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Abstract: This paper aims to extend the methods of steepest descent and conjugate directions to the
neutrosophic field R(I). the generalizations were built similarly to the classic algorithms, starting by
generalizing the quadratic forms to R(I). Geometric isometry (AH-Isometry) S was used as the tool,
and many examples are presented in the main paragraphs. The simple extension method can be
generalized to other linear and non-linear methods.
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1. Introduction

Methods for the steepest descent [1], conjugate directions [2], and conjugate gradients [3] were
constructed and derived from quadratic forms.
It is not hard to see the advantages of The Method of Steepest Descent; it is simple, easy, and popular.
It uses a zig-zag path from an arbitrary point until it converges to the solution.
Conjugate direction methods have been developed to speed up the slow convergence of the steepest
descent method; more details can be found in [4].

The nature of the consideration of how these two methods work in the neutrosophic field will not
change.

Despite the great importance of optimization in modern mathematics, the importance of
neutrosophic in prediction, and the existence of many studies that have developed many
optimization concepts in the field of neutrosophic, as described in [5-13]. However, no study has
established a method for solving large linear system neutrosophic equations.

This paper lays a foundation for specifically addressing this problem by extending the steepest
descent and conjugate directions methods to the R(I).

To ensure more effective and general results, the matrix Ay was treated such that its real section
differs from its neutrosophic section.

AH-isometry S was used to speed up the results because it is a simple and effective tool that

saves the properties of the classic study in R(I), which is defined as followed:
S:R(1)>RxR
S(a+bl)=(a,a+h)
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where R(I)={a+bl;ab eR}.
And its invert is

SHRxR >R(1)
With some basic properties

S [(a+b| )+(c +d )]:s (a+bl)+S (c+dl)

S [(a+b| ).(c +di )]:S (a+bl)s (c+dr).

Other details and applications of this tool can be found in [14-18]. Starting from derivate more

generalized quadratic form
1
f(xn ):EXL An X —by Xy +Cy

The methods for steepest descent and conjugate directions were generalized to the neutrosophic field.
It can be seen that the classical definitions used in this paper were simply extended to R(I).

2. Preliminaries

Steepest descent and conjugate directions are the most popular iterative methods for solving large
systems of linear equations. Each method is effective for systems of the form

A =b. )

where 4 is an unknown vector, b is a known vector, and A is a known, square, positive-definite
(or positive-indefinite) matrix.

A matrix A is positive-definite if, for every nonzero vector ¢ ,
ETAESO. )

Where &' is the Transpose of <

The Quadratic Form
A quadratic form is a scalar, quadratic function of a vector with the form

f(£)=5¢ AE-bT £uc, ®

Where A is a matrix, 4 and D are vectors, and c is a scalar constant.
However, condition (2) is not a very intuitive idea, as it affects the shape of quadratic forms.
The gradient of a quadratic form is defined to be

i

051

f
f'(§)=] 9, : (4)
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One can apply Equation (4) to Equation (3), and derive, then, we obtain

f ’(5):%AT§+%A§—b (5)

If Aissymmetric, this equation reduces to
f'(&)=As-b (6)
Setting the gradient to zero, we obtain Equation (1).

3. The Neutrosophic Quadratic Form

a, a,
a

21 22

A {aﬁ Eﬂ
a12 a22

Definition (1): The neutrosophic form of a matrix A = { } could be written as following;:

where ai'}' =4 +Iaij,i,j =12.

In fact, A, ::AHA{% au}{an an}:{au au}[anl anl}:{an au}_
R A ECREV [ U Y EXTRCT I PO

When A, is a symmetric matrix, then their componentes are symmetrics. One can considered a more

generalized form of A, by taking non-coincide components.

N N
Transpose of A, is defined as: A], =[A + IA]T =AT +1AT :{a“ azl}rl {a“ an}:{a“ aﬂ}.

a, a, a, a,

21

N
For m = 2,n = 1, we have A{ :[aﬂ a;],,and Ay :Eﬁ}

b
By looking to the equation A& =b , where A = {ah Zﬂ}, E= L%:n}' b= Ln} )
22 21

and despite it is easy to find the neutrosophic form of it, we will consider more generalized form:

21 21

ANXN = bN'

where

all a12 211 j'12 gll 7711 bll Bll
A :A+IA:{aZl azjﬂ Lﬂ ﬂzj’ Xy :§+In:{§2j+l L}J, b, =b+I1B :{bjﬂ {BJ’

that we can rewrite it as
Aé+1 (Anp+AE+An)=b+IB. @)

Note that, if we make the neutrosophic part in (7) is equal to zero, then we will find the classical

equation A& =b.

The Neutrosophic Quadratic Form

To find The Neutrosophic Quadratic Form, we begin Form the well-known relation
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1
f (&) =§gT AE-bT é+c.
That which, according to the neutrosophic form, simply, we have
f(xN)zéxTA Xy —by Xy +Cy . Cy =C+1d. 8

N"'NTN

By taking S for the both sides of (8):

SIf (X )] =S @/ 2)S (xy)S (Ay)S (xy ) =S by )S (X)) +S ey )
=(121/2)(&,E+n) (ALA+A)(EE+n)—(bb+B) (£E+n)+(c,c+d)
=(112112)(8 & +n" (A, A+A)(&E+n)-(b" b +BT )(&.&+7)+(c.c+d)

{%g;\gé(gﬂ o (A +A)(§+n)}—[bT§,(bT +BT)(E ) |+(c.c+d)

:[%gTAf—bT§+c,%(§T +n )(A +A)(‘§+77)—(bT +BT )(§+77)+(c +d )}

Taking S, then we obtain

f (X ):%g‘TAf—bT§+c+
Lo T T T 1. T
+] {5(5 +1" J(A+A)(&+n)-(b" +B )(§+n)+(c+d)—[§§ AE—b §+c}}.

Derivate the last function with respect to &, respectively:

f :%EN):%(AJFAT )é-b+1 E(AJFAJFAT +AT)(§+n)—(b+B)—(%(A+AT)f;—bﬂ

=%(A +AT)é-b+ B(A+AT )(§+n)+%(A +AT )U—B}-

fo _a ;EN):I B(A +A+AT + AT )(§+n)—(b+B)}.

By making f '(x, )=0, then it leads to solve the system:

E(A +AT)E-b =0 ©)
*) %(A-ﬁ-AT )(§+77)+%(A +AT )n-B =0 (10)
%(A+A+AT +AT)(E+n)-(b+B)=0 a1

If A, is symmetric, then, A = AT A=A, and the system becomes:

AE—b =0 12)
(**) A(E+n)+An-B =0 (13)
(A+A)(E+n)-(b+B)=0 (14)

In both systems, we note that the third equation is a summation of the first and the second equation.

Examples:
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“1+21 —2-1 -1 -2 2 - & +1n,

] w70 e oG]

By returning to (*) relations, we have for (9):

1+1 443l 1 4 1 3 E+ln
1. Let A, = ,then A = , A= L Xy = , then

1 -1 1 3/2
AT = 1/2)(A+AT)=
{4 —2}’and( J(A+AT) {3/2 —2}’

{ 1 3/2}{51} { 2 }vie'ds {—2/17}
= —> §: .
312 =2 ||& | |3 24/17

1 5/2][-2/17+n, | | 58/17+n,+(5/2)n,
5/2 -1 [24/17+n,| |-29/17+(5/2)n,—n, |

And for (10), we have

%(AJFAT )(gm){

| 2
1(A+AT)77: 1 3/2)m | _ m+(3/2)n, ’
2 312 =2 ||n,| |(3/2)n,—2n,

and

{58/17+771+(5/2)772 }+|:(771+(3/2)772 }{ 1}

—29/17+(5/2)m, -1, 3/2)p,—2n, | |-2

By solving the system
58/17+2n, +4n, =1,
—-29/17+4n, -3, =-2.

We obtain

~13/34 (-2/17)+1 (-13/34)
'7{ 7117 } and X :{ (24117)+1 (=7/17) }

This solution satisfied (11), since

%(A +A+AT + AT )(&;;):LZ1 fs}{_lllz}z[f’s}zms.

. L. 2-1  5+2I &+ln 1+21
2. Let Ay be a symmetric matrix, i.e. Ay = 5ol —1431 |” Xy = £ 4l ,and by = Rk
- PR/

By returning to the (**),we have for (12):

e HEH
PN

‘e 11/27
127 |

then

and for (13):
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B e SR

_ {266/1269}

then we find that

385/1269 |

and

y 11/ 27 o 266/1269
N2t 385/1269 |
The solution satisfies (14):

1 77[29/47] [3
(A+A)(§+n)—(b+3){7 2}[16/47}{5}:0
A special case

If A=A, £=n, b =B then the neutrosophic Quadratic Form is:
f(xy ):%gTAg—bT§+c+l GEAg—stngcj, (15)
And
1 1 3 3
fi(Xy )==AE+=ATED+I | ZAE+ZATE-DD |,
(xu)=5AE+5ATS [252 & j
by making f '(x )=0, that leads to

(A+AT)E=2b. (16)
This means that the neutrosophic quadratic form of the classical form can be found directly by

solving the well-known equation (16), which turns out to be (1) when A is symmetric, which we

will see later in an example.

4. The Method of neutrosophic Steepest Descent
Derivate the function (8) by using the relation (4), we find

0¢ on
:%(A +AT )E—b +I [(A +A+AT +AT)(E+7)~(2b +ZB)_(%(A AT )é_bﬂ

Let us denote X(hi')=§(i)+77(i)l to Xy =&+nl instep (i), then
(N _ 1 T T T 1 T
_f (x(i))_b—E(AJrA )é(i)+l{(2b+25)—(A+A+A +A )(§(i)+77(i))—(b—5(A+A )g(i)ﬂ

=b+(b+28B)I —{%(A +AT )+E(A +AT )+ (A+AT )}I }g(.)—

i

Putting ky =b+(b+2B)I,t, :%(A+AT) { (A+AT) (A+AT )} , and suppose that

A+AT )+ (A +AT )+ (A+AT )}I }n(i)l .

NIH
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then
i) = K —tuXg),
Let us define the neutrosophic error as

N

ety =X =X = (& +t )= (1) = &y =9+ (my =)

Note that r(:“) =-1, e(';') .

Let us start from a point X(%) , and we will choose a point X(’:) such that X(T) = X(';) +ay .r(g‘)

df (x
where ¢, is a neutrosophic number, which is minimizes f when ( (1)) is equal to zero.
ay
To determine ¢, , we have f '(X(“i'))z —I’(:“) and
df (x; 7 d(x N T
( (l))z[f '(X(T))J ( (l))z[f '(X(T))} fo
da, da,

This formula can be rewritten with more specifically way as followed:
By returning to (5), it is easy to see that

—f ’(§)=b—%(A +AT )¢,

and

[2f ()] {(A +A+AT +AT)(E+77)—(2b +ZB)—(%(A +AT)§—bﬂl.

Then
oy == /(x{) = (50 +! [‘Zf (4o )]

and one can write

(17)

Azzam Mustafa Nouri, An Introduction to some Methods for Solving A Large System Linear Neutrosophic Equations



Neutrosophic Sets and Systems, Vol. 60, 2023 621

Suppose that

o=[ (0] (<17(0) v=[-21) ]T (-2 %, )-[ (o) ] (-F(40))
[VMT oy =@+1v.

And by using the same tool S, we find
s (S {[r@) ]T [t T 1) }j =[rt) ]T [t T 1y =
Lotal] [ ] (et |(Coa T Joan ) staen oy
[t an)] [Bean)] (- ’(%))}-

Putting

o=[-1 (&) (30 +4) - (&)
v =|-2f, J (A +a)+((A7 +8))](-2f ) )-[ '(g(o))T (%(AT +A))(—f (&0))-
[t

] =®+I¥ and « takes the form

Then |1} ]

_(0+|l//
O+I1¥’

N

1 )_S(ostn)_(00sw) (0 or
S(aN):S(ZH‘ZJ:S(Z+I‘Z):(§,Z+V‘;):(%'g+lé’J

= +
S7(S ()= =21 | 2L -2

or
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T 2 T (-2, . B ;(%)T (+(40)) _
2t | [AT Ay (AT e a))](2f ) [ (4] G(AT + A))(‘f (40))

Notice that the real part of ¢, is the well-known classic form of « .

+1

As a result, The Method of neutrosophic Steepest Descent is:

Under conditions of multiplication of matrix, we can premultiplying both sides of the last equation
by -t, and adding k|, , then we have

N _ N _ N N
Nisy = 1) — %) 1) 18)

Example 1:

_ 4-41 2+21 —1+1
Let us start with Ay = 2iol 2-21 1 by =

ty :1(A+AT)+E(A+AT)+(A+AT )}I {4_4' 2+6|},

2 2+61 2-2
W g [ 44 246 _%+%| 10
O 7NN T g 2+61 2-2I o323,

0 2
r 9 9
NN =22
[(.)] i) =7
N U 1B N _9
[r(l)] [ty ] r(')_E =1
9
Z(1-1
1 9 2'
Z(1-1
Y1)
By using (18), we have
o~ 0 1\a—ar 24617 O __§+§|
o= 33 1T\ 2 ) 2wet 220 |[3230 |7
2 2 0
NN I 0 —§+§| 9 9|
[r(m)] lisg =|~5%5 2 2 |=———
0
3 3
N T T | 3.3 4-41 2461 [|[-=+=1 |
[MJ [ty ] r(nl)_[_EJFEI O}L%I »_ o] 202 —9-9l.

Hence
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2a-1)
(97" 9(1-1) 4
Example 2:
4—ll Z—EI 11
|2 2 _| - e
Let A, = 1 , by = 1491 cand X =|4 4
2421 1 = 0
2
Then

1-1
ky =b+(b+2B)I =[_1+3| }

t, :%<A+AT)+B(A+AT)+(A+AT)}I =[4+3| 2! }

21 -1+21

Nk g 1-1 4+3l 21 %-% [ o
() 7NN T _143) 21 -1+21 0 Cl-1+31 |

)
[y ] =13t
T
[y ] T o) =-1+51.
v 143l

afl) = ——1+21.
—1+5

By using (18), we have

fi {_133 }(_“2' )F;GI —12+I2| H—lia }: {_gl }
[y ] ry =[- 0]{_? }:1& '

N TR T o 4+31 21 -417
[t ) T iy =[- 0][ o aol | o |FH2

Hence

e 1,
(471121 7

5. The method of Neutrosophic Conjugate Directions
As in the classic case, we use coordinate axes as search directions. Every step consists of two
paths, the first leads to the correct x (';‘) —coordinate, and the second hit the desired point, after n steps,

it will be done.

N

Definition (2): Let Ay be a symmetric matrix, two nonzero vectors d.d (’\j‘) are said to be A -

orthogonal, if
N T N
[df ] Al =0,
where i # j.

In general, we take
N N

_ N 4N
X (i =X i) + o) (19)
By taking into consideration the fact that e('?ﬂ) should be orthogonal to d('i\‘) , we can find the value of

a('?‘) , which eliminates the need to step in the direction d('i\‘) again. We have

Azzam Mustafa Nouri, An Introduction to some Methods for Solving A Large System Linear Neutrosophic Equations



Neutrosophic Sets and Systems, Vol. 60, 2023 624

Which leads to

oAl ] e | (20)

Knowing e(N) guarantees computing a(“i‘), As it has known in classical case, the solution is to be the

two vectors d) and dj, are Ay -orthogonal. To make ej,, be Ay -orthogonal to dg, it is

i+

sufficient to find the minimum point along the direction d('i\‘) :

diN f (X(’\i‘+1)):ON

i N rod N
[f (X(m)ﬂ PR =0y
T
_|:r(:\‘+1):| dgi) =0y
.

[d(?)] Ay .e('}'ﬂ) =0y

Now, the equation (20) becomes with A, -orthogonal search directions, as following:
—[d N T Ay &

N B 7N

[ain] A ah,

Which could be to calculate.
.
Let us write a) as o) =X +IY . Suppose that d, =d, +ID;,, then [d(’?))] =dg;, +1Dg, .

> {[dgj 'r<iN)}=5 ([%T )S (123) =) 8 +0) (- (&) -2 )
=(do) (- (o)) (e +00 )20 %, )

Then
M)T 1 =d) (- (&) [(%T +Dgy )[‘Zf '%}da y (‘f '(50)))}'
S {M))T A -dg)}:((d(if A+ ))(AA+A)(dg). 0+ )
=(d Adg)(de) +Dy ) )(A+A)(dg)+Dy))
Hence

(i
Then we can write

[80)] Avdy =d T Ady +1[(de) +D ) )(A+A)(dg,+Dy) )-d, T Ady, |
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)
s (af))=5 [dM o] S([“’M -r(iNJ

(4] Al ) s ([daN))]T Ax %]
_ (me (~F (&) (d) +0u) ) -2 BH)
(A Adas(dy)” +D ) )(A+A)(dg +Dy, )

do (F'(&))  (da) +Dy) )[‘Zf '%J
doy Adgy (d,) +Dy) )(A+A)(dg, +Dy)

Finally
d(i)T (—f ’(‘f(i)» (d(i)T +D(i)T )__Zf Ir,j(i) d(i )T (_f '(g(i)))

%iy = T +1 - - T
dy Adg) (d(i)T +D(i)T )(A+A)(d(i)+D(i)) dy Adg,

We can see that the classical «;, is the real part of a(':‘) .

Example:

To find the minimizer of

1 . [4-41 2421 417
f(x,)==xTI X — X, .
() 2 N{2+2I 2—2& N {1—I} N

0 1-1
Let X(T)) ={0},and A, -conjugate directions d(';) ={ 0 } and d(T) :{
o _[4-a 2+60
" l2+6l 2-21 ]

-1+1
b=t unty 2].

-3/8-(3/8)l
3/4+@3/4)1 |

1-1

X [1-1 O]Ejll} i 4
o = L

0~ 4—41 2+21[1-1] 4-41 4
[1-1 0] ’
2421 2-21|| O

Thus
~1/4+(1/ 4)
N N NN _
X =X * %) { 0 }
And
0
ray =ky —tyXg = 3.3,
2 2
0
[—S—SI 3+I} 3 3
8 4 5! %—%I
N _ —_9_
" 33,3 1,8 7
[_3_3I 3+3|}4—4I 2+2l 8 8 16 16
8 8 4 4 J[2+21 2-21] 3 3
4
And
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=1+1
N _ N NN _
X =X +opdy =|3_3,
272

Let us prove that the algorithm of Neutrosophic Conjugate Directions can compute X in n steps:

Using the error term as a linear neutrosophic combination of the neutrosophic search directions
n-1
_ NN
- Zgj d(i)
j=1

where &' are neutrosophic numbers one can compute simply.

Since that the search directions are A -orthogonal, then we have
[ ] Al =S [a0 T A dl
(] TNEO &ADLT ] TN D

_oN NT N
=3 [di ] Avdl

hence

. [y, ] Acel [di A (el + X adl) ) e
" [d) ] Ava [d) ] Audy, [0 ] Avay,

We can see that a(’\i) = —5& , hence we can write

I |
J’_
Eé

n-1 i-1
= Z5<Nj Ay ;@Nj )
nz Z&N d! S
220 %

6. Conclusions
In this study, the neutrosophic quadratic form, method of neutrosophic steepest descent, and
method of neutrosophic conjugate directions were introduced. Many examples have been discussed.

The author did not address the topic of convergence study, so it did not adhere to the examples

concerned with the fulfillment of the condition xj A, x, >0.

It is possible to work in many research directions, such as Markov chains. It is also possible to
introduce a disturbance operator on the behavior of the moving point and then work on processing
and correction to reach the optimal solution. One can also return to [14] and examine the application

of the (AH) in generalizing stable distributions.
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