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ABSTRACT. The interval complex single-valued neutrosophic hypersoft set (Ξ-set), together with its features

and set-theoretic operations, is a new mathematical structure that is discussed in this article. For managing

ambiguous and uncertain knowledge, the suggested structure integrates the interval complex single-valued neu-

trosophic set and hypersoft set. These two elements have already been regarded as trustworthy settings. The

first component has the ability to manage information on interval and periodic types, while the second offers a

multi-argument domain for concurrent consideration of numerous sub-attributes. The Ξ-set is used to aggregate

these sets, allowing for the fusion of various qualities and any related uncertainty. The resultant aggregated sets,

which take into account both the attribute values and the associated uncertainty, give a thorough representation

of the decision aspect. To assist in decision-making, the method calculates how similar several options are to the

optimum option using a distance-based similarity metric. By contrasting the combined sets of several options,

the system determines the best option based on the specified selection criteria. Decision-makers can evaluate how

changing attribute values may influence their choices using the suggested strategy’s endorsement of sensitivity

analysis. The efficacy of the recommended decision-support mechanism is demonstrated through a case study

with a real-world choice dilemma. The results show how well the framework can handle ambiguity and uncer-

tainty while providing decision-makers with meaningful insights and encouraging rational choices. Finally, the

multi-attribute decision-support system based on aggregations of Ξ-set provides a reliable framework for dealing

with difficult choice issues that are characterized by ambiguity and vagueness.

Keywords: complex fuzzy set; interval-valued fuzzy set; complex fuzzy soft set; complex intuitionistic fuzzy soft

set; complex neutrosophic soft set; hypersoft set; complex fuzzy hypersoft set.

—————————————————————————————————————————-

1. Introduction

In the context of an η-set environment with IV settings, this research article attempts to

present the ideas of Ξ-set through the use of theoretical, axiomatic, graphical, and computa-

tional approaches. An algorithm is designed for DSS after conceptualizing the fundamental
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elementary conceptions of this structure. A real-world application is used to verify the pro-

posed algorithm. The existing pertinent models are explored in detail using the proposed

structure, and their generalization is elaborated under specific evaluation aspects. For ad-

dressing and modeling uncertainty, ambiguity, and imprecision in DM processes, F-sets [1]

offer a mathematical foundation. They provide more precise and robust analysis by pro-

viding more flexible and realistic modeling of real-world occurrences. Artificial intelligence,

control systems, pattern recognition, and DSSs are just a few of the areas where fuzzy sets are

used. In order to describe complicated and structured uncertainty, a CF-set [2] characterizes

a particular feature of the object’s uncertainty as a combination of A−term and P−term.

Ramot et al. [3, 4] examined the novel idea of CF-sets. The CF-set offers a framework for

mathematically expressing M f n in a set in terms of a complex number. CF-sets have been

employed in a number of applications, such as control, pattern recognition, and DM [5].

CF-sets may be used to simulate intricate connections between input characteristics and out-

put labels in pattern recognition. When designing robust controllers for control, CF-sets

can be used to account for noisy and uncertain environments [6]. The CIF-set [7, 8] enables

modeling the ambiguous information that incorporates not only the M f n but also the N f n

which are complex-valued functions. Rani and Garg [9] created DMR utilizing Hausdorff,

Euclidean, and Hamming metrics and studied numerous desirable relations based on these

measures [10]. They applied the concept in the DM process to these DMR, especially in

the fields of pattern recognition and medical diagnostics [11]. The complex-valued M f n, N f n

and I f n are all present in a CN -set. Ali & Smarandache [12] discussed CN -set along with its

set theoretic operations and applied in DM [13]. An extension of the CN -set known as the

IVCN-set [14] uses IVC entries to describe the M f n, N f n and I f n. Additional uncertainty

attributes, such as the degree of vagueness and ambiguity, can be represented using the in-

terval values. The IVCN-sets have been used for a variety of tasks, including diagnosis,

image processing, and DM. The IVCN-set has been used to simulate the decision-maker’s

level of confidence, uncertainty, and ambiguity with reference to various possibilities in the

recruitment process [15]. The IVCN-set has been used in image processing to represent the

level of uncertainty involved in picture segmentation and recognition [16]. The contributions

of scholars [17–19] are significant regarding the handling of uncertainties.

Molodtsov [20] developed S-set theory as a method for handling uncertainty in data analysis

and DM. A crisp set that permits the insertion of ambiguous or speculative information is

known as a S-set in which each element is connected to a collection of parameters that may be

used to symbolize various forms of uncertainty, including haziness, ambiguity, and inconsis-

tent behavior [21,22]. The S-sets have been employed in a wide range of disciplines, including

machine learning, image processing, DM, and data mining. The S-sets have been applied to
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DM to simulate human preferences and judgments in cases where the information is lacking

or ambiguous. Babitha & Sunil [23] established the idea of S-set relations and studied various

related terminologies. Ali et al. [24] presented a number of novel operations and aggregation

techniques on S-sets. It has been demonstrated that these new strategies enhance the preci-

sion and efficacy of DM algorithms as as well as the efficiency of pattern recognition and

clustering methods [25]. A hybrid notion known as FS-set [26] contains the characteristics

of both F-sets and S-sets. Application areas for the FS-set idea include DM [27] in order to

accommodate uncertainty and model inaccurate or incomplete data. The FS-set-based DM

techniques have been proven to be successful in enhancing DM accuracy and dependabil-

ity [28, 29]. A hybrid idea known as IFS-set [30] combines the qualities of S-set and IF-set,

was presented as a generalisation of IF-set and S-set. By using level S-sets of IFS-sets and

providing some illustrated instances, Jiang et al. [31] proposed an adaptable method to DM.

They discussed the weighted IFS-sets and their potential use in DM. A hybrid idea known

as NS-set contains the characteristics of both S-set and N -set. Maji [32] investigated the

idea of a N -set, applied it to S-sets, and developed a NS-set. He defined certain terms, per-

formed some operations, and established some characteristics for the idea ofNS-set. In order

to construct two NS-sets, Deli & Broumi [33] defined a relation on NS-sets and examined

symmetric, transitive, and reflexive NS relations.

Das & Samanta [34] presented a description of the soft complex set and soft complex num-

ber and studied some of its fundamental aspects utilizing F numbers with the idea of S-set

along with the development of distinction and integration of S functions. The CFS-sets were

explored, and the aggregation operation in these sets was examined by Thirunavukarasu et

al. [35]. They provided an example of prospective applications that illustrate how aggregation

processes may be successfully used in numerous situations with uncertainties and periodicity.

The idea of CIFS-set presented by Kumar & Bajaj [36] allowed several parametrization tech-

niques to tackle real-world issues involving MCDM. As a combination of CF-sets, N -sets,

and S-sets, Smarandache et al. [37] presented the CNS-set model with some of its funda-

mental set-theoretic operations. To illustrate the usefulness of this paradigm, a DM scenario

incorporating ambiguous and subjective information was suggested.

1.1. Research Gap and Motivation

In the area of DM under uncertainty, η-set theory [38], a development of S-set theory,

has attracted interest. By enabling items to partially belong to distinct sets, it overcomes the

drawbacks of conventional set theory. η-sets offer an adaptable framework for simulating

ambiguous and uncertain information, enabling more sensible and reliable DM procedures.

η-set applications have been studied in a variety of fields, including healthcare, finance, and
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environmental management. The literature emphasizes the usefulness and adaptability of

η-sets in handling uncertainty, providing interesting directions for further study and real-

world applications. Different hybrids with graphical settings [39–41], vague settings [42] and

refined settings [43–45] were developed by researchers. However, the contributions of the

researchers [46–49] are also worth noting regarding decision-making in hypersoft settings.

Decision-making and uncertainty modeling have both seen a considerable increase in interest

in the idea of IVFHS-sets [50]. The IVFHS-sets offer an adaptable framework to deal with

ambiguity and uncertainty in DM. Numerous fields, including healthcare [51], banking, sup-

ply chain management, environmental assessment, and human resource management [52],

have been the subject of research into these applications. According to the research, they

are good at capturing and depicting ambiguous and imprecise information, empowering

decision-makers to make well-informed decisions. The development of aggregation oper-

ations, similarity indices, and DM techniques based on IVFHS-sets has been the subject of

studies. According to the research, IVFHS-sets are useful tools for handling difficult DM

situations with uncertainty and ambiguity. Additional study is required to investigate their

applicability in certain fields and to improve their computational efficiency.

The term ”interval data” refers to situations in real life when data may be categorized as a

set with values ranging from minimum to maximum (lower limits to upper bounds). Data

may contain repeating values that correspond to specified parameters. Data repetition can be

caused by a variety of sources. This sort of data is classified as periodic. There is currently no

adequate model in the literature on fuzzy sets that deals with

(1) sub-attribute values in the form of DAVS,

(2) data of the interval type, and

(3) PN-data, all at once.

The model Ξ-set is being characterized to satisfy the literary requirement. By using the

MAA-mapping, which uses the power set of the starting universe (a collection of IF-sets

or N -sets) as its domain and maps it to the CP of the DAVS, case (1) is addressed. Consid-

eration of the lower and upper bounds of reported intervals is used to address scenario (2),

whereas case (3) involves the inclusion of the A−term and P−terms into the Argand plane.

1.2. Paper Layout

The first section summarizes the literature review and study background of Ξ-set. In Sec-

tion 2, some elementary notions from literature are discussed to understand the basic knowl-

edge. In Section 3, the novel concept of Ξ-set is initiated along with the aggregation opera-

tions of Ξ-set. A DSS is developed in Section 4 for product selection based on the aggregation
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TABLE 1. Abbreviation and notation table.

Full name Abbreviation Full name Abbreviation

Fuzzy set F-set Interval-valued F-set IVF-set

set of all IVF-sets C (d) Intuitionistic F-set IF-set

Complex IF-set CIF-set Neutrosophic set N-set

Interval N-set IN-set Complex F-set CF-set

Interval-valued CIF-set IVCIF-set Complex SVN-set CSVN-set

Complex SVNS-set CSVNS-set

Interval CSVN-set ICSVN-set Soft set S-set

Fuzzy S-set FS-set Intuitionistic FS-set IFS-set

Hypersoft set η-set Interval CSVN-hypersoft set Ξ-set

Universal Set d Power set of d P(d)

Single-argument approximate

mapping

SAA-

mapping

Multi-argument approximate

mapping

MAA-

mapping

Membership function M f n Non-membership function N f n

Indeterminacy function I f n Approximate function A f n

Amplitude term A−term Phase term P−term

Periodic nature data term PN-data Interval valued data IV-data

Cartesian product CP Set of parameters SP

Disjoint attribute valued set DAVS Interval-valued CFS-set IVCFS-set

Notation Description Notation Description

Unit closed interval I v [0, 2π]

Collection of all sub-intervals of

I

I(I )

of Ξ-set aided by the proposed algorithm, and illustrated with the help of a diagram. A com-

parative analysis of the proposed model with some selected modes has been provided in

Section 5 to check its efficiency. Finally, Section 6 concludes the research work.

2. Preliminaries

In this section, Table 1 demonstrates the abbreviations and notations used in this research

article.

Definition 2.1. [1] A F-set A over d is characterized by a M f n: Am, where Am : d → I is

given by A = {(ğ, Am(ğ))|ğ ∈ d} , which assigns a real value within I to each ğ ∈ d and

Am(ğ) is M f n of ğ ∈ d.

Definition 2.2. [2] A CF-set E over d can be written as E = {(ğ, Em(ğ)) : ğ ∈ d} ={(
ğ, Am (ğ) eiPm(ğ)

)
: ğ ∈ d

}
, where Em represents M f n of E with Am (ğ) ∈ I as A−term

and Pm (ğ) ∈ v as P−term and i =
√
−1.
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Definition 2.3. [7, 8] A CIF-set F over d can be written as

F = {(ğ, Fm(ğ), Fn(ğ)) : ğ ∈ d} =
{(

ğ, Am (ğ) eiPm(ğ), An (ğ) eiPn(ğ)
)

: ğ ∈ d
}

where Fm and Fn represents M f n and N f n of F with Am (ğ) ∈ I as A−term and Pm (ğ) ∈ v

as P−term of M f n and An (ğ) ∈ I as A−term and Pn (ğ) ∈ v as P−term of N f n such

that 0 ≤ Fm + Fn ≤ 1 and hesitancy grade Fh (ğ) = 1−Fm (ğ)−Fn (ğ).

Definition 2.4. [12] A CSVN-set G over d can be written as

G = {(ğ, Gm(ğ), Gn(ğ), Gi(ğ)) : ğ ∈ d} ={(
ğ, Am (ğ) eiPm(ğ), An (ğ) eiPn(ğ), Ai (ğ) eiPi(ğ)

)
: ğ ∈ d

}
where Gm, Gn and Gi represents M f n, N f n and I f n of G with Am (ğ) ∈ I as A−term,

Pm (ğ) ∈ v as P−term of M f n, An (ğ) ∈ I as A−term, Pn (ğ) ∈ v as P−term of N f n and

Ai (ğ) ∈ I as A−term, Pi (ğ) ∈ v as P−term of I f n such that 0 ≤ Gm + Gn + Gi ≤ 3.

Definition 2.5. [20] A S-set (H, ∆) over d is a set of order pairs such that H : ∆ → P(d) is

given by

(H, ∆) = {(δ, H(ğ)) : δ ∈ ∆, ğ ∈ d, H(ğ) ∈P(d)} .

Definition 2.6. [37] A set (N, ∆) is called CSVNS-set over d if N is a parameterized gather-

ing of CSVN-subsets of d and is given by N : ∆→P(d) and is defined by

(N, ∆) =
{(

δ,
{

Nm(ğ), Nn(ğ), Ni(ğ)

ğ

})
: ğ ∈ d, δ ∈ ∆

}
where Nm(ğ) = Am (ğ) eiPm(ğ) represents the M f n of N with Am (ğ) ∈ I as A−term,

Pm (ğ) ∈ v as P−term, Nn(ğ) = An (ğ) eiPn(ğ) represents the N f n of N with An (ğ) ∈ I

as A−term, Pn (ğ) ∈ v as P−term and Ni(ğ) = Ai (ğ) eiPi(ğ) represents the I f n of N with

Ai (ğ) ∈ I as A−term, Pi (ğ) ∈ v as P−term such that 0 ≤Nm(ğ)+Nn(ğ)+Ni(ğ) ≤ 3.

Definition 2.7. [38] (O, ∆) is called η-set over d if O : ∆→P(d) where ∆ =
n
∏
i=1

∆i such that

∆i are DAVS of sub-parameters, each set corresponding to a unique parameters δ ∈ ∆.

Definition 2.8. If CSVN (d) denotes the set containing all SVN -subsets over d then SVNHS-

set (R, ∆) is obtained when the mapping O : ∆ → P(d) in Definition 2.7 is replaced by

R : ∆→ CSVN(d) and all other conditions of Definition 2.7 are remained valid.

Definition 2.9. [56] If CCSVN (d) represents the collection of all CSVN-subsets over d then

CSVNHS-set (V, ∆) is obtained when the mapping O : ∆ → P(d) in Definition 2.7 is

replaced by V : ∆→ CCSVN (d) and all other conditions of Definition 2.7 are remained valid.
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3. Interval complex single-valued neutrosophic hypersoft set (Ξ-set)

This section develops the fundamental theory of the Ξ-set.

Definition 3.1. An ICSVN-set GI over d can be written as

GI = {(ğ, 〈GIm(ğ), GIn(ğ), GIi(ğ)〉) : ğ ∈ d} ={(
ğ, Am (ğ) eiPm(ğ), An (ğ) eiPn(ğ), Ai (ğ) eiPi(ğ)

)
: ğ ∈ d

}
.

where GIm represents M f n of GI with Am (ğ) ∈ I(I ) as A−term, Pm (ğ) ⊆ v as

P−term, GIn represents N f n with An (ğ) ∈ I(I ) as A−term, Pn (ğ) ⊆ v as P−term

and GIi represents I f n with Ai (ğ) ∈ I(I ) as A−term, Pi (ğ) ⊆ v as P−term and

0 ≤ inf GIm + inf GIn + inf GIi ≤ sup GIm + sup GIn + sup GIi ≤ 3.

Definition 3.2. Consider two ICSVN-sets

GI
1 =

{(
ğ, GI

1
m (ğ) , GI

1
n (ğ) , GI

1
i (ğ)

)
: ğ ∈ d

}
and

GI
2 =

{(
ğ, GI

2
m (ğ) , GI

2
n (ğ) , GI

2
i (ğ)

)
: ğ ∈ d

}
having respective M f n: GI

1
m (ğ) = A1

m (ğ) eiPm
1(ğ), GI

2
m (ğ) = A2

m (ğ) eiPm
2(ğ), N f n:

GI
1
n (ğ) = A1

n (ğ) eiPn
1(ğ), GI

2
n (ğ) = A2

n (ğ) eiPn
2(ğ) and I f n: GI

1
i (ğ) = A1

i (ğ) eiPi
1(ğ),

GI
2
i (ğ) = A2

i (ğ) eiPi
2(ğ).

(1). The union of GI
1 and GI

2 is again an ICSVN-set GI
3 = GI

1 ∪GI
2, where its M f n, N f n

and I f n∀ğ ∈ d can be given by

GI
3
m(ğ) = A3

m (ğ) eiPm
3(ğ) =

[
max

(
inf A1

m (ğ) , inf A2
m (ğ)

)
,

max
(
sup A1

m (ğ) , sup A2
m (ğ)

) ] e
i

[
max(inf Pm

1(ğ),inf Pm
2(ğ)),

max(sup Pm
1(ğ),sup Pm

2(ğ))

]
.

GI
3
n(ğ) = A3

n (ğ) eiPn
3(ğ) =

[
min

(
inf A1

n (ğ) , inf A2
n (ğ)

)
,

min
(
sup A1

n (ğ) , sup A2
n (ğ)

) ] e
i

[
min(inf Pn

1(ğ),inf Pn
2(ğ)),

min(sup Pn
1(ğ),sup Pn

2(ğ))

]

GI
3
i (ğ) = A3

i (ğ) eiPi
3(ğ) =

[
min

(
inf A1

i (ğ) , inf A2
i (ğ)

)
,

min
(
sup A1

i (ğ) , sup A2
i (ğ)

) ] e
i

[
min(inf Pi

1(ğ),inf Pi
2(ğ)),

min(sup Pi
1(ğ),sup Pi

2(ğ))

]
.

(2). The intersection of GI
1 and GI

2 is again an IVCIF-set GI
4 = GI

1 ∩GI
2, where its M f n,

N f n and I f n∀ğ ∈ d can be given by

GI
4
m(ğ) = A4

m (ğ) eiPm
4(ğ) =

[
min

(
inf A1

m (ğ) , inf A2
m (ğ)

)
,

min
(
sup A1

m (ğ) , sup A2
m (ğ)

) ] e
i

[
min(inf Pm

1(ğ),inf Pm
2(ğ)),

min(sup Pm
1(ğ),sup Pm

2(ğ))

]
.

GI
4
n(ğ) = A4

n (ğ) eiPn
4(ğ) =

[
max

(
inf A1

n (ğ) , inf A2
n (ğ)

)
,

max
(
sup A1

n (ğ) , sup A2
n (ğ)

) ] e
i

[
max(inf Pn

1(ğ),inf Pn
2(ğ)),

max(sup Pn
1(ğ),sup Pn

2(ğ))

]
.
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GI
4
i (ğ) = A4

i (ğ) eiPi
4(ğ) =

[
max

(
inf A1

i (ğ) , inf A2
i (ğ)

)
,

max
(
sup A1

i (ğ) , sup A2
i (ğ)

) ] e
i

[
max(inf Pi

1(ğ),inf Pi
2(ğ)),

max(sup Pi
1(ğ),sup Pi

2(ğ))

]
.

(3). The complement of GI
1 denoted by

(GI
1)c =

{(
ğ, GI

1
m

c
(ğ) , GI

1
n

c
(ğ)

)
: ğ ∈ d

}
where

GI
1
m

c
(ğ) = GI

1
n (ğ),

GI
1
n

c
(ğ) = GI

1
m (ğ) and

GI
1
i

c
=
[
1− A1

i
+
(ğ) , 1− A1

i
−
(ğ)

]
ei
[
2π−Pi

1+(ğ),2π−Pi
1−(ğ)

]
.

Definition 3.3. A set (NI, ∆) is called ICSVNS-set over d if NI is a parameterized gathering

of IVCSVN -subsets of d and is given by NI : ∆→P(d) and is defined by

(NI, ∆) =
{(

δ,
{

NIm(ğ), NIn(ğ), NIi(ğ)

ğ

})
: ğ ∈ d, δ ∈ ∆

}
where NIm(ğ) = Am (ğ) eiPm(ğ) represents the M f n of NI with Am (ğ) ∈ I(I ) as A−term,

Pm (ğ) ⊆ v as P−term, NIn(ğ) = An (ğ) eiPn(ğ) represents the N f n of NI with An (ğ) ∈
I(I ) as A−term, Pn (ğ) ⊆ v as P−term and NIi(ğ) = Ai (ğ) eiPi(ğ) represents the I f n of

NI with Ai (ğ) ∈ I(I ) as A−term, Pi (ğ) ⊆ v as P−term such that 0 ≤ inf NIm(ğ) +

inf NIn(ğ) + inf NIi(ğ) ≤ sup NIm(ğ) + sup NIn(ğ) + sup NIi(ğ) ≤ 3.

Definition 3.4. Consider two ICSVNS-sets (NI
1, ∆1) and (NI

2, ∆2) having respective

M f n: NI
1
m = A1

m (ğ) eiP1
m(ğ), NI

2
m = A2

m (ğ) eiP2
m(ğ), N f n: NI

1
n = A1

n (ğ) eiP1
n (ğ), NI

2
n =

A2
n (ğ) eiP2

n (ğ) and I f n: NI
1
i = A1

i (ğ) eiP1
i (ğ), NI

2
i = A2

i (ğ) eiP2
i (ğ)

(1) The union of (NI
1, ∆1) and (NI

2, ∆2) is again an ICSVNS-set (NI
3, ∆3) =

(NI
1, ∆1) ∪ (NI

2, ∆2), where ∆3 = ∆1 ∪ ∆2, for all δ ∈ ∆3, ğ ∈ d, and its M f n, N f n

and I f n are defined as

NI
3
m(ğ) =



NI
1
m(ğ)

NI
2
m(ğ)[

max
(
inf A1

m (ğ) , inf A2
m (ğ)

)
,

max
(
sup A1

m (ğ) , sup A2
m (ğ)

) ] e
i

[
max(inf Pm

1(ğ),inf Pm
2(ğ)),

max(sup Pm
1(ğ),sup Pm

2(ğ))

]
i f δ ∈ ∆1\∆2

i f δ ∈ ∆2\∆1

i f δ ∈ ∆1 ∩ ∆2

NI
3
n(ğ) =



NI
1
n(ğ)

NI
2
n(ğ)[

min
(
inf A1

n (ğ) , inf A2
n (ğ)

)
,

min
(
sup A1

n (ğ) , sup A2
n (ğ)

) ] e
i

[
min(inf Pn

1(ğ),inf Pn
2(ğ)),

min(sup Pn
1(ğ),sup Pn

2(ğ))

]
i f δ ∈ ∆1\∆2

i f δ ∈ ∆2\∆1

i f δ ∈ ∆1 ∩ ∆2
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NI
3
i (ğ) =



NI
1
i (ğ)

NI
2
i (ğ)[

min
(
inf A1

i (ğ) , inf A2
i (ğ)

)
,

min
(
sup A1

i (ğ) , sup A2
i (ğ)

) ] e
i

[
min(inf Pi

1(ğ),inf Pi
2(ğ)),

min(sup Pi
1(ğ),sup Pi

2(ğ))

]
i f δ ∈ ∆1\∆2

i f δ ∈ ∆2\∆1

i f δ ∈ ∆1 ∩ ∆2

(2) The restricted union of (NI
1, ∆1) and (NI

2, ∆2) denoted by (NI
4, ∆4) = (NI

1, ∆1) ∪R

(NI
2, ∆2), where ∆4 = ∆1 ∩∆2, for all δ ∈ ∆4, ğ ∈ d, its M f n, N f n and I f n are defined

as

NI
4
m(ğ) =

[
max

(
inf A1

m (ğ) , inf A2
m (ğ)

)
,

max
(
sup A1

m (ğ) , sup A2
m (ğ)

) ] e
i

[
max(inf Pm

1(ğ),inf Pm
2(ğ)),

max(sup Pm
1(ğ),sup Pm

2(ğ))

]

NI
4
n(ğ) =

[
min

(
inf A1

n (ğ) , inf A2
n (ğ)

)
,

min
(
sup A1

n (ğ) , sup A2
n (ğ)

) ] e
i

[
min(inf Pn

1(ğ),inf Pn
2(ğ)),

min(sup Pn
1(ğ),sup Pn

2(ğ))

]

NI
4
i (ğ) =

[
min

(
inf A1

i (ğ) , inf A2
i (ğ)

)
,

min
(
sup A1

i (ğ) , sup A2
i (ğ)

) ] e
i

[
min(inf Pi

1(ğ),inf Pi
2(ğ)),

min(sup Pi
1(ğ),sup Pi

2(ğ))

]

(3) The intersection of (NI
1, ∆1) and (NI

2, ∆2) denoted by (NI
5, ∆5) = (NI

1, ∆1) ∩
(NI

2, ∆2), where ∆5 = ∆1 ∩ ∆2, for all δ ∈ ∆5, ğ ∈ d its M f n, N f n and I f n is de-

fined as

NI
5
m(ğ) =

[
min

(
inf A1

m (ğ) , inf A2
m (ğ)

)
,

min
(
sup A1

m (ğ) , sup A2
m (ğ)

) ] e
i

[
min(inf Pm

1(ğ),inf Pm
2(ğ)),

min(sup Pm
1(ğ),sup Pm

2(ğ))

]

NI
5
n(ğ) =

[
max

(
inf A1

n (ğ) , inf A2
n (ğ)

)
,

max
(
sup A1

n (ğ) , sup A2
n (ğ)

) ] e
i

[
max(inf Pn

1(ğ),inf Pn
2(ğ)),

max(sup Pn
1(ğ),sup Pn

2(ğ))

]

NI
5
i (ğ) =

[
max

(
inf A1

i (ğ) , inf A2
i (ğ)

)
,

max
(
sup A1

i (ğ) , sup A2
i (ğ)

) ] e
i

[
max(inf Pi

1(ğ),inf Pi
2(ğ)),

max(sup Pi
1(ğ),sup Pi

2(ğ))

]

(4) The extended intersection of (NI
1, ∆1) and (NI

2, ∆2) denoted by (NI
6, ∆6) =

(NI
1, ∆1) ∩E (NI

2, ∆2), where ∆6 = ∆1 ∪ ∆2, for all δ ∈ ∆6, ğ ∈ d, its M f n, N f n

and I f n are defined as

NI
6
m(ğ) =



NI
1
m(ğ)

NI
2
m(ğ)[

min
(
inf A1

m (ğ) , inf A2
m (ğ)

)
,

min
(
sup A1

m (ğ) , sup A2
m (ğ)

) ] e
i

[
min(inf Pm

1(ğ),inf Pm
2(ğ)),

min(sup Pm
1(ğ),sup Pm

2(ğ))

]
i f δ ∈ ∆1\∆2

i f δ ∈ ∆2\∆1

i f δ ∈ ∆1 ∩ ∆2
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NI
6
n(ğ) =



NI
1
n(ğ)

NI
2
n(ğ)[

max
(
inf A1

n (ğ) , inf A2
n (ğ)

)
,

max
(
sup A1

n (ğ) , sup A2
n (ğ)

) ] e
i

[
max(inf Pn

1(ğ),inf Pn
2(ğ)),

max(sup Pn
1(ğ),sup Pn

2(ğ))

]
i f δ ∈ ∆1\∆2

i f δ ∈ ∆2\∆1

i f δ ∈ ∆1 ∩ ∆2

NI
6
i (ğ) =



NI
1
i (ğ)

NI
2
i (ğ)[

max
(
inf A1

i (ğ) , inf A2
i (ğ)

)
,

max
(
sup A1

i (ğ) , sup A2
i (ğ)

) ] e
i

[
max(inf Pi

1(ğ),inf Pi
2(ğ)),

max(sup Pi
1(ğ),sup Pi

2(ğ))

]
i f δ ∈ ∆1\∆2

i f δ ∈ ∆2\∆1

i f δ ∈ ∆1 ∩ ∆2

(5) The complement of (NI
1, ∆1) denoted by (NI

1, ∆1)
c = (NI

1c
,¬∆1) such that NI

1c
:

¬∆1 → P(d) is given by M f n:NI
1
m

c
(ğ) = NI

1
n (ğ), N f n: NI

1
n

c
(ğ) = NI

1
m (ğ) and

I f n: NI
1
i

c
(ğ) =

[
1− sup NI

1
i (ğ) , 1− inf NI

1
i (ğ)

]
(6) The relative complement of (NI

1, ∆1) denoted by (NI
1, ∆1)

r where (NI
1, ∆1)

r =

(NI
1r

, ∆1) such that NI
1r

: ∆1 → P(d) is given by M f n:NI
1
m

r
(ğ) = NI

1
n (ğ), N f n:

NI
1
n

r
(ğ) = NI

1
m (ğ) and I f n: NI

1
i

r
(ğ) =

[
1− sup NI

1
i (ğ) , 1− inf NI

1
i (ğ)

]
Definition 3.5. Let Y1,Y2,Y3, .....,Yn are DAVS of n distinct attributes ζ1, ζ2, ζ3, ....., ζn re-

spectively for n ≥ 1,Y = Y1 ×Y2 ×Y3 × .....×Yn and ∆(δ) be a ICSVNS-set defined over

d∀δ = (β1, β2, β3, ....., βn) ∈ Y . Then, the Ξ-set, denoted by ΩY = (∆,Y), over d is given as

ΩY = {(δ, ∆(δ)) : δ ∈ Y , ∆(δ) ∈ CIV(d)} ,

where ∆ : Y → CIV(d), ∆(δ) = ∅ i f δ /∈ Y is an ICSVN A f n of ΩY and

∆(δ) = 〈[←−∆ 1(δ),
−→
∆ 1(δ)], [

←−
∆ 2(δ),

−→
∆ 2(δ)], [

←−
∆ 3(δ),

−→
∆ 3(δ)]〉 with lower bounds and upper

bounds of M f n, N f n and I f n are described as folow

(a) (
←−
∆ 1(δ) =

←−γ ei
←−
θ ,
−→
∆ 1(δ) =

−→γ ei
−→
θ ) for the M f n of ΩY

(b) (
←−
∆ 2(δ) =

←−γ ei
←−
θ ,
−→
∆ 2(δ) =

−→γ ei
−→
θ ) for the N f n of ΩY

(c) (
←−
∆ 3(δ) = ←−γ ei

←−
θ ,
−→
∆ 3(δ) = −→γ ei

−→
θ ) for the I f n of ΩY and ∆(δ) is known as δ-member of

Ξ-set ∀δ ∈ Y .

Note:
⊎

IVCNHS denotes the collection of all Ξ-sets.

Definition 3.6. The complement of Ξ-set (∆,Y), denoted by (∆,Y)c is stated as

(∆,Y)c = {(ň, (∆(ň))c) : ň ∈ Y , (∆(ň))c ∈ CIV(d)}

where the A−term and P−terms of the M f n (∆(ň))c are given by

(←−γ Y (ň))c = 1−←−γ Y (ň), (−→γ Y (ň))c = 1−−→γ Y (ň) and

(
←−
θ Y (ň))c = 2π −←−θ Y (ň), (

−→
θ Y (ň))c = 2π −−→θ Y (ň) respectively.
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TABLE 2. Tabular Representation of §Λ.

§Λ ň1 ň2 ... ňr

ğ1


ℵ1

XΛ(ň1)
(ğ1),

ℵ2
XΛ(ň1)

(ğ1),

ℵ3
XΛ(ň1)

(ğ1)



ℵ1

XΛ(ň2)
(ğ1),

ℵ2
XΛ(ň2)

(ğ1),

ℵ3
XΛ(ň2)

(ğ1)

 · · ·


ℵ1

XΛ(ňr)
(ğ1),

ℵ2
XΛ(ňr)

(ğ1),

ℵ3
XΛ(ňr)

(ğ1)



ğ2


ℵ1

XΛ(ň1)
(ğ2),

ℵ2
XΛ(ň1)

(ğ2),

ℵ3
XΛ(ň1)

(ğ2)



ℵ1

XΛ(ň2)
(ğ2),

ℵ2
XΛ(ň2)

(ğ2),

ℵ3
XΛ(ň2)

(ğ2)

 · · ·


ℵ1

XΛ(ňr)
(ğ2),

ℵ2
XΛ(ňr)

(ğ2),

ℵ3
XΛ(ňr)

(ğ2)


...

...
...

. . .
...

ğm


ℵ1

XΛ(ň1)
(ğm),

ℵ2
XΛ(ň1)

(ğm),

ℵ3
XΛ(ň1)

(ğm)



ℵ1

XΛ(ň2)
(ğm),

ℵ2
XΛ(ň2)

(ğm),

ℵ3
XΛ(ň2)

(ğm)

 · · ·


ℵ1

XΛ(ňr)
(ğm),

ℵ2
XΛ(ňr)

(ğm),

ℵ3
XΛ(ňr)

(ğm)



Now the aggregation procedures and their conclusive systems for the Ξ-set are established

in the form of CSVNHS-set and its cardinal set that results in an aggregate F−set with

fuzzy-like features. The terms Λ,E, §Λand
⊎

ICSVNHSare are consistent with definition 3.5.

The aggregation operations developed in this research article are modified versions of aggre-

gations discussed in [62].

Definition 3.7. Let §Λ ∈ ⊎
IVCNHS. Assume that d = {ğ1, ğ2, ....., ğm} and

E = {L1,L2, .....,Ln} with L1 = {e11, e12, ....., e1n},L2 = {e21, e22, ....., e2n}, ...,Ln =

{en1, en2, ....., enn} and Λ = L1 × L2 × ..... × Ln = {ň1, ň2, ....., ňn, ....., ňnn = ňr}, each ňi

is n-tuple element of Λ and |Λ| = r = nn then §Λ can be presented in the following tabular
notation (see Table 2). Where ℵ1

XΛ(x),ℵ
2
XΛ(x) and ℵ2

XΛ(x) are M f n, I f n and N f n of XΛ respec-
tively with IVN values. If αij = (ℵ1

XΛ(ňj)
(ği),ℵ2

XΛ(ňj)
(ği),ℵ3

XΛ(ňj)
(ği)), for i = N m

1 and
j = N r

1 then Ξ-set §Λ is specifically identified by a matrix,

[αij] =


α11 α12 · · · α1r

α21 α22 · · · α2r
...

...
. . .

...

αm1 αm2 · · · αmr


is called an m× r Ξ-set matrix..

Definition 3.8. If §Λ ∈
⊎

ICSVNHS then cardinal set of §Λ is defined as

‖§Λ‖ =
{
(ℵ1
‖§Λ‖(ň),ℵ2

‖§Λ‖(ň),ℵ3
‖§Λ‖(ň))/ň : ň ∈ Λ

}
,

where ℵ1
‖§Λ‖,ℵ

2
‖§Λ‖,ℵ

3
‖§Λ‖ : Λ→ [0, 1] are M f n, I f n and N f n of ‖§Λ‖ with

ℵ1
‖§Λ‖(ň),ℵ2

‖§Λ‖(ň),ℵ3
‖§Λ‖(ň) =

|XΛ(ň)|
|d |
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TABLE 3. Tabular Representation of ‖§Λ‖.

Λ ň1 ň2 · · · ňr

ℵ‖§Λ‖


ℵ1
‖§Λ‖

(ň1),

ℵ2
‖§Λ‖

(ň1),

ℵ3
‖§Λ‖

(ň1)



ℵ1
‖§Λ‖

(ň2),

ℵ2
‖§Λ‖

(ň2),

ℵ3
‖§Λ‖

(ň2)

 · · ·


ℵ1
‖§Λ‖

(ňr),

ℵ2
‖§Λ‖

(ňr),

ℵ3
‖§Λ‖

(ňr)



respectively. These have ISVN values.

Note: The collection of all cardinal sets of Ξ-sets is denoted by ‖Cicsvnhs(d)‖ such that

‖Cicsvnhs(d)‖ ⊆ ISVN(Λ).

Definition 3.9. Assume §Λ ∈ Cicsvnhs(d), ‖§Λ‖ ∈ ‖Cicsvnhs(d)‖ and E as in Definition 3.5,

then Table 3 represents ‖§Λ‖.

If α1j = (ℵ1
‖§Λ‖(ňj),ℵ2

‖§Λ‖(ňj),ℵ3
‖§Λ‖(ňj)), for j = N r

1 then the following matrix represents

the cardinal set ‖§Λ‖,

[αij]1×r =
[

α11 α12 · · · α1r

]
and is called cardinal matrix of ‖§Λ‖.

Definition 3.10. Let §Λ ∈ Cicsvnhs(d) and ‖§Λ‖ ∈ ‖Cicsvnhs(d)‖. Then Ξ-aggregation operator

is defined as ︷︸︸︷
§Λ = Aici f hs (‖§Λ‖, §Λ)

where

Aicsvnhs : ‖Cicsvnhs(d)‖ × Cici f hs(d)→ F(d).︷︸︸︷
§Λ is called the aggregate F−set of Ξ-set §Λ.

Its M f n is given as

ℵ︷︸︸︷
§Λ

: d→ [0, 1]

with

ℵ︷︸︸︷
§Λ

(ν) =
1
|Λ| ∑

ň∈Λ

ℵCard(§Λ)(ň)ℵCard(XΛ)(ν).

Definition 3.11. Let §Λ ∈ Cicsvnhs(d) and
︷︸︸︷
§Λ be its aggregate F−set. Assume d =

{ğ1, ğ2, ....., ğm}, then
︷︸︸︷
§Λ can be presented as
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§Λ
... ℵ︷︸︸︷

§Λ

· · · · · · · · ·
... · · · · · · · · · · · ·

ğ1
... ℵ︷︸︸︷

§Λ

(ğ1)

ğ2
... ℵ︷︸︸︷

§Λ

(ğ2)

...
...

...

ğm
... ℵ︷︸︸︷

§Λ

(ğm)


If αi1 = ℵ︷︸︸︷

§Λ

(ği) for i = Nm
1 then

︷︸︸︷
§Λ is represented by the matrix,

[αi1]m×1 =


α11

α21
...

αm1


which is called aggregate matrix of

︷︸︸︷
§Λ over d.

4. Decision support system based on aggregation of Ξ-set

In light of the definitions provided in previous subsection, an algorithm is now described
in this section to facilitate the DSS, and the supplied method will be validated with the aid
of an example from a real-world scenario.

Algorithm 4.1. The brief description of algorithm 4.1 is displayed in Figure 1.

======================================================================

Algorithm : DS Algorithm Based on Aggregations of Ξ-set

======================================================================

. Start

. Input Stage:

———1. Assume d as sample space

———2. Assume E as SP

———3. Classify SP into DAVS L1,L2,L3, ...,Ln

. Construction Stage:

———4. Λ = L1 ×L2 ×L3 × ...×Ln

———5. Construct Ξ-set XΛ over d, in compliance with Definition 3.5,

. Computation Stage:

———6. Determine ‖ §Λ ‖ for A−term and P−term employing Definition 3.8,

———7. Determine
︷︸︸︷
§Λ for A−term and P−term employing Definition 3.10,

———8. Determine ℵ︷︸︸︷
§Λ

(ν) employing Definition 3.10,

. Output Stage:

Muhammad Arshad, Muhammad Saeed, Atiqe Ur Rahman, Interval complex single-valued
neutrosophic hypersoft set with Application in Decision Making



Neutrosophic Sets and Systems, Vol. 60, 2023 409

———9. Figure out the best alternative by max modulus of ℵ︷︸︸︷
§Λ

(ν) employing Definition 3.11.

.End

=======================================================================

FIGURE 1. DS Algorithm Based on Aggregations of Ξ-set.

The following real-life example is used to illustrate algorithm:

4.1. Decision support system based on aggregation of Ξ-set

In this section, a real-world scenario of product selection is discussed based on the aggre-

gation operation of Ξ-set.

Example 4.2. Suppose a person wants to purchase an LED TV from the market. He con-

sults an expert, says Mr. ”P” for the feathers that are necessary to take into consideration

while buying a TV. To provide a satisfying viewing experience, numerous elements should

be considered when choosing an LED TV’s features. Here are some essential characteristics

(attributes) that Mr. P should take into account:

Screen Size The viewing experience on an LED TV is significantly influenced by the

screen size. To choose the right screen size, take into account the room’s available

area as well as the viewing distance. A more immersive watching experience is often

provided by larger displays, but it’s essential to make sure the TV is comfortable in
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the specified space. There are many screen sizes available on the market, but Mr. P

preferred 32-inch and 42-inch sizes over others.

Display Technology Although LCD, OLED, and QLED are some of the numerous

panel types that are available, LED TVs use LED backlighting technology. Each tech-

nology has benefits and disadvantages. While QLED delivers rich colors and high

brightness levels, OLED offers great image quality with deep blacks and broad view-

ing angles. Although less expensive, LCD displays may have contrast and viewing

angle restrictions. Mr. P preferred QLED over others.

Resolution The degree of clarity and detail in the material presented on TV depends

on its resolution. Full HD (1920x1080 pixels), 4K Ultra HD (3840x2160 pixels), and 8K

Ultra HD (7680x4320 pixels) are popular resolutions. In general, higher resolutions

provide images that are more realistic and detailed, but the availability of 4K or 8K

material should also be taken into account. Due to the unavailability of 4K and 8K,

HD is taken into consideration by Mr. P.

Refresh Rate The number of times per second that the TV changes the image on the

screen is referred to as the refresh rate. A higher refresh rate, such as 120Hz or 240Hz,

helps reduce motion blur in fast-paced situations or sports by allowing for better mo-

tion handling. However, a normal refresh rate of 60Hz or 120Hz is generally enough

for everyday viewing reasons, so 60Hz and 120Hz refresh rates are preferred.

HDR (High Dynamic Range) The contrast and color accuracy of the presented in-

formation are improved with HDR technology. Find TVs that can display HDR con-

tent in formats like HDR10, Dolby Vision, or HLG (Hybrid Log-Gamma). Wider color

gamuts and more accurate highlights and shadows are possible with HDR-compatible

TVs, making for a picture that is more vivid and realistic. Mr. P ignored the HDR at-

tribute.

Smart Features Nowadays, many LED TVs include smart capabilities that provide

users access to applications, streaming services, and web surfing. When assessing a

TV’s smart features, take into account the user interface, the availability of apps, and

the simplicity of navigation. Mr. P preferred the LED’s having smart features over

others.

Connectivity Options Make sure the TV has enough connectors for connecting your

gadgets, such as HDMI ports for connecting game consoles, Blu-ray players, or sound

systems. For versatility, Mr. P takes into account the LED’s accessibility to USB ports,

Wi-Fi, Ethernet, and Bluetooth connectivity.

Sound Quality The overall satisfaction is greatly influenced by both the auditory ex-

perience and the visual experience, which are both essential. Think about the TV’s
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built-in speakers, or see whether it includes audio-enhancing features like DTS or

Dolby Atmos. Mr. P preferred LED’s with built-in speakers over others.

Energy Efficiency In general, LED TVs are energy-efficient, but to lower long-term

running expenses and environmental effects, it is important to evaluate the energy

consumption and energy-saving features of the TV. Mr. P ignored this attribute.

By considering these attributes, one can make an informed decision when buying an LED

TV that meets their specific preferences and viewing requirements. There are four types of

LED’s that are available in market that fulfill the above preferences, so they form the set: d =

{ğ1, ğ2, ğ3, ğ4}. The expert Mr. P considers a SP , E = {e1, e2, ..., {e7}. For i = 1, 2,..., 7, where

the attributes ei stand for ”screen size”, ”display technology”, ”resolution”, ”refresh rate”,

”smart features”, ”connectivity options”, and ”sound quality”, respectively Corresponding

to each attribute, the DAVS are: L1 = {e11, e12}; L2 = {e21}; L3 = {e31}; L4 = {e41, e42};
L5 = {e51}; L6 = {e61} and L7 = {e71}. Then the set Λ = L1×L2× ...×L7 = {λ1, λ2, λ3, λ4}
where each λi is a 7-tuple. We construct Ξ-sets ψΛ(λ1), ψΛ(λ2), ψΛ(λ3), ψΛ(λ4) are defined

as,

ψΛ(λ1) =


([0.2,0.5],[0.3,0.4],[0.0,0.1])ei([0.2,0.8],[0.1,0.3],[0.2,0.3])π

ğ1
, ([0.0,0.2],[0.1,0.3],[0.3,0.5])ei([0.2,0.3],[0.1,0.4],[0.1,0.3])π

ğ2
,

([0.0,0.2],[0.2,0.4],[0.0,0.2])ei([0.1,0.4],[0.1,0.4],[0.0,0.2])π

ğ3
, ([0.1,0.4],[0.4,0.5],[0.0,0.1])ei([0.1,0.3],[0.2,0.4],[0.2,0.3])π

ğ4

 ,

ψΛ(λ2) =


([0.2,0.3],[0.2,0.5],[0.1,0.2])ei([0.0,0.2],[0.1,0.4],[0.1,0.2])π

ğ1
, ([0.1,0.3],[0.2,0.5],[0.0,0.1])ei([0.1,0.3],[0.3,0.4],[0.1,0.2])π

ğ2
,

([0.0,0.1],[0.1,0.3],[0.4,0.5])ei([0.2,0.4],[0.1,0.3],[0.0,0.2])π

ğ3
, ([0.1,0.3],[0.1,0.4],[0.1,0.3])ei([0.1,0.3],[0.2,0.3],[0.2,0.4])π

ğ4

 ,

ψΛ(λ3) =


([0.2,0.4],[0.1,0.3],[0.1,0.3])ei([0.0,0.2],[0.1,0.5],[0.1,0.3])π

ğ1
, ([0.2,0.3],[0.0,0.3],[0.1,0.4])ei([0.2,0.4],[0.1,0.4],[0.1,0.2])π

ğ2
,

([0.0,0.2],[0.2,0.3],[0.1,0.5])ei([0.1,0.3],[0.2,0.4],[0.1,0.3])π

ğ3
, ([0.0,0.2],[0.1,0.3],[0.1,0.3])ei([0.1,0.3],[0.2,0.6],[0.0,0.1])π

ğ4

 ,

ψΛ(λ4) =


([0.2,0.3],[0.1,0.4],[0.1,0.3])ei([0.0,0.2],[0.2,0.5],[0.1,0.2])π

ğ1
, ([0.1,0.5],[0.2,0.3],[0.0,0.1])ei([0.1,0.3],[0.3,0.4],[0.1,0.3])π

ğ2
,

([0.1,0.3],[0.1,0.4],[0.1,0.3])ei([0.2,0.3],[0.1,0.3],[0.1,0.3])π

ğ3
, ([0.1,0.2],[0.2,0.5],[0.1,0.2])ei([0.1,0.3],[0.2,0.3],[0.0,0.3])π

ğ4

 .

Step 1: Ξ-set XΛ is written as,

XΛ =



λ1,


([0.2,0.5],[0.3,0.4],[0.0,0.1])ei([0.2,0.8],[0.1,0.3],[0.2,0.3])π

ğ1
, ([0.0,0.2],[0.1,0.3],[0.3,0.5])ei([0.2,0.3],[0.1,0.4],[0.1,0.3])π

ğ2
,

([0.0,0.2],[0.2,0.4],[0.0,0.2])ei([0.1,0.4],[0.1,0.4],[0.0,0.2])π

ğ3
, ([0.1,0.4],[0.4,0.5],[0.0,0.1])ei([0.1,0.3],[0.2,0.4],[0.2,0.3])π

ğ4


 ,λ2,


([0.2,0.3],[0.2,0.5],[0.1,0.2])ei([0.0,0.2],[0.1,0.4],[0.1,0.2])π

ğ1
, ([0.1,0.3],[0.2,0.5],[0.0,0.1])ei([0.1,0.3],[0.3,0.4],[0.1,0.2])π

ğ2
,

([0.0,0.1],[0.1,0.3],[0.4,0.5])ei([0.2,0.4],[0.1,0.3],[0.0,0.2])π

ğ3
, ([0.1,0.3],[0.1,0.4],[0.1,0.3])ei([0.1,0.3],[0.2,0.3],[0.2,0.4])π

ğ4


 ,λ3,


([0.2,0.4],[0.1,0.3],[0.1,0.3])ei([0.0,0.2],[0.1,0.5],[0.1,0.3])π

ğ1
, ([0.2,0.3],[0.0,0.3],[0.1,0.4])ei([0.2,0.4],[0.1,0.4],[0.1,0.2])π

ğ2
,

([0.0,0.2],[0.2,0.3],[0.1,0.5])ei([0.1,0.3],[0.2,0.4],[0.1,0.3])π

ğ3
, ([0.0,0.2],[0.1,0.3],[0.1,0.3])ei([0.1,0.3],[0.2,0.6],[0.0,0.1])π

ğ4


 ,λ4,


([0.2,0.3],[0.1,0.4],[0.1,0.3])ei([0.0,0.2],[0.2,0.5],[0.1,0.2])π

ğ1
, ([0.1,0.5],[0.2,0.3],[0.0,0.1])ei([0.1,0.3],[0.3,0.4],[0.1,0.3])π

ğ2
,

([0.1,0.3],[0.1,0.4],[0.1,0.3])ei([0.2,0.3],[0.1,0.3],[0.1,0.3])π

ğ3
, ([0.1,0.2],[0.2,0.5],[0.1,0.2])ei([0.1,0.3],[0.2,0.3],[0.0,0.3])π

ğ4
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Step 2: The cardinal is computed as,
‖ XΛ ‖ (A− term) ={

([0.075, 0.325], [0.250, 0.400], [0.075, 0.225])/λ1, ([0.100, 0.250], [0.150, 0.425], [0.150, 0.275])/λ2,

([0.100, 0.275], [0.100, 0.300], [0.100, 0.375])/λ3, ([0.125, 0.325], [0.150, 0.400], [0.075, 0.225])/λ4

}
‖ XΛ ‖ (P− term) ={

([0.150, 0.450], [0.125, 0.375], [0.125, 0.275])/λ1, ([0.100, 0.300], [0.175, 0.350], [0.100, 0.250])/λ2,

([0.100, 0.300], [0.150, 0.475], [0.075, 0.225])/λ3, ([0.100, 0.275], [0.200, 0.375], [0.075, 0.275])/λ4

}

Step 3: The set
︷︸︸︷
XΛ can be established as,︷︸︸︷

XΛ (A− term) =

1
4


[0.2,0.5],[0.3,0.4],[0.0,0.1] [0.2,0.3],[0.2,0.5],[0.1,0.2] [0.2,0.4],[0.1,0.3],[0.1,0.3] [0.2,0.3],[0.1,0.4],[0.1,0.3]

[0.0,0.2],[0.1,0.3],[0.3,0.5] [0.1,0.3],[0.2,0.5],[0.0,0.1] [0.2,0.3],[0.0,0.3],[0.1,0.4] [0.1,0.5],[0.2,0.3],[0.0,0.1]

[0.0,0.2],[0.2,0.4],[0.0,0.2] [0.0,0.1],[0.1,0.3],[0.4,0.5] [0.0,0.2],[0.2,0.3],[0.1,0.5] [0.1,0.3],[0.1,0.4],[0.1,0.3]

[0.1,0.4],[0.4,0.5],[0.0,0.1] [0.1,0.3],[0.1,0.4],[0.1,0.3] [0.0,0.2],[0.1,0.3],[0.1,0.3] [0.1,0.2],[0.2,0.5],[0.1,0.2]



×


[0.075,0.325],[0.250,0.400],[0.075,0.225]

[0.100,0.250],[0.150,0.425],[0.150,0.275]

[0.100,0.275],[0.100,0.300],[0.100,0.375]

[0.125,0.325],[0.150,0.400],[0.075,0.225]



=
1
4


0.2 0.0 0.2 0.1

0.2 0.1 0.2 0.3

0.0 0.4 0.1 0.1

0.0 0.1 0.0 0.1




0.000

0.050

0.075

0.010

 =


0.004000

0.005750

0.007125

0.001500


︷︸︸︷
XΛ (P− term) =

1
4


[0.2,0.8],[0.1,0.3],[0.2,0.3] [0.0,0.2],[0.1,0.4],[0.1,0.2] [0.0,0.2],[0.1,0.5],[0.1,0.3] [0.0,0.2],[0.2,0.5],[0.1,0.2]

[0.2,0.3],[0.1,0.4],[0.1,0.3] [0.1,0.3],[0.3,0.4],[0.1,0.2] [0.2,0.4],[0.1,0.4],[0.1,0.2] [0.1,0.3],[0.3,0.4],[0.1,0.3]

[0.1,0.4],[0.1,0.4],[0.0,0.2] [0.2,0.4],[0.1,0.3],[0.0,0.2] [0.1,0.3],[0.2,0.4],[0.1,0.3] [0.2,0.3],[0.1,0.3],[0.1,0.3]

[0.1,0.3],[0.2,0.4],[0.2,0.3] [0.1,0.3],[0.2,0.3],[0.2,0.4] [0.1,0.3],[0.2,0.6],[0.0,0.1] [0.1,0.3],[0.2,0.3],[0.0,0.3]



×


[0.150,0.450],[0.125,0.375],[0.125,0.275]

[0.100,0.300],[0.175,0.350],[0.100,0.250]

[0.100,0.300],[0.150,0.475],[0.075,0.225]

[0.100,0.275],[0.200,0.375],[0.075,0.275]



=
1
4


0.5 0.0 0.0 0.1

0.1 0.1 0.2 0.1

0.3 0.3 0.0 0.1

0.1 0.1 0.1 0.1




0.200

0.025

0.075

0.000

 =


0.025000

0.009375

0.016875

0.007500


︷︸︸︷
XΛ =

{
0.004000ei0.025000π/ğ1, 0.005750ei0.009375π/ğ2, 0.007125ei0.016875π/ğ3, 0.001500ei0.007500π/ğ4

}
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Assume the modulus value of max

(
ℵ︷︸︸︷

XΛ

)
= max {0.004101260482/ğ1, 0.005804159727/ğ2, 0.007246254583/ğ3, 0.001511292293/ğ4}

= 0.007246254583/ğ3. This means that the LED ğ3 may be recommended by Mr. P for

purchase.

5. Discussion and comparative analysis

Different DM algorithmic techniques have already been explored in the literature by [35–

37, 55–59, 61] that were based on hybridized complex set architectures with F−set,IF−set,

and SVN−set under S−set environment. The lack of several crucial characteristics has a

negative impact on the process of DM. For instance, considering ”screen size,” ”screen res-

olution,” ”refresh rate,” e.t.c., as only attributes in a scenario based on product selection is

insufficient because these indicators may have different values (parameters) and sub-values

(sub-parameters). It is much more appropriate to further classify these parameters into their

DAVS, as we have done in Example 4.2. The aforementioned current DM models are insuffi-

cient for IV data orMAA−mapping, however, the shortcomings of these models have been

solved in the suggested model. By taking into account MAA−mapping, the DM process

will become more dependable and trustworthy. In Table 4, a comparison analysis of pro-

posed model with relevant existing models has been carried out. The Table 4 makes it abun-

dantly clear that our proposed structure, Ξ-set is more flexible and generalized than existing

relevant models for the reason that these models [35–37, 55–59, 61] are customized for their

particular cases by excluding certain or all features among M f n, N f n, I f n, SAA-mapping,

MAA-mapping, PN−data and IV−data. The visual illustration of this generalization of our

suggested structure is shown in Figure 2.

FIGURE 2. Generalization of Proposed Structure
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TABLE 4. Comparison analysis of proposed model with some existing rele-

vant models

Authors Structure A f n Remarks

Thirunavukarasu

et al. [35]

CFS-set SAA-

mapping

Insufficient for IV data, N f n, I f n and partitioning

SP to DAVS.

Fan et al. [58] IVCFS-set SAA-

mapping

Shows inadequacy for N f n, I f n and partitioning SP

to DAVS

Selvachandran et

al. [61]

IVCFS-set SAA-

mapping

Insufficient for N f n, I f n and partitioning SP to

DAVS

Kumar et al. [36] CIFS-set SAA-

mapping

Insufficient for IV data, I f n and partitioning SP to

DAVS

Ali et al. [55] CIFS-set SAA-

mapping

Insufficient for IV data, I f n and partitioning SP to

DAVS

Khan et al. [59] CIFS-set SAA-

mapping

Insufficient for IV data, I f n and partitioning SP to

DAVS

Smarandache et al.

[37]

CSVNS-set SAA-

mapping

Insufficient for IV data and partitioning SP to

DAVS

Al-Sharqi et al. [57] ICSVNS-

set

SAA-

mapping

Shows inadequacy for partitioning SP to DAVS

Rahman et al. [56] CFHS-set MAA-

mapping

Insufficient for IV data, N f n, I f n.

Rahman et al. [56] CIFHS-set MAA-

mapping

Insufficient for IV data and I f n.

Rahman et al. [56] CSVNHS-

set

MAA-

mapping

Insufficient for IV data.

Rahman et al. [60] IVCFHS-

set

MAA-

mapping

Insufficient for N f n, I f n.

Proposed Structure Ξ-set MAA-

mapping

Addresses the restrictions and faults of preceding

structures.

5.1. Merits of proposed Study

The following are some advantages of the proposed study that are mentioned in this sub-

section:

(i) The proposed method utilized the Ξ-set concepts to address current DM difficulties.

As a result, this model has enormous potential in the realistic portrayal of computa-

tional invasions. The offered approach enables investigators to handle a real-world

situation where the periodicity of data in the form of intervals has to be addressed.
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(ii) Due to the suggested structure’s emphasis on a thorough examination of qualities

(sub-attributes) rather than a narrow focus on those traits (attributes), the DM process

is improved, adaptable, and more dependable.

(iii) It discusses the features and qualities of the current relevant structures, i.e., IVCFHS-

set, CFHS-set, CIFHS-set, CSVNHS-set, IVCFS-set, IVCIFS-set, IVCNS-set,

CFS-set, CIFS-set, CNS-set, etc., so it is not unreasonable to call it the generalized

form of all these structures.

TABLE 5. Comparison with existing models under appropriate features

Authors Structure M f nN f n I f n SAA-

mapping

MAA-

mapping

PN-

data

IV
data

Ali et al. [55] CIFS-set X X × X × X ×
Al-Sharqi et al. [57] ICSVNS-set X X X X × X X

Fan et al. [58] IVCFS-set X × × X × X X

Khan et al. [59] CIFS-set X X × X × X ×
Kumar et al. [36] CIFS-set X X × X × X ×
Smarandache et al. [37] CSVNS-set X X X X × X ×
Selvachandran et al. [61] IVCFS-set X × × X × X X

Thirunavukarasu et al.

[35]

CFS-set X × × X × X ×

Rahman et al. [56] CFHS-set X × × X X X ×
Rahman et al. [56] CIFHS-set X X × X X X ×
Rahman et al. [56] CSVNHS-set X X X X X X ×
Rahman et al. [60] IVCFHS-set X × × X X X X

Proposed Structure Ξ-set X X X X X X X

Tables 4 and 5 make it simple to determine the benefit of the proposed study. Table 4 demon-

strates the main features of the study. Table 5 demonstrates the dominant features, including

M f n, N f n, I f n, SAA-mapping, MAA-mapping, PN data, and IV data of the proposed study.

6. Conclusion

This article discusses a novel theoretical framework, the interval complex single-valued

neutrosophic hypersoft set (Xi-set), along with its characteristics and set-theoretic operations.

The recommended structure blends the interval complex single-valued neutrosophic set and

hypersoft set to regulate unclear and unsure knowledge. These two components are already

recognized for their dependable settings. While the second provides a multi-argument do-

main for the concurrent assessment of several sub-attributes, the first component can manage
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data on intervals and periodic types. The set theoretic operations, including complement, dif-

ference, union, and intersection of the Ξ-set, are also described. It has been designed to use

aggregate matrices, cardinal sets, aggregate F-sets, and aggregate matrices as aggregation

operators. A DM technique that is based on aggregation operators of the Ξ-set has been sug-

gested. To assess the model’s flexibility and validity, the suggested structure and its DSS in a

real-world scenario have been compared with some previously published relevant research.

The present work has explored the conceptual basis for a generalized model, that is, Ξ-set,

to deal with DM real-life situations by using hypothetical data. The authors have pledged

to present multiple instance reports based on the Xi-set using actual data. It is feasible to ex-

tend hybrid set structures more broadly by including expert sets, prospective fuzzy-set-like

models, fuzzy-set-like parameterized families, and algebraic structures.
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