)=\varrho_{N} \cup e_{b_{\varrho_{N}}}\left(\varrho_{N}\right)$.
Proof. Since $e_{b_{e_{N}}}\left(\varrho_{N}\right) \subset b_{\varrho_{N}} \operatorname{CLof}\left(\varrho_{N}\right), \varrho_{N} \cup e_{b_{e_{N}}}\left(\varrho_{N}\right) \subset b_{e_{N}} \operatorname{CLof}\left(\varrho_{N}\right)$. As opposed to that, let $\varrho_{n}^{1} \in$ $b_{e_{N}} \operatorname{CLof}\left(\varrho_{N}\right)$. If $\varrho_{n}^{1} \in \varrho_{N}$, then the evidence is conclusive. If $\varrho_{n}^{1} \notin \varrho_{N}$, then every single $b_{\varrho_{N}}-O S \Gamma_{1} \subset$ $\varrho_{n}^{1} \cap \varrho_{N}$ at something different from $\varrho_{n}^{1}$. Consequently $\varrho_{n}^{1} \in e_{b_{\varrho_{N}}}\left(\varrho_{N}\right)$. Thus $\varrho_{N} \cup e_{b_{e_{N}}}\left(\varrho_{N}\right)$ D $\mathrm{b}_{\mathrm{e}_{\mathrm{N}}} \operatorname{CLof}\left(\varrho_{\mathrm{N}}\right) \Rightarrow \mathrm{b}_{\mathrm{e}_{\mathrm{N}}} \operatorname{CLof}\left(\varrho_{\mathrm{N}}\right)=\varrho_{\mathrm{N}} \cup \mathrm{e}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right)$. This concludes the evidence to be presented.

Observation 2.8. In any subset that exists $\varrho_{N_{1}}, \varrho_{N_{2}}$ of $\Gamma$, These statements are all accurate:
a) $\mathrm{IN}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}_{1}}\right)$ being the biggest $\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}-\mathrm{OS} \subset \varrho_{\mathrm{N}_{1}}$.
b) $\varrho_{N_{1}}$ is $b_{e_{N}}-O S \Leftrightarrow \varrho_{N_{1}}=\mathrm{IN}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}_{1}}\right)$.
c) $\operatorname{IN}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\operatorname{IN}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}_{1}}\right)\right)=\operatorname{IN}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}_{1}}\right)$.
d) $\Gamma-\mathrm{CL}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}_{1}}\right)=I \mathrm{~N}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\Gamma-\varrho_{\mathrm{N}_{1}}\right)$.
e) $\varrho_{N_{1}} \subset \varrho_{N_{2}}$, then $\operatorname{IN}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}_{2}}\right) \supset \mathrm{IN}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}_{1}}\right)$.
f) $\quad \mathrm{IN}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}_{1}} \cup \varrho_{\mathrm{N}_{2}}\right) \supset \mathrm{IN}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}_{1}}\right) \cup \mathrm{IN}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}_{2}}\right)$.

Theorem 2.9. In any of the subsets $\varrho_{N_{1}}, \varrho_{N_{2}}$ of $\Gamma$, All of these claims are true:
a) $\quad \mathrm{IN}_{\mathrm{b}_{\mathrm{e}}}\left(\varrho_{\mathrm{N}_{1}}\right)=\varrho_{\mathrm{N}_{1}}-\mathrm{e}_{\mathrm{b}_{\varrho_{\mathrm{N}}}}\left(\Gamma-\varrho_{\mathrm{N}_{1}}\right)$.
b) $\Gamma-I N_{\mathrm{b}_{\varrho_{N}}}\left(\varrho_{\mathrm{N}_{1}}\right)=C L_{\mathrm{b}_{\varrho_{\mathrm{N}}}}\left(\Gamma-\varrho_{\mathrm{N}_{1}}\right)$.

## Proof.

(a) Let $\varrho_{n}^{1} \in \varrho_{N_{1}}-e_{b_{e_{N}}}\left(\Gamma-\varrho_{N_{1}}\right) \Longrightarrow \varrho_{n}^{1} \notin e_{b_{\varrho_{N}}}\left(\Gamma-\varrho_{N_{1}}\right)$ and so $\exists$ a $b_{\varrho_{N}}-O S, \Gamma_{1}$ containing $\varrho_{n}^{1}$ such that $\Gamma_{1} \cap\left(\Gamma-\varrho_{N_{1}}\right)=\phi$. Then $\varrho_{n}^{1} \in \Gamma_{1} \subset \varrho_{N_{1}}$ and hence $\varrho_{n}^{1} \in b_{\varrho_{N}} \operatorname{INTof}\left(\varrho_{N_{1}}\right)$, i.e., $\varrho_{N_{1}}-$ $e_{b_{e_{N}}}\left(\Gamma-\varrho_{N_{1}}\right) \subset b_{\varrho_{N}} \operatorname{INTof}\left(\varrho_{N_{1}}\right)$. As opposed to that, if $\varrho_{n}^{1} \in b_{\varrho_{N}} \operatorname{INTof}\left(\varrho_{N_{1}}\right) \Rightarrow \varrho_{n}^{1} \notin e_{b_{e_{N}}}\left(\Gamma-\varrho_{N_{1}}\right)$. Since $b_{\varrho_{N}} \operatorname{INTof}\left(\varrho_{N_{1}}\right)$ is $b_{\varrho_{N}}$-open and $b_{\varrho_{N}} \operatorname{INTof}\left(\varrho_{N_{1}}\right) \cap\left(\Gamma-\varrho_{N_{1}}\right)=\phi$. Hence $b_{\varrho_{N}} \operatorname{INTof}\left(\varrho_{N_{1}}\right)=\varrho_{N_{1}}-$ $\mathrm{e}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\Gamma-\varrho_{\mathrm{N}_{1}}\right)$.
(b) $\quad \Gamma-\mathrm{b}_{\mathrm{e}_{\mathrm{N}}} \operatorname{INTof}\left(\varrho_{\mathrm{N}_{1}}\right)=\Gamma-\left(\varrho_{\mathrm{N}_{1}}-\mathrm{e}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\Gamma-\varrho_{\mathrm{N}_{1}}\right)\right)=\left(\Gamma-\varrho_{\mathrm{N}_{1}}\right) \cup \mathrm{e}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\Gamma-\varrho_{\mathrm{N}_{1}}\right)=\mathrm{b}_{\mathrm{e}_{\mathrm{N}}} \operatorname{CLof}(\Gamma-$ $\varrho_{\mathrm{N}_{1}}$ ).

Definition 2.10. In any of the subsets $\varrho_{N}$ of $\Gamma, \beta d^{\# b}{ }_{\varrho_{N}}\left(\varrho_{N}\right)=\varrho_{N}-b_{\varrho_{N}} \operatorname{INTof}\left(\varrho_{N}\right)$ It has been stated to have $\mathrm{b}_{\mathrm{en}_{\mathrm{N}}}$-border about $\mathrm{Q}_{\mathrm{N}}$.

Example 2.11. Let $\Gamma=\{\alpha, \beta, \gamma\}$ and $\Upsilon=\left\{0_{N}, 1_{N}, \varrho_{N_{1}}, \varrho_{N_{2}}, \varrho_{N_{3}}, \varrho_{N_{4}}\right\}$ where
$\varrho_{\mathrm{N}_{1}}=\{\langle\Gamma(\alpha) 0.71, \Gamma(\alpha) 0.69, \Gamma(\alpha) 0.5\rangle,\langle\Gamma(\beta) 0.3, \Gamma(\beta) 0.52, \Gamma(\beta) 0.43\rangle,\langle\Gamma(\gamma) 0.29, \Gamma(\gamma) 0.29, \Gamma(\gamma) 0.29\rangle\}$,
$\varrho_{\mathrm{N}_{2}}=\{\langle\Gamma(\alpha) 0.59, \Gamma(\alpha) 0.61, \Gamma(\alpha) 0.36\rangle,\langle\Gamma(\beta) 0.76, \Gamma(\beta) 0.23, \Gamma(\beta) 0.33\rangle,\langle\Gamma(\gamma) 0.89, \Gamma(\gamma) 0.29, \Gamma(\gamma) 0.29\rangle\}$,
$\varrho_{\mathrm{N}_{3}}=\{\langle\Gamma(\alpha) 0.62, \Gamma(\alpha) 0.68, \Gamma(\alpha) 0.39\rangle,\langle\Gamma(\beta) 0.18, \Gamma(\beta) 0.61, \Gamma(\beta) 0.74\rangle,\langle\Gamma(\gamma) 0.19, \Gamma(\gamma) 0.23, \Gamma(\gamma) 0.43\rangle\}$,
$\varrho_{\mathrm{N}_{4}}=\{\langle\Gamma(\alpha) 0.39, \Gamma(\alpha) 0.49, \Gamma(\alpha) 0.39\rangle,\langle\Gamma(\beta) 0.62, \Gamma(\beta) 0.24, \Gamma(\beta) 0.14\rangle,\langle\Gamma(\gamma) 0.23, \Gamma(\gamma) 0.31, \Gamma(\gamma) 0.32\rangle\}$
Here be a subset of $\varrho_{\mathrm{N}_{2}}$ be a space $\Gamma$ and
$\beta \mathrm{d}^{\# \mathrm{~b}_{\mathrm{e}}}(\{\langle\Gamma(\alpha) 0.59, \Gamma(\alpha) 0.61, \Gamma(\alpha) 0.36\rangle,\langle\Gamma(\beta) 0.76, \Gamma(\beta) 0.23, \Gamma(\beta) 0.33\rangle,\langle\Gamma(\gamma) 0.89, \Gamma(\gamma) 0.29, \Gamma(\gamma) 0.29\rangle\})=$ $\{\langle\Gamma(\alpha) 0.59, \Gamma(\alpha) 0.61, \Gamma(\alpha) 0.36\rangle,\langle\Gamma(\beta) 0.76, \Gamma(\beta) 0.23, \Gamma(\beta) 0.33\rangle,\langle\Gamma(\gamma) 0.89, \Gamma(\gamma) 0.29, \Gamma(\gamma) 0.29\rangle\}-$ $\mathrm{IN}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}(\{\langle\Gamma(\alpha) 0.59, \Gamma(\alpha) 0.61, \Gamma(\alpha) 0.36\rangle,\langle\Gamma(\beta) 0.76, \Gamma(\beta) 0.23, \Gamma(\beta) 0.33\rangle,\langle\Gamma(\gamma) 0.89, \Gamma(\gamma) 0.29, \Gamma(\gamma) 0.29\rangle\})$

Observation 2.12. In any of the subsets $\varrho_{N}$ of $\Gamma$, All of these claims are true:
a) $\varrho_{N}=I N_{b_{\varrho_{N}}}\left(\varrho_{N}\right) \cup \beta d^{\# b_{e_{N}}}\left(\varrho_{N}\right)$.
b) $\quad \mathrm{IN}_{\mathrm{b}_{\varrho_{N}}}\left(\varrho_{N}\right) \cap \beta \mathrm{d}^{\# \mathrm{~b}_{\varrho_{N}}}\left(\varrho_{N}\right)=\phi$.
c) $\varrho_{N}$ a $b_{\varrho_{N}}-O S \Leftrightarrow \beta d^{\# b_{\varrho_{N}}}\left(\varrho_{N}\right)=\phi$.
d) $\beta d^{\# b_{e_{N}}}\left(\operatorname{IN}_{b_{e_{N}}}\left(\varrho_{N}\right)\right)=\phi$.
e) $\quad \mathrm{IN}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\beta \mathrm{d}^{\# \mathrm{~b}_{\varrho_{\mathrm{N}}}\left(\varrho_{\mathrm{N}}\right)}\right)=\phi$.

Theorem 2.13. In any of the subsets $\varrho_{N}$ of $\Gamma$, All of these claims are correct:
a) $\quad \beta d^{\# b_{e_{N}}}\left(\beta d^{\# b_{e_{N}}}\left(\varrho_{N}\right)\right)=\beta d^{\# b_{e_{N}}}\left(\varrho_{N}\right)$.
b) $\beta d^{\# b_{\varrho_{N}}}\left(\varrho_{N}\right)=\varrho_{N} \cap C L_{b_{e_{N}}}\left(\Gamma-\varrho_{N}\right)$.
c) $\beta d^{\# b_{\varrho_{N}}}\left(\varrho_{N}\right)=e_{b_{\varrho_{N}}}\left(\Gamma-\varrho_{N}\right)$.

## Proof.

(a) If $\varrho_{n}^{1} \in I_{b_{e_{N}}}\left(\beta d^{\# b_{\varrho_{N}}}\left(\varrho_{N}\right)\right)$, then $\varrho_{n}^{1} \in \beta d^{\# b_{\varrho_{N}}}\left(\varrho_{N}\right)$. As opposed to that, $\beta d^{\# b_{\varrho_{N}}}\left(\varrho_{N}\right) \subset \varrho_{N}, \varrho_{n}^{1} \in$ $I N_{b_{\varrho_{N}}}\left(\beta d^{\# b_{\varrho_{N}}}\left(\varrho_{N}\right)\right) \subset I N_{b_{\varrho_{N}}}\left(\varrho_{N}\right)$. Hence $\varrho_{n}^{1} \in \operatorname{IN}_{b_{\varrho_{N}}}\left(\varrho_{N}\right) \cap \beta d^{\# b_{\varrho_{N}}}\left(\varrho_{N}\right)$ which contradicts (c). Thus $\cap$ of $\mathrm{IN}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right) \& \beta \mathrm{~d}^{\# \mathrm{~b}_{\varrho_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right)$ is $\phi$.
(b) $\quad \beta d^{\# b_{\varrho_{N}}}\left(\varrho_{N}\right)=$ difference of $I N_{b_{\varrho_{N}}}\left(\varrho_{N}\right)$ from $\varrho_{N}=\varrho_{N}-\left(\Gamma-C L_{b_{\varrho_{N}}}\left(\Gamma-\varrho_{N}\right)\right)=\varrho_{N} \cap C L_{b_{\varrho_{N}}}(\Gamma-$ $\varrho_{\mathrm{N}}$ ).
(c) $\beta \mathrm{d}^{\# \mathrm{~b}_{\varrho_{N}}}\left(\varrho_{N}\right)=$ difference of $\mathrm{IN}_{\mathrm{b}_{\varrho_{N}}}\left(\varrho_{\mathrm{N}}\right)$ from $\varrho_{N}=\varrho_{N}-\left(\varrho_{N}-\mathfrak{D} \varepsilon^{\prime \prime} \alpha \delta\left(\Gamma-\varrho_{N}\right)\right)=\mathrm{e}_{\mathrm{b}_{\varrho_{N}}}\left(\Gamma-\varrho_{N}\right)$.

Definition 2.14. A $b_{\varrho_{N}}$-frontier of any of the subsets $\varrho_{N}$ of $\Gamma$ is $\operatorname{Fr}_{\# b_{\varrho_{N}}}\left(\varrho_{N}\right)=$ $\cap$ of $\mathrm{CL}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right) \& \mathrm{CL}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\Gamma \backslash \varrho_{\mathrm{N}}\right)$.

Example 2.15. Let $\Gamma=\{\alpha, \beta, \gamma\}$ and consider the family $\Upsilon=\left\{0_{N}, 1_{N}, \varrho_{N_{1}}, \varrho_{N_{2}}\right\}$ where
$\varrho_{N_{1}}=\{\langle\Gamma(\alpha) 0.6, \Gamma(\alpha) 0.5, \Gamma(\alpha) 0.3\rangle,\langle\Gamma(\beta) 0.3, \Gamma(\beta) 0.7, \Gamma(\beta) 0.3\rangle,\langle\Gamma(\gamma) 0.1, \Gamma(\gamma) 0.2, \Gamma(\gamma) 0.6\rangle\}$,
$\varrho_{\mathrm{N}_{2}}=\{\langle\Gamma(\alpha) 0.9, \Gamma(\alpha) 0.1, \Gamma(\alpha) 0.3\rangle,\langle\Gamma(\beta) 0.6, \Gamma(\beta) 0.2, \Gamma(\beta) 0.3\rangle,\langle\Gamma(\gamma) 0.9, \Gamma(\gamma) 0.9, \Gamma(\gamma) 0.2\rangle\}$,
Here $\varrho_{\mathrm{N}_{1}}$ be a subset of a space $\Gamma$ and
$\mathrm{Fr}_{\# \mathrm{~b}_{e_{\mathrm{N}}}}(\{\langle\Gamma(\alpha) 0.6, \Gamma(\alpha) 0.5, \Gamma(\alpha) 0.3\rangle,\langle\Gamma(\beta) 0.3, \Gamma(\beta) 0.7, \Gamma(\beta) 0.3\rangle,\langle\Gamma(\gamma) 0.1, \Gamma(\gamma) 0.2, \Gamma(\gamma) 0.6\rangle\})$ is equal to
$\mathrm{CL}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}(\{\langle\Gamma(\alpha) 0.6, \Gamma(\alpha) 0.5, \Gamma(\alpha) 0.3\rangle,\langle\Gamma(\beta) 0.3, \Gamma(\beta) 0.7, \Gamma(\beta) 0.3\rangle,\langle\Gamma(\gamma) 0.1, \Gamma(\gamma) 0.2, \Gamma(\gamma) 0.6\rangle\})$
$\cap \mathrm{CL}_{\mathrm{b}_{e_{\mathrm{N}}}}(\{\langle\Gamma(\alpha) 0.6, \Gamma(\alpha) 0.5, \Gamma(\alpha) 0.3\rangle,\langle\Gamma(\beta) 0.3, \Gamma(\beta) 0.7, \Gamma(\beta) 0.3\rangle,\langle\Gamma(\gamma) 0.1, \Gamma(\gamma) 0.2, \Gamma(\gamma) 0.6\rangle\})$.
Theorem 2.16. In any of the subsets $\varrho_{N}$ of $\Gamma$, All of these claims are true:
a) $\mathrm{CL}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right)=\mathrm{IN}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right) \cup \mathrm{Fr}_{\# \mathrm{~b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right)$
b) $\operatorname{Fr}_{\# b_{\varrho_{N}}}\left(\varrho_{N}\right)=\beta d^{\# b_{\varrho_{N}}}\left(\varrho_{N}\right) \cup e_{b_{\varrho_{N}}}\left(\varrho_{N}\right)$.
c) $\operatorname{Fr}_{\# \mathrm{~b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right)=\mathrm{CL}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right) \cap \mathrm{CL}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\Gamma \backslash \varrho_{\mathrm{N}}\right)$.
d) $\mathrm{Fr}_{\# \mathrm{~b}_{\mathrm{e}_{\mathrm{N}}}}\left(\mathrm{Q}_{\mathrm{N}}\right)$ is $\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}$-closed

Theorem 2.17. In any of the subsets $\varrho_{N}$ of $\Gamma$, All of these claims are correct:
a) $\quad \mathrm{IN}_{\mathrm{b}_{\varrho_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right) \cap \mathrm{Fr}_{\# \mathrm{~b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right)=\phi$.
b) $\mathrm{Fr}_{\# \mathrm{~b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right) \supset \beta \mathrm{d}^{\# \mathrm{~b}_{\mathrm{e}}}\left(\varrho_{\mathrm{N}}\right)$.
c) $\varrho_{N}$ is $b_{\mathrm{e}_{\mathrm{N}}}$-open set iff $\mathrm{Fr}_{\# \mathrm{~b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right)=\mathrm{e}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right)$
d) $\mathrm{Fr}_{\# \mathrm{~b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right)=\mathrm{Fr}_{\# \mathrm{~b}_{\mathrm{e}_{\mathrm{N}}}}\left(\Gamma \backslash \varrho_{\mathrm{N}}\right)$
e) $\operatorname{Fr}_{\# b_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right) \supset \mathrm{CL}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\operatorname{Fr}_{\# \mathrm{~b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right)\right)$.
f) $\operatorname{Fr}_{\# \mathrm{~b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right) \supset \mathrm{Fr}_{\# \mathrm{~b}_{\mathrm{e}_{\mathrm{N}}}}\left(\operatorname{Fr}_{\# \mathrm{~b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right)\right)$.
g) $\operatorname{Fr}_{\# b_{e_{N}}}\left(\varrho_{N}\right) \supset \operatorname{Fr}_{\# b_{e_{N}}}\left(\operatorname{CL}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\mathrm{\varrho}_{\mathrm{N}}\right)\right)$
h) $\quad \mathrm{IN}_{\mathrm{b}_{\varrho_{N}}}\left(\varrho_{\mathrm{N}}\right)=\varrho_{\mathrm{N}}-\mathrm{Fr}_{\# \mathrm{~b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right)$.

## Proof.


(b) $\operatorname{IN}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right) \cap \mathrm{Fr}_{\# \mathrm{~b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right)=\operatorname{IN}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right) \cap\left(\mathrm{CL}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{N}\right)-\mathrm{IN}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right)\right)=\phi$.
(c) Since $\quad I N_{b_{e_{N}}}\left(\varrho_{N}\right) \cup F_{\# b_{e_{N}}}\left(\varrho_{N}\right)=I N_{b_{\varrho_{N}}}\left(\varrho_{N}\right) \cup \beta d^{\# b_{b_{N}}}\left(\varrho_{N}\right) \cup e_{b_{\varrho_{N}}}\left(\varrho_{N}\right)$, $\operatorname{Fr}_{\# b_{\varrho_{N}}}\left(\varrho_{N}\right)=\beta d^{\# b_{\varrho_{N}}}\left(\varrho_{N}\right) \cup \mathrm{e}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right)$
(d) $\operatorname{Fr}_{\# \mathrm{~b}_{\mathrm{Q}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right)=\mathrm{CL}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right)-\mathrm{IN}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right)=\mathrm{CL}_{\mathrm{b}_{\varrho_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right) \cap C \mathrm{~L}_{\mathrm{b}_{\varrho_{\mathrm{N}}}}\left(\Gamma \backslash \varrho_{\mathrm{N}}\right)$.
(e) $\operatorname{CL}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\operatorname{Fr}_{\# \mathrm{~b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right)\right)=\operatorname{CL}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\mathrm{CL}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right) \cap C L_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\mathrm{X} \backslash \mathrm{\varrho}_{\mathrm{N}}\right)\right)$

$$
\subset \mathrm{CL}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\mathrm{CL}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right)\right) \cap \mathrm{CL}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\mathrm{CL}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\Gamma \backslash \varrho_{\mathrm{N}}\right)\right)=\operatorname{Fr}_{\#_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}}\left(\varrho_{\mathrm{N}}\right) .
$$

Hence $\mathrm{Fr}_{\# \mathrm{~b}_{\mathrm{e}_{\mathrm{N}}}}\left(\mathrm{Q}_{\mathrm{N}}\right)$ is $\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}-$ closed.

$$
\begin{aligned}
& (f) \mathrm{Fr}_{\# \mathrm{~b}_{\mathrm{e}_{\mathrm{N}}}}\left(\operatorname{Fr}_{\# \mathrm{~b}_{\varrho_{N}}}\left(\varrho_{\mathrm{N}}\right)\right)=\mathrm{CL}_{\mathrm{b}_{\varrho_{\mathrm{N}}}} \text { of } \mathrm{Fr}_{\# \mathrm{~b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right) \cap C L_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\Gamma-\mathrm{Fr}_{\# \mathrm{~b}_{\varrho_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right)\right) \\
& \quad \subset \mathrm{CL}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}} \text { of } \mathrm{Fr}_{\# \mathrm{~b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right)=\mathrm{Fr}_{\# \mathrm{~b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right)
\end{aligned}
$$

 $C L_{b_{e_{N}}}\left(\varrho_{N}\right)-I N_{b_{e_{N}}}\left(\varrho_{N}\right)=\operatorname{Fr}_{\# b_{e_{N}}}\left(\varrho_{N}\right)$.
(h) $\varrho_{N}-\operatorname{Fr}_{\# b_{e_{N}}}\left(\varrho_{N}\right)=\varrho_{N}-\left(C L_{b_{e_{N}}}\left(\varrho_{N}\right)-I N_{b_{\varrho_{N}}}\left(\varrho_{N}\right)\right)=I N_{b_{e_{N}}}\left(\varrho_{N}\right)$.

Within the ensuing theorem $\mathrm{FNb}_{\mathrm{Q}_{\mathrm{N}}}^{(\mathrm{C})}$ indicate the group of points $\varrho_{\mathrm{n}}^{1}$ of $\Gamma$ which a function is used $\mathrm{q}:\left(\Gamma_{1}, \xi_{1}\right) \rightarrow\left(\Gamma_{2}, \quad \xi_{2}\right)$ is not $\mathrm{FNb}_{\mathrm{e}_{\mathrm{N}}}-\mathrm{C}$.

Theorem 2.18. The $U\left(\mathrm{FNb}_{\mathrm{e}_{\mathrm{N}}}\right)$-frontiers of the mirror reflections of $\mathrm{FNb}_{\mathrm{e}_{\mathrm{N}}}-\mathrm{OS}$ that includes $\mathrm{q}\left(\varrho_{n}^{1}\right)$ is $\Leftrightarrow$ to $\mathrm{FNb}_{\mathrm{e}_{\mathrm{N}}}^{(\mathrm{C})}$.

Proof. Proceed to consider $q$ is not $\mathrm{FNb}_{\mathrm{e}_{\mathrm{N}}}$-at a point, continuous $\varrho_{\mathrm{n}}^{1}$ of $\Gamma_{1} \Rightarrow \exists$ an OS, $\mathrm{J} \subset \Gamma_{2}$ containing $q\left(\varrho_{n}^{1}\right) \mid q(I)$ is not a portion of $J \quad \forall I \in \mathrm{FNb}_{\mathrm{e}_{\mathrm{N}}} \mathrm{O}\left(\Gamma_{1}\right)$ containing $\varrho_{n}^{1}$. Hence we've $\mathrm{I} \cap$ $\left(\Gamma_{1}-q^{-1}(J)\right) \neq \phi, \quad \forall \quad I \in \operatorname{FNb}_{\varrho_{N}} O\left(\Gamma_{1}\right)$ containing $\varrho_{n}^{1}$. It follows that $\varrho_{n}^{1} \in \operatorname{CL}_{\mathrm{b}_{\varrho_{N}}}\left(\Gamma_{1}-q^{-1}\left(\varrho_{N}\right)\right)$. Additionally, we have $\varrho_{n}^{1} \in q^{-1}(J) \subset C L_{b_{e_{N}}}\left(q^{-1}\left(\varrho_{N}\right)\right)$. Thus, it follows that $\varrho_{n}^{1} \in \operatorname{Fr}_{\# b_{e_{N}}}\left(q^{-1}(J)\right)$. Now, let q be $\mathrm{FNb}_{\mathrm{e}_{\mathrm{N}}}-$ Cont. at $\varrho_{\mathrm{n}}^{1} \in \Gamma_{1}$ and $\mathrm{J} \subset \Gamma_{2}$ be any OS containing $\mathrm{q}\left(\varrho_{\mathrm{n}}^{1}\right)$. Then $\varrho_{\mathrm{n}}^{1} \in \mathrm{q}^{-1}(\mathrm{~J})$ is a $\mathrm{FNb}_{\mathrm{e}_{\mathrm{N}}}$-open set of $\Gamma_{1}$. Thus $\varrho_{\mathrm{n}}^{1} \in \mathrm{IN}_{\mathrm{b}_{\varrho_{N}}}\left(\mathrm{q}^{-1}(\mathrm{~J})\right)$ and therefore $\varrho_{\mathrm{n}}^{1} \notin \mathrm{Fr}_{\# \mathrm{~b}_{\mathrm{e}_{\mathrm{N}}}}\left(\mathrm{q}^{-1}(\mathrm{~J})\right)$ for every OS, J containing $\mathrm{q}\left(\mathrm{Q}_{\mathrm{n}}^{1}\right)$.

Definition 2.19. In any of the subsets $\varrho_{N}$ of a $\Gamma, E^{F N b_{e_{N}}}$ of $\varrho_{N}$ is $b_{\varrho_{N}}$ INT of $\Gamma-\varrho_{N}$ this will eventually take place. $\mathrm{FNb}_{\mathrm{e}_{\mathrm{N}}}$-exterior regarding $\varrho_{\mathrm{N}}$.

Example 2.20. Let $\Gamma=\{\alpha, \beta, \gamma\}$ and consider the family $\Upsilon=\left\{0_{N}, 1_{N}, \varrho_{N_{1}}, \varrho_{N_{2}}\right\}$ where
$\varrho_{\mathrm{N}_{1}}=\{\langle\Gamma(\alpha) 0.4, \Gamma(\alpha) 0.5, \Gamma(\alpha) 0.4\rangle,\langle\Gamma(\beta) 0.6, \Gamma(\beta) 0.6, \Gamma(\beta) 0.4\rangle,\langle\Gamma(\gamma) 0.3, \Gamma(\gamma) 0.4, \Gamma(\gamma) 0.7\rangle\}$,
$\varrho_{\mathrm{N}_{2}}=\{\langle\Gamma(\alpha) 0.8, \Gamma(\alpha) 0.3, \Gamma(\alpha) 0.2\rangle,\langle\Gamma(\beta) 0.4, \Gamma(\beta) 0.3, \Gamma(\beta) 0.2\rangle,\langle\Gamma(\gamma) 0.3, \Gamma(\gamma) 0.2, \Gamma(\gamma) 0.3\rangle\}$,

Here $\varrho_{N_{1}}$ be a subset of a space $\Gamma$ and
$\mathrm{E}^{\mathrm{FNb}_{\mathrm{en}_{\mathrm{N}}}(\{\langle\Gamma(\alpha) 0.8, \Gamma(\alpha) 0.3, \Gamma(\alpha) 0.2\rangle,\langle\Gamma(\beta) 0.4, \Gamma(\beta) 0.3, \Gamma(\beta) 0.2\rangle,\langle\Gamma(\gamma) 0.3, \Gamma(\gamma) 0.2, \Gamma(\gamma) 0.3\rangle\})=}$ $\mathrm{IN}_{\mathrm{b}_{\mathrm{en}_{\mathrm{N}}}}(\Gamma-\{\langle\Gamma(\alpha) 0.8, \Gamma(\alpha) 0.3, \Gamma(\alpha) 0.2\rangle,\langle\Gamma(\beta) 0.4, \Gamma(\beta) 0.3, \Gamma(\beta) 0.2\rangle,\langle\Gamma(\gamma) 0.3, \Gamma(\gamma) 0.2, \Gamma(\gamma) 0.3\rangle\})$.

Observation 2.21. In any of the subsets $\varrho_{N}$ of $\Gamma$, All of these claims are true:
a) $E^{\mathrm{FNb}_{e_{N}}}\left(\varrho_{N}\right)$ is $\mathrm{FNb}_{\mathrm{e}_{\mathrm{N}}}-\mathrm{OS}$.
b) $\quad E^{F N b_{\varrho_{N}}}\left(\varrho_{N}\right)=I N_{b_{\varrho_{N}}}\left(\Gamma-\varrho_{N}\right)=\Gamma-C L_{b_{\varrho_{N}}}\left(\varrho_{N}\right)$.
c) If $\underset{1}{\varrho_{N}} \subset \underset{2}{\varrho_{N}} \Rightarrow E^{\mathrm{FNb}_{\varrho_{N}}}\binom{\varrho_{N}}{1} \supset E^{\mathrm{FNb}_{\varrho_{N}}}\binom{\varrho_{\mathrm{N}}}{2}$.

e) $\quad E^{\mathrm{FNb}_{e_{\mathrm{N}}}}(\Gamma)=\phi$.
f) $\quad E^{\mathrm{FNb}} \mathrm{e}_{\mathrm{N}}(\phi)=\Gamma$.
g) $\Gamma=I N_{b_{\varrho_{N}}}\left(\varrho_{N}\right) \cup E^{F N b_{e_{N}}}\left(\varrho_{N}\right) \cup \operatorname{Fr}_{\# b_{\varrho_{N}}}\left(\varrho_{N}\right)$.

Theorem 2.22. In any of the subsets $\varrho_{\mathrm{N}}$ of $\Gamma$, All of these claims are correct:
a) $E^{\mathrm{FNb}_{\varrho_{N}}}\left(\mathrm{E}^{\mathrm{FNb}}{ }_{\varrho_{\mathrm{N}}}\left(\varrho_{N}\right)\right)=\mathrm{IN}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\mathrm{CL}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right)\right)$.
b) $\quad E^{\mathrm{FNb}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{N}\right)=E^{\mathrm{FNb}_{\varrho_{N}}}\left(\Gamma-\mathrm{E}^{\mathrm{FNb}_{\varrho_{N}}}\left(\varrho_{N}\right)\right)$.
c) $\operatorname{IN}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right) \subset \mathrm{E}^{\mathrm{FNb}_{\mathrm{e}_{\mathrm{N}}}}\left(\mathrm{E}^{\mathrm{FNb}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right)\right)$.

## Proof.

(a) $E^{\mathrm{FNb}}{ }_{\mathrm{e}_{\mathrm{N}}}\left(\mathrm{E}^{\mathrm{FNb} \mathrm{e}_{\mathrm{N}}}\left(\varrho_{\mathrm{N}}\right)\right)=\mathrm{E}^{\mathrm{FNb}}{ }_{\mathrm{e}_{\mathrm{N}}}\left(\Gamma-\mathrm{CL}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right)\right)$ $=\operatorname{IN}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\Gamma-\left(\Gamma-\mathrm{CL}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{N}\right)\right)\right)=\operatorname{IN}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\mathrm{CL}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right)\right)$.


$$
=\operatorname{IN}_{\mathrm{b}_{e_{N}}}\left(\Gamma-\left(\Gamma-\mathrm{IN}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\Gamma-\varrho_{N}\right)\right)\right)=\operatorname{IN}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\operatorname{IN}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\Gamma-\varrho_{\mathrm{N}}\right)\right)=\operatorname{IN}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\Gamma-\varrho_{N}\right)=\mathrm{E}^{\mathrm{FN}}{ }_{\mathrm{e}_{\mathrm{N}}}\left(\varrho_{\mathrm{N}}\right) .
$$

(c) $\operatorname{IN}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right) \subset \mathrm{IN}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\operatorname{CL}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right)\right)=\mathrm{IN}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\Gamma-\mathrm{IN}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\Gamma-\varrho_{\mathrm{N}}\right)\right)$

$$
=\mathrm{IN}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\Gamma-\mathrm{E}^{\left.\mathrm{FNb}_{\mathrm{e}_{\mathrm{N}}}\left(\varrho_{\mathrm{N}}\right)\right)=\mathrm{E}^{\mathrm{FNb}_{\mathrm{e}_{\mathrm{N}}}}\left(\mathrm{E}^{\mathrm{FNb} \mathrm{e}_{\mathrm{N}}}\left(\varrho_{\mathrm{N}}\right)\right), ~}\right.
$$

Definition 2.23. $\Gamma$ be an $f n t s$ and let $\varrho_{n}^{1} \in \Gamma$. A subset $\mathbb{N}$ of $\Gamma$ is $f n-\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}-\mathbb{N} b h d$ of $\varrho_{\mathrm{n}}^{1}$, if $\exists$ a $f n$ -$\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}-\mathrm{OS}, \mathrm{E} \mid \mathrm{\varrho}_{\mathrm{n}}^{1} \in \mathrm{E} \subset \mathbb{N}$.

Definition 2.24. An $\varrho_{N}$ be a $\subset \Gamma, \varrho_{n}^{1} \in \varrho_{N}$ meant to be $f n-\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}$ - innermost point $\varrho_{N}$ if $\varrho_{N}$ is a $f n$ -$\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}-\mathbb{N b}$ d of $\varrho_{\mathrm{n}}^{1}$. The entire set $f n-\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}-$ point of interior $\varrho_{\mathrm{N}}$ is $f n-\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}-$ interior $\varrho_{\mathrm{N}}$ and it is $\mathrm{IN}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right), \mathrm{IN}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right)$ is union of $\left\{\mathrm{L}: L\right.$ is fnb $\left._{\mathrm{e}_{\mathrm{N}}} O S, L \subset \varrho_{N}\right\}$

A $\varrho_{N}$ be a section of a space. $\Gamma$ We define $\mathrm{FNb}_{\mathrm{e}_{\mathrm{N}}}$-closure of $\mathrm{Q}_{\mathrm{N}}$ to serve as a junction for all $\mathrm{FNb}_{\mathrm{e}_{\mathrm{N}}}{ }^{-}$ closed sets made of $\varrho_{N}, \mathrm{~b}_{\mathrm{e}_{\mathrm{N}}} C L$ of $\varrho_{\mathrm{N}}=\cap\left\{\mathrm{L}: \varrho_{\mathrm{N}} \subset \mathrm{L} \in \operatorname{fnb}_{\mathrm{e}_{\mathrm{N}}}(\Gamma)\right\}$

Definition 2.25. $\varrho_{N}$ an area where a number of elements are present. $\Gamma$, an element $\varrho_{n}^{1} \in \Gamma$ is to be $\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}$-point of $\varrho_{\mathrm{N}}$ if $\forall \mathrm{b}_{\varrho_{N}}-\mathrm{OS}, \Gamma_{1}$ containing $\varrho_{\mathrm{n}}^{1}, \Gamma_{1} \cap\left(\varrho_{\mathrm{N}}-\left\{\varrho_{\mathrm{N}}^{1}\right\}\right) \neq \phi$. The whole set $\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}$-point of $\varrho_{\mathrm{N}}$ is $\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}$-derived (briefly. $\mathrm{e}_{\mathrm{b}_{\varrho_{N}}}$ ) a bunch of $\varrho_{\mathrm{N}}$ as indicated by $\mathrm{e}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right)$.

Definition 2.26. In any subset $\exists \varrho_{N}$ of a $\Gamma, E^{F N b_{\varrho_{N}}}\left(\varrho_{N}\right)$ is $b_{\varrho_{N}}$ Int of $\Gamma-\varrho_{N}$ this will occur $\mathrm{FNb}_{\varrho_{N}}-$ exterior regarding $\varrho_{N}$.

Definition 2.27. Let ( $F, \Gamma_{F}$ ) be an FNTS. Two never empty FNS's $\varrho_{N_{1}}$ and $\varrho_{N_{2}}$ of $\Gamma$ are regarded as $\Gamma^{S}$-segregated if $\varrho_{\mathrm{N}_{1}} \cap \mathrm{~b}_{\mathrm{e}_{\mathrm{N}}} C L$ of $\left(\mathrm{\varrho}_{\mathrm{N}_{2}}\right)=\phi_{N} \varrho_{\mathrm{N}_{1}} \cap \mathrm{~b}_{\mathrm{e}_{\mathrm{N}}} C L \quad$ of $\left(\mathrm{\varrho}_{\mathrm{N}_{2}}\right)=\phi_{N}$ and $\mathrm{b}_{\mathrm{e}_{\mathrm{N}}} C L$ of $\left(\mathrm{\varrho}_{\mathrm{N}_{1}}\right) \cap$ $\varrho_{N_{2}}=\phi_{N}$. Both of these circumstances are comparable to the one condition. $\left(\varrho_{N_{1}} \cap\right.$ $\mathrm{b}_{\mathrm{e}_{\mathrm{N}}} C L \quad$ of $\left.\left(\mathrm{\varrho}_{\mathrm{N}_{2}}\right)\right) \cup\left(\mathrm{b}_{\mathrm{e}_{\mathrm{N}}} C L \quad\right.$ of $\left.\left(\varrho_{\mathrm{N}_{1}}\right) \cap \mathrm{\varrho}_{\mathrm{N}_{2}}\right)=\phi_{N}$.

Definition 2.28. Let a FNTS be $\left(F, \Gamma_{F}\right)$. If G is a FN subset of $F$, then the collection $\Gamma^{S}$ of $G$ is $\{G \cap$ $U: U \in \Gamma\} G$ is referred to be a FN subspace topology on F if is a FNT on G .

Observation 2.29. FN disjoint is any two FN separated sets. FN, however, does not necessarily divide two independent sets of FN.

Theorem 2.30. A $\left(G, \Gamma^{S}(G)\right)$ be a FNTS's FN subspace. ( $\mathrm{F}, \Gamma_{\mathrm{F}}$ ), $\varrho_{\mathrm{N}_{1}}, \varrho_{\mathrm{N}_{2}}$ be 2 NF sets of $G$. Then $\varrho_{N_{1}}, \varrho_{N_{2}}$ a FN $\Gamma^{S}$-segregated $\Leftrightarrow$ they are FN $\Gamma^{S}(G)$-segregated.
Proof: By concept, $\mathrm{CL}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}} G\left(\mathrm{\varrho}_{\mathrm{N}_{1}}\right)=\mathrm{CL}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}} F\left(\mathrm{\varrho}_{\mathrm{N}_{1}}\right) \cap G$ and $\mathrm{CL}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}} G\left(\mathrm{\varrho}_{\mathrm{N}_{2}}\right)=\mathrm{CL}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}} F\left(\mathrm{\varrho}_{\mathrm{N}_{2}}\right) \cap G$.
$\operatorname{Now}\left(\mathrm{CL}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}} G\left(\mathrm{\varrho}_{\mathrm{N}_{1}}\right) \cap \varrho_{\mathrm{N}_{2}}\right) \cup\left(\mathrm{\varrho}_{\mathrm{N}_{1}} \cap \mathrm{CL}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}} G\left(\mathrm{\varrho}_{\mathrm{N}_{2}}\right)\right)=\left(\mathrm{CL}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}} F\left(\mathrm{\varrho}_{\mathrm{N}_{1}}\right) \cap G \cap \varrho_{\mathrm{N}_{2}}\right) \cup\left(\mathrm{\varrho}_{\mathrm{N}_{1}} \cap\right.$
$\left.C L_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}} F\left(\mathrm{\varrho}_{\mathrm{N}_{2}}\right) \cap G\right)=\left(\mathrm{CL}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}} F\left(\mathrm{\varrho}_{\mathrm{N}_{1}}\right) \cap \varrho_{\mathrm{N}_{2}}\right) \cup\left(\mathrm{\varrho}_{\mathrm{N}_{1}} \cap \mathrm{CL}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}} F\left(\mathrm{\varrho}_{\mathrm{N}_{2}}\right)\right)$.

Hence $\left(\mathrm{CL}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}} G\left(\mathrm{\varrho}_{\mathrm{N}_{1}}\right) \cap \varrho_{\mathrm{N}_{2}}\right) \cup\left(\mathrm{\varrho}_{\mathrm{N}_{1}} \cap \mathrm{CL}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}} G\left(\mathrm{\varrho}_{\mathrm{N}_{2}}\right)\right)=\phi_{N}$
$\Leftrightarrow\left(\mathrm{CL}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}} F\left(\mathrm{\varrho}_{\mathrm{N}_{1}}\right) \cap \mathrm{\varrho}_{\mathrm{N}_{2}}\right) \cup\left(\mathrm{\varrho}_{\mathrm{N}_{1}} \cap \mathrm{CL}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}} F\left(\mathrm{\varrho}_{\mathrm{N}_{2}}\right)\right)=\phi_{N}$, because $\varrho_{\mathrm{N}_{1}}, \varrho_{\mathrm{N}_{2}} \subset G$.
It follows that $\varrho_{N_{1}}, \varrho_{N_{2}}$ are $\mathrm{FN} \Gamma^{S}$-segregated if and only if they are $\mathrm{FN} \Gamma^{S}(G)$-segregated.
Theorem 2.31. If $\varrho_{\mathrm{N}_{1}}$ and $\varrho_{\mathrm{N}_{2}}$ are $\Gamma^{S}$-segregated sets of an FNTS ( $\mathrm{F}, \Gamma_{\mathrm{F}}$ ) and $C_{1} \subset \varrho_{\mathrm{N}_{1}}$ and $C_{2} \subset$ $\varrho_{\mathrm{N}_{2}}$, then $C_{1}$ and $C_{2}$ are also $\Gamma^{S}(G)$-segregated.

Proof: Given $C_{1} \subset \varrho_{\mathrm{N}_{1}} \Rightarrow \mathrm{~b}_{\mathrm{e}_{\mathrm{N}}} C L$ of $\left(C_{1}\right) \subset \mathrm{b}_{\mathrm{e}_{\mathrm{N}}} C L$ of $\left(\mathrm{\varrho}_{\mathrm{N}_{1}}\right)$ and $C_{2} \subset \varrho_{\mathrm{N}_{2}} \Rightarrow \mathrm{~b}_{\mathrm{e}_{\mathrm{N}}} C L$ of $\left(C_{2}\right) \subset$ $\mathrm{b}_{\mathrm{e}_{\mathrm{N}}} C L$ of $\left(\varrho_{\mathrm{N}_{2}}\right)$. Since $\varrho_{\mathrm{N}_{1}} \cap \mathrm{~b}_{\mathrm{e}_{\mathrm{N}}} C L$ of $\left(\varrho_{\mathrm{N}_{2}}\right)=\phi_{N}$ and $\mathrm{b}_{\mathrm{e}_{\mathrm{N}}} C L \quad$ of $\left(\varrho_{\mathrm{N}_{1}}\right) \cap \varrho_{\mathrm{N}_{2}}=\phi_{N}$. It follows that $C_{1} \cap \mathrm{~b}_{\mathrm{e}_{\mathrm{N}}} C L \quad$ of $\left(C_{2}\right)=\phi_{N}$ and $\mathrm{b}_{\mathrm{e}_{\mathrm{N}}} C L$ of $\left(C_{1}\right) \cap C_{2}=\phi_{N}$. Hence $C_{1}$ and $C_{2}$ are $\Gamma^{S}(G)$-segregated.

Theorem 2.32. Two FNC(FNO) sets $\varrho_{\mathrm{N}_{1}}$ and $\varrho_{\mathrm{N}_{2}}$ of an FNTS are $\Gamma^{s}$-segregated $\Leftrightarrow$ They don't make appropriate.

Proof: Given that any $2 \Gamma^{S}$-segregated sets don't match. If $\varrho_{N_{1}}$ and $\varrho_{N_{2}}$ are both disjoint and FN closed, then $\varrho_{N_{1}} \cap \varrho_{N_{2}}=\phi_{N}, b_{\varrho_{N}} C L$ of $\left(\varrho_{N_{1}}\right)=\varrho_{N_{1}}$ and $b_{\varrho_{N}} C L$ of $\left(\varrho_{N_{2}}\right)=\varrho_{N_{2}}$. So $\mathrm{b}_{\mathrm{e}_{\mathrm{N}}} C L$ of $\left(\mathrm{\varrho}_{\mathrm{N}_{1}}\right) \cap \varrho_{\mathrm{N}_{2}}=\phi_{N}$ and $\mathrm{b}_{\mathrm{e}_{\mathrm{N}}} C L \quad$ of $\left(\varrho_{\mathrm{N}_{2}}\right) \cap \varrho_{\mathrm{N}_{1}}=\phi_{N}$ implies $\varrho_{\mathrm{N}_{1}}$ and $\varrho_{\mathrm{N}_{2}}$ are $\Gamma^{S}-$ segregated. If $\varrho_{N_{1}}$ and $\varrho_{N_{2}}$ are both disjoint and $F N$ open, then $\varrho_{N_{1}}(c)$ and $\varrho_{N_{2}}(c)$ are both FN closed so that $\mathrm{b}_{\mathrm{e}_{\mathrm{N}}} C L$ of $\left(\mathrm{@}_{\mathrm{N}_{1}}(c)\right)$ and $\mathrm{b}_{\mathrm{e}_{\mathrm{N}}} C L$ of $\left(\mathrm{@}_{\mathrm{N}_{2}}(c)\right)$.

Also $\quad \varrho_{\mathrm{N}_{1}} \cap \varrho_{\mathrm{N}_{2}}=\phi_{N} \Rightarrow \varrho_{\mathrm{N}_{1}} \subset \varrho_{\mathrm{N}_{2}}(c) \quad$ and $\quad \varrho_{\mathrm{N}_{2}} \subset \varrho_{\mathrm{N}_{1}}(c) \Rightarrow \mathrm{b}_{\mathrm{e}_{\mathrm{N}}} C L$ of $\left(\varrho_{\mathrm{N}_{1}}\right) \subset$ $\mathrm{b}_{\mathrm{e}_{\mathrm{N}}} C L$ of $\left(\mathrm{\varrho}_{\mathrm{N}_{2}}(c)\right)=\mathrm{\varrho}_{\mathrm{N}_{2}}(c) \quad$ and $\quad \mathrm{b}_{\mathrm{e}_{\mathrm{N}}} C L$ of $\left(\mathrm{\varrho}_{\mathrm{N}_{2}}\right) \subset \mathrm{b}_{\mathrm{e}_{\mathrm{N}}} C L \quad$ of $\left(\mathrm{\varrho}_{\mathrm{N}_{1}}(c)\right)=\mathrm{\varrho}_{\mathrm{N}_{1}}(c) \Rightarrow$ $\mathrm{b}_{\mathrm{e}_{\mathrm{N}}} C L$ of $\left(\varrho_{\mathrm{N}_{1}}\right) \cap \varrho_{\mathrm{N}_{2}}=\phi_{N}$ and $\mathrm{b}_{\mathrm{e}_{\mathrm{N}}} C L$ of $\left(\varrho_{\mathrm{N}_{2}}\right) \cap \varrho_{\mathrm{N}_{1}}=\phi_{N} \Rightarrow \varrho_{\mathrm{N}_{1}}$ and $\varrho_{\mathrm{N}_{2}}$ are $\Gamma^{S}$-segregated.

Theorem 2.33. Two FN disjoint sets $\varrho_{N_{1}}$ and $\varrho_{N_{2}}$ are $\Gamma^{S}$-segregated in an $\operatorname{FNTS}\left(\mathrm{F}, \Gamma_{\mathrm{F}}\right) \Leftrightarrow$ they are both FNO \& FNC in the FN subspace $\varrho_{\mathrm{N}_{1}} \cup \varrho_{\mathrm{N}_{2}}$.

Proof: Let the disjoint FN sets $\varrho_{N_{1}}$ and $\varrho_{N_{2}}$ be $\Gamma^{S}$-segregated in $\Gamma$, so that $\varrho_{N_{1}} \cap C_{b_{\mathrm{b}_{N}}} \Gamma\left(\varrho_{N_{2}}\right)=\phi_{N}$ and $\varrho_{N_{2}} \cap \mathrm{CL}_{\mathrm{b}_{\varrho_{N}}} \Gamma\left(\varrho_{\mathrm{N}_{1}}\right)=\phi_{N}$. Let $L=\varrho_{\mathrm{N}_{1}} \cup \varrho_{\mathrm{N}_{2}}, \mathrm{CL}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}} L\left(\varrho_{\mathrm{N}_{1}}\right)=\mathrm{CL}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}} \Gamma\left(\varrho_{\mathrm{N}_{1}}\right) \cap L=\mathrm{CL}_{\mathrm{b}_{\mathrm{e}_{N}}} \Gamma\left(\varrho_{\mathrm{N}_{1}}\right) \cap$ $\left(\varrho_{N_{1}} \cup \varrho_{N_{2}}\right)=\left[\mathrm{CL}_{\mathrm{b}_{\varrho_{N}}} \Gamma\left(\varrho_{\mathrm{N}_{1}}\right) \cap \varrho_{\mathrm{N}_{1}}\right] \cup\left[\mathrm{CL}_{\mathrm{b}_{\mathrm{e}_{N}}} \Gamma\left(\varrho_{\mathrm{N}_{1}}\right) \cap \varrho_{\mathrm{N}_{2}}\right]=\varrho_{\mathrm{N}_{1}} \cup \phi_{N}=\varrho_{\mathrm{N}_{1}} \quad \quad$ [because $\quad \varrho_{\mathrm{N}_{1}} \subset$ $\mathrm{CL}_{\mathrm{b}_{\mathrm{e}_{N}}} \Gamma\left(\mathrm{\varrho}_{\mathrm{N}_{1}}\right)$ and $\left.\mathrm{CL}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}} \Gamma\left(\mathrm{\varrho}_{\mathrm{N}_{1}}\right) \cap \varrho_{\mathrm{N}_{2}}=\phi_{N}\right]$. A is FNC in the FN subspace $\varrho_{N_{1}} \cup \varrho_{N_{2}}$, by the definition of FNC. Similarly $\varrho_{N_{2}}$ is FNC in $\varrho_{N_{1}} \cup \varrho_{N_{2}}$. Again $\varrho_{N_{1}} \cap \varrho_{N_{2}}=\phi_{N}$, they are complements of each other in $L$ and hence they are both FNO in $L$. Conversely, let the disjoint FN sets $\varrho_{N_{1}}$ and $\varrho_{\mathrm{N}_{2}}$ be both FNO and FNC in $L$. So $\varrho_{\mathrm{N}_{1}}=\mathrm{b}_{\mathrm{e}_{\mathrm{N}}} C L$ of $L\left(\varrho_{\mathrm{N}_{1}}\right)=\left[\mathrm{b}_{\mathrm{e}_{\mathrm{N}}} C L\right.$ of $\left.\Gamma\left(\varrho_{\mathrm{N}_{1}}\right) \cap L\right]=$ $\mathrm{b}_{\mathrm{\varrho}_{\mathrm{N}}} C L$ of $\Gamma\left(\mathrm{\varrho}_{\mathrm{N}_{1}}\right) \cap\left(\mathrm{\varrho}_{\mathrm{N}_{1}} \cup \varrho_{\mathrm{N}_{2}}\right)=\left[\mathrm{b}_{\mathrm{e}_{\mathrm{N}}} C L\right.$ of $\left.\Gamma\left(\mathrm{\varrho}_{\mathrm{N}_{1}}\right) \cap \varrho_{\mathrm{N}_{1}}\right] \cup\left[\mathrm{b}_{\mathrm{Q}_{\mathrm{N}}} C L\right.$ of $\left.\Gamma\left(\varrho_{\mathrm{N}_{1}}\right) \cap \varrho_{\mathrm{N}_{2}}\right]=\varrho_{\mathrm{N}_{1}} \cup$ $\left[\mathrm{b}_{\mathrm{e}_{\mathrm{N}}} C L\right.$ of $\left.\Gamma\left(\varrho_{\mathrm{N}_{1}}\right) \cap \varrho_{\mathrm{N}_{2}}\right]$ because $\varrho_{\mathrm{N}_{1}} \subset \mathrm{~b}_{\mathrm{e}_{\mathrm{N}}} C L$ of $\Gamma\left(\varrho_{\mathrm{N}_{1}}\right) \rightarrow$ (1). Since $\varrho_{\mathrm{N}_{1}} \cap \varrho_{\mathrm{N}_{2}}=\phi_{N} \Rightarrow$ $\varrho_{\mathrm{N}_{1}} \cap\left(\mathrm{~b}_{\mathrm{Q}_{\mathrm{N}}} C L\right.$ of $\left.\Gamma\left(\varrho_{\mathrm{N}_{1}}\right) \cap \varrho_{\mathrm{N}_{2}}\right)=\phi_{N}$, it follows from (1) that is $\left(\mathrm{CL}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}} \Gamma\left(\varrho_{\mathrm{N}_{1}}\right) \cap \varrho_{\mathrm{N}_{2}}\right)=\phi_{N}$. Similarly $\left(\mathrm{CL}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}} \Gamma\left(\varrho_{\mathrm{N}_{2}}\right) \cap \varrho_{\mathrm{N}_{1}}\right)=\phi_{N}$. Hence $\varrho_{\mathrm{N}_{1}}$ and $\varrho_{\mathrm{N}_{2}}$ are $\Gamma^{S}$-segregated in $\Gamma$.

Definition 2.34. Let $\Gamma$ be a FNTS. A set $Y \subset \Gamma$ is said to be $\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}$-Sat if for every $\gamma \in Y$ it follows $\mathrm{b}_{\mathrm{e}_{\mathrm{N}}} C L$ of $(\{\gamma\}) \subset Y$. The grouping of all $\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}$-saturated sets in $\Gamma$, we indicate by $\mathcal{S a t ~}^{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}(\Gamma) \text {. }}$

Theorem 2.35. Let $\Gamma$, a FNTS. Then $\delta^{\mathrm{b}_{e_{\mathrm{N}}}}(\Gamma)$ is a whole algebraic Boolean set.

Proof. We'll demonstrate that every combination and complement of each element in $\delta^{b_{e_{N}}}(\Gamma)$ are members of $\delta^{b_{e_{\mathrm{N}}}}(\Gamma)$. Of course, the only proof that is not trivial is the one using the complements. Let $Y \in \delta^{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}(\Gamma)$ and suppose that $\mathrm{b}_{\mathrm{e}_{\mathrm{N}}} C L$ of $\left(\left\{\gamma_{1}\right\}\right)$ does not contained in $\Gamma-Y$ for some $\gamma_{1} \in \Gamma-$ $Y$. Then there exists $\gamma_{2} \in Y$ such that $\gamma_{2} \in \mathrm{~b}_{\mathrm{e}_{\mathrm{N}}} C L$ of $\left(\left\{\gamma_{1}\right\}\right)$. It follows that $\gamma_{1}, \gamma_{2}$ possess no disjoint neighbourhoods. Then $\gamma_{1} \in \mathrm{~b}_{\mathrm{e}_{\mathrm{N}}} C L$ of $\left(\left\{\gamma_{2}\right\}\right)$. However, this is in conflict with the notion of $\delta^{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}(\Gamma)}$ we have $\mathrm{b}_{\mathrm{e}_{\mathrm{N}}} C L$ of $\left(\left\{\gamma_{2}\right\}\right) \subset Y$. Hence, $\mathrm{b}_{\mathrm{e}_{\mathrm{N}}} C L$ of $\left(\left\{\gamma_{1}\right\}\right) \subset \Gamma-Y$ for every $\gamma_{1} \in \Gamma-Y$, which implies $\Gamma-Y \in \delta^{\mathrm{b}_{e_{N}}}(\Gamma)$.

Corollary 2.36. $\delta^{b_{\varrho_{N}}}(\Gamma)$ includes each intersection and union of $b_{e_{N}}-C S$ and $b_{\varrho_{N}}-\mathrm{OS}^{\prime} \mathrm{s}$ in $\Gamma$.

Definition 2.37. A function $\alpha:\left(\Gamma_{1}, \varrho_{1}\right) \rightarrow\left(\Gamma_{2}, \varrho_{2}\right)$ is referred to as
a) $\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}(C \#)$ if $\alpha^{-1}\left(Q_{2}\right)$ is $\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}-\mathrm{CS}$ in $\left(\Gamma_{1}, \varrho_{1}\right)$ for every CS $Q_{2}$ of $\left(\Gamma_{2}, \varrho_{2}\right)$.
b) $\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}$-Totally-Continuous (briefly. $\left\langle\mathcal{T}^{\mathrm{b}_{e_{N}}}\right\rangle C$ ) at a point $\gamma_{1} \in \Gamma_{1}$ if for each open subset $Q_{2}$ in $\Gamma_{2}$ containing $\alpha\left(\gamma_{1}\right)$, there exists a $\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}$-clopen subset $Q_{1}$ in $\Gamma_{1}$ containing $\gamma_{1}$ such that $\alpha\left(Q_{1}\right) \subset Q_{2}$
c) $\left\langle\mathcal{T}^{\mathrm{b}_{e_{\mathrm{N}}}}\right\rangle C$ if it has this property at each point of $\Gamma_{1}$.

Theorem 2.38. The following statements are equivalent for a function $\alpha:\left(\Gamma_{1}, \varrho_{1}\right) \rightarrow\left(\Gamma_{2}, \varrho_{2}\right):$

b) $\forall \mathrm{OS}, Q_{2}$ of $\Gamma_{2}, \alpha^{-1}\left(Q_{2}\right)$ is $\mathrm{b}_{\mathrm{e}_{\mathrm{N}}} C L O S$ in $\Gamma_{1}$;

Proof. $(a) \Rightarrow(b)$ Let $Q_{2}$ be an OS of a $\Gamma_{2}$ and let $\gamma \in \alpha^{-1}\left(Q_{2}\right)$. Since $(\gamma) \in Q_{2}$, by $(a)$, $\exists$ a $\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}-$
CLOS $Q_{1_{\gamma}}$ in $\Gamma_{1}$ containing $\gamma$ such that $Q_{1_{\gamma}} \subset \alpha^{-1}\left(Q_{2}\right)$. We obtain $\alpha^{-1}\left(Q_{2}\right)=U_{\gamma \in \alpha^{-1}\left(Q_{2}\right)} Q_{1_{\gamma}}$. Thus, $\alpha^{-1}\left(Q_{2}\right)$ is $\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}$-CLOS in $\Gamma_{1}$.
$(b) \Rightarrow(a)$ Clear.

Remark 2.39. Every $\left\langle\mathcal{T}^{\mathrm{b}_{\varrho_{\mathrm{N}}}}\right\rangle C \Rightarrow \mathrm{~b}_{\mathrm{e}_{\mathrm{N}}}(C \#)$.

Definition 2.40. A space ( $\Gamma_{1}, \varrho_{1}$ ) is said to be $\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}<\sim S>$ if every $\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}-O S$ of $Q_{1}$ is OS in $Q_{1}$.

Remark 2.41. If a function $\alpha:\left(\Gamma_{1}, \varrho_{1}\right) \rightarrow\left(\Gamma_{2}, \varrho_{2}\right)$ is totally continuous and $Q_{1}$ is a $\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}<\sim S>$, then $\alpha$ is $\left\langle\mathcal{T}^{\mathrm{b}^{{ }^{\mathrm{N}}}}{ }\right\rangle C$.

Definition 2.42. An FNTS $\left(\Gamma_{1}, \varrho_{1}\right)$ is said to be $b_{\varrho_{N}} \ll C_{0} n$ if the combination of two nonempty disjoint $b_{\mathrm{e}_{\mathrm{N}}}$-OS cannot be expressed in writing.
 is an indiscrete space.

Proof. If possible, suppose that $Q_{2}$ is not indiscrete. Let L be a valid OS of $\Gamma_{2}$ that isn't empty. Then $\alpha^{-1}(L)$ is a valid non-empty $\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}$-CLOS of $\left(\Gamma_{1}, \varrho_{1}\right)$, it is a contradiction to the fact that $\Gamma_{1}$ is $\mathrm{b}_{\mathrm{e}_{\mathrm{N}}} \ll$ Con-space.

Theorem 2.44. The set of all points $\gamma \in X$ wherein a function $\alpha:\left(\Gamma_{1}, \varrho_{1}\right) \rightarrow\left(\Gamma_{2}, \varrho_{2}\right)$ is not $\left\langle\mathcal{T}^{\mathrm{b}_{\mathrm{e}}}\right\rangle C$ is the $U$ of $\mathrm{Fr}_{\# \mathrm{~b}_{e_{\mathrm{N}}}}$ of the open sets' inverted images that include $\alpha(\gamma)$.

Proof. Suppose that $\alpha$ is not $\left\langle\mathcal{T}^{\left.\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}\right\rangle C}\right.$ at $\gamma \in Q_{1} \Rightarrow \exists$ an OS $Q_{2}$ of $\Gamma_{2}$ containing $\alpha(\gamma)$ such that $\alpha\left(Q_{1}\right)$ is not contained in $Q_{2}$ for each $Q_{1} \in \mathrm{~b}_{\mathrm{e}_{\mathrm{N}}} O\left(\Gamma_{1}\right)$ containing $\gamma$ and hence $\gamma \in$ $\mathrm{b}_{\mathrm{e}_{\mathrm{N}}} C L$ of $\left(\Gamma_{1} \backslash \alpha^{-1}\left(Q_{2}\right)\right)$. On the other hand, $\Gamma_{1} \in \alpha^{-1}\left(Q_{2}\right) \subset \mathrm{b}_{\mathrm{e}_{\mathrm{N}}} C L$ of $\left(f^{-1}\left(Q_{2}\right)\right)$ and hence $\Gamma_{1} \in$ $\mathrm{Fr}_{\mathrm{\# b} \mathrm{~b}_{\mathrm{N}}}\left(\alpha^{-1}\left(Q_{2}\right)\right)$.
 $\alpha(\gamma) \Rightarrow \exists Q_{1} \in \mathrm{~b}_{\mathrm{e}_{\mathrm{N}}} O\left(\Gamma_{1}\right)$ containing $\gamma$ such that $Q_{1} \subset \alpha^{-1}\left(Q_{2}\right)$. Hence $\gamma \in \mathrm{b}_{\mathrm{e}_{\mathrm{N}}} \operatorname{INT}$ of $\left(\alpha^{-1}\left(Q_{2}\right)\right)$. Therefore, $\Gamma_{1} \in \mathrm{Fr}_{\# \mathrm{~b}_{\mathrm{e}_{\mathrm{N}}}}\left(\alpha^{-1}\left(Q_{2}\right)\right)$ for each open set $Q_{2}$ of $\Gamma_{2}$ containing $\alpha(\gamma)$.

Conclusion: We have given an introduction to $f n-\mathrm{Fr}_{\# \mathrm{~b}_{\mathrm{e}_{\mathrm{N}}}}$, including the ideas of closed and open sets. We examined features in $f n-\beta \mathrm{d}^{\# \mathrm{~b}_{\mathrm{e}_{\mathrm{N}}}}$ and $f n-\mathrm{e}_{\mathrm{b}_{\mathrm{e}_{\mathrm{N}}}}\left(\varrho_{\mathrm{N}}\right)$, and we evaluated some of their features in $f n$-topological spaces to provide an idea of the findings we gained by adding the concept of $f n$ $\mathrm{b}_{\mathrm{e}_{\mathrm{N}}} \mathrm{OS}$. We have produced a comparisons between the provided concepts of border, exterior, and derived. Additionally, we studied and identified the features of $\left\langle\mathcal{T}^{b_{e_{N}}}\right\rangle C$-functions and $\Gamma^{S}$ -
segregated functions. In the future, we want to investigate more findings derived from the aforementioned principles and endeavour to provide applications.

## References

1. Ali Hussein Mahmood Al-Obaidi, Qays Hatem Imran, and Murtadha Mohammed Abdulkadhim, On New Types of Weakly Neutrosophic Crisp Closed Functions, Neutrosophic Sets and Systems, 2022, Volume 50, pp. 239-247. DOI: 10.5281/zenodo.6774789.
2. Alkan Özkan, Şeyda Yazgan and Sandeep Kaur, Neutrosophic Soft Generalized b-Closed Sets in Neutrosophic Soft Topological Spaces, Neutrosophic Sets and Systems, 2023, Volume 56, pp. 48-69. DOI: 10.5281/zenodo. 8194715.
3. P.Anbarasi Rodrigo and S.Maheswari Neutrosophic gs $\alpha^{*}$-Open and Closed Maps in Neutrosophic Topological Spaces, Neutrosophic Systems with Applications, 2023, Volume 8, pp. 42-49. https://doi.org/10.61356/j.nswa.2023.39.
4. Arockiarani I, Martina Jency J, More on Fuzzy Neutrosophic Sets and Fuzzy Neutrosophic Topological Spaces, IJIRS 2014, Volume 3, pp. 642:652.
5. Basker P, Broumi Said. $\mathrm{N} \psi_{\alpha}^{\#{ }^{0}}$ and $\mathrm{N} \psi_{\alpha}^{\#}{ }^{1}$-spaces in Neutrosophic Topological Spaces, International Journal of Neutrosophic Science, 2021, Volume 16, pp. 09-15.
6. Basker P, Broumi Said, On Neutrosophic Homeomorphisms in Neutrosophic Functions, Neutrosophic Sets and Systems, 2023, Volume 55, pp. 403-414.
7. Basker P.; Broumi Said. On $\left(\beta_{\rho n}\right)$-OS in Pythagorean Neutrosophic Topological Spaces, International Journal of Neutrosophic Science, 2022, Volume 18, No.4, 183-191.
8. Fatimah M. Mohammed, Anas A Hijab, Shaymaa F Matar. Fuzzy Neutrosophic Weakly-Generalized Closed Sets in Fuzzy Neutrosophic Topological Spaces, Journal of University of Anbar for Pure Science, 2018, Volume 12, pp. 63-72.
9. Florentin Smarandache. Definition of Neutrosophic Logic-A Generalization of the Intuitionistic Fuzzy Logic, Proceedings of the Third Conference of the European Society for Fuzzy Logic and Technology, 2003, EUSFLAT, pp. 10-12.
10. Florentin Smarandache, New Types of Topologies and Neutrosophic Topologies (Improved Version), Neutrosophic Sets and Systems, 2023, Volume 57, pp. 234-244. DOI: 10.5281/zenodo.8271368.
11. Gayathri $N$ and Helen $M$, Some Characterizations of Linguistic Neutrosophic Topological Spaces, Neutrosophic Sets and Systems, 2023, Volume 58, pp. 432-442. DOI: 10.5281/zenodo.8404506.
12. Huda E Khalid, Ramiz Sabbagh, Ahmed A Salma, Thanoon Y Thanoon, Elagamy H A, Novel Neutrosophic Objects Within Neutrosophic Topology ( $\mathrm{N}(\mathrm{X}), \tau)$, Neutrosophic Sets and Systems, 2023, Volume 62, pp. 342350, 2023. DOI: https://zenodo.org/record/10436916.
13. Huda E Khalid, Ramiz Sabbagh, Ahmed A Salma, Thanoon Y Thanoon, Elagamy H A , Novel Neutrosophic Objects Within Neutrosophic Topology, Neutrosophic Sets and Systems, 2023, Volume 61, pp. 260-274. DOI: 10.5281/zenodo. 10428622
14. Krassimir Atanassov. Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 1986, Volume 20, pp. 87-96.
15. Krassimir T. Atanassov. Intuitionistic Fuzzy Sets, Physica-Verlag, Heidelberg N Y, 1999.
16. Krassimir Atanassov. Intuitionistic fuzzy sets, VII ITKR's Session, Sofia, June 1983 (Deposed in Central Sci. - Techn. Library of Bulg. Acad. of Sci., 1697/84) (in Bulgarian); Reprinted, Int. J Bioautomation, 2016, Volume 20, pp. S1-S6.
17. Kungumaraj E, Durgadevi S and Tharani N P, Heptagonal Neutrosophic Topology, Neutrosophic Sets and Systems, 2023, Volume 60, pp. 335-356. DOI: 10.5281/zenodo.10224216.
18. JJ Mershia Rabuni and N. Balamani, Computation of Neutrosophic Soft Topology using Python, Neutrosophic Sets and Systems, 2023, Volume 60, pp. 548-569. DOI: 10.5281/zenodo. 10224263.
19. Mohammed Abu-Saleem, Omar almallah and Nizar Kh. Al Ouashouh, An application of neutrosophic theory on manifolds and their topological transformations, Neutrosophic Sets and Systems, 2023, Volume 58, pp. 464-474. DOI: 10.5281/zenodo. 8404512 .
20. Muthumari G and Narmada Devi R, Homomorphism and Isomorphism of Neutrosophic Over Topologized Graphs, Neutrosophic Sets and Systems, 2023, Volume 53, pp. 519-529. DOI: 10.5281/zenodo. 7536082.
21. Reena C, Yaamini K S, A New Notion of Neighbourhood and Continuity in Neutrosophic Topological Spaces, Neutrosophic Sets and Systems, 2023, Volume 60, pp. 74-88. DOI: 10.5281/zenodo. 10224128.
22. Sagvan Y Musa, Baravan A Asaad, Connectedness on Hypersoft Topological Spaces, Neutrosophic Sets and Systems, 2022, Volume 51, pp. 666-680. DOI: 10.5281/zenodo.7135399.
23. Salama A A, Alblowi S A, Neutrosophic Set and Neutrosophic Topological Spaces, IOSR Journal of Mathematics, 2012, Volume 3, pp. 31:35.
24. Smaradache F, Neutrosophic Set: A Generalization of Intuitionistic Fuzzy Set, Journal of Defense Resourses Management, 2010, Volume 1, pp. 1-10.
25. Sudeep Deyand Gautam Chandra Ray, Separation Axioms in Neutrosophic Topological Spaces, Neutrosophic Systems with Applications, 2023, Volume 2, pp. 38-54.
26. Surekha S S and Sindhu G, A Contemporary approach on Generalized NB Closed Sets in Neutrosophic Binary Topological Spaces, Neutrosophic Sets and Systems, 2023, Volume 56, pp. 338-350. DOI: 10.5281/zenodo. 8194825.
27. Tomasz Witczak, Interior and closure in anti-minimal and anti-biminimal spaces in the frame of antitopology, Neutrosophic Sets and Systems, 2023, Volume 56, pp. 429-440. DOI: 10.5281/zenodo.8194845.
28. Thangaraja P, Vadivel A and John Sundar C, e-Open Maps, e-Closed Maps and e-Homeomorphisms in NNeutrosophic Crisp Topological Spaces, Neutrosophic Sets and Systems, 2023, Volume 60, pp. 287-299. DOI: 10.5281/zenodo. 10224202.
29. Zadeh L A, Fuzzy sets, Information and Control, 1965, Volume 8, pp. 338-353.

Received: 2 Dec, 2023 Accepted: 10 Mar, 2024

