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Covering-Based Rough Single Valued Neutrosophic Sets
Yingcang Ma, Wanying Zhou, Qing Wan

School of Science, Xi’an Polytechnic University, Xi’an Shaanxi 710048, China. E-mail: mayingcang@126.com, 892443522@qq.com, wqysbe@163.com

Abstract: Rough sets theory is a powerful tool to deal with un-
certainty and incompleteness of knowledge in information systems.
Wang et al. proposed single valued neutrosophic sets as an extension
of intuitionistic fuzzy sets to deal with real-world problems. In this
paper, we propose the covering-based rough single valued neutro-
sophic sets by combining covering-based rough sets and single val-
ued neutrosophic sets. Firstly, three types of covering-based rough
single valued neutrosophic sets models are built and the properties

of lower/upper approximation operators are explored. Secondly, the
lower/upper approximations in two different covering approximation
spaces are studied. The sufficient and necessary condition for gener-
ating the same lower/upper approximations from two different cover-
ing approximation spaces is discussed. Moreover, the relations of the
three models are discussed and the equivalence conditions for three
models are given.

Keywords: covering-based rough sets, single valued neutrosophic sets, neutrosophic sets, covering-based rough single valued neutrosophic sets.

1 Introduction
Rough set theory (RST), proposed by Pawlak[1] in 1982, is one
of the effective mathematical tools for processing fuzzy and un-
certainty knowledge. The classical rough set theory is based on
the equivalence relation on the domain. In many practical prob-
lems, the relation between objects is essentially no equivalence
relation, so this equivalence relation as the basis of the classic
rough set model cannot fully meet the actual needs. For this a
lot of extension models of Pawlak rough set are given. One ap-
proach is to extend the equivalence realtion to similarity relation-
s[2], tolerance relations[3], ordinary binary relations[4], reflex-
ive and transitive relations[5] and others. The other approach is
combining the other theory to get more flexible and expressive
framework for modeling and processing incomplete information
in information systems. Mi et al.[6] introduced the definitions
for generalized fuzzy lower and upper approximation operators
determined by a residual implication. Pei [7] studied generalized
fuzzy rough sets. Zhang et al.[8] gave a general framework of in-
tuitionistic fuzzy rough set theory. Yang et al. [9]proposed hesi-
tant fuzzy rough sets and studied the models axiomatic character-
izations by combining hesitant fuzzy sets and rough sets.Zhang et
al.[10] further gave the construction and axiomatic characteriza-
tions of interval-valued hesitant fuzzy rough sets, and illustrated
the application of the model.

Covering rough sets theory is an important rough sets theo-
ry. Covering rough set model, first proposed by Zakowski[11]
in 1983, Bonikowski et al. later studied the structures of cover-
ing[12]. Chen et al. [13]discussed the covering rough sets within
the framework of a completely distributive lattice. Zhu and Wang
[14]proposed the reduction of covering rough sets to reduce the
“redundant” members in a covering in order to find the “small-
est” covering. Deng et al. [15] established fuzzy rough set mod-
els based on a covering. Li et al. [16] proposed a generalized
fuzzy rough approximation operators based on fuzzy coverings.

Wei et al. [17]and Xu et al. [18] established the first and sec-
ond types of rough fuzzy set models based on a covering. Hu et
al.[19] proposed the third type of rough fuzzy set models based
on a covering. Tang et al. [20] gave the fourth type of rough
fuzzy set models based on a covering.

Smarandache [21] proposed neutrosophic sets to deal with
real-world problems. A neutrosophic set has three membership
functions: truth membership function, indeterminacy member-
ship function and falsity membership function, in which each
membership degree is a real standard or non-standard subset of
the nonstandard unit interval ]0−, 1 + [ . Wang et al. [22] intro-
duced single valued neutrosophic sets (SVNSs) that is a gener-
alization of intuitionistic fuzzy sets, in which three membership
functions are independent and their values belong to the unit in-
terval [0, 1]. Further studies have done in recent years. Such as,
Majumdar and Samanta [23] studied similarity and entropy of
SVNSs. Ye [24] proposed correlation coefficients of SVNSs, and
applied it to single valued neutrosophic decision-making prob-
lems, etc.

SVNSs and covering rough sets are two different tools of deal-
ing with uncertainty information. In order to use the advantages
of SVNSs and covering rough sets, we establish a hybrid model
of SVNSs and covering rough sets. Broumi and Smarandache
proposed single valued neutrosophic information systems based
on rough set theory [25]. Yang et al. proposed single valued neu-
trosophic rough set model and single valued neutrosophic refined
rough set model[26,27]. In the present paper, we shall propose
covering-based rough single valued neutrosophic sets by fusing
SVNSs and covering rough sets, and explore a general framework
of the study of covering-based rough single valued neutrosophic
sets.

The paper is organized as follows. After this introduction, In
section 2, we provide the basic notions and operations of Pawlak
rough sets, covering rough sets and SVNSs. Based on a SVNR,
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Sect. 3 proposes three types of covering-based rough single val-
ued neutrosophic sets. Properties of lower/upper approximation
operators are studied. In Sect. 4, we investigate the relations of
the three types models. The last section summarizes the conclu-
sions and gives an outlook for future research.

2 Preliminaries
In this section, we give basic notions and operations on Pawlak
tough sets, covering-based rough sets and SVNSs.

Definition 2.1 Let U be a non-empty finite university and R be
an equivalence relations on U . (U,R) is called a Pawlak approx-
imation space. ∀X ⊆ U , the lower and upper approximations of
X , denoted by R(X) and R(X), are defined as follows, respec-
tively:

R(X = {x ∈ U |[x]R ⊆ X},
R(X = {x ∈ U |[x]R ∩X 6= ∅},

where [x]R = {y ∈ U |(x, y) ∈ R}. R(X) and R(X) are called
as lower and upper approximations operators, respectively. The
pair (R(X), R(X)) is called a Pawlak rough set.

Definition 2.2 Let U be a non-empty finite university, C is a fam-
ily of subsets of U . If none subsets in C is empty and ∪C = U ,
then C is a covering of U .

Definition 2.3 Let C be a covering of U , x ∈ U . MdC(x) =
{K ∈ C ∧ (∀S ∈ C ∧x ∈ S ∧S ⊆ K ⇒ K = S)} is called the
minimal description of x, When the covering is clear, we omit the
lowercase C in the minimal description.

Definition 2.4 Let U be a space of points (objects), with a gener-
ic element in U denoted by u. A SVNS A in U is characterized by
three membership functions, a truth membership function TA, an
indeterminacy membership function IA and a falsity-membership
function FA, where ∀u ∈ U, TA(u), IA(u), FA(u) ∈ [0, 1]. That
is TA : U → [0, 1], IA : U → [0, 1] and FA : U → [0, 1].
There is no restriction on the sum of TA(u), IA(u) and FA(u),
thus 0 ≤ TA(u) + IA(u) + FA(u) ≤ 3.

Here A can be denoted by A =
{〈u, TA(u), IA(u), FA(u)〉|u ∈ U}, ∀u ∈ U, (TA(u),
IA(u), FA(u)) is called a single valued neutrosophic num-
ber(SVNN).

Definition 2.5 Let A and B be two SVNSs on U . If for any u ∈
U , TA(u) ≤ TB(u), IA(u) ≥ IB(u), FA(u) ≥ FB(u), then we
called A is contained in B, denoted by A b B.

If A b B and B b A, then we called A is equal to B, denoted
by A = B.

Definition 2.6 Let A be a SVNS on U. The complement of A is
denoted by Ac, where ∀u ∈ U , TAc(u) = FA(u), IAc(u) =
1− IA(u), FAc(u) = TA(u).

Definition 2.7 Let A and B be two SVNS on U . The union of A
and B is a SVNS C, denoted by C = A d B, where ∀u ∈ U ,
TC(u) = max{TA(u), TB(u)}, IC(u) = min{IA(u), IB(u)},
FC(u) = min{FA(u), FB(u)}.

The intersection of A and B is a SVNS D, denoted by D =
A eB, where ∀u ∈ U , TD(u) = min{TA(u), TB(u)}, IC(u) =
max{IA(u), IB(u)}, FC(u) = max{FA(u), FB(u)}.

Proposition 2.8 [26] Let A and B be two SVNS on U . The fol-
lowing results hold:

(1) A b A dB and B b A dB;
(2) A eB b A and A eB b B;
(3) (Ac)c = A;
(4) (A dB)c = Ac eBc;
(5) (A eB)c = Ac dBc.

3 Covering-based rough neutrosophic
sets

Definition 3.1 Let U be a non-empty finite university, C is a cov-
ering of U , (U,C) be a covering approximation space. A is a
SVNS of U . The first type of lower and upper approximations of
A with respect to (U,C), denoted by FL(A) and FU(A), are
two SVNSs whose membership functions are defined as ∀u ∈ U ,
TFL(A)(u) = inf{TA(v)|v ∈ ∪Md(u)},
IFL(A)(u) = sup{IA(v)|v ∈ ∪Md(u)},
FFL(A)(u) = sup{FA(v)|v ∈ ∪Md(u)},
TFU(A)(u) = sup{TA(v)|v ∈ ∪Md(u)},
IFU(A)(u) = inf{IA(v)|v ∈ ∪Md(u)},
FFU(A)(u) = inf{FA(v)|v ∈ ∪Md(u)}.

The pair (FL(A), FU(A)) is called the first type of rough sin-
gle valued neutrosophic set based on covering C. FL(A) and
FU(A) are called as the first lower and upper approximations
operators, respectively.

Definition 3.2 Let U be a non-empty finite university, C is a cov-
ering of U , (U,C) be a covering approximation space. A is a
SVNS of U . The second type of lower and upper approximations
of A with respect to (U,C), denoted by SL(A) and SU(A), are
two SVNSs whose membership functions are defined as ∀u ∈ U ,
TSL(A)(u) = inf{TA(v)|v ∈ ∩Md(u)},
ISL(A)(u) = sup{IA(v)|v ∈ ∩Md(u)},
FSL(A)(u) = sup{FA(v)|v ∈ ∩Md(u)},
TSU(A)(u) = sup{TA(v)|v ∈ ∩Md(u)},
ISU(A)(u) = inf{IA(v)|v ∈ ∩Md(u)},
FSU(A)(u) = inf{FA(v)|v ∈ ∩Md(u)}.

The pair (SL(A), SU(A)) is called the second type of rough s-
ingle valued neutrosophic set based on covering C. SL(A) and
SU(A) are called as the second lower and upper approximations
operators, respectively.

Definition 3.3 Let U be a non-empty finite university, C is a cov-
ering of U , (U,C) be a covering approximation space. A is a
SVNS of U . The third type of lower and upper approximations
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of A with respect to (U,C), denoted by TL(A) and TU(A), are
two SVNSs whose membership functions are defined as ∀u ∈ U ,
TTL(A)(u) = supK∈Md(u){infv∈K{TA(v)}},
ITL(A)(u) = infK∈Md(u){supv∈K{IA(v)}},
FTL(A)(u) = infK∈Md(u){supv∈K{FA(v)}}.
TTU(A)(u) = infK∈Md(u){supv∈K{TA(v)}},
ITU(A)(u) = supK∈Md(u){infv∈K{IA(v)}},
FTU(A)(u) = supK∈Md(u){infv∈K{FA(v)}},

The pair (TL(A), TU(A)) is called the third type of rough sin-
gle valued neutrosophic set based on covering C. TL(A) and
TU(A) are called as the third lower and upper approximations
operators, respectively.

Example 3.4 Let U = {a, b, c, d}, K1 = {a, b},K2 =
{b, c},K3 = {c, d}, C = {K1,K2,K3}. A single val-
ued neutrosophic set A = {〈a, (0.2, 0.8, 0.1)〉, 〈b, (1, 0.3, 1)〉,
〈c, (0.5, 0.3, 0)〉, 〈d, (0.6, 0.7, 0.5)〉}, then Md(a) = {{a, b}},
Md(b) = {{a, b}, {b, c}}, Md(c) = {{b, c}, {c, d}}, Md(d) =
{{c, d}}. Thus,

TFL(A)(a) = inf{TA(v)|v ∈ ∪Md(a)} = inf{TA(a),
TA(b)} = inf{0.2, 1} = 0.2.

TFL(A)(b) = inf{TA(v)|v ∈ ∪Md(b)} = inf{TA(a),
TA(b), TA(c)} = inf{0.2, 1, 0.5} = 0.2.
TFL(A)(c) = inf{TA(v)|v ∈ ∪Md(c)} = inf{TA(b),

TA(c), TA(d)} = inf{1, 0.5, 0.6} = 0.5.
TFL(A)(d) = inf{TA(v)|v ∈ ∪Md(d)} = inf{TA(c),

TA(d))} = inf{0.5, 0.6} = 0.5.
TFU(A)(a) = sup{TA(v)|v ∈ ∪Md(a)} = sup{TA(a),

TA(b)} = sup{0.2, 1} = 1.
TFU(A)(b) = sup{TA(v)|v ∈ ∪Md(b)} = sup{TA(a),

TA(b), TA(c)} = sup{0.2, 1, 0.5} = 1.
TFU(A)(c) = sup{TA(v)|v ∈ ∪Md(c)} = sup{TA(b),

TA(c), TA(d)} = sup{1, 0.5, 0.6} = 1.
TFU(A)(d) = sup{TA(v)|v ∈ ∪Md(d)} = sup{TA(c),

TA(d))} = sup{0.5, 0.6} = 0.6.
IFL(A)(a) = sup{IA(v)|v ∈ ∪Md(a)} = sup{IA(a),

IA(b)} = sup{0.8, 0.3} = 0.8.
IFL(A)(b) = sup{IA(v)|v ∈ ∪Md(b)} = sup{IA(a),

IA(b), TA(c)} = sup{0.8, 0.3, 0.3} = 0.8.
IFL(A)(c) = sup{IA(v)|v ∈ ∪Md(c)} = sup{IA(b),

IA(c), IA(d)} = sup{0.3, 0.3, 0.7} = 0.7.
IFL(A)(d) = sup{IA(v)|v ∈ ∪Md(d)} = sup{IA(c),

IA(d))} = sup{0.3, 0.7} = 0.7.
IFU(A)(a) = inf{IA(v)|v ∈ ∪Md(a)} = inf{IA(a),

IA(b)} = inf{0.8, 0.3} = 0.3.
IFU(A)(b) = inf{IA(v)|v ∈ ∪Md(b)} = inf{IA(a),

IA(b), IA(c)} = inf{0.8, 0.3, 0.3} = 0.3.
IFU(A)(c) = inf{IA(v)|v ∈ ∪Md(c)} = inf{IA(b),

IA(c), IA(d)} = inf{0.3, 0.3, 0.7} = 0.3.
IFU(A)(d) = inf{IA(v)|v ∈ ∪Md(d)} = inf{IA(c),

IA(d))} = inf{0.3, 0.7} = 0.3.
FFL(A)(a) = sup{FA(v)|v ∈ ∪Md(a)} = sup{FA(a),

FA(b)} = sup{0.1, 1} = 1.
FFL(A)(b) = sup{FA(v)|v ∈ ∪Md(b)} = sup{FA(a),

FA(b), TA(c)} = sup{0.1, 1, 0} = 1.

FFL(A)(c) = sup{FA(v)|v ∈ ∪Md(c)} = sup{FA(b),
FA(c), FA(d)} = sup{1, 0, 0.5} = 1.
FFL(A)(d) = sup{FA(v)|v ∈ ∪Md(d)} = sup{FA(c),

FA(d))} = sup{0, 0.5} = 0.5.
FFU(A)(a) = inf{FA(v)|v ∈ ∪Md(a)} = inf{FA(a),

FA(b)} = inf{0.1, 1} = 0.1.
FFU(A)(b) = inf{FA(v)|v ∈ ∪Md(b)} = inf{FA(a),

FA(b), FA(c)} = inf{0.1, 1, 0} = 0.
FFU(A)(c) = inf{FA(v)|v ∈ ∪Md(c)} = inf{FA(b),

FA(c), FA(d)} = inf{1, 0, 0.5} = 0.
FFU(A)(d) = inf{FA(v)|v ∈ ∪Md(d)} = inf{FA(c),

FA(d))} = inf{0, 0.5} = 0.
Thus,

FL(A) = {〈a, (0.2, 0.8, 1)〉, 〈b, (0.2, 0.8, 1)〉, 〈c, (0.5, 0.7, 1)〉,
〈d, (0.5, 0.7, 0.5)〉},
FU(A) = {〈a, (1, 0.3, 0.1)〉, 〈b, (1, 0.3, 0)〉, 〈c, (1, 0.3, 0)〉,
〈d, (0.6, 0.3, 0)〉}.

Similarly,
SL(A) = {〈a, (0.2, 0.8, 1)〉, 〈b, (1, 0.3, 1)〉, 〈c, (0.5, 0.3, 0)〉,
〈d, (0.5, 0.7, 0.5)〉},
SU(A) = {〈a, (1, 0.3, 0.1)〉, 〈b, (1, 0.3, 1)〉, 〈c, (0.5, 0.3, 0)〉,
〈d, (0.6, 0.3, 0)〉}.
TL(A) = {〈a, (0.2, 0.8, 1)〉, 〈b, (0.5, 0.3, 1)〉, 〈c, (0.5, 0.3, 0.5)〉,
〈d, (0.5, 0.7, 0.5)〉},
TU(A) = {〈a, (1, 0.3, 0.1)〉, 〈b, (1, 0.3, 0.1)〉, 〈c, (0.6, 0.3, 0)〉,
〈d, (0.6, 0.3, 0)〉}.

Proposition 3.5 The first type of rough single valued neutro-
sophic lower and upper approximation operators defined in Def-
inition 3.1 has the following properties: ∀A,B ∈ SV NS(U),

(1) FL(U) = U,FU(U) = U ;
(2) FL(∅) = ∅, FU(∅) = ∅;
(3) FL(A) b A b FU(A);
(4) FL(AeB) = FL(A)eFL(B), FU(AdB) = FU(A)d

FL(B);
(5) A b B ⇒ FL(A) b FL(B), A b B ⇒ FU(A) b

FU(B);
(6) FU(AeB) b FU(A)eFU(B), FL(AdB) c FL(A)d

FL(B);
(7) FL(Ac) = (FU(A))c, FU(Ac) = (FL(A))c.

Proof: (1) TFL(U)(u) = inf{TU (v)|v ∈ ∪Md(u)} = 1,
TFU(U)(u) = sup{TU (v)|v ∈ ∪Md(u)} = 1, IFL(U)(u) =
sup{IU (v)|v ∈ ∪Md(u)} = 0, IFU(U)(u) = inf{IU (v)|v ∈
∪Md(u)} = 0, FFL(U)(u) = sup{FU (v)|v ∈ ∪Md(u)} = 0,
FFU(U)(u) = inf{FU (v)|v ∈ ∪Md(u)} = 0, thus FL(U) =
U,FU(U) = U .

(2) TFL(∅)(u) = inf{T∅(v)|v ∈ ∪Md(u)} = 0, TFU(∅)(u) =
sup{T∅(v)|v ∈ ∪Md(u)} = 0, IFL(∅)(u) = sup{I∅(v)|v ∈
∪Md(u)} = 1, IFU(∅)(u) = inf{I∅(v)|v ∈ ∪Md(u)} = 1,
FFL(∅)(u) = sup{F∅(v)|v ∈ ∪Md(u)} = 1, FFU(∅)(u) =
inf{F∅(v)|v ∈ ∪Md(u)} = 1, thus FL(∅) = ∅, FU(∅) = ∅.

(3) Being u ∈ ∪Md(u), so TFL(A)(u) = inf{TA(v)|v ∈
∪Md(u)} ≤ TA(u) ≤ TFU(A)(u) = sup{TA(v)|v ∈
∪Md(u)} =, IFL(A)(u) = sup{IA(v)|v ∈ ∪Md(u)} ≥
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IA(u) ≥ IFU(A)(u) = inf{IA(v)|v ∈ ∪Md(u)} =,
FFL(A)(u) = sup{FA(v)|v ∈ ∪Md(u)} ≥ FA(u) ≥
FFU(A)(u) = inf{FA(v)|v ∈ ∪Md(u)} =, thus, FL(A) b
A b FU(A).

(4) TFL(A e B)(u) = inf{TAeB(v)|v ∈ ∪Md(u)} =
inf{min{TA(v), TB(v)}|v ∈ ∪Md(u)} = min{inf{TA(v)|v ∈
∪Md(u)}, inf{TB(v)}|v ∈ ∪Md(u)} = min{TFL(A)(u),
TFL(B)(u)}.
IFL(A e B)(u) = sup{IAeB(v)|v ∈ ∪Md(u)}

= sup{max{IA(v), IB(v)}|v ∈ ∪Md(u)} =
max{sup{IA(v)|v ∈ ∪Md(u)}, sup{IB(v)}|v ∈ ∪Md(u)}
= max{IFL(A)(u), IFL(B)(u)}.
FFL(A e B)(u) = sup{FAeB(v)|v ∈ ∪Md(u)}

= sup{max{FA(v), FB(v)}|v ∈ ∪Md(u)} =
max{sup{FA(v)|v ∈ ∪Md(u)}, sup{FB(v)}|v ∈ ∪Md(u)}
= max{FFL(A)(u), FFL(B)(u)}. Thus, FL(A e B) =
FL(A) e FL(B).

TFU (A d B)(u) = sup{TAdB(v)|v ∈ ∪Md(u)}
= sup{max{TA(v), TB(v)}|v ∈ ∪Md(u)} =
max{sup{TA(v)|v ∈ ∪Md(u)}, sup{TB(v)}|v ∈ ∪Md(u)}
= max{TFU(A)(u), TFU(B)(u)}.

IFU (A d B)(u) = inf{IAdB(v)|v ∈ ∪Md(u)}
= inf{min{IA(v), IB(v)}|v ∈ ∪Md(u)} =
min{inf{IA(v)|v ∈ ∪Md(u)}, inf{IB(v)}|v ∈ ∪Md(u)}
= min{IFU(A)(u), IFU(B)(u)}.
FFU (A d B)(u) = inf{FAdB(v)|v ∈ ∪Md(u)} =

inf{min{FA(v), FB(v)}|v ∈ ∪Md(u)} = min{inf{FA(v)|v ∈
∪Md(u)}, inf{FB(v)}|v ∈ ∪Md(u)} = min{FFL(A)(u),
FFL(B)(u)}. Thus, FL(A dB) = FL(A) d FL(B).

So (4) holds.
(5) If A b B, then TFL(A)(u) = inf{TA(v)|v ∈ ∪Md(u)}
≤ inf{TB(v)|v ∈ ∪Md(u)} = TFL(B)(u), IFL(A)(u) =
sup{IA(v)|v ∈ ∪Md(u)} ≥ sup{IB(v)|v ∈ ∪Md(u)} =
IFL(B)(u), FFL(A)(u) = sup{FA(v)|v ∈ ∪Md(u)} ≥
sup{FB(v)|v ∈ ∪Md(u)} = FFL(B)(u). So, FL(A) b
FL(B).

The similar method we can get A b B ⇒ FU(A) b FU(B).
So (5) holds.

(6) Being A e B b A b A d B, A e B b B b A d B, from
(5), (6) holds.

(7) TFL(Ac)(u) = inf{TAc(v)|v ∈ ∪Md(u)} =
inf{FA(v)|v ∈ ∪Md(u)} = FFU(A)(u) = T(FU(A))c)(u).
IFL(Ac)(u) = sup{IAc(v)|v ∈ ∪Md(u)} = sup{1 −

IA(v)|v ∈ ∪Md(u)} = 1 − inf{IA(v)|v ∈ ∪Md(u)} =
1− IFU(A))(u) = I(FU(A))c(u).
FFL(Ac)(u) = sup{FAc(v)|v ∈ ∪Md(u)} = sup{TA(v)|v ∈

∪Md(u)} = TFU(A)(u) = F(FU(A))c)(u).
So, FL(Ac) = (FU(A))c. The similar method we can get

FU(Ac) = (FL(A))c, thus (7) holds.
Remark: FL(FL(A)) = FL(A) and FU(FU(A)) =

FU(A) do not hold generally.
Similarly, we can get the following proposition.

Proposition 3.6 The second type of rough single valued neutro-
sophic lower and upper approximation operators defined in Def-

inition 3.2 has the following properties: ∀A,B ∈ SV NS(U),
(1) SL(U) = U, SU(U) = U ;
(2) SL(∅) = ∅, SU(∅) = ∅;
(3) SL(A) b A b SU(A);
(4) SL(AeB) = SL(A)e SL(B), SU(AdB) = SU(A)d

SL(B);
(5) A b B ⇒ SL(A) b SL(B), A b B ⇒ SU(A) b

SU(B);
(6) SU(AeB) b SU(A)eSU(B), SL(AdB) c SL(A)d

SL(B);
(7) SL(Ac) = (SU(A))c, SU(Ac) = (SL(A))c.

Proposition 3.7 The third type of rough single valued neutro-
sophic lower and upper approximation operators defined in Def-
inition 3.3 has the following properties: ∀A,B ∈ SV NS(U),

(1) TL(U) = U, TU(U) = U ;
(2) TL(∅) = ∅, TU(∅) = ∅;
(3) TL(A) b A b TU(A);
(4) A b B ⇒ TL(A) b TL(B), A b B ⇒ TU(A) b

TU(B);
(5) TU(AeB) b TU(A)eFU(B), TL(AdB) c TL(A)d

TL(B);
(6) TL(Ac) = (TU(A))c, TU(Ac) = (TL(A))c.
(7) TL(TL(A)) = TL(A), TU(TU(A)) = TU(A).

Proof: The proofs of (1)-(6) are similar to the Proposition 3.5,
we only show (7).

Let u ∈ U,Md(u) = {K1,K2, · · · ,Km}.
TTL(A)(u) = supK∈Md(u){infv∈K(T(A)(v))}

= sup{infv1∈K1
{TA(v1)}, infv2∈K2

{TA(v2)},
· · · , infvm∈Km

{TA(vm)}, }. Without loss of generality,
let Ki ∈ Md(u), TTL(A)(u) = infvi∈Ki

{TA(vi)}, then
for j 6= i, infvi∈Ki{TA(vi)} ≥ infvj∈Kj{TA(vj)}. Let
vi ∈ Ki, from Definition 3.3, we have TTL(A)(vi) =
supK∈Md(vi){infv∈K(T(A)(v))} ≥ infvi∈Ki

(T(A)(vi))
= TTL(A)(u). Being ∀vi∈Ki

(TTL(A)(vi) ≥ TTL(A)(u)), so
infvi∈Ki

{TTL(A)(vi)} = TTL(A)(u). Let vj ∈ Kj , j 6= i,
so infyj∈Kj

{TTL(A)(vj)} ≤ TTL(A))(u) holds. Thus,
TTL(TL(A))(u) = supK∈Md(u){infv∈K{TTL(A)(v)}}
= sup{infv1∈K1{TTL(A)(v1)}, infv2∈K2{TTL(A)(v2)}, · · · ,
infvm∈Km

{TTL(A)(vm)}} = TTL(A)(u).
ITL(A)(u) = infK∈Md(u){supv∈K(I(A)(v))}

= inf{supv1∈K1
{IA(v1)}, supv2∈K2

{IA(v2)},
· · · , supvm∈Km

{IA(vm)}, }. Without loss of generality,
let Ki ∈ Md(u), ITL(A)(u) = supvi∈Ki

{IA(vi)}, then
for j 6= i, supvi∈Ki

{IA(vi)} ≤ supvj∈Kj
{IA(vj)}. Let

vi ∈ Ki, from Definition 3.3, we have ITL(A)(vi) =
infK∈Md(vi){supv∈K(I(A)(v))} ≤ supvi∈Ki

(I(A)(vi)) =
ITL(A)(u). Being ∀vi∈Ki

(ITL(A)(vi) ≤ ITL(A)(u)), so
supvi∈Ki

{ITL(A)(vi)} = ITL(A)(u). Let vj ∈ Kj , j 6= i,
so supyj∈Kj

{ITL(A)(vj)} ≥ ITL(A))(u) holds. Thus,
ITL(TL(A))(u) = infK∈Md(u){supv∈K{ITL(A)(v)}}
= inf{supv1∈K1

{ITL(A)(v1)}, supv2∈K2
{ITL(A)(v2)}, · · · ,

supvm∈Km
{ITL(A)(vm)}} = ITL(A)(u).
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FTL(A)(u) = infK∈Md(u){supv∈K(F(A)(v))}
= inf{supv1∈K1

{FA(v1)}, supv2∈K2
{FA(v2)},

· · · , supvm∈Km
{FA(vm)}, }. Without loss of generality,

let Ki ∈ Md(u), FTL(A)(u) = supvi∈Ki
{FA(vi)}, then

for j 6= i, supvi∈Ki
{FA(vi)} ≤ supvj∈Kj

{FA(vj)}. Let
vi ∈ Ki, from Definition 3.3, we have FTL(A)(vi) =
infK∈Md(vi){supv∈K(F(A)(v))} ≤ supvi∈Ki

(F(A)(vi))
= FTL(A)(u). Being ∀vi∈Ki(FTL(A)(vi) ≤ FTL(A)(u)), so
supvi∈Ki

{FTL(A)(vi)} = FTL(A)(u). Let vj ∈ Kj , j 6= i,
so supyj∈Kj

{FTL(A)(vj)} ≥ FTL(A))(u) holds. Thus,
FTL(TL(A))(u) = infK∈Md(u){supv∈K{FTL(A)(v)}}
= inf{supv1∈K1

{FTL(A)(v1)}, supv2∈K2
{FTL(A)(v2)} · · · ,

supvm∈Km
{FTL(A)(vm)}} = FTL(A)(u).

That is, TL(TL(A)) = TL(A), the similar way we can get
TU(TU(A)) = TU(A). So (7) holds.

Remark: TL(AeB) = TL(A)eTL(B) and TU(AdB) =
TU(A) d TL(B) do not hold generally.

4 The relations among the three types
of covering-based rough single valued
neutrosophic sets models

Definition 4.1 Let C1, C2 are two coverings on a non-empty fi-
nite university U , u ∈ U , ∀K ∈ MdC1

(u), there exists K ′ ∈
MdC2

(u), such that K ′ ⊆ K, which is called C2 is thinner than
C1, denoted by C2 � C1. If C2 � C1 and C1 � C2, which is
called C1 equals C2, denoted by C1 = C2. otherwise, which is
called C1 does not equal C2, denoted by C1 6= C2. If C2 ≤ C1

and C1 6= C2, it is called C2 is strict thinner than C1, denoted
by C2 < C1. If ∀K ∈ U,K ∈ C1 ⇔ K ∈ C2, it is called C1

identity to C2, denoted by C1 ≡ C2.

Proposition 4.2 Let C1, C2 are two coverings on a non-empty
finite university U , C1 � C2, A is a single valued neutrosophic
set on U . We have:

(1) FLC2(A) b FLC1(A) b A b FUC1(A) b FUC2(A);
(2) SLC2

(A) b SLC1
(A) b A b SUC1

(A) b SUC2
(A);

(3) TLC2
(A) b TLC1

(A) b A b TUC1
(A) b TUC2

(A).

Proof: We only show (3).
Let u ∈ U , TTLC1

(A)(u) = supK∈Md(u){inf{TA(v)|v ∈
K}}, TTLC2

(A)(u) = supK′∈Md(u) {inf{TA(v)|v ∈ K ′}},
being C1 � C2, then ∀K ′ ∈ MdC2(u),∃K ∈
MdC1(u), such that K ⊆ K ′, so infv∈K{TA(v)} ≥
infv∈K′{TA(v)}. So supK∈MdC1

(u){infv∈K{TA(v)}} ≥
supK′∈MdC2

(u){infv∈K′{TA(v)}}, that is TTLC1
(A) ≥

TTLC2
(A).

ITLC1
(A)(u) = infK∈Md(u){sup{IA(v)|v ∈ K}},

ITLC2
(A)(u) = infK′∈Md(u){sup{IA(v)| v ∈ K ′}},

being C1 � C2, then ∀K ′ ∈ MdC2
(u),∃K ∈

MdC1(u), such that K ⊆ K ′, so supv∈K{IA(v)} ≤
supv∈K′{TA(v)}. So infK∈MdC1

(u){supv∈K{IA(v)}} ≤
infK′∈MdC2

(u) {supv∈K′{IA(v)}}, that is ITLC1
(A) ≤

ITLC2
(A).

FTLC1
(A)(u) = infK∈Md(u){sup{FA(v)|v ∈ K}},

FTLC2
(A)(u) = infK′∈Md(u){sup{FA(v)| v ∈ K ′}},

being C1 � C2, then ∀K ′ ∈ MdC2
(u),∃K ∈

MdC1
(u), such that K ⊆ K ′, so supv∈K{FA(v)} ≤

supv∈K′{TA(v)}. So infK∈MdC1
(u){supv∈K{IA(v)}} ≤

infK′∈MdC2
(u) {supv∈K′{FA(v)}}, that is FTLC1

(A) ≤
FTLC2

(A).
Thus we can get TLC2(A) b TLC1(A), the similar way we

can get TUC1(A) b TUC2(A). According Proposition 3.7, we
can get TLC2

(A) b TLC1
(A) b A b TUC1

(A) b TUC2
(A)

holds.

Definition 4.3 Let C be a covering of a domain U and K ∈ C.
If K is a union of some sets in C −K, we say K is reducible in
C, otherwise K is irreducible. Let C be a covering of U . If every
element in C is irreducible, we say C is irreducible; otherwise C
is reducible. ∀K ∈ C, if K is reducible in C, then we can omit
K from C, until C is irreducible, which is called a reduction of
C, denoted by reduct(C).

Let (U,C) be a covering approximation space, reduct(C) is
the reduction of C, being ∀u ∈ U , Md(u) is same in C and
reduct(C), so C = reduct(C), so we can get the following
result.

Proposition 4.4 Let (U,C) be a covering approximation space,
reduct(C) is the reduction of C, then ∀A ∈ SV NS(U), C and
reduct(C) generate the same covering-based lower/upper ap-
proximations for each type of covering-base rough single valued
neutrosophic set.

Proposition 4.5 Let C1, C2 are two coverings on a non-empty
finite university U , then ∀A, the lower/upper approximations for
each type of covering-base rough single valued neutrosophic set
are same in (U,C1) and (U,C2) iff reduct(C1) = reduct(C2).

Proof:⇐ Being reduct(C1) = reduct(C2), ∀A, A is a single
valued neutrosophic set on U , from Proposition 4.2 we can get
the results hold.
⇒We just prove the third types of rough single valued neutro-

sophic set model, the others are similarly.
Proof by contradiction. Assume reduct(C1) 6= reduct(C2),

let K ∈ reduct(C1),K 6∈ reduct(C2). We have
FLreduct(C1)(K) = K (here K be a single valued neutro-
sophic set, TK(u) = 1, if u ∈ K, otherwise TK(u) = 0.
IK(u) = 0, if u ∈ K, otherwise IK(u) = 1. FK(u) = 0,
if u ∈ K, otherwise FK(u) = 1). From Proposition 4.4, if
K has the same covering-based rough single valued neutrosoph-
ic set in (U,C1) and (U,C2), then K has the same covering-
based rough single valued neutrosophic set in (U, reduct(C1))
and (U, reduct(C2)), so FLreduct(C2)(K) = K. Being K 6∈
reduct(C2), then there exist k1, k2, · · · , kn ∈ reduct(C2), such
that K = ∪1≤i≤nki. For each ki ∈ reduct(C2), there exist
ki1, ki2, · · · , kimi ∈ reduct(C1), such that ki = ∪1≤j≤mikij ,
so K = ∪1≤i≤n ∪1≤j≤mi kij , that is K is reducible in
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reduct(C1), which is contradiction that reduct(C) is a reduc-
tion of C. So the result holds.
∀u ∈ U,∀K ∈ Md(u), it is obviously that ∩Md(u) ⊆ K ⊆
∪Md(u), so we can get the following proposition.

Proposition 4.6 Let (U,C) be a covering approximation space,
A is a single valued neutrosophic set, then FL(A) b TL(A) b
SL(A) b A b SU(A) b TU(A) b FU(A).

Proposition 4.7 Let (U,C) be a covering approximation space,
A is a single valued neutrosophic set, then the three types
covering-based rough single valued neutrosophic sets are equiv-
alence iff ∀u ∈ U , inf{A(v)|v ∈ ∪Md(u)} = inf{A(v)|v ∈
∩Md(u)} and ∀u ∈ U , sup{A(v)|v ∈ ∪Md(u)} =
sup{A(v)|v ∈ ∩Md(u)}

Proof: ⇐ From Proposition 4.6 we can get TLC2
(A) b

TLC1
(A) b A b TUC1

(A) b TUC2
(A), being ∀u ∈ U ,

inf{A(v)|v ∈ ∪Md(u)} = inf{A(v)|v ∈ ∩Md(u)}, from Def-
inition 3.1, 3.2, 3.3, we can get FL(A) = SL(A) = TL(A) and
FU(A) = SU(A) = TU(A) .
⇒ If the three types covering-based rough single valued neu-

trosophic sets are same, from Definition 3.1, 3.2, 3.3, we can
easily get ∀u ∈ U , inf{A(v)|v ∈ ∪Md(u)} = inf{A(v)|v ∈
∩Md(u)} and sup{A(v)|v ∈ ∪Md(u)} = sup{A(v)|v ∈
∩Md(u)}.

5 Conclusion
In this paper, we proposed the hybrid models of single valued 
neutrosophic refined sets, covering-based rough sets and 
covering-based rough single valued neutrosophic sets. 
Specifically, we explored the hybrid models through three 
different definitions and give the basic properties. Moreover, 
we discussed the relations of the three models. For the future 
prospects, we plan to explore the application of the proposed 
model to data mining and attribute reduction.
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Abstract. Neutrosophic set is a new mathematical tool 
for handling problems involving imprecise, indetermi-
nacy and inconsistent data. Pseudo-BCI algebra is a 
kind of non-classical logic algebra in close connection 
with various non-commutative fuzzy logics. Recently, 
we applied neutrosophic set theory to pseudo-BCI al-
gebras. In this paper, we study neutrosophic filters 
in pseudo-BCI algebras. The concepts of neutrosophic 
regular filter, neutrosophic closed filter and fuzzy regular 

filter in pseudo-BCI algebras are introduced, and 
some basic properties are discussed. Moreover, the 
relationships among neutrosophic regular filter, fuzzy 
filters and anti-grouped neutrosophic filters are prese-
nted, and the results are proved: a neutrosophic filter 
(fuzzy filter) is a neutrosophic regular filter (fuzzy 
regular filter), if and only if it is both a neutrosophic 
closed filter (fuzzy closed filter) and an anti-grouped 
neutrosophic filter (fuzzy anti-grouped filter).  

Keywords: Neutrosophic set, Pseudo-BCI algebra, Neutrosophic Filter, Neutrosophic Regular Filter, Fuzzy Regular Filter.

1 Introduction

In 1998, Florentin Smarandache introduced the concept 
of a neutrosophic set from a philosophical point of view 
(see [16, 17, 18]). The neutrosophic set is a powerful gen-
eral formal framework that generalizes the concept of 
fuzzy set and intuitionistic fuzzy set. In this paper we work 
with special neutrosophic sets, they are called single val-
ued neutrosophic set (see [21]). The neutrosophic set the-
ory is applied to many scientific fields (see [18, 19, 20]), 
and also applied to algebraic structures (see [1, 2, 15, 19]), 
it is similar to the applications of fuzzy set (soft set, rough 
set) theory in algebraic structures (see [11, 14, and 23]). 

In 2008, W. A. Dudek and Y. B. Jun [3] introduced the 
notion of pseudo-BCI algebra as a generalization of BCI 
algebra, it is also as a generalization of pseudo-BCK alge-
bra (which is close connection with various non-
commutative fuzzy logic formal systems, see [4, 24, 26, 27, 
28, and 32]). For non-classical logic algebra systems, the 
theory of filters (ideals) plays an important role (see [9, 12, 
13, 25, and 30]). In [7], the notion of pseudo-BCI filter 
(ideal) of pseudo-BCI algebras is introduced. In 2009, 
some special pseudo-BCI filters (ideals) are discussed in 
[10]. Since then, some articles related filters of pseudo-
BCI algebras are published (see [29, 31, 33, and 34]). 

Recently, we applied neutrosophic set theory to pseudo 
-BCI algebras in [35]. This paper we further study on the 
applications of neutrosophic sets to pseudo-BCI algebras. 
We introduce the new concepts of neutrosophic regular fil-

ter, neutrosophic closed filter and fuzzy regular filter in 
pseudo-BCI algebras, and investigate their basic properties 
and present relationships among neutrosophic regular fil-
ters, anti-grouped neutrosophic filter and fuzzy filters.  

Note that, the notion of pseudo-BCI algebra in this pa-
per is a dual of the original definition in [3], so the notion 
of filter is a dual of (pseudo-BCI) ideal in [7, 10].  

2 Some basic concepts and properties

2.1 On neutrosophic sets

Definition 2.1[17, 18, 19] Let X be a space of points (ob-
jects), with a generic element in X denoted by x. A neutro-
sophic set A in X is characterized by a truth-membership 
function TA(x), an indeterminacy-membership function IA(x), 
and a falsity-membership function FA(x). The functions 
TA(x), IA(x), and FA(x) are real standard or non-standard 
subsets of ]−0, 1+[. That is, TA(x): X→ ]−0, 1+[, IA(x): X→ ]−0, 
1+[, and FA(x): X→ ]−0, 1+[. Thus, there is no restriction on 
the sum of TA(x), IA(x), and FA(x), so −0 ≤ supTA(x) + su-
pIA(x) + supFA(x) ≤ 3+. 

Definition 2.2[21] Let X be a space of points (objects) 
with generic elements in X denoted by x. A simple valued 
neutrosophic set A in X is characterized by truth-
membership function TA(x), indeterminacy-membership 
function IA(x), and falsity-membership function FA(x). Then, 
a simple valued neutrosophic set A can be denoted by 

A={〈x , TA(x), IA(x), FA(x) 〉 | x∈X}, 
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where TA(x), IA(x), FA(x)∈[0, 1] for each point x in X. 
Therefore, the sum of TA(x), IA(x), and FA(x) satisfies the 
condition 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3. 

Definition 2.3[21] The complement of a simple valued 
neutrosophic set A is denoted by Ac and is defined as 
(∀x∈X) 

( ) ( ), ( ) 1 ( ), ( ) ( ).c c cA A AA A A
T x F x I x I x F x T x= = − =  

Then 

Ac={〈x , FA(x), 1−IA(x), TA(x)〉 | x∈X}. 

Definition 2.4[21] A simple valued neutrosophic set A is 
contained in the other simple valued neutrosophic set B, de-
note A⊆B, if and only if TA(x)≤ TB(x), IA(x) ≤ IB(x), FA(x)≥ 
FB(x) for any x in X. 

Definition 2.5[21] Two simple valued neutrosophic sets 
A and B are equal, written as A = B, if and only if A⊆B and 
B⊆A. 

For convenience, “simple valued neutrosophic set” is 
abbreviated to “neutrosophic set” later. 

Definition 2.6[21] The union of two neutrosophic sets A 
and B is a neutrosophic set C, written as C=A∪B, whose 
truth-membership, indeterminacy-membership and falsity-
membership functions are related to those of A and B by 

TC(x)=max(TA(x), TB(x)), IC(x)=max(IA(x), IB(x)), 
FC(x)=min(FA(x), FB(x)), ∀x∈X. 

Definition 2.7[21] The intersection of two neutrosophic 
sets A and B is a neutrosophic set C, written as C=A∩B, 
whose truth-membership, indeterminacy-membership and 
falsity-membership functions are related to those of A and B 
by 

TC(x)= min(TA(x), TB(x)), IC(x)=min(IA(x), IB(x)), 
FC(x)=max(FA(x), FB(x)), ∀x∈X. 

Definition 2.8[20]  Let A be a neutrosophic set in X and 
α, β, γ∈[0, 1] with 0≤α+β+γ ≤3 and (α, β, γ)-level set of A 
denoted by A(α, β, γ) is defined as: 

A(α, β, γ)={ x∈X | TA(x)≥α, IA(x)≥β, FA(x)≤γ}. 

2.2 On pseudo-BCI algebras

Definition 2.9[3] A pseudo-BCI algebra is a structure (X; 
≤, →, , 1), where “≤” is a binary relation on X,  “→” and 
“ ” are binary operations on X and “1” is an element of X, 
verifying the axioms: for all x, y, z∈X, 

(1)  y→z≤(z→x) (y→x), y z≤(z x)→(y x); 
(2)  x≤(x→y) y, x≤(x y)→y; 
(3)  x≤x;  
(4)  x≤y, y≤x ⇒ x=y;  
(5)  x≤y ⇔ x→y =1 ⇔ x y =1. 

If (X; ≤, →, , 1) is a pseudo-BCI algebra satisfying 
x→y = x y for all x, y∈X, then (X; →, 1) is a BCI-algebra. 

Proposition 2.1[3, 7, 10] Let (X; ≤, →, , 1) be a pseudo-
BCI algebra, then X satisfy the following properties (∀x, y, 
z∈X): 

(1)  1≤x ⇒ x=1; 
(2)  x≤y ⇒ y→z≤x→z, y z≤x z; 
(3)  x≤y, y≤z ⇒ x≤z; 
(4)  x (y→z)=y→(x z); 
(5)  x≤y→z ⇔ y≤x z; 
(6)  x→y≤(z→x)→(z→y), x y≤(z x) (z y); 
(7)  x≤y ⇒ z→x≤z→y, z x≤z y; 
(8)  1→x=x, 1 x=x; 
(9)  ((y→x) x)→x=y→x, ((y x)→x) x=y x; 
(10)  x→y≤(y→x) 1, x y ≤(y x)→1; 
(11)  (x→y)→1=(x→1) (y 1), 

(x y) 1=(x 1)→(y→1); 
(12)  x→1=x 1. 

Definition 2.10[7] A nonempty subset F of pseudo-BCI 
algebra X is called a pseudo-BCI filter (briefly, filter) of X 
if it satisfies: 

(F1)  1∈F;   
(F2)  x∈F, x→y∈F ⇒ y∈F; 
(F3)  x∈F, x y∈F ⇒ y∈F. 

Definition 2.11[29] A pseudo-BCI algebra X is said to be 
anti-grouped pseudo-BCI algebra if it satisfies the follow-
ing identity: 

(G1)  ∀x, y, z∈X, (x→y)→(x→z)= y→z, 
(G2)  ∀x, y, z∈X, (x y) (x z)= y z. 

Proposition 2.2 [29] A pseudo-BCI algebra X is an anti-
grouped pseudo-BCI algebra if and only if it satisfies: 

∀x∈X, (x→1)→1=x or (x 1) 1=x. 

Definition 2.12[29] A filter F of a pseudo-BCI algebra X 
is called an anti-grouped filter of X if it satisfies 

(GF) ∀x∈X, (x→1)→1∈F or (x 1) 1∈F⇒x∈F. 

Definition 2.13[29] A filter F of a pseudo-BCI algebra X 
is called a closed filter of X if it satisfies 

(CF) ∀x∈X, x→1∈F. 

Definition 2.14[34] A filter F of pseudo-BCI algebra X is 
said to be regular if it satisfies: 

(RF1)  ∀x, y∈X, y∈F and x→y∈F ⇒ x∈F. 
(RF2)  ∀x, y∈X, y∈F and x y∈F ⇒ x∈F. 

Proposition 2.3 [34] Let X be a pseudo-BCI algebra, F a 
filter of X. Then F is regular if and only if F is anti-grouped 
and closed. 
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Definition 2.15[31, 33] A fuzzy set A in pseudo-BCI alge-
bra X is called fuzzy filter of X if it satisfies: 

(FF1)  ∀x∈X, μA(x)≤μA(1);  
(FF2)  ∀x, y∈X, min{μA(x), μA(x→y)}≤μA(y); 
(FF3)  ∀x, y∈X, min{μA(x), μA(x y)}≤μA(y). 

Definition 2.16[31] A fuzzy set A: X →[0, 1] is called a 
fuzzy closed filter of pseudo-BCI algebra X if it is a fuzzy 
filter of X such that: 

(FCF) μA(x→1) ≥ μA(x), x∈X. 

Definition 2.17[31] A fuzzy set A in pseudo-BCI algebra 
X is called fuzzy anti-grouped filter of X if it satisfies: 

(1)  ∀x∈X, μA(x)≤μA(1);  
(2)  ∀x, y, z∈X, min{μA(y), μA((x→y)→(x→z))}≤μA(z); 
(3)  ∀x, y, z∈X, min{μA(y), μA((x y) (x z))}≤μA(z). 

Proposition 2.4[31] Let A be a fuzzy filter of pseudo-
BCI algebra X. Then A is a fuzzy anti-grouped filter of X if 
and only if it satisfies: 

∀x∈X, μA(x)≥μA((x→1)→1), μA(x)≥μA((x 1) 1). 

Definition 2.18[35] A neutrosophic set A in pseudo-BCI 
algebra X is called a neutrosophic filter in X if it satisfies: 
∀x, y∈X, 

(NSF1) TA(x)≤TA(1), IA(x)≤IA(1) and FA(x)≥FA(1);  
(NSF2) min{TA(x), TA(x→y)}≤TA(y), min{IA(x), IA(x→y)} 

≤IA(y) and max{FA(x),  FA(x→y)}≥FA(y); 
(NSF3) min{TA(x), TA(x y)}≤TA(y), min{IA(x), IA(x y)} 

≤IA(y) and max{FA(x),  FA(x y)}≥FA(y). 

Proposition 2.5[35] Let A be a neutrosophic filter in 
pseudo-BCI algebra X, then ∀x, y∈X, 

(NSF4) x≤y ⇒ TA(x)≤TA(y), IA(x)≤IA(y) and FA(x)≥FA(y). 

Definition 2.19[35] A neutrosophic set A in pseudo-BCI 
algebra X is called anti-grouped neutrosophic filter in X if it 
satisfies: ∀x, y, z∈X, 

(1) TA(x)≤TA(1), IA(x)≤IA(1) and FA(x)≥FA(1);  
(2) min{TA(y), TA((x→y)→(x→z))} ≤ TA(z), min{IA(y), 

IA((x→y)→(x→z))} ≤ IA(z) and max{FA(x), FA((x→y) 
→(x→z))} ≥ FA(z); 

(3) min{TA(y), TA((x y) (x z))} ≤ TA(z), min{IA(y), 
IA((x y) (x z))} ≤ IA(z) and max{FA(x), FA((x y) 

(x z))} ≥ FA(z). 

Proposition 2.6[35] Let A be a neutrosophic set in pseu-
do-BCI algebra X. Then A is a neutrosophic filter in X if 
and only if A satisfies: 

(i) TA is a fuzzy filter of X; 
(ii) IA is a fuzzy filter of X; 
(iii) 1−FA is a fuzzy filter of X, where (1−FA)(x) = 

1−FA(x), ∀x∈X. 

Proposition 2.7[35] Let A be a neutrosophic set in pseu-
do-BCI algebra X. Then A is an anti-grouped neutrosophic 
filter in X if and only if A satisfies: 

(i) TA is a fuzzy anti-grouped filter of X; 

(ii) IA is a fuzzy anti-grouped filter of X; 
(iii) 1−FA is a fuzzy anti-grouped filter of X, where 

(1−FA)(x)=1−FA(x), ∀x∈X. 

3 Neutrosophic regular filters and neutrosophic
closed filters

Definition 3.1 A neutrosophic set A in pseudo-BCI al-
gebra X is called a neutrosophic regular filter in X if it is a 
neutrosophic filter in X such that: ∀x, y∈X, 

(NSRF1) min{TA(y), TA(x→y)}≤TA(x), min{IA(y), 
IA(x→y)}≤IA(x) and max{FA(y),  FA(x→y)}≥FA(x); 

(NSRF2) min{TA(y), TA(x y)}≤TA(x), min{IA(y), 
IA(x y)}≤IA(x) and max{FA(y),  FA(x y)}≥FA(x). 

Definition 3.2 A neutrosophic set A in pseudo-BCI al-
gebra X is called a neutrosophic closed filter in X if it is a 
neutrosophic filter in X such that: x∈X, 

(NSCF) TA(x→1)≥TA(x), IA(x→1)≥IA(x), FA(x→1)≤FA(x). 

Proposition 3.1 Let A be a neutrosophic regular filter in 
pseudo-BCI algebra X. Then A is closed. 

Proof: Suppose x∈X. By Definition 2.9 (2) and Proposi-
tion 2.1 (12) we have 

x ≤ (x→1) 1= (x→1)→1. 
From this and Proposition 2.5 we get 

TA(x)≤TA((x→1)→1), IA(x)≤IA((x→1)→1), 
FA(x)≥FA((x→1)→1). 

Moreover, by Definition 2.18 (NSF1) and Definition 3.1 
(NSRF1) 

TA((x→1)→1)=min{TA(1), TA((x→1)→1)}≤TA(x→1),  
IA((x→1)→1)=min{IA(1), IA((x→1)→1)}≤IA(x→1),  

FA((x→1)→1)=max{FA(1), FA((x→1)→1)}≥FA(x→1). 
Thus, 

TA(x)≤TA((x→1)→1)≤TA(x→1), 
IA(x)≤IA((x→1)→1)≤IA(x→1), 

FA(x)≥TA((x→1)→1)≥TA(x→1). 
By Definition 3.2 we know that A is closed. 

By Proposition 2.4 and Proposition 2.7 we can get the 
following proposition. 

Proposition 3.2 Let A be a neutrosophic filter of pseu-
do-BCI algebra X. Then A is an anti-grouped neutrosophic 
filter of X if and only if it satisfies: ∀x∈X, 

TA(x)≥TA((x→1)→1), TA(x)≥TA((x 1) 1); 
IA(x)≥IA((x→1)→1), IA(x)≥IA((x 1) 1); 

FA(x)≤FA((x→1)→1), FA(x)≤FA((x 1) 1). 

Proposition 3.3 Let A be a neutrosophic regular filter in 
pseudo-BCI algebra X. Then A is anti-grouped. 

Proof: Suppose x∈X. By Definition 2.9 and Proposition 
2.1 we have 

x→((x→1)→1)= x→((x→1) 1)=1. 
From this we get 

TA(x→((x→1)→1))=TA(1), IA(x→((x→1)→1))=IA(1), 

12 Neutrosophic Sets and Systems, Vol. 17, 2017

Xiaohong Zhang, Yingcang Ma, Florentin Smarandache. Neutrosophic Regular Filters in Pseudo-BCI Algebras 



FA(x→((x→1)→1))=FA(1). 
Thus, applying Definition 3.1 (NSRF1) we get 

TA(x)≥min{TA((x→1)→1), TA(x→((x→1)→1))} 
=min{TA((x→1)→1), TA(1)}=TA((x→1)→1),  

IA(x)≥min{IA((x→1)→1), IA(x→((x→1)→1))} 
=min{IA((x→1)→1), IA(1)}=IA((x→1)→1),  

FA(x)≤max{FA((x→1)→1), FA(x→((x→1)→1))} 
=max{FA((x→1)→1), FA(1)}=FA((x→1)→1). 

Similarly, we can prove that 
TA(x)≥TA((x 1) 1),IA(x)≥IA((x 1) 1), 

FA(x)≤FA((x 1) 1). 

By Proposition 3.2 we know that A is anti-grouped. 

Proposition 3.2 Assume that A is both an anti-grouped 
neutrosophic filter and a neutrosophic closed filter in pseu-
do-BCI algebra X. Then A satisfies: ∀x∈X, 

TA(x)=TA(x→1), IA(x)=IA(x→1), FA(x)=FA(x→1). 

Proof: For any x∈X, by Definition 3.2 we have 
TA(x→1)≥TA(x), IA(x→1)≥IA(x), FA(x→1)≤FA(x). 

Moreover, ∀x∈X, by Definition 2.19 and Definition 3.2, 
TA(x)≥min{TA((x→1)→(x→x)), TA(1)} 

=min{TA((x→1)→1), TA(1)} 
=TA((x→1)→1)≥TA(x→1),  

IA(x)≥min{IA((x→1)→(x→x)), IA(1)} 
=min{IA((x→1)→1), IA(1)} 
=IA((x→1)→1)≥IA(x→1),  

FA(x)≤max{FA((x→1)→(x→x)), FA(1)} 
=max{FA((x→1)→1), FA(1)} 
=FA((x→1)→1)≤FA(x→1). 

That is, 
TA(x)≥TA(x→1), IA(x)≥IA(x→1), FA(x)≤FA(x→1). 

Therefore,  
∀x∈X, TA(x)=TA(x→1), IA(x)=IA(x→1), FA(x)=FA(x→1). 

Theorem 3.1 Let A be a neutrosophic filter in pseudo-
BCI algebra X. Then the following conditions are equiva-
lent:  

(i) A is both an anti-grouped neutrosophic filter and a 
neutrosophic closed filter in X;  

(ii) A satisfies: ∀x∈X, 
TA(x)=TA(x→1), IA(x)=IA(x→1), FA(x)=FA(x→1). 

(iii) A is a neutrosophic regular filter in X. 

Proof: (i) ⇒ (ii) See Proposition 3.2. 
(iii) ⇒ (i) See Proposition 3.1 and Proposition 3.3. 
(ii) ⇒ (iii) Suppose that A satisfies: ∀x∈X, 

TA(x)=TA(x→1), IA(x)=IA(x→1), FA(x)=FA(x→1). 
For any x, y∈X, using Proposition 2.1 (6) we have 

y→1≤(x→y)→(x→1). 
From this, applying Propostion 2.5, 

TA(y→1)≤TA((x→y)→(x→1)), 
IA(y→1)≤IA((x→y)→(x→1)),  

FA(y→1)≥FA((x→y)→(x→1)). 
From these, by Definition 2.18 we get 

min{TA(y→1), TA(x→y)} 
≤ min{TA((x→y)→(x→1)), TA(x→y)}=TA(x→1), 

min{IA(y→1), IA(x→y)} 
≤ min{IA((x→y)→(x→1)), IA(x→y)}=IA(x→1), 

max{FA(y→1), FA(x→y)} 
≥max{FA((x→y)→(x→1)), FA(x→y)}=FA(x→1). 

Moreover, by condition (ii), 
TA(y→1)=TA(y), TA(x→1)=TA(x); 
IA(y→1)=IA(y), IA(x→1)=IA(x); 

FA(y→1)=FA(y), FA(x→1)=FA(x). 
Therefore, 

min{TA(y), TA(x→y)}≤TA(x), 
min{IA(y), IA(x→y)}≤ IA(x), 

max{FA(y), FA(x→y)}≥FA(x). 
Similarly, we can get 

min{TA(y), TA(x y)}≤TA(x), 
min{IA(y), IA(x y)}≤ IA(x), 

max{FA(y), FA(x y)}≥FA(x). 
By Definition 3.1 we know that A is a neutrosophic regular 
filter in X. 

4 Fuzzy regular filters and neutrosophic filters

Definition 4.1 A fuzzy filter A in pseudo-BCI algebra X 
is called to be regular if it satisfies: 

(FRF1) ∀x, y∈X, min{μA(y), μA(x→y)}≤μA(x); 
(FRF2) ∀x, y∈X, min{μA(y), μA(x y)}≤μA(x). 

Lemma 4.1[9, 33] Let X be a pseudo-BCI algebra. Then a 
fuzzy set μ: X→[0, 1] is a fuzzy filter of X if and only if the 
level set μt ={ x∈X | μ(x)≥t} is filter of X for all t∈Im(μ). 

Theorem 4.1 Let X be a pseudo-BCI algebra. Then a 
fuzzy set μ: X→[0, 1] is a fuzzy regular filter of X if and 
only if the level set μt ={ x∈X | μ(x)≥t} is regular filter of X 
for all t∈Im(μ). 

Proof: Assume that μ is fuzzy regular filter of X. By 
Lemma 4.1, for any t∈Im(μ), we have 

μt ={x∈X | μ(x)≥t} is filter of X. 
If y∈μt and x→y∈μt, then 

μ(y)≥t, μ( x→y)≥t. 
From this and Definition 4.1 (FRF1) we get 

μA(x)≥min{μA(y), μA(x→y)}≥ t. 
This means that x∈μt. Similarly, we can prove that 

y∈μt and x y∈μt⇒ x∈μt. 
By Definition 2.14 we know that μt is regular filter of X 

Conversely, assume that the level set μt ={ x∈X | μ(x)≥t} 
is regular filter of X for all t∈Im(μ). By Lemma 4.1 we 
know that μ: X→[0, 1] is a fuzzy filter of X. Let  x, y∈X, de-
note t0=min{μA(y), μA(x→y)}, then t0∈Im(μ) and 

μ(y)≥t0, μ( x→y)≥t0. 
This means that y∈

0t
μ and x→y∈

0t
μ . Since

0t
μ  is regular 

filter of X, by Definition 2.14  we have x∈
0t

μ , that is 
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μ(x)≥ t0=min{μA(y), μA(x→y)}. 
It follows that Definition 4.1 (FRF1) holds. Similarly, we 
can prove that ∀x, y∈X, min{μA(y), μA(x y)}≤μA(x). There-
fore, μ: X→[0, 1] is a fuzzy regular filter of X. 

Similar to Theorem 4.1 we can get the following propo-
sition (the proofs are omitted). 

Proposition 4.1 Let X be a pseudo-BCI algebra. Then a 
fuzzy set μ: X→[0, 1] is a fuzzy closed filter of X if and on-
ly if the level set μt ={ x∈X | μ(x)≥t} is closed filter of X for 
all t∈Im(μ). 

By Theorem 6 in [31] we have 

Theorem 4.2 Let μ be a fuzzy filter of pseudo-BCI al-
gebra X. Then the following conditions are equivalent:  

(i) μ is fuzzy closed  anti-grouped filter of X; 
(ii) ∀x∈X, μA(x→1)=μA(x). 
(iii) μ is a fuzzy regular filter of X. 

Theorem 4.3 Let A be a neutrosophic set in pseudo-BCI 
algebra X. Then A is a neutrosophic closed filter in X if and 
only if A satisfies: 

(i) TA is a fuzzy closed filter of X; 
(ii) IA is a fuzzy closed filter of X; 
(iii) 1−FA is a fuzzy closed filter of X, where (1−FA)(x) 

=1−FA(x), ∀x∈X. 

Proof: Assume that A is a neutrosophic closed filter in 
X. By Definition 3.2 we have (∀x∈X) 

TA(x→1)≥TA(x), IA(x→1)≥IA(x), FA(x→1)≤FA(x). 
Thus, 

(1−FA)(x→1)=1−FA(x→1)≥1−FA(x)=(1−FA)( x).  
Therefore, using Definition 2.16, we get that TA, IA and 
1−FA are fuzzy closed filters of X. 

Conversely, assume that TA, IA and 1−FA are fuzzy 
closed filters of X. Then, by Definition 2.16, 

TA(x→1)≥TA(x), IA(x→1)≥IA(x), 
(1−FA)(x→1)≥(1−FA)(x).  

Thus, 
FA(x→1)=1−(1−FA)(x→1)≤1−(1−FA)(x)=FA(x). 

Hence, applying Definition 3.2 we get that A is a neutro-
sophic closed filter A in X. 

By Theorem 4.2, Theorem 4.3, Theorem 3.1 and Propo-
sition 2.7 we can get the following results. 

Theorem 4.4 Let A be a neutrosophic set in pseudo-BCI 
algebra X. Then A is a neutrosophic regular filter in X if and 
only if A satisfies: 

(i) TA is a fuzzy regular filter of X; 
(ii) IA is a fuzzy regular filter of X; 
(iii) 1−FA is a fuzzy regular filter of X, where (1−FA)(x) 

=1−FA(x), ∀x∈X. 

Theorem 4.5 Let X be a pseudo-BCI algebra, A be a 
neutrosophic set in X such that TA(x)≥α0, IA(x)≥β0 and 
FA(x)≤γ0, ∀x∈X, where α0∈Im(TA), β0∈Im(IA) and γ0∈ 
Im(FA). Then A is a neutrosophic closed filter in X if and on-
ly if (α, β, γ)-level set A(α, β, γ) is closed filter of X for all 

α∈Im(TA), β∈Im(IA) and γ∈Im(FA). 

Proof: Assume that A is neutrosophic closed filter in X. 
By Theorem 4.3 and Proposition 4.1, for any α∈Im(TA), 
β∈Im(IA) and γ∈Im(FA),  we have 

(TA)α ={x∈X | TA(x)≥α}, (IA)β ={x∈X | IA(x)≥β} and 
(1−FA)1−γ ={x∈X | (1−FA)(x)≥ 1− γ }={x∈X | FA(x)≤ γ } are 

closed filters of X. 

Thus (TA)α ∩(IA)β ∩(1−FA)1−γ  is a closed filters of X. More-
over, by Definition 2.8, it is easy to verify that (α, β, γ)-
level set A(α, β, γ) =(TA)α ∩(IA)β ∩(1−FA)1−γ . Therefore, A(α, β, γ) 
is closed filter of X for all α∈Im(TA), β∈Im(IA) and γ∈ 
Im(FA). 

Conversely, assume that A(α, β, γ) is closed filter of X for 
all α∈Im(TA), β∈Im(IA) and γ∈Im(FA). Since TA(x)≥α0, 
IA(x)≥β0 and FA(x)≤γ0, ∀x∈X, then 

(TA)α ={x∈X | TA(x)≥α}=(TA)α ∩X∩X 

= (TA)α ∩ (IA)
0β ∩ (1−FA)

01 γ− = 0 0( , , )A α β γ ;

(IA)β ={x∈X | IA(x)≥β}=X ∩ (IA)β ∩X 

= (TA)
0α ∩ (IA) β ∩ (1−FA)

01 γ− = 0 0( , , )A α β γ ;

(1−FA) 1−γ ={x∈X | (1−FA)(x)≥1− γ } 
= X∩X∩{x∈X | FA(x)≤γ} 

= (TA)
0α ∩ (IA)

0β ∩ {x∈X | FA(x)≤γ} = 0 0( , , )A α β γ .
Thus, 

(TA)α ={x∈X | TA(x)≥α}, (IA)β ={x∈X | IA(x)≥β} and 
(1−FA)1−γ ={x∈X | (1−FA)(x)≥1− γ }={x∈X | FA(x)≤γ } are 

closed filters of X. 

From this, applying Proposition 4.1, we know that TA, IA 
and 1−FA are fuzzy closed filters of X. By Theorem 4.3 we 
get that A is neutrosophic closed filter in X. 

Similarly, we can get 

Lemma 4.2  Let X be a pseudo-BCI algebra, A be a 
neutrosophic set in X such that TA(x)≥α0, IA(x)≥β0 and 
FA(x)≤γ0, ∀x∈X, where α0∈Im(TA), β0∈Im(IA) and γ0∈ 
Im(FA). Then A is a (anti-grouped) neutrosophic filter in X if 
and only if (α, β, γ)-level set A(α, β, γ) is (anti-grouped) filter 
of X for all α∈Im(TA), β∈Im(IA) and γ∈Im(FA). 

Combining Theorem 4.5, Lemma 4.2 and Theorem 3.1 
we can get the following theorem. 

Theorem 4.6 Let X be a pseudo-BCI algebra, A be a 
neutrosophic set in X such that TA(x)≥α0, IA(x)≥β0 and 
FA(x)≤γ0, ∀x∈X, where α0∈Im(TA), β0∈Im(IA) and γ0∈ 
Im(FA). Then A is a neutrosophic regular filter in X if and 
only if (α, β, γ)-level set A(α, β, γ) is regular filter of X for all 
α∈Im(TA), β∈Im(IA) and γ∈Im(FA). 
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The neutrosophic set theory is applied to many scien-
tific fields, and also applied to algebraic structures. 
This paper applied neutrosophic set theory to pseudo-
BCI algebras, and some new notions of neutrosophic 
regular filter, neutrosophic closed filter and fuzzy 
regular filter in pseudo-BCI algebras are introduced. 
In addition to studying the basic properties of these new 
concepts, this paper also considered the relationships 
between them, and obtained some necessary and 
sufficient conditions. 
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Abstract. Recently, neutrosophic sets and its application 
to decision making have become a topic of significant 
im-portance for researchers and practitioners. The present 
work addresses one of the most complex aspects of the 
formative process based on competencies: evaluation. In 
this paper, a new method for competencies evaluation is 
developed in a multicriteria framework. The proposed 
framework is composed of four activities, framework, 
gathering information, ideal solution distance calculation 

and ranking alternatives. Student are evaluated using 
SVN, for the treatment of neutralities, and Euclidean dis-
tance. The paper ends with conclusion and future work 
proposal for the application of neutrosophy to new areas 
of education. 

Keywords: competency, evaluation, neutrosophy, SVN numbers

1 Introduction

In this paper, one of the most complex aspects of the form-
ative process based on competencies is addressed: evalua-
tion. A new method for competencies evaluation is devel-
oped in a multicriteria framework based on decision analy-
sis. 
Decision analysis is a discipline, belonging to decision the-
ory, with the goal of computing an overall assessment that 
summarizes the information gathered and providing useful 
information about each evaluated element [1]. Uncertainty 
is present in real world decision making problems in such 
cases the use of linguistic information to model and manage 
such an uncertainty has given good results [2]. Experts feel 
more comfortable providing their knowledge by using terms 
close to human cognitive model [3, 4]. 
The conventional crisp techniques have been not much ef-
fective for solving decision problems because of imprecise 
or fuzziness nature of the linguistic assessments. It is more 
reasonable to consider the values of alternatives according 
as single valued neutrosophic sets (SVNS) [5]. SVNS can 
handle indeterminate and inconsistent information, while 
fuzzy sets and intuitionistic fuzzy sets cannot describe them 
[6].  In this paper a new model competencies evaluation  is 

developed base on single valued neutrosophic number 
(SVN-number) allowing the use of linguistic variables [7] 
and giving methodological support based on decision anal-
ysis schema.  
This paper is structured as follows: Section 2 reviews some 
important concepts about decision analysis framework and 
SVN numbers. In Section 3, is presented a decision analysis 
framework based on SVN numbers for competencies evalu-
ation. Section 4 shows a case study. The paper ends 
with conclusions and further work recommendations. 

2 Decision schemes 

Decision analysis is a discipline with main purpose of help-
ing decision maker to reach a consistent decision [8].  A 
common decision resolution scheme consists of following 
phases [2, 9].  
• Identify decision and objectives.
• Identify alternatives.
• Framework:
• Gathering information.
• Rating alternatives.
• Choosing the alternative/s:
• Sensitive analysis
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In the framework phase, he structures and elements of the 
decision problem are defined: experts, criteria, etc. The in-
formation provided by experts is collected, according to the 
defined framework in the gathering information phase. In 
line with our aims in this paper, a SVN numbers [10] ap-
proach is developed due to the fact that provide adequate 
computational models to deal with linguistic information 
[11] in decision problems allowing to include handling of 
indeterminate and inconsistent . 
A way to compute a rating of alternatives is to use an ideal 
alternative. A comparison between an ideal alternative and 
available options in order to find the optimal choice could 
be used [12]. Normally, the closer alternative to the 
ideal, corresponds to the best alternative. 

3 SVN-numbers 

Neutrosophy [13] is mathematical theory developed for 
dealing with indeterminacy . The truth value in neutrosophic 
set is as follows [14]:  
Let 𝑁 be a set defined as:  𝑁 =  {(𝑇, 𝐼, 𝐹) ∶  𝑇, 𝐼, 𝐹 ⊆
[0, 1]}, a neutrosophic valuation n is a mapping from the set 
of propositional formulas to 𝑁 , that is for each sentence p 
we have 𝑣 (p)  =  (𝑇, 𝐼, 𝐹).  
To facilitate the real world  applications of  neutrosophic set 
and set-theoretic operators single valued neutrosophic set 
(SVNS ) [5]  was developed  
A single valued neutrosophic set (SVNS) has been defined 
as follows [5]: 
Let 𝑋 be a universe of discourse. A single valued neutro-
sophic set 𝐴 over 𝑋 is an object having the form:  

𝐴 = {〈𝑥, 𝑢𝐴(𝑥), 𝑟𝐴(𝑥), 𝑣𝐴(𝑥)〉: 𝑥 ∈ 𝑋} (1) 

where  𝑢𝐴(𝑥): 𝑋 →  [0,1], 𝑟𝐴(𝑥), ∶ 𝑋 →  [0,1] and 
𝑣𝐴(𝑥): 𝑋 →  [0,1] with 0 ≤ 𝑢𝐴(𝑥) +  𝑟𝐴(𝑥) + 𝑣𝐴(𝑥):≤ 3 for
all 𝑥 ∈ 𝑋. The intervals 𝑢𝐴(𝑥),  𝑟𝐴(𝑥) y 𝑣𝐴(𝑥) denote the
truth- membership degree, the indeterminacy-membership 
degree and the falsity membership degree of 𝑥 to 𝐴, respec-
tively. 
Single valued neutrosophic numbers (SVN number) is de-
noted by 𝐴= (𝑎,b,𝑐), where 𝑎,𝑏,𝑐∈[0,1] and 𝑎+𝑏+𝑐≤3 . 
Alternatives could  be  rated according Euclidean distance 
in SVN [15, 16]. 
Let𝐴 ∗  =  ( 𝐴1

∗  , 𝐴2
∗   , . . , 𝐴𝑛

∗  ) be a vector of 𝑛 SVN numbers
such that 𝐴𝑗 ∗ = (𝑎𝑗

∗, 𝑏𝑗
∗, 𝑐𝑗

∗) j=(1,2, … , 𝑛) and 𝐵𝑖 = (𝐵𝑖1,
𝐵𝑖2, … , 𝐵𝑖𝑚) (𝑖 = 1,2, … , 𝑚) be 𝑚 vectors of 𝑛 SVN num-
bers such that  𝐵𝑖𝑗 = ( 𝑎𝑖𝑗, 𝑏𝑖𝑗, 𝑐𝑖𝑗)  (𝑖 = 1,2, … , 𝑚), (𝑗 = 1,2, 
… , 𝑛). Then the separation measure between 𝐵𝑖′𝑠 y 𝐴 ∗ is
defined as follows: 

si= (
1
3

∑ {(|aij-aj
*|)

2
+(|bij-bj

*|)
2
+(|cij-cj

*|)
2
}n

j=1 )

1
2 (𝑖 

= 1,2, … , 𝑚) (2) 

In this paper linguistic variables[11] are represented using 
single valued neutrosophic numbers [16] for developing a 
framework to decision support.  

2.2 Proposed framework 

Our aim is to develop a framework for competencies evalu-
ation based on for decision analysis based and SVN num-
bers. The model consists of the following phases (graph-
ically, Fig. 3).  

The proposed framework is composed of three activities, 
framework, gathering information and rating alternatives. 

Framework 

In this phase, the evaluation framework, the decision prob-
lem structure is defined. The framework is established as 
follows:
C= {𝑐1, 𝑐2, … , 𝑐𝑙  with 𝑙 ≥ 2 , a set competencies. 
E= {𝑒1, 𝑒2, … , 𝑒𝑘 } with 𝑘 ≥ 2 A set of students. 

Gathering information 

In this phase, the assessments is provided by means of as-
sessment vectors:
𝑈 = (𝑣𝑖𝑗 , 𝑖 = 1, . . , 𝑙, 𝑗 = 1, . . , 𝑘)  (3)
The assessment 𝑣𝑖𝑗 , for each criterion 𝑐𝑖 of each student 𝑒𝑗,
is expressed by means of SVN numbers. 

Rating alternatives 

For rating alternatives an ideal option is constructed [16, 
17] .the evaluation criteria can be categorized into two cat-
egories, benefit and cost. Let 𝐶+ be a collection of benefit 
criteria and 𝐶− be a collection of cost criteria. The ideal al-
ternative is defined as: 
𝐼 = {(𝑚𝑎𝑥𝑖=1

𝑘 𝑇𝑈𝑗
|𝑗 ∈𝐶+, 𝑚𝑖𝑛𝑖=1

𝑘 𝑇𝑈𝑗
|𝑗 ∈𝐶−) , (𝑚𝑖𝑛𝑖=1

𝑘 𝐼𝑈𝑗
|𝑗

∈𝐶+, 𝑚𝑎𝑥𝑖=1
𝑘 𝐼𝑈𝑗

|𝑗 ∈𝐶−) , (𝑚𝑖𝑛𝑖=1
𝑘 𝐹𝑈𝑗

|𝑗
∈𝐶+, 𝑚𝑎𝑥𝑖=1

𝑘 𝐹𝑈𝑗
|𝑗 ∈𝐶−)}

= [𝑣1, 𝑣2, … , 𝑣𝑛 ] (4)

Framework

Gathering 
information 

Rating 
alternatives
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Alternatives are rating according Euclidean distance to 𝐼 (2). 
Ranking is based in the global distance to the ideal. If alter-
native 𝑥𝑖 is closer to 𝐼 the distance measure (𝑠𝑖 closer) better 
is the alternative [18].  

3 Case study

A demonstrative example is given below. In the stage of es-
tablishing the evaluation framework, the domain in which 
the information will be verbalized is selected. 
The following linguistic terms are used (Table 1). 

Linguistic terms SVNSs 
Extremely good (EG) (1,0,0) 
Very very good (VVG) (0.9, 0.1, 0.1) 
Very good (VG) (0.8,0,15,0.20) 
Good (G) (0.70,0.25,0.30) 
Medium good (MG) (0.60,0.35,0.40) 
Medium (M) (0.50,0.50,0.50) 
Medium bad (MB) (0.40,0.65,0.60) 
Bad (B) (0.30,0.75,0.70) 
Very bad (VB) (0.20,0.85,0.80) 
Very very bad (VVB) (0.10,0.90,0.90) 
Extremely bad (EB) (0,1,1) 

Table 1.  Linguistic terms used to provide the assessments [16]. 

Three core competencies are evaluated in three students. 
𝑐1: Analyze, identify and define the requirements that must 
be met by a computer system to solve problems or achieve 
objectives of organizations and individuals. 
𝑐2: Manage Databases through a Database Management 
System (DBMS). 
𝑐3: Plan and manage software development projects. 
Once the prioritization framework is established, the infor-
mation is obtained. 

𝑒1 𝑒2 𝑒3 

𝑐1 MDB M MMB 
𝑐2 B MMB B 
𝑐3 B MDM MB 

Table 2: Preferences given by experts 
From this information, the ideal alternative is calculated. 
The ideal alternative results: 
𝐸+ =(MMB, MMB, MB) 
The results of the calculation of the distances allow us to 
order the students according to the achievement of the com-
petences. In this case the priority order is the following: 
𝑒3 ≻  𝑒1 ≻  𝑒2  

Student Distance 

e1 0.35355339 

e2 0.59160798 
e3 0.18484228 

Table 3: Distance calculation 
Among the advantages found by the specialists are the rela-
tive ease of the technique. The results also show the applica-
bility of SVN-based decision support models to competency 
assessment. 

Conclusions 

In this paper, a competency assessment model was pre-
sented. The students were evaluated by means of the SVN 
numbers and the Euclidean distance for the treatment of 
neutrality. 
Further works will concentrate extending the model for 
dealing with heterogeneous information [19] and a multi-
expert setting . Another area of future work is the develop-
ing of new aggregation operators based on SVN numbers 
specially compensatory operators [20].  
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Abstract. The paper proposes a new technique for deal-

ing with multi-attribute decision making problems 

through an extended TOPSIS method under neutrosophic 

cubic environment. Neutrosophic cubic set is the general-

ized form of cubic set and is the hybridization of a neu-

trosophic set with an interval neutrosophic set. In this 

study, we have defined some operation rules for neutro-

sophic cubic sets and proposed the Euclidean distance 

between neutrosophic cubic sets. In the decision making 

situation, the rating of alternatives with respect to some 

predefined attributes are presented in terms of neutro-

sophic cubic information where weights of the attributes 

are completely unknown. In the selection process, neu-

trosophic cubic positive and negative ideal solutions have 

been defined. An extended TOPSIS method is then pro-

posed for ranking the alternatives and finally choosing 

the best one. Lastly, an illustrative example is solved to 

demonstrate the decision making procedure and effec-

tiveness of the developed approach. 

Keywords: TOPSIS; neutrosophic sets; interval neutrosophic set; neutrosophic cubic sets; multi-attribute decision making.

1 Introduction 

Smarandache [1] proposed neutrosophic set (NS) that 

assumes values from real standard or non-standard subsets 

of] 
-
0, 1

+
[. Wang et al. [2] defined single valued 

neutrosophic set (SVNS) that assumes values from the unit 

interval [0, 1]. Wang et al. [3] also extended the concept of 

NS to interval neutrosophic set (INS) and presented the 

set-theoretic operators and different properties of INSs. 

Multi-attribute decision making (MADM) problems with 

neutrosophic information caught much attention in recent 

years due to the fact that the incomplete, indeterminate and 

inconsistent information about alternatives with regard to 

predefined attributes are easily described under 

neutrosophic setting. In interval neutrosophic environment, 

Chi and Liu [4] at first established an extended technique 

for order preference by similarity to ideal solution 

(TOPSIS) method [5] for solving MADM problems with 

interval neutrosophic information to get the most 

preferable alternative. Şahin, and Yiğider [6] discussed 

TOPSIS method for multi-criteria decision making 

(MCDM) problems with single neutrosophic values for 

supplier selection problem. Zhang and Wu [7] developed 

an extended TOPSIS for single valued neutrosophic 

MCDM problems where the incomplete weights are 

obtained by maximizing deviation method. Ye [8] 

proposed an extended TOPSIS method for solving MADM 

problems under interval neutrosophic uncertain linguistic 

variables. Biswas et al. [9] studied TOPSIS method for 

solving multi-attribute group decision making problems 

with single-valued neutrosophic information where 

weighted averaging operator is employed to aggregate the 

individual decision maker’s opinion into group opinion.  

In 2016, Ali et al. [10] proposed the notion of neutrosophic 

cubic set (NCS) by extending the concept of cubic set to 

neutrosophic cubic set. Ali et al. [10] also defined internal 

neutrosophic cubic set (INCS) and external neutrosophic 

cubic set (ENCS), 3
1 -INCS ( 3

2 -ENCS), 3
2 -INCS 

( 3
1 -ENCS) and also proposed some relevant properties. 

In the same study, Ali et al. [10] proposed Hamming 

distance between two NCSs and developed a decision 

making technique via similarity measures of two NCSs in 

pattern recognition problems. Jun et al. [11] studied the 

notions of truth-internal (indeterminacy-internal, falsity-

internal) neutrosophic cubic sets and truth-external 

(indeterminacy-external, falsity-external) neutrosophic 

cubic and investigated related properties. Pramanik et al. 

[12] defined similarity measure for neutrosophic cubic sets 
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and proved its basic properties. In the same study, 

Pramanik et al. [12]   developed multi criteria group deci-

sion making method with linguistic variables in neutrosophic 

cubic set environment.

In this paper, we develop a new approach for MADM 
problems with neutrosophic cubic assessments by using 

TOPSIS method where weights of the attributes are un-
known to the decision maker (DM). We define a few oper-

ations on NCSs and propose the Euclidean distance be-
tween two NCSs. We define accumulated arithmetic opera-

tor (AAO) to convert neutrosophic cubic values (NCVs) to 

single neutrosophic values (SNVs).
 
We also define neutro-

sophic cubic positive ideal solution (NCPIS) and neutro-

sophic cubic negative ideal solution (NCNIS) in this study. 
The rest of the paper is organized in the following way. 

Section 2 recalls some basic definitions which are useful 

for the construction of the paper. Subsection 2.1 provides 
several operational rules of NCSs. Section 3 is devoted to 

present an extended TOPSIS method for MADM problems 
in neutrosophic cubic set environment. In Section 4, we 

solve an illustrative example to demonstrate the applicabil-
ity and effectiveness of the proposed approach. Finally, the 

last Section presents concluding remarks and future scope 

research. 

2 The basic definitions 

Definition: 1 

Fuzzy sets [13]: Consider U be a universe. A fuzzy set 
Φ over U is defined as follows: 

Φ  = { )(  , xμx Φ   x U} 

where )(xμΦ : U  [0, 1] is termed as the membership 

function of Φ  and )(xμΦ  represents the degree of mem-

bership to which xΦ . 

Definition: 2 

Interval valued fuzzy sets [14]: An interval-valued fuzzy 

set (IVFS)Θ over U is represented as follows: 

Θ  = { )(),(  , xΘxΘx - 
  x U} 

where )(),( xΘxΘ -   denote the lower and upper degrees 

of membership of the element x U to the set Θ with 

0 )(xΘ - + xΘ ( ) 1. 

Definition: 3 

Cubic sets [15]: A cubic set Ψ in a non-empty set U is a 

structure defined as follows: 

Ψ = { )(),( , xΦxΘx   x U} 

where Θ and Φ respectively represent an interval valued 

fuzzy set and a fuzzy set. A cubic set Ψ is denoted by Ψ = 

<Θ ,Φ >. 

Definition: 4 

Internal cubic sets [15]: A cubic set Ψ = <Θ ,Φ > in U is 

said to be internal cubic set (ICS) if 

)(xΘ -  )(xμ  )(xΘ  for all x U. 

Definition: 5 

External cubic sets [15]: A cubic set Ψ = <Θ ,Φ > in U is 

called external cubic set (ECS) if )(xμ    ( )(xΘ - , )(xΘ ) 

for all x U. 

Definition: 6 

Consider 1Ψ = < 1Θ , 1Φ > and 2Ψ = < 2Θ , 2Φ > be two cubic 

sets in U, then we have the following relations [15]. 

1. (Equality) 1Ψ = 2Ψ if and only if 1Θ = 2Θ

and
1μ = .2μ  

2. (P-order) PΨ 1 2Ψ  if and only 

if 1Θ 
2Θ and 1μ  .2μ  

3. (R-order) RΨ 1 2Ψ  if and only 

if 1Θ 
2Θ and 1μ  .2μ  

Definition: 7 

Neutrosophic set [1]: Consider U be a space of objects, 

then a neutrosophic set (NS) χ on U is defined as follows: 

χ = {x, )(),(),( xγxβxα   xU} 

where )(),(),( xγxβxα :U ]
-
0, 1

+
[ define respectively the 

degrees of truth-membership, indeterminacy-membership, 

and falsity-membership of an element xU to the 

set χ with  
-
0   sup )(xα + sup )(xβ + sup )(xγ  3

+
.

Definition: 8 

Interval neutrosophic sets [9]: An INS Γ  in the 

universal space U is defined as follows: 

Γ = {x, )](),([)],(),([,)](),([ xΓxΓxΓxΓxΓxΓ γ

-

γβ

-

βα

-

α


  

x U} 

where, )(xΓ α , )(xΓ β , )(xΓ γ are the truth-membership 

function, indeterminacy-membership function, and falsity-

membership function, respectively with )(xΓα , )(xΓ β , 

)(xΓ γ  [0, 1] for each point x U and 0  sup )(xΓα + 

sup )(xΓ β + sup )(xΓ γ  3. 
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Definition: 9 

Neutrosophic cubic sets [15] 

A neutrosophic cubic set (NCS) Ξ in a universe U is 

presented in the following form: 

Ξ = { )(),(  , xχxΓx   x U} 

where Γ and χ are respectively an interval neutrosophic set 

and a neutrosophic set in U. 

However, NSs take the values from] 
-
0, 1

+
[ and single-

valued neutrosophic set defined by Wang et al. [2] is 

appropriate for dealing with real world problems. 

Therefore, the definition of NCS should be modified in 

order to solve practical decision making purposes. Hence, 

a neutrosophic cubic set (NCS) Ξ in U is defined as 

follows: 

Ξ = { )(),(  , xχxΓx   x U} 

Here, Γ and χ are respectively an INS and a SVNS in U 

where 0  )(xα + )(xβ + )(xγ  3 for each point x U. 

Generally, a NCS is denoted by Ξ = < Γ , χ > and sets of 

all NCS over U will be represented by NCS
U
.  

Example 1. Assume that U = {u1, u2, u3, u4} be a universal 

set. An INS A in U is defined as 
 = {< [0.15, 0.3], [0.25, 0.4], [0.6, 0.75] >/ u1 + < [0.25, 

0.35], [0.35, 0.45], [0.4, 0.65] >/ u2 + < [0.35, 0.5], [0.25, 

0.35], [0.55, 0.85] >/ u3 + < [0.7, 0.8], [0.15, 0.45], [0.2, 

0.3] >/ u4} 

and a SVNS χ in U defined by  

χ = {< 0.35, 0.3, 0.15 >/ u1, < 0.5, 0.1, 0.4 >/ u2, < 0.25, 

0.03, 0.35 >/ u3, < 0.85, 0.1, 0.15 >/ u4} 

Then  = < A, χ > is represented as a NCS in U. 

Definition: 10 

Internal neutrosophic cubic set [10]: Consider Ξ = < Γ , 

χ >  NCS
U
, if )(xΓ -

α
 )(xα  )(xΓα

 ; 

)(xΓ -

β  )(xβ  )(xΓ β


; and )(xΓ -

γ  )(xγ  )(xΓ γ


for 

all x U, then Ξ is said to be an internal neutrosophic 

cubic set (INCS). 

Example 2. Consider Ξ = < Γ , χ >  NCS
U
, if )( xΓ = <

[0.65, 0.8], [0.1, 0.25], [0.2, 0.4] > and )(xχ = < 0.7, 0.2, 

0.3 > for all x U, then Ξ = < Γ , χ > is an INCS. 

Definition: 11 

External neutrosophic cubic set [10]: Consider Ξ = < Γ , 

χ >  NCS
U
, if )(xα  ( )(xΓ -

α , )(xΓα

 ); 

)(xβ  ( )(xΓ -

β , )(xΓ β


); and )(xγ  ( )(xΓ -

γ , )(xΓ γ


) for 

all x U, then Ξ = < Γ , χ > is said to be an external 

neutrosophic cubic set (ENCS). 

Example 3. Consider Ξ = < Γ , χ >  NCS
U
, if )( xΓ = <

[0.65, 0.8], [0.1, 0.25], [0.2, 0.4] > and )(xχ = < 0.85, 0.3, 

0.1 > for all x U, then Ξ = < Γ , χ > is an ENCS. 

Theorem 1. [10] 

Consider Ξ = < Γ , χ >  NCS
U
, which is not an ENCS,

then there exists xU such that 

)(xΓ -

α
 )(xα  )(xΓα

 ; )(xΓ -

β  )(xβ  )(xΓ β


; or 

)(xΓ -

γ  )(xγ  )(xΓ γ


. 

Definition: 12 

3

2 -INCS(
3

1 -ENCS) [10]: Consider Ξ = < Γ , χ >  NCS
U
,

if )(xΓ -

α
 )(xα  )(xΓ α


; )(xΓ -

β  )(xβ  )(xΓ β


; 

and )(xγ  ( )(xΓ -

γ , )(xΓ γ


) or )(xΓ -

α
 )(xα  )(xΓα

 ; 

)(xΓ -

γ  )(xγ  )(xΓ γ


 and )(xβ  ( )(xΓ -

β , )(xΓ β


) or 

)(xΓ -

β  )(xβ  )(xΓ β


; and )(xΓ -

γ  )(xγ  )(xΓ γ


 

and )(xα  ( )(xΓ -

α , )(xΓα

 ) for all x U, then Ξ = < Γ , 

χ > is said to be an 
3

2 -INCS or
3

1 -ENCS. 

Example 4. Consider Ξ = < Γ , χ >  NCS
U
, if )( xΓ = <

[0. 5, 0.7], [0.1, 0.2], [0.2, 0.45] > and )(xχ = < 0.65, 0.3, 

0.4 > for all x U, then Ξ = < Γ , χ > is an 
3

2 -INCS or
3

1 -

ENCS. 

Definition: 13 

3

1 -INCS (
3

2 -ENCS) [10]: Consider Ξ = < Γ , χ > 

NCS
U
, if )(xΓ -

α
 )(xα  )(xΓα

 ; )(xβ  ( )(xΓ -

β , )(xΓ β


); 

and )(xγ  ( )(xΓ -

γ , )(xΓ γ


) or )(xΓ -

γ  )(xγ  )(xΓ γ


; 

)(xα  ( )(xΓ -

α , )(xΓα

 ) and )(xβ  ( )(xΓ -

β , )(xΓ β


) or 

)(xΓ -

β  )(xβ  )(xΓ β


; )(xα  ( )(xΓ -

α , )(xΓα

 ) and 

)(xγ  ( )(xΓ -

γ , )(xΓ γ


) for all x U, then Ξ = < Γ , χ > is 

said to be an 
3

1 -INCS or
3

2 -ENCS.

Example 5. Consider Ξ = < Γ , χ >  NCS
U
, if )(xΓ  = <

[0. 5, 0.8], [0.15, 0.25], [0.2, 0.35 ] > and )(xχ = < 0.55, 

0.4, 0.5 > for all x U, then Ξ = < Γ , χ > is an 
3

1 -INCS 

or
3

2 -ENCS.

Definition: 14 [10] 

Consider 1Ξ = < 1Γ , 1χ > and 2Ξ = < 2Γ , 2χ > be two 

NCSs in U, then 

22 Neutrosophic Sets and Systems, Vol. 17, 2017

________________________________________________________________________________________________

Surapati Pramanik, Partha Pratim Dey, Bibhas C. Giri, Florentin Smarandache. An extended TOPSIS for multi-attribute

decision making problems with neutrosophic cubic information



1. (Equality) 1Ξ = 2Ξ if and only if 1Γ = 2Γ

and 1χ = 2χ . 

2. (P-order) P1 Ξ 2Ξ  if and only if 1Γ ~ 2Γ

and 1χ 


2χ . 

3. (R-order) R1 Ξ 2Ξ  if and only 

if 1Γ ~ 2Γ and 1χ 


2χ . 

For convenience, p = < ([ -

αΓ , 

1α
Γ ], [ 

1β
Γ , 

1β
Γ ], [

-

γΓ ,


γΓ ]), 

( α , β , γ ) > is said to represent neutrosophic cubic value 

(NCV) 

Definition: 15 

Complement [10]: Consider Ξ = < Γ , χ > be an NCS, 

then the complement of Ξ = < Γ , χ > is given by 

CΞ = { )(),(  ,
~

xχxΓx CC


  x U}. 

2.1 Several operational rules of NCVs 

Consider p1 =  < ([
-

αΓ 1
,



1α
Γ ], [



1β
Γ ,



1β
Γ ], [

-

γΓ 1
,



1γ
Γ ]), 

( 1α , 1β , 1γ ) > and p2 = < ([
-

αΓ 2
,



2α
Γ ], [



2β
Γ ,



2β
Γ ], 

[
-

γΓ 2
,



2γ
Γ ]), ( 2α , 2β , 2γ ) > be two NCVs in U, then the 

operational rules are presented as follows: 

1. The complement [10] of p1 is
Cp1 = < ([ -

γΓ 1
, 

1γ
Γ ], [1-



1β
Γ ,1- 

1β
Γ ], [ -

αΓ 1
, 

1α
Γ ]), ( 1γ , 1- 1β , 1α ) >. 

2. The summation between p1 and p2 is defined as

follows:

p1   p2 = < ([
-

αΓ 1
+

-

αΓ 2
-

-

αΓ 1

-

αΓ 2
,



1α
Γ  + 



2α
Γ -



1α
Γ 

2α
Γ ], [ 

1β
Γ 

2β
Γ , 

1β
Γ 

2β
Γ ], 

[ -

γΓ 1

-

γΓ 2
, 

1γ
Γ 

2γ
Γ ]), ( 1α + 2α - 1α 2α , 1β 2β , 1γ 2γ ) 

>. 

3. The multiplication between p1 and p2 is defined as

follows:

p1   p2= < ([
-

αΓ 1

-

αΓ 2
,



1α
Γ 

2α
Γ ], [



1β
Γ +



2β
Γ -



1β
Γ 

2β
Γ ,



1β
Γ +



2β
Γ -



1β
Γ 

2β
Γ ], [

-

γΓ 1
+

-

γΓ 2
-

-

γΓ 1

-

γΓ 2
,



1γ
Γ +



2γ
Γ -



1γ
Γ 

2γ
Γ ]), ( 1α 2α , 1β + 2β -

1β 2β , 1γ + 2γ - 1γ 2γ ) >. 

4. Consider p1 =  < ([ -

αΓ 1
, 

1α
Γ ], [ 

1β
Γ , 

1β
Γ ], [ -

γΓ 1
, 

1γ
Γ ]), 

( 1α , 1β , 1γ ) > be a NCV and κ be an arbitrary positive 

real number, then κ p1and κp1 are defined as follows: 

(i) κ p1= < ([1- (1- κ-

αΓ )
1

,1- (1- κ

αΓ )
1

 ], 

[(
κ

βΓ )
1


,

κ

βΓ )(
1


],[( κ)

1



γΓ , κ)(
1



γΓ ]), (1- (1-

κα )1 , ( κβ )1
, ( κγ )1 ) >; 

(ii) κp1 = < ([( κ-

αΓ )
1

, ( κ

αΓ )
1

 ], [1- (1-
κ

βΓ )
1


,1- (1-

κ

βΓ )
1


], [1- (1-

κ

γΓ )
1


,1- (1-

κ

γΓ )
1


]), 

(( κα )1 ,1-(1- κβ )1 ,1- (1- κγ )1 ) >. 

Definition: 16 [10] 

Consider 1Ξ = < 1Γ , 1χ > and 2Ξ = < 2Γ , 2χ > be two 

NCSs in U, then the Hamming distance between 1Ξ  and 

2Ξ is defined as follows: 

DH ( 1Ξ , 2Ξ ) = 


n

n 1i9

1
(| )( i1 xΓ -

α - )( i2 xΓ -

α | + | )( i1 xΓ -

β -

)( i2 xΓ -

β | + | )( i1 xΓ -

γ - )( i2 xΓ -

γ | + | )( i1 xΓ α

 - )( i2 xΓ α

 | + 

| )( i1 xΓ β

 - )( i2 xΓ β

 | + | )( i1 xΓ γ


- )( i2 xΓ γ

 | + | )( i1 xα - )( i2 xα | 

+ | )( i1 xβ - )( i2 xβ | + | )( i1 xγ - )( i2 xγ |). 

Example 7: Suppose that 1
Ξ = < 1Γ , 1χ >  = < ([0.6, 0.75], 

[0.15, 0.25], [0.25, 0.45]), (0.8, 0.35, 0.15) > and 2Ξ = 

< 2Γ , 2χ > = < ([0.45, 0.7], [0.1, 0.2], [0.05, 0.2]), (0.3, 

0.15, 0.45) > be two NCSs in U, then DH ( 1Ξ , 2Ξ ) = 

0.1944. 

Definition: 17  

Consider 1Ξ = < 1Γ , 1χ > and 2Ξ = < 2Γ , 2χ > be two 

NCSs in U, then the Euclidean distance between 1Ξ  and 

2Ξ is defined as given below. 

DE ( 1Ξ , 2Ξ ) = 
































n

1i

2

i2i1

2

i2i1

2

i2i1

2

i2i1

2

i2i1

2

i2i1

2

i2i1

2

i2i1

2

i2i1

))(-)(())(-)(())(-)((

))(-)(())(-)(())(-)((

))(-)(())(-)(())(-)((

9

1

xγxγxβxβxαxα

xΓxΓxΓxΓxΓxΓ

xΓxΓxΓxΓxΓxΓ

n
γγ

-

γ

-

γββ

-

β

-

βαα

-

α

-

α

with the condition 0   DE ( 1Ξ , 2Ξ )  1. 

Example 8: Suppose that 1Ξ = < 1Γ , 1χ > = < ([0.4, 0.5], 

[0.1, 0.2], [0.25, 0.5]), (0.4, 0.3, 0.25) > and 2Ξ = < 2Γ , 

2χ > = < ([0.5, 0.9], [0.15, 0.3], [0.05, 0.1]), (0.7, 0.1, 
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0.15) > be two NCSs in U, then DE ( 1Ξ , 2Ξ ) = 0.2409. 

3 An extended TOPSIS method for MADM prob-
lems under neutrosophic cubic set environment 

In this Section, we introduce a new extended TOPSIS 

method to handle MADM problems involving 

neutrosophic cubic information. Consider B = {B1, B2, …, 

Bm}, (m  2) be a discrete set of m feasible alternatives and 

C = {C1, C2, …, Cn}, (n  2) be a set of attributes. Also, let 

w = (w1, w2, …, wn)
T
 be the unknown weight vector of the

attributes with 0wj 1 such that 


n
w

1j
j = 1. Suppose that 

the rating of alternative Bi (i = 1, 2, …, m) with respect to 

the attribute Cj (j = 1, 2, …, n) is described by aij where  aij 

= < ([ -

αij
Γ , 

ijα
Γ ], [ 

ijβ
Γ , 

ijβ
Γ ], [

-

γij
Γ ,



ijγ
Γ ]), ( ijα , ijβ , ijγ ) >. 

The proposed approach for ranking the alternatives under 

neutrosophic cubic environment is shown using the 

following steps: 

Step 1. Construction and standardization of decision 

matrix with neutrosophic cubic information 

Consider the rating of alternative Bi (i = 1, 2, …, m) with 

respect to the predefined attribute Cj, (j = 1, 2, …, n) be 

presented by the decision maker in the neutrosophic cubic 

decision matrix ( See eqn. 1). 

nm
ij


a =  























mnmm

n

n

a...aa

......

......

a...aa

a...aa

21

22221

11211

  (1)

In general, there are two types of attributes appear in the 

decision making circumstances namely (i) benefit type 

attributes J1, where the more attribute value denotes 

better alternative (ii) cost type attributes J2, where the 

less attribute value denotes better alternative. We 

standardize the above decision matrix 
nm

ij


a in order to 

remove the influence of diverse physical dimensions to 

decision results.  

Consider 
nm

ij


s  be the standardize decision matrix, 

where 

ijs  = < ([ -

αij
Γ , 

ijα
Γ ], [ 

ijβ
Γ , 

ijβ
Γ ], [

-

γij
Γ ,



ijγ
Γ ]),

( ijα , ijβ
 , ijγ )>, 

where 

ijs = aij, if the attribute j is benefit type;

ijs =
c

ija , if the attribute j is cost type. 

Here c

ija  denotes the complement of  aij. 

Step 2. Identify the weights of the attributes 

To determine the unknown weight of attribute in the 

decision making situation is a difficult task for DM. 

Generally, weights of the attributes are dissimilar and they 

play a decisive role in finding the ranking order of the 

alternatives. Pramanik and Mondal [16] defined arithmetic 

averaging operator (AAO) in order to transform interval 

neutrosophic numbers to SVNNs. Based on the concept of 

Pramanik and Mondal [16], we define AAO to transform 

NCVs to SNVs as follows: 

NCij <
ijα

Γ ,
ijβ

Γ ,
ijγ

Γ > = 

NCij
3

,
3

,
3

ijγ

-

γijβ

-

βijα

-

α γΓΓβΓΓαΓΓ
ijijijijijij

  

In this paper, we utilize information entropy method to 

find the weights of the attributes wj where weihgts of the 

attributes are unequal and fully unknown to the DM. 

Majumdar and Samanta [17] investigated some similarity 

measures and entropy measures for SVNSs where entropy 

is used to measure uncertain information. Here, we take the 

following notations: 

PΩ
T (xi) =













  

3

ijα

-

α αΓΓ
i ji j


, 

PΩI (xi) =












  

3

ijβ

-

β βΓΓ
i ji j


, 

P
F (xi) = 













  

3

ijγ

-

γ γΓΓ
ijij



Then we can write PΩ = )(),(),( iii xFxIxT
PPP ΩΩΩ . 

The entropy value is given as follows: 

Ei ( PΩ ) = 1 - )()())()((
1

iii
1i

i xIxIxFxT
n

c

ΩΩΩ

m

Ω PPPP




which has the following properties: 

(i). Ei ( PΩ ) = 0 if PΩ is a crisp set and )( ixI
PΩ

= 0, 

)( ixF
PΩ

= 0 xE. 

(ii). Ei ( P ) = 0 if )(,)(,)( iii xFxIxT
PPP ΩΩΩ  = < )( ixT

PΩ
, 

0.5, )( ixF
PΩ

 >,  x  E. 

(iii). Ei ( PΩ )  Ei ( QΩ ) if PΩ is more uncertain 

than QΩ i.e. 

)( ixT
PΩ

+ )( ixF
PΩ

 )( ixT
QΩ

+ )( ixF
QΩ

and )()( ii xIxI c

ΩΩ PP
  )()( ii xIxI c

ΩΩ QQ
 . 

(iv). Ei ( PΩ ) = Ei (
c

PΩ ), x  E. 

Consequently, the entropy value Evj of the j-th attribute 

can be calculated as as follows:. 
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Evj = 1 - )()())()((
1

iii
1i

i xIxIxFxT
n

C

ijijij

m

ij 


, i = 1, 2, …, 

m; j = 1, 2,…, n. 

We observe that 0  Evj  1. Based on Hwang and Yoon 

[18] and Wang and Zhang [19] the entropy weight of the 

j-th attribute is defined as follows: 

wj = 

 





n

1j
j

j

)Ev(1

Ev1
 with 0  wj  1 and 



n
w

1j
j = 1. 

Step 3. Formulation of weighted decision matrix     

The weighted decision matrix is obtained by multiplying 

weights of the attributes (wj) and the standardized decision 

matrix
nm

ij


s . Therefore, the weighted neutrosophic cubic 

decision matrix
nm

ij


z  is obtained as: 

nm
ij


z = jw 

nm
ij


a =





















mnnmm

nn

nn

sw...swsw

......

sw...swsw

sw...swsw

2211

2222211

1122111

 

 = 























mnmm

n

n

z...zz

......

......

z...zz

z...zz

21

22221

11211

where 

zij = < ([ -

αij
Γ , 

ijα
Γ ], [ 

ijβ
Γ , 

ijβ
Γ ], [

-

γij
Γ ,



ijγ
Γ ]), ( ijα , ijβ

 , ijγ ) > 

= < ([1- (1- j

ij
)

w-

αΓ
 ,1- (1- j)

w

αij
Γ  ], 

[( j)
w

βij
Γ  , j

ij
)(

w

βΓ
 ],[( j

i j

)
w

γΓ
 , j)(

w

γij
Γ  ]), (1- (1- j)ij

w
α , 

( j)ij

w
β , ( j)ij

w
γ ) > 

Step 4. Selection of neutrosophic cubic positive ideal 

solution (NCPIS) and neutrosophic cubic negative ideal 

solution (NCNIS) 

Consider z
U
 = ( Uz1 , Uz2 , …, U

nz ) and z
L
 = ( Lz1 , Lz2 , …, L

nz ) 

be the NCPIS and NCNIS respectively, then 
U

jz  is defined 

as follows: 
U

jz = < ([(
-

α j
Γ )

U
, (



jα
Γ )

U
], [( 

jβ
Γ )

U
, ( 

jβ
Γ )

U
], [(

-

γ j
Γ )

U
,

(


jγ
Γ )

U
]), (( jα )

U
, ( jβ

 )
U
, ( jγ )

U
) > 

where 

(
-

α j
Γ )

U
 = {(

i
max { -

αij
Γ }| jJ1), (

i
min { -

αij
Γ }| jJ2)},

(


jα
Γ )

U
 = {(

i
max { 

ijα
Γ }| jJ1), (

i
min { 

ijα
Γ }| jJ2)},

( 

jβ
Γ )

U 
= {(

i
min { 

ijβ
Γ }| jJ1), (

i
max { 

ijβ
Γ }| jJ2)},

( 

jβ
Γ )

U
 ={(

i
min { 

ijβ
Γ }| jJ1), (

i
max { 

ijβ
Γ }| jJ2)},

(
-

γ j
Γ )

U
= {(

i
min {

-

γij
Γ }| jJ1), (

i
max {

-

γij
Γ }| jJ2)},

(


jγ
Γ )

U
 ={(

i
min {



ijγ
Γ }| jJ1), (

i
max {



ijγ
Γ }| jJ2)},

( jα )
U
 = {(

i
max { ijα }| jJ1), (

i
min { ijα }| jJ2)},

( jβ
 )

U
 = {(

i
min { ijβ

 }| jJ1), (
i

max { ijβ
 }| jJ2)},

 ( jγ )
U
 = {(

i
min { ijγ }| jJ1), (

i
max { ijγ }| jJ2)};

and
L

jz  is defined as given below 

L

jz = < [( -

αij
Γ )

L
, ( 

ijα
Γ )

L
], [( 

ijβ
Γ )

L
, ( 

ijβ
Γ )

L
], [(

-

γij
Γ )

L
,

(


ijγ
Γ )

L
], (( ijα )

L
, ( ijβ

 )
L
, ( ijγ )

L
)> 

where (
-

α j
Γ )

L
 = {(

i
min { -

αij
Γ }| jJ1), (

i
max { -

αij
Γ }|

jJ2)}, (


jα
Γ )

L
 = {(

i
min { 

ijα
Γ }| jJ1), (

i
max { 

ijα
Γ }|

jJ2)}, ( 

jβ
Γ )

L 
= {(

i
max {



ijβ
Γ }| jJ1), (

i
min { 

ijβ
Γ }|

jJ2)}, ( 

jβ
Γ )

L
 ={(

i
max { 

ijβ
Γ }| jJ1), (

i
min { 

ijβ
Γ }|

jJ2)}, (
-

γ j
Γ )

L
= {(

i
max {

-

γij
Γ }| jJ1), (

i
min {

-

γij
Γ }|

jJ2)}, (


jγ
Γ )

L
 ={(

i
max {



ijγ
Γ }| jJ1), (

i
min {



ijγ
Γ }|

jJ2)}, ( jα )
L
 = {(

i
min { ijα }| jJ1), (

i
max { ijα }| jJ2)},

( jβ
 )

L
 = {(

i
max { ijβ

 }| jJ1), (
i

min { ijβ
 }| jJ2)}, ( jγ )

L
 = 

{(
i

max { ijγ }| jJ1), (
i

min { ijγ }| jJ2)}.

Step 5. Calculate the distance measure of alternatives 

from NCPIS and NCNIS 

The Euclidean distance measure of each alternative Bi, i = 

1, 2, …, m from NCPIS can be defined as follows: 


iED = 
































n

1j

222

222

222

))(())(()((

))(()(())((

()(

9

1

U

jij

U

jij

U

jij

U

γγ

U-

γ

-

γ

U

ββ

U

ββ

U

αα

U-

α

-

α

γ-γβ-β)α-α

Γ-Γ)Γ-ΓΓ-Γ

))Γ-(Γ())Γ-(Γ)Γ-(Γ

n jijjijjij

jijjijjij
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Similarly, the Euclidean distance measure of each 

alternative Bi, i = 1, 2, …, m from NCNIS can be written as 

follows: 


iED  = 
































n

j

L

jij

L

jij

L

jij

L

γγ

L-

γ

-

γ

L

ββ

L

ββ

L

αα

L-

α

-

α

γ-γβ-βα-α

Γ-ΓΓ-ΓΓ-Γ

Γ-ΓΓ-ΓΓ-Γ

n jijjijjij

jijjijjij

1

222

222

222

))(())(())((

))(())(())((

))(())(())((

9

1







. 

Step 6. Evaluate the relative closeness co-efficient to the 

neutrosophic cubic ideal solution 

The relative closeness co-efficient *

iRCC  of each Bi, i = 1, 

2, …, m with respect to NCPIS 
U

jz , j = 1, 2, …, n is 

defined as follows: 

*

iRCC =





ii

i

EE

E

DD

D
, i = 1, 2, …, m. 

Step 7. Rank the alternatives 

We obtain the ranking order of the alternatives based on 
the *

iRCC . The bigger value of *

iRCC reflects the better 

alternative. 

4. Numerical example

In this section, we consider an example of neutrosophic 

cubic MADM, adapted from Mondal and Pramanik [20] to 

demonstrate the applicability and the effectiveness of the 

proposed extended TOPSIS method.  

Consider a legal guardian desires to select an appropriate 

school for his/ her child for basic education [20]. Suppose 

there are three possible alternatives for his/ her child:  

(1) B1, a Christian missionary school  

(2) B2, a Basic English medium school  

(3) B3, a Bengali medium kindergarten.  

He/ She must take a decision based on the following four 

attributes:  

(1) C1 is the distance and transport,  

(2) C2 is the cost,  

(3) C3 is the staff and curriculum, and  

(4) C4 is the administrative and other facilities  

Here C1 and C2 are cost type attributes; while C3 and C4 are 

benefit type attributes. Suppose the weights of the four 

attributes are unknown. Using the the following steps, we 

solve the problem. 

Step 1. The rating of the alternative Bi, i = 1, 2, 3 with 

respect to the alternative Cj, j = 1, 2, 3, 4 is represented by 

neutrosophic cubic assessments. The decision matrix 

43
ij


a is shown in Table 1. 

Table 1. Neutrosophic cubic decision matrix 

C1 C2

B1 ]),35.0,2.0[],2.0,1.0[],4.0,3.0([

)25.0,4.0,3.0(

]),3.0,2.0[],1.0,05.0[],7.0,6.0([

)25.0,1.0,5.0(

B2 ]),3.0,15.0[],2.0,1.0[],9.0,8.0([

)3.0,15.0,7.0(

]),5.0,3.0[],4.0,1.0[],5.0,3.0([  

)2.0,3.0,4.0(  

B3 ]),4.0,25.0[],4.0,2.0[],7.0,6.0([

)3.0,3.0,5.0(  

]),3.0,2.0[],25.0,1.0[],35.0,2.0([

)4.0,3.0,3.0(

C3 C4

B1 ]),3.0,1.0[],4.0,2.0[],6.0,5.0([

)4.0,3.0,5.0(

]),3.0,1.0[],25.0,1.0[],6.0,4.0([

)4.0,2.0,5.0(

B2 ]),2.0,05.0[],35.0,2.0[],5.0,4.0([

)1.0,1.0,35.0(

]),25.0,1.0[],35.0,2.0[],3.0,2.0([

)1.0,1.0,4.0(  

B3 ]),25.0,15.0[],3.0,1.0[],7.0,4.0([

)2.0,2.0,5.0(  

]),25.0,2.0[],2.0,1.0[],7.0,5.0([

)2.0,1.0,3.0(  

Step 2. Standardize the decision matrix. 

 The standardized decision matrix 
43

ij


s  is constructed as 

follows (see Table 2): 

Table 2. The standardized neutrosophic cubic decision 

matrix 

C1 C2

B1 ]),4.0,3.0[,9.0,8.0[],35.0,2.0([

)3.0,6.0,25.0(  

]),7.0,6.0[],95.0,9.0[],3.0,2.0([

)5.0,9.0,25.0(  

B2 ]),9.0,8.0[],9.0,8.0[],3.0,15.0([

)7.0,85.0,3.0(  

]),5.0,3.0[],9.0,6.0[],5.0,3.0([

)4.0,7.0,2.0(  

B3 ]),7.0,6.0[],8.0,6.0[],4.0,25.0([

)5.0,7.0,3.0(  

]),35.0,2.0[],9.0,75.0[],3.0,2.0([

)3.0,7.0,4.0(  

C3 C4

B1 ]),3.0,1.0[],4.0,2.0[],6.0,5.0([

)4.0,3.0,5.0(  
]),3.0,1.0[],25.0,1.0[],6.0,4.0([

)4.0,2.0,5.0(

B2 ]),2.0,05.0[],35.0,2.0[],5.0,4.0([

)1.0,1.0,35.0(  

]),25.0,1.0[],35.0,2.0[],3.0,2.0([

)1.0,1.0,4.0(  

B3 ]),25.0,15.0[],3.0,1.0[],7.0,4.0([

)2.0,2.0,5.0(  

]),25.0,2.0[],2.0,1.0[],7.0,5.0([

)2.0,1.0,3.0(  

Step 3. Using AAO, we transform NCVs into SNVs. We 

calculate entropy value Ej of the j-th attribute as follows: 

Ev1 = 0.644, Ev2 = 0.655, Ev3 = 0.734, Ev4 = 0.663. 

The weight vector of the four attributes are obtained as: 

w1 = 0.2730, w2 = 0.2646, w3 = 0.2040, w4 = 0.2584. 

Step 4. After identifying the weight of the attribute (wj), 

we multiply the standardized decision matrix with wj, j = 1, 

2, …, n to obtain the weighted decision matrix 
43

ij


z (see 

Table 3). 
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Table 3. The weighted neutrosophic cubic decision matrix 

C1 C2

B1 ]),779.0,720.0[,972.0,941.0[],110.0,059.0([

)72.0,87.0,075.0(  
]),91.0,874.0[],986.0,972.0[,090.0,057.0([

)832.0,972.0,073.0(  

B2 ]),972.0,941.0[],972.0,941.0[],093.0,043.0([

)907.0,957.0,093.0(  
]),832.0,727.0[],972.0,874.0[],168.0,09.0([

)785.0,910.0,057.0(  

B3 ]),907.0,87.0[],941.0,87.0[],13.0,076.0([

( )828.0,907.0,093.0  

]),757.0,653.0[],972.0,928.0[],090.0,057.0([

)727.0,910.0,126.0(  

C3 C4

B1 ]),782.0,625.0[],830.0,720.0[],17.0,132.0([

)625.0,625.0,084.0(  
]),733.0,552.0[],699.0,552.0[],211.0,124.0([

)789.0,660.0,164.0(  

B2 ]),720.0,543.0[],807.0,720.0[],132.0,100.0([

)625.0,625.0,084.0(  
]),699.0,552.0[],762.0,66.0[],088.0,056.0([

)552.0,552.0,124.0(  

B3 ]),754.0,679.0[],782.0,625.0[],218.0,100.0([

)720.0,720.0,132.0(  
]),699.0,660.0[],660.0,552.0[],267.0,164.0([

)660.0,522.0,088.0(  

Step 5. From Table 3, the NCPIS U

jz , j = 1, 2, 3, 4 is 

obtained as follows: 
U

1z = < ([0.043, 0.093], [0.941, 0.972], [0.941, 0.972]), 

(0.075, 0.957, 0.907) >, 
U

2z = < ([0.057, 0.09], [0.972, 0.986], [0.874, 0.91]), (0.057, 

0.972, 0.832) >, 
U

3z = < ([0.132, 0.218], [0.625, 0.782], [0.543, 0.72], 

(0.132, 0.625, 0.625)>, 
U

4z = < [0.164, 0.267], [0.552, 0.66], [0.552, 0.699], (0.66, 

0.552, 0.552)>; 

The NCNIS
L

jz , j = 1, 2, 3, 4 is determined from the 

weighted decision matrix (see Table 3) as follows: 
L

1z = < [0.076, 0.13], [0.87, 0.941], [0.72, 0.779], (0.093, 

0.87, 0.72)>, 
L

2z = < [0.09, 0.168], [0.874, 0.972], [0.653, 0.757], (0.126, 

0.91, 0.727)>, 
L

3z = < [0.1, 0.132], [0.72, 0.83], [0.679, 0.782], (0.084, 

0.782, 0.83)>, 
L

4z = < [0.056, 0.088], [0.66, 0.762], [0.66, 0.733], (0.088, 

0.66, 0.789)>. 

Step 6. The Euclidean distance measure of each alternative 

from NCPIS is obtained as follows: 


1ED = 0.1232, 


2ED = 0.1110, 

3ED = 0.1200. 

Similarly, the Euclidean distance measure of each 

alternative from NCNIS is computed as follows: 


1ED = 0.0705, 


2ED = 0.0954, 

3ED = 0.0736. 

Step 7. The relative closeness co-efficient *

iRCC , i = 1, 2, 

3 is obtained as follows: 
*RCC1 = 0.3640, *RCC2  = 0.4622, *RCC3 = 0.3802. 

Step 8. The ranking order of the feasible alternative 

according to the relative closeness co-efficient of the 

neutrosophic cubic ideal solution is presented as follows: 

B2 > B3 > B1 

Therefore, B2 i.e. a Basic English medium school is the 

best option for the legal guardian. 

5 Conclusions 

In the paper, we have presented a new extended TOPSIS 

method for solving MADM problems with neutrosophic 
cubic information. We have proposed several operational 

rules on neutrosophic cubic sets. We have defined 
Euclidean distance between two neutrosophic cubic sets. 

We have defined arithmetic average operator for 
neutrosophic cubic numbers. We have employed 

information entropy scheme to calculate unknown weights 

of the attributes. We have  also defined neutrosophic cubic 
positive ideal solution and neutrosophic cubic negative 

ideal solution in the decision making process. Then, the 
most desirable alternative is selected based on the 

proposed extended TOPSIS method under neutrosophic 

cubic environment. Finally, we have solved a numerical 
example of MADM problem regarding school selection for 

a legal guardian to illustarte the proposed TOPSIS method. 
We hope that the proposed TOPSIS method will be 

effective in dealing with different MADM problems such 
as medical diagnosis, pattern recognition, weaver selection, 

supplier selection, etc in neutrosophic cubic set 

environment. 
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Abstract In this paper, we define correlation coefficient 
measure between any two rough neutrosophic sets. We 
also prove some of its basic properties.. We develop a new 
multiple attribute group decision making method based on 
the proposed correlation coefficient measure.  

An illustrative example of medical diagnosis is solved to 
demonstrate the applicability and effecriveness of the 
proposed method. 

Keywords: Multi-attribute group decision making; Neutrosophic set; Rough set; Rough neutrosophic set; Correlation coefficient. 

1 Introduction

Smarandache established the concept of neutrosophic set 
and neutrosophic logic [1] to deal uncertainty, 
inconsistency, incompleteness and indeterminacy in 1998. 
Smarandache [1] and Wang et. al. [2] studied single valued 
neutrosophic set (SVNS), a subclass of neutrosophic set to 
deal realistic problems in 2010. SVNSs have been widely 
studied and applied in different fields such as medical 
diagnosis [3], multi criteria decision making [4, 5, 6, 7, 8, 9, 
10, 11, 12, 13, 14, 15, 16, 17], image processing [18, 19, 
20], etc. 
Pawlak [21] defined rough set to study intelligence 
systems characterized by inexact, uncertain or insufficient 
information. Broumi et al. [22, 23] defined rough 
neutrosophic set by combining the rough set and single 
valued neutrosophic set to deal with problems involving 
uncertain, imprecise, incomplete and inconsistent 
information existing in real world problems. 
Decision making in rough neutrosophic environment is a 
new subfield of operational resesarch. In rough 
neutrosophic environment, Mondal and Pramanik [24] 
defined accumulated geometric operator to transform 
rough neutrosophic number (neutrosophic pair) to single 
valued neutrosophic number and developed a new multi-
attribute decision-making (MADM) method based on grey 
relational analysis. Mondal and Pramanik [25] defined 
accuracy score function  and proved its basic properties. In 

new  MADM method in rough neutrosophic environment. 
Pramanik and Mondal [26] defined cotangent similarity 
measure of rough neutrosophic sets and proved its basic 
properties. In the same study, Pramanik and Mondal [26]  
presented its application to medical diagnosis. Pramanik 
and Mondal [27] proposed cosine similarity measure of 
rough neutrosophic sets and its application in medical 
diagnosis. Pramanik and Mondal [28] also proposed Dice 
and Jaccard similarity measures in rough neutrosophic 
environment and applied them for MADM. Mondal and 
Pramanik [29] studied cosine, Dice and Jaccard similarity 
measures for interval rough neutrosophic sets and 
presented MADM methods based on proposed rough 
cosine, Dice and Jaccard similarity measures in interval 
rough neutrosophic environment Mondal et al. [30] 
presented rough trigonometric Hamming similarity 
measures such as cosine, sine and cotangent rough 
similarity measures and proved their basic properties. In 
the same study, Mondal et al. [30]  presented new MADM 
methods based on cosine, sine and cotangent rough 
similarity measures with illustrative example.  Mondal et al. 
[31] proposed variational coefficient similarity measures 
under rough neutrosophic environment and proved some of 
their basic properties. In the same study, Mondal et al. [31] 
developed a new MADM method based on the proposed 
variational coefficient similarity measures and presented a 
comparison with four existing rough similarity measures 
namely, rough cosine similarity measure, rough dice 
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similarity measure, rough cotangent similarity measure and 
rough Jaccard similarity measure for different values of the 
parameter  . Mondal et al. [32] proposed rough 
neutrosophic aggregate operator and weighted rough 
neutrosophic aggregate operator to develop TOPSIS based 
MADM method in rough neutrosophic environment. 
Pramanik et al. [33] defined projection and bidirectional 
projection measures between rough neutrosophic sets. In 
the same study, Pramanik et al. [33] proposed two new 
multi criteria decision making (MCDM) methods based on 
neutrosophic projection and bidirectional projection 
measures respectively.  
Mondal and Pramanik [34] proposed rough tri-complex 
similarity measure based MADM method in rough 
neutrosophic environment and proved some of its basic 
properties.  In the same study, Mondal and Pramanik  [34] 
presented comparison of obtained results for an illustrative 
MADM problem with other existing rough neutrosophic 
similarity measures. 
Mondal et al. [35] defined rough neutrosophic hyper-
complex set and rough neutrosophic hyper-complex cosine 
function and proved some of their basic properties. In the 
same study, Mondal et al. [35] also proposed rough 
neutrosophic hyper-complex similarity measure based 
MADM method.  

Pramanik and Mondal [36] defined bipolar rough 
neutrosophic sets and proved  it basic properties. 

The correlation coefficient is an important tool to judge the 
relation between two objects. The correlation coefficients 
[37, 38, 39, 40, 41, 42] have been widely employed to data 
analysis and classification, decision making, pattern 
recognition, and so on. Many researchers pay attention to 
correlation coefficients  under fuzzy environments.  Chiang 
and Lin [43] introduced the correlation of fuzzy sets. Hong 
[44] proposed fuzzy measures for a correlation coefficient 
of fuzzy numbers under Tw (the weakest t-norm)-based 
fuzzy arithmetic operations. As an extension of fuzzy 
correlations, Wang and Li [45] introduced the correlation 
and information energy of interval-valued fuzzy numbers. 
Gerstenkorn and Manko [46] developed the correlation 
coefficients of intuitionistic fuzzy sets IFSs). Hung and Wu 
[47] also proposed a method to calculate the correlation 
coefficients of IFSs by centroid method. Xu [48] developed 
another correlation measure of interval-valued 
intuitionistic fuzzy environment, and applied it to medical 
diagnosis. Ye [49] studied the fuzzy decision-making 
method based on the weighted correlation coefficient under 
intuitionistic fuzzy environment. Bustince and Burillo [50] 
and Hong [51] further developed the correlation 
coefficients for interval-valued intuitionistic fuzzy sets 
(IVIFSs). Hanafy et al. [52] introduced the correlation of 
neutrosophic data. Ye [53] presented the correlation 
coefficient of SVNSs based on the extension of the 
correlation coefficient of IFSs and proved that the cosine 

similarity measure of SVNSs is a special case of the 
correlation coefficient of SVNSs. Hanafy et al. [54] 
presented the centroid-based correlation coefficient of 
neutrosophic sets and investigated its properties. Broumi 
and Smarandache [55] defined correlation coefficient of 
interval neutrosophic set and investigated its properties.  

In the literature no studies have been reported on MADM 
using correlation coefficient under rough neutrosophic 
environment. To fill the research gap, we propose 
correlation coefficient under rough neutrosophic 
environment and proved some of its basic properties. We 
also present a new MADM method based on proposed 
measure.  We also present an illustrative numerical 
example to show the effectiveness and applicability of the 
proposed method. 

Rest of the paper is organized as follows: Section 2 
describes preliminaries of neutrosophic sets, SVNSs and 
rough neutrosophic set (RNS). Section 3 describes the 
correlation coefficient between SVNSs. Section 4 presents 
definition and properties of proposed correlation 
coefficient between RNSs. Section 5 presents a rough 
neutrosophic decision making method based on correlation 
coefficient. Section 6 presents an illustrative hypothetical 
medical diagnostic problem based on the proposed MADM 
method. Finally, section 7 presents concluding remarks 
and future scope of research. 

2 Preliminaries 

2.1 Neutrosophic sets In 1998, Smarandache offered the 
following definition of neutrosophic set(NS)[1]. 

Definition 2.1.1 [1] 
Let X be a space of points(objects) with generic element in 
X denoted by x. A NS A in X is characterized by a truth-
membership function TA, an indeterminacy membership 
function IA  and a falsity membership function FA. The 
functions  TA, IA and FA  are real standard or non-standard 
subsets of ]0-,1+[ that is [1,0]X:I[,1,0]X:T AA

  and 
.  It should be noted that there is no 

restriction on the sum of TA, IA and FA i.e 
  3FIT0 AAA . 

Definition 2.1.2 [1] 
(Complement) The complement of a neutrosophic set A is 
denoted by C(A) and is defined by Tc(A)(x)={1+}-TA(x), 
Ic(A)(x)={1+}-IA(x), Fc(A)(x)={1+}-FA(x). 
Definition 2.1.3 [1] 
A neutrosophic set A is contained in another neutrosophic 
set B, denoted by A  B iff inf TA(x)   inf TB(x), sup 
TA(x)   sup TB(x), inf IA(x)   inf IB(x), sup IA(x)   inf IB(x), 
inf FA(x)  inf FB(x) and sup FA(x)  sup FB(x) for all x in X. 
Definition 2.1.4 [2] 
Let X be a universal space of points (objects) with a 
generic element of X denoted by x. A single valued 
neutrosophic set A is characterized by a truth membership 
function TA(x), a falsity membership function FA(x) and 
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indeterminacy function IA(x) with TA(x), IA(x) and FA(x)
[0,1] for all x in X.  
When X is continuous, a SNVS A can be written as 
follows: A=  x AAA

x/)x(F),x(I),x(T  for all Xx  and 
when X is discrete, a SVNS A can be written as follows : 
A=   x/)x(F),x(I),x(T AAA  for all Xx . 
For a SVNS S,0 ≤ supTA(x)+ supIA(x)+ supFA(x) ≤ 3. 
Definition 2.1.5 [2]
The complement of a single valued neutrosophic set A is 
denoted by c(A) and is defined by Tc(A)(x) = FA(x), Ic(A)(x) 
=1-IA(x), Fc(A)(x) = TA(x). 
Definition 2.1.6 [2] 
A SVNS A is contained in the other SVNS B, denoted as A 
  B iff, TA(x)   TB(x), IA(x)   IB(x), FA(x)   FB(x) for all 
x in X. 

2.2 Rough Neutrosophic sets 

Rough neutrosophic sets [22, 23] are the generalization of 
rough fuzzy sets [56, 57, 58] and rough intuitionistic fuzzy 
sets [59].
Definition 2.2.1 [22]  
Let Y be a non-null set and R be an equivalence relation on 
Y. Let P be a neutrosophic set in Y with the membership 
function TP, indeterminacy function IP and non-
membership function FP. The lower and the upper 
approximations of P in the approximation space (Y, R) are 
respectively defined as: 





Yx,]x[y/
)x(F),x(I),x(T,x)P(N

R

)P(N)P(N)P(N

 and 





Yx,]x[y/
)x(F),x(I),x(T,x)P(N

R
)P(N)P(N)P(N

where, 

)Y(F]x[z
)x(F),Y(I]x[z

)x(I),Y(T]x[z)x(T

PR

)P(NPR

)P(NPR)P(N







and 

)Y(F]x[z
)x(F),Y(I]x[z

)x(I),Y(T]x[z)x(T

PR
)P(NPR

)P(NPR)P(N







. 

So, 
3)x(F)x(I)x(T0 )P(N)P(N)P(N   and 3)x(F)x(I)x(T0

)P(N)P(N)P(N
 . 

Here  and  denote “max” and “min” operators 
respectively, TP(y), IP(y), and FP(y) are  the degrees of 
membership, indeterminacy and non-membership of Y 
with respect to P. 
 Thus NS mapping, )Y(N)Y(N:N,N   are, respectively, 
referred to as the lower and upper rough NS approximation 
operators, and the pair ))P(N,)P(N(  is called the rough 
neutrosophic set in (Y, R).  
Definition 2.2.2 [22] 
If ))P(N),P(N( = N(P)  is a rough neutrosophic set in (Y, R), the 
rough complement of N(P) is the rough neutrosophic set 
denoted by )))P(N(,))P(N((( =(N(P))~ cc ,where c))P(N(( and c))P(N(

are  the  complements of neutrosophic sets )P(N  and 
)P(N respectively. 

3 Correlation coefficient of SVNSs 

Based on the correlation of intuitionistic fuzzy sets, Ye 
[53] defined the informational energy of a SVNS A, the 
correlation of two SVNSs A and B, and the correlation  
coefficient of two SVNSs A and B. 
Definition 3.1 [53] 
For a SVNS A in the universe of discourse X = {x1, x2,…, 
xn}, the informational energy of the SVNS A is defined by 





n

1i i
2
Ai

2
Ai

2
A )]x(F)x(I)x(T[)A(I

Definition 3.2 [53]
For two SVNSs A and B in the universe of discourse         
X = {x1, x2,…, xn}, correlation of the SVNSs A and B is 
defined as 
C(A,B)=

Definition 3. 3 [53] 

The correlation coefficient of the SVNSs A and B is 
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The correlation coefficient K(A, B) satisfies the following 
properties :  
(1) K(A, B) = K(B, A);  
(2) 0 ;1)B,A(K   
(3) K(A, B) = 1, if A = B.   
4 Correlation coefficient of rough neutrosophic sets 

Correlation coefficient between  rough neutrosophic sets 
(RNSs) is yet to define in the literature. Therefore in this 
paper, we define correlation coefficient between RNSs. 
Definition4.1. Assume that there are any two RNSs 
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The correlation coefficient K(A, B) satisfies the following 
properties :  
(1) K(A, B) = K(B, A);  
(2) 0 ;1)B,A(K   
(3) K(A, B) = 1, if A = B.   
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According to the Cauchy–Schwarz inequality:
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Replacing ai by )x(T iA and bi by )x(T iB we obtain 
K(A, B) ≤1. 

Therefore, 0≤ K(A, B) ≤ 1. 
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then K(A,B) = K(A,A) = 2/1)]A,A(C).A,A(C[
)A,A(C

= 1
)A,A(C
)A,A(C
  

Hence proved. 
Considering n = 1, we get the following: (3) 
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Which is the cosine similarity measure between two RNSs 
A and B [27]. 
Weighted correlation coefficient: 
Let w = {w1, w2, …, wn} be the weight vector of the 
elements xi (i = 1, 2, …, n). 
Then the weighted correlation coefficient between A and B 
is defined by the following formula: 
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If w = {1/n, 1/n, …, 1/n}, then equation (4) reduces to 
equation (2). 
Weighted correlation coefficient Kw(A, B) also satisfies the 
following properties: 
(1) Kw(A, B) = Kw(B, A); 
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so KW(A,B) ≥ 0. 
Using the weighted Cauchy–Schwarz inequality [60], we 
have
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Replacing ai by )x(Tw iAi and bi by )x(Tw iBi we obtain 
 KW(A, B) ≤ 1. 
Therefore, 0 ≤ K(A, B) ≤ 1. 
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 Hence proved.
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5 Rough neutrosophic decision making based on 

correlation coefficient 

Let  A1, A 2, ... , Am be a set of elements (/objects / persons), 
C1, C2, ... , Cn be a set of criteria for each element and E1, 
E2, ... , Ek are the alternatives for each element. 
Step 1. The relation between elements Ai (i = 1, 2, ... , m) 
and the criteria Cj (j = 1, 2, ... ,n) is presented in Table 1 in 
terms of RNSs. 
Table1 : Relation between elements and criteria 
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The relation between criterion Ci (i = 1, 2, ... , n) and the 
alternative Ej (j = 1, 2, ... ,k) is presented in Table 2 in 
terms of RNSs. 
Table 2 : Relation between criteria and alternatives  
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Step 2. Determine the correlation measure between Table 1 
and Table 2 using equation 2. The obtained values are 
presented in Table 3. 

Table 3 : Correlation coefficient between table1 and table2 
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Step 3. From  Table 3, for each element Ai (i = 1, 2, ..., m), 
find the maximum correlation value of the i-th row ( i = 1, 
2, ..., m). If the maximum value occurs at j-th column  
( j = 1, 2, ..., k) (see Table 3), then Ej will be the best 
alternative for the element  Ai (i =1, 2, ..., m).  
Step 4. End. 
6 Medical Diagnosis Problem 

We consider a medical diagnosis problem for illustration 
of the proposed method. Medical diagnosis comprises of 
inconsistent, indeterminate and incomplete information 
though increased volume of information available to 

doctors from new medical technologies. The proposed 
correlation coefficients among the patients versus 
symptoms and symptoms versus diseases will provide 
medical diagnosis. Let P = {P1, P2, P3} be a set of patients, 
D = {Viral fever, Malaria, Stomach problem, Chest 
problem} be a set of diseases and S = {Temperature, 
Headache, Stomach pain, Cough, Chest pain} be a set of 
symptoms. Using proposed method the doctor is to 
examine the patient and to determine the disease of the 
patient in rough neutrosophic environment.   
Based on the proposed approach the considered problem is 
solved using the following steps: 
Step 1. Construction of the rough neutrosophic decision 

matrix  

Table 4: (Relation-1) The relation between Patients and 
Symptoms  

Temperat
ure 

Headac
he 

Stomac
h pain 

cough Chest 
pain 

P
1 

<(.6,.4,.3)
, 
(.8,.2,.1)> 

< 
(.4,.4,.4
), 
(.6,.2,.2
)> 

<(.5,.3,.
2), 
(.7,.1,.2
)> 

<(.6,.2,.
4), 
(.8,.0,.2
)> 

< 
(.4,.4,.4
), 
(.6,.2,.2
)> 

P
2 

<(.5,.3,.4)
, 
(.7,.3,.2)> 

<(.5,.3,.
3), 
(.7,.3,.3
)> 

<(.5,.3,.
4), 
(.7,.1,.4
)> 

<(.5,.3,.
3), 
(.9,.1,.3
)> 

<(.5,.3,.
3), 
(.7,.1,.3
)> 

P
3 

<(.6,.4,.4)
, 
(.8,.2,.2)> 

<(.5,.2,.
3), 
(.7,.0,.1
)> 

<(.4,.3,.
4), 
(.8,.1,.2
)> 

<(.6,.1,.
4), 
(.8,.1,.2
)> 

<(.5,.3,.
3), 
(.7,.1,.1
)> 

Table 5: (Relation-2) The relation among Symptoms and 
Diseases 

Viral 
Fever 

Malaria Stomach 
problem 

Chest 
problem 

Temperatu
re 

<(.6,.5,.4
), 
(.8,.3,.2)
> 

<(.1,.4,.4
), 
(.5,.2,.2)
> 

<(.3,.4,.4
), 
(.5,.2,.2)
> 

<(.2,.4,.6
), 
(.4,.4,.4)
> 

Headache <(.5,.3,.4
), 
(.7,.3,.2)
> 

<(.2,.3,.4
), 
(.6,.3,.2)
> 

<(.2,.3,.3
), 
(.4,.1,.1)
> 

<(.1,.5,.5
), 
(.5,.3,.3)
> 

Stomach 
pain 

<(.2,.3,.4
), 
(.4,.3,.2)
> 

<(.1,.4,.4
), 
(.3,.2,.2)
> 

<(.4,.3,.4
), 
(.6,.1,.2)
> 

<(.1,.4,.6
), 
(.3,.2,.4)
> 

cough <(.4,.3,.3
), 
(.6,.1,.1)
> 

<(.3,.3,.3
), 
(.5,.1,.3)
> 

<(.1,.6,.6
), 
(.3,.4,.4)
> 

<(.5,.3,.4
), 
(.7,.1,.2)
> 
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Chest pain <(.2,.4,.4
), 
(.4,.2,.2)
> 

<(.1,.3,.3
), 
(.3,.1,.1)
> 

<(.1,.4,.4
), 
(.3,.2,.2)
> 

<(.4,.4,.4
), 
(.6,.2,.3)
> 

Step 2. Determination of correlation coefficient between 

table 1 and table 2 

Table 6: The correlation measure between Relation-1 and 
Relation-2 

Viral 
Fever 

Malaria Stomach 
problem 

Chest 
problem 

P1 0.95135 0.91141 0.84518 0.87465 
P2 0.95033 0.94374 0.86228 0.91731 
P3 0.93473 0.89549 0.82559 0.85937 
Step 3. Ranking the alternatives 

According to the values of correlation coefficient of each 
alternative shown in Table 3, the highest correlation 
measure occurs in column1(i.e. for the diseases viral fever. 
Therefore, all three patients P1, P2, P3 suffer from viral 
fever. 

7 Conclusion

In this paper, we have proposed correlation coefficient and 
weighted correlation coefficient between rough 
neutrosophic sets and proved some of their basic properties. 
We have developed a new multi criteria decision making 
method based on the correlation coefficient measure. We 
presented an illustrative example in medical diagnosis. We 
hope that the proposed method can be applied in solving 
realistic multi criteria group decision making problems in 
rough neutrosophic environment. 
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Abstract. Neutrosophic sets and its application to decision 
support have become a topic of great importance for re-
searchers and practitioners alike. In this paper, a new 
model for decision making in the selection of information 
system projects is presented based on single valued neu-
trosophic number (SVN-numbers) allowing the use of lin-
guistic variables with multiples points of view from ex-
perts. The proposed framework is composed of four activ-

ities, framework, gathering information, rating alterna-
tives and information system project selection. Project al-
ternatives are rated based on the Euclidean distance to the 
ideal alternative. A case study is developed in information 
system, showing the applicability of the proposal. Further 
works will concentrate in extending the model for dealing 
with heterogeneous information and in developing a soft-
ware tool. 

Keywords: Decision Analysis, SVN Numbers, Ideal Alternative, Information Systems, project selection. 
.

1 Introduction 

Decision analysis is a discipline, belonging to decision the-
ory, with the goal of computing an overall assessment that 
summarizes the information gathered and providing useful 
information about each evaluated element (Macarena 
Espinilla, Palomares, Martinez, & Ruan, 2012). Uncertainty 
is present in real world decision making problems in such 
cases the use of linguistic information to model and manage 
such an uncertainty has given good results (Estrella, 
Espinilla, Herrera, & Martínez, 2014). Experts feel more 
comfortable providing their knowledge by using terms close 
to human beings cognitive model (Rodríguez & Martínez, 
2013) that is the rationale for  using linguistic variables. 

The conventional techniques have been not much effective 
for solving decision problems because of imprecise nature 
of the linguistic assessments. It is more reasonable to con-
sider the values of alternatives according to the criteria as 
single valued neutrosophic sets (SVNS) (Wang, 
Smarandache, Zhang, & Sunderraman, 2010) for handling 
indeterminate and inconsistent information, while fuzzy sets 
and intuitionistic fuzzy sets cannot describe it properly .  In 
this paper a new model of information system project selec-
tion is developed based on single valued neutrosophic num-
ber (SVN-number) allowing the use of linguistic variables 
(Biswas, Pramanik, & Giri, 2016). 

This paper is structured as follows: Section 2 reviews some 
preliminaries concepts about decision analysis framework 
and SVN numbers is presented. In Section 3, a decision 

analysis framework based on SVN numbers for project se-
lection. Section 4 shows a case study of the proposed model. 
The paper ends with conclusions and further work recom-
mendations. 

2 Preliminaries 

In this section, we first provide a brief revision of a gen-
eral decision scheme and the use  of linguistic information 
using SVN numbers for information system Project selec-
tion.  

2.1 Decision Scheme and Information Systems 
Project Selection 

Decision analysis is a discipline with the main purpose of 
helping decision maker to reach a reliable decision (M. 
Espinilla, Ruan, Liu, & Martínez, 2010). 

A common decision resolution scheme consists of fol-
lowing eight phases (Clemen, 1996; Estrella et al., 2014): 

1. Identify decision and objectives.

2. Identify alternatives.

3. Framework:

4. Gathering information.

5. Rating alternatives.

6. Choosing the alternative/s:
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7. Sensitive analysis

8. Make a decision

In the framework phase, the structures and elements of 
the decision problem are defined such as experts, criteria, 
options. The information provided by experts is collected, 
according to the defined framework. 

 The gathered information provided by experts is then ag-
gregated to obtain a collective value of alternatives in the rat-
ing phase. Therefore, in rating phase, it is necessary to carry 
out a solving process to compute the collective assessments 
for the set of alternatives, using appropriate aggregation op-
erators  (Calvo, Kolesárová, Komorníková, & Mesiar, 2002). 

A way to compute a rating of alternatives is by using the 
ideal alternative concept. A comparison between an ideal al-
ternative and available options in order to find the optimal 
choice is used for the ratting of alternatives (Zeng, 
Baležentis, & Zhang, 2012). Normally, the closer the alter-
native to the ideal the better the alternative is. 

Information systems project selection could be defined as 
a multicriteria decision problem (Lee & Kim, 2001) . This 
fact makes the process of selecting information systems pro-
jects suitable for decision analysis scheme model.  

2.2 SVN-numbers 

Neutrosophy (Smarandache, 1999) is mathematical the-
ory developed by Florentín Smarandache for dealing with in-
determinacy Neutrosophy have been the base for developing 
of new methods to handle indeterminate and inconsistent in-
formation like neutrosophic sets an neutrosophic logic 
(Smarandache, 2005; Vera, José, Menéndez Delgado, 
Gónzalez, & Vázquez, 2016) . It is used specially in decision 
making problems.  

The truth value in neutrosophic set is as follows 
(Rivieccio, 2008):  

Let 𝑁 be a set defined as:  𝑁 =  {(𝑇, 𝐼, 𝐹) ∶  𝑇, 𝐼, 𝐹 ⊆
 [0, 1]}, a neutrosophic valuation n is a mapping from the set 
of propositional formulas to 𝑁 , that is for each sentence p 
we have 𝑣 (p)  =  (𝑇, 𝐼, 𝐹).  

Single valued neutrosophic set (SVNS ) (Wang et al., 
2010)  was developed with the goal of facilitate the real ap-
plications of  neutrosophic set and set-theoretic operators.  

A single valued neutrosophic set (SVNS) has been de-
fined (Definition 1) (Wang et al., 2010): 

Definition 1: Let 𝑋 be a universe of discourse. A single 
valued neutrosophic set 𝐴 over 𝑋 is an object having the form 
of :  

𝐴 = {〈𝑥, 𝑢𝐴(𝑥), 𝑟𝐴(𝑥), 𝑣𝐴(𝑥)〉: 𝑥 ∈ 𝑋} 
(1) 

where  𝑢𝐴(𝑥): 𝑋 →  [0,1], 𝑟𝐴(𝑥), ∶ 𝑋 →  [0,1] and
𝑣𝐴(𝑥): 𝑋 →  [0,1] with 0 ≤ 𝑢𝐴(𝑥) +  𝑟𝐴(𝑥) + 𝑣𝐴(𝑥):≤ 3 for

all 𝑥 ∈ 𝑋. The intervals 𝑢𝐴(𝑥),  𝑟𝐴(𝑥) y 𝑣𝐴(𝑥) denote the
truth- membership degree, the indeterminacy-membership 
degree and the falsity membership degree of 𝑥 to 𝐴 respec-
tively. 

Single valued neutrosophic numbers (SVN number) are 
denoted by 𝐴= (𝑎,b,𝑐), where 𝑎,𝑏,𝑐∈[0,1] and 𝑎+𝑏+𝑐≤3 . 

In decision analysis schema aggregation operating are 
important for rating options. Some aggregation operators 
have been proposed for SVN numbers (Ye, 2014a). Single 
valued neutrosophic weighted averaging (SVNWA) operator 
was proposed by Ye (Ye, 2014a) for SVNSs as fol-
lows(Biswas et al., 2016): 

𝐹𝑤(𝐴1, 𝐴2, … , 𝐴𝑛) = 〈1 − ∏ (1 −𝑛
𝑗=1

𝑇𝐴𝑗
(𝑥))

𝑤𝑗
, ∏ (𝐼𝐴𝑗

(𝑥))
𝑤𝑗

,𝑛
𝑗=1 ∏ (𝐹𝐴𝑗

(𝑥))
𝑤𝑗𝑛

𝑗=1  〉 
(2) 

Alternatives could  be rated according Euclidean distance 
in SVN (Şahin & Yiğider, 2014; Ye, 2014b). 

Definition 2: Let 𝐴 ∗  =  ( 𝐴1
∗  , 𝐴2

∗   , . . , 𝐴𝑛
∗  ) be a vector of 𝑛

SVN numbers such that 𝐴𝑗 ∗ = (𝑎𝑗
∗, 𝑏𝑗

∗, 𝑐𝑗
∗) j=(1,2, … , 𝑛)

and 𝐵𝑖 = (𝐵𝑖1, 𝐵𝑖2, … , 𝐵𝑖𝑚) (𝑖 = 1,2, … , 𝑚) be 𝑚 vectors of
𝑛 SVN numbers such that  𝐵𝑖𝑗  = ( 𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝑐𝑖𝑗)  (𝑖 = 1,2, … ,
𝑚), (𝑗 = 1,2, … , 𝑛). Then the separation measure between 
𝐵𝑖 ′𝑠 y 𝐴 ∗ is defined as follows:

si= (
1
3

∑ {(|aij-aj
*|)

2
+(|bij-bj

*|)
2
+(|cij-cj

*|)
2
}n

j=1 )

1
2

(3) 

(𝑖 = 1,2, … , 𝑚) 

In this paper the concept of linguistic variables (Leyva-
Vázquez, Santos-Baquerizo, Peña-González, Cevallos-
Torres, & Guijarro-Rodríguez, 2016) are represented using 
single valued neutrosophic numbers (Şahin & Yiğider, 
2014)for developing a framework to decision support.  

The gathering information phase is developed using SVN 
numbers (Deli & Şubaş, 2016) due to the fact that provides 
adequate computational models to deal with linguistic infor-
mation (Leyva-Vázquez et al., 2016) in decision. It allow to 
include handling of indeterminate and inconsistent in infor-
mation system project selection. 

3 Proposed framework. 

Our aim is to develop a framework for information sys-
tem project selection based on SVN numbers. The model 
consists of the following phases (figure 1). 
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Figure 1: A framework for using SVN numbers in 
information system project selection  



The proposed framework is composed of four activities, 
framework, gathering information, rating alternatives and in-
formation system project selection. 

Framework 

In this phase, the evaluation framework, the decision prob-
lem of information system project selection is defined. The 
framework is established as follows: 

• C={𝑐1, 𝑐2, … , 𝑐𝑛} with 𝑛 ≥ 2 , a set of criteria.

• E={𝑒1, 𝑒2, … , 𝑒𝑘} with 𝑘 ≥ 2, a set of experts.

• 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑚} with 𝑚 ≥ 2, a finite set of in-
formation systems projects alternatives. The set of
experts will provide the assessments of the decision
problem.

Gathering information 

In this phase, each expert, 𝑒𝑘 provides the assessments by
means of assessment vectors: 

𝑈𝐾 = (𝑣𝑘
𝑖𝑗 , 𝑖 = 1, . . , 𝑛, 𝑗 = 1, . . , 𝑚)

The assessment 𝑣𝑖𝑗
𝑘 , provided by each expert 𝑒𝑘, for each

criterion 𝑐𝑖 of each project alternative 𝑥𝑗, is expressed using
an   SVN number. 

Rating alternatives 

Initial aggregation process is developed for rating alter-
natives. The aggregated SVN decision matrix obtained by 
aggregating of opinions of decision makers. In our proposal 
the SVNWA aggregation operator used Eq. (2). 

For rating alternatives an ideal project option is con-
structed (Leyva-Vázquez, Pérez-Teruel, & John, 2014; Şahin 
& Yiğider, 2014). The evaluation criteria can be categorized 
into two categories, benefit and cost. Let C+ be a collection 
of benefit criteria and C- be a collection of cost criteria. The 
ideal alternative is defined as: 

𝐼 = {(𝑚𝑎𝑥𝑖=1
𝑘 𝑇𝑈𝑗

|𝑗 ∈𝐶+, 𝑚𝑖𝑛𝑖=1
𝑘 𝑇𝑈𝑗

|𝑗 ∈𝐶−) , (𝑚𝑖𝑛𝑖=1
𝑘 𝐼𝑈𝑗

|𝑗
∈𝐶+, 𝑚𝑎𝑥𝑖=1

𝑘 𝐼𝑈𝑗
|𝑗 ∈𝐶−) , (𝑚𝑖𝑛𝑖=1

𝑘 𝐹𝑈𝑗
|𝑗

∈𝐶+, 𝑚𝑎𝑥𝑖=1
𝑘 𝐹𝑈𝑗

|𝑗 ∈𝐶−)}
= [𝑣1, 𝑣2, … , 𝑣𝑛 ]  (6) 

Alternatives are rated according Euclidean distance I: 
 

si= (
1
3

∑ {
(|T(𝑣𝑖𝑗)-T(𝑣𝑖

𝐼)|)
2
+(|I(𝑣𝑖𝑗)-I(𝑣𝑖

𝐽)|)
2

+(|F(𝑣𝑖𝑗)-F(𝑣𝑖
𝐼)|)

2 }

n

j=1

)

1
2

(i = 1,2, … ,n) (7) 

Information System Project Selection 

Ranking is based in the global distance to the ideal. If 
alternative project  xi is closer to I the distance measure (si 
closer) better is the  project alternative (Leyva-Vázquez, 
Pérez-Teruel, Febles-Estrada, & Gulín-González, 2013). 

4 Case study 

In this section, we present an illustrative example in order 
to show the applicability of the proposed framework for in-
formation system project selection. 

In this case study the evaluation framework is compose 
by 2 experts E={𝑒1, 𝑒2}  who evaluate 3 alternatives(infor-
mation system projects) . 

x1: CRM 

x2: ERP 

x3: SCM 

These projects are described in Table #1. 

TABLE I. PROJECTS  OPTIONS 

id Name Description 

1 CRM. Custumer Relation 
Management  Software 

2 ERP   Enterprise Relationship 
Managemet Software 

3 SCM Supply Chain Managemet 
Software 

3 criteria are involved, which are shown below: 

c1: Benefits 

c2: Factibility 

c3: Cost 

In Table 2, we give the set of linguistic terms used for 
experts to provide the assessments. 

TABLE II. LINGUISTIC TERMS USED TO PROVIDE THE ASSESSMENTS 
(ŞAHIN & YIĞIDER, 2014) 

Linguistic terms SVNSs 

Extremely good (EG) (1,0,0) 
Very very good (VVG) (0.9, 0.1, 0.1) 
Very good (VG) (0.8,0,15,0.20) 
Good (G) (0.70,0.25,0.30) 
Medium good (MG) (0.60,0.35,0.40) 
Medium (M) (0.50,0.50,0.50) 
Medium bad (MB) (0.40,0.65,0.60) 
Bad (B) (0.30,0.75,0.70) 
Very bad (VB) (0.20,0.85,0.80) 
Very very bad (VVB) (0.10,0.90,0.90) 
Extremely bad (EB) (0,1,1) 

Once the evaluation framework has been determined the 
information about the projects is gathered (see Table 3). 
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e1 e1 

x1 x2 x3 x1 x2 x3

c1 MG EG MB M VVG M 

c2 G MG M B MB M 

c3 MG MG G MB MG B 

For rating project alternatives, an initial aggregation pro-
cess is developed.  Then the aggregated SVN decision matrix 
obtained by aggregating of opinions of decision makers is 
constructed by Eq. (2). The result is given in Table 4. The 
importance of each expert is expressed in the weighting vec-
tor 𝑊 = [0.7,0.3]. 

TABLE IV.  AGGREGATED SVN DECISION MATRIX 

x1 x2 x3

c1 (0.57,0.39,0.43) (1,0,0) (0.4, 0.60,0.57) 

c2 (0.65,0.31,0.35) (0.55,0.42,0.45) (0.50,0.50,0.50) 

c3 (0.63,0.32, 0.37) (0.60,0.35,0.40) (0.61,0.35,0.47) 

Calculation SVN positive-ideal solution is made as Table 5. 

TABLE V. SVN POSITIVE-IDEAL VALUES 

Positive-ideal

c1 (1,0,0) 

c2 (0.65,0.31,0.35) 

c3 (0.63,0.32, 0.37) 

Separation measure of each alternative from the positive-
ideal solution are calculated using Eq. (4) and are given by 
Table 6. 

TABLE VI. DISTANCE TO THE IDEAL SOLUTION  

SVN positive-ideal Ranking 

x1 0.42 2 

x2 0.11 1 

x3 0.61 
0.37) 

3 

According to descending order of relative closeness co-
efficients values, four alternatives are ranked as: 𝑥2 ≻  𝑥1 ≻
𝑥3.

5 Conclusions. 

In recent years, neutrosophic sets and its application to 
multiple attribute decision making have become a topic of 
great importance for researchers and practitioners. In this pa-
per a new model information system project selection based 
on SVN-number applied allowing the use of linguistic vari-
ables for application in in complex decisions that require 
multiples points of view. To demonstrate the applicability of 

the proposal a case study. Our approach has many applica-
tion information system project selection that include inde-
terminacy. 

Further works will concentrate extending the model for 
dealing with heterogeneous information (Pérez-Teruel, 
Leyva-Vázquez, & Espinilla-Estevez, 2013). Another area of 
future work is the developing of new aggregation models 
based on SVN numbers specially compensatory operators 
(Espin-Andrade, González Caballero, Pedrycz, & Fernández 
González, 2015) and the developing of a software tool. 
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Abstract. In this paper, we propose a new concept named the 

uniform single valued neutrosophic graph. An illustrative examp-

le and some properties are examined. Next, we develop an algo-

rithmic approach for computing the complement of the single va-

lued neutrosophic graph. A numerical example is demonstrated 

for computing the complement of single valued neutrosophic 

graphs and uniform single valued neutrosophic graph. 

 Keywords: Single valued neutrosophic sets; Uniform single valued neutrosophic graph; Complement operators 

1   Introduction 

In 1965, Zadeh [7] originally introduced the concept 

of fuzzy set(FSs) which is characterized by a membership 
degree in [0, 1] for each element in the dataset. It may not 

always be true that the degree of non-membership of an 
element in a fuzzy set is equal to 1 minus the truth- mem-

bership degree because there is some kind of hesitation 

degree. On the basis of fuzzy sets, Atanassov [4] added a 
non-membership in the definition of intuitionistic fuzzy 

sets (IFSs) and later Smarandache [2] introduced the neut-
rosophic sets (NSs) with the appearance of the truth-

membership degree (T), the falsehood-membership degree 

(F), and the indeterminacy degree (I).  Wang et al. [3] pro-
posed various set theoretical operators and linked to single 

valued neutrosophic sets The concept of neutrosophic sets 

have been successfully applied to many fields [16]. 

Fuzzy graph has been studied extensively in the past 

years [5,8,9]. Later on, Smarandache [1] proposed neutro-

sophic graphs in some special types such as neutrosophic 
offgraph, neutrosophic bipolar/tripolar/ multipolar graph. 

Presently, works on neutrosophic vertex-edge graphs and 

neutrosophic edge graphs are progressing rapidly. Broumi 

et al.[13] introduced certain types of single valued neutro-

sophic graphs ( in short SVNG) such as strong single va-
lued neutrosophic graph, constant single valued neutroso-

phic graph, complete single valued neutrosophic graph 

with their properties and examples. Neighborhood degree 

of a vertex and closed neighborhood degree of vertex in 
single valued neutrosophic graph were introduced in [15]. 

The necessary and sufficient condition for a single valued  

neutrosophic graph to be an isolated single valued 

neutrosophic graph has been presented in [10]. Other ex-

tensions of the neutrosophic graph have been described in 

[11,12, 14]. 

Up to now, to the best of our knowledge, there has 
been no study on the uniform single valued neutrosophic 

graph. Thus, we propose in this paper a new concept na-

med the uniform single valued neutrosophic graph. An il-
lustrative example and some properties are examined. Next, 

we develop an algorithmic approach for computing the 
complement of the single valued neutrosophic graph. 

The remainder of this paper is organized as follows. In 

Section 2, we present the basic definitions. In section 3, we 

introduce the concept of uniform single valued neutroso-

phic graph and investigate its properties. Section 4 introdu-

ces an algorithm for computing the complement of single 

valued neutrosophic graphs. A numerical example is pre-

sented in Section 5. Finally, Section 6 outlines the conclu-

sion of this paper and suggests several directions for future 

research.  

2 Preliminaries 

 In this section, we have present the basic definitions 

of fuzzy sets, neutrosophic sets, single valued neutrosophic 

sets, fuzzy graphs, uniform fuzzy graphs, complement of 

single valued neutrosophic graph which will be useful to 
our main work in the next sections. 

Definition 1[1]. Let X be the universe of discourse 
and its elements denoted by x. In fuzzy theory, a fuzzy set 
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A of universe X is defined by the function �����, called

the membership function of set A. 
��: �→[0, 1]  (1) 

For any element x of universe X,�����  equals the

degree, between 0 and 1, to which x is an element of set A, 

This degree represents the membership value or degree of 

membership of element x in set  A. 

Definition 2[1]. Let X  be a space of points  and let x 
∈X. A neutrosophic set A in X is characterized by a truth

membership function T, an indeterminacy membership 

function I, and a falsehood membership function F which 

are real standard or nonstandard subsets of ]−0,1+[, and T, 

I, F: X→]−0,1+[. The neutrosophic set can be represented

as, 

A=�	x, T�x�, I�x�, F�x��: x ∈ X�  (4) 

 There is no restriction on the sum of T, I, F, So 

−
0 ≤T�x�+ I�x�+F�x�≤ 3

+
.  (5) 

From philosophical point of view, the neutrosophic 
set takes the value from real standard or non-standard sub-

sets of ]
−
0,1

+
[. Thus it is necessary to take the interval [0,1] 

instead of ]
−
0,1

+
[. For practical applications, it is difficult 

to apply]
−
0,1

+
[ in the real life applications such as enginee-

ring and scientific problems. 

Definition 3[3]. Let X be a space of objects with ge-
neric elements in X denoted by x. A single valued neutro-

sophic set A (SVNS) is characterized by truth-membership 

function T�x� , an indeterminate-membership function
I�x� , and a falsehood-membership function F�x� . For

each point x in X, T�x�, I�x�, F�x�∈[0, 1]. A SVNS A
can be written as, 

A=�	x, T�x�, I�x�, F�x��: x ∈ X�  (6)

Definition 4 [5]. A fuzzy graph is a pair of functions 
G = (σ, µ) where σ is a fuzzy subset of a non empty set V

and 	μ is a symmetric fuzzy relation on σ. i.e  σ : V → [

0,1] and μ: VxV→[0,1] such that  μ(uv) ≤ σ(u) ⋀ σ(v)  for

all u, v ∈ V where uv denotes the edge between u and v 

and σ(u) ⋀ σ(v) denotes the minimum of σ(u) and σ(v). σ
is called the fuzzy vertex set of V and μ is called the fuzzy 

edge set of E. 

Fig.1. Fuzzy graph 

Remark: The crisp graph �∗ =  (V, E) is a special ca-

se of the fuzzy graph G with each vertex and edge of ( V, 

E) having degree of membership 1 (Fig. 1).

Definition5[6,8]. The complement of a fuzzy graph 

G = (σ, µ) is a fuzzy graph �̅  = (��, μ� ) where ��  =σ and
μ�(u,v) = σ(u)∧σ(v)-µ(u,v), ∀ u,v ∈ V.

Definition 6[6,8]. Let G = (σ, µ) be a fuzzy graph on
a crisp graph �∗ = (V, E). Let σ∗={x∈ V	|	σ���> 0}.Then

G is called a uniform fuzzy graph of level %if & (x,y) = %, ∀
(x,y) ∈  (σ∗ × σ∗� and σ���  = %  where % isa positive real
such that  0 <%( ≤1.

Definition 7[15].Let G = (V, E) be a single valued 

neutrosophic graph, then the degree of a vertex�	* is defi-

ned by +,��	*�=+,���=(+-��� ,+.��� ,+/��� ), +,��	*� =
�∑ �2 	�x, y�456 , ∑ 72�x, y�, ∑ 72�x, y�	�	456456 .

Definition 8[15].Let G = (V, E) be a single valued 
neutrosophic graph, then the total degree of a vertex �	* is
defined by 8+,��	*� = +,��� =( 8+-��� , 8+.��� , 8+/��� ),
8+,��	*� = �∑ �2 	�x, y�456 + �����, ∑ 72�x, y� +456
7����, ∑ 72�x, y� + :����	�	456 .

Definition 9[13]. Let G = (V, E) be a single valued 
neutrosophic graph, then the complement of single valued 

neutrosophic graph is defined as 

1. ;�   =V

2.��� (x)=T�x�,  7�<���	= 7����, F���(x�	=F�x� for all x∈V.

3.T=����x, y�=	min	AT�x�, T�y�B − 	T=�x, y�
I=< (x, y)=	max	AI�x�, I�y�B − I=�x, y�and

F=���(x,y)=	max	A	F�x�, F�y�B − F=�x, y�, for all �x, y� ∈ E

 Definition 10[13]. Let G = (V, E) be a single valued 

neutrosophic graph. If +,��	*�= (%(, %E, %F)  for all �	* ∈
V, then the single valued neutrosophic graph is called re-

gular SVNG of degree (%(, %E, %F)
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 Definition 11[13]. Let G = (V, E) be a single valued 
neutrosophic graph. If 8+,��	*�= (%(, %E, %F)  for all �	* ∈
V, then the single valued neutrosophic graph is called To-
tally regular SVNG of degree (%(, %E, %F)

III. Uniform Single Valued Neutrosophic Graph

In this section, we define the concept of uniform sing-

le valued neutrosophic graphs( in short USVNGs). 

Definition 8. Let G = (A, B) be a single valued neut-

rosophic graph where A =(�� , 7� , :�) is a single valued

neutrosophic vertex of G and B is a single valued  neutro-

sophic edge set of G. Let A={x∈ V	|	�����> 0,7����> 0

and :���� > 0}.Then G is called Uniform single valued

neutrosophic  graph of level (%( , %E , %F ) if �2  (x,y) =

%(,7����=%Eand :2(x,y) = %F∀ (x,y) ∈ (V× ;�	and ����� =%(,7���� = %Eand :���� = %F where %(, %Eand %F are some

positive real such that  0 <%(, %E, %F ≤1.

Example 1. Consider an USVNG G= (A,B) on 

V={G(,G(,GF,GH} as shown in Fig.2.

  Fig. 2. USVNG. 

Remark: The complement of an uniform single va-

lued neutrosophic graph is always an empty graph. 

Theorem1. If G = (A, B) is an uniform single valued 

neutrosophic graph of level (%(, %E, %F) then  G is a regu-

lar-USVNG. 

Proof. Let A={x ∈ V	|	����� > 0, 7���� > 0 and

:���� > 0} . Suppose that G is a uniform single valued
neutrosophic graph. Then �2 (x, y) = %(,72 (x, y) = %E and

:2 (x,y) = %F∀  (x,y) ∈  Eand ���K�  = %( , 7��K�  = %E and

:��K� = %F∀ z ∈ V for some real %(, %Eand %F where  0 

<%(, %E, %F ≤1.

Let  x ∈ V. Now +,���=(+-���,+.���, +/���)
+,��� = �L �2�x, y�456

,L 72�x, y�,456
L :2�x, y�	�	456

=�∑ %(456 , ∑ %E,456 ∑ %F456 )

=((n-1) %(, (n-1) %E, (n-1) %F)

+,���=((n-1) %(, (n-1) %E, (n-1) %F) ∀ x ∈ V

Therefore, G is regular uniform single valued neutro-

sophic graph. 

Theorem 2. If G = (A, B) is a uniform single valued 

neutrosophic graph of level (%(, %E, %F) then  G is a totally

regular- USVNG. 

Proof. Let A={x ∈ V	|	����� > 0, 7���� > 0 and

:���� > 0} . Suppose that G is a uniform single valued

neutrosophic graph. Then �2 (x, y) = %( ,72 (x, y) = %E and

:2 (x,y) = %F∀  (x,y) ∈  Eand ���K�  = %(  , 7��K�  = %E  and

:��K� = %F∀ z ∈ V for some real %(, %E and %F where  0 

<%(, %E, %F ≤1.Let  x ∈ V. Now,

8+,���=(+-��� + �����,+.��� + 7����,+/��� + :����)
8+,��� = �L �2 	�x, y� + �����456

,L 72�x, y�456
+ 7����,L :2 	�x, y� + :����456

�	
=��∑ %(456 � + %(, �∑ %E� + %E,456 �∑ %F� + %F456 )

=((n-1) %(+%(, (n-1) %E+%E, (n-1) %F+%F)

8+,���=(n%(, n %E, n %F) ∀ x ∈ V.

Therefore, G is totally-regular uniform single valued 
neutrosophic graph. 

Theorem 3. If G = (A, B) is a uniform single valued 

neutrosophic graph of level (%(, %E, %F) on �∗=(V, E), then

the order of  G is O(G)= (M%(, M%E,M%F).

Proof: Let A={x ∈ V	|	����� > 0, 7���� > 0 and
:���� > 0} . Suppose that G is a uniform single valued

neutrosophic graph. Then �2 (x, y) = %( ,72 (x, y) = %E and

:2 (x,y) = %F∀  (x,y) ∈  Eand ���K�  = %(  , 7��K�  = %E  and
:��K� = %F∀ z ∈ V for some real %(, %E and %F where  0 

< %(, %E, %F ≤1.Let x ∈ V. Now

O���=(O-���,O.���,O/���)

O��� = �L ��	�x�	4∈P
,L 7��x�,L Q�	�x�	4∈P

�	
4∈P

=�∑ %(4∈P , ∑ %E, ∑ %F4∈P4∈P )

Then,O���=(n%(, n %E, n %F).

=�∑ k(S∈T , ∑ kE, ∑ kFS∈TS∈T )

Then,O���=(n%(, n %E, n %F).

Theorem 4.The uniform single valued neutrosophic 

graph is a generalization of uniform fuzzy graph.  

Proof: Straightforward. 
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IV. Computing Complement of Single Valued Neu-
trosophic Graph 

     In this section, we present in the last paper, a peudo-

code of an algorithm computing the complement of single 

valued neutrosophic graph. This algorithm has the ability 

of computing the complement of fuzzy graphs, strong in-

tuitionistic fuzzy   graphs, uniform fuzzy graphs and also 

uniform single valued neutrosophic graphs. 

The following flowchart demonstrates the algorithm 

to compute the complement operator is presented in 

Fig.3V.Numerical Example 

In this section, we present an example to compute the 

complements of the uniform single valued neutrosophic 

graph. Consider a graph in Fig.4. 

Fig. 4.A uniform single valued neutrosophic graph 

Using the above pseudo code, the output result for the 
complement of a uniform single valued neutrosophic graph 

is in Fig. 5. 

Fig. 5. The outputs 

 Example 2 Consider a fuzzy graph as shown in Fig.6 

     Fig. 6.Fuzzy graph 

Using the above pseudo code, the output result for the 

complement of fuzzy graph is as follows: 

Example 3 Consider  an uniform intuitionistic  fuzzy 

graph as shown in Fig.7 
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 Fig.7. Uniform Intuitionistic fuzzy graph 

Using the above pseudo code, the output result for the 

complement of uniform intuitionistic fuzzy graph is as fol-

lows 

VI. CONCLUSION

In this paper, we propose a new uniform single va-

lued neutrosophic graph and an algorithm for computing 

its complement. Some theorems of the uniform single va-

lued neutrosophic graph have been examined. The algo-

rithm in this research also enables us to compute the com-

plement of uniform single valued neutrosophic graph. In 

the future, we plan to extended this algorithm for compu-

ting the complement of others variants of single valued 

neutrosophic graphs. 
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 Appendix 

#include<stdio.h> 

#include<conio.h> 

#define max 100 

typedef struct { 

float 

Truth_membership,Indterminate_membership,False_mem

bership; 

}fuzzy; 

fuzzy  

element[max][max],compliment[max][max];//element sto-

re the membership value of vertex.Compliment store the 

value of complimented graph. 

int vertex;//store total number of vertex. 
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float vertex_membership[max][6];//store membership va-

lue of vertex. 

void input() 

{ 

int i,origin,destiny;//origin & destiny store the no. of ver-

tex.And i for iteration. 

printf("Please enter no of vertex:"); 

scanf("%d",&vertex); 

for(i=0;i<vertex;i++) 

{ 

printf("Please enter (T,I,F)menbership values of 

vertex:"); 

scanf("%f%f%f",&vertex_membership[i][0],&ver

tex_membership[i][1],&vertex_membership[i][2]);//store 

the membership value of vertex 

if(vertex_membership[i][0]+vertex_membership[i

][1]+vertex_membership[i][2]>=3&&(vertex_membership

[i][0]<=3&&vertex_membership[i][1]&&vertex_members

hip[i][2])) 

{ 

printf("Error Invalid input\n"); 

i--; 

} 

} 

for(i=0;i<vertex*(vertex-1)/2;i++) 

{ 

printf("Please enter the edges (x to y):"); 

scanf("%d%d",&origin,&destiny); 

if(origin>vertex||destiny>vertex||origin<=0||destin

y<=0||destiny==origin) 

{ 

 printf("Error! Invalid input\n"); 

 i--; 

} 

else 

{ 

printf("Please enter (T,I,F)membership values of 

edge:"); 

scanf("%f%f%f",&element[origin-1][destiny-

1].Truth_membership,&element[origin-1][destiny-

1].Indterminate_membership,&element[origin-1][destiny-

1].False_membership);//store th membership value of ed-

ge. 

element[destiny-1][origin 

1].Truth_membership=element[origin-1][destiny-

1].Truth_membership;//store the truth-membership value 

of edge. 

element[destiny-1][origin-

1].Indterminate_membership=element[origin-1][destiny-

1].Indterminate_membership;//store the indterminate-

membership value of edge. 

element[destiny-1][origin-

1].False_membership=element[origin-1][destiny-

1].False_membership;//store the False-membership value 

of edge. 

if(element[origin-1][destiny-

1].Truth_membership+element[origin-1][destiny-

1].Indterminate_membership+element[origin-1][destiny-

1].False_membership>3)//store the membership value of 

edge. 

{ 

printf("Error! Invalid input\n"); 

i--; 

} 

} 

} 

} 

void output() 

{ 

int i,j; 

float maximum,minimum,maximuma; 

printf("The complement of Single valued neutro-

sophic graphs is:\n"); 

for(i=0;i<vertex;i++) 

{ 

for(j=0;j<vertex;j++) 

{ 

if(i==j) 

j++; 

if(vertex_membership[i][0]>vertex_membership[j][0]) 

minimum=vertex_membership[j][0];//find minimum value 

between two vertex. 

else 

minimum=vertex_membership[i][0];//find minimum value 

between two vertex. 

if(vertex_membership[i][1]>vertex_membership[j][1]) 

maximum=vertex_membership[i][1];//find maximum va-

lue between two vertex. 

else 

maximum=vertex_membership[j][1];//find maximum va-

lue between two vertex. 
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if(vertex_membership[i][2]>vertex_membership[j][2]) 

maximuma=vertex_membership[i][2];//find maximum va-

lue between two vertex. 

else 

maximuma=vertex_membership[j][2];//find maximum va-

lue between two vertex. 

compliment[i][j].Truth_membership=minimum-

element[i][j].Truth_membership;//calculating compliment. 

compliment[i][j].Indterminate_membership=maximum-

element[i][j].Indterminate_membership;//calculating 

compliment. 

compliment[i][j].False_membership=maximuma-

element[i][j].False_membership;//calculating compliment. 

} 

 } 

for(i=0;i<vertex-1;i++) 

{ 

for(j=0;j<vertex;j++) 

{ 

if(i==j) 

 j++; 

printf("%d - %d edge membership value= %f %f %f 

\n",i+1,j+1,compliment[i][j].Truth_membership,complime

nt[i][j].Indterminate_membership,compliment[i][j].False_

membership);//printing complimented graph. 

} 

} 

} 

void main() 

{ 

input(); 

output(); 

getch(); 

 } 
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1. Introduction.

The first successful attempt towards incorporating 
non-probabilistic uncertainty, i.e. uncertainty which 
is not caused by randomness of an event, into 
mathematical modelling was made in 1965 by L. A. 
Zadeh [20] through his remarkable theory on fuzzy 
sets (FST). A fuzzy set is a set where each element 
of the universe belongs to it but with some ‘grade’ 
or ‘degree of belongingness’ which lies between 0 
and 1 and such grades are called membership value 
of an element in that set. This gradation concept is 
very well suited for applications involving imprecise 
data such as natural language processing or in 
artificial intelligence, handwriting and speech 
recognition etc. Although Fuzzy set theory is very 
successful in handling uncertainties arising from 
vagueness or partial belongingness of an element in 
a set, it cannot model all sorts of uncertainties 
prevailing in different real physical situations 
specially problems involving incomplete 
information.  Further generalization of this fuzzy set 
was made by K. Atanassov [1] in 1986, which is 
known as Intuitionistic fuzzy set (IFS). In IFS, 
instead of one ‘membership grade’, there is also a 
‘non-membership grade’ attached with each 
element. Furthermore there is a restriction that the 
sum of these two grades is less or equal to unity. In 
IFS the ‘degree of non-belongingness’ is not 
independent but it is dependent on the ‘degree of 
belongingness’. A fuzzy set can be considered as a 
special case of IFS where the ‘degree of non-
belongingness’ of an element is exactly equal to ‘one 

minus the degree of belongingness’. Intuitionistic 
fuzzy sets definitely have the ability to handle 
imprecise data of both complete and incomplete in 
nature. In applications like expert systems, belief 
systems, information fusion etc., where ‘degree of 
non-belongingness’ is equally important as ‘degree 
of belongingness’, intuitionistic fuzzy sets are quite 
useful.  There are of course several other 
generalizations of Fuzzy as well as Intuitionistic 
fuzzy sets like L-fuzzy sets and intuitionistic L- 
fuzzy sets, interval valued fuzzy and intuitionistic 
fuzzy sets etc that have been developed and applied 
in solving many practical physical problems [2, 5, 6, 
16].  In 1999, a new theory has been 
introduced by Florentin Smarandache [14] which is 
known as ‘Neutrosophic logic’. It is a logic in which 
each proposition is estimated to have a degree of 
truth (T), a degree of indeterminacy (I) and a degree 
of falsity (F). A Neutrosophic set is a set where each 
element of the universe has a degree of truth, 
indeterminacy and falsity respectively and which 
lies between [0-, 1+], the non-standard unit interval. 
Unlike in intuitionistic fuzzy sets, where the 
incorporated uncertainty is dependent on the degree 
of belongingness and degree of non belongingness, 
here the uncertainty present, i.e. the indeterminacy 
factor, is independent of truth and falsity values. 
Neutrosophic sets are indeed more general in nature 
than IFS as there are no constraints between the 
‘degree of truth’, ‘degree of indeterminacy’ and 
‘degree of falsity’. All these degrees can 
individually vary within [0-, 1+]. 
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Smarandache [14] and Wang et. al. [17] introduced 
an instance of neutrosophic set known as single 
valued neutrosophic sets which were motivated from 
the practical point of view and that can be used in 
real scientific and engineering applications. Here the 
degree of truth, indeterminacy and falsity of any 
element of a neutrosophic set respectively lies 
within standard unit interval [0, 1]. The single 
valued neutrosophic set is a generalization of 
classical set, fuzzy set, intuitionistic fuzzy set and 
paraconsistant sets etc.   

The organization of the rest of this paper is as 
follows: Some basic definitions and operations on 
SVNS are given in section 2. Section 3 discusses the 
notion of entropy of SVNS as defined in [10].  In 
section 4, some problems with the earlier definition 
of entropy have been pointed out using 
counterexample. A new definition of entropy of 
SVNS has been given in section 5.  Section 6 
concludes the paper.

2. Single Valued Neutrosophic sets.

A single valued neutrosophic set has been defined in 
[17] as follows: 

Definition 2.1 Let X be a universal set. A 
Neutrosophic set A in X is characterized by a truth-
membership function ,At a indeterminacy-

membership function Ai  and a falsity-membership 

function , , , : [0,1],A A A Af where t i f X  are 

functions and ( ), ( ), ( )A A At x i x f x  is a single 

valued neutrosophic element or simply a 
neutrosophic element of .A

A single valued neutrosophic set A (SVNS in short) 
over a finite universe 1 2 3{ , , ,...., }nX x x x x is 

represented as 

1
.

( ), ( ), ( )

n
i

i A i A i A i

x
A

t x i x f x






Example 2.2 Assume that 1 2 3{ , , },X x x x  where

1x  is capacity, 2x  is trustworthiness and, 3x  is 

price of a machine, be the universal set. The values 
of 1 2 3, ,x x x are in [0, 1]. They are obtained from the 

questionnaire of some domain experts, their option 
could be a degree of “good service”, a degree of 

indeterminacy and a degree of “poor service”. A  is 
a single valued Neutrosophic set of X  defined by 

The following is a graphical representation of a 
single valued neutrosophic set. The elements of 
a single valued neutrosophic set, denoted 
henceforth by a neutrosophic element x(t,i,f), 
always remain inside and on a closed unit cube 
which henceforth will be called a neutrosophic

cube. Figure 1 describes a neutrosophic cube.

    Figure 1 

Next we give the definitions of complement and 
containment as follows: 

Definition 2.3 The complement of a SVNS A is 

denoted by cA and is defined by

Definition 2.4 A SVNS A is contained in the other 
SVNS ,B denoted as ,A B  if and only if

Two sets will be equal, i.e. ,A B  iff

& .A B B A   

Let us denote the collection of all SVNS over the 
universe X as ( ).N X   
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Several operations like union and intersection has 
been defined on SVN sets and they satisfy most of 
the common algebraic properties of ordinary sets. 

Definition 2.5 The union of two SVNS &A B is a 
SVNS , ,C written asC A B  which is 
defined as follows:  

( ) max( ( ), ( )); ( ) max( ( ), ( ))
& ( ) min( ( ), ( )) .
C A B C A B

C A B

t x t x t x i x i x i x

f x f x f x x X



  

Definition 2.6 The intersection of two SVNS
&A B is a SVNS , ,C written asC A B 

which is defined as follows: 

( ) min( ( ), ( )); ( ) min( ( ), ( ))
& ( ) max( ( ), ( )) .
C A B C A B

C A B

t x t x t x i x i x i x

f x f x f x x X



  

For practical purpose, throughout the rest of this 
chapter, we have considered only SVNS over a finite 
universe. 

Next two operators, namely ‘truth favourite’ and 
‘falsity favourite’ are defined to remove 
indeterminacy in the SVNS and transform it into an 
IFS or a paraconsistant set. 

Definition 2.7 The truth favourite of a SVNS A  is
again a SVNS B written as ,B A  which is
defined as follows: 

Definition 2.8  The falsity favourite of a SVNS A 
is again a SVNS B written as ,B A  which is
defined as follows: 

( ) 0
( ) min( ( ) ( ),1), .

B

B A A

I x

F x F x I x x X



   

The next two examples of truth & falsity favourite 
respectively of two given SVNS:  

Example 2.9 Here the SVNS is A and the truth and 
falsity favourite sets are defined as follows: 

1
A

Here both B and C are IFS. 

Example 2.10 Again consider the neutrosophic set 
A given in example 2.2, then 

2
A

x

Here both B and C are paraconsistant sets. 

3. Entropy of Single Valued Neutrosophic sets.

Entropy can be considered as a measure of 
uncertainty about the information contained by a set. 
Generally crisp sets do not possess any entropy 
because there is no uncertainty about its members. 
But other non-crisp sets like fuzzy, intuitionistic 
fuzzy or vague etc, every set contain uncertain 
information of different types and hence there exits 
entropy for them. Here the SVNS are also capable of 
handling uncertain data, therefore as a natural 
consequence we are also interested in finding the 
entropy of a single valued neutrosophic set.  
Shannon [13] first introduced the notion of 
Probabilistic entropy. Shannon entropy has many 
applications in theory of communications. Entropy 
as a measure of fuzziness was first mentioned by 
Zadeh [21] in 1968. Later De Luca-Termini [4] 
axiomatized the non-probabilistic entropy.  
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According to them the entropy E of a fuzzy set A 
should satisfy the following axioms: 

Several other authors have investigated the notion of 
entropy. Kaufmann [7] proposed a distance based 
measure of fuzzy entropy; Yager [18, 19] gave 
another view of entropy or the degree of fuzziness 
of any fuzzy set in terms of lack of distinction 
between the fuzzy set and its complement. Kosko [8] 
investigated the fuzzy entropy in relation to a 
measure of subset hood. Szmidt & Kacprzyk [15] 
studied the entropy of intuitionistic fuzzy sets etc. 
Several applications of fuzzy entropy in solving 
many practical problems like image processing, 
inventory, economics can be found in literatures [3, 
11, 12]. In [9, 10] the notion of entropy of single 
valued neutrosophic sets was first introduced. The 
following definition of entropy of a SVNS is due to 
[10]: 

Definition 3.3 Here in case of SVNS also we 
introduce the entropy as a function 

: ( ) [0,1]NE N X   which satisfies the 

following axioms:  

( ) ( ) 0Ni E A   if A  is a crisp set   

( ) ( ) 1
( ( ), ( ), ( )) (0.5,0.5,0.5)

N

A A A

ii E A if

t x i x f x x X



  

      (3.2) 

Now notice that in a SVNS the presence of 
uncertainty is due to two factors, firstly due to the 
partial belongingness and partial non-belongingness 
and secondly due to the indeterminacy factor. 
Considering these two factors, an entropy function 

1E for a single valued neutrosophic sets A  was 

proposed and it is defined as follows: 

1( ) 1
1 ( ( ) ( )) ( ) ( ) .(3.3)c

i

A i A i A i iA
x X

E A

t x f x i x i x
n 



  

Proposition 3.4 1E satisfies all the axioms given in 

definition 3.3. 

Example 3.5 Let { , , , }X a b c d be the universe 

and A be a single valued neutrosophic set in X

defined as follows: 

{ , ,
0.5,0.2,0.9 0.8,0.4,0.2

, }.
0.3,0.8,0.7 0.6,0.3,0.5

a
A

c


   

   

Then the entropy of A will be

1( ) 1 0.52 0.48.E A   

4. Problems with the earlier definition.

In this section we point out some problems with the 
earlier definition of entropy given in [10]. 

Problem 4.1: The entropy function E1 defined in 
equation 3.3 is not a correct entropy function. 
Especially it may not lie in   [0, 1]. 

The following example satisfies the claim: 

Example  4.2 A counter example:

In the following example we will show that 1E is 

not always an entropy function for all SVN sets. 

Let { , }X a b be the universe and let

{ , }
(1.0,0.01,1.0) (1.0,0.02,1.0)

a b
A   be a 

SVNS, then 

1
11 .(2 0.98 2 0.96)
2

1 1.94 0.94 0, which is undesirable.

E     

      

This definition holds only if ( ) ( ) 1t x

holds. 

( 1) ( ) 0 2
( 2) ( ) 1 ( ) 0.5,
( 3) ( ) ( ) ,

(3.1)

( 4) ( ) ( ).

X

A

c

DT E A iff A

DT E A iff x x X

DT E A E B iff Ais less fuzzy than B

DT E A E A
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The figure 2 shows that actually the half cubic 
portion ABODEGBA, left of the yellow plane of the 
‘neutrosophic cubic’ where formula E1 given in 
equation 3.3 holds. But for the other half cube it may 
not hold true as described above. 

 Figure 2 

Problem 4.3: In definition 3.1, the most uncertain 
case is assumed to be (0.5, 0.5, 0.5)
which is not necessarily true. Rather (0.5, 1, 0.5) is 
more uncertain case as here the indeterminacy factor 
‘i’ has the maximum value. Also (1, 1, 1) is far more 
uncertain than  (0.5, 0.5, 0.5). 
More generally speaking the area indicated by pink 
colour in the neutrosophic cube is the place where 
lies the most uncertain cases. We further assume that 
the points D,G,F,E,J are the most uncertain 
neutrosophic elements because there indeterminacy 
is 1 and truth and falsities are also extreme. No other 
point in pink region can have higher uncertainty 
value. 

 Figure 3 

Problem 4.4 In case of neutrosophic sets or single 
valued neutrosophic sets, the degree of 
indeterminacy (i) of any neutrosophic element x in 
its complement set is defined as 1-i. This does not 
seem to be very reasonable. The degree of 
indeterminacy in the original set and its complement 
should be same because both bears the same amount 
of uncertainty. Also neutrosophic sets are 
generalizations of intuitionistic fuzzy sets. There the 
amount of uncertainty for any IF set A is measured 
as πA=1-tA-fA .   Then πA

c=1- fA
c -tA

c  and hence  πA= 
πA

c.  Neutrosophic sets are generalizations of IF sets 
so accordingly here also i = ic should hold. Therefore 
we represent a new definition of complement of a 
SVNS as follows: 

Definition 4.5 The complement of a SVNS A is 

denoted by cA and is defined by

Then A will satisfy involutive law : ( ) .c cA A

Although we have to sacrifice De’Morgans Law in 
this case. 

Considering the above problems, we propose a new 
modified definition of entropy of single valued 
neutrosophic sets in the next section. 

5. New modified definition of Entropy of

Neutrosophic Sets 

In this section we present a modified definition of 
entropy for neutrosophic sets. But before that we 
have to introduce two new definitions, namely 
‘intuitionistic uncertainty’ and ‘more uncertain’ 
SVNS. 

Definition 5.1 For any neutrosophic set

1 ( ), ( ), ( )

n
i

i A i A i A i

x
A

t x i x f x


 

  the

Intuitionistic uncertainty of any neutrosophic 
element ( ), ( ), ( )A A At x i x f x  is defined as: 

1( ) (2 ( ) ( )), .
2

N

AA
x t x f x x X      
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Then for the whole SVNS A  the intuitionistic 
uncertainty will be defined as 

1 ( ).
i

N

iA
x X

x
X

 


    

Note that intuitionistic uncertainty satisfies the 
following properties: 

( )0 ( ) , 1 ( ) .c

N N N N

A A A A
i x and ii     

 But for neutrosophic elements of type 

0.5, ( ),0.5 ,Ai x    ( ) 1N

A
x  which is natural

as in SVNS the uncertainty depends on both 

( ) ( ).N

AA
x and i x  

Consider the SVNS given in example 2.2, here 

1 2 3( ) 0.6, ( ) 0.6, ( ) 0.55

0.583 .

N N

AA

N

A

x x x

and thus

 



  



Example 5.2 Consider the examples 2.9 and 2.10. In 

the first example 0.633N

A
but 

In the later example 0.583N

A
but 

.

So we can also see that the Intuitionistic uncertainty 
of truth favourite and falsity favourite sets of a 
SVNS are same because the value of (2 )it f 

is same for every element in each set
,A and A   but it’s different (uncertainty 

decreased) with the original SVNS A . 

Definition 5.3 A SVNS A is said to be more 
uncertain than another SVNS ,B denoted as

,A B  if and only if 

Example 5.4 Consider the following two SVNS’s A 
and B defined as follows: 

1 2

3

1

2

3

1

2

3

0.7,0.6,0.5 0.2,0.5,0.7

0.9,0.3,0.2 .

0.8 0.8
0.6 0.7
1.0 0.6

1.2 0.6
0.9 0.5
1.1 0.3

A A A

B B B

B
x x

x

A t f i

x
Then

x

x

B t f i

x
and

x

x

    

 





Therefore here A is more uncertain than B, 

ie. A < B. 

Now we introduce a new definition of Entropy for 
SVNS: 

Definition 5.5 For any SVNS A  we define entropy 
as a function : ( ) [0,1]NE N X   which 

satisfies the following axioms:  

 (1) ( ) 0NE A   if A  is a crisp set  

(2) ( ) 1 ,
, , , ,

. . ( ( ), ( ), ( )) (0.5,1.0,0.5) ,
(1,1,1) (0,1,0)

(0,1,1) (1,1,0)

N

A A A

E A for x x neutrosophic

elements D E F G J

i e if t x i x f x J x X

or F x X or D x X

or G x X or E x X

  

   

     

     

(3) ( ) ( )NE A E B  if A more uncertain than

, . . .B i e if A B

(4) ( ) ( ) ( )......(3.4)c

NE A E A A N X    

We can also classify entropy of SVNS’s 
into 4 classes  namely type I - IV according to 
the point for which we get maximum entropy 
value. 
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Example 5.6 Considering these two factors we 
propose an entropy measure 

iE of a single valued 

neutrosophic sets A  as follows: 

1

2

3

( ) ( ) {1, (2 ). } ,
1( ) ( )...........................(3.18)

1( ) ( ) .{1 },
2

1( ) ( )..........................(3.19)

1( ) ( ) .(2 ). ,
2

(

x x x

x A

x x x

x A

x x x

i E x Min t f i x A

and E A E x
X

ii E x t f i x A

and E A E x
X

iii E x t f i x A

and E A





   



    



   







4

1 ( )............................(3.20)

( ) ( ) (2 ). ,
1( ) ( )..............................(3.21)

x A

x x x

x A

E x
X

iv E x t f i x A

and E A E x
X





   







Here E1(A) is an entropy function for any SVNS A 

of Type I, E2(A)is of Type II, E3(A)is of Type III and 

E4(A) is an entropy function for any SVNS A of 

Type IV respectively. 

Example 5.7 Consider the example 2.2. In this case 
we have 

1 4 2 3( ) ( ) 0.31, ( ) 0.22, ( ) 0.16.
1So average entropy is ( ) 0.25.
4 i

E A E A E A E A

A





6. Conclusion:

In this paper we have introduced a new modified 
definition of entropy of SVNS which is significantly 
different from earlier definition of entropy for 
SVNS.  
This definition is more logical than the earlier and 
radically different in nature due to the introduction 
of new concepts like ‘intuitionistic uncertainty’ of a 
SVNS, ‘more uncertain SVNs’, ‘most uncertain 
SVNs’ etc.  
Here we have also introduced four different types of 
entropy functions which are more general in nature 
and free from the anomalies present in the earlier 
entropy function.  

One can further study the applications of these 
entropy functions in solving several decision making 
problems. 
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Abstract. 

Recently, neutrosophic cognitive maps and its 
application in decision making have become a topic 
of great importance for researchers and practitioners 
alike. In this paper, a new model PEST analysis is 
presented based on neutrosophic cognitive maps 
static analysis. The proposed framework is com-
posed of five activities, identifying PEST factors and 
sub-factors, modelling interrelation among PEST 

factors, calculate centrality measures, factor classi-
fication, and factors ranking. A case study devel-
oped in environment analysis for a vertical farming 
project was presented, ranking factor based in inter-
relation and incorporating indeterminacy in the anal-
ysis. Further works will concentrate extending the 
model for incorporating scenario analysis. 

Keywords: PEST, Neutrosophy, Neutrosophic Cognitive Maps, Static Analysis, Vertical Farming.

1. Introduction

PEST (Political, Economic, Social and Technological), is 
used to assess these four external factors in relation to busi-
ness situation [1]. When environment and legal factors are 
included it is name PESTEL (Political, Economic, Socio-
cultural, Technological, Environment and Legal) analysis 
[2]. PEST analysis lacks a quantitative approach to the 
measurement of interrelation among it factor is generally ig-
nored. Neutrosophic sets and logic is a generalization of 
fuzzy set and logic based on neutrosophy [3].  

Neutrosophy can handle indeterminate and inconsistent 
information, while fuzzy sets and intuitionistic fuzzy sets 
cannot describe them appropriately [4].  

In this paper a new model PEST analysis based on neutro-
sophic cognitive maps (NCM) [5] is presented giving meth-
odological support and the possibility of dealing with inter-
dependence, feedback and indeterminacy.  This paper is 
structured as follows: Section 2 reviews some important 
concepts about PEST analysis framework and NCM. In Sec-
tion 3, a framework for PEST analysis based on NCM static 
analysis is presented. Section 4 shows a case study of the 
proposed model applied to vertical farming project environ-
ment analysis. The paper ends with conclusions and further 
work recommendations. 

2. Preliminaries

In this section, we first provide a brief revision PEST anal-
ysis and the interdependency of its factors. We then provide 
a review of the foundations of NCM. 

2.1 PESTEL Analysis  

PEST (Political, Economic, Social and Technological), 
analysis is a precondition analysis with the mains function 
of the identification of the environment within which the 
company or project operates and providing data and infor-
mation that will enable the organization predictions of new 
situations and circumstances [6, 7].  

PEST analysis in the original formulation lack a quantita-
tive approach to measurement and the analyzed factors are 
generally measured and evaluated independently [2].  

PEST have a hierarchical structure of objective, factor and 
sub-factor (Figure 1).  

In [2] a proposal from analysis PEST in a multicriteria en-
vironment is presented, but only interdependency among 
factor is analysis.  

Additionally, factors and sub-factor have ambiguity, 
vagueness and indeterminacy in their structure. 
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   Fig. 1.  The hierarchical model of PEST 

This study presents a model to address problems encoun-
tered in the measurement and evaluation process of PEST 
analysis taking into account interdependencies among sub-
factors. The integrated structure of PESTEL sub-factors 
were modeled by NCM and quantitative analysis is devel-
oped based on static analysis.  

2.2 Neutrosophic cognitive maps  

Neutrosophic Logic (NL) was introduced in 1995 as a 
generalization of the fuzzy logic, especially of the intuition-
istic fuzzy logic [8]. A logical proposition P is characterized 
by three neutrosophic components: 

NL (P) =(T,I,F)           (1) 

where T is the degree of truth, F the degree of falsehood, 
and I the degree of indeterminacy. 

A neutrosophic matrix is a matrix where the elements a =
(aij)  have been replaced by elements in 〈R ∪ I〉 , where

〈R ∪ I〉  is the neutrosophic integer ring [9].A neutrosophic 
graph is a graph in which at least one edge is a neutrosophic 
edge [10]. If indeterminacy is introduced in cognitive map-
ping it is called Neutrosophic Cognitive Map (NCM) [11].  

NCM are based on neutrosophic logic to represent uncer-
tainty and indeterminacy in cognitive maps [3]. A NCM is 
a directed graph in which at least one edge is an indetermi-
nacy denoted by dotted lines [12] (Figure 2.). 

Fig. 2.  Fuzzy Neutrosophic Cognitive Maps example. 

In [13] a static analysis of mental model in the form of 
NCM is presented. The result of the static analysis result is 
in the form of neutrosophic numbers (a+bI, where I = inde-
terminacy) [14]. Finally a deneutrosophication process as 
proposes by Salmeron and Smarandache [15] is applied to 
given the final ranking value. In this paper this model is ex-
tended and detailed to deal with factor classification and pri-
oritization.  

3. Proposed Framework

Our aim is to develop a framework PEST analysis based 
on NCM. The model consists of the following phases 
(graphically, Figure 3).  

Fig. 3. Proposed framework for PEST analysis. 

3.1   Identifying PEST factors and sub-factors 

In this step, the relevant PESTEL factors and sub-factors are 
identified. PESTEL factors are derived from the themes: po-
litical, economic, socio-cultural, technological factors. 
Identifying PEST factors and sub-factors to form a hierar-
chical structure of PESTEL model (Figure 1.) 

3.2   Modelling interdependencies 

Causal interdependencies among PEST sub-factors are 
modelled. This step consists of the formation of NCM of 
sub-factors, according to the views of the expert team.
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3.3  Calculate centrality measures 

The following measures are calculated[16]  with absolute 
values of the  NCM adjacency matrix [17]: 

1. Outdegree 𝑜𝑑(𝑣𝑖) is the row sum of absolute val-
ues of a variable in the neutrosophic adjacency ma-
trix. It shows the cumulative strengths of connec-
tions (𝑐𝑖𝑗) exiting the variable.

𝑜𝑑(𝑣𝑖) = ∑ 𝑐𝑖𝑗
𝑁
𝑖=1 (2) 

2. Indegree 𝑖𝑑(𝑣𝑖)  is the column sum of absolute val-
ues of a variable. It shows the cumulative strength
of variables entering the variable.

𝑖𝑑(𝑣𝑖) = ∑ 𝑐𝑗𝑖
𝑁
𝑖=1 (3) 

3. The centrality (total degree 𝑡𝑑(𝑣𝑖)), of a variable is
the summation of its indegree (in-arrows) and out-
degree (out-arrows)

𝑡𝑑(𝑣𝑖) = 𝑜𝑑(𝑣𝑖) + 𝑖𝑑(𝑣𝑖) (4) 

3.4 Factors classification 

Factors are classified according to the following rules: 

a) Transmitter variables have a positive or indetermi-
nacy outdegree, 𝑜𝑑(𝑣𝑖) and zero indegree, 𝑖𝑑(𝑣𝑖).

b) Receiver variables have a positive indegree or in-
determinacy, 𝑖𝑑(𝑣𝑖)., and zero outdegree, 𝑜𝑑(𝑣𝑖).

c) Ordinary variables have both a non-zero indegree
and. Ordinary variables can be more or less a re-
ceiver or transmitter variables, based on the ratio
of their indegrees and outdegrees.

3.5 Ranking Factors 

A de-neutrosophication process gives an interval number for 
centrality.  This one is based on max-min values of I . A 
neutrosophic value is transformed in an interval with two 
values, the maximum and the minimum value ∈ [0,1] . 

The contribution of a variable in a cognitive map can be un-
derstood by calculating its degree centrality, which shows 
how connected the variable is to other variables and what 
the cumulative strength of these connections are. The me-
dian of the extreme values [18] is used  to give a centrality 
value : 

𝜆([𝑎1, 𝑎2]) =
𝑎1+ 𝑎2

2
(5) 

Then 

𝐴 > 𝐵 ⇔
𝑎1+ 𝑎2

2
>

𝑏1+ 𝑏2

2
(6) 

Finally, a ranking of variables is given. The numerical value 
it used for factor prioritization and/or reduction [19].  

4. Case Study

Environmental concerns, including issues of ecological jus-
tice, attention to sustainability, and focus on issues of food 
security have gathered increased momentum in vertical 
farming [20]. This case study is based in a vertical farming 
project proposal at the University of Guayaquil. 

In recent years, Guayaquil has become a city of cement with 
scarcity on green areas [21]. The main goal of the project is 
the optimization and use of spaces not suitable for cultiva-
tion, such as walls and terraces; with systems of supports 
helping in the beautification of the environment and allow 
the planting of plants of distinct types obtaining a commer-
cial harmony sustained in the environment. 

Initially factors and sub-factors were identified. Figure 3 
shows the hierarchical structure. 

Fig. 4. The hierarchical model of PEST in the vertical farming 
project. 

Interdependencies are identified and modelled using a NCM. 
NCM with weighs is represented in Table 1. 

Analyzing vertical 
farming project 

macroenvironment

Political

Political stability (P1) 

Intellectual property 
protection (P2)

Environmental 
legislation(P3)

Economic

Skill level of workforce 
(E1)

Investment incentives 
(E2)

National income (E3)

Social 

Entrepreneurial 
spirit(S1)

Buying access to 
ecological products 

(S2)

Awareness of 
citizenship about 

ecological issues (S3)

Positive media view 
(S4)

Technological 

Technological 
investment  policies of 
the government (T1)

Support of Research 
and Development 
activities by the 
government (T2)

Technological access 
(T3)
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Table 1. Neutrosophic Adjacency Matrix 

The centralities measures are calculates. Outdegree and 
indegree measures are presentes in Table 2.  

Table 2.  Centrality measures, outdegree, indegree. 

id od 

P1 1.3 0 
P2 0.4+I 0 
P3 0.3 0 
E1 0.6 0.2 
E2 0.7 0.4 
E3 0.8 0.3+I 
S1 0 1.4+I 
S2 0 1.1 
S3 0 0.4 
S4 0 0.5 
T1 0.2 0.7 
T2 0.9+2I 0.6 
T3 0.4 I 

Later nodes are classified. In this case, political nodes are 
transmitter and social nodes are received. The rest of the 
nodes are ordinary.  

Table 3. Nodes classification 

Transmitter Receiver Ordinary 
P1 X 
P2 X 
P3 X 
E1 X 
E2 X 
E3 X 
S1 X 

S2 X 
S3 X
S4 X
T1 X 
T2 X 
T3 X 

Total degree (Eq.  4) was calculated. Results are show in 
Table 5. 

Table 4. Total degree 

td 

P1 1.3 

P2 0.4+I 

P3 0.3 

E1 0.8 

E2 1.1 

E3 1.1+I 

S1 1.4+I 

S2 1.1 

S3 0.4 

S4 0.5 

T1 0.9 

T2 1.5+2I 

T3 0.4+I 
The next step is the de-neutrosophication process as pro-
poses by Salmeron and Smarandache [15].  I ∈[0,1] is re-
placed by both maximum and minimum values. In Table 6 
are presented as interval values.  

Table 3. De-neutrosophication, total degree values 

td 

P1 1.3 

P2 [0.4, 1.4] 

P3 0.3 

E1 0.8 

E2 1.1 

E3 [1.1, 2.1] 

S1 [1.4, 2.4] 

S2 1.1 

S3 0.4 

S4 0.5 

T1 0.9 
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Finally we work with the median of the extreme values (Eq 
5) [18].

Table 4. Total degree using median of the extreme values 

td 

P1 1.3 

P2 0,9 

P3 0.3 

E1 0.8 

E2 1.1 

E3 1.6 

S1 1,9 

S2 1.1 

S3 0.4 

S4 0.5 

T1 0.9 

T2 2.5 

T3 1.4 

Graphically the result is shown in Figure 4. 

Fig. 5.  Total degree measures 

The ranking obtained is as follows: 

𝐓𝟐 ≻ 𝐒𝟏 ≻ 𝐄𝟑 ≻ 𝐓𝟑 ≻ 𝐏𝟏 ≻ 𝐄𝟐~𝐒𝟐 ≻ 𝐏𝟐~𝐓𝟏 ≻ 𝐄𝟏 ≻ 𝐒𝟒 ≻ 𝐒𝟑 ≻ 𝐏𝟐

Support of research and development activities by the gov-
ernment was selected as the top environment factor at this 
vertical farming initiative. Centrality measures of sub factor 
were grouped according to its factors (Figure 6). 

Fig. 6.  Aggregated total centrality values by factors 

After application in this case study the model is found to be 
practical to use. The NCM gives a high flexibility and take 
into account interdependencies PEST analysis

5. Conclusions

This study presents a model to address problems encoun-
tered in the measurement and evaluation process of PEST 
analysis taking into account interdependencies among sub-
factors modeling uncertainty and indeterminacy. The inte-
grated structure of PESTEL sub-factors were modeled by 
NCM and quantitative analysis is developed based on static 
analysis.  

To demonstrate the applicability of the proposal a case 
study to a vertical farming project proposed at the Univer-
sity of Guayaquil.  Most notably, this is the first study to our 
knowledge to integrate NCM to the PEST analysis Schema. 
Our approach has many applications in complex decision 

0

0,5

1

1,5

2

2,5

3
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problem that include interdependencies among criteria, and 
such as complex agriculture decision support.  

Further works will concentrate extending the model for 
dealing scenario analysis and the use of compensatory oper-
ator in static analysis [22] . Another area of future work is 
the developing a consensus model for NCM and the devel-
opment of a software tool. 
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Abstract: 

To obtain effective fusion results of multi source 
evidences with different importance, an evidence 
fusion method with importance discounting factors 
based on neutrosopic probability analysis in DSmT 
framework is proposed. First, the reasonable 
evidence sources are selected out based on the 
statistical analysis of the pignistic probability 
functions of single focal elements. Secondly, the 
neutrosophic probability analysis is conducted 
based on the similarities of the pignistic probability 
functions from the prior evidence knowledge of the 
reasonable evidence sources. Thirdly, the 
importance discounting factors of the reasonable 
evidence sources are obtained based on the 
neutrosophic probability analysis and the reliability 

discounting factors of the real-time evidences are 
calculated based on probabilistic-based distances. 
Fourthly, the real-time evidences are discounted by 
the importance discounting factors and then the 
evidences with the mass assignments of 
neutrosophic empty sets are discounted by the 
reliability discounting factors. Finally, 
DSmT+PCR5 of importance discounted evidences 
is applied. Experimental examples show that the 
decision results based on the proposed fusion 
method are different from the results based on the 
existed fusion methods. Simulation experiments of 
recognition fusion are performed and the 
superiority of proposed method is testified well by 
the simulation results. 

Keywords: Information fusion; Belief function; Dezert-Smarandache Theory; Neutrosophic probability; 
Importance discounting factors. 

1. Introduction

As a high-level and commonly applicable key 
technology, information fusion can integrate partial 
information from multisource, and decrease potential 
redundant and incompatible information between 
different sources, thus reducing uncertainties and 
improving the quick and correct decision ability of 
high intelligence systems. It has drawn wide 
attention attention by scholars and has found many 
successful applications in the military and economy 
fields in recent years [1-9]. With the increment of 
information environmental complexity, effective 
highly conflict evidence reasoning has huge demands 
on information fusion. Belief function also called 
evidence theory which includes Dempster- Shafer 
theory (DST) and Dezert-Smarandache theory 
(DSmT) has made great efforts and contributions to 
solve this problem. Dempster-Shafer theory (DST) 
[10,11] has been commonly applied in information 
fusion field since it can represent uncertainty and full 
ignorance effectively and includes Bayesian theory 

as a special case. Although very attractive, DST has 
some limitations, especially in dealing with highly 
conflict evidences fusion [9]. DSmT, jointly 
proposed by Dezert and Smarandache, can be 
considered as an extension of DST. DSmT can solve 
the complex fusion problems beyond the exclusive 
limit of the DST discernment framework and it can 
get more reasonable fusion results when multisource 
evidences are highly conflicting and the refinement 
of the discernment framework is unavailable. 
Recently, DSmT has many successful applications in 
many areas, such as, Map Reconstruction of Robot 
[12,13], Clustering [14,15], Target Type Tracking 
[16,17], Image Processing [18], Data Classification 
[19-21], Decision Making Support [22], Sonar 
Imagery [23], and so on. Recently the research on the 
discounting factors based on DST or DSmT have 
been done by many scholars [24,25]. Smarandache 
and et al [24] put forward that discounting factors in 
the procedure of evidence fusion should conclude 
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importance discounting factors and reliability 
discounting factors, and they also proved that 
effective fusion could not be carried out by Dempster 
combination rules when the importance discounting 
factors were considered. However, the method for 
calculating the importance discounting factors was 
not mentioned. A method for calculating importance 
or reliability discounting factors was proposed in 
article [25]. However, the importance and reliability 
discounting factors could not be distinguished and 
the focal element of empty set or full ignorance was 
processed based on DST. As the exhaustive limit of 
DST, it could not process empty set effectively. So, 
the fusion results based on importance and reliability 

discounting factors are the same in [25], which is not 
consist with real situation. In this paper, an evidence 
fusion method with importance discounting factors 
based on neutrosophic probability analysis in DSmT 
framework is proposed. In Section 2, basic theories 
including DST, DSmT and the dissimilarity measure 
of evidences are introduced briefly. In Section 3, the 
contents and procedure of the proposed fusion 
method are given. In Section 4, simulation 
experiments in the application background of 
recognition fusion are also performed for testifying 
the superiority of proposed method. In Section 5, the 
conclusions are given. 

2. Basic Theories

2.1. DST 

Let Θ = {𝜃1, 𝜃2, 𝐿, 𝜃𝑛}  be the discernment
frame having n exhaustive and exclusive hypotheses 
𝜃𝑖 , 𝑖 = 1, 2, 𝐿, 𝑛. The exhaustive and exclusive limits
of DST assume that the refinement of the fusion 
problem is accessible and the hypotheses are 

precisely defined. The set of all subsets of Θ , 
denoted by 2Θ, is defined as the power set of Θ. 2Θ 
is under closed-world assumption. If the discernment 
frame Θ is defined as above, the power set can be 
obtained as follows [10,11]: 

2Θ = {∅, {𝜃1}, {𝜃2}, 𝐿, {𝜃𝑛}, {𝜃1, 𝜃2}, 𝐿, {𝜃1, 𝜃2, 𝐿, 𝜃𝑛}}. (1) 
In Shafer’s model, a basic belief assignment 

(bba) 𝑚(. ): 2Θ → [0,1] which consists evidences is 
defined by 𝑚𝑘(∅) = 0 and ∑ 𝑚(𝑎) = 1𝐴∈2Θ . (2) 

The DST rule of combination (also called the 
Dempster combination rule) can be considered as a 
conjunctive normalized rule on the power set 2Θ . 
The fusion results based on the Dempster 
combination rule are obtained by the bba’s products 

of the focal elements from different evidences which 
intersect to get the focal elements of the results. DST 
also assumes that the evidences are independent. The 
ith evidence source’s bba is denoted 𝑚𝑖 . The
Dempster combination rule is given by [10,11]: 

(𝑚1⊕𝑚2)(𝐶) =
1

1−𝐾
∑ 𝑚1(𝐴)𝑚2(𝐵)𝐴𝐼 𝐵=𝐶 , ∀𝐶 ⊆ Θ (3) 

𝐾 = ∑ 𝑚1(𝐴)𝑚2(𝐵)𝐴,𝐵⊆Θ
𝐴𝐼 𝐵=∅

(4) 

In some applications of multisource evidences 
fusion, some evidences influenced by the noise or 
some other conditions are highly conflicting with the 
other evidences. The reliability of an evidence can 
represent its accuracy degree of describing the given 
problem. The reliability discounting factor 𝛼 in [0, 
1] is considered as the quantization of the reliability
of an evidence. The reliability discounting method of 

DST (also called the Shafer’s discounting method) is 
widely accepted and applied. The method consists of 
two steps. First, the mass assignments of focal 
elements are multiplied by the reliability discounting 
factor 𝛼. Second, all discounted mass assignments of 
the evidence are transferred to the focal element of 
full ignorance Θ. The Shafer’s discounting method 
can be mathematically defined as follows [10,11] 

{
𝑚𝛼(𝑋) = 𝛼 ∙ 𝑚(𝑋), for 𝑋 ≠ Θ

𝑚𝛼(𝑋) = 𝛼 ∙ 𝑚(Θ) + (1 − 𝛼)
(5) 

where the reliability discounting factor is denoted by 
𝛼  and 0 ≤ 𝛼 ≤ 1, 𝑋  denotes the focal element 
which is not the empty set, 𝑚(. ) denotes the original 
bba of evidence, 𝑚𝛼(. ) denotes the bba after 
importance discounting. 

2.2. DSmT 

For many complex fusion problems, the 
elements can not be separated precisely and the 
refinement of discernment frame is inaccessible. For 
dealing with this situation, DSmT [9] which 
overcomes the exclusive limit of DST, is jointly 
proposed by Dezert and Smarandache. The hyper-
power set in DSmT framework denoted by 𝐷Θ 
consists of the unions and intersections elements in 
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Θ. Assume that Θ = {𝜃1, 𝜃2}, the hyper-power set of
Θ  can be defined as 𝐷Θ = {∅, 𝜃1, 𝜃2, 𝜃3, 𝜃1 ∪
𝜃2, 𝜃1 ∩ 𝜃2 }. The bba which consists the body of the
evidence in DSmT framework is defined on the 
hyper-power set as 𝑚(. ): 𝐷𝛩 → [0,1]. 

Dezert Smarandache Hybrid (DSmH) 
combination rule transfers partial conflicting beliefs 
to the union of the corresponding elements in 
conflicts which can be considered as partial 
ignorance or uncertainty. However, the way of 
transferring the conflicts in DSmH increases the 
uncertainty of fusion results and it is not convenient 
for decision-making based on the fusion results. The 

Proportional Conflict Redistribution (PCR) 1-6 rules 
overcome the weakness of DSmH and gives a better 
way of transferring the conflicts in multisource 
evidence fusion. PCR 1-6 rules proportionally 
transfer conflicting mass beliefs to the involved 
elements in the conflicts [9,26,27]. Each PCR rule 
has its own and different way of proportional 
redistribution of conflicts and PCR5 rule is 
considered as the most accurate rule among these 
PCR rules [9,26,27]. The combination of two 
independent evidences by PCR5 rule is given as 
follows [9,26,27]: 

𝑚1⊕2(𝑋𝑖) = ∑ 𝑚1(𝑌) ∙ 𝑚2𝑌,𝑍∈𝐺Θ and 𝑌,𝑍≠∅
𝑌I 𝑍=𝑋𝑖

(𝑍) (6) 

𝑚𝑃𝐶𝑅5(𝑋𝑖) =

{
 
 

 
 𝑚1⊕2 + ∑ [

𝑚1(𝑋𝑖)
2 ∙ 𝑚2(𝑋𝑗)

𝑚1(𝑋𝑖) + 𝑚2(𝑋𝑗)
+
𝑚2(𝑋𝑖)

2 ∙ 𝑚1(𝑋𝑗)

𝑚2(𝑋𝑖) + 𝑚1(𝑋𝑗)
]𝑋𝑖 ∈ 𝐺

Θ and 𝑋𝑖 ≠ ∅

𝑋𝑗∈𝐺
Θ and 𝑖≠𝑗

𝑋𝑖I𝑋𝑗=∅

0  𝑋𝑖 = ∅

where all denominators are more than zero, 
otherwise the fraction is discarded, and where 𝐺Θ 
can be regarded as a general power set which is 
equivalent to the power set 2Θ, the hyper-power set 
𝐷Θ and the super-power set 𝑆Θ , if discernment of 
the fusion problem satisfies the Shafer’s model, the 
hybrid DSm model, and the minimal refinement 
Θ𝑟𝑒𝑓 of Θ respectively [9,26,27].  

Although PCR5 rule can get more reasonable 
fusion results than the combination rule of DST, it 
still has two disadvantages, first, it is not associative 
which means that the fusion sequence of multiple 
(more than 2) sources of evidences can influence the 
fusion results, second, with the increment of the focal 
element number in discernment frame, the 
computational complexity increases exponentially.  

It is pointed out in [24] that importances and 
reliabilities of multisources in evidence fusion are 
different. The reliability of a source in DSmT 
framework represents the ability of describing the 
given problem by its real-time evidence which is the 
same as the notion in DST framework. The 

importances of sources in DSmT framework 
represent the weight that the fusion system designer 
assigns to the sources. Since the notions of 
importances and reliabilities of sources make no 
difference in DST framework, Shafer’s discounting 
method can not be applied to evidence fusion of 
multisources with unequal importances.  

The importance of a source in DSmT 
framework [24] can be characterized by an 
importance discounting factor, denoted 𝛽  in [0,1]. 
The importance discounting factor 𝛽 is not related 
with the reliability discounting factor 𝛼  which is 
defined the same as DST framework. 𝛽 can be any 
value in [0,1] chosen by the fusion system designer 
for his or her experience. The main difference of 
importance discounting method and reliability 
discounting method lies in the importance discounted 
mass beliefs of evidences are transferred to the empty 
set rather than the total ignorance Θ. The importance 
discounting method in DSmT framework can be 
mathematically defined as  

{
𝑚𝛽(𝑋) = 𝛽 ∙ 𝑚(𝑋), for 𝑋 ≠ ∅

𝑚𝛽(∅) = 𝛽(∅) + (1 − 𝛽)
(7) 

where the importance discounting factor is denoted 
by 𝛽  and 0 ≤ 𝛽 ≤ 1, 𝑋  denotes the focal element 
which is not the empty set, 𝑚(. ) denotes the original 
bba of evidence, 𝑚𝛽(. )  denotes the bba after
importance discounting. The empty set ∅  of 
Equation (7) is particular in DSmT discounted 
framework which is not the representation of 
unknown elements under the open-world assumption 

(Smets model), but only the meaning of the 
discounted importance of a source. Obviously, the 
importance discounted mass beliefs are transferred to 
the empty set in DSmT discounted framework which 
leads to the Dempster combination rule is not 
suitable to solve this type of fusion problems. The 
fusion rule with importance discounting factors in 
DSmT framework for 2 sources is considered as the 
extension of PCR5 rule, defined as follows [24]: 

𝑚𝑃𝐶𝑅5∅
(𝐴) = ∑ 𝑚1(𝑋1)𝑚2(𝑋2)𝑋1,𝑋2∈𝐺

Θ

𝑋1I𝑋2=𝐴

+∑ [
𝑚1(𝐴)

2∙𝑚2(𝑋)

𝑚1(𝐴)+𝑚2(𝑋)
+

𝑚2(𝐴)
2∙𝑚1(𝑋)

𝑚2(𝐴)+𝑚1(𝑋)
]𝑋∈𝐺Θ

𝑋I𝐴=∅

 (8) 
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The fusion rules with importance discounting 
factors considered as the extension of PCR6 and the 

fusion rule for multisources (𝑠 > 2)  as the 
extension of PCR5 can be seen referred in [24]. 

3. An Evidence Fusion Method with Importance Discounting Factors Based on Neutrosopic

Probability Analysis in DSMT Framework 

An evidence fusion method with importance 
discounting factors based on neutrosophic 
probability analysis in DSmT framework is proposed 
in this section. First, the reasonable evidence sources 
are selected out based on the statistical analysis of the 
pignistic probability functions of single focal 
elements. Secondly, the neutrosophic probability 
analysis is conducted based on the similarities of the 
pignistic probability functions from the prior 
evidence knowledge of the reasonable evidence 
sources. Thirdly, the importance discounting factors 

of the reasonable evidence sources are obtained 
based on the neutrosophic probability analysis and 
the reliability discounting factors of the real-time 
evidences are calculated based on probabilistic-based 
distances. Fourthly, the real-time evidences are 
discounted by the importance discounting factors and 
then the evidences with the mass assignments of 
neutrosophic empty sets are discounted by the 
reliability discounting factors. Finally, DSmT+PCR5 
of importance discounted evidences is applied. 

3.1. The reasonable evidence sources are selected out 

Definition 1: Extraction function for extracting 
focal elements from the the pignistic probability 
functions of single focal elements. 

𝜒(𝑃(𝑎𝑖)) = 𝑎𝑖 , 𝑎𝑖 ∈ {𝑎1, 𝑎2, 𝐿, 𝑎2} (11)
Definition 2: Reasonable sources.  

The evidence sources are defined as reasonable 
sources if and only if the focal element which has the 
maximum mean value of the pignistic probability 
functions of all single focal elements is the element 
aj which is known in prior knowledge, denoted by  

𝜒(𝑃(𝜃)) = max(𝑃(𝑎))̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑎𝑗 , 1 ≤ 𝑖 ≤ 𝑧

where 𝜃 represents that the focal element which has 
the maximum mean value of the pignistic probability 
functions of all single focal elements.  

Based on Definition 2 and the prior evidence 
knowledge, reasonable sources are selected out. The 

unreasonable sources are not suggested to be 
considered in the following procedure for they are 
imprecise and unbelievable.  

3.2. The neutrosophic probability analysis of the sources and the importance discounting factors in DSmT 

framework 

The neutrosophic probability theory is 
proposed by Smarandache [30]. In this section, the 
neutrosophic probability analysis is conducted based 

on the similarities of the pignistic probability 
functions from the prior evidence knowledge of the 
reasonable evidence sources.  

Definition 3: Similarity measure of the pignistic probability functions (SMPPF). 

Assume that the distribution characteristics of 
pignistic probability functions of the focal elements 

𝑎𝑖 , 1 ≤ 𝑖 ≤ 𝑧 and 𝑎𝑘, 𝑘 ≠ 𝑖, 1 ≤ 𝑘 ≤ 𝑧 are denoted
by: 

𝑷(𝑎𝑖): {𝑃(𝑎𝑖)̅̅ ̅̅ ̅̅ ̅, 𝜎(𝑎𝑖)}, 𝑷(𝑎𝑘): {𝑃(𝑎𝑘)̅̅ ̅̅ ̅̅ ̅̅ , 𝜎(𝑎𝑘)}.
The similarity measure of the pignistic 

probability functions(SMPPF) is the function 
satisfying the following conditions:  

(1) Symmetry: 
∀𝑎𝑖 , 𝑎𝑘 ∈ 𝛩, 𝑆𝑖𝑚(𝑷(𝑎𝑖), 𝑷(𝑎𝑘)) = 𝑆𝑖𝑚(𝑷(𝑎𝑘), 𝑷(𝑎𝑖));
(2) Consistency:  
∀𝑎𝑖 ∈ 𝛩, 𝑆𝑖𝑚(𝑷(𝑎𝑖), 𝑷(𝑎𝑖)) = 𝑆𝑖𝑚(𝑷(𝑎𝑖), 𝑷(𝑎𝑖)) = 1;

(3) Nonnegativity:  
∀𝑎𝑖 , 𝑎𝑘 ∈ Θ, 𝑆𝑖𝑚(𝑷(𝑎𝑖), 𝑷(𝑎𝑘)) > 0.
We will say that 𝑷(𝑎𝑖) is more similar to 𝑷(𝑎𝑘) than 𝑷(𝑎𝑔) if and only if:
𝑆𝑖𝑚(𝑷(𝑎𝑖), 𝑷(𝑎𝑘)) > 𝑆𝑖𝑚 (𝑷(𝑎𝑖), 𝑷(𝑎𝑔)).

(12)
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The similarity measure of the pignistic 
probability functions based on the distribution 

characteristics of the pignistic probability functions 
is defined as follows: 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑎𝑖 , 𝑎𝑘) = exp {−
|𝑃(𝑎𝑖)̅̅ ̅̅ ̅̅ ̅̅ −𝑃(𝑎𝑘)̅̅ ̅̅ ̅̅ ̅̅ |

2[𝜎(𝑎𝑖)+𝜎(𝑎𝑘)]
} (13) 

Assume that 𝑎𝑗 is known in prior knowledge,
the diagram for the similarity of the pignistic 
probability functions of focal elements 𝑎𝑗  and 𝑎𝑘
which has the largest SMPPF to 𝑎𝑗 is shown in Fig.

1. 𝑷(𝑎𝑗) is mapped to a circle in which 𝑃(𝑎𝑗)̅̅ ̅̅ ̅̅ ̅ is the
center and 𝜎(𝑎𝑗) is the radius. Similarly, 𝑷(𝑎𝑘) is
mapped to a circle in which 𝑃(𝑎𝑘)̅̅ ̅̅ ̅̅ ̅̅  is the center and
𝜎(𝑎𝑘) is the radius. All the evidences in the prior
knowledge from the reasonable source are mapped to 
the drops in any circle which means that the mapping 
from drops in the circle of 𝑷(𝑎𝑗)  to the prior
evidences is one-to-one mapping and similarly the 
mapping from drops in the circle of 𝑷(𝑎𝑘) to the
prior evidences is also one-to-one mapping. If 𝑷(𝑎𝑗)
is very similar to 𝑷(𝑎𝑘), the shadow accounts for a

large proportion of 𝑷(𝑎𝑗)  or 𝑷(𝑎𝑘) . If 𝑷(𝑎𝑗)  or
𝑷(𝑎𝑘) has the random values in the shadow of the
diagram, the evidences of the reasonable source can 
not totally and correctly support decision-making for 
there are two possibilities which are 𝑃(𝑎𝑗) > 𝑃(𝑎𝑘)
and 𝑃(𝑎𝑗) ≤ 𝑃(𝑎𝑘) . If 𝑃(𝑎𝑗) ≤ 𝑃(𝑎𝑘)  in the
evidences, the decisions are wrong. However, if 
𝑷(𝑎𝑗) or 𝑷(𝑎𝑘) has the random values in the blank
of the diagram, there is only one possibility which is 
𝑃(𝑎𝑗) > 𝑃(𝑎𝑘) for the sources are reasonable and
the decisions by these evidences are totally correct. 
So, we define the neutrosophic probability and the 
absolutely right probability of the reasonable 
evidence source as probability of 𝑷(𝑎𝑗)  in the
shadow and blank of the diagram.

𝑃(𝑎𝑗) 

𝑃(𝑎𝑗) > 𝑃(𝑎𝑘) or 𝑃(𝑎𝑗) ≤ 𝑃(𝑎𝑘) 

𝑃(𝑎𝑘) 

Figure 1. The diagram for the similarity. 

Based on the above analysis, the neutrosophic 
probability and the absolutely right probability of the 
reasonable evidence source can be obtained by the 
similarity from the prior evidences for the mapping 
of the SMPPF of 𝑷(𝑎𝑗)  and 𝑷(𝑎𝑘)  to the
probability of 𝑷(𝑎𝑗)  in the shadow is one-to-one
mapping. 

As ∀𝑎𝑖 , 𝑎𝑘 ∈ Θ, 0 <

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑷(𝑎𝑖) P(𝑎𝑘)) ≤ 𝟏 , iff 𝑎𝑖 =

𝑎𝑘, 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑷(𝑎𝑖)) , we define that the
probability of 𝑷(𝑎𝑗) in the shadow is the same as
𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑷(𝑎𝑖) P(𝑎𝑘)).

Assume there are reasonable evidence sources 
for evidence fusion, denoted by 𝑆𝑘, 𝑘 = 1,2, L, ℎ. So,
the neutrosophic probability of the the reasonable 
evidence source in the prior condition that 𝑎𝑗  is
known can be calculated as follows: 

𝑃(𝑆𝑘 is neutral |𝑎𝑖) = max
1<𝑗<𝑛,𝑗≠𝑖

[𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑷(𝑎𝑖) P(𝑎𝑘))] (14) 

Then, the absolutely right probability of the 
reasonable evidence source in the prior condition that 
𝑎𝑗 is known can be calculated as follows:

(𝑆𝑘 is absolutely right|𝑎𝑖) = 1 − 𝑃(𝑆𝑘 is neutral |𝑎𝑖) = 1 − max
1<𝑗<𝑛,𝑗≠𝑖

[𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑷(𝑎𝑖) P(𝑎𝑘))] (15)

So, if the prior probability of each focal element 
can be obtained accurately, the absolutely right 

probability of the reasonable evidence source can be 
calculated by the equation 

𝑃(𝑆𝑘 is absolutely right) = ∑ 𝑃𝑎𝑖∈Θ,𝑖=1,2,L,𝑛
(𝑆𝑘 is absolutely right|𝑎𝑖)𝑔𝑃(𝑎𝑖). (16) 

If the prior probability of each focal element 
can not be obtained accurately and any focal element 
has no advantage in the prior knowledge, denoted by 

𝑃(𝑎1) = 𝑃(𝑎2) = L = 𝑃(𝑎𝑛) , the absolutely right
probability of the reasonable evidence source can be 
calculated as follows: 

𝑃(𝑆𝑘 is absolutely right) =
∑ (𝑆𝑘 is absolutely right |𝑎𝑖)𝑎𝑖∈Θ,𝑖=1,2,L,𝑛

𝑛
(17)  

We define the discounting factors of 
importances in DSmT framework 𝛼𝑆𝐼𝐺(𝑆𝑘)  as the
normalization of the absolutely right probabilities of 

the the reasonable evidence sources P(𝑆𝑘  is right),
𝑘 = 1,2, L, ℎ, denoted by  

𝛼𝑆𝐼𝐺(𝑆𝑘) =
𝑃(𝑆𝑘 is absolutely right)

max
𝑘=1,2,L,ℎ

[𝑃(𝑆𝑘 is absolutely right)] (18) 
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3.3. The reliablility discounting factors based on probabilistic-based distances 

The Classical Pignistic Transformation(CPT) [9,10,11] is introduced briefly as follows: 
𝑃(𝐴) = ∑

|𝑋I𝐴|

|𝑋|𝑋∈2Θ 𝑚(𝑋) (19) 

Based on CPT, if the mass assignments of the 
single focal elements which consist of the union set 
of single focal elements are equal divisions of the 
mass assignment of the union set of single focal 
elements in two evidences, the pignistic probability 
of two evidences are equal and the decisions of the 
two evidences based on CPT are also the same. From 
the view of decision, it is a good way to measure the 
similarity of the real-time evidences based on 
pignistic probability of evidences. Probabilistic 
distance based on Minkowski's distance [25] is 
applied in this paper to measure the similarity of real-
time evidences. The method for calculating the 

reliability discounting factors based on Minkowski's 
distance [25] (𝑡 = 1) is given as follows. 

Assume that there are h evidence sources, 
denoted by 𝑆𝑘, 𝑘 = 1,2, L, ℎ , the real-time 2
evidences from 𝑆𝑖 and 𝑆𝑗, 𝑖 ≠ 𝑗 are denoted by 𝒎𝑖,
𝒎𝑗  the discernment framework of the sources is
{𝜃1, 𝜃2, 𝐿, 𝜃𝑛} , the pignistic probabilities of single
focal elements from 𝑆𝑖 are denoted by 𝑃𝑆𝑖(𝜃𝑤), 1 <
𝑤 < 𝑛 and the pignistic probabilities of single focal 
elements from 𝑆𝑗 are denoted by 𝑃𝑆𝑗(𝜃𝑤), 1 < 𝑤 <

𝑛. 

1) Minkowski's distance (𝑡 = 1) between two real-time evidences is calculated as follows:
𝐷𝑖𝑠𝑡𝑃(𝒎𝑖 ,𝒎𝑗) =

1

2
∑ |𝑃𝑆𝑖(𝜃𝑤) − 𝑃𝑆𝑗(𝜃𝑤)|𝜃𝑤∈Θ
|𝜃𝑤|=1

. (20) 

2) The similarity of the real-time evidences is obtained by
𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑦(𝒎𝑖 ,𝒎𝑗) = 1 − 𝐷𝑖𝑠𝑡𝑃(𝒎𝑖 ,𝒎𝑗). (21) 
3) The similarity matrix of the real-time evidences from 𝑆𝑘, 𝑘 = 1,2, L, ℎ is given

𝑆 = [

1 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦(𝒎1,𝒎2)  L 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦(𝒎1,𝒎ℎ)

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦(𝒎2,𝒎1) 1  L 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦(𝒎2,𝒎ℎ)

M
𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦(𝒎ℎ,𝒎1)

M
𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦(𝒎ℎ,𝒎2)

M  M
L  1

] (22) 

The average similarity of the real-time evidences from 𝑆𝑘, 𝑘 = 1,2, L, ℎ is given

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦(𝑆𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
∑ 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦(𝒎𝑖,𝒎𝑘)𝑖=1,2,L,ℎ,𝑖≠𝑘

ℎ−1
(23) 

4) The reliability discounting factors of the real-time evidences from 𝑆𝑘, 𝑘 = 1,2, L, ℎ is given

𝛼𝑅𝐸𝐿(𝑆𝑘) =
𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦(𝑆𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

max
𝑘=1,2,L,ℎ

[𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦(𝑆𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]
(24) 

3.4. The discounting method with both importance and reliability discounting factors in DSmT framework 

1) Discounting evidences based on the discounting factors of importance.

Assume that the real-time evidence from the 
reasonable evidence source sk is denoted by: 

𝒎𝑘 = {𝑚(𝐴), 𝐴 ⊆ 𝐷
Θ}, 𝐺Θ = {𝑎1L, 𝑎2, 𝑎1I L I 𝑎2, 𝑎1 UL U𝑎2}.

Based on the discounting factors of importances 
in DSmT framework αSIG(sk), the new evidence 

𝒎𝑘
𝑆𝐼𝐺  after importance-discounting by αSIG(sk) can

be calculated by: 

𝒎𝐾
𝑆𝐼𝐺 = {

𝑚𝛼𝑆𝐼𝐺(𝐴) = 𝛼𝑆𝐼𝐺(𝑆𝐾)𝑔(𝑚(𝐴)), 𝐴 ⊆ 𝐺
Θ

𝑚𝛼𝑆𝐼𝐺(∅) = 1 − 𝛼𝑆𝐼𝐺(𝑆𝐾)
(25) 

where 𝑚𝛼𝑆𝐼𝐺(𝐴)  are the mass assignments to all 
focal elements of the original evidence and 
𝑚𝛼𝑆𝐼𝐺(∅)  is the neutrosophic probability of the 

source, which represents the mass assignment of 
paradox.  

2) Discounting the real-time evidences based on reliability discounting factors after importance

discounting. 

As the property of the neutrosophic probability 
of the source, the pignistic probabilities of single 
focal elements are not changed after importance-
discounting the real-time evidences in DSmT 
framework and the mass assignments of 
neutrosophic empty focal element Ø which represent 
the importances degree of sources is added to the new 

evidences. If some real-time evidence has larger 
conflict with the other real-time evidences, the 
evidence should be not reliable and the mass 
assignments of the focal elements of the evidence 
should be discounted based on the discounting 
factors of reliabilities. As one focal element of the 
new evidence, the mass assignment of neutrosophic 
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empty focal element Ø of the unreliable evidence 
should also be discounted. So the new discounting 
method based on the discounting factors of 

reliabilities after discounting by the discounting 
factors of importances is given as follows 

𝒎𝐾
𝑆𝐼𝐺 = {

𝑚𝛼𝑆𝐼𝐺(𝐴) = 𝛼𝑅𝐸𝐿(𝑆𝑘)𝑔𝛼𝑆𝐼𝐺(𝑆𝑘)𝑔(𝑚(𝐴)), 𝐴 ⊆ 𝐺
Θ

𝑚𝛼𝑆𝐼𝐺(∅) = 𝛼𝑅𝐸𝐿(𝑆𝑘)𝑔[1 − 𝛼𝑆𝐼𝐺(𝑆𝑘)]

𝑚𝛼𝑆𝐼𝐺(Θ) = 1 − 𝛼𝑅𝐸𝐿(𝑆𝑘)

(26) 

3.5. The fusion method of PCR5Ø in DSmT framework is applied 

After applying the new discounting method to 
the real-time evidences, the new evidences with the 
mass assignments of both the neutrosophic empty 
focal element Ø and the total ignorance focal 
elements Θ are obtained. The classic Dempster 

fusion rules can not be sufficient to process these 
evidences in DSmT framework and PCR5Ø for 2 
sources in DSmT framework is applied as our fusion 
method as follows:   

(27) 

𝑚𝑃𝐶𝑅5∅
(𝐴) = ∑ 𝑚1(𝑋1)𝑚2(𝑋2)

𝑋1,𝑋2∈𝐺
Θ

𝑋1I𝑋2=𝐴

+ ∑ [
𝑚1(𝐴)

2 ∙ 𝑚2(𝑋)

𝑚1(𝐴) + 𝑚2(𝑋)
+
𝑚2(𝐴)

2 ∙ 𝑚1(𝑋)

𝑚2(𝐴) + 𝑚1(𝑋)
]

𝑋∈𝐺Θ

𝑋I𝐴=∅

, 𝐴 ∈ 𝐺Θ or ∅ 

The mass assignment of the neutrosophic empty 
focal element Ø is included in the fusion results, 
which is not meaningful to decision. According to the 

principle of proportion, 𝑚𝑃𝐶𝑅5∅
(∅)  in the fusion

result is redistributed to the other focal elements of 
the fusion result as follows: 

𝑚𝑃𝐶𝑅5∅
′ (𝐴) = 𝑚𝑃𝐶𝑅5∅

(𝐴) +
𝑚𝑃𝐶𝑅5∅

(𝐴)

∑ 𝑚𝑃𝐶𝑅5∅
(𝐴)

𝐴∈𝐺Θ
∙ 𝑚𝑃𝐶𝑅5∅

(∅), 𝐴 ∈ 𝐺Θ

𝑚𝑃𝐶𝑅5∅
′ (∅) = 0 (28) 

where 𝑚𝑃𝐶𝑅5∅
′ (𝐴), 𝐴 ∈ 𝐺Θ is the final fusion results of our method. 

4. Simulation Experiments

The Monto Carlo simulation experiments of 
recognition fusion are carried out. Through the 
simulation experiment results comparison of the 
proposed method and the existed methods, included 
PCR5 fusion method, the method in [25] and PCR5 
fusion method with the reliability discounting 
factors, the superiority of the proposed method is 
testified. (In this paper, all the simulation 
experiments are implemented by Matlab simulation 
in the hardware condition of Pentimu(R) Dual-Core 
CPU E5300 2.6GHz 2.59GHz, memory 1.99GB. 
Abscissas of the figures represent that the ratio of the 
the standard deviation of Gauss White noise to the 

maximum standard deviation of the pignistic 
probabilities of focal elements in prior knowledge of 
the evidence sources, denoted by ‘the ratio of the 
standard deviation of GWN to the pignistic 
probabilities of focal elements’.)  

Assume that the prior knowledge of the 
evidence sources is counted as the random 
distributions of the pignistic probability when 
different focal element occurs. The prior knowledge 
is shown in Tabel 3 and the characteristics of random 
distributions are denoted by P(.): (mean value, 
variance). 

Table 3. Prior knowledge of evidence sources. 

Evidence sources Prior knowledge when a occurs Prior knowledge when b occurs 

s1 
P1(a) ~ (0.6,0.3) 

P1(b) ~ (0.4,0.3) 

P1(a) ~ (0.46,0.3) 

P1(b) ~ (0.54,0.3) 

s2 
P2(a) ~ (0.6,0.3) 

P2(b) ~ (0.4,0.3) 

P2(a) ~ (0.4,0.3) 

P2(b) ~ (0.6,0.3) 

s3 
P3(a) ~ (0.8,0.05) 

P3(b) ~ (0.2,0.05) 

P3(a) ~ (0.2,0.05) 

P3(b) ~ (0.8,0.05) 

5.1.1 Simulation experiments in the condition that importance discounting factors of most evidence sources 

are low 

Assume that there are 3 evidence sources, 
denoted by s1, s2, s3, and the discernment framework 

of the sources is 2 types of targets, denoted by {a,b}. 
The prior knowledge is shown in Table 3. Assume 
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that the pignistic probabilities of the focal elements 
are normally distributed. The real-time evidences of 
3 sources are random selected out 1000 times based 
on the prior knowledge in Table 3 in the condition 
that a occurs and b occurs respectively. The Moto-
carlo simulation experiments of recognition fusion 
based on the proposed method and the existed 
methods are carried out. With the increment of the 
standard deviation of Gauss White noise in the mass 
assignments of evidences, the fusion results 
comparisons in different conditions are shown in Fig.

3 and Fig. 4, and the mean value of the correct 
recognition rates and computation time are show in 
Table 11 and Table 12. 

The fusion results comparisons in the condition 
that importance discounting factors of most evidence 
sources are low show that: 

1) The method proposed in this paper has the
highest correct recognition rates among the existed 
methods. PCR5 fusion method has the secondly 
highest correct recognition rates, PCR5 fusion 
method with reliability discounting factors has the 
thirdly highest correct recognition rates, the method 
in [25] has the lowest correct recognition rates. 

2) The method proposed in this paper has the
largest computation time among the existed methods. 
the method in [25] has the secondly largest 
computation time, PCR5 fusion method with 
reliability discounting factors has the thirdly largest 
computation time, PCR5 fusion method has the 
lowest computation time.

Table 11. The mean value of correct recognition rates. 

Prior conditions 
The proposed 

method 

PCR5 fusion 

method 

The method 

in [25] 

PCR5 fusion 

method with 

realibility-

discounting 

factors 

a 98.9% 88.6% 80.5% 84.3% 

b 98.9% 87.6% 79.0% 82.9% 

Table 12. The mean value of computation time. 

Prior conditions 
The proposed 

method 

PCR5 fusion 

method 

The method 

in [25] 

PCR5 fusion 

method with 

realibility-

discounting 

factors 

a 1.47 × 10−4 0.48 × 10−4 0.88 × 10−4 0.67 × 10−4 

b 1.46 × 10−4 0.47 × 10−4 0.89 × 10−4 0.66 × 10−4 

Table 13. Prior knowledge of evidence sources. 

Evidence sources Prior knowledge when a occurs Prior knowledge when b occurs 

s1 
P1(a) ~ (0.6,0.3) 

P1(b) ~ (0.4,0.3) 

P1(a) ~ (0.46,0.3) 

P1(b) ~ (0.54,0.3) 

s2 
P2(a) ~ (0.8,0.05) 

P2(b) ~ (0.2,0.05) 

P2(a) ~ (0.2,0.05) 

P2(b) ~ (0.8,0.05) 

s3 
P3(a) ~ (0.8,0.05) 

P3(b) ~ (0.2,0.05) 

P3(a) ~ (0.2,0.05) 

P3(b) ~ (0.8,0.05) 

5.1.2 Simulation experiments in the condition that importance discounting factors of most evidence sources 

are high 

Assume that there are 3 evidence sources, 
denoted by s1, s2, s3, and the discernment framework 
of the sources is 2 types of targets, denoted by {a,b}. 
The prior knowledge is shown in Table 13. Assume 

that the pignistic probabilities of the focal elements 
are normally distributed. The Moto-carlo simulation 
experiments are carried out similarly to the Section

4.3.1. With the increment of the standard deviation 
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of Gauss White noise in the mass assignments of 
evidences, the fusion results comparisons in different 
conditions are shown in Fig. 5 and Fig. 6, and the 
mean value of the correct recognition rates and 

computation time are show in Table 14 and Table 15. 
The importance factors of the evidences are 
calculated by Equation (18). The importance factor 
of s1 is 0.19, the importance factor of s2 and s3 is 1. 

Table 14. The mean value of correct recognition rates. 

Prior conditions 
The proposed 

method 

PCR5 fusion 

method 

The method 

in [25] 

PCR5 fusion 

method with 

realibility-

discounting 

factors 

a 99.0% 98.8% 99.0% 99.0% 

b 99.0% 98.8% 99.0% 99.0% 

Table 15. The mean value of computation time. 

Prior conditions 
The proposed 

method 

PCR5 fusion 

method 

The method 

in [25] 

PCR5 fusion 

method with 

realibility-

discounting 

factors 

a 1.45 × 10−4 0.47 × 10−4 0.86 × 10−4 0.67 × 10−4 

b 1.46 × 10−4 0.47 × 10−4 0.87 × 10−4 0.65 × 10−4 

The fusion results comparisons in the 
condition that importance discounting factors of 
most evidence sources are high show that: 

1) The correct recognition rates of four
methods are similarly closed, PCR5 fusion method 
has the lowest correct recognition rates among four 
methods. 

2) The method proposed in this paper has the
largest computation time among the existed 
methods. the method in [25] has the secondly 
largest computation time, PCR5 fusion method 
with reliability discounting factors has the thirdly 
largest computation time, PCR5 fusion method has 
the lowest computation time. 

5. Conclusions

Based on the experiments results, we suggest that 
the fusion methods should be chosen based on the 
following conditions: 

1) Judge whether the evidences are simple.

2) The importance discounting factors of most
evidences are low or not high, the method in this paper 
is chosen. 

The importance discounting factors of most 
evidences are high, PCR5 fusion method with 
reliability discounting factors is chosen

.
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Abstract:The P-union ,P-intersection, P-OR and P-AND 

of neutrosophic soft cubic sets are introduced and their 

related properties are investigated.  We show that the P-

union and the P-intersection of two internal neutrosophic 

soft cubic sets are also internal neutrosophic soft cubic 

sets. The conditions for the P-union ( P-intersection ) of 

two  T-external (resp. I- external, F- external) neutrosophic 

soft cubic sets to be T-external (resp. I- external, F- 

external)  neutrosophic soft cubic sets is also dealt with. 

We provide conditions for the P-union ( P-intersection ) of 

two  T-external (resp. I- external, F- external) neutrosophic 

soft cubic sets to be T-internal (resp. I- internal,F- internal)  

neutrosophic soft cubic sets. Further the conditions for the 

P-union (resp. P-intersection ) of  two neutrosophic soft 

cubic sets  to be both  T-external (resp. I- external, F- 

external) neutrosophic soft cubic sets and T-external (resp. 

I- external, F- external)  neutrosophic soft cubic sets are 

also framed. 

Keywords: Cubic set, Neutrosophic cubic set, Neutrosophic soft cubic set,  T-internal (resp. I- internal,F- internal)  neutrosophic 

soft cubic sets , T-external (resp. I- external, F- external) neutrosophic soft cubic set.

1  Introduction 

Florentine Smarandache[10,11] coined neutrosophic sets 
and neutrosophic logic which extends the concept of the 
classical sets, fuzzy sets and its extensions. In neutrosophic 

set, indeterminacy is quantified explicity and truth-
membership, indeterminacy-membership and falsity –
membership are independent. This assumption is very 
important in many applications such as information fusion 
in which we try to combine the data from different sensors. 
Pabita Kumar Majii[18] had combined the Neutrosophic 

set with soft sets and introduced a new mathematical 
model ‘ Nuetrosophic soft set’. Y. B. Jun et al[2]., 
introduced a new notion, called a  cubic set by using a 
fuzzy set and an interval-valued fuzzy set, and investigated 
several properties. Jun et al. [19] extended the concept of 
cubic sets to the neutrosophic cubic sets.  [1] introduced 

neutrosophic soft cubic set  and the notion of truth-internal 
( indeterminacy-internal, falsity-internal) neutrosophic soft 
cubic sets  and truth-external ( indeterminacy-internal, 
falsity-internal) neutrosophic soft cubic sets   

As a continuation of the paper [1]We show that the P-

union and the P-intersection of T-internal (resp. I-

internal,F-internal) neutrosophic soft cubic sets are also T-

internal (resp. I-internal,F-internal) neutrosophic soft cubic 

sets. We also provide conditions for the P-union ( P-

intersection ) of two  T-external (resp. I- external,F- 

external) neutrosophic soft cubic sets to be T-external 

(resp. I- external,F- external)  neutrosophic soft cubic sets.  

We provide conditions for the P-union ( P-intersection ) 

of two  T-external (resp. I- external,F- external) 

neutrosophic soft cubic sets to be T-internal (resp. I- 

internal,F- internal)  neutrosophic soft cubic sets.  

We provide conditions for the P-union (resp. P-

intersection ) of  two NSCS  to be both  T-external (resp. I- 

external,F- external) neutrosophic soft cubic sets and T-

external (resp. I- external,F- external)  neutrosophic soft 

cubic sets. 

2  Preliminaries 

2.1 Definition: [5] Let E be a universe. Then a fuzzy set  μ 
over E is defined by X = { μx (x) / x: x є E }where μx is 
called membership function of X and defined by μx : E → 
[0,1]. For each x E, the value μx(x) represents the degree of  

x belonging to the fuzzy set X. 

2.2 Definition: [2] Let X be a non-empty set. By a cubic 

set, we mean a structure 

in which A is an interval valued fuzzy set (IVF) and μ is a 

fuzzy set. It is denoted by . 

2.3 Definition: [9]Let U be an initial universe set and E be 

a set of parameters. Consider A ⊂ E. Let P( U ) denotes the 

set of all neutrosophic sets of U. The collection ( F, A ) is 

termed to be the soft neutrosophic set over U, where F is a 

mapping given by F : A → P(U). 

2.4 Definition : [4] Let X be an universe. Then a 

neutrosophic (NS) set λ is an object having the form 

 λ = {< x : T(x),I(x),F(x) >: x ∈ X} 

where the functions T, I, F : X → ]–0, 1+[ defines 

respectively the degree of Truth,  the degree of 
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indeterminacy,  and the degree of  Falsehood of the 

element x ∈ X to the set λ with the condition. 

−0 ≤ T(x) + I(x) + F(x) ≤ 3+ 

2.5 Definition : [7] Let X be a non-empty set. An interval 

neutrosophic set (INS) A in X is characterized by the  

truth-membership function AT, the indeterminacy-

membership function AI and the falsity-membership 

function AF. For each point x ∈ X, AT (x),AI (x),AF (x) ⊆ 

[0,1]. 

For two INS 

A = {<x, [AT
-(x), AT

+(x)], [AI
-(x), AI

+(x) ], [AF
-(x), 

AF
+(x)]>: x ∈ X} 

and 

B = {<x, [BT
-(x), BT

+(x)], [BI
-(x), BI

+(x) ], [BF
-(x), 

BF
+(x)]>: x ∈ X} 

Then, 

1. BA~ if and only if 

)()(,)()( xBxAxBxA TTTT
   

)()(,)()( xBxAxBxA IIII
   

)()(,)()( xBxAxBxA FFFF
     for all x∈ X. 

2. BA  if and only if

)()(,)()( xBxAxBxA TTTT
 

)()(,)()( xBxAxBxA IIII
 

)()(,)()( xBxAxBxA FFFF
   for all x ∈ X. 

3. } X  x:(x)]A (x),[A(x)],A (x),[A (x)],A (x),A[,{ T
-
TI

-
IF

-
F

~

 xAC

4. 

} X  x:(x)}]B (x),max{A (x)},B (x),[max{A

(x)}],B (x),max{A (x)},B (x),[max{A

(x)}],B (x),A{min  , (x)}B (x),A{[min,{
~

FFF
-
F

III
-
I

TTT
-
T









xBA

5.

} X  x:(x)}]B (x),min{A (x)},B (x),[min{A

(x)}],B (x),min{A (x)},B (x),[min{A 

, (x)}]B (x),A{max  , (x)}B (x),A{[max,{
~

FFF
-
F

III
-
I

TTT
-
T









xBA

2.6 Definition: [1] 

 Let U  be an initial universe set. Let NC(U)  denote the 

set of all neutrosophic cubic sets and E  be the set of  

parameters. Let EA  then 

 )({),( iePAP }}:)(),(,{ EAeUxxxAx iieie  

where       }/,{ )( ,, UxAAAxxA xxx
F

i
e

I

i
e

T

i
eie  is an 

interval neutrosophic set , 

      }/,,(,{ )( Uxxxxxx T

i
e

I

i
e

T

i
eie   is a 

neutrosophic set. The pair ),( AP  is termed to be the  

neutrosophic soft cubic set over U  where P is a mapping

given by P NC(U)A  : 
.

2.7 Definition: [1] 

Let X be an initial universe set. A neutrosophic soft cubic 

set ),( AP  in  X is said to be 

• truth-internal (briefly, T-internal) if the following

inequality is valid

     ),(),( xxx
T

i
e

T

i
e

T

i
ei AAEeXx 

  (2.1) 

• indeterminacy-internal (briefly, I-internal) if the

following inequality is valid

,)()()((),( )xAxxAEeXx I

i
e

I

i
e

I

i
ei

   (2.2) 

• falsity-internal (briefly, F-internal) if the following

inequality is valid

     ).(),( xxx
F

i
e

F

i
e

F

i
ei AAEeXx 

   (2.3) 

If a neutrosophic soft cubic set  in X satisfies (2.1),

(2.2) and (2.3) we say that ),( AP is an internal 

neutrosophic soft cubic set in X .

2.8 Definition: [1] 

Let X  be an initial universe set. A neutrosophic  soft

cubic set ),( AP in X is said to be

• truth-external (briefly, T -external) if the following

inequality is valid

     )),,((),( xxx
T

i
e

T

i
e

T

i
ei AAEeXx 

   (2.4) 

• indeterminacy-external (briefly, I -external) if the

following inequality is valid

     )),,((),( xxx
I

i
e

I

i
e

I

i
ei AAEeXx 

  (2.5) 

• falsity-external (briefly, F -external)  if the following

inequality  is valid 

     )).,((),( xxx
F

i
e

F

i
e

F

i
ei AAEeXx 

   (2.6) 

If a neutrosophic soft cubic set ),( AP ) in X satisfies 

(2.4), (2.5) and (2.6), we say that ),( AP  is an external 

neutrosophic soft cubic set in X. 

2.9  Definition [1] 

Let

} I  e  X}  x: > (x) (x), A  x,{<= )P(e { = I) (P, i
i

e
i

ei 

and 

} J  e  X}  x: > (x) (x), B  x,{< = B = )Q(e { = J) (Q, i
i

e
i

eii 

be two neutrosophic soft cubic sets in X. Let  I 

and J be any two subsets of E (set of 

parameters), then we have the following 

1. J) (Q, = I) (P,  if and only if the following

conditions are satisfied 

a) I = J and
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b) )Q(e= )P(e ii  
for all Iei  if

and only if )()( xBxA ieie 

and )()( xx ieie   for all 

Xx  corresponding to 

each Iei  . 

2. J) (Q,andI) (P,  are two neutrosophic soft

cubic set then we define and denote P- 

order as J) (Q,  I) (P, P  if and only if 

the following conditions are satisfied 

c) I  J and

d) )Q(e )P(e iPi  for all Iei 

if and only if )()( xBxA ieie   

and )()( xx ieie    for all 

Xx  corresponding to each

Iei  . 

3. J) (Q,andI) (P,  are two neutrosophic

soft cubic set then we define and de-

note   P- order as J) (Q,  I) (P, R  if and 

only if the following conditions are sat-

isfied 

e) I  J and

f) )Q(e )P(e iRi  for all Iei 

if and only if 
)()( xBxA ieie   

and )()( xx ieie    for all 

Xx  corresponding to 

each Iei  . 

2.10  Definition: [1] 

Let ),( IF and ),( JG  be two neutrosophic soft cubic sets 

(NSCS) in X where I and J are any two subsets of the 

parameteric set E. Then we define  P-union  of 

neutrosophic soft cubic set as ),(),(),( CHJGIF p   

where JIC 

)( ieH             =























JIeifeGeF

IJeifeG

JIeifeF

iiPi

ii

ii

)()(

)(

)(

where )()( iPi eGeF  is defined as 

 )()( iPi eGeF   

 JI  e  X}  x: > )(x) (},(x) B(x), A max{  x,{< i
i

e
i

e
i

e
i

e  

where (x) B(x), A
i

e
i

e  represent interval neutrosophic sets. 

Hence 

=)()( i
T

Pi
T eGeF   

, JI  e  X}  x: > (x)) (},(x) B(x), A max{  x,{< i
T

i
e

T

i
e

T

i
e

T

i
e

 

 )()( I
iPi

I eGeF   

,  JI  e  X}  x: > )(x) (},(x) B(x), A max{  x,{< i
i

e
i

e

I

i
e

I

i
e

 II 

=)()( i
F

Pi
F eGeF    

 JI  e  X}  x: > )(x) (},(x) B(x), A max{  x,{< i
F

i
e

F

i
e

F

i
e

F

i
e

  . 

2.11  Definition: [1] 

Let ),( IF and ),( JG  be two neutrosophic soft cubic 

sets (NSCS) in X where I and J are any subsets of 

parameter’s set E.  

Then we define  P-intersection of neutrosophic soft cubic 

set as ),(),(),( CHJGIF p   where JIC  ,    

)( ieH  = )()( iPi eGeF 

)( ieH  = )()( iPi eGeF  and .JIei  Here 

)()( iPi eGeF  is defined as

)()( iPi eGeF  = )( ieH  = 

 JI  e  X}  x: > )(x) (},(x) B(x), A min{  x,{< i
i

e
i

e
i

e
i

e  

.  

where (x) B(x), A
i

e
i

e  represent interval neutrosophic sets. 

Hence 

 )()( i
T

Pi
T eGeF

, JI  e  X}  x: > (x)) (},(x) B(x), A min{  x,{< i
T

i
e

i
e

T

i
e

T

i
e

 T

 )()( i
I

Pi
I eGeF   

, JI  e  X}  x: > )(x) (},(x) B(x), A min{  x,{< i
I

i
e

I

i
e

I

i
e

I

i
e

 

 )()( i
F

Pi
F eGeF   

 JI  e  X}  x: > (x)) (},(x) B(x), A min{  x,{< i
i

e

F

i
e

F

i
e

F

i
e

 F

3 More On P-union And P-intersection Of Neutrosoph-

ic Soft Cubic Set 

Defintion: 3.1 

Let 

} I  ie  X}  x: > (x)
i

e (x),
i

eA  x,{<= )iF(e { = I) (F,  and 

} J  
i

e  X}  x: > (x)
i

e (x), 
i

eB  x,{< = )
i

G(e { = J) (G,  be 

neutrososphic soft cubic set (NSCS) in X. Then      

[1] P-OR is denoted by ),(),( JGpIF  and de-

fined as ),(),( JGpIF 
 

),( JIH   where

.),(allfor)()(),( JIiiiGPiFiiH  

[2] P-AND is denoted by ),(),( JGpIF  and de-

fined as ),(),( JGpIF 
 

),( JIH   where

.),(allfor)()(),( JIiiiGPiFiiH  
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Example: 3.2 

Let X = {x1, x2,x3} be initial universe and E = {e1, e2} 

parameter’s set. Let  I) (F, be a neutrosophic soft cubic set 

over X and defined as

} I  ie  X}  x: > (x)
i

e (x),
i

eA  x,{<= )iF(e { = I) (F,  and 

X F(e1) F(e2) 

<Ae1(x),          λ e1(x) >         <Ae2(x),         λ e2(x) >         

x

1 

[0.5,0.6][0.6,0.
7][0.5,0.6] 

[0.4,0.
5,0.6] 

[0.3,0.6][0.2,0.
7][0.2,0.4] 

[0.3,0.
4,0.4] 

x

2

[0.4,0.5][0.7,0.
8][0.2,0.3] 

[0.5,0.
6,0.6] 

[0.3,0.5][0.6,0.
8][0.2,0.6] 

[0.4,0.
7,0.5] 

x

3

[0.2,0.3][0.2,0.
3][0.3,0.5] 

[0.3,0.
4,0.6] 

[0.4,0.7][0.2,0.
5][0.3,0.6] 

[0.5,0.
6,0.6] 

} J  e  X}  x: > (x) (x), B  x,{< = )G(e { = J) (G, i
i

e
i

ei   

X G(e1) G(e2) 

<Be1(x),        μ e1(x)  >  <     Ae2(x),   μ e2(x)  >         

x

1 

[0.7,0.9][0.3,0
.5][0.3,0.4] 

[0.7,0.
4,0.6] 

[0.4,0.7][0.1,0
.3][0.1,0.2] 

[0.5,0.
2,0.2] 

x

2

[0.5,0.6][0.3,0
.7][0.1,0.2] 

[0.6,0.
4,0.2] 

[0.4,0.6][0.4,0
.7][0.2,0.5] 

[0.6,0.
5,0.4] 

x

3

[0.3,0.4][0.1,0
.2][0.2,0.4] 

[0.5,0.
3,0.5] 

[0.5,0.8][0.1,0
.4][0.1,0.4] 

[0.7,0.
3,0.4] 

P-OR is denoted by  ),( JIH ),(),( JGpIF 

where 
definedis})

2
e,

2
(e),

1
e,

2
(e),

2
e,

1
(e),

1
e,

1
{(eJI 

X H(e1,e1) H(e1,e2) H(e2,e1) H(e2,e2) 

F(e1) ꓴ 
G(e1) 

F(e1) ꓴ 
G(e2) 

F(e2) ꓴ 
G(e1) 

F(e2) ꓴ 
G(e1) 

x

1 

[0.7,0.9

][0.6,0.

7][0.5,0

.6] 

[0.7

,0.5

,0.6

] 

[0.5,0.6

][0.6,0.

7][0.5,0

.6] 

[0.5

,0.5

,0.6

] 

[0.7,0.9

][0.3,0.

5][0.3,0

.4] 

[0.7

,0.4

,0.5

] 

[0.4,00.

7][0.2,0.

7][0.2,0.

4] 

[0.5

,0.4

,0.4

] 

x

2

[0.5,0.6

][0.7,0.

8][0.2,0

.3] 

[0..

6,0.

6,0.

6] 

[0.4,0.6

][0.7,0.

8][0.2,0

.5] 

[[0.

6,0.

6,0.

6] 

[0.5,0.6

][0.6,0.

8][0.2,0

.6] 

[0..

6,0.

7,0.

5] 

[0.4,0.6]

[0.6,0.8]

[0.2,0.6] 

[0.6

,0.7

,0.5

] 

x

3

[0.3,0.4

][0.2,0.

3][0.3,0

.5] 

[0.5

,0.4

,0.6

] 

[0.5,0.8

][0.2,0.

3][0.3,0

.5] 

[0.7

,0.4

,0.6

] 

[0.4,0.7

][0.2,05

][0.3,06

] 

[0.5

,0.6

,0.6

] 

[0.5,0.8]

[0.2,0.5]

[0.3,0.6] 

[0.7

,0.6

,0.6

] 

Definition:3.3 

 The complement of a neutrosophic soft cubic set 

} I  
i

e  X}  x: > (x)
i

e (x),
i

eA  x,{<= )
i

F(e { = I) (F,  is 

denoted by
C

I) (F,  and defined as 

C
I) (F, = {(

c
I) (F, = } I) ,

c
(F  , where )(: XNCI

c
F   

and 

))(())F(e(

))eF(( )(eF

c
i

c
ii

c

ii

i

eeas

Ieallfor





}. I  ie  X}  x: > (x) (x),A  x,{<= c))iF(e {( =c I) (F, c
ie

c
ie 

c I) (F,

 ,],[],[],,[  x,{< 111,111
F

i
e

F

i
e

I

i
e

I

i
e

T

i
e

T

i
e AAAAAA 



  . I  e  X}  x> 1,1,1 i  F

i
e

I

i
e

T

i
e   

Example:3.4 

Let X = {x1, x2} be initial universe and E = {e1, e2} 

parameter’s set. Let  I) (F, be a neutrosophic soft cubic set 

over X and defined as

} I  ie  X}  x: > (x)
i

e (x),
i

eA  x,{<= )iF(e { = I) (F, 

X F(e1) F(e2) 

< Ae1(x), 
λ e1(x)  > 

< Ae2(x), 
λ e2(x)  > 

x

1

[0.3,0.5][0.1,0.

4][0.5,0.8] 

[0.6,0.

5.0.7] 

[0.4,0.6][0.5,0.

7][0.6,0.9] 

[0.5,0.

4,0.4] 

x

2

[0.6,0.8][0.4,0.
7][0.4,0.7] 

[0.7,0.
5,0.3] 

[0.2,0.4][0.4,0.
7][0.3,0.6] 

[0.3,0.
7,0.8] 

Then 

} I  
i

e  X}  x: > (x) (x),A  x,{<= 
c

))
i

F(e {( =
c

 I) (F, 
c

ie
c

ie 

 is defined as. 

X Fc (e1) Fc (e2) 

< Ac e1(x),    
λc e1(x)  > 

< Ac e1(x),   
λc e1(x)  > 

x

1

[0.5,0.7][0.6,0.9
][0.2,0.5] 

[0.4,0.
5,0.3] 

[0.4,0.6][0.3,0.
5][0.1,0.4] 

[0.5,0.
6,0.6] 

x

2

[0.2,0.4][0.3,0.6

][[0.3,0.6] 

[0.3,0.

5,0.7] 

[0.6,0.8][0.3,0.

6][0.4.0.7] 

[0.7,0.

3,0.2] 

Proposition :3.5 

 Let X be initial universe and I, J, L and S subsets of 

parametric set E. Then for any neutrosophic soft  cubic 

sets , ,  ,  the 

following properties hold 

(1) if . 

(2) if  ⊆P  then  c 
  c. 

(3) if  ⊆P  and  ⊆P C then  ⊆P  ∩P . 

(4) if  ⊆P  and  ⊆P  then  ∪P  ⊆P . 

(5) if  ⊆P  and  ⊆P  then  ∪P  ⊆P  ∪P  and 

 ∩P  ⊆P  ∩P . 

Proof: Proof is straight forward 

Theorem:3.6 Let I) (F,  be a neutrosophic soft cubic set 

over X. 

(1) If I) (F, is an internal neutrosophic soft cubic set, then 
cI) (F,  is also an internal 

neutrosophic soft cubic set (INSCS). 

(2) If I) (F, is an external neutrosophic soft cubic set, then 

cI) (F, is also an external Neutrosophic soft cubic set (ENSCS). 
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(1) Given 
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Hence 
cI) (F, is an INSCS .

(2) Given 

} I  
i

e  X}  x: > (x)
i

e (x),
i

eA  x,{<= )
i

F(e { = I) (F,  is 
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Hence I) (F,  is an ENSCS . 

Theorem: 3.7 

 Let 

} I  e  X}  x: > (x) (x), A  x,{<= )F(e { = I) (F, i
i

e
i

ei  an

d 

} J  e  X}  x: > (x) (x), B  x,{< = )G(e { = J) (G, i
i

e
i

ei 

be internal nuetrosophic cubic soft sets. Then, 

(1) ),(I) (F, p JG  is an INSCS 

(2) ),(I) (F, p JG  is an INSCS 

Proof: 

(1)  Since I) (F,  and J) (G,   are internal neutrosophic 

soft cubic sets. So for I) (F,  we have 
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Now by definition of P-union of I) (F, and J) (G, , we have 
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 ,),)(()},(),(max{,  .
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Proof. 



where 
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Hence ),(I) (F, p JG is an INSCS . 

Definition: 3.8 

Given two neutrosophic soft cubic sets (NSCS) 

} I  e  X}  x: > (x) (x), A  x,{<= )F(e { = I) (F, i
i

e
i

ei  and 

} J  e  X}  x: > (x) (x), B  x,{< = )G(e { = J) (G, i
i

e
i
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Theorem 3.9 
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Thus in all the three cases ),(I) (F, JGP is an INSCS in 

X. 

Theorem: 3.10 

For two ENSCSs  
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By definition of an external soft cubic set 

),(I) (F, JGP is an ENSCS in X. 

Example: 3.12 

 Let ),(and),( JQIP be neutrosophic soft cubic sets in X 

where 
   )P(e = I) (P, 1

     } I  e >  40.8,0.3,0. ,[0.5,0.7][0.2,0.5],[0.3,0.5],  x,{<= 1

,
  )Q(e = J) (Q, 1

    } J  e> 30.4,0.7,0. ,.4,0.7]0.6,0.8][0[0.7,0.9][  x,{< = 1

for all X x 

Then ),(and),( JQIP are T-external neutrosophic cubic 
sets in X and ),(I) (P, JQP = 

)(),(),( 1eQPJQIP 
    } JI  e> 30.4,0.3,0. ,[0.4,0.7][0.2,0.5], [0.3,0.5] x,{< 1   

for all X x  .  ),(I) (P, JQP is not an T-external 

neutrosophic cubic set  since 

 xT
e

T
e 










11
 = 0.4 ∈ (0.3,0.5) = 

   












 



















xT

e
BT

e
AxT

e
BT

e
A

11
,

11


From the above example it is clear that P-intersection of T-

external neutrosophic soft cubic sets may not be an T-

external neutrosophic soft cubic set. We provide a 

condition for the P-intersection of T-external (resp. I-

external and F-external) neutrosophic soft cubic sets to be 

T-external (resp. I-external and F-external) neutrosophic 

soft cubic set. 

Theorem: 3.13 

Let 

} I  e  X}  x: > (x) (x), A  x,{<= )F(e { = I) (F, i
i

e
i

ei  and 

} J  e  X}  x: > (x) (x), B  x,{< = )G(e { = J) (G, i
i

e
i

ei  be 

T- ENSCSs in X such that 
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 X. xallfor  andJ e allfor andI  e allfor ii 

Then ),(I) (F, JGP is also an T- ENSCS. 

Proof 

Consider ),(I) (F, JGP ),( CH  where CJ I  

where )( ieH = )()( ipi eGeF   is defined as 

)()( ipi eGeF  = )( ieH
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Hence in all the cases ),(I) (F, JGP is an T-ENSCS in 

X. 

Theorem: 3.14 

Let 

} I  e  X}  x: > (x) (x), A  x,{<= )F(e { = I) (F, i
i

e
i

ei  and 

} J  e  X}  x: > (x) (x), B  x,{< = )G(e { = J) (G, i
i

e
i

ei  be 

I- ENSCSs in X such that 
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(3.8) 

 X. xallfor  andJ e allfor andI  e allfor ii  Then 

),(I) (F, JGP is also an I – ENSCS 

Proof: 

By similar way to Theorem 3.13, we can obtain the result. 

Theorem : 3.15 

Let 

} I  e  X}  x: > (x) (x), A  x,{<= )F(e { = I) (F, i
i

e
i

ei  and 

} J  e  X}  x: > (x) (x), B  x,{< = )G(e { = J) (G, i
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e
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F- ENSCSs in X such that 
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…………..(3.9) 

 X. xallfor  andJ e allfor andI  e allfor ii  Then 

),(I) (F, JGP is also an F- ENSCS. 

Proof : By similar way to Theorem 3.13, we can obtain the 

result 

Corallary:3.16 

Let 

} I  e  X}  x: > (x) (x), A  x,{<= )F(e { = I) (F, i
i

e
i

ei  and 

} J  e  X}  x: > (x) (x), B  x,{< = )G(e { = J) (G, i
i

e
i

ei   be 

ENSCSs in X. Then P-intersection ),(I) (F, JGP is also 

an ENSCS in X when the conditions  (3.7), (3.8)and (3.9) 

are valid. 

Theorem: 3.17 

If neutrosophic soft cubic set 

} I  e  X}  x: > (x) (x), A  x,{<= )F(e { = I) (F, i
i

e
i

ei  and 

} J  e  X}  x: > (x) (x), B  x,{< = )G(e { = J) (G, i
i

e
i

ei  in 

X satisfy the following condition     
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A ….(11.1) 

then the ),(I) (F, JGP is both 

an T-Internal Neutrosophic Soft Cubic Set and T-External 

Soft Neutrosophic Cubic Set 

in X. 

Proof: Consider ),(I) (F, JGP ),( CH  where 

CJ I   where )( ieH = )()( ipi eGeF   is 

defined as 

)()( iPi eGeF  = )( ieH = 

} JI  e  X}  x: > )(x) (},(x) B(x), A min{  x,{< i
i

e
i

e
i

e
i

e 

where 
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Consequently we note that ),(I) (F, JGP is both 

 T-internal neutrosophic soft cubic set and  T-external soft 

neutrosophic cubic set in X. 

Similarly we have the following theorems 

Theorem 3.18 

If neutrosophic soft cubic set 

} I  e  X}  x: > (x) (x), A  x,{<= )F(e { = I) (F, i
i

e
i

ei  and 

} J  e  X}  x: > (x) (x), B  x,{< = )G(e { = J) (G, i
i

e
i

ei  in 

X satisfy the following condition     
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then the ),(I) (F, JGP is both 

an I-internal neutrosophic soft cubic set and an I-external 

soft neutrosophic cubic set 

in X. 

Theorem :3.19 

If neutrosophic soft cubic set 

} I  e  X}  x: > (x) (x), A  x,{<= )F(e { = I) (F, i
i

e
i

ei  and 

} J  e  X}  x: > (x) (x), B  x,{< = )G(e { = J) (G, i
i

e
i

ei  in 

X satisfy the following condition     
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an F-internal neutrosophic soft cubic set and an F-external 

soft neutrosophic cubic set 

in X. 

Corollary:3.20 

Let 

} I  e  X}  x: > (x) (x), A  x,{<= )F(e { = I) (F, i
i

e
i

ei  and 

} I  e  X}  x: > (x) (x), B  x,{< = )G(e { = J) (G, i
i

e
i

ei   be 

NSCSs in X. Then P-intersection  ),(I) (F, JGP is also 

an ENSCS and an INSCS in X when the conditions  (11.1), 

(11.2)and (11.3) are valid. 

The following example shows that the  P-union of T-

external neutrosophic soft cubic sets may not be an T-

external neutrosophic soft cubic set.  

Example 3.21. Let ),(and),( JQIP be neutrosophic soft 
cubic sets in X where 

     } I  e >  40.8,0.3,0. ,[0.5,0.7][0.2,0.5],[0.3,0.5],  x,{<= )P(e = I) (P, 11 

,
    J}  e > 30.4,0.7,0. ,.4,0.7]0.6,0.8][0[0.7,0.9][  x,{< =  )Q(e = J) (Q, 11   
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Then ),(and),( JQIP are T-external neutrosophic cubic 
sets in X and )(),(),( 1eQPJQIP 

    } > 40.8,0.7,0. ,[0.5,0.7][0.6,0.8], [0.7,0.9] x,{<

),(),( JQIP p is not an T-external neutrosophic cubic 
set in X since 
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We consider a condition for the P-union of  T-external 

(resp. I-external and F-external) neutrosophic soft cubic 

sets to be T-external (resp. I-external and F-external) 

neutrosophic soft cubic set. 

Theorem 3.22 

Let 
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 X. xallfor  andJ e allfor andI  e allfor ii  Then 

),(I) (F, JGP is also an T- ENSCS. 
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this we can write  xT

ie
A   xT

ie
B   

)(xT

ie
T

ie 







   xT

ie
A   xT

ie
B  or  xT

ie
A   xT

ie
B

= )(xT

ie
T

ie 







    xT

ie
A   xT

ie
B . For this case 

 xT

ie
A    xT

ie
B    )(xT

ie
T

ie 







   xT

ie
A   xT

ie
B

it is contradiction to the fact that I) (F, and J) (G, are T-

ENSCS. And if we take the case  xT

ie
A    xT

ie
B = 

)(xT

ie
T

ie 







   xT

ie
A   xT

ie
B , we get have 

)(xT

ie
T

ie 







 

 )()A,)()(A xBxB T
e

T
e

T
e

T
e iiii

  because )()(A xBT
e

T
e ii

  

=  xT

ie
B  = )(xT

ie
T

ie 







 . If IJorJ   e I  e ii ,then 

we have trivial result. Hence ),(I) (F, JGP is an T-
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Similarly we have the following theorems 

Theorem:3.23 

Let 
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),(I) (F, JGP is also an T- ENSCS. 
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 X. xallfor  andJ e allfor andI  e allfor ii  Then 

),(I) (F, JGP is also an T- ENSCS. 

Corollary:3.25 

Let 

} I  e  X}  x: > (x) (x), A  x,{<= )F(e { = I) (F, i
i

e
i

ei  and 
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ei   be 

ENSCSs in X. Then ),(I) (F, JGP is also an ENSCS  in 

X when the conditions  (12.1), (12.2)and (12.3) are valid. 
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Abstract. In this paper, we generalize the definition of 
Neutrosophic sets and present a method for extending 

crisp functions on Neutrosophic sets and study some prop-
erties of such extended functions. 

Keywords: Neutrosophic set, Multi-fuzzy set, Bridge function.

1 Introduction

L-fuzzy sets constitute a generalization of the notion of 
Zadeh's [26] fuzzy sets and were introduced by Goguen [8] 
in 1967, later Atanassov introduced the notion of the intui-
tionistic fuzzy sets [1] Gau and Buehrer [7] defined vague 
sets. Bustince and Burillo [2] showed that the notion of 
vague sets is the same as that of intuitionistic fuzzy sets. 
Deschrijver and Kerre [5] established the interrelationship 
between the theories of fuzzy sets, L-fuzzy sets, interval val-
ued fuzzy sets, intuitionistic fuzzy sets, intuitionistic L-
fuzzy sets, interval valued intuitionistic fuzzy sets, vague 
sets and gray sets [4]. 

The neutrosophic set (NS) was introduced by F. 
Smarandache [22] who introduced the degree of indetermi-
nacy (i) as independent component in his manuscripts that 
was published in 1998. 

Multi-fuzzy sets [12, 13, 16] was proposed in 2009 by 
Sabu Sebastian as an extension of fuzzy sets [8, 26] in terms 
of multi membership functions. In this paper we generalize 
the definition of neutrosophic sets and introduce extension 
of crisp functions on neutrosophic sets. 

2 Preliminaries

Definition 2.1. [26] Let X be a nonempty set.

A fuzzy set A of X is a mapping A : X → [0, 1],

that is,
A = {(x, µA(x)) : µA(x) is the grade of member-
ship of x in A, x ∈ X}. The set of all the fuzzy
sets on X is denoted by F(X).

Definition 2.2. [8] Let X be a nonempty

ordinary set, L a complete lattice. An L-fuzzy set

on X is a mapping A : X → L, that is the family

of all the L-fuzzy sets on X is just LX consisting of 
all the mappings from X to L.
Definition 2.3. [1] An Intuitionistic Fuzzy Set

on X is a set

A = {〈x, µA(x), νA(x)〉 : x ∈ X},
where µA(x) ∈ [0, 1] denotes the membership 
degree and νA(x) ∈ [0, 1] denotes the non-

membership degree of x in A and

µA(x) + νA(x) ≤ 1,∀x ∈ X.

Definition 2.4. [22]A Neutrosophic Set on X is a
set

A = {〈x, TA(x), IA(x), FA(x)〉 : x ∈ X},
where TA(x) ∈ [0, 1] denotes the truth 
membership degree, IA(x) ∈ [0, 1] denotes the 
indetermi-nancy membership degree and FA(x) ∈ 
[0, 1] denotes the falsity membership degree of x
in A respectively and

0 ≤ TA(x) + IA(x) + FA(x) ≤ 3, ∀x ∈ X.
For single valued neutrosophic logic (T, I, F ),

the sum of the components is: 0 ≤ T +I+F ≤ 3
when all three components are independent; 0 ≤ T
+ I + F ≤ 2 when two components are dependent,

while the third one is independent from them; 0 ≤
T + I + F ≤ 1 when all three components are

dependent.

Definition 2.5. [12, 13, 16]Let X be a nonempty

set, J be an indexing set and {Lj : j ∈ J} a family 
of partially ordered sets. A multi-fuzzy set A in
X is a set :

A = {〈x, (µj (x))j∈J 〉 : x ∈ X, µj ∈ Lj
X , j ∈ J}.
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The indexing set J may be uncountable. The
function µA = (µj )j∈J is called the membership

function of the multi-fuzzy set A and∏
j∈J Lj is called the value domain. 

If  J = {1, 2, ..., n} or the set of all natural numbers, 
then the membership function µA = 〈µ1, µ2, ...〉 is 
a sequence.

In particular, if the sequence of the membership 
function having precisely n-terms and Lj = [0, 
1], for J = {1, 2, ..., n}, then n is called the

dimension and MnFS(X) denotes the set of all 
multi-fuzzy sets in X.

Properties of multi-fuzzy sets, relations on

multi-fuzzy sets and multi-fuzzy extensions of

crisp functions are depend on the order relations

defined in the membership functions. Most of the

results in the initial papers [12, 13, 15, 16, 18] are

based on product order in the membership

functions. The paper [21] discussed other order

relations like dictionary order, reverse dictionary

order on their membership functions.

Let {Lj : j ∈ J} be a family of partially ordered 
sets, and
A = {〈x, (µj (x))j∈J 〉 : x ∈ X,
µj ∈ Lj

X , j ∈ J} and B = {〈x, (νj (x))j∈J 〉 : x ∈ 
X, νj ∈ Lj

X , j ∈ J} be multi-fuzzy sets in a 
nonempty set X. Note that, if the order relation

in their membership functions are either product

order, dictionary order or reverse dictionary

order[16, 21], then;

• A = B if and only if µj (x) = νj (x), ∀x ∈ X and 
for all j ∈ J
• A tB = {〈x, (µj(x) ∨j νj(x))j∈J〉 : x ∈ X} and

• A uB = {〈x, (µj(x) ∧j νj(x))j∈J〉 : x ∈ X},

where ∨j and ∧j are the supremum and infimum 
defined in Lj with partial order relation ≤j . Set 
inclusion defined as follows:

• In product order, A ⊂ B if and only if µj (x) < 
νj (x), ∀x ∈ X and for all j ∈ J.
• In dictionary order, A ⊂ B if and only if µ1(x) < 
ν1(x) or if µ1(x) = ν1(x) and 
µ2(x) < ν2(x),∀x ∈ X.

Definition 2.6. Let L be a lattice. A mapping ′ : 
L → L is called an order reversing involution [25],
if for all a, b ∈ L :

1. a ≤ b⇒ b′ ≤ a′;
2. (a′)′ = a.

Definition 2.7. [23] Let ′ : M → M and ′ : L → L 
be order reversing involutions. A mapping h : M
→ L is called an order homomorphism, if it

satisfies the conditions:

1. h(0M ) = 0L;

2. h(∨ai) = ∨h(ai);

3. h−1(b′) = (h−1(b))′,

where h−1 : L→M is defined by, for every b ∈ L,
h−1(b) = ∨{a ∈M : h(a) ≤ b}.

Generalized Zadeh extension of crisp functions

[24] have prime importance in the study of fuzzy

mappings. Sabu Sebastian [16, 13]generalized this

concept as multi-fuzzy extension of crisp

functions and it is useful to map a multi-fuzzy set

into another multi-fuzzy set. In the case of a crisp

function, there exists infinitely many multi-fuzzy

extensions, even though the domain and range of

multi-fuzzy extensions are same.

Definition 2.8. [16] Let f : X → Y and h :
∏
Mi →

∏
Lj be a functions. The multi-fuzzy

extension of f and the inverse of the extension are f :
∏
MX

i → Lj
Y and f−1 : Lj

Y →
∏ ∏ ∏

MX
i

defined by

f(A)(y) =
∨

y=f(x)

h(A(x)), A ∈
∏

Mi
X , y ∈ Y

and ∏
Lj
Y , x ∈ X;∏
Mi →

∏
Lj is called the bridge

f−1(B)(x) = h−1(B(f(x))), B ∈

where h−1 is the upper adjoint [23] of h. The function h :

function of the multi-fuzzy extension of f .
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Remark 2.9. In particular, the multi-fuzzy

extension of a crisp function f : X → Y based on

the bridge function h : Ik → In can be written as f : 
MkFS(X) → MnFS(Y ) and f−1 : MnFS(Y ) → 
MkFS(X), where

f(A)(y) = sup
y=f(x)

h(A(x)), A ∈MkFS(X), y ∈ Y

and

f−1(B)(x) = h−1(B(f(x))), B ∈ MnFS(Y ), x ∈ X. 

In the following section 
∏
Mi = 

∏ 
Lj = I3.

Remark 2.10. There exists infinitely many

bridge functions. Lattice homomorphism, order

homomorphism, lattice valued fuzzy lattices and

strong L-fuzzy lattices are examples of bridge

functions.

Definition 2.11. [10] A function t : [0, 1] × [0,

1]→ [0, 1] is a t-norm if ∀a, b, c ∈ [0, 1]:(1) t(a, 1)

= a;

(2) t(a, b) = t(b, a);

(3) t(a, t(b, c)) = t(t(a, b), c);

(4) b ≤ c implies t(a, b) ≤ t(a, c).

Similarly, a t-conorm (s-norm) is a commutative,

associative and non-decreasing mapping s :[0, 1]

× [0, 1] → [0, 1] that satisfies the boundary

condition:

s(a, 0) = a, for all a ∈ [0, 1].

Definition 2.12. [9] A function c : [0, 1] → [0, 1]

is called a complement (fuzzy) operation, if it

satisfies the following conditions:

(1) c(0) = 1 and c(1) = 0,

(2) for all a, b ∈ [0, 1], if a ≤ b, then c(a) ≥ c(b).

Definition 2.13. [9] A t-norm t and a t-conorm

s are dual with respect to a fuzzy complement

operation c if and only if
c(t(a, b)) = s(c(a), c(b))

and

c(s(a, b)) = t(c(a), c(b)),

for all a, b ∈ [0, 1].

Definition 2.14. [9] Let n be an integer greater

than or equal to 2. A function m : [0, 1]n → [0, 1] 
is said to be an aggregation operation for fuzzy

sets, if it satisfies the following conditions:

1. m is continuous;

2. m is monotonic increasing in all its arguments;

3. m(0, 0, ..., 0) = 0;

4. m(1, 1, ..., 1) = 1.

In this section, we generalize the definition of

neutrosophic sets on [0, 1]. Throughout the fol-

lowing sections Xis the universe of discourse and

A ∈ M3FS(X) means A is a multi-fuzzy sets of 
dimension 3 with value domain I3, where I3 = [0, 
1]× [0, 1] × [0, 1]. That is, A ∈ (I3)X .

3 Neutrosophic Sets

Definition 3.1. Let X be a nonempty crisp set

and 0 ≤ α ≤ 3. A multi-fuzzy set A ∈ M3FS(X)is 
called a neutrosophic set of order α, if

A = {〈x, TA(x), IA(x), FA(x)〉 : x ∈ X, 
0 ≤ TA(x) + IA(x) + FA(x) ≤ α}.

Definition 3.2. Let A, B be neutrosophic sets

in X of order 3 and let t, s, m, c be the t-norm, s-
norm, aggregation operation and complement

operation respectively. Then the union,

intersection and complement are given by

1. A
⋃

2. A
⋂B = {〈x, s(TA(x), TB(x)),m(IA(x), IB(x)), t(FA(x), FB(x))〉 : x ∈ X};

B = {〈x, t(TA(x), TB(x)),m(IA(x), IB(x)), s(FA(x), FB(x))〉 : x ∈ X};

3. Ac = {〈x, c(TA(x)), c(IA(x)), c(FA(x))〉 : x ∈ X}.
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4 Extension of crisp functions on neutrosophic 
set using order homomorphism as bridge 
function 

Theorem 4.1. If an order homomorphism h : I3 

→ I3 is the bridge function for the multi-fuzzy 
extension of a crisp function f : X → Y , then for

every k ∈ K neutrosophic sets Ak in X and Bk in Y 
of order 3;

1. A1 ⊆ A2 implies f(A1) ⊆ f(A2);

2. f(∪Ak) = ∪f(Ak);

3. f(∩Ak) ⊆ ∩f(Ak);

4. B1 ⊆ B2 implies f−1(B1) ⊆ f−1(B2);

5. f−1(∪Bk) = ∪f−1(Bk);

6. f−1(∩Bk) = ∩f−1(Bk);

7. (f−1(B))′ = f−1(B′);

8. A ⊆ f−1(f(A));

9. f(f−1(B)) ⊆ B.

Proof.

1. A1 ⊆ A2 implies A1(x) ≤ A2(x), ∀x ∈ X
and implies

h(A1(x)) ≤ h(A2(x)),∀x ∈ X.
Hence

∨{h(A1(x)) : x ∈ X, 

y = f(x)} ≤ ∨{h(A2(x)) : x ∈ X, 

y = f(x)} and f(A1)(y) ≤ f(A2)(y), 

∀y ∈ Y. That is, f(A1) ⊆ f(A2).

2. For every y ∈ Y,
f(∪Ak)(y) = ∨{h((∪Ak)(x)) : x ∈ X, 
y = f(x)}

= ∨{h(∨Ak(x)) : x ∈ X, y = f(x)}

= ∨{∨k∈Kh(Ak(x)) : x ∈ X, y = f(x)}

= ∨k∈K ∨ {h(Ak(x)) : x ∈ X, y = f(x)}

= ∨k∈Kf(Ak)(y),

thus f(∪Ak) = ∪f(Ak).

3. For every y ∈ Y,
f(∩Ak)(y) = ∨{h((∩Ak)(x)) : x ∈ X,
y = f(x)}

= ∨{h(∧k∈KAk(x)) : x ∈ X, y = f(x)}

≤ ∨{h(Ak(x)) : x ∈ X, y = f(x)},
for each k ∈ K. Hence

f(∩Ak)(y) ≤ ∧k∈K ∨ {h(Ak(x)) : x ∈ X, 
y = f(x)} = ∧k∈Kf(Ak)(y),

thus f(∩Ak) ⊆ ∩f(Ak).

4. B1 ⊆ B2 implies B1(y) ≤ B2(y), ∀y ∈ Y.
Hence

f−1(B1)(x) = h−1(B1(f(x))) ≤ h−1(B2(f(x))) =

 f−1(B2)(x), ∀x ∈ X. 

Therefore, f−1(B1) ⊆ f−1(B2).

5. For every x ∈ X, we have

f−1(∪Bk)(x) = h−1((∪Bk)(f(x))) = h−1(sup Bk(f(x)))

= sup
k∈K

h−1(Bk(f(x))) = sup
k∈K

k∈K

f−1(Bk)(x)

= (∪f−1(Bk))(x).

Hence f−1(∪Bk) = ∪f−1(Bk).

f−1(∩Bk)(x) = h−1((∩Bk)(f(x))) = h−1( inf Bk(f(x)))

= inf
k∈K

h−1(Bk(f(x))) = inf
k∈K

k∈K

f−1(Bk)(x)

= (∩f−1(Bk))(x).

6. For every x ∈ X, we have

Hence f−1(∩Bk) = ∩f−1(Bk).

7. For every x ∈ X,

f−1(B′)(x) = h−1(B′(f(x))) = h−1(B(f(x)))′ = 

(f−1(B))′(x), since f−1(B)(x) = h−1(B(f(x))). 

That is, f−1(B′) = (f−1(B))′.

8. For every x0 ∈ X,

A(x0) ≤ ∨{A(x) : x ∈ X, x ∈ f−1(f(x0)}

≤ h−1(h(∨{A(x) : x ∈ X, x ∈ f−1(f(x0)}))

= h−1(∨{h(A(x)) : x ∈ X, x ∈ f−1(f(x0))})

= h−1(f(A)(f(x0)))

= f−1(f(A))(x0).

9. For every y ∈ Y
f(f−1(B))(y) = sup

y=f(x)

= sup
y=f(x)

h(f−1(B)(x))

h(h−1(B(f(x))))
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Proposition 4.2. If an order homomorphism

h : I3 → I3 is the bridge function for the extension 
of a crisp function f : X → Y , then for any k ∈ K
neutrosophic sets Ak in X and B in Y :

1. f(0X) = 0Y ;

2. f(∪Ak) = ∪f(Ak); and

3. (f−1(B))′ = f−1(B′),

that is, the extension map f is an order
homomorphism.

= h(h−1(B(y)))

≤ B(y).

Hence f(f−1(B)) ⊆ B.
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Abstract  
Software engineers are involved in complex decisions that 
require multiples viewpoints. A specific case is the require-
ment prioritization process. This process is used to decide 
which software requirement to develop in certain release 

from a group of candidate requirements. Criteria involved 
in this process can involve indeterminacy. In this paper a 
software requirement prioritization model is develop based 
SVN numbers. Finally, an illustrative example is presented 
in order to show the proposed model.  

Keywords: requirement engineering, software requirement prioritization, SVN numbers. 

1. Introduction
Software quality is influenced by the ability to satisfy

client and user needs obtained and described in software 
requirements [1]. Many models have been proposed for 
software requirement prioritization [1-7]. However, these 
proposal present limitation for dealing with indeterminacy 

In order to overcome the drawbacks identified, in this 
contribution we propose a novel requirement prioritization 
process based on SVN numbers. 

In software requirement prioritization intervene differ-
ent stakeholders  approaching to the decision problem from 
a different points of view. It is moreover a multidimen-
sional problems dealing with multiple criteria of diverse 
nature [8]. Therefore, the proposed model is based on a de-
cision analysis scheme [9] and the approach presented in 
[8]. In order to deal with heterogeneous information pro-
vided by several experts.  

This paper is structured as follows: Section 2 outlines a 
scheme of software prioritization. Section 3 shows the the-
ory of neutrosophy. Section 4 presents our framework for 
software requirements prioritization. Section 5 shows an il-
lustrative example of the proposed model. The paper ends 
with conclusions and further work recommendations in 
Section 6. 

2. Software requirement prioritization.
One frequent reason that causes low quality software is

associated to problems related to identifying and selecting 
the most important requirements [10]. Software require-
ment prioritization can be modeled like a decision making 

problem, making it suitable to a decision analysis 
scheme[9]. Decision analysis is a discipline whose purpose 
is to help decision maker to reach a consistent decision 
[11]. 

Our proposal for a software requirement prioritization 
model dealing with indeterminacy is based on the classical 
decision analysis scheme. In this paper the software re-
quirement prioritization process is modeled as a type of a 
Multi-Expert Multi-Criteria decision making problem due 
to the complexity of the problem where multiple criteria 
and experts are involved [10, 12].  

In the software requirement prioritization process, it is 
very difficult to express reality in a quantitative way. 
Fuzzy set theory, introduced by Zadeh[13] in 1965, offers 
a mathematical model to deal with this kind of uncertainty. 
The fuzzy linguistic approach is based in the fuzzy set the-
ory and especially in linguistic variable concept [14, 15]. 
This fact is important in software requirement prioritiza-
tion where evaluation results are used to make decisions by 
software engineers in high complexity environment [16]. 
Current process of softeware prioritizationdon’t deal with 
indeterminacy . 

3. Neutrosophy
Neutrosophy [17] is a philosophy branch developed for

dealing with indeterminacy ( Figure 2). Neutrosophy have 
been the base for developing new methods to handle inde-
terminate and inconsistent information like neutrosophic 
sets an neutrosophic logic [18, 19] .  
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Fig. 1. Static context of Neutrosophic logic [20]. 

The truth value in neutrosophic set is as follows [21]: 
Let 𝑁 be a set defined as:  𝑁 =  {(𝑇, 𝐼, 𝐹) ∶  𝑇, 𝐼, 𝐹 ⊆

[0, 1]}, a neutrosophic valuation n is a mapping from the 
set of propositional formulas to 𝑁 , that is for each sentence 
p we have 𝑣 (p)  =  (𝑇, 𝐼, 𝐹).  

Single valued neutrosophic set (SVNS ) [22]  was de-
veloped with the goal of facilitate the real applications of  
neutrosophic set and set-theoretic operators.  

A single valued neutrosophic set (SVNS) has been de-
fined as follows [22]: 

Let 𝑋 be a universe of discourse. A single valued neu-
trosophic set 𝐴 over 𝑋 is an object having the form : 

𝐴 = {〈𝑥, 𝑢𝐴(𝑥), 𝑟𝐴(𝑥), 𝑣𝐴(𝑥)〉: 
 𝑥 ∈ 𝑋}     (1) 
where  𝑢𝐴(𝑥): 𝑋 →  [0,1], 𝑟𝐴(𝑥), ∶ 𝑋 →  [0,1] and

𝑣𝐴(𝑥): 𝑋 →  [0,1] with 0 ≤ 𝑢𝐴(𝑥) +  𝑟𝐴(𝑥) + 𝑣𝐴(𝑥):≤ 3
for all 𝑥 ∈ 𝑋. The intervals 𝑢𝐴(𝑥),  𝑟𝐴(𝑥) y 𝑣𝐴(𝑥) denote
the truth- membership degree, the indeterminacy-member-
ship degree and the falsity membership degree of 𝑥 to 𝐴, 
respectively. 

Single valued neutrosophic numbers (SVN number) is 
denoted by 𝐴= (𝑎,b,𝑐), where 𝑎,𝑏,𝑐∈[0,1] and 𝑎+𝑏+𝑐≤3 . 

4. A software requirement prioritization model
Our aim is develop a software requirement prioritiza-

tion model based on the linguistic decision analysis schema 
that can deal with criteria evaluated with SVN numbers. 
The model consists of the following phases (graphically, 
Figure 2): 

Figura 2. Scheme of the Model. 

1. Evaluation framework:
In this phase, the evaluation framework is defined to fix the 
requirement prioritization problem structure. The frame-
work is established as follows:  

• Let E= {e1, e2, … , en} (n ≥ 2 ) be a set of experts.
• Let C={𝑐1, 𝑐2, … , 𝑐𝑘} (𝑘 ≥ 2 ) be a set of criteria.
• Let R={𝑟1, 𝑟2, … , 𝑟𝑚} (𝑚 ≥ 2) be a set of require-

ments.
Each expert can use SVN numbers to asses each criteria, 
attending to its nature.  
2. Gathering information:
Once the framework has been defined, the knowledge of 
the set of experts must be obtained. Each expert provides 
their preferences by using utility vectors. The utility vector 
[23] is represented in the following way:  

• Pj
i = {pj1

i , pj2
i , … , pjh

i }. ,
Where pjk

i is the preference provided to the criterion ck of
the requirement rj by the expert e𝑖.
3. Rating software requirements.
The aim of this phase is to obtain a collective linguistic 
global assessment easily interpretable for software engi-
neers. To do so the information is unified and aggregated. 

Evaluation 
framework

Gathering 
information

Rating 
Software 

Requirements
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Finally those more prioritized are identified. This phase in 
based the approach reviewed in the Section 3 
A two-step aggregation process is developed with the aim 
of compute a global evaluation of each software require-
ment.  
We obtain for each expert an assessment for each require-
ment.  
The final aim of the rating process is to obtain a global 
evaluation of each requirement according to all experts. To 
do so, this process will aggregate all the experts’ collective 
assessment. In decision analysis schema aggregation oper-
ating are important for rating options. Some aggregation 
operators have been proposed for SVN numbers [17, 24]. 
Single valued neutrosophic weighted averaging (SVNWA) 
aggregation operator was proposed by Ye [24] for SVNSs 
as follows[25]: 

𝐹𝑤(𝐴1, 𝐴2, … , 𝐴𝑛) =

〈1 − ∏

(1 − 𝑇𝐴𝑗
(𝑥))

𝑤𝑗

,

∏ (𝐼𝐴𝑗
(𝑥))

𝑤𝑗

,𝑛
𝑗=1

∏ (𝐹𝐴𝑗
(𝑥))

𝑤𝑗𝑛
𝑗=1

𝑛
𝑗=1 〉  (2) 

We propose this operator to establish different weights for 
each expert, taking into account their knowledge and their 
significance in software prioritization process  
Rating of the requirements 

The final step in the prioritization process is to establish a 
ranking among software requirements, this ranking allows 
selecting the requirements with more value and postponing 
or rejecting the development of others making more effec-
tive the software development process.  
For rating alternatives an ideal option is constructed [26, 
27]. The evaluation criteria can be categorized into two 
categories, benefit and cost. Let 𝐶+ be a collection of ben-
efit criteria and 𝐶− be a collection of cost criteria. The 
ideal alternative is defined as: 
𝐼 = {(𝑚𝑎𝑥𝑖=1

𝑘 𝑇𝑈𝑗
|𝑗 ∈𝐶+, 𝑚𝑖𝑛𝑖=1

𝑘 𝑇𝑈𝑗
|𝑗

∈𝐶−) , (𝑚𝑖𝑛𝑖=1
𝑘 𝐼𝑈𝑗

|𝑗 ∈𝐶+, 𝑚𝑎𝑥𝑖=1
𝑘 𝐼𝑈𝑗

|𝑗

∈𝐶−) , (𝑚𝑖𝑛𝑖=1
𝑘 𝐹𝑈𝑗

|𝑗

∈𝐶+, 𝑚𝑎𝑥𝑖=1
𝑘 𝐹𝑈𝑗

|𝑗 ∈𝐶−)}

= [𝑣1, 𝑣2, … , 𝑣𝑛 ]
(4) 

Alternatives are rating according Euclidean distance to 𝐼 
(2). Ranking is based in the global distance to the ideal. If 
alternative 𝑥𝑖 is closer to 𝐼 the distance measure (𝑠𝑖

closer) better is the alternative [28].  
Alternatives could  be  rated according Euclidean distance 
in SVN [26, 29]. 

Let 𝐴 ∗  =  ( 𝐴1
∗  ,3𝐴2

∗   , . . , 𝐴𝑛
∗  ) be a vector of 𝑛 SVN num-

bers such that 𝐴𝑗  ∗ = (𝑎𝑗
∗, 𝑏𝑗

∗, 𝑐𝑗
∗) j=(1,2, … , 𝑛) and 𝐵𝑖 =

(𝐵𝑖1, 𝐵𝑖2, … , 𝐵𝑖𝑚) (𝑖 = 1,2, … , 𝑚) be 𝑚 vectors of 𝑛
SVN numbers such that  𝐵𝑖𝑗 = ( 𝑎𝑖𝑗, 𝑏𝑖𝑗, 𝑐𝑖𝑗)  (𝑖 = 1,2, … ,
𝑚), (𝑗 = 1,2, … , 𝑛). Then the separation measure be-
tween 𝐵𝑖′𝑠 y 𝐴 ∗ is defined as follows:

si= (
1
3

∑ {(|aij-aj
*|)

2
+(|bij-bj

*|)
2
+(|cij-cj

*|)
2
}n

j=1 )

1
2

(𝑖 = 1,2, … , 𝑚) (2) 
The best requirement is the one with the miimun distance 
to ideal. 

5. Illustrative Example
In this section, we present an illustrative example in or-

der to shown the applicability of the proposed model.  
A. Evaluation framework 
In this case study the evaluation framework is compose by: 
3 experts E= {e1, e2, e3, who evaluate 3 requirements R=
{𝑟1, 𝑟2, 𝑟3}, where are involved 5 criteria 
C={𝑐1, 𝑐2, … , 𝑐5}which are shown below:
• 𝑐1: Importance for the customers
• 𝑐2: Value
• 𝑐3: Cost
• 𝑐4: Technical Complexity
• 𝑐5: Risks
The following linguistic terms are used (Table I). 

Table I. Linguistic terms used to provide the assessments [26]. 

Linguistic terms SVNSs 
Extremely good (EG) (1,0,0) 
Very very good (VVG) (0.9, 0.1, 0.1) 
Very good (VG) (0.8,0,15,0.20) 
Good (G) (0.70,0.25,0.30) 
Medium good (MG) (0.60,0.35,0.40) 
Medium (M) (0.50,0.50,0.50) 
Medium bad (MB) (0.40,0.65,0.60) 
Bad (B) (0.30,0.75,0.70) 
Very bad (VB) (0.20,0.85,0.80) 
Very very bad (VVB) (0.10,0.90,0.90) 
Extremely bad (EB) (0,1,1) 

B. Gathering information  
Once the evaluation framework has been determined the 
information about therequirements is gathered (see Table 
II). 
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Table II. An illustrative example of gathering information 

e1 e1 e1 

r1 r2 r3 r1 r2 r3 r1 r2 r3 

c1 VV

G 

VG EG VV

G 

VG G M VG G 

c2 M G MB M VG VG G M MB 

c3 VG M M VG VV

G 

M MB G B 

c4 G M VG VG B VG VG G G 

c5 M G M G VG VV

G 

B G VG 

C. Rating Requirements 

In this example, is applied a two-step aggregation process 
to compute a collective evaluation for software require-
ments. In our problem the SVNWA is used to aggregate 

evaluations by requirement for each expert.  In this case the 
weighting vectors to compute the collective evalua-
tion is V=(0.3,0.3,0.4) .

Table III. An illustrative example of unified and aggregated information 

r1 r2 r3 

c1 (0.24, 0.2, 0.12) (0.18, 0.18, 0.14) (0.19, 0.0, 0.0) 

c2 (0.41, 0.44, 0.35) (0.32, 0.3, 0.25) (0.46, 0.44, 0.35) 

c3 (0.38, 0.0, 0.17) (0.29, 0.27, 0.19) (0.54, 0.61, 0.5) 

c4 (0.21, 0.21, 0.17) (0.49, 0.49, 0.41) (0.21, 0.21, 0.17) 

c5 (0.49, 0.49, 0.41) (0.24, 0.25, 0.2) (0.26, 0.23, 0.16) 

From this information, the ideal alternative is calculated 
(Table IV). 

Table IV. Ideal alternative 

𝑬+ 
c1 (0.2,0,0) 

c2 (0.4,0.3,0.25) 

c3 (0.38, 0.61,0.5) 

c4 (0.49,0.21,0.17) 

c5 (0.24,0.49,0.41) 

The results of the calculation of the distances allow re-
queriment.  

Table V. Distance to ideal alternative 

r1 0.21 
r2 0.38 
r3 0.45

Finally, we put in order all collective evaluations and we 
establish a ranking among requirements with the purpose 
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of identifying the best ones. In the case study the ranking 
is as follow: 𝑟1 ≻  𝑟2 ≻  𝑟3

After application in this case study the model is found 
to be practical to use. The aggregation process gives a high 
flexibility so the model can be adapted to different situa-
tions.  

6. Conclusions
In this paper, we have proposed a prioritization model

based on the decision analysis scheme that can manage 
SVN numbers. We have applied the proposed model to an 
illustrative example.  The model was found to be flexible 
and practical to use. The developing of software tool to au-
tomate the model is an area of future work. 
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