University of New Mexico

N_{δ} -Closure and N_{δ} -Interior in Neutrosophic Topological Spaces

 $K.Damodharan^1$ and $M.Vigneshwaran^2$

¹Department of Mathematics, KPR Institute of Engineering and Technology(Autonomous), Coimbatore -641407, India.; catchmedamo@gmail.com

²Department of Mathematics, Kongunadu Arts and Science College(Autonomous), Coimbatore - 641029, India.; vignesh.mat@gmail.com

Abstract. Topology greatly benefits from the concept of δ -cloure. Its quiet nature to extended its properties in other topological spaces. So, with the concept of quasi-coincidence Ganguly and Saha pioneered and extensively examined the notion of δ -closure within the domain of fuzzy topological spaces. (F_{TS}) . The theory of δ -closure in intuitionistic fuzzy topological spaces (IF_{TS}) was further extended by Seok Jong Lee and Yeon Seok Eom. In this work, the notion of N_{δ} -closure in Neutrosophic Topological Spaces (N_{TS}) is put forward and discussed.

Keywords: neutrosophic; δ -Closure; δ -Interior

1. Introduction

In 1965, Zadeh pioneered the concept of fuzzy sets (F_S) . In various areas of our daily lives, uncertainty is handled using this innovative mathematical framework. A membership function with the range of 0 to 1 characterizes a F_S . Over the last few decades, F_S is substantially used and applied in many domains, such as computer vision [45], pattern recognition [22], control [44], and others. Researchers in the fields of engineering [22], social sciences [45], and medical diagnosis [45] have all found this idea to be very useful. There is a tonne of information on F_S theory in [22, 34, 45]. A specific value contained within the unit interval [0,1] indicates the F_S 's membership function. There is some hesitation as a result, therefore it's not always true that an element's non-membership function equals 1. In order to clarify this scenario, Atanassov [2] created IF_S in 1986 by including the hesitation degree known as the hesitation margin. The definition of the hesitancy margin is 1 . Thus, a membership function and non-membership function for an intuitionistic fuzzy set IF_S have a range of [0,1] with the additional condition that 0 1. As a result, F_S theory was generalized to include IF_S theory.

K.Damodharan and M.Vigneshwaran N_{δ} -Closure and N_{δ} -Interior in Neutrosophic Topological Spaces

Decision-making [20], pattern recognition [33], social sciences [5], medical diagnostics [33], and other domains have all benefited from the application of the IF_S theory. It is impossible for fuzzy sets and IF_S to handle data that is unclear, inconsistent, partial, or uncertain. Consequently, Smarandache (Smarandache, 1999) formulated neutrosophic logic in 1998, drawing inspiration from Neutrosophy, a philosophical paradigm that scrutinizes the origin, composition, and application of neutral elements, alongside their interplay with diverse conceptual spectrums. A Neutrosophic set N_S encompasses three distinct membership functions: 'T' for truth, 'I' for indeterminate membership, and 'F' for falsehood. The 'I' component embodies a notable degree of indeterminacy, a key attribute associated with mediocrity. The theoretical frameworks of classical set theory, fuzzy sets (F_S) theory, intuitionistic fuzzy sets (IF_S) theory, interval-valued fuzzy sets theory, paraconsistent theory, dialetheist theory, paradoxist theory, and tautological theory are all encompassed and extended by the overarching N_S theory. This theoretical construct proves itself to be a robust instrument for grappling with the intricate tapestry of ambiguous and contradictory information that pervades our real-world context. Scholars from a multitude of disciplines have effectively harnessed N_S theory to navigate their respective domains. Notably, Wang et al. (2010) given the application of singular-valued N_S in the realms of science and engineering, providing an additional avenue for describing uncertain, partial, imprecise, and inconsistent data. The correlation coefficient of N_S found its investigation in the works of Hanafy et al. (2012 and 2013), while Ye (2013) explored the correlation coefficient within the context of singular-valued N_S . Further exploration of the correlation coefficient in the interval N_S was undertaken by Broumi and Smaradache (2013). In their discussion of N_{TS} , Salama et al. [27] You can find additional research on the N_S in [21, 27, 29, 37, 40-42]. In the decision-making theory [4, 39-42], data base [37], medical diagnosis [42], pattern recognition [11,23], and other fields, N_S have been successfully employed.

In the realm of conventional topology, when delving into subjects like H-closed spaces, Katetov's and H-closed extensions, the generalizations of the Stone Weierstrass theorem, and other related topics, the ideas of θ -closure and δ -closure emerge as valuable tools [8,9,24,35,36,43]. Given the substantial importance of these concepts, it becomes almost inevitable to seek their extension into the context of fuzzy topological spaces (F_{TS}). Thus, by harnessing the notion of quasi-coincidence within F_{TS} , Saha and Ganguly introduced and conducted a thorough investigation into the innovative concept of fuzzy δ -closure. [10]. Furthermore, within the context of intuitionistic fuzzy topological spaces (IF_{TS}), extensive research efforts have been directed towards examining the characteristics of continuous mappings and closure operators. [12,17–19,32]. A generalisation of the δ - closure, the idea of δ -closure in IF_{TS} is introduced by Ganguly and Saha [10]. N_{TS} were first introduced in 2012 by Salama and Alblowi [26]. As an advancement beyond the framework of intuitionistic fuzzy topological spaces (IF_{TS}), they

K.Damodharan and M.Vigneshwaran, N_{δ} -Closure and N_{δ} -Interior in Neutrosophic Topological Spaces

introduced the concept of neutrosophic topological spaces (N_{TS}) , along with a corresponding neutrosophic set (N_S) , which encapsulates the degrees of membership, indeterminacy, and non-membership for each individual element. In 2016, P. Iswarya and Dr. K. Bageerathi [16] contributed to this exploration by proposing the novel concepts of neutrosophic semiopen sets, neutrosophic semiclosed sets, neutrosophic semi-interior, and neutrosophic semi-closure within the context of neutrosophic topological spaces (N_{TS}) . In the subsequent year, Parimala M et al(2018). elaborated on some new notions of homeomorphism within the same neutrosophic topological framework (N_{TS}) [25]. This evolutionary trajectory continued into the year 2022, when Shuker Mahmood Khalil delved into the realm of Neutrosophic Delta Generated Per-Continuous Functions in neutrosophic topological spaces (N_{TS}) [30]. Seok Jong Lee and Yeon Seok Eom [43] developed the concepts of δ -closure and δ -Interior in IF_{TS} in 2012. We are extending the aforementioned ideas to N_S in this study. With the help of examples, we discuss some of the fundamental characteristics of \mathbf{N}_{δ} -Closure and \mathbf{N}_{δ} -Interior in N_{TS} .

2. Perliminaries

This part of the study gives an insight to the pertinent and basic preparatory operations about N_S 's

Definition 2.1. [26] Consider a non-empty fixed set S. A neutrosophic set I (N_S) can be characterized as an entity taking the following structure: $I = \{\langle s, \mu_m(I(s)), \sigma_i(I(s)), \nu_{nm}(I(s)) \rangle \forall s \in S\}$, where $\mu_m(I(s)), \sigma_i(I(s))$ and $\nu_{nm}(I(s))$ represents the degrees of membership function, indeterminacy function and nonmembership function of each element $s \in S$ to the set I.

Remark 2.2. [26] A N_S

 $I = \{ \langle s, \mu_m(I(s)), \sigma_i(I(s)), \nu_{nm}(I(s)) \rangle \forall s \in S \} \text{ can be represented by an ordered triple} \langle \mu_m(I(s)), \sigma_i(I(s)), \nu_{nm}(I(s)) \rangle \text{ within the interval }]^{-0}, 1^{+}[\text{ defined over the set } S.$

Definition 2.3. [26] Consider I as a neutrosophic set N_S in the format $I = \{ \langle s, \mu_m(I(s)), \sigma_i(I(s)), \nu_{nm}(I(s)) \rangle \, \forall s \in S \}$, Subsequently, the complement of I, denoted as I^c , can be stipulated as $I^c = \{ \langle s, \nu_{nm}(I(s)), \sigma_i(I(s)), \mu_m(I(s)) \rangle \, \forall s \in S \}$

Definition 2.4. [26] Suppose there are two N_S s with the structure, I and J.

 $I = \{ \langle s, \mu_m (I(s)), \sigma_i (I(s)), \nu_{nm} (I(s)) \rangle \, \forall s \in S \} \text{ and} \\ J = \{ \langle s, \mu_m (J(s)), \sigma_i (J(s)), \nu_{nm} (J(s)) \rangle \, \forall s \in S \}.$ Then,

i) Subsets $(I \subseteq J)$ may be defined as follows $I \subseteq J$ if and only if

$$\mu_m(I(s)) \le \mu_m(J(s)), \sigma_i(I(s)) \ge \sigma_i(J(s)), \nu_{nm}(I(s)) \ge \nu_{nm}(J(s))$$

K.Damodharan and M.Vigneshwaran, $N_{\delta}\text{-}\mathrm{Closure}$ and $N_{\delta}\text{-}\mathrm{Interior}$ in Neutrosophic Topological Spaces

- ii) Subsets I = J if and only if $I \subseteq J$ and $J \subseteq I$
- iii) The union of subsets $I \cup J$ can be defined in the following manner:

$$I \cup J = \{s, max \left[\mu_m \left(I\left(s\right), \mu_m \left(J\left(s\right)\right)\right)\right], min \left[\sigma_i \left(I\left(s\right)\right), \sigma_i \left(J\left(s\right)\right)\right], \\ min \left[\nu_{nm} \left(I\left(s\right)\right), \nu_{nm} \left(J\left(s\right)\right)\right] \forall s \in S\}, \end{cases}$$

iv) The intersection of subsets $I \cap J$ can be defined in the following manner:

$$I \cap J = \{s, \min\left[\mu_m\left(I\left(s\right), \mu_m\left(J\left(s\right)\right)\right)\right], \max\left[\sigma_i\left(I\left(s\right)\right), \sigma_i\left(J\left(s\right)\right)\right], \\ \max\left[\nu_{nm}\left(I\left(s\right)\right), \nu_{nm}\left(J\left(s\right)\right)\right] \forall s \in S\}, \end{cases}$$

Definition 2.5. [26] A $N_T(S, \dot{\tau})$ that meets the axioms listed below

- i) $0_N, 1_N \in \dot{\tau}$,
- ii) $H_1 \cap H_2 \in \dot{\tau}$ for any $H_1, H_2 \in \dot{\tau}$,
- iii) $\cup H_i \in \dot{\tau} \quad \forall \{H_i : i \in J\} \subseteq \dot{\tau}$ Then the pair $(S, \dot{\tau})$ or simply S is called a N_{TS} .

Definition 2.6. [7] Let I be a N_S contained in a N_{TS} , representing $(S, \dot{\tau})$. Then

- i) Nint $(I) = \bigcup \{J/J \text{ is a} N_{OS} \text{ in } (S, \dot{\tau}) \text{ and } J \subseteq I\}$ is termed as the neutrosophic interior of I;
- ii) $Ncl(I) = \bigcap \{J/J \text{ is } aN_{CS}in(S, \dot{\tau}) \text{ and } J \supseteq I\}$ is termed as the neutrosophic closure of I.;

Theorem 2.7. [6] For any N_S I in a N_{TS} $(S, \dot{\tau})$, we have

- i) $Ncl(I^{c}) = (Nint(I))^{c}$ and
- ii) $Nint(I^c) = (Ncl(I))^c$

Definition 2.8. [15] Let $v, \omega, \xi \in [0, 1]$ and $v + \omega + \xi \leq 3$. A neutrosophic point(NP) $s_{(v,\omega,\xi)}$ of S is a NP of S, defined as

$$s_{(\upsilon,\omega,\xi)}(t) = \begin{cases} (\upsilon,\omega,\xi), & \text{if } t = s;\\ (0,1,1), & \text{if } t \neq s. \end{cases}$$

In this context, 's' is referred to as the support of $s_{(v,\omega,\xi)}$ and v,ω and ξ , respectively. A NP $s_{(v,\omega,\xi)}$ is considered to be a member of a N_S $I = \langle \mu_m(I(s)), \sigma_i(I(s)), \nu_{nm}(I(s)) \rangle$ in the set S, shown by $s_{(v,\omega,\xi)} \in I$ if $v \leq \mu_m(I(s)), \omega \leq \sigma_i(I(s))$ and $\xi \geq \nu_{nm}(I(s))$.

Definition 2.9. [1] Let A be a N_S in a N_{TS} $(S, \dot{\tau})$. A is said to be

- i) a neutrosophic semi-open set of S, if there exists a N_{OS} B of S such that $B \leq A \leq cl(B)$.
- ii) a N_{ROS} of S, if Nint(Ncl(A)) = A. The complement of a N_{ROS} is said to be a N_{RCS} .

K. Damodharan and M. Vigneshwaran,
 $N_{\delta}\text{-}\text{Closure}$ and $N_{\delta}\text{-}\text{Interior}$ in Neutrosophic Topological Spaces

3. Neutrosophic δ -Closure and δ -Interior

Definition 3.1. Let $(S, \dot{\tau})$ be a N_{TS} . Let I be a N_S and let $s_{(v,\omega,\xi)}$ be a NP. $s_{(v,\omega,\xi)}$ is considered to be neutrosophically quasi-coincident with I [denoted by $s_{(v,\omega,\xi)}qI$] if $v + \mu_m(I(s)) > 1$; $\omega + \sigma_i(I(s)) < 1$ and $\xi + \nu_{nm}(I(s)) < 1$.

Definition 3.2. Let I and J be two N_S 's. I is said to be neutrosophic quasi coincident with J [denoted by IqJ] if $\mu_m(I(s)) + \mu_m(J(s)) > 1$; $\sigma_i(I(s)) + \sigma_i(J(s)) < 1$ and $\nu_{nm}(I(s)) + \nu_{nm}(J(s)) < 1$. The term 'not quasi-coincident' will be abbreviated as \tilde{q} .

Proposition 3.3. Consider two N_S , I and J, and an NP in S, $s_{(v,\omega,\xi)}$. Then

- i) $I\tilde{q}J^c \Leftrightarrow I \subseteq J$ ii) $IqJ \Leftrightarrow I \not\subseteq J^c$ iii) $s_{(v,\omega,\xi)} \subseteq I \Leftrightarrow s_{(v,\omega,\xi)}\tilde{q}I^c$
- iv) $s_{(v,\omega,\xi)}qI \Leftrightarrow s_{(v,\omega,\xi)} \not\subseteq I^c$

Theorem 3.4. Let $s_{(v,\omega,\xi)}$ be a NP in S, and $I = \langle \mu_m(I(s)), \sigma_i(I(s)), \nu_{nm}(I(s)) \rangle$ a N_S in S. Then $s_{(v,\omega,\xi)} \in Ncl(I)$ if and only if IqN, for any N^q-nhd N of $s_{(v,\omega,\xi)}$.

Proof. Consider that $I\tilde{q}N$ exists for every $N \in N^q_{\epsilon}(s_{(v,\omega,\xi)})$. In this case, $s_{(v,\omega,\xi)}qG \leq N$ and $G\tilde{q}I$ exist for a set $G \in \dot{\tau}$. since G^c is a N_{CS} and by Proposition 3.3, we have $Ncl(I) \leq G^c$. Also since $s_{(v,\omega,\xi)} \notin G^c$, we have $s_{(v,\omega,\xi)} \notin Ncl(I)$. Since, which is contradiction.

Conversely, suppose $s_{(v,\omega,\xi)} \notin Ncl(I)$. Then, $s_{(v,\omega,\xi)} \notin V$ and $I \leq V$ exist for a N_{CS} V. Hence by Proposition 3.3, $V^c \in \dot{\tau}$ such that $s_{(v,\omega,\xi)}qV^c$ and $I\tilde{q}V^c$. Since, which is a contradiction. \Box

Example 3.5. Consider (X, τ) as a N_{TS} with X as $X = \{p, q, r\}$ and D_1, D_2, D_3, D_4 as N_S 's $D_1 = \langle \left(\frac{p}{0.3}, \frac{q}{0.3}, \frac{r}{0.2}\right), \left(\frac{p}{0.3}, \frac{q}{0.2}, \frac{r}{0.2}\right), \left(\frac{p}{0.4}, \frac{q}{0.6}, \frac{r}{0.6}\right) \rangle$ $D_2 = \langle \left(\frac{p}{0.4}, \frac{q}{0.6}, \frac{r}{0.6}\right), \left(\frac{p}{0.5}, \frac{q}{0.4}, \frac{r}{0.4}\right), \left(\frac{p}{0.3}, \frac{q}{0.3}, \frac{r}{0.2}\right) \rangle$ $D_3 = \langle \left(\frac{p}{0.4}, \frac{q}{0.6}, \frac{r}{0.6}\right), \left(\frac{p}{0.3}, \frac{q}{0.2}, \frac{r}{0.2}\right), \left(\frac{p}{0.3}, \frac{q}{0.3}, \frac{r}{0.2}\right) \rangle$ $D_4 = \langle \left(\frac{p}{0.3}, \frac{q}{0.3}, \frac{r}{0.2}\right), \left(\frac{p}{0.5}, \frac{q}{0.4}, \frac{r}{0.4}\right), \left(\frac{p}{0.4}, \frac{q}{0.6}, \frac{r}{0.6}\right) \rangle$ now the complement of D_1, D_2, D_3, D_4 are $D_1^c = \langle \left(\frac{p}{0.4}, \frac{q}{0.6}, \frac{r}{0.6}\right), \left(\frac{p}{0.5}, \frac{q}{0.4}, \frac{r}{0.2}\right), \left(\frac{p}{0.3}, \frac{q}{0.3}, \frac{r}{0.2}\right) \rangle$ $D_2^c = \langle \left(\frac{p}{0.3}, \frac{q}{0.3}, \frac{r}{0.2}\right), \left(\frac{p}{0.5}, \frac{q}{0.4}, \frac{r}{0.4}\right), \left(\frac{p}{0.4}, \frac{q}{0.6}, \frac{r}{0.6}\right) \rangle$ $D_3^c = \langle \left(\frac{p}{0.3}, \frac{q}{0.3}, \frac{r}{0.2}\right), \left(\frac{p}{0.3}, \frac{q}{0.2}, \frac{r}{0.2}\right), \left(\frac{p}{0.3}, \frac{q}{0.3}, \frac{r}{0.2}\right) \rangle$ Let the neutrosophic point be

$$s_{(v,\omega,\xi)} = \begin{cases} (0.7, 0.4, 0.3, \text{ if } x = p) \\ (0, 1, 1), \text{ if } x \neq p. \end{cases}$$

where $D_2 = \left\langle \left(\frac{p}{0.4}, \frac{q}{0.6}, \frac{r}{0.6}\right), \left(\frac{p}{0.5}, \frac{q}{0.4}, \frac{r}{0.4}\right), \left(\frac{p}{0.3}, \frac{q}{0.3}, \frac{r}{0.2}\right) \right\rangle \to N_{OS}$ Let $N = \left\langle \left(\frac{p}{0.7}, \frac{q}{0.6}, \frac{r}{0.6}\right), \left(\frac{p}{0.4}, \frac{q}{0.4}, \frac{r}{0.4}\right), \left(\frac{p}{0.3}, \frac{q}{0.3}, \frac{r}{0.2}\right) \right\rangle$ $D_2 \subseteq N$ therefore N is N^q -nhd N of $s_{(v,\omega,\xi)}$ Let $I = \left\langle \left(\frac{p}{0.7}, \frac{q}{0.6}, \frac{r}{0.6}\right), \left(\frac{p}{0.4}, \frac{q}{0.4}, \frac{r}{0.4}\right), \left(\frac{p}{0.3}, \frac{q}{0.3}, \frac{r}{0.2}\right) \right\rangle$, also IqN $\Rightarrow s_{(v,\omega,\xi)} \in Ncl(I)$

In N_{TS} , we put forward the idea of neutrosophic δ -closure.

Definition 3.6. Consider $(S, \dot{\tau})$ as a (N_{TS}) . A NP $s_{(v,\omega,\xi)}$ is said to be a neutroscophic δ cluster point of a N_S I if AqI for each N_{RO}^q -nhd A of $s_{(v,\omega,\xi)}$. The set of all neutroscophic δ -cluster point of I is called the neutrosophic δ -closure of I and denoted by $Ncl_{\delta}(I)$. A N_S I is said to be a $N_{\delta-CS}$ if $I = Ncl_{\delta}(I)$. A $N_{\delta-OS}$ is considered to be the exact opposite of a $N_{\delta-CS}$.

Definition 3.7. Given a $N_{TS}(S, \dot{\tau})$, let I be a N_S in S. $Nint_{\delta}(I) = (Ncl_{\delta}(I^c))^c$ is the notation and definition of the neutrosophic δ -interior of I.

Remark 3.8. The following relations can be obtained from the definition above:

- i) $Ncl_{\delta}(I^{c}) = (Nint_{\delta}(I))^{c}$,
- ii) $(Ncl_{\delta}(I))^{c} = Nint_{\delta}(I^{c}).$

Remark 3.9. Let I be a $N_{\delta-OS}$ if and only if $Nint_{\delta}(I) = I$ because I is $N_{\delta-OS}$ if and only if I^c is $N_{\delta-CS}$ if and only if $I^c = Ncl_{\delta}(I^c)$ if and only if $I = (Ncl_{\delta}(I^c))^c = Nint_{\delta}(I)$.

Lemma 3.10. For any N_{OS} I in a N_{TS} $(S, \dot{\tau})$ such that $s_{(v,\omega,\xi)}qI$, Nint(Ncl(I)) is a N_{RO}^q nhd of $s_{(v,\omega,\xi)}$.

Proof. Clearly $Nint(I) \subseteq Nint(Ncl(I))$. Since I is a N_{OS} , we have $I = Nint(I) \subseteq Nint(Ncl(I))$. By definition 2.9, Nint(Ncl(I)) is a N_{ROS} . Therefore Nint(Ncl(I)) is a N_{RO}^q -nhd of $s_{(v,\omega,\xi)}$. \Box

Corollary 3.11. I is a N_{CS} if it is a $N_{\delta-CS}$ in N_{TS} $(S, \dot{\tau})$. The Corollary's counterpart is not true. Example 3.18

Theorem 3.12. $Ncl(I) = Ncl_{\delta}(I)$ exists if I corresponds to N_{OS} in $N_{TS}(S, \dot{\tau})$.

K.Damodharan and M.Vigneshwaran, N_{δ} -Closure and N_{δ} -Interior in Neutrosophic Topological Spaces

Proof. Ensuring that $Ncl_{\delta}(I) \subseteq Ncl(I)$ is sufficient. Take any $s_{(v,\omega,\xi)} \in Ncl_{\delta}(I)$. Suppose that $s_{(v,\omega,\xi)} \notin Ncl(I)$. By Theorem 3.4, there exists a N^q -nhd G of $s_{(v,\omega,\xi)}$ such that $G\tilde{q}I$. Since $G\tilde{q}I$, we have $G \subseteq I^c$. Since I^c is a N_{CS} , $Ncl(G) \subseteq Ncl(I^c) = I^c$. Therefore, $Nint(Ncl(G)) \subseteq$ $Nint(I^c) \subseteq I^c$, i.e. $Nint(Ncl(G))\tilde{q}I$. By Lemma 3.10, Nint(Ncl(I)) is a N^q_{RO} -nhd A of $s_{(v,\omega,\xi)}$ such that $Nint(Ncl(I))\tilde{q}I$. Hence $s_{(v,\omega,\xi)} \notin Ncl_{\delta}(I)$. \Box

Theorem 3.13. In N_{TS} , if P is a semi-open set, then $Ncl(P) = Ncl_{\delta}(P)$.

Proof. Enough to show that $Ncl_{\delta}(P) \subseteq Ncl(P)$. Take any $s_{(v,\omega,\xi)} \in Ncl_{\delta}(P)$. Suppose that $s_{(v,\omega,\xi)} \notin Ncl(P)$. Then there exists a N_O^q -nhd Q of $s_{(v,\omega,\xi)}$ such that $Q\tilde{q}P$. As per the definition of a semi-open set, there is a N_{OS} R such that $R \subseteq P \subseteq Ncl(R)$. Thus $Q \subseteq P^c \subseteq R^c$. Hence $Ncl(Q) \subseteq Ncl(P^c) \subseteq Ncl(R^c) = R^c$. Also, $Nint(Ncl(Q)) \subseteq$ $Nint(Ncl(P^c)) \subseteq Nint(Ncl(R^c)) = Nint(R^c) \subseteq R^c$, i.e. $Nint(Ncl(Q)) \subseteq R^c$. Therefore $R \subseteq (Nint(Ncl(Q)))^c$. Hence $P \subseteq Ncl(R) \subseteq (Ncl(Nint(Ncl(Q)))^c) = (Nint(Ncl(Q)))^c$ because $(Nint(Ncl(Q)))^c$ is a N_{CS} . Thus $Nint(Ncl(Q))\tilde{q}P$. Hence $s_{(v,\omega,\xi)} \notin Ncl_{\delta}(P)$. \Box

Theorem 3.14. Given a N_{TS} $(S, \dot{\tau})$, let I and J be two N_S . Following that, we have the subsequent characteristics:

- i) $Ncl_{\delta}(0_N) = 0_N$
- ii) $I \subseteq Ncl_{\delta}(I)$
- iii) $I \subseteq J \Rightarrow Ncl_{\delta}(I) \subseteq Ncl_{\delta}(J)$
- iv) $Ncl_{\delta}(I) \cup Ncl_{\delta}(J) = Ncl_{\delta}(I \cup J)$
- v) $Ncl_{\delta}(I \cap J) \subseteq Ncl_{\delta}(I) \cap Ncl_{\delta}(J).$

Proof. i) Obvious

- ii) Since $I \subseteq Ncl(I) \subseteq Ncl_{\delta}(I), I \subseteq Ncl_{\delta}(I)$.
- iii) Let $s_{(v,\omega,\xi)}$ be a NP in S such that $s_{(v,\omega,\xi)} \notin Ncl_{\delta}(J)$. Then there is a N_{RO}^{q} -nhd A of $s_{(v,\omega,\xi)}$ such that $A\tilde{q}J$. Since $I \subseteq J$, we have $A\tilde{q}I$. Therefore $s_{(v,\omega,\xi)} \notin Ncl_{\delta}(I)$.
- iv) Since $I \subseteq I \cup J, Ncl_{\delta}(I) \subseteq Ncl_{\delta}(I \cup J)$. Similarly, $Ncl_{\delta}(J) \subseteq Ncl_{\delta}(I \cup J)$. Hence $Ncl_{\delta}(I) \cup Ncl_{\delta}(J) \subseteq Ncl_{\delta}(I \cup J)$. Take any $s_{(v,\omega,\xi)} \in Ncl_{\delta}(I \cup J)$ for evidence that $Ncl_{\delta}(I \cup J) \subseteq Ncl_{\delta}(I) \cup Ncl_{\delta}(J)$. Then for any N_{RO}^{q} -nhd A of $s_{(v,\omega,\xi)}, Aq(I \cup J)$. Hence, AqI or AqJ. Therefore $s_{(v,\omega,\xi)} \in Ncl_{\delta}(I)$ or $s_{(v,\omega,\xi)} \in Ncl_{\delta}(J)$. Hence $s_{(v,\omega,\xi)} \in Ncl_{\delta}(J)$.
- v) Since $I \cap J \subseteq I$, $Ncl_{\delta}(I \cap J) \subseteq Ncl_{\delta}(I)$. Similarly, $Ncl_{\delta}(I \cap J) \subseteq Ncl_{\delta}(J)$. Therefore $Ncl_{\delta}(I \cap J) \subseteq Ncl_{\delta}(P) \cap Ncl_{\delta}(J)$.
- $0.1 \mathrm{cm}$

Theorem 3.15. Considering $(S, \dot{\tau})$ to represent a N_{TS} , the following remains true:

- i) Finite union of $N_{\delta-CS}$ in S is an $N_{\delta-CS}$ in S
- ii) Arbitrary intersection of $N_{\delta-CS}$ in S is a $N_{\delta-CS}$ in S.
- *Proof.* i) Let T_1 and T_2 be $N_{\delta-CS}$. Then $Ncl_{\delta}(T_1 \cup T_2) = Ncl_{\delta}(T_1) \cup Ncl_{\delta}(T_2) = T_1 \cup T_2$. Thus $T_1 \cup T_2$ is a $N_{\delta-CS}$.
 - ii) Let T_i be a $N_{\delta-CS}$, for each $i \in I$. To show that $Ncl_{\delta}(\cap T_i) \subseteq \cap T_i$, take any $s_{(v,\omega,\xi)} \in Ncl_{\delta}(\cap T_i)$. Suppose that $s_{(v,\omega,\xi)} \notin \cap T_i$. Then there exists an $i_0 \in I$ such that $s_{(v,\omega,\xi)} \notin T_{i0}$. Since T_{i0} is a $N_{\delta-CS}$, $s_{(v,\omega,\xi)} \notin Ncl_{\delta}(T_{i0})$. Therefore there exists a N_{RO}^q -nhd A of $s_{(v,\omega,\xi)}$ such that $A\tilde{q}T_{i0}$. Since $A\tilde{q}T_{i0}$ and $\cap T_i \subseteq T_{i0}$, we have $A\tilde{q}(\cap T_{i0})$. Thus $s_{(v,\omega,\xi)} \notin Ncl_{\delta}(\cap T_i)$. This is a contradiction. Hence $Ncl_{\delta}(\cap T_i) \subseteq \cap T_i$.

0.1 cm

Theorem 3.16. Let R be a N_S in a $N_{TS}(S, \dot{\tau})$, then $Ncl_{\delta}(R)$ is the intersection of all N_{RCSS} of R or

 $Ncl_{\delta}(R) = \bigcap \{H/R \subseteq H = Ncl(Nint(H))\}.$

Proof. Suppose that $s_{(v,\omega,\xi)} \notin \bigcap \{H/R \subseteq H = Ncl (Nint (H))\}$. Then there exists a N_{RCS} H such that $s_{(v,\omega,\xi)} \notin H$ and $R \subseteq H$. Since $s_{(v,\omega,\xi)} \notin H$, $s_{(v,\omega,\xi)}qH^c$. Note that $R \subseteq H$ if and only if $R\tilde{q}H^c$. Thus H^c is a N_{RO}^q -nhd of $s_{(v,\omega,\xi)}$ such that $R\tilde{q}H^c$. Hence $s_{(v,\omega,\xi)} \notin Ncl_{\delta}(R)$.

Let $s_{(v,\omega,\xi)} \in \bigcap \{H/R \subseteq H = Ncl (Nint (H))\}$. Suppose that $s_{(v,\omega,\xi)} \notin Ncl_{\delta}(R)$. Then there exists a N_{RO}^q -nhd I of $s_{(v,\omega,\xi)}$ such that $R\tilde{q}I$. So, $R \subseteq I^c$. Since $s_{(v,\omega,\xi)}qI$, $s_{(v,\omega,\xi)} \notin I^c$. Therefore there exists a N_{RCS} I^c such that $s_{(v,\omega,\xi)} \notin I^c$ and $R \subseteq I^c$. Hence $s_{(v,\omega,\xi)} \notin \bigcap \{H/R \subseteq H = Ncl (Nint (H))\}$. This is a contradiction. Thus $s_{(v,\omega,\xi)} \in Ncl_{\delta}(R)$. \Box

Remark 3.17. From the above theorem, for any N_S R, $Ncl_{\delta}(R)$ is a N_{CS} . Moreover, $Ncl_{\delta}(R)$ becomes $N_{\delta-CS}$, which will be shown in the Theorem 3.20.

Example 3.18. Let $S = \{a, b\}$, and R be the N_S defined by

 $R = \langle (0.5, 0.3), (0.2, 0.2), (0.3, 0.5) \rangle \text{ Let } \dot{\tau} = \{0_N, 1_N, R\}. \text{ Then } \dot{\tau} \text{ is a } N_T. \text{ Since } Ncl(Nint(R^c)) = Ncl(0_N) = 0_N \neq R^c, R^c \text{ is not a } N_{RCS}. \text{ Hence } 0_N \text{ and } 1_N \text{ are the only regular closed sets. thus } Ncl_{\delta}(R^c) = \bigcap \{H/R^c \subseteq H = Ncl(Nint(H))\} = 1_N \neq R^c. \text{ Hence } R^c \text{ is not } N_{\delta-CS}. \text{ Therefore, } R^c \text{ is a } N_{CS} \text{ which is not } N_{\delta-CS}.$

Theorem 3.19. If I is a N_{RCS} , then I is a $N_{\delta-CS}$.

Proof. Let I be a N_{RCS} . Then Ncl(Nint(I)) = I. By Theorem 3.16, $Ncl_{\delta}(I) = \bigcap \{H/I \subseteq H = Ncl(Nint(H))\} = I$. Thus I is $N_{\delta-CS}$. \Box

K.Damodharan and M.Vigneshwaran, N_{δ} -Closure and N_{δ} -Interior in Neutrosophic Topological Spaces

Theorem 3.20. For any $N_S I$, $Ncl_{\delta}(I)$ is a $N_{\delta-CS}$.

Proof. By Theorem 3.15,3.16,3.19. \Box

The following properties of neutrosophic δ -interior are the results obtained from neutrosophic δ -closure.

Theorem 3.21. For a N_{TS} $(S, \dot{\tau})$, let I and J be two N_S . Following that, we have the subsequent characteristics:

- i) $Nint_{\delta}(1_N) = 1_N$
- ii) $Nint_{\delta}(I) \subseteq I$
- iii) $I \subseteq J \Rightarrow Nint_{\delta}(I) \subseteq Nint_{\delta}(J)$
- iv) $Nint_{\delta}(I \cap J) = Nint_{\delta}(I) \cap Nint_{\delta}(J)$
- v) $Nint_{\delta}(I) \cup Nint_{\delta}(J) \subseteq Nint_{\delta}(I \cup J).$

Theorem 3.22. Considering $(S, \dot{\tau})$ to represent a N_{TS} , the following remains true:

- i) Finite intersection of $N_{\delta-OS}$ in S is a $N_{\delta-OS}$ in S
- ii) Arbitrary union of $N_{\delta-OS}s$ in S is a $N_{\delta-OS}$ in S.

Theorem 3.23. Given an I of type N_S in the set $(S, \dot{\tau})$, we have $Nint_{\delta}(I) = \bigcup \{G/Nint(Ncl(G)) = G \subseteq I\}$. It follows that $Nint_{\delta}(I)$ is a N_{OS} .

Corollary 3.24. I is a N_{OS} if and only if I belong to a $N_{\delta-OS}$ in a N_{TS} $(S, \dot{\tau})$.

Corollary 3.25. If I is a N_{ROS} , then I is a $N_{\delta-OS}$.

Corollary 3.26. For any $N_S I$, $Nint_{\delta}(I)$ is a $N_{\delta-OS}$.

4. Conclusion

This paper covered the fascinating natural subject of \mathbf{N}_{δ} -Closure and \mathbf{N}_{δ} -Interior in N_{TS} . It will provide many new opportunities for research into N_{TS} , allowing us to expand on and further analyze the ideas we presented in this paper.

References

- I.Arokiarani, R.Dhavaseelan, S.Jafari and M.Parimala., On Some New Notions and Functions in NTS, Neutrosophic Sets and Systems, 16, (2017) 16 – 19.
- [2] T. K. Atanassov, Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems. 20, (1986) 87-96.
- [3] S. Broumi, F. Smarandache, Correlation Coefficient of Interval Neutrosophic set, *Periodical of Applied Mechanics and Materials*, Vol. 436, (2013).
- [4] P. Chi, and P. Liu. An Extended TOPSIS Method for the Multiple Attribute Decision Making Problems Based on Interval Neutrosophic Set, *Neutrosophic Sets and Systems*, Vol. 01, 2014, 63-71.

K.Damodharan and M.Vigneshwaran, N_{δ} -Closure and N_{δ} -Interior in Neutrosophic Topological Spaces

- [5] G. Deschrijive and E. E. Kerre, On the Position of Intuitionistic Fuzzy Set Theory in the Framework of Theories Modelling Imprecision, *Information Sciences*, Vol. 177, No. 8, 2007, pp. 1860-1866.
- [6] R.Dhavaseelan and S.Jafari, Generalized neutrosophic closed sets, New Trends in Neutrosophic Theory and Applications, 2 (2017), 261 – 273.
- [7] R.Dhavaseelan, S.Jafari, C.Ozel and M.A.Al-Shumrani., Generalized Neutrosophic Contra-Continuity, New Trends in Neutrosophic Theory and Applications, 2, (2017), 1 – 17.
- [8] Dickman. Jr. R. F. and Porter. J. R., θ-closed subsets of Hausdorff spaces, Pacific J. Math., 59(2), (1975), pp. 407 – 415.
- [9] M.S.Espelie; J.E.Joseph. Some properties of θ-closure, Canad. J. Math., 33(1), (1981), pp. 142 149.
 [Online]. Available: http://dx.doi.org/10.4153/CJM-1981-013-8.
- [10] S. Ganguly and S. Saha., A note on δ-continuity and δ-connected sets in fuzzy set theory, Simon Stevin, 62, (1988), pp. 127 – 141.
- [11] Y. Guo and D. H. Cheng, New neutrosophic approach to image segmentation. Pattern Recognition, 42, (2009), 587595.
- [12] I.M.Hanafy, A.M.Abd El-Aziz and T.M.Salman., Intuitionistic fuzzy θ-closure operator, Bol. Asoc. Mat. Venez., 13(1), (2006), pp. 27 – 39.
- [13] M. I. Hanafy, A. A. Salama, and K. Mahfouz, Correlation of neutrosophic Data, International Refereed Journal of Engineering and Science, 1(2) (2012) 39-43.
- [14] M. I. Hanafy, A. A. Salama, and K. M. Mahfouz, Correlation Coefficients of Neutrosophic Sets by Centroid Method, International Journal of Probability and Statistics, 2(1) (2013) 9-12.
- [15] P.Iswarya and Dr K.Bageerathi., A Study on Neutrosophic Frontier and Neutrosophic Semi-froutier in NTS, Neutrosophic Sets and Systems, 16, (2017), pp. 6 – 15.
- [16] P.Iswarya and Dr K.Bageerathi., On neutrosophic semi-open sets in NTS, International Journal of Mathematics Trends and Technology (IJMTT), 37(3), (2016), 24 – 33.
- [17] S.J.Lee and S.M.Yun., Fuzzy delta separation axioms, IEEE International Conference on Fuzzy Systems, (2011), pp. 592 – 602.
- [18] S.J.Lee and J.T.Kim., Properties of fuzzy (r, s)- semi-irresolute mappings in IF_{TS}, International Journal of Fuzzy Logic and Intelligent Systems, 11(3), (2011), pp. 190 – 196.
- [19] S.J.Lee and J.T.Kim., Fuzzy strongly (r, s)- precontinuous mappings, IEEE International Conference on Fuzzy Systems, (2009), pp. 581 – 586.
- [20] L. Lin, X. H. Yuan and Q. Z. Xia, Multicriteria Fuzzy Decision-Making Methods Based on Intuitionistic Fuzzy Sets, *Journal of Computer and System Science*, Vol. 73, No. 1, 2007, pp. 84-88.
- [21] P. Majumdar and K. S. Samanta, On similarity and entropy of neutrosophic sets. Journal of Intelligent and Fuzzy Systems, 26(3) (2014), 1245-1252.
- [22] J. M. Mendel, Fuzzy logic systems for engineering: A tutorial, Proc. IEEE, vol. 83, (1995) 345377.
- [23] A. Mukherjee, and S. Sarkar. Several Similarity Measures of Interval Valued Neutrosophic Soft Sets and Their Application in Pattern Recognition Problems, *Neutrosophic Sets and Systems*, 06, 2015,55-61.
- [24] M.N.Mukherjee and S.P.Sinha., Fuzzy θ-closure operator on fuzzy topological spaces, Internat. J. Math. Math. Sci., 14(2), (1991), pp. 309 – 314.
- [25] Parimala, M., Jeevitha, R., Smarandache, F., Jafari, S. and Udhayakumar, R., Neutrosophic $\alpha\psi$ Homeomorphism in Neutrosophic Topological Spaces, Information, 2018, 9(187), 1-10
- [26] A.A.Salama and S.A.Alblowi., NS and neutrosophic topological space, ISOR J. mathematics, 3(4), (2012), pp-31 – 35.
- [27] A. A. Salama and A. S. Alblowi, "Generalized Neutrosophic Set and Generalized Neutrousophic Topological Spaces", Journal of computer Sci. Engineering, Vol. 2, No. 7, (2012) 29-32.

- [28] A. A. Salama and A. S. Alblowi, Neutrosophic set and Neutrosophic Topological Space, ISORJ. Mathematics, Vol. 3(4), (2012) 31-35.
- [29] A, A, Salama, A. H. El-Ghareeb, A. M. Manie, and F. Smarandache, Introduction to Develop Some Software Programs for Dealing with Neutrosophic Sets, *Neutrosophic Sets and Systems*, Vol. 3, (2014), 53-54.
- [30] Shuker Mahmood Khalil, On Neurosophic Delta Generated Per-Continuous Functions in Neutrosophic Topological Spaces, Neutrosophic Sets and Systems, Vol. 48, (2022), 122 – 141.
- [31] F. Smarandache, A unifying field in logics. neutrosophy: Neutrosophic probability, set and logic, American Research Press, Rehoboth, 1999.
- [32] D.Sivaraj., Semi open set characterizations of almost-regular spaces, Glas. Mat. Ser. III, 21(41)(2), (1986), pp. 437 – 440.
- [33] E. Szmidt, J. Kacprzyk, Medical diagnostic reasoning using a similarity measure for intuitionistic fuzzy sets, Note on Intuitionistic Fuzzy Sets 10 (4) (2004) 61 – 69.
- [34] I. Turksen, Interval valued fuzzy sets based on normal forms, Fuzzy Sets and Systems 20, (1986) 191-210.
- [35] H.V.Velichko., On the theory of H-closed topological spaces, Sibirsk. Mat. Z. 8, (1967), pp. 754 763.
- [36] N.V.Velicko., H-closed topological spaces, Mat. Sb. (N.S.), **70**(112), (1966), pp. 98 12.
- [37] H. Wang , F. Smarandache, Q. Y. Zhang, and R. Sunderraman, Interval neutrosophic sets and logic: *Theory and applications in computing*, Hexis, Phoenix, AZ, 2005.
- [38] H. Wang, F. Smarandache, Q. Y. Zhang, and R. Sunderraman. Single valued neutrosophic sets, *Multispace and Multistructure* 4 (2010) 410-413.
- [39] J. Ye, Multi-criteria decision-making method using the correlation coefficient under single-valued neutrosophic environment, *International Journal of General Systems*, 42(4) (2013) 386-394.
- [40] J. Ye, Similarity measures between interval neutrosophic sets and their applications in multi-criteria decision making, Journal of Intelligent and Fuzzy Systems, 26(1) (2013) 165-172.
- [41] J. Ye, Single valued neutrosophic cross-entropy for multi-criteria decision making problems, Applied Mathematical Modelling, 38(3) (2014) 1170-1175.
- [42] S. Ye, and J. Ye, Dice Similarity Measure between Single Valued Neutrosophic Multisets and Its Application in Medical Diagnosis, *Neutrosophic Sets and Systems*, Vol. 06, 2015, 49-54.
- [43] Yeon Seok Eom and Seok Jong Lee., Delta Closure and Delta Interior in Intuitionistic Fuzzy Topological Spaces, International Journal of Fuzzy Logic and Intelligent Systems, 12(4), (2012), pp. 290 – 295.
- [44] L. A. Zadeh, Fuzzy sets, Inform. Control, vol. 8, (1965) 338353.
- [45] A. L. Zimmermann, Fuzzy Set Theory and Its Applications, 2nd ed. Boston, MA: Kluwer, 1991.

Received: Jan 9, 2024. Accepted: Mar 28, 2024