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Abstract. Toplology greatly benefits from the concept of δ-cloure. Its quiet nature to extended its proper-

ties in other topological spaces. So, with the concept of quasi-coincidence Ganguly and Saha pioneered and

extensively examined the notion of δ-closure within the domain of fuzzy topological spaces.(FTS). The theory

of δ-closure in intuitionistic fuzzy topological spaces (IFTS) was further extended by Seok Jong Lee and Yeon

Seok Eom. In this work, the notion of Nδ-closure in Neutrosophic Topological Spaces (NTS) is put forward and

discussed.
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1. Introduction

In 1965, Zadeh pioneered the concept of fuzzy sets (FS). In various areas of our daily lives,

uncertainty is handled using this innovative mathematical framework. A membership function

with the range of 0 to 1 characterizes a FS . Over the last few decades, FS is substantially

used and applied in many domains, such as computer vision [45], pattern recognition [22],

control [44], and others. Researchers in the fields of engineering [22], social sciences [45], and

medical diagnosis [45] have all found this idea to be very useful. There is a tonne of infor-

mation on FS theory in [22, 34, 45]. A specific value contained within the unit interval [0,1]

indicates the FS ’s membership function. There is some hesitation as a result, therefore it’s

not always true that an element’s non-membership function equals 1. In order to clarify this

scenario, Atanassov [2] created IFS in 1986 by including the hesitation degree known as the

hesitation margin. The definition of the hesitancy margin is 1 . Thus, a membership function

and non-membership function for an intuitionistic fuzzy setIFS have a range of [0,1] with the

additional condition that 0 1. As a result, FS theory was generalized to include IFS theory.
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Decision-making [20], pattern recognition [33], social sciences [5], medical diagnostics [33], and

other domains have all benefited from the application of the IFS theory. It is impossible for

fuzzy sets and IFS to handle data that is unclear, inconsistent, partial, or uncertain. Con-

sequently, Smarandache (Smarandache, 1999) formulated neutrosophic logic in 1998, drawing

inspiration from Neutrosophy, a philosophical paradigm that scrutinizes the origin, compo-

sition, and application of neutral elements, alongside their interplay with diverse conceptual

spectrums. A Neutrosophic set NS encompasses three distinct membership functions: ’T’ for

truth, ’I’ for indeterminate membership, and ’F’ for falsehood. The ’I’ component embodies a

notable degree of indeterminacy, a key attribute associated with mediocrity. The theoretical

frameworks of classical set theory, fuzzy sets (FS) theory, intuitionistic fuzzy sets (IFS) theory,

interval-valued fuzzy sets theory, paraconsistent theory, dialetheist theory, paradoxist theory,

and tautological theory are all encompassed and extended by the overarching NS theory. This

theoretical construct proves itself to be a robust instrument for grappling with the intricate

tapestry of ambiguous and contradictory information that pervades our real-world context.

Scholars from a multitude of disciplines have effectively harnessed NS theory to navigate their

respective domains. Notably, Wang et al. (2010) given the application of singular-valued

NS in the realms of science and engineering, providing an additional avenue for describing

uncertain, partial, imprecise, and inconsistent data. The correlation coefficient of NS found

its investigation in the works of Hanafy et al. (2012 and 2013), while Ye (2013) explored the

correlation coefficient within the context of singular-valued NS . Further exploration of the

correlation coefficient in the interval NS was undertaken by Broumi and Smaradache (2013).

In their discussion of NTS , Salama et al. [27] You can find additional research on the NS

in [21,27,29,37,40–42]. In the decision-making theory [4,39–42], data base [37], medical diag-

nosis [42], pattern recognition [11,23], and other fields, NS have been successfully employed.

In the realm of conventional topology, when delving into subjects like H-closed spaces, Kate-

tov’s and H-closed extensions, the generalizations of the Stone Weierstrass theorem, and other

related topics, the ideas of θ-closure and δ-closure emerge as valuable tools [8,9,24,35,36,43].

Given the substantial importance of these concepts, it becomes almost inevitable to seek

their extension into the context of fuzzy topological spaces (FTS). Thus, by harnessing the

notion of quasi-coincidence within FTS , Saha and Ganguly introduced and conducted a thor-

ough investigation into the innovative concept of fuzzy δ-closure. [10]. Furthermore, within

the context of intuitionistic fuzzy topological spaces (IFTS), extensive research efforts have

been directed towards examining the characteristics of continuous mappings and closure opera-

tors. [12,17–19,32]. A generalisation of the δ- closure, the idea of δ-closure in IFTS is introduced

by Ganguly and Saha [10]. NTS were first introduced in 2012 by Salama and Alblowi [26]. As

an advancement beyond the framework of intuitionistic fuzzy topological spaces (IFTS), they
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introduced the concept of neutrosophic topological spaces (NTS), along with a corresponding

neutrosophic set (NS), which encapsulates the degrees of membership, indeterminacy, and

non-membership for each individual element. In 2016, P. Iswarya and Dr. K. Bageerathi [16]

contributed to this exploration by proposing the novel concepts of neutrosophic semiopen sets,

neutrosophic semiclosed sets, neutrosophic semi-interior, and neutrosophic semi-closure within

the context of neutrosophic topological spaces (NTS). In the subsequent year, Parimala M et

al(2018). elaborated on some new notions of homeomorphism within the same neutrosophic

topological framework (NTS) [25]. This evolutionary trajectory continued into the year 2022,

when Shuker Mahmood Khalil delved into the realm of Neutrosophic Delta Generated Per-

Continuous Functions in neutrosophic topological spaces (NTS) [30]. Seok Jong Lee and Yeon

Seok Eom [43] developed the concepts of δ-closure and δ-Interior in IFTS in 2012. We are

extending the aforementioned ideas to NS in this study. With the help of examples, we discuss

some of the fundamental characteristics of Nδ-Closure and Nδ-Interior in NTS .

2. Perliminaries

This part of the study gives an insight to the pertinent and basic preparatory operations

about NS ’s

Definition 2.1. [26] Consider a non-empty fixed set S. A neutrosophic set

I (NS) can be characterized as an entity taking the following structure: I =

{〈s, µm (I (s)) , σi (I (s)) , νnm (I (s))〉 ∀s ∈ S}, where µm (I (s)), σi (I (s))and νnm (I (s)) rep-

resents the degrees of membership function, indeterminacy function and nonmembership func-

tion of each element s ∈ S to the set I.

Remark 2.2. [26] A NS

I = {〈s, µm (I (s)) , σi (I (s)) , νnm (I (s))〉 ∀s ∈ S} can be represented by an ordered triple

〈µm (I (s)) , σi (I (s)) , νnm (I (s))〉 within the interval ]−0, 1+[ defined over the set S.

Definition 2.3. [26] Consider I as a neutrosophic set NS in the format

I = {〈s, µm (I (s)) , σi (I (s)) , νnm (I (s))〉 ∀s ∈ S}, Subsequently, the complement of I, denoted

as Ic, can be stipulated as Ic = {〈s, νnm (I (s)) , σi (I (s)) , µm (I (s))〉 ∀s ∈ S}

Definition 2.4. [26] Suppose there are two NSs with the structure, I and J.

I = {〈s, µm (I (s)) , σi (I (s)) , νnm (I (s))〉 ∀s ∈ S} and

J = {〈s, µm (J (s)) , σi (J (s)) , νnm (J (s))〉 ∀s ∈ S}.
Then,

i) Subsets (I ⊆ J) may be defined as follows I ⊆ J if and only if

µm (I (s)) ≤ µm (J (s)) , σi (I (s)) ≥ σi (J (s)) , νnm (I (s)) ≥ νnm (J (s))
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ii) Subsets I = J if and only if I ⊆ J and J ⊆ I
iii) The union of subsets I ∪ J can be defined in the following manner:

I ∪ J = {s,max [µm (I (s) , µm (J (s)))] ,min [σi (I (s)) , σi (J (s))] ,

min [νnm (I (s)) , νnm (J (s))]∀s ∈ S},
iv) The intersection of subsets I ∩ J can be defined in the following manner:

I ∩ J = {s,min [µm (I (s) , µm (J (s)))] ,max [σi (I (s)) , σi (J (s))] ,

max [νnm (I (s)) , νnm (J (s))]∀s ∈ S},

Definition 2.5. [26] A NT (S, τ̀) that meets the axioms listed below

i) 0N , 1N ∈ τ̀ ,

ii) H1 ∩H2 ∈ τ̀ for any H1, H2 ∈ τ̀ ,

iii) ∪Hi ∈ τ̀ ∀ {Hi : i ∈ J} ⊆ τ̀ Then the pair (S, τ̀) or simply S is called a NTS .

Definition 2.6. [7] Let I be a NS contained in a NTS , representing (S, τ̀). Then

i) Nint (I) =
⋃
{J/J is aNOS in (S, τ̀) and J ⊆ I} is termed as the neutrosophic interior

of I;

ii) Ncl (I) =
⋂
{J/J is aNCS in (S, τ̀) and J ⊇ I} is termed as the neutrosophic closure

of I.;

Theorem 2.7. [6] For any NS I in a NTS (S, τ̀), we have

i) Ncl (Ic) = (Nint (I))c and

ii) Nint (Ic) = (Ncl (I))c

Definition 2.8. [15] Let υ, ω, ξ ∈ [0, 1] and υ+ω+ξ ≤ 3. A neutrosophic point(NP) s(υ,ω,ξ)of

S is a NP of S, defined as

s(υ,ω,ξ)(t) =

{
(υ, ω, ξ), if t = s;

(0, 1, 1), if t 6= s.

In this context, ’s’ is referred to as the support of s(υ,ω,ξ) and υ, ω and ξ, respectively. A NP

s(υ,ω,ξ) is considered to be a member of a NS

I = 〈µm (I (s)) , σi (I (s)) , νnm (I (s))〉 in the set S, shown by s(υ,ω,ξ) ∈ I if υ ≤ µm (I (s)) , ω ≤
σi (I (s)) and ξ ≥ νnm (I (s)).

Definition 2.9. [1] Let A be a NS in a NTS (S, τ̀). A is said to be

i) a neutrosophic semi-open set of S, if there exists aNOS B of S such thatB ≤ A ≤ cl (B).

ii) a NROS of S, if Nint (Ncl (A)) = A. The complement of a NROS is said to be a NRCS .
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3. Neutrosophic δ-Closure and δ-Interior

Definition 3.1. Let (S, τ̀) be aNTS . Let I be aNS and let s(υ,ω,ξ) be a NP. s(υ,ω,ξ) is considered

to be neutrosophically quasi-coincident with I [denoted by s(υ,ω,ξ)qI] if υ + µm(I(s)) > 1;ω +

σi(I(s)) < 1 and ξ + νnm(I(s)) < 1.

Definition 3.2. Let I and J be two NS ’s. I is said to be neutrosophic quasi coincident with

J [denoted by IqJ ] if µm(I(s)) + µm(J(s)) > 1;σi(I(s)) + σi(J(s)) < 1 and νnm(I(s)) +

νnm(J(s)) < 1. The term ’not quasi-coincident’ will be abbreviated as q̃.

Proposition 3.3. Consider two NS, I and J, and an NP in S, s(υ,ω,ξ). Then

i) Iq̃Jc ⇔ I ⊆ J
ii) IqJ ⇔ I 6⊆ Jc

iii) s(υ,ω,ξ) ⊆ I ⇔ s(υ,ω,ξ)q̃I
c

iv) s(υ,ω,ξ)qI ⇔ s(υ,ω,ξ) 6⊆ Ic

Theorem 3.4. Let s(υ,ω,ξ) be a NP in S, and

I = 〈µm (I (s)) , σi (I (s)) , νnm (I (s))〉 a NS in S. Then s(υ,ω,ξ) ∈ Ncl (I) if and only if IqN ,

for any N q-nhd N of s(υ,ω,ξ).

Proof. Consider that Iq̃N exists for every N ∈ N q
ε

(
s(υ,ω,ξ)

)
. In this case, s(υ,ω,ξ)qG ≤ N and

Gq̃I exist for a set G ∈ τ̀ . since Gc is a NCS and by Proposition 3.3, we have Ncl (I) ≤ Gc.

Also since s(υ,ω,ξ) /∈ Gc, we have s(υ,ω,ξ) /∈ Ncl (I). Since, which is contradiction.

Conversely, suppose s(υ,ω,ξ) /∈ Ncl (I). Then, s(υ,ω,ξ) /∈ V and I ≤ V exist for a NCS V. Hence

by Proposition 3.3, V c ∈ τ̀ such that s(υ,ω,ξ)qV
c and Iq̃V c. Since, which is a contradiction.

Example 3.5. Consider (X, τ) as a NTS with X as X = {p, q, r} and D1, D2, D3, D4 as NS ’s

D1 =
〈( p

0.3 ,
q
0.3 ,

r
0.2

)
,
( p
0.3 ,

q
0.2 ,

r
0.2

)
,
( p
0.4 ,

q
0.6 ,

r
0.6

)〉
D2 =

〈( p
0.4 ,

q
0.6 ,

r
0.6

)
,
( p
0.5 ,

q
0.4 ,

r
0.4

)
,
( p
0.3 ,

q
0.3 ,

r
0.2

)〉
D3 =

〈( p
0.4 ,

q
0.6 ,

r
0.6

)
,
( p
0.3 ,

q
0.2 ,

r
0.2

)
,
( p
0.3 ,

q
0.3 ,

r
0.2

)〉
D4 =

〈( p
0.3 ,

q
0.3 ,

r
0.2

)
,
( p
0.5 ,

q
0.4 ,

r
0.4

)
,
( p
0.4 ,

q
0.6 ,

r
0.6

)〉
now the complement of D1, D2, D3, D4 are

Dc
1 =

〈( p
0.4 ,

q
0.6 ,

r
0.6

)
,
( p
0.3 ,

q
0.2 ,

r
0.2

)
,
( p
0.3 ,

q
0.3 ,

r
0.2

)〉
Dc

2 =
〈( p

0.3 ,
q
0.3 ,

r
0.2

)
,
( p
0.5 ,

q
0.4 ,

r
0.4

)
,
( p
0.4 ,

q
0.6 ,

r
0.6

)〉
Dc

3 =
〈( p

0.3 ,
q
0.3 ,

r
0.2

)
,
( p
0.3 ,

q
0.2 ,

r
0.2

)
,
( p
0.4 ,

q
0.6 ,

r
0.6

)〉
Dc

4 =
〈( p

0.4 ,
q
0.6 ,

r
0.6

)
,
( p
0.5 ,

q
0.4 ,

r
0.4

)
,
( p
0.3 ,

q
0.3 ,

r
0.2

)〉
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Let the neutrosophic point be

s(υ,ω,ξ) =

{
(0.7, 0.4, 0.3, if x = p

(0, 1, 1) , if x 6= p.

,

where D2 =
〈( p

0.4 ,
q
0.6 ,

r
0.6

)
,
( p
0.5 ,

q
0.4 ,

r
0.4

)
,
( p
0.3 ,

q
0.3 ,

r
0.2

)〉
→ NOS

Let N =
〈( p

0.7 ,
q
0.6 ,

r
0.6

)
,
( p
0.4 ,

q
0.4 ,

r
0.4

)
,
( p
0.3 ,

q
0.3 ,

r
0.2

)〉
D2 ⊆ N therefore N is N q-nhd N of s(υ,ω,ξ)

Let I =
〈( p

0.7 ,
q
0.6 ,

r
0.6

)
,
( p
0.4 ,

q
0.4 ,

r
0.4

)
,
( p
0.3 ,

q
0.3 ,

r
0.2

)〉
, also IqN

⇒ s(υ,ω,ξ) ∈ Ncl (I)

In NTS , we put forward the idea of neutrosophic δ-closure.

Definition 3.6. Consider (S, τ̀) as a (NTS). A NP s(υ,ω,ξ) is said to be a neutroscophic δ-

cluster point of a NS I if AqI for each N q
RO-nhd A of s(υ,ω,ξ). The set of all neutroscophic

δ-cluster point of I is called the neutrosophic δ-closure of I and denoted by Nclδ (I). A NS I

is said to be a Nδ−CS if I = Nclδ (I). A Nδ−OS is considered to be the exact opposite of a

Nδ−CS .

Definition 3.7. Given a NTS (S, τ̀), let I be a NS in S. Nintδ (I) = (Nclδ (Ic))c is the notation

and definition of the neutrosophic δ-interior of I.

Remark 3.8. The following relations can be obtained from the definition above:

i) Nclδ (Ic) = (Nintδ (I))c,

ii) (Nclδ (I))c = Nintδ (Ic).

Remark 3.9. Let I be a Nδ−OS if and only if Nintδ (I) = I because I is Nδ−OS if and only if

Ic is Nδ−CS if and only if Ic = Nclδ (Ic) if and only if I = (Nclδ (Ic))c = Nintδ (I).

Lemma 3.10. For any NOS I in a NTS (S, τ̀) such that s(υ,ω,ξ)qI, Nint (Ncl (I)) is a N q
RO-

nhd of s(υ,ω,ξ).

Proof. Clearly Nint (I) ⊆ Nint (Ncl (I)). Since I is a NOS , we have I = Nint (I) ⊆
Nint (Ncl (I)). By definition 2.9, Nint (Ncl (I)) is a NROS . Therefore Nint (Ncl (I)) is a

N q
RO-nhd of s(υ,ω,ξ).

Corollary 3.11. I is a NCS if it is a Nδ−CS in NTS (S, τ̀). The Corollary’s counterpart is

not true. Example 3.18

Theorem 3.12. Ncl (I) = Nclδ (I) exists if I corresponds to NOS in NTS (S, τ̀).
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Proof. Ensuring that Nclδ (I) ⊆ Ncl (I) is sufficient. Take any s(υ,ω,ξ) ∈ Nclδ (I). Suppose

that s(υ,ω,ξ) /∈ Ncl (I). By Theorem 3.4, there exists aN q-nhd G of s(υ,ω,ξ) such thatGq̃I. Since

Gq̃I, we haveG ⊆ Ic. Since Ic is aNCS , Ncl (G) ⊆ Ncl (Ic) = Ic. Therefore, Nint (Ncl (G)) ⊆
Nint (Ic) ⊆ Ic, i.e. Nint (Ncl (G)) q̃I. By Lemma 3.10, Nint (Ncl (I)) is a N q

RO-nhd A of

s(υ,ω,ξ) such that Nint (Ncl (I)) q̃I. Hence s(υ,ω,ξ) /∈ Nclδ (I).

Theorem 3.13. In NTS, if P is a semi-open set, then Ncl (P ) = Nclδ (P ).

Proof. Enough to show that Nclδ (P ) ⊆ Ncl (P ). Take any s(υ,ω,ξ) ∈ Nclδ (P ). Suppose

that s(υ,ω,ξ) /∈ Ncl (P ). Then there exists a N q
O-nhd Q of s(υ,ω,ξ) such that Qq̃P . As per

the definition of a semi-open set, there is a NOS R such that R ⊆ P ⊆ Ncl (R). Thus

Q ⊆ P c ⊆ Rc. Hence Ncl (Q) ⊆ Ncl (P c) ⊆ Ncl (Rc) = Rc. Also, Nint (Ncl (Q)) ⊆
Nint (Ncl (P c)) ⊆ Nint (Ncl (Rc)) = Nint (Rc) ⊆ Rc, i.e. Nint (Ncl (Q)) ⊆ Rc. Therefore

R ⊆ (Nint (Ncl (Q)))c. Hence P ⊆ Ncl (R) ⊆ (Ncl (Nint (Ncl (Q)))c) = (Nint (Ncl (Q)))c

because (Nint (Ncl (Q)))c is a NCS . Thus Nint (Ncl (Q)) q̃P . Hence s(υ,ω,ξ) /∈ Nclδ (P ).

Theorem 3.14. Given a NTS (S, τ̀), let I and J be two NS. Following that, we have the

subsequent characteristics:

i) Nclδ (0N ) = 0N

ii) I ⊆ Nclδ (I)

iii) I ⊆ J ⇒ Nclδ (I) ⊆ Nclδ (J)

iv) Nclδ (I) ∪Nclδ (J) = Nclδ (I ∪ J)

v) Nclδ (I ∩ J) ⊆ Nclδ (I) ∩Nclδ (J).

Proof. i) Obvious

ii) Since I ⊆ Ncl (I) ⊆ Nclδ (I) , I ⊆ Nclδ (I).

iii) Let s(υ,ω,ξ) be a NP in S such that s(υ,ω,ξ) /∈ Nclδ (J). Then there is a N q
RO-nhd A of

s(υ,ω,ξ) such that Aq̃J . Since I ⊆ J , we have Aq̃I. Therefore s(υ,ω,ξ) /∈ Nclδ (I).

iv) Since I ⊆ I ∪ J,Nclδ (I) ⊆ Nclδ (I ∪ J). Similarily, Nclδ (J) ⊆ Nclδ (I ∪ J). Hence

Nclδ (I) ∪Nclδ (J) ⊆ Nclδ (I ∪ J). Take any s(υ,ω,ξ) ∈ Nclδ (I ∪ J) for evidence that

Nclδ (I ∪ J) ⊆ Nclδ (I) ∪ Nclδ (J). Then for any N q
RO-nhd A of s(υ,ω,ξ), Aq (I ∪ J).

Hence, AqI or AqJ . Therefore s(υ,ω,ξ) ∈ Nclδ (I) or s(υ,ω,ξ) ∈ Nclδ (J). Hence s(υ,ω,ξ) ∈
Nclδ (I) ∪Nclδ (J).

v) Since I ∩J ⊆ I,Nclδ (I ∩ J) ⊆ Nclδ (I). Similarly, Nclδ (I ∩ J) ⊆ Nclδ (J). Therefore

Nclδ (I ∩ J) ⊆ Nclδ (P ) ∩Nclδ (J).

0.1cm
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Theorem 3.15. Considering (S, τ̀) to represent a NTS, the following remains true:

i) Finite union of Nδ−CS in S is an Nδ−CS in S

ii) Arbitrary intersection of Nδ−CSs in S is a Nδ−CS in S.

Proof. i) Let T1 and T2 beNδ−CSs. ThenNclδ (T1 ∪ T2) = Nclδ (T1)∪Nclδ (T2) = T1∪T2.
Thus T1 ∪ T2 is a Nδ−CS .

ii) Let Ti be a Nδ−CS , for each i ∈ I. To show that Nclδ (∩Ti) ⊆ ∩Ti, take any s(υ,ω,ξ) ∈
Nclδ (∩Ti). Suppose that s(υ,ω,ξ) /∈ ∩Ti. Then there exists an i0 ∈ I such that

s(υ,ω,ξ) /∈ Ti0. Since Ti0 is a Nδ−CS , s(υ,ω,ξ) /∈ Nclδ (Ti0). Therefore there exists a

N q
RO-nhd A of s(υ,ω,ξ) such that Aq̃Ti0. Since Aq̃Ti0 and ∩Ti ⊆ Ti0, we have Aq̃ (∩Ti0).

Thus s(υ,ω,ξ) /∈ Nclδ (∩Ti). This is a contradiction. Hence Nclδ (∩Ti) ⊆ ∩Ti.
0.1cm

Theorem 3.16. Let R be a NS in a NTS (S, τ̀), then Nclδ (R) is the intersection of all NRCSs

of R or

Nclδ (R) =
⋂
{H/R ⊆ H = Ncl (Nint (H))}.

Proof. Suppose that s(υ,ω,ξ) /∈
⋂
{H/R ⊆ H = Ncl (Nint (H))}. Then there exists a NRCS H

such that s(υ,ω,ξ) /∈ H and R ⊆ H. Since s(υ,ω,ξ) /∈ H, s(υ,ω,ξ)qH
c. Note that R ⊆ H if and

only if Rq̃Hc. Thus Hc is a N q
RO-nhd of s(υ,ω,ξ) such that Rq̃Hc. Hence s(υ,ω,ξ) /∈ Nclδ (R).

Let s(υ,ω,ξ) ∈
⋂
{H/R ⊆ H = Ncl (Nint (H))}. Suppose that s(υ,ω,ξ) /∈ Nclδ (R). Then

there exists a N q
RO-nhd I of s(υ,ω,ξ) such that Rq̃I. So, R ⊆ Ic. Since s(υ,ω,ξ)qI, s(υ,ω,ξ) /∈

Ic. Therefore there exists a NRCS Ic such that s(υ,ω,ξ) /∈ Ic and R ⊆ Ic. Hence s(υ,ω,ξ) /∈⋂
{H/R ⊆ H = Ncl (Nint (H))}. This is a contradiction. Thus s(υ,ω,ξ) ∈ Nclδ (R).

Remark 3.17. From the above theorem, for any NS R, Nclδ (R) is a NCS . Moreover, Nclδ (R)

becomes Nδ−CS , which will be shown in the Theorem 3.20.

Example 3.18. Let S = {a, b}, and R be the NS defined by

R = 〈(0.5, 0.3) , (0.2, 0.2) , (0.3, 0.5)〉 Let τ̀ = {0N , 1N , R}. Then τ̀ is a NT . Since

Ncl (Nint (Rc)) = Ncl (0N ) = 0N 6= Rc, Rc is not a NRCS . Hence 0N and 1N are the

only regular closed sets. thus Nclδ (Rc) =
⋂
{H/Rc ⊆ H = Ncl (Nint (H))} = 1N 6= Rc.

Hence Rc is not Nδ−CS . Therefore, Rc is a NCS which is not Nδ−CS .

Theorem 3.19. If I is a NRCS, then I is a Nδ−CS.

Proof. Let I be a NRCS . Then Ncl (Nint (I)) = I. By Theorem 3.16, Nclδ (I) =⋂
{H/I ⊆ H = Ncl (Nint (H))} = I. Thus I is Nδ−CS .
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Theorem 3.20. For any NS I, Nclδ (I) is a Nδ−CS.

Proof. By Theorem 3.15,3.16,3.19.

The following properties of neutrosophic δ-interior are the results obtained from neutro-

sophic δ-closure.

Theorem 3.21. For a NTS (S, τ̀), let I and J be two NS. Following that, we have the

subsequent characteristics:

i) Nintδ (1N ) = 1N

ii) Nintδ (I) ⊆ I
iii) I ⊆ J ⇒ Nintδ (I) ⊆ Nintδ (J)

iv) Nintδ (I ∩ J) = Nintδ (I) ∩Nintδ (J)

v) Nintδ (I) ∪Nintδ (J) ⊆ Nintδ (I ∪ J).

Theorem 3.22. Considering (S, τ̀) to represent a NTS, the following remains true:

i) Finite intersection of Nδ−OS in S is a Nδ−OS in S

ii) Arbitrary union of Nδ−OSs in S is a Nδ−OS in S.

Theorem 3.23. Given an I of type NS in the set (S, τ̀), we have Nintδ (I) =⋃
{G/Nint (Ncl (G)) = G ⊆ I}. It follows that Nintδ (I) is a NOS.

Corollary 3.24. I is a NOS if and only if I belong to a Nδ−OS in a NTS (S, τ̀).

Corollary 3.25. If I is a NROS, then I is a Nδ−OS.

Corollary 3.26. For any NS I, Nintδ (I) is a Nδ−OS.

4. Conclusion

This paper covered the fascinating natural subject of Nδ-Closure and Nδ-Interior in NTS .

It will provide many new opportunities for research into NTS , allowing us to expand on and

further analyze the ideas we presented in this paper.
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