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Abstract: In this paper, we give definitions of compatible mappings of type (γ) in neutrosophic metric 

space, and obtain a common fixed point theorem under the conditions of weakly compatible mappings 

of type (γ) in complete neutrosophic metric spaces. Our research generalizes, extends and improves the 

results given by Sedghi et al.[19]. 

Keywords: Fixed point, Neutrosophic metric Space, Compatible Mappings, Weak Compatible Mappings 

of Type (γ). 

 

 

1. Introduction : 

Fuzzy set was presented by Zadeh [30] as a class of elements with a grade of membership. Kramosil 

and Michalek [9] defined new notion called Fuzzy Metric Space (FMS). Later on, many authors have 

examined the concept of fuzzy metric in various aspects. Since then, many authors have obtained fixed 

point results in fuzzy metric space using these compatible notions. Also, Kutukcu et al.[11] obtained the 

common fixed points of compatible maps of type(β) on fuzzy metric spaces, and Sedghi et.al.[19] studied 

the common fixed point of compatible maps of type (γ) in complete fuzzy metric spaces.  

Atanassov [1] introduced and studied the notion of intuitionistic fuzzy set by generalizing the 

notion of fuzzy set.  Recently, Park[14] and Park et al. [17] defined the intuitionistic fuzzy metric space. 

Many authors [15, 16, 17] obtained a fixed point theorems in this space. Also, Park et al. [17] introduced 

the concept of compatible mappings of type(α) and type(β), and obtained common fixed point theorems  

in intuitionistic fuzzy metric space. 

 

mailto:murugappan.mangai@gmail.com
mailto:jeykaliappa@gmail.com
mailto:jeya.math@gmail.com


Neutrosophic Sets and Systems, Vol. 50, 2022     2  

 
A.N. Mangayarkkarasi,  V. Jeyanthi, M. Jeyaraman and V.B. Shakila, Fixed Point Theorem of Weak Compatible Maps of Type 
(γ) In Neutrosophic Metric Spaces 
 

 

In 1998, Smarandache [20, 21, 22] characterized the new concept called neutrosophic logic and 

neutrosophic set and explored many results in it. In the idea of neutrosophic sets, there is T degree of 

membership, I degree of indeterminacy and F degree of non-membership. Basset et al. [3] Explored the 

neutrosophic applications in dif and only iferent fields such as model for sustainable supply chain risk 

management, resource levelling problem in construction projects, Decision Making.  In 2020, Kirisci et al 

[10] defined NMS as a generalization of IFMS and brings about fixed point theorems in complete NMS.  

In 2020, Sowndrarajan et al. [23] proved some fixed point results for contraction theorems in neutrosophic 

metric spaces.  

In this paper, we give definitions of compatible mappings of type (γ) in neutrosophic metric space 

and obtain common fixed point theorem under the conditions of weak compatible mappings of type (γ) 

in complete neutrosophic metric space.  

 

2. Some Relevent Results: 

Definition: 2.1.[18] 

A binary operation * : [0, 1] x [0, 1] → [0, 1] is a continuous t-norm [CTN] if it satisfies the following 

conditions : 

1. * is commutative and associative, 

2. * is continuous, 

3. 𝜀1*1 = 𝜀1 for all  𝜀1∈ [0, 1], 

4. 𝜀1* 𝜀2  ≤ 𝜀3*𝜀4  whenever  𝜀1 ≤ 𝜀3 and  𝜀2  ≤ 𝜀4  , for each 𝜀1, 𝜀2, 𝜀3, 𝜀4∈ [0, 1]. 

Definition: 2.2.[18] 

A binary operation ⋄ : [0, 1] x [0, 1] → [0, 1] is a continuous t-conorm [CTC] if it satisfies the following 

conditions: 

1. ⋄ is commutative and associative, 

2. ⋄ is continuous, 

3. 𝜀1⋄ 0 = 𝜀1 for all 𝜀1∈ [0, 1], 

4. 𝜀1⋄ 𝜀2  ≤ 𝜀3⋄ 𝜀4  whenever  𝜀1 ≤ 𝜀3 and  𝜀2  ≤ 𝜀4  , for each 𝜀1, 𝜀2, 𝜀3 and 𝜀4 ∈ [0, 1]. 

Definition: 2.3.[23] 

A 6-tuple (Σ, Ξ, Θ, Υ,∗,⋄) is said to be an Neutrosophic Metric Space (shortly NMS), if Σ is an arbitrary 

non empty set, ∗ is a neutrosophic CTN, ⋄ is a neutrosophic CTC and Ξ, Θ 𝑎𝑛𝑑 Υ are neutrosophic on          

Σ2 × ℝ+ satisfying the following conditions:   

For all 𝜁, 𝜂, 𝛿,𝜔 ∈ Σ, 𝜆 ∈  ℝ+. 

1. 0 ≤ Ξ ( 𝜁, 𝜂,  𝜆) ≤ 1; 0 ≤ Θ ( 𝜁, 𝜂,  𝜆) ≤ 1; 0 ≤ Υ ( 𝜁, 𝜂,  𝜆) ≤ 1; 

2. Ξ ( 𝜁, 𝜂,  𝜆) + Θ ( 𝜁, 𝜂,  𝜆) + Υ ( 𝜁, 𝜂,  𝜆) ≤ 3; 

3. Ξ ( 𝜁, 𝜂,  𝜆) = 1  if and only if  𝜁 =  𝜂; 

4. Ξ ( 𝜁, 𝜂,  𝜆) = Ξ ( 𝜂, 𝜁, 𝜆),  

5. Ξ ( 𝜁, 𝜂,  𝜆)∗ Ξ ( 𝜂, 𝛿, 𝜇) ≤ Ξ ( 𝜁, 𝛿, 𝜆 + 𝜇), for all 𝜆 , 𝜇 > 0; 

6. Ξ ( 𝜁, 𝜂,  .) : (0, ∞ ) → ( 0 , 1] is neutrosophic continuous ; 

7. lim
𝜆→∞

Ξ ( 𝜁, 𝜂,  𝜆) = 1   for all  𝜆 > 0;  

8. Θ ( 𝜁, 𝜂,  𝜆) = 0  if and only if  𝜁 =  𝜂; 

9. Θ ( 𝜁, 𝜂,  𝜆) = Θ ( 𝜂, 𝜁, 𝜆) ; 

10. Θ ( 𝜁, 𝜂,  𝜆) ⋄ Θ ( 𝜂, 𝛿, 𝜇) ≥ Θ ( 𝜁,  𝛿, 𝜆 + 𝜇), for all 𝜆 , 𝜇> 0; 

http://fs.unm.edu/NSS2/index.php/111/article/view/753
http://fs.unm.edu/NSS2/index.php/111/article/view/753
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11. Θ ( 𝜁, 𝜂,  .) : (0, ∞ ) → ( 0 , 1] is neutrosophic continuous; 

12. lim
𝜆→∞

Θ ( 𝜁, 𝜂, 𝜆) = 0   for all  𝜆 > 0; 

13. Υ  ( 𝜁, 𝜂, 𝜆) = 0  if and only if  𝜁 =  𝜂 ; 

14. Υ  ( 𝜁, 𝜂,  𝜆) = Υ  ( 𝜂, 𝜁, 𝜆) ; 

15. Υ ( 𝜁, 𝜂,  𝜆) ⋄ Υ  ( 𝜂, 𝛿, 𝜇) ≥ Υ  ( 𝜁, 𝛿, 𝜆 + 𝜇), for all 𝜆 , 𝜇> 0; 

16. Υ( 𝜁, 𝜂,  .) : (0, ∞ ) → ( 0 , 1] is neutrosophic continuous; 

17. lim
𝜆→∞

Υ ( 𝜁, 𝜂,  𝜆) = 0   for all  𝜆 > 0; 

18. If 𝜆 ≤ 0 then Ξ ( 𝜁, 𝜂, 𝛿, 𝜆) = 0;  Θ ( 𝜁, 𝜂, 𝛿, 𝜆) = 1;  Υ  ( 𝜁, 𝜂, 𝛿, 𝜆) = 1.  

Then, ( Ξ, Θ, Υ ) is called an NMS on Σ . The functions Ξ, Θ and Υ denote degree of closedness, 

neturalness and non-closedness between 𝜁 and  𝜂  with respect to 𝜆 respectively. 

Example: 2.4.[23] 

Let ( Σ , d) be a metric space. Define 𝜔 ∗ 𝜏  = min { 𝜔 , 𝜏 } and  𝜔 ⋄ 𝜏  = max { 𝜔 , 𝜏 } and                             

Ξ, Θ, Υ  : Σ2 × ℝ + → [ 0, 1] defined by,we define Ξ  ( 𝜁 , 𝜂 ,   𝜆 ) = 
𝜆

𝜆 + 𝑑 (𝜁,   𝜂 )
 ; Θ  ( 𝜁 , 𝜂 ,   𝜆 ) = 

𝑑 (𝜁,𝜂 )

𝜆 + 𝑑 (𝜁,𝜂 )
 ;                            

Υ ( 𝜁, 𝜂,  𝜆) = 
𝑑 (𝜁,𝜂 )

𝜆 
 , for all 𝜁, 𝜂 ∈  Σ and 𝜆 > 0.  Then (Σ, Ξ, Θ, Υ,∗,⋄) is called NMS induced by a metric d the 

standard neutrosophic metric. 

Definition 2.5.[23] 

Let Σ be an NMS.  Then Ξ, Θ are said to be continuous on Σ2 × ℝ+  if  lim
  n→∞

 Ξ(ζ n, ηn, λn) = Ξ(ζ , η, λ) ;  

 lim
  n→∞

 Θ (ζ n, ηn, λn) = Θ (ζ , η, λ) ;  lim
  n→∞

 Υ(ζ n, ηn, λn) = Υ (ζ , η, λ), 

Whenever a sequence {(ζ n, ηn, λn)} Σ2 × ℝ+  converges to a point (ζ, η, λ)  Σ2 × ℝ+  . 

Definition 2.6. 

Let Γ and Ω be mappings from an NMS Σ into itself.  Then the mappings are said to be compatible if  

 lim
  n→∞

 Ξ(ΓΩζ n, ΩΓζ n, λ) = 1,  lim
  n→∞

 Θ(ΓΩζ n, ΩΓζ n, λ) = 0,  lim
  n→∞

 Υ(ΓΩζ n, ΩΓζ n, λ) = 0,  λ > 0, whenever {ζ n} 

is a sequence in Σ such that  lim
  n→∞

Γζ n =  lim
  n→∞

Ωζ n = ζ   Σ. 

Example 2.7. 

 Let Σ be an NMS, where Σ  = [0, 2], *,  defined a * b = min{a, b} , ab = max{a, b} for all a, b [0, 1] 

and Ξ ( 𝜁, 𝜂,  𝜆) = 
𝜆

𝜆 + 𝑑 (𝜁,   𝜂 )
 ; Θ ( 𝜁, 𝜂,  𝜆) = 

𝑑 (𝜁,𝜂 )

𝜆 + 𝑑 (𝜁,𝜂 )
 ; Υ ( 𝜁, 𝜂,  𝜆) = 

𝑑 (𝜁,𝜂 )

𝜆 
 , for all λ > 0 and ζ , η  Σ. Define 

self maps Γ  and Ω on Σ as follows: 

                                  Γ ζ  ={
2 𝑖𝑓 0 ≤  𝜁 ≤ 1
 𝜁

2
 𝑖𝑓 1 <  𝜁 ≤ 2

             and            Ωζ ={
2 𝑖𝑓  𝜁 = 1

 𝜁+3

3
 𝑜𝑡ℎ𝑒𝑟𝑒𝑤𝑖𝑠𝑒

 

and ζ n = 2 - 
1

2𝑛
. Then we have Ω1 = 2 = Γ1 and  Ω2= 1 = Γ2.   

Also, Ω Γ2 = Ω1 =2, ΓΩ2 = Γ1=2(Ω Γ2= ΓΩ2 =2), thus Γ and Ω are weak compatible.  

Also, since Γζ n = 
1

2
 (2 -

1

2𝑛
) = 1-

1

2𝑛
, Ωζ n = 

1 

2
(2 -

1

2𝑛
+3) =1- 

1

10𝑛
.   Thus  lim

  n→∞
 Γζ n =1 =  lim

  n→∞
Ωζ n.  

Furthermore, Ω Γζ n= Ω(1 -
1

4𝑛
) =

1

5
 (1 -

3

4𝑛
 +3) =

4

5
 -

1

20𝑛
, ΓΩζ n= Γ(1-

1

10𝑛
) = 2.  

Now, 

 lim
  n→∞

 Ξ (ΓΩζ n, Ω Γζ n, λ) =  lim
  n→∞

 Ξ (2, 
4

5
 -

1

20𝑛
,λ) = 

5𝑡

5𝑡+6
 , 

 lim
  n→∞

 Θ (ΓΩζ n, Ω Γζ n, λ) =  lim
  n→∞

 Θ (2, 
4

5
 -

1

20𝑛
,λ) = 

6

5𝑡+6
 , 

 lim
  n→∞

 Υ (ΓΩζ n, Ω Γζ n, λ) =  lim
  n→∞

Υ (2, 
4

5
 -

1

20𝑛
,λ) = 

6

5𝑡
 , 
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Hence Γ and Ω is not compatible. 

3. Weak Compatible mappings of type (𝜸): 

Definition 3.1. 

Let Γ and Ω be mappings from an NMS Σ into itself. Then the mappings Γ and Ω are said to be 

compatible maps of type (𝜸) if  satisfying: 

1. Γ and Ω are compatible, that is,   lim
  n→∞

 Ξ (ΓΩζ n, Ω Γζ n, λ) = 1,  lim
  n→∞

 Θ (ΓΩζ n, Ω Γζ n, λ) = 0,             

 lim
  n→∞

 Υ (ΓΩζ n, Ω Γζ n, λ) = 0, λ > 0.  

Whenever {ζ n}  Σ  such that  lim
  n→∞

  Γζ n =  lim
  n→∞

  Ω ζ n = ζ  Σ . 

2. They are continuous  at ζ .  On the other hand, we have   

Γζ  =  Γ(  lim
  n→∞

 Γζ n ) =  Γ(  lim
  n→∞

 Ω ζ n ) =  (  lim
  n→∞

 Ω Γ ζ n ) = Ω (  lim
  n→∞

Γ ζ n ) = Ω ζ . 

Definition 3.2. 

Let Γ and Ω be mappings from an NMS Σ into itself. The mappings Γ and Ω are said to be weak - 

compatible  of type ( 𝜸) if   lim
  n→∞

  Γζ n =  lim
  n→∞

  Ω ζ n = ζ  for some ζ  Σ implies that Γζ = Ωζ . 

Remark 3.3. 

If self maps Γ and Ω of an NMS Σ are compatible of type(𝛾), then they are weak compatible type(𝛾). 

But the converse is not true. 

Lemma 3.5. 

Let Σ be an NMS, 

1. If we define  Eα : Σ2 × ℝ+  by  

Eα (ζ , η ) = inf { λ > 0 ; Ξ ( 𝜁, 𝜂,  𝜆) > 1- 𝜆 , Θ (ζ , η, λ) <   𝜆 and Υ (ζ , η, λ) < 𝜆 } for each 𝜇 ∈ (0,1) there 

exists α ∈  (0,1) such that Eα (ζ1 , ζ n) ≤  Eα (ζ1 , ζ 2) + Eα (ζ2 , ζ 3) + … Eα (ζn-1 , ζ n)                                                      

for any ζ1 , ζ 2 … ζn Σ. 

2. The sequence { ζn}n N  is convergent in NMS  Σ  if and only if  Eα (ζn , ζ ) → 0 .  

Also, the sequence { ζn}n N   is Cauchy sequence if and only if it is Cauchy sequence with Eα  .  

Lemma 3.6. 

Let Σ be an NMS.  Ξ  (ζn , ζn+1, λ) ≥ Ξ  (ζ0 , ζ1, knλ), Θ  (ζn , ζn+1, λ) ≤ Θ  (ζ0 , ζ1, knλ) and                                  

Υ (ζn , ζn+1, λ) ≤ Υ (ζ0 , ζ1, knλ) for some k > 1 and for every n N . Then sequence { ζn} is a Cauchy 

sequence.  

Lemma 3.7. 

Let Σ be an NMS.  If there exists a number k (0, 1) such that for all ζ , η Σ and λ > 0.                         

Ξ (ζ , η, kλ) ≥ Ξ (ζ , η, λ), Θ (ζ , η, kλ) ≤ Θ (ζ , η, λ) and Υ (ζ , η, kλ) ≤ Υ (ζ , η, λ) then ζ  = η. 

4. Main Results 

Lemma 4.1. 

Let Γ and Ω are self – mappings of a complete NMS Σ satisfying: 

There exists a constant k  (0, 1) such that 
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Ξ 2(Γζ , Ωη, kλ) * [Ξ (ζ , Γζ , kλ) Ξ (η, Ωη, kλ)] * Ξ 2(η, Ωη, kλ) + a Ξ (η, Ωη, kλ) 

 Ξ (ζ , Ωη, 2kλ) ≥ [p Ξ (ζ , Γζ , λ) + q Ξ (ζ , η, λ)] Ξ (ζ , Ωη, 2kλ)                                            (4.1.1) 

Θ 2(Γζ , Ωη, kλ)  [Θ(ζ , Γζ , kλ) Θ (η, Ωη, kλ)]   Θ2(η, Ωη, kλ) + a Θ (η, Ωη, kλ) 

 Θ (ζ , Ωη, 2kλ) ≤ [p Θ (ζ , Γζ , λ) +q Θ (ζ , η, λ)] Θ (ζ , Ωη, 2kλ)                                                   (4.1.2) 

Υ 2(Γζ , Ωη, kλ)  [Υ (ζ , Γζ , kλ) Υ (η, Ωη, kλ)]  Υ 2(η, Ωη, kλ) + a Υ (η, Ωη, kλ) 

 Υ (ζ , Ωη, 2kλ) ≤ [p Υ (ζ , Γζ , λ) +q Υ (ζ , η, λ)] Υ (ζ , Ωη, 2kλ)                                                     (4.1.3) 

for every ζ , η  Σ and λ > 0, where 0 < p, q < 1, 0 ≤ a < 1 such that p + q – a =1.  Then Γ and Ω have a 

unique common fixed point in Σ. 

Proof: Let ζ 0 Σ be an arbitrary point, there exist ζ 1  Σ such that Γζ 0 = ζ 1, Ωζ 1= ζ 2.  Inductively, 

construct the sequences {ζ n}  Σ such that ζ 2n+1 = Γζ 2n, ζ 2n+2 = Ωζ 2n+1  

for n = 0, 1, 2, ..... Then we prove that {ζ n} is a Cauchy sequence.  

 For ζ  = ζ 2n, η = ζ 2n+1 by we have 

Ξ 2(Γζ 2n, Ωζ 2n+1, kλ) *[ Ξ (ζ 2n, Γζ 2n,kλ) Ξ (ζ 2n+1,Ωζ 2n+1, kλ)]* Ξ 2(ζ 2n+1, Ωζ 2n+1, kλ)  

+ a Ξ (ζ 2n+1, Ωζ 2n+1, kλ) Ξ (ζ 2n, Ωζ 2n+1, 2kλ) ≥[p Ξ (ζ 2n, Γζ 2n, λ) + q Ξ (ζ 2n, ζ 2n+1, λ)] ×  

         Ξ (ζ 2n, Ωζ 2n+1, 2kλ) and 

Ξ 2(ζ 2n+1, ζ 2n+2, kλ) *[ Ξ (ζ 2n, ζ 2n+1, kλ) Ξ (ζ 2n+1, ζ 2n+2, kλ)] * Ξ 2(ζ 2n+1, ζ 2n+2, kλ) 

+ a Ξ (ζ 2n+1, ζ 2n+2, kλ) Ξ (ζ 2n, ζ 2n+2, 2kλ) ≥ [p Ξ (ζ 2n, ζ 2n+1, λ) +q Ξ (ζ 2n, ζ 2n+1, λ)]  ×  

Ξ (ζ 2n, ζ 2n+2, 2kλ), 

Θ 2(Γζ 2n, Ωζ 2n+1, kλ) [ Θ (ζ 2n, Γζ 2n, kλ) Θ (ζ 2n+1, Ωζ 2n+1, kλ)]  Θ 2(ζ 2n+1, Ωζ 2n+1, kλ) 

         + a Θ (ζ 2n+1, Ωζ 2n+1, kλ) Θ (ζ 2n, Ωζ 2n+1, 2kλ) ≤ [p Θ (ζ 2n, Γζ 2n, λ) + q Θ (ζ 2n, ζ 2n+1, λ)]  × 

Θ (ζ 2n, Ωζ 2n+1, 2kλ) and 

Θ 2(ζ 2n+1, ζ 2n+2, kλ)  [Θ (ζ 2n, ζ 2n+1, kλ) Θ (ζ 2n+1, ζ 2n+2, kλ)]  Θ 2(ζ 2n+1, ζ 2n+2, kλ) 

+ a Θ (ζ 2n+1, ζ 2n+2, kλ) Θ (ζ 2n, ζ 2n+2, 2kλ) ≤ [p Θ (ζ 2n, ζ 2n+1,λ) +q Θ (ζ 2n, ζ 2n+1, λ)]  ×  

Θ (ζ 2n, ζ 2n+2, 2kλ). 

Υ2(Γζ 2n, Ωζ 2n+1, kλ) [ Υ(ζ 2n, Γζ 2n, kλ) Υ (ζ 2n+1, Ωζ 2n+1, kλ)]  Υ2(ζ 2n+1, Ωζ 2n+1, kλ) 

+ a Υ (ζ 2n+1, Ωζ 2n+1, kλ) Υ(ζ 2n, Ωζ 2n+1, 2kλ) ≤ [p Υ (ζ 2n, Γζ 2n, λ) + q Υ (ζ 2n, ζ 2n+1, λ)]  × 

Υ (ζ 2n, Ωζ 2n+1, 2kλ) and 

Υ 2(ζ 2n+1, ζ 2n+2, kλ)  [Υ (ζ 2n, ζ 2n+1, kλ) Υ (ζ 2n+1, ζ 2n+2, kλ)]  Υ 2(ζ 2n+1, ζ 2n+2, kλ) 

+ a Υ (ζ 2n+1, ζ 2n+2, kλ) Υ (ζ 2n, ζ 2n+2, 2kλ) ≤ [p Υ (ζ 2n, ζ 2n+1,λ) +q Υ (ζ 2n, ζ 2n+1, λ)] ×  

Υ (ζ 2n, ζ 2n+2, 2kλ). 

Then 

Ξ 2(ζ 2n+1, ζ 2n+2, kλ) *[ Ξ (ζ 2n, ζ 2n+1, kλ) Ξ (ζ 2n+1, ζ 2n+2, kλ)] + a Ξ (ζ 2n+1, ζ 2n+2, kλ) 

Ξ (ζ 2n, ζ 2n+2, 2kλ) ≥ (p + q) Ξ (ζ 2n, ζ 2n+1, λ) Ξ (ζ 2n, ζ 2n+2, 2kλ), 

Θ 2(ζ 2n+1, ζ 2n+2, kλ) [ Θ (ζ 2n, ζ 2n+1, kλ) Θ (ζ 2n+1, ζ 2n+2, kλ)] + a Θ (ζ 2n+1, ζ 2n+2, kλ) 

Θ (ζ 2n, ζ 2n+2, 2kλ) ≤ (p + q) Θ (ζ 2n, ζ 2n+1, λ) Θ (ζ 2n, ζ 2n+2, 2kλ), 

Υ 2(ζ 2n+1, ζ 2n+2, kλ) [ Υ (ζ 2n, ζ 2n+1, kλ) Υ (ζ 2n+1, ζ 2n+2, kλ)] + a Υ (ζ 2n+1, ζ 2n+2, kλ) 

Υ (ζ 2n, ζ 2n+2, 2kλ) ≤ (p + q) Υ (ζ 2n, ζ 2n+1, λ) Υ (ζ 2n, ζ 2n+2, 2kλ). 

So, 

Ξ (ζ 2n+1, ζ 2n+2, kλ) + a Ξ (ζ 2n+1, ζ 2n+2, kλ) ≥ (p + q) Ξ (ζ 2n, ζ 2n+1, λ) 

Θ (ζ 2n+1, ζ 2n+2, kλ) + a Θ (ζ 2n+1, ζ 2n+2, kλ) ≤ (p + q) Θ (ζ 2n, ζ 2n+1, λ) 

 Υ (ζ 2n+1, ζ 2n+2, kλ) + a  Υ (ζ 2n+1, ζ 2n+2, kλ) ≤ (p + q)  Υ (ζ 2n, ζ 2n+1, λ). 

Therefore 

Ξ (ζ 2n+1, ζ 2n+2, kλ) ≥ Ξ (ζ 2n ζ 2n+1, λ) , Θ (ζ 2n+1, ζ 2n+2, kλ) ≤ Θ (ζ 2n, ζ 2n+1, λ) and 

Υ(ζ 2n+1, ζ 2n+2, kλ) ≤ Υ (ζ 2n, ζ 2n+1, λ). 
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Similarly, we also have 

Ξ (ζ 2n+2, ζ 2n+3, kλ) ≥ Ξ (ζ 2n+1, ζ 2n+2, λ), Θ (ζ 2n+2, ζ 2n+3, kλ) ≤ Θ (ζ 2n+1, ζ 2n+2, λ), 

Υ (ζ 2n+2, ζ 2n+3, kλ) ≤ Υ (ζ 2n+1, ζ 2n+2, λ) . 

For k (0, 1) if k1 = 
1

𝑘
 > 1 and λ = k1 λ1, then we have 

Ξ (ζ n, ζ n+1, λ) ≥ Ξ (ζ 0, ζ 1, 𝑘1
𝑛 λ1), Θ (ζ n, ζ n+1, λ) ≤ Θ (ζ 0, ζ 1, 𝑘1

𝑛 λ1)and 

 Υ (ζ n, ζ n+1, λ) ≤ Υ (ζ 0, ζ 1, 𝑘1
𝑛 λ1) . 

By Lemma 3.6, since {ζ n} is a Cauchy sequence in Σ which is complete, {ζ n} converges to 𝜔 in Σ.  Hence 

 lim
  n→∞

Γζ 2n=  lim
  n→∞

ζ 2n+1 =  lim
  n→∞

ζ 2n+2=  lim
  n→∞

Ωζ 2n+1 = 𝜔. 

Now, taking ζ  = 𝜔 and η = ζ 2n+1 in (i), we have as n, 

Ξ 2(Γω, ω, kλ) * [Ξ (ω, Γω, kλ) Ξ (ω, ω, kλ)]  * Ξ 2(ω, ω, kλ) + a Ξ (ω, ω, kλ) Ξ (ω, ω, 2kλ) 

       ≥ [pΞ(ω, Γω, λ) + qΞ(ω, ω, λ)] Ξ(ω, ω, 2kλ), 

Θ 2(Γω, ω, kλ) * [Θ (ω, Γω, kλ) Θ (ω, ω, kλ)]   Θ 2(ω, ω, kλ) + a Θ (ω, ω, kλ) Θ (ω,ω, 2kλ) 

       ≤ [p Θ (ω, Γω, λ) + q Θ (ω, ω, λ)] Θ (ω, ω, 2kλ), 

Υ 2(Γω, ω, kλ) * [Υ (ω, Γω, kλ) Υ (ω, ω, kλ)]   Υ 2(ω, ω, kλ) + a Υ (ω, ω, kλ) Θ (ω,ω, 2kλ) 

       ≤ [p Υ(ω, Γω, λ) + q Υ (ω, ω, λ)] Υ (ω, ω, 2kλ). 

Therefore 

Ξ(Γω, ω, kλ) + a ≥ pΞ(ω, Γω, λ) + q,  Θ (Γω, ω, kλ) ≤ 0 , Υ (Γω, ω, kλ) ≤ 0 , 

for all λ > 0,  so Γω = ω.  Taking ζ = ζ 2n and η = ω in (i), we have as n  , 

Ξ(ω, Ωω, λ) + a ≥ p + q, Θ (ω, Ωω, λ) + a Θ (ω, Ωω, λ) ≤ 0 and  Υ  (ω, Ωω, λ) + a Υ  (ω, Ωω, λ) ≤ 0, 

for all λ > 0, so Ωω = ω.  Thus ω is a common fixed point of Γ and Ω, 

Let β be another common fixed point of Γ and Ω.  Then using (i), we have 

Ξ 2(ω, β , kλ) + a Ξ (ω, β , 2kλ) ≥ [p + q Ξ(ω, β , λ)] Ξ(ω, β , 2kλ), 

Θ 2(ω, β , kλ) ≤ q Θ (ω, β , λ) Θ (ω, β , 2kλ) and Υ 2(ω, β , kλ) ≤ q Υ (ω, β , λ) Υ (ω, β , 2kλ) 

and  

Ξ(ω, β , λ) Ξ(ω, β , 2kλ) + aΞ(ω, β , 2kλ) ≥[p + q Ξ(ω, β , λ)]Ξ(ω, β , 2kλ), 

Θ(ω, β , λ) Θ (ω, β , 2kλ) ≤ q Θ (ω, β , λ) Θ (ω, β , 2kλ), 

Υ (ω, β , λ) Υ  (ω, β , 2kλ) ≤ q Υ  (ω, β , λ) Υ  (ω, β , 2kλ). 

Thus, it follows that 

Ξ(ω, β , λ) ≥ 
𝑝−𝑎

1−𝑞
 =1, Θ (n, β , λ) ≤ 0, Υ (n, β , λ) ≤ 0, 

for all λ > 0, so ω = β .  Hence Γ and Ω have a unique common fixed point in Σ. 

Theorem 4.2. 

Let Γ, Ω, ⋀ and ⋁ be self mappings of a complete NMS Σ satisfying 

1. Γ (Σ)  ⋁(Σ), Ω(Σ)  ⋀ (Σ), 

2. There exists a constant k  (0, 1) such that 

Ξ2(Γζ , Ωη, kλ) * [Ξ( ⋀ ζ , Γζ , kλ) Ξ(⋁η, Ωη, kλ)] *Ξ2(⋁η, Ωη, kλ) + aΞ(⋁η, Ωη, kλ) 

Ξ( ⋀ ζ , Ωη, 2kλ) ≥ [pΞ( ⋀ζ , Γζ , λ) + qΞ( ⋀ ζ , ⋁η, λ)] Ξ(⋀ζ , Ωη, 2kλ)                                   (4.2.1) 

Θ 2(Γζ , Ωη, kλ)  [Θ ( ⋀ ζ , Γζ , kλ) Θ (⋁η, Ωη, kλ)]  Θ 2(⋁η, Ωη, kλ) + a Θ (⋁η, Ωη, kλ) 

 Θ ( ⋀ ζ , Ωη, 2kλ) ≤ [p Θ ( ⋀ζ , Γζ , λ) + q Θ ( ⋀ζ , ⋁η, λ)] Θ ( ⋀ ζ , Ωη, 2kλ)                                  (4.2.2) 

Υ 2(Γζ , Ωη, kλ)  [Υ( ⋀ ζ , Γζ , kλ) Υ (⋁η, Ωη, kλ)]  Υ 2(⋁η, Ωη, kλ) + a Υ (⋁η, Ωη, kλ) 

 Υ( ⋀ ζ , Ωη, 2kλ) ≤ [p Υ ( ⋀ζ , Γζ , λ) + q Υ ( ⋀ζ , ⋁η, λ)] Υ ( ⋀ ζ , Ωη, 2kλ)                                  (4.2.3) 

for every ζ , η  Σ and λ > 0, where 0 < p, q <1, 0 ≤ a < 1 such that p + q – a =1, 

3. The pairs (Γ,  ⋀ ) and (Ω, ⋁) are weak compatible of type (𝛾). 

Then Γ, Ω,  ⋀  and ⋁ have a unique common fixed point in Σ. 
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Proof: Let ζ 0  Σ be an arbitrary point.  Since Γ(Σ)  ⋁(Σ) and Ω(Σ)  ⋀ (Σ), there exists ζ 1, ζ 2  Σ such 

that Γζ 0 = ⋁ζ 1= η1, Ωζ 1 =  ⋀ ζ 2= η2.  Because we can construct the sequences {ζ n}, {ηn} Σ such that η2n+1 = 

Γζ 2n= ⋁ζ 2n+1, η2n+2 =Ωζ 2n+1=  ⋀ ζ 2n+2 , for n = 0, 1, 2, . . . , we prove {ηn} is Cauchy sequence.  

For ζ  = ζ 2n, η = ζ 2n+1 by (ii), we have 

 Ξ2(Γζ 2n, Ωζ 2n+1, kλ) *[Ξ( ⋀ ζ 2n, Γζ 2n, kλ) Ξ(⋁ζ 2n+1, Ωζ 2n+1, kλ) *Ξ2(⋁ζ 2n+1, Ωζ 2n+1, kλ)  

          + a Ξ(⋁ζ 2n+1, Ωζ 2n+1, kλ) Ξ( ⋀ ζ 2n, Ωζ 2n+1, 2kλ) ≥[pΞ( ⋀ ζ 2n, Γζ 2n, λ) + qΞ( ⋀ ζ 2n, ⋁ζ 2n+1, λ)] ×  

    Ξ( ⋀ ζ 2n, Ωζ 2n+1, 2kλ), 

Θ 2(Γζ 2n, Ωζ 2n+1, kλ)  [Θ ( ⋀ ζ 2n, Γζ 2n, kλ) Θ (⋁ζ 2n+1, Ωζ 2n+1, kλ)  Θ 2(⋁ζ 2n+1, Ωζ 2n+1, kλ)  

   + a Θ (⋁ζ 2n+1, Ωζ 2n+1, kλ) Θ ( ⋀ ζ 2n, Ωζ 2n+1, 2kλ) ≤ [p Θ ( ⋀ ζ 2n, Γζ 2n, λ) +q Θ ( ⋀ ζ 2n, ⋁ζ 2n+1, λ)] ×        

   Θ ( ⋀ ζ 2n, Ωζ 2n+1, 2kλ), 

Υ 2(Γζ 2n, Ωζ 2n+1, kλ)  [Υ ( ⋀ ζ 2n, Γζ 2n, kλ) Υ (⋁ζ 2n+1, Ωζ 2n+1, kλ)  Υ 2(⋁ζ 2n+1, Ωζ 2n+1, kλ)  

  + a Υ (⋁ζ 2n+1, Ωζ 2n+1, kλ) Υ ( ⋀ ζ 2n, Ωζ 2n+1, 2kλ)≤ [p Υ ( ⋀ ζ 2n, Γζ 2n, λ) + q Υ ( ⋀ ζ 2n, ⋁ζ 2n+1, λ)] ×   

  Υ ( ⋀ ζ 2n, Ωζ 2n+1, 2kλ). 

Hence 

Ξ(η2n+1, η2n+2, kλ) Ξ(η2n, η2n+2, 2kλ) + aΞ(η2n+1, η2n+2, kλ) Ξ(η2n, η2n+2, 2kλ) 

≥ (p + q) Ξ(η2n, η2n+1, λ) Ξ(η2n, η2n+2,2kλ), 

Θ (η2n+1, η2n+2, kλ) Θ (η2n, η2n+2, 2kλ) + a Θ (η2n+1, η2n+2, kλ) Θ (η2n, η2n+2, 2kλ) 

≤ (p + q) Θ (η2n, η2n+1, λ) Θ (η2n, η2n+2,2kλ), 

Υ (η2n+1, η2n+2, kλ) Υ (η2n, η2n+2, 2kλ) + a Υ (η2n+1, η2n+2, kλ) Υ (η2n, η2n+2, 2kλ) 

≤ (p + q) Υ (η2n, η2n+1, λ) Υ (η2n, η2n+2,2kλ). 

So, we have 

Ξ(η2n+1, η2n+2, kλ) ≥ Ξ(η2n, η2n+1, λ),  Θ (η2n+1, η2n+2, kλ) ≤ Θ (η2n, η2n+1, λ) and  

Υ(η2n+1, η2n+2, kλ) ≤ Υ (η2n, η2n+1, λ). 

Similarly, also we have 

Ξ(η2n+2, η2n+3, kλ) ≥ Ξ(η2n+1, η2n+2, λ), Θ (η2n+2, η2n+3, kλ) ≤ Θ (η2n+1, η2n+2, λ), 

Υ (η2n+2, η2n+3, kλ) ≤ Υ (η2n+1, η2n+2, λ), for k  (0, 1), if k1 = 
 1

𝑘
  > 1 and λ = k1 λ1, then 

Ξ(ηn, ηn+1, λ) ≥ Ξ(ηn-1, ηn, k1 λ1) ≥ . . . ≥ Ξ(η0, η1, 𝑘1
𝑛λ1), 

Θ (ηn, ηn+1, λ) ≤ Θ (ηn-1, ηn, k1, λ1) ≤ . . . ≤ Θ (η0, η1, 𝑘1
𝑛λ1), 

Υ (ηn, ηn+1, λ) ≤ Υ (ηn-1, ηn, k1, λ1) ≤ . . . ≤ Υ (η0, η1, 𝑘1
𝑛λ1). 

Thus {ηn} is a Cauchy sequence and completeness of Σ, {ηn} converges to ω  Σ. 

Hence 

 lim
  n→∞

Γζ 2n=  lim
  n→∞

 η2n+1 =  lim
  n→∞

 ⋁ζ 2n+1 =  lim
  n→∞

 η2n+2 =  lim
  n→∞

Ωζ 2n+1  =  lim
  n→∞

 ⋀ ζ 2n+2 =  lim
  n→∞

  ⋀ ζ 2n = ω. 

Since Γ,  ⋀  are weak compatible of type (𝛾), Aω = ⋀ ω. 

Now, taking ζ  = ω and η = ζ 2n+1 in (ii), we have as n  . 

Ξ2(Γω, ω, kλ) * [Ξ( ⋀ ω, Γω, kλ) Ξ(ω, ω, kλ)] *Ξ2(ω, ω, kλ) + aΞ(ω, ω, kλ) Ξ( ⋀ ω, ω, 2kλ) 

      ≥ [pΞ( ⋀ ω, Γω, λ) + qΞ( ⋀ ω, ω, λ)]Ξ( ⋀ ω, ω, 2kλ), 

Θ 2(Γω, ω, kλ)  [Θ ( ⋀ ω, Γω, kλ) Θ (ω, ω, kλ)]  Θ 2(ω, ω, kλ) + a Θ (ω, ω, kλ) Θ ( ⋀ ω, ω, 2kλ) 

      ≤ [p Θ ( ⋀ ω, Γω, λ) + q Θ ( ⋀ ω, ω, λ)] Θ ( ⋀ ω, ω, 2kλ), 

Υ 2(Γω, ω, kλ)  [Υ ( ⋀ ω, Γω, kλ) Υ (ω, ω, kλ)]  Υ 2(ω, ω, kλ) + a Υ (ω, ω, kλ) Υ ( ⋀ ω, ω, 2kλ) 

      ≤ [p Υ ( ⋀ ω, Γω, λ) + q Υ ( ⋀ ω, ω, λ)] Υ ( ⋀ ω, ω, 2kλ). 

It follows that 

Ξ2(Γω, ω, kλ) + aΞ(Γω, ω, 2kλ) ≥ [p + qΞ(Γω, ω, λ)]Ξ(Γω,ω, 2kλ), 

Θ 2(Γω,ω, kλ) ≤ q Θ (Γω, ω, λ) Θ (Γω, ω, 2kλ), Υ 2(Γω,ω, kλ) ≤ q Υ (Γω, ω, λ) Υ (Γω, ω, 2kλ). 
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Since Ξ(ζ, η, .) is nondecreasing , Θ (ζ ,η, .) is nonincreasing and Υ (ζ, η, .) is nonincreasing  for all ζ , η Σ, 

we have 

Ξ(Γω, ω, λ) ≥ 
𝑝−𝑎

1−𝑞
 =1, Θ (Γω, ω, λ) ≤ 

0

1−𝑞
 = 0, Υ (Γω, ω, λ) ≤ 

0

1−𝑞
 = 0. 

for all λ > 0, So Γω = ω.  Hence Γω =  ⋀ ω = ω. 

Similarly, since Ω, ⋁ are weak compatible of type (𝛾), we get Ωω = ⋁ω.   

For taking ζ  = ζ 2n and η = ω in (ii), we have as n  , 

Ξ2(ω, Ωω, kλ)* [Ξ(ω, ω, kλ) Ξ(⋁ω, Ωω, kλ)] * Ξ2(⋁ω, Ωω, kλ) + aΞ(⋁ω, Ωω, kλ) 

Ξ(ω, Ωω, 2kλ) ≥ [pΞ(ω, ω, λ) + qΞ(ω, ⋁ω, λ)] Ξ(ω, Ωω, 2kλ), 

Θ 2(ω, Ωω, kλ)  [Θ (ω, ω, kλ) Θ (⋁ω, Ωω, kλ)]  Θ 2(⋁ω, Ωω, kλ) + a Θ (⋁ω, Ωω, kλ) 

 Θ (ω, Ωω, 2kλ) ≤ [p Θ (ω, ω, λ) + q Θ (ω, ⋁ω, λ)] Θ (ω, Ωω, 2kλ), 

Υ 2(ω, Ωω, kλ)  [Υ (ω, ω, kλ) Υ (⋁ω, Ωω, kλ)]  Υ 2(⋁ω, Ωω, kλ) + a Υ (⋁ω, Ωω, kλ) 

 Υ (ω, Ωω, 2kλ) ≤ [p Υ (ω, ω, λ) + q Υ (ω, ⋁ω, λ)] Υ (ω, Ωω, 2kλ). 

Then, 

Ξ2(ω, Ωω, kλ) + aΞ(ω, Ωω, 2kλ) ≥ [p+qΞ(ω, ⋁ω, λ)] Ξ(ω, Ωω, 2kλ), 

Θ 2(ω, Ωω, kλ) ≤ q Θ (ω, ⋁ω, λ) Θ (ω, Ωω, 2kλ), Υ 2(ω, Ωω, kλ) ≤ q Υ (ω, ⋁ω, λ) Υ (ω, Ωω, 2kλ). 

Thus it follows that 

Ξ(ω, Ωω, λ) ≥ 
𝑝−𝑎

1−𝑞
 =1, Θ (ω, Ωω, λ) ≤ 

0

1−𝑞
 = 0 and Υ (ω, Ωω, λ) ≤  0, for all λ > 0, so Ωω = ω.  

Hence Ωω = ⋁ω = ω.  

Therefore ω is a common fixed point of  Γ, Ω,  ⋀  and ⋁. 

Let β  be another common fixed point of  Γ, Ω,  ⋀  and ⋁.  Then we have 

Ξ2(Γω, Ωβ , kλ) * [Ξ( ⋀ ω, Γω, kλ) Ξ(⋁β , Ωβ , kλ)] * Ξ2(⋁β , Ωβ , kλ) 

+ aΞ(⋁β ,Ωβ , kλ) Ξ( ⋀ β , Ωβ , 2kλ) ≥ [pΞ( ⋀ ω, Γω, λ) + qΞ( ⋀ ω, ⋁β , λ)]Ξ( ⋀ ω, Ωβ , 2kλ), 

 

Θ 2(Γω, Ωβ , kλ)  [Θ ( ⋀ ω, Γω, kλ) Θ (⋁β , Ωβ , kλ)] Θ 2(⋁β , Ωβ , kλ) 

+ a Θ (⋁β ,Ωβ , kλ) Θ ( ⋀ β, Ωβ, 2kλ) ≤[p Θ (⋀ ω, Γω, λ) +q Θ (⋀ ω, ⋁β, λ)] Θ (⋀ ω, Ωβ , 2kλ), 

Υ 2(Γω, Ωβ , kλ)  [Υ ( ⋀ ω, Γω, kλ) Υ (⋁β , Ωβ , kλ)] Υ 2(⋁β , Ωβ , kλ) 

+ a Υ (⋁β ,Ωβ , kλ) Υ ( ⋀ β, Ωβ, 2kλ) ≤[p Υ (⋀ ω, Γω, λ) +q Υ (⋀ ω, ⋁β, λ)] Υ (⋀ ω, Ωβ , 2kλ), 

So, 

Ξ2(ω, β , kλ) + aΞ(ω, β , 2kλ) ≥ [p + q Ξ(ω, β , λ)]Ξ(ω, β , 2kλ), 

Θ 2(ω, β , kλ) ≤ q Θ (ω, β , λ) Θ (ω, β , 2kλ) and Υ 2(ω, β , kλ) ≤ q Υ(ω, β , λ) Υ (ω, β , 2kλ). 

Therefore 

Ξ(ω, β , λ ) ≥ 
𝑝−𝑎

1−𝑞
 =1, Θ (ω, β , λ) ≤ 

0

1−𝑞
 = 0, Υ (ω, β , λ) ≤  0, 

for all λ > 0, so ω = β , hence Γ, Ω,  ⋀  and ⋁ have unique common fixed point on Σ. 

Example 4.3. 

Let (Σ, d) be a metric space with Σ = [0,1]. Denote 𝜔 ∗ 𝜏 = min { 𝜔 , 𝜏} and  𝜔 ⋄ 𝜏 = max { 𝜔, 𝜏} for     

𝜔, 𝜏 ∈  [0,1] and let Ξd , Θd ,  Υd be neutroshopic sets on Σ2 × [ 0, ∞] defined as follows; 

Ξd ( 𝜁, 𝜂,  𝜆) = 
𝜆

𝜆 + 𝑑 (𝜁,   𝜂 )
 ;  Θd ( 𝜁, 𝜂,  𝜆) = 

𝑑 (𝜁,𝜂 )

𝜆 + 𝑑 (𝜁,𝜂 )
 ; Υd ( 𝜁, 𝜂,  𝜆) = 

𝑑 (𝜁,𝜂 )

𝜆 
 . 

Then (Ξd , Θd ,  Υd ) is an NMS on Σ  and  (Σ, Ξd , Θd , Υd , ∗, ⋄)  is an NMS.  

Define self mappings Γ, Ω,  ⋀  and ⋁ by 

Γ(Σ) = 1 ;  Ω (Σ) = 1 ;   ⋀ (Σ) =  {
1 𝑖𝑓  𝜁 𝑖𝑠 𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 

0 𝑖𝑓  𝜁 𝑖𝑠 𝑖𝑟𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙
  ;   ⋁(Σ) =   

𝜁+1

2
 

If we define  {ζ n}  Σ  by ζ n = 1 - 
1

𝑛
 , then we have for   lim

  n→∞
  Γζ n =  lim

  n→∞
  Ω ζ n = 1 and  Γ1 = 1 = ⋀1. 
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 lim
  n→∞

 Ξ (⋀ Γζ n, 1, λ) ≤  Ξ ( Γ1, 1, λ) = 1 ;   lim
  n→∞

 Θ (⋀ Γζ n, 1, λ) ≥  Θ ( Γ1, 1, λ) = 0 ;  

 lim
  n→∞

 Υ (⋀ Γζ n, 1, λ) ≥  Υ ( Γ1, 1, λ) = 0 . 

Also,  for  lim
  n→∞

 Ω ζ n =  lim
  n→∞

 ⋁ ζ n = 1  and Ω 1 = 1 = ⋁1. 

 lim
  n→∞

 Ξ (⋁Ω ζ n, 1, λ) ≤  Ξ (Ω 1, 1, λ) = 1 ;   lim
  n→∞

 Θ (⋁Ω ζ n, 1, λ) ≥  Θ (Ω 1, 1, λ) = 0 ;  

 lim
  n→∞

 Υ (⋁Ω ζ n, 1, λ) ≥  Υ (Ω 1, 1, λ) = 0 . 

Therefore, (Γ,   ⋀ )  and (Ω , ⋁) are weak compatible  of type (𝛾). Then all the conditions of Theorem 4.2. 

are satisfied and 1  is a unique common fixed point of Γ, Ω,  ⋀  and ⋁ on Σ.  

Conclusion: In this study, we have made common fixed point results for weak compatiple maps of type 

in neutrosophic metric Space. There is a degree to set up many fixed point brings about the spaces like 

fuzzy metric, generalized fuzzy metric, bipolar and partial fuzzy metric spaces by utilizing the idea of 

Neutrosophic Set. 
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Abstract: Recently, the intelligent traffic control system and its uncertainty analysis are considered 

one of the hot spots for utilizing the available techniques. It became more essential when the 

automatic car, electric vehicle, and other smart cars have introduced the transportation. To control 

the traffic accident and smooth road services an intelligent traffic control system required. It will be 

also useful in decreasing the time, reaction time, and efficiency of traffic. However, the problem 

arises while characterization of true, false or uncertain regions of traffic flow and its future 

approximation. To deal with this issue some available mathematical technique for traffic flow using 

rough set, fuzzy rough set, and its extension with the neutrosophic set is discussed in this paper. 

Some of the papers related to graphical visualization of traffic flow is also discussed for further 

improvement. The rough set theory can be useful for dealing the uncertain, incomplete, and 

indeterminate data set. Hence, the hybridization of the neutrosophic set and rough can be 

considered one of the efficient tools for intelligent traffic control and its approximation via 

automatic red, green and yellow lights. This paper tried to provide an overview of each available 

technique to solve the traffic problem. It is hoped that the proposed study will be helpful for several 

researchers working on traffic flow, traffic accident diagnosis, and its hybridization as future 

research. 

Keywords: Neutrosophic Set ; Rough set ; Fuzzy Set ; Graph theory ; Intelligent Transportation 

System ; Uncertainty; Urban traffic ; Traffic Flow 

1. Introduction 
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Recently, the urban traffic control system and its analysis have attracted the attention of various 

researchers. The reason is many electric, automatic, and other smart vehicles are proposed for 

transportation services. To control the urban traffic beyond red, green, and yellow light signals many 

traffic management systems have been developed over time. One of the reasons is in the case of the 

human driver the traffic control is based on Human Turiyam cognition rather than red, green, or 

yellow light as discussed by Singh (2021). The problem arises when the automatic car needs to be 

aware of when to stop, when to start and when to slow as the car does not has awareness. It becomes 

more crucial in the case of large towns and cities. The computerized traffic signal controls, which are 

known as Urban Traffic Control (UTC), also have some limitations.  Hence, the fuzzy set theory, 

Rough Set Theory, fuzzy-rough set theory, and neutrosophic set theory, and others can be used to 

synchronize traffic control in crowded metropolitan networks. The reason is these types of data may 

contain a heteroclinic pattern as discussed by Singh (2022). Hence maximizing vehicle throughput is 

no longer the only goal of traffic control. The balance demand and flow with extra consideration 

namely lane assignment, parking limits, turning bans, one-way street systems, and tidal flow 

schemes. They can be constructed to provide deliberate traffic constraints, such as by prioritizing 

buses over other vehicles or implementing queue management procedures and deliberate area entry 

control. These advancements provide traffic engineers and network controllers with the tools they 

need to implement a highly adaptive type of urban traffic management - one that responds to 

transportation policies and management priorities, as well as the public's and local politicians' 

acceptance of them (Wang 2013, Chen et 2014). It is one of the major issues as the public and local 

politicians acceptation and Turiyam cognition contains lots of uncertainty in the word. Computing 

with these types of words for precise management of traffic control is one of the major tasks for data 

science researchers.  

    The mathematical computation of uncertainty and its analysis is one of the crucial tasks for 

data science researchers. To achieve this goal, Prof. Zadeh proposed fuzzy set theory in 1965 as an 

expansion of the classical notion of a set (Zadeh, 1965) as an alternative of probability. With the 

proposed methodology, Zadeh established a mathematical framework that allows for decision-

making based on fuzzy representations of some data. Uncertainty, subjectivity, imprecision, and 

ambiguity can be found in à wide range of traffic and transportation factors. As a result, mathematical 

approaches that can deal successfully with uncertainty, ambiguity, and subjectivity must be utilized 

in the mathematical modeling phase of traffic and transportation processes whose individual 

parameters are unclear, ambiguous, or subjectively evaluated. Fuzzy set theory is a useful 

mathematical tool for dealing with indeterminacy, subjectivity, and ambiguity. A fuzzy set is a 

collection of elements that fits the membership degree of a set. For example, suppose there are two 

fuzzy sets that represent two categories of people: old and young. As a result, the higher a person's 

age, the higher his or her membership degree among the elderly, and the lower his or her membership 

degree among the youth. Calculating the gradual indiscernibility connection in large datasets with 

many items is difficult in terms of memory and runtime. RST is a revolutionary mathematics 

technique for dealing with uncertain and inexact knowledge in a variety of real-world applications 

such as data mining, medicine, and information analysis. Rough set theory is used to analyses and 

handle data (Wang et al. 2009). Z. Pawlak, a Polish mathematician, initially presented it in 1982 to 

find the underlying laws of data.  It's very useful for dealing with irregularities in information 

systems. In order to manage data with continuous qualities and find inconsistencies in the data, fuzzy 

rough set theory can be used with rough set theory. The fuzzy-rough set model has shown to be 

beneficial in a variety of applications because it is a potent tool for analyzing inconsistent and 

ambiguous data. RST is concerned with data that is inconsistent, such as two patients with the same 

symptoms but different diagnoses. Data is intended to be ambiguous in the rough set analysis. As a 

result, it's necessary to discretize a continuous numerical property.  The fuzzy-rough set theory 

(FRST) is a continuous numerical attribute extension of the rough set theory. It can handle both 

numerical and discrete data and can address the same problems that a rough set can. The value of 

FRST can be observed in a variety of applications. The FRST is built on the foundations of two theories 
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: rough set theory and fuzzy set theory. The two important and mutually orthogonal aspects of faulty 

data and knowledge are addressed by fuzzy sets and rough sets. While the former allows things to 

belong to a collection or relation to a certain extent, the latter provides approximations of concepts in 

the face of incomplete data. The primary goal of fuzzy-rough sets is to define lower and higher 

approximations of the set when the universe of a fuzzy set turns rough due to equivalence or to 

transfer the equivalence relation to a similar fuzzy relation. Fuzzy approximations of a fuzzy set in a 

crisp approximation space are called rough fuzzy sets and fuzzy approximations of a crisp set in a 

fuzzy approximation space are called fuzzy rough sets (Shao 2015) and their applications (Weng et 

2007 ; Chai 2015). The problem arises when data sets contain hesitant parts as an independent value. 

To represent this type of indeterminacy 3D-Neutrosophic set is introduced by the Smarandache 

(2010, 2021), with each dimension representing the statement's truth (T), indeterminacy (I), and falsity 

(F). These functions are unrelated, and the total of their parts does not equal one. It should add up to 

3 in the meantime. To deal with ambiguity, many approaches have been devised. Starting with Fuzzy 

logic (Xiong et al. 2021), which depicts the concept of "partial truth" as the true value ranges between 

0 and 1, depending on whether it is wholly false or completely true. 

Meanwhile, the researchers proposed interval-valued sets to allow interval membership values 

within the same set because fuzzy logic had several downsides. An intuitionistic fuzzy set was then 

created as a generalization of traditional fuzzy sets. Each element has a degree of membership and 

even non-membership in an intuitionistic fuzzy set (Thakur, 2014). Meanwhile, it had flaws, 

prompting some scholars to suggest a neutrosophic set of rules. Information is often ambiguous and 

imprecise in the fields of safety, reliability, risk analysis, and management. 

When some barriers against accidents fail to achieve their aim, the "severe occurrence" is 

frequently an extremely deadly event. They are invaluable resources for information on air 

transportation safety assurance systems. With such research at hand, it is possible to determine if 

current safety measures are adequate or whether they need to be improved. Estimation of safety 

barrier reliability must be carried out in order to evaluate this likelihood. 

Unfortunately, most of the time there isn't enough evidence to make statistical inferences about 

the frequency of events in an accident scenario. Regrettably, finding that information is extremely 

improbable. The condition is caused by two factors. The first is that some of these events occur 

seldom, and in the past, events with minor implications were not routinely reported. The second 

aspect is the human factor, which includes difficult-to-quantify indicators like differing reaction 

probabilities and mistake activity probability. Uncertainty and subjective judgments are present in 

such metrics. Expert estimations are the only way to get such information. These estimates aren't 

exact enough to be used in probabilistic analysis. Information is frequently ambiguous and imprecise 

in the areas of safety, reliability, risk analysis, and management. 

Recently, uncertainty and its characterization is considered one of the major issues. To deal with 

this issue neutrosophic set and its metric is used for the characterization of data beyond acceptation, 

rejection, and uncertain part, independently. A parallel rough set also gives away to characterize the 

uncertainty in positive, negative, and boundary regions. These two methods are applied in several 

areas for knowledge processing tasks. 

       In this paper, we tried to focus on dealing with the traffic flow and its approximation. 

The traffic flow is a complex, changeful, nonlinear, unstructured, space time-varying and random 

system. With the foundation operationating of the intelligent traffic system, it is imperative to search 

for a traffic state estimation model, which is suitable for mixed-traffic in China. On the basis of 

analysis of the multidimensional state characteristics of mixed traffic, using the rough set theory, the 

four-dimensional state estimation model is founded. By data discretization and attribute reduction, 

the two-dimensional decision table is gained, and the rules of multidimensional state estimation in 

urban traffic systems are presented. A case is given and it indicates that this method can eliminate 

the redundancy information of the system effectively and improve the precision of rule mining. 

Rough set theory (RST) is a new mathematical tool to deal with vagueness and uncertainty. The main 

objective of using RST is to combine approximation of concepts from the collected data. This set can 



Neutrosophic Sets and Systems, Vol. 50, 2022     14  

 

 
Broumi Said et al., An Intelligent Traffic Control System Using Neutrosophic Sets, Rough sets, Graph Theory, Fuzzy sets 
and its Extended Approach: A Literature Review 

easily integrate community opinion and experience without having a precise mathematical model 

and hence, it is pertinent for applications in traffic prediction and control. Uncertainty in the rough 

set approach is expressed by a bounded region of a set, not by partial membership like in fuzzy set 

theory and it is defined by means of topological operations, interior and closure called 

approximations. 

Other parts of the paper are organized as follows: Section 2 provides some literature on road 

traffic control using a Neutrosophic set and its hybrid method. Section 3 discussed the method for 

Rough set for traffic control. Whereas Section 4 provides some recent methods for utilization of 

different graphs for traffic control. Section 5 provides methods for a fuzzy set for traffic control 

followed by conclusions, acknowledgments, and references 

2.  Road traffic control management based on neutrosophic approaches: 

This section contains some of the available methods using Neutrosophic set for Road Traffic control. 

Table 1 summarizes some of the neutrosophic techniques dealing the road traffic control.   

Table 1: The neutrosophic approaches for dealing with the Traffic flow 

Reference year Techniques used  Solve problem 

 [1] 2017 neutrosophic linear equations  Traffic flow 

 [2] 2018 Neutrosophic C-means Road safety 

 [3] 2019 Type 2 fuzzy and interval 

neutrosophic  

operational laws, and aggregation. 

operators have been proposed under 

triangular interval type-2 fuzzy and 

interval neutrosophic environments. 

The validity of the proposed concepts 

has been verified using a numerical 

example. 

 [8] 2019 Gauss Jordon  Traffic control in a neutrosophic 

environment 

 [9] 2019 Dombi interval neutrosophic Traffic control in Dombi interval  

 [4] 2019 Jordan method Traffic control in a neutrosophic 

environment 

 [6] 2019 Neutrosophic set transport sustainability assessment 

 

 [11] 2020 Single valued neutrosophic 

sets 

Emergency Transportation Problem 



Neutrosophic Sets and Systems, Vol. 50, 2022     15  

 

 
Broumi Said et al., An Intelligent Traffic Control System Using Neutrosophic Sets, Rough sets, Graph Theory, Fuzzy sets 
and its Extended Approach: A Literature Review 

 [17] 2020 Interval-valued neutrosophic 

soft set   

Control traffic signals 

 [19] 2019 on neutrosophic Markov 

chain 

Crowed management 

 [5] 2019 Neutrosophic Cognitive 

maps 

Crowded junction in Chennai 

 [10] 2020 Developed  Plithogenic 

fuzzy hypersoft set based 

TOPSIS under neutrosophic 

environment 

Developed  Plithogenic fuzzy 

hypersoft set based TOPSIS under a 

neutrosophic environment to solve a 

parking problem and validated the 

findings by taking two different sets of 

choices compared  with fuzzy TOPSIS 

 [14] 2020 neutrosophic exponentially 

weighted moving average 

Monitoring the road traffic crashes 

 [13] 2021 Type-2 neutrosophic sets 

based  CRITIC and MABAC 

Public transportation pricing system 

selection 

 [12] 2021 Fuzzy FUCOM and  

neutrosophic fuzzy 

MARCOS 

Assessment of alternative fuel vehicles 

for sustainable road transportation 

 [15] 2021 Neutrosophic statistical 

approach 

Reducing and identifying the reasons 

for road accidents and road injuries 

 [16] 2021 AHP, MABAC, and  

PROMETHEE II with single-

valued neutrosophic sets 

Risk Management in Autonomous 

Vehicles 

 [18] 2021 multi-valued neutrosophic 

MULTIMOORA method 

Traffic flow and its application in a 

multi-valued way 

 [19] 2021 Neutrosophic exponentially 

weighted Moving Average 

Statistics 

Monitoring road accidents and road 

injuries 

 [20] 2022 Neutrosophic weighted 

Sensors Data Fusion 

Occupancy detection system 
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Prof. Abdel-Basset et al. (2021) propose an opinion that autonomous vehicles play a key part in an 

intelligent transportation system, however, there are a number of dangers associated with these 

vehicles. As a result, a new hybrid model for identifying these risks is introduced. Uncertainty and 

hazy data are present in this procedure. To deal with the uncertainty, the neutrosophic hypothesis is 

employed. True, indeterminacy and false are the three membership functions provided by the 

neutrosophic theory (T, I, F). The notion of Multi-Criteria Decision Making (MCDM) is employed 

with the neutrosophic theory in this research since autonomous cars have various and conflicting 

criteria. The Analytic Hierarchy Process determines the weights of criteria in the first stage (AHP). 

Second, methodologies such as Multi-Attributive Border Approximation Area Comparison 

(MABAC) and Preference Ranking Organization Method for Enrichment Evaluations II are used to 

rate the risks of autonomous vehicles (PROMETHEE II). Ten different options were used in the case 

study. To demonstrate the robustness of the proposed model, a sensitivity analysis and a comparative 

study with a fuzzy environment are presented. 

Bendadi (2018) proposed two clustering techniques for road traffic control. The first is Credal C-

Means clustering (CCM), and the other is Neutrosophic C-Means clustering (NCM) (NCM). When it 

comes to overlapping items, both proposed methods have a similar tendency to form a new cluster 

that decides the imprecision object. Both techniques have different interpretations of the 

indeterminacy cluster. The number of meta-clusters formed by the CCM algorithm are proportional 

to the number of singleton clusters, whereas, with the NCM technique, all indeterminate objects are 

represented by a single indeterminacy cluster. 

The application of CCM and NCM approaches to real-world data in the field of road safety, as 

represented by trajectories gathered in a bend, provides four clusters that represent the behavior of 

four different types of drivers based on their Turiyam consciousness (Singh 2021): 

 The first cluster depicts the family of the slowest safe driving trajectories. 

 The second cluster consists of the family of fast trajectories with safe driving. 

 The third cluster is the family of sport driving's slowest trajectories. 

 The fourth cluster is the family of sport driving's fastest trajectories.  

 

Pamucar et al. (2021) suggested a hybrid model for evaluating alternative fuel cars for sustainable 

road transportation in the United States that included fuzzy FUCOM and neutrosophic fuzzy 

MARCOS. For public transportation pricing system selection, Simic et al. (2021) extended the CRITIC 

and MABAC techniques to type-2 neutrosophic sets. 
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Rayees et al. (2020) propose four possible categories of Plithogenic hypersoft sets in this study, based 

on the number of characteristics chosen for the application, the type of alternatives, or the degree of 

attribute value appurtenance. The fuzzy and neutrosophic scenarios that potentially have 

neutrosophic applications in symmetry are covered by these four PHSS classes. Then, as an extension 

of the methodology for order preference by the resemblance to an ideal solution, they introduced a 

novel multi-criteria decision making (MCDM) method, which is based on PHSS (TOPSIS). A number 

of real-world MCDM situations are compounded by uncertainty, which necessitates subdividing 

each selection criteria or attributes into attribute values and evaluating all alternatives independently 

against each attribute value. The suggested PHSS-based TOPSIS can be utilized to solve real MCDM 

problems that are precisely characterized by the PHSS concept, in which each attribute value has a 

neutrosophic degree of appurtenance matching to each alternative under examination, in light of 

some supplied criteria. In a real-world application, the suggested PHSS-based TOPSIS solves a 

parking place selection problem in a fuzzy neutrosophic environment, and it is validated by 

comparing it to fuzzy TOPSIS. 

Aslam (2020) developed a control chart for neutrosophic exponentially weighted moving average 

(NEWMA) employing recurrent sampling under neutrosophic statistics. The author used a NEWMA 

chart to track traffic collisions on the highway (RTC). According to a simulated analysis and a real-

world example, the suggested NEWMA chart outperforms existing control charts for monitoring the 

RTC. According to the comparative analysis, It is indicated that the proposed NEWMA chart may be 

successfully used to control RTC. In this way, it built a new S2 N NEWMA control chart for road 

accident monitoring employing a repeating sample strategy in another study by the same author. The 

new chart will help notice shifts in accidents and injuries more quickly than existing charts. 

Lin et al. (2020) developed a novel emergency transport model that simulates emergency transport 

from the logistics center to each disaster location as well as between disaster sites. In ambiguous and 

uncertain contexts, the single-valued neutrosophic set (SVNS) idea was used to convert the 

emergency transshipment problem into a multi-attribute decision-making problem. To rank and 

optimise alternate transportation routes, the proposed method was used to an emergency operation 

scenario. 

Enalkachew Teshome Ayele et al. (2020) in developing countries, For controlling traffic flow at traffic 

intersections, a fixed time traffic signal control method is used. if there are high traffic conditions at 

the junction because it is unable to identify the level of traffic at the junction and enable vehicles 

waiting to cross the junction. To address these challenges, operators must formulate their judgment 

and design an automatic decision-making system to take their place. To make use of fuzziness in 

traffic flow and find efficient and effective timings for optimal phase changes, the operator's decision 

process could be examined using the method of interval-valued neutrosophic soft set theory. The 
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proposed interval valued neutrosophic soft sets (IVNSS) traffic control system can improve traffic 

congestion management. It analyses variable phases and time lengths for the green light time 

duration depending on the present traffic density at the intersection instead of a constant time 

duration 

Wang et al. (2020) proposed a travel time prediction model based on exclusive disjunctive soft set 

theory is developed to address the prediction problem of expressway trip time. The key impact 

factors are retrieved using the soft set parameter reduction theory, and the mapping relationship 

between the influence factors and the travel time is generated using the exclusive disjunctive soft set 

decision system. The soft set theory is used to create the journey time model, and the travel time is 

estimated using the mapping relationship. The experimental results reveal that, when compared to 

the BPR function model, the trip time model based on exclusive disjunctive soft set theory reduces 

prediction error and improves performance significantly. 

Xiao et al. (2021) proposed a method based on prospect theory, this method improves the multi-

valued neutrosophic MULTIMOORA method. The proposed method is used to choose a subway 

building scheme that is appropriate. Sujatha et al (2019) demonstrated how to use Fuzzy Cognitive 

Map and Induced Fuzzy Cognitive Map to assess the traffic flow pattern at a busy crossroads in 

Chennai, India's largest city. Nagarajan et al(2020) developed a decision-making mechanism based 

on a neutrosophic Markov chain to anticipate the traffic volume. 

Fayed et al. (2022) proposed a comprehensive occupancy detection system based on a new fusion 

technique for fusing heterogeneous sensor data that greatly enhances occupancy detection efficiency. 

The proposed algorithm can be used in a traffic control system for roads. This study motivated to use 

its graphical visualization for precise analysis of Traffic Road management. In the next section, some 

of the available methods related to the traffic control system using graph theory is discussed.  

If the Markov Chain (MC) has ′n ′ states, The position of the state vector is tracked using the state 

vector (Fort and colleagues, 2008). Olaleye and colleagues (2009) For the dynamics of the system, the 

Markov technique was applied to automobile traffic. Ning (2013) investigated traffic flow disruption 

along a highway length. The traffic bottleneck caused by big trucks was discussed by Rui et al.(2017). 

Syed Imran Hussain Shah et al (2020) conducted a case study on modern urban transportation 

sustainability assessment. Uncertain or insufficient data must be dealt with when dealing with traffic 

flow issues. Partially indeterminacy and/or partial determinacy are common in real-time decision-

making challenges. Due to a lack of knowledge or other factors, this is the case. Although fuzzy sets, 

as proposed by Zadeh (1965), may handle uncertain information and have been widely employed 

(Koukol et al. (2015). fuzzy numbers cannot represent data with both determinate and indeterminate 

information. For addressing unclear information, biassed possibilities can often be utilised instead of 

biassed probabilities to define MC in a neutrosophic environment (Smarandache, 2013). Markov 
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chains are commonly used in vehicle control systems, traffic regulation, currency exchange rates, and 

queuing systems. Indeterminacy is distinguished from randomness by the fact that the objects in the 

space are both true and untrue at the same time. 

 

 Figure 1 : The understanding of Traffic flow using time based and directions 

 

 

                Figure 2: The phases of light and its connection with traffic flow 

.  
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3. Road Traffic Control Management Based on Rough Set based Approaches 

This section provides some prominent methods for dealing the traffic control using the rough set as 

shown in Table 2. Table 3 providese some methods for dealing the traffic control using fuzzy rough 

sets whereas Table 4 contains hybrid methods for rough sets. In addition, this section clearly 

demonstrates the function of rough set approaches in traffic control management from many angles. 

Table 2: Some available methods for dealing the Traffic flow using a Rough set 

Author Year Country Techniques used  Solved Problem 

 [55] 2005 Singapore Rough set and neural 

network 

Highway traffic flow prediction 

 [56] 2007 China Rough set approach Accident chains exploration 

 [57] 2007 china Rough set approach Determine the most important 

inducement of black-spot and repair 

its effect to reduce traffic accident 

frequency. 

 [58] 2007 China Rough set 

approximation 

Multidimensional state estimation 

rules in the urban traffic system 

 [59] 2008 China Rough set To Identify Causal Factors of 

Accident Severity 

 [60] 2009 China Rough set Prediction Model of Traffic Flow 

 [61] 2009 China Rough set Analyze the cause of road black-

spots 

 [62] 2009 China Rough set Traffic accident diagnosis, Traffic 

Accident Discrimination 

 [63] 2009 China Random Forest 

Rough Set Theory 

To identify the factors Significantly 

Influencing single 

Vehicle crash 

 [64] 2009 Australia Data Mining Assess Crash Risk on Curves 

 [65] 2010 China rough sets and 

association rules data 

mining 

Traffic rule and its flow 

 [66] 2010 China rough set and neural 

network 

Traffic flow forecasting 

 [67] 2010 China Back Forecasting the railway passenger 

traffic demand. 
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propagation neural 

network with a rough 

set 

 [68] 2010 China Rough Set with 

Support Vector 

Machine 

Travel Time Prediction on Urban 

Networks  

 

 [69] 2010 China Rough set Road Traffic Accidents Causes 

Analysis Based on Data Mining.  

 [70] 2010 China Rough set Accident cause analysis 

 

Table 3 : Some available methods for dealing with the Traffic flow using the Fuzzy Rough set 

Author Year Country Techniques used  Solved Problem 

 [71] 2011 China Rough Set and RBF 

Neural Network 

Traffic Safety Evaluation of 

Expressway 

 [72] 2011 India Tabu Search and 

rough set 

Optimizing parking space  

 [73] 2011 China Neural Networks 

Algorithm and 

Rough Set Theory 

A Traffic Accident Predictive Model 

 [74] 2012 China Rough sets Analyzing traffic accidents 

 [75] 2012 India Rough set Traffic Discretization 

 [76] 2012 Poland Reducts Set Traffic intensity prediction, for 

junctions of the network graph’s 

arches 

description 

 [77] 2013 China Evidence theory 

combined with the 

fuzzy rough set. 

Traffic flow 

 [78] 2013 China Rough sets+fuzzy 

set  

Trafic prediction 

 [79] 2013 China Rough sets+fuzzy 

set 

A Knowledge-Based Fast 

Recognition Method of Urban Traffic 

Flow States 

https://www.sciencedirect.com/topics/computer-science/tabu-search
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 [80] 2013 China Evidence Theory 

Combining with 

Fuzzy Rough Sets  

Urban Traffic Flow. 

 [81] 2013 India Rough set and its 

extension 

Short term traffic prediction 

 [82] 2014 China Rough set and 

granulation 

Traffic congestion  

 [83] 2014 China Rough sets  Study on Traffic Control of Single 

Intersection 

 [84] 2014 Australia Rough set Assessing Road-Curve Crash 

Severity 

 [85] 2015 China rough sets+ fuzzy 

sets 

Emergency plan matching highway 

traffic 

 [86] 2015 Italy Dominance-Based 

Rough Set 

Approach 

Setting Speed Limits for Vehicles in 

Speed Controlled Zones 

 

    Table 4: Recent methods for dealing the Traffic flow using Rough set and it’s Hybrid 

Author Year Country Techniques used  Solved Problem 

 [87] 2015 China Degrees of Attribute 

Importance of Rough 

Set 

Selecting scientific and reasonable 

indexes for the prediction model 

of road traffic accident 

morphologies  

[88] 2015 China fuzzy rough set Predicting Urban Traffic 

Congestion 

 [89] 2015 China Rough set tree Accident morphology diagnoses 

 [90] 2015 Thailand Rough set highway traffic data 

 [91] 2016 Turkey Rough set Accident factor analysis  

 [92] 2016 China Rough set decision tree Accident morphology analysis 

 [93] 2016 China grey relational 

analysis+rough set  

To judge the traffic congestion 

state 

 [94] 2017 China fuzzy rough set 

theory+SVM classifier 

Predict city traffic flow 

breakdown 

 [95] 2017 Iran rough sets Solving Road Pavement 

Management Problems 
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 [96] 2018 China Rough set Data-driven car-following model 

 [97] 2018 India Rough sets Predict the causes of traffic 

accidents 

 [98] 2018 Egypt Rough set  Intelligent Traffic System 

 [99] 2018 China Rough Sets (RS) and 

Bayesian Networks 

(BN) 

Predict accident type. 

 [100] 2019 India Combination of 

Support Vector 

Machine and Rough 

Set, 

Traffic Flow Prediction using  

 [101] 2019 China 

 

Rough set Traffic Network Modeling and 

Extended Max-Pressure Traffic 

Control Strategy  

 [102] 2019 China Rough sets based on 

classification 

A classification and recognition 

model for the severity of road 

traffic accidents.  

 [103] 2019 Poland rough sets Reduce congestion in the city by 

predicting the intensity of the 

traffic 

 [104] 2020 China fuzzy neural network 

and rough set theory 

Data imputation for traffic flow 

 [105] 2020 India Neuro-Fuzzy Traffic flow 

 [106] 2020 Egypt Rough interval Transportation problem 

 [107] 2020 Thailand Rough Set and Decision 

Tree Classification 

algorithm 

Predict the accident damage 

magnitude 

 [108] 2021 China Rough set Analyzing Road Users’ Precrash 

Behaviors and Implications for 

Road Safet 

 

Table 3 shows the hybridization of a rough set with other set theories for handling traffic flow. 

Motivated by Table 4 Prof. Ang, K. K. (2005) proposes a new rough set–based pseudo-outer-product 

RSPOP) the algorithm that combines the RSPOP technique with the sound concept of knowledge 
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reduction from rough set theory. The suggested algorithm not only accomplishes feature selection by 

reducing characteristics but also extends the reduction to rules that are devoid of redundant 

attributes. 

Wong and Chung (2008) used a comparison of methodology approaches to identify causal factors of 

accident severity. Accident data were first analyzed with a rough set of theories to determine whether 

they included complete information about the circumstances of their occurrence according to an 

accident database. Derived circumstances were then compared. For those remaining accidents 

without sufficient information, logistic regression models were employed to investigate possible 

associations. Adopting the 2005 Taiwan single auto vehicle accident data set, the results indicated 

that accident fatality resulted from a combination of unfavorable factors, rather than from a single 

factor. Moreover, accidents related to rules with high or low support showed distinct features. Li, 

(2011) developed an enhanced rough set theory algorithm to investigate the cause of roadblock spots 

in order to confirm the most relevant inducements in road traffic accidents. Pang et al. (2010), 

proposed traffic flow forecasting based on a rough set and neural network. The forecasting data 

provided by the neural network-forecasting model is adjusted by rough set theory to improve the 

traffic flow forecasting accuracy in the proposed traffic flow-forecasting theme. The simulation 

results suggest that using the proposed traffic flow technique can greatly enhance forecasting 

accuracy. 

Deng (2010) proposed a hybrid intelligent forecasting model combining back propagation neural 

networks with a rough set to forecast railway passenger traffic demand with pre-treated forecasting 

data. The experiment used data from China's railway passenger traffic from 1991 to 2008 as learning 

and testing samples, and the efficiency of this method was established in comparison to the linear 

recursive method. Chen et al. (2010) put forward a new prediction model that combined a rough set 

with a support vector machine. The concept of Rough set is used to pre-process the traffic data that 

is noisy, missing, and inconsistent then deduce some rules for framing the support vector machine 

(SVM) model. When comparing the committee model to the single SVM predictions utilizing real 
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traffic data collected in Chengdu, the authors concluded that the integration of the two models leads 

to predicting travel time effectively 

Banerjee & Al-Qaheri (2011) developed a revolutionary software interface to guide and help drivers 

in making better parking spot decisions and dealing with unpredictable traffic situations on the road. 

The interface is based on an intelligent hybrid strategy for parking space optimization that combines 

a Tabu metaphor with a rough set. The interface might be tested as an off-line decision support 

system before being integrated into an online traffic network, with instruction delivered via mobile 

phone-based voice instructions (Fan, 2013), both traffic prediction and control have been done using 

a rough set theory. In general, the transport system is a non-linear, time-varying, and delaying large-

scale system, whereas the traffic system is a complex, time-varying, high ambiguous, and non-linear 

large system with human assistance and hence faces the greatest challenge to the transportation 

system. The fundamental principle of predicting traffic flow is predicting the number of vehicles at 

the k+1th moment in accordance with the previous moments. Once this prediction is done, then the 

controller starts controlling accordingly and it can be observed that the prediction of short-term traffic 

flow is very important in real-time intelligent traffic control. 

The objective of signal control is to minimize the average delay time or a number of stops for 

vehicles passing through the junction. In a cycle, various traffic flows will take the right of passing in 

an intersection called phase. There are four phases in a normal four-direction intersection. In China, 

the right turning movement has a special passing rule. Therefore, the four phases movements namely 

straight going in south-north left turning in south-north, straight-going in east-west, and left-turning 

in east-west. Cars can pass through only two directions in one phase at the same time. According to 

the given cycle, the rate of green light is independently adjusted to track the immediate traffic flow. 

In this work, there are three control variables namely signal period (T), the rate of green light (⅄), and 

phase difference tp. When the flow of vehicles is infrequent, the signal period may be short but not 

smaller than 30 seconds. In such a manner, this can prevent the green light time of assured direction 

smaller than 15 seconds, and vehicles do not have sufficient time through the direction, which affects 

the safety of traffic. When the flow of vehicles is heavy, the signal period should belong, but cannot 
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exceed 200 seconds. Else ways, the red light time of a certain phase is too long and the drivers cannot 

suffer from behaviorism. Here, it has been dealt with a multiphase fuzzy control algorithm where the 

vehicle queues have been characterized by the number of vehicles between two detectors. The 

distance of detectors is normally from 80 to 100 meters and lies in front of the stopping line in the 

intersection. In each phase, the basic green light time is 10 seconds and the time of directing is 15 

seconds.  

By considering the number of vehicles in the controlled phase future in 10 seconds and the 

vehicle queues in other red phases, the system provides the delaying time and makes the rough set 

rule judgment. The range of delaying time is 4 to 26 seconds. Using simulation to the general control 

method and the rough set predicting control algorithm, the delaying time of green light in four phases 

and eight periods. If the greatest green light time of directing is 70 seconds then turning left and right 

is 40 seconds. In each period, the loss of green light time is 15 seconds. The signal period and green 

light time of all the phases can be adjusted accordingly in addition to the variation of traffic flows 

and mitigates traffic difficulty and the waste of green light resources.  

Predicting the short-term traffic flow is expedient using a rough set. The average time delay 

may be minimized using a rough set than with fixed timing in signal control of the unusual 

intersection. Here, six state variables have been taken into account for the signal control in a single 

intersection at the same time and it is found that the present system is highly reliable, compatible, 

and surpasses the traditional time control during great traffic change. Minal and Bajaj (2013) uses 

some data mining tools were used to develop a prediction system. The approach helped to advance 

rough set theory, evolutionary algorithms, and wavelet neural networks. There were three stages to 

the modeling process: discretion, attribute reduction, and training. To begin, the upgraded genetic 

algorithm was applied to discrete-continuous qualities with the fewest broken points to keep the 

discernable ability of the judicial system. 

Decretive data was then reduced using rough set theory in order to improve prediction speed 

and simplify network construction. Finally, nonlinear wavelet neural networks were used to process 
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the reduced data. Through comparative testing, improved precision and speed were gained using 

the data mining approach, which provided a novel concept for short-term traffic flow prediction. 

A paper by Chen et al. (2014) proposed a generalized model based on granular computing to 

recognize and analyze the traffic congestion of urban road networks. Cheng, (2014) the authors 

described the experience and principle of traffic control as knowledge. The complete state of the 

intersection is determined by the classified arrival car number. In the space of intersection state, the 

knowledge face to the controlling of isolated intersection is applied. After that, a traffic signal control 

model based on a rough set was created. In Rakotonirainy et al. (2014) the authors utilized Text 

mining methods such as rough set theory and the Ward clustering algorithm to improve knowledge 

related to risk and contributing factors to road-curve crash severity. In this study, the authors proved 

that the proposed techniques could be applied within other safety domains and may reveal heretofore 

unrealized contributors to incidents and accidents. Shao(2015) the authors applied the concept of the 

soft fuzzy rough set theory to predict urban traffic congestion. For this purpose, they present a 

practical example predicting urban traffic congestion based on the soft fuzzy rough set. In Gang 

(2015) proposed a traffic accident morphology diagnostic model based on a rough set decision tree. 

The advantage of this model it can be used by road traffic managers to identify the potential accident 

morphology realized the prediction for potential traffic accidents and formulated targeted accident 

solutions. Zhang (2016)  the authors analyzed urban road traffic information using grey relational 

clustering and combined the results with rough set theory to establish a decision table system. To 

evaluate the degree of urban traffic congestion (jam), the authors used three properties of traffic 

flows (traffic flow velocity, traffic flow density, and traffic volume). They judged which road was 

allowed smooth traffic flows, which was suffering from a light traffic jam, which was suffered from 

a traffic jam, and which was suffered from a heavy traffic jam state. Finally, the authors found their 

method can be more conducive to dynamic traffic warnings. Yang(2017) introduced the fuzzy rough 

set theory to solve the task of attribute reduction, and then utilized an SVM classifier to forecast city 

traffic flow breakdown. Particularly, in this paper three definitions to describe city traffic flow more 

accurately are given that is, 1) Pre-breakdown flow rate, 2) Rate, density, and speed of the traffic flow 

breakdown, and 3) Duration of the traffic flow breakdown. In another study, Nithya et al. (2018) 
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described the Rough set approaches for detecting and analyzing the causes of an accident. In this 

work, they conclude that Driver Fault is the major cause of traffic accidents. 

Xiong et al. (2018) applied the rough set-based Bayesian networks as a complementary tool for 

roadway traffic accident analysis based on Naturalistic driving data (NDD). The proposed 

framework was demonstrated using the the100-car naturalistic driving data from Virginia Tech 

Transportation Institute to predict accident type. The authors employed Rough Set Theory to 

reconstruct and simplify the components that influence the severity of a traffic collision in this 

research. 

The importance of qualities in people, cars, roads, environments, and accidents was calculated using 

rough set theory. Marek and Anna (2019) utilized using rough set theory, data mining of traffic 

vehicles and decision rules for the number of traffic vehicles that have been constructed at specific 

locations around the city (RST). As part of the Green and Sustainable Freight Transport Systems 

(GRASS) in Cities project, RST was used to extract knowledge from empirical data collected during 

a study of traffic intensity in favored areas in Szczecin. 

In this paper, vehicle traffic volume was investigated using RST with 120 objects, 16 well-defined 

rules, 9 useful advantageous vague rules, three condition characteristics (vehicle type, experiment 

location, and vehicle speed), and one decision attribute (number of vehicles ). And it was discovered 

that 65 percent of the examined examples admit to generating specific rules, according to the 

estimated signal of the quality of approximation of the condition attributes. Furthermore, because 

RST's knowledge extraction ratio is 4.8, the average of five objects has been characterized by one 

helpful rule and the connotation of conditional attribution has been checked. Zaher et al. (2020) 

presented a new rough interval max algebra approach (RIMAA) for solving the traffic problem with 

rough interval data.  It motivated to deal with traffic flow using interval-valued rough set and its 

hybridization. In the next section, some of the available approaches are interval-set, vague set, and 

another set.  

4. Road Traffic Control Management based on graph approaches: 
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  In this section, some graph theory-based approaches for resolving road transport networks or 

studying traffic flow across road networks are provided in Table 5 under classical, fuzzy, 

intuitionistic fuzzy, and neutrosophic environments. One of the reasons for this is that, as illustrated 

in Figure 3, traffic flow can be represented by the vertex and edges of any defined graph. 

Table 5. Summary of the available multi-criteria decision-making (graphs) approaches for the traffic 

management system. 

Reference Year Techniques used  Solve problem 

[39] 2012 m-polar fuzzy graph Traffic-accidental zones in a road network. 

[23] 2013 Fuzzy graph Minimize the waiting time of the vehicle 

using vertex coloring function 

[24] 2013 Fuzzy graph Classify the accidental zone 

of a traffic flows. 

[25] 2014 Interval-valued fuzzy 

planar graphs 

Minimize the crossing between roads 

[28] 2018 Neutrosophic bipolar 

planar graph 

To monitor traffic 

 [29] 2019 product bipolar 

fuzzy graphs 

PBFPG of a road network 

 [31] 2019 Hesitancy fuzzy 

magic labeling 

Smooth the network traffic and contribute 

the uniformity of the traffic distribution 

using fuzzy magic labeling graphs 

 [32] 2020 Fuzzy graphs+ 

MatLab program 

Using a MATLAB program based on fuzzy 

graph-FCN-FIS, minimize traffic light cycle 

time at crossings. 

 [34] 2020 cubic graphs Get the least time to reach the destination 

 [35] 2020 Multigraph with 

Picture Fuzzy 

Information 

Minimize the crossing between roads 

 [36] 2020 Fuzzy graph 

Structures 

Detection of the road crimes 

 [37] 2020 Intuitionistic fuzzy 

soft digraph 

Road Safety Measures 

 [38] 2020 Edge coloring of 

fuzzy graphs 

Determined the present condition of the 

traffic in the traffic light system using color 

density with a percentage  
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 [40] 2021 Cyclic connectivity 

index of fuzzy 

incidence graphs 

Minimize road accidents 

 [41] 2021 fuzzy graph  Reduce the traffic congestion in accidental 

prone zone 

 [42] 2021 Application of genus 

graphs under picture 

fuzzy environment 

To control traffic jam on road network 

 [43] 2021 Fuzzy incidence 

coloring techniques 

Reduce the frequency of accidents and 

vehicle waiting times in traffic flow 

scenarios, 

 

 

Figure 3. The graphical visualization of Traffic can be possible using vertex and edges [116] 

 

Akram et al. (2012) described how to discover traffic-accidental zones in a road network using various 

sorts of m-polar fuzzy edges. Dey and Pal (2013) traffic congestion has become a major issue in cities 

as the number of vehicles on the road grows rapidly. The goal of the traffic light setting problem is 

to figure out how to set the traffic lights such that the total time vehicles spend on the road is as short 

as possible. To depict the traffic network in this paper, we employ a fuzzy graph model. The traffic 

light problem is solved using the vertex coloring function (crisp mode) of a fuzzy graph. Cut of graph 

G=(V, E), the cuts of fuzzy graph G, is the basis for the function. Using this method, the traffic light 

issue is investigated. The authors solved the problem discussed in Dey and Pal (2013) by utilizing a 

fuzzy network to encode the vertex membership value for traffic signal length based on vehicle 

number. In this scenario, because the route had the most vehicles, the time spent waiting was the 

longest. When a track has a large number of vehicles, it must be protected in order to avoid accidents, 

in which all of the vehicles on the track must wait. Moreover, there is a maximum amount of time to 

wait. 
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Pramanik et al.(2014) developed a model for designing the road map as an interval valued fuzzy 

planar graph with membership values of vertices and edges taken as an interval number, and then 

estimated the degree of planarity of interval valued fuzzy graphs to minimize road crossings (IVF 

graph). The measurement of congestions in the paper was done as an interval valued fuzzy (IVF) 

number. 

Akram (2018) developed a traffic-monitoring road network model using the concept of bipolar 

neutrosophic planar graph. The notion of bipolar neutrosophic planar graphs was utilized to build 

road networks. The proposed method can be used to calculate and track the annual proportion of 

accidents. By monitoring and implementing extra security steps, the total number of accidents can 

also be minimized. 

Sumera et al. (2019) explained the notion of planarity product bipolar fuzzy graphs was used to solve 

the problem of crossing roads in a road network modelled by product bipolar fuzzy graphs. In the  

paper of Fathalian et al. (2019) the authors demonstrate whether any simple graph is hesitancy fuzzy 

magic labeling in this work by studying the concept of hesitancy fuzzy magic labelling of a graph. 

We show that any finite path graph, cyclic graph, star graph, and any complete graph derived from 

these, as well as any connected graph, have hesitancy fuzzy magic labelling. Finally, we discuss 

various plumbing and traffic flow applications for hesitancy fuzzy magic labelling graphs. 

Rosyida et al. (2020) propose a phase scheduling that considers traffic intensities using fuzzy graph 

and fuzzy chromatic number (FCN) of the fuzzy graph. In this paper, two algorithms are constructed. 

The first is an algorithm to model a traffic light system on an intersection using fuzzy graph and 

determine phase scheduling using FCN of the fuzzy graph. The second is an algorithm to determine 

duration of green lights of the phases in the first algorithm using Mamdani-FIS. In addition they 

created Matlab codes of the above two algorithms. 

The authors evaluated the algorithms through case studies on two intersections with 4 approaches in 

Semarang City, Indonesia, namely "Kaligarang" intersection and “Lamper Gadjah” intersection.  

The results show that the combination of FCN of fuzzy graph and the Mamdani-FIS gives some 

options of phase scheduling with different cycle times. In addition, the approach with high traffic 

volume gets a longer green time. The phase scheduling proposed in this research increases 

performances of intersections under study in that the cycle times of the proposed scheduling are 

shorter than that of the existing systems. It means that it is superior in reducing the average time a 

driver spends his/her time on the intersection.  

Muhiuddin (2020) applied the notion of cubic graphs in traffic flows to arrive at the shortest time 

possible. They used fuzzy variables and interval-valued fuzzy variables to represent two primary 

parameters in their study: traffic volume and distance between two intersections. Each intersection 

is represented by a single vertex, and each highway between two intersections is represented by a 

graph edge. The authors of Koam (2020) adapted the concept of fuzzy network structures to decision-

making in the detection of marine and road crimes, and provided an algorithm to solve these two 
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problems. The authors investigated whether road connecting any two cities is the most important for 

a certain crime, using the notion of fuzzy graph structure. Singh (2021) tried to provide the threshold 

for which cubic graph can be approximated for given traffic and its density. It can be used to control 

the traffic speed based on human turiyam cognition (Singh 2021) rather than red, green or yellow 

light. It is totally based on human Turiyam cognition that red light need to stop, green light need to 

go and yellow light means slow. It will be helpful in finding heterocolinic pattern on the traffic in 

case of Neutrotraffic (Singh 2022).   

Sarala and Tharani (2020) tried to minimize the human loss during accidents and reduced the waiting 

time of vehicles in lane at traffic flow from existing traffic system, Yamuna et al.(2021) proposed a  

new methodology based on Fuzzy incidence coloring numbers to identify a solution to traffic flow 

problem. The real-time traffic flow problem was modeled by fuzzy graph including eight vertices. 

Nazeer et al. (2021) provided real-life applications of cyclic connectivity index of fuzzy incidence 

graphs in a highway system of different cities to minimize road accidents. In the planning of road 

maps the crossing between congested (strong) road and non-congested (weak) road may be accepted 

with certain amount of protection as this crossing is low risky as comparison to the crossing  between 

two congested (strong) roads.  

Das et al. (2021) considered the rate of congestion as picture fuzzy set (PFS) and modeled up the 

design of road map as PFPG. They defined a very important notion of PFG theory called degree of 

planarity.  The concept of degree of planarity (DP) determine the nature of planarity (NP) of a PFPG 

.If the DP of a PFG is (1, 1, 1), then there is no crossing between two edges on DP. The congestions of 

roads is a fuzzy quantity as rate of congestions depends on decision makers attitude, practices, 

behavior, etc. The measurement of congestions as a point is not easy for decision maker. 

Mahapatra et al. (2020) discussed the degree of capacity of vehicles of a city is defined in terms of its 

positive membership and negative membership. Positive membership degree can be depicted as how 

much capacity, vehicles of a city posses and negative membership can be depicted as how much 

capacity is lost by the vehicles of a city. The membership values of edges of this graph show the 

capacity of vehicles on the road joining any two cities. The positive and negative membership degree 

of edges can be interpreted as the percentage of increasing and decreasing capacity of vehicles on the 

road between any two cities 

The authors claimed that the concept of Fuzzy incidence coloring might be applied to other modes of 

transportation, such as air, rail, and marine, to reduce human loss. It can be observed that the positive, 

negative and uncertain regions of traffic flow can be approximated via rough neutrosophic theory 

and its graph visualization, which will be the future scope of the paper.  

 

5. Traffic management systems based on other novel fuzzy sets approaches 
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This section will discuss a few applications of fuzzy set extensions on road traffic networks, such as 

intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets, vague sets, and hesitant fuzzy sets. 

Table 6 contains some of the methods for resolving problems involving road traffic networks. 

Table 6: Some new methodology to solve Traffic technique using an extension of Fuzzy set 

 

Reference year Techniques used  Solve problem 

 [44] 2008 Vague set  Route Choice Approach to Transit 

Travel 

 [45] 2010 Vague set theory road safety evaluation 

 [33] 2014 Linguistic variable in interval type-2 

fuzzy entropy weight  

Ranking of causes lead to road 

accidents 

 [47] 2017 The hesitant distance set on hesitant 

fuzzy sets 

urban road traffic state identification 

 [48] 2017 Dual hesitant fuzzy rough pattern 

recognition approach 

Urban traffic modes recognition 

 [46] 2018 Interval-valued intuitionistic fuzzy 

sets 

Prediction of traffic emission 

 [50] 2018 Entropy Analysis on Intuitionistic 

Fuzzy Sets 

And Interval-Valued Intuitionistic 

Fuzzy Sets 

Mode assessment of open 

communities on surrounding traffic 

 [51] 2019 Double hierarchy hesitant fuzzy 

linguistic -ORESTE method 

Assessment of traffic congestion 

 [53] 2020 Euclidean distance intuitionistic 

fuzzy value with TOPSIS ranking 

method 

Measuring drivers incapability 

 [54] 2020 Interval-valued intuitionistic fuzzy 

environment 

Public bus route selection 

 [50] 2021 IVIF-VIKOR method To assess urban road traffic safety. 

 [116] 2021 Complex Spherical Set CSF information could be used to 

monitor the day and night traffic 

clashes on four-way road junctions. 

 [52] 2021 IF-MABAC Evaluating the intelligent 

transportation system 
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 [49] 2021 Interval-valued spherical fuzzy 

analytic hierarchy process method 

Evaluate public transportation 

development 

 

Here's a quick rundown of some of the possible findings: Tan (2008)  connected the vague rough set 

for road section traffic state identification utilizing ambiguous sets was presented to identify the 

traffic condition of road sections and give decision support for traffic management. They have set up 

a decision matrix for traffic conditions. The steps for determining the traffic state of a road stretch 

were supplied by the authors. They presented a vague set and group decision-making-based method 

for acquiring knowledge about regional road network traffic situations followed by Wei and 

MA(2020). 

The traffic state identification methods could meet the current demand for real-time traffic control 

and guidance, while the traffic state knowledge acquisition methods might give a mechanism for 

analyzing the time-space traffic flow evolution pattern of road networks. The hazy aggregation value, 

the weighted sums, and the scoring value are discovered and used to determine the substantially 

worst traffic status link called the regional road network's bottleneck link. 

Fangwei et al. (2017) proposed a fuzzy traffic state identification method in which the three attributes 

f 1 (saturation degrees of the traffic flow), f 2 (vehicle queue length), and f 3 (average delay time of 

vehicles) are described by the Hesitant Fuzzy Sets concept for the four congestion levels E 1 

(unobstructed traffic), E 2 (slight congestion traffic), E 3 (congestion traffic), and E4 (extreme 

congestion traffic).A another author from China, Tian et al.(2018) offered a novel multiple attribute 

decision makings strategy for handling the problem of mode assessment of open communities on 

surrounding traffic in an intuitionistic fuzzy environment under an intuitionistic fuzzy environment. 

Taking into account road capacity, safety, and other factors. Also, The Chinese authors looked at four 

aspects of mode assessment of open communities which is based on human Turiyam as discussed by 

Singh (2021). These attributes are denoted as F = { 𝑓1,𝑓2, 𝑓3, 𝑓4},where 𝑓1 represents the average delay 

time at the community; 𝑓2  represents the-safety-level of the community(number of vehicles 

collisions at the community intersection); 𝑓3  represents the average speed of vehicles;, and d𝑓4 

represents the average driving path length of vehicles. Wang (2019) developed the DHHFL-ORESTE 

method (double hierarchy hesitant fuzzy linguistic ORESTE method) to evaluate traffic congestion 

and identify the most congested city in new first-tier cities in the article. Akram et al. (2021) created 

a new concept known as a complicated spherical fuzzy set in their research (CFS). The CSF data can 

be used to track traffic congestion on four-way intersections during the day and at night. Merging, 

diverging, and crossing are three common forms of traffic collisions to expect. Figure 2 depicts a clear 

picture of the clashing spots on a four-way intersection, which include six merging clashes, nine 

crossing clashes, and four diverging clashes. 

The day and night check on traffic collisions may be done with complete information about 

prospective collisions, which can be demonstrated using CFS data by Akram et al. (2021). The 

daytime merging, crossing, and diverging clashes are represented by the amplitude term of 
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membership, neutral, and non-membership grades, respectively, whereas the nighttime merging, 

crossing, and diverging clashes are represented by the phase term of membership, neutral, and non-

membership grades, respectively and can be assigned 0.1, 0.7, and 0.3 as the membership, neutral 

and non-membership respectively, for a stray four-way junction with one merging, five crossing, and 

two diverging collisions during the day. If there are 12 traffic disputes during the night, three for 

merging, four for crossing, and five for diverging, the membership, neutral, and non-membership 

grades might be assigned phase terms of 0.2, 1.2, and 1.4, respectively. These data may be used to 

create a CSFN that describes information regarding traffic jams at a four-way intersection. 

Furthermore, the CSF data allows for the investigation of traffic collisions at all types of road 

crossings, as well as the characterization of traffic flow over a certain time period. 

If they utilize a spherical fuzzy set here, it will only gather data during daytime traffic jams 

because it can't store two-dimensional data. The use of a complex Pythagorean fuzzy set, on the other 

hand, epitomizes two-dimensional information and only comprises data for merging and diverging 

traffic confrontations. It does not, however, constitute a crossing clash at any time of day or night. 

These facts raise CSFS requirements within the existing model by improving the information on day 

and night traffic collisions, as well as merging, crossing, and diverging collisions. 

Yanping (2021) proposes a unique intuitive distance-based IF-MABAC approach to evaluate the 

performance of financial management, based on the standard multi-attribute border approximation 

area comparison (MABAC) method and intuitionistic fuzzy sets (IFSs). First, a literature review is 

carried out on the subject. In addition, certain key IFS theories are briefly discussed. Furthermore, 

because subjective randomness is common while calculating criteria weights, the maximizing 

deviation approach is used to determine objectively the weights of criteria. After that, the traditional 

MABAC approach is extended to the IFSs using innovative distance measurements between 

intuitionistic fuzzy numbers (IFNs). As a result, all businesses may be ranked, and the one with the 

best environmental practices and awareness can be found. 

Duleba et al. (2021) presented Interval-valued Spherical Fuzzy Analytic Hierarchy Process as a 

methodological approach presented with the goal of handling both types of problems at the same 

time, taking into account hesitant scoring and synthesizing different stakeholder group opinions 

through a mathematical procedure. The additional extensions with a more flexible characterization 

of membership function are preferable to interval-valued spherical fuzzy sets. Decision makers' 

judgments regarding the membership functions of a fuzzy set are incorporated into the model using 

interval-valued spherical fuzzy sets instead of a single point. Also, solved public transportation 

problems using an interval-valued spherical fuzzy AHP approach. Due to the inclusion of three 

traditionally antagonistic stakeholder groups, public transportation development is an appropriate 

case study to explain the new model and analyze the outcomes. This motivated me to utilize 

neutrosophic set for dealing the Road traffic. In the next section, some of the available methods for 

road control using a neutrosophic set is discussed.  
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6. Conclusions 

This paper provide a survey on available mathematical model for traffic flow using neutrosophic 

set, rough set, fuzzy set, and its extensions in Table 1 to 4 and Table 5. The graph based traffic flow 

methods also discussed in Table 5. It can be observed that neutrosophic rough set the hybrid set 

structures where computational techniques based on just one of these structures will not always 

produce the best results. The hybrid of two or more methods can frequently produce better results, 

which can be considered as one of the efficient method for measuring uncertainty in traffic flow as 

positive, negative and uncertain region to control the accidents.  

       In near future the author will focus on neutrosophic rough set based traffic flow and its 

graphical visualization. As can be seen, even with certain norms and laws in place, passengers and 

drivers disregard the traffic system, resulting in a variety of large and little incidents, how do we 

govern, manage, and maintain road discipline? Is the car-sharing system a viable option for eco-

friendly and urban mobility? 
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—————————————————————————————————————————-

1. Introduction

Generally, the inconvenience of previously established strategies and designs is overcome by

recently established fuzzy algebraic structures. Routine mathematics cannot always be used

because of unclear and missing knowledge in certain regular structures. Various methodolo-

gies were seen as alternative groups to deal with these issues and avoid vulnerabilities, like

probability, rough set, anda fuzzy set hypothesis. Unfortunately, each of these alternate math-

ematics has a side and inconveniences such as the majority of words like real, beautiful, famous

that are not clearly observed or indeed vague. Henceforth, the rules for such terms vary from

person to person.

Zadeh [1], proposed the idea of the fuzzy set which is focussed on the possibility of the

support highlight doling out an enrollment grade in [0, 1] to deal with such sort of vague

and questionable data. Taking into account the possibility of enrolment and non-investment,
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Atanassov [2, 3] proposed an intuitionistic fuzzy set which is an augmentation of a fuzzy set.

As an extension of intuitionistic fuzzy set, Smarandache’s [4, 5] introduced neutrosophic logic

and sets. A neutrosophic set is based on three degrees: the level of participation, indetermi-

nacy, and non-enrollment degree. The notion of a soft set is introduced in [6] by Molodtsov.

Several operations were added by Ali et al. in soft set in [7]. In [8]- [10], Yager has executed

the idea of the Pythagorean fuzzy set. Peng et al. presented several findings in [11, 12] on

the measurements of the Pythagorean fuzzy and soft sets. Moreover, several new models have

been investigated in [13]- [16].

In 1971, the concept of a fuzzy subgroup was proposed by Rosenfeld [17] and the investiga-

tion of fuzzy subgroups began. Later on, many algebraic structures; like groups, rings, fields,

graphs, and modules, etc. have been developed in [18]- [38]. In this piece of work, we investi-

gate the notion of γ-single valued neutrosophic rings, ideals, and sum and product of γ-single

valued neutrosophic ideals. The proposed work is the generalization of many existing algebraic

structures on fuzzy set, intuitionistic fuzzy set, (α, β)-intuitionistic fuzzy set etc.

The paper is structured as follows: we provide some basic concepts relating to γ-single valued

neutrosophic rings and ideals in Section 3. We give an overview of the sum and product of

γ-single valued neutrosophic ideals, also suggested several suggested several characterizations

in Section 4.

2. Preliminaries

In this section neutrosophic subrings, neutrosophic normal subrings, and neutrosophic ideals

are defined.

Definition 2.1. [18] A single valued neutrosophic set U on the universe of discourse R is

defined as:

U = {〈u, iU (u), tU (u), fU (u)〉 | u ∈ R},

where i, t, f : R→ [0, 1] and 0 ≤ iU (u) + tU (u) + fU (u) ≤ 3. Here, iU (u), tU (u) and fU (u) are

called membership function, hesitancy function and non-membership function respectively.

Definition 2.2. [18] Let U & V be two SVNS on R. Then

(1) U ⊆ V , ⇔ U(u) ≤ V (u). i.e. iU (u) ≤ iV (u), tU (u) ≤ tV (u) and fU (u) ≥ fV (u).

Also U = V ⇔ U ⊆ V and V ⊆ U .

(2) W = U ∪ V such that W (u) = U(u) ∨ V (u) where

U(u) ∨ V (u) = (iU (u) ∨ iV (u), tU (u) ∨ tV (u), fU (u) ∧ fV (u)), for each u ∈ R. i.e.

iW (u) = max{iU (u), iV (u)}, tW (u) = max{tU (u), tV (u)} and

fW (u) = min{fU (u), fV (u)}.
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(3) W = U ∩ V such that W (u) = U(u) ∧ V (u) where

U(u) ∧ V (u) = (iU (u) ∧ iV (u), tU (u) ∧ tV (u), fU (u) ∨ fV (u)), for each u ∈ R.

i.e. iW (u) = min{iU (u), iV (u)}, tW (u) = min{tU (u), tV (u)} and

fW (u) = max{fU (u), fV (u)}.
(4) U c(u) = (fU (u), 1− tU (u), iU (u)), for each u ∈ R. Here (U c)c = U .

Definition 2.3. [39] A single valued neutrosophic set (SV NS) U = (iU , tU , fU ) of a ring R

is said to be an single valued neutrosophic subring (SV NSR) if

(1) iU (u− v) ≥ ∧{iU (u), iU (v)}.
(2) tU (u− v) ≥ ∧{tU (u), tU}.
(3) fU (u− v) ≤ ∨{fU (u), fU (v)}.
(4) iU (uv) ≥ ∧{iU (u), iU (v)}.
(5) tU (uv) ≥ ∧{tU (u), tU (v)}.
(6) fU (uv) ≤ ∨{fU (u), fU (v)}, ∀ u, v ∈ R.

Definition 2.4. [39] A subset U = (iU , tU , fU ) of a ring R is said to be an single valued

neutrosophic normal subring (SV NNSR) of R if

(1) iU (uv) = iU (vu).

(2) tU (uv) = tU (vu).

(3) fU (uv) = fU (vu), ∀ u, v ∈ R.

Definition 2.5. [39] A single valued neutrosophic set U = (iU , tU , fU ) a ring R is said to be

an single valued neutrosophic left ideal (SV NLI) if

(1) iU (u− v) ≥ ∧{iU (u), iU (v)}.
(2) iU (uv) ≥ iU (v).

(3) tU (u− v) ≥ ∧{tU (u), tU (v)}.
(4) tU (uv) ≥ tU (v).

(5) fU (u− v) ≤ ∨{fU (u), fU (v)}.
(6) fU (uv) ≤ fU (v), ∀ u, v ∈ R.

Definition 2.6. [39] A single valued neutrosophic set U = (iU , tU , fU ) a ring R is said to be

an single valued neutrosophic right ideal (SV NRI) if

(1) iU (u− v) ≥ ∧{iU (u), iU (v)}.
(2) iU (uv) ≥ iU (u).

(3) tU (u− v) ≥ ∧{tU (u), tU (v)}.
(4) tU (uv) ≥ tU (u).

(5) fU (u− v) ≤ ∨{fU (u), fU (v)}.
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(6) fU (uv) ≤ fU (u), ∀ u, v ∈ R.

Definition 2.7. [39] A single valued neutrosophic set U = (iU , tU , fU ) a ring R is said to be

an single valued neutrosophic ideal (SV NI) if

(1) iU (u− v) ≥ ∧{iU (u), iU (v)}.
(2) tU (u− v) ≥ ∧{tU (u), tU (v)}.
(3) fU (u− v) ≤ ∨{fU (u), fU (v)}.
(4) iU (uv) ≥ ∨{iU (u), iU (v)}.
(5) tU (uv) ≥ ∨{tU (u), tU (v)}.
(6) fU (uv) ≤ ∧{fU (u), fU (v)}, ∀ u, v ∈ R.

3. γ-Single Valued Neutrosophic Subrings and Ideals

This section discusses some basic concepts and results related to γ-single valued neutrosophic

subrings and ideals.

Definition 3.1. If U be a single valued neutrosophic subset of ring R then γ-single valued

neutrosophic subset U is described as,

Uγ =
{
〈u, iγ(u), tγ(u), fγ(u)〉 | iγ(u) = ∧{iU (u), γ}, tγ(u) = ∧{tU (u), γ}, fγ(u) = ∨{fU (u), γ}, u ∈ R

}
,

where γ ∈ [0, 1].

Definition 3.2. Let U & V be two γ-SVNS on R. Then

(1) Uγ ⊆ V γ , ⇔ Uγ(u) ≤ V γ(u). i.e. iUγ (u) ≤ iV γ (u), tUγ (u) ≤ tV γ (u) and

fUγ (u) ≥ fV γ (u). Also Uγ = V γ ⇔ Uγ ⊆ V γ and V γ ⊆ Uγ .

(2) W γ = Uγ ∪ V γ such that W γ(u) = Uγ(u) ∨ V γ(u) where

Uγ(u) ∨ V γ(u) = (iUγ (u) ∨ iV γ (u), tUγ (u) ∨ tV γ (u), fUγ (u) ∧ fV γ (u)), for each u ∈ R.

i.e. iW γ (u) = max{iUγ (u), iV γ (u)}, tW γ (u) = max{tUγ (u), tV γ (u)} and

fW γ (u) = min{fUγ (u), fV γ (u)}.
(3) W γ = Uγ ∩ V γ such that W γ(u) = Uγ(u) ∧ V γ(u) where

Uγ(u) ∧ V γ(u) = (iUγ (u) ∧ iV γ (u), tUγ (u) ∧ tV γ (u), fUγ (u) ∨ fV γ (u)), for each u ∈ R.

i.e. iW γ (u) = min{iUγ (u), iV γ (u)}, tW γ (u) = min{tUγ (u), tV γ (u)} and

fW γ (u) = max{fUγ (u), fV γ (u)}.
(4) Uγc(u) = (fUγ (u), 1− tUγ (u), iUγ (u)), for each u ∈ R. Here (Uγc)c = Uγ .

Definition 3.3. A γ-single valued neutrosophic set (γ-SV NS) Uγ = (iγU , t
γ
U , f

γ
U ) of a ring R

is said to be an γ-single valued neutrosophic subring (γ-SV NSR) if

(1) iγU (u− v) ≥ ∧{iγU (u), iγU (v)}.
(2) tγU (u− v) ≥ ∧{tγU (u), tγU (v)}.
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(3) fγU (u− v) ≤ ∨{fγU (u), fγU (v)}.
(4) iγU (uv) ≥ ∧{iγU (u), iγU (v)}.
(5) tγU (uv) ≥ ∧{tγU (u), tγU (v)}.
(6) fγU (uv) ≤ ∨{fγU (u), fγU (v)}, ∀ u, v ∈ R.

Example 3.4. Let us consider the ring (Z2,+2, ∗2) where Z2 = {0, 1}.
Let we define U = {〈u, iU (u), tU (u), fU (u)〉 | u ∈ Z2} such that

iU (0) = 0.8, iU (1) = 0.4, tU (0) = 0.4, tU (1) = 0.3 and fU (0) = 0.3, fU (1) = 0.6.

Consider γ = 0.5, then Uγ = {〈u, iγU (u), tγU (u), fγU (u)〉 | u ∈ Z2} where

iγU (0) = 0.5, iγU (1) = 0.4, tγU (0) = 0.4, tγU (1) = 0.3 and fγU (0) = 0.5, fγU (1) = 0.6,

⇒ SV NS U = {〈u, iU (u), tU (u), fU (u)〉 | u ∈ Z2} is an 0.5-SV NSR of Z2.

Proposition 3.5. If U and V be two γ-single-valued neutrosophic subset of ring R then

(U ∩ V )γ=Uγ ∩ V γ.

Proof. Assume that U and V are two γ-single-valued neutrosophic subset of ring R.

(U∩V )γ(u) =
{

min{min{iU (u), iV (u)}, γ},min{min{tU (u), tV (u)}, γ},max{max{fU (u), fV (u)}, γ}
}

=
{

min{min{iU (u), γ},min{iV (u), γ}},min{min{tU (u), γ},min{tV (u), γ}},max{max{fU (u), γ},max{fV (u), γ}}
}

=
{

min({iγU (u)}, {iγV (u)}),min({tγU (u)}, {tγV (u)}),max({fγU (u)}, {fγV (u)})
}

= Uγ(u)∩V γ(u), ∀ u ∈ R.

Theorem 3.6. Let U and V be two γ-SV NSRs of a ring R. Then U∩V is also an γ-SV NSR

of R.

Proof. Let U = {〈u, iU (u), tU (u), fU (u)〉 | u ∈ R} and V = {〈u, iV (u), tV (u), fV (u)〉 | u ∈ R}
be any two γ-SV NRs of a ring R.

⇒ Uγ = {〈u, iγU (u), tγU (u), fγU (u)〉 | u ∈ R} and V γ = {〈u, iγV (u), tγV (u), fγV (u)〉 | u ∈ R}.

Then by using Proposition 3.5

(U ∩ V )γ = Uγ ∩ V γ = {〈u, (iγU ∧ i
γ
V )(u), (tγU ∧ t

γ
V )(u), (fγU ∨ f

γ
V )(u)〉 | u ∈ R}.

Now for any u, v ∈ R, we have

(i) (iγU ∧ i
γ
V )(u− v) = ∧{iγU (u− v), iγV (u− v)}

≥ ∧{∧{iγU (u), iγU (v)},∧{iγV (u), iγV (v)}}
= ∧{∧{iγU (u), iγV (u)},∧{iγU (v), iγU (v)}}
= ∧{(iγU ∧ i

γ
V )(u), (iγU ∧ i

γ
V )(v)}.

(ii) (iγU ∧ i
γ
V )(uv) = ∧{iγU (uv), iγV (uv)}

≥ ∧{∧{iγU (u), iγU (v)},∧{iγV (u), iγV (v)}}
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= ∧{∧{iγU (u), iγV (u)},∧{iγU (v), iγU (v)}}
= ∧{(iγU ∧ i

γ
V )(u), (iγU ∧ i

γ
V )(v)}.

(iii) (tγU ∧ t
γ
V )(u− v) = ∧{tγU (u− v), tγV (u− v)}

≥ ∧{∧{tγU (u), tγU (v)},∧{tγV (u), tγV (v)}}
= ∧{∧{tγU (u), tγV (u)},∧{tγU (v), tγU (v)}}
= ∧{(tγU ∧ t

γ
V )(u), (tγU ∧ t

γ
V )(v)}.

(iv) (tγU ∧ t
γ
V )(uv) = ∧{tγU (uv), tγV (uv)}

≥ ∧{∧{tγU (u), tγU (v)},∧{T γB(u), tγV (v)}}
= ∧{∧{tγU (u), T γB(u)},∧{tγU (v), tγU (v)}}
= ∧{(tγU ∧ t

γ
V )(u), (tγU ∧ t

γ
V )(v)}.

(v) (fγU ∨ f
γ
V )(u− v) = ∨{fγU (u− v), fγV (u− v)}

≤ ∨{∨{fγU (u), fγU (v)},∨{fγV (u), fγV (v)}}
= ∨{∨{fγU (u), fγV (u)},∨{fγU (v), fγU (v)}}
= ∨{(fγU ∨ f

γ
V )(u), (fγU ∨ f

γ
V )(v)}.

(vi) (fγU ∨ f
γ
V )(uv) = ∨{fγU (uv), fγV (uv)}

≤ ∨{∨{fγU (u), fγU (v)},∨{fγV (u), fγV (v)}}
= ∨{∨{fγU (u), fγV (u)},∨{fγU (v), fγU (v)}}
= ∨{(fγU ∨ f

γ
V )(u), (fγU ∨ f

γ
V )(v)}.

Therefore (U ∩ V ) is an γ-SV NSR of R.

Remark 3.7. However, the union of two γ-SV NSRs is not an γ-SV NSR. For example,

consider the set R = {0, a, b, a+ b}, where a+ a = 0 = b+ b and a+ b = b+ a and u.v = 0 for

every u, v ∈ R. Then (R,+, .) is a ring.

Let U = {〈u, iU (u), tU (u), fU (u)〉 | u ∈ R} and V = {〈u, iV (u), tV (u), fV (u)〉 | u ∈ R}, where

iU (0) = 0.8, iU (a) = 0.5, iU (b) = 0.4 = iU (a+ b).

tU (0) = 0.7, tU (a) = 0.3, tU (b) = 0.2 = tU (a+ b).

fU (0) = 0.4, fU (a) = 0.7, fU (b) = 0.8 = fU (a+ b).

iV (0) = 0.6, iV (a) = 0.1, iV (b) = 0.5, iV (a+ b) = 0.1.

tV (0) = 0.7, tV (a) = 0.1, tV (b) = 0.3, tV (a+ b) = 0.1.

fV (0) = 0.1, fV (a) = 0.2, fV (b) = 0.2, fV (a+ b) = 0.2.

Consider γ = 0.6 then Uγ = {〈u, iγU (u), tγU (u), fγU (u)〉 | u ∈ R} and

V γ = {〈u, iγV (u), tγV (u), fγV (u)〉 | u ∈ R}, where

iγU (0) = 0.6, iγU (a) = 0.5, iγU (b) = 0.4 = iγU (a+ b).

tγU (0) = 0.6, tγU (a) = 0.3, tγU (b) = 0.2 = tγU (a+ b).

fγU (0) = 0.6, fγU (a) = 0.7, fγU (b) = 0.8 = fγU (a+ b).

iγV (0) = 0.6, iγV (a) = 0.1, iγV (b) = 0.5, iγV (a+ b) = 0.1.
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tγV (0) = 0.6, tγV (a) = 0.1, tγV (b) = 0.3, tγV (a+ b) = 0.1.

fγV (0) = 0.6, fγV (a) = 0.6, fγV (b) = 0.6, fγV (a+ b) = 0.6.

Then U and V are γ-SV NSRs of R. Now

(U ∪ V )γ == {〈u, (iU ∨ iV )γ)(u), (tU ∨ tV )γ(u), (fγU ∧ fV )γ(u), (u)〉 | u ∈ R},
Here (iU ∨ iV )γ(0) = 0.8, (iU ∨ iV )γ(a) = 0.5, (iU ∨ iV )γ(b) = 0.5, (iU ∨ iV )γ(a+ b) = 0.4;

(tU ∨ tV )γ(0) = 0.7, (tU ∨ tV )γ(a) = 0.3, (tU ∨ tV )γ(b) = 0.3, (tU ∨ tV )γ(a+ b) = 0.2;

(fγU ∧ fV )γ(0) = 0.1, (fγU ∧ fV )γ(a) = 0.2, (fγU ∧ fV )γ(b) = 0.2, (fγU ∧ fV )γ(a+ b) = 0.2.

Now

(iU ∨ iV )γ(a+ b) = 0.4 < ∧{((iγU ∨ iV )γ(a), (iU ∨ iV )γ)(b))} = 0.5

Therefore (U ∪ V )γ is not an γ-SV NSR of R.

Definition 3.8. A Uγ = (iγU , t
γ
U , f

γ
U ) of a ring R is said to be an γ-single valued neutrosophic

normal subring γ-SV NNSR of R if

(1) iγU (uv) = iγU (vu).

(2) tγU (uv) = tγU (vu).

(3) fγU (uv) = fγU (vu), ∀ u, v ∈ R.

Definition 3.9. A γ-single valued neutrosophic set Uγ = (iγU , t
γ
U , f

γ
U ) a ring R is said to be

an γ-single valued neutrosophic left ideal (γ-SV NLI) if

(1) iγU (u− v) ≥ ∧{iγU (u), iγU (v)}.
(2) iγU (uv) ≥ iγU (v).

(3) tγU (u− v) ≥ ∧{tγU (u), tγU (v)}.
(4) tγU (uv) ≥ tγU (v).

(5) fγU (u− v) ≤ ∨{fγU (u), fγU (v)}.
(6) fγU (uv) ≤ fγU (v), ∀ u, v ∈ R.

Definition 3.10. A γ-single valued neutrosophic set Uγ = (iγU , t
γ
U , f

γ
U ) a ring R is said to be

an γ-single valued neutrosophic right ideal (γ-SV NRI) if

(1) iγU (u− v) ≥ ∧{iγU (u), iγU (v)}.
(2) iγU (uv) ≥ iγU (u).

(3) tγU (u− v) ≥ ∧{tγU (u), tγU (v)}.
(4) tγU (uv) ≥ tγU (u).

(5) fγU (u− v) ≤ ∨{fγU (u), fγU (v)}.
(6) fγU (uv) ≤ fγU (u), ∀ u, v ∈ R.

Definition 3.11. A γ-single valued neutrosophic set Uγ = (iγU , t
γ
U , f

γ
U ) a ring R is said to be

an γ-single valued neutrosophic ideal (γ-SVNI) if

(1) iγU (u− v) ≥ ∧{iγU (u), iγU (v)}.
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(2) tγU (u− v) ≥ ∧{tγU (u), tγU (v)}.
(3) fγU (u− v) ≤ ∨{fγU (u), fγU (v)}.
(4) iγU (uv) ≥ ∨{iγU (u), iγU (v)}.
(5) tγU (xv) ≥ ∨{tγU (u), tγU (v)}.
(6) fγU (uv) ≤ ∧{fγU (u), fγU (v)}, ∀ u, v ∈ R.

Example 3.12. Let us consider a ring (Z4,+4,×4) where Z4 = {0, 1, 2, 3} and

Consider U = {〈iU , tU , fU 〉 | u ∈ Z4} be a single valued neutrosophic subset of Z4, where

iU (0) = 0.4, iU (1) = 0.3 = iU (3), iU (2) = 0.5.

tU (0) = 0.3, tU (1) = 0.2 = tU (3), tU (2) = 0.6. and

fU (0) = 0.2, fU (1) = 0.7 = fU (3), fU (2) = 0.6.

Suppose γ = 0.5 then Uγ = {〈iγU , t
γ
U , f

γ
U 〉 | u ∈ Z4} be an γ-single valued neutrosophic subset

of Z4, where

iγU (0) = 0.4, iγU (1) = 0.3 = iγU (3), iγU (2) = 0.5.

tγU (0) = 0.3, tγU (1) = 0.2 = tγU (3), tγU (2) = 0.5. and

fγU (0) = 0.5, fγU (1) = 0.7 = fγU (3), fγU (2) = 0.6.

⇒ U is an γ-SV NI of Z4.

Theorem 3.13. If Uγ = {〈iγU , t
γ
U , f

γ
U 〉 | u ∈ R} is a γ-SV NI of a ring R, then

iγU (0) ≥ iγU (u), tγU (0) ≥ tγU (u), fγU (0) ≤ fγU (u)

and iγU (−u) = iγU (u), tγU (−u) = tγU (u), fγU (−u) = F γU (u), ∀ u ∈ R.

Proof. Let iγU (0) = iγU (u− u) ≥ ∧{iγU (u), iγU (u)} = iγU (u).

tγU (0) = tγU (u− u) ≥ ∧{tγU (u), tγU (u)} = tγU (u).

Similarly fγU (0) = fγU (u− u) ≤ ∨{fγU (u), fγU (u)} = fγU (u).

Next iγU (−x) = iγU (0− u) ≥ ∧{iγU (0), iγU (u)} = iγU (u).

Also iγU (u) = iγU{0− (−u)} ≥ ∧{iγU (0), iγU (−u)} = iγU (−u).

Therefore iγU (−u) = iγU (u).

So tγU (−u) = tγU (0− u) ≥ ∧{tγU (0), tγU (u)} = tγU (u).

Also tγU (u) = tγU{0− (−u)} ≥ ∧{tγU (0), tγU (−u)} = tγU (−u).

Therefore tγU (−u) = tγU (u).

Finally fγU (−u) = fγU (0− u) ≤ ∨{fγU (0), fγU (u)} = fγU (u).

Also fγU (u) = fγU{0− (−u)} ≥ ∨{fγU (−u), fγU (0)} = fγU (−u).

Therefore fγU (−u) = fγU (u).

Remark 3.14. Every γ-SV NI of a ring R is an γ-SV NSR of R. However the converse is

not true.
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For example, let (R,+, .) be the ring of real numbers.

Define, U = {〈u, iU (u), tU (u), iU (u)〉| u ∈ R} such that

iU (u) = 0.5 if u is rational, tU (u) = 0.8 if u is rational, fU (u) = 0.1 if u is rational.

iU (u) = 0.4 if u is irrational, tU (u) = 0.3 if u is irrational, fU (u) == 0.7 if u is irrational.

Consider γ = 0.6, now define Uγ = {〈u, iγU (u), tγU (u), iγU (u)〉| u ∈ R} then

iγU (u) = 0.5 if u is rational, tγU (u) = 0.6 if u is rational, fγU (u) = 0.6 if u is rational.

iγU (u) = 0.4 if u is irrational, tγU (u) = 0.3 if u is irrational, fγU (u) = 0.7 if u is irrational.

Then U is an γ-SV NSR of R.

But U is not an γ-SV NI of R, since iγU (2
√

2) = 0.4 < ∨{iγU (2), iγU (
√

2)}.

Theorem 3.15. Let U and V be two γ-SV NIs of a ring R. Then U ∩ V is also a γ-SV NI

of R.

Proof. Let U = {〈u, iU (u), tU (u), fU (u)〉 | u ∈ R} and V = {〈u, iV (u), tV (u), fV (u)〉 | u ∈ R}
be any two γ-SV NIs of a ring R. Then,

Uγ = {〈u, iγU (u), tγU (u), fγU (u)〉 | u ∈ R} and V γ = {〈u, iγV (u), tγV (u), fγV (u)〉 | u ∈ R}, then by

using Proposition 3.5

(U ∩ V )γ = Uγ ∩ V γ = {〈u, (iγU ∧ i
γ
V )(u), (tγU ∧ t

γ
V )(u), (fγU ∨ f

γ
V )(u)〉 | u ∈ R}.

Now for any u, v ∈ R, we have

(i) (iγU ∧ i
γ
V )(u− v) = ∧{iγU (u− v), iγV (u− v)}

≥ ∧{∧{iγU (u), iγU (v)},∧{iγV (u), iγV (v)}}
= ∧{∧{iγU (u), iγV (u)},∧{iγU (v), iγU (v)}}
= ∧{(iγU ∧ i

γ
V )(u), (iγU ∧ i

γ
V )(v)}.

(ii) (iγU ∧ i
γ
V )(uv) = ∧{iγU (uv), iγV (xv)}

≥ ∧{∨{iγU (u), iγU (v)},∨{iγV (u), iγV (v)}}
≥ ∨{∧{iγU (u), iγV (u)},∧{iγU (v), iγU (v)}}
= ∨{(iγU ∧ i

γ
V )(x), (iγU ∧ i

γ
V )(v)}.

(iii) (tγU ∧ t
γ
V )(u− v) = ∧{tγU (u− v), tγV (u− v)}

≥ ∧{∧{tγU (u), tγU (v)},∧{tγV (u), tγV (v)}}
= ∧{∧{tγU (u), tγV (u)},∧{tγU (v), tγU (v)}}
= ∧{(tγU ∧ t

γ
V )(u), (tγU ∧ t

γ
V )(v)}.

(iv) (tγU ∧ t
γ
V )(uv) = ∧{tγU (uv), tγV (uv)}

≥ ∧{∨{tγU (u), tγU (v)},∨{tγV (u), tγV (v)}}
≥ ∨{∧{tγU (u), tγV (u)},∧{tγU (v), tγU (v)}}
= ∨{(tγU ∧ t

γ
V )(u), (tγU ∧ t

γ
V )(v)}.

(v) (fγU ∨ f
γ
V )(u− v) = ∨{fγU (u− v), fγV (u− v)}

≤ ∨{∨{fγU (u), fγU (v)},∨{fγV (u), fγV (v)}}
= ∨{∨{fγU (u), fγV (u)},∨{fγU (v), fγU (v)}}
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= ∨{(fγU ∨ f
γ
V )(u), (fγU ∨ f

γ
V )(v)}.

(vi) (fγU ∨ f
γ
V )(uv) = ∨{fγU (uv), fγV (uv)}

≤ ∨{∧{fγU (u), fγU (v)},∧{fγV (u), fγV (v)}}
≤ ∧{∨{fγU (u), fγV (u)},∨{fγU (v), fγU (v)}}
= ∧{(fγU ∨ f

γ
V )(u), (fγU ∨ f

γ
V )(v)}.

Therefore U ∩ V is an γ-SVNI of R.

Remark 3.16. Union of two γ-SV NIs of R need not to be γ-SV NI of R.

Remark 3.17. If U is an γ-SV NSR and V is an γ-SV NI of a ring R then U ∩ V is an

γ-SV NSR of R but not an γ-SV NI of R. For example, consider the ring (R,+, .) of real

numbers and define,

U = {〈u, iU (u), tU (u), fU (u)〉 | u ∈ R} such that

iU (u) = 0.7 if u is rational, tU (u) = 0.6 if u is rational, fU (u) = 0.1 if u is rational.

iU (u) = 0.2 if u is irrational, iU (u) = 0.1 if u is irrational, fU (u) = 0.8 if u is irrational.

Also define V = {〈u, iV (u), tV (u), fV (u)〉|u ∈ R} such that

iV (u) = 0.5, tV (u) = 0.4 and fV (u) = 0.6 ∀ u ∈ R. Consider γ = 0.5 then

iγU (u) = 0.5 if u is rational, tγU (u) = 0.5 if u is rational, fγU (u) = 0.5 if u is rational.

iγU (u) = 0.2 if u is irrational, iγU (u) = 0.1 if u is irrational, fγU (u) = 0.8 if u is irrational.

Then U = {〈u, iU (u), tU (u), fU (u)〉 | u ∈ R} is an γ-SV NSR of R.

Similarly, iγV (u) = 0.5, tγV (u) = 0.4 and iγV (u) = 0.6 ∀ u ∈ R.

Then V = {〈u, iV (u), tV (u), fV (u)〉|u ∈ R} is an γ-SV NI of R.

Then by using Proposition 3.5

(U ∩V )γ = Uγ ∩V γ = {〈u, (iγU ∧ i
γ
V )(u), (tγU ∧ t

γ
V )(u), (fγU ∨f

γ
V )(u)〉 | u ∈ R} is not an γ-SV NI

of R, because (iγU ∧ i
γ
V )(2
√

2) < ∨{(iγU ∧ i
γ
V )(2), (iγU ∧ i

γ
V )(
√

2)}.

4. Sum and Product of γ-Single Valued Neutrosophic Ideal (γ-SVNI)

In this section, we elaborate some fundamental principles and results related to the sum and

product of the γ-single valued neutrosophic ideal.

Definition 4.1. Let U and V be two γ-SV NIs of a ring R then their sum (U+V )γ is defined

as (U + V )γ = {〈u, (iγU + iγV )(u), (tγU + tγV )(u), (fγU + fγV )(u)〉 | u ∈ R}, where

(iγU + iγV )(u) = sup
u=a+b

{∧ {iγU (a), iγU (b)}},

(tγU + tγV )(u) = sup
u=a+b

{∧ {tγU (a), tγU (b)}}, and

(fγU + fγV )(u) = inf
u=a+b

{∨ {fγU (a), fγU (b)}}.

Definition 4.2. Let U and V be two γ-SV NIs of a ring R then their product (UV )γ is

defined as (UV )γ = {〈u, (iγU i
γ
V )(u), (tγU t

γ
V )(u), (fγUf

γ
V )(u)〉 | u ∈ R}, where
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(iγU i
γ
V )(u) = sup

u=
∑
aibi

i<∞

{∧ {∧{iγU (ai), i
γ
U (bi)}}},

(tγU t
γ
V )(u) = sup

u=
∑
aibi

i<∞

{∧ {∧{tγU (ai), t
γ
U (bi)}}}, and

(fγUf
γ
V )(u) = inf

u=
∑
aibi

i<∞

{∨ {∨{fγU (ai), f
γ
U (bi)}}}.

Theorem 4.3. If U and V are two γ-SV NIs of a ring R, then U + V is also an γ-SV NI of

R.

Proof. Let U = {〈u, iU (u), tU (u), fU (u)〉 | u ∈ R} and V = {〈u, iV (u), tV (u), fV (u) | u ∈ R〉}
be two γ-SV NIs of a ring R, so Uγ = {〈u, iγU (u), tγU (u), fγU (u)〉 | u ∈ R} and

V γ = {〈u, iγV (u), tγV (u), fγV (u) | u ∈ R〉}, then their sum (U + V )γ is given by

(U + V )γ = {〈u, (iγU + iγV )(u), (tγU + tγV )(u), (fγU + fγV )(u)〉 | u ∈ R}.
Let u, v ∈ R and let ∧{(iγU i

γ
V )(u), (iγU i

γ
V )(v)} = l. Then for any ε > 0,

l − ε < (iγU + iγV )(u) = sup
u=a+b

{∧ {iγU (a), iγU (b)}},

l − ε < (iγU + iγV )(v) = sup
v=c+d

{∧ {iγU (c), iγU (d)}}.

So there exist representations u = a+ b, v = c+ d, where a, b, c, d ∈ R such that

l − ε < ∧{iγU (a), iγV (b)} and l − ε < ∧{iγU (c), iγU (d)}.
⇒ l − ε < iγU (a), iγV (b) and l − ε < iγU (c), iγU (d).

⇒ l − ε < ∧{iγU (a), iγU (c)} ≤ iγU (a+ c) and l − ε < ∧{iγV (b), iγV (d)} ≤ iγV (b+ d).

Thus we get u+ v = (a+ b) + (c+ d) = (a+ c) + (b+ d) such that

l − ε < ∧{iγU (a+ c), iγV (b+ d}.
⇒ l − ε < sup

u+v=(a+c)+(b+d)
{∧iγU (a+ c), iγV (b+ d)} = (iγU + iγV )(u+ v).

Since ε is arbitrary, it follows that,

(iγU + iγV )(u+ v) ≥ l = ∧{(iγU + iγV )(u), (iγU + iγV )(v)}.
Next, let m = ∨{(iγU + iγV )(u), (iγU + iγV )(v)} = (iγU + iγV )(u) (say) and ε > 0.

Then m− ε < (iγU + iγV )(u) = sup
u=a+b

{∧iγU (a), iγV (b)}.

So there exists a representation u = a+ b such that

m− ε < ∧{iγU (a), iγV (b)}.
⇒ m− ε < iγU (a), iγV (b).

m− ε < ∨{iγU (a), iγU (c+ d)} = iγU (a(c+ d)) , where v = c+ d,

and m− ε < ∨{iγV (b), iγV (c+ d)} = iγV (b(c+ d)).

⇒ m− ε < ∧{iγU (a(c+ d)), iγV (b(c+ d))}.
So we get, uv = (a+ b)(c+ d) = a(c+ d) + b(c+ d), such that

m− ε < ∧{iγU (a(c+ d)), iγV (b(c+ d))}.
⇒ m− ε < sup

uv=a(c+d)+b(c+d)
{∧{iγU (a(c+ d)), iγV (b(c+ d))}} = (iγU + iγV )(uv).

Since ε is arbitrary,
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(iγU + iγV )(uv) ≥ m = ∨{(iγU + iγV )(u), (iγU + iγV )(v)}.
Similarly we can show that

(tγU + tγV )(uv) ≥ s = ∨{(tγU + tγV )(u), (tγU + tγV )(v)}.
Next let ∨{(fγU + fγV )(u), (fγU + fγV )(v)} = n and ε > 0.

Then n+ ε > (fγU + fγV )(u) = inf
u=a+b

{∨{fγU (a), fγU (b)}},

and n+ ε > (fγU + fγV )(v) = inf
v=c+d

{∨{fγU (c), fγU (d)}}.
So, there exist representations u = a+ b and v = c+ d, for some a, b, c, d ∈ R such that

n+ ε > ∨{fγU (a), fγV (b)} and n+ ε > ∨{fγU (c), fγV (d)}.
⇒ n+ ε > fγU (a), fγV (b) and n+ ε > fγU (c), fγV (d).

⇒ n+ ε > ∨{fγU (a), fγU (c)} = fγU (a+ c), and n+ ε > ∨{fγU (b), fγU (d)} ≥ fγU (b+ d).

Thus we get, u+ v = (a+ b) + (c+ d) = (a+ c) + (b+ d), such that

n+ ε > ∨{fγU (a+ c), fγV (b+ d)}.
⇒ n+ ε < inf

u+v=(a+c)+(b+d)
{∨{fγU (a+ c), fγV (b+ d)}} = (fγU + fγV )(u+ v).

Since ε is arbitrary,

(fγU + fγV )(u+ v) ≤ n = ∨{(fγU + fγV )(u), (fγU + fγV )(v)}.
Finally, if w = ∧{(fγU + fγV )(u), (fγU + fγV )(v)} = (fγU + fγV )(u) (say), and ε > 0,

then w + ε > (fγU + fγV )(u) = inf
u=a+b

{∨fγU (a), fγU (b)}.

So there exists a representation u = a+ b such that w + ε > ∨{fγU (a), fγV (b)}.
⇒ w + ε > fγU (a) and w + ε > fγV (b).

⇒ w + ε > ∧{fγU (a), fγU (c+ d)} = fγU (a(c+ d)), and

w + ε > ∧{fγV (b), fγV (c+ d)} = fγV (b(c+ d)), where v = c+ d.

So, we get uv = (a+ b)(c+ d) = a(c+ d) + b(c+ d) such that

w + ε > ∨{fγU (a(c+ d)), fγV (b(c+ d))}.
⇒ w + ε > inf

uv=a(c+d)+b(c+d)
{∨(fγU (a(c+ d)), fγV (b(c+ d)))} = (fγU + fγV )(uv).

Since ε is arbitrary,

(fγU + fγV )(uv) ≤ w = ∧{(fγU + fγV )(u), (fγU + fγV )(v)}.
Hence U + V is an γ-SV NI of R.

Theorem 4.4. If U and V are two γ-SV NIs of a ring R, then UV is also an γ-SV NI of R.

Proof. Let U = {〈u, iU (u), tU (u), fU (u)〉 | u ∈ R} and V = {〈u, iV (u), tV (u), fV (u) | u ∈ R〉}
be two γ-SV NIs of a ring R, so

Uγ = {〈u, iγU (u), tγU (u), fγU (u)〉 | u ∈ R} and V γ = {〈u, iγV (u), tγV (u), fγV (u) | u ∈ R〉}.
Then (UV )γ = {〈u, (iγU i

γ
V )(u), (tγU t

γ
V )(u), (fγUf

γ
V )(u)〉 | u ∈ R}.

Let u, v ∈ R and let ∧{(iγU i
γ
V )(u), (iγU i

γ
V )(v)} = ς.

Then for any ε > 0,
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ς − ε < (iγU i
γ
V )(u) = sup

u=
∑
aibi

i<∞

{∧ {∧{iγU (ai), i
γ
U (bi)}}}, and

ς − ε < (iγU i
γ
V )(v) = sup

u=
∑
mini

i<∞

{∧ {∧{iγU (mi), i
γ
U (ni)}}}.

So we get representations u =
∑
aibi

i<∞ and v =
∑
mini
i<∞ such that

ς − ε < {∧ {∧{iγU (ai), i
γ
U (bi)}}}, and ς − ε < {∧ {∧{iγU (mi), i

γ
U (ni)}}},

⇒ ς − ε < ∧{iγU (ai), i
γ
U (bi)}, and ς − ε < ∧{iγU (mi), i

γ
U (ni)} ∀ i,

⇒ ς − ε < iγU (ai), i
γ
U (bi), and ς − ε < iγU (mi), i

γ
U (ni) ∀ i,

⇒ ς − ε < ∧{iγU (ai), i
γ
U (bi)} ≤ iγU (ai +mi), and ς − ε < ∧{iγU (mi), i

γ
U (ni)} ≤ iγV (bi + ni) ∀ i.

Thus, we get u+ v =
∑
i<∞

(aibi +mini), where ai, bi,mi, ni ∈ R, such that

ς − ε < {∧{iγU (ai +mi), i
γ
V (bi + ni)}}, ∀ i,

⇒ ς − ε <
∧
i
{∧{iγU (ai +mi), i

γ
V (bi + ni)}},

ς − ε < sup
u=

∑
(aibi+mini)
i<∞

{
∧
i
{∧{iγU (ai +mi), i

γ
U (bi + ni)}}} = (iγU i

γ
V )(u+ v).

Since ε is arbitrary, so we have,

(iγU i
γ
V )(u+ v) ≥ ς = ∧{(iγU i

γ
V )(u), (iγU i

γ
V )(v)}.

Next let g = ∨{(iγU i
γ
V )(u), (iγU i

γ
V )(v)} = (iγU i

γ
V )(u) (say) and let ε > 0, then

g − ε < (iγU i
γ
V )(u) = sup

u=
∑
aibi

i<∞

{
∧
i
{∧{iγU (ai), {iγV bi)}}}.

So there exists a representation u =
∑
i<∞

aibi such that

g − ε <
∧
i
{∧{iγU (ai), {iγV bi)}} ⇒ ∧{i

γ
U (ai), {iγV bi}, ∀ i.

⇒ g − ε < iγU (ai), i
γ
V (bi), ∀ i.

If v =
∑
i<∞

mini then

g − ε < ∨{iγU (ai), i
γ
U (mi)} = iγU (aimi) ∀ i,

and g − ε < ∨{iγV (bi), i
γ
V (ni)} = iγV (bini), ∀ i.

Thus, we get uv =
∑
i<∞

(aibi)(mini) =
∑
i<∞

(aimi)(bini)

such that g − ε < ∧{iγU (aimi), i
γ
V (bini)}, ∀ i.

⇒ g − ε <
∧
i
{∧{iγU (aimi), i

γ
V (bini)}}.

⇒ g − ε < sup
uv=

∑
(aimi)(bini)
i<∞

{∧{iγU (aimi), i
γ
V (bini)}} = (iγU i

γ
V )(uv).

Since ε is arbitrary

(iγU i
γ
V )(uv) ≥ g = ∨{(iγU i

γ
V )(u), (iγU i

γ
V )(v)}.

Similarly, we can show that

(tγU t
γ
V )(u+ v) ≥ j = ∧{(tγU t

γ
V )(u), (tγU i

γ
V )(v)}.

(tγU t
γ
V )(uv) ≥ δ = ∨{(tγU t

γ
V )(u), (tγU t

γ
V )(v)}.

Next, let l = ∨{(fγUf
γ
V )(u), (fγUf

γ
V )(v)} and ε > 0, then
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⇒ l + ε > (fγUf
γ
V )(u) = inf

u=
∑
aibi

i<∞

{∨{
∨
i
{fγU (ai), f

γ
V (bi)}}},

⇒ l + ε > (fγUf
γ
V )(v) = inf

u=
∑
mini

i<∞

{∨{
∨
i
{fγU (mi), f

γ
V (ni)}}}.

So, we get representations u =
∑
i<∞

aibi and v =
∑
i<∞

mini, where ai, bi,mi, ni ∈ R, such that

l + ε >
∨
i
{∨{fγU (ai), f

γ
V (bi)} and l + ε >

∨
i
{∨{fγU (mi), f

γ
V (ni)}}.

⇒ l + ε > ∨{fγU (ai), f
γ
V (bi)} and l + ε > ∨{fγU (mi), f

γ
V (ni)}, ∀ i.

⇒ l + ε > fγU (ai), f
γ
V (bi) and l + ε > fγU (mi), f

γ
V (ni), ∀ i.

⇒ l+ ε > ∨{fγU (ai), f
γ
V (mi)} ≥ fγU (ai +mi) and l+ ε > ∨{fγU (bi), f

γ
V (ni)} ≥ fγU (bi + ni), ∀ i.

Thus, we get u+ v =
∑
i<∞

(aibi +mini), where ai, bi,mi, ni ∈ R, such that

l + ε > ∨{fγU (ai +mi), f
γ
V (bi + ni)}, ∀ i.

⇒ l + ε >
∨
i
{∨{fγU (ai +mi), f

γ
V (bi + ni)}},

l + ε > sup
u=

∑
(aibi+mini)
i<∞

{
∨
i
{∨{fγU (ai +mi), f

γ
U (bi + ni)}}} = (fγUf

γ
V )(u+ v).

Since ε is arbitrary, so we have,

(fγUf
γ
V )(u+ v) ≤ o = ∨{(fγUf

γ
V )(u), (fγUf

γ
V )(v)}.

Finally, let o = ∧{(fγUf
γ
V )(u), (fγUf

γ
V )(v)} = (fγUf

γ
V )(u) (say) and let ε > 0, then

o+ ε > (fγUf
γ
V )(u) = inf

u=
∑
aibi

i<∞

{
∨
i
{∨{fγU (ai), {fγV bi)}}}.

So there exists a representation u =
∑
i<∞

aibi such that

o+ ε >
∨
i
{∨{fγU (ai), {fγV bi)}} ⇒ ∨{f

γ
U (ai), {fγV bi}, ∀ i.

⇒ r + ε > fγU (ai), f
γ
V (bi), ∀ i.

If v =
∑
i<∞

mini then

o+ ε > ∨{fγU (ai), f
γ
U (mi)} ≥ fγU (aimi) ∀ i,

and o+ ε > ∨{fγV (bi), f
γ
V (ni)} ≥ fγV (bini), ∀ i.

Thus, we get uv =
∑
i<∞

(aibi)(mini) =
∑
i<∞

(aimi)(bini)

such that o+ ε > ∨{fγU (aimi), f
γ
V (bini)}, ∀ i.

⇒ o+ ε >
∨
i
{∨{fγU (aimi), f

γ
V (bini)}}.

⇒ o+ ε > inf
uv=

∑
(aimi)(bini)
i<∞

{∨{fγU (aimi), f
γ
V (bini)}} = (fγUf

γ
V )(uv).

Since ε is arbitrary

(fγUf
γ
V )(uv) ≤ o = ∧{(fγUf

γ
V )(u), (fγUf

γ
V )(v)}.

Hence UV is an γ-SV NI of R.

Remark 4.5. According to the definition given by Atanassov [1] the sum and product of two

γ-SV NIs of a ring R is not necessarily an γ-SV NI of R as shown by the following example:

Consider the ring R = {0, a, b, a + b} where a + a = 0 = b + b, a + b = b + a and uv = 0
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∀ u, v ∈ R. We define,

iγU (0) = 0.9 = iγU (a), iγU (b) = 0.4 = iγU (a+ b);

tγU (0) = 0.9 = tγU (a), tγU (b) = 0.4 = tγU (a+ b);

fγU (0) = 0.1 = fγU (a), fγU (b) = 0.4 = fγU (a+ b).

And iγV (0) = 0.7, iγV (a) = 0.3 = iγV (a+ b), iγV (b) = 0.5;

iγV (0) = 0.7, iγV (a) = 0.3 = iγV (a+ b), iγV (b) = 0.5;

fγV (0) = 0.2, fγV (a) = 0.6 = fγV (a+ b), fγV (b) = 0.5.

Then U = {〈u, iU (u), tU (u), fU (u)〉 | u ∈ R} and V = {〈u, iV (u), tV (u), fV (u)〉 | u ∈ R} are

γ-SV NIs of R. According to Atanassov [1],

(U +V )γ = {〈u, iγU (u) + iγV (u)− iγU (u)iγV (u), tγU (u) + tγV (u)− tγU (u)tγV (u), fγU (u)fγU (u)〉 | u ∈ R}.
And (UV )γ = {〈u, iγU (u)iγV (u), tγU (u)tγU (u), fγU (u) + fγV (u)− fγU (u)fγU (u)〉 | uinR}.
Now iγU (a− b) + iγV (a− b)− iγU (a− b)iγV (a− b) = 0.4 + 0.3− 0.12 = 0.58,

iγU (a) + iγV (a)− iγU (a)iγV (a) = 0.9 + 0.3− 0.27 = 0.93,

and iγU (b) + iγV (b)− iγU (b)iγV (b) = 0.4 + 0.5− 0.2 = 0.7.

Therefore,

iγU (a−b)+iγV (a−b)−iγU (a−b)iγV (a−b)< ∧{iγU (a)+iγV (a)−iγU (a)iγV (a), iγU (b)+iγV (b)−iγU (b)iγV (b)}.
Hence U + V is not an γ-SV NI of R. Again for the product, we see that

fγU (a− b) + fγV (a− b)− fγU (a− b)fγV (a− b) = 0.76,

fγU (a) + fγV (a)− fγU (a)fγV (a) = 0.64,

and fγU (b) + fγV (b)− fγU (b)fγV (b) = 0.7.

Therefore

fγU (a−b)+fγV (a−b)−fγU (a−b)fγV (a−b) > ∨{fγU (a)+fγV (a)−fγU (a)fγV (a), fγU (b)+fγV (b)−fγU (b)fγV (b)}.

Hence UV is not an γ-SV NI of R.

5. Conclusions

A γ-single valued neutrosophic set is a type of SVNS that can be used to tackle real-world

challenges for research and engineering. In this work, we introduce the notion of γ-single valued

neutrosophic subrings, γ-single valued neutrosophic ideals also the sum and product of γ-single

valued neutrosophic ideals. On γ-single valued neutrosophic subrings and ideals, a variety of

characterizations have been proposed. Therefore, it is important for researchers to examine

γ-single valued neutrosophic subrings and ideals and their characteristics in applications and

to understand the basics of uncertainty. We agreed to include the concept of a γ-SVNSR &

γ-SVNI in research also examine its key feature. As a consequence of this research, various

principles are to be applied to achieve some adequate research value results of γ-SVNSR &
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γ-SVNI. In further work, researchers can extend this idea in topological spaces, modules, and

fields.
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Abstract. 

Transportation issues arise often in everyday life. To ensure that the regions' needs for 

transported material are met at the lowest feasible cost, materials must be carried from production 

centers to consuming centers as quickly as possible. Operations research approaches, notably 

mathematical programming, are utilized to solve these recurring and daily challenges. The problem's 

data is transformed into a mathematical model, and then the best solution is discovered using the 

proper procedures. When dealing with transportation issues, we arrive at a linear mathematical 

model, which can be solved using the direct simplex method and its modifications. However, because 

of the clarity and specificity of the transportation model, scholars and researchers were able to find 

other methods that were easier than the simplex method. 

Whatever method is used, the goal is to determine the number of units transferred for any 

material from the production centers to the consumption centers in order to minimize transportation 

costs, keeping in mind that each export center has its own capacity and cannot supply quantities of 

the material greater than that capacity. Furthermore, each import center has a certain requirement for 

which it makes a request and for which it is unable to consume further quantities. In this manuscript, 

the researchers will use the North-West Corner approach, the Least-Cost method, and Vogel's 

approximation method to discover an initial solution to the balanced neutrosophic transport 

problems. 

The term "neutrosophic transportation problems (i.e. NTP)" refers to the transportation 

problems in which the required and available quantities have neutrosophic values of the form 𝑁𝑎𝑖 = 
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𝑎𝑖 + 𝜀𝑖, where 𝜀𝑖 is the indeterminacy in the produced quantities, and it is either 𝜀𝑖 = [𝜆𝑖1, 𝜆𝑖2] or 

 

𝜀𝑖 = {𝜆𝑖1, 𝜆𝑖2}. While the required quantities are also neutrosophic values of the form 𝑁𝑏𝑗 = 𝑏𝑗 + 𝛿𝑗, here 

𝛿𝑗 is the indeterminacy on the required quantity, and it is either 𝛿𝑗 = [𝜇𝑗1, 𝜇𝑗2] or 𝛿𝑗 = {𝜇𝑗1, 𝜇𝑗2}. It is 

worthy to mention that when the problem is unbalanced (i.e. the summation of the required 

quantities is not equal to the produced quantities), then firstly will convert the problem to a balanced 

one. 

 In this article, the authors assumed the representation of the neutrosophic numbers as intervals 

such as 𝜀𝑖 = [𝜆𝑖1, 𝜆𝑖2], 𝛿𝑗 = [𝜇𝑗1, 𝜇𝑗2]. It is important to notice that the authors did not adopt 

(trapezoidal numbers, pentagonal numbers, or any other neutrosophic numbers which need to 

specify using the membership functions, this kind of neutrosophic numbers or parameters 

represented by intervals have been firstly introduced by Smarandache F. in his main published books 

[32,33]. 

The sections of this manuscript has been organized as follow: the introduction is the inception 

of this article, section one has been dedicated to the north-west corner method containing three 

subsections for three case studies depending upon the existence of the indeterminacy in the problem, 

the least- cost method represents section two, while section three has been devoted to Vogel's 

approximation method, section four is conclusion and results. 

Keywords: Transportation Problem; Neutrosophic Transportation Problem (NTP); Initial Solution; 

Consumption Centers (CC); Production Centers (PC); Available Quantities (AQ); Required 

Quantities (RQ); North-West Corner Method; Least-Cost Method; Vogel's Method. 

Introduction 

Transportation problems are among the most prevalent linear programming problems encountered 

in everyday life. These problems study the transfer of materials from production centers to 

consumption centers in the shortest period of time or at the lowest cost, or the distribution of 

transportation modes (such as buses, planes and ships etc.) on the imposed transportation lines in 

which the requests can meet by the least cost, and since the mathematical models we obtain are linear 

models, so the simplex method and its modifications can be used to obtain the optimal solution, but 

the special nature of the transportation problems enabled scientists to find special ways to solve these 
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models that dependent on finding initial solution and then using other ways to improvement this 

initial solution using heuristics algorithms to find optimal solution [1-5], there are previous  studies 

for transport models at the lowest cost using neutrosophic environments, which is the new vision of 

modelling and is designed to effectively address the uncertainties inherent in the real world, as it 

came to replace the binary logic that define merely the truthiness status and falseness status, by 

introducing a third, neutral state which can be interpreted as undetermined or uncertain .  

This neutrosophic logic has been established in 1995 by the philosopher and mathematician 

Florentin Smarandache [7,9,10,11,13] introduced as a generalization to both: fuzzy logic presented by 

L. Zadeh     in 1965 [6], and intuitionistic fuzzy logic introduced by K. Atanassov in 1983 [8]. In addition, 

A. A. Salama presented the theory of classical neutrosophic sets as a generalization of the classical 

sets. Theory [12,20], he developed, introduced and formulated new concepts in the fields of topology, 

statistics, computer science... etc. through neutrosophic theory [15,17-19, 22,28,29]. 

The neutrosophic theory has grown significantly in recent years through its application in 

measurement theory, group theory, graph theory and many scientific and practical fields [8,14-16, 21, 

23-27,30-35], this research sheds the light on the modified that same methods used to find the initial 

solution for the classic transport problems in finding a preliminary solution to the neutrosophic 

transport problems in its three forms, the first form is that form when the cost is neutrosophic values, 

while the second form occurs when the demanded quantities and the supplied quantities are 

neutrosophic values, finally, the third form occurs when the cost of transport and the demanded 

quantities and the supplied quantities are all neutrosophic values. 

Discussion: 

It is popular that there are several ways to find a basic (initial) solution to the transfer problem, 

given the condition that the number of the basic variables in this initial solution must equal the 

number of the linear conditions (i.e. m+n-1). An initial solution can be found in several ways. In this 

research, we will use three methods, the North-West corner method, the least-cost method, and 

Vogel's approximate method, to find an initial solution to the neutrosophic transport model, and we 

will study the three forms in each of the methods. [1-5]. 
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1. The North-West Corner Method 
 

The North-West Corner Rule is a technique for calculating an initial basic feasible solution to a 

transportation problem. The method is called North-West Corner because the basic variables are 

chosen from the extreme left corner. the following three steps gives the initial basic feasible solution: 

 
1. Find the north west corner cell of the transportation tableau. Allocate as much as possible to 

the selected cell, and adjust the associated amounts of supply and demand by subtracting the 

allocated amount. 

2. Cross out the row or column with 0 supply or demand. If both a row and a column have a 0, 

cross out randomly row or column. 

3. If one cell is left uncrossed, cross out the cell and stop. Otherwise, go to step 1. 

 
We should not forget that the final allocated cells (nonzero cells) must equal to the value (m+n-1), where 

m determine how many production center that the problem have, while n refers to how many 

consumption center exist. 

 

1.1 First Case Study for Neutrosophic Transportation Problem in which the 

Indeterminacy is in 𝑁𝑐𝑖𝑗 

In this case the cost of transportation will be neutrosophic values, that’s mean the monetary value of 

transfer one unit from the production center 𝑖 to the consumption center 𝑗 is 𝑁𝑐𝑖𝑗 = 𝑐𝑖𝑗 ± 𝜀, where 

𝜀 is the indeterminate value and equal to 𝜀 = [𝜆1, 𝜆2], so the payment matrix will be 𝑁𝑐𝑖𝑗 = 

⌊ 𝑐𝑖𝑗 ± 𝜀⌋. Although all transportation costs have been given the same indeterminate value, it is feasible 

to assign a different indeterminate to each cost and use the same case study. 

The Text of the Problem 

A certain amount of oil is to be transported from three stations 𝐴1, 𝐴2, 𝐴3 to four cities 𝐵1, 𝐵2, 𝐵3, 𝐵4. The 

following table shows the quantities available at each station, the demand quantities in each city, and 

the transportation costs in each direction: 

 

 

CC 
PC 

 
𝐵1 

 
𝐵2 

 
𝐵3 

 
𝐵4 

 
AQ 

𝐴1 7 + 𝜀 

𝑥11 

4 + ε 

𝑥12 

15 + 𝜀 

𝑥13 

9 + 𝜀 

𝑥14 

 

120 

𝐴2 11 + ε 

𝑥21 

0 + ε 

𝑥22 

7 + 𝜀 

𝑥23 

3 + 𝜀 

𝑥24 

 

80 

𝐴3 4 + 𝜀 

𝑥31 

5 + 𝜀 

𝑥32 

2 + 𝜀 

𝑥33 

8 + 𝜀 

𝑥34 

 

100 

RQ 
 

85 

 

65 

 

90 

 

60 
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             In this example, the indeterminate value of 𝜀 = [0,2], based on the problem’s data we have,

 ∑ 𝑎𝑖
𝑚
𝑖=1 = ∑ 𝑏𝑗

𝑛
𝑗=1 = 300, this signifies that the issue is balanced. Substituting 𝜀 = [0,2] into the 

preceding tableau yielded the following one: 

 
 

CC 
PC 

 
𝐵1 

 
𝐵2 

 
𝐵3 

 
𝐵4 

 
AQ 

𝐴1 [7,9] 

𝑥11 

[4,6] 

𝑥12 

[15,17] 

𝑥13 

[9,11] 

𝑥14 

120 

𝐴2 [11,13] 

𝑥21 

[0,2] 

𝑥22 

[7,9] 

𝑥23 

[3,5] 

𝑥24 

80 

𝐴3 [4,6] 

𝑥31 

[5,7] 

𝑥32 

[2,4] 

𝑥33 

[8,10] 

𝑥34 

100 

RQ  
85 

 
65 

 
90 

 
60 

300 
300 

 

The entire calculations to find the initial solution using the North-West method have been 

summarized as follow: 

Start with the cell located in the north-west corner of the table, i.e. that cell corresponds 

to the first production center crossing with the first consumption center, this cell will 

carry the value 

𝑀𝑖𝑛 {85,93} = 85, hence the first consumption center 𝐵1 has the need been fulfilling of its 

requirement from the first production center 𝐴1, the remaining amount in 𝐴1is 120 − 85 = 35. 

Move to the right cell positioned in the crossing of first row with second column and put in it 

the value 𝑀𝑖𝑛 {65,35} = 35, so the available quantity in 𝐴1, and the required quantity in 𝐵1 

both are being zero, but the second consumption center 𝐵2 requires to 65 − 35 = 30. Go down 

to the cell of position in the cross of second row with second column (𝑥22) and put the value 

𝑀𝑖𝑛 {30,80} = 30, consequently, the second consumption center 𝐵2 has its need been fulfilling, 

and the remaining value in the second production center 𝐴2 is 80 − 30 = 50, keep going in the 

same above technique till all production centers are emptied, and all consumption centers 

have been fulfilling, finally the following table was gotten: 
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The last table illustrates: 𝑥11 = 85, 𝑥12 = 35, 𝑥22 = 30, 𝑥23 = 50, 𝑥33 = 40, 𝑥34 = 60, 𝑥13 = 𝑥14 = 𝑥21 = 𝑥24 =

𝑥31 = 𝑥32 = 0, we have 𝑛 = 4, 𝑚 = 3, 𝑚 + 𝑛 − 1 = 6, meaning that the initial conduction satisfied the 

necessary condition. Calculate the total cost for this initial solution by substitution the 𝑥′𝑠 values in the cost 

function: 

𝑁𝐶 = 𝑐11𝑥11 + 𝑐12𝑥12 + 𝑐13𝑥13 + 𝑐14𝑥14 + 𝑐21𝑥21 + 𝑐22𝑥22 + 𝑐23𝑥23 + 𝑐24𝑥24 + 𝑐31𝑥31 + 𝑐32𝑥32 + 𝑐33𝑥33 

 
+ 𝑐34𝑥34 

 
𝑁𝐶 = [7,9] ∗ 85 + [4,6] ∗ 35 + [15,17] ∗ 0 + [9,11] ∗ 0 + [11,13] ∗ 0 + [0,2] ∗ 30 + [7,9] ∗ 50 + [3,5] ∗ 0 

 
+ [4,6] ∗ 0 + [5,7] ∗ 0 + [2,4] ∗ 40 + [8,10] ∗ 60 = [1645,2245] 

 

Which is the cost versus initial solution. 

 

 

1.2 Second Case Study in which the indeterminacy is in both production center and 

consumption center 

Problem Text 
 

A quantity of fuel is intended to be shipped from three stations to four cities. The available quantities 

at each station, the demand quantities in each city, and the transportation costs in each direction are 

demonstrated in the following table: 

 

 

 

 

CC 
PC 

 
𝐵1 

 
𝐵2 

 
𝐵3 

 
𝐵4 

 
AQ 

𝐴1 [7,9] 

85 

[4,6] 

35 

[15,17] 

 

[9,11] 

 

120 

𝐴2 [11,13] 

 

[0,2] 

       30 

[7,9] 

        50 

[3,5] 

 

80 

𝐴3 [4,6] 

 

[5,7] 

 

[2,4] 

        40 

[8,10] 

      60 

100 

RQ  
85 

 
65 

 
90 

 
60 

300 
300 
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It is worthy 

to mention 

that 𝜀1, 𝜀2, 𝜀3 represent the indeterminacies that exist in available quantities in the fuel stations, and it can 

be took as intervals [𝜆𝑖1, 𝜆𝑖2] or as sets {𝜆𝑖1, 𝜆𝑖2} …etc. 

For this case study, the following values have been picked: 𝜀1 = [0,11], 𝜀2 = [0,9], 𝜀3 = [0,15] 

While the values 𝛿1, 𝛿2, 𝛿3, 𝛿4 are the indeterminacies in the required quantities in the four cities, also 

these neutrosophic values can be regarded as intervals [𝜇𝑖1, 𝜇𝑖2] or as sets {𝜇𝑖1, 𝜇𝑖2} …etc. 

For this example, the following neutrosophic values have been took: 𝛿1 = [0,8], 𝛿2 = [0,12], 𝛿3 = [0,9], 

𝛿4 = [0,6].  So the above table becomes: 

 

                     CC 
PC 

 
𝐵1 

 
𝐵
2 

 
𝐵3 

 
𝐵4 

 
A 

𝐴1  

7 
4 15 9 

 
[120,131] 

𝐴2 11 0 7 3  
[80,89] 

𝐴3 4 5 2 8  
[100,115] 

RQ 
 

[85,93] 
 

[65,77] 
 

[90,99] 
 

[60,66] 
[300,335] 

[300,335] 

 
It is clear that the problem is balanced as ∑ 𝑁𝑎𝑖

3
𝑖=1 = ∑ 𝑁𝑏𝑗

4
𝑗=1 = [300,335]. 

Start with the cell located in the north-west corner of the table, i.e. that cell corresponds to the first 

production center crossing with the first consumption center, this cell will carry the value 

𝑀𝑖𝑛 {[85,93], [120,131]} = [85,93], hence the first consumption center 𝐵1 has the need been fulfilling of its 

requirement from the first production center 𝐴1, the remaining amount in 𝐴1 is [120,131] − [85,93] = [35,38]. 

Move to the right cell positioned in the crossing of first row with second column and put in it the value 𝑀𝑖𝑛 

{[65,77], [35,38]} = [35,38], so the available quantity in 𝐴1, and the required quantity in 𝐵1 both are being 

zero, but the second consumption center 𝐵2 requires to [65,77] − [35,38] = [30,39]. Go down to the cell of 

position in the cross of second row with second column (𝑥22) and put the value 𝑀𝑖𝑛 {[30,39], [80,89]} = 

[30,39], consequently, the second consumption center 𝐵2 has its need been fulfilling, and the remaining 

value in the second production center 𝐴2 is [80,89] − [30,39] = [50,50], keep going in the same above technique 

till all production centers are emptied, and all consumption centers have been fulfilling, finally the following 

table was gotten: 

This table contains the following neutrosophic values: 

 
CC 

PC 

 
𝐵1 

 
𝐵
2 

 
𝐵3 

 
𝐵
4 

 
AQ 

𝐴1  

7 
4 15 9 

 
120 + 

𝜀1 

𝐴2 11 0 7 3  
80 + 𝜀2 

𝐴3 4 5 2 8  
100 + 

𝜀3 

RQ  
85 + 𝛿1 

 
65 + 𝛿2 

 
90 + 𝛿3 

 
60 + 𝛿4 
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𝑁𝑥11 = [85,93], 𝑁𝑥12 = [35,38], 𝑁𝑥22 = [30,39], 𝑁𝑥23 = [50,50], 𝑁𝑥33 = [40,49], 𝑁𝑥34 = [60,66], 𝑁𝑥13 = 𝑁𝑥14 

= 

𝑁𝑥21 = 𝑁𝑥24 = 𝑁𝑥31 = 𝑁𝑥32 = 0. In this problem similar to the previous problem in section (1.1), 𝑛 = 4, 𝑚 = 

3 ⟹ 𝑚 + 𝑛 − 1 = 6, meaning that the initial condition satisfied the necessary condition. Calculate the total 

cost for this initial solution by substitution the x’s values in the cost function: 

𝑁𝐶 = 𝑐11𝑥11 + 𝑐12𝑥12 + 𝑐13𝑥13 + 𝑐14𝑥14 + 𝑐21𝑥21 + 𝑐22𝑥22 + 𝑐23𝑥23 + 𝑐24𝑥24 + 𝑐31𝑥31 + 𝑐32𝑥32 + 𝑐33𝑥33+ 𝑐34𝑥34 

𝑁𝐶 = 7 ∗ [85,93] + 4 ∗ [35,38] + 15 ∗ 0 + 9 ∗ 0 + 11 ∗ 0 + 0 ∗ [30,39] + 7 ∗ [50,50] + 3 ∗ 0 + 4 ∗ 0 + 5* 0 + 2 
∗ [40,49] + 8 ∗ [60,66] = [1645,1779] 

Which is the cost versus to the initial solution. 
 

 

1.3 Third Case Study in Which the Transportation Cost, the Available Quantities in the 

Production Centers, and the Demand Quantities in the Consumption Centers are all 

Neutrosophic Values 

By taking the same context of the studied cases in the previous subsections (1.1, 1.2) subject to the 

following table has been considered as new example: 

 

             
           CC  

 
PC 

 
𝐵1 

 
𝐵2 

 
𝐵3 

 
𝐵4 

 
A 

𝐴1 7 + 𝜀 

𝑁𝑥11 

4 + 𝜀 

𝑁𝑥12 

15 + 𝜀 

𝑁𝑥13 

9 + 𝜀 

𝑁𝑥14 

 
120 + 𝜀1 

𝐴2 11 + 𝜀 

𝑁𝑥21 

0 + 𝜀 

𝑁𝑥22 

7 + 𝜀 

𝑁𝑥23 

3 + 𝜀 

𝑁𝑥24 

 
80 + 𝜀2 

𝐴3 4 + 𝜀 

𝑁𝑥31 

5 + 𝜀 

𝑁𝑥32 

2 + 𝜀 

𝑁𝑥33 

8 + 𝜀 

𝑁𝑥34 

 
100 + 𝜀3 

RQ 
 

85 + 𝛿1 
 

65 + 𝛿2 
 

90 + 𝛿3 
 

60 + 𝛿4 

 

 

By assuming 𝜀 =  [0,2], 𝜀1  =  [0,11], 𝜀2  =  [0,9],  𝜀3 =  [0,15], 𝛿1  =  [0,8], 𝛿2  =  [0,12], 𝛿3  =  [0,9], 𝛿4  =

CC 
PC  

 
𝐵1 

 
𝐵2 

 
𝐵3 

 
𝐵4 

 
AQ 

𝐴1              7 
[85,93] 

4 
      [35,38] 

15 
          0 

9 
           0 

           
         [120,131] 

𝐴2 11
0 

0 

[30,39] 

7 
     [50,50] 

3 

0 

             
           [80,89] 

𝐴3 4 

0 

5 

0 

2 

[40,49] 

8 

[60,66] 

 
            [100,115] 

RQ 

 

 
[85,93] 

 
[65,77] 

 
[90,99] 

 
[60,66] 

[300,335] 

[300,335] 
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 [0,6], the above table can be rewritten as: 

 

CC 
PC 

 
𝐵1 

 
𝐵2 

 
𝐵3 

 
𝐵4 

 
AQ 

𝐴1 [7,9] [4,6] [15,17] [9,11]      [120,131] 

𝐴2 [11,13] [0,2] [7,9] [3,5]       [80,89] 

𝐴3 [4,6] [5,7] [2,4] [8,10]       [100,115] 

RQ 
 

[85,93] 

 
[65,77] 

 
[90,99] 

 
[60,66] 

[300,335] 

[300,335] 

 

Obviously, the problem is balanced because ∑ 𝑎𝑖
𝑚
𝑖=1 = ∑ 𝑏𝑗

𝑛
𝑗=1 = [300,335] . The same north-west strategy 

has been implemented to get the following table:  
 

CC 
PC  

 
𝐵1 

 
𝐵2 

 
𝐵3 

 
𝐵4 

 
AQ 

𝐴1 [7,9] 

[85,93] 

[4,6] 

[35,38] 

[15,17] 

0 

[9,11] 

0 

 

[120,131] 

𝐴2 [11,13] 

0 

[0,2] 

[30,39] 

[7,9] 

[50,50] 

[3,5] 

0 

 

[80,89] 

𝐴3 [4,6] 

0 

[5,7] 

0 

[2,4] 

[40,49] 

[8,10] 

[60,66] 

 

[100,115] 

RQ 
 

[85,93] 
 

[65,77] 
 

[90,99] 
 

[60,66] 
[300,335] 

[300,335] 

Same as the previous examples we have, 𝑁𝑥11  =  [85,93], 𝑁𝑥12  =  [35,38], 𝑁𝑥22  =  [30,39], 𝑁𝑥23  =

 [50,50], 𝑁𝑥33 =  [40,49], 𝑁𝑥34 =  [60,66], 𝑁𝑥13 =  𝑁𝑥14  =  𝑁𝑥21  =  𝑁𝑥24  =  𝑁𝑥31 =  𝑁𝑥32  =  0. In this 

problem similar to the previous problems (1.1 &1.2), 𝑛 = 4, 𝑚 = 3 ⟹ 𝑚 + 𝑛 − 1 = 6, meaning that the initial 

condition satisfied the necessary condition. Calculate the total cost for this initial solution by substitution 

the x’s values in the cost function: 

𝑁𝐶 =  𝑐11𝑥11  +  𝑐12𝑥12  +  𝑐13𝑥13  +  𝑐14𝑥14  +  𝑐21𝑥21  +  𝑐22𝑥22  +  𝑐23𝑥23  +  𝑐24𝑥24  +  𝑐31𝑥31  +  𝑐32𝑥32  

+  𝑐33𝑥33 +  𝑐34𝑥34 

𝑁𝐶 = [7,9] ∗ [85,93] + [4,6] ∗ [35,38] + [9,11] ∗ 0 + [7,9] ∗ 0 + [11,13] ∗ 0 + [0,2] ∗ [30,39] + [7,9]* [50,50] + [4,6] 

∗ 0 + [5,7] ∗ 0 + [2,4] ∗ [40,49] + [8,10] ∗ [60,66] = [1645,2449] 

Which is the cost versus to the initial solution. 
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2. The Least- Cost Method 

 
The least cost is another method used to obtain the initial feasible solution for the transportation 

problem. Here, the allocation begins with the cell which has the minimum cost. The lower cost cells 

are chosen over the higher-cost cell with the objective to have the least cost of transportation. The 

Least Cost Method is considered to produce more optimal results than the north-west corner because 

it considers the shipping cost while making the allocation, whereas the North-West corner method 

only considers the availability and supply requirement and allocation begin with the extreme left 

corner, irrespective of the shipping cost [1-5]. We will discuss the existence types of the 

indeterminacies either in transportation costs, or the indeterminacy exists in both the available 

quantity in the production centers and in the demand quantities in the consumption centers, or in all 

of them by the following case studies: 

2.1 Case Study Has the Indeterminacy in its Transportation Cost 
 

The same context of example (1.1) has been resolved using least- cost method, where the least cost 

cell is [0,2] which is located in the position resulting from the intersection of the second row with the 

second column, and put the value 𝑚𝑖𝑛 {65,80} = 65 in it. Thus, we have met the need of the second 

consumption center 𝐵2 from the second production center 𝐴2, and the remaining quantity in 𝐴2 is 80 

− 65 = 15. Move to the next least cost value among the remaining costs is [2,4], which is located in 

the cell resulting from the intersection of the third row with the third column, and we put the value 𝑚𝑖𝑛 

{90,100} = 90 in it. Thus, we have met the need of the third consumption center 𝐵3 from the third 

productive center 𝐴3, and the remaining value in the third productive center is 100 − 90 = 10. 

Continuing by the same strategy until all consumption centers have been saturated and all 

production centers have been emptied. Consequently, the following table yield: 

CC 
PC 

 
𝐵1 

 
𝐵2 

 
𝐵3 

 
𝐵4 

 
AQ 

𝐴1 [7,9] 
 

75 

[4,6] [15,17] [9,11] 
 

45 

 

120 

𝐴2 [11,13] [0,2] 
 

65 

[7,9] [3,5] 
 

15 

 

80 

𝐴3 [4,6] 
 

10 

[5,7] [2,4] 
 

90 

[8,10]  

100 

RQ 
 

85 
 

65 
 

90 
 

60 
300 

 

300 
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Here, 𝑥11  =  75,  𝑥14  =  45, 𝑥22  =  65, 𝑥24  =  15,  𝑥31  =  10, 𝑥33  =  90,  𝑥12 = 𝑥13 =  𝑥21 =  𝑥23 =  𝑥32  =
 𝑥34  =  0. 

𝑁𝐿 = [7,9] ∗ 75 + [4,6] ∗ 0 + [15,17] ∗ 0 + [9,11] ∗ 45 + [11,13] ∗ 0 + [0,2] ∗ 65 + [7,9] ∗ 0 + [3,5] ∗ 15 

+ [4,6] ∗ 10 + [5,7] ∗ 0 + [2,4] ∗ 90 + [8,10] ∗ 0 = [1195,1795]. As usual, it represents the cost versus to the 

initial solution. 

 
2.2 Case Study in Which the Available Quantities of the Production Centers and the 

Demanded Quantities of the Consumption Centers are Neutrosophic Values 

For the comparison purposes, the same data and problem text that used in the case study (1.2) has been 

considered here, so the first three tables are the same. By applying the least cost method, it seems the cell of 

the zero value is the required cell which exactly located in the intersection of the second row with the second 

column, so we put in this cell the value 𝑚𝑖𝑛 {[65,77], [80,89]} = [65,77], by moving to the next least cost cell 

that located in the intersection of the third row with the third column of 2 value, burden this cell with the 

value 𝑚𝑖𝑛 {[90,99], [100,115]} = [90,99], go on with the same strategy till all consumption centers 

saturation at the same time all productions centers have been emptied, hence, the following table yielding: 

 
 

CC 

PC 

 
𝐵1 

 
𝐵2 

 
𝐵3 

 
𝐵4 

 

               AQ 

𝐴1 7 

[75,77] 

4 15 9 

[45,54] 

 
[120,131] 

𝐴2 11 0 

[65,77] 

7 3 

[15,12] 

           
          [80,89] 

𝐴3 4 

[10,16] 
5 2 

[90,99] 

8 
 

[100,115] 

RQ 
 

[85,93] 
 

[65,77] 
 

[90,99] 
 

[60,66] 
[300,335] 

[300,335] 

 

Hence, 𝑁𝑥11 = [75,77], 𝑁𝑥14 = [45,54], 𝑁𝑥22 = [65,77], 𝑁𝑥24 = [15,12], 𝑁𝑥31 = [10,16], 𝑁𝑥33 = [90,99], 𝑁𝑥12 

= 𝑁13 = 𝑁𝑥21 = 𝑁𝑥23 = 𝑁𝑥32 = 𝑁𝑥34 = 0, we should not forget the problem satisfies the balancing 

condition since 𝑚 + 𝑛 − 1 = 6. 

𝑁𝐿 = 7 ∗ [75,77] + 4 ∗ 0 + 15 ∗ 0 + 9 ∗ [45,54] + 11 ∗ 0 + 0 ∗ [65,77] + 7 ∗ 0 + 3 ∗ [15,12] + 4* [10,16] + 5 ∗ 
0 + 2 ∗ [90,99] + 8 ∗ 0 = [1259,1323] 
 

Obviously, it represents the cost versus to the initial solution. 

 
2.3 Case Study in Which the Transportation Cost, the Available Quantities of the 

Production Centers, and the Demanded Quantities of the Consumption Centers are all 

Neutrosophic Values 
In this section, the text problem and the types of the indeterminacies are same as in the case 

study of the section (1.3), but the values of 𝛿𝑖′𝑠, 𝜀𝑖′𝑠 are assumed to be: 

𝜀 = [0,2], 𝜀1 = [0,35], 𝜀2 = [0,10], 𝜀3 = [0,15], 𝛿1 = [0,7], 𝛿2 = [0,18], 𝛿3 = [0,25], 𝛿4 = [0,10]. 
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CC 

PC 

 
       𝐵1 

 
𝐵2 

 
       𝐵3 

 
𝐵4 AQ 

𝐴1 [7,9] 
𝑁𝑥11 

[4,6] 
𝑁𝑥12 

[15,17] 
𝑁𝑥13 

           [9,11] 
𝑁𝑥14 

 
              [120,155] 

𝐴2 [11,13] 
𝑁𝑥21 

[0,2] 
𝑁𝑥22 

[7,9] 
𝑁𝑥23 

[3,5] 
𝑁𝑥24 

 
[80,90] 

𝐴3 [4,6] 
𝑁𝑥31 

[5,7] 
𝑁𝑥32 

[2,4] 
𝑁𝑥33 

            [8,10] 
𝑁𝑥34 

 
           [100,115] 

RQ 
 

[85,92] 
 

[65,83] 
 

[90,115] 
 
        [60,70] 

  [300,360] 
 

[300,360] 

Again, by using the least cost strategy, the least cost is the cell [0,2] located in the cell intersect 

the second row with second column, so we will put the value min{65,80} = 65 in it, hence the needy of 

the second consumption center 𝐵2 has been met from the second production center 𝐴2 , the remaining 

quantity in 𝐴2 is 80 − 65 = 15 , by moving to the next least cost cell which is [2,4] represents the cell 

allocated in the intersection of the third row with the third column, burden this cell with the value 

𝑚𝑖𝑛{90,100} = 90 . Thus, we have met the need of the third consumption center 𝐵3 from the third 

productive center 𝐴3, and the remaining value in the third productive center is 100 − 90 = 10. Go on with 

the same strategy till all consumption centers saturation at the same time all productions centers have 

been emptied, hence, the following table yielding: 

 

Hence, 𝑁𝑥11  =  [75,77],  𝑁𝑥14  =  [45,54],  𝑁𝑥22  =  [65,77], 𝑁𝑥24  =  [15,12],  𝑁𝑥31  =  [10,16],  𝑁𝑥33  =

 [90,99],  𝑁𝑥12  =  𝑁𝑥13  =  𝑁𝑥21  =  𝑁𝑥23  =  𝑁𝑥32  =  𝑁𝑥34  =  0, we should not forget the problem satisfies 

the balancing condition since 𝑚 + 𝑛 − 1 = 6. The following cost represents the initial feasible solution. 

𝑁𝐿 = [7,9] ∗ [75,77] + [4,6] ∗ 0 + [15,17] ∗ 0 + [9,11] ∗ [45,54] + [11,13] ∗ 0 + [0,2] ∗ [65,77] + [7,9] ∗0 + [3,5] ∗ 

[15,12] + [4,6] ∗ [10,16] + [5,7] ∗ 0 + [2,4] ∗ [90,99] + [8,10] ∗ 0 = [1195,1993]. 

 

CC 
PC 

 
𝐵1 

 
𝐵2 

 
𝐵3 

 
𝐵4 AQ 

𝐴1 [7,9] 
 

[75,77] 

[4,6] [15,17] [9,11] 
 

[45,54] 

 

[120,131] 

𝐴2 [11,13] [0,2] 
 

[65,77] 

[7,9] [3,5] 
 

[15,12] 

 

[80,89] 

𝐴3 [4,6] 
 

[10,16] 

[5,7] [2,4] 
 

[90,99] 

[8,10]  

[100,115] 

RQ 
 

[85,93] 
 

[65,77] 
 

[90,99] 
 

[60,66] 
[300,335] 

 

[300,335] 
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Eliminate the row/ column that has been satisfied 

 

3- Vogel’s Approximation Method : 

Definition: The Vogel’s Approximation Method or VAM is an iterative procedure calculated to find out 

the initial feasible solution of the transportation problem. Like Least cost Method, here also the shipping 

cost is taken into consideration, but in a relative sense. The following is the flow chart showing the steps 

involved in solving the transportation problem using the Vogel’s Approximation method. 

 

 

 

The same cases studies that have discussed in the all previous sections (1.1,1.2,1.3,2.1,2.2,2.3) can be 

presented here with the same problems texts, with same data values, to be resolved in the Vogel’s 

iterative method, this will give us a good opportunity to analyze the results which enables us to make 

a good comparison between (North-West Corner method, Least-Cost Method, and Vogel’s Method). 
 

Start 

Find the difference between the two least cost cells which 
have not been allocated, for both the rows and columns 

Select the largest of the differences of both the rows and columns and 
in case there is a tie, choose the one where the maximum quantity can 
be assigned considering the minimum cost as well 

Assign the largest quantity within the demand and supply constraint 
in the row or column where the cost is minimum 

Assign the largest quantity within the demand and supply constraint 
in the row or column where the cost is minimum 

NO 
Are all the demand and supply requirements met? 
 

Yes 

Stop 
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3.1 Case Study Has the Indeterminacy in its Transportation Cost 
 

CC 
 
PC 

 
𝐵1 

 
𝐵2 

 
𝐵3 

 
𝐵4 

 
AQ 

∆𝟏 ∆𝟐 ∆𝟑 

𝐴1 [7,9] 

75 

[4,6] 

45 

         [15,17]       

      [9,11] 
 

120 
 

3 
 

3 
 

3 

𝐴2 [11,13] [0,2] 

20 

[7,9] [3,5] 

60 

 

80 
 

3 
 

3 
 

11 

𝐴3 [4,6] 
 

10 

[5,7] [2,4] 
 

90 

[8,10]  

100 
 

2 
 

2 
 

1 

RQ 
 

85 
 

65 
 

90 
 

60 
                300 

 
300 

   

∆1
′   

3 
 

4 
 

5 
 

5 

    

∆2
′   

3 
 

4 
 

5 
 

_ 

    

∆3
′   

3 
 

4 
 

_ 

 

_ 

    

 

The symbols ∆1
′ , ∆2

′ , ∆3
′  mean the subtractions between the columns respectively, while the symbols 

∆1, ∆2, ∆3 mean the subtractions between the rows respectively. 

From the above table, we have 𝑥11 = 75, 𝑥12 = 45, 𝑥22 = 20, 𝑥24 = 60, 𝑥31 = 10, 𝑥33 = 90, 𝑥13 = 𝑥14 =𝑥21 = 

𝑥23 = 𝑥32 = 𝑥34 = 0, 

 

𝑁𝐿 = [7,9] ∗ 75 + [4,6] ∗ 45 + [15,17] ∗ 0 + [9,11] ∗ 0 + [11,13] ∗ 0 + [0,2] ∗ 20 + [7,9] ∗ 0 + [3,5] ∗ 60 

 

+ [4,6] ∗ 10 + [5,7] ∗ 0 + [2,4] ∗ 90 + [8,10] ∗ 0 = [1105,1705] 
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3.2 Case Study in Which the Available Quantities of the Production Centers and the 

Demanded Quantities of the Consumption Centers are Neutrosophic Values 

 

CC 
PC 

 
𝐵1 

 
𝐵2 

 
𝐵3 

 
𝐵4 

AQ ∆𝟏 ∆𝟐 ∆𝟑 

𝐴1 7 

[75,77] 

4 

[45,54] 

15 9  

[120,131] 
 

3 
 

3 
 

3 

𝐴2 11 0 

[20,23] 

7 3 

[60,66] 

 

[80,89] 
 

3 
 

7 
 

− 

𝐴3 4 

[10,16] 

5 2 

[90,99] 

8  

[100,115] 
 

2 
 

2 
 

2 

RQ 
 

[85,93] 
 

[65,77] 
 

[90,99] 
 

[60,66] 
[300,335] 

 
 

[300,335] 

   

∆1
′   

3 
 

4 
 

5 
 

5 

    

∆2
′   

3 
 

4 
 

5 
 

_ 

    

 

∆3
′  

 

3 
 

1 
 

13 
 

_ 

    

 

Recall the same notations 𝑁𝑥𝑖𝑗 ′𝑠 with their new values, 

 
𝑁𝑥11 = [75,77], 𝑁𝑥12 = [45,54], 𝑁𝑥22 = [20,23], 𝑁𝑥24 = [60,66], 𝑁𝑥31 = [10,16], 𝑁𝑥33 = [90,99], 

 
𝑁𝑥13 = 𝑁14 = 𝑁𝑥21 = 𝑁𝑥23 = 𝑁𝑥32 = 𝑁𝑥34 = 0 

 
The initial feasible solution is: 

 
𝑁𝐿 = 7 ∗ [75,77] + 4 ∗ [45,54] + 15 ∗ 0 + 9 ∗ 0 + 11 ∗ 0 + 0 ∗ [20,23] + 7 ∗ 0 + 3 ∗ [60,66] + 4 

 
* [10,16] + 5 ∗ 0 + 2 ∗ [90,99] + 8 ∗ 0 = [1105,1215] 

 

3.3 Case Study in Which the Transportation cost, the Available Quantities of the 

Production Centers, and the Demanded Quantities of the Consumption Centers are all 

Neutrosophic Values 

Recall the same text problem in section (1.3) with respect to resolving it using Vogel’s iterative 

procedure to conclude the following table: 



Neutrosophic Sets and Systems, Vol. 50, 2022 79  

M. Jdid, H. E. Khalid “An Investigation in the Initial Solution in Neutrosophic Transportation Problems (NTP)’’ 

 

 

 

 

CC 

PC 

 
𝐵1 

 
𝐵2 

 
𝐵3 

 
𝐵4 

AQ ∆𝟏 ∆𝟐 ∆𝟑 

𝐴1 [7,9] 

[75,77] 

[4,6] 

[45,54] 

[15,17]  

[9,11] 

 

[120,131] 
 

3 
 

3 
 

3 

𝐴2 [11,13] [0,2] 

[20,23] 

[7,9] [3,5] 

[60,66] 

 

[80,89] 
 

3 
 

7 
 

− 

𝐴3 [4,6] 

[10,16] 

[5,7] [2,4] 

[90,99] 

[8,10]  

[100,115] 
 

2 
 

2 
 

2 

RQ 
 

[85,93] 
 

[65,77] 
 

[90,99] 
 

[60,66] 
[300,335] 

 
 

[300,335] 

   

∆1
′   

3 
 

4 
 

5 
 

5 
    

 
∆2

′  
 

3 
 

4 
 

5 
 

_ 

    

∆3
′   

3 
 

1 
 

13 
 

_ 

    

 

So the initial feasible solution is: 

𝑁𝐿 = [7,9] ∗ [75,77] + [4,6] ∗ [45,54] + [15,17] ∗ 0 + [9,11] ∗ 0 + [11,13] ∗ 0 + [0,2] ∗ [20,23] + [7,9] 
* 0 + [3,5] ∗ [60,66] + [4,6] ∗ [10,16] + [5,7] ∗ 0 + [2,4] ∗ [90,99] + [8,10] ∗ 0 = [1105,1885] 
 

4. Conclusion and Results 

This paper sheds the light on a new vision for solving Transportation problems by taking into 

consideration the existence of indeterminacy in many joints of the problems that have been solve nine 

times, each time in different method and different aspect of indeterminacy existence. With some deep 

insights the reader can notice that the Vogel’s iterative procedure yields minimum cost than both the 

costs that produced by applying North-west method, and Least-Cost method. However, the methods 

that used is still gives the results regarded as the initial feasible solution not the optimal solution, which 

mean that these methods are still need to improve to get the optimal solution. 

Below table summarizes all previous solutions in comparison strategy: 

 
 

The Method 
 

Types of the problem 

North-West Method Least- Cost Method Vogel’s Method 

First type indeterminacy [1645,2245] [1195,1795] [1105,1705] 

Second type indeterminacy [1645,1779] [1259,1323] [1105,1215] 

Third type indeterminacy [1645,2449] [1195,1993] [1105,1885] 
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Looking forward to the further upcoming studies dedicated to implement improvements on the initial 

solutions to get an optimal solution in the neutrosophic transportation problems. 

As it is well known in the transportation problems, that the (North- West Corner, Least Cost Method, and 

Vogel’s Method), all these methods are for finding the initial solutions (either these initial solutions are 

suffering from weak accurate by applying the North - West Corner, or having more accurate by applying 

Vogel’s method), it still needs to investigate the optimal solutions in the transportations problems, which 

will be by intending to publish forthcoming papers. 
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Abstract: Hesitancy is an imperative part of belief system. In order to counter the hesitancy in 

neutrosophic cubic set (NCS), the notion of neutrosophic cubic hesitant fuzzy set (NCHFS) is 

presented. NCHFS couple NCS with hesitant fuzzy set (HFS). Operational laws in NCHFS are 

developed with examples. To meet the challenges of decision making problems, neutrosophic cubic 

hesitant fuzzy geometric (NCHFG) aggregation operators, neutrosophic cubic hesitant fuzzy 

Einstein geometric (NCHFEG) aggregation operators, neutrosophic cubic hesitant fuzzy hybrid 

geometric (NCHFHEG) aggregation operators are developed in the current study. At the end a 

multi expert decision making (MEDM) process is proposed and furnished upon numerical data of a 

company as applications. 

Keywords: Neutrosophic Cubic Fuzzy Hesitant Set (NCHFS), Neutrosophic Cubic Hesitant Fuzzy 

Weighted geometric (NCHFWG) operator, Neutrosophic Cubic Hesitant Fuzzy Einstein Geometric 

(NCHFEG) operator, Neutrosophic Cubic Hesitant Fuzzy Einstein Hybrid Geometric (NCHFEHG) 

Operator. multi expert decision making (MEDM) 
 
 
1. Introduction 

We are in different mental states of acceptance, hesitancy and refusal while taking decisions in life. 

Many methods in MADM ignore the uncertainty and hence yields the results which are unreliable. 

The role of expert in decision making (DM) is vital. The participation of more than one expert in a 

DM process reduce the uncertainty. Zadeh proposed the notion of fuzzy set (FS) [1] as a function 

from a given set of objects to [0,1] called membership. Later Zadeh extended the idea to interval 

valued fuzzy set (IVFS) [2]. An IVFS a function from a given set of objects to the subintervals of [0,1]. 

The FS theory has many applications in artificial intelligence, robotics, computer networks, 

engineering and DM [3,4]. Different researchers [5-8] established similarity measures and other 

important concepts and successfully apply their models to medical diagnosis and selection criteria. 

R.A. Krohling and V.C. Campanharo, M. Xia and Z. Xu, M.K. Mehlawat and P.A. Guptal established 

different useful techniques to sort out MADM problems [9-11]. K. Atanassov introduced 

non-membership degree and presented the idea of intuitionistic fuzzy set (IFS) [12] which consist of 

both membership and non-membership degree within [0,1]. An extension of IFS was proposed and 
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named as interval value intuitionistic fuzzy set (IVIFS) [13]. IVIFS contains membership and 

non-membership in the form of subintervals of [0,1]. This characteristic of intuitionistic fuzzy set 

made it more applicable then previous versions and attracted researchers [14-16] to apply it to the 

fields of science, engineering and daily life problems. Jun et al., combined IVFS and FS and proposed cubic 
set (CS). The CS is the generalization of IFS and IVIFS. CS become vital tool to deal the vague data. Several 
researchers explored algebraic aspects and apparently define ideal theory in CS [17-20]. F. Smarandache 
initiated the concept of indeterminacy and describe the notion of neutrosophic set (NS) [21]. NS consist of three 
components truth, indeterminacy and falsehood and all are independent. This characteristic of neutrosophic set 
enabled researchers to work with inconsistent and vague data more effictively. Wang et al proposed single 
valued neutrosophic set (SNVS) [22] by restricting components of NS to [0,1]. The NS was further extended to 
interval neutrosophic set (INS) [23]. After the appearance of NS, researchers put their contributions in 
theoretical as well as technological developments of the set [24-27]. Several researchers use neutrosophic and 
interval valued neutrosophic environments to construct MADM methods [28-32]. Zhan et al.,define 
aggregation operators and furnished some applications in MADM [33]. Torra define hesitant fuzzy set (HFS) 
[34] in contrast of FS. HFS on X is a function that maps every object of X into a subset of [0, 1]. Jun et al., 
presented the notion of NCS [35] which consist of both INS and NS. These characteristics of NCS make it a 
powerful tool to deal the vague and inconsistent data more efficiently. Soon after its exploration it attracted the 
researcher to work in many fields like medicine, algebra, engineering and DM. Later the idea of cubic hesitant 
fuzzy set was introduced by Tahir et al.,[36]. Ye [37] establish similarity measure in neutrosophic hesitant 
fuzzy sets (NHFS) and established MADM method using these measures. Liu et. Al [38] proposed hybrid 
geometric aggregation operators in interval neutrosophic hesitant fuzzy sets (INHFS)and discuss its 
applications in MADM. Zhu et al. [39] proposed the method of β-normalization to enlarge a HFE, which is a 
useful technique in case of different cardinalities. 
The remaining of the paper is formulated as follows. In section 2, we reviewed some basic definitions used 
later on. Section 3 deals with NCHFS, algebraic and Einstein operational laws in NCHFS. In section 4 we 
introduced aggregation operators in NCHFS. Section 5 concern with establishing a MEDM method based on 
NCHFG operators and use this method in MEDM problem. 

2. Preliminaries 
Definition 2.1: [1] A fuzzy set (FS)on a nonempty set W is a mapping Γ: 𝑊 → [0,1]. 
Definition 2.2: [12] The cubic set (CS) on a nonempty set Z is defined by 𝜇 = 〈𝑥; 𝐼(𝑥), 𝛿(𝑥)/𝑥 ∈ 𝑋〉, where 

( )I x  is an IVFS on Z and 𝛿(𝑥) is an FS on Z. 

Definition 2.3: [22] A neutrosophic set associated with a crisp set S, is a set of the form 𝜇 =

〈𝑒; 𝜉𝑇(𝑒), 𝜉𝐼(𝑒), 𝜉𝐹(𝑒)/𝑒 ∈ 𝑆〉 where 𝜉𝑇 , 𝜉𝐼 , 𝜉𝐹 : 𝑆 → [0,1] respectively called a truth membership function, a 
non-membership function and a false membership function. 
Definition 2.4: [34] A hesitant fuzzy set on a crisp set W is a mapping which assigns a set of values in [0,1], to 
each element of W.   
Definition 2.5: [35] A neutrosophic cubic set in a nonempty set E is defined as a pair (𝐵, 𝜇) where  𝐵 =

〈𝑥; 𝐵𝑇(𝑒), 𝐵𝐼(𝑒), 𝐵𝐹(𝑒)/𝑒 ∈ 𝐸〉 is an INS and 𝜇 = 〈𝑥; 𝜇𝑇(𝑒), 𝜇𝐼(𝑒), 𝜇𝐹(𝑒)/𝑒 ∈ 𝑋〉 is a NS. 
Definition 2.6: [39] A neutrosophic hesitant fuzzy set a nonempty set E is described as 𝜇 =

〈𝑥; 𝜇𝑇(𝑒), 𝜇𝐼(𝑒), 𝜇𝐹(𝑒)/𝑒 ∈ 𝐸〉where 𝜇𝑇(𝑒), 𝜇𝐼(𝑒), 𝜇𝐹(𝑒) are three HFSs such that 𝜇𝑇(𝑒) + 𝜇𝐼(𝑒) + 𝜇𝐹(𝑒) ≤

3. 
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Definition2.7: [40] The object  𝜁 = 〈𝑥; 𝜉𝑇(𝑥), 𝜉𝐼(𝑥), 𝜉𝐹(𝑥)/𝑥 ∈ 𝑋〉 , s called an INHFS on X, 
where𝜉𝑇(𝑥), 𝜉𝐼(𝑥), 𝜉𝐹(𝑥) are IHFSs. 
Zhu et al. proposed the following β-normalization method to enlarge a hesitant fuzzy element, which is a 
useful technique in case of different cardinalities. 
Definition 2.8:[41] Let 𝑚+ and 𝑚− be the maximum and minimum elements of an hesitant fuzzy set H and 
𝜁(0 ≤ 𝜁 ≤ 1) an optimized parameter. We call 𝑚 = 𝜁𝑚+ + (1 − 𝜁)𝑚− an added element. 

3. NCHFS and operational Laws in NCHFS 
Definition3.1: Let X be a nonempty set. A neutrosophic cubic hesitant fuzzy set in X is a pair 𝛼 = 〈𝐴, 𝜆〉 
where 𝐴 = 〈𝑥; 𝐴𝑇(𝑥), 𝐴𝐼(𝑥), 𝐴𝐹(𝑥)/𝑥 ∈ 𝑋〉  is an interval-valued neutrosophic hesitant set in X and 𝜆 =

〈𝑥; 𝜆𝑇(𝑥), 𝜆𝐼(𝑥), 𝜆𝐹(𝑥)/𝑥 ∈ 𝑋〉  is a neutrosophic hesitant set in X. Furthermore 𝐴𝑇 = {[𝐴𝑗𝑇

𝐿 , 𝐴𝑗𝑇

𝑈 ]; 𝑗 =

1, … , 𝑙}, 𝐴𝐼 = {[𝐴𝑗𝐼

𝐿 , 𝐴𝑗𝐼

𝑈]; 𝑗 = 1, … , 𝑚}, 𝐴𝐹 = {[𝐴𝑗𝐹

𝐿 , 𝐴𝑗𝐹

𝑈 ]; 𝑗 = 1, … , 𝑛}  are some interval values in [0,1] and 
𝜆𝑇 = {𝜆𝑗𝑇

; 𝑗 = 1, … , 𝑟}, 𝜆𝐼 = {𝜆𝑗𝐼
; 𝑗 = 1, … , 𝑠}, 𝜆𝐹 = {𝜆𝑗𝐹

; 𝑗 = 1, … , 𝑡} are some values in [0,1]. 
Example 3.2: Let𝑋 = {𝑢, 𝑣, 𝑤}  The pair 𝛼 = 〈𝐴, 𝜆〉 with 

     ( ) [0.1,0.5],[0.2,0.7] , ( ) {0.3,0.5,0.7}, ( ) [0.2,0.4],[0.3,0.6] , ( ) {0.1,0.4,0.7}, ( ) [0.1,0.4],[0,0.3],[0.6,0.8] , ( ) {0.4,0.6}A u u A u u A u uT T I T F F       

 

     ( ) [0.1,0.5],[0.2,0.7] , ( ) {0.3,0.5}, ( ) [0.2,0.3],[0.1,0.6] , ( ) {0.7,0.8}, ( ) [0.1,0.4],[0,0.3] , ( ) {0.4,0.6}A v v A v v A v vT T I I F F       

 

     ( ) [0.1,0.5],[0.2,0.7] , ( ) {0.3,0.5}, ( ) [0.2,0.3],[0.1,0.6] , ( ) {0.7,0.8}, ( ) [0.1,0.4],[0,0.3] , ( ) {0.4,0.6}A w w A w w A z wT T I I F F       

 
is a NCHFS. 
Definition 3.3: The sum of two NCHFSs 𝛼 = 〈𝐴, 𝜆〉, 𝛽 = 〈𝐵, 𝜇〉 is defined as 

     

     

, , , , , [ , ] ,
,

, ,

L L L L U U U U L L L L U U U U L L U U

T T T T T T I I I I I I I F F F FT T I

T T T T I I I I F

j j j j j j j j j j j j j j j j j j j j

j j j j j j j j j

x A B A B A B A B A B A B A B A B A B A B
 

        

          
   

 

   

 

Moreover the 𝛽-normalization is used in case of different cardinalities. 
Example3.4:If

     [0.1,0.5],[0.2,0.7] , [0.2,0.3],[0.1,0.6] , [0.1,0.4],[0.0,0.3] ,{0.1,0.2},{0.3,0.5,0.7},{0.4,0.8} ,   

and      [0.4,0.5],[0.3,0.4] , [0.1,0.3],[0.2,0.5] , [0.1,0.4],[0.7,0.8] ,{0.3,0.4,0.5},{0.7,0.8},{0.4,0.6} ,   

then using above definition and 𝛽-normalization with parameter 𝜉 = 0.5 we have 

     [0.46,0.75],[0.44,0.82] , [0.28,0.51],[0.28,0.8] , [0.01,0.16],[0,0.24] ,{0.03,0.06,0.1},{0.21,0.375,0.56},{0.64,0.92} .    

Definition 3.5: The Product of two NCHFSs 𝛼 = 〈𝐴, 𝜆〉, 𝛽 = 〈𝐵, 𝜇〉 is defined by 

     

     

, [ , ] , [ , ] , [ , ] ,
.

, ,

L L U U L L U U L L L L U U U U

T T T I I I I F F F F F F F FT

T T I I F F F F

j j j j j j j j j j j j j j j j

j j j j j j j j

x A B A B A B A B A B A B A B A B
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Moreover the 𝛽-normalization is used in case of different cardinalities. 
Example3.6:If

     [0.1,0.5],[0.2,0.7] , [0.2,0.3],[0.1,0.6] , [0.1,0.4],[0.0,0.3] ,{0.1,0.2},{0.3,0.5,0.7},{0.4,0.8}  , and

     [0.4,0.5],[0.3,0.4] , [0.1,0.3],[0.2,0.5] , [0.1,0.4],[0.7,0.8] ,{0.3,0.4,0.5},{0.7,0.8},{0.4,0.6}  , then using 

above definition and 𝛽-normalization with parameter 𝜉 = 0.5 we have 

     [0.04,0.25],[0.06,0.28] , [0.02,0.09],[0.02,0.3] , [0.19,0.64],[0.7,0.86] ,
.

{0.37,0.49,0.6},{0.79,0.875,0.94},{0.16,0.48}
    

Definition 3.7: The scalar multiplication of a scalar q with a NCHFS 𝛼 = 〈𝐴, 𝜆〉 is defined by 

             
        

1 1 ,1 1 , 1 1 ,1 1 , , ,
.

1 1 , 1 1 ,

L U L U L U

T I I F FT

T I F

q q q q q q

j j j j j j

q q q

j j j

A A A A A A
q

  

                        

   

 

Example3.8:If

     [0.1,0.5],[0.2,0.7] , [0.2,0.3],[0.1,0.6] , [0.1,0.4],[0.0,0.3] ,{0.1,0.2},{0.3,0.5},{0.4,0.8}  , 

then using above definition with q=3 we have 

     [0.271,0.875],[0.488,0.973] , [0.488,0.657],[0.271,0.936] , [0.001,0.64],[0,0.27] ,
3 .

{0.001,0.008},{0.27,0.125},{0.784,0.992}
   

Definition 3.9: For NCHFS 𝛼 = 〈𝐴, 𝜆〉 and a scalar q 

            
        

, , , , , 1 1 ,1 1 ,

, , 1 1

L U L U L U

T I I F FT

T I F

qq q q q q

p p p p p p
q

q q q

p p p

x A A A A A A


  

                         

 

 

where 𝛼𝑞 = 𝛼 ⊗ 𝛼⨂ … ⨂𝛼(𝑞 − 𝑡𝑖𝑚𝑒𝑠) moreover 𝛼𝑞 is a NCHF value for every 𝑞 > 0. 
Definition 3.10: The Einstein sum of two NCHFSs 𝛼 = 〈𝐴, 𝜆〉, 𝛽 = 〈𝐵, 𝜇〉 is defined by 

     

   

1 1 1 1 1 1 1 1 1 1

1 1

, , , , , ,

, ,

L L U U L L U U L L U U
j j j j j j j j j j j jT T T T I I I I F F F F

L L U U L L U U L L U U
j j j j j j j j j j j jT T T T I I I I F F F F

E
j j j jT T I I

j j j jT T I I

A B A B A B A B A B A B

A B A B A B A B A B A B

    

   

 

   

         

 

 

        
                  

 

  1 1 1

.
j jF F

j jF F



   

 
 
 

 

Moreover the 𝛽-normalization is used in case of different cardinalities. 
Definition 3.11: The Einstein product of two NCHFSs 𝛼 = 〈𝐴, 𝜆〉, 𝛽 = 〈𝐵, 𝜇〉 is defined by  

           

  

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1

, , , ,

, , ,

L L U U L L U U
j j j j j j j jT T T T I I I I
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j j j j j j jF F F F T T
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j j j j j jF F F F T T
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Moreover the 𝛽-normalization is used in case of different cardinalities. 
Definition 3.12: The Einstein scalar multiplication of a scalar q with a NCHFS 𝛼 = 〈𝐴, 𝜆〉 is defined by 

   

   

   

   

   

   

   

   

 

   

 

   

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

2 2

2 2
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L L U U L L U U
j j j j j j j jT T T T I I I I

q q
L U
j jF F
q q q qE L L U U

j j j jF F F F

A A A A A A A A

A A A A A A A A

A A

A A A A
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1 1 1 1 2

1 1 1 1 2

, .
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q q q q q

j j j j jT T I I F
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Theorem 3.13: For a scalar q and a NCHFS 𝛼 = 〈𝐴, 𝜆〉 we have  
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where 𝛼𝐸𝑞
= 𝛼 ⊗𝐸 𝛼 ⊗𝐸 … ⊗𝐸 𝛼(𝑞 − 𝑡𝑖𝑚𝑒𝑠) moreover 𝛼𝐸𝑞 is a NCHF value for every 𝑞 > 0. 

Proof: Using induction on q. for q=1 we have 
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Assuming that result is true for q=m. 
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𝛼𝐸𝑚is neutrosophic cubic hesitant fuzzy value. Using assumption, we have 
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Definition 3.14: The Score, accuracy and certainty of a NCHFS𝛼 = 〈𝐴, 𝜆〉 where 𝐴 = 〈𝐴𝑇, 𝐴𝐼, 𝐴𝐹〉, 𝐴𝑇 =

{[𝐴𝑗𝑇

𝐿 , 𝐴𝑗𝑇

𝑈 ]; 𝑗 = 1, … , 𝑙}, 𝐴𝐼 = {[𝐴𝑗𝐼

𝐿 , 𝐴𝑗𝐼

𝑈]; 𝑗 = 1, … , 𝑚}, 𝐴𝐹 = {[𝐴𝑗𝐹

𝐿 , 𝐴𝑗𝐹

𝑈 ]; 𝑖 = 1, … , 𝑛}and 𝜆 = 〈𝜆𝑇, 𝜆𝐼, 𝜆𝐹〉, 𝜆𝑇 =

{𝜆𝑗𝑇
; 𝑗 = 1, … , 𝑟}, 𝜆𝐼 = {𝜆𝑗𝐼

; 𝑗 = 1, … , 𝑠}, 𝜆𝐹 = {𝜆𝑗𝐹
; 𝑗 = 1, … , 𝑡}  are defined as: 
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If      [0.1,0.5],[0.2,0.7] , [0.2,0.3],[0.1,0.6] , [0.1,0.4],[0,0.3] ,{0.1,0.2},{0.3,0.5},{0.4,0.8}  , and
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     [0.4,0.5],[0.3,0.4] , [0.1,0.3],[0.2,0.5] , [0.1,0.4],[0.7,0.8] ,{0.3,0.5},{0.7,0.8},{0.4,0.6}  , then 

( ) 0.404167, ( ) 0.470833, ( ) 0.3222, ( ) 0.4444, ( ) 0.15, ( ) 0.4.S S H H C C          

Figure 1: Scores, Accuracy and Certainty of above NHFSs

Definition 3.15: Let 𝛼 = 〈𝐴, 𝜆〉, 𝛽 = 〈𝐵, 𝜇〉 are two NCHFSs. We say that 𝛼 > 𝛽 if 𝑆(𝛼) > 𝑆(𝛽). If 𝑆(𝛼) =

𝑆(𝛽) , then 𝛼 > 𝛽   if 𝐴(𝛼) > 𝐴(𝛽) . If 𝐴(𝛼) = 𝐴(𝛽) , then 𝛼 > 𝛽  if  𝐶(𝛼) > 𝐶(𝛽) . If 𝑆(𝛼) =

𝑆(𝛽), 𝐴(𝛼) = 𝐴(𝛽), 𝐶(𝛼) > 𝐶(𝛽), then 𝛼 = 𝛽. 
In the next section we define aggregation operators on neutrosophic cubic hesitant fuzzy set and prove 
some elegant results. 

4. Aggregation Operators 
Definition 4.1: The Neutrosophic cubic hesitant fuzzy weighted geometric operator is defined as

1
1

( ,..., ) j
n

w
n j

j
NCHWG   



 , where 
( )kj are neutrosophic cubic hesitant fuzzy values taken in 

descending order with corresponding weight vector 𝑤 = (𝑤1, … , 𝑤𝑛)𝑡. 
Definition 4.2: Neutrosophic cubic hesitant fuzzy order weighted geometric operator is defined as:  
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n
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 where 
( )kj are neutrosophic cubic hesitant fuzzy values taken 

in descending order with corresponding weight vector 𝑤 = (𝑤1, … , 𝑤𝑛)𝑡. 

Definition 4.3: The Neutrosophic cubic hesitant fuzzy Einstein weighted geometric operator is defined as:   
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   where 
( )kj are neutrosophic cubic hesitant fuzzy values taken in 

descending order with corresponding weight vector 𝑤 = (𝑤1, … , 𝑤𝑛)𝑡  
Definition 4.4: Neutrosophic cubic hesitant fuzzy Einstein ordered weighted geometric operator is defined as:  
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 where 
( )kj are neutrosophic cubic hesitant fuzzy values taken in 

descending order with corresponding weight vector 𝑤 = (𝑤1, … , 𝑤𝑛)𝑡 
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Theorem 4.5: Let  ( ) ( ) ( ),k k kA   the set of neutrosophic cubic hesitant with corresponding weight 

vector 𝑤 = (𝑤1, … )𝑡 fuzzy values, then 
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For 𝑚 = 𝑞 we have 
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we prove for m=q+1 
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Theorem 4.6:  Let  ( ) ( ) ( ),k k kA   the set of neutrosophic cubic hesitant fuzzy values, then  

i) Idempotency: If , 1,...k k m    then 1( ,..., ) .mNCHFWG     

ii) Monotonicity: If ( ) ( )q lS S  then ( ) ( )q lNCHFWG NCHFWG  . 

Theorem 4.7: Let  ( ) ( ) ( ),k k kA   the set of neutrosophic cubic hesitant with corresponding weight 

vector 𝑤 = (𝑤1, … )𝑡 fuzzy values, then 
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Proof: we use induction.  
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Using assumption, we have 
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Definition4.8: Neutrosophic cubic hesitant fuzzy hybrid geometric operator (NCHFHG) is a mapping defined 
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j j   is the jth largest value, m is the 

balancing coefficient and 𝑤 = (𝑤1, … , 𝑤𝑚)𝑡 is the weighting vector. 

Theorem 4.9: Let  ( ) ( ) ( ),k k kA   the set of neutrosophic cubic hesitant fuzzy values with 

corresponding weight vector 𝑤 = (𝑤1, … )𝑡, then 
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Furthermore 1 2( , ,..., )mNCHFHG     is also a neutrosophic cubic hesitant fuzzy value. 

 Proof: Using induction for m=2 
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Theorem 4.10: With 𝑤𝑗 =
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Proof: Using induction and from Theorem 3.12 
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Using assumption, we have 
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Theorem 4.13:  With 𝑤𝑗 =
1

𝑚
, NCHFEG becomes NCHFEWG.  

Proof:    
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5. An Application of NCHFG Aggregation Operator to MEDM Problems 
This section concern with constructing algorithms using the NCHFWG for MEDM problems.  

5.1. Algorithm 
Step 1: Allocation of expert corresponding to their weight, identification of alternative and attributes. 
Let {𝐹1, 𝐹2, … , 𝐹𝑟} be the set of r alternatives, {𝐾1, 𝐾2, … , 𝐾𝑠} be s attributes with corresponding weight vector 
[𝑤1, 𝑤2, … , 𝑤𝑠]𝑇   such that 𝑤𝑗 ∈ [0,1], ∑ 𝑤𝑗 = 1 {𝑀1, 𝑀2, … , 𝑀𝑝} be decision experts with corresponding 

weight vector [𝑤1, 𝑤2, … , 𝑤𝑝]
𝑇

 such that 𝑤𝑗 ∈ [0,1] , ∑ 𝑤𝑗 = 1 . we construct decision matrices 𝐷(𝑘) =

(𝑑𝑖𝑗)𝑟×𝑠, with entries as neutrosophic cubic hesitant fuzzy values. 

Step 2. Transformation of decision matrices to aggregated decision matrix. 
A single matrix consisting of s attributes is constructed by aggregating all decision matrices using NCHFWG 
operators with corresponding weight vector of decision makers. 
Step 3. Transformation of aggregated matrix to decision vector. 
An 𝑟 × 1 vector is obtained by aggregating the decision matrix using NCHFWG operators. 
Step 4: Ranking alternatives. 
The most desirable alternative with highest score by ranking them in descending order of scores. 
Example 5.2: Using above algorithm, we have to choose the most desirable alternative among the alternatives 
(Electronics companies) 𝐹𝑝(𝑝 = 1,2,3)  on the basis of three attributes 𝐴1  (price), 𝐴2  (Electricity 

consumption), 𝐴3 (design). 
Step 1: Decision matrix for first expert 
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Explanation of decision matrix entries: 

In case of 𝑑11
(1), {[0.1,0.5],[0.2,0.7]} is interval hesitant degree of preference to attribute 𝐹1 corresponding to 

attribute 𝐾1, {[0.2,0.3],[0.1,0.6]} is interval hesitant degree of indeterminacy (preference/ non-preference) for 
attribute𝐹1 corresponding to attribute 𝐾1, {[0.1,0.5],[0.2,0.3]} is interval hesitant degree of non-preference for 
attribute 𝐹1  corresponding to attribute 𝐾1 , {0.4,0.6}} is hesitant degree of preference for attribute 𝐹1 
corresponding to attribute 𝐾1, {0.3,0.5} is hesitant degree of indeterminacy (preference/ non-preference) for 
attribute 𝐹1  corresponding to attribute 𝐾1 , {0.3,0.4} is hesitant degree of non-preference for attribute𝐹1 
corresponding to attribute 𝐾1, given by the first expert. 
Decision Matrix for second expert 
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Step 2 
using weight vector (0.5,0.5) for decision makers, the aggregated matrix is 
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Step 3 
using weight vector (0.3,0.4,0.3) for attributes and NCHWG we have the following decision vector 
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0.534655 0.648457 0.522434 0.242474 0.379688
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Step 4 
Using Score function, we rank the alternatives as𝑆(𝐹1) = 0.491743, 𝑆(𝐹2) = 0.511797, 𝑆(𝐹3) = 0.467604. 

Hence most desirable alternative is 𝐹2. 
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Figure 2: Ranking based on score function

Concluding Remarks 

Decision making is one of the crucial problems in real life. For decision making different tools has been 

established. Torra’s hesitant fuzzy set has been used in many practical problems due to flexibility of choosing 

membership grades. On the other side Jun’s neutrosophic cubic set is capable of dealing truth, falsity and 

indeterminacy membership grades, but the element of hesitancy is missing in truth and falsity membership 

grades of neutrosophic cubic set. We have discussed the role of hesitancy in truth and falsity membership grades 

of neutrosophic cubic set. We define neutrosophic cubic hesitant fuzzy set and some basic operations like 

addition, multiplication, Einstein addition and multiplication in neutrosophic cubic hesitant fuzzy sets. Then we 

prove some elegant results. In section 4 geometric aggregation operators are defined. Using these aggregation 

operators an example is constructed. 

Acknowledgement: The Deanship of Scientific Research at Prince Sattam bin Abdul-Aziz University has 

supported this study and all thanks and appreciation to them by the authors of this study. 
References 
1. Zadeh. L. A. Fuzzy sets, Inform. Control, 1965, 8, pp. 338-353. 

2. L. A. Zadeh, Outlines of new approach to the analysis of complex system and dicision procosses interval valued fuzzy 

sets, IEEE Trans., 1968. 

3. I. B. Turksen, Interval valued strict preferences with Zadeh triplet, Fuzzy sets and  Systems, (78),1996, 183-195. 

4. S. J. Chen and C.L. Hwang, Fuzzy Multiple Attribute Decision-Making, Methods and Applications; Lecture Notes in 

Economics and Mathematical Systems; Springer-Verlag: Berlin/Heidelberg, Germany, (375), 1992. 

5. T.H. Chang and T.C. Wang, Using the fuzzy multi-criteria decision making approach for measuring the possibility of 

successful knowledge management, Inf. Sci., (179), 2009, 355--370. 

6. S. Pramanik and K. Mondal, Weighted fuzzy similarity measure based on tangent  function and its application to 

medical diagnosis, Int. J. Innovat. Res. Sci. Engg. Tech., (4), 2015, 158--164. 

7. C.T. Chen, Extension of the TOPSIS for group decision-making under fuzzy environment, Fuzzy Sets Syst., (114), 

0.51 0.51

0.44

0.36
0.38

0.46
0.4917

0.5148

0.4676

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3
Expert 1 Expert 2 Aggregated



Neutrosophic Sets and Systems, Vol. 50, 2022                                                              109 

 
A Rehman and M. Gulistan, A Study of Neutrosophic Cubic Hesitant Fuzzy Hybrid Geometric Aggregation Operators and 
its Application to Multi Expert Decision Making System 
 

2000, 1--9. 

8. G. Zhang and J. Lu, An integrated group decision-making method dealing with fuzzy preferences for alternatives and 

individual judgments for selection criteria, Group Decis. Negot., (12), 2003, 501--515. 

9.  R.A. Krohling and V.C. Campanharo, Fuzzy TOPSIS for group decision making: A case study for accidents with oil 

spill in the sea., Expert Syst. Appl., (38), 2011, 4190--4197. 

10.  M. Xia and Z. Xu, A novel method for fuzzy multi-criteria decision making, Int. J. Inf.  Technol. Decis. Mak., (13), 

2014, 497--519. 

11.  M.K. Mehlawat and P.A. Guptal, A new fuzzy group multi-criteria decision making method with an application to the 

critical path selection, Int. J. Adv. Manuf. Technol., (83), 2016, 1281--1296. 

12. K. Atanassov, Intuitionistic fuzzy sets, Fuzzy sets and Systems, (20), 1986, 87-96. 

13. K. Atanassov and G. Gargov, Interval intuitionistic fuzzy sets, Fuzzy sets and Systems, (31), 1989, 343-349. 

14. Z. Xu, Some similarity measures of intuitionistic fuzzy sets and their applications to multiple attribute decision making, 

Fuzzy Optim. Decis. Mak., (6), 2007, 109--121. 

15. K. Mondal and S. Pramanik, Intuitionistic fuzzy multi criteria group decision making approach to quality-brick selection 

problem, J. Appl. Quant. Methods, (9), 2014, 35--50. 

16.  P.P. Dey, S. Pramanik and B.C. Giri, Multi-criteria group decision making in intuitionistic fuzzy environment based on 

grey relational analysis for weaver selection in Khadi institution, J. Appl. Quant. Methods, (10), 2015, 1--14. 

17. Y. B. Jun, C. S. Kim and K. O.Yang, Cubic sets, Ann. Fuzzy Math. Inform, (1), 2012, 83-98. 

18. Y. B. Jun, C. S. Kim and M. S. Kang, Cubic subalgebras and ideals of  BCK/BCI-algebras, Far East. J. Math. Sci. 

(FJMS) ,(44), 2010, 239-250. 

19. Y. B. Jun, C. S. Kim and J. G. Kang, Cubic q-ideals of BCI-algebras, Ann. Fuzzy Math.  Inform., (1), 2011, 25-34. 

20. Y. B. Jun, K. J. Lee and M. S. Kang, Cubic structures applied to ideals of BCI-algebras,  Comput. Math. Appl., (62), 

2011, 3334-3342. 

21. F. Smarandache, A unifying field in logics neutrosophy: neutrosophic probability, set and logic., Rehoboth: American 

Research Press, 1999. 

22. H. Wang, F. Smarandache, Y. Q. Zhang and R. Sunderraman, Single valued neutrosophic sets, Multispace 

Multistructure , 2010, 410 -- 413. 

23. H. Wang, F. Smarandache, Y. Q. Zhang and R. Sunderraman, Interval neutrosophic sets and logics, Hexis, Phoenix, 

USA, 2005. 

24. A. Kharal, A neutrosophic multi-criteria decision making method, New Math. Nat. Comput., (10), 2014, 143--162. 

25. J. Ye, Similarity measures between interval neutrosophic sets and their multi criteria decision-making method, J. Intell. 

Fuzzy Syst., (26), 2014, 165--172. 

26. J. Ye, Multiple attribute group decision-making method with completely unknown weights based on similarity measures 

under single valued neutrosophic environment, J. Intell. Fuzzy Syst., (27), 2014, 2927—2935. 

27. K. Mondal and S. Pramanik, Multi-criteria group decision making approach for teacher  recruitment in higher 

education under simplified neutrosophic environment, Neutrosophic Sets Syst., (6), 2014, 28--34. 

28. P. Biswas, S. Pramanik, and B.C. Giri, Entropy based grey relational analysis method for  multi-attribute decision 

making under single valued neutrosophic assessments, Neutrosophic Sets Syst., (2), 2014, 102--110. 

29. P. Biswas, and S. Pramanik, and B.C. Giri, A new methodology for neutrosophic multi-attribute decision-making with 

unknown weight information, Neutrosophic Sets Syst., (3), 2014, 44—54. 

30. P. Biswas, S. Pramanik and B.C. Giri, Cosine similarity measure based multi-attribute decision-making with trapezoidal 

fuzzy neutrosophic numbers, Neutrosophic Sets Syst., (8), 2014, 46--56. 



Neutrosophic Sets and Systems, Vol. 50, 2022                                                              110 

 
A Rehman and M. Gulistan, A Study of Neutrosophic Cubic Hesitant Fuzzy Hybrid Geometric Aggregation Operators and 
its Application to Multi Expert Decision Making System 
 

31. K. Mondal and S. Pramanik, Neutrosophic decision making model for clay-brick selection in construction field based on 

grey relational analysis, Neutrosophic Sets Syst., (9), 2015, 64--71. 

32. B. Li, J. Wang, L. Yang and X. Li, A Novel Generalized Simplified Neutrosophic  Number Einstein Aggregation 

Operator, International Journal of Applied mathematics, (48),2018, 67-72. 

33. J. Zhan, M. Khan, M. Gulistan, Applications of neutrosophic cubic sets in multi-criteria  decision-making, Int. J. 

Uncertain. Quantif., (7), 2017, 377--394. 

34. V. Torra, Hesitant fuzzy sets, International Journal of Intelligent Systems, VOL. 25, 529--539 (2010) 

35. Y. B. Jun, F. Smarandache and C. S. Kim, Neutrosophic cubic sets, New. Math. Nat. Comput., 2015. 

36. T. Mehmood, F. Mehmood and Q. Khan, Cubic Hesitant Fuzzy Sets and Their Applications to Multi Criteria Decision 

Making, International Journal of Algebra and Statistics, Volume 5:1 (2016), 19—51. 

37. Ye, J. Multiple-attribute decision-making method using similarity measures of single-valued neutrosophic 

hesitant fuzzy sets based on least common multiple cardinality. J. Intell. Fuzzy Syst. 2018, 34, 4203–4211. 

38. P. Liu and L. Shi, The generalized hybrid weighted average operator based on interval neutrosophic hesitant 

set and Its application to multiple attribute decision making, Neural Computing and Applications 26(2) 

(2015), 457–471. 

39. B. Zhu, Z.S. Xu, J.P. Xu, Deriving a ranking from hesitant fuzzy preference relations under group decision 

making, IEEE Trans. Cybern. 44 (8) (2014). 

40. E. Turkarslan, J. Ye, M. Unver and M. Olgun, “Consistency Fuzzy Sets and a Cosine Similarity Measure in 

Fuzzy Multiset Setting and Application to Medical Diagnosis,” Mathematical Problems in Engineering, vol. 

2021, pp. 9, 2021. 

41. R. Chinram, T. Mehmood, U. Rehman, Z. Ali and A. Iampan, “Some Novel Cosine Similarity Measures Based 

on Complex Hesitant Fuzzy Sets and Their Applications,” J. of Maths., vol. 2021, pp. 20, 2021. 

 

 

Received: Feb 4, 2022. Accepted: Jun 10, 2022 



                                    Neutrosophic Sets and Systems, Vol. 50, 2022 
University of New Mexico  

 

 

___________________________________________________________________________________ 
T. Nagaiah, L. Bhaskar, P. Narasimha Swamy and Said Broumi,A Study On Neutrosophic Algebra 
 

 
 

A Study on Neutrosophic Algebra 

T. Nagaiah 1* , L. Bhaskar 2, P. Narasimha Swamy 3 and Said Broumi4 

            1, 2 Department of Mathematics, Kakatiya University, Warangal-506009, India. 

nagaiahku@gmail.com1*  and bhaskarlavudya1226@gmail.com2 

3. Department of Mathematics, Gitam University, Hydarbad, Telangana, Email: 

swamy.pasham@gmail.com 

4. Laboratory of Information processing, University of Hassan II, Morocco. 

                 Email: s.broumi@flbenmsik.ma 

*Correspondence: nagaiahku@gmail.com 

 

Abstract: The notion of neutrosophic algebra, ideal of neutrosophic algebra, kernel and 

neutrosophic quotient algebra have been proposed in this paper. We characterize some properties 

of neutrosophic algebra and proved that every quotient neutrosophic algebra is quotient algebra. 

Also we proved that every neutrosophic algebra is algebra and direct product of neutrosophic 

algebras over a neutrosophic field is algebra. 
 

Key words: Neutrosophic set, neutrosophic algebra, neutrosophic algebra isomorphism, ideals of 

neutrosophic algebra, quotient neutrosophic algebra, neutrosophic subalgebra. 

 

1. Introduction 

A fuzzy set A in X is characterized by a membership function which is associated with each 

element in X  to a real number in the u n i t  interval [0, 1]. In 1965 L. A. Zadeh [24] introduced 

the concept of fuzzy set theory. This novel concept is used successfully in modeling uncertainty in 

many fields of real life. Fuzzy sets and its applications have been extensively studied in different 

aspects. In 1998, Neutrosophic set was introduced by Florentin Smarandache [17, 18], where each 

element associated with three defining functions, namely the membership function (T), the non-

membership function (F) and the indeterminacy function (I) defined on the universe of discourse 

X, the three functions are completely independent. Relative to the natural problems sometimes one 

may not be able to decide.  

     In 2004 W. B. Vasantha Kandaswamy and Florentin Smarandache [23] introduced a 

neutrosophic structure based on indeterminacy I only, which they called I-neutrosophic algebraic 

structures. Algebraic structure based sets of neutrosophic numbers of the form bIa where ba,
are real (or complex) and Indeterminacy I with II 2

. This I is different from the imaginary

1i . After the development of the Neutrosophic set theory, one can easily take decision and 

indeterminacy function of the set is the nondeterministic part of the situation. The applications of 

the theory have been found in various fields for dealing with indeterminate and consistent 

information in real world. The neutrosophic set generalizes the concept of classical fuzzy set, 

interval valued fuzzy set, intuitionistic fuzzy set and so on. Broumi Said et al. [6, 7] studied the 

notion of intuitionistic Neutrosophic Soft Set and Rough neutrosophic sets. The branch of 

neutrosophic theory is the theory of neutrosophic algebraic structures. Abobala [4, 5] introduced 

Some Special Substructures of Neutrosophic Rings and AH-Substructures in n-Refined 

Neutrosophic Vector Spaces. The authors in [1, 2] studied the notion of Neutrosophic vector 

mailto:nagaiahku@gmail.com1
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spaces and Mamouni Dhar, Said Broumi and Florentin Smarandache [10] introduced Square 

Neutrosophic Fuzzy Matrices. In [3] Abdel Nasser Hussian, Mai Mohamed, Mohamed Abdel-Baset 

and Florentin smarandache studied the Neutrosophic Linear Programming Problems. W. B. 

Vasanntha Kandasamy and F. Smarandache [20, 21] introduced the concept of neutrosophic 

algebraic structure and neutrosophic N-algebraic structures. P. Narasimha Swamy et al. [14, 15] 

studied the notion of Fuzzy quasi-ideals of near algebra and Anti Fuzzy Gamma Near-Algebras. T. 

Nagaiah et al. [11, 12, 13, 16] introduced Partially ordered Gamma semi groups, near-rings, direct 

product and strongest interval valued anti fuzzy ideals of Gamma near-rings and special class of 

ring structure. T. Srinivas, T. Nagaiah and P.Narasimha Swamy [19] initiated the concept of Anti 

Fuzzy Ideals of Gamma Near-rings.Hatip and Abobala [9] studied the notion of AH-substructuresin 

strong refined models. Bijan Davvaz [8] introduced Neutrosophic ideals of Neutrosophic KU-

algebra. Since then several researcher have been study the concept of neutrosophic theory and its 

application in varies branches. In this paper our main aim is to introduce the concept of 

neutrosophic algebra and its application in varies branches of Mathematics. Also we proved that 

every neutrosophic algebra is algebra and direct product of neutrosophic algebras over a 

neutrosophic field is algebra. 

This paper is organized into four sections. The first section is introductory. The second section 

presents the basic concepts needed to make this paper a self-contained one. Section three 

discusses and describes the neutrosophic algebra and its examples. Final section gives ideal of 

neutrosophic algebra, neutrosophic quotient algebra and studied their properties.  

2. Preliminaries 

In this section we recall some basic concepts of neutrosophic set, proposed by W.B. Vasantha 

Kandasamy and University of New Mexico professor F. Smarandache in their monograph [21, 22].  

Definition 2.1 Let U be an universe of discourse then the neutrosophic set A is an object having the 

form A = {< x: TA(x), IA(x), FA(x) >, x ∈ U} where the functions T, I, F: U → ] -0, 1+[ define respectively 

the degree of membership (or truthness), the degree of indeterminacy, and the degree of non-

membership (or falsehood)of the element x in U to the set A with the condition. -0 ≤ TA(x) + IA(x) + 

FA(x) ≤ 3+. From philosophical point of view, the neutrosophic set takes the value from real standard 

or non-standard subsets of  ] -0, 1+[ . So instead of]-0, 1+[ we need to take the interval [0, 1] for 

technical applications, because ] -0, 1+[ will be difficult to apply in the real applications such as in 

scientific and engineering problems.  Let X be a non-empty set. A set IXIX ,)(  generated by X 

and I is called a neutrosophic set.  The elements of X (I) are of the form  bIa, , where ba, are 

elements of X . 

Definition 2.2: Algebra Y over a field X is a linear space Y over a field X on which a multiplication 

is defined such that 

i. Y forms a semi group under multiplication, 

ii. multiplication is distributive over addition 

iii. 𝜆 (𝑥 𝑦) = (𝜆 𝑥) y = x (𝜆 𝑦), for all 𝑥, 𝑦 ∈ 𝑌 𝑎𝑛𝑑 𝜆 ∈ X . 

3. Neutrosophic algebra 

In this section we define the neutrosophic algebra and provide examples.  Also define neutrosophic 

subalgebra and characterize their properties. Excepted otherwise stated, all strong neutrosophic 

algebras in this paper will be considering neutrosophic algebra. 

Definition 3.1: Let Y be algebra over a field X . The set generated by Y and 𝐼 is denoted by 〈𝑌 𝖴 𝐼〉

= Y(𝐼) = {𝑎 + 𝑏𝐼 : 𝑎 , 𝑏𝜖𝑌} is called a weak neutrosophic algebra over a field X . If Y (𝐼) is a 

neutrosophic algebra over a neutrosophic field X (𝐼) then 
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Y(𝐼) is called a strong neutrosophic algebra. The elements of Y (𝐼) are called neutrosophic vectors and 

the elements of X (𝐼) are called neutrosophic scalars. 

Examples 3.2: 

i. ℝ(𝐼) is a weak neutrosophic algebra over a field ℚ and it is strong neutrosophic algebra 

over a neutrosophic field ℚ(𝐼), where ℚ(𝐼) = QbabIa  ,:  

ii. ℂ(𝐼) is a weak neutrosophic algebra over a field ℝ and it is a strong neutrosophic algebra 

over a neutrosophic field ℝ(𝐼) 

iii. ℝ𝑛(𝐼) is a weak neutrosophic algebra over a field and it is a strong 

neutrosophic algebra over a neutrosophic field ℝ(𝐼) 

iv. 𝑀𝑚×n(𝐼) = {[𝑎𝑖𝑗 + 𝑏𝑖𝑗𝐼] ; 𝑎𝑖𝑗 , 𝑏𝑖𝑗𝜖 ℚ} is strong   neutrosophic   algebra   over   a 

      neutrosohic field ℚ(𝐼) and it is weak neutrosophic algebra over a field ℚ. 

Definition 3.3: Let Y (𝐼) be neutrosophic algebra over a neutrosophic field X (𝐼). 

The non-empty subset W(𝐼) of Y(𝐼) is called a neutrosophic subalgebra over a field X (𝐼), if 𝑊(𝐼) is 

itself a neutrosophic algebra over a neutrosophic field X (𝐼). 

Theorem 3.4: Every strong neutrosophic algebra is weak neutrosophic algebra. 

Proof: Suppose 𝑌(𝐼) is strong neutrosophic algebra over a neutrosophic field𝑋(𝐼). Since 𝑋 ⊆  𝑋(𝐼), so 

that 𝑌(𝐼) is weak neutrosophic algebra over a field X. Hence every strong neutrosophic algebra is weak 

neutrosophic algebra. 

 

Theorem 3.5:  Every strong (weak) neutrosophic algebra is neutrosophic vector space. 

Proof:- Suppose 𝑌(𝐼) is a strong neutrosophic algebra over a neutrosophic field 𝑋(𝐼). 

This implies that Y is algebra over a field X. So that Y is a vector space over a field X. 

From Theorem 3.4, this show 𝑌(𝐼) is a neutrosophic vector space over a field X. Similarly we can prove, if 

𝑌(𝐼) is a weak neutrosophic algebra over a field X, then Y is an algebra over a field X and hence Y is a 

vector space over a field X. Hence 𝑌(𝐼) is a neutrosophic vector space. 

 

Theorem 3.6:  Every neutrosophic algebra is algebra. 

Proof: Let 𝑌(𝐼) be the neutrosophic algebra over a neutrosophic field 𝑋(𝐼). By Theorem 3.5, 𝑌(𝐼) is a 

neutrosophic vector space over a field 𝑋(𝐼).  

This implies 𝑌(𝐼) is a vector space over a field 𝑋(𝐼). It is easy to verify that all the algebra properties of 

𝑌(𝐼) over a field 𝑋(𝐼).i.e., (i) 𝑥(𝑦𝑧) = (𝑥𝑦)𝑧 (ii)𝑥 ∙ (𝑦 + 𝑧) = 𝑥 ∙ 𝑦 + 𝑥 ∙ 𝑧, (𝑥 + 𝑦) ∙ 𝑧 = 𝑥 ∙ 𝑧 + 𝑦 ∙ 𝑧 

and 𝜆(𝑥𝑦) = (𝜆𝑥)𝑦 = 𝑥(𝜆𝑦), ∀𝑥, 𝑦, 𝑧𝜖𝑌(𝐼) 𝑎𝑛𝑑 𝜆𝜖𝑋(𝐼).  

We can easy to see that Y (I) is a neutrosophic algebra over a field X (I). 

 

Theorem 3.7: Let 𝑀1(𝐼) and 𝑀2(𝐼) be neutrosophic algebras over a neutrosophic field 𝑋(𝐼). Then the 

direct product                                                                        

 𝑀1(𝐼) × 𝑀2(𝐼) = {(𝑢1, 𝑢2): 𝑢1 ∈ 𝑀1(𝐼), 𝑢2 ∈ 𝑀2(𝐼)} is algebra over a neutrosophic field 𝑋(𝐼), where 

addition, multiplication and scalar multiplication is defined by 

(i) (𝑢1, 𝑢2) + (𝑣1, 𝑣2) = (𝑢1 + 𝑣1, 𝑢2 + 𝑣2) 

(ii) (𝑢1, 𝑢2) ⋅ (𝑣1, 𝑣2)   = (𝑢1𝑣1, 𝑢2𝑣2) 

(iii) 𝛼(𝑢1, 𝑢2) = (𝛼𝑢1, 𝛼𝑢2), ∀𝛼𝜖 𝑋(𝐼) and (𝑢1, 𝑢2), (𝑣1, 𝑣2)𝜖𝑀1(𝐼) × 𝑀2(𝐼). 

Proof: Let 𝑀1(𝐼) 𝑎𝑛𝑑 𝑀2(𝐼) be two neutrosophic algebras over a neutrosophic field 𝑋(𝐼). In view of 

Theorem 3.5, 𝑀1(𝐼) 𝑎𝑛𝑑 𝑀2(𝐼) are linear spaces over a field 𝑋(𝐼). 

This implies 𝑀1(𝐼) × 𝑀2(𝐼) is a linear space over a field 𝑋(𝐼). 

Let 𝑥 = (𝑢1, 𝑢2), 𝑦 = (𝑣1, 𝑣2), 𝑧 = (𝑤1, 𝑤2)𝜖𝑀1(𝐼) × 𝑀2(𝐼). 

Consider 𝑥(𝑦𝑧) = (𝑢1, 𝑢2)((𝑣1, 𝑣2)(𝑤1, 𝑤2)) 

                           = (𝑢1, 𝑢2)(𝑣1𝑤1, 𝑣2𝑤2) 

                           = (𝑢1(𝑣1𝑤1), 𝑢2(𝑣2𝑤2)) 
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                                              = ((𝑢1𝑣1)𝑤1, (𝑢2𝑣2)𝑤2) 

                                              = (𝑢1𝑣1, 𝑢2𝑣2)(𝑤1, 𝑤2)  

                                              = ((𝑢1𝑣1, 𝑢2𝑣2))(𝑤1, 𝑤2) = (𝑥𝑦)𝑧 

This show  𝑀1(𝐼) × 𝑀2(𝐼) is a semi group under multiplication. 

Now 𝑥(𝑦 + 𝑧) = (𝑢1, 𝑢2) ∙ [(𝑣1, 𝑣2) + (𝑤1, 𝑤2)] 
                              = (𝑢1, 𝑢2) ∙ [(𝑣1 + 𝑤1, 𝑣2 + 𝑤2)]         

                              = (𝑢1 ∙ (𝑣1 + 𝑤1) , 𝑢2 ∙ (𝑣2 + 𝑤2))     

                              = (𝑢1 ∙ 𝑣1 + 𝑢1 ∙ 𝑤1 ,   𝑢2 ∙ 𝑣2 + 𝑢2 ∙ 𝑤2) 
                              = (𝑢1 ∙ 𝑣1 , 𝑢2 ∙ 𝑣2) + (𝑢1 ∙ 𝑤1 , 𝑢2 ∙ 𝑤2) 

                              = (𝑢1, 𝑢2) ∙ (𝑣1, 𝑣2) + (𝑢1, 𝑢2) ∙ (𝑤1, 𝑤2) 

                              = 𝑥 ∙ 𝑦 + 𝑥 ∙ 𝑧 

Also (𝑥 + 𝑦)𝑧 = (𝑢1 + 𝑣1 , 𝑢2 + 𝑣2) ∙ (𝑤1, 𝑤2) 

                             = ((𝑢1 + 𝑣1) ∙ 𝑤1 , (𝑢2 + 𝑣2) ∙ 𝑤2) 

                             = (𝑢1 ∙ 𝑤1 + 𝑣1 ∙ 𝑤1 ,   𝑢2 ∙ 𝑤2 + 𝑣2 ∙ 𝑤2) 

                             = (𝑢1 ∙ 𝑤1 ,   𝑢2 ∙ 𝑤2) + (𝑣1 ∙ 𝑤1 , 𝑣2 ∙ 𝑤2) 

                             = (𝑢1, 𝑢2) ∙ (𝑤1, 𝑤2) + (𝑣1, 𝑣2) ∙ (𝑤1, 𝑤2) 

                             = 𝑥 𝑧 + 𝑦 𝑧. 

Let 𝛼𝜖 𝑋(𝐼) and 𝑥, 𝑦𝜖𝑀1(𝐼) × 𝑀2(𝐼). 

                        Consider  𝛼(𝑥𝑦) = 𝛼[(𝑢1, 𝑢2) ∙ (𝑣1, 𝑣2)] 
= 𝛼(𝑢1 ∙ 𝑣1 , 𝑢2 ∙ 𝑣2)

= (𝛼(𝑢1 ∙ 𝑣1) , 𝛼(𝑢2 ∙ 𝑣2)) 

                                         = ((𝛼𝑢1) ∙ 𝑣1 , (𝛼𝑢2) ∙ 𝑣2) = (𝛼𝑢1 , 𝛼𝑢2) ∙ (𝑣1, 𝑣2)

= (𝛼(𝑢1, 𝑢2)) ∙ (𝑣1, 𝑣2) = (𝛼𝑥)𝑦 

Also we prove that 𝛼(𝑥𝑦) = 𝑥(𝛼𝑦), for all 𝑥, 𝑦𝜖𝑀1(𝐼) × 𝑀2(𝐼), 𝛼𝜖 𝑋(𝐼).  

Hence 𝑀1(𝐼) × 𝑀2(𝐼) is algebra over a neutrosophic field 𝑋(𝐼). 

Theorem 3.8:- Let W1(I), W2(I), ………….Wn(I) be a neutrosophic algebra over a neutrosophic field 𝑋(𝐼). 

Then 𝑊1(𝐼) × 𝑊2(𝐼) × … … 𝑊𝑛(𝐼) = {(𝑢1, 𝑢2, … … 𝑢𝑛): 𝑢𝑖 ∈ 𝑊𝑖, 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛} is algebra over a 

neutrosophic field 𝑋(𝐼), where addition, multiplication and scalar multiplication defined as follows: 

(i) (𝑢1, 𝑢2, … . . 𝑢𝑛) + (𝑣1, 𝑣2, … . . 𝑣𝑛) = (𝑢1 + 𝑣1, 𝑢2 + 𝑣2, … . 𝑢𝑛 + 𝑣𝑛) 

(ii) (𝑢1, 𝑢2, … . . 𝑢𝑛)(𝑣1, 𝑣2, … . . 𝑣𝑛)   = (𝑢1𝑣1,  𝑢2𝑣2, … … . 𝑢𝑛𝑣𝑛) 

(iii) 𝛼(𝑢1, 𝑢2, … . . 𝑢𝑛) = (𝛼𝑢1, 𝛼𝑢2, … . . 𝛼𝑢𝑛). 

Proof:  Proof of this theorem is similar to theorem 3.7. 

4. Ideal of neutrosophic algebra and neutrosophic quotient algebra 

                 In this section we define the ideal of neutrosophic algebra and neutrosophic quotient algebra and 

studied their algebraic properties. Also we define Neutrosophic algebra homomorphism, Neutrosophic 

algebra isomorphism and kernel of neutrosophic algebra. We proved that every quotient neutrosophic 

algebra is quotient algebra. 

    Definition 4.1: A non-empty subset 𝑊(𝐼) of a neutrosophic algebra 𝑌(𝐼) over a neutrosophic field 𝑋(𝐼)

is an ideal of a neutrosophic algebra 𝑌(𝐼) if 

i. 𝑊(𝐼) is a subspace of a vector space 𝑌(𝐼)  

ii. 𝛼𝑢𝜖𝑊(𝐼) for every 𝑢𝜖 𝑊(𝐼), 𝛼𝜖𝑋(𝐼) and 

iii. 𝑣(𝑢 + 𝛼) − 𝑣𝑢 𝜖 𝑊(𝐼) for every 𝑢, 𝑣𝜖 𝑊(𝐼), 𝛼𝜖𝑋(𝐼).  

     If 𝑊(𝐼) satisfies (i) and (ii) then 𝑊(𝐼) is called a right ideal of neutrosophic algebra and if 𝑊(𝐼)

satisfies (i) and (iii) then 𝑊(𝐼) is called a left ideal of neutrosophic algebra over a neutrosophic 

field𝑋(𝐼). 

  Definition 4.2: Let 𝑀1(𝐼) 𝑎𝑛𝑑 𝑀2(𝐼) be two neutrosophic algebras over a neutrosophic field X(I). A 

mapping 𝜑: 𝑀1(I)→ 𝑀2(𝐼) is called neutrosophic algebra homomorphism if the following conditions 

hold: 
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i. 𝜑(𝑢 + 𝑣) =  𝜑(𝑢) +  𝜑(𝑣) 

ii. 𝜑(𝑢𝑣) =  𝜑(𝑢) 𝜑(𝑣) 

iii. 𝜑(𝛼 𝑢) =  𝛼 𝜑(𝑢) 

iv. 𝜑(𝐼) =  𝐼, for all vu, in M1(I), α in X(I) and I is a neutrosophic element of M1(I).  

A neutrosophic algebra homomorphism 𝜑 is said to be neutrosophic algebra monomorphism if 𝜑  is 

injective. 

A neutrosophic algebra homomorphism 𝜑 is said to be neutrosophic algebra epimorphism if 𝜑  is 

surjective. 

    A neutrosophic algebra homomorphism  𝜑 is said to be neutrosophic algebra isomorphism if 𝜑 is 

bijection. A bijective neutrosophic algebra homomorphism from 𝑀1(𝐼)  onto 𝑀1(𝐼) is called a 

neutrosophic algebra automorphism.  

Definition 4.3: Let 𝑀1(𝐼)and 𝑀2(𝐼) be two neutrosophic algebras over a field 𝑋(𝐼). Let 𝜑: 𝑀1(𝐼) → 𝑀2(𝐼) 

be a neutrosophic algebra homomorphism. Then the kernel of 𝜑 is denoted by Ker𝜑 and is defined   

by 𝐾𝑒𝑟 𝜑 = {𝑢 ∈ 𝑀1(𝐼);  𝜑( 𝑢) = 0′} , where  0′ = 0 + 0𝐼ϵ 𝑀2(𝐼).  

Definition 4.4: Let 𝑀(𝐼) be an ideal of neutosophic algebra 𝑌(𝐼) over a field 𝑋(𝐼). Then the set of all co-

sets of 𝑀(𝐼) in 𝑌(𝐼) is denoted by 𝑌(𝐼) ∕ 𝑀(𝐼) and defined by  𝑌(𝐼) 𝑀(𝐼)⁄ = {𝑢 +

𝑀(𝐼):  𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦  𝑢𝜖 𝑌(𝐼)}. 

Addition, multiplication and scalar multiplication on 𝑌(𝐼) ∕ 𝑀(𝐼) defined as 

(𝑎 + 𝑀(𝐼)) + (𝑏 + 𝑀(𝐼)) = (𝑎 + 𝑏) + 𝑀(𝐼) 

     (𝑎 + 𝑀(𝐼))(𝑏 + 𝑀(𝐼)) = 𝑎𝑏 + 𝑀(𝐼)  

And 𝛼(𝑎 + 𝑀(𝐼)) = 𝛼𝑎 + 𝑀(𝐼), ∀𝛼𝜖𝑋(𝐼), (𝑎 + 𝑀(𝐼)), (𝑏 + 𝑀(𝐼))𝜖𝑌(𝐼) 𝑀(𝐼)⁄ . 

The set 𝑌(𝐼) 𝑀(𝐼)⁄  form neutrosophic algebra over a neutrosophic field 𝑋(𝐼).  

This neutrosophic algebra is called quotient neutrosophic algebra. 

 

   Theorem 4.5: Let 𝑌(𝐼) be neutrosophic algebra over a neutrosophic field 𝑋(𝐼). The intersection of any 

collection of right ideals of neutrosophic algebra 𝑌(𝐼) over a neutrosophic field 𝑋(𝐼) is a right ideal 

of 𝑌(𝐼). 

Proof: Let {𝑊𝛼(𝐼)} be the collection of right ideals of neutrosophic algebras 𝑌(𝐼) over a neutrosophic 

field 𝑋(𝐼). Let 𝑊(𝐼) = ⋂ 𝑊𝛼(𝐼)𝛼  be their intersection. As ⋂ 𝑊𝛼(𝐼)𝛼  is the collection of right ideals of 𝑌(𝐼) 

over a neutrosophic field 𝑋(𝐼).This implies each 𝑊𝛼(𝐼), for each 𝛼 is a right ideal of 𝑌(𝐼) over a 

field 𝑋(𝐼). For each 𝛼, 𝑊𝛼(𝐼) is a subspace of a vector space 𝑌(𝐼).  𝑇ℎ𝑖𝑠 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑡ℎ𝑎𝑡 ⋂ 𝑊𝛼(𝐼) 𝛼 is a 

subspace of a vector space𝑌(𝐼).  

Therefore 𝑊(𝐼) is sub-space of 𝑌(𝐼).  

Let 𝛼𝜖𝑋(𝐼) and any 𝑢𝜖 ⋂ 𝑊𝛼(𝐼)𝛼 . 

                  ⇒ 𝑢𝜖𝑊𝛼(𝐼) for each 𝛼. 

                  ⇒ 𝛼𝑢𝜖𝑊𝛼(𝐼), for each 𝛼 ⇒ 𝛼𝑢 𝜖 ⋂ 𝑊𝛼(𝐼)𝛼 . 

Hence ⋂ 𝑊𝛼(𝐼)𝛼  is a right ideal of 𝑌(𝐼) over a neutrosophic field 𝑋(𝐼). 

Theorem 4.6: Every quotient neutrosophic algebra over a neutrosophic field is quotient algebra. 

Proof:  Let 𝑀(𝐼) 𝑈(𝐼)⁄  be quotient algebra over a neutrosophic field 𝑋(𝐼). 

For proving of 𝑀(𝐼) 𝑈(𝐼)⁄  is algebra, it is enough to show that the following. 

(i) 𝑀(𝐼) 𝑈(𝐼)⁄  is a vector space over a field 𝑋(𝐼).  

(ii) 𝑀(𝐼) 𝑈(𝐼)⁄  form a semigroup under multiplication 

(iii) 𝑥 ∙ (𝑦 + 𝑧) = 𝑥 ∙ 𝑦 + 𝑥 ∙ 𝑧 and 
                  (𝑥 + 𝑦) ∙ 𝑧 = 𝑥 ∙ 𝑧 + 𝑦 ∙ 𝑧, ∀ 𝑥, 𝑦𝜖 𝑀(𝐼) 𝑈(𝐼)⁄  

(iv) 𝛼(𝑥𝑦) = (𝛼𝑥)𝑦 = 𝑥(𝛼𝑦), ∀ 𝛼𝜖 𝑋(𝐼) 𝑎𝑛𝑑  𝑥, 𝑦𝜖 𝑀(𝐼) 𝑈(𝐼)⁄ . 

We have 𝑀(𝐼) 𝑈(𝐼)⁄ = {𝑚 + 𝑈(𝐼) 𝑓𝑜𝑟⁄ 𝑒𝑣𝑒𝑟𝑦 𝑚 𝜖 𝑀(𝐼)}.  Since 𝑀(𝐼) 𝑈(𝐼)⁄  is quotient neutrosophic 

algebra then 𝑈(𝐼) is an ideal of a neutrosophic algebra 𝑀(𝐼). From the definition of ideal, it is clear 

that 𝑈(𝐼) is a subspace of a vector space 𝑀(𝐼) over 𝑋(𝐼). As we know every neutrosophic algebra is a 

vector space, so that 𝑈(𝐼) and 𝑀(𝐼) are vector spaces with 𝑈(𝐼) 𝑖𝑠 𝑎 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑀(𝐼). Therefore 

𝑀(𝐼) 𝑈(𝐼)⁄  is a vector space over a neutrosophic field 𝑋(𝐼). 
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Let 𝑥 = 𝑚1 + 𝑈(𝐼), 𝑦 = 𝑚2 + 𝑈(𝐼), 𝑧 = 𝑚3 + 𝑈(𝐼) are in 𝑀(𝐼) 𝑈(𝐼)⁄ , where 𝑚1, 𝑚2, 𝑚3𝜖 𝑀(𝐼). 

     Consider 𝑥(𝑦𝑧)      = (𝑚1 + 𝑈(𝐼))(𝑚2 + 𝑈(𝐼) ∙ 𝑚3 + 𝑈(𝐼)) 

                   = (𝑚1 + 𝑈(𝐼))( 𝑚2 𝑚3 + 𝑈(𝐼))  =  𝑚1(𝑚2 𝑚3) + 𝑈(𝐼) 

                        = ( 𝑚1 𝑚2)𝑚3 + 𝑈(𝐼)  (∵ 𝑀(𝐼) is a neutrosophic algebra) 

                        = (𝑚1 𝑚2 + 𝑈(𝐼)) ⋅ (𝑚3 + 𝑈(𝐼)) 

                         = ((𝑚1 + 𝑈(𝐼))(𝑚2 + 𝑈(𝐼))) (𝑚3 + 𝑈(𝐼)) 

                             = (𝑥𝑦)𝑧. 

Therefore  𝑀(𝐼) 𝑈(𝐼)⁄  form semigroup under multiplication. 

Again consider(𝑥 + 𝑦)𝑧 = [(𝑚1 + 𝑈(𝐼)) + (𝑚2 + 𝑈(𝐼))] ⋅ (𝑚3 + 𝑈(𝐼)). 

                            = ((𝑚1 +  𝑚2) + 𝑈(𝐼)) ⋅ (𝑚3 + 𝑈(𝐼)) 

                                = (𝑚1 +  𝑚2) ⋅ 𝑚3 +  𝑈(𝐼) 
                                 = (𝑚1 ⋅  𝑚3 +  𝑚2 ⋅  𝑚3) + 𝑈(𝐼) 
                                 = (𝑚1 ⋅  𝑚3 + 𝑈(𝐼)) + (𝑚1 ⋅  𝑚3 + 𝑈(𝐼)) 

                               = (𝑚1 + 𝑈(𝐼)  ⋅  𝑚3 + 𝑈(𝐼)) + (𝑚2 + 𝑈(𝐼) ⋅ 𝑚3 + 𝑈(𝐼)) 

                              = 𝑥 𝑧 + 𝑦 𝑧. 

        Also let  𝑋(𝐼), 𝑥, 𝑦𝜖 𝑀(𝐼) 𝑈(𝐼)⁄ . 

Now 𝛼(𝑥𝑦) = 𝛼(𝑚1 + 𝑈(𝐼)  ∙  𝑚2 + 𝑈(𝐼)) 

                      = 𝛼(𝑚1 𝑚2 + 𝑈(𝐼))  = 𝛼(𝑚1 𝑚2) + 𝑈(𝐼) 

            = (𝛼𝑚1) 𝑚2 + 𝑈(𝐼)       
    = (𝛼𝑚1 + 𝑈(𝐼))(𝑚2 + 𝑈(𝐼)) 

           = [𝛼(𝑚1 + 𝑈(𝐼))](𝑚2 + 𝑈(𝐼))   

                                                         =  (𝛼𝑥)𝑦.  

  Also    𝑥(𝛼𝑦) = (𝑚1 + 𝑈(𝐼)) (𝛼(𝑚2 + 𝑈(𝐼))) 

                                             = (𝑚1 + 𝑈(𝐼))(𝛼𝑚2 + 𝑈(𝐼)) 

                                               = 𝑚1(𝛼𝑚2) +  𝑈(𝐼) 
                                               = 𝛼(𝑚1 𝑚2) +  𝑈(𝐼) 
                                               = 𝛼(𝑚1 𝑚2 + 𝑈(𝐼)) 

                                                  = 𝛼[(𝑚1 + 𝑈(𝐼))(𝑚2 + 𝑈(𝐼))]  =  𝛼(𝑥𝑦)  

Hence complete the proof. 

5. Conclusions 

   In this paper, we have introduced the notion of neutrosophic algebra, neutrosophic subalgebra, 

quotient neutrosophic algebra, homomorphism and isomorphism of neutrosophic algebra and 

ideals of neutrosophic algebra. We characterize some properties of neutrosophic algebra and 

proved that every quotient neutrosophic algebra is quotient algebra. Also we have proved that 

every neutrosophic algebra is algebra and direct product of neutrosophic algebras over a 

neutrosophic field is algebra. Several results and examples related to the neutrosophic algebra 

have been introduced. The concept of neutrosophic theory can be extend to near-algebra, Banach 

Algebra, C-algebra, Gamma near-algebra and near-modules. 
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Abstract:  

A similarity measure is used to tackle many issues that include indistinct and blurred information, 

excluding is not able to deal with the general fuzziness and obscurity of the problems that have 

various information. The neutrosophic hypersoft set is the most generalized and advanced 

extension of neutrosophic sets, which deals with the multi sub-attributes of the considered 

parameters. In this paper, we study some basic concepts which are helpful to build the structure of 

the article, such as soft set, neutrosophic soft set, hypersoft set, and neutrosophic hypersoft set, etc. 

The main objective of the present research is to develop a cosine similarity measure and set-theoretic 

similarity measure for an NHSS with their necessary properties. A decision-making approach has 

been established by using cosine and set-theoretic similarity measures. Furthermore, we used to 

develop a technique to solve multi-criteria decision-making problems. Finally, the advantages, 

effectiveness, flexibility, and comparative analysis of the algorithms are given with prevailing 

methods. 

Keywords: Neutrosophic set; hypersoft set; neutrosophic hypersoft set; similarity measures 

 

1. Introduction 

Decision-making is an interesting concern to pick the perfect alternate for any specific 

persistence. Firstly, it is pretended that details about alternatives are accumulated in crisp numbers, 

but in real-life situations, collective farm information always conquers wrong and inaccurate 

information. Fuzzy sets are like sets having an element of membership (Mem) degree. In classical set 

theory, the Mem degree of the elements in a set is examined in binary form to see that the element is 

not entirely concomitant. In contrast, the fuzzy set theory enables advanced Mem categorization of 

the components in the set. The Mem function portrays it, and also the multipurpose unit interval of 

the Mem function is [0, 1]. In some circumstances, decision-makers consider objects' Mem and 

nonmember-ship (Nmem) values. Zadeh’s FS cannot handle imprecise and vague information in 

such cases. Atanassov [2] developed the notion of intuitionistic fuzzy sets (IFS) to deal above 

mailto:imransiddique@umt.edu.pk
mailto:ranazulqarnain7777@gmail.com
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mentioned difficulties. The IFS accommodates the imprecise and inaccurate information using Mem 

and Nmem values.  

Atanassov IFS was unable to solve those problems in which decision-makers considered the 

membership degree (MD) and nonmembership degrees (NMD) such as MD = 0.5 and NDM = 0.8, 

then 0.5 + 0.8 ≰ 1. Yager [3, 4] extended the notion of IFS to Pythagorean fuzzy sets (PFSs) to 

overcome above-discussed complications by modifying 𝑀𝐷 +  𝑁𝑀𝐷 ≤ 1  to 𝑀𝐷2 +  𝑁𝑀𝐷2 ≤ 1 . 

After developing PFSs, Zhang and Xu [5] proposed operational laws for PFSs and established a DM 

approach to resolving the MCDM problem. Wei and Lu [6] planned some power aggregation 

operators (AOs) and proposed a DM technique to solve multi-attribute decision-making (MADM) 

issues under the Pythagorean fuzzy environment. Wang and Li [7] presented power Bonferroni mean 

operators for PFSs with their basic properties using interaction. Gao et al. [8] presented several 

aggregation operators by considering the interaction and proposed a DM approach to solving 

MADM difficulties utilizing the developed operators. Wei [9] developed the interaction operational 

laws for Pythagorean fuzzy numbers (PFNs) by considering interaction and established interaction 

aggregation operators by using the developed interaction operations. Zhang [10] developed the 

accuracy function and presented a DM approach to solving multiple criteria group decision-making 

(MCGDM) problems using PFNs. Wang et al. [11] extended the PFSs and introduced an interactive 

Hamacher operation with some novel AOs. They also established a DM method to solve MADM 

problems using their proposed operators. Wang and Li [12] developed some interval-valued PFSs 

and utilized their operators to resolve multi-attribute group decision-making (MAGDM) issues. Peng 

and Yuan [13] established novel operators such as Pythagorean fuzzy point operators and developed 

a DM technique using their proposed operators. Peng and Yang [14] introduced fundamental 

operations and their necessary possessions under PFSs and planned DM methodology. Garg [15] 

developed the logarithmic operational laws for PFSs and proposed some AOs. Arora and Garg [16] 

presented the operational laws for linguistic IFS and developed prioritized AOs. Ma and Xu [17] 

presented some innovative AOs for PFSs and proposed the score and accuracy functions for PFNs. 

Above mentioned theories and their DM methodologies have been used in several fields of life. 

But, these theories cannot deal with the parametrization of the alternatives. Molodtsov [18] 

developed soft sets (SS) to overcome the complications above. Molodtsov’s SS competently deals with 

imprecise, vague, and unclear objects considering their parametrization. Maji et al. [19] prolonged 

the notion of SS and introduced some necessary operators with their properties. Maji et al. [20] 

established a DM technique using their developed operations for SS. They also merged two well-

known theories, such as FS and SS, and established the concept of fuzzy soft sets (FSS) [21]. They also 

proposed an intuitionistic fuzzy soft set (IFSS) [22] and discussed their basic operations. Garg and 

Arora [23] extended the idea of IFSS and presented a generalized form of IFSS with AOs. They also 

planned a DM technique to resolve undefined and inaccurate information under IFSS information. 

Garg and Arora [24] presented the correlation and weighted correlation coefficients for IFSS and 

developed the TOPSIS approach utilizing established correlation procedures. Zulqarnain et al. [25] 

introduced some AOs and correlation coefficients for interval-valued IFSS. They also extended the 

TOPSIS technique using their developed correlation measures to solve the MADM problem. Peng et 

al. [26] proposed the Pythagorean fuzzy soft sets (PFSSs) and presented fundamental operations of 

PFSSs with their desirable properties by merging PFS and SS. Zulqarnain et al. [27-28] proposed the 

Einstein weighted ordered average and geometric operators for PFSSs. Zulqarnain et al. [29] 

introduced operational laws for Pythagorean fuzzy soft numbers (PFSNs) and developed AOs 

utilizing defined operational laws for PFSNs. They also planned a DM approach to solve MADM 

problems with the help of presented operators. Riaz et al. [30] prolonged the idea of PFSSs and 

developed the m polar PFSSs. They also established the TOPSIS method under the considered hybrid 

structure and proposed a DM methodology to solve the MCGDM problem. Siddique et al. [31] 

introduced the score matrix for PFSS and established a DM approach using their developed concept. 

Zulqarnain et al. [32-34] planned the TOPSIS methodology in the PFSS environment based on the 

correlation coefficient. They also proposed some AOs and interaction AOs for PFSS. 
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All the above studies only deal the inadequate information because of membership and non-

membership values. However, these theories cannot handle the overall incompatible and imprecise 

data. To address such inconsistent and inaccurate records, the idea of the neutrosophic set (NS) was 

developed by Smarandache [35]. Maji [36] offered the perception of a neutrosophic soft set (NSS) 

with necessary operations. Broumi [37] developed the generalized NSS with some operations and 

properties and used the projected concept for DM. Deli and Subas [38] developed the single-valued 

Neutrosophic numbers (SVNNs) to solve MCDM problems. They also established the cut sets for 

SVNNs. Wang et al. [39] proposed the correlation coefficient (CC) for SVNSs. Ye [40] introduced the 

simplified NSs with operational laws and AOs. Also, he presented an MCDM technique utilizing his 

planned AOs. Zulqarnain et al. [41-42] offered the generalized neutrosophic TOPSIS and an 

integrated model for neutrosophic TOPSIS. They used their developed techniques for supplier 

selection and MCDM problems. 

All the above studies have some limitations. When any attribute from a set of attributes contains 

further sub-attributes, then the above-presented theories fail to solve such problems. To overcome 

the limitations mentioned above, Smarandache [43] protracted the idea of SS to hypersoft sets (HSS) 

by substituting the one-parameter function f to a multi-parameter (sub-attribute) function. 

Samarandache claimed that the established HSS competently deals with uncertain objects compared 

to SS. Several researchers explored the HSS and presented a lot of extensions for HSS [44, 45]. 

Zulqarnain et al. [46] presented the IFHSS, the generalized version of IFSS. They established the 

TOPSIS method utilizing the developed correlation coefficient. Zulqarnain et al. [47] proposed the 

Pythagorean fuzzy hypersoft sets with AOs and correlation coefficients. They also established the 

TOPSIS technique using their developed correlation coefficient and utilized the presented approach 

to select appropriate anti-virus face masks. Zulqarnain et al. [48, 49] presented some fundamental 

operations with their properties for interval-valued NHSS. Also, they proposed the CC and WCC for 

interval-valued NHSS and established a decision-making approach utilizing their developed CC. 

Several researchers extended the notion of HSS and introduced different extensions of HSS with their 

DM methodologies [50-58]. However, all existing studies only deal with the scenario by using MD 

and NMD of sub-attributes of the considered attributes. If any decision-maker considers the MD = 

0.7 and NDM = 0.6, then 0.7 + 0.6 ≤ 1 of any sub-attribute of the alternatives. We can observe that 

the theories mentioned above cannot handle it. To overwhelm the above boundaries, we proposed 

some AOs for PFHSS such as PFHSWA and PFHSWG operators by modifying the condition 𝓣𝓕(�̌�)(𝜹)  

+ 𝓙𝓕(�̌�)(𝜹) ≤ 1 to (𝓣𝓕(�̌�)(𝜹))
𝟐

+ (𝓙𝓕(�̌�)(𝜹))
𝟐

≤ 1.. The essential objective of the following scientific 

research is to grow novel AOs for the PFHSS environment and processing mechanism, which can 

also follow the assumptions of PFHSNs. Furthermore, I developed an algorithm to explain the 

MCGDM problem and presented a numerical illustration to justify the effectiveness of the proposed 

approach under the PFHSS environment. 

The following research is organized: In section 2, we recollected some basic definitions used in 

the subsequent sequel, such as NS, SS, NSS, HSS, and NHSS. Section 3 proposes the similarity 

measures such as cosine and set-theoretic for NHSS with its properties. We also introduced some 

operational laws for NHSS in the same section and established a decision-making technique to solve 

decision-making complications utilizing our developed similarity measures. In section 4, we use the 

proposed similarity measures for decision-making. A brief comparative analysis has been conducted 

between proposed techniques with existing methodologies in section 5. Finally, the conclusion and 

future directions are presented in section 6. 

2. Preliminaries  
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The following section recalled fundamental concepts that helped us develop the current article's 

structure, such as SS, NS, NSS, HSS, FHSS, and NHSS. 

Definition 2.1 [18]  

Let 𝒰 be the universal set and ℰ be the set of attributes concerning 𝒰. Let 𝒫(𝒰) be the power set 

of 𝒰 and ⩜ ⊆ ℰ. A pair (ℱ, ⩜) is called a soft set over 𝒰, and its mapping is given as 

ℱ:⩜ → 𝒫(𝒰) 

It is also defined as: 

(ℱ,⩜) = {ℱ(ℯ) ∈ 𝒫(𝒰): ℯ ∈ ℰ, ℱ(ℯ) =  ∅ 𝑖𝑓 ℯ ∉⩜} 

Definition 2.2 [21] 𝒰 and ℰ be a universe of discourse and set of attributes respectively and ℱ(𝒰) 

be a power set of 𝒰. Let 𝒜 ⊆ ℰ, then (ℱ,𝒜) is an FSS over 𝒰, its mapping can be stated as follows: 

ℱ: 𝒜 → 𝘍(𝒰) 

Definition 2.3 [35] Let 𝓤  be a universe and 𝓐  be an NS on 𝓤  is defined as 𝓐  = 

{𝜹, (𝝈𝓕(𝜹), 𝝉𝓕(𝜹), 𝜸𝓕(𝜹)): 𝜹 ∈ 𝓤}, where 𝝈, 𝝉, 𝜸: 𝓤 → ]𝟎−, 𝟏+[ and 𝟎− ≤ 𝝈𝓕(𝜹) + 𝝉𝓕(𝜹) + 𝜸𝓕(𝜹) ≤ 

𝟑+. 

Definition 2.4 [36] Let 𝒰 be the universal set and ℰ  be the set of attributes concerning 𝒰. Let 𝒫(𝒰) 

be the Neutrosophic values of 𝒰 and 𝒜 ⊆ ℰ. A pair (ℱ,𝒜) is called a Neutrosophic soft set over 𝒰 

and its mapping is given as 

ℱ:𝒜 → 𝒫(𝒰) 

Definition 2.5 [43] 

Let 𝒰 be a universe of discourse and 𝒫(𝒰) be a power set of 𝒰 and 𝑘 = {𝑘1, 𝑘2, 𝑘3,..., 𝑘𝑛},(n ≥ 1) be 

a set of attributes and set 𝐾𝑖 a set of corresponding sub-attributes of 𝑘𝑖 respectively with 𝐾𝑖 ∩ 𝐾𝑗 = 

φ for 𝑛 ≥ 1 for each 𝑖, 𝑗 𝜖 {1,2,3 … 𝑛} and 𝑖 ≠ 𝑗. Assume 𝐾1  × 𝐾2  × 𝐾3 × … × 𝐾𝑛  = 𝒜  = 

{𝑎1ℎ × 𝑎2𝑘 ×⋯× 𝑎𝑛𝑙} be a collection of multi-attributes, where 1 ≤ ℎ ≤ 𝛼, 1 ≤ 𝑘 ≤ 𝛽, and 1 ≤ 𝑙 ≤ 

𝛾, and 𝛼, 𝛽, and 𝛾 ∈ ℕ. Then the pair (ℱ, 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 = ⩜⃛) is said to be HSS over 𝒰, and 

its mapping is defined as  

ℱ: 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 = ⩜⃛ →  𝒫(𝒰). 

It is also defined as  

(ℱ, ⩜⃛) = {�̌�, ℱ𝒜(�̌�): �̌� ∈⩜⃛, ℱ𝒜(�̌�)  ∈  𝒫(𝒰)} 

Definition 2.6 [43] 𝒰 be a universal set and 𝒫(𝒰) be a power set of 𝒰 and 𝑘 = {𝑘1, 𝑘2, 𝑘3,..., 𝑘𝑛},(n 

≥ 1) and 𝐾𝑖 denoted the set of attributes and their corresponding sub-attributes like 𝐾𝑖 ∩ 𝐾𝑗 = φ, 

where 𝑖 ≠ 𝑗 for each 𝑛 ≥ 1 and 𝑖, 𝑗 𝜖 {1,2,3 … 𝑛}. Assume 𝐾1  × 𝐾2  × 𝐾3 × … × 𝐾𝑛  = ⩜⃛  = 

{𝑎1ℎ × 𝑎2𝑘 ×⋯× 𝑎𝑛𝑙} is a collection of sub-attributes, where 1 ≤ ℎ ≤ 𝛼, 1 ≤ 𝑘 ≤ 𝛽, and 1 ≤ 𝑙 ≤ 𝛾, 

and 𝛼, 𝛽, 𝛾 ∈ ℕ. Where 𝐼𝐹𝑆𝒰 represents the intuitionistic fuzzy subsets of 𝒰. Then the pair (ℱ, 𝐾1 

× 𝐾2 × 𝐾3× … × 𝐾𝑛 = (ℱ, ⩜⃛) is known as IFHSS defined as follows: 

ℱ: 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 = ⩜⃛ → 𝐼𝐹𝑆𝒰. 

It is also defined as  

(ℱ , ⩜⃛) = {(�̌�, ℱ⩜⃛(�̌�)): �̌� ∈⩜⃛, ℱ⩜⃛(�̌�)  ∈  𝐼𝐹𝑆
𝒰 ∈  [0, 1]} , where ℱ⩜⃛(�̌�)  = {〈𝛿, 𝜎ℱ(�̌�)(𝛿), 𝜏ℱ(�̌�)(𝛿)〉: 𝛿 ∈ 𝒰} , 

where 𝜎ℱ(�̌�)(𝛿) and 𝜏ℱ(�̌�)(𝛿) signifies the Mem and NMem values of the attributes: 

𝜎ℱ(�̌�)(𝛿), 𝜏ℱ(�̌�)(𝛿) ∈  [0, 1], and 0 ≤ 𝜎ℱ(�̌�)(𝛿) + 𝜏ℱ(�̌�)(𝛿) ≤ 1. 

Definition 2.7 [47] Let 𝒰 be a universe of discourse and 𝒫(𝒰) be a power set of 𝒰 and 𝑘 = {𝑘1, 𝑘2, 

𝑘3,..., 𝑘𝑛},(n ≥ 1) and 𝐾𝑖 represented the set of attributes and their corresponding sub-attributes such 

as 𝐾𝑖 ∩ 𝐾𝑗 = φ, where 𝑖 ≠ 𝑗 for each 𝑛 ≥ 1 and 𝑖, 𝑗 𝜖 {1,2,3 … 𝑛}. Assume 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 = ⩜⃛ = 
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{𝑎1ℎ × 𝑎2𝑘 ×⋯× 𝑎𝑛𝑙} is a collection of sub-attributes, where 1 ≤ ℎ ≤ 𝛼, 1 ≤ 𝑘 ≤ 𝛽, and 1 ≤ 𝑙 ≤ 𝛾, 

and 𝛼, 𝛽, 𝛾 ∈ ℕ. and 𝑃𝐹𝑆𝒰 be a collection of all fuzzy subsets over 𝒰. Then the pair (ℱ, 𝐾1 × 𝐾2 × 

𝐾3× … × 𝐾𝑛 = (ℱ, ⩜⃛) is known as PFHSS defined as follows: 

ℱ: 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 = ⩜⃛ → 𝑃𝐹𝑆𝒰. 

It is also defined as  

(ℱ , ⩜⃛) = {(�̌�, ℱ⩜⃛(�̌�)): �̌� ∈⩜⃛, ℱ⩜⃛(�̌�)  ∈  𝑃𝐹𝑆
𝒰 ∈  [0, 1]}, where ℱ⩜⃛(�̌�) = {〈𝛿, 𝜎ℱ(�̌�)(𝛿), 𝜏ℱ(�̌�)(𝛿)〉: 𝛿 ∈ 𝒰}, 

where 𝜎ℱ(�̌�)(𝛿) and 𝜏ℱ(�̌�)(𝛿) signifies the Mem and NMem values of the attributes:  

𝜎ℱ(�̌�)(𝛿), 𝜏ℱ(�̌�)(𝛿) ∈  [0, 1], and 0 ≤ (𝜎ℱ(�̌�)(𝛿))
2

 + (𝜏ℱ(�̌�)(𝛿))
2

 ≤ 1. 

A Pythagorean fuzzy hypersoft number (PFHSN) can be stated as ℱ = {( 𝜎ℱ(�̌�)(𝛿), 𝜏ℱ(�̌�)(𝛿))}, where 

0 ≤ (𝜎ℱ(�̌�)(𝛿))
2

 + (𝜏ℱ(�̌�)(𝛿))
2

≤ 1. 

Definition 2.8 [43] 
Let 𝒰 be a universe of discourse and 𝒫(𝒰) be a power set of 𝒰 and 𝑘 = {𝑘1, 𝑘2, 𝑘3,..., 𝑘𝑛},(n ≥ 1) be 

a set of attributes and set 𝐾𝑖 a set of corresponding sub-attributes of 𝑘𝑖 respectively with 𝐾𝑖 ∩ 𝐾𝑗 = 

φ for 𝑛 ≥ 1 for each 𝑖, 𝑗 𝜖 {1,2,3 … 𝑛} and 𝑖 ≠ 𝑗. Assume 𝐾1  × 𝐾2  × 𝐾3 × … × 𝐾𝑛  = ⩜⃛  = 

{𝑎1ℎ × 𝑎2𝑘 ×⋯× 𝑎𝑛𝑙} be a collection of sub-attributes, where 1 ≤ ℎ ≤ 𝛼, 1 ≤ 𝑘 ≤ 𝛽, and 1 ≤ 𝑙 ≤ 

𝛾, and 𝛼, 𝛽, and 𝛾 ∈ ℕ and 𝑁𝑆𝒰 be a collection of all neutrosophic subsets over 𝒰. Then the pair 

(ℱ, 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 = ⩜⃛) is said to be NHSS over 𝒰, and its mapping is defined as  

ℱ: 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 = ⩜⃛ →  𝑁𝑆𝒰. 

It is also defined as  

(ℱ , ⩜⃛) = {(�̌�, ℱ⩜⃛(�̌�)): �̌� ∈⩜⃛, ℱ⩜⃛(�̌�)  ∈  𝑁𝑆
𝒰} , where ℱ⩜⃛(�̌�)  = {〈𝛿, 𝜎ℱ(�̌�)(𝛿), 𝜏ℱ(�̌�)(𝛿), 𝛾ℱ(�̌�)(𝛿)〉: 𝛿 ∈ 𝒰} , 

where 𝜎ℱ(�̌�)(𝛿), 𝜏ℱ(�̌�)(𝛿), and 𝛾ℱ(�̌�)(𝛿) represent the truth, indeterminacy, and falsity grades of the 

attributes such as 𝜎ℱ(�̌�)(𝛿), 𝜏ℱ(�̌�)(𝛿), 𝛾ℱ(�̌�)(𝛿) ∈  [0, 1], and 0 ≤ 𝜎ℱ(�̌�)(𝛿) + 𝜏ℱ(�̌�)(𝛿) + 𝛾ℱ(�̌�)(𝛿) ≤ 3. 

Simply a neutrosophic hypersoft number (NHSN) can be expressed as ℱ  = 

{(𝜎ℱ(�̌�)(𝛿), 𝜏ℱ(�̌�)(𝛿), 𝛾ℱ(�̌�)(𝛿))}, where 0 ≤ 𝜎ℱ(�̌�)(𝛿) + 𝜏ℱ(�̌�)(𝛿) + 𝛾ℱ(�̌�)(𝛿) ≤ 3. 

Example 2.7  

Consider the universe of discourse 𝒰  = {𝛿1, 𝛿2}  and 𝔏 = {ℓ1 = 𝑇𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑚𝑒𝑡ℎ𝑑𝑜𝑙𝑜𝑔𝑦, ℓ2 =

𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑠, ℓ3 = 𝐶𝑙𝑎𝑠𝑠𝑒𝑠}  be a collection of attributes with following their corresponding attribute 

values are given as teaching methodology = 𝐿1  = {𝑎11 = 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑏𝑎𝑠𝑒, 𝑎12 =  𝑐𝑙𝑎𝑠𝑠 𝑑𝑖𝑠𝑐𝑢𝑠𝑠𝑖𝑜𝑛} , 

Subjects = 𝐿2 = {𝑎21 = 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑠, 𝑎22 =  𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟 𝑆𝑐𝑖𝑒𝑛𝑐𝑒, 𝑎23 =  𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠}, and Classes = 𝐿3 = 

{𝑎31 = 𝑀𝑎𝑠𝑡𝑒𝑟𝑠, 𝑎32 =  𝐷𝑜𝑐𝑡𝑜𝑟𝑜𝑙}. Let ⩜⃛ = 𝐿1 × 𝐿2 × 𝐿3 be a set of attributes 

⩜⃛ = 𝐿1 × 𝐿2 × 𝐿3 = {𝑎11, 𝑎12} × {𝑎21, 𝑎22, 𝑎23} × {𝑎31, 𝑎32} 

= {
(𝑎11, 𝑎21, 𝑎31), (𝑎11, 𝑎21, 𝑎32), (𝑎11, 𝑎22, 𝑎31), (𝑎11, 𝑎22, 𝑎32), (𝑎11, 𝑎23, 𝑎31), (𝑎11, 𝑎23, 𝑎32),

(𝑎12, 𝑎21, 𝑎31), (𝑎12, 𝑎21, 𝑎32), (𝑎12, 𝑎22, 𝑎31), (𝑎12, 𝑎22, 𝑎32), (𝑎12, 𝑎23, 𝑎31), (𝑎12, 𝑎23, 𝑎32),
} 

⩜⃛ = {�̌�1, �̌�2, �̌�3, �̌�4, �̌�5, �̌�6, �̌�7, �̌�8, �̌�9, �̌�10, �̌�11, �̌�12} 

Then the NHSS over 𝒰 is given as follows 

(ℱ,⩜⃛) = 

{
 
 

 
 

(�̌�1, (𝛿1, (.6, .3, .8)), (𝛿2, (.9, .3, .5))), (�̌�2, (𝛿1, (.5, .2, .7)), (𝛿2, (.7, .1, .5))), (�̌�3, (𝛿1, (.5, .2, .8)), (𝛿2, (.4, .3, .4))),

 (�̌�4, (𝛿1, (. 2, .5, .6)), (𝛿2, (. 5, .1, .6))) , (�̌�5, (𝛿1, (. 8, .4, .3)), (𝛿2, (. 2, .3, .5))) , (�̌�6, (𝛿1, (. 9, .6, .4)), (𝛿2, (. 7, .6, .8))) ,

(�̌�7, (𝛿1, (.6. .5, .3)), (𝛿2, (.4, .2, .8))), (�̌�8, (𝛿1, (.8, .2, .5)), (𝛿2, (.6, .8, .4))), (�̌�9, (𝛿1, (.7, .4, .9)), (𝛿2, (.7. .3, .5))),

(�̌�10, (𝛿1, (.8, .4, .6)), (𝛿2, (.7, .2, .9))), (�̌�11, (𝛿1, (.8, .4, .5)), (𝛿2, (.4, .2, .5))), (�̌�5, (𝛿1, (.7, .5, .8)), (𝛿2, (.7, .5, .9))) }
 
 

 
 

 

3. Similarity Measures and Their Decision-Making Approaches 

     Many mathematicians developed various methodologies to solve MCDM problems in the past 

few years, such as aggregation operators for different hybrid structures, CC, similarity measures, and 
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decision-making applications. The following section develops the cosine and set-theoretic similarity 

measure for NHSS.  

Definition 3.1 

Let (ℱ,⩜⃛) = {(𝛿𝑖, 𝜎ℱ(�̌�𝑘)(𝛿𝑖), 𝜏ℱ(�̌�𝑘)(𝛿𝑖), 𝛾ℱ(�̌�𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} and (𝒢,⩕⃛) = 

{(𝛿𝑖, 𝜎𝒢(�̌�𝑘)(𝛿𝑖), 𝜏𝒢(�̌�𝑘)(𝛿𝑖), 𝛾𝒢(�̌�𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} be two NHSSs defined over a universe of discourse 

𝒰. Then, the then cosine similarity measure of (ℱ,⩜⃛) and (𝒢,⩕⃛) can be described as follows: 

𝒮𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) = 

1

𝑚𝑛
∑ ∑

(( 𝜎ℱ(�̌�𝑘)
(𝛿𝑖))(𝜎𝒢(�̌�𝑘)

(𝛿𝑖))+( 𝜏ℱ(�̌�𝑘)
(𝛿𝑖))(𝜏𝒢(�̌�𝑘)

(𝛿𝑖))+( 𝛾ℱ(�̌�𝑘)
(𝛿𝑖))(𝛾𝒢(�̌�𝑘)

(𝛿𝑖)))

(√(( 𝜎ℱ(�̌�𝑘)
(𝛿𝑖))

2

+( 𝜏ℱ(�̌�𝑘)
(𝛿𝑖))

2

+( 𝛾ℱ(�̌�𝑘)
(𝛿𝑖))

2

)√(( 𝜎𝒢(�̌�𝑘)
(𝛿𝑖))

2

+( 𝜏𝒢(�̌�𝑘)
(𝛿𝑖))

2

+( 𝛾𝒢(�̌�𝑘)
(𝛿𝑖))

2

))

𝑛
𝑖=1

𝑚
𝑘=1        

Proposition 3.2  

Let (ℱ,⩜⃛), (𝒢,⩕⃛), and (ℋ, �̌�) ∈ NHSS, then the following properties hold  

1. 0 ≤ 𝒮𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) ≤ 1 

2. 𝒮𝑁𝐻𝑆𝑆1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) = 𝒮𝑁𝐻𝑆𝑆
1 ((𝒢,⩕⃛), (ℱ,⩜⃛))  

3. If (ℱ,⩜⃛)  ⊆  (𝒢,⩕⃛)  ⊆  (ℋ, �̌�) , then 𝒮𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (ℋ, �̌�))  ≤  𝒮𝑁𝐻𝑆𝑆

1 ((ℱ,⩜⃛) , (𝒢,⩕⃛))  and 

𝒮𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (ℋ, �̌�)) ≤ 𝒮𝑁𝐻𝑆𝑆

1 ((𝒢,⩕⃛), (ℋ, �̌�)). 

Proof: Using the above definition, the proof of these properties can be done easily.  

Definition 3.3 

Let (ℱ,⩜⃛) = {(𝛿𝑖, 𝜎ℱ(�̌�𝑘)(𝛿𝑖), 𝜏ℱ(�̌�𝑘)(𝛿𝑖), 𝛾ℱ(�̌�𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} and (𝒢,⩕⃛) = 

{(𝛿𝑖, 𝜎𝒢(�̌�𝑘)(𝛿𝑖), 𝜏𝒢(�̌�𝑘)(𝛿𝑖), 𝛾𝒢(�̌�𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} be two NHSSs defined over a universe of discourse 

𝒰. Then, the then set-theoretic similarity measure of (ℱ,⩜⃛) and (𝒢,⩕⃛) can be described as follows: 

𝒮𝑁𝐻𝑆𝑆
2 ((ℱ,⩜⃛), (𝒢,⩕⃛)) =  

1

𝑚𝑛
∑∑

(( 𝜎ℱ(�̌�𝑘)(𝛿𝑖)) (𝜎𝒢(�̌�𝑘)(𝛿𝑖)) + ( 𝜏ℱ(�̌�𝑘)(𝛿𝑖)) (𝜏𝒢(�̌�𝑘)(𝛿𝑖)) + ( 𝛾ℱ(�̌�𝑘)(𝛿𝑖)) (𝛾𝒢(�̌�𝑘)(𝛿𝑖)))

𝑚𝑎𝑥 {(( 𝜎ℱ(�̌�𝑘)(𝛿𝑖))
2

+ ( 𝜏ℱ(�̌�𝑘)(𝛿𝑖))
2

+ ( 𝛾ℱ(�̌�𝑘)(𝛿𝑖))
2

) , (( 𝜎𝒢(�̌�𝑘)(𝛿𝑖))
2

+ ( 𝜏𝒢(�̌�𝑘)(𝛿𝑖))
2

+ ( 𝛾𝒢(�̌�𝑘)(𝛿𝑖))
2

)}

𝑛

𝑖=1

𝑚

𝑘=1

 

Proposition 3.4 

Let (ℱ,⩜⃛), (𝒢,⩕⃛), and (ℋ, �̌�) ∈ NHSS, then the following properties hold  

1. 0 ≤ 𝒮𝑁𝐻𝑆𝑆
2 ((ℱ,⩜⃛), (𝒢,⩕⃛)) ≤ 1 

2. 𝒮𝑁𝐻𝑆𝑆
2 ((ℱ,⩜⃛), (𝒢,⩕⃛)) = 𝒮𝑁𝐻𝑆𝑆

2 ((𝒢,⩕⃛), (ℱ,⩜⃛))  

3. If (ℱ,⩜⃛)  ⊆  (𝒢,⩕⃛)  ⊆  (ℋ, �̌�) , then 𝒮𝑁𝐻𝑆𝑆
2 ((ℱ,⩜⃛), (ℋ, �̌�))  ≤  𝒮𝑁𝐻𝑆𝑆

2 ((ℱ,⩜⃛) , (𝒢,⩕⃛))  and 

𝒮𝑁𝐻𝑆𝑆
2 ((ℱ,⩜⃛), (ℋ, �̌�)) ≤ 𝒮𝑁𝐻𝑆𝑆

2 ((𝒢,⩕⃛), (ℋ, �̌�)). 

Proof: Using the above definition, the proof of these properties can be done easily. 

3.5 Algorithm 1 for Similarity Measures of NHSS 

Step 1. Pick out the set containing parameters. 

Step 2. Construct the NHSS according to experts. 

Step 3. Compute the cosine similarity measure by using definition 3.1. 

Step 4. Compute the set-theoretic similarity measure for NHSS by utilizing definition 3.3. 

Step 5. An alternative with a maximum value with cosine similarity measure has the maximum rank 

according to considered numerical illustration. 
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Step 6. An alternative with a maximum value with a set-theoretic similarity measure has the 

maximum rank according to considered numerical illustration. 

Step 7. Analyze the ranking. 

Definition 3.6 

Let (ℱ,⩜⃛)  = {(𝛿𝑖, 𝜎ℱ(�̌�𝑘)(𝛿𝑖), 𝜏ℱ(�̌�𝑘)(𝛿𝑖), 𝛾ℱ(�̌�𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} , (𝒢,⩕⃛)  = 

{(𝛿𝑖, 𝜎𝒢(�̌�𝑘)(𝛿𝑖), 𝜏𝒢(�̌�𝑘)(𝛿𝑖), 𝛾𝒢(�̌�𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} , and (ℋ, �̌�)  = 

{(𝛿𝑖, 𝜎ℋ(�̌�𝑘)(𝛿𝑖), 𝜏ℋ(�̌�𝑘)(𝛿𝑖), 𝛾ℋ(�̌�𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} be three NHSSs defined over a universe of discourse 

𝒰 when 𝛿 >   0, then the following laws hold. 

(ℱ,⩜⃛) ⊕ (𝒢,⩕⃛) = ⟨
𝜎ℱ(�̌�𝑘)(𝛿𝑖) + 𝜎𝒢(�̌�𝑘)(𝛿𝑖) − 𝜎ℱ(�̌�𝑘)(𝛿𝑖)𝜎𝒢(�̌�𝑘)(𝛿𝑖), 𝜏ℱ(�̌�𝑘)(𝛿𝑖) ∗ 𝜏𝒢(�̌�𝑘)(𝛿𝑖),

𝛾ℱ(�̌�𝑘)(𝛿𝑖) ∗ 𝛾𝒢(�̌�𝑘)(𝛿𝑖)
⟩ 

(ℱ,⩜⃛) ⊗ (𝒢,⩕⃛) = ⟨
𝜎ℱ(�̌�𝑘)(𝛿𝑖) ∗ 𝜎𝒢(�̌�𝑘)(𝛿𝑖), 𝜏ℱ(�̌�𝑘)(𝛿𝑖) + 𝜏𝒢(�̌�𝑘)(𝛿𝑖) − 𝜏ℱ(�̌�𝑘)(𝛿𝑖) ∗ 𝜏𝒢(�̌�𝑘)(𝛿𝑖),

𝛾ℱ(�̌�𝑘)(𝛿𝑖) + 𝛾𝒢(�̌�𝑘)(𝛿𝑖) − 𝛾ℱ(�̌�𝑘)(𝛿𝑖) ∗ 𝛾𝒢(�̌�𝑘)(𝛿𝑖)
⟩ 

𝛿(ℱ,⩜⃛) = ⟨1 − (1 − 𝜎ℱ(�̌�𝑘)(𝛿𝑖))
𝛿

, (𝜏ℱ(�̌�𝑘)(𝛿𝑖))
𝛿

, (𝛾ℱ(�̌�𝑘)(𝛿𝑖))
𝛿

⟩ 

((𝓕,⩜⃛))𝜹 = ⟨(𝝈𝓕(�̌�𝒌)(𝜹𝒊))
𝜹

, 𝟏 − (𝟏 − 𝝉𝓕(�̌�𝒌)(𝜹𝒊))
𝜹

, 𝟏 − (𝟏 − 𝜸𝓕(�̌�𝒌)(𝜹𝒊))
𝜹

⟩. 

Proposition 3.7 

Let (ℱ,⩜⃛)  = {(𝛿𝑖, 𝜎ℱ(�̌�𝑘)(𝛿𝑖), 𝜏ℱ(�̌�𝑘)(𝛿𝑖), 𝛾ℱ(�̌�𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} , (𝒢,⩕⃛)  = 

{(𝛿𝑖, 𝜎𝒢(�̌�𝑘)(𝛿𝑖), 𝜏𝒢(�̌�𝑘)(𝛿𝑖), 𝛾𝒢(�̌�𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} , and (ℋ, �̌�)  = 

{(𝛿𝑖, 𝜎ℋ(�̌�𝑘)(𝛿𝑖), 𝜏ℋ(�̌�𝑘)(𝛿𝑖), 𝛾ℋ(�̌�𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} be three NHSSs defined over a universe of discourse 

𝒰 and 𝛿, 𝛿1, 𝛿2 > 0, then the following laws hold 

1. (ℱ,⩜⃛) ⊕ (𝒢,⩕⃛) = (𝒢,⩕⃛) ⊕ (ℱ,⩜⃛) 

2. (ℱ,⩜⃛) ⊗ (𝒢,⩕⃛) = (𝒢,⩕⃛) ⊗ (ℱ,⩜⃛) 

3. 𝛿((ℱ,⩜⃛) ⊕ (𝒢,⩕⃛))= 𝛿(𝒢,⩕⃛) ⊕ 𝛿(ℱ,⩜⃛) 

4. ((ℱ,⩜⃛) ⊗ (𝒢,⩕⃛))𝛿 = ((ℱ,⩜⃛))𝛿 ⊗ ((𝒢,⩕⃛))𝛿 

5. 𝛿1(ℱ,⩜⃛) ⊕ 𝛿2(ℱ,⩜⃛)= (𝛿1⊕𝛿2)(ℱ,⩜⃛) 

6. ((ℱ,⩜⃛))𝛿1 ⊗ ((ℱ,⩜⃛))𝛿2  = ((ℱ,⩜⃛))𝛿1+𝛿2  

7. ((ℱ,⩜⃛) ⊕ (𝒢,⩕⃛)) ⊕ (ℋ, �̌�) = (ℱ,⩜⃛) ⊕ ((𝒢,⩕⃛) ⊕ (ℋ, �̌�)) 

8. ((ℱ,⩜⃛) ⊗ (𝒢,⩕⃛)) ⊗ (ℋ, �̌�) = (ℱ,⩜⃛) ⊗ ((𝒢,⩕⃛) ⊗ (ℋ, �̌�)) 

Proof. The proof of the above laws is straightforward by using definition 4.6. 

Definition 3.8 

Let (ℱ,⩜⃛) = {(𝛿𝑖, 𝜎ℱ(�̌�𝑘)(𝛿𝑖), 𝜏ℱ(�̌�𝑘)(𝛿𝑖), 𝛾ℱ(�̌�𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} be a collection of NHSNs, Ω𝑖  and γ𝑘 are 

weight vector for expert’s and parameters respectively with given conditions Ω𝑖  > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 

γ𝑘 > 0, ∑ γ𝑘
𝑚
𝑘=1  = 1, where (𝑖 =  1, 2, … , 𝑛, 𝑎𝑛𝑑 𝑘 =  1, 2, … ,𝑚). Then NHSWA operator defined as 

NHSWA: ∆𝑛 → ∆ defined as follows 

𝑁𝐻𝑆𝑊𝐴 (ℱ⩜⃛(𝛿11), ℱ⩜⃛(𝛿12), … , ℱ⩜⃛(𝛿𝑛𝑚)) = ⊕𝑘=1
𝑚 γ𝑗(⊕𝑖=1

𝑛 Ω𝑖ℱ⩜⃛(𝛿𝑖) ).  

Proposition 3.9  

Let (ℱ,⩜⃛) = {(𝛿𝑖, 𝜎ℱ(�̌�𝑘)(𝛿𝑖), 𝜏ℱ(�̌�𝑘)(𝛿𝑖), 𝛾ℱ(�̌�𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} be a collection of NHSNs, the aggregated 

value is also an NHSN, such as 

𝑁𝐻𝑆𝑊𝐴 (ℱ⩜⃛(𝛿11), ℱ⩜⃛(𝛿12), … , ℱ⩜⃛(𝛿𝑛𝑚))  

= ⟨
𝟏 − ∏ (∏ (𝟏 − 𝝈𝓕(�̌�𝒌)(𝜹𝒊))

Ω𝒊𝒏
𝒊=𝟏 )

𝛄𝒌
𝒎
𝒌=𝟏 , 𝟏 − (𝟏 − ∏ (∏ (𝟏 − 𝝉𝓕(�̌�𝒌)(𝜹𝒊))

Ω𝒊𝒏
𝒊=𝟏 )

𝛄𝒌
𝒎
𝒌=𝟏 ) ,

 𝟏 − (𝟏 − ∏ (∏ (𝟏 − 𝜸𝓕(�̌�𝒌)(𝜹𝒊))
Ω𝒊𝒏

𝒊=𝟏 )
𝛄𝒌

𝒎
𝒌=𝟏 )

⟩ 
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Definition 3.10 

Let (ℱ,⩜⃛) = {(𝛿𝑖, 𝜎ℱ(�̌�𝑘)(𝛿𝑖), 𝜏ℱ(�̌�𝑘)(𝛿𝑖), 𝛾ℱ(�̌�𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} be an NHSNs, then the score, accuracy, 

and certainty functions for NHSN respectively defined as follows: 

 

𝕊((ℱ,⩜⃛)) = 
1

6𝑚
∑ (6 + 𝜎ℱ(�̌�𝑘)

𝛼 (𝛿𝑖) − 𝜏ℱ(�̌�𝑘)
𝛼 (𝛿𝑖) − 𝛾ℱ(�̌�𝑘)

𝛼 (𝛿𝑖))
𝑚
𝛼=1   

𝔸((ℱ,⩜⃛)) = 
1

4𝑚
(4 + 𝜎ℱ(�̌�𝑘)

𝛼 (𝛿𝑖) − 𝛾ℱ(�̌�𝑘)
𝛼 (𝛿𝑖))  

ℂ((ℱ,⩜⃛)) = 
1

2𝑚
(2 + 𝜎ℱ(�̌�𝑘)

𝛼 (𝛿𝑖)) 

where 𝛼 = 1, 2,⋯, 𝑚. 

Definition 3.11 

Let (ℱ,⩜⃛)  = {(𝛿𝑖, 𝜎ℱ(�̌�𝑘)(𝛿𝑖), 𝜏ℱ(�̌�𝑘)(𝛿𝑖), 𝛾ℱ(�̌�𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} , and (𝒢,⩕⃛)  = 

{(𝛿𝑖, 𝜎𝒢(�̌�𝑘)(𝛿𝑖), 𝜏𝒢(�̌�𝑘)(𝛿𝑖), 𝛾𝒢(�̌�𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} be two NHSNs. The comparison approach is present 

as follows: 

1. If 𝕊(ℱ,⩜⃛) > 𝕊(𝒢,⩕⃛), then (ℱ,⩜⃛) is superior to (𝒢,⩕⃛). 

2. If 𝕊(ℱ,⩜⃛) = 𝕊(𝒢,⩕⃛) and 𝔸(ℱ,⩜⃛) > 𝔸(𝒢,⩕⃛), then (ℱ,⩜⃛) is superior to (𝒢,⩕⃛). 

3. If 𝕊(ℱ,⩜⃛) = 𝕊(𝒢,⩕⃛), 𝔸(ℱ,⩜⃛) = 𝔸(𝒢,⩕⃛), and ℂ(ℱ,⩜⃛) > ℂ(𝒢,⩕⃛), then (ℱ,⩜⃛) is superior to 

(𝒢,⩕⃛). 

4. If 𝕊(ℱ,⩜⃛) = 𝕊(𝒢,⩕⃛), 𝔸(ℱ,⩜⃛) > 𝔸(𝒢,⩕⃛), and ℂ(ℱ,⩜⃛) = ℂ(𝒢,⩕⃛), then (ℱ,⩜⃛) is indifferent to 

(𝒢,⩕⃛), can be denoted as (ℱ,⩜⃛)~(𝒢,⩕⃛). 

4. Application of Similarity Measures in Decision Making 

In this section, we proposed the algorithm for NHSS by using developed similarity measures. 

We also used the proposed methods for decision-making in real-life problems. 

4.1. Problem Formulation and Application of NHSS For Decision Making 

A construction company calls for the appointment of a civil engineer to supervise the workers. 

Several engineers apply for the civil engineer post, simply four engineers call for an interview based 

on experience for undervaluation such as 𝑆 = {𝑆1, 𝑆2, 𝑆3, 𝑆4} be a set of selected engineers call for 

the interview. The managing director hires a committee of four experts 𝒰 = {𝜅1, 𝜅2, 𝜅3, 𝜅4}} for the 

selection of civil engineer. The group of experts chooses the set of attributes for the selection of an 

appropriate civil engineer such as 𝔏 = {ℓ1 = 𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝑖𝑡𝑦, ℓ2 = 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑠𝑘𝑖𝑙𝑙𝑠, ℓ3 =

𝑞𝑢𝑎𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛}  with their corresponding sub-attribute: personality = ℓ1  = {𝑑11 = attractive} , 

communication skills = ℓ2  = {𝑑21 = normal, 𝑑22 = excellent} , and qualification = ℓ3  = {𝑑31 =

masters, 𝑑32 = doctor}. The experts evaluate the applicants under defined parameters and forward 

the evaluation performa to the company's managing director. Finally, the director scrutinizes the best 

applicant based on the expert’s evaluation report. 

4.1.1. Application of NHSS For Decision Making 

Let 𝑆 = {𝑆1, 𝑆2, 𝑆3, 𝑆4} be a set of civil engineers who are shortlisted for interviews (alternatives) such 

as. The managing director hires a team of four experts such as 𝒰 = {𝜅1, 𝜅2, 𝜅3, 𝜅4}. The group of 
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experts chooses the set of attributes for the selection of an appropriate civil engineer such as 𝔏 = 

{ℓ1 = 𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝑖𝑡𝑦, ℓ2 = 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑠𝑘𝑖𝑙𝑙𝑠, ℓ3 = 𝑞𝑢𝑎𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛}  with their corresponding sub-

attribute: personality = ℓ1  = {𝑑11 = attractive}, communication skills = ℓ2  = {𝑑21 = normal, 𝑑22 =

excellent}, and qualification = ℓ3 = {𝑑31 = masters, 𝑑32 = doctor}. Let 𝔏′ = ℓ1 × ℓ2 × ℓ3 shows the 

multi sub-attributes 

𝔏′ = ℓ1 × ℓ2 × ℓ3 = {𝑑11} × {𝑑21, 𝑑22} × {𝑑31, 𝑑32} 

= {(𝑑11, 𝑑21, 𝑑31), (𝑑11, 𝑑22, 𝑑31), (𝑑11, 𝑑21, 𝑑32), (𝑑11, 𝑑22, 𝑑32)},  

𝔏′  = {�̌�1, �̌�2, �̌�3, �̌�4}  with weights (0.2, 0.1, 0.4, 0.3)𝑇 . Experts' opinion in the form of NHSNs 

following multi sub-attributes of considered attributes. 

Step 2. Construct the NHSS according to experts. 

Table 1. Construction of NHSS of all Applicants According to Company Requirement 

𝑺 �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 
𝜿𝟏 (0.7,0.2,0.4) (0.4, 0.3, 0.7) (0.9, 0.7, 0.4) (0.6,0.3,0.7) 
𝜿𝟐 (0.5, 0.6,0.2) (0.8,0.5, 0.6) (0.8, 0.2, 0.5) (0.7, 0.5, 0.9) 
𝜿𝟑 (0.6,0.6,0.2) (0.5,0.8,0.3) (0.4, 0.7, 0.3) (0.6, 0.7, 0.4) 
𝜿𝟒 (0.8, 0.7, 0.5) (0.2,0.4,0.9) (0.7, 0.5, 0.1) (0.6,0.8,0.2) 

Now we will construct the NHSS 𝑆𝑡 according to four experts, where 𝑡 = 1, 2, 3, 4. 

Table 2. Decision Matrix for alternative 𝑆1 

𝑺𝟏 �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 
𝜿𝟏 (0.9,0.2,0.1) (0.3, 0.3, 0.7) (0.6, 0.4, 0.2) (0.7,0.1,0.3) 
𝜿𝟐 (0.8, 0.3,0.2) (0.6,0.2, 0.6) (0.8, 0.3, 0.1) (0.2, 0.6, 0.8) 
𝜿𝟑 (0.6,0.1,0.3) (0.6,0.1,0.3) (0.8, 0.2, 0.1) (0.6, 0.3, 0.4) 
𝜿𝟒 (0.9, 0.1, 0.1) (0.9,0.1,0.1) (0.8, 0.1, 0.1) (0.9,0.1,0.2) 

Table 3. Decision Matrix for alternative 𝑆2 

𝑺𝟐 �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 
𝜿𝟏 (0.3,0.3,0.7) (0.9, 0.2, 0.1) (0.6, 0.1, 0.3) (0.3,0.6,0.2) 
𝜿𝟐 (0.8, 0.2,0.1) (0.8,0.3, 0.2) (0.9, 0.1, 0.1) (0.8, 0.3, 0.1) 
𝜿𝟑 (0.6,0.3,0.4) (0.8,0.1,0.2) (0.9, 0.1, 0.1) (0.2, 0.3, 0.8) 
𝜿𝟒 (0.9, 0.1, 0.2) (0.8,0.1,0.1) (0.7, 0.1, 0.3) (0.6,0.3,0.4) 

Table 4. Decision Matrix for alternative 𝑆3 

𝑺𝟑 �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 
𝜿𝟏 (0.6,0.3,0.4) (0.2, 0.3, 0.8) (0.3, 0.6, 0.2) (0.3,0.6,0.2) 
𝜿𝟐 (0.9, 0.1,0.1) (0.9,0.1, 0.1) (0.9, 0.1, 0.1) (0.8, 0.3, 0.2) 
𝜿𝟑 (0.8,0.3,0.2) (0.9,0.2,0.1) (0.9, 0.1, 0.1) (0.2, 0.3, 0.8) 
𝜿𝟒 (0.3, 0.3, 0.7) (0.9,0.1,0.2) (0.7, 0.1, 0.3) (0.6,0.3,0.4) 

Table 5. Decision Matrix for alternative 𝑆4 

𝑺𝟒 �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 
𝜿𝟏 (0.9,0.1,0.1) (0.9, 0.1, 0.2) (0.8, 0.2, 0.1) (0.3,0.6,0.2) 
𝜿𝟐 (0.8, 0.2,0.1) (0.8,0.2, 0.1) (0.6, 0.3, 0.4) (0.8, 0.3, 0.2) 
𝜿𝟑 (0.8,0.1,0.1) (0.8,0.1,0.2) (0.9, 0.1, 0.1) (0.3, 0.6, 0.2) 
𝜿𝟒 (0.9, 0.1, 0.2) (0.3,0.3,0.7) (0.8, 0.3, 0.2) (0.9,0.1,0.1) 
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Step 3. Compute the cosine similarity measure by using definition 3.1. 

By using Tables 1-5, compute the cosine similarity measure between 𝒮𝑁𝐻𝑆𝑆
1 (𝑆 ,𝑆1 ), 𝒮𝑁𝐻𝑆𝑆

1 (𝑆 ,𝑆2 ), 

𝒮𝑁𝐻𝑆𝑆
1 (𝑆,𝑆3), and 𝒮𝑁𝐻𝑆𝑆

1 (𝑆,𝑆𝑡) by using equation 3.1, such as 

𝒮𝑁𝐻𝑆𝑆
1 ( 𝑆 , 𝑆1 ) = 

1

3×4
{

(.8)(.3)+(.5)(.5)+(.6)(.2)

√(.8)2+(.5)2+(.6)2 √(.3)2+(.5)2+(.2)2
+

(.5)(.8)+(.4)(.7)+(.2)(.3)

√(.5)2+(.4)2+(.2)2√(.8)2+(.7)2+(.3)2
+⋯+

(.4)(.7)+(.7)(.7)+(.6)(.9)

√(.4)2+(.7)2+(.6)2√(.7)2+(.7)2+(.9)2
} = 

1

12
(
28.99

34.4799
) = 0.07007. 

Similarly, we can find the cosine similarity measure between 𝒮𝑁𝐻𝑆𝑆
1 ( 𝑆 , 𝑆2 ), 𝒮𝑁𝐻𝑆𝑆

1 ( 𝑆 , 𝑆3 ), and 

𝒮𝑁𝐻𝑆𝑆
1 (𝑆,𝑆4) given as 

𝒮𝑁𝐻𝑆𝑆
1 (𝑆,𝑆2) = 

1

12
(
26.32

32.3767
) = 0.06771, 𝒮𝑁𝐻𝑆𝑆

1 (𝑆,𝑆3) = 
1

12
(

25.4

29.4056
) = 0.06943, and 𝒮𝑁𝐻𝑆𝑆

1 (𝑆,𝑆4) = 
1

12
(

25.48

30.88764
) 

= 0.06874. This shows that 𝒮𝑁𝐻𝑆𝑆
1 (𝑆, 𝑆1) > 𝒮𝑁𝐻𝑆𝑆

1 (𝑆, 𝑆3) > 𝒮𝑁𝐻𝑆𝑆
1 (𝑆, 𝑆4)  > 𝒮𝑁𝐻𝑆𝑆

1 (𝑆 ,𝑆2 ). It can be seen 

from this ranking alternative 𝑆1 is most relevant and similar to 𝑆. Therefore 𝑆1 is the best alternative 

for the civil engineer, the ranking of other alternatives given as 𝑆1 > 𝑆3 > 𝑆4 > 𝑆2. 

Now we compute the set-theoretic similarity measure by using Definition 4.3 between 𝒮𝑁𝐻𝑆𝑆
2 (𝑆,𝑆1), 

𝒮𝑁𝐻𝑆𝑆
2 (𝑆,𝑆2), 𝒮𝑁𝐻𝑆𝑆

2 (𝑆,𝑆3), and 𝒮𝑁𝐻𝑆𝑆
2 (𝑆,𝑆4) given as From Tables 1-5, we can find the set-theoretic 

similarity measure for each alternative by using definition 4.3 given as 𝒮𝑁𝐻𝑆𝑆
2 (𝑆 ,𝑆1 ) = 0.06986, 

𝒮𝑁𝐻𝑆𝑆
2 (𝑆,𝑆2) = 0.06379, 𝒮𝑁𝐻𝑆𝑆

2 (𝑆,𝑆3) = 0.06157, and 𝒮𝑁𝐻𝑆𝑆
2 (𝑆,𝑆4) = 0.06176. 𝒮𝑁𝐻𝑆𝑆

1 (𝑆, 𝑆1) > 𝒮𝑁𝐻𝑆𝑆
1 (𝑆, 𝑆2) >

𝒮𝑁𝐻𝑆𝑆
1 (𝑆, 𝑆4)  > 𝒮𝑁𝐻𝑆𝑆

1 (𝑆, 𝑆3) . It can be seen from this ranking alternative 𝑆1  is most relevant and 

similar to 𝑆 . Therefore 𝑆1  is the best alternative for the civil engineer, the ranking of other 

alternatives given as 𝑆1 > 𝑆2 > 𝑆4 > 𝑆3. 

5. Discussion and Comparative Analysis 

In the subsequent section, we will talk over the usefulness, easiness, manageability, and assistance of 

the planned method. We also performed an ephemeral evaluation of the undermentioned: the 

planned technique along with some prevailing methodologies. 

5.1. Superiority of the Proposed Approach 

Through this study and comparison, it could be determined that the consequences acquired by 

the suggested approach have been more common than either available method. Overall, the DM 

procedure associated with the prevailing DM methods accommodates extra information to address 

hesitation. Also, FS’s various hybrid structures are becoming a particular feature of NHSS, along with 

some appropriate circumstances added. The general info associated with the object could be stated 

precisely and analytically, see Table 6. Therefore, it is a suitable technique to syndicate inaccurate and 

ambiguous information in the DM process. Hence, the suggested approach is practical, modest, and 

in advance of fuzzy sets’ distinctive hybrid structures. 

Table 6. Comparison between NHSS and some existing techniques 

 Set Truthiness Indeterminacy Falsity Parametrization Attributes Sub-attributes 

Zadeh [1] FS ✓ × × × ✓ × 

Atanassov [2] IFS ✓ × ✓ × ✓ × 

Smarandache [35] NS ✓ ✓ ✓ × ✓ × 

Maji et al. [21] FSS ✓ × × ✓ ✓ × 

Maji et al. [22] IFSS ✓ × ✓ ✓ ✓ × 

Peng et al. [26] PFSS ✓ × ✓ ✓ ✓ × 

Maji [36] NSS ✓ ✓ ✓ ✓ ✓ × 

Zulqarnain et al. [46] IFHSS ✓ × ✓ ✓ ✓ ✓ 
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Zulqarnain et al. [47] PFHSS ✓ × ✓ ✓ ✓ ✓ 

Proposed approach NHSS ✓ ✓ ✓ ✓ ✓ ✓ 

It turns out that this is a contemporary issue. Why do we have to embody novel algorithms based on 

the proposed novel structure? Many indications compared with other existing methods; the 

recommended method may be an exception. We remember the following fact: the mixed structure 

limits IFS, picture fuzzy sets, FS, hesitation fuzzy sets, NS, and other fuzzy sets and cannot provide 

complete information about the situation. But our m-polar model GmPNSS can deal with truthiness, 

indeterminacy, and falsity, so it is most suitable for MCDM. Due to the exaggerated multipolar 

neutrosophy, these three degrees are independent and provide a lot of information about alternative 

norms. Other similarity measures of available hybrid structures are converted into exceptional cases 

of GmPNSS. A comparative analysis of some already existing techniques is listed above in Table 6. 

Therefore, this model has more versatility and can efficiently resolve complications than 

intuitionistic, neutrosophic, hesitant, image, and ambiguity substitution. The similarity measure 

established for GmPNSS becomes better than the existing similarity measure for MCDM. 

5.2. Comparative Analysis 

In the following section, we recommend another algorithmic rule under NHSS by utilizing the 

progressed cosine similarity measure and set-theoretic similarity measure. Subsequently, we use the 

suggested algorithm to a realistic problem, namely the appropriate civil engineer in a company. The 

overall outcomes prove that the algorithmic rule is valuable and practical. It can be observed that 𝑆1  

is the most acceptable alternative for the civil engineer position. The recommended approach may be 

compared to other available methods. From the research findings, it has been concluded that the 

outcomes acquired by the planned approach exceed the consequences of the prevailing ideas. 

Therefore, compared to existing techniques, the established similarity measures handled the 

uncertain and ambiguous information competently. However, under current DM strategies, the core 

advantage of the planned method is that it can accommodate extra info in data comparative to 

existing techniques. It is also a beneficial tool to solve inaccurate and imprecise information in DM 

procedures. The benefit of the planned approach and related measures over present methods is 

evading conclusions grounded on adverse reasons.  

5.3. Discussion  

Zadeh’s [1] FS handled the inaccurate and imprecise information using MD of sub-attributes of 

considered attributes for each alternative. But the FS has no evidence around the NMD of the 

considered parameters. Atanassov’s [2] IFS accommodates the unclear and undefined objects using 

MD and NMD. However, IFS cannot handle the circumstances when MD + NMD ≥ 1, conversely, is 

presented notion competently deals with such difficulties. Meanwhile, these theories have no 

information about the indeterminacy of the attributes. To overcome such problems, Smarandache 

[35] proposed the idea of NS. Maji et al. [21] presented the notion of FSS to deal with the 

parametrization of the objects, which contains uncertainty by considering the MD of the attributes. 

But, the presented FSS provides no information about the NMD of the object. To overcome the 

presented drawback, Maji et al. [22] offered the concept of IFSS. The proposed notion handles the 

uncertain object more accurately by using the MD and NMD of the attributes with their 

parametrization. The sum of MD and NMD does not exceed 1. To handle this scenario, Peng et al. 

[26] proposed the notion of PFSS by modifying the condition 𝑀𝐷 + 𝑁𝑀𝐷 ≤ 1 to 𝑀𝐷2 + 𝑁𝑀𝐷2 ≤ 1 

with their parametrization. The PFSS is unable to deal with the indeterminacy of the attributes. Maji 
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[36] introduced the concept of NSS, in which decision-makers competently solve the DM problems 

comparative to the above-studied theories using truthiness, falsity, and indeterminacy of the object. 

But all the studies mentioned above have no information about the sub-attributes of the considered 

attributes. So the theories discussed above cannot handle the scenario when attributes have their 

corresponding sub-attributes. Utilizing the MD and NMD, Zulqarnain et al. [46] extended the IFSS 

to IFHSS and proposed the CC and WCC for IFHSS in which 𝑀𝐷 + 𝑁𝑀𝐷 ≤ 1 for each sub-attribute. 

But IFHSS cannot provide any information on the NMem values of the sub-attribute of the considered 

attribute. Zulqarnain et al. [47] proposed the more generalized notion of PFHSS comparative to 

IFHSS. The PFHSS accommodates more uncertainty compared to IFHSS by updating the condition 

𝑀𝐷 + 𝑁𝑀𝐷 ≤ 1 to (𝜎ℱ(�̌�)(𝛿))
2
+ (𝜏ℱ(�̌�)(𝛿))

2
≤ 1. All existing hybrid structures of FS cannot handle 

the indeterminacy of sub-attributes of considered n-tuple attributes. On the other hand, developed 

aggregation operators can accommodate the sub-attributes of considered attributes using truthness, 

indeterminacy, and falsity objects of sub-attributes with the following condition 0 ≤ 𝜎ℱ(�̌�)(𝛿) , 

𝜏ℱ(�̌�)(𝛿), 𝛾ℱ(�̌�)(𝛿) ≤ 3. It may be seen that the best selection of the suggested approach is to resemble 

the verbalized own method, and that ensures the liableness along with the effectiveness of the 

recommended approach.  

6. Conclusion 

This paper studies some basic concepts such as soft set, NSS, HSS, IFHSS, PFHSS, and NHSS. 

We developed the idea of cosine similarity measure and set-theoretic similarity measure for NHSS 

and described their desirable properties. Some operational laws have been established for NHSS. The 

concept of score function, accuracy function, and certainty function is developed to compare NHSNs. 

Furthermore, a decision-making approach has been developed for NHSS based on the proposed 

technique. To verify the effectiveness of our developed techniques, we presented an illustration to 

solve MCDM problems. We presented a comprehensive comparative analysis of proposed techniques 

with existing methods. In the future, the concept of NHSS will be extended to interval-valued NHSS. 

It will solve different real-life problems such as medical diagnoses, decision-making, etc. 
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Abstract:  

A similarity measure and correlation coefficients are used to tackle many issues that include 

indistinct and blurred information, excluding is not in a position to deal with the general fuzziness 

and obscurity of the various problems. In this paper, we study some basic concepts which are 

helpful to build the structure of the article, such as soft set, neutrosophic soft set, and generalized 

m-polar neutrosophic soft set. The main objective of this paper is to develop the cosine and set-

theoretic similarity measures for the generalized multipolar neutrosophic soft set (GmPNSS). We 

discuss some basic operations with their properties for GmPNSS. A decision-making approach has 

been established by using cosine and set-theoretic similarity measures. Also, we introduce the 

multipolar neutrosophic soft weighted average (mPNSWA) operator and develop a decision-

making approach based on mPNSWA. Furthermore, we use to develop techniques to solve multi-

criteria decision-making problems. Finally, the advantages, effectiveness, flexibility, and 

comparative analysis of the algorithms are given with prevailing methods. 

Keywords: Neutrosophic set; multipolar neutrosophic set; neutrosophic soft set; multipolar 

neutrosophic soft set 

 

1. Introduction 

Uncertainty plays a dynamic role in many areas of life (such as modeling, medicine, engineering, 

etc.). However, people have raised a general question: how do we express and use the concept of 

uncertainty in mathematical modeling. Many researchers have proposed and recommended different 

methods of using uncertainty theory. First of all, Zadeh proposed the concept of fuzzy sets [1] to solve 

those problems that contain uncertainty and ambiguity. It can be seen that in some cases, fuzzy sets 

cannot handle the situation. To overcome such situations, Turksen [2] proposed the idea of interval-

valued fuzzy sets (IVFS). In some cases, we must consider the appropriate representation of the object 

under the conditions of uncertainty and uncertainty and regard its unbiased value as the fair value 

of the proper representation of the object, which these fuzzy sets or IVFS cannot process. To overcome 
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these difficulties, Atanassov proposed the Intuitionistic Fuzzy Set (IFS) [3]. The theory proposed by 

Atanassov only deals with insufficient data considerations and membership and non-member values. 

However, the IFS theory cannot deal with overall incompatibility and imprecise information. To solve 

such incompatible and inaccurate records, Smarandache [4] proposed the idea of the neutrosophic 

set (NS).  

A general mathematical tool was proposed by Molodtsov [5] to deal with indeterminate, fuzzy, 

and not clearly defined substances known as a soft set (SS). Maji et al. [6] extended the work on SS 

and described some operations and properties. They also used the SS theory for decision-making [7]. 

Ali et al. [8] revised the Maji approach to SS and developed new operations with their properties. De 

Morgan’s Law on SS theory was proved [9] by using different operators. Cagman and Enginoglu [10] 

developed the concept of soft matrices with operations and discussed their properties. They also 

introduced a decision-making method to resolve those problems which contain uncertainty and 

revised the operations proposed by Molodtsov’s SS [11]. In [12], the author’s planned some new 

operations on soft matrices like soft difference product, soft restricted difference product, soft 

extended difference product, and soft weak-extended difference product with their properties. 

Maji [13] offered the idea of a neutrosophic soft set (NSS) with necessary operations and 

properties. The concept of the possibility NSS was developed by Karaaslan [14] and introduced a 

neutrosophic soft decision-making method to solve those problems that contain uncertainty based 

on And-product. Broumi [15] developed the generalized NSS with some operations and properties 

and used the proposed decision-making concept. To solve MCDM problems with single-valued 

Neutrosophic numbers (SVNNs) presented by Deli and Subas in [16], they constructed the concept 

of cut sets of SVNNs. Based on the correlation of IFS, the term CC of SVNSs [17] was introduced. In 

[18], simplified NSs introduced with some operational laws and aggregation operators such as 

weighted arithmetic and weighted geometric average operators. They constructed an MCDM method 

on the base of proposed aggregation operators. Masooma et al. [19] progressed a new concept by 

combining the multipolar fuzzy set and neutrosophic set, known as the multipolar neutrosophic set. 

They also established various characterization and operations with examples. 

Zulqarnain et al. [20-21] proposed the Einstein weighted ordered average and geometric 

operators for PFSSs. Zulqarnain et al. [22] introduced operational laws for Pythagorean fuzzy soft 

numbers (PFSNs) and developed AOs utilizing defined operational laws for PFSNs. They also 

planned a DM approach to solve MADM problems with the help of presented operators. Riaz et al. 

[23] prolonged the idea of PFSSs and developed the m polar PFSSs. They also established the TOPSIS 

method under the considered hybrid structure and proposed a DM methodology to solve the 

MCGDM problem. Siddique et al. [24] introduced the score matrix for PFSS and established a DM 

approach using their developed concept. Zulqarnain et al. [25-27] planned the TOPSIS methodology 

in the PFSS environment based on the correlation coefficient. They also proposed some AOs and 

interaction AOs for PFSS. Basset et al. [28] applied TODIM and TOPSIS methods under the best-worst 

approach to raising the overall efficiency of rating beneath uncertainty according to the NS. They also 

utilized plithogenic set theory to resolve the unsure info and assess the overall commercial enterprise 

world premiere of manufacturing industries. They utilized the AHP approach to come across the 

weight vector of your business enterprise concentrations to gain that destination afterward; they had 

to use VIKOR and TOPSIS methods to utilize the firm's ranking [29].  

The authors established the probability multi-valued neutrosophic set by combining the multi-

valued neutrosophic set and probability distribution to solve decision-making issues [30]. Kamal et 

al. [31] proposed the idea of mPNSS with some significant operations and properties. They also used 

the developed technique for decision-making. Saeed et al. [32] established the concept of mPNSS with 

its properties and operators. They also developed the distance-based similarity measures and used 

the proposed similarity measures for decision-making and medical diagnoses. In [33], the authors 

established the concept of mPNSS with its properties and operators. They also developed the 
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distance-based similarity measures and used the proposed similarity measures for decision-making 

and medical diagnoses. Zulqarnain et al. [34-35] offered the generalized neutrosophic TOPSIS and an 

integrated model for neutrosophic TOPSIS. They used their developed techniques for supplier 

selection and MCDM problems. 

In this epoch, experts consider that real life will be moving toward multi-polarization. Thus, 

there is no doubt that the multi-polarization of information must have managed to succeed in the 

prosperity of many science and engineering science fields. In information technology, multi-polar 

technology can be utilized to manipulate several structures. The motivation for expanding and 

mixing this research work is gradually given in the entire manuscript. We demonstrate that under 

any appropriate circumstances, different hybrid structures containing fuzzy sets will be converted 

into the unique privilege of GmPNSS. The multipolar neutrosophic environment is novel to the 

concept of neutrosophic soft sets of multipolar values. We discuss the effectiveness, flexibility, 

quality, and advantages of planning work and algorithms. This research will be the most versatile 

form and will integrate data with appropriate medicine, engineering, artificial intelligence, 

agriculture, and other daily complications. Current work may apply to other methods and different 

types of hybrid structures in the future. 

The following research is organized: In section 2, we recollected some basic definitions used in 

the subsequent sequel, such as NS, SS, NSS, and multipolar neutrosophic set. In section 3, we propose 

the GmPNSS with its properties and operations. Section 4 establishes two different types of similarity 

measures such as cosine and set-theoretic similarity with their decision-making approaches and 

graphically representation. We also introduce some operational laws and mPNSWA operators with 

its decision-making technique based on GmPNSS. Section 5 uses the developed similarity measures 

and mPNSWA operator for decision-making. A brief comparative analysis has been conducted 

between proposed methods with existing methodologies in section 6. Finally, the conclusion and 

future directions are presented in section 7. 

2. Preliminaries  

In this section, we recollect some basic concepts such as the neutrosophic set, soft set, 

neutrosophic soft set, and m-polar neutrosophic soft set used in the following sequel. 

Definition 2.1 [4] 

Let 𝒰 be a universe, and 𝒜 be an NS on 𝒰 is defined as 𝒜 = {< 𝑢,𝓊𝒜(𝑢), 𝓋𝒜(𝑢),𝓌𝒜(𝑢) > : 𝑢 ∈

𝒰}, where 𝓊, 𝓋, 𝓌: 𝒰 → ]0−, 1+[ and 0− ≤ 𝓊𝒜(𝑢) + 𝓋𝒜(𝑢) + 𝓌𝒜(𝑢) ≤ 3+. 

Definition 2.2 [5] 

Let 𝒰 be the universal set and ℰ be the set of attributes concerning 𝒰. Let 𝒫(𝒰) be the power set 

of 𝒰 and 𝒜 ⊆ ℰ. A pair (ℱ,𝒜) is called a soft set over 𝒰, and its mapping is given as 

ℱ:𝒜 → 𝒫(𝒰) 

It is also defined as: 

(ℱ,𝒜) = {ℱ(ℯ) ∈ 𝒫(𝒰): ℯ ∈ ℰ, ℱ(ℯ) =  ∅ 𝑖𝑓 ℯ ≠ 𝒜} 

Definition 2.3 [13] 

Let 𝒰  be the universal set and ℰ  be the set of attributes concerning 𝒰 . Let 𝒫(𝒰)  be the 

Neutrosophic values of 𝒰 and 𝒜 ⊆ ℰ. A pair (ℱ,𝒜) is called a Neutrosophic soft set over 𝒰 and 

its mapping is given as 

ℱ:𝒜 → 𝒫(𝒰) 

Definition 2.4 [32] 
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Let 𝓤 be a universe of discourse and 𝓔 be a set of attributes, and m-polar neutrosophic soft set 

(mPNSS) ℘𝕽 over 𝓤 defined as  

℘𝕽 = {(< 𝒆, {(𝒖,𝓾𝜶(𝒖) , 𝓿𝜶(𝒖) ,𝔀𝜶(𝒖)): 𝒖 ∈ 𝓤, 𝜶 =  𝟏, 𝟐, 𝟑, … ,𝒎}) > : 𝒆 ∈  𝓔 }, 

where 𝓾𝜶(𝒖), 𝓿𝜶(𝒖), and 𝔀𝜶(𝒖) represents the truthiness, indeterminacy, and falsity, respectively, 

𝓾𝜶(𝒖) , 𝓿𝜶(𝒖) ,𝔀𝜶(𝒖) ⊆ [𝟎, 𝟏] and 0 ≤ 𝓾𝜶(𝒖) + 𝓿𝜶(𝒖) +𝔀𝜶(𝒖) ≤ 3, for all 𝜶 = 1, 2, 3,…, 𝒎; 𝒆 

∈  𝓔  and 𝒖  ∈  𝓤. Simply an m-polar neutrosophic number (mPNSN) can be expressed as ℘  = 

{< 𝓾𝜶, 𝓿𝜶,𝔀𝜶 > }, where 0 ≤ 𝓾𝜶 +𝓿𝜶 +𝔀𝜶 ≤ 3 and 𝜶 = 1, 2, 3,…, 𝒎. 

3. Generalized Multi-Polar Neutrosophic soft Set (GmPNSS) with Operators and Properties 

In this section, we study the concept of GmPNSS and introduce some basic operations and 

their properties on GmPNSS. 

Definition 3.1 

Let 𝒰 and E are universal and set of attributes respectively, and 𝒜 ⊆ E, if there exists a mapping Φ 

such as  

Φ: 𝒜 → 𝐺𝑚𝑃𝑁𝑆𝑆𝒰  

Then (Φ, 𝒜) is called GmPNSS over 𝒰 defined as follows 

𝛶𝐾  = (Φ, 𝒜) = {(𝑢,Φ𝒜(𝑒)(𝑢)) : 𝑒 ∈ 𝐸, 𝑢 ∈ 𝒰}, where  

Φ𝒜(𝑒) = {𝑒, < 𝑢, 𝓊𝒜(𝑒)
𝛼 (𝑢), 𝓋𝒜(𝑒)

𝛼 (𝑢), 𝓌𝒜(𝑒)
𝛼 (𝑢) > : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝛼 ∈  1, 2, 3, … ,𝑚}, and 

0 ≤ 𝓊𝒜(𝑒)
𝛼 (𝑢) + 𝓋𝒜(𝑒)

𝛼 (𝑢) + 𝓌𝒜(𝑒)
𝛼 (𝑢) ≤ 3 for all 𝛼 ∈ 1, 2, 3,…, 𝑚; 𝑒 ∈ 𝐸 and 𝑢 ∈ 𝒰. 

Definition 3.2 

Let Υ𝒜  and Υ𝐵 are two GmPNSS over 𝒰, then Υ𝒜  is called a multi-polar neutrosophic soft subset 

of Υ𝐵. If  

𝓊𝒜(𝑒)
𝛼 (𝑢) ≤ 𝓊𝐵(𝑒)

𝛼 (𝑢), 𝓋𝒜(𝑒)
𝛼 (𝑢) ≤ 𝓋𝐵(𝑒)

𝛼 (𝑢) and 𝓌𝒜(𝑒)
𝛼 (𝑢) ≥ 𝓌𝐵(𝑒)

𝛼 (𝑢) 

for all 𝛼 ∈ 1, 2, 3,…, 𝑚; 𝑒 ∈ 𝐸 and 𝑢 ∈ 𝒰. 

Example 1 Assume 𝒰 = {𝑢1, 𝑢2} be a universe of discourse and 𝐸 = {𝓍1, 𝓍2, 𝓍3, 𝓍4} be a set of 

attribuites and 𝒜 = 𝐵 = {𝓍1, 𝓍2} ⊆ 𝐸. Consider ℱ𝒜  and 𝒢𝐵 ∈ G3-PNSS over 𝒰 can be represented 

as follows 

ℱ𝒜  = {
(𝓍1, {⟨𝑢1, (. 5, .2, .1), (. 3, .1, .3), (.4, .3, .8), (𝑢2, (. 2, .3, .2), (. 2, .1, .3), (. 3, .4, .6))⟩,

(𝓍2, {⟨𝑢1, (. 3, .1, .4), (0, .1, .5), (. 3, .1, .5)), (𝑢2, (. 2, .2, .5), (. 3, .1, .5), (. 4, .3, .6))〉
} 

and 

𝒢𝐵 = {
(𝓍1, {⟨𝑢1, (. 6, .4, .1), (. 4, .3, .2), (.5, .4, .5), (𝑢2, (. 3, .5, .1), (. 3, .2, .1), (. 4, .5, .4))⟩,

(𝓍2, {⟨𝑢1, (. 4, .3, .3), (0, .2, .3), (. 4, .2, .5)), (𝑢2, (. 2, .1, .3), (. 6, .3, .1), (. 5, .3, .1))〉
} 

Thus  

ℱ𝒜  ⊆ 𝒢𝐵. 

Definition 3.3 

Let Υ𝒜  and Υ𝐵 are two GmPNSS over 𝒰, then Υ𝒜  = Υ𝐵, if  

𝓊𝒜(𝑒)
𝛼 (𝑢) ≤ 𝓊𝐵(𝑒)

𝛼 (𝑢), 𝓊𝐵(𝑒)
𝛼 (𝑢) ≤ 𝓊𝒜(𝑒)

𝛼 (𝑢) 

𝓋𝒜(𝑒)
𝛼 (𝑢) ≤ 𝓋𝐵(𝑒)

𝛼 (𝑢), 𝓋𝐵(𝑒)
𝛼 (𝑢) ≤ 𝓋𝒜(𝑒)

𝛼 (𝑢) 

𝓌𝒜(𝑒)
𝛼 (𝑢) ≥ 𝓌𝐵(𝑒)

𝛼 (𝑢), 𝓌𝐵(𝑒)
𝛼 (𝑢) ≥ 𝓌𝒜(𝑒)

𝛼 (𝑢) 

for all 𝑖 ∈ 1, 2, 3,…, 𝑚; 𝑒 ∈ 𝐸 and 𝑢 ∈ 𝒰. 
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Definition 3.4 

Let ℱ𝒜  be a GmPNSS over 𝒰; then empty GmPNSS can be represented as ℱ0̌And defined as follows  

ℱ0̌ = {𝑒, < 𝑢, (0, 1, 1), (0, 1, 1), … , (0, 1, 1) > : 𝑒 ∈ 𝐸, 𝑢 ∈ 𝒰}. 

Definition 3.5 

Let ℱ𝒜  be a GmPNSS over 𝒰; then universal GmPNSS can be represented as ℱ�̌�And defined as 

follows  

ℱ�̌� = {𝑒, < 𝑢, (1, 1, 0), (1, 1, 0), … , (1, 1, 0) > : 𝑒 ∈ 𝐸, 𝑢 ∈ 𝒰}. 

Example 2 Assume 𝒰 = {𝑢1, 𝑢2} be a universe of discourse and 𝐸 = {𝓍1, 𝓍2, 𝓍3, 𝓍4} be a set of 

attributes. The tabular representation of ℱ0̌  and ℱ�̌�  given as follows in table 1 and table 2, 

respectively. 

Table 1. Tablur representation of GmPNSS ℱ0̌ 

𝓤 𝐮𝟏 𝐮𝟐 ⋯ 𝐮𝐧 

𝔁𝟏 (0, 1, 1) (0, 1, 1) ⋯ (0, 1, 1) 

𝔁𝟐 (0, 1, 1) (0, 1, 1) ⋯ (0, 1, 1) 

⋮ ⋮ ⋮ ⋮ ⋮ 

𝔁𝐧 (0, 1, 1) (0, 1, 1) ⋯ (0, 1, 1) 

 

Table 2. Tablur representation of GmPNSS ℱ�̌� 

𝓤 𝐮𝟏 𝐮𝟐 ⋯ 𝐮𝐧 

𝔁𝟏 (1, 1, 0) (1, 1, 0) ⋯ (1, 1, 0) 

𝔁𝟐 (1, 1, 0) (1, 1, 0) ⋯ (1, 1, 0) 

⋮ ⋮ ⋮ ⋱ ⋮ 

𝔁𝐧 (1, 1, 0) (1, 1, 0) ⋯ (1, 1, 0) 

Definition 3.6 

Let ℱ𝒜  be a GmPNSS over 𝒰, then the complement of GmPNSS is defined as follows 

ℱ𝒜
𝑐 (𝑒) = {< 𝑢,𝓌𝒜(𝑒)

𝛼 (𝑢), (1, 1, … , 1) − 𝓋𝒜(𝑒)
𝛼 (𝑢), 𝓊𝒜(𝑒)

𝛼 (𝑢) > : 𝑢 ∈  𝒰}, for all 𝛼 ∈ 1, 2, 3,…, 𝑚; 𝑒 ∈ 𝐸 

and 𝑢 ∈ 𝒰. 

Example 3. Assume 𝒰 = {𝑢1, 𝑢2} be a universe of discourse and 𝐸 = {𝓍1, 𝓍2, 𝓍3, 𝓍4} be a set of 

attributes and 𝒜 = {𝓍1, 𝓍2} ⊆ 𝐸. Consider ℱ𝒜  ∈ G3-PNSS over 𝒰 can be represented as follows 

ℱ𝒜  = {
(𝓍1, {⟨𝑢1, (. 6, .4, .1), (. 4, .3, .2), (.5, .6, 1), (𝑢2, (. 3, .5, .1), (. 3, .2, .1), (. 4, .5, .4))⟩,

(𝓍2, {⟨𝑢1, (. 4, .3, .3), (0, .2, .3), (. 4, .2, .5)), (𝑢2, (. 2, .1, .7), (. 6, .3, 1), (. 5, .3, .1))〉 
} 

Then, 

ℱ𝒜
𝑐 (𝑥) = {

(𝓍1, {⟨𝑢1, (. 1, .6, .6), (.2, .7, .4), (.1, .4, .5), (𝑢2, (.1, .5, .3), (. 1, .8, .3), (. 4, .5, .4))⟩,

(𝓍2, {⟨𝑢1, (. 3, .7, .4), (. 3, .8, 0), (. 5, .8, .4)), (𝑢2, (. 7, .9, .2), (1, .7, .6), (. 1, .7, .5))〉
} 

Proposition 3.7 

If ℱ𝒜  be a GmPNSS, then  
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1. (ℱ𝒜
𝑐 )𝑐 = ℱ𝒜  

2. (ℱ0̌)
𝑐 = ℱ�̌� 

3. (ℱ�̌�)
𝑐 = ℱ0̌ 

Proof 1 Let ℱ𝒜(𝑒) = {𝑒, < 𝑢, 𝓊𝒜(𝑒)
𝛼 (𝑢), 𝓋𝒜(𝑒)

𝛼 (𝑢), 𝓌𝒜(𝑒)
𝛼 (𝑢) > : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝛼 ∈  1, 2, 3, … ,𝑚}. Then 

by using definition 3.6, we get  

ℱ𝒜
𝑐 (𝑒) = {𝑒, < 𝑢, (𝓌𝒜(𝑒)

𝛼 (𝑢), (1, 1, … , 1) − 𝓋𝒜(𝑒)
𝛼 (𝑢), 𝓊𝒜(𝑒)

𝛼 (𝑢)) , > : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝛼 ∈  1, 2, 3, … ,𝑚} 

Again, by using definition 3.6 

(ℱ𝒜
𝑐 (𝑒))𝑐=

{< 𝑢, (𝓌𝒜(𝑒)
𝛼 (𝑢), (1, 1, … , 1) − ((1, 1, … , 1) − 𝓋𝒜(𝑒)

𝛼 (𝑢)) , 𝓊𝒜(𝑒)
𝛼 (𝑢))  > : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝛼 ∈  1, 2, 3, … ,𝑚}

.(ℱ𝒜
𝑐 (𝑒))𝑐= {< 𝑢, (𝓊𝒜(𝑒)

𝛼 (𝑢), 𝓋𝒜(𝑒)
𝛼 (𝑢),𝓌𝒜(𝑒)

𝛼 (𝑢))  > : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝛼 ∈  1, 2, 3, … ,𝑚}. 

(ℱ𝒜
𝑐 (𝑒))𝑐= ℱ𝒜(𝑒). 

Similarly, we can prove 2 and 3. 

Definition 3.8 

Let ℱ𝒜(𝑒) and 𝒢𝐵(𝑒) are two GmPNSS over 𝒰, then 

ℱ𝒜(𝑒) ∪ 𝒢𝐵(𝑒)= {𝑒,< 𝑢, (

𝑚𝑎𝑥{𝓊𝒜(𝑒)
𝛼 (𝑢), 𝓊𝐵(𝑒)

𝛼 (𝑢)} ,

𝑚𝑖𝑛{𝓋𝒜(𝑒)
𝛼 (𝑢), 𝓋𝐵(𝑒)

𝛼 (𝑢)} ,

𝑚𝑖𝑛{𝓌𝒜(𝑒)
𝛼 (𝑢),𝓌𝐵(𝑒)

𝛼 (𝑢)}

) > : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝛼 ∈  1, 2, 3, … ,𝑚} 

Example 4. Assume 𝒰 = {𝑢1, 𝑢2} be a universe of discourse and 𝐸 = {𝓍1, 𝓍2, 𝓍3, 𝓍4} be a set of 

attribuites and 𝒜  = 𝐵  = {𝓍1 , 𝓍2 } ⊆ 𝐸 . Consider ℱ𝒜(𝑒)  and 𝒢𝐵(𝑒)  ∈  G3-PNSS over 𝒰  can be 

represented as follows 

ℱ𝒜(𝑒) = {
(𝓍1, {⟨𝑢1, (. 5, .2, .1), (. 3, .1, .3), (.4, .3, .8), (𝑢2, (. 2, .3, .2), (. 2, .1, .3), (. 3, .4, .6))⟩,

(𝓍2, {⟨𝑢1, (. 3, .1, .4), (0, .1, .5), (. 3, .1, .5)), (𝑢2, (. 2, .2, .5), (. 3, .1, .5), (. 4, .3, .6))〉 
} 

and 

𝒢𝐵(𝑒) = {
(𝓍1, {⟨𝑢1, (. 6, .4, .1), (. 4, .3, .2), (.5, .4, .5), (𝑢2, (. 3, .5, .1), (. 3, .2, .1), (. 4, .5, .4))⟩,

(𝓍2, {⟨𝑢1, (. 4, .3, .3), (0, .2, .3), (. 4, .2, .5)), (𝑢2, (. 2, .1, .3), (. 6, .3, .1), (. 5, .3, .1))〉 
} 

Then 

ℱ𝒜(𝑒) ∪ 𝒢𝐵(𝑒)= {
(𝓍1, {⟨𝑢1, (. 6, .2, .1), (. 4, .1, .2), (. 5, .3, .5)), (𝑢2, (. 3, .3, .1), (. 3, .1, .1), (. 4, .4, .4))⟩,

(𝓍2, {⟨𝑢1, (. 4, .1, .3), (0, .1, .3), (. 4, .1, .5)), (𝑢2, (. 2, .1, .3), (. 6, .1, .1), (. 5, .3, .1))〉 
} 

Proposition 3.9 

Let ℱ𝐴, 𝒢�̌�, ℋ�̌� are GmPNSS over 𝒰. Then   

1. ℱ𝐴 ∪ ℱ𝐴 = ℱ𝐴 

2. ℱ𝐴 ∪ 𝒢�̌� = 𝒢�̌� ∪ ℱ𝐴 

3. (ℱ𝐴 ∪ 𝒢�̌�) ∪ ℋ�̌� = ℱ𝐴 ∪ (𝒢�̌�  ∪ ℋ�̌�) 

Proof 1. As we know that  

ℱ𝐴(𝑒) = {𝑒, < 𝑢, 𝓊𝐴(𝑒)
𝛼 (𝑢), 𝓋𝐴(𝑒)

𝛼 (𝑢), 𝓌𝐴(𝑒)
𝛼 (𝑢) > : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝛼 ∈  1, 2, 3,… ,𝑚} be a GmPNSS over 

𝒰. Then by using definition 3.8 
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ℱ𝐴 ∪ ℱ𝐴 = 

{
 
 

 
 

𝑒,< 𝑢,

(

 
 
𝑚𝑎𝑥{𝓊𝐴(𝑒)

𝛼 (𝑢), 𝓊𝐴(𝑒)
𝛼 (𝑢)} ,

𝑚𝑖𝑛{𝓋𝐴(𝑒)
𝛼 (𝑢), 𝓋𝐴(𝑒)

𝛼 (𝑢)} ,

𝑚𝑖𝑛{𝓌𝐴(𝑒)
𝛼 (𝑢),𝓌𝐴(𝑒)

𝛼 (𝑢)}
)

 
 
> : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝛼 ∈  1, 2, 3, … ,𝑚

}
 
 

 
 

 

ℱ𝐴 ∪ ℱ𝐴 = {𝑒, < 𝑢, 𝓊𝐴(𝑒)
𝛼 (𝑢), 𝓋𝐴(𝑒)

𝛼 (𝑢), 𝓌𝐴(𝑒)
𝛼 (𝑢) > : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝛼 ∈  1, 2, 3, … ,𝑚} 

ℱ𝐴 ∪ ℱ𝐴 = ℱ𝐴. 

Proof 2. As we know that  

ℱ𝐴(𝑒)  = {𝑒, < 𝑢, 𝓊𝐴(𝑒)
𝛼 (𝑢), 𝓋𝐴(𝑒)

𝛼 (𝑢), 𝓌𝐴(𝑒)
𝛼 (𝑢) > : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝛼 ∈  1, 2, 3,… ,𝑚}  and 𝒢�̌�(𝑒)  = {𝑒, <

𝑢, 𝓊�̌�(𝑒)
𝛼 (𝑢), 𝓋�̌�(𝑒)

𝛼 (𝑢), 𝓌�̌�(𝑒)
𝛼 (𝑢) > : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝛼 ∈  1, 2, 3, … ,𝑚} are two GmPNSS over 𝒰. Then  

ℱ𝐴 ∪ 𝒢�̌� = 

{
 
 

 
 

𝑒,< 𝑢,

(

 
 
𝑚𝑎𝑥{𝓊𝐴(𝑒)

𝛼 (𝑢), 𝓊�̌�(𝑒)
𝛼 (𝑢)} ,

𝑚𝑖𝑛{𝓋𝐴(𝑒)
𝛼 (𝑢), 𝓋�̌�(𝑒)

𝛼 (𝑢)} ,

𝑚𝑖𝑛{𝓌𝐴(𝑒)
𝛼 (𝑢),𝓌�̌�(𝑒)

𝛼 (𝑢)}
)

 
 
> : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝛼 ∈  1, 2, 3, … ,𝑚

}
 
 

 
 

 

ℱ𝐴 ∪ 𝒢�̌� = 

{
 
 

 
 

𝑒,< 𝑢,

(

 
 
𝑚𝑎𝑥{𝓊�̌�(𝑒)

𝛼 (𝑢), 𝓊𝐴(𝑒)
𝛼 (𝑢)} ,

𝑚𝑖𝑛{𝓋�̌�(𝑒)
𝛼 (𝑢), 𝓋𝐴(𝑒)

𝛼 (𝑢)} ,

𝑚𝑖𝑛{ 𝓌�̌�(𝑒)
𝛼 (𝑢),𝓌𝐴(𝑒)

𝛼 (𝑢)}
)

 
 
> : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝛼 ∈  1, 2, 3, … ,𝑚

}
 
 

 
 

 

ℱ𝐴 ∪ 𝒢�̌� = 𝒢�̌� ∪ ℱ𝐴 

Similarly, we can prove 3. 

Definition 3.10 

Let ℱ𝒜(𝑒) and 𝒢𝐵(𝑒) are GmPNSS over 𝒰, then 

ℱ𝒜(𝑒) ∩ 𝒢𝐵(𝑒)= {𝑒,< 𝑢, (

𝑚𝑖𝑛{𝓊𝒜(𝑒)
𝛼 (𝑢), 𝓊𝐵(𝑒)

𝛼 (𝑢)} ,

𝑚𝑎𝑥{𝓋𝒜(𝑒)
𝛼 (𝑢), 𝓋𝐵(𝑒)

𝛼 (𝑢)} ,

𝑚𝑎𝑥{𝓌𝒜(𝑒)
𝛼 (𝑢),𝓌𝐵(𝑒)

𝛼 (𝑢)}

) > : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝛼 ∈  1, 2, 3, … ,𝑚} 

Proposition 3.11 

Let ℱ𝐴, 𝒢�̌�, ℋ�̌� are GmPNSS over 𝒰. Then   

1. ℱ𝐴 ∩ ℱ𝐴 = ℱ𝐴 

2. ℱ𝐴 ∩ 𝒢�̌� = 𝒢�̌� ∩ ℱ𝐴  

3. (ℱ𝐴 ∩ 𝒢�̌�) ∩ ℋ�̌� = ℱ𝐴 ∩ (𝒢�̌�  ∩ ℋ�̌�) 

Proof Similar to proposition 3.9, by using definition 3.11, we can prove easily. 

Remark 3.12 Generally, if ℱ𝐴 ≠ ℱ0̌ and ℱ𝐴 ≠ ℱ𝐸, then the law of contradiction ℱ𝐴 ∩ ℱ𝐴
𝐶  = ℱ0̌ and 

the law of the excluded middle ℱ𝐴 ∩ ℱ𝐴
𝐶 = ℱ𝐸 does not hold in mPIVNSS. But in classical set theory 

law of contradiction and excluded middle always hold. 

Proposition 3.13 

Let ℱ𝐴 and 𝒢�̌� are GmPNSS over 𝒰, then 

1. (ℱ𝐴(𝑒) ∪ 𝒢�̌�(𝑒))
𝐶= ℱ𝐴(𝑒)

𝐶 ∩ 𝒢�̌�(𝑒)
𝐶 
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2. (ℱ𝐴(𝑒) ∩ 𝐺𝐵(𝑒))
𝐶= ℱ𝐴(𝑒)

𝐶 ∪ 𝒢�̌�(𝑒)
𝐶 

Proof 1 As we know that 

ℱ𝐴(𝑒)  = {𝑒, < 𝑢, 𝓊𝐴(𝑒)
𝛼 (𝑢), 𝓋𝐴(𝑒)

𝛼 (𝑢), 𝓌𝐴(𝑒)
𝛼 (𝑢) > : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝛼 ∈  1, 2, 3,… ,𝑚}  and 𝒢�̌�(𝑒)  = {𝑒, <

𝑢, 𝓊�̌�(𝑒)
𝛼 (𝑢), 𝓋�̌�(𝑒)

𝛼 (𝑢), 𝓌�̌�(𝑒)
𝛼 (𝑢) > : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝛼 ∈  1, 2, 3, … ,𝑚} are two GmPNSS.  

By using definition 3.8, we get 

ℱ𝐴(𝑒) ∪ 𝒢�̌�(𝑒)= 

{
 
 

 
 

𝑒,< 𝑢,

(

 
 
𝑚𝑎𝑥{𝓊𝐴(𝑒)

𝛼 (𝑢), 𝓊�̌�(𝑒)
𝛼 (𝑢)} ,

𝑚𝑖𝑛{𝓋𝐴(𝑒)
𝛼 (𝑢), 𝓋�̌�(𝑒)

𝛼 (𝑢)} ,

𝑚𝑖𝑛{𝓌𝐴(𝑒)
𝛼 (𝑢),𝓌�̌�(𝑒)

𝛼 (𝑢)}
)

 
 
> : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝛼 ∈  1, 2, 3, … ,𝑚

}
 
 

 
 

 

Now by using definition 3.6, we get 

(ℱ𝐴(𝑒) ∪ 𝒢�̌�(𝑒))
𝑐
 =  

{
 
 

 
 

(𝑒, (< 𝑢,

(

 
 

𝑚𝑖𝑛{𝓌𝐴(𝑒)
𝛼 (𝑢),𝓌�̌�(𝑒)

𝛼 (𝑢)} ,

(1,1, … ,1) − 𝑚𝑖𝑛{𝓋𝐴(𝑒)
𝛼 (𝑢), 𝓋�̌�(𝑒)

𝛼 (𝑢)},

𝑚𝑎𝑥{𝓊𝐴(𝑒)
𝛼 (𝑢), 𝓊�̌�(𝑒)

𝛼 (𝑢)}
)

 
 
 > : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝛼 ∈  1, 2, 3, … ,𝑚

}
 
 

 
 

 

Now  

ℱ𝐴(𝑒)
𝐶  = {< 𝑢, (𝓌𝐴(𝑒)

𝛼 (𝑢), (1,1, … ,1) − 𝓋𝐴(𝑒)
𝛼 (𝑢), 𝓊𝐴(𝑒)

𝛼 (𝑢)) > : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝛼 ∈  1, 2, 3, … ,𝑚} 

𝒢�̌�(𝑒)
𝐶  = {< 𝑢, (𝓌�̌�(𝑒)

𝛼 (𝑢), (1,1, … ,1) − 𝓋�̌�(𝑒)
𝛼 (𝑢), 𝓊�̌�(𝑒)

𝛼 (𝑢)) > : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝛼 ∈  1, 2, 3, … ,𝑚} 

By using definition 3.10 

ℱ𝐴(𝑒)
𝐶 ∩ 𝒢�̌�(𝑒)

𝐶=  

{
 
 

 
 

(𝑒, < 𝑢,

(

 
 

𝑚𝑖𝑛{𝓌𝐴(𝑒)
𝛼 (𝑢),𝓌�̌�(𝑒)

𝛼 (𝑢)} ,

max{(1,1,… ,1) − 𝓋𝐴(𝑒)
𝛼 (𝑢), (1,1,… ,1) − 𝓋�̌�(𝑒)

𝛼 (𝑢)} ,

 𝑚𝑎𝑥{𝓊𝐴(𝑒)
𝛼 (𝑢), 𝓊�̌�(𝑒)

𝛼 (𝑢)}
)

 
 
 > : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝛼 ∈  1, 2, 3, … ,𝑚

}
 
 

 
 

 

ℱ𝐴(𝑒)
𝐶  ∩ 𝒢�̌�(𝑒)

𝐶=  

{
 
 

 
 

(𝑒, (< 𝑢,

(

 
 

𝑚𝑖𝑛{𝓌𝐴(𝑒)
𝛼 (𝑢),𝓌�̌�(𝑒)

𝛼 (𝑢)} ,

(1,1, … ,1) − 𝑚𝑖𝑛{𝓋𝐴(𝑒)
𝛼 (𝑢), 𝓋�̌�(𝑒)

𝛼 (𝑢)},

𝑚𝑎𝑥{𝓊𝐴(𝑒)
𝛼 (𝑢), 𝓊�̌�(𝑒)

𝛼 (𝑢)}
)

 
 
> : 𝑢 ∈ 𝒰, 𝑒 ∈ 𝐸; 𝛼 ∈  1, 2, 3, … ,𝑚

}
 
 

 
 

 

Hence 

(ℱ𝐴(𝑒) ∪ 𝒢�̌�(𝑒))
𝐶= ℱ𝐴(𝑒)

𝐶  ∩ 𝒢�̌�(𝑒)
𝐶. 

Proof 2 By using definition 3.10, we have 

ℱ𝐴(𝑒) ∩ 𝒢�̌�(𝑒)= 

{
 
 

 
 

𝑒,< 𝑢,

(

 
 
𝑚𝑖𝑛{𝓊𝐴(𝑒)

𝛼 (𝑢), 𝓊�̌�(𝑒)
𝛼 (𝑢)} ,

𝑚𝑎𝑥{𝓋𝐴(𝑒)
𝛼 (𝑢), 𝓋�̌�(𝑒)

𝛼 (𝑢)} ,

𝑚𝑎𝑥{𝓌𝐴(𝑒)
𝛼 (𝑢),𝓌�̌�(𝑒)

𝛼 (𝑢)}
)

 
 
> : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝛼 ∈  1, 2, 3, … ,𝑚

}
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Now by using definition 3.6, we get 

(ℱ𝐴(𝑒) ∩ 𝒢�̌�(𝑒))
𝑐
 =  

{
 
 

 
 

(𝑒, (< 𝑢,

(

 
 

𝑚𝑎𝑥{𝓌𝐴(𝑒)
𝛼 (𝑢),𝓌�̌�(𝑒)

𝛼 (𝑢)} ,

(1,1, … ,1) − 𝑚𝑎𝑥{𝓋𝐴(𝑒)
𝛼 (𝑢), 𝓋�̌�(𝑒)

𝛼 (𝑢)},

𝑚𝑖𝑛{𝓊𝐴(𝑒)
𝛼 (𝑢), 𝓊�̌�(𝑒)

𝛼 (𝑢)}
)

 
 
 > : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝛼 ∈  1, 2, 3, … ,𝑚

}
 
 

 
 

 

Now  

ℱ𝐴(𝑒)
𝐶  = {< 𝑢, (𝓌𝐴(𝑒)

𝛼 (𝑢), (1,1, … ,1) − 𝓋𝐴(𝑒)
𝛼 (𝑢), 𝓊𝐴(𝑒)

𝛼 (𝑢)) > : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝛼 ∈  1, 2, 3, … ,𝑚} 

𝒢�̌�(𝑒)
𝐶  = {< 𝑢, (𝓌�̌�(𝑒)

𝛼 (𝑢), (1,1, … ,1) − 𝓋�̌�(𝑒)
𝛼 (𝑢), 𝓊�̌�(𝑒)

𝛼 (𝑢)) > : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝛼 ∈  1, 2, 3, … ,𝑚} 

By using definition 3.8 

ℱ𝐴(𝑒)
𝐶 ∪ 𝒢�̌�(𝑒)

𝐶=  

{
 
 

 
 

(𝑒, < 𝑢,

(

 
 

𝑚𝑎𝑥{𝓌𝐴(𝑒)
𝛼 (𝑢),𝓌�̌�(𝑒)

𝛼 (𝑢)} ,

𝑚𝑖𝑛{(1,1, … ,1) − 𝓋𝐴(𝑒)
𝛼 (𝑢), (1,1, … ,1) − 𝓋�̌�(𝑒)

𝛼 (𝑢)},

 𝑚𝑖𝑛{𝓊𝐴(𝑒)
𝛼 (𝑢), 𝓊�̌�(𝑒)

𝛼 (𝑢)}
)

 
 
 > : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝛼 ∈  1, 2, 3, … ,𝑚

}
 
 

 
 

 

ℱ𝐴(𝑒)
𝐶  ∪ 𝒢�̌�(𝑒)

𝐶=  

{
 
 

 
 

(𝑒, (< 𝑢,

(

 
 

𝑚𝑎𝑥{𝓌𝐴(𝑒)
𝛼 (𝑢),𝓌�̌�(𝑒)

𝛼 (𝑢)} ,

(1,1, … ,1) − 𝑚𝑎𝑥{𝓋𝐴(𝑒)
𝛼 (𝑢), 𝓋�̌�(𝑒)

𝛼 (𝑢)},

𝑚𝑖𝑛{𝓊𝐴(𝑒)
𝛼 (𝑢), 𝓊�̌�(𝑒)

𝛼 (𝑢)}
)

 
 
 > : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝛼 ∈  1, 2, 3, … ,𝑚

}
 
 

 
 

 

Hence 

(ℱ𝐴(𝑒) ∩ 𝐺𝐵(𝑒))
𝐶= ℱ𝐴(𝑒)

𝐶 ∪ 𝒢�̌�(𝑒)
𝐶. 

Proposition 3.14 

Let ℱ𝐴(𝑒)̌, 𝒢𝐵(𝑒)̌, ℋ𝐶(𝑒)̌ are GmPNSS over 𝒰. Then 

1. ℱ𝐴(𝑒)̌ ∪ (𝒢𝐵(𝑒)̌ ∩ ℋ𝐶(𝑒)̌) = (ℱ𝐴(𝑒)̌ ∪ 𝒢𝐵(𝑒)̌) ∩ (ℱ𝐴(𝑒)̌  ∪ ℋ𝐶(𝑒)̌) 

2. ℱ𝐴(𝑒)̌ ∩ (𝒢𝐵(𝑒)̌ ∪ ℋ𝐶(𝑒)̌) = (ℱ𝐴(𝑒)̌ ∩ 𝒢𝐵(𝑒)̌) ∪ (ℱ𝐴(𝑒)̌ ∩ ℋ�̌�(𝑒)) 

3. ℱ𝐴(𝑒)̌ ∪ (ℱ𝐴(𝑒) ∩ 𝒢𝐵(𝑒)̌) = ℱ𝐴(𝑒)̌ 

4. ℱ𝐴(𝑒)̌ ∩ (ℱ𝐴(𝑒)̌ ∪ 𝒢𝐵(𝑒)̌) = ℱ𝐴(𝑒)̌ 

Proof 1 As we know that 

𝒢𝐵(𝑒)̌ ∩ ℋ𝐶(𝑒)̌ = 

{
 
 

 
 

𝑒,< 𝑢,

(

 
 
𝑚𝑖𝑛 {𝓊

𝐵(𝑒)̌
𝛼 (𝑢), 𝓊

𝐶(𝑒)̌
𝛼 (𝑢)} ,

𝑚𝑎𝑥 {𝓋
𝐵(𝑒)̌
𝛼 (𝑢), 𝓋

𝐶(𝑒)̌
𝛼 (𝑢)} ,

𝑚𝑎𝑥 {𝓌
𝐵(𝑒)̌
𝛼 (𝑢),𝓌

𝐶(𝑒)̌
𝛼 (𝑢)}

)

 
 
 > : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝛼 ∈  1, 2, 3, … ,𝑚

}
 
 

 
 

 

ℱ𝐴(𝑒)̌ ∪ (𝒢𝐵(𝑒)̌ ∩ ℋ𝐶(𝑒)̌) =  
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{
 
 

 
 

𝑒,< 𝑢,

(

 
 
𝑚𝑎𝑥 {𝓊

𝐴(𝑒)̌
𝛼 (𝑢),𝑚𝑖𝑛 {𝓊

𝐵(𝑒)̌
𝛼 (𝑢), 𝓊

𝐶(𝑒)̌
𝛼 (𝑢)}} ,

𝑚𝑖𝑛 {𝓋
𝐴(𝑒)̌
𝛼 (𝑢),𝑚𝑎𝑥 {𝓋

𝐵(𝑒)̌
𝛼 (𝑢), 𝓋

𝐶(𝑒)̌
𝛼 (𝑢)}}

𝑚𝑖𝑛 {𝓌
𝐵(𝑒)̌
𝛼 (𝑢),𝑚𝑎𝑥 {𝓌

𝐵(𝑒)̌
𝛼 (𝑢),𝓌

𝐶(𝑒)̌
𝛼 (𝑢)}}

)

 
 
 > : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝛼 ∈  1, 2, 3, … ,𝑚

}
 
 

 
 

 

ℱ𝐴(𝑒)̌ ∪ 𝒢𝐵(𝑒)̌ = 

{
 
 

 
 

𝑒,< 𝑢,

(

 
 
𝑚𝑎𝑥 {𝓊

𝐴(𝑒)̌
𝛼 (𝑢), 𝓊

𝐵(𝑒)̌
𝛼 (𝑢)} ,

𝑚𝑖𝑛 {𝓋
𝐴(𝑒)̌
𝛼 (𝑢), 𝓋

𝐵(𝑒)̌
𝛼 (𝑢)} ,

𝑚𝑖𝑛 {𝓌
𝐴(𝑒)̌
𝛼 (𝑢),𝓌

𝐵(𝑒)̌
𝛼 (𝑢)}

)

 
 
 > : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝛼 ∈  1, 2, 3, … ,𝑚

}
 
 

 
 

 

ℱ𝐴(𝑒)̌ ∪ ℋ𝐶(𝑒)̌ = 

{
 
 

 
 

𝑒,< 𝑢,

(

 
 
𝑚𝑎𝑥 {𝓊

𝐴(𝑒)̌
𝛼 (𝑢),𝓊

𝐶(𝑒)̌
𝛼 (𝑢)} ,

𝑚𝑖𝑛 {𝓋
𝐴(𝑒)̌
𝛼 (𝑢), 𝓋

𝐶(𝑒)̌
𝛼 (𝑢)} ,

𝑚𝑖𝑛 {𝓌
𝐴(𝑒)̌
𝛼 (𝑢),𝓌

𝐶(𝑒)̌
𝛼 (𝑢)}

)

 
 
 > : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝛼 ∈  1, 2, 3, … ,𝑚

}
 
 

 
 

 

(ℱ𝐴(𝑒)̌ ∪ 𝒢𝐵(𝑒)̌) ∩ (ℱ𝐴(𝑒)̌ ∪ ℋ𝐶(𝑒)̌) = 

{
 
 

 
 

𝑒,< 𝑢,

(

 
 

𝑚𝑖𝑛 {𝑚𝑎𝑥 {𝓊𝐴(𝑒)̌
𝛼 (𝑢),𝓊𝐵(𝑒)̌

𝛼 (𝑢)} ,𝑚𝑎𝑥 {𝓊𝐴(𝑒)̌
𝛼 (𝑢),𝓊𝐶(𝑒)̌

𝛼 (𝑢)}} ,

𝑚𝑎𝑥 {𝑚𝑖𝑛 {𝓋𝐴(𝑒)̌
𝛼 (𝑢),𝓋𝐵(𝑒)̌

𝛼 (𝑢)} ,𝑚𝑖𝑛 {𝓋𝐴(𝑒)̌
𝛼 (𝑢),𝓋𝐶(𝑒)̌

𝛼 (𝑢)}} ,

𝑚𝑎𝑥 {𝑚𝑖𝑛 {𝓌𝐴(𝑒)̌
𝛼 (𝑢),𝓌𝐵(𝑒)̌

𝛼 (𝑢)} ,𝑚𝑖𝑛 {𝓌𝐴(𝑒)̌
𝛼 (𝑢),𝓌𝐶(𝑒)̌

𝛼 (𝑢)}}
)

 
 
 > : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;𝛼 ∈ 1, 2, 3, … ,𝑚

}
 
 

 
 

 

(ℱ𝐴(𝑒)̌ ∪ 𝒢𝐵(𝑒)̌) ∩ (ℱ𝐴(𝑒)̌ ∪ ℋ𝐶(𝑒)̌) = 

{
 
 

 
 

𝑒,< 𝑢,

(

 
 
𝑚𝑖𝑛 {𝓊

𝐴(𝑒)̌
𝛼 (𝑢),𝑚𝑎𝑥 {𝓊

𝐵(𝑒)̌
𝛼 (𝑢), 𝓊

𝐶(𝑒)̌
𝛼 (𝑢)}} ,

𝑚𝑎𝑥 {𝓋
𝐴(𝑒)̌
𝛼 (𝑢),𝑚𝑖𝑛 {𝓋

𝐵(𝑒)̌
𝛼 (𝑢), 𝓋

𝐶(𝑒)̌
𝛼 (𝑢)}} ,

𝑚𝑎𝑥 {𝓌
𝐴(𝑒)̌
𝛼 (𝑢),𝑚𝑖𝑛 {𝓌

𝐵(𝑒)̌
𝛼 (𝑢),𝓌

𝐶(𝑒)̌
𝛼 (𝑢)}}

)

 
 
> : 𝑢 ∈ 𝒰, 𝑒 ∈ 𝐸; 𝛼 ∈ 1, 2, 3, … ,𝑚

}
 
 

 
 

 

Hence 

ℱ𝐴(𝑒)̌ ∪ (𝒢𝐵(𝑒)̌ ∩ ℋ𝐶(𝑒)̌) = (ℱ𝐴(𝑒)̌ ∪ 𝒢𝐵(𝑒)̌) ∩ (ℱ𝐴(𝑒)̌  ∪ ℋ𝐶(𝑒)̌). 

Proof 2. As we know that 

𝒢𝐵(𝑒)̌ ∪ ℋ𝐶(𝑒)̌ = 

{
 
 

 
 

𝑒,< 𝑢,

(

 
 
𝑚𝑎𝑥 {𝓊

𝐵(𝑒)̌
𝛼 (𝑢), 𝓊

𝐶(𝑒)̌
𝛼 (𝑢)} ,

𝑚𝑖𝑛 {𝓋
𝐵(𝑒)̌
𝛼 (𝑢), 𝓋

𝐶(𝑒)̌
𝛼 (𝑢)} ,

𝑚𝑖𝑛 {𝓌
𝐵(𝑒)̌
𝛼 (𝑢),𝓌

𝐶(𝑒)̌
𝛼 (𝑢)}

)

 
 
 > : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝛼 ∈  1, 2, 3, … ,𝑚

}
 
 

 
 

 

ℱ𝐴(𝑒)̌ ∩ (𝒢𝐵(𝑒)̌ ∪ ℋ𝐶(𝑒)̌) =  

{
 
 

 
 

𝑒,< 𝑢,

(

 
 
𝑚𝑖𝑛 {𝓊

𝐴(𝑒)̌
𝛼 (𝑢),𝑚𝑎𝑥 {𝓊

𝐵(𝑒)̌
𝛼 (𝑢), 𝓊

𝐶(𝑒)̌
𝛼 (𝑢)}} ,

𝑚𝑎𝑥 {𝓋
𝐴(𝑒)̌
𝛼 (𝑢),𝑚𝑖𝑛 {𝓋

𝐵(𝑒)̌
𝛼 (𝑢), 𝓋

𝐶(𝑒)̌
𝛼 (𝑢)}} ,

𝑚𝑎𝑥 {𝓌
𝐵(𝑒)̌
𝛼 (𝑢),𝑚𝑖𝑛 {𝓌

𝐵(𝑒)̌
𝛼 (𝑢),𝓌

𝐶(𝑒)̌
𝛼 (𝑢)}}

)

 
 
>: 𝑢 ∈ 𝒰, 𝑒 ∈ 𝐸; 𝛼 ∈ 1, 2, 3, … ,𝑚

}
 
 

 
 

 

ℱ𝐴(𝑒)̌ ∩ 𝒢𝐵(𝑒)̌ = 

{
 
 

 
 

𝑒,< 𝑢,

(

 
 
𝑚𝑖𝑛 {𝓊

𝐴(𝑒)̌
𝛼 (𝑢), 𝓊

𝐵(𝑒)̌
𝛼 (𝑢)} ,

𝑚𝑎𝑥 {𝓋
𝐴(𝑒)̌
𝛼 (𝑢), 𝓋

𝐵(𝑒)̌
𝛼 (𝑢)} ,

𝑚𝑎𝑥 {𝓌
𝐴(𝑒)̌
𝛼 (𝑢),𝓌

𝐵(𝑒)̌
𝛼 (𝑢)}

)

 
 
 > : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝛼 ∈  1, 2, 3, … ,𝑚

}
 
 

 
 

 

ℱ𝐴(𝑒)̌ ∩ ℋ𝐶(𝑒)̌ = 

{
 
 

 
 

𝑒,< 𝑢,

(

 
 
𝑚𝑖𝑛 {𝓊

𝐴(𝑒)̌
𝛼 (𝑢), 𝓊

𝐶(𝑒)̌
𝛼 (𝑢)} ,

𝑚𝑎𝑥 {𝓋
𝐴(𝑒)̌
𝛼 (𝑢), 𝓋

𝐶(𝑒)̌
𝛼 (𝑢)} ,

𝑚𝑎𝑥 {𝓌
𝐴(𝑒)̌
𝛼 (𝑢),𝓌

𝐶(𝑒)̌
𝛼 (𝑢)}

)

 
 
 > : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝛼 ∈  1, 2, 3, … ,𝑚

}
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(ℱ𝐴(𝑒)̌ ∩ 𝒢𝐵(𝑒)̌) ∪ (ℱ𝐴(𝑒)̌ ∩ ℋ𝐶(𝑒)̌) = 

{
 
 

 
 

𝑒,< 𝑢,

(

 
 

𝑚𝑎𝑥 {𝑚𝑖𝑛 {𝓊𝐴(𝑒)̌
𝛼 (𝑢),𝓊𝐵(𝑒)̌

𝛼 (𝑢)} ,𝑚𝑖𝑛 {𝓊𝐴(𝑒)̌
𝛼 (𝑢),𝓊𝐶(𝑒)̌

𝛼 (𝑢)}} ,

𝑚𝑖𝑛 {𝑚𝑎𝑥 {𝓋𝐴(𝑒)̌
𝛼 (𝑢),𝓋𝐵(𝑒)̌

𝛼 (𝑢)} ,𝑚𝑎𝑥 {𝓋𝐴(𝑒)̌
𝛼 (𝑢),𝓋𝐶(𝑒)̌

𝛼 (𝑢)}} ,

𝑚𝑖𝑛 {𝑚𝑎𝑥 {𝓌𝐴(𝑒)̌
𝛼 (𝑢),𝓌𝐵(𝑒)̌

𝛼 (𝑢)} ,𝑚𝑎𝑥 {𝓌𝐴(𝑒)̌
𝛼 (𝑢),𝓌𝐶(𝑒)̌

𝛼 (𝑢)}}
)

 
 
 > : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝛼 ∈  1, 2, 3,… ,𝑚

}
 
 

 
 

 

(ℱ𝐴(𝑒)̌ ∩ 𝒢𝐵(𝑒)̌) ∪ (ℱ𝐴(𝑒)̌ ∩ ℋ𝐶(𝑒)̌) = 

{
 
 

 
 

𝑒,< 𝑢,

(

 
 
𝑚𝑎𝑥 {𝓊

𝐴(𝑒)̌
𝛼 (𝑢),𝑚𝑖𝑛 {𝓊

𝐵(𝑒)̌
𝛼 (𝑢), 𝓊

𝐶(𝑒)̌
𝛼 (𝑢)}} ,

𝑚𝑖𝑛 {𝓋
𝐴(𝑒)̌
𝛼 (𝑢),𝑚𝑎𝑥 {𝓋

𝐵(𝑒)̌
𝛼 (𝑢), 𝓋

𝐶(𝑒)̌
𝛼 (𝑢)}} ,

𝑚𝑖𝑛 {𝓌
𝐴(𝑒)̌
𝛼 (𝑢),𝑚𝑎𝑥 {𝓌

𝐵(𝑒)̌
𝛼 (𝑢),𝓌

𝐶(𝑒)̌
𝛼 (𝑢)}}

)

 
 
 > : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝛼 ∈  1, 2, 3, … ,𝑚

}
 
 

 
 

 

Hence 

ℱ𝐴(𝑒)̌ ∩ (𝒢𝐵(𝑒)̌ ∪ ℋ𝐶(𝑒)̌) = (ℱ𝐴(𝑒)̌ ∩ 𝒢𝐵(𝑒)̌) ∪ (ℱ𝐴(𝑒)̌ ∩ ℋ�̌�(𝑒)). 

Proof 3. As 

ℱ𝐴(𝑒)̌ ∩ 𝒢𝐵(𝑒)̌ = 

{
 
 

 
 

𝑒,< 𝑢,

(

 
 
𝑚𝑖𝑛 {𝓊

𝐴(𝑒)̌
𝛼 (𝑢), 𝓊

𝐵(𝑒)̌
𝛼 (𝑢)} ,

𝑚𝑎𝑥 {𝓋
𝐴(𝑒)̌
𝛼 (𝑢), 𝓋

𝐵(𝑒)̌
𝛼 (𝑢)} ,

𝑚𝑎𝑥 {𝓌
𝐴(𝑒)̌
𝛼 (𝑢),𝓌

𝐵(𝑒)̌
𝛼 (𝑢)}

)

 
 
 > : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝛼 ∈  1, 2, 3, … ,𝑚

}
 
 

 
 

 

ℱ𝐴(𝑒)̌ ∪ (ℱ𝐴(𝑒) ∩ 𝒢𝐵(𝑒)̌) =  

{
 
 

 
 

𝑒,< 𝑢,

(

 
 

𝑚𝑎𝑥 {𝓊𝐴(𝑒)̌
𝛼 (𝑢),𝑚𝑖𝑛 {𝓊𝐴(𝑒)̌

𝛼 (𝑢),𝓊𝐵(𝑒)̌
𝛼 (𝑢)}} ,

𝑚𝑖𝑛 {𝓋𝐴(𝑒)̌
𝛼 (𝑢),𝑚𝑎𝑥 {𝓋𝐴(𝑒)̌

𝛼 (𝑢),𝓋𝐵(𝑒)̌
𝛼 (𝑢)}} ,

𝑚𝑖𝑛 {𝓌𝐴(𝑒)̌
𝛼 (𝑢),𝑚𝑎𝑥 {𝓌𝐴(𝑒)̌

𝛼 (𝑢),𝓌𝐵(𝑒)̌
𝛼 (𝑢)}}

)

 
 
 > : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝛼 ∈  1, 2, 3,… ,𝑚

}
 
 

 
 

 

ℱ𝐴(𝑒)̌ ∪ (ℱ𝐴(𝑒) ∩ 𝒢𝐵(𝑒)̌) = {𝑒, < 𝑢, 𝓊𝐴(𝑒)
𝛼 (𝑢), 𝓋𝐴(𝑒)

𝛼 (𝑢), 𝓌𝐴(𝑒)
𝛼 (𝑢) > : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝛼 ∈  1, 2, 3, … ,𝑚} 

Hence  

ℱ𝐴(𝑒)̌ ∪ (ℱ𝐴(𝑒) ∩ 𝒢𝐵(𝑒)̌) = ℱ𝐴(𝑒)̌. 

Proof 4. ℱ𝐴(𝑒)̌ ∩ (ℱ𝐴(𝑒)̌ ∪ 𝒢𝐵(𝑒)̌) = ℱ𝐴(𝑒)̌ 

As 

ℱ𝐴(𝑒)̌ ∪ 𝒢𝐵(𝑒)̌ = 

{
 
 

 
 

𝑒,< 𝑢,

(

 
 
𝑚𝑎𝑥 {𝓊

𝐴(𝑒)̌
𝛼 (𝑢), 𝓊

𝐵(𝑒)̌
𝛼 (𝑢)} ,

𝑚𝑖𝑛 {𝓋
𝐴(𝑒)̌
𝛼 (𝑢), 𝓋

𝐵(𝑒)̌
𝛼 (𝑢)} ,

𝑚𝑖𝑛 {𝓌
𝐴(𝑒)̌
𝛼 (𝑢),𝓌

𝐵(𝑒)̌
𝛼 (𝑢)}

)

 
 
 > : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝛼 ∈  1, 2, 3, … ,𝑚

}
 
 

 
 

 

ℱ𝐴(𝑒)̌ ∩ (ℱ𝐴(𝑒) ∪ 𝒢𝐵(𝑒)̌) =  

{
 
 

 
 

𝑒,< 𝑢,

(

 
 

𝑚𝑖𝑛 {𝓊
𝐴(𝑒)̌
𝛼 (𝑢),𝑚𝑎𝑥 {𝓊𝐴(𝑒)̌

𝛼 (𝑢),𝓊𝐵(𝑒)̌
𝛼 (𝑢)}} ,

𝑚𝑎𝑥 {𝓋
𝐴(𝑒)̌
𝛼 (𝑢),𝑚𝑖𝑛 {𝓋𝐴(𝑒)̌

𝛼 (𝑢),𝓋𝐵(𝑒)̌
𝛼 (𝑢)}} ,

𝑚𝑎𝑥 {𝓌𝐴(𝑒)̌
𝛼 (𝑢),𝑚𝑖𝑛 {𝓌𝐴(𝑒)̌

𝛼 (𝑢),𝓌𝐵(𝑒)̌
𝛼 (𝑢)}}

)

 
 
 > : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝛼 ∈  1, 2, 3,… ,𝑚

}
 
 

 
 

 

ℱ𝐴(𝑒)̌ ∩ (ℱ𝐴(𝑒) ∪ 𝒢𝐵(𝑒)̌) = {𝑒, < 𝑢, 𝓊𝐴(𝑒)
𝛼 (𝑢), 𝓋𝐴(𝑒)

𝛼 (𝑢), 𝓌𝐴(𝑒)
𝛼 (𝑢) > : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝛼 ∈  1, 2, 3, … ,𝑚} 

Hence  

ℱ𝐴(𝑒)̌ ∩ (ℱ𝐴(𝑒) ∪ 𝒢𝐵(𝑒)̌) = ℱ𝐴(𝑒)̌. 
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Definition 3.15 

Let ℱ𝐴, 𝒢�̌� are GmPNSS, then their difference defined as follows 

ℱ𝐴 \ 𝒢�̌� = {
(< 𝑢,𝑚𝑖𝑛{𝓊𝐴(𝑒)

𝛼 (𝑢), 𝓊�̌�(𝑒)
𝛼 (𝑢)} ,𝑚𝑎𝑥{𝓋𝐴(𝑒)

𝛼 (𝑢), (1,1, … ,1) − 𝓋�̌�(𝑒)
𝛼 (𝑢)} ,

𝑚𝑎𝑥{𝓌𝐴(𝑒)
𝛼 (𝑢),𝓌�̌�(𝑒)

𝛼 (𝑢)} > : 𝑢 ∈ 𝒰; 𝛼 ∈ 1, 2, 3, … ,𝑚)
} 

Definition 3.16 

Let ℱ𝐴, 𝒢�̌� are GmPNSS, then their addition is defined as follows 

ℱ𝐴 + 𝒢�̌� = {
(< 𝑢,𝑚𝑖𝑛{𝓊𝐴(𝑒)

𝛼 (𝑢) + 𝓊�̌�(𝑒)
𝛼 (𝑢), (1,1, … ,1)} ,𝑚𝑖𝑛{𝓋𝐴(𝑒)

𝛼 (𝑢) + 𝓋�̌�(𝑒)
𝛼 (𝑢), (1,1, … ,1)} ,

𝑚𝑖𝑛{𝓌𝐴(𝑒)
𝛼 (𝑢) +𝓌�̌�(𝑒)

𝛼 (𝑢), (1,1, … ,1)} > : 𝑢 ∈ 𝒰;  𝑖 ∈  1, 2, 3, … ,𝑚)
} 

Definition 3.17 

Let ℱ𝐴 be a GmPNSS; then its scalar multiplication is represented as ℱ𝐴(𝑒).�̌�, where �̌� ∈ [0, 1] and 

defined as follows 

ℱ𝐴.�̌� = 

{(< 𝑢,𝑚𝑖𝑛{𝓊𝐴(𝑒)
𝛼 (𝑢). �̌�, (1,1, … ,1)} ,𝑚𝑖𝑛{𝓋𝐴(𝑒)

𝛼 (𝑢). �̌�, (1,1, … ,1)} ,𝑚𝑖𝑛{𝓌𝐴(𝑒)
𝛼 (𝑢). �̌�, (1,1, … ,1)} >: 𝑢 ∈ 𝒰)} 

Definition 3.18 

Let ℱ𝐴 be a GmPNSS; then its scalar division is represented as ℱ𝐴/�̌�, where �̌� ∈ [0, 1] and defined 

as follows 

ℱ𝐴/�̌� = 

{(< 𝑢,𝑚𝑖𝑛{𝓊𝐴(𝑒)
𝛼 (𝑢)/�̌�, (1,1, … ,1)} ,𝑚𝑖𝑛{𝓋𝐴(𝑒)

𝛼 (𝑢)/�̌�, (1,1, … ,1)} , 𝑚𝑖𝑛{𝓌𝐴(𝑒)
𝛼 (𝑢)/�̌�, (1,1, … ,1)} > : 𝑢 ∈ 𝒰)} 

4. Similarity Measures and Their Decision-Making Approaches 

     Many mathematicians developed various methodologies to solve MCDM problems in the past 

few years, such as aggregation operators for different hybrid structures, CC, similarity measures, and 

decision-making applications. Some operational laws and mPNSWA operator with its decision-

making approach are established for GmPNSS.  

Definition 4.1 

Let 𝓕�̌� , 𝓖�̌�  are two GmPNSS over the universe of discourse 𝓤  = {𝒖𝟏, 𝒖𝟐, … , 𝒖𝒋} , then cosine 

similarity measure between 𝓕�̌� and 𝓖�̌� defined as 

ℱ𝐴(𝑒) = {𝑒, < 𝑢, 𝓊𝐴(𝑒)
𝛼 (𝑢), 𝓋𝐴(𝑒)

𝛼 (𝑢), 𝓌𝐴(𝑒)
𝛼 (𝑢) > : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝛼 ∈  1, 2, 3,… ,𝑚} and 𝒢�̌�(𝑒) = 

{𝑒, < 𝑢, 𝓊�̌�(𝑒)
𝛼 (𝑢), 𝓋�̌�(𝑒)

𝛼 (𝑢), 𝓌�̌�(𝑒)
𝛼 (𝑢) > : 𝑢 ∈  𝒰, 𝑒 ∈ 𝐸;  𝛼 ∈  1, 2, 3, … ,𝑚} 

𝒮𝐺𝑚𝑃𝑁𝑆𝑆
1 (ℱ𝐴, 𝒢�̌�) = 

1

𝑚𝑛
∑ ∑

(( 𝓊
�̌�(𝑒)
𝛼 (𝑢))(𝓊

�̌�(𝑒)
𝛼 (𝑢))+( 𝓋

�̌�(𝑒)
𝛼 (𝑢))(𝓋

�̌�(𝑒)
𝛼 (𝑢))+( 𝓌

�̌�(𝑒)
𝛼 (𝑢))(𝓌

�̌�(𝑒)
𝛼 (𝑢)))

(√(( 𝓊
�̌�(𝑒)
𝛼 (𝑢))

2

+( 𝓋
�̌�(𝑒)
𝛼 (𝑢))

2

+( 𝓌
�̌�(𝑒)
𝛼 (𝑢))

2

)√(( 𝓊
�̌�(𝑒)
𝛼 (𝑢))

2

+( 𝓋
�̌�(𝑒)
𝛼 (𝑢))

2

+( 𝓌
�̌�(𝑒)
𝛼 (𝑢))

2

))

𝑚
𝛼=1

𝑛
𝑗=1         

Proposition 4.2  

Let ℱ�̌�, 𝒢�̌�, and ℋ�̌� ∈ GmPNSS, then the following properties hold  

1. 0 ≤ 𝒮𝐺𝑚𝑃𝑁𝑆𝑆
1 (ℱ�̌�, 𝒢

�̌�
) ≤ 1 

2. 𝒮𝐺𝑚𝑃𝑁𝑆𝑆1 (ℱ�̌�, 𝒢
�̌�
) = 𝒮𝐺𝑚𝑃𝑁𝑆𝑆

1 (𝒢
�̌�
,ℱ�̌�)  
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3. If ℱ�̌�  ⊆  𝒢
�̌�

 ⊆  ℋ�̌� , then 𝒮𝐺𝑚𝑃𝑁𝑆𝑆
1 (ℱ�̌�,ℋ�̌�)  ≤  𝒮𝑚𝑃𝑁𝑆𝑆

1 (ℱ�̌�, 𝒢�̌�)  and 𝒮𝑚𝑃𝑁𝑆𝑆
1 (ℱ�̌�,ℋ�̌�)  ≤ 

𝒮𝑚𝑃𝑁𝑆𝑆
1 (𝒢

�̌�
,ℋ�̌�). 

Proof: Using the above definition, the proof of these properties can be done quickly.  

Definition 4.3 

Let 𝓕�̌�, 𝓖�̌� are two GmPNSS over the universe of discourse 𝓤 = {𝒖𝟏, 𝒖𝟐, … , 𝒖𝒋}, then set-theoretic 

similarity measure between 𝓕�̌� and 𝓖�̌� defined as 

𝒮𝐺𝑚𝑃𝑁𝑆𝑆
2 (ℱ�̌�, 𝒢�̌�) = 

1

𝑚𝑛
∑ ∑

(( 𝓊
�̌�(𝑒)
𝛼 (𝑢))(𝓊

�̌�(𝑒)
𝛼 (𝑢))+( 𝓋

�̌�(𝑒)
𝛼 (𝑢))(𝓋

�̌�(𝑒)
𝛼 (𝑢))+( 𝓌

�̌�(𝑒)
𝛼 (𝑢))(𝓌

�̌�(𝑒)
𝛼 (𝑢)))

𝑚𝑎𝑥{(( 𝓊
�̌�(𝑒)
𝛼 (𝑢))

2

+( 𝓋
�̌�(𝑒)
𝛼 (𝑢))

2

+( 𝓌
�̌�(𝑒)
𝛼 (𝑢))

2

),(( 𝓊
�̌�(𝑒)
𝛼 (𝑢))

2

+( 𝓋
�̌�(𝑒)
𝛼 (𝑢))

2

+( 𝓌
�̌�(𝑒)
𝛼 (𝑢))

2

)}

𝑚
𝛼=1

𝑛
𝑗=1    

Proposition 4.4 

Let ℱ𝐴, 𝒢�̌�, and ℋ�̌� ∈ GmPNSS, then the following properties hold  

1. 0 ≤ 𝒮𝐺𝑚𝑃𝑁𝑆𝑆
2 (ℱ𝐴, 𝒢�̌�) ≤ 1 

2. 𝒮𝐺𝑚𝑃𝑁𝑆𝑆2 (ℱ𝐴, 𝒢�̌�) = 𝒮𝐺𝑚𝑃𝑁𝑆𝑆
2 (𝒢�̌�, ℱ𝐴)  

3. If ℱ𝐴  ⊆  𝒢�̌�  ⊆  ℋ�̌� , then 𝒮𝐺𝑚𝑃𝑁𝑆𝑆
2 (ℱ𝐴,ℋ�̌�)  ≤  𝒮𝑚𝑃𝑁𝑆𝑆

2 (ℱ𝐴, 𝒢�̌�)  and 𝒮𝑚𝑃𝑁𝑆𝑆
2 (ℱ𝐴,ℋ�̌�)  ≤ 

𝒮𝑚𝑃𝑁𝑆𝑆
2 (𝒢�̌�,ℋ�̌�). 

Proof: Using the above definition, the proof of these properties can be done quickly. 

4.5 Algorithm 1 for Similarity Measures of GmPNSS 

Step 1. Pick out the set containing parameters. 

Step 2. Construct the GmPNSS according to experts. 

Step 3. Compute the cosine similarity measure by using definition 4.1. 

Step 4. Compute the set-theoretic similarity measure for GmPNSS by utilizing definition 4.3. 

Step 5. An alternative with a maximum value with cosine similarity measure has the maximum rank 

according to considered numerical illustration. 

Step 6. An alternative with a maximum value with a set-theoretic similarity measure has the 

maximum rank according to considered numerical illustration. 

Step 7. Analyze the ranking. 

A flowchart of the presented algorithm can see in figure 1. 
Definition 4.6 

Let ℱ𝐴(𝑒) = { < 𝓊𝐴(𝑒)
𝛼 (𝑢), 𝓋𝐴(𝑒)

𝛼 (𝑢), 𝓌𝐴(𝑒)
𝛼 (𝑢) >}, 𝒢�̌�(𝑒) = {< 𝓊�̌�(𝑒)

𝛼 (𝑢), 𝓋�̌�(𝑒)
𝛼 (𝑢), 𝓌�̌�(𝑒)

𝛼 (𝑢) >}, and 

ℋ�̌�(𝑒) = {< 𝓊�̌�(𝑒)
𝛼 (𝑢), 𝓋𝐶(𝑒)

𝛼 (𝑢), 𝓌�̌�(𝑒)
𝛼 (𝑢) >} are three mPNSNs, the basic operators for mPNSNs are 

defined as when 𝛿 > 0 

1. ℱ𝐴(𝑒) ⊕ 𝒢�̌�(𝑒) = ⟨𝓊𝐴(𝑒)
𝛼 (𝑢) + 𝓊�̌�(𝑒)

𝛼 (𝑢) − 𝓊𝐴(𝑒)
𝛼 (𝑢)𝓊�̌�(𝑒)

𝛼 (𝑢), 𝓋𝐴(𝑒)
𝛼 (𝑢) ∗ 𝓋�̌�(𝑒)

𝛼 (𝑢),𝓌𝐴(𝑒)
𝛼 (𝑢) ∗

𝓌�̌�(𝑒)
𝛼 (𝑢)⟩ 

2. ℱ𝐴(𝑒) ⊗ 𝒢�̌�(𝑒) = ⟨𝓊𝐴(𝑒)
𝛼 (𝑢) ∗ 𝓊�̌�(𝑒)

𝛼 (𝑢), 𝓋𝐴(𝑒)
𝛼 (𝑢) + 𝓋�̌�(𝑒)

𝛼 (𝑢) − 𝓋𝐴(𝑒)
𝛼 (𝑢)𝓋�̌�(𝑒)

𝛼 (𝑢),𝓌𝐴(𝑒)
𝛼 (𝑢) +

𝓌�̌�(𝑒)
𝛼 (𝑢) −𝓌𝐴(𝑒)

𝛼 (𝑢)𝓌�̌�(𝑒)
𝛼 (𝑢) ⟩ 

3. 𝛿ℱ𝐴(𝑒) = ⟨1 − (1 − 𝓊𝐴(𝑒)
𝛼 (𝑢))

𝛿

, (𝓋𝐴(𝑒)
𝛼 (𝑢))

𝛿

, (𝓌𝐴(𝑒)
𝛼 (𝑢))

𝛿

⟩ 
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4. (𝓕�̌�(𝒆))
𝜹
 = ⟨(𝓾�̌�(𝒆)

𝜶 (𝒖))
𝜹

, 𝟏 − (𝟏 − 𝓿�̌�(𝒆)
𝜶 (𝒖))

𝜹

, 𝟏 − (𝟏 −𝔀�̌�(𝒆)
𝜶 (𝒖))

𝜹

⟩. 

Proposition 4.7 

Let ℱ�̌�, 𝒢
�̌�
, and ℋ�̌� ∈ mPNSNs and 𝛿, 𝛿1, 𝛿2 > 0, then the following laws hold 

1. ℱ�̌� ⊕ 𝒢�̌� = 𝒢�̌� ⊕ ℱ�̌� 

2. ℱ�̌� ⊗ 𝒢�̌� = 𝒢�̌� ⊗ ℱ�̌� 

3. 𝛿(ℱ�̌�  ⊕ 𝒢�̌�)= 𝛿𝒢�̌� ⊕ 𝛿ℱ�̌� 

4. (ℱ�̌�  ⊗ 𝒢�̌�)
𝛿
 = (ℱ�̌�)

𝛿
⊗ (𝒢�̌�)

𝛿
 

5. 𝛿1ℱ�̌�⊕𝛿2ℱ�̌�= (𝛿1⊕ 𝛿2)ℱ�̌� 

6. (ℱ�̌�)
𝛿1
⊗ (ℱ�̌�)

𝛿2
 = (ℱ�̌�)

𝛿1+𝛿2
 

7. (ℱ�̌�⊕ 𝒢�̌�) ⊕ℋ�̌� = ℱ�̌�⊕ (𝒢�̌�⊕ℋ�̌�) 

8. (ℱ�̌�⊗ 𝒢�̌�) ⊗ℋ�̌� = ℱ�̌�⊗ (𝒢�̌�⊗ℋ�̌�) 

Proof. The proof of the above laws is straightforward by using definition 4.6. 

Definition 4.8 

Let ℱ𝐴(𝑒𝑖𝑗) = ⟨{𝓊𝐴(𝑒𝑖𝑗)
𝛼 (𝑢), 𝓋𝐴(𝑒𝑖𝑗)

𝛼 (𝑢), 𝓌𝐴(𝑒𝑖𝑗)
𝛼 (𝑢)}⟩ be a collection of mPNSNs, Ω𝑖  and γ𝑗 are weight 

vector for expert’s and parameters respectively with given conditions Ω𝑖  > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, γ𝑗 > 0, 

∑ γ𝑗
𝑚
𝑗=1  = 1, where (𝑖 =  1, 2,… , 𝑛, 𝑎𝑛𝑑 𝑗 =  1, 2, … ,𝑚). Then mPIVNSWA operator defined as 

mPNSWA: ∆𝑛 → ∆ defined as follows 

𝑚𝑃𝑁𝑆𝑊𝐴 (ℱ𝐴(𝑒11), ℱ𝐴(𝑒12), … , ℱ𝐴(𝑒𝑛𝑘)) = ⊕𝑗=1
𝑘 γ𝑗(⊕𝑖=1

𝑛 Ω𝑖ℱ𝐴(𝑒𝑖𝑗) ).              

Proposition 4.9  

Let  ℱ𝐴(𝑒𝑖𝑗)  = ⟨{𝓊𝐴(𝑒𝑖𝑗)
𝛼 (𝑢), 𝓋𝐴(𝑒𝑖𝑗)

𝛼 (𝑢), 𝓌𝐴(𝑒𝑖𝑗)
𝛼 (𝑢)}⟩  be a collection of mPNSNs, where (𝑖 =

 1, 2, … , 𝑛, 𝑎𝑛𝑑 𝑗 =  1, 2, … , 𝑘), the aggregated value is also an mPNSNs, such as 

𝑚𝑃𝑁𝑆𝑊𝐴 (ℱ𝐴(𝑒11), ℱ𝐴(𝑒12), … , ℱ𝐴(𝑒𝑛𝑘))  

= ⟨𝟏 − ∏ (∏ (𝟏 − 𝓾�̌�(𝒆𝒊𝒋)
𝜶 (𝒖))

Ω𝒊
𝒏
𝒊=𝟏 )

𝛄𝒋
𝒎
𝒋= , 𝟏 − (𝟏 − ∏ (∏ (𝟏 − 𝓿�̌�(𝒆𝒊𝒋)

𝜶 (𝒖))
Ω𝒊

𝒏
𝒊=𝟏 )

𝛄𝒋
𝒎
𝒋=𝟏 ) , 𝟏 −

(𝟏 − ∏ (∏ (𝟏 −𝔀�̌�(𝒆𝒊𝒋)
𝜶 (𝒖))

Ω𝒊
𝒏
𝒊=𝟏 )

𝛄𝒋
𝒎
𝒋=𝟏 )⟩ 

Proof. We can prove easily by using IFSWA [32]. 

Definition 4.10 

Let ℱ𝐴(𝑒)  = { < 𝓊𝐴(𝑒)
𝛼 (𝑢), 𝓋𝐴(𝑒)

𝛼 (𝑢), 𝓌𝐴(𝑒)
𝛼 (𝑢) >}  be an mPNSN, then the score, accuracy, and 

certainty functions for GmPNSN respectively defined as follows 

𝕊(ℱ𝐴) = 
1

6𝑚
∑ (6 + 𝓊𝐴(𝑒)

𝛼 (𝑢) − 𝓋𝐴(𝑒)
𝛼 (𝑢) −𝓌𝐴(𝑒)

𝛼 (𝑢))𝑚
𝛼=1   

𝔸(ℱ𝐴) = 
1

4𝑚
(4 + 𝓊𝐴(𝑒)

𝛼 (𝑢) −𝓌𝐴(𝑒)
𝛼 (𝑢))  

ℂ(ℱ𝐴) = 
1

2𝑚
(2 + 𝓊𝐴(𝑒)

𝛼 (𝑢)) 

where 𝛼 = 1, 2,⋯, 𝑚. 

Definition 4.11 
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Let ℱ�̌�, 𝒢�̌� ∈ mPIVNSS, then comparison approach is present as follows 

1. If 𝕊(ℱ�̌�) > 𝕊(𝒢�̌�), then ℱ�̌� is superior to 𝒢�̌�. 

2. If 𝕊(ℱ�̌�) = 𝕊(𝒢�̌�) and 𝔸(ℱ�̌�) > 𝔸(𝒢�̌�), then ℱ�̌� is superior to 𝒢�̌�. 

3. If 𝕊(ℱ�̌�) = 𝕊(𝒢�̌�), 𝔸(ℱ�̌�) = 𝔸(𝒢�̌�), and ℂ(ℱ�̌�) > ℂ(℘ℜ1), then ℱ�̌� is superior to 𝒢�̌�. 

4. If 𝕊(ℱ�̌�) = 𝕊(𝒢�̌�), 𝔸(ℱ�̌�) > 𝔸(𝒢�̌�), and ℂ(ℱ�̌�) = ℂ(℘ℜ1), then ℱ�̌� is indifferent to 𝒢�̌�, can 

be denoted as ℱ�̌�~𝒢�̌�. 

4.2 Decision-making approach based 𝐦𝐏𝐍𝐒𝐖𝐀 for GmPNSS 

Assume a set of “𝑠” alternatives such as 𝛽 = {𝛽1, 𝛽2, 𝛽3, … , 𝛽𝑠} for assessment under the team 

of experts such as 𝒰  = {𝓊1, 𝓊2, 𝓊3, … , 𝓊𝑛}  with weights Ω  = (Ω1, Ω1, … , Ω𝑛)
𝑇  such that Ω𝑖  >  0, 

∑ Ω𝑖
𝑛
𝑖=1  = 1. Let ℰ  = {𝑒1, 𝑒2, … , 𝑒𝑚} be a set of attributes with weights γ = (γ1, γ2, γ3, … , γ𝑚)

𝑇  be a 

weight vector for parameters such as γ𝑗 > 0, ∑ γ𝑗
𝑚
𝑗=1  = 1. The team of experts {𝓊𝑖 : 𝑖 = 1, 2,…, 𝑛} 

evaluate the alternatives {𝛽(𝑧): 𝑧 = 1, 2, …, 𝑠} under the considered parameters {e𝑗: 𝑗 = 1, 2, …, 𝑚} 

given in the form of mPIVNSNs ℒ𝑖𝑗
(𝑧)

 = (𝓊𝛼𝑖𝑗
(𝑧)
, 𝓋𝛼𝑖𝑗

(𝑧)
,𝓌𝛼𝑖𝑗

(𝑧)
), where 0 ≤ 𝓊𝛼𝑖𝑗

(𝑧)
, 𝓋𝛼𝑖𝑗

(𝑧)
,𝓌𝛼𝑖𝑗

(𝑧)
 ≤ 1 and 0 ≤

𝓊𝛼𝑖𝑗
(𝑧) , +𝓋𝛼𝑖𝑗

(𝑧) +𝓌𝛼𝑖𝑗

(𝑧)
 ≤ 3. So ∆𝑘 = (𝓊𝛼𝑖𝑗

(𝑧)
, 𝓋𝛼𝑖𝑗

(𝑧)
,𝓌𝛼𝑖𝑗

(𝑧)
) for all 𝑖, 𝑗. Experts give their preferences for each 

alternative in terms of mPNSNs by using the mPNSWA operator in the form of ∆𝑘  = 

(𝓊𝛼𝑖𝑗
(𝑧)
, 𝓋𝛼𝑖𝑗

(𝑧)
,𝓌𝛼𝑖𝑗

(𝑧)
). Compute the score values for each alternative and analyze the ranking of the 

alternatives, the algorithm of the proposed approach is presented in Figure: 1. 

4.2.1 Algorithm 2 for mPNSWA Operator 

Step 1. Develop the m-polar neutrosophic soft matrix for each alternative. 

Step 2. Aggregate the mPNSNs for each alternative into a collective decision matrix ∆𝑘 by using the 

mPNSWA operator. 

Step 3. Compute the score value for each alternative ∆𝑘 by using equation 14, where 𝑘 = 1,2,⋯ , 𝑠. 

Step 4. Rank the alternatives 𝛽(𝑘) and choose the best alternative. 

Step 5. End. 
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5. Application of Similarity Measures and mPNSWA Operator in Decision Making 

In this section, we proposed the algorithm for GmPNSS by using developed similarity measures 

and the mPNSWA operator. We also used the proposed methods for decision-making in real-life 

problems. 

5.1. Problem Formulation and Application of GmPNSS For Decision Making 

A construction company calls for the appointment of a civil engineer to supervise the workers. 

Several engineers apply for the civil engineer post, simply four engineers call for an interview based 

on experience for undervaluation such as 𝑆 = {𝑆1, 𝑆2, 𝑆3, 𝑆4} be a set of selected engineers call for 

the interview. The managing director of the hires a committee of four experts 𝑋 = {𝑋1, 𝑋2, 𝑋3, 𝑋4} 

for the selection of civil engineer. First of all, the committee decides the set of parameters such as 𝐸 

= {𝓍1 , 𝓍2 , 𝓍3 }, where 𝓍1 , 𝓍2 , and 𝓍3  represents the personality, communication skills, and 

qualifications for the selection of civil engineer. The experts evaluate the applicants under defined 

parameters and forward the evaluation performa to the company's managing director. Finally, the 

director scrutinizes the best applicant based on the expert’s evaluation report. 

5.1.1. Application of GmPNSS For Decision Making 

Assume 𝑆 = {𝑆1, 𝑆2, 𝑆3, 𝑆4} be a set of civil engineers who are shortlisted for interview and  𝐸 

= {𝓍1 = personality, 𝓍2 = communication skills, 𝓍3 = qualification} be a set of parameters for the 

selection of civil engineer. Let ℱ and 𝒢 ⊆ 𝐸; then we construct the G3-PNSS Φℱ(𝓍) according to the 

requirement of the construction company such as follows 

Table 3. Construction of G3-PNSS of all Applicants According to Company Requirement 

𝚽𝓕(𝔁) 𝔁𝟏 𝔁𝟐 𝔁𝟑 

𝐗𝟏 (.8,.5,.6),(.5,.4,.2),(.4,.3,.6) (.4,.8,.6),(.7,.6,.5),(.4,.1,.3) (.7,.8,.5),(.8,.4,.7),(.6,.5,.2) 

𝐗𝟐 (.5,.6,.5),(.9,.5,.8),(.6,.4,.5) (.7,.5,.8),(.7,.5,.7),(.3,.5,.9) (.6,.4,.9),(.2,.5,.2),(.9,.4,.6) 

𝐗𝟑 (.2,.5,.4),(.7,.3,.2),(.6,.4,.5) (.3,.5,.7),(.4,.6,.2),(.6,.7,.9) (.5,.2,.4),(.7,.5,.9),(.6,.3,.4) 
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𝐗𝟒 (.9,.5,.1),(.3,.4,.6),(.6,.5,.2) (.9,.5,.6),(.3,.4,.3),(.6,.3,.9) (.9,.5,.7),(.7,.4,.3),(.4,.7,.6) 

Now we will construct the G3-PNSS  φ𝒢
𝑡  according to four experts, where 𝑡 = 1, 2, 3, 4. 

Table 4. G3-PNSS Evaluation Report According to Experts of 𝑆1 

𝛗𝓖
𝟏  𝔁𝟏 𝔁𝟐 𝔁𝟑 

𝐗𝟏 (.3,.5,.2),(.8,.7,.3),(.7,.2,.9) (.9,.5,.1),(.3,.4,.6),(.1,.5,.2) (.9,.5,.1),(.7,.4,.3),(.6,.7,.2) 

𝐗𝟐 (.7,.8,.3),(.6,.1,.2),(.2,.4,.6) (.9,.5,.6),(.7,.2,.3),(.4,.7,.6) (.7,.2,.4),(.3,.9,.7),(.5,.9,.1) 

𝐗𝟑 (.7,.3,.2),(.2,.1,.2),(.7,.9,.8) (.7,.2,.1),(.7,.4,.5),(.1,.7,.9) (.7,.8,.6),(.7,.2,.5),(.7,.3,.2) 

𝐗𝟒 (.3,.2,.7),(.5,.6,.2),(.4,.6,.8) (.7,.2,.6),(.7,.4,.9),(.8,.6,.9) (.2,.9,.6),(.7,.4,.2),(.7,.7,.9) 

Table 5. G3-PNSS Evaluation Report According to Experts of 𝑆2 

𝛗𝓖
𝟐  𝔁𝟏 𝔁𝟐 𝔁𝟑 

𝐗𝟏 (.6,.2,.7),(.8,.7,.9),(.7,.5,.6) (.1,.5,.6),(.3,.4,.6),(.6,.5,.2) (.9,.5,.1),(.7,.4,.2),(.6,.3,.9) 

𝐗𝟐 (.1,.2,.4),(.1,.2,.2),(.7,.4,.9) (.3,.5,.7),(.4,.2,.3),(.4,.7,.6) (.7,.2,.4),(.3,.9,.7),(.3,.5,.1) 

𝐗𝟑 (.2,.6,.7),(.2,.7,.6),(.4,.5,.2) (.7,.2,.1),(.6,.3,.5),(.1,.7,.4) (.7,.5,.6),(.7,.2,.5),(.7,.3,.9) 

𝐗𝟒 (.8,.1,.9),(.4,.2,.6),(.2,.7,.1) (.4,.2,.6),(.7,.4,.3),(.5,.7,.9) (.2,.9,.1),(.1,.4,.2),(.4,.7,.9) 

Table 6. G3-PNSS Evaluation Report According to Experts of 𝑆3 

𝛗𝓖
𝟑  𝔁𝟏 𝔁𝟐 𝔁𝟑 

𝐗𝟏 (.7,.4,.1),(.7,.3,.1),(.7,.4,.6) (.4,.9,.6),(.7,.2,.5),(.7,.3,.2) (.7,.4,.6),(.9,.4,.3),(.1,.4,.5) 

𝐗𝟐 (.6,.2,.3),(.7,.4,.3),(.6,.2,.5) (.6,.2,.1),(.5,.4,.7),(.3,.5,.1) (.6,.2,.7),(.5,.4,.3),(.6,.4,.7) 

𝐗𝟑 (.6,.2,.1),(.6,.3,.5),(.4,.7,.9) (.2,.7,.4),(.3,.6,.2),(.5,.3,.9) (.4,.2,.6),(.7,.4,.3),(.5,.4,.9) 

𝐗𝟒 (.4,.2,.3),(.4,.1,.3),(.4,.5,.2) (.1,.6,.5),(.3,.2,.6),(.1,.5,.2) (.6,.1,.4),(.3,.7,.4),(.4,.3,.2) 

Table 7. G3-PNSS Evaluation Report According to Experts of 𝑆4 

𝛗𝓖
𝟒  𝔁𝟏 𝔁𝟐 𝔁𝟑 

𝐗𝟏 (.2,.1,.2),(.3,.5,.4),(.9,.2,.7) (.4,.8,.6),(.4,.7,.5),(.4,.5,.3) (.2,.5,.6),(.5,.6,.2),(.4,.8,.6) 

𝐗𝟐 (.1,.3,.1),(.9,.4,.6),(.3,.3,.8) (.7,.2,.6),(.7,.4,.2),(.4,.7,.9) (.5,.6,.5),(.3,.5,.8),(.6,.4,.5) 

𝐗𝟑 (.7,.2,.1),(.6,.3,.5),(.4,.5,.9) (.7,.2,.1),(.6,.3,.5),(.1,.7,.4) (.3,.5,.7),(.4,.5,.2),(.6,.3,.9) 

𝐗𝟒 (.4,.1,.7),(.9,.6,.2),(.4,.8,.1) (.6,.1,.7),(.2,.4,.7),(.4,.5,.2) (.2,.6,.4),(.3,.1,.6),(.4,.3,.2) 

5.1.2 Solution by using Algorithm 1 

     By using Tables 3-7, compute the cosine similarity measure between 𝒮𝐺𝑚𝑃𝑁𝑆𝑆
1 (Φℱ(𝓍),φ𝒢

1(𝓍)), 

𝒮𝐺𝑚𝑃𝑁𝑆𝑆
1 (Φℱ(𝓍),φ𝒢

2(𝓍)), 𝒮𝐺𝑚𝑃𝑁𝑆𝑆
1 (Φℱ(𝓍),φ𝒢

3(𝓍)), and 𝒮𝐺𝑚𝑃𝑁𝑆𝑆
1 (Φℱ(𝓍),φ𝒢

1(𝓍)) by using equation 4.1, 

such as 
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𝒮𝐺𝑚𝑃𝑁𝑆𝑆
1 ( Φℱ(𝓍) , φ𝒢

1(𝓍) ) = 
1

3×4
{

(.8)(.3)+(.5)(.5)+(.6)(.2)

√(.8)2+(.5)2+(.6)2 √(.3)2+(.5)2+(.2)2
+

(.5)(.8)+(.4)(.7)+(.2)(.3)

√(.5)2+(.4)2+(.2)2√(.8)2+(.7)2+(.3)2
+⋯+

(.4)(.7)+(.7)(.7)+(.6)(.9)

√(.4)2+(.7)2+(.6)2√(.7)2+(.7)2+(.9)2
} = 

1

12
(
28.99

34.4799
) = 0.07007. 

Similarly, we can find the cosine similarity measure between 𝒮𝐺𝑚𝑃𝑁𝑆𝑆
1 ( Φℱ(𝓍) , φ𝒢

2(𝓍) ), 

𝒮𝐺𝑚𝑃𝑁𝑆𝑆
1 (Φℱ(𝓍),φ𝒢

3(𝓍)), and 𝒮𝐺𝑚𝑃𝑁𝑆𝑆
1 (Φℱ(𝓍),φ𝒢

4(𝓍)) given as 

𝒮𝐺𝑚𝑃𝑁𝑆𝑆
1 (Φℱ(𝓍),φ𝒢

2(𝓍)) = 
1

12
(
26.32

32.3767
) = 0.06771, 𝒮𝐺𝑚𝑃𝑁𝑆𝑆

1 (Φℱ(𝓍),φ𝒢
3(𝓍)) = 

1

12
(

25.4

29.4056
) = 0.06943, and 

𝒮𝐺𝑚𝑃𝑁𝑆𝑆
1 ( Φℱ(𝓍) , φ𝒢

4(𝓍) ) = 
1

12
(

25.48

30.88764
)  = 0.06874. This shows that 𝒮𝐺𝑚𝑃𝑁𝑆𝑆

1 (Φℱ(𝓍), φ𝒢
1(𝓍)) >

𝒮𝐺𝑚𝑃𝑁𝑆𝑆
1 (Φℱ(𝓍), φ𝒢

3(𝓍)) > 𝒮𝐺𝑚𝑃𝑁𝑆𝑆
1 (Φℱ(𝓍), φ𝒢

4(𝓍))  > 𝒮𝐺𝑚𝑃𝑁𝑆𝑆
1 (Φℱ(𝓍),φ𝒢

2(𝓍)). It can be seen from this 

ranking alternative 𝛽(1) is most relevant and similar to Φℱ(𝓍). Therefore 𝛽(1) is the best alternative 

for the vacant position of associate professor, the ranking of other alternatives given as 𝛽(1) > 𝛽(3) >

𝛽(4) > 𝛽(2). 

Now we compute the set-theoretic similarity measure by using Definition 4.3 between 

𝒮𝐺𝑚𝑃𝑁𝑆𝑆
2 (Φℱ(𝓍),φ𝒢

1(𝓍)), 𝒮𝐺𝑚𝑃𝑁𝑆𝑆
2 (Φℱ(𝓍),φ𝒢

2(𝓍)), 𝒮𝐺𝑚𝑃𝑁𝑆𝑆
2 (Φℱ(𝓍),φ𝒢

3(𝓍)), and 𝒮𝐺𝑚𝑃𝑁𝑆𝑆
4 (Φℱ(𝓍),φ𝒢

1(𝓍)) 

From Tables 1-5, we can find the set-theoretic similarity measure for each alternative by using 

definition 4.3 given as 𝒮𝐺𝑚𝑃𝑁𝑆𝑆
2 (Φℱ(𝓍) , φ𝒢

1(𝓍) ) = 0.06986, 𝒮𝐺𝑚𝑃𝑁𝑆𝑆
2 (Φℱ(𝓍) , φ𝒢

2(𝓍) ) = 0.06379, 

𝒮𝐺𝑚𝑃𝑁𝑆𝑆
2 ( Φℱ(𝓍) , φ𝒢

3(𝓍) ) = 0.06157, and 𝒮𝐺𝑚𝑃𝑁𝑆𝑆
2 ( Φℱ(𝓍) , φ𝒢

4(𝓍) ) = 0.06176. This shows that 

𝒮𝑚𝑃𝑁𝑆𝑆
2 (℘ℜ(𝑒), ℘ℒ

(1)
(𝑒))  >  𝒮𝐺𝑚𝑃𝑁𝑆𝑆

2 (Φℱ(𝓍), φ𝒢
2(𝓍)) >  𝒮𝐺𝑚𝑃𝑁𝑆𝑆

2 (Φℱ(𝓍), φ𝒢
4(𝓍)) > 

𝒮𝐺𝑚𝑃𝑁𝑆𝑆
2 (Φℱ(𝓍), φ𝒢

3(𝓍)). Therefore 𝛽(1)  is the best alternative for the vacant position of associate 

professor by using set-theoretic similarity measure, the ranking of other alternatives given as 𝛽(1) >

𝛽(2) > 𝛽(4) > 𝛽(3). Graphically representation of results can be seen in Fig. 2. 

 

 

5.1.3 Solution by using Algorithm 2 

Step 1. The experts will evaluate the condition in the case of mPNSNs, and there are just four 

alternatives; parameters and a summary of their scores given in Tables 4, 5, 6, and 7. 

Step 2. Experts’ opinions on each alternative are summarized by using proposition 4.9. Therefore, we 

have  

∆1 = ⟨(. 3144, .5379, .4259), (. 1819, .3711, .4126), (.2129, .3421, .1328)⟩,  

∆2 = ⟨(. 1815, .5420, .3844), (. 3546, .5937, .2725), (.4526, .5031, .3725)⟩,  

∆3 = ⟨(. 2904, .4223, .3755), (. 3761, .5547, .4136), (.2516, .4732, .4631)⟩, and  

∆4 = ⟨(. 2713, .5445, .1756), (. 3530, .5201, .5641), (.4547, .4153, .5263)⟩. 

Step 3. Compute the Score values by using definition 4.10. 

𝕊(∆1) = .24927, 𝕊(∆2) = .24003, 𝕊(∆3) = .23421, and 𝕊(∆4) = .24073 

Step 4. Therefore, the ranking of the alternatives is as follows 𝕊(∆1) > 𝕊(∆4) > 𝕊(∆2) > 𝕊(∆3). So, 

𝛽(1)  >  𝛽(4)  > 𝛽(2)  >  𝛽(3) , hence, the alternative 𝛽(1)  is the most suitable alternative for the 

company. 
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6. Discussion and Comparative Analysis 

The following section will discuss the effectiveness, naivety, flexibility, and advantages of the 

proposed methods and algorithms. We also conducted a brief comparative analysis of suggested 

strategies and existing methods. 

6.1 Advantages, flexibility, and Superiority of Proposed Approach 

The recommended technique is practical and applicable to all forms of input data. We introduce 

two novel algorithms based on GmPNSS, and one is similarity measures, the other is mPNSWA. This 

manuscript has established two different types of similarity measures, such as cosine and set-

theoretic similarity measures. Both algorithms are practical and can provide the best results in 

MCDM problems. The recommended algorithms are simple and easy to understand, can deepen their 

understanding, and apply to many choices and metrics. All algorithms are flexible and easy to change 

to adapt to different situations, inputs, and outputs. There are subtle differences between the rankings 

of the suggested methods because different techniques have different ranking methods, so that they 

can be affordable according to their considerations. 

6.2. Results and Discussion 

Through this research and comparative analysis, we have concluded that the results obtained 

by the proposed method are more general than the existing methods. However, in the decision-

making process, compared with the current decision-making methods, it contains more information 

to deal with the uncertainty in the data. Moreover, the hybrid structure of many FSs becomes a 

particular case of mPNSS, add some suitable conditions. Among them, the information related to the 

object can be expressed more accurately and empirically, so it is a convenient tool for combining 

inaccurate and uncertain information in the decision-making process. Therefore, our proposed 

method is effective, flexible, simple, and superior to other hybrid structures of fuzzy sets. 

Table 8: Comparative analysis between some existing techniques and the proposed approach 

 Set Truthiness Indeterminacy Falsity Multi-polarity Loss of information 

Chen et al. [38] mPFS ✓ × × ✓ × 

0.07007 0.06986

0.24927

0.06771 0.06379

0.24003

0.06943
0.06157

0.23421

0.06874

0.06176

0.24073

0

0.05

0.1

0.15

0.2

0.25

0.3

Cosine Similarity Set-theoretic Similarity mPNSWA

F i g u r e  2 .  R a n k i n g  t h e  A l t e r n a t i v e s  b y  U s i n g  

P r o p o s e d  T e c h n i q u e s

β^(1) β^(2) β^(3) β^(4)
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Xu et al. [36] IFS ✓ × ✓ × × 

Zhang et al. [40] IFS ✓ × ✓ × ✓ 

Yager [43, 44] PFS ✓ × ✓ × × 

Naeem et al. [37] mPFS ✓ × ✓ ✓ × 

Zhang et al. [31] INSs ✓ ✓ ✓ × × 

Ali et al. [39] BPNSS ✓ ✓ ✓ × × 

Saeed et al. [45] mPIVNS ✓ ✓ ✓ ✓ ✓ 

Saqlain et al. [32] mPNSS ✓ ✓ ✓ ✓ × 

Proposed approach GmPNSS ✓ ✓ ✓ ✓ × 

It turns out that this is a contemporary issue. Why do we have to embody novel algorithms based 

on the proposed novel structure? Many indications compared with other existing methods; the 

recommended method may be an exception. We remember the following fact: the mixed form limits 

IFS, picture fuzzy sets, FS, fuzzy hesitation sets, NS, and other fuzzy sets and cannot provide 

complete information about the situation. But our m-polar model GmPNSS can deal with truthiness, 

indeterminacy, and falsity, so it is most suitable for MCDM. Due to the exaggerated multipolar 

neutrosophy, these three degrees are independent and provide a lot of information about alternative 

norms. Other similarity measures of available hybrid structures are converted into exceptional cases 

of GmPNSS. A comparative analysis of some already existing techniques is listed in Table 8. 

Therefore, this model has more versatility and can efficiently resolve complications than 

intuitionistic, neutrosophic, hesitant, image, and ambiguity substitution. The similarity measure 

established for GmPNSS becomes better than the existing similarity measure for MCDM. 

7. Conclusion 

This paper studies some basic concepts such as soft set, NSS, mPNSS, and GmPNSS. We 

discussed various operations with their properties and numerical examples for GmPNSS. We 

developed the idea of cosine similarity measure and set-theoretic similarity measure for GmPNSS 

with some properties in this research. We also presented the introduced multipolar neutrosophic 

weighted average operator for GmPNSS and established some operational laws for GmPNSS. The 

concept of score function, accuracy function, and certainty function is developed to compare m-polar 

neutrosophic numbers. Furthermore, decision-making approaches have been developed for 

GmPNSS based on proposed techniques. To verify the effectiveness of our developed techniques, we 

presented an illustration to solve MCDM problems. We gave a comprehensive comparative analysis 

of proposed techniques with existing methods. In the future, the concept of mPNSS will be extended 

to interval-valued mPNSS. It will solve real-life problems such as medical diagnoses, decision-

making, etc. 
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Abstract: In this paper, the authors study the new concept of NeutroAlgebra of idempotents in group rings. It 

is assumed that RG is the group ring of a group G over the ring R. R should be a commutative ring with unit 1. 

G can be a finite or an infinite order group which can be commutative or non-commutative. We obtain 

conditions under which the idempotents of the group rings ZG, ZnG, and QG form a NeutroAlgebra under the 

operations + or ×. Some collection of idempotents in these group rings form an AntiAlgebra. We propose some 

open problems which has resulted from this study.   

 

Keywords: Symmetric group; NeutroAlgebra; AntiAlgebra; group ring, NeutrosubAlgebra, Partial Algebra.  

1. Introduction 

In this paper, we study the NeutroAlgebra of idempotent elements of the group ring RG , 

where R  is a commutative ring with unit 1 ( R  can be Z  or R  or Q  or 
n

Z ; n a composite or a 

prime number) and G is a commutative or a non-commutative group of finite order. We only study 

the NeutroAlgebra of idempotent elements in the group ring under ‘+’ and ‘×’ operations inherited 

from the group ring RG. 

The study of neutrosophy was first carried out by [1]. This concept can analyze real-world 

data's uncertainty, inconsistency, and indeterminacy. The new notion of NeutroAlgebraic structures 

and AntiAlgebraic structures was first introduced in [2] in 2019. There are several interesting results 

in this direction, like NeutroAlgebra as a generalization of partial algebra [6-7], Neutro-BE-Algebra 

and Anti-BE-Algebra, Neutro-BCK Algebra introduced in [8]. [9] has analyzed NeutroAlgebras in 

the context of number systems Neutrosophic triplets as NeutroAlgebra was carried out in [11-19]. 

[20] introduces Neutrosophic quadruple vector spaces. Extended Neutrosophic triplets are 

introduced and analyzed in [21-24]. Various researchers studied other unique properties of 

Neutrosophic triplets in [25-30]. Application of Neutrosophic theory is carried out in [31- 36], has 

been extended to the study of neutrosophic vector spaces, and algebraic codes.  

This paper is organized into five sections. The first section is introductory. The second section 

presents the basic concepts needed to make this paper a self-contained one. Section three discusses 

and describes the NeutroAlgebra of idempotents in the group rings ZG and QG and the 

NeutroAlgebra of idempotents in the group ring ZnG. The final section gives the conclusions based 

on the study and suggests a few open conjectures which will be taken for future research. 

 

2. Basic Concepts  

This section gives a few essential concepts for this paper to be self-contained. First, we recall 

the concept of the group ring, then recall the definitions and describe a few properties of the 

NeutroAlgebra and AntiAlgebra by some illustrative examples. 
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Definition 2.1. Let R  be a commutative ring with unit 1 and G  be a multiplicative group. The 

group RG  of the group G  over the ring R  consists of all finite formal sums of the form 
i i

i

g (i – runs over 

a finite number) where 
i

G  and 
i

g G  satisfy the following conditions. 

i) 
1 1

n n

i i i i
i i

g g 
 

     , ;
i i

R  
i i

   for i = 1, 2, …, n; 
i

g G . 

ii) 
1

n

i i
i

g


 
 
 
  + 



 
 
 


1

n

i i
i

g  = 
1

( )
n

i i
i

 


  ,
i i

g g G ; ,
i i

R    

iii)  
 

   
   
   
 

1 1

n n

i i i i
i i

g g  = 
k k

k

m  where
k

  =   i j
and 

i
g  = 

k
m   

iv) rg gr  for all r R  and g G  

v) 
 

 
1 1

( )
n n

i i i i
i i

r r g rr g  for ,
i i

r r R , 
i

g G and 
i i

r g RG . 

 RG  is a ring with 0 R , which acts as the identity for addition. Since 1 R  and we have 1. 

G G G   and Re R G  , where e  is the identity of G . 

 

For more about grouprings and their properties refer [3].  

Example 2.1. Let 
4

Z  = {0, 1, 2, 3} be the ring of modulo integers. 2| 1G g g   be the cyclic group 

of order 2. Then the group ring 
4

Z G  = {1, 0, 2, 3, g, 2g, 3g, 1 + g, 2 + g, 3 + g, 1 + 2g, 1 + 3g, 2 + 2g, 2 + 

3g, 3 + 2g, 3 + 3g}. 

 We now proceed to recall the definition of support of   in a group ring RG where 

RG  . We denote support of   by supp   = {all group elements in   with non-zero coefficients 

from R  } and |supp  | = {number of group elements in   which has non-zero coefficient}. 

 Suppose  = 1 + 3g + 0g + 5g3 + 0g4 + 6g5 RG  where R G  and 6| 1G g g   then supp  

= {1, g, g3, g5} of the group ring RG of the group G over the ring R; which is subset of the group G 

and |supp  | = 4. 

 Now we recall the definition of NeutroAlgebra and describe this concept as in [2]. 

 A NeutroAlgebra is an algebra with at least one Neutro-operation or one Neutroaxiom 

(axiom that is true for some elements, indeterminate or false for other elements) [2]. A partial 

algebra has at the minimum one partial operation, and all axioms are classical. [6] has described 

NeutroAlgebra that are partial algebras. 

 Similarly, an AntiAlgebra is a non-empty set endowed with at least one anti operation (or 

anti operations) or at least one anti axiom. 

 We proceed to give examples of NeutroAlgebra and AntiAlgebra. 

 

Example 2.2. Let 
12

Z  be the ring of modulo integers 12. The idempotents of 
12

Z  are {4, 9} = W ; 0 

and 1 in 
12

Z  are defined as trivial idempotents of 
12

Z . 
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 The Cayley table of W is as follows under +. 

Table 1 Cayley table of {W, +} 

 

+ 4 9 

4 od od 

9 od od 

So  ,W   is an AntiAlgebra. The Cayley table of W  under  is as follows. 

Table 2 Cayley table of {W, ×} 

 

 4 9 

4 4 od 

9 od 9 

 Clearly if V = {0, 1, 9, 4} then the Cayley table of V under + is as follows. 

 

Table 3 Cayley table of {V, +} 

 

+ 0 1 4 9 

0 0 1 4 9 

1 1 od od od 

4 4 od od 1 

9 9 od 1 od 

 ,V   is a NeutroAlgebra of idempotents under +. Clearly  ,V   is a commutative semigroup of 

order 4.  

3. NeutroAlgebra of idempotents in the group ring ZG(QG)  

This section deals with NeutroAlgebra of idempotents in the group ring RG , where R  is the 

ring of integers Z  or the field of rationals Q  of characteristic zero. This section finds the 

NeutroAlgebra of idempotents in the group ring ZG  and QG , where G  is taken as a commutative 

or a non-commutative group of finite order. 

Example 3.1. Let QG  be the group ring of G  over Q where 2| 1G g g  is a cyclic group of 

order 2. A few of the idempotents of G  are 
1

(1 )
2

g    that is  

2 21
(1 2 )

4
g g     =  

1
2(1 )}

4
g   = 

1
(1 )

2
g  (using the fact 2 1)g  . 

 If 
1

(1 )
2

g QG     then  


 

  
 

2

2 1
(1 )

2
g  = 21 1 1

(1 2 ) (2 2 ) (1 )
4 4 2

g g g g       as 2 1g  . 

 Now  2| , , 1QG g Q g       . 
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 Thus, the only two non-trivial idempotents of QG  are 
1

2

g



  and 

1

2

g



 . QG  has no 

other non-trivial idempotents. For if x yg  is a nontrivial idempotent in QG  with , \{0}x y Q . 

 If x yg t   is an idempotent in QG  then 2 2( )t x yg x yg t     . This implies 

2 2 2( 2 )t x xyg y x yg t      as 2 1.g   

2 2( ) 2x y xyg x yg     

By equating the like terms. 

     2 2x y x           (1) 

and        2xy y           (2) 

Since , \{0}; 0x y Q y    so 1 .y Q   

Hence 2xy y  implies (2 1) 0x y   as 0y  .  2 1x   or  
1

2
x  . Using 

1

2
x   in equation (1) we get 

2

21 1

2 2
y

 
  

 
 so that 2 1 1

2 4
y    or 

1

2
y 


. 

 Thus, the element x yg  is an idempotent if and only if  

1

2
x y   or

1

2
x   and 1

2
y   . 

 That is 
1

(1 )
2

g    or 
1

(1 ).
2

g    

Other possibilities are 
1

2
x y    in this case 

1
(1 )

2
a g


  but   

2 21
(1 2 )

4
a g g   = 

2(1 )

4

g
  = 

(1 )
.

2

g
a


  

Hence 
1

(1 )
2

a g


   is not an idempotent of QG. So, if 
1

2
x y


   does not yield an idempotent.  

Suppose 
1

2
x


  and 

1

2
y   then 

1

2

g
b

 
 . Now 

 

2 21
1 2

4
b g g   

 
= 

1 1
2 2 1

4 2
g g          .b  

So 
1

2

g
b

 
  too is not an idempotent of QG. Thus 

1
(1 )

2
g   and 

1
(1 )

2
g    are the only 

nontrivial idempotents of QG. 

 Let 
1 1

(1 ), (1 )
2 2

V g g
 

   
 

 be the collection of all non-trivial idempotents of QG. 

 We give the Cayley table of V under +. 
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Table 4 Cayley table of {V, +}. 

 

+ 
1

(1 )
2

g  
1

(1 )
2

g  

1
(1 )

2
g  od od 

1
(1 )

2
g  od od 

 

 So, V  under + is an AntiAlgebra of idempotents in QG. (od denotes the term outerdefined). 

 Now consider V  under . The Cayley table of V  is as follows: 

 

Table 5 Cayley table of {V, ×} 

 

 
1

(1 )
2

g  
1

(1 )
2

g  

1
(1 )

2
g  

1
(1 )

2
g  od 

1
(1 )

2
g  od 

1
(1 )

2
g  

  

V  under  is a NeutroAlgebra of idempotents of G . 

 Suppose 
1 1

, ,0,1
2 2

g g
W

   
  
 

; now we find the Cayley table under +. 

Table 6 Cayley table of {W, +}. 

 

+ 1 0 
1

2

g
 

1

2

g
 

1 od 1 od od 

0 1 0 
1

2

g
 

1

2

g
 

1

2

g
 od 

1

2

g
 od od 

1

2

g
 od 

1

2

g
 od od 

  

Clearly, W  under + is a NeutroAlgebra of idempotents in QG under the + operation. 

 Consider the Cayley table under  of W  given in the following: 

 

Table 7 Cayley Table of W  under  

 

 0 1 
1

2

g
 

1

2

g
 

0 0 0 0 0 
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1 0 1 
1

2

g
 

1

2

g
 

1

2

g
 0 

1

2

g
 

1

2

g
 0 

1

2

g
 0 

1

2

g
 0 

1

2

g
 

 

Thus { , }W  is a semigroup of idempotents in QG .  

Example 3.2. Let 
3

QS  be the group ring of the symmetric group 
3

S  over the field of rationals. Here 

the Cayley table for 
3

S  is as follows. 

 
3

1 2 3
,

1 2 3
S e

  
   
  

  
1

1 2 3

1 3 2
p
 
 
 

, 
2

1 2 3

3 2 1
p
 
 
 

, 
3

1 2 3

2 1 3
p
 
 
 

, 

 
4

1 2 3

2 3 1
p
 
 
 

,  
5

1 2 3

3 1 2
p

 
 
 

 is the permutation group of degree 3.  

The Cayley table of the group S3 under composition ‘o’ of maps is as follows: 

 

Table 8. Cayley table of S3 under ‘o’. 

 

o e p1 p2 p3 p4 p5 

e e p1 p2 p3 p4 p5 

p1 p1 e p5 p4 p3 p2 

p2 p2 p4 e p5 p1 p3 

p3 p3 p5 p4 e p2 p1 

p4 p4 p2 p3 p1 p5 e 

p5 p5 p3 p1 p2 e p4 

 The nontrivial idempotents of 
2

QS  are 
1 1

1
(1 )

2
p   , 

2 2

1
(1 )

2
p   , 

3 3

1
(1 )

2
p   , 

4 4 5

1
(1 )

3
p p     and 

5 1 2 3 4 5

1
(1 )

6
p p p p p       . 

 Let 
1 2 3 4 5

{ , , , , }B       be the set of some nontrivial idempotents in QG . 

 Now we find the Cayley table of B under + in the following. 

  

Thus, B under 

Table 9. Cayley table of B under + 

 

+ 1 2 3 4 5 

1 od od od od od 

2 od od od od od 

3 od od od od od 

4 od od od od od 
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5 od od od od od 

 Thus, B under + is an AntiAlgebra of idempotents in 
3

QS . 

 Now we consider the Cayley table of B under . 

 

Table 10. Cayley table of B under ×. 

 

 1 2 3 4 5 

1 1 od od od 5 

2 od 2 od od 5 

3 od od 3 od 5 

4 od od od 4 5 

5 5 5 5 5 5 

  

Clearly, B under  is NeutroAlgebra of idempotents of 
3

QS . 

 We give yet another example of a cyclic group of composite order. Based on these 

examples, we will proceed onto prove the following results.  

Example 3.3. Let 24| 1G g g   1 be the cyclic group of order 24. Q be the field of rationals. QG be 

the group ring of G order Q. 

 The idempotents of QG are  

 12
1

1
(1 )

2
x g    

 8 16
2

1
(1 )

3
x g g    

 12 18
3

1
(1 )

4
x g g g     

 4 6 12 16 20
4

1
(1 )

6
x g g g g g       

 3 6 9 12 15 18 21
5

1
(1 )

8
x g g g g g g g         

 2 4 6 8 14 10 12 16 18 20 22
6

1
(1 )

12
x g g g g g g g g g g g             

and 2 23
7

1
(1 ... )

24
x g g g    . 

 Now let 
1 2 3 6 7

( , , ,..., , )W x x x x x  be the collection of some set of idempotents in QG . 

 We see 12
1

1
(1 )

2
y g   

  6 12 18
2

1
(1 )

4
y g g g      
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  4 3 12 16 20
3

1
(1 )

6
y g g g g g       

  3 6 9 12 15 18 21
4

1
(1 )

8
y g g g g g g g         

  2 4 6 8 10 12 14 16 18 20 22
5

1
(1 )

12
y g g g g g g g g g g g             

are also idempotents of QG . 

 Now we find the Cayley tables of W under + and . 

 Let 
1 3 4 5

{ , , , }M y y y y  be the set of some idempotents of QG we find the Cayley table of M 

also under + and  is given in Tables 14 and 15 respectively.  

 First, the Cayley table of W under + is as follows. 

 

Table 11. Cayley table of W under +. 

 

+ x1 x2 x3 x4 x5 x6 x7 

x1 od od od od od od od 

x2 od od od od od od od 

x3 od od od od od od od 

x4 od od od od od od od 

x5 od od od od od od od 

x6 od od od od od od od 

x7 od od od od od od od 

  

Clearly, the set W  of idempotents of QG  is an AntiAlgebra under + as every term is outer defined 

in W .  Now we give the table of W  under product. 

 

Table 12. Cayley table of W under ×. 

 

× x1 x2 x3 x4 x5 x6 x7 

x1 x1 x4 x3 x4 x5 x6 x7 

x2 x4 x2 x6 x4 x7 x6 x7 

x3 x3 x6 x3 x6 x5 x6 x7 

x4 x4 x4 x6 x4 x7 x6 x7 

x5 x5 x7 x5 x7 x5 x7 x7 

x6 x6 x6 x6 x6 x7 x6 x7 

x7 x7 x7 x7 x7 x7 x7 x7 

  

Clearly, W  under × is a semigroup and is not a NeutroAlgebra or AntiAlgebra. 

 If, on the other hand, x7, the whole group sum is deleted as the support of x7 is G , we will 

get for the corresponding set  7
\W x  the Cayley table under  which is as follows. 

Table 13. Cayley table W \ {x7} under ×. 
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 x1 x2 x3 x4 x5 x6 

x1 x1 x4 x3 x4 x5 x6 

x2 x4 x2 x6 x4 od x6 

x3 x3 x6 x3 x6 x5 x6 

x4 x4 x4 x6 x4 od x6 

x5 x5 od x5 od x5 od 

x6 x6 x6 x6 x6 od x6 

 Thus  7
\W x is a NeutroAlgebra of idempotents in QG . 

 The Cayley table of M under + is as follows. 

 

Table 14: Cayley table of M under + 

 

+ y1 y2 y3 y4 y5 

y1 od od od od od 

y2 od od od od od 

y3 od od od od od 

y4 od od od od od 

y5 od od od od od 

 

 Thus, M under + is an AntiAlgebra of idempotents of QG . 

 Now we find the Cayley table of M under  which is as follows. 

 

Table 15. Cayley table of M under ×. 

 

 y1 y2 y3 y4 y5 

y1 y1 od y3 od od 

y2 od y2 od od y5 

y3 y3 od y3 od od 

y4 od od od y4 od 

y6 od y5 od od y5 

  

Thus, the set M  under  is a NeutroAlgebra of idempotents.  

 

Now we proceed on to prove the following results. 

 

 Let G  be a cyclic group of order n, n a composite number. Q  be the field of rationals QG be 

the group ring of G  over Q . 

i) All proper idempotents in QG  are obtained from the proper subgroups of G . 

ii) If p1 is the order of the subgroup H  of G , then 
1

|supp | ( )p O G  and 
1

/ ( )p O G . 

iii) The idempotents  formed by the subgroups of  G  will have a |supp | ( )O G   

iv) If |supp | n  ;   QG then this idempotent for all practical situations will be 

taken as a trivial idempotent. Similarly, 1 G is an idempotent, which is trivial. 

Also, 0,1 Q  are trivial idempotents of QG . 
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 These four conditions are strictly adhered to while finding the NeutroAlgebra of 

idempotents of the group ring QG under the operations + and . 

v) When n, order of the cyclic group G is a product of odd prime then 1

1
... t

t
n p p
  

where 
i

p ’s are distinct primes; 1  i  t and 
i

   1; 1  i  t. 

vi) We see all subgroups of G  are again an odd prime or a power of a prime or the 

product of some primes less than n. 

vii) Furtherer if  1
1 ...

i
ii ip pp

i

g g
p






     is an idempotent then 

1 1
1 ...

pi i
i i

i

pp

i i

g g
p p





 
  

 
 

 in general is not an idempotent. 

 To this effect, we propose an open problem in the section on the conclusion of this paper. 

 Suppose G  is a cyclic group of order n ; then G  can have subgroups of both even and odd 

order unless | | 2nG  . 

 If | | 2nG   and if 1 ... tx h h     is an idempotent of QG  then so is 21 ... ty h h h      

where h  is a suitable power of g  is the cyclic subgroup of G . In this case x an idempotent of QG  

with support of  1, , , tx h h . 

 However, product of these two idempotents 0x y   is not a proper idempotent of QG , 

only the trivial idempotent zero. 

 

Theorem 3.1. Let G be a cyclic group of odd order; QG  be the group ring of G  over Q . 

i) QG  has only idempotents of the form 2 11
(1 ... )th h h

t
     where h G and t n , and 

2 1{1, , ,..., }th h h  is subgroup of G of order t. 

ii) If W  = {collection of nontrivial idempotents of G }, then 

a) { , }W   is an AntiAlgebra of idempotents of QG  and 

b) { , }W   is a NeutroAlgebra of idempotents of QG  

11
0,1 (1 ... )nand g g

n


  


are the trivial idempotents of QG . 

 

Proof of (i). Given G  is a cyclic group of odd order with G n  (n a non-prime). So, G  has only 

subgroups t
t

H  of odd order, say t  where /t n  ( t  can be prime or non-prime). 

 Clearly 11
(1 ... )th h

t
      is an idempotent of QG , where h  G . 
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 Now 0, 1 and 11
(1 ... )nx g g

n
    are assumed to be trivial idempotents of QG  as 

supp | |x G n  . 

 The other type of idempotents can be 2 11
(1 ... )th h h

t
      but 2  is not an idempotent 

easily verified using number theoretic or group theoretic properties. 

 2 2 2 1 2 3 1

2

1
1 ... ... 1t t th h h h h h h h

t
              



2 3 4 3 4 2 1 2... 1 ... 1 1 ...t th h h h h h h h h h                 
  

1

2

1
( 2) ( 2) ... tt t h th

t
       

 
. 

 Hence the claim. 

 

Proof of (ii). Given W is the collection of all non-trivial idempotents of QG , so 

11
(1 ... ) .ng g W

n
     ( , )W   is an AntiAlgebra. 

 For if 11
(1 ... )th h

t
     , then 12

2 (1 ... )th h W
t

      . 

 Similarly, if ( )W     we see W   . 

 So, under +, every pair is outer defined. 

 Hence ( , )W   is an AntiAlgebra. Thus (a) of (ii) is proved. ( , )W   is a NeutroAlgebra of 

idempotents of QG .  

 For if  and W   such that |supp | m  and |supp | p   such that pm n  then 

11
(1 ... )ng g

n
      which is a trivial idempotent of RG . As n pm  can be written in a different 

way we have in the Cayley table of W under  has several od(outer defined) terms. Hence (b) of (ii) 

is proved. 

 

Corollary 3.1. Let QG be as in the above theorem. If D , the trivial idempotent is taken in 

, ( , )W W   is a NeutroAlgebra of idempotents of QG . 

 

Proof. If 0 W  for every ,W  0 W    , so W  under + is a NeutroAlgebra as we have 

some elements to be defined in W . Hence the claim. 

 

Corollary 3.2. Let QG  be as in the above theorem. 

 If the trivial idempotent 11
(1 ... )ng g W

n
       that is |supp | n   then W  under 

product  is not a NeutroAlgebra is a semigroup under ×. 
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Proof. Let 11
(1 ... )tx h h

t
     and 11

(1 ... )my K K
m

     where h  and K  are powers of g and is 

in .G  ,x y W  with |supp |x t  and |supp |y m  with .mt n . 

 Thus 11
(1 ... )nxy g g

n
     as suppx  and suppy are subgroups of .G  

 Hence ( , )W  is a semigroup, so W  under  is not a NeutroAlgebra of idempotents. 

 Now we consider a cyclic group G  of even order and obtain analogous results as in 

theorem for this QG  when G  is an odd composite number. 

 

Theorem 3.2. Let G  be a cyclic group of even order say m; QG  be the group ring of G  over Q . 

i) The nontrivial idempotents of QG  are of the form 11
(1 ... )th h

t
      or 

2 1 11
(1 ... )t th h h h

t
        where h G with  11, ,..., th h   forming a proper subgroup 

of G  of order ,t t  an even value (t can be only of even order if  is to exist if t  is of odd 

order;   does not exist). 

 ii) If W  = {collection of all idempotents of the form  and  } then whenever  is given as 

in (i)  for the  given.  

a)  ,W   is a NeutroAlgebra of idempotents of QG . 

b)  ,W  is an AntiAlgebra of idempotents of QG . 

Proof.       Given proper subgroups of G say of order t ; t even, we have for 11
(1 ... )th h

t
     and 

2 2 11
(1 ... )t th h h h

t
         are non-trivial idempotents of G . 

 Taking all even ordered subgroups of G , we have a collection of idempotents of the form  

and .  If the proper subgroup of G  is odd-order say m then 11
(1 ... )mK K

m
      are the only 

idempotents of QG. 

 If W is the collection of all idempotents of the form  ,   and so on then ( , )W   is an 

AntiAlgebra as no sum is defined. 

 If on the other hand, we include the trivial idempotent 20 0 0 0 ... 0 ng g g      then we see 

W  under + is a NeutroAlgebra of idempotents of QG  as 0     for all W  . 

 Now W  under  is a NeutroAlgebra of idempotents for if  and   are two idempotents in 

W  such that |supp | K  and |supp | m   with Km n  then 11
(1 ... )ng g

n
        the trivial 

idempotent of  QG  but by definition |supp | n  , the order of the whole group. 
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 Thus, W  under  is only a NeutroAlgebra, but if we allow the whole group idempotent 

2 11
(1 ... )ng g g

n
     in W , then W  under  is not a NeutroAlgebra, in fact a semigroup. Hence 

the theorem. 

 Next, we proceed to prove the group ring 
n

QS  has some idempotents sets W  which forms 

AntiAlgebra under + and W  under  happens to be a NeutroAlgebra. 

 We work mainly for this group 
n

S  as every group G  has a subgroup H  of 
n

S , which is 

isomorphic with G  [4, 5]. 

 

Theorem 3.3. Let 
n

S  be the symmetric group of degree n  (
n

S , in particular, be a permutation on (1, 2, 3, …, 

n )) Q  be the field of rationals. 
n

QS the group ring of the group 
n

S  over Q . 
n

QS has subsets of nontrivial 

idempotents, which under , is a  NeutroAlgebra and under addition + is an AntiAlgebra of idempotents of 

QSn.  

 

Proof. Every subgroup H in 
n

S for an appropriate n there exists a group G isomorphic with H.  

Thus, if H be a cyclic group say of some order m, then 
n

G H S   for some appropriate cyclic 

subgroup of order m.  

 Now, apart from this, 
n

S  has 
2n

C  number of subgroups of order two. 

 All elements of the form 1

1
(1 ),

2
W p


 


 
1

1
(1 )

2
p , 

2

1
(1 )

2
p , 

2

1
(1 ), ,

2
p  

1
(1 )

2 n
p , 

1
(1 )

2 n n
p QS


 


are idempotents where 

i
p  ‘s are permutations in 

n
S  such that .

i i
p p   (1, 2, 3, …, n) 

the identity permutation of 
n

S .  

 { , }W  can easily be realized as an AntiAlgebra as no element under + in W  is in W . 

 Now similarly { , }W  is a NeutroAlgebra as  

(1 ) 1 0
i i

p p W     and (1 )(1 ) 1
i j i j j i

p p p p p p       and so on. 

 Thus { , }W   is only a NeutroAlgebra of idempotents from 
n

QS . 

 Hence the theorem. 

 Based on this study, we propose a few open problems in the last section of this paper. 

 

 

4. NeutroAlgebra of idempotents in the group ring ZnG 
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 Next, we study idempotents in the group ring 
n

Z G  where 
n

Z  is the ring of modulo 

integers and n  a prime or a composite number and G  a group of finite order. Thus, the group rings 

in this section are of finite order. 

 We will first illustrate this situation with some examples. 

Example 4.1. Let 
2

Z  be the field of order two 3| 1G g g   be the cyclic group of order 3. 

 
2

Z G  be the group ring of G  order 
2

Z   

 21 g g     is the only non-trivial idempotent of 
2

Z G ; for 2 2 2(1 ) 1g g g g     . 

Remark 4.1. Let p
Z  be the field of primes. G  be the cyclic group of order 1p  (or any other group which 

has subgroups of order 1)p , then p
Z G has an idempotent of the form 1 ... pg g     . 

Proof. For the group ring ;
p

Z G   1 ... pg g     is the non-trivial idempotent of p
Z G . 

 

Example 4.2. 
11

Z G  be the group ring of G over 
11

Z . G = g | g12 = 1 be a cyclic group of order 12. 

 11
11

1 ...g g Z G       is an idempotent of 
11

Z G . 

 6
11

(6 5 )g Z G    is also an idempotent of 
11

Z G . 

 6(6 6 )g   is an idempotent of 
11

Z G .  

Let  , ,W     be the 3 nontrivial idempotents of Z11G. 

 We give the Cayley table for W  under + given by Table 17 in the following. 

Table 17: Table of  ,W    

+    

 od od od 

 od od od 

 od od od 

( , )W    is an AntiAlgebra of idempotents of the group ring 
11

Z G . 

 The Cayley table of W  under  is as follows. 

Table 18: Table of   ,W   

    

  od  

 od  od 
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  od  

 Thus ( , )W   is a NeutroAlgebra of idempotents of the group ring 
11

Z G . 

Example 4.3. Let 
7

Z  be the field of prime order 7. 
8

S  be the permutation group of degree 8. 
7 8

Z S  be 

the group ring of 
8

S over
7

Z . 

 Let  1 2 7
1, , ,...,H p p p  be the cyclic group generated by  

 
1 2 3 4 5 6 7 8

8 1 2 3 4 5 6 7
p

 
  
 

  and H is of order 8. 

 Clearly 2 7
7 8

(1 ... )p p p Z S        is a nontrivial idempotent of 
7 8

Z S   

 Consider 4
7 8

4 3p Z S    , we have 2 4 2(4 3 )p    

        = 8 4(16 9 24 )p p    (using 8 1)p   

         = 4(25 24 )p   

         = 44 3p   . 

Thus,   is an idempotent of 
7 8

Z S . 

 Take  
8

1 2 3 4 8

2 1 3 4 8
g S

 
  
 

 

  2 1 2 3 4 8
;

1 2 3 4 8
g

 
  
 

 

the identity of 
8

S . Thus, we have  
8 2
C  number of such elements of order two in 

8
S . 

 Consider m = 4 3g  7 8
Z S  , we see m2 = m is an idempotent of 

7 8
Z S . In fact, we have 

8 2
C  

number of such type of idempotents in the group ring 
7 8

Z S , where 
8

g S  is such that 

2 1 2 3 4 8

1 2 3 4 8
g

 
  
 

. 

 Consider  

t = 4(1 )g 
7 8

Z S  
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2t =  2 216(1 2 )( 1)g g g    = 16(2 2 )g  = 32(1 )g = 
7 8

4(1 )g Z S   

is an idempotent of the group ring
7 8

Z S . 

 Thus, by this method also we have at least 
8 2
C  number of idempotents in 

7 8
Z S . 

 Now, if W is the collection of all idempotents of form 4(1 )g and 4 3g  for varying 
8

g S  

such that, 2
8

ofg id S . 

 We see sum of 4 4 4 3 1g g    is only a trivial idempotent. 

 4 4 4 4 1g g g       is not an idempotent of this group ring 
7 8

Z S . 

 3 4 3 4 6 1g g g      is not an idempotent of 
7 8

Z S . 

 Thus, if collectionV   of all non-trivial idempotents of the group ring 
7 8

Z S  of form 

4(1 )g and 4 3g with all 
8

g S  such that 2g is the identity element of 8
S ; then ( , )V  an 

AntiAlgebra of idempotents in 
7 8

Z S . 

 Also, we consider 4 3 4 4 16 12 16 12g g g g       = 28 28 0g  is only a trivial 

idempotent of V  and 0 .V  

 Consider 24 3 4 4 ( 1).g h h      

 We see 16 12 12 12 .g h gh V     

 Thus, V  under  is a NeutroAlgebra of idempotents of 
7 8

Z S  as 2(4 3 ) (4 3 )g g   and 

2(4 4 ) (4 4 )h h   . 

 Based on all these we have the following results. 

 

Example 4.4. Let 
11

Z  be the finite prime field of order 11. 
12

S  be the symmetric group of order 12! . 

The group ring 
11 12

Z S  has a collection W  of nontrivial idempotents from 
11 12

Z S such that W  under 

+ is an AntiAlgebra of idempotents of the group ring 
11 12

Z S and W  under  is a NeutroAlgebra of 

idempotents of the group ring. 

12
S  has 

12 2
C  number of elements of order two. That is if 
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1

1 2 3 4 12

2 1 3 4 12
g

 
  
 

 is such that 2
1

g = 
1 2 3 12

1 2 3 12

 
 
 

 

     = identity permutation.  

2

1 2 3 4 12
,

3 2 1 4 12
g

 
  
 

  
3

1 2 3 4 5 12

4 2 3 1 5 12
g

 
  
 

 

and so 
11

1 2 3 4 12

12 2 3 4 1
g

 
  
 

 

 Now 
12 0

1 2 3 12

1 3 2 12
g g

 
   

 
 identity element of 

12
S . Likewise, in W  have 

12 2
C  

number of such elements which are of order two. 

 Of course, there are other types of elements of order two also. 

 Our primary purpose is to prove the existence of some set of idempotents W  of the group 

ring 
11 12

Z S  such that ( , )W  is an AntiAlgebra of idempotents and ( , )W  is a NeutroAlgebra of 

idempotents. 

 So if we consider 6 6 ,6 5
i i

W g g   | 
i

g  is an element of order two in 
12

S  described 

above} then first we show W  is a collection of idempotents; then prove  ,W   is an AntiAlgebra 

and {W, } is a NeutroAlgebra of idempotents under . Consider 

6 6
i

x g  in W ,  
22 26 6 36 72 36

i i i
x g g g     = 272 72 ( 1)

i i
g g   6 6

i
g x   . 

 On similar lines it can be easily proved  

 
22 2(6 5 ), 6 5 36 60 25

i i i i
y g y g g g       = 61 60 6 5

i i
g g y    . 

 So, W  is the collection of idempotents. 

 Now W  under + is not even closed for any pair. So ( , )W  is an AntiAlgebra of 

idempotents. 

 Further W  under  is closed only for 2( , )x W x x   and not for any other pair. 

 So ( , }W   is a NeutroAlgebra of idempotents of the group ring 
11 12

Z S . Hence the claim. 

 However, for general group ring 1p p
Z S


 (p a prime) we suggest it as an open problem in 

section 5. 
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Example 4.3. Let 10| 1G g g   be a cyclic group of order 10 and 
10

Z be the ring of integers 

modulo 10. 
10

Z G  be the group ring of G  over 
10

Z . 

 Consider 5
10

3 2g Z G    . We see   

2 5(3 2 )g   = 59 4 12g  = 53 2g    

is an idempotent. of 
10

Z G . 

 Also 3 8g   in 
10

Z G  is such that  

2 5(3 8 )g    = 5(9 64 48 )g   =  3 8g   . 

Hence   is an idempotent. 

 Let 2 4 6 85(1 )a g g g g       
10

Z G  where a2 = a so is an idempotent of 
10

Z G . 

Take 58 2b g   10
Z G ; clearly  

2 5(8 2 )b g  564 4 32g   58 2 .g b    

Suppose we take the collection of some idempotents W in this group ring 
10

Z G ; where  

 5 5 5 2 4 6 88 2 ,3 8 ,3 2 ,5(1 )W g g g g g g g        . 

 The Cayley table of W  under + is given below. 

 

Table 19. Cayley table of W under +. 

 

+   a b 

 od od od od 

 od od od od 

a od od od od 

b od od od od 

 

The Cayley table of W  are under  is given below. 

 

Table 20. Cayley table with ×. 

 

   a b 

 od od od od 

 od  od od 

a od od a od 
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b od od od b 

 Thus, W  under  is a NeutroAlgebra of idempotents of the group ring 
10

Z G  under product 

() operation. 

 

We propose some open problems in the following section on conclusions. 

 

5. Conclusions  

In this section, we prove in general the a set of all non-trivial  idempotents W  in a group ring RG  

of a group G  over a ring R  have  ,W   to be an AntiAlgebra of idempotents under + and  ,W   

to be a NeutroAlgebra of idempotents under × for depending on R  to be a ring of rationals or 

modulo integers 
n

Z  ( n  a prime or a composite number) and G  an appropriate finite group in the 

case of 
n

Z . Several examples are provided in the earlier for easy understanding.  

 

We suggest some open problems for researchers in this direction, which will be taken by the 

authors for the future research.   

 

Problem 5.1: Let 
m

Z  be the ring of modulo integers n . 
n

S  be the permutation group of degree n .  

Given n  and m fixed integers (we can find the solution for both small m  and n ; but finding for big 

m  and n  or a general m  and n is challenging). We leave it as an open problem to find a collection 

of idempotents of the form. 

 2 2( ) / (mod )
i

W p qg p q p n    and 2 (mod )pq q n  and 
i m

g S  with 2
1

1 2 3 ...

1 2 3 ... ,

m
g

 
  

 

 

i) Further prove or disprove ( , )W  is an AntiAlgebra of idempotents of the group 

ring 
m n

Z S . 

ii) Prove or disprove  ,W   is a NeutroAlgebra of idempotents of the group ring 

m n
Z S . 

Can 
1 1

2 2 i

p p
g

   
 

 
 and 

1 1

2 2 i i n

p p
g g S

   
  

 
set of group elements of order two in 1p

S


, 

where the group ring is taken as 1p p
Z S


 ; p is a prime? In the problem 5.1 we are replacing m = p(p is 

a prime) and n = p + 1.  

  



Neutrosophic Sets and Systems, Vol. 50, 2022     175  

 

 

Vasantha Kandasamy and et al., NeutroAlgebra of Idempotents in Group Rings 

Problem 5.2. Can QG and RG  have idempotents (nontrivial) other than those mentioned in this 

paper to form a NeutroAlgebra or AntiAlgebra of idempotents of QG and RG  under × or + 

respectively?  

 

Problem 5.3. Can we have idempotents of the form 2 1
1 2 3

... n
n

a a g a g a g      with 

 1; \ 0,1 ; 1n
i

g a Q i n     in the group ring QG  where | 1nG g g   is a cyclic group of order 

n ? 

 

Problem 5.4. Let QG  be the group ring. Can g h QG   where g  and h  are some two elements 

of ( , \{0,1})G Q    be an idempotent for suitable   and  ? 

 

Problem 5.5. Let 
n

Z  be the ring of integers modulo n  ( n  a composite number). Prove there exists 

two integers p and q ( p  and q need not be prime in 
n

Z ) such that 2 2p q p   (mod )n and 

2 (mod ).pq q n  
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Abstract:  Neutrosophy fuzzy set is the extended research version of the fuzzy set that deals with 

imprecise and indeterminate data Neutrosophic deals with the membership, non-membership and 

indeterminacy function. Neutrosophy have achieved in various fields such as medical diagnosis, 

decision making problems, image processing etc.,The motivation of the present article is to extend 

the concept of Neutrosophic fuzzy X-subalgebra in near-subtraction semigroups. We will discuss 

along with some fundamentals and their algebraic Properties. 

Keywords: Near subtraction Semigroup, Fuzzy Sub algebra , Fuzzy X-sub algebra, Neutrosophic 

Fuzzy Sub algebra, Neutrosophic Fuzzy X-sub algebra 

1. Introduction 

The Theory of Fuzzy subsets, fuzzy logic found in the research area of L.A. Zadeh[15]. The 

theory of Intuitionistic fuzzy set is the extension of the fuzzy set that deals with truth and false 

membership data. From the extension version, the term  Neutrosophy was identified in the  F. 

Smarandache [13]. Neutrosophy is a new concept in philosophy. Neutrosophic deals with the 

membership, non-membership and indeterminacy function. Neutrosophy have achieved in various 

fields such as medical diagnosis, decision making problems, image processing etc., Neutrosophy 

became the motivation of our manuscript. 

Our present manuscript describes the Neutrosophic Fuzzy X-sub algebra (NFX-SA) of 

Near-Subtraction Semigroup and has conceptualized some basic algebraic properties. 

The results obtained are entirely more beneficial to the researchers. Our aim of this 

manuscript is given as follows: 

(i)To examine the some basic properties and fundamentals. 

(ii) Also expand the Intersection, Quotient of the Set. 

(iii) We also describe the Complement of the set. 

2.   Preliminaries 
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2.1 Definition[8] 

Consider X to be define as a non empty along with the operations '-' and '•'  is said to be a 

right  near-subtraction semigroups if for p,q and r in X. 

(i)With respect to ‘-’ it defines as a subtraction algebra  

(ii) With respect to ‘•’ it defines as a semigroup  

(iii)Right Distributive Law follows.  

2.2Definition[9]  

A fuzzy set   in  is defined to be a fuzzy X-sub algebra of X if  

(i) µ(p-q) ≥min{µ(p), µ(q)} 

(ii) µ(pq)≥µ(q) 

(iii) µ(pq)≥µ(p) for each   

(i)and (ii) gives  is called fuzzy left X-Sub algebra of X and conditions (i) and (iii) gives  is a 

fuzzy right X-sub algebra of X . 

2.3Definition[9] 

A Intuitionistic Fuzzy (IF) set ʋ= (µʋ,λʋ) of X is said to be IF X-Sub algebra of X if  

(i)  µʋ(p-q)≥min{µʋ(p), µʋ(q)} 

λʋ(p-q)≤max{λʋ(p), λʋ(q)} 

(ii) µʋ(pq)≥ µʋ(p) 

λʋ(pq)≤λʋ(p) 

(iii) µʋ(pq)≥ µʋ(q) 

λʋ(pq)≤ λʋ(q)for each p,qϵX 

Conditions that satisfy equation (i) and (ii) is called IF right X-sub algebra of X and the 

conditions that satisfies equation (i) and(iii) is called IF left X-sub algebra of X . 

 2.4Definition[8] 

 A Neutrosophic Fuzzy Set S defines on the universe of discourse X defined  by a truth 

membership , indeterminacy function ,  and a false membership function as 

, >/p in X}.Here, , , :X→[0,1] and 0≤ +  

≤ 3. 

2.5Definition[8] 

 Consider a Neutrosophic fuzzy set V in X is defined to be Neutrosphic fuzzy near - 

subtraction subsemigroup of X if for all p,q, in X. 

(i)  ≥ min{ , } ;  ≥ min{ , }  

(ii)   ≤ max{ , } ;  ≤ max{ , }  

(iii)  ≤ max{ , };   ≤ max{ , }   

3. Neutrosophic Fuzzy X-sub algebra of Near-Subtraction Semigroups 
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This Section we introduced the basic properties of  NFX-SA in Near-Subtraction Semigroup. 

3.1Definition  

A Neutrosophic fuzzy set S=(TS, IS, FS) in  X is said to be NFX-SA of X if for each p,q in X. 

(i) TS (p-q)≥min{ TS (p), TS(q)};IS (p-q)≤max{ IS (p), IS(q)};FS (p-q) ≤max{ FS (p), FS(q)} 

(ii)  TS (pq)≥ TS (p);IS (pq) ≤ IS (p);FS (pq) ≤ FS (p) 

(iii)TS (pq)≥ TS (q);IS (pq)≤ IS (q);FS (pq)≤ FS (q)  

Conditions that satisfies equation (i) and (ii) is called Neutrosophic Fuzzy right X-sub 

algebra of X and the conditions that satisfies equation(i) and(iii) is called Neutrosophic Fuzzy left 

X-sub algebra of X. 

3.2 Example  

Define X={0,p,q,r} to be a set defined by binary operations ‘- ‘ and ‘•’ is  

 

˗ 0 p q r 

  0 0 0 0 0 

  p p 0 p 0 

  q q q 0 0 

   r r q P 0 

 

Let S:X→[0,1] be a fuzzy subset of X defined by 

TS(0)=.7 TS(p)=.5 TS(q)=.4 TS(r)=.3 

IS(0)=.1 IS(p)=.2 IS(q)=.3 IS(r)=.5 

FS(0)=.02 FS(p)=.3 FS(q)=.5 FS(r)=.7 

Hence, S is a NFX-SA of X. 

 

3.3Theorem  

If S=( TS , IS , FS ) be a NFX-SA of X ,then the set XS={p in X/ TS(p)= TS(0); IS(p)= IS(0); FS(p)= 

FS(0)} is a X-sub algebra of X. 

Proof: 

Choose  p,q in XS. Thus TS(p)= TS(0); IS(p)= IS(0); FS(p)= FS(0) ;TS(q)= TS(0); IS(q)= IS(0); FS(q)= 

FS(0). 

(i)TS(p-q) ≥min{ TS(p), TS(q)}= TS(0) 

 IS(p-q) ≤max{ IS(p), IS(q)}= IS(0).  

FS(p-q) ≤max{ FS(p), FS(q)}= FS(0). 

So,p-qϵXS. Now 

(ii)TS(pq)≥TS(p)= TS(0). 

IS(pq)≤IS(p)= IS(0).  

FS(pq)≤ FS(p)= FS(0).  

• 0 p q r 

0 0 0 0 0 

p 0 p 0 p 

q 0 q 0 q 

r 0 r 0 r 
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(iii)TS(pq)≥ TS (q)= TS(0). 

IS(pq)≤ IS (q)= IS(0).  

FS(pq)≤FS (q)= FS(0).  

So,pq ϵXS.  

Thus, XS is a X-sub algebra of X. 

 

3.4 Theorem  

The Complement of NFX-SA is again a NFX-SA of X.  

Proof: 

Assume that Sc=( TSc, ISc, FSc) be the Complement set of the Neutrosophic fuzzy set S=( TS , IS , 

FS ) of X. 

Select p,q,r ϵX.  

Then 

(i)TSc(p-q)=1- TS(pq) 

      ≤1-min{ TS(p), TS (q)} 

  =max{1- TS(p),1- TS (q)} 

  =max{ TSc(p), TS c (q)} 

ISc(p-q) =1- IS(pq) 

  ≥1-max{ IS(p), IS (q)} 

  =min{1- IS(p),1- IS (q)} 

  =min{ ISc(p), ISc(q)} 

FSc(p-q) =1- FS(pq) 

   ≥1-max{ FS(p), FS (q)}   

  =min{1- FS(p),1- FS (q)} 

  =min{ FSc(p), FSc(q)} 

(ii)TSc(pq)=1- TS(pq) 

  ≤1-TS(p) 

  = TSc(p) 

ISc(pq) =1- IS(pq) 

  ≥1- IS(p) 

=ISc(p) 

FSc(pq) =1- FS(pq) 

   ≥1- FS(p)   

  = FSc(p) 

(iii)TSc(pq)=1- TS(pq) 

  ≤1- TS (q) 

  = TS c (q) 

ISc(pq) =1- IS(pq) 

  ≥1-IS (q)  

  = ISc(q) 

FSc(pq) =1- FS(pq) 

   ≥1- FS (q)   
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= FSc(q) 

Therefore, Sc is a NFX-SA of X. 

 

3.5 Corollary  

A Neutrosophic fuzzy set S=( TS, IS, FS) of X is a NFX-SA of X iff (TS,IS TSc), (FSc, IS, TSc), (FSc, IS 

FS) are NFX-SA‘s of X. 

 

3.6 Theorem 

 If Sj ={( , , )/jϵ ẟ}be  a family of NFX-SA on X, then the set  ,  and 

are also family of NFX-SA of X, where ẟ defines an index set. 

Proof: 

Assume that p,q,r  in  X.  

Also =  

; 

. 

Also   ,  and be  a family of fuzzy X-sub algebra  of X. 

Now 

(i)  ≥  

        =min{ } 

        =min{  (p),  (q)} 

(p-q)=   ≤  

         =max{ } 

         =max{  (p), } 

(p-q)=   ≤  

      =max{ } 

      =max{  (p), } 

(ii) ≥ =  (p) 
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(pq)= ≤ =  (p) 

(pq)= ≤ =  (p) 

(iii) ≥ =  (q) 

(pq)= ≤ =  

(pq)= ≤ =  

Hence the Proof. 

 

3.7 Theorem  

Consider S as a NFX-SA of X, then the fuzzy set S of X/I, where I is an ideal of X defined by  

º(p+I)=  (p+q);  

º(p+I)=  (p+q);  

º(p+I)=  (p+q)  

is a NFX-SA  of Quotient near-subtraction Semigroup . 

Proof: 

Choose  l,m in X so that l+I=m+I. 

Then m=l+q where q in I. 

To prove that S is well-defined. 

º(m+I)=  (m+p) 

=  (l+q+p) 

=  (l+u) 

= º(l+I) 

º(m+I)=  (m+p) 

=  (l+q+p) 

=  (l+u) 

= º(l+I) 
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º(m+I)=  (m+p) 

=  (l+q+p) 

=  (l+u) 

= º(l+I)       

Now 

(i) º((p+I)-(q+I))≥min{ º(p+I), º(q+I)} 

º((p+I)-(q+I))≤max{ º(p+I), º(q+I)}     

º((p+I)-(q+I))≤max{ º(p+I), º(q+I)}        

Let p+I,q+I   in   

(ii) º[(p+I)(q+I)]= º(pq+I)=  (pq+l) 

=  (pq+ab) 

=  [(p+a)(q+b)]    

≥  { (p+a)} 

= º(p+I) 

º[(p+I)(q+I)]= º(pq+I)=  (pq+l) 

=  (pqr+ab) 

= [(p+a)(q+b)]  

  ≤  { (p+a)} 

= º(p+I) 

º[(p+I)(q+I)]= º(pq+I)=  (pq+l) 

=  (pq+ab) 

=  [(p+a)(q+b)]   
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 ≤  { (p+a)} 

= º(p+I) 

(iii) º[(p+I)(q+I)]= º(pq+I)=  (pq+l) 

=  (pq+ab) 

=  [(p+a)(q+b)]    

≥  { (q+b)} 

= º(q+I) 

º[(p+I)(q+I)]= º(pq+I) =  (pq+l) 

=  (pqr+ab) 

= [(p+a)(q+b)]  

   ≤  { (q+b)} 

= º(q+I) 

º[(p+I)(q+I)]= º(pq+I) =  (pq+l) 

=  (pq+ab) 

=  [(p+a)(q+b)] 

 ≤  { (q+b)} 

= º(q+I) 

Hence the Proof. 

 

4.   Conclusion 

In the present manuscript, we have defined the Intersection, Complement set, Quotient Set 

of NFX-SA in Near subtraction Semi group. This research work can be extended to other types of 

ideals and other algebraic structures of Near Subtraction Semi groups. 
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Abstract: This paper deals with the modelling and optimization of health care management with 

particular reference to the Dietary Approaches to Stop Hypertension (DASH) diet problem in a 

neutrosophic environment. We have considered the degree of acceptance, indeterminacy, and 

rejection of objectives to express the DASH diet problem's vulnerability in modelling. Further, 

neutrosophic goal programming (NGP) by considering three different types of membership 

functions have been used to minimize the sum of deviation from the set goal. A case study has been 

discussed to determine an appropriate DASH diet based on cost and user preferences. The results 

indicated that goal programming (GP) and fuzzy goal programming (FGP) approach failed to 

provide the value of all the concerned decision variables related to different types of food. 

However, we can get all the concerned decision variables valuable for diet problems through NGP. 

The application developed in this study is a problem of optimization that provides users with a 

daily diet that contains all the necessary amounts of supplements with less expense. The 

fundamental fact of the DASH diet is not only to shed blood pressure however to decrease the 

circulatory strain of the body, and so that it can likewise enable the individuals who need to get in 

shape, lessen Cholesterol, and counteract diabetes. 

Keywords: Health care Management; DASH Diet; Neutrosophic Goal Programming. 

 

1. Introduction 

The heightened pressure (and boredom) will lead people to neglect their safe eating plans and 

binge on whatever is around. A substantial number of people globally have diabetes and other 

forms of infectious diseases, and a significant amount of money is spent on this chronic disease. It is 

essential to monitor the healthy plan with a suitable diet for patients suffering from lifestyle-related 

diseases. Carbohydrates usually involve foods like Bread, roti, rice, vegetable, and other food grains; 

throughout, consumption of these has been curtailed. Individuals work from home and might have 

neglected their regular schedule, so they have found that their dietary patterns go for a flip. His/Her 

may contribute to two primary factors– One, they might end up eating and drinking healthier foods 

during the day and having too much unhealthier food when they feel depressed or anxious. A 

nutritious and balanced diet and physical activity are the most common and effective means to 

maintain a healthier body. There are different diets with a broad array of targets. A diet may be used 

to promote weight loss, ensure the maintenance of muscle mass, reduce premature weight gain 

during breastfeeding or regulate many chronic diseases such as cardiovascular disease, 

mailto:a.haq@myamu.ac.in
mailto:aliashaikh@math.buruniv.ac.in
mailto:a.haq@myamu.ac.in
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hypertension and kidney disease. The "Diet Problem" (the quest for a low-cost diet that can satisfy a 

soldier's dietary needs) is distinguished by a lengthy background, while in 2000 or later, most 

approaches to similar diet problems were created, after which computers with massive computation 

capacities were readily accessible, and linear programming (L.P.) techniques were established.  

Operations Research approaches provide an essential and efficient resource for grappling with 

many healthcare issues. Bailey [1] wrote an article related to a queuing methodology to examine 

waiting times and appointments in hospital emergency services, which is believed to be the first 

optimization research to be applied to health care management. One of Operations Research's most 

effective techniques is the L.P. technique that can be extended to many nutritional problems relevant 

to food relief, regional food services, and specific dietary recommendations. Most researchers have 

used dietary limitations and cost limitations to evaluate dietary challenges and alternatives, 

although these work revealed vulnerabilities in the circumstances with a limited number of food 

products and nutritional restrictions. Effective strategies were obtained for diet problems using L.P. 

techniques (Smith [2]; Dantzig [3]; Fletcher [4]). However, while this strategy gives the greatest 

solution to the problem (the cheapest diet), the resulting diet looks to be both distasteful (requiring 

the consumption of the same items every day) and impracticable (specifying excessive quantities of 

the food types chosen). Dantzig [5] utilized L.P. to simulate optimal meal patterns under a number 

of limitations. Khoshbakht [6] wanted to see how a DASH diet affected youngsters with attention 

deficit hyperactivity disorder (ages 6–12 years). Paidipati et al. [7] provided some dependable 

approaches for determining optimal menu planning utilizing GP and reduced the variations of over 

and under accomplishment for suitable meal menu selection with varied energy (calorie) levels. A 

neutrosophic logic set was invented by Smarandache [8]. Brouni and Smarandache [9] investigated 

interval neutrosophic set (N.S.) and proposed a new operation on interval neutrosophic numbers. In 

a real-world example, Abdel-Basset et al. [10] proposed a strategy for addressing the L.P. issue in 

which N.S. theory plays a critical role. Their parameters were represented by a trapezoidal 

neutrosophic number, and a neutrosophic L.P. model approach was proposed. To cope with 

multi-production planning difficulties, Khan et al. [11] suggested an unique multi-objective model 

operating in an intuitionistic and Neutrosophic context. 

This research aims to develop a new mathematical model that generates hypocaloric diets with 

high protein content. The mathematical model has two goals: the one is to reduce the diet's calorie 

count, and the other is to minimize the diet's expense along with some restrictions in the form of 

constraints, i.e., amount of the Fat, amount of the Sodium, amount of the Cholesterol, amount of the 

saturated Fat, amount of the Calcium, amount of the Magnesium, amount of the Fibre, amount of the 

Potassium in the food. The model has been formulated in an uncertain environment and solved 

using a NGP approach. The results have also been compared with the GP approach and FGP 

approach. 

The following is how the rest of the paper is structured: Section 2 is an overview of the literature 

on health care administration, diet management, NGP; Section 3 deals with the model formulation of 

the concerned problem along with preliminaries related to N.S. theory; computational experiment is 

performed in Section 4; and finally, in the last segment closing remarks are made. 

2. Literature Review 

There is comprehensive literature available on management strategies for managing health care 

services. One of the most often discussed topics is hospital resource management, focusing on staff 

workforce planning and correct nutritional capital distribution. Healthcare management's 

complexity and significance cannot be overstated, and optimization techniques have become a 

commonly employed healthcare management technique. Guo et al. [12] proposed a bi-objective 

distribution model for Community-based health resources assessment. The model explores a 

cost-price trade-off, where the price is represented as the overall number of demand nodes 

providing service over a defined distance threshold. Harris [13] used a non-linear modelling model 

to assess resource distribution in a multi-site needle exchange network to accomplish the highest 
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potential decrease at reduced risk of new HIV infections. Benneyan et al. [14] implemented a 

destination-allocation model for long-term decision-making in the Veterans Health Management 

market. The objective feature is a weighted total of competing factors, including travel time, 

unoccupied ability and obscured demands. Günes et al. [15] proposed an allocation based model for 

implementing a primary health network. Three parameters are listed individually as usability 

factors, including the maximization of reach, attendance, and overall travel distance. M'Hallah and 

Alkhabbaz [16] examine the usage of the operational techniques in scheduling a Kuwaiti hospital 

recognizing specific restrictions on ethnicity, class, and nationality. They proposed a mixed integer 

L.P. model to reduce the number of nurses outsourced. Turgay and Taskın [17] presented a FGP 

model using exponential membership function to solve the healthcare model for efficient 

management solution and explained with data produced by a medical facility in Turkey-Sakarya. 

Jafari and Salmasi [18] established a mathematical programming metaheuristic method to optimize 

nursing priorities by analyzing patient and local policies and nurses' roles in Iran government 

hospitals. Because of the fluctuation of demands, Singh and Goh [19] proposed a pharmaceutical 

supply chain model comprising several raw material manufacturers, producers, and service centres 

of multiple hospitals. The developed model combined supply chain planning approaches from raw 

material sourcing to optimal drugs to hospital-level delivery plans. Yazdani et al. [20] addressed the 

control of healthcare waste disposal, which can create severe healthcare staff, patients, and the 

general population and suggested a novel best-worst approach of approximate interval figures due 

to the shortage of accurate information. 

The importance of diet planning is not hidden to anyone, and in the past author used 

optimization techniques to get the desired amount of diet required for a healthier body. Eghbali et al. 

[21] addressed the human diet concern in a fuzzy context by considering nutritional diet 

variables-including taste and size, the volume of nutrients and their dietary intake. Mamat et al. [22] 

built a Fuzzy L.P. model for balanced diet planning that carries various nutrients a few times a day 

for each person.  Eghbali et al. [23] addressed the application of fuzzy L.P. in diet meal preparation 

for eating disorders and lifestyle linked with illness. The formula is used to measure the volume of 

nutrients in the day to day routine. Fourer et al. [24] created an L.P. model to serve a week of fixed 

nutritious material from the mix of economic foods such as meat, macaroni, spaghetti and others. 

Another approach was generalized to produce the problem formulation of fish feeds, which would 

improve fish productivity (Nath and Talukdar [25]). Ali et al. [26] developed a quantitative diet 

planning model that satisfies the high school student has required nutritional consumption and 

minimizes a budget. Using an optimization approach coupled with 0-1 Integer Programming, the 

problem was solved. Ducrot et al. [27] studied the relation between meal preparation and diet 

consistency, including adherence to dietary recommendations and various foods and weight status. 

Eghbali-Zarch et al. [28] built a novel multi-objective mixed integer L.P. model to structure the diet 

plans for patients who have diabetes. The model's goals are to reduce the overall volume of 

saturated Fat, caffeine, Cholesterol, and the overall diet plan costs. The model's restrictions satisfy 

the body's nutritional needs and the complex regulation of each individual's diet. Sheng and 

Sufahani [29] addressed using integer programming to construct the quantitative diet planning 

design for eczema patients to cut diet costs by achieving the required amounts of nutrients, 

preventing food allergens and bringing other items into the diet that relieve eczema. Ghorabi et al. 

[30] reported their findings on the relationship between adherence to the dietary methods to stop 

hypertension (DASH) diet and metabolic syndrome and its components. Rodriguez et al. [31] 

investigated the effects of a Transtheoretical model-based personalized behavioral intervention, a 

non-tailored intervention, and usual care on the DASH eating pattern. According to Farhadnejad et 

al. [32], following the DASH diet may be beneficial in reducing metabolic abnormalities in 

overweight and obese people. Pirozeh et al. [33] described the DASH diet, which contains several 

antioxidants and helps to reduce oxidative stress. Soltani et al. [34] conducted a comprehensive 

review and meta-analysis to investigate the linear and non-linear dose-response relationship 

between DASH diet adherence and the causes of particular mortality. Khan et al. [35] discussed a 
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daily diet model and minimized the cost of diet, Saturated Fat and carbohydrate. The diet model 

was solved by fuzzy multi-objective GP to satisfy daily nutrients and compared different methods. 

Kim et al. [36] investigated the similarity of metabolic urine maker and Serum metabolomic markers 

of the Dietary Approaches to Stop Hypertension (DASH) diet was reported. Ahmed et al. [37] 

presented a bipolar single-valued neutrosophic issue and used the score function to convert the 

fuzzy set into a crisp L.P. problem. Ahmed [38] defined the ranking function for transforming 

LR-type single-valued neutrosophic numbers and proposed a method for solving the LR-type 

single-valued neutrosophic L.P. problem using the transformation methodology. Das et al. [39] 

proposed the notion of single-valued neutrosophic numbers and a computer approach for solving 

the trapezoidal neutrosophic L.P. problem using the ranking function. Das and Edalatpanah [40] 

examined the diet issue using the Pythagorean fuzzy idea and used the score function to convert 

proportionate crisp L.P. issues; and proposed a unique technique for addressing the L.P. problem 

using Pythagorean fuzzy numbers. Das et al. [41] presented a theoretical study of completely fuzzy 

L.P. and solved it using the lexicographic ordering approach. 

3. Model Formulation 

This paper has considered one of the essential healthcare management applications, i.e., the 

balanced diet problem. A healthy or balanced diet gives the body essential nutrients to function 

adequately. We eat much of the daily calories in fresh fruits, fresh herbs, rice, legumes, nuts, and 

lean proteins to get the diet's best nutrients. The calorie count of a meal is a calculation of the amount 

of energy contained in that product. In walking, speaking, swallowing and other essential tasks, the 

body utilizes calories from food. To preserve well-being, the average individual requires to consume 

around 2,000 calories per day. 

Nevertheless, the same daily intake of calories may differ based on age, gender and degree of 

physical activity. People require more calories than women in general, and people who work out 

need to get more calories than people who do not. It is necessary to have a healthy diet since our 

organs and tissues need proper nutrition to function effectively. The body is more vulnerable to 

illness, exhaustion and reduced results without adequate nutrition. Children with a low diet run the 

risk of rising and developing problems, poor academic results, and bad eating habits that last for the 

rest of their lives. Keeping this thing in mind, we have considered the DASH diet problem for our 

model formulation. The DASH diet demonstrates the appropriate portion sizes, food diversity and 

nutrients and finds out how to improve health and reduce blood pressure. The DASH diet 

emphasizes veggies, fruits and low-fat dairy products with reasonable amounts of whole grains, 

meats, poultry and nuts. The diet is influencing the body in many respects: 

 With the help of the DASH diet, healthy people and high blood pressure can reduce blood 

pressure. 

 People cut out lots of high-fat with the DASH diet aid and may notice that they effectively 

reduce calorie intake and assist in weight reduction. 

 There is a reduced chance of certain tumours with the DASH diet, including colorectal. 

 The DASH diet decreases cardiovascular disease risk by as much as 81%. 

 The DASH diet helps in reducing type 2 diabetes. 

The following decision variables and parameters are used for the model formulation: 

Nomenclature  

Decision Variable: 

jx  Optimal quantity of food items 

Parameters: 

DjC  Diet Cost of the jth Food Item 
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ljc  Calorie in the jth Food Item 

tjf  Content/amount of the Fat in the jth Food Item 

tF  Tolerable maximum input level of the Total Fat 

djs  Content/amount of the Sodium in the jth Food Item 

dS  Tolerable maximum input level of the Sodium 

hjc  Content/amount of the Cholesterol in the jth Food Item 

hC  Tolerable maximum input level of the Cholesterol 

fjs  Content/amount of the Saturated Fat in the jth Food Item 

fS  Tolerable maximum input level of the total Saturated Fat 

ajc  Content/amount of the Calcium in the jth Food Item 

aC  Tolerable minimum input level of the Calcium 

gjm  Content/amount of the Magnesium in the jth Food Item 

gM  Tolerable minimum input level of the Magnesium  

bjf  Content/amount of the Fibre in the jth Food Item  

bF  Tolerable minimum input level of the Fibre 

tjp  Content/amount of the Potassium in the jth Food Item 

tP  Tolerable minimum input level of the Potassium 

fjw  Weight of the jth Food Item 

fW  Maximum amount of all food 

LjcS  Estimated minimum number of daily servings of the jth food item for calorie level c 

UjcS  Estimated maximum number of daily servings of the jth food item for calorie level  
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With all these above define parameters and decision variables, the problem has been formulated as 

follows: 

In our considered DASH diet model, let ( 1, 2, ..., )j j nx   be the different types of food items 

required for the proper diet, and it works as a decision variable for us. The cost of serving and 

calories of each food item is ( 1, 2,..., ),Dj ljC j nc  . Then the objective function will be formulated as: 





n

j
jDj xCZMin

1
1                (1) 





n

j
jlj xcZMin

1
2                    (2) 

The non-negative constraints of the model satisfy the nutrients requirements of the diet. The 

left-hand side of the non-negative constraints is the food items' nutrient contents based on the DASH 

concerning nutrients. The DASH research suggested that Sodium, Saturated Fat, Total Fat and 

Cholesterol be taken less and Magnesium, Potassium, Calcium, and Fibre be taken more to reduce 

the human body's high blood pressure.  

Then the non-negative constraints are as follow: 





n

j
tjtj Fxf

1
 , Constraint for Total Fat            (3) 





n

j
djdj Sxs

1
 , Constraint for Sodium            (4) 





n

j
hjhj Cxc

1
 ,  Constraint for Cholesterol          (5) 





n

j
fjfj Sxs

1
 ,  Constraint for Saturated Fat          (6) 





n

j
ajaj Cxc

1
 ,  Constraint for Calcium           (7) 





n

j
gjgj Mxm

1
 , Constraint for Magnesium           (8) 





n

j
bjbj Fxf

1
 ,  Constraint for Fibre           (9) 





n

j
tjtj Pxp

1
 , Constraint on Potassium           (10) 





n

j
fjfj Wxw

1
,  Constraint for Food Weight          (11) 

,HjcjLjc SxS  Upper and lower limit of the daily serving        (12) 
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The conceptual frameworks for analyzing health care management difficulties are frequently used to 

examine various success measures, which may be further subdivided into economic performance 

metrics and quality of service metrics. The existence of contradictory objective functions necessitates 

an ideal universal method to considering a viable response. In contrast, in recent years, 

modifications or generalizations of fuzzy set and intuitionistic fuzzy set (IFS) have been confronted 

with the concept that there is a degree of determinism in real existence, and as a result, a set known 

as N.S. has emerged. Smarandache suggested the concept of N.S. [42]. The term "neutosophic" is a 

mixture of two words: the French word "Neutre" means "neutral," and the Greek word "Sophia" 

means "talent." The concept of indeterminacy in N.S. helps to the possible scope of study in this area. 

The NGP technique was created based on the N.S. principle to find the optimum compromise 

solution for the multi-objective optimization issue. 

The NGP involves three membership characteristics: maximizing reality "belongingness," 

indeterminacy "belongingness to some extent," and eliminating falsehood "non-belongingness." 

Abdel-Basset et al. [10] proposed and developed an effective approach for solving completely 

neutrosophic L.P. in production planning. Liu and Teng [43] proposed certain standard 

neutrosophic operators based on particular neutrosophic numbers and constructed a multi-criteria 

decision-making model based on the generic weighted power mean neutrosophic number operator. 

Rizk-Allah et al. [44] posed the transportation issue in a neutrosophic setting and enhanced the 

results achieved with existing approaches by computing the classification degree with the TOPSIS 

method. For example, if 0.6 is the chance that the diet is healthy, 0.3 is the diet that is not healthy, and 

0.1 is the diet about which we are unsure. In this scenario, this type of linguistic ambiguity or 

inaccuracy extends beyond the bounds of a fuzzy and IFS in order to make the correct judgment. As 

a result, the neutrosophic decision-based optimization strategy is more applicable to real-world 

optimization problems than other well-known approaches since it works with three membership 

functions, namely truth, indeterminacy, and a false membership function. The indeterminacy 

membership functionality, on the other hand, cannot be accepted by the fuzzy and intuitive fuzzy 

decision set. Some of the necessary preliminaries belong to N.S. has been taken from (Ali et al. [45]; 

Abdel-Baset et al. [46]; Haq et al. [47]; Gupta et al. [48]) and are given below: 

Definition 1: A real fuzzy number x~  is a continuous fuzzy subset from the real line   whose 

triangular membership function )(~ xx is defined by a continuous mapping from   in the closed 

interval [0,1], where 

1. ],(  0)( 1~ xxxx  , 

2. )(~ xx to be strictly increasing on ],[ 1 mxx , 

3. 1)(~ xx for mx  , 

4. )(~ xx  to be strictly decreasing on ],[ 2xmx , 

5. ],(  0)( 2~  xxxx  

It is elicited by: 
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Fig. 1: Membership Function x~  

 

Where m  is a targeted value and 21  and xx  denote the value of the lower and upper bound. In this 

case, we obtain 
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1
21 mx

xx
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xxxmxx  

Definition 2: Let  ntttT ,...,, 21  is a fixed non-empty universe, an IFS X in T  is defined as 

 TttttX XX  )(),(,  , 

which is characterized by a membership function  1,0: TX  and a non-membership function 

 1,0: TX  with the condition Tttt XX    1)()(0   where )(tX and )(tX represent, 

respectively, the degree of membership and non-membership of the element t  to the set X . Also, 

for each IFS X  in TttttT XXX    )()(1)( ,  is called the degree of hesitation of the element 

t to the set X . Significantly if 0)( tX , then the IFS X  is degraded to a fuzzy set. 

Definition 3: The α-level set of the fuzzy parameters x~ in definition (1) is defined as the ordinary 

set )~(xL  for which the degree of membership function exceeds the level,  1,0 ,  , where 

    )()~( ~ xxxL x , 

for specific values *
x to be in the unit interval. 

Definition 4: Let T  is an object and Tt . A N.S. X in T  is defined by a truth membership 

function )(t , an indeterminacy membership function )(t and a falsity membership function )(t . It 
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has shown in figure 2. Truth-membership function )(t , indeterminacy membership function )(t and 

falsity-membership function )(t are real standard or real nonstandard subsets of   1,0 . That 

is   1,0:)( TtTX ,   1,0:)( TtI X and   1,0:)( TtFX . There are no restrictions on the sum of 

truth-membership function )(t , indeterminacy membership function )(t and falsity-membership 

function )(t , .3)()(sup)( sup0   tFtItT XXX  

In the following, we adopt the notations )( and )( ,)( xxx XXX  instead of 

),(tTX )( and )( tFtI XX respectively. 

Definition 5: Let T  is a universe of discourse. A single-valued neutrosophic (SVN) set X over 

T is an object having the form 

 Ttttt XXX  :)( , )( ,)(X  , 

where      1,0:)( and 1,0: )( ,1,0:)(  TtTtTt XXX   with  )(0 tX )(  )( tt XX   Tt   3 . 

The intervals )( and  )(),( ttt XXX  denote the truth membership degree, the 

indeterminacy-membership degree and the falsity membership degree of ,  to Xt respect. 

 For convenience, an SVN number is denoted by ),,,( cbaX  where ]1,0[,, cba and 

3 cba . 

 

Fig. 2: Neutrosophication Process 

 

Definition 6: Let x~  is a neutrosophic number in the set of real numbers , then its 

truth-membership function is 




























otherwise                              ,0
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its indeterminacy-membership function is  
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and its falsity-membership function is 
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Let 2,1, kZk  be the objective function with the target value kT , acceptance tolerance limit kA , 

Indeterminacy tolerance limit kI , rejection tolerance limit kR . Then, the Truth Membership, 

Indeterminacy Membership and Falsity membership Functions will be defined as follows: 

Truth membership function 

1,                                if 

( )
( ) 1 ,             if 

0,                                 if 

k k
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Indeterminacy membership function 
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Falsity membership function 
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Fig. 3: Truth, Indeterminacy and Falsity Membership Functions for kZ  

To solve the above formulated multi-objective programming problem of the DASH diet, we have 

used the NGP approach by using the Truth, Indeterminacy and Falsity Membership Functions, and 

therefore further, the problem can be re-written as: 
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4. Case Study 

The developed diet model is explained using a collection of the real data set (Iwuji et al. [49]; Iwuji 

and Agwu [50]). Here we assessed the situation where a person wanted the best DASH Diet plan 

with 2000 calories. Table 1 indicates the required calories needed by male and female individuals in 

some age groups and activity rates. Here we offer a random set of 8 sample foods from the different 

food groups (i.e. wheat, beans, fruits, low-fat milk items, Fish and nuts) for the DASH diet and the 

maximum and minimum intake level of the nutrients. The foods packages with their nutrient 

composition, weight (in grams), requirements, availability and cost, are shown in Tables 2 and 3. 

Table 1: DASH daily calorie chart for the different levels of activities 

Gender Age Calorie needed for each activity level 

Sedentary Moderately Active Active 

Male 19-30 2400 2600-2800 3000 

31-50 2200 2400-2600 2800-3000 

51+ 2000 2200-2400 2400-2800 

Female 19-30 2000 2000-2200 2400 

31-50 1800 2000 2200 

51+ 1600 1800 2000-2200 

 

Table 2: Foods with their nutrient composition, weight (in grams), requirements 

Nutrients Foods  

Max./Min. 

requirement 

Carrot Ground 

Nut 

Bread 

(Whole 

Wheat) 

Sweet 

Potato 

(Boiled) 

Milk 

(Low 

Fat) 

Orange Water 

Melon 

Fish 

(Grilled) 

Total Fat 0.24 11.48 0.58 0.30 0.10 0.48 0.16 4.10  68 

Sodium 

(mg) 

33.60 1.50 124.80 15.00 8.10 3.20 2.40 73.00  1500 

Cholesterol 

(mg) 

0 0 0 0 3.00 0 0 0.29  129 
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Saturated 

Fat (g) 

0 1.55 0.20 0 0.60 0 0 34.00  16 

Calcium 

(mg) 

28 4.25 12.25 24 25 49.6 5.6 40  1334 

Magnesium 

(mg) 

9.6 47.75 13.25 14 2.4 17.6 8 43  542 

Fiber (g) 2.48 2.33 1.55 3 0 2.72 0.29 0  34 

Potassium 

(mg) 

212.8 181.75 56.5 264 31 262.6 87.2 397  4721 

Weight per 

serving of 

Foods  (g) 

80 25 25 100 2 160 80 100  4000 

Table 3: Minimum and maximum Availability of Foods with cost and Calorie

 Carrot Ground 

Nut 

Bread 

(Whole 

Wheat) 

Sweet 

Potato 

(Boiled) 

Milk 

(Low Fat) 

Orange Water 

Melon 

Fish 

(Grille

d) 

Minimum 

Availability 

4 0 3 4 6 4 4 0 

Maximum 

Availability 

20 1 8 6 9 8 9 6 

Cost of per 

serving of Food 

($) 

15 20 15 15 30 15 15 50 

Calorie 28 144.5 58.5 90 7 72 23.2 151 

Cost per serving of the foods and their nutrient information with the maximum and minimum 

intake level; the estimated minimum and the maximum number of servings of foods into the 

above-formulated DASH diet model. The above-given table values, with the Target value ( )kT , 

acceptance tolerance limit ( )kA , Indeterminacy tolerance limit ( )kI , Rejection tolerance 

limit ( )kR , for thk objectives are shown in Table 4. 

Table 4: Target value, Acceptance, Indeterminacy and Rejection Tolerance Limit 

 

k  

Target Value 

kT  

Acceptance 

Tolerance Limit kA  

Indeterminacy 

Tolerance Limit 

kI  

Rejection Tolerance 

Limit 

kR  

1. 825 150 100 200 

2. 2000 600 400 700 

Using the table (3) value; Truth, Indeterminacy and Falsity membership Functions have been 

constructed as: 



Neutrosophic Sets and Systems, Vol. 50, 2022     201  

 

 
Srikant Gupta, Ahteshamul Haq, Irfan Ali, Neutrosophic Goal Programming Approach for the Dash Diet Model 
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Using all the membership functions in the NCG model, finally, it has been solved using the 

optimizing software LINGO 16.0. The optimal compromise solution for the proposed model is 

summarized in Table 5.  

Table 5: Optimal Compromise Daily Diet Plan 

Foods Daily Serving 

Sizes  

Cost of Servings 

($) 

Calorie available in 

the foods 

Carrot (cut up) 20 300.00 560.00 

Groundnut (boiled, without salt) 0.7158484 14.31 103.44 

Bread (whole wheat) 3 45.00 175.50 

Sweet potato (boiled, without salt) 5.427117 81.40 488.44 

Milk (low fat, skimmed) (' 00gm) 7 210.00 49.00 

Orange 8 120.00 576.00 

Watermelon 4 60.00 92.80 

Fish (grilled, without salt) 0.2439209 12.20 36.83 

Optimal daily diet cost 842.91  

Total calories 2082.01 

The proposed healthy diet is composed of 20 servings of carrots, 0.7158484mg of Groundnut (boiled, 

without salt), three servings of Bread (whole wheat), around five servings of Sweet potato (boiled, 

without salt), around 700gm serving of Milk (low Fat, skimmed), around eight serving of Orange, 

around four serving of Watermelon, and around 0.2439209mg of Fish (grilled, without salt). The 

graphical representation of the compromise solution and the proposed model's membership values 

is shown in Fig. 4 and Fig. 5, respectively. 
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Fig. 4: The Optimal Compromise Solution 

 

 

Fig. 5: Membership values of the proposed model 

Table 6 compares the proposed approach with the famous GP approach and the FGP approach. 

Table 6: Comparison of Results 

Food Carrot 

(cut up) 

Groundnut 

(boiled, 

without 

salt) 

Bread 

(whol

e 

whea

t) 

Sweet 

potato 

(boiled, 

without 

salt) 

Milk 

(low Fat, 

skimmed

) 

Orange Water

melon 

Fish 

(grilled, 

without 

salt) 

Proposed 

Approach 

20 0.7158484 3 5.427117 7 8 4 0.2439209 

GP  0 2.8 11 0 3.9 0 39.7 0.02 

FGP 0 1.8 7 0 4.7 0 34.1 0.02 
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Fig. 6: Comparison of Result 

Table 5 and Fig. 6 show our proposed method's supremacy over GP and FGP approach. The results 

indicated that GP and FGP approach failed to provide the value of all the concerned decision 

variables, but through the NGP, we can get all the concerned decision variables that are very 

important for diet problems. There are other behaviours that people can follow to improve their 

good well-being and the general standard of wellness. Making sure that one consumes a 

well-planned diet is essential. Nutrients, carbohydrates and minerals can be incorporated into a 

daily diet. They will also concentrate on including nuts, beans, fruits and vegetables in their diet, 

alongside garlic and garlic. It is therefore essential to take caution to reduce processed carbs and turn 

to foods containing natural carbs. 

The right amount of nutrition is much more important in situations where the immune 

system may need to strike back to protect from infections. Eating a diverse, nutritious diet is the 

easiest way to achieve a full range of nutrients like micronutrients and vitamins. This will also 

reduce the chances of various severe health problems, including obesity, type 2 diabetes and cardiac 

failure. There is growing proof that vitamin D can have intestinal safety benefits. Recently, a report 

has suggested that vitamin d consumption are linked to higher death rates. Dietary Fibre lets you 

shed weight and reduce belly fat, lowering the chances of diabetes and cardiac failure. This 

encourages better gut microbes and leads to a balanced immune system. A tasty and healthy diet — 

comprising of lots of fresh fruits, leafy green vegetables — together with physical exercise can 

improve our immunity and keep us fit. 

6. Motivation and Contribution 

This work is prompted by a research topic in NGP that has the potential to capture decision-makers. 

The following are the study's contributions: 

i. It contributes to the existing literature on the DASH Diet issue. 

ii. ii. Solution strategies for multi-objective multi-product problem formulation are described in a 

case study. 

iii. For the DASH Diet, a novel technique based on neutrosophic was used in this study.  

The technique is compared to GP and FGP, with the conclusion demonstrating that the proposed 

work is superior. 
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6. Conclusion 

The human body needs foods with low sodium content, saturated Fat, total Fat, and Cholesterol, 

although high in Potassium, Magnesium, Calcium, and Fibre. The DASH diet has difficulty making 

regular dietary schedules that fulfil the tolerable consumption rates of nutrients of the diets at a 

defined expenditure dependent on the required daily calorie and sodium amounts by the persons 

involved to minimize elevated blood pressure and other diseases. Here, to find out the optimum 

solution of the formulated multi-objective DASH diet optimization model, we implemented a 

neutrosophic optimization approach by combining three different types of membership functions, 

i.e., Truth, Indeterminacy and Falsity. In the formulated model, our main aim is to concurrently 

optimize calorie consumption and diet cost by minimizing the deviation from the set goal. The 

formulated DASH diet NGP model has turned into a crisp type model by utilizing truth, 

indeterminacy, and falsity membership functions. The GP and FGP approach failed to provide the 

value of all the concerned decision variables, but through the NGP, we can get all the concerned 

decision variables that are very important for diet problems. The finding obtained in the 

neutrosophic optimization approach contrasts with the GP and FGP approaches. It demonstrates 

that the NGP approach gives a more transparent and accurate solution and is a useful optimization 

technique than the other current method. 
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Abstract: An intuitionistic multi-objective programming problem with interval-valued 

trapezoidal neutrosophic (IVTN) and multi-choice interval type has been considered in this paper. 

The coefficients of objective functions and parameters of the left side of the constraints are in the 

multi-choice environment, and the right-hand side of the constraints are in the IVTN number type. 

The formulated problem's multi-choice parameters were transformed into the deterministic form 

using the binary variable transformation technique. A procedure is defined to change the IVTN 

number into the deterministic form. Then, intuitionistic fuzzy programming (IFP) with two 

different scalarization models has been used to achieve each membership goal's highest degree and 

obtain a satisfactory decision-making solution. Finally, a numerical case study for production 

planning (PP) is explored to validate the work's efficiency and usefulness. 

Keywords: Multi-objective programming, multi-choice, interval-valued trapezoidal neutrosophic 

number, intuitionistic fuzzy programming. 

 

1. Introduction 

In PP, a well-organized approach is used in which raw materials are transformed into an 

optimal quantity of the final products to maintain the performance and quality of the item. The main 

aim of PP is to comprehend consumer conditions and demands and improve the product design and 

other enhancements to meet customers' needs while achieving a desirable profit. The universal 

character of machinery must be used for a specific resource to determine the number of items for the 

specific time, product categories, labour character classification, and manufacturing process (cycle). 

Customers who demand resistance in the PP process and further reflection on comfort service rates 

and organizational benefit are influenced by the firm's profit and level of service planning. The 

manufacturing processes are streamlined to win the company struggle in the global marketplace. 

Nowadays, industry experts and analysts use optimization methods for the PP models to ensure 

maximum benefit with minimum unit production. Mosadegh et al. [33] addressed four criteria: idle 

time and overtime, employment size, inventory and scarcity, and currency preservation. Jaggi et al. 

[20] described the multi-objective PP problem under certain conditions for a lock industry. Ghosh 

and Mondal [12] discussed a production-distribution planning model and found a suitable solution 

using the genetic algorithm and a two-echelon supply chain. Gupta et al.(2019) [14] discussed certain 

and uncertain environments for a two-stage transportation problem and used fuzzy goal 

programming to find a compromise solution. 

mailto:a.haq@myamu.ac.in
mailto:aquilstat@gmail.com
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The experts or decision-makers fixed the mathematical problem's parameter. In real-life 

scenarios, the parameters are unknown, and the parameters of the optimization problem have 

become either random or fuzzy variables. In this study, the problem's parameters are in the form of a 

multi-choice or IVTN number. The multi-choice programming problem avoids the wastage of 

resources and chooses the best resource. Such problems arise in finance, health care, manufacturing, 

agriculture, transportation, engineering, military, and technology. 

2. Literature Review 

The most critical activity in the manufacturing process is PP. Manufacturing firms establish a 

development schedule at the start of each fiscal year. The ideal development schedule provides a 

complete picture of how many products will be manufactured during each period and the demand 

for each period over the fiscal year. The production schedule may be carried out regularly, monthly, 

yearly, or even annually, depending on the product's demand. Production scheduling is the process 

of allocating available production capacity over time to meet certain requirements such as delivery 

time, cost, supply and demand. Machine capacity planning, production management, 

transportation, and freight schedules are all examples of production-related issues. Over the last two 

decades, international competitions, technical advances, and market dynamics have impacted the 

manufacturing sector. The majority of PP issues are multi-objective. The researchers used the 

e-constraint approach to reduce a multi-objective problem to a single goal. The problem of 

organizing the output and distribution functions was explored by Chandra and Fisher [4]. A single 

plant with multi-commodity, multi-period manufacturing environments produces products 

processed in the plant before being shipped to consumers. Yan et al. [45] defined a strategic 

production-distribution model with multiple manufacturers, distribution centres, retailers, and 

consumers in which multiple goods are produced in a single cycle. The fuzzy multi-objective linear 

programming model effectively solves real-world PP problems. Nowadays, businesses seek to 

achieve more than one target goals to improve the PP system's consistency and response. The 

concept of fuzzy set was developed by Zadeh [46]. Zimmermann [49] applied the fuzzy linear 

programming approaches to the linear vector maximum problem. 

In multi-choice programming problems, the decision-maker can consider many options for a 

parameter problem, but only one must be chosen to optimize the goal value. Healey [17] introduced 

the concept of multi-choice and considered a case study on the mixed-integer programming 

problem. Chang [5,6] formulated the multi-choice programming problem with binary variables and 

suggested a modified approach for the multi-choice objective programming model. Biswal and 

Acharya [2] recommended the generalized transformation technique for solving multi-choice linear 

programming problems in which constraints parameters are bound to certain multi-choices. Haq et 

al. [15] used fuzzy goal programming to solve the optimal case study's PP problem. Khan et al. [23] 

discussed the IVTN number and used neutrosophic and intuitionistic fuzzy programming to solve a 

PP problem. Haq et al. [16] discussed the neutrosophic fuzzy programming for the sustainable 

development goal’s problem. Oluyisola et al. [34] prescribed a methodology for designing and 

developing a smart PP and control system and discussed PP and control challenges in 

manufacturing technologies for planning environment characteristics. Lohmer and Lasch [28] 

studied the multi-factory PP and scheduling problems; and classified the literature according to 

shop configuration, network structure, objectives, and solution methods. Raza and Hameed [36] 

worked on maintenance planning and scheduling and provided effective guidelines for future 

studies in the research area. Some conflicting issues such as growing economic demand, increasing 

energy supply, shrinking energy resources, changing climate conditions, and tightening 

environmental requirements pose significant challenges for planning energy systems towards 

cleaner production and sustainable development. Suo et al. [42] developed the ensemble energy 

system model for China (CN-EES model), incorporating a computable general equilibrium model 

and interval-parameter programming method within an energy system optimization framework. 
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The CN-EES model can predict energy demands under different economic-development scenarios, 

reflecting uncertainties derived from the long-term (2021–2050) planning period and providing 

optimal solutions for China's energy system transition and management. Some significant research 

contributions in PP are summarized in Table 1: 

Table 1: Review Summary 
Researchers Goals Applied Techniques Clarifications 

GP FP LP SP GA BL IP  

Kanyalkar and 
Adil (2005) [22] 

Multi        Dynamic Allocation, Hierarchical Planning Approach, 
Stochastic Programming, Goal Programming,  

Leung and Chan 
(2009) [24] 

Multi        Goal Programming 

Baykasoglu and 
Gocken (2010) [1] 

Multi        Tabu Search, Ranking Method, Metaheuristic 
Algorithm 

Che and Chiang 
(2010) [7] 

Multi        Modified Pareto, Genetic Algorithm 

Liu et al. (2011) 
[27] 

Multi        Genetic Algorithm, Aggregate PP 

Sillekens et al. 
(2011) [39] 

Single        Linear Approximation, Mixed Integer Linear 
Programming, Aggregate PP 

Ramezanian et al. 
(2012) [35] 
 

Single        Tabu search Mixed, Two-phase Aggregate PP, Integer 
Linear Programming Model, Genetic Algorithm 

Mortezaei et al. 
(2013) [32] 

Multi        Aggregate PP 

Liu and 
Papageorgiou 
(2013) [26] 

Multi        ε-constraint Method, Mixed-integer Linear 
Programming, Lexicographic Mini-max Method 

Madadi and Wong 
[29] 

Multi        IBM ILOG CPLEX Optimization Studio Software, 
Multiobjective Fuzzy Aggregate PP 

Chen and Huang 
(2014) [8] 

Multi        Aggregate PP, Parametric Programming 

da Silva and 
Marins (2014) [9] 

Multi        Agricultural and Logistics Phase, Fuzzy Goal 
Programming 

Singh and Yadav 
(2015) [40] 

Multi        Multi-objective Linear Programming, Interval-valued 
Intuitionistic 

Gholamian et al. 
(2016) [11] 

Multi        GAMS Software, Mixed-integer Non-linear 
Programming, Supply Chain Planning 

Lin et al. (2016) 
[25] 

Multi        Multi-objective Optimization Evolutionary Algorithm, 
Integrated PP 

Meistering and 
Stadtler (2019) 
[31] 

Multi        Bi-level Programming, Hierarchical PP 

Zhao et al. [48] Multi        Multi-stage Stochastic Programming, Progressive 
Hedging Algorithm 

Goli et al. (2019) 
[13] 

Multi        Goal Programming, Robust Multi-objective 
Multi-period Aggregate PP  

Hu et al. (2020) 
[18] 

Single        Two-stage Stochastic Programming 

Discussed Model Multi        IVTN number, IFP, Multi-choice 
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In this paper, we propose a multi-objective industrial development planning problem with a 

multi-choice interval type and IVTN parameter. This paper addresses the situation of multi-choices 

in the objective and the constraints' left-hand side. We have used general transformation 

methodology given by Roy and Maity [37] to achieve the crisp form for the multi-choice parameter. 

Moreover, the right-hand sides of the restrictions are of the IVTN form. The formulated problem's 

compromise solution is obtained by the IFP and compared for both models. 

3. Prerequisites 

This section discussed some fundamental definitions regarding the intuitionistic fuzzy (IF) number 

and neutrosophic fuzzy number. 

Definition 3.1: [Zadeh (1965) [46] ] A  of X is a fuzzy set having the form  ( , ( )) :AA x x x X   

that represents the membership degree with  0,1:A X  . A  on   is convex if and if for each 

pair of point 1 2,x x in X , and A satisfies the inequality 

   0,1( (1 ) ) min ( ), ( )    , ,1 2 1 2 1 2x x x x x x XA A A            

Definition 3.2: [Ebrahimnejad and Verdegay, 2018 [10]; Mahajan and Gupta, 2019 [30]] 
IA in X is an 

IF set of ordered triples   , ( ), ( ) :I I

I

A A
A x x x x X   , where  0,1( ) :IA

Xx   and 

 0,1( ) :IA
x X   represent the membership degree and non-membership degree, such that 

0 ( ) ( ) 1,I IA A
x x x X      .  

Definition 3.3: [Smarandache, 1999 [41]; Wang et al., 2010 [44]] A  in X is a neutrosophic set 

characterized by a truth-membership ( )T
A x , an indeterminacy membership ( )I

A x , and a 

falsity-membership ( )F
A x , ( ), ( ), ( ) (0,1) or [0,1],T I F

A A Ax x x x X       and 

0 sup ( ) sup ( ) sup ( ) 3T I F
A A Ax x x  

 
     or 0 sup ( ) sup ( ) sup ( ) 3T I F

A A Ax x x      . 

Definition 3.4: [Ishibuchi and Tanaka, [19]] An interval on   is as 

 , :  ,   L R L RA a a a a a a a       , 
Ra is the right limit and 

La is left limit of A . Or 

 , :  ,  c w c w c wA a a a a a a a a a       , centre and width of A  is  
1

2
R L

c a aa   and 

 
1

2
R L

w a aa  respectively. 

Definition 3.5: [Broumi and Smarandache, 2015] [3] An interval-valued neutrosophic (IVN) set 
IVA of X is as follows: 

 T T I I F F
k k k k k k;  , , , , , :IV L U L U L UA x x X                 , 

where  T T I I F F
k k k k k k, , ,  and ,  0,1L U L U L U

                  for each Xx  

Definition 3.6: [Broumi and Smarandache, 2015] [3] Let 

 T T I I F F
k k k k k k  ;  , , , , ,  :IV L U L U L UA x x X                  be IVN set, then 

(i) 
IVA is empty if 

T T
k k 0,  L U

    I I F F
k k k k1,  1,   L U L U x A          

(ii) Let 1 ; 1, 0, 0x  and 0 ; 0, 1, 1x . 

Definition 3.7: (IVTN number) Let  0,1, ,a a a    , and 1 2 3 4, , ,a a a a  such that 

1 2 3 4a a a a   . Then an interval-valued trapezoidal fuzzy neutrosophic number, 

 1 2 3 4, , , ;  , , , , ,L U L U L U

a a a a a aa a a a a                  , 

membership degrees, indeterminacy degrees and non-membership degrees are 
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Definition 3.8: [Thamaraiselvi and Santhi, 2015 [43]] The score function for the IVN number 

 1 2 3 4 , , , , ,  , , , ;  L U L U L U

a a a a a aa a a a a                   is defined as  

 
    1 2 3 4

16
( ) ( ) 1 ( ) 1 ( )a a a

a a a a
S a x x x  

  
      

3.1 Transformation Technique for Multi-Choice Parameter [Roy et al., 2017 [38]] 

The selection procedure of multi-choice in the problem parameter should help to optimize the 

problem. The binary variable concepts play a vital role in selecting a choice from the problem's 

values. Among t  numbers of possibilities, p  numbers of binary variables are used, 

where
12 2p pt
  . 

Let 0 1 2 ...p p p p

dt C C C C k       for some d  satisfying 11 ,  0 .p
dd p k C


     

If d p , then 0, and 0, thenk k d p    in the selection procedure, p
ic

 
numbers of 

possibilities have value zero for i  binary variables among p variables in selecting a single choice 

from multi-choice parameters. 

p  binary variables 
1 2, , ..., p
j j jz z z  are taken to reduce the formula in selecting the t  

values of 
1 2, , ..., t
j j jc c c . We further construct p  binary variable's function 

1 2 1
0 ( ) ( ... )p

j j j jf z z z z c , where 
1 2( ... )p
j j jz z z z , when each 

1 1jz  for 1, 2, ...,j p . where, 

1
0 ( ) jf z c , while 

1 2 ... p
j j jz z z p     and we adopt a function 

  111 2 2 2 1 3 3 1 1
1 (1 ) ... (1 ) ... ... (1 ) ... .

p cp p p p
j j j j j j j j j j j j jf z z z z c z z z z c z z z c 
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If 
1 2

1... 1, ( )p
j j jz z z p f z      gives a value among the following parameters of 

111 2 3, , ...,
pc

j j j jc c c c  .
 
Similarly, 

  1 1

1 1

1

2
1   1 1 21 2 3 1 3 2 4

1 ( 2) 1 ( 2) 11 2 1 2 3 1 4

11 1 2

(1 ) (1 ) (1 ) (1 )

... (1 ) (1 ) (1 ) (1 )

... (1 ) (1 )

... ...

... ...

...

p p

p p

p p

c cp p
j j j j j j j j j j j

c p c pp p p
j j j j j j j j j j j

cp p p
j j j j j

f z z z z z c z z z z z c

z z z z c z z z z z c

z z z z c

   

      

  

     

      

    2c

 

If 
1 2 2... p
j j j pz z z     , the 2 ( )f z  function gives a value from the parameters 

1 1 1 21 1 1 2 1: , , ...,
p p p pc c c ct

j j j jc c c c      . 

Proceeding similarly, we have 

1 2 1

1 2 1

1 2

1 ... 11 2 1

1 ... 21 2 1 1 2

1 ...1 2 1

( ) (1 ) (1 )...(1 )

(1 ) (1 )...(1 ) (1 )

... (1 ) (1 ) (1 )

...

...

...

p p p
d

p p p
d

p p p

d
c c cd d p

j j j j j j

c c cd d d d p
j j j j j j j j

c c cp d p d p p d
j j j j j j

f z z z z z z c

z z z z z z z c

z z z z z c





    

      

       

   

    

     d

 

If
1 2 ... p
j j j p dz z z     , the ( )df z  function gives a number from the  

' 1 2 1 2 1 21 1 11 1 1... 1 ... 2 ...: , , ...,t s
j

p p p p p p p p p p
d d d d

j j j
c c c c c c c c c c

C c c c                
. 

For 0k  , then 0 1( ) ( ) ( ) ... ( )df z f z f z f z     & ( )f z  function gives a value from the ,t
jc z  

that satisfy
1 2 ... p
j j jp d z z z p      . 

If 0k   then 1 p
dk c   and the formulated function 

11 2

21 2

1
2 1

1 3 2

( ) (1 ) (1 )...(1 ) (1 )

(1 ) (1 )...(1 ) (1 )

... (terms up to )

...

...

d d

d d

d
i ii i d n t k

j j j j j j j

i ii i d d p t k
j j j j j j j j

t
j

f z z z z z z z c

z z z z z z z c

c







  

   

    

    

  

 

Whenever 
1 2

1( 1),... ( )p
j j j dp d fz z z z     gives a value from 1

p
dc   numbers and 

restrictions 1
p

d kc    are used to reduce the possible outputs on the k  number. The kth term 

occurred at 1 1 2 2 1 1, , ..., d di i i i i i 
      so the restrictions will be 
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11 2 1 2

11 2

11 2

1 1 2 2 1 1

1 1 2 2 1 1 1

1 1 1

1,

1,

( 1) ;

1,

... ...  , , ..., ; ;

...  , , ..., , ;

...

p d

d

d

i ii i i i
j j j j j j d d p d d

ii i
j j j d d p d d

ii i
j j j p d

p d pz z z z z z i i i i i i i i i

z z z i i i i i i i i i

z z z i i i







 

  

 



 

         

    

   

        

     

  

So, 0 1 1( ) ( ) ( ) ... ( ) ( )d df z f z f z f z f z


      gives the general function without loss of the generality 

for the selection of the multi-choice parameters
t
jc , the value of 1t

jc   and used the summation and 

product multiplication, the formula in selecting the crisp values for the multi-choice parameters are: 

1 1 2

1 2 11 1 2
2 1

1 2

1 1 1
1 2

2 11 1, 1, ,

1 1 1, ,...,

(1 ) (1 )(1 )

...   ...  (1 )(1 )...(1 )

i i

d

d d d
i i id d d

p p pp p p
i i ii i i

j j j j j j
i i ii i i i i i i i

pp p
ii i i

j j j j
i d i d i i i i i

z z z z z z

z z z z




 

     

     

    
        

     

 
     

 

   

  
( 1)i d

p

 



 

where, 1 2
1 2... , ....pii i

j j j pp d pz z z i i i           

If 0k  , the first k terms will be added with the above function through the formula: 

1 21 2 1 2

1 1
1 2

1 2 1

1

1, ,. 1, ,.
.., , .., ,

1, ,.
.., ,

(1 )(1 )...(1 )(1 ) (1 )(1 )...(1 )(1 )

... (1 )(1 )...(1 )(1 ) (1 )(1

d d d d

d d d d

pd

d p

p p
i i i ii i i ii i

j j j j j j j j j j
i i i i i i

i i i i

p
iii i ii

j j j j j j
i i i

i i

z z z z z z z z z z

z z z z z z

 

 

   

 

        

        

 

 1 22

1
1 2

1 ( 1) ( 1) 11 31 2

1 1
1 1

1, ,.
.., ,

1, ,. ,
.., ,...,

)...(1 )(1 )

(1 )(1 )...(1 )(1 ) ... (1 )(1 )...(1 )(1 ) .

d d

d d

p d p d p pd d

p d
d p d p

p
i ii i

j j j j
i i i

i i

p p
i i i ii ii i i i

j j j j j j j j j j
i i i i i

i i i

z z z z

z z z z z z z z z z

 

 

     

 

  

 

  

 

          



 

If, piii  ....21  and the kth term occurs at ,,...,, 121 
 diii so the restrictions are 

11 2 1 2

11 2

11 2

1 1 2 2 1 1

1 1 2 2 1 1 1

'
1 1 1

( 1) ... ; 1,  ,...,

... 1, ,...,

... 1,

...  , , ;

 , , ;

p d

d

d

i ii i i i
j j j j j j d d p d d

ii i
j j j d d p d d

ii i
j j j p d

p d pz z z z z z i i i i i i i i i

z z z i i i i i i i i i

z z z i i i







 

  

 

             

        

     

     

   



Let, 
1

,   1, 2, ,...,  ; 1, 2,...,( ) (1 )
ggl u ijij c

t

ij
g

CCg g g
ij ijC C i m j nterm C  



     
    

where, (term) , 1, 2, ...,g g t 
 are the t numbers in the form of binary variables. Similarly, 
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1
( ) (1 ) , 1,2, ,..., , ( 1,2, ,..., ).

g gl u
ij ij

p
a ag g g

ij ij ij
g

a term a a j n i m 


      
    

and 
1
( ) (1 ) , ( 1,2, ,..., ).

g gl u
i i

q
b bg g g

i i i
g

b term b b i m 


     
   

3.2 Conversion process for IVNN 

The PP problem is expressed in terms of IVTN numbers. To demonstrate, assume the 

right-hand side of the multi-objective PP model constraints is IVTN numbers. The following is a 

step-by-step procedure shown to convert in crisp form. 

Step 1: Discuss the problems in terms of IVTN numbers. 

Step 2: The score function transforms the IVTN numbers problem into an interval-valued problem. 

Step 3: The   cut approach is used to transform an interval-valued in a crisp form. For  ,a b  

(1 )a b    

3.3 Methodologies 

The multi-objective Model: 

 1 2Maximize (Minimize) Z(x) ( ), ( ), ..., ( )

Subject to 

( ) 0

kZ x Z x Z x

g x

x X







 

In solving the multi-objective optimization challenge, each objective function is 

independently solved to find the best solution, ignoring the other objectives of the Model. The 

process will be repeated until the optimal solutions for each objective are obtained, and a payoff 

matrix is generated. The lower and upper bounds for each goal function are identified kU  and kL  

1, 2,...,k K   from the payoff matrix. For the solution of a multi-objective PP problem, we used 

the IFP approach. 

Intuitionistic Fuzzy Programming 

Maximized type objective: The membership and non-membership functions are defined as follows: 

k

k

k

0,                                ( )

( )
( ( )) ,               ( ) [ , ]

1,                                 ( )

k

M k k
k k k k

k k

k

L Z x

Z x L
Z x Z x L U

U L

U Z x




 


 




 

      (1) 

k

k

k

1,                                ( )

( )
( ( )) ,              ( ) [ , ]

0,                               ( )

k

NM k k
k k k k

k k

k

Z x R

U Z x
Z x Z x R U

U R

Z x U






 












     (2) 

where, k k kR L U   

Minimized type objective: The membership and non-membership functions are defined as follows: 
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k

k

k

1,                           ( )
( )( ( )) ,          ( ) [ , ]

0,                          ( )

k

M k k
k k k k

k k

k

L Z x
U Z xZ x Z x L U

U L
U Z x



 



 


 

     (3) 

k

k

k

0,                           ( )
( )( ( )) ,           ( ) [ , ]

1,                            ( )

k

NM k k
k k k k

k k

k

Z x L
Z x LZ x Z x L W
W L

Z x W



 



 


 

     (4) 

where, k k kL U W   

The above-defined Eqns [1-4] are used in solving the multi-objective optimization problem. As 

follows: 

k k

 ,   k
Subject to

for maximization problem 

( ) ( )
, ,  

for minimization problem 

( ) ( )
, ,  

,   , , 1,   M NM
k k k k k k

Max Min k

Z x L U Z xM NMk k k k R L Uk k k k kU L U Rk k k k

U Z x Z x LM NMk k k k L U Wk k k k kU L W Lk k k k

 

 

 

       

 
   

 

 
   

 

    

k ,  [0,1],   1,  2,...,
( ) 0,   

k k K
g x x X
    

  

 

Therefore, we can write 

 
K

  kk 1
Subject to

for maximization problem 

( ) ( )
, ,  

for minimization problem 

( ) ( )
, ,  

,   , , 1,   k k

Max k

Z x L U Z xM NMk k k k R L Uk k k k kU L U Rk k k k

U Z x Z x LM NMk k k k L U Wk k k k kU L W Lk k k k
M NM
k k k k k k

 

 

 

        




 
   

 

 
   

 

  

,  [0,1],   1,  2, ...,k
( ) 0,   

k Kk
g x x X
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4. Mathematical Model 

The PP challenge has selected various machinery types for the manufacturing process: lathe, 

milling machine, grinder, jigsaw, band saw, and drill press. The main objective of the production 

industry is to make profit so that the company runs smoothly. It is always advisable for a company 

to prepare a production plan based on scientific methods to get a clear direction for how the 

production process should be carried out. The main objective of this study is to optimize the profit, 

product liability, quality, and satisfaction of workers. The input information such as, the available 

facilities and resource information, the units of machine available for the manufacturing items, and 

the number of hours spent using the machine to produce the product, including production 

machinery is required to formulate the problem,. The PP and control model is shown in Figure 1. 

 
Fig. 1: Model for PP and control 

The following principles and drawbacks are essential for an organization's industrial planning 

model: 

  We maximize the industry's profit, productivity, product liability, and worker satisfaction. 

 The multi-item output model is taken into account. 

 A single unit is running a single task at a time on a machine. 

 It is not likely to have a shortage of products in the manufacturing process. 

 Final products demand only. 

 In any case, it cannot reach the maximum level of the machine timing. 

Kamal et al. [21] have discussed the mathematical model of the industrial programming problem as 

follows: 

3
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In real-life problems, the parameters of the optimization are commonly unknown. The 

coefficients of objective functions and constraints are represented in the form of interval 

multi-choice. There are several options in such a case, and the decision-maker is perplexed on one of 

the problem's criteria to choose. The multi-choice interval form deals with the problem's complexity 

in the Model. The right-hand sides of the constraint are in the form of an IVTN number type. Then, 

the industrial programming problem is as follows: 

1 1 1 2 2 3 3 2 1 1 2 2 3 3 1 2 3

3 1 1 2 2 3 3 4 1 1 2 2 3 3

1 1 2 2 1 1 2

,    ( ) / ( )

,    

Subject to the constraints

,    

MC MC MC MC MC MC

MC MC MC MC MC MC

MC MC IVTN MC

Max Z P x P x P x Max Z L x L x L x x x x

Max Z Q x Q x Q x Max Z W x W x W x

m x m x M l x l

       

     

   2 3 3

1 1 3 3 1 1 3 3

2 2 3 3 1 1 2 2 3 3

1 2 3

,      

,      
, , 0

MC MC IVTN

MC MC IVTN MC MC IVTN

MC MC IVTN MC MC MC IVTN

x l x L

g x g x G s x s x S

d x d x D b x b x b x B
x x x

 

   

    



 

5. Numerical Illustration 

Zeleny [47] considered six types of machines, i.e. Lathe, milling machine, jig saw, band saw, 

drill press, grinder for the PP problem and used the deterministic parameters in the formulation.  

The available capacities of each machine are in the form of an IVTN number, i.e. given in Table 2. 

Table 2: Capacity of machines 

Right Side of the Constraints 

Interval-valued neutrosophic form Interval-valued form 
IVTNM =1200,1350,1500,1600; [0.7,0.9], [0.1,0.3], [0.5,0.7] [1200,1366.67] 

IVTNL =800,1000,1200,1400; [0.5,0.7], [0.3,0.5], [0.4,0.6] [813.54,1085.71] 

IVTNG =1650,1800,1950,2050; [0.7,1.0], [0.2,0.3], [0.2,0.5] 
[1650,1925] 

IVTNS =1225,1290,1340,1425; [0.3,0.7], [0.1,0.4], [0.3,0.7] 
[1225,1297.22] 

IVTND =700,900,1100,1300; [0.6,0.8], [0.3,0.6], [0.2,0.4] [893.93,1050] 

IVTNB =1075,1275,1475,1675; [0.5,0.9], [0.1,0.3], [0.3,0.6]  [1075,1452.78] 
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The coefficients of objective functions are given in Table 3. 

Table 3: Coefficients of objective functions 

1
MCP =[40,50] or [50,60] or 

[60,70] 

2
MCP =[90,100] or [100,110] or 

[110,120] 

2
MCP =[16.5,17.5] or [17.5,18.5] 

1
MCL =[0.70,0.72] or [0.72,0.74] 

or [0.74,0.76] 

2
MCL =[0.81,0.85] or [0.85,0.89] 3

MCL =[0.75,0.78] or [0.78,0.81] 

 or [0.81,0.84] or [0.84,0.87] 

1
MCQ =[82,92] or [92,102] 2

MCQ =[65,75] or [75,85] or 

[85,95] or [95,105] 

3
MCQ =[40,50] or [50,60] or 

[60,70] 

1
MCW =[15,25] or [25,35] 2

MCW =[90,100] or [100,110] or 

[110,120] or [120,130] 

3
MCW =[65,75] or [75,85] 

The left side’s coefficients of the constraints are given in Table 4. 

Table 4: Coefficients of left side of the constraints 

1
MCm =[10,12] or [12,14] 2

MCm =[15,17] or [17,19] or [19,21] --- 

1
MCl =[3,5] or [5,7] 2

MCl =[7,9] or [9,11] or [11,13] 3
MCl =[6,8] or [8,10] 

1
MCg =[8,10] or [10,12]  

 or [12,14] 

2
MCg =[13,15] or [15,17] 3

MCg =[15,17] or [17,19] 

1
MCs =[4,6] or [6,8] --- 

3
MCs =[12,14] or [14,16] or 

[16,18] 

--- 
2
MCd =[10,12] or [12,14] 3

MCd =[5,7] or [7,9] or  

[9,11] 

1
MCb =[9.5,11.5] or [11.5,13.5] 2

MCb =[9.5,11.5] or [11.5,13.5] 3
MCb =[4,6] or [6,8] or 

[8,10] or [10,12] 

The membership and non-membership of the intuitionistic function of the problem are as follows: 

The objective membership of the problem will be 

1

1
1 1 1

1
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The objective non-membership of the problem will be  

1

1
1 1 1

1

1, 6772.05
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3

3
3 3 3

3

1, 7932.1

16006
( ) , 7932.1 16006

16006 7932.1
0, 16006

Z

Z
Z Z

Z
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4
4 4 4

4

1, 7 9 6 8

13710
( ) , 7968 13710

13710 7968
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Z
Z Z
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The intuitionistic formulation of the problem is  

 

1 2 2

3 3

1 1 2 2

3 3 4

1
1 1 2 2

3 3 4

( ) ( ) ( ) ( )

( ) ( ) (

12348 0.89

12348 6152.5 12348 6772.05 0.89 0.72 0.89-0.75

16006

16006 7035 16006 7932.1

  

Subject to constraints
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,

Z Z Z Z

Z Z Z
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  4 4
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1 1 1 2 2 3 3 2 1 1 2 2 3 3 1 2 3

3 1 1 2 2 3 3 4 1 1 2 2 3 3

1 1 2 2

4) ( )
13710
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1 1 2 2 3 3
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,      
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  ), ,   j 1,  2,  3, 4.j   

 

We get the following compromise solution using the IFP technique, which is given below in Table 5. 

Table 5: Compromise optimal solution 

Result 

1 2 3 4 1 2 311852, 0.8652414, 12320, 13321.67, 15, 78, 52F F F F x x x        

The graphical representations of compromise optimal solution through IFP for both models are 

shown in Figure 2. The Membership and non-membership values are shown in Figure 3. 
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Fig. 2: Compromise solution through IFP for both models 
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Fig. 3: Membership and non-membership value for the Model I 

The comparison of the IFP with fuzzy goal programming (FGP) and bi-level fuzzy goal 

programming (BL-FGP) are shown in Table 6. 

Table 6: Comparison IFP with BL-FGP and FGP 

Model Methods Profit Product 

Reliability 

Quality of 

the Product 

Worker's 

Satisfaction 

Decision Variable's 

Values 

Kamal et 

al. (2019) 

[21]  

BL-FGP 5697.5 0.80734 12307 10000 1 2 371, 3, 95x x x    

FGP 11894 0.812350 10989 11000 1 2 342, 59, 54x x x    

Discussed 

Model 

IFP 11852 0.8652414 12320 13321.67 1 2 315, 78, 52x x x    

From the solutions of Table 6, it can be observed that discussed Model gives the more optimal 

solution than Kamal et al. [21] Model for profit, product reliability and worker's satisfaction, but for 

product quality, the BL-FGP Model has the more improved solution. 

6. Motivation and Contribution 

This study is motivated by an Intuitionistic programming research area with the potential to capture 

decision-makers. The following are the contributions of the study: 

i. It serves as an additional contribution to the literature of PP.  

ii. A case study is provided in which solution procedures for multi-objective multi-product 

problem formulation is reported. 

iii.  In this study, a new approach based on intuitionistic has been applied.  

iv. The approach is compared with BL-FGP and FGP, and the result proves to be better. 

v. The applicability of Interval-valued Neutrosophic and multi-choice parameters have also been 

discussed and reported. 

Conclusion 

The Model for the PP problem with rational expectations was explored in this article. The 

optimization problem is represented with multi-choice type parameters in the objective's coefficient 

and the left-hand side of the constraints, and it is transformed into the deterministic form using the 

binary variable transformation technique. Some parameters are IVTN number types that are 

transformed into deterministic forms using the score function. In determining the optimum quantity 
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of products, the industrial PP problem is solved using intuitionistic fuzzy IFP. The comparison of the 

IFP with BL-FGP and FGP are shown in Table 6. 

Furthermore, it can be observed that the discussed model gives a more compromise solution 

than BL-FGP and FGP for profit, product reliability and worker's satisfaction, but for product 

quality, the BL-FGP model has the more improved solution. This paper presents a detailed 

investigation into IFP approaches for solving multi-objective optimization problems in the presence 

of multi-choice and neutrosophic environments. It will help solve and understand the 

production-related problems by the IFP approach. The IFP approach will help in solving the other 

complex production-related problems. The complex PP challenge will be considered with several 

new solutions based on fuzzy logic. 
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Abstract 

Background: 

The notion of single valued pentapartitioned neutrosophic set is the extension of  single valued 

neutrosophic set and quadripartitioned single valued neutrosophic set.  The single valued 

pentapartitioned neutrosophic set  is a powerful mathematical tool  that comprehensively deals 

with indeterminacy by splitting it into three independent components, namely,  unknown,  

contradiction,  ignorance.  We apply the concept of single valued pentapartitioned neutrosophic 

set to graph theory. 

Findings: 

We develop the notions of Single-Valued Pentapartitioned Neutrosophic graph (SVPN-graph) as 

an extension of single valued neutrosophic graph theory. Besides, we introduce the notions of 

degree, size and order of an SVPN-graph. Further, we furnish a few suitable examples on 

SVPN-graph. Single valued pentapartitioned neutrosophic set. 

Limitations:  

Pentapartitioned neutrosophic graph is proposed in this model which is based on 

pentapartitioned neutrosophic sets. A few studies on pentapartitioned neutrosophic sets are 

reported in the literature. 

Future directions:  

In future, the single valued pentapartitioned neutrosophic graph can be extended to regular 
and irregular  single valued pentapartitioned neutrosophic graph, single-valued 
pentapartitioned neutrosophic intersection graphs,  single-valued pentapartitioned 
neutrosophic hypergraphs, and so on. The single-valued pentapartitioned neutrosophic graph 
can be employed in modeling the computer networks, expert systems,  image processing, 
social network , and telecommunication. 

 

Keywords: Neutrosophic Set; Pentapartitioned NS; Neutrosophic Graph; SVPN-Graph. 

________________________________________________________________________________________ 
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Graph theory [1] is generally used as a tool to deal with the combinatorial problems in number 

theory, geometry, topology, algebra, etc. Euler presented the concept of graph theory [2] in 1736. 

When there exists uncertainty in the description of a graph, traditional graph theory fails to deal 

with the problem. To deal with such situation, Rosenfeld [3] developed the Fuzzy Graph (FG) by 

considering fuzzy relation [4] on Fuzzy Set (FS) [5]. Sunitha and Mathew [6] presented a survey of 

fuzzy graph in 2013. Shannon and Atanassov [7] developed intuitionistic FG based on Intuitionistic 

FS (IFS) [8]. Intuitionistic FGs have been further studied in [ 9-15].  

To deal with inconsistency and indeterminacy, Smarandache [16] developed the Neutrosophic 

Set (NS) in 1998. The Neutrosophic Graphs (NGs) using the NSs were developed by several 

authors[17-19]. Akram [20] presented the Single Valued Neutrosophic (SVN) planar graph. NGs 

have been further studied in [21-24]. Broumi et al. [25] presented interval NGs, which have been 

further studied in [26-27]. NGs have been further studied in different hybrid environment such as 

neutrosophic soft graph [28], bipolar SVN graphs [29], rough neutrosophic diagraph [30], 

neutrosophic soft rough graph [31], etc. Recent trends in graph theory have been depicted in [32] in 

different environments.  

Recently, Mallick and Pramanik [33] defined Pentapartitioned Neutrosophic Set (PNS) using the 

n-valued logic [34]. PNS is a powerful mathematical tool, which is capable of dealing with 

uncertainty and indeterminacy comprehensively as indeterminacy is divided into three independent 

components, namely, unknown,  contradiction, and ignorance.       

  In this study, we procure the Single Valued Pentapartitioned Neutrosophic (SVPN) graph and 

establish some basic its properties. 

Research Gap: No investigation on SVPN-graph has been reported in the literature. 

Motivation: To fill the research gap, we present the concept of SVPN-graph. 

 

The rest of the article has been organized into four sections: 

In section 2, we recall some relevant definitions on PNS those are relevant to the main results of 

this article. In section 3, we procure the notion of SVPN-graph, and investigate some properties of 

different types of degree, size and order of an SVPN-graph. Section  4  presents results and 

discussion section. Section 5 concludes the paper with stating the future scope of research. 

 

2. Some Relevant Definitions: 

In this section, we present some existing definitions those are relevant to the main results of this 

article. 

Definition 2.1.[33] Suppose that  be a fixed set. Then, a Single Valued Pentapartitioned 

Neutrosophic Set (SVPN-set) P over  is defined by: 

P={(, TP(), CP(), RP(), UP(), FP()) : }. 

Here, TP, CP, RP, UP and FP are the truth, contradiction, ignorance, unknown and falsity membership 

functions respectively from  to [0, 1]. So, 0  TP() + CP() + RP() + UP() + FP()  5, for all . 

Definition 2.2.[33] Suppose that X={(, TX(), CX(), RX(), UX(), FX()) : } and Y={(, TY(), CY(), 

RY(), UY(), FY()) : } be two SVPN-sets over . Then, an SVPN-set X is said to be a subset of a 

SVPN-set Y (i.e., XY) if and only if TX()  TY(), CX()  CY(), RX()  RY(), UX()  UY(), FX()  

FY(), . 
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Definition 2.3.[33] Suppose that X={(, TX(), CX(), RX(), UX(), FX()) : } and Y={(, TY(), CY(), 

RY(), UY(), FY()) : } be two SVPN-sets over . Then, union of X and Y is defined by XY={(, 

max{TX(), TY()}, max{CX(), CY()}, min{RX(), RX()}, min{UX(), UX()}, min{FX(), FX()}) : }. 

Definition 2.4.[33] Suppose that X={(, TX(), CX(), RX(), UX(), FX()) : } and Y={(, TY(), CY(), 

RY(), UY(), FY()) : } be any two SVPN-sets over . Then, the complement of X is defined by 

Xc={(, FX(), UX(), 1-RX(), CX(), TX()) : }. 

Definition 2.5.[33] Suppose that X={(, TX(), CX(), RX(), UX(), FX()) : } and Y={(, TY(), CY(), 

RY(), UY(), FY()) : } be two SVPN-sets over . Then, intersection of X and Y is defined by 

XY={(, min{TX(), TY()}, min{CX(), CY()}, max{RX(), RX()}, max{UX(), UX()}, max{FX(), FX()}) 

: }. 

Definition 2.6.[18] Suppose that V be a fixed set of n vertex. Assume that E be the set of edges 

between the vertices. Then, Ĝ=(P, Q) is called a single valued neutrosophic graph (in short 

SVN-graph), where (i) TP, IP, FP : V[0, 1] denotes the truth, indeterminacy and false membership 

functions of a vertex iV respectively, such that 0  TP(ki) + IP(ki) + FP(ki)  3 (kiV, i=1, 2, …., n). 

(ii) TQ, IQ, FQ : EVV[0, 1] defined by TQ(ki, kj)  min{TP(ki), TP(kj)}, IQ(ki, kj)  max{IP(ki), IP(kj)}, 

FQ(ki, kj)  max{FP(ki), FP(kj)} denotes the truth, indeterminac y and false membership functions of the 

edge (ki, kj)E respectively, such that 0  TQ(ki, kj) + IQ(ki, kj) + FQ(ki, kj)  3 ((ki, kj)E, i=1, 2, …., n). 

Here, P is said to be the SVN vertex set of V and Q is said to be the SVN edge set of E, 

respectively. 

 

3. Single-Valued Pentapartitioned Neutrosophic-Graph 

Here, we introduce the notions of degree, size, and order of SVPN-graph and present few 

illustrative examples. 

Definition 3.1. Suppose that V={ki: i=1, 2, …, n} be a fixed set of vertices and E={(ki, kj): i, j=1, 2, …, n} 

be the set of edges between the vertices of V. An SVPN-graph of Ĝ*=(V, E) is defined by Ĝ=(P, Q), 

where (i) TP : V[0, 1], CP : V[0, 1], RP : V[0, 1], UP : V[0, 1] and FP : V[0, 1] denotes the truth, 

contradiction, ignorance, unknown and false membership functions of the vertices kiV 

respectively, such that 0 ≤ TP(ki) + CP(ki) + RP(ki) + UP(ki) + FP(ki) ≤ 5, ki V (i=1, 2, …, n); 

(ii) TQ : EVV[0, 1], CQ : EVV[0, 1], RQ : EVV[0, 1], UQ : EVV[0, 1] and FQ : 

EVV[0, 1] defined by TQ(ki, kj) ≤ min{TP(ki), TP(kj)}, CQ(ki, kj) ≤ min{CP(ki), CP(kj)}, RQ(ki, kj)  

max{RP(ki), RP(kj)}, UQ(ki, kj)  max{UP(ki), UP(kj)}, and FQ (ki, kj)  max{FP(ki), FP(kj)}, indicates the 

truth, contradiction, ignorance, unknown and false-membership functions from EVV to [0, 1], 

respectively, such that 0 ≤ TP(ki) + CP(ki) + RP(ki) + UP(ki) + FP(ki) ≤ 5, (ki, kj)E (i, j = 1, 2, …., n). 

 

Here, P is the SVN vertex set of V and Q is the SVN edge set of E respectively. Therefore, Ĝ=(P, Q) 

is an SVPN-graph of Ĝ*=(V, E) if and only if TQ(ki, kj) ≤ min{TP(ki), TP(kj)}; CQ(ki, kj) ≤ min{CP(ki), 

CP(kj)}; RQ(ki, kj)  max{RP(ki), RP(kj)}; UQ(ki, kj)  max{UP(ki), UP(kj)}; and FQ (ki, kj)  max{FP(ki), FP(kj)}. 

Clearly, both P and Q are the SVPN-set over V and E respectively. 

Example 3.1. Assume that Ĝ=(V, E) is a graph, where V={k1, k2, k3, k4} and E={(k1, k2), (k2, k3), (k3, k4), 

(k4, k1)}. Suppose that P is an SVPN vertex set of V and Q is an SVPN edge set of E defined by the 

Table 1 and Table 2.:   
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Table 1. Tabular representation of Example 3.1    Table 2. Tabular representation of Example 3.1 

         

The graph of Example 3.1 is presented in Figure 1. 

 

 

 

 

 

 

 

 

Figure 1: SPVN graph for Example 3.1 

 

Therefore, Ĝ= (P, Q) is an SVPN-graph of Ĝ=(V, E). 

Remark 3.1. Assume that Ĝ=(P, Q) is an SVPN-graph. Then, the edge (ki, kj) is said to be incident at ki 

and kj. 

Definition 3.2. Suppose that Ĝ=(P, Q) be an SVPN-graph. Then, 

(i) (ki, TP(ki), CP(ki), RP(ki), UP(ki), FP(ki)) is called a Single Valued Pentapartitioned Neutrosophic 

(SVPN) vertex (in short SVPN-vertex). 

(ii) ((ki, kj), TQ((ki, kj)), CQ((ki, kj)), RQ((ki, kj)), UQ((ki, kj)), FQ((ki, kj))) is called an SVPN edge (in short 

SVPN-edge).  

Definition 3.3. Suppose that Ĝ=(P, Q) be an SVPN-graph. Then, H=(P, Q) is called an SVPN 

sub-graph (SVPN-sub-graph) of Ĝ=(P, Q) if H=(P, Q) is also an SVPN-graph such that: 

(i) PP i.e. TPi ≤ TPi, CPi ≤ CPi, RPi ≥ RPi, UPi ≥ UPi , and FPi ≥ FPi, kiV; 

(ii) QQ i.e. TQi ≤ TQi, CQi ≤ CQi, RQi ≥ RQi, UQi ≥ UQi, and FQi ≥ FQi, (ki, kj)E. 

Example 3.2. Assume that Ĝ=(P, Q) be an SVPN-graph as shown in Example 3.1. Then, H=(P, Q), 

where V={k1, k2, k5}, E={(k1, k2), (k1, k5)} defined by the Table 3 and Table 4: 

  Table 3. Tabular representation of Example 3.2    Table 4. Tabular representation of Example 3.2  

                                    

                    

 

 

 

 

 

 k1 k2 k3 k4 k5 

TP 0.4 0.3 0.4 0.5 0.2 

CP 0.5 0.5 0.5 0.5 0.5 

RP 0.3 0.4 0.5 0.3 0.4 

UP 0.4 0.3 0.6 0.6 0.3 

FP 0.4 0.5 0.5 0.4 0.5 

 (k1, k2) (k2, k3) (k3, k4) (k4, k5) (k5, k1) 

TP 0.3 0.2 0.2 0.1 0.2 

CP 0.4 0.4 0.3 0.5 0.2 

RP 0.5 0.7 0.8 0.6 0.5 

UP 0.4 0.8 0.9 0.7 0.5 

FP 0.6 0.6 0.9 0.8 0.8 

 (k1, k2) (k1, k5) 

TP 0.1 0.1 

CP 0.3 0.2 

RP 0.8 0.6 

UP 0.6 0.8 

FP 0.8 0.9 

 k1 k2 k5 

TP 0.3 0.2 0.2 

CP 0.3 0.4 0.2 

RP 0.5 0.6 0.5 

UP 0.6 0.4 0.4 

FP 0.6 0.6 0.8 
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Then, the graph H=(P, Q) is represented in Figure 2. 

 

 

 

 

 

 

 

 

 

 

Figure 2: Graph of Example 3.2 

Here, H=(P, Q) is an SVPN-sub-graph of Ĝ=(P, Q). 

Definition 3.4. Suppose that Ĝ=(P, Q) be an SVPN-graph of Ĝ*=(V, E). Then, the complement of 

Ĝ=(P, Q) is an SVPN-graph Ĝ̅ of Ĝ*=(V, E), where 

(ii) T̅P(ki)= TP(ki), C̅P(ki)=CP(ki), R̅P(ki)=RP(ki), U̅P(ki)=UP(ki), F̅P(ki)=FP(ki), kiV; 

(iii) T̅Q(ki, kj) = min{TP(ki), TP(kj)} - TQ(ki, kj), C̅Q(ki, kj) = min{CP(ki), CP(kj)} - CQ(ki, kj), R̅Q(ki, kj) = 

max{RP(ki), RP(kj)} - RQ(ki, kj), U̅Q(ki, kj) = max{UP(ki), UP(kj)} - UQ(ki, kj) and F̅Q(ki, kj) = max{FP(ki), 

FP(kj)} - FQ(ki, kj), (ki, kj)E. 

Definition 3.5. Suppose that Ĝ=(P, Q) be an SVPN-graph. Then, the vertices ki and kj are called 

adjacent in Ĝ=(P, Q) if and only if TQ(ki, kj) = min{TP(ki), TP(kj)}, CQ(ki, kj) = min{CP(ki), CP(kj)}, RQ(ki, kj) 

= max{RP(ki), RP(kj)}, UQ(ki, kj) = max{UP(ki), UP(kj)} and FQ(ki, kj) = max{FP(ki), FP(kj)}. 

Example 3.3. Assume that Ĝ=(P, Q) be an SVPN-graph, which is defined in Table 5 and Table 6. 

 Table 5. Tabular representation of Example 3.3   Table 6. Tabular representation of Example 3.3 

                                         

 

 

 

 

 

 

The representation of the graph of Example 3 is shown in Figure-3. 

 

 

 

 

 

 

 

 

 

                                   Figure 3: Graph of Example 3.3 

 k1 k2 k3 

TP 0.3 0.2 0.3 

CP 0.3 0.8 0.4 

RP 0.5 0.6 0.6 

UP 0.6 0.5 0.7 

FP 0.6 0.5 0.8 

 (k1, k2) (k2, k3) (k3, k1) 

TP 0.2 0.1 0.3 

CP 0.3 0.4 0.3 

RP 0.6 0.8 0.6 

UP 0.6 0.7 0.7 

FP 0.6 0.9 0.8 
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Here, the vertices k1 and k2 are adjacent in the SVPN-graph Ĝ=(P, Q). Similarly, the vertices k3 

and k1 are adjacent in the SVPN-graph Ĝ=(P, Q). But, the vertices k2 and k3 are not adjacent in the 

SVPN-graph Ĝ=(P, Q). 

Definition 3.6. In an SVPN-graph Ĝ=(P, Q), a vertex kjV is called an isolated vertex if there exists 

no edge incident at kj. 

Example 3.4. Suppose that Ĝ=(P, Q) be an SVPN-graph, which is defined in Table 7 and Table 8. 

    

Table 7. Tabular representation of Example 3.4      Table 8. Tabular representation of Example 3.4 

 

 

 

 

 

 

 

The graph of Example 3.4 is represented in Figure 4. 

 

 

 

 

Figure 4: Graph of Example 3.4 

 

In the above SVPN-graph Ĝ=(P, Q), the vertex k3 is an isolated vertex. 

Definition 3.7. Suppose that Ĝ=(P, Q) is an SVPN-graph. Assume that k0 and kn be two vertices in 

Ĝ=(P, Q). Then, an SVPN path P(k0, kn) in an SVPN-graph Ĝ=(P, Q) is a sequence of distinct vertices 

k0, k1, k2, k3, …., kn such that TQ(ki-1, ki) > 0, CQ(ki-1, ki) > 0, RQ(ki-1, ki) > 0, UQ(ki-1, ki) > 0 and FQ(ki-1, ki) > 

0, where 0 ≤ i ≤ n. Here, n (≥ 1) is called the length of the path P(k0, kn). The consecutive pairs (ki-1, ki) 

(0 ≤ i ≤ n) are called the edges of the path P(k0, kn). The path P(k0, kn) is called a cycle if k0 = kn, where 

n≥3. 

Definition 3.8. Suppose that Ĝ=(P, Q) be an SVPN-graph. Then, Ĝ=(P, Q) is said to be an SVPN 

Connected graph (in short SVPN-C-graph) if there exists at least one SVPN-path between two 

vertices. 

 k1 k2 k3 k4 

TP 0.3 0.2 0.5 0.3 

CP 0.3 0.8 0.6 0.4 

RP 0.5 0.6 1.0 0.6 

UP 0.6 0.5 0.8 0.7 

FP 0.6 0.5 0.8 0.8 

 (k1, k2) (k2, k4) (k4, k1) 

TP 0.3 0.1 0.3 

CP 0.3 0.4 0.3 

RP 0.6 0.7 0.6 

UP 0.7 0.8 0.7 

FP 0.8 0.8 0.8 
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Remark 3.2. If an SVPN-graph Ĝ=(P, Q) is not an SVPN-C-graph, then it is called an SVPN 

Dis-Connected graph (in short SVPN-DC-graph). 

Definition 3.9. Assume that Ĝ=(P, Q) be an SVPN-graph. Then, a vertex having exactly one edge 

incident on it is called a pendent vertex. If a vertex is not a pendent vertex, then it is called a 

non-pendent vertex. 

Remark 3.3. (i) If an edge is incident with a pendent vertex, then the edge is said to be a pendent 

edge. Otherwise, it is called a non-pendent edge. 

(ii) If a vertex is adjacent to a pendent vertex, then the vertex is said to be a support of that pendent 

edge. 

Example 3.5. Let Ĝ=(P, Q) be an SVPN-graph, which is defined by Table 9 and Table 10. 

 

Table 9. Tabular representation of Example 3.5  Table 10. Tabular representation of Example 3.5 

 

 

 

 

 

 

 

The representation of the graph for Example 3.5 is presented in Figure 5. 

 

 

 

 

 

 

 

 

 

Figure 5: Graph for Example 3.5 

 

In the above SVPN-graph Ĝ=(P, Q), the vertices k1 and k4 are the pendent vertices. But the 

vertices k2 and k3 are the non-pendent vertices. Similarly, the edges (k1, k2) and (k3, k4) are the 

pendent edges. But the edge (k2, k3) is a non-pendent edge. The vertex k3 is support of the pendent 

edge (k3, k4). But k2 is not the support of the pendent edge (k1, k2). 

Definition 3.10. A SVPN-graph Ĝ=(P, Q) of Ĝ*=(V, E) is said to be a complete SVPN-graph if 

TQ(ki, kj)= min{TP(ki), TP(kj)}; 

CQ(ki, kj)= min{CP(ki), CP(kj)}; 

RQ(ki, kj)= max{RP(ki), RP(kj)}; 

UQ(ki, kj)= max{UP(ki), UP(kj)}; 

and FQ(ki, kj)= max{FP(ki), FP(kj)}, ki, kjV. 

 k1 k2 k3 k4 

TP 0.3 0.2 0.5 0.3 

CP 0.3 0.8 0.6 0.4 

RP 0.5 0.6 1.0 0.6 

UP 0.6 0.5 0.8 0.7 

FP 0.6 0.5 0.8 0.8 

 (k1, k2) (k2, k3) (k3, k4) 

TP 0.1 0.2 0.3 

CP 0.2 0.5 0.4 

RP 0.7 1.0 1.0 

UP 0.7 0.9 0.8 

FP 0.7 0.8 0.8 
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Example 3.6. Assume that Ĝ*=(V, E) is a graph, where V = {k1, k2, k3} and E = {(k1, k2), (k2, k3), (k3, k1)}. 

Suppose that Ĝ=(P, Q) is an SVPN-graph defined by Table 11 and Table 12. 

Table 11. Tabular representation of Example 3.6    Table 12. Tabular representation of Example 3.6                            

                     

 

 

 

 

 

 

The representation of the graph for Example 3.6 is presented in Figure 6. 

 

 

                    

 

 

 

 

 

Figure 6: Graph of Example 3.6. 

 

Here, the above SVPN-graph is a complete SVPN-graph. 

Definition 3.11. An SVPN-graph Ĝ=(P, Q) of Ĝ*=(V, E) is called a bipartite SVPN-graph if the graph 

Ĝ*=(V, E) is a bipartite graph. 

Example 3.7. Assume that Ĝ*=(V, E) be a graph, where V= {k1, k2, k3, k4, k5, k6} and E={(k1, k2), (k2, k3), 

(k3, k1)}. Suppose that Ĝ=(P, Q) be an SVPN-graph defined by  Table 13 and Table 14. 

Table 13. Tabular representation of Example 3.7  Table 14. Tabular representation of Example 3.7 

 

 

 

 

 

 

 

 

 

 

 

 

The representation of the graph of Example 3.7 is presented in Figure 7. 

 

 (k1, k2) (k2, k3) (k3, k1) 

TP 0.3 0.3 0.4 

CP 0.5 0.5 0.5 

RP 0.4 0.5 0.5 

UP 0.4 0.6 0.6 

FP 0.5 0.5 0.5 

 k1 k2 k3 

TP 0.4 0.3 0.4 

CP 0.5 0.5 0.5 

RP 0.3 0.4 0.5 

UP 0.4 0.3 0.6 

FP 0.4 0.5 0.5 

 k1 k2 k3 k4 k5 k6 

TP 0.4 0.3 0.4 0.6 0.9 0.8 

CP 0.5 0.5 0.5 0.3 0.8 0.4 

RP 0.3 0.4 0.5 0.5 0.5 0.3 

UP 0.4 0.3 0.6 0.8 0.7 0.6 

FP 0.4 0.5 0.5 0.4 0.8 0.5 
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Figure 7: Graph of Example 3.7 

 

Here, the crisp graph Ĝ*=(V, E) is a bipartite graph and Ĝ=(P, Q) is a SVPN-graph of Ĝ*=(V, E). Hence 

Ĝ=(P, Q) is a bipartite SVPN-graph. 

Definition 3.12. Suppose that Ĝ=(P, Q) be an SVPN-graph. Then, the degree of the vertex k is 

defined by d(k)=(dT(k), dC(k), dR(k), dU(k), dF(k)),  

where, dT(k) = degree of the truth-membership vertex = sum of the truth-membership of all edges 

those are incident on the vertex k = ∑ 𝐮≠𝐤 TQ(u, k);  

dC(k) = degree of the contradiction-membership vertex = sum of the contradiction-membership of all 

edges those are incident on the vertex k = ∑ 𝐮≠𝐤 CQ(u, k); 

dR(k) = degree of the ignorance-membership vertex = sum of the ignorance-membership of all edges 

those are incident on the vertex k = ∑ 𝐮≠𝐤 RQ(u, k); 

dU(k) = degree of the unknown-membership vertex = sum of the unknown-membership of all edges 

those are incident on the vertex k = ∑ 𝐮≠𝐤 UQ(u, k); 

dF(k) = degree of the falsity-membership vertex = sum of the false-membership of all edges those are 

incident on the vertex k = ∑ 𝐮≠𝐤 FQ(u, k). 

Example 3.8. Assume that Ĝ=(P, Q) be an SVPN-graph of Ĝ*=(V, E) defined by Table 15, Table 16. 

 

Table 15. Tabular representation of example 3.8   Table 16. Tabular representation of example 3.8 

 

                    

 

 

 

 

 

 

 

 k1 k2 k3 k4 

TP 0.3 0.2 0.5 0.3 

CP 0.3 0.8 0.6 0.4 

RP 0.5 0.6 1.0 0.6 

UP 0.6 0.5 0.8 0.7 

FP 0.6 0.5 0.8 0.8 

 

(k
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(k
2,

 k
3)

 

(k
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(k
2,

 k
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(k
2,

 k
4)

 

TP 0.1 0.2 0.3 0.2 0.1 0.1 

CP 0.2 0.5 0.4 0.3 0.4 0.3 

RP 0.7 1.0 1.0 0.8 1.0 0.7 

UP 0.7 0.9 0.8 0.8 0.9 0.9 

FP 0.7 0.8 0.8 0.9 0.8 0.9 



Neutrosophic Sets and Systems, Vol. 50, 2022 234  

 

 
Suman Das, Rakhal Das and Surapati Pramanik, Single Valued Pentapartitioned Neutrosophic Graphs 

 

The representation of the graph of example 3.8 is shown in Figure 8. 

Figure 8: Graph of Example 3.8 

 

Then, d(k1) = (0.3, 0.5, 1.5, 1.5, 1.6), d(k2) = (0.5, 1.4, 3.4, 3.4, 3.2), d(k3)= (0.6, 1.3, 3.0, 2.6, 2.4), and d(k4)= 

(0.6, 1.0, 2.5, 2.5, 2.6). 

Definition 3.13. Suppose that Ĝ=(P, Q) is an SVPN-graph of Ĝ*=(V, E). Then, Ĝ=(P, Q) is called a 

constant SVPN-graph if degree of each vertex is same i.e., d(k) = (y1, y2, y3, y4, y5), kV. 

Example 3.9. Assume that Ĝ=(P, Q) be an SVPN-graph, which is defined by Table 17 and Table 18. 

 

Table 17. Tabular representation of example 3.9  Table 18. Tabular representation of example 3.9 

   

 

  

 

 

 

 

The representation of the graph for Example 3.9 is shown in Figure 9. 

 

 

 

 

 

 

 

 

 

 

Figure 9: Graph of Example 3.9 

 

 k1 k2 k3 k4 

TP 0.4 0.2 0.4 0.3 

CP 0.3 0.4 0.6 0.5 

RP 0.6 0.6 0.7 0.6 

UP 0.7 0.6 0.7 0.7 

FP 0.7 0.4 0.8 0.7 

 (k1, k2) (k2, k3) (k3, k4) (k4, k1) 

TP 0.2 0.1 0.2 0.1 

CP 0.2 0.3 0.2 0.3 

RP 0.7 0.9 0.7 0.9 

UP 0.8 0.8 0.8 0.8 

FP 0.9 0.9 0.9 0.9 
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In the above SVPN-graph Ĝ= (P, Q), the degree of the vertices k1, k2, k3, and k4 are d(k1) = (0.3, 0.5, 

1.6, 1.6, 1.8), d(k2) = (0.3, 0.5, 1.6, 1.6, 1.8), d(k3) = (0.3, 0.5, 1.6, 1.6, 1.8) and d(k4) = (0.3, 0.5, 1.6, 1.6, 1.8). 

Hence, Ĝ= (P, Q) is a constant SVPN-graph. 

Definition 3.14. Assume that Ĝ= (P, Q) be a SVPN-graph. Then, the order of Ĝ= (P, Q), denoted by 

O(Ĝ) is defined by O(Ĝ)= (OT(Ĝ), OC(Ĝ), OR(Ĝ), OU(Ĝ), OF(Ĝ)), where  

OT(Ĝ)= ∑ TPk∈V  denotes the T-order of Ĝ= (P, Q); 

OC(Ĝ)= ∑ CPk∈V  denotes the C-order of Ĝ= (P, Q) 

OR(Ĝ)= ∑   k∈V RP denotes the R-order of Ĝ= (P, Q); 

OU(Ĝ)= ∑ UPk∈V  denotes the U-order of Ĝ= (P, Q); 

OF(Ĝ)=  ∑ FPk∈V  denotes the F-order of Ĝ= (P, Q). 

Example 3.10. Assume that Ĝ= (P, Q) is an SVPN-graph of Ĝ*= (V, E) as shown in Example 3.6. Then, 

order of the SVPN-graph Ĝ= (P, Q) is O(Ĝ)= (1.3, 2.1, 2.7, 2.6, 2.7).  

Definition 3.15. Suppose that Ĝ= (P, Q) is an SVPN-graph. Then, the size of Ĝ= (P, Q), denoted by 

S(Ĝ) is defined by S(Ĝ)= (ST(Ĝ), SC(Ĝ), SR(Ĝ), SU(Ĝ), SF(Ĝ)), where 

ST(Ĝ)=∑   u≠k TQ(u, k) denotes the T-size of Ĝ= (P, Q); 

SC(Ĝ)=∑   u≠k CQ(u, k)  denotes the C-size of Ĝ= (P, Q); 

SR(Ĝ)=∑   u≠k RQ(u, k) denotes the R-size of Ĝ= (P, Q); 

SU(Ĝ)=∑   u≠k UQ(u, k) denotes the U-size of Ĝ= (P, Q); 

SF(Ĝ)= ∑   u≠k FQ(u, k) denotes the F-size of Ĝ= (P, Q). 

Example 3.11. Assume that Ĝ= (P, Q) is an SVPN-graph of Ĝ*= (V, E) as shown in Example 3.6. Then, 

size of the SVPN-graph Ĝ= (P, Q) is S(Ĝ) = (1.0, 2.1, 5.2, 5, 4.9). 

 

 

 

 

4. Result and discussion  

Graph theory is utilized to deal with many real- problems in operations research. In real-life 

situation, however, indeterminacy and uncertainty may exist in almost every graph theoretic 

problem. SVPN-graph is a useful graph theory to model uncertainty and indeterminacy in 

convincing way based on pentapartitioned neutrosophic set which is an extension of neutrosophic 

set.   So, there is a possibility that SVPN-graph will be more successful  in dealing with graph 

theoretic problems having  indeterminacy in the form of three independent components, namely,  

unknown,  contradiction, and ignorance.       

 

 

 

 

5. Conclusions  

In this article, we have presented the notions of SVPN-graph. Also, we have defined the degree, 

order, size of a SVPN-graph and investigated some properties of them. By defining degree, order, 

size of SVPN-graphs, we formulate some results on SVPN-graphs. Further, we give few examples to 

justify the definitions and results. We hope that the approach presented in this paper will open up 
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new avenues of research on SVPN-graph for its application in real life problems in the current 

neutrosophic area. 

In future study, the single valued pentapartitioned neutrosophic graph can be extended to 

regular and irregular  single valued pentapartitioned neutrosophic graph.  The proposed single 

valued pentapartitioned graph can be extended to single-valued pentapartitioned neutrosophic 

intersection graphs,  single-valued pentapartitioned neutrosophic hypergraphs, and so on. The 

single-valued pentapartitioned neutrosophic graph can be employed to model the computer 

networks, expert systems,  image processing, social network , and telecommunication. 
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Abstract. This study utilizes some ideas of -closed and semi--closed sets in neutrosophic crisp topological 

space to state roughly innovative categories of weakly neutrosophic crisp closed functions such as; 

neutrosophic crisp *-closed functions, neutrosophic crisp **-closed functions, neutrosophic crisp 

semi--closed functions, neutrosophic crisp semi-*-closed and neutrosophic crisp semi-**-closed functions. 

Moreover, the interactions among these kinds of feebly neutrosophic crisp closed functions and the suggestions 

for crisp closed functions are described. Furthermore, some theorems, properties, and remarks are debated.  

 

Keywords: Neutrosophic crisp *-closed, neutrosophic crisp **-closed, neutrosophic crisp semi--closed, 

neutrosophic crisp semi-*-closed and neutrosophic crisp semi-**-closed functions. 

1. Introduction 

Smarandache [1,2] extended the view of sets by defending neutrosophic sets as a generality of 

Zadeh's fuzzy set concept, which states there is no accurate meaning for the set [3]. Soon after, the 

intuitionistic fuzzy set theory was submitted by Atanassov, such that he suggested that some 

elements have the degree of non-membership in the set [4]. The recently exhibited notions fascinated 

numerous scholars of conventional mathematics. Perhaps, fuzzy topology was set up by Chang [5] 

and Lowen [6] by redirecting the constructs from fuzzy sets to the traditional topological spaces. 

Additionally, the extraction of neutrosophic crisp topological space (shortly, NCTS) was announced 

by A. A. Salama et al. [7]. M. Abdel-Basset et al. [8-13] provided a new neutrosophic technique. The 

interpretation of neutrosophic crisp semi--closed sets was tendered by R. K. Al-Hamido et al. [14]. 

Some views of gs continuity and gs irresolute functions was examined by V. Banupriya et al. [15]. 

Some principles of neutrosophic 𝛼𝑚-continuity was demonstrated by R. Dhavaseelan et al. [16]. The 

gb-closed sets then gb-continuity was directed by C. Maheswari et al. [17]. The homeomorphism in 

neutrosophic topological spaces was generalized by M. H. PAGE et al. [18]. A weakly neutrosophic 

crisp continuity was established by Q. H. Imran et al. [19,20]. Recently, new types of open mappings 

in weakly neutrosophic crisp topology was defined by Al-Obaidi et al. [21]. 

The target of the study is to submit different categories of neutrosophic crisp closed functions in 

weakly forms, such as; neutrosophic crisp *-closed, neutrosophic crisp **-closed, neutrosophic 

crisp semi--closed, neutrosophic crisp semi-*-closed and neutrosophic crisp semi-**-closed 

functions. Additionally, the connections concerning these kinds of weakly neutrosophic crisp closed 

functions are illuminated, corresponding to the thoughts of neutrosophic crisp closed functions. As 

Well, some theorems, properties and remarks are demonstrated.  
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2. Preliminaries 

     Through this paper, (ℐ, 𝜁), (𝒥, 𝜂)  and (𝒦, 𝛾)  (or in short ℐ, 𝒥  and 𝒦 ) constantly imply 

NCTSs. Assume that ℒ be a neutrosophic crisp set in a NCTS ℐ, then 

 ℒ𝑐 = ℐ − ℒ signifies the neutrosophic crisp complement of ℒ. 

 𝑁𝐶-𝑐𝑙(ℒ) refers to the neutrosophic crisp closure of ℒ. 

 𝑁𝐶-𝑖𝑛𝑡(ℒ) speaks of the neutrosophic crisp interior of ℒ. 

Definition 2.1 [7]: Assume non-empty fixed set ℒ is sample space. The object with form 𝒩 =

〈𝒩1, 𝒩2, 𝒩3〉 is called a neutrosophic crisp set, for short NC-set such that 𝒩1, 𝒩2 and 𝒩3 are subsets 

of ℒ with the mutually disjoint property. 

Definition 2.2: Let ℒ be a NC-subset of a NCTS ℐ, then we have the following  

i. NC-CS is denoted as a neutrosophic crisp -closed set [18] if 𝑁𝐶-𝑐𝑙(𝑁𝐶-𝑖𝑛𝑡(𝑁𝐶-𝑐𝑙(ℒ))) ⊆ ℒ.  

ii. NC-OSs is signified as a neutrosophic crisp -open set (the complement of a NC-CS) in ℐ.  

iii. NCC(ℐ) (resp. NCO(ℐ)) is represented as the collection of each NC-CSs (resp. NC-OSs) of ℐ. 

iv. NCS-CS is indicated as a neutrosophic crisp semi--closed set [14] if  

𝑁𝐶-𝑖𝑛𝑡(𝑁𝐶-𝑐𝑙(𝑁𝐶-𝑖𝑛𝑡(𝑁𝐶-𝑐𝑙(ℒ)))) ⊆ ℒ 

or regularly if there exists a NC-CS 𝒟 in ℐ such that 𝑁𝐶-𝑖𝑛𝑡(𝒟) ⊆ ℒ ⊆ 𝒟.  

v. NCS-OS is designated as a neutrosophic crisp semi--open set (the complement of a NCS-CS) 

in ℐ. 

vi. NCSC(ℐ) (resp. NCSO(ℐ)) is shown as the collection of each NCS-CSs (resp. NCS-OSs) of 

ℐ. 

Remark 2.3 [14,20]: In a NCTS ℐ , the resulting declarations hang on, and the reverse of each 

declaration is a fallacy:  

i. Each NC-CS is a NC-CS and NCS-CS.       

ii. Each NC-CS is a NCS-CS. 

Theorem 2.4 [18]: For any NC-subset ℒ of a NCTS ℐ, ℒ ∈ NCC(ℐ) iff there exists a NC-CS 𝒟 such 

that 𝑁𝐶-𝑐𝑙(𝑁𝐶-𝑖𝑛𝑡(𝒟)) ⊆ ℒ ⊆ 𝒟. 

Definition 2.5: A function 𝜓: ℐ ⟶ 𝒥 is called: 

i. Neutrosophic crisp closed (briefly NC-closed) [7] iff for each NC-CS ℒ in ℐ, then 𝜓(ℒ) is a 

NC-CS in 𝒥. 

ii. Neutrosophic crisp -closed (briefly NC-closed) [19] iff for each NC-CS ℒ in ℐ, then 𝜓(ℒ) is a 

NC-CS in 𝒥. 

Theorem 2.6 [7]:  

i. A function 𝜓: ℐ ⟶ 𝒥 is NC-closed iff 𝑁𝐶-𝑐𝑙(𝜓(ℒ)) ⊆ 𝜓(𝑁𝐶-𝑐𝑙(ℒ)), for every ℒ ⊆ ℐ. 

ii. A function 𝜓: ℐ ⟶ 𝒥 is neutrosophic crisp continuous (shortly NC-continuous) iff for each 

NC-CS ℒ in 𝒥, then 𝜓−1(ℒ) is a NC-CS in ℐ. 

iii. A function 𝜓: ℐ ⟶ 𝒥 is NC-continuous iff 𝑁𝐶-𝑖𝑛𝑡(𝜓(ℒ)) ⊆ 𝜓(𝑁𝐶-𝑖𝑛𝑡(ℒ)), for every ℒ ⊆ ℐ. 

 

3. Weakly Neutrosophic Crisp Closed Functions  

 

Definition 3.1: Assume 𝜓: ℐ ⟶ 𝒥 is a function, then 𝜓 is named as the following: 

i. Neutrosophic crisp *-closed (briefly NC*-closed) iff for each NC-CS ℒ in ℐ, then 𝜓(ℒ) is a 

NC-CS in 𝒥. 
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ii. Neutrosophic crisp **-closed (briefly NC**-closed) iff for each ℒ NC-CS in ℐ, then 𝜓(ℒ) is a 

NC-CS  in 𝒥. 

Definition 3.2: A function 𝜓: ℐ ⟶ 𝒥 is called: 

i. Neutrosophic crisp semi--closed (briefly NCS-closed) iff for each ℒ NC-CS in ℐ, then 𝜓(ℒ) is 

a NCS-CS in 𝒥. 

ii. Neutrosophic crisp semi-*-closed (briefly NCS*-closed) iff for each ℒ NCS-CS in ℐ, then 

𝜓(ℒ) is a NCS-CS in 𝒥. 

iii. Neutrosophic crisp semi-**-closed (briefly NCS**-closed) iff for each ℒ NCS-CS in ℐ, then 

𝜓(ℒ) is a NC-CS in 𝒥. 

Theorem 3.3: A function 𝜓: ℐ ⟶ 𝒥  is NCS-closed iff for every ℒ ⊆ ℐ , 

𝑁𝐶-𝑖𝑛𝑡(𝑁𝐶-𝑐𝑙(𝑁𝐶-𝑖𝑛𝑡(𝑁𝐶-𝑐𝑙(𝜓(ℒ))))) ⊆ 𝜓(𝑁𝐶-𝑐𝑙(ℒ)). 

Proof:  

Necessity: For any ℒ ⊆ ℐ, 𝜓(𝑁𝐶-𝑐𝑙(ℒ)) is NCS-CS in 𝒥 this implies that 

𝑁𝐶-𝑖𝑛𝑡(𝑁𝐶-𝑐𝑙(𝑁𝐶-𝑖𝑛𝑡(𝜓(𝑁𝐶-𝑐𝑙(ℒ))))) ⊆ 𝜓(𝑁𝐶-𝑐𝑙(ℒ)). 

Hence, we have  

𝑁𝐶-𝑖𝑛𝑡(𝑁𝐶-𝑐𝑙(𝑁𝐶-𝑖𝑛𝑡(𝑁𝐶-𝑐𝑙(𝜓(ℒ))))) ⊆ 𝜓(𝑁𝐶-𝑐𝑙(ℒ)). 

Sufficiency: For any ℒ ⊆ ℐ, we have by hypothesis  

𝑁𝐶-𝑖𝑛𝑡(𝑁𝐶-𝑐𝑙(𝑁𝐶-𝑖𝑛𝑡(𝑁𝐶-𝑐𝑙(𝜓(ℒ))))) ⊆ 𝜓(𝑁𝐶-𝑐𝑙(ℒ)). 

So 𝜓(ℒ) is NCS-CS in 𝒥 and then we get that the function 𝜓 is a NCS-closed.  

Theorem 3.4:  

i. Any function NC-closed is NC-closed, then it is NCS-closed. Nonetheless, the inverse is 

generally a fallacy. 

ii. Any function NC-closed is NCS-closed. Nonetheless, the inverse is generally a fallacy. 

Proof:  

i. Assume 𝜓: ℐ ⟶ 𝒥 is a NC-closed function, and ℒ is a NC-CS in ℐ. Then 𝜓(ℒ) is a NC-CS in 𝒥. 

Because NC-CS is NC-CS (NCS-CS), 𝜓(ℒ) is a NC-CS (NCS-CS) in 𝒥. Thus, the function 𝜓 

is NC-closed (NCS-closed). 

ii. Assume 𝜓: ℐ ⟶ 𝒥 is a NC-closed function and ℒ is a NC-CS in ℐ. Then 𝜓(ℒ) is a NC-CS in 

𝒥 . Because NC-CS is NCS-CS, 𝜓(ℒ)  is a NCS-CS in 𝒥 . Thus, the function 𝜓  is 

NCS-closed. 

Example 3.5: Assume ℐ = {𝑝1, 𝑝2, 𝑝3, 𝑝4}. Then  

𝜁ℐ = {𝜙𝑁 , 〈{𝑝3}, 𝜙, 𝜙〉, 〈{𝑝1, 𝑝3}, 𝜙, 𝜙〉, 〈{𝑝1, 𝑝2, 𝑝3}, 𝜙, 𝜙〉, ℐ𝑁} 

is a NCTS. The collection of every NC-CSs of ℐ is: 

NC-C(ℐ) = {ℐ𝑁 , 〈{𝑝1, 𝑝2, 𝑝4}, 𝜙, 𝜙〉, 〈{𝑝2, 𝑝4}, 𝜙, 𝜙〉, 〈{𝑝4}, 𝜙, 𝜙〉, 𝜙𝑁}. 

The collection of every NC-CSs (NCS-CSs) of ℐ is:  

NCSC(ℐ) = NCC(ℐ) = NC-C(ℐ)⋃{〈{𝑝1, 𝑝4}, 𝜙, 𝜙〉, 〈{𝑝1, 𝑝2}, 𝜙, 𝜙〉, 〈{𝑝2}, 𝜙, 𝜙〉, 〈{𝑝1}, 𝜙, 𝜙〉}. 

Define a function 𝜓: ℐ ⟶ 𝒥 by 

𝜓(〈{𝑝1}, 𝜙, 𝜙〉) = 〈{𝑝1}, 𝜙, 𝜙〉, 𝜓(〈{𝑝2}, 𝜙, 𝜙〉) = 〈{𝑝4}, 𝜙, 𝜙〉, 

𝜓(〈{𝑝3}, 𝜙, 𝜙〉) = 〈{𝑝3}, 𝜙, 𝜙〉, 𝜓(〈{𝑝4}, 𝜙, 𝜙〉) = 〈{𝑝2}, 𝜙, 𝜙〉. 

We observe 𝜓 is a NC-closed. It is NCS-closed; nonetheless, it is not a NC-closed function 

because of 〈{𝑝4}, 𝜙, 𝜙〉 is NC-CS in ℐ and 𝜓(〈{𝑝4}, 𝜙, 𝜙〉) = 〈{𝑝2}, 𝜙, 𝜙〉 is not a NC-CS in ℐ. 
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Example 3.6: Let ℐ = {𝑝1 , 𝑝2, 𝑝3, 𝑝4}. Then 

𝜁ℐ = {𝜙𝑁 , 〈{𝑝1}, 𝜙, 𝜙〉, 〈{𝑝2}, 𝜙, 𝜙〉, 〈{𝑝1, 𝑝2}, 𝜙, 𝜙〉, 〈{𝑝1, 𝑝2, 𝑝3}, 𝜙, 𝜙〉, ℐ𝑁} 

is a NCTS. The collection of every NC-CSs of ℐ is: 

NC-C(ℐ) = {ℐ𝑁 , 〈{𝑝2, 𝑝3, 𝑝4}, 𝜙, 𝜙〉, 〈{𝑝1, 𝑝3, 𝑝4}, 𝜙, 𝜙〉, 〈{𝑝3, 𝑝4}, 𝜙, 𝜙〉, 〈{𝑝4}, 𝜙, 𝜙〉, 𝜙𝑁}. 

The collection of every NC-CSs of ℐ is:  

NCC(ℐ) = NC-C(ℐ)⋃{〈{𝑝3}, 𝜙, 𝜙〉}. 

The collection of every NCS-CSs of ℐ is:  

NCSC(ℐ) = NCC(ℐ)⋃{〈{𝑝2, 𝑝4}, 𝜙, 𝜙〉, 〈{𝑝2, 𝑝3}, 𝜙, 𝜙〉, 〈{𝑝1, 𝑝4}, 𝜙, 𝜙〉, 〈{𝑝1, 𝑝3}, 𝜙, 𝜙〉, 〈{𝑝2}, 𝜙, 𝜙〉, 〈{𝑝1}, 𝜙, 𝜙〉}. 

Define a function 𝜓: ℐ ⟶ ℐ by  

𝜓(〈{𝑝1}, 𝜙, 𝜙〉) = 〈{𝑝1}, 𝜙, 𝜙〉, 𝜓(〈{𝑝2}, 𝜙, 𝜙〉) = 〈{𝑝2}, 𝜙, 𝜙〉, 

𝜓(〈{𝑝3}, 𝜙, 𝜙〉) = 𝜓(〈{𝑝4}, 𝜙, 𝜙〉) = 〈{𝑝4}, 𝜙, 𝜙〉. 

We observe that the function 𝜓 is a NCS-closed. Furthermore, it is not NC-closed function 

because of 〈{𝑝1, 𝑝3, 𝑝4}, 𝜙, 𝜙〉  is NC-CS in ℐ  and 𝜓(〈{𝑝1 , 𝑝3, 𝑝4}, 𝜙, 𝜙〉) = 〈{𝑝1, 𝑝4}, 𝜙, 𝜙〉  is not a 

NC-CS in ℐ. 

Remark 3.7: There is no relation between the ideas of NC-closed and NC*-closed functions, as the 

next two examples are displayed below. 

Example 3.8: The function 𝜓 in Example (3.5) is a NC*-closed. Nonetheless, it is not NC-closed.  

Example 3.9: Assume that ℐ = {𝑝1, 𝑝2, 𝑝3, 𝑝4} is a set. Then 

𝜁ℐ = {𝜙𝑁 , 〈{𝑝1}, 𝜙, 𝜙〉, 〈{𝑝2}, 𝜙, 𝜙〉, 〈{𝑝1, 𝑝2}, 𝜙, 𝜙〉, 〈{𝑝1, 𝑝2, 𝑝3}, 𝜙, 𝜙〉, ℐ𝑁} 

is a NCTS. The collection of each NC-CSs of ℐ is: 

NC-C(ℐ) = {ℐ𝑁 , 〈{𝑝2, 𝑝3, 𝑝4}, 𝜙, 𝜙〉, 〈{𝑝1, 𝑝3, 𝑝4}, 𝜙, 𝜙〉, 〈{𝑝3, 𝑝4}, 𝜙, 𝜙〉, 〈{𝑝4}, 𝜙, 𝜙〉, 𝜙𝑁}. 

The family of all NC-CSs of ℐ  is: NCC(ℐ) = NC - C(ℐ)⋃{〈{𝑝3}, 𝜙, 𝜙〉} . The collection of each 

NCS-CSs of ℐ is: 

NCSC(ℐ) = NCC(ℐ)⋃{〈{𝑝2, 𝑝4}, 𝜙, 𝜙〉, 〈{𝑝2, 𝑝3}, 𝜙, 𝜙〉, 〈{𝑝1, 𝑝4}, 𝜙, 𝜙〉, 〈{𝑝1, 𝑝3}, 𝜙, 𝜙〉, 〈{𝑝2}, 𝜙, 𝜙〉, 〈{𝑝1}, 𝜙, 𝜙〉} 

Define a function 𝜓: ℐ ⟶ ℐ by 

𝜓(〈{𝑝1}, 𝜙, 𝜙〉) = 𝜓(〈{𝑝2}, 𝜙, 𝜙〉) = 〈{𝑝1}, 𝜙, 𝜙〉, 

𝜓(〈{𝑝3}, 𝜙, 𝜙〉) = 〈{𝑝2}, 𝜙, 𝜙〉, 𝜓(〈{𝑝4}, 𝜙, 𝜙〉) = 〈{𝑝3}, 𝜙, 𝜙〉. 

We observe that the 𝜓 is a NC-closed. Furthermore, it is not NC*-closed function because of 

〈{𝑝3}, 𝜙, 𝜙〉 is NC-CS in ℐ and 𝜓(〈{𝑝3}, 𝜙, 𝜙〉) = 〈{𝑝2}, 𝜙, 𝜙〉 is not a NC-CS in ℐ. 

Proposition 3.10: 

i. A function 𝜓: ℐ ⟶ 𝒥 is NC-closed and NC-continuous, then this function is NC*-closed. 

ii. A function 𝜓: ℐ ⟶ 𝒥 is a NC*-closed iff 𝜓: (ℐ, NCO(ℐ)) ⟶ (𝒥, NCO(𝒥)) is NC-closed. 

Proof: 

i. Assume that a function 𝜓: ℐ ⟶ 𝒥 is NC-closed and NC-continuous. To verify the function 𝜓 is 

NC*-closed, we suppose that ℒ ∈ NCC(ℐ), then for some sets like NC-CS 𝒩 with this fact 

𝑁𝐶-𝑐𝑙(𝑁𝐶 -𝑖𝑛𝑡(𝒩)) ⊆ ℒ ⊆ 𝒩  (by theorem (2.4)). Hence 𝜓(𝑁𝐶-𝑐𝑙(𝑁𝐶-𝑖𝑛𝑡(𝒩))) ⊆ 𝜓(ℒ) ⊆ 𝜓(𝒩) 

but 𝑁𝐶-𝑐𝑙(𝜓(𝑁𝐶-𝑖𝑛𝑡(𝒩))) ⊆ 𝜓(𝑁𝐶-𝑐𝑙(𝑁𝐶-𝑖𝑛𝑡(𝒩))) (because the function 𝜓 is NC-closed). Then 

𝑁𝐶 -𝑐𝑙(𝜓(𝑁𝐶 -𝑖𝑛𝑡(𝒩))) ⊆ 𝜓(𝑁𝐶 -𝑐𝑙(𝑁𝐶 -𝑖𝑛𝑡(𝒩))) ⊆ 𝜓(ℒ) ⊆ 𝜓(𝒩) . But 𝑁𝐶 -𝑐𝑙(𝑁𝐶 - 𝑖𝑛𝑡(𝜓(𝒩))) ⊆

𝑁𝐶 - 𝑐𝑙(𝜓(𝑁𝐶 - 𝑖𝑛𝑡(𝒩)))  (because the function 𝜓  is NC-continuous). Consequently, we get 

𝑁𝐶-𝑐𝑙(𝑁𝐶-𝑖𝑛𝑡(𝜓(𝒩))) ⊆ 𝜓(ℒ) ⊆ 𝜓(𝒩). However, 𝜓(𝒩) is a NC-CS in 𝒥 (because the function 

𝜓 is NC-closed). Hence 𝜓(ℒ) ∈ NCC(𝒥) (it is clear from theorem (2.4)). Thus, the function 𝜓 is 

NC*-closed. 
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ii. Part (ii) is clear for proof.  

Remark 3.11: It is understood that every function is defined as NC*-closed, then it is NC-closed as 

well as NCS-closed. Nonetheless, the inverse is generally a fallacy, as the next example is displayed 

below. 

Example 3.12: It is clear to note that the function 𝜓 is a NC-closed and NCS-closed in Example 

(3.12). However, it is not NC*-closed. 

Remark 3.13: There is no relation between the ideas of NC-closed and NCS*-closed functions, as 

the next two examples are displayed below. 

Example 3.14: The function 𝜓 in Example (3.5) is a NCS*-closed. However, it is not NC-closed. 

Example 3.15: Let ℐ = {𝑝1, 𝑝2, 𝑝3}. Then 𝜁 = {𝜙𝑁 , 〈{𝑝1}, 𝜙, 𝜙〉, ℐ𝑁} is a NCTS. The collection of each 

NC-CSs of ℐ is NC-C(ℐ) = {ℐ𝑁 , 〈{𝑝2, 𝑝3}, 𝜙, 𝜙〉, 𝜙𝑁}. The collection of each NC-CSs (NCS-CSs) of ℐ 

is:  

NCC(ℐ) = NCSC(ℐ) = NC-C(ℐ)⋃{〈{𝑝3}, 𝜙, 𝜙〉, 〈{𝑝2}, 𝜙, 𝜙〉}. 

Let 𝒥 = {𝑞1, 𝑞2, 𝑞3, 𝑞4}. Then 𝜂 = {𝜙𝑁 , 〈{𝑞1}, 𝜙, 𝜙〉, 〈{𝑞2, 𝑞3}, 𝜙, 𝜙〉, 〈{𝑞1, 𝑞2, 𝑞3}, 𝜙, 𝜙〉, 𝒥𝑁} is a NCTS.  

The collection of each NC-CSs of 𝒥 is: 

NC-C(𝒥) = {𝒥𝑁 , 〈{𝑞2, 𝑞3, 𝑞4}, 𝜙, 𝜙〉, 〈{𝑞1, 𝑞4}, 𝜙, 𝜙〉, 〈{𝑞4}, 𝜙, 𝜙〉, 𝜙𝑁}. 

The collection of each NC-CSs of 𝒥 is: NCC(𝒥) = NC-C(𝒥). The family of all NCS-CSs of 𝒥 is:  

NCSC(𝒥) = NCC(𝒥)⋃{〈{𝑞1}, 𝜙, 𝜙〉}. 

Define a function 𝜓: ℐ ⟶ 𝒥 by  

𝜓(〈{𝑝1}, 𝜙, 𝜙〉) = 〈{𝑞1}, 𝜙, 𝜙〉, 𝜓(〈{𝑝2}, 𝜙, 𝜙〉) = 〈{𝑞2}, 𝜙, 𝜙〉, 𝜓(〈{𝑝3}, 𝜙, 𝜙〉) = 〈{𝑞3}, 𝜙, 𝜙〉. 

Clearly, we can realize that the function 𝜓 is a NC-closed; nonetheless, this function doesn't  

represent NCS*-closed because of 〈{𝑝3}, 𝜙, 𝜙〉 ∈ NCSC(ℐ) and 𝜓(〈{𝑝3}, 𝜙, 𝜙〉) = 〈{𝑞3}, 𝜙, 𝜙〉 ∉

NCSC(𝒥). 

Proposition 3.16: A function 𝜓: ℐ ⟶ 𝒥  is a NCS*-closed iff this function 𝜓: (ℐ, NCSO(ℐ)) ⟶

(𝒥, NCSO(𝒥)) is a NC-closed. 

Proof: Understandable.  

Remark 3.17: There is no relation between the ideas of NC*-closed and NCS*-closed functions, as 

the next two examples are displayed below. 

Example 3.18: The function 𝜓 in Example (3.9) is a NCS*-closed. However, it is not NC*-closed. 

Example 3.19: Assume that the set  ℐ = {𝑝1 , 𝑝2, 𝑝3, 𝑝4}. Then 

𝜁 = {𝜙𝑁 , 〈{𝑝1}, 𝜙, 𝜙〉, 〈{𝑝2, 𝑝4}, 𝜙, 𝜙〉, 〈{𝑝1, 𝑝2, 𝑝4}, 𝜙, 𝜙〉, ℐ𝑁} 

is a NCTS. The collection of each NC-CSs of ℐ is: 

NC-C(ℐ) = {ℐ𝑁 , 〈{𝑝2, 𝑝3, 𝑝4}, 𝜙, 𝜙〉, 〈{𝑝1, 𝑝3}, 𝜙, 𝜙〉, 〈{𝑝3}, 𝜙, 𝜙〉, 𝜙𝑁}. 

Assume that the set 𝒥 = {𝑞1, 𝑞2, 𝑞3, 𝑞4}. Then 

𝜂 = {𝜙𝑁 , 〈{𝑞1}, 𝜙, 𝜙〉, 〈{𝑞2, 𝑞4}, 𝜙, 𝜙〉, 〈{𝑞1, 𝑞2, 𝑞4}, 𝜙, 𝜙〉, 𝒥𝑁} 

is a NCTS. The collection of each NC-CSs of 𝒥 is 

NC-C(𝒥) = {𝒥𝑁 , 〈{𝑞2, 𝑞3, 𝑞4}, 𝜙, 𝜙〉, 〈{𝑞1, 𝑞3}, 𝜙, 𝜙〉, 〈{𝑞3}, 𝜙, 𝜙〉, 𝜙𝑁}. 

Define a function 𝜓: ℐ ⟶ 𝒥 by 

𝜓(〈{𝑝1}, 𝜙, 𝜙〉) = 〈{𝑞1}, 𝜙, 𝜙〉, 

𝜓(〈{𝑝2}, 𝜙, 𝜙〉) = 𝜓(〈{𝑝3}, 𝜙, 𝜙〉) = 〈{𝑞2}, 𝜙, 𝜙〉, 

𝜓(〈{𝑝4}, 𝜙, 𝜙〉) = 〈{𝑞4}, 𝜙, 𝜙〉. 

Clearly, we can note that the function 𝜓 is NC*-closed. However, it is not NCS*-closed. 
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Theorem 3.20: If a function 𝜓: ℐ ⟶ 𝒥 is NC*-closed and NC-continuous, then it is NCS*-closed. 

Proof: Assume that the function 𝜓: ℐ ⟶ 𝒥 is NC*-closed as well as NC-continuous. Moreover, 

suppose ℒ is NCS-CS in ℐ. Then for some sets, like NC-CS 𝒩 with this fact 𝑁𝐶-𝑖𝑛𝑡(𝒩) ⊆ ℒ ⊆

𝒩. Consequently, we have 

𝑁𝐶-𝑖𝑛𝑡(𝜓(𝒩)) ⊆ 𝜓(𝑁𝐶-𝑖𝑛𝑡(𝒩)) ⊆ 𝜓(ℒ) ⊆ 𝜓(𝒩) 

(this is because the function 𝜓 is NC-continuous). However, the set 𝜓(𝒩) ∈ NCC(ℐ) because the 

function 𝜓  is NC*-closed). Thus, the set 𝑁𝐶 - 𝑖𝑛𝑡(𝜓(𝒩)) ⊆ 𝜓(ℒ) ⊆ 𝜓(𝒩) . Therefore, 𝜓(ℒ) ∈

NCSC(𝒥). Thus, 𝜓 is a NCS*-closed function.  

Theorem 3.21: The two functions 𝜓1: ℐ ⟶ 𝒥 and 𝜓2: 𝒥 ⟶ 𝒦 are satisfying the following 

i. If a function 𝜓1 is NC-closed and a function 𝜓2 is NC-closed, then a function 𝜓2 ∘ 𝜓1: ℐ ⟶

𝒦 is NC-closed. 

ii. If a function 𝜓1 is NC-closed and a function 𝜓2 is NC*-closed, then a function 𝜓2 ∘ 𝜓1: ℐ ⟶

𝒦 is NC-closed. 

iii. If functions 𝜓1 and 𝜓2 are NC*-closed, then a function 𝜓2 ∘ 𝜓1: ℐ ⟶ 𝒦 is NC*-closed. 

iv. If functions 𝜓1 and 𝜓2 are NCS*-closed, then a function 𝜓2 ∘ 𝜓1: ℐ ⟶ 𝒦 is NCS*-closed. 

v. If functions 𝜓1 and 𝜓2 are NC**-closed, then a function 𝜓2 ∘ 𝜓1: ℐ ⟶ 𝒦 is NC**-closed. 

vi. If functions 𝜓1 and 𝜓2 are NCS**-closed, then a function 𝜓2 ∘ 𝜓1: ℐ ⟶ 𝒦 is NCS**-closed. 

vii. If a function 𝜓1  is NC**-closed and a function 𝜓2  is NC*-closed, then a function 𝜓2 ∘

𝜓1: ℐ ⟶ 𝒦 is NC*-closed. 

viii. If a function 𝜓1  is NC-closed and a function 𝜓2  is NC**-closed, then a function 𝜓2 ∘

𝜓1: ℐ ⟶ 𝒦 is NC-closed. 

ix. If a function 𝜓1  is NC**-closed and a function 𝜓2  is NC-closed, then a function 𝜓2 ∘

𝜓1: ℐ ⟶ 𝒦 is NC*-closed. 

x. If a function 𝜓1 is NC**-closed and a function 𝜓2 is NC-closed, then a function 𝜓2 ∘ 𝜓1: ℐ ⟶

𝒦 is a NC**-closed. 

Proof:  

i. Let ℒ be a NC-CS in ℐ. Since 𝜓1 is a NC-closed function, 𝜓1(ℒ) is a NC-CS in 𝒥. Since 𝜓2 is a  

N-closed function, 𝜓2 ∘ 𝜓1(ℒ) = 𝜓2(𝜓1(ℒ)) is a NC-CS in 𝒦. Thus, a function 𝜓2 ∘ 𝜓1: ℐ ⟶

𝒦 is N-closed.  

ii. Let ℒ be a NC-CS in ℐ. Since 𝜓1 is a NC-closed function, 𝜓1(ℒ) is a NC-CS in 𝒥. Since 𝜓2 

is a NC*-closed function, 𝜓2 ∘ 𝜓1(ℒ) = 𝜓2(𝜓1(ℒ)) is a NC-CS in 𝒦. Thus, a function 𝜓2 ∘

𝜓1: ℐ ⟶ 𝒦 is NC-closed. 

iii. Let ℒ be a NC-CS in ℐ. Since 𝜓1 is a NC*-closed function, 𝜓1(ℒ) is a NC-CS in 𝒥. Since 

𝜓2 is a NC*-closed function, 𝜓2 ∘ 𝜓1(ℒ) = 𝜓2(𝜓1(ℒ)) is a NC-CS in 𝒦. Thus, a function 

𝜓2 ∘ 𝜓1: ℐ ⟶ 𝒦 is NC*-closed. 

iv. Let ℒ be a NCS-CS in ℐ. Since 𝜓1 is a NCS*-closed function, 𝜓1(ℒ) is a NCS-CS in 𝒥.  

Since 𝜓2 is a NCS*-closed function, 𝜓2 ∘ 𝜓1(ℒ) = 𝜓2(𝜓1(ℒ)) is a NCS-CS in 𝒦. Thus, a 

function 𝜓2 ∘ 𝜓1: ℐ ⟶ 𝒦 is NCS*-closed. 

v. Let ℒ be a NC-CS in ℐ. Since 𝜓1 is a NC**-closed function, 𝜓1(ℒ) is a NC-CS in 𝒥. Since 

any NC-CS is NC-CS, 𝜓1(ℒ) is a NC-CS in 𝒥. Since 𝜓2 is a NC**-closed function, 𝜓2 ∘

𝜓1(ℒ) = 𝜓2(𝜓1(ℒ)) is a NC-CS in 𝒦. Thus, a function 𝜓2 ∘ 𝜓1: ℐ ⟶ 𝒦 is NC**-closed. 
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vi. Let ℒ be a NCS-CS in ℐ. Since 𝜓1 is a NCS**-closed function, 𝜓1(ℒ) is a NC-CS in 𝒥. Since 

any NC-CS is NCS-CS, 𝜓1(ℒ) is a NCS-CS in 𝒥. Since 𝜓2 is a NCS**-closed function, 𝜓2 ∘

𝜓1(ℒ) = 𝜓2(𝜓1(ℒ)) is a NC-CS in 𝒦. Thus, a function 𝜓2 ∘ 𝜓1: ℐ ⟶ 𝒦 is NCS**-closed. 

vii. Let ℒ be a NC-CS in ℐ. Since 𝜓1 is a NC**-closed function, 𝜓1(ℒ) is a NC-CS in 𝒥. Since 

any NC-CS is NC-CS, 𝜓1(ℒ) is a NC-CS in 𝒥. Since 𝜓2 is a NC*-closed function, 𝜓2 ∘

𝜓1(ℒ) = 𝜓2(𝜓1(ℒ)) is a NC-CS in 𝒦. Thus, a function 𝜓2 ∘ 𝜓1: ℐ ⟶ 𝒦 is NC*-closed. 

viii. Let ℒ be a NC-CS in ℐ. Since 𝜓1 is a NC-closed function, 𝜓1(ℒ) is a NC-CS in 𝒥. Since 𝜓2 

is a NC**-closed function, 𝜓2 ∘ 𝜓1(ℒ) = 𝜓2(𝜓1(ℒ)) is a NC-CS in 𝒥. Thus, a function 𝜓2 ∘

𝜓1: ℐ ⟶ 𝒦 is  NC-closed. 

ix. Let ℒ be a NC-CS in 𝒥. Since 𝜓1 is a NC**-closed function, 𝜓1(ℒ) is a NC-CS in 𝒥. Since 

𝜓2 is a NC-closed function, 𝜓2 ∘ 𝜓1(ℒ) = 𝜓2(𝜓1(ℒ)) is a NC-CS in 𝒥. Thus, a function 𝜓2 ∘

𝜓1: ℐ ⟶ 𝒦 is a NC*-closed. 

x. Let ℒ be a NC-CS in 𝒥. Since 𝜓1 is a NC**-closed function, 𝜓1(ℒ) is a NC-CS in 𝒥. Since 

𝜓2 is a NC-closed function, 𝜓2 ∘ 𝜓1(ℒ) = 𝜓2(𝜓1(ℒ)) is a NC-CS in ℒ. Thus, a function 𝜓2 ∘

𝜓1: ℐ ⟶ 𝒦 is NC**-closed.  

Remark 3.22: The following diagram on the next page explains the relationship between weakly 

NC-closed functions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Conclusion  

 We utilize the ideas of NC-CSs and NCS-CSs to identify some different kinds of weakly 

NC-closed functions, for instance; NC*-closed, NC**-closed, NCS-closed, NCS*-closed and 

NCS**-closed functions. The most significant results are that the neutrosophic crisp 

semi-**-closed maps are neutrosophic crisp **-closed, neutrosophic crisp *-closed and 

+ 

+ 

Fig. 3.1 

 

NCS**-closed 

NC**-closed 

NC-closed 

NC-closed 
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neutrosophic crisp semi-*-closed. Moreover, neutrosophic crisp **-closed map is neutrosophic 

crisp *-closed and neutrosophic crisp closed. However, the neutrosophic crisp closed map is not 

neutrosophic crisp *-closed and the latter is not neutrosophic crisp semi-*-closed unless they are 

NC-continuous maps. Furthermore, neutrosophic crisp *-closed and neutrosophic crisp closed 

maps are neutrosophic crisp -closed and neutrosophic crisp semi--closed because crisp -closed 

map is neutrosophic crisp semi--closed. Finally, neutrosophic crisp semi-*-closed map is 

neutrosophic crisp semi--closed. As future works, the NC-CSs and NCS-CSs can be used to 

derive some neutrosophic crisp separation axioms, and we can generalize our results from the 

multivalued neutrosophic crisp closed. 
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Abstract: Yager et. al.  defined a q-rung orthopair fuzzy sets as a new general class of Pythagorean 

fuzzy set in which the sum of the qth power of the support for and support against is bonded by one. 

Tapan et. al.  extended the concept of intuitionistic fuzzy sets as 3-rung orthopair fuzzy sets or 

Fermatean fuzzy sets (FFSs). Later C. Antony et. al. introduced the concept of Fermatean 

Neutrosophic Sets. In this work, we define Fermatean neutrosophic graphs and present some 

operations on Fermatean neutrosophic graphs. Further, we introduce the concepts of regular 

Fermatean neutrosophic graphs, strong Fermatean neutrosophic graphs, Cartesian, Composition, 

Lexicographic product of Fermatean neutrosophic graphs. Finally, we give the applications of 

Fermatean neutrosophic graphs. 

  

Keywords:  Pythagorean Fuzzy sets, Fermatean Fuzzy sets, Fermatean Neutrosophic sets, Fermatean 

Neutrosophic graphs 

 

1. Introduction 

 

Mohamed [1, 2] introduced the concept of strong interval-valued Pythagorean fuzzy graphs and 

established some algebraic operations.  Sangeetha et al. [3] defined the concept of Pythagorean Fuzzy 

Digraph (PyFDG), and PyFDG's score function in addition they proposed an algorithm for 

Pythagorean shortest path in package delivery robots. Peng et al. [4] introduced the concept of 

interval-valued Pythagorean fuzzy sets (IVPFSs) which is a generalization of Pythagorean Fuzzy Set 

(PFS) and interval-valued intuitionistic fuzzy set. Mohanta et al. [5] introduced the idea of Dombi 

picture fuzzy graph and develope some dombi picture graph operations.  Akram et al. [6] proposed 

a new generalization of fuzzy graph, called Simplified Interval-Valued Pythagorean Fuzzy Graph 

(SIVPFGs), to describe uncertain information in graph theory. Then, they developed a series of 

operations on two SIVPFGs and investigated their properties and introduced new multi-agent 

decision-making approach based on SIVPFG. By integrating the concepts Pythagorean Neutrosophic 

mailto:broumisaid78@gmail.com
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mailto:shanmugapriyma@ssn.edu.in
mailto:assiabakali@yahoo.fr
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Fuzzy Graph (PNDFG) and Dombi operator, Ajay et al. [7] defined a new concept Pythagorean 

Neutrosophic Graphs by applying the concepts of Pythagorean Neutrosophic Set to fuzzy graph and 

defined some of its basic definitions and properties. Ajay et al. [8, 9] proposed Pythagorean 

Neutrosophic fuzzy graphs using Dombi operator called Pythagorean Neutrosophic Dombi Fuzzy 

Graphs and solved a decision-making problem involving the selection of the best money-transfer 

applications. Recently, they developed a new Multi Criteria Decision Making (MCDM) method using 

the Pythagorean Neutrosophic graphs. Jun et al. [10] introduced Neutrosophic Cubic Sets as the 

combination of cubic sets with Neutrosophic sets. They also defined different operations of such sets. 

Muhammad et al. [11] applied Cubic Neutrosophic Set concept on graphs and introduced the notion 

of Cubic Neutrosophic Graphs.  

Senapati et al. [12, 13] proposed a new concept known as the Fermatean fuzzy set, in which the 

restrictions are that the total of the third powers of the membership grades and non-membership 

grades be less than one. By expanding the spatial extent of membership and non-membership grade, 

FFSs have a greater potential to support uncertain information. Later, they develop some Fermatean 

Fuzzy Sets operations. An extensively study of Fermatean Fuzzy Set and its applications is illustrated 

in [ 14 - 30].  Thamizhendhi et al. [31] defined the concept of Fermatean Fuzzy Hyper- Graphs 

(FFHGs) and developed some definition and properties. Operations on single valued Neutrosophic 

graphs are studied in [32] Further, the operations on Neutrosophic vague graphs are discussed in 

[33]. In [34], the authors extensively studied about the concept of single valued Neutrosophic graphs. 

Moreover, in [35], bipolar single valued Neutrosophic graphs are investigated with its related 

properties.  R. Sundareswaran et. al. introduced and studied the vulnerability parameters in 

Neutrosophic environment in [36, 37]. 

Recently, Antony and Jansi [38] proposed a new emerging concept of Fermatean neutrosophic by 

blending the concept of Neutrosophic sets and Fermatean fuzzy sets. By employing the concept of 

Fermatean Neutrosophic Sets (FNSs), this paper presents the Fermatean neutrosophic graphs. 

Motivated by the above-mentioned works, to the best of the authors’ knowledge, there is no work 

reported on the concepts of Fermatean neutrosophic graphs with the application. The major 

contributions in this work are explained as follows: 

1) The notions of Fermatean Neutrosophic Graphs (FNGs) are introduced. This study makes 

the first attempt in the literature about the concept in Fermatean Neutrosophic graphs. 

2) The importance of this new class of graphs and distinguishing this class with other existing 

classes are studied. 

3) In addition, the complete and strong FNG are defined. The operations like a Cartesian 

product, lexicographic product, composition, union and the join of FNGs with their 

properties are discussed. 

4) The optimum selection of a power plant among various power plants are identified by using 

FNG is made. 

The layout of this article is arranged systematically as follows: Section 2 provides some basic concepts 

Pythagorean Fuzzy Sets (PFS), Fermatean Fuzzy Set (FFS), Pythagorean Neutrosophic Set (PNS), 
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Fermatean Neutrosophic Set (FNS) and Pythagorean Neutrosophic Fuzzy Graph (PNFG) and we 

present the geometrical interpretation of Fermatean Neutrosophic Set and illustrated in subsection 

2.1. In section 3, we introduce a new class of Neutrosophic graphs called Fermatean Neutrosophic 

Graphs with an illustration. In Section 4, we present the idea of Size and Types of degrees in 

Fermatean Neutrosophic Graphs. Finally, we discuss different types of Fermatean Neutrosophic 

Graphs in Section 5. The conclusion of this research work is summarized in the last Section. 

 

2. Preliminaries 

 

In this section, we provide the basic concepts and definitions in of PFS, PFN, FFS, FNS, FFR, PFR and 

PNFG. In 1999, Smarandache, F. introduced the following definition for Neutrosophic Sets [NS]. 

 

Definition 2.1 [39] 

A fuzzy set (class) A in X is characterized by a membership (characteristic) function fA(x) which 

associates with each point in X a real number in the interval [0, 1], with the value of fA(x) at x 

representing the "grade of membership" of x in A.  

 

Definition 2.2 [40] 

Let X be a non-empty set. An intuitionistic fuzzy set A in X is an object having the form A =

{〈x, μA(x), νA(x)〉: x ∈ X} where the functions μA(x), νA(x) ∶ X → [0,1] define respectively, the degree of 

membership and degree of non-membership of the element x ∈ X to the set A and for every element 

x ∈ X, 0 ≤ μA(x) + νA(x) ≤ 1. 

 

Definition 2.3 [41] 

Let X be the universe. A Neutrosophic set (NS) A in X is characterized by a truth membership function  

TA , an indeterminacy membership function IA, and a falsity membership function  FA where TA, IA 

and FA are real standard elements of [0,1]. It can be written as A = {〈x, (TA(x), IA(x), FA(x)〉: x ∈

X, TA, IA, FA ∈ ]0
− ,1+ [ }. There is no restriction on the sum of TA(x), IA(x) and FA(x) and so 0− ≤

 TA(x) + IA(x) + FA(x) ≤ 3
+. 

 

Definition 2.4 [42]  

A Pythagorean fuzzy set (𝑃𝐹𝑆) A on a universe of discourse X is a structure having the form as 

A= {〈𝑥, 𝑇𝐴(𝑥), 𝐹𝐴(𝑥)〉| 𝑥 ∈ 𝑋} 

where 𝑇𝐴(𝑥): 𝑋 → [0,1] indicates the degree of membership and 𝐹𝐴(𝑥): 𝑋 → [0,1] indicates the degree 

of non-membership of every element  𝑥 ∈ 𝑋 to the set  𝐴, respectively, with the constraints: 0 ≤

(𝑇𝐴(𝑥))
2
+(𝐹𝐴(𝑥))

2
≤ 1.  

 

Definition 2.5 [7]  

A Pythagorean neutrosophic set (ℙℕ − 𝑠𝑒𝑡) A on a universe of discourse X is a structure having the 

form as 

A= {〈𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)〉| 𝑥 ∈ 𝑋} 
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where 𝑇𝐴(𝑥): 𝑋 → [0,1] indicates the degree of membership, 𝐼𝐴(𝑥): 𝑋 → [0,1] indicates the degree of 

indeterminacy-membership, and 𝐹𝐴(𝑥): 𝑋 → [0,1] indicates the degree of non-membership of every 

element  𝑥 ∈ 𝑋 to the set  A, respectively, with the constraints: 0 ≤ (𝑇𝐴(𝑥))
2
+(𝐹𝐴(𝑥))

2
≤1 and 0 ≤

(𝐼𝐴(𝑥))
2
≤1 then  0 ≤ (𝑇𝐴(𝑥))

2
+(𝐼𝐴(𝑥))

2
+(𝑇𝐴(𝑥))

2
≤2.      

 

Here, 𝑇𝐴(𝑥) and 𝐹𝐴(𝑥) are dependent component and 𝐼(𝑥)  is independent component. 

 

Definition 2.6 [12, 13] 

A Fermatean fuzzy set (𝔽𝔽 − 𝑠𝑒𝑡) A on a universe of discourse X is a structure having the form as: 

A= {〈𝑥, 𝑇𝐴(𝑥), 𝐹𝐴(𝑥)〉| 𝑥 ∈ 𝑋} 

where 𝑇𝐴(𝑥): 𝑋 → [0,1] indicates the degree of membership, and 𝐹𝐴(𝑥): 𝑋 → [0,1] indicates the degree 

of non-membership of the element  𝑥 ∈ 𝑋 to the set  A, respectively, with the constraints : 

0 ≤ (𝑇𝐴(𝑥))
3
+(𝐹𝐴(𝑥))

3
≤1 

Antony et al. [36] proposed the concept of Fermatean neutrosophic set considering more possible 

types of uncertainty including the measure of neutral membership. These are defined below 

 

Definition 2.7 [36]  

Fermatean neutrosophic set (𝔽ℕ − 𝑠𝑒𝑡) A on a universe of discourse X is a structure having the form 

as : 

A= {〈𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)〉| 𝑥 ∈ 𝑋} 

where 𝑇𝐴(𝑥): 𝑋 → [0,1] indicates the degree of membership, 𝐼𝐴(𝑥): 𝑋 → [0,1] indicates the degree of 

indeterminacy-membership, and 𝐹𝐴(𝑥): 𝑋 → [0,1] indicates the degree of non-membership of the 

element  𝑥 ∈ 𝑋 to the set  𝐴, respectively, with the constraints : 0 ≤ (𝑇𝐴(𝑥))
3
+(𝐹𝐴(𝑥))

3
≤1 and 0 ≤

(𝐼𝐴(𝑥))
3
≤1 then 0 ≤ (𝑇𝐴(𝑥))

3
+(𝐼𝐴(𝑥))

3
+(𝑇𝐴(𝑥))

3
≤2   ∀ 𝑥 ∈  𝑋. 

Here, 𝑇𝐴(𝑥) and 𝐹𝐴(𝑥) are dependent component and 𝐼𝐴(𝑥)  is independent component. 

 

Definition 2.8 [43] 

Let G = (V, E) be a graph which is an ordered pair a set of vertices (nodes or points) and a 

set of edges (links or lines), which an edge is associated with two distinct vertices. 

 

Definition 2.9 [44, 45] 

Any fuzzy relation 𝜇: 𝑆 × 𝑆 →  [0,1] can be regarded as defining a weighted graph, or fuzzy graph, 

where the arc (𝑥, 𝑦) ∈  𝑆 ×  𝑆, for all x, y in S has weight 𝜇(𝑋, 𝑌) ∈  [0,1]. 

 

Definition 2.10 [46] 

An intuitionistic fuzzy graph is defined as G =  (V, E, μ, ν ), where   

(i) V = {v1, v2, v3, … vn}  (non-empty set) such that  μ1 ∶ V ⟶ [0,1], ν1: V ⟶ [0,1]  denote the 

degree of membership and non-membership of the element vi ∈ V respectively and 0 ≤

 μ1(vi) +  ν1(vi) ≤ 1 for every vi ∈ V, i = 1,2… , n 

https://en.wikipedia.org/wiki/Ordered_pair
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Set_(mathematics)
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(ii) E ⊂ V × V where μ2 ∶ V × V → [0,1]and ν2: V × V → [0,1] are such that  μ2(vi, vj) ≤

min{μ1(vi), μ1(vj)} , ν2(vi, vj) ≤ max{ ν1(vi), ν1(vj)} and 0 ≤ μ2(vi, vj) + ν2(vi, vj) ≤ 1 , 0 ≤

μ2(vi, vj), ν2(vivj), π(vi, vj) ≤ 1 where π(vi, vj) = 1 − μ2(vi, vj) − ν2(vi, vj) for every (vi, vj) ∈

E, i = 1,2, … , n  

Definition 2.11 [47] 

A Neutrosophic graph is of the form 𝐺∗ = (𝑉, 𝜎, 𝜇) where 𝜎 = (𝑇1, 𝐼1, 𝐹1) & 𝜇 = (𝑇2, 𝐼2, 𝐹2) 

(i) 𝑉 = {𝑣1, 𝑣2, 𝑣3, … 𝑣𝑛} such that 𝑇1 ∶ 𝑉 ⟶ [0,1], 𝐼1: 𝑉 ⟶ [0,1] and 𝐹1 : 𝑉 → [0,1] denote the 

degree of truth-membership function, indeterminacy –membership function and falsity-

membership function of the vertex 𝑣1 ∈ 𝑉  respectively and 0 ≤ 𝑇𝑖(𝑣) + 𝐼𝑖(𝑣) + 𝐹𝑖(𝑣) ≤

3, ∀ 𝑣𝑖 ∈ 𝑉 ( 𝑖 = 1,2 , 3, … 𝑛). 

(ii) 𝑇2 ∶ 𝑉 × 𝑉 ⟶ [0,1], 𝐼2: 𝑉 × 𝑉 ⟶ [0,1] and 𝐹2∶𝑉 × 𝑉 → [0,1] where 𝑇2(𝑣𝑖 , 𝑣𝑗), 𝐼2(𝑣𝑖 , 𝑣𝑗) and 

𝐹2(𝑣𝑖 , 𝑣𝑗) denote the degree of truth-membership function , indeterminacy –membership 

function and falsity-membership function of the edge (𝑣𝑖 , 𝑣𝑗)  respectively such that for every 

edge (𝑣𝑖 , 𝑣𝑗), 

𝑇2(𝑣𝑖 , 𝑣𝑗) ≤ min{ 𝑇1(𝑣𝑖), 𝑇1(𝑣𝑗)} ,  

 𝐼2(𝑣𝑖 , 𝑣𝑗) ≤ min{ 𝐼1(𝑣𝑖), 𝐼1(𝑣𝑗)} , 

𝐹2(𝑣𝑖 , 𝑣𝑗) ≤ max{𝐹1(𝑣𝑖), 𝐹1(𝑣𝑗)} ,  

 and 𝑇2(𝑣𝑖 , 𝑣𝑗) + 𝐼2(𝑣𝑖 , 𝑣𝑗) + 𝐹2(𝑣𝑖 , 𝑣𝑗) ≤ 3. 

 

Definition 2. 12 [1, 2]     

A Pythagorean Fuzzy Graph on a universal set X is a pair 𝔾=(𝒫, 𝒬) where  𝒫  is Pythagorean fuzzy 

set on X and 𝒬 is a pythagorean fuzzy relation on X such that: 

{
𝑇𝒬(𝑢, 𝑣) ≤  min{𝑇𝒫(𝑢), 𝑇𝒫(𝑣)}

𝐹𝒬(𝑢, 𝑣) ≥ max{𝐹𝒫(𝑢), 𝐹𝒫(𝑣)}
 

and  0 ≤  𝑇𝒬
2(𝑢, 𝑣) + 𝐹𝒬

2(𝑢, 𝑣) ≤ 1  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 ∈ 𝑋, where , 𝑇𝒬: 𝑋 × 𝑋 → [0,1]. 𝐹𝒬: 𝑋 × 𝑋 → [0,1] indicates 

degree of membership, and degree of non-membership of 𝒬, correspondingly. 

 

Definition 2. 13 [31]  

A Fermatean fuzzy Graph (FFG) on a universal set  X is a pair 𝔾=(𝒫, 𝒬) where  𝒫  is Fermatean fuzzy 

set on X and 𝒬 is a Fermatean fuzzy relation on X such that : 

{
𝑇𝒬(𝑢, 𝑣) ≤  min{𝑇𝒫(𝑢), 𝑇𝒫(𝑣)}

𝐹𝒬(𝑢, 𝑣) ≥ max{𝐹𝒫(𝑢), 𝐹𝒫(𝑣)}
 

and  0 ≤  𝑇𝒬
3(𝑢, 𝑣) + 𝐹𝒬

3(𝑢, 𝑣) ≤ 1  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 ∈ 𝑋, where , 𝑇𝒬: 𝑋 × 𝑋 → [0,1], 𝐹𝒬: 𝑋 × 𝑋 → [0,1] indicates 

degree of membership  and degree of non-membership of 𝒬, correspondingly.  Here  𝒫 is the 

Fermatean fuzzy vertex set of 𝔾 and 𝒬 is the Fermatean fuzzy edge set of 𝔾. 

 

Definition 2. 14 [7]  

Pythagorean Neutrosophic Fuzzy Graph (PNFG) is of the form 𝐺∗ = (𝑉, 𝜎, 𝜇) where 𝜎 =

(𝑇1, 𝐼1, 𝐹1) & 𝜇 = (𝑇2, 𝐼2, 𝐹2) 
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(i) 𝑉 = {𝑣1, 𝑣2, 𝑣3, … 𝑣𝑛} such that 𝑇1 ∶ 𝑉 ⟶ [0,1], 𝐼1: 𝑉 ⟶ [0,1] and 𝐹1: 𝑉 → [0,1] denote the 

degree of truth-membership function , indeterminacy –membership function and falsity-

membership function of the vertex 𝑣1 ∈ 𝑉  respectively and 0 ≤ 𝑇𝑖(𝑣)
2 + 𝐼𝑖(𝑣)

2 + 𝐹𝑖(𝑣)
2 ≤

2, ∀ 𝑣𝑖 ∈ 𝑉 ( 𝑖 = 1,2 , 3, … 𝑛). 

(ii) 𝑇2 ∶ 𝑉 × 𝑉 ⟶ [0,1], 𝐼2: 𝑉 × 𝑉 ⟶ [0,1] and 𝐹2 : 𝑉 × 𝑉 → [0,1] where 𝑇2(𝑣𝑖 , 𝑣𝑗), 𝐼2(𝑣𝑖 , 𝑣𝑗) and 

𝐹2(𝑣𝑖 , 𝑣𝑗) denote the degree of truth-membership function , indeterminacy –membership 

function and falsity-membership function of the edge (𝑣𝑖 , 𝑣𝑗)  respectively such that for every 

edge (𝑣𝑖 , 𝑣𝑗), 

𝑇2(𝑣𝑖 , 𝑣𝑗) ≤ min{ 𝑇1(𝑣𝑖), 𝑇1(𝑣𝑗)} ,  

        𝐼2(𝑣𝑖 , 𝑣𝑗) ≤ min{ 𝐼1(𝑣𝑖), 𝐼1(𝑣𝑗)} , 

𝐹2(𝑣𝑖 , 𝑣𝑗) ≤ max{𝐹1(𝑣𝑖), 𝐹1(𝑣𝑗)} ,  

 and 𝑇2(𝑣𝑖 , 𝑣𝑗) + 𝐼2(𝑣𝑖 , 𝑣𝑗) + 𝐹2(𝑣𝑖 , 𝑣𝑗) ≤ 3. 

 

2.1 Merits and De-merits of uncertainty sets 

Several researchers have been introduced different kinds of sets based on the uncertainty situations.  

Each time, a new set is introduced, it gives an information about the limitations and advantages of 

the new set with a comparison of an existing one. In this section, we have listed out such discussions.  

 

 

Sets Advantages Limitations 

Fuzzy  

- Zadeh (1965) 
Problems with uncertainty can be solved by fuzzy 

sets with membership values. 

Decision makers can be used only 

membership degree 0 ≤ 𝜇 ≤ 1. 

Intuitionistic Fuzzy –

Atanassov (1986) 

The concept of fuzzy sets is inconclusive because the 

exclusion of non-membership function. The IFS 

incorporates both membership function, 𝜇 and 

nonmembership function, 𝜈 with hesitation margin, 

𝜋 (that is, neither membership nor nonmembership 

functions), such that 𝜇 +  𝜈 ≤  1 𝑎𝑛𝑑 𝜇 +  𝜈 +  𝜋 =
 1. 

 

Intuitionistic fuzzy sets can only 

handle incomplete information not 

the indeterminate information and 

inconsistent information which exists 

commonly in belief system.  For 

example, when we ask the opinion of 

an expert about certain statement, he 

or she may that the possibility that the 

statement is true is 0.6 and the 

statement is false is 0.5 and the degree 

that he or she is not sure is 0.1 

Neutrosophic  

– Smarandache(2019) 

In Neutrosophic set, indeterminacy is quantified 

explicitly and truth-membership, indeterminacy 

membership and falsity-membership are 

independent. Neutrosophy was introduced by 

Smarandache in 1995. “It is a branch of philosophy 

which studies the origin, nature and scope of 

neutralities, as well as their interactions with 

different ideational spectra”. 

A Neutrosophic set A in X is 

characterized by a truth-membership 

function 𝑇𝐴, an indeterminacy 

membership function 𝐼𝐴  and a falsity-

membership function 𝐹𝐴. 𝑇𝐴(𝑥), 𝐼𝐴(𝑥) 

and 𝐹𝐴(𝑥) are real standard or non-

standard subsets of ]0- ,1+ [. That is 
𝑇𝐴: 𝑋 → ]0 − ,1[           

 𝐼𝐴: 𝑋 → ]0 − ,1 + [         

𝐹𝐴: 𝑋 → ]0 − ,1 + [  There is no 

restriction on the sum of 𝑇𝐴(𝑥), 𝐼𝐴(𝑥) 

and 𝐹𝐴(𝑥), so 0− ≤ 𝑠𝑢𝑝 𝑇𝐴(𝑥) +
𝑠𝑢𝑝 𝐼𝐴(𝑥) + 𝑠𝑢𝑝𝐹𝐴(𝑥) ≤ 3 + . 
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Single valued 

Neutrosophic  

The set theoretic operators on an instance of 

Neutrosophic set is single valued Neutrosophic set 

(SVNS). 

A Single Valued Neutrosophic Set 

(SVNS) A in X is characterized by 

truth-membership function 𝑇𝐴, 

indeterminacy-membership function 

𝐼𝐴 and falsity-membership function 

𝐹𝐴. For each point x in 

X, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)  ∈  [0,1].  

0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3 

Pythagorean fuzzy  

-Yager (2014) 

FFS is firstly proposed by Senapati and Yager (2020) 

as a special case of q-rung orthopair fuzzy sets (q-

ROFS). The theory of q-ROFS which is developed by 

Yager (2017) requires the sum of the qth power of 

membership (e.g., support for an idea) and non-

membership (e.g., support against an idea) degrees 

should be equal to or smaller than 1. It is obvious that 

when q increases the space of acceptable orthopairs 

will increase and this geometric area supplies more 

independence to users or decision-makers while 

declaring their preferences, ideas, and claims. By 

setting q = 2, Yager (2014) rename the q-ROFS as 

Pythagorean fuzzy sets (PFS) and developed basic 

operations on them. It deals with vagueness 

considering the membership grade, μ and 

nonmembership grade, ν satisfying the conditions 

𝜇 + 𝜈 ≤  1 𝑜𝑟 𝜇 +  𝜈 ≥  1, and, it follows that 𝜇2  +

 𝜈2  +  𝜋2  =  1, where 𝜋 is the Pythagorean fuzzy set 

index. 

 

 

 

 

 

 

 

 

 

 

In a voting process, a judgement may 

give based on a candidate satisfies his 

expectations with a possibility of 0.80 

and this candidate dissatisfies the 

expectations with a possibility of 0.75.  

But their sum is 1.55 (>1) and their 

square sum is 1.20 (>1). the sum of the 

cubes is equal to 0.93 (<1). 

 

Fermatean Fuzzy  

- Sanapati(2019) 

Senapati and Yager (2019) set q = 3 and this novel q-

ROFS is called Fermatean fuzzy sets (FFS). Under this 

new concept, the decision-makers have more 

freedom since they can specify their ideas about 

agreeing (membership) and/or disagreeing (non-

membership) regarding the state of a subject.   It deals 

with vagueness considering the membership grade, 

μ and non-membership grade, ν satisfying the 

conditions 𝜇 + 𝜈 ≤  1 𝑜𝑟 𝜇 +  𝜈 ≥  1, and, it follows 

that 𝜇3  +  𝜈3  +  𝜋3  =  1, where 𝜋 is the Pythagorean 

fuzzy set index. 

Pythagorean  

Neutrosophic  

Pythagorean fuzzy sets has limitation that their 

square sum is less than or equal to 1. In neutrosophic 

set, if truth membership and falsity membership are 

100% dependent and indeterminacy is 100% 

independent, that is 0 ≤  𝑇𝐴(𝑥)  + 𝐼𝐴(𝑥)  + 𝐹𝐴(𝑥)  ≤

 2. Sometimes in real life, we face many problems 

which cannot be handled by using neutrosophic 

when 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) > 2. In such condition, a 

neutrosophic set has no ability to obtain any 

satisfactory result. In Pythagorean neutrosophic set 

with T and F are dependent neutrosophic 

components [PNS] of condition is as their square sum 

does not exceeds 2. Here, T and F are dependent 

neutrosophic components and we make 𝑇𝐴(𝑥), 𝐹𝐴(𝑥) 

𝑎𝑠 Pythagorean, then (𝑇𝐴(𝑥))
2
 +  (𝐹𝐴(𝑥))

2
 ≤  1 with 

In a voting process, a judgement may 

give based on a candidate satisfies his 

expectations with a possibility of 0.80 

and this candidate dissatisfies the 

expectations with a possibility of 0.95 

and neutrally give 0.85   But their 

sum is 2.80 (>2) and their square sum 

is 2.265 (<2). the sum of the cubes is 

equal to 1.9835 (<2). 
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2.2 Flow chart of literature survey of uncertainty sets 

 

 

2.3 Geometrical interpretation  

The Graphical representation of sets which deal with uncertain may be useful to the reader to 

understand the flow of the T, F and I values. In this section, we give a graphical representation of 

membership, non-membership, and indeterminacy grades for all fuzzy sets and Neutrosophic 

sets.   
 

Intuitionistic fuzzy set Pythagorean fuzzy set Fermatean fuzzy Set (Benchmark 

of IFS, PFS, and FFS) 

𝑇𝐴(𝑥), 𝐹𝐴(𝑥) 𝑖𝑛 [0,1]. If 𝐼𝐴(𝑥) is an Independent from 

them, then 0 ≤ 𝐼𝐴(𝑥)  ≤  1. Then 0 ≤  ((𝑇𝐴(𝑥))
2
 +

 (𝐹𝐴(𝑥))
2
+ (𝐼𝐴(𝑥))

2
 ≤

 2 ,with 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) in [0,1]. 

Fermatean 

Neutrosophic  sets 

Fermatean neutrosophic sets, then (𝑇𝐴(𝑥))
3
 +

 (𝐹𝐴(𝑥))
3
 ≤  1 with 𝑇𝐴(𝑥), 𝐹𝐴(𝑥) 𝑖𝑛 [0,1]. If 𝐼𝐴(𝑥) is an 

Independent from them, then 0 ≤ 𝐼𝐴(𝑥)  ≤  1. Then 

0 ≤  ((𝑇𝐴(𝑥))
3
 +  (𝐹𝐴(𝑥))

3
+ (𝐼𝐴(𝑥))

3
 ≤

 2,𝑤𝑖𝑡ℎ 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) 𝑖𝑛 [0,1]. 
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Neutrosophic set Pythagorean Neutrosophic set Fermatean Neutrosophic set 

 

 

                            

 

                               
 

 

3. Fermatean neutrosophic graphs 

In this section, we propose the new class of graph namely, Fermatean Neutrosophic Graph which is 

associated with Fermatean Neutrosophic Set (FNS).  

 

Definition 3.1: Let X be a universal set. A mapping  𝒫 = (𝑇𝒫 , 𝐼𝒫 , 𝐹𝒫) : 𝑋 × 𝑋 → [0,1] is called a 

Fermatean Neutrosophic relation on X such that 𝑇𝒫(𝑢, 𝑣), 𝐼𝒫(𝑢, 𝑣), 𝐹𝒫(𝑢, 𝑣) ∈ [0,1] for all 𝑢, 𝑣 ∈ 𝑋. 

 

Definition 3.2: Let 𝒫 = (𝑇𝒫 , 𝐼𝒫 , 𝐹𝒫) and 𝒬 = (𝑇𝒬 , 𝐼𝒬 , 𝐹𝒬) be Fermatean Neutrosophic sets on X if 𝒬 is 

Fermatean Neutrosophic relation on X, then 𝒬  is called a Fermatean Neutrosophic relation on 𝒫 if 

{

𝑇𝒬(𝑢, 𝑣) ≤  min{𝑇𝒫(𝑢), 𝑇𝒫(𝑣)}

𝐼𝒬(𝑢, 𝑣) ≥ max{𝐼𝒫(𝑢), 𝐼𝒫(𝑣)}

𝐹𝒬(𝑢, 𝑣) ≥ max{𝐹𝒫(𝑢), 𝐹𝒫(𝑣)}

 

if  𝑇𝒫(𝑢, 𝑣), 𝐼𝒫(𝑢, 𝑣), 𝐹𝒫(𝑢, 𝑣) ∈ [0,1] for all 𝑢, 𝑣 ∈ 𝑋. 

Definition 3.3: A Fermatean neutrosophic graph on a universal set X is a pair 𝔾=(𝒫, 𝒬) where  𝒫  is 

Fermatean Neutrosophic set on X and 𝒬 is a Fermatean Neutrosophic relation on X such that: 

{

𝑇𝒬(𝑢, 𝑣) ≤  min{𝑇𝒫(𝑢), 𝑇𝒫(𝑣)}

𝐼𝒬(𝑢, 𝑣) ≥ max{𝐼𝒫(𝑢), 𝐼𝒫(𝑣)}

𝐹𝒬(𝑢, 𝑣) ≥ max{𝐹𝒫(𝑢), 𝐹𝒫(𝑣)}
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and  0 ≤  𝑇𝒬
3(𝑢, 𝑣) + 𝐼𝒬

3(𝑢, 𝑣) + 𝐹𝒬
3(𝑢, 𝑣) ≤ 2  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 ∈ 𝑋, where , 𝑇𝒬: 𝑋 × 𝑋 → [0,1], 𝐼𝒬: 𝑋 × 𝑋 →

[0,1] and 𝐹𝒬: 𝑋 × 𝑋 → [0,1] indicates degree of membership, degree of indeterminacy-membership 

and degree of non-membership of 𝒬, correspondingly. 

Here,  𝒫 is the Fermatean Neutrosophic vertex set of 𝔾 and 𝒬 is the Fermatean Neutrosophic edge 

set of 𝔾. 

An example of Fermatean Neutrosophic graph is given below. 

Example 3.1  Consider a Fermatean neutrosophic graph 𝔾=(𝒫, 𝒬) defined on G = (V, E), where 𝒫 be 

a Fermatean Neutrosophic set on V and 𝒬 be a Fermatean Neutrosophic relation on V, defined by  

𝒫={ 〈𝑣1,(0.6, 1,0.7)〉,〈 𝑣2,(0.5, 0.8,0.4)〉,〈 𝑣3,(0.7, 0.5,0.3)〉} 

and 

𝒬={ 〈𝑣1𝑣2, (0.4, 1,0.8)〉, 〈𝑣2𝑣3, (0.4, 0.9,0.6)〉, 〈𝑣1𝑣3, (0.5, 1,0.8)〉} 

 

Figure 1. Fermatean Neutrosophic graph 

Definition 3.4 Let 𝔾=(𝒫, 𝒬) be A Fermatean neutrosophic graph 𝔽ℕ𝔾 on G=( V, E). The complement 

of Fermatean Neutrosophic graph is 𝔽ℕ𝔾 �̅�=(�̅�, �̅�) where  �̅� = (𝑇𝒫̅̅ ̅, 𝐼�̅� , �̅�𝒫) and �̅� = (𝑇𝒬̅̅ ̅, 𝐼�̅� , 𝐹𝒬̅̅ ̅), defined 

by 

(i) 𝒫 = �̅� 

(ii) 𝑇𝒫̅̅ ̅(𝑢)= 𝑇𝒫(𝑢), 𝐼�̅�(𝑢)= 𝐼𝒫(𝑢), �̅�𝒫(𝑢) = 𝐹𝒫(𝑢) ∀ 𝑢 ∈ 𝑉 

(iii)𝑇𝒬̅̅ ̅(𝑢𝑣) = |𝑇𝒫(𝑢) ∧ 𝑇𝒫(𝑣) − 𝑇𝒬(𝑢𝑣)|, 𝑇𝒬̅̅ ̅(𝑢𝑣) = |𝐼𝒫(𝑢) ∨ 𝐼𝒫(𝑣) − 𝐼𝒬(𝑢𝑣)| and 

(iv) 𝑇𝒬̅̅ ̅(𝑢𝑣) = |𝐹𝒫(𝑢) ∨ 𝐹𝒫(𝑣) − 𝐹𝒬(𝑢𝑣)|, for all  𝑢, 𝑣 ∈ 𝑉 

 

Note: In the below example, T, I and F values are very close to 1. This situation will happen in the 

most of real time problems.  But 𝟎 ≤ 𝑻𝟐 + 𝑰𝟐 + 𝑭𝟐 ≰ 𝟐 . So , we adopt 𝟎 ≤ 𝑻𝟑 + 𝑰𝟑 + 𝑭𝟑 ≤ 𝟐 . Hence, 

we can model this situation by Fermatean Neutrosophic graphs. 
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4. Size and Types of degrees in Fermatean Neutrosophic graphs 

The concept of regularity has been explored by many academics on fuzzy graphs and several of its 

generalizations. We will now propose a description on regularity of Fermatean Neutrosophic graphs 

(𝔽ℕ𝔾). First, we introduce few definitions in this context.          

Definition 4.1 Let  𝔾=(𝒫, 𝒬) be a Fermatean Neutrosophic graph  (𝔽ℕ𝔾) defined on G = (V, E). The 

order  𝑜𝑓  𝔾 is symbolized by O(𝔾) and defined as 

                        O(𝔾)= (∑ 𝑇𝒫(𝑢)𝑢∈ 𝑉 , ∑ 𝐼𝒫(𝑢)𝑢∈ 𝑉 , ∑ 𝐹𝒫(𝑢)𝑢∈ 𝑉 )  

Definition 4.2 Let  𝔾=(𝒫, 𝒬) be a Fermatean Neutrosophic graph  (𝔽ℕ𝔾)  defined on G = (V, E). The 

size of 𝔾 is symbolized by S(𝔾)  and defined as 

                      S(𝔾)= (∑ 𝑇𝒬(𝑢𝑣)𝑢𝑣∈ 𝐸 , ∑ 𝐼𝒬(𝑢𝑣)𝑢𝑣∈ 𝐸 , ∑ 𝐹𝒬(𝑢𝑣)𝑢𝑣∈ 𝐸 ) 

Example 4.1 Consider a Fermatean Neutrosophic graph 𝔾=(𝒫, 𝒬) defined on G = (V, E), where 𝒫 be 

a Fermatean Neutrosophic set on V and 𝒬 be a Fermatean Neutrosophic relation on V, defined by  

𝒫={ 〈𝑣1,(0.6, 1,0.7)〉,〈 𝑣2,(0.5, 0.8,0.4)〉,〈 𝑣3,(0.7, 0.5,0.3)〉} and 

𝒬={ 〈𝑣1𝑣2, (0.4, 1,0.8)〉, 〈𝑣2𝑣3, (0.4, 0.9,0.6)〉, 〈𝑣1𝑣3, (0.5, 1,0.8)〉} 

The order and size of Fermatean Neutrosophic graph displayed in Fig. 1 are  

O(𝔾) = (1.8, 2.3, 1.4) and S(𝔾)= (1.3, 2.9, 2.2), respectively. 

 

Definition 4.3 Let  𝔾=(𝒫, 𝒬) be a Fermatean Neutrosophic graph  𝔽ℕ𝔾 defined on G= (V, E). The 

degree of a vertex 𝑢 𝑜𝑓  𝔾 is symbolized by 𝑑𝔾(𝑢) =  (dT(u), dI(u), dF(u)) and defined as 

𝑑𝔾(𝑢)=(∑ 𝑇𝒫(𝑢)𝑢≠𝑣 , ∑ 𝐼𝒫(𝑢)𝑢≠𝑣 , ∑ 𝐹𝒫(𝑢)𝑢≠𝑣 ) for 𝑢𝑣 ∈  𝐸. 

Definition 4.4 𝔾=(𝒫, 𝒬) is a Fermatean Neutrosophic graph  𝔽ℕ𝔾 defined on G= (V, E). The total 

degree of a vertex 𝑢 of  𝔾 is symbolized by 𝑡𝑑𝔾(𝑢) =  (tdT(u), tdI(u), tdF(u)) and defined as 

𝑡𝑑𝔾(𝑢)=(∑ 𝑇𝒬(𝑢𝑣) +𝑢≠𝑣 𝑇𝒫(𝑢), ∑ 𝐼𝒬(𝑢𝑣) +𝑢≠𝑣 𝐼𝒫(𝑢), ∑ 𝐹𝒬(𝑢𝑣) +𝑢≠𝑣 𝐹𝒫(𝑢)) for 𝑢𝑣 ∈  𝐸. 

Example 4.2. For the Fermatean Neutrosophic graph  𝔾 in Figure 1, the degree and the total degree 

of the vertices are 

𝑑𝔾 (𝑣1) = (1.2, 1.3, 0.7) and 𝑡𝑑𝔾 (𝑣1)= (1.5, 2.8, 1.8) ; 

𝑑𝔾 (𝑣2) = (1.3, 1.5, 1.0) and 𝑡𝑑𝔾 (𝑣2)= (1.8, 2.5, 1.8) ; 

𝑑𝔾 (𝑣3) = (1.1, 1.8, 1.1) and 𝑡𝑑𝔾 (𝑣3)= (1.5, 2.8, 1.8), respectively. 

The following theorem is developed to demonstrate an interesting fact regarding degree of vertices 

of 𝔽ℕ𝔾s. 

Theorem 4.1 For any Fermatean Neutrosophic graph  𝔾=(𝒫, 𝒬) defined on V={𝑢1, 𝑢2, … , 𝑢𝑛}, the 

following relation for degree of vertices of 𝔾 must holds: 

∑ d 𝔾(u𝑗)
𝑛
𝑗=1 = 2(∑ 𝑇𝒬(u𝑗u𝑖)

𝑛−1
𝑗=1
𝑖>𝑗

, ∑ 𝐼𝒬(u𝑗u𝑖)
𝑛−1
𝑗=1
𝑖>𝑗

, ∑ 𝐹𝒬(u𝑗u𝑖)
𝑛−1
𝑗=1
𝑖>𝑗

)  for all 1 ≤ i ≤n. 

Proof : Let V={𝑢1, 𝑢2, … , 𝑢𝑛}, and 𝔾=(𝒫, 𝒬) be a Fermatean neutrosophic graph defined on G = (V, E) 

∑ d 𝔾(𝑢𝑗)
𝑛
𝑗=1 =∑ (𝑑𝑇(𝑢𝑗), 𝑑𝐼(𝑢𝑗), 𝑑𝐹(𝑢𝑗))

𝑛
𝑗=1  

                       = (𝑑𝑇(𝑢1), 𝑑𝐼(𝑢1), 𝑑𝐹(𝑢1))+ (𝑑𝑇(𝑢2), 𝑑𝐼(𝑢2), 𝑑𝐹(𝑢2))+….+(𝑑𝑇(𝑢𝑛), 𝑑𝐼(𝑢𝑛), 𝑑𝐹(𝑢𝑛)) 

                         =[(𝑇𝒬(𝑢1𝑢2), 𝐼𝒬(𝑢1𝑢2), 𝐹𝒬(𝑢1𝑢2)) + (𝑇𝒬(𝑢1𝑢3), 𝐼𝒬(𝑢1𝑢3), 𝐹𝒬(𝑢1𝑢3)) +… 
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                           +(𝑇𝒬(𝑢1𝑢𝑛), 𝐼𝒬(𝑢1𝑢𝑛), 𝐹𝒬(𝑢1𝑢𝑛))] 

                         +[(𝑇𝒬(𝑢2𝑢1), 𝐼𝒬(𝑢2𝑢1), 𝐹𝒬(𝑢2𝑢1)) + (𝑇𝒬(𝑢2𝑢2), 𝐼𝒬(𝑢2𝑢2), 𝐹𝒬(𝑢2𝑢2)) +… 

                           +(𝑇𝒬(𝑢2𝑢𝑛), 𝐼𝒬(𝑢2𝑢𝑛), 𝐹𝒬(𝑢2𝑢𝑛))] 

                         +[(𝑇𝒬(𝑢𝑛𝑢1), 𝐼𝒬(𝑢𝑛𝑢1), 𝐹𝒬(𝑢𝑛𝑢1)) + (𝑇𝒬(𝑢𝑛𝑢2), 𝐼𝒬(𝑢𝑛𝑢2), 𝐹𝒬(𝑢𝑛𝑢2)) +… 

                           +(𝑇𝒬(𝑢𝑛𝑢𝑛−1), 𝐼𝒬(𝑢𝑛𝑢𝑛−1), 𝐹𝒬(𝑢𝑛𝑢𝑛−1))] 

                        =2[(𝑇𝒬(𝑢1𝑢2), 𝐼𝒬(𝑢1𝑢2), 𝐹𝒬(𝑢1𝑢2)) + (𝑇𝒬(𝑢1𝑢3), 𝐼𝒬(𝑢1𝑢3), 𝐹𝒬(𝑢1𝑢3)) +… 

                           +(𝑇𝒬(𝑢1𝑢𝑛), 𝐼𝒬(𝑢1𝑢𝑛), 𝐹𝒬(𝑢1𝑢𝑛))] 

                         + 2[(𝑇𝒬(𝑢2𝑢3), 𝐼𝒬(𝑢2𝑢3), 𝐹𝒬(𝑢2𝑢3)) +… 

                            +𝑇𝒬(𝑢2𝑢𝑛), 𝐼𝒬(𝑢2𝑢𝑛), 𝐹𝒬(𝑢2𝑢𝑛)] +… 

                           +2(𝑇𝒬(𝑢𝑛−1𝑢𝑛), 𝐼𝒬(𝑢𝑛−1𝑢𝑛), 𝐹𝒬(𝑢𝑛−1𝑢𝑛))] 

                          =2(∑ 𝑇𝒬(u𝑗u𝑖)
𝑛−1
𝑗=1
𝑖>𝑗

, ∑ 𝐼𝒬(u𝑗u𝑖)
𝑛−1
𝑗=1
𝑖>𝑗

, ∑ 𝐹𝒬(u𝑗u𝑖)
𝑛−1
𝑗=1
𝑖>𝑗

) 

Hence proved. 

Theorem 4.2 For any Fermatean Neutrosophic graph  𝔾=(𝒫, 𝒬) defined on V={𝑢1, 𝑢2, … , 𝑢𝑛}, the 

following relation for total degree of vertices of 𝔾 must holds: 

∑ 𝑡d 𝔾(u𝑗)
𝑛
𝑗=1 = (2∑ 𝑇𝒬(u𝑗u𝑖) + ∑ 𝑇𝒫(u𝑗)

𝑛
𝑗=1

𝑛−1
𝑗=1
𝑖>𝑗

, 2 ∑ 𝐼𝒬(u𝑗u𝑖) + ∑ 𝐼𝒫(u𝑗)
𝑛
𝑗=1

𝑛−1
𝑗=1
𝑖>𝑗

, 2 ∑ 𝐹𝒬(u𝑗u𝑖)
𝑛−1
𝑗=1
𝑖>𝑗

+

+∑ 𝐹𝒫(u𝑗)
𝑛
𝑗=1 ) , for all 1 ≤ i ≤n. 

Proof : The proof directly follows from Theorem 4.1 and Definition 4.4. 

Definition 4.5. A Fermatean Neutrosophic graph is complete if  

𝑇𝒬(𝑢, 𝑣)= min{𝑇𝒫(𝑢), 𝑇𝒫(𝑣)} 

𝐼𝒬(𝑢, 𝑣)= max{𝐼𝒫(𝑢), 𝐼𝒫(𝑣)} 

𝐹𝒬(𝑢, 𝑣)= max{𝐹𝒫(𝑢), 𝐹𝒫(𝑣)} 

We illustrate it by giving an example. 

Example 4.3. Let the vertex set 𝕍 = {𝑣1, 𝑣2, 𝑣3} and the edge sets 𝔼={𝑣1𝑣2, 𝑣2𝑣3, 𝑣1𝑣3} in 𝔾′=(𝑉, 𝐸). Take 

the Fermatean Neutrosophic set 𝒫 = (𝑇𝒫 , 𝐼𝒫 , 𝐹𝒫) in  𝕍 and the Fermatean Neutrosophic edge sets in 

𝔼 ⊆  𝕍 × 𝕍 defined by 

(𝑇𝒫(𝑣1), 𝐼𝒫(𝑣1), 𝐹𝒫(𝑣1)) = (0.6, 1, 0.7) 

(𝑇𝒫(𝑣2), 𝐼𝒫(𝑣2), 𝐹𝒫(𝑣2)) = (0.5, 0.8, 0.4) 

(𝑇𝒫(𝑣3), 𝐼𝒫(𝑣3), 𝐹𝒫(𝑣3)) = (0.7, 0.5, 0.3) 

and 

(𝑇𝒬(𝑣1𝑣2), 𝐼𝒬(𝑣1𝑣2), 𝐹𝒬(𝑣1𝑣2)) = (0.5, 1, 0.7) 

(𝑇𝒫(𝑣2𝑣3), 𝐼𝒫(𝑣2𝑣3), 𝐹𝒫(𝑣2𝑣3)) = (0.5, 0.8, 0.4) 

(𝑇𝒫(𝑣1𝑣3), 𝐼𝒫(𝑣1𝑣3), 𝐹𝒫(𝑣1𝑣3)) = (0.6, 1, 0.7) 

Then, it is a complete 𝔽ℕ𝔾.  
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Figure 2. Complete Fermatean Neutrosophic graph 

Definition 4.6: The minimum degree of Fermatean Neutrosophic graph 𝔽ℕ𝔾, 𝔾=(𝒫, 𝒬) is designated 

as δ(𝔾)=(δ𝑇(𝔾), δ𝐼(𝔾), δ𝐹(𝔾)) where, 

δ𝑇(𝔾)=min{𝑑𝑇(𝑢)|𝑢 ∈ 𝑉};  is minimum T-degree of 𝔾 

δ𝐼(𝔾)=min{𝑑𝐼(𝑢)|𝑢 ∈ 𝑉} ; is minimum I-degree of 𝔾 

δ𝐹(𝔾)=min{𝑑𝐹(𝑢)|𝑢 ∈ 𝑉} ; is minimum F-degree of 𝔾 

Definition 4.7: The maximum degree of Fermatean Neutrosophic graph 𝔽ℕ𝔾, 𝔾=(𝒫, 𝒬) is designated 

as Δ(𝔾)=(Δ𝑇(𝔾), Δ𝐼(𝔾), Δ𝐹(𝔾)) where, 

Δ𝑇(𝔾)=max{𝑑𝑇(𝑢)|𝑢 ∈ 𝑉} ; is maximum T-degree of 𝔾 

Δ𝐼(𝔾)=max{𝑑𝐼(𝑢)|𝑢 ∈ 𝑉} ; is maximum I-degree of 𝔾 

Δ𝐹(𝔾)=max{𝑑𝐹(𝑢)|𝑢 ∈ 𝑉} ; is maximum F-degree of 𝔾 

Example 4.4. Let the vertex set 𝕍 = {𝑣1, 𝑣2, 𝑣3, 𝑣4} and the edge sets 𝔼={𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣4, 𝑣1𝑣4} in 

𝔾′=(𝑉, 𝐸). Take the Fermatean Neutrosophic set 𝒫 = (𝑇𝒫 , 𝐼𝒫 , 𝐹𝒫) in  𝕍 and the Fermatean 

Neutrosophic edge sets in 𝔼 ⊆  𝕍 × 𝕍 defined by 

(𝑇𝒫(𝑣1), 𝐼𝒫(𝑣1), 𝐹𝒫(𝑣1)) = (0.3, 0.7, 0.5) 

(𝑇𝒫(𝑣2), 𝐼𝒫(𝑣2), 𝐹𝒫(𝑣2)) = (0.6, 0.5, 0.7) 

(𝑇𝒫(𝑣3), 𝐼𝒫(𝑣3), 𝐹𝒫(𝑣3)) = (0.8, 0.3, 0.7)  

(𝑇𝒫(𝑣4), 𝐼𝒫(𝑣4), 𝐹𝒫(𝑣4)) = (0.7, 0.2, 0.4) 

and 

(𝑇𝒬(𝑣1𝑣2), 𝐼𝒬(𝑣1𝑣2), 𝐹𝒬(𝑣1𝑣2)) = (0.3, 0.7, 0.7) 

(𝑇𝒫(𝑣2𝑣3), 𝐼𝒫(𝑣2𝑣3), 𝐹𝒫(𝑣2𝑣3)) = (0.4, 0.6, 0.7) 

(𝑇𝒫(𝑣3𝑣4), 𝐼𝒫(𝑣3𝑣4), 𝐹𝒫(𝑣3𝑣4)) = (0.6, 0.5, 0.8) 

(𝑇𝒫(𝑣1𝑣4), 𝐼𝒫(𝑣1𝑣4), 𝐹𝒫(𝑣1𝑣4)) = (0.3, 0.8, 0.6) 

Then, it is 𝔽ℕ𝔾. 
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Figure 3.  Minimum and maximum degree of a Fermatean Neutrosophic graph 

δ(𝔾)=(0.6,1.1,1.3); Δ(𝔾)=(1,1.5,1.5) 

 

Next, the definition of effective edge of 𝔽ℕ𝔾 are 

Definition 4.9. The edge 𝑒 = (𝑢, 𝑣) of 𝔾=(𝒫, 𝒬) be a 𝔽ℕ𝔾 is called an effective edge of 𝔾 is defined as 

𝑇𝒬(𝑢, 𝑣)= min{𝑇𝒫(𝑢), 𝑇𝒫(𝑣)} 

𝐼𝒬(𝑢, 𝑣)= max{𝐼𝒫(𝑢), 𝐼𝒫(𝑣)} 

𝐹𝒬(𝑢, 𝑣)= max{𝐹𝒫(𝑢), 𝐹𝒫(𝑣)} 

In Fig. 3,  𝑣1𝑣2 is an effective edge of 𝔽ℕ𝔾. 

Definition 4.10. The effective degree of a vertex 𝑢 of 𝔽ℕ𝔾, 𝔾=(𝒫, 𝒬) is defined by 

𝑑ℰ(𝑢)=( 𝑑ℰ𝑇(𝑢), 𝑑ℰ𝐼(𝑢), 𝑑ℰ𝐹(𝑢))  ∀ 𝑢 ∈  ℰ; here 𝑑ℰ𝑇(𝑢) is the sum of the T−values of the effective edges 

of 𝔽ℕ𝔾 incident with 𝑢, 𝑑ℰ𝐼(𝑢)is the sum of the I−values of the effective edges of 𝔽ℕ𝔾 incident with 

𝑢 and 𝑑ℰ𝐹(𝑢) is the sum of the F−values of the effective edges of 𝔽ℕ𝔾 incident with 𝑢.  

Definition 4.11. The minimum effective degree of 𝔾=(𝒫, 𝒬) in 𝔽ℕ𝔾 is designated  as 

δℰ(𝔾) =(δℰ𝑇(𝔾), δℰ𝐼(𝔾), δℰ𝐹(𝔾)) where, 

δℰ𝑇(𝔾)=⋀{𝑑ℰ𝑇(𝑢)|𝑢 ∈ 𝒫}; 

δℰ𝐼(𝔾)=⋀{𝑑ℰ𝐼(𝑢)|𝑢 ∈ 𝒫} ; 

δℰ𝐹(𝔾) =⋀{𝑑ℰ𝐹(𝑢)|𝑢 ∈ 𝒫} 

Definition 4.12. The maximum effective degree of 𝔾=(𝒫, 𝒬) in 𝔽ℕ𝔾 is designated  as 

Δℰ(𝔾) =(Δℰ𝑇(𝔾), Δℰ𝐼(𝔾), Δℰ𝐹(𝔾)) where, 

Δℰ𝑇(𝔾)=⋁{𝑑ℰ𝑇(𝑢)|𝑢 ∈ 𝒫}; 

Δℰ𝐼(𝔾)=⋁{𝑑ℰ𝐼(𝑢)|𝑢 ∈ 𝒫} ; 

Δℰ𝐹(𝔾) =⋁{𝑑ℰ𝐹(𝑢)|𝑢 ∈ 𝒫} 

Example 4.6. Let the vertex set 𝕍 = {𝑣1, 𝑣2, 𝑣3, 𝑣4} and the edge sets 𝔼={𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣4, 𝑣1𝑣4} in 

𝔾′=(𝑉, 𝐸).Take the  Fermatean Neutrosophic set 𝒫 = (𝑇𝒫 , 𝐼𝒫 , 𝐹𝒫) in  𝕍 and the Fermatean 

Neutrosophic edge sets in 𝔼 ⊆  𝕍 × 𝕍 defined by 

(𝑇𝒫(𝑣1), 𝐼𝒫(𝑣1), 𝐹𝒫(𝑣1)) = (0.3, 0.7, 0.5) 

(𝑇𝒫(𝑣2), 𝐼𝒫(𝑣2), 𝐹𝒫(𝑣2)) = (0.6, 0.5, 0.7) 

(𝑇𝒫(𝑣3), 𝐼𝒫(𝑣3), 𝐹𝒫(𝑣3)) = (0.8, 0.3, 0.7)  

(𝑇𝒫(𝑣4), 𝐼𝒫(𝑣4), 𝐹𝒫(𝑣4)) = (0.7, 0.2, 0.4) 

and 

(𝑇𝒬(𝑣1𝑣2), 𝐼𝒬(𝑣1𝑣2), 𝐹𝒬(𝑣1𝑣2)) = (0.3, 0.7, 0.7) 

(𝑇𝒫(𝑣2𝑣3), 𝐼𝒫(𝑣2𝑣3), 𝐹𝒫(𝑣2𝑣3)) = (0.6, 0.5, 0.7) 

(𝑇𝒫(𝑣3𝑣4), 𝐼𝒫(𝑣3𝑣4), 𝐹𝒫(𝑣3𝑣4)) = (0.7, 0.3, 0.7) 

(𝑇𝒫(𝑣1𝑣4), 𝐼𝒫(𝑣1𝑣4), 𝐹𝒫(𝑣1𝑣4)) = (0.3, 0.8, 0.6) 

Then, it is 𝔽ℕ𝔾. 
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Figure 4.  Fermatean Neutrosophic graph 

In Fig. 4,  𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣4  are the effective edges of 𝔽ℕ𝔾. 

 

𝑑ℰ(𝑣1)=( 1.3,0.7,1.1) δℰ(𝔾) =(0.8,0.3,0.7) 

𝑑ℰ(𝑣2)=( 1.1,1.0,1.2)   

𝑑ℰ(𝑣3)=( 1.3,0.7,1.1)   Δℰ(𝔾) =(1.3,1.0,1.2) 

𝑑ℰ(𝑣4)=( 0.8,0.3,0.7) 

 

Definition 4.13. The neighborhood of any vertex 𝑢 in 𝔾=(𝒫, 𝒬)of a 𝔽ℕ𝔾 is designated  as 

𝒩(𝑢)=(𝒩𝑇(𝑢), 𝒩𝐼(𝑢),𝒩𝐹(𝑢)) where, 

𝒩𝑇(𝑢) = {𝑣 ∈ 𝒫: 𝑇𝒬(𝑢, 𝑣) =  𝑇𝒫(𝑢)⋀𝑇𝒫(𝑣)} ; 

𝒩𝐼(𝑢) = {𝑣 ∈ 𝒫: 𝐼𝒬(𝑢, 𝑣) =  𝐼𝒫(𝑢)⋁𝐼𝒫(𝑣)} ; 

𝒩𝐹(𝑢) = {𝑣 ∈ 𝒫: 𝐹𝒬(𝑢, 𝑣) =  𝐹𝒫(𝑢)⋁𝐹𝒫(𝑣)}  

And  𝒩[𝑢]= 𝒩(𝑢)⋃𝑢 is called the closed neighbourhood of 𝑢. 

Definition 4.14. The neighborhood degree of a vertex 𝑢 in 𝔾=(𝒫, 𝒬)of a 𝔽ℕ𝔾 is designated as 

d𝒩(𝑢)=(d𝒩𝑇(𝑢), d𝒩𝐼(𝑢), d𝒩𝐹(𝑢)) where, 

d𝒩𝑇(𝑢) = ∑ 𝑇𝒫(𝑢)𝑢∈𝒩(𝑝) , 

d𝒩𝐼(𝑢) = ∑ 𝐼𝒫(𝑢)𝑢∈𝒩(𝑝) , 

d𝒩𝐹(𝑢) ∑ 𝐹𝒫(𝑢)𝑢∈𝒩(𝑝)  

Definition 4.15. The minimum neighborhood degree of 𝔾=(𝒫, 𝒬) in 𝔽ℕ𝔾 is designated as 

δ𝒩(𝔾)=(δ𝒩𝑇(𝔾), δ𝒩𝐼(𝔾), δ𝒩𝐹(𝔾)) where, 

δ𝒩𝑇(𝔾)=⋀{𝑑𝒩𝑇(𝑢)|𝑢 ∈ 𝒫} ; 

δ𝒩𝐼(𝔾)=⋀{𝑑𝒩𝐼(𝑢)|𝑢 ∈ 𝒫} ; 

δ𝒩𝐹(𝔾) =⋀{𝑑𝒩𝐹(𝑢)|𝑢 ∈ 𝒫} 

Definition 4.16. The maximum neighborhood degree of 𝔾=(𝒫, 𝒬) in 𝔽ℕ𝔾 is designated as 

Δ𝒩(𝔾)=(Δ𝒩𝑇(𝔾), Δ𝒩𝐼(𝔾), Δ𝒩𝐹(𝔾)) where, 

Δ𝒩𝑇(𝔾)=⋁{𝑑𝒩𝑇(𝑢)|𝑢 ∈ 𝒫} ; 

Δ𝒩𝐼(𝔾)=⋁{𝑑𝒩𝐼(𝑢)|𝑢 ∈ 𝒫} ; 

Δ𝒩𝐹(𝔾) =⋁{𝑑𝒩𝐹(𝑢)|𝑢 ∈ 𝒫}  

Example 4.7.  
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Let the vertex set 𝕍 = {𝑣1, 𝑣2, 𝑣3, 𝑣4} and the edge sets 𝔼={𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣4, 𝑣1𝑣4} in 𝔾′=(𝑉, 𝐸). Take the 

Fermatean Neutrosophic set 𝒫 = (𝑇𝒫 , 𝐼𝒫 , 𝐹𝒫) in  𝕍 and the Fermatean Neutrosophic edge sets in 𝔼 ⊆

 𝕍 × 𝕍 defined by 

(𝑇𝒫(𝑣1), 𝐼𝒫(𝑣1), 𝐹𝒫(𝑣1)) = (0.3, 0.7, 0.5) 

(𝑇𝒫(𝑣2), 𝐼𝒫(𝑣2), 𝐹𝒫(𝑣2)) = (0.6, 0.5, 0.7) 

(𝑇𝒫(𝑣3), 𝐼𝒫(𝑣3), 𝐹𝒫(𝑣3)) = (0.8, 0.3, 0.7)  

(𝑇𝒫(𝑣4), 𝐼𝒫(𝑣4), 𝐹𝒫(𝑣4)) = (0.7, 0.2, 0.4) 

and 

(𝑇𝒬(𝑣1𝑣2), 𝐼𝒬(𝑣1𝑣2), 𝐹𝒬(𝑣1𝑣2)) = (0.2, 0.7, 0.8) 

(𝑇𝒫(𝑣2𝑣3), 𝐼𝒫(𝑣2𝑣3), 𝐹𝒫(𝑣2𝑣3)) = (0.6, 0.5, 0.7) 

(𝑇𝒫(𝑣3𝑣4), 𝐼𝒫(𝑣3𝑣4), 𝐹𝒫(𝑣3𝑣4)) = (0.7, 0.3, 0.7) 

(𝑇𝒫(𝑣1𝑣4), 𝐼𝒫(𝑣1𝑣4), 𝐹𝒫(𝑣1𝑣4)) = (0.3, 0.8, 0.6) 

Then, it is 𝔽ℕ𝔾. 

 

Figure 5.  Fermatean Neutrosophic graph 

𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣4  are the effective edges of 𝔽ℕ𝔾 

 

𝛿𝒩(𝔾) = = (0.6,0.3,0.7); Δ𝒩(𝔾) = (1.3,1.0,1.2) 

Definition 4.17. The closed neighborhood degree of a vertex 𝑢 of 𝔾=(𝒫, 𝒬)in a 𝔽ℕ𝔾 is designated  as 

d𝒩[𝑢]=(d𝒩𝑇[𝑢], d𝒩𝐼[𝑢], d𝒩𝐹[𝑢]) 

where, 

d𝒩𝑇[𝑢] = ∑ 𝑇𝒫(𝑣) + 𝑇𝒫(𝑢)𝑣∈𝒩(𝑝) , 

d𝒩𝐼[𝑢] ∑ 𝐼𝒫(𝑣) + 𝐼𝒫(𝑢)𝑣∈𝒩(𝑝) , 

𝒩(𝑣1)=(𝒩𝑇(𝑣1), 𝒩𝐼(𝑣1),𝒩𝐹(𝑣1)) 

𝒩𝑇(𝑣1) = {𝑣2}; 𝒩𝐼(𝑣1) =  {𝑣2};𝒩𝐹(𝑣1) = {𝑣2} 

d𝒩(𝑣1) = (0.6, 0.5, 0.7) 

 

𝒩(𝑣2)=(𝒩𝑇(𝑣2), 𝒩𝐼(𝑣2),𝒩𝐹(𝑣2)) 

𝒩𝑇(𝑣2) = {𝑣1, 𝑣3 }; 𝒩𝐼(𝑣2) =  {𝑣1, 𝑣3 }; 𝒩𝐹(𝑣2) = {𝑣1, 𝑣3 } 

d𝒩(𝑣2) = (1.1,1.0,1.2) 

𝒩(𝑣3)=(𝒩𝑇(𝑣3), 𝒩𝐼(𝑣3),𝒩𝐹(𝑣3)) 

𝒩𝑇(𝑣3) = {𝑣2, 𝑣4}; 𝒩𝐼(𝑣3) =  {𝑣2, 𝑣4};𝒩𝐹(𝑣3) = {𝑣2, 𝑣4} 

d𝒩(𝑣3) = (1.3,0.7,1.1) 

𝒩(𝑣4)=(𝒩𝑇(𝑣4), 𝒩𝐼(𝑣4),𝒩𝐹(𝑣4)) 

𝒩𝑇(𝑣4) = {𝑣3}; 𝒩𝐼(𝑣4) =  {𝑣3};𝒩𝐹(𝑣4) = {𝑣3} 

 d𝒩(𝑣4) = (0.8,0.3,0.7) 
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d𝒩𝐹[𝑢] ∑ 𝐹𝒫(𝑣) + 𝐹𝒫(𝑢)𝑣∈𝒩(𝑝) , 

 

Definition 4.18. The minimum closed neighborhood degree of 𝔾=(𝒫, 𝒬)in a 𝔽ℕ𝔾 is designated as 

δ𝒩[𝔾]=(δ𝒩𝑇[𝔾], δ𝒩𝐼[𝔾], δ𝒩𝐹[𝔾]) where, 

δ𝒩𝑇[𝔾]=⋀{𝑑𝒩𝑇(𝑢)|𝑢 ∈ 𝒫} ; 

δ𝒩𝐼[𝔾]=⋀{𝑑𝒩𝐼(𝑢)|𝑢 ∈ 𝒫} ; 

δ𝒩𝐹[𝔾] =⋀{𝑑𝒩𝐹(𝑢)|𝑢 ∈ 𝒫} ; 

 

Definition 4.19. The maximum closed neighborhood degree of 𝔾=(𝒫, 𝒬)in a 𝔽ℕ𝔾 is designated as 

Δ𝒩[𝔾]=(Δ𝒩𝑇[𝔾], Δ𝒩𝐼[𝔾], Δ𝒩𝐹[𝔾]) where, 

Δ𝒩𝑇[𝔾]=⋀{𝑑𝒩𝑇(𝑢)|𝑢 ∈ 𝒫} ; 

Δ𝒩𝐼[𝔾]=⋀{𝑑𝒩𝐼(𝑢)|𝑢 ∈ 𝒫} ; 

Δ𝒩𝐹[𝔾] =⋀{𝑑𝒩𝐹(𝑢)|𝑢 ∈ 𝒫} ; 

Example 4.8.  

From Fig. 5,  

 

𝛿𝒩[𝔾] = = (0.9,0.5,1.2); Δ𝒩[𝔾] = (2.1,1.5,1.8) 

 

5. Types of Fermatean neutrosophic graphs 

In this section, we introduce different types of Fermatean Neutrosophic graphs based on the 

degree of each node in FNG such as regular, totally regular and uniform FNGs with suitable 

examples.  

 

Definition 5.1 Let 𝔾=(𝒫, 𝒬) be A Fermatean Neutrosophic graph 𝔽ℕ𝔾 defined on G = (V, E). If each 

vertex of 𝔾 has same degree, that is  

𝑑𝔾(𝑢)=( 𝑙1, 𝑙2, 𝑙3)  ∀  𝑢 ∈ 𝑉 

Then 𝔾 is called ( 𝑙1, 𝑙2, 𝑙3) - regular 𝔽ℕ𝔾.   

Example 5.2 Consider a Fermatean Neutrosophic graph 𝔾=(𝒫, 𝒬) defined on G = (V, E), where 𝒫 be 

a Fermatean Neutrosophic set on V and 𝒬 be a Fermatean Neutrosophic relation on V, defined by  

𝒫={ 〈𝑣1, (0.6, 1,0.7)〉, 〈𝑣2, (0.5, 0.8,0.4)〉, 〈𝑣3, (0.7, 0.5,0.3)〉 } 

𝒩[𝑣1]=(𝒩𝑇[𝑣1], 𝒩𝐼[𝑣1],𝒩𝐹[𝑣1]) 

𝒩𝑇[𝑣1] = {𝑣1, 𝑣2}; 𝒩𝐼[𝑣1] =  {𝑣1, 𝑣2};  ;𝒩𝐹[𝑣1] = {𝑣1, 𝑣2} 

d𝒩[𝑣1] = (0.9, 1.2, 1.2) 

 

𝒩[𝑣2]=(𝒩𝑇[𝑣2], 𝒩𝐼[𝑣2],𝒩𝐹[𝑣2]) 

𝒩𝑇[𝑣2] = {𝑣1, 𝑣2, 𝑣3 }; 𝒩𝐼[𝑣2] =  {𝑣1, 𝑣2, 𝑣3 }; 𝒩𝐹[𝑣2] =

{𝑣1, 𝑣2, 𝑣3 } 

d𝒩(𝑣2) = (1.7,1.5,1.9) 

𝒩[𝑣3]=(𝒩𝑇[𝑣3], 𝒩𝐼[𝑣3],𝒩𝐹[𝑣3]) 

𝒩𝑇[𝑣3] = {𝑣2, 𝑣3, 𝑣4}; 𝒩𝐼[𝑣3] =  {𝑣2, 𝑣3, 𝑣4}; 𝒩𝐹[𝑣3] = {𝑣2, 𝑣3, 𝑣4} 

d𝒩(𝑣3) = (2.1,1.0,1.8) 

𝒩[𝑣4]=(𝒩𝑇[𝑣4], 𝒩𝐼[𝑣4],𝒩𝐹[𝑣4]) 

𝒩𝑇[𝑣4] = {𝑣3, 𝑣4}; 𝒩𝐼[𝑣4] =  {𝑣3, 𝑣4}; 𝒩𝐹[𝑣4] = {𝑣3, 𝑣4} 

 d𝒩(𝑣4) = (1.5,0.5,1.1) 
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And  𝒬={ 〈𝑣1𝑣2, (0.4, 1,0.8)〉, 〈𝑣2𝑣3, (0.4, 1,0.8)〉, 〈𝑣1𝑣3, (0.4, 1,0.8)〉 } 

 

 

 

Figure 6. Regular Fermatean Neutrosophic graph 

We see that the degree of each vertex in 𝔾 is 𝑑𝔾(𝑣1) = 𝑑𝔾(𝑣2) = 𝑑𝔾(𝑣3)  = (1.2, 2,1.4). Hence the 

Fermatean Neutrosophic graph, displayed in Fig. 6, is (1.2, 2,1.4) – regular. 

 

Definition 5.3. A Fermatean Neutrosophic graph 𝔽ℕ𝔾 𝔾=(𝒫, 𝒬) is called Strong Fermatean 

Neutrosophic graph if the following conditions are satisfied: 

𝑇𝒬(𝑢, 𝑣)= min{𝑇𝒫(𝑢), 𝑇𝒫(𝑣)} 

𝐼𝒬(𝑢, 𝑣)= max{𝐼𝒫(𝑢), 𝐼𝒫(𝑣)} 

                       𝐹𝒬(𝑢, 𝑣)= max{𝐹𝒫(𝑢), 𝐹𝒫(𝑣)}  for all  𝑢, 𝑣 ∈ 𝐸 

That is , all the edges in a Fermatean Neutrosophic graph are effective edges.  

An example of a Strong Fermatean neutrosophic graph is shown in Figure 7. 

 

Example 5.4 

Consider a graph G=(V, E) where the vertex set V={𝑣1, 𝑣2, 𝑣3, 𝑣4} and the edge se 

E={𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣4, 𝑣1𝑣4}. Let 𝔾=(𝒫, 𝒬)be  a Fermatean Neutrosophic graph on V as shown in Figure 

7, defined by 𝒫={ 〈𝑣1, (0.3, 0.7,0.5)〉, 〈𝑣2, (0.4, 0.6,0.7)〉, 〈𝑣3, (0.8, 0.3,0.7)〉, 〈𝑣4, (0.7, 0.2,0.4)〉 } and  

𝒬={ 〈𝑣1𝑣2, (0.3, 0.7,0.7)〉, 〈𝑣2𝑣3, (0.6, 0.5,0.7)〉, 〈𝑣3𝑣4, (0.7, 0.3,0.7)〉, 〈𝑣1𝑣4, (0.3, 0.7,0.5)〉}. 

 

Figure 7. Strong Fermatean Neutrosophic graph 
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Following and extending the idea of uniform single valued neutrosophic graphs by Broumi et al. [32], 

we describe the concept of regularity of uniform single valued neutrosophic graphs under Fermatean 

neutrosophic environment. 

Definition 5.5 Let  𝔾=(𝒫, 𝒬) be a Fermatean Neutrosophic graph  𝔽ℕ𝔾 defined on G= (V, E), where 

𝒫 = (𝑇𝒫 , 𝐼𝒫 , 𝐹𝒫) is a Fermatean Neutrosophic sets on V and 𝒬 = (𝑇𝒬 , 𝐼𝒬 , 𝐹𝒬) is a Fermatean 

Neutrosophic relation  on V. 𝔾 is called  uniform Fermtean Neutrosophic of level (𝑘1, 𝑘2, 𝑘3) if 

𝑇𝒬(𝑢, 𝑣)= 𝑘1, 𝐼𝒬(𝑢, 𝑣)= 𝑘2 and 𝐹𝒬(𝑢, 𝑣)= 𝑘3, ∀ (𝑢, 𝑣) ∈ V × V and 𝑇𝒫(𝑢)= 𝑘1, 𝐼𝒫(𝑢)= 𝑘2 and 𝐹𝒫(𝑢)= 𝑘3 ∀ 

𝑢 ∈ V, where, 0< 𝑘1, 𝑘2, 𝑘3 ≤ 1. 

 

Example 5.5 : The following figure is an uniform Fermatean Neutrosophic graph 𝔾=(𝒫, 𝒬). 

 

Figure 8. Uniform Fermatean Neutrosophic graph 

Theorem 5.6 Every uniform Fermatean Neutrosophic graph is perfectly regular Fermatean 

Neutrosophic. 

Proof. Let  𝔾=(𝒫, 𝒬) be a Fermatean Neutrosophic graph  𝔽ℕ𝔾 defined on G= (V, E) with 

V={𝑢1, 𝑢2, … , 𝑢𝑛}, then 𝑇𝒬(𝑢, 𝑣)= 𝑘1, 𝐼𝒬(𝑢, 𝑣)= 𝑘2 and 𝐹𝒬(𝑢, 𝑣)= 𝑘3, ∀ (𝑢, 𝑣) ∈ V × V and 𝑇𝒫(𝑢)= 𝑘1, 𝐼𝒫(𝑢)= 

𝑘2 and 𝐹𝒫(𝑢)= 𝑘3 ∀ (𝑢, 𝑣) ∈ V × V, where 0 < 𝑘1, 𝑘2, 𝑘3 ≤ 1. 

Then for each  𝑢 in V, 

  𝑑𝔾(𝑢)= (dT(𝑢), dI(𝑢), dF(𝑢)) 

                   =(∑ 𝑇𝒬(𝑢𝑣)𝑢𝑣∈ 𝐸 , ∑ 𝐼𝒬(𝑢𝑣)𝑢𝑣∈ 𝐸 , ∑ 𝐹𝒬(𝑢𝑣)𝑢𝑣∈ 𝐸 )  

                     =((𝑛 − 1)𝑘1, (𝑛 − 1)𝑘2, (𝑛 − 1)𝑘3) 

This shows that 𝔾 is ((𝑛 − 1)𝑘1, (𝑛 − 1)𝑘2, (𝑛 − 1)𝑘3) regular 𝔽ℕ𝔾. Moreover for each vertex 𝑢 in V, 

𝑡𝑑𝔾(𝑢)= (tdT(𝑢), tdI(𝑢), tdF(𝑢)) 

                   = (∑ 𝑇𝒬(𝑢𝑣) +𝑢𝑣∈ 𝐸 𝑇𝒫(𝑢), ∑ 𝐼𝒬(𝑢𝑣) +𝑢𝑣∈ 𝐸 𝐼𝒫(𝑢), ∑ 𝐹𝒬(𝑢𝑣) +𝑢𝑣∈ 𝐸 𝐹𝒫(𝑢)) 

                  =((𝑛 − 1)𝑘1 + 𝑘1, (𝑛 − 1)𝑘2 + 𝑘2, (𝑛 − 1)𝑘3 + 𝑘3) 

                   = (𝑛𝑘1, 𝑛𝑘2, 𝑛𝑘3) 

This shows that 𝔾 is (𝑛𝑘1, 𝑛𝑘2, 𝑛𝑘3) totally regular 𝔽ℕ𝔾 .  

 

Theorem 5.7 If 𝔾 is 𝑎 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝔽ℕ𝔾 of level (𝑘1, 𝑘2, 𝑘3) on G= (V, E), then 

a) O(𝔾)= (𝑛𝑘1, 𝑛𝑘2, 𝑛𝑘3)  where n=|𝑉|. 
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b) S(𝔾)= (𝑚𝑘1, 𝑚𝑘2, 𝑚𝑘3) where m=|𝐸|. 

Proof. Let  𝔾=(𝒫, 𝒬) be a uniform Fermatean Neutrosophic graph  𝔽ℕ𝔾 defined on G= (V, E) with 

V={𝑢1, 𝑢2, … , 𝑢𝑛}, then 𝑇𝒬(𝑢, 𝑣)= 𝑘1, 𝐼𝒬(𝑢, 𝑣)= 𝑘2 and 𝐹𝒬(𝑢, 𝑣)= 𝑘3, ∀ (𝑢, 𝑣) ∈ V × V and 𝑇𝒫(𝑢)= 𝑘1, 

𝐼𝒫(𝑢)= 𝑘2 and 𝐹𝒫(𝑢)= 𝑘3 ∀ (𝑢, 𝑣) ∈ V × V, where 0 < 𝑘1, 𝑘2, 𝑘3 ≤ 1. 

 

a) for each vertex 𝑢 in V 

                     O(𝔾)= (∑ 𝑇𝒫(𝑢)𝑢∈ 𝑉 , ∑ 𝐼𝒫(𝑢)𝑢∈ 𝑉 , ∑ 𝐹𝒫(𝑢)𝑢∈ 𝑉 )  

                               =(∑ 𝑘1𝑢∈ 𝑉 , ∑ 𝑘2𝑢∈ 𝑉 , ∑ 𝑘3𝑢∈ 𝑉 )  

                               = (𝑛𝑘1, 𝑛𝑘2, 𝑛𝑘3)   where n=|𝑉|. 

 

b) for each edge 𝑢𝑣 in E 

                                S(𝔾)= (∑ 𝑇𝒬(𝑢𝑣)𝑢𝑣∈ 𝐸 , ∑ 𝐼𝒬(𝑢𝑣)𝑢𝑣∈ 𝐸 , ∑ 𝐹𝒬(𝑢𝑣)𝑢𝑣∈ 𝐸 ) 

                               =(∑ 𝑘1𝑢𝑣∈ 𝐸 , ∑ 𝑘2𝑢𝑣∈ 𝐸 , ∑ 𝑘3𝑢𝑣∈ 𝐸 )  

                               = (𝑚𝑘1, 𝑚𝑘2, 𝑚𝑘3) where m=|𝐸|. 

Hence proved. 

 

Remark 5.8 The underlying crisp graph of complement of a Fermatean Neutrosophic graph is always 

an empty graph. 

 

6. Operations on Fermatean Neutrosophic Graphs 

In this section, we propose some important graph-theoretic operations over Fermatean Neutrosophic 

graphs along with various important results and illustrative examples. 

Let 𝔾1=(𝒫1, 𝒬1) and 𝔾2=(𝒫2, 𝒬2) be two Fermatean Neutrosophic graphs with references to the graphs 

𝐺1=(𝑉1, 𝐸1) and 𝐺2=(𝑉2, 𝐸2), correspondingly, where 𝒫1& 𝒫2 are the Fermatean Neutrosophic vertex 

sets in 𝑉1& 𝑉2 corespondingly, and 𝒬1& 𝒬2 are the the Fermatean Neutrosophic edge sets in 𝐸1& 𝐸2, 

correspondingly. 

There are many operations on two graphs 𝐺1=(𝑉1, 𝐸1) and 𝐺2=(𝑉2, 𝐸2),which result in a graph whose 

vertex set is the Cartesian product 𝑉1& 𝑉2. 

In the following section, we discuss a few operations on two graphs in the structure of Fermatean 

Neutrosophic sets theory and investigate their properties. 

 

6.1 Cartesian Product of Fermatean Neutrosophic Graphs 

Definition 6.1.1 The Cartesian product of two Fermatean Neutrosophic graphs 𝔾1and 𝔾2, denoted 

by 𝔾1𝐂𝐚𝐫𝐭𝐞𝐬𝐢𝐚𝐧 𝐏𝐫𝐨𝐝𝐮𝐜𝐭  𝔾2, is defined as follows: 

𝔾1 × 𝔾2=(𝒫1 × 𝒫2, 𝒬1 × 𝒬2) 

where 
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𝑇𝒫1×𝒫2(𝑢1, 𝑢2) = min (𝑇𝒫1(𝑢1), 𝑇𝒫2(𝑢2))

𝐼𝒫1×𝒫2(𝑢1, 𝑢2) = max (𝐼𝒫1(𝑢1), 𝐼𝒫2(𝑢2))

𝐹𝒫1×𝒫2(𝑢1, 𝑢2) = max (𝐹𝒫1(𝑢1), 𝐹𝒫2(𝑢2)) ∀(𝑢1, 𝑢2) ∈ 𝑉1 × 𝑉2

 

The membership value of the edges in 𝔾1 × 𝔾2 can be computed  as 

 

 

𝑇𝒬1×𝒬2((𝑢, 𝑢2), (𝑢, 𝑣2)) = min (𝑇𝒫1(𝑢), 𝑇𝒬2(𝑢2, 𝑣2))

𝐼𝒬1×𝒬2((𝑢, 𝑢2), (𝑢, 𝑣2)) = max (𝐼𝒫1(𝑢), 𝐼𝒬2(𝑢2, 𝑣2))

𝐹𝒬1×𝒬2((𝑢, 𝑢2), (𝑢, 𝑣2)) = max (𝐹𝒫1(𝑢), 𝐹𝒬2(𝑢2, 𝑣2)) ∀ 𝑢 ∈ 𝑉1, (𝑢2, 𝑣2) ∈ 𝐸2

 

 

𝑇𝒬1×𝒬2((𝑢1, 𝛾), (𝑣1, 𝛾)) = min (𝑇𝒬1(𝑢1, 𝑣1), 𝑇𝒫2(𝛾)) ,

𝐼𝒬1×𝒬2((𝑢1, 𝛾), (𝑣1, 𝛾)) = max (𝐼𝒬1(𝑢1, 𝑣1), 𝐼𝒫2(𝛾))

𝐹𝒬1×𝒬2((𝑢1, 𝛾), (𝑣1, 𝛾)) = max (𝐹𝒬1(𝑢1, 𝑣1), 𝐹𝒫2(𝛾)) ∀ 𝛾 ∈ 𝑉2, (𝑢1, 𝑣1) ∈ 𝐸1

 

 

Theorem 6.1.2 The Cartesian Product of two Fermatean Neutrosophic graphs is a Fermatean 

Neutrosophic graph. 

Proof suppose  𝑢 ∈ 𝑉1, (𝑢2, 𝑣2) ∈ 𝐸2. Then, 

𝑇𝒬1×𝒬2((𝑢, 𝑢2), (𝑢, 𝑣2)) = 𝑚𝑖𝑛 (𝑇𝒫1(𝑢), 𝑇𝒬2(𝑢2, 𝑣2)), 

                  ≤ 𝑚𝑖𝑛 (𝑇𝒫1(𝑢),min (𝑇𝒫2(𝑢2), 𝑇𝒫2(𝑣2))),  

                  = 𝑚𝑖𝑛 (𝑚𝑖𝑛 (𝑇𝒫1(𝑢), 𝑇𝒫2(𝑢2)) ,min (𝑇𝒫2(𝑢), 𝑇𝒫2(𝑣2))), 

         = 𝑚𝑖𝑛(𝑇𝒫1×𝒫2(𝑢, 𝑢2), 𝑇𝒫1×𝒫2(𝑢, 𝑣2)) 

𝐼𝒬1×𝒬2((𝑢, 𝑢2), (𝑢, 𝑣2)) = 𝑚𝑎𝑥 (𝐼𝒫1(𝑢), 𝐼𝒬2(𝑢2, 𝑣2)), 

           ≥  𝑚𝑎𝑥 (𝐼𝒫1(𝑢),max (𝐼𝒫2(𝑢2), 𝐼𝒫2(𝑣2))),  

            = 𝑚𝑎𝑥 (𝑚𝑎𝑥 (𝐼𝒫1(𝑢), 𝐼𝒫2(𝑢2)) ,max (𝐼𝒫2(𝑢), 𝐼𝒫2(𝑣2))), 

=  𝑚𝑎𝑥(𝐼𝒫1×𝒫2(𝑢, 𝑢2), 𝐼𝒫1×𝒫2(𝑢, 𝑣2)) 

and 

𝐹𝒬1×𝒬2((𝑢, 𝑢2), (𝑢, 𝑣2)) = 𝑚𝑎𝑥 (𝐹𝒫1(𝑢), 𝐹𝒬2(𝑢2, 𝑣2)), 

           ≥  𝑚𝑎𝑥 (𝐹𝒫1(𝑢),max (𝐹𝒫2(𝑢2), 𝐹𝒫2(𝑣2))),  

               = 𝑚𝑎𝑥 (𝑚𝑎𝑥 (𝐹𝒫1(𝑢), 𝐹𝒫2(𝑢2)) ,max (𝐹𝒫2(𝑢), 𝐹𝒫2(𝑣2))), 

     = 𝑚𝑎𝑥 (𝐹𝒫1×𝒫2(𝑢, 𝑢2), 𝐹𝒫1×𝒫2(𝑢, 𝑣2)) 
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Again, let  ∀ 𝛾 ∈ 𝑉2, (𝑢1, 𝑣1) ∈ 𝐸1, then we have 

𝑇𝒬1×𝒬2((𝑢1, 𝛾), (𝑣1, 𝛾)) = 𝑚𝑖𝑛 (𝑇𝒬1(𝑢1, 𝑣1), 𝑇𝒫2(𝛾)), 

 ≤  𝑚𝑖𝑛 (𝑚𝑖𝑛 (𝑇𝒫1(𝑢1), 𝑇𝒫1(𝑣1), 𝑇𝒫2(𝛾))),  

          =  𝑚𝑖𝑛 (𝑚𝑖𝑛 (𝑇𝒫1(𝑢1), 𝑇𝒫2(𝛾)) ,𝑚𝑖𝑛 (𝑇𝒫1(𝑣1), 𝑇𝒫2(𝛾))), 

            = 𝑚𝑖𝑛(𝑇𝒫1×𝒫2(𝑢1, 𝛾), 𝑇𝒫1×𝒫2(𝑣1, 𝛾)) . 

𝐼𝒬1×𝒬2((𝑢1, 𝛾), (𝑣1, 𝛾)) = 𝑚𝑎𝑥 (𝐼𝒬1(𝑢1, 𝑣1), 𝐼𝒫2(𝛾)), 

           ≥  𝑚𝑎𝑥 (𝑚𝑎𝑥 (𝐼𝒫1(𝑢1), 𝐼𝒫1(𝑣1), 𝐼𝒫2(𝛾))),  

            =  𝑚𝑎𝑥 (𝑚𝑎𝑥 (𝐼𝒫1(𝑢1), 𝐼𝒫2(𝛾)) ,𝑚𝑎𝑥 (𝐼𝒫1(𝑣1), 𝐼𝒫2(𝛾))), 

           =  𝑚𝑎𝑥(𝐼𝒫1×𝒫2(𝑢1, 𝛾), 𝐼𝒫1×𝒫2(𝑣1, 𝛾)). 

and 

𝐹𝒬1×𝒬2((𝑢1, 𝛾), (𝑣1, 𝛾)) = 𝑚𝑎𝑥 (𝐹𝒬1(𝑢1, 𝑣1), 𝐹𝒫2(𝛾)), 

≥  𝑚𝑎𝑥 (𝑚𝑎𝑥 (𝐹𝒫1(𝑢1), 𝐹𝒫1(𝑣1), 𝐹𝒫2(𝛾))),  

        =  𝑚𝑎𝑥 (𝑚𝑎𝑥 (𝐹𝒫1(𝑢1), 𝐹𝒫2(𝛾)) ,𝑚𝑎𝑥 (𝐹𝒫1(𝑣1), 𝐹𝒫2(𝛾))), 

           =  𝑚𝑎𝑥(𝐹𝒫1×𝒫2(𝑢1, 𝛾), 𝐹𝒫1×𝒫2(𝑣1, 𝛾)). 

Thus, in view of the definition of the Fermatean Neutrosophic, the result follows. The following 

example illustrates the above defined graph-theoretic operation. 

 

Example 6.3 Consider two Fermatean Neutrosophic 𝔾1𝑎𝑛𝑑 𝔾2 as shown in the below Figure 9.  

              

Figure 9. Fermatean Neutrosophic graphs 𝔾1𝑎𝑛𝑑 𝔾2 
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Figure 10. Composition graph 𝔾1 × 𝔾2 

Then, the graphs 𝔾1, 𝔾2 and their composition graph 𝔾1 × 𝔾2 are being graphically presented in the 

above Figure 10. 

 

6.2 Composition of Fermatean Neutrosophic Graphs 

Definition 6.2.1 The composition of two Fermatean Neutrosophic graphs 𝔾1and 𝔾2, denoted by 𝔾1 ∘ 

𝔾2, is defined as follows: 

𝔾1 ∘ 𝔾2=(𝒫1 ∘ 𝒫2, 𝒬1 ∘ 𝒬2) 

where 

 

𝑇𝒫1×𝒫2(𝑢1, 𝑢2) = min (𝑇𝒫1(𝑢1), 𝑇𝒫2(𝑢2))

𝐼𝒫1×𝒫2(𝑢1, 𝑢2) = max (𝐼𝒫1(𝑢1), 𝐼𝒫2(𝑢2))

𝐹𝒫1×𝒫2(𝑢1, 𝑢2) = max (𝐹𝒫1(𝑢1), 𝐹𝒫2(𝑢2)) ∀(𝑢1, 𝑢2) ∈ 𝑉1 × 𝑉2

 

 

 

𝑇𝒬1∘𝒬2((𝛽, 𝑢2), (𝛽, 𝑣2)) = min (𝑇𝒫1(𝛽), 𝑇𝒬2(𝑢2, 𝑣2))

𝐼𝒬1∘𝒬2((𝛽, 𝑢2), (𝛽, 𝑣2)) = max (𝐼𝒫1(𝛽), 𝐼𝒬2(𝑢2, 𝑣2))

𝐹𝒬1∘𝒬2((𝛽, 𝑢2), (𝛽, 𝑣2)) = max (𝐹𝒫1(𝛽), 𝐹𝒬2(𝑢2, 𝑣2)) ∀ 𝛽 ∈ 𝑉1, (𝑢2, 𝑣2) ∈ 𝐸2

  

 

 

𝑇𝒬1∘𝒬2((𝑢1, 𝛾), (𝑣1, 𝛾)) = min (𝑇𝒬1(𝑢1, 𝑣1), 𝑇𝒫2(𝛾)) ,

𝐼𝒬1∘𝒬2((𝑢1, 𝛾), (𝑣1, 𝛾)) = max (𝐼𝒬1(𝑢1, 𝑣1), 𝐼𝒫2(𝛾))

𝐹𝒬1∘𝒬2((𝑢1, 𝛾), (𝑣1, 𝛾)) = max (𝐹𝒬1(𝑢1, 𝑣1), 𝐹𝒫2(𝛾)) ∀ 𝛾 ∈ 𝑉2, (𝑢1, 𝑣1) ∈ 𝐸1
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𝑇𝒬1∘𝒬2((𝑢1, 𝑢2), (𝑣1, 𝑣2)) = min (𝑇𝒫2(𝑢2), 𝑇𝒫2(𝑣2), 𝑇𝒬1(𝑢1, 𝑣1)) ,

𝐼𝒬1∘𝒬2((𝑢1, 𝑢2), (𝑣1, 𝑣2)) = max (𝐼𝒫2(𝑢2), 𝐼𝒫2(𝑣2), 𝐼𝒬1(𝑢1, 𝑣1))

𝐹𝒬1∘𝒬2((𝑢1, 𝑢2), (𝑣1, 𝑣2)) = max (𝐹𝒫2(𝑢2), 𝐹𝒫2(𝑣2), 𝐹𝒬1(𝑢1, 𝑣1)) 

∀((𝑢1, 𝑢2), (𝑣1, 𝑣2)) ∈ 𝐸
∘, 𝑤ℎ𝑒𝑟𝑒

𝐸∘ = {(𝑢1, 𝑢2), (𝑣1, 𝑣2)|(𝑢1, 𝑣1) ∈ 𝐸1 𝑎𝑛𝑑 𝑢2 ≠ 𝑣2}

 

Theorem 6.2.2 The composition of two Fermatean Neutrosophic graphs is a Fermatean Neutrosophic 

graph. 

Proof: Suppose  𝛽 ∈ 𝑉1, (𝑢2, 𝑣2) ∈ 𝐸2. Then, 

𝑇𝒬1∘𝒬2((𝛽, 𝑢2), (𝛽, 𝑣2)) = 𝑚𝑖𝑛 (𝑇𝒫1(𝛽), 𝑇𝒬2(𝑢2, 𝑣2)), 

              ≤  𝑚𝑖𝑛 (𝑇𝒫1(𝛽),min (𝑇𝒫2(𝑢2), 𝑇𝒫2(𝑣2))),  

                  = 𝑚𝑖𝑛 (𝑚𝑖𝑛 (𝑇𝒫1(𝛽), 𝑇𝒫2(𝑢2)) ,min (𝑇𝒫2(𝛽), 𝑇𝒫2(𝑣2))), 

                   = 𝑚𝑖𝑛(𝑇𝒫1∘𝒫2(𝛽, 𝑢2), 𝑇𝒫1∘𝒫2(𝛽, 𝑣2)) . 

 

𝐼𝒬1∘𝒬2((𝛽, 𝑢2), (𝛽, 𝑣2)) = 𝑚𝑎𝑥 (𝐼𝒫1(𝛽), 𝐼𝒬2(𝑢2, 𝑣2)), 

              ≥  𝑚𝑎𝑥 (𝐼𝒫1(𝛽),max (𝐼𝒫2(𝑢2), 𝐼𝒫2(𝑣2))),  

                  =  𝑚𝑎𝑥 (𝑚𝑎𝑥 (𝐼𝒫1(𝛽), 𝐼𝒫2(𝑢2)) ,𝑚𝑎𝑥 (𝐼𝒫2(𝛽), 𝐼𝒫2(𝑣2))), 

                    = 𝑚𝑎𝑥(𝐼𝒫1∘𝒫2(𝛽, 𝑢2), 𝐼𝒫1∘𝒫2(𝛽, 𝑣2)). 

and 

𝐹𝒬1∘𝒬2((𝛽, 𝑢2), (𝛽, 𝑣2)) = 𝑚𝑎𝑥 (𝐹𝒫1(𝛽), 𝐹𝒬2(𝑢2, 𝑣2)), 

              ≥  𝑚𝑎𝑥 (𝐹𝒫1(𝛽),max (𝐹𝒫2(𝑢2), 𝐹𝒫2(𝑣2))),  

                  =  𝑚𝑎𝑥 (𝑚𝑎𝑥 (𝐹𝒫1(𝛽), 𝐹𝒫2(𝑢2)) ,max (𝐹𝒫2(𝛽), 𝐹𝒫2(𝑣2))), 

                   =  𝑚𝑎𝑥(𝐹𝒫1∘𝒫2(𝛽, 𝑢2), 𝐹𝒫1∘𝒫2(𝛽, 𝑣2)). 

Again, let  ∀ 𝛾 ∈ 𝑉2, (𝑢1, 𝑣1) ∈ 𝐸1, then we have 

𝑇𝒬1∘𝒬2((𝑢1, 𝛾), (𝑣1, 𝛾)) = 𝑚𝑖𝑛 (𝑇𝒬1(𝑢1, 𝑣1), 𝑇𝒫2(𝛾)), 

            ≤  𝑚𝑖𝑛 (𝑚𝑖𝑛 (𝑇𝒫1(𝑢1), 𝑇𝒫1(𝑣1), 𝑇𝒫2(𝛾))),  

            =  𝑚𝑖𝑛 (𝑚𝑖𝑛 (𝑇𝒫1(𝑢1), 𝑇𝒫2(𝛾)) ,𝑚𝑖𝑛 (𝑇𝒫1(𝑣1), 𝑇𝒫2(𝛾))), 

             =  𝑚𝑖𝑛(𝑇𝒫1∘𝒫2(𝑢1, 𝛾), 𝑇𝒫1∘𝒫2(𝑣1, 𝛾)) . 
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𝐼𝒬1∘𝒬2((𝑢1, 𝛾), (𝑣1, 𝛾)) = 𝑚𝑎𝑥 (𝐼𝒬1(𝑢1, 𝑣1), 𝐼𝒫2(𝛾)), 

           ≥  𝑚𝑎𝑥 (𝑚𝑎𝑥 (𝐼𝒫1(𝑢1), 𝐼𝒫1(𝑣1), 𝐼𝒫2(𝛾))),  

             =  𝑚𝑎𝑥 (𝑚𝑎𝑥 (𝐼𝒫1(𝑢1), 𝐼𝒫2(𝛾)) ,𝑚𝑎𝑥 (𝐼𝒫1(𝑣1), 𝐼𝒫2(𝛾))), 

            =  𝑚𝑎𝑥(𝐼𝒫1∘𝒫2(𝑢1, 𝛾), 𝐼𝒫1∘𝒫2(𝑣1, 𝛾)). 

and 

𝐹𝒬1∘𝒬2((𝑢1, 𝛾), (𝑣1, 𝛾)) = 𝑚𝑎𝑥 (𝐹𝒬1(𝑢1, 𝑣1), 𝐹𝒫2(𝛾)), 

           ≥  𝑚𝑎𝑥 (𝑚𝑎𝑥 (𝐹𝒫1(𝑢1), 𝐹𝒫1(𝑣1), 𝐹𝒫2(𝛾))),  

            =  𝑚𝑎𝑥 (𝑚𝑎𝑥 (𝐹𝒫1(𝑢1), 𝐹𝒫2(𝛾)) ,𝑚𝑎𝑥 (𝐹𝒫1(𝑣1), 𝐹𝒫2(𝛾))), 

             =  𝑚𝑎𝑥(𝐹𝒫1∘𝒫2(𝑢1, 𝛾), 𝐹𝒫1∘𝒫2(𝑣1, 𝛾)). 

Further, if ((𝑢1, 𝑢2), (𝑣1, 𝑣2)) ∈ 𝐸
∘, (𝑢1, 𝑣1) ∈ 𝐸1 𝑎𝑛𝑑 𝑢2 ≠ 𝑣2, then we have 

 𝑇𝒬1∘𝒬2((𝑢1, 𝑢2), (𝑣1, 𝑣2)) = 𝑚𝑖𝑛 (𝑇𝒫2(𝑢2), 𝑇𝒫2(𝑣2), 𝑇𝒬1(𝑢1, 𝑣1))                       

                         ≤  𝑚𝑖𝑛 (𝑇𝒫2(𝑢2), 𝑇𝒫2(𝑣2),𝑚𝑖𝑛 (𝑇𝒫1(𝑢1), 𝑇𝒫1(𝑣1))) 

                          =  𝑚𝑖𝑛 (𝑇𝒫2(𝑢2), 𝑇𝒫2(𝑣2),𝑚𝑖𝑛 (𝑇𝒫1(𝑢1), 𝑇𝒫1(𝑣1))) 

                           =  𝑚𝑖𝑛(𝑇𝒫1∘𝒫2(𝑢1, 𝑢2), 𝑇𝒫1∘𝒫2(𝑣1, 𝑣2) 

𝐼𝒬1∘𝒬2((𝑢1, 𝑢2), (𝑣1, 𝑣2)) = 𝑚𝑎𝑥 (𝐼𝒫2(𝑢2), 𝐼𝒫2(𝑣2), 𝐼𝒬1(𝑢1, 𝑣1)) 

                                             ≥  𝑚𝑎𝑥 (𝐼𝒫2(𝑢2), 𝐼𝒫2(𝑣2),𝑚𝑎𝑥 (𝐼𝒫1(𝑢1), 𝐼𝒫1(𝑣1))) 

                        =  𝑚𝑎𝑥 (𝐼𝒫2(𝑢2), 𝐼𝒫2(𝑣2),𝑚𝑎𝑥 (𝐼𝒫1(𝑢1), 𝐼𝒫1(𝑣1))) 

                           =  𝑚𝑎𝑥(𝐼𝒫1∘𝒫2(𝑢1, 𝑢2), 𝐼𝒫1∘𝒫2(𝑣1, 𝑣2) 

and 

   𝐹𝒬1∘𝒬2((𝑢1, 𝑢2), (𝑣1, 𝑣2)) = 𝑚𝑎𝑥 (𝐹𝒫2(𝑢2), 𝐹𝒫2(𝑣2), 𝐹𝒬1(𝑢1, 𝑣1)) 

                                              ≥  𝑚𝑎𝑥 (𝐹𝒫2(𝑢2), 𝐹𝒫2(𝑣2),𝑚𝑎𝑥 (𝐹𝒫1(𝑢1), 𝐹𝒫1(𝑣1))) 

                          =  𝑚𝑎𝑥 (𝐹𝒫2(𝑢2), 𝐹𝒫2(𝑣2),𝑚𝑎𝑥 (𝐹𝒫1(𝑢1), 𝐹𝒫1(𝑣1))) 

                           =  𝑚𝑎𝑥(𝐹𝒫1∘𝒫2(𝑢1, 𝑢2), 𝐹𝒫1∘𝒫2(𝑣1, 𝑣2) 

Thus, in view of the definition of the Fermatean Neutrosophic, the result follows. The following 

example illustrates the above defined graph-theoretic operation. 
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Example 6.2.3 

Consider two Fermatean Neutrosophic 𝔾1𝑎𝑛𝑑 𝔾2 as shown in the below Figure 11. 

Then, the graphs 𝔾1, 𝔾2 and their composition graph 𝔾1 ∘ 𝔾2 are being graphically presented in the 

below Figure 12. 

 

Figure 11. Fermatean Neutrosophic graphs 𝔾1𝑎𝑛𝑑 𝔾2 

 

Figure 11. Composition graph 𝔾1 ∘ 𝔾2 

6.3 The lexicographic product 

Definition 6.3.1 The lexicographic product of two Fermatean Neutrosophic graphs 𝔾1and 𝔾2, 

denoted by 𝔾1 ⋅ 𝔾2, is defined as follows: 

𝔾1 ∙ 𝔾2=(𝒫1 ∙ 𝒫2, 𝒬1 ∙ 𝒬2) 

 

 

𝑇𝒫1∙𝒫2(𝑢1, 𝑢2) = 𝑚𝑖𝑛 (𝑇𝒫1(𝑢1), 𝑇𝒫2(𝑢2))

𝐼𝒫1∙𝒫2(𝑢1, 𝑢2) = 𝑚𝑎𝑥 (𝐼𝒫1(𝑢1), 𝐼𝒫2(𝑢2))

𝐹𝒫1∙𝒫2(𝑢1, 𝑢2) = 𝑚𝑎𝑥 (𝐹𝒫1(𝑢1), 𝐹𝒫2(𝑢2)) ∀(𝑢1, 𝑢2) ∈ 𝒫1 ∙ 𝒫2

 

 

 

𝑇𝒬1∙𝒬2((𝛽, 𝑢2), (𝛽, 𝑣2)) = 𝑚𝑖𝑛 (𝑇𝒫1(𝛽), 𝑇𝒬2(𝑢2, 𝑣2))

𝐼𝒬1∙𝒬2((𝛽, 𝑢2), (𝛽, 𝑣2)) = 𝑚𝑎𝑥 (𝐼𝒫1(𝛽), 𝐼𝒬2(𝑢2, 𝑣2))

𝐹𝒬1∙𝒬2((𝛽, 𝑢2), (𝛽, 𝑣2)) = 𝑚𝑎𝑥 (𝐹𝒫1(𝛽), 𝐹𝒬2(𝑢2, 𝑣2)) ∀ 𝛽 ∈ 𝑉1, (𝑢2, 𝑣2) ∈ 𝐸2

  

 

𝑇𝒬1∙𝒬2((𝑢1, 𝑢2), (𝑣1, 𝑣2)) = 𝑚𝑖𝑛 (𝑇𝒬1(𝑢1, 𝑣1), 𝑇𝒬2(𝑢2, 𝑣2)) ,

𝐼𝒬1∙𝒬2((𝑢1, 𝑢2), (𝑣1, 𝑣2)) = 𝑚𝑎𝑥 (𝐼𝒬1(𝑢1, 𝑣1), 𝐼𝒬2(𝑢2, 𝑣2))

𝐹𝒬1∙𝒬2((𝑢1, 𝑢2), (𝑣1, 𝑣2)) = 𝑚𝑎𝑥 (𝐹𝒬1(𝑢1, 𝑣1), 𝐹𝒬2(𝑢2, 𝑣2)) ∀ (𝑢1, 𝑣1) ∈ 𝐸1, (𝑢2, 𝑣2) ∈ 𝐸2

 

Theorem 6.3.2 The lexicographic product of two Fermatean Neutrosophic graphs is also the 

Fermatean Neutrosophic graph. 

Proof: We have two cases. 

Case 1: ∀ 𝛽 ∈ 𝑉1, (𝑢2, 𝑣2) ∈ 𝐸2. Then, 
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𝑇𝒬1∙𝒬2((𝛽, 𝑢2), (𝛽, 𝑣2)) = 𝑚𝑖𝑛 (𝑇𝒫1(𝛽), 𝑇𝒬2(𝑢2, 𝑣2)), 

              ≤  𝑚𝑖𝑛 (𝑇𝒫1(𝛽),min (𝑇𝒫2(𝑢2), 𝑇𝒫2(𝑣2))),  

                 =  𝑚𝑖𝑛 (𝑚𝑖𝑛 (𝑇𝒫1(𝛽), 𝑇𝒫2(𝑢2)) ,min (𝑇𝒫2(𝛽), 𝑇𝒫2(𝑣2))), 

                  =  𝑚𝑖𝑛(𝑇𝒫1∘𝒫2(𝛽, 𝑢2), 𝑇𝒫1∘𝒫2(𝛽, 𝑣2)) . 

𝐼𝒬1∙𝒬2((𝛽, 𝑢2), (𝛽, 𝑣2)) = 𝑚𝑎𝑥 (𝐼𝒫1(𝛽), 𝐼𝒬2(𝑢2, 𝑣2)), 

              ≥  𝑚𝑎𝑥 (𝐼𝒫1(𝛽),max (𝐼𝒫2(𝑢2), 𝐼𝒫2(𝑣2))),  

                  =  𝑚𝑎𝑥 (𝑚𝑎𝑥 (𝐼𝒫1(𝛽), 𝐼𝒫2(𝑢2)) ,max (𝐼𝒫2(𝛽), 𝐼𝒫2(𝑣2))), 

                   =  𝑚𝑎𝑥(𝐼𝒫1∘𝒫2(𝛽, 𝑢2), 𝐼𝒫1∘𝒫2(𝛽, 𝑣2)). 

and 

𝐹𝒬1∙𝒬2((𝛽, 𝑢2), (𝛽, 𝑣2)) = 𝑚𝑎𝑥 (𝐹𝒫1(𝛽), 𝐹𝒬2(𝑢2, 𝑣2)), 

              ≥  𝑚𝑎𝑥 (𝐹𝒫1(𝛽),max (𝐹𝒫2(𝑢2), 𝐹𝒫2(𝑣2))),  

                 =  𝑚𝑎𝑥 (𝑚𝑎𝑥 (𝐹𝒫1(𝛽), 𝐹𝒫2(𝑢2)) ,max (𝐹𝒫2(𝛽), 𝐹𝒫2(𝑣2))), 

                =  𝑚𝑎𝑥(𝐹𝒫1∘𝒫2(𝛽, 𝑢2), 𝐹𝒫1∘𝒫2(𝛽, 𝑣2)). 

Case 2 : ∀ (𝑢1, 𝑣1) ∈ 𝐸1, (𝑢2, 𝑣2) ∈ 𝐸2        

𝑇𝒬1∙𝒬2((𝑢1, 𝑢2), (𝑣1, 𝑣2)) = 𝑚𝑖𝑛 (𝑇𝒬1(𝑢1, 𝑣1), 𝑇𝒬2(𝑢2, 𝑣2)) 

           ≤  𝑚𝑖𝑛 (𝑚𝑖𝑛 (𝑇𝒬1(𝑢1), 𝑇𝒬1(𝑣1)) ,𝑚𝑖𝑛 (𝑇𝒬2(𝑢2), 𝑇𝒬2(𝑣2))),  

            =  𝑚𝑖𝑛 (𝑚𝑖𝑛 (𝑇𝒬1(𝑢1), 𝑇𝒬2(𝑢2)) ,𝑚𝑖𝑛 (𝑇𝒬1(𝑣1), 𝑇𝒬2(𝑣2))), 

             =  𝑚𝑖𝑛(𝑇𝒫1∙𝒫2(𝑢1, 𝑢2), 𝑇𝒫1∙𝒫2(𝑣1, 𝑣2)) . 

𝐼𝒬1∙𝒬2((𝑢1, 𝑢2), (𝑣1, 𝑣2)) = 𝑚𝑎𝑥 (𝐼𝒬1(𝑢1, 𝑣1), 𝐼𝒬2(𝑢2, 𝑣2)) 

  ≥  𝑚𝑎𝑥 (𝑚𝑎𝑥 (𝐼𝒬1(𝑢1), 𝐼𝒬1(𝑣1)) ,𝑚𝑎𝑥 (𝐼𝒬2(𝑢2), 𝐼𝒬2(𝑣2))),  

             =  𝑚𝑎𝑥 (𝑚𝑎𝑥 (𝐼𝒬1(𝑢1), 𝐼𝒬2(𝑢2)) ,𝑚𝑎𝑥 (𝐼𝒬1(𝑣1), 𝐼𝒬2(𝑣2))), 

             =  𝑚𝑎𝑥(𝐼𝒫1∙𝒫2(𝑢1, 𝑢2), 𝐼𝒫1∙𝒫2(𝑣1, 𝑣2)) . 

and 

𝐹𝒬1∙𝒬2((𝑢1, 𝑢2), (𝑣1, 𝑣2)) = 𝑚𝑎𝑥 (𝐹𝒬1(𝑢1, 𝑣1), 𝐹𝒬2(𝑢2, 𝑣2)) 
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          ≥  𝑚𝑎𝑥 (𝑚𝑎𝑥 (𝐹𝒬1(𝑢1), 𝐹𝒬1(𝑣1)) ,𝑚𝑎𝑥 (𝐹𝒬2(𝑢2), 𝐹𝒬2(𝑣2))),  

             =  𝑚𝑎𝑥 (𝑚𝑎𝑥 (𝐹𝒬1(𝑢1), 𝐹𝒬2(𝑢2)) ,𝑚𝑎𝑥 (𝐹𝒬1(𝑣1), 𝐹𝒬2(𝑣2))), 

             =  𝑚𝑎𝑥(𝐹𝒫1∙𝒫2(𝑢1, 𝑢2), 𝐹𝒫1∙𝒫2(𝑣1, 𝑣2)) . 

Example 6.3.3 

Consider two Fermatean neutrosophic 𝔾1𝑎𝑛𝑑 𝔾2 as shown in the below Figure 13. 

Then, lexicographic product the graphs 𝔾1, 𝔾2  ( 𝔾1 ∘ 𝔾2) is  graphically presented in the below Figure 14. 

 

Figure 13. Fermatean neutrosophic graphs 𝔾1𝑎𝑛𝑑 𝔾2 

 

Figure 14. Lexicographic product the graphs 𝔾1, 𝔾2  ( 𝔾1 ∘ 𝔾2) 

6.4 Union of Fermatean Neutrosophic Graphs 

Definition 6.4.1 The union of two Fermatean Neutrosophic graphs 𝔾1and 𝔾2, denoted by 𝔾1 ∪ 𝔾2, is 

defined as follows: 

𝔾1 ∪ 𝔾2=(𝒫1 ∪ 𝒫2, 𝒬1 ∪ 𝒬2) 

where 

 𝑇𝒫1∪𝒫2(𝑢)={

𝑇𝒫1(𝑢)        𝑖𝑓 𝑢 ∈ 𝑉1 − 𝑉2 

𝑇𝒫2(𝑢)        𝑖𝑓 𝑢 ∈ 𝑉2 − 𝑉1

𝑚𝑎𝑥 (𝑇𝒫1(𝑢), 𝑇𝒫2(𝑣))    𝑖𝑓 𝑢 ∈ 𝑉1 ∪ 𝑉2

 

𝐼𝒫1∪𝒫2(𝑢)={

𝐼𝒫1(𝑢)        𝑖𝑓 𝑢 ∈ 𝑉1 − 𝑉2 

𝐼𝒫2(𝑢)        𝑖𝑓 𝑢 ∈ 𝑉2 − 𝑉1

𝑚𝑖𝑛 (𝐼𝒫1(𝑢), 𝐼𝒫2(𝑣))    𝑖𝑓 𝑢 ∈ 𝑉1 ∪ 𝑉2

 

𝐹𝒫1∪𝒫2(𝑢)={

𝐹𝒫1(𝑢)        𝑖𝑓 𝑢 ∈ 𝑉1 − 𝑉2 

𝐹𝒫2(𝑢)        𝑖𝑓 𝑢 ∈ 𝑉2 − 𝑉1

𝑚𝑖𝑛 (𝐹𝒫1(𝑢), 𝐹𝒫2(𝑣))    𝑖𝑓 𝑢 ∈ 𝑉1 ∪ 𝑉2

 

 

 𝑇𝒬1∪𝒬2(𝑢, 𝑣)={

𝑇𝒬1(𝑢, 𝑣)        𝑖𝑓 (𝑢, 𝑣) ∈ 𝐸1 − 𝐸2 

𝑇𝒬2(𝑢, 𝑣)        𝑖𝑓 (𝑢, 𝑣) ∈ 𝐸2 − 𝐸1

𝑚𝑎𝑥 (𝑇𝒬1(𝑢, 𝑣), 𝑇𝒬2(𝑢, 𝑣))    𝑖𝑓 (𝑢, 𝑣) ∈ 𝐸1 ∪ 𝐸2

 

𝐼𝒬1∪𝒬2(𝑢, 𝑣)={

𝐼𝒬1(𝑢, 𝑣)        𝑖𝑓 (𝑢, 𝑣) ∈ 𝐸1 − 𝐸2 

𝐼𝒬2(𝑢, 𝑣)        𝑖𝑓 (𝑢, 𝑣) ∈ 𝐸2 − 𝐸1

𝑚𝑖𝑛 (𝐼𝒬1(𝑢, 𝑣), 𝐼𝒬2(𝑢, 𝑣))    𝑖𝑓 (𝑢, 𝑣) ∈ 𝐸1 ∪ 𝐸2
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𝐹𝒬1∪𝒬2(𝑢, 𝑣)={

𝐹𝒬1(𝑢, 𝑣)        𝑖𝑓 (𝑢, 𝑣) ∈ 𝐸1 − 𝐸2 

𝐹𝒬2(𝑢, 𝑣)        𝑖𝑓 (𝑢, 𝑣) ∈ 𝐸2 − 𝐸1

𝑚𝑖𝑛 (𝐹𝒬1(𝑢, 𝑣), 𝐹𝒬2(𝑢, 𝑣))    𝑖𝑓 (𝑢, 𝑣) ∈ 𝐸1 ∪ 𝐸2

 

 

6.5 Join of Fermatean Neutrosophic Graphs 

Definition 6.5.1 The join of two Fermatean Neutrosophic graphs 𝔾1and 𝔾2, denoted by 𝔾1+ 𝔾2, is 

defined as follows: 

𝔾1+ 𝔾2=(𝒫1 + 𝒫2, 𝒬1 + 𝒬2) 

where 

 𝑇𝒫1+𝒫2(𝑢)={

𝑇𝒫1(𝑢)        𝑖𝑓 𝑢 ∈ 𝑉1 − 𝑉2 

𝑇𝒫2(𝑢)        𝑖𝑓 𝑢 ∈ 𝑉2 − 𝑉1
𝑇𝒫1∪𝒫2(𝑢)   𝑖𝑓 𝑢 ∈ 𝑉1 ∪ 𝑉2

 

𝐼𝒫1+𝒫2(𝑢)={

𝐼𝒫1(𝑢)        𝑖𝑓 𝑢 ∈ 𝑉1 − 𝑉2 

𝐼𝒫2(𝑢)        𝑖𝑓 𝑢 ∈ 𝑉2 − 𝑉1
𝐼𝒫1∪𝒫2(𝑢)   𝑖𝑓 𝑢 ∈ 𝑉1 ∪ 𝑉2

 

𝐹𝒫1+𝒫2(𝑢)={

𝐹𝒫1(𝑢)        𝑖𝑓 𝑢 ∈ 𝑉1 − 𝑉2 

𝐹𝒫2(𝑢)        𝑖𝑓 𝑢 ∈ 𝑉2 − 𝑉1
𝐹𝒫1∪𝒫2(𝑢)   𝑖𝑓 𝑢 ∈ 𝑉1 ∪ 𝑉2

 

 𝑇𝒬1+𝒬2(𝑢, 𝑣)={

𝑇𝒬1(𝑢, 𝑣)        𝑖𝑓 (𝑢, 𝑣) ∈ 𝐸1 − 𝐸2 

𝑇𝒬2(𝑢, 𝑣)        𝑖𝑓 (𝑢, 𝑣) ∈ 𝐸2 − 𝐸1
𝑇𝒬1∪𝒬2(𝑢, 𝑣)   𝑖𝑓 (𝑢, 𝑣) ∈ 𝐸1 ∪ 𝐸2

 

𝐼𝒬1+𝒬2(𝑢, 𝑣)={

𝐼𝒬1(𝑢, 𝑣)        𝑖𝑓 (𝑢, 𝑣) ∈ 𝐸1 − 𝐸2 

𝐼𝒬2(𝑢, 𝑣)        𝑖𝑓 (𝑢, 𝑣) ∈ 𝐸2 − 𝐸1
𝐼𝒬1∪𝒬2(𝑢, 𝑣)   𝑖𝑓 (𝑢, 𝑣) ∈ 𝐸1 ∪ 𝐸2

 

𝐹𝒬1+𝒬2(𝑢, 𝑣)={

𝐹𝒬1(𝑢, 𝑣)        𝑖𝑓 (𝑢, 𝑣) ∈ 𝐸1 − 𝐸2 

𝐹𝒬2(𝑢, 𝑣)        𝑖𝑓 (𝑢, 𝑣) ∈ 𝐸2 − 𝐸1
𝐹𝒬1∪𝒬2(𝑢, 𝑣)   𝑖𝑓 (𝑢, 𝑣) ∈ 𝐸1 ∪ 𝐸2

 

 

𝑇𝒬1+𝒬2(𝑢, 𝑣) =  min (𝑇𝒫1(𝑢), 𝑇𝒫2(𝑣))  if (𝑢, 𝑣) ∈ 𝐸
′ 

𝐼𝒬1+𝒬2(𝑢, 𝑣) =  max (𝐼𝒫1(𝑢), 𝐼𝒫2(𝑣)) if (𝑢, 𝑣) ∈ 𝐸
′

𝐹𝒬1+𝒬2(𝑢, 𝑣) =  max (𝐹𝒫1(𝑢), 𝐹𝒫2(𝑣)) if (𝑢, 𝑣) ∈ 𝐸
′

 

where 𝐸′denotes the set of all the edge joining the nodes of 𝑉1and 𝑉2. 

Example 6.5.2 

Consider two Fermatean Neutrosophic 𝔾1𝑎𝑛𝑑 𝔾2 as shown in the below Figure 13. 

Then, the join of two Fermatean Neutrosophic graphs 𝔾1and 𝔾2, denoted by 𝔾1+ 𝔾2, is  graphically 

presented in the below Figure 14. 
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Theorem 6.5.3 The union and join of two Fermatean Neutrosophic graphs are also Fermatean 

Neutrosophic graphs. 

Proof The proof can be outlined similarly as the proof of Theorem 6.3.2. 

 

7. Applications of FNG 

Recent days, many researchers who have studied the decision-making problems in different sectors 

like production, manufacturing, social networking, etc. by using fuzzy, neutrosophic tools [49 – 66].           

Sriganesh et. al. [48] investigated the selection of the best power plant among three of the major power 

plants like hydroelectric power plant, thermal power plant, and nuclear power plant using a graph-

theoretic approach.  They used digraph characteristic between the factors and cofactors in the 

selection of the power plant. The interdependency of the factors and their inheritances are identified 

and they have been represented by using numerical values in their work.  Among all these decision-

making problems, power plants play a prominent role in for all industry sectors that depend on 

exergy processes. This section reports the selection of the best power plant among six of the major 

power plants using Fermatean Neutrosophic graph-theoretic approach.  A power plant or power 

generating station where electric power is generated and distributed on a mass scale. It can be 

classified into different types based on the fuel used for the generation of electricity. There are many 

power plants depend on the availability of coal, fuel, wind, and water, etc. We have considered the 

following six power plants in this case study. 

Hydroelectric power plant (𝑷𝟏):  Electricity is produced in a hydroelectric power plant by the flow 

of water from a height that is used to drive the turbine. The fast-flowing water is converted into 

mechanical energy when the turbine rotates which is further converted into electric power by the 

generator.  

Thermal power plants (𝑷𝟐): It converts heat energy into electricity. The heat energy is used to convert 

fluid into gas which turns the turbine producing mechanical energy which is an intermediate in the 

process and is converted into electricity in the generators.  

A nuclear power plant (𝑷𝟑): It is similar to a thermal power plant but in nuclear power plants, a 

nuclear reactor acts as the heat source. In a nuclear reactor, controlled nuclear fission takes place 

which produces an enormous amount of heat. This heat is dissipated in the water, and it is converted 

into high-pressure steam which in turn runs the turbine. 
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Geothermal power plant (𝑷𝟒): The geothermal power plants are related to other steam turbine 

thermal power plants. In this heat from the fuel source is used to heat water or any other working 

fluid. The working fluid is then used to rotate on the turbine of a generator, for producing electricity. 

Tidal power plant (𝑷𝟓): Tidal power or tidal energy is a form of hydropower that converts energy 

derived from tides primarily into useful forms of electricity. Although not yet generally used, tidal 

energy has the potential to generate future electricity. 

Solar power plant (𝑷𝟔): A solar power plant is based on the conversion of sunlight into electricity 

either directly photovoltaics or indirectly using concentrated solar power. Concentrated solar power 

systems use lenses, mirrors and tracking systems to focus a large area of sunlight into a small beam. 

 

 

Figure 16. Different power plants  

 

 

The identification of a site for a power plant selection depends on various factors like land, space, 

water, cost, transport, fuel, availability of cooling water, nature of the load, etc. Apart from these 

factors, there are a few sub-factors involving in this process (Figure. 17).   

 

Figure 17. Fishbone diagram representing the necessities for setting up a power plant 
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In the process of applying FNG in finding the best power plant. FNG can be represented as a matrix 

whose rows and columns are the sub-factors. Let 𝑉 = { 𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5, 𝑃6} be the six different power 

plants under the selection on the basis of wishing parameters or attributes set 𝐴 = {𝐿 ,𝑊, 𝐶 , 𝐹}. The 

following figures represents the Fermatean Neutrosophic graphs of location, water, cost, and fuel. 

 

Figure 18. Location based Fermatean Neutrosophic graphs 

 

 

Figure 19. Water based Fermatean Neutrosophic graphs 

 

 

 

Figure 20. Cost based Fermatean Neutrosophic graphs 
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Figure 21. Fuel based Fermatean Neutrosophic graphs 

 

 

We construct the incidence matrix  for  𝑃(𝐿), 𝑃(𝐶), 𝑃(𝑊), 𝑃(𝐹)  listed below: 

𝑷(𝑳)

=  

(

 
 
 

(0,0,0) (0.95,0.85,0.80) (0,0,0) (0.95,0.82,0.83) (0,0,0) (0,0,0)

(0.95,0.85,0.80) (0,0,0) (0.90,0.85,0.80) (0,0,0) (0.87,0.85,0.88) (0, 0 ,0)

(0,0,0) (0.90,0.85,0.80) (0,0,0) (0,0,0) (0,0,0) (0.90,0.85,0.85)
(0.95,0.82,0.83) (0,0,0) (0,0,0) (0,0,0) (0.87,0.85,0.8) (0,0,0)

(0,0,0) (0.87,0.85,0.88) (0,0,0) (0.87,0.85,0.8) (0,0,0) (0.87,0.85,0.88)

(0,0,0) (0,0,0) (0.90,0.85,0.85) (0,0,0) (0.87,0.85,0.88) (0,0,0) )

 
 
 

 

 

𝑷(𝑾)

=  

(

 
 
 

(0,0,0) (0.75,0.85,0.80) (0,0,0) (0.75,0.85,0.83) (0.75,0.85,0.88) (0,0,0)

(0.91,0.82,0.80) (0,0,0) (0.91,0.82,0.80) (0.75,0.82,0.83) (0,0,0) (0.70,0.82,0.80)

(0,0,0) (0.91,0.82,0.80) (0,0,0) (0,0,0) (0,0,0) (0.70,0.82,0.80)
(0.75,0.85,0.83) (0.75,0.82,0.83) (0,0,0) (0,0,0) (0.95,0.85,0.80) (0,0,0)

(0.75,0.85,0.88) (0,0,0) (0,0,0) (0.77,0.85,0.88) (0,0,0) (0.70,0.85,0.88)

(0,0,0) (0.70,0.82,0.80) (0.95,0.85,0.80) (0,0,00) (0.70,0.85,0.88) (0,0,0) )

 
 
 

 

𝑷(𝑪)

=  

(

 
 
 

(0,0,0) (0.70,0.85,0.89) (0,0,0) (0.80,0.95,0.87) (0.95,0.85,0.80) (0,0,0)

(0.70,0.85,0.80) (0,0,0) (0.80,0.83,0.91) (0,0,0) (0.87,0.90,0.92) (0,0,0)

(0,0,0) (0.80,0.83,0.91) (0,0,0) (0,0,0) (0,0,0) (0.87,0.90,0.92)
(0.80,0.95,0.87) (0,0,0) (0,0,0) (0,0,0) (0.80,0.95,0.92) (0,0,0)

(0.82,0.90,0.92) (0.87,0.85,0.80) (0,0,0) (0.80,0.95,0.92) (0,0,0) (0.87,0.90,0.92)

(0,0,0) (0,0,0) (0.90,0.80,0.91) (0,0,0) (0.87,0.90,0.92) (0,0,0) )

 
 
 

 

𝑷(𝑭) =

 

(

 
 
 

(0,0,0) (0,0,0) (0,0,0) (0.95,0.85,0.80) (0,0,0) (0.85,0.78,0.80)

(0,0,0) (0,0,0) (0,0,0) (0,0,0) (0.87,0.85,0.88) (0.82,0.85,0.80)

(0.90,0.82,0.84) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)
(0.95,0.82,0.84) (0,0,0) (0.90,0.82,0.84) (0,0,0) (0,0,0) (0,0,0)

(0,0,0) (0.87,0.85,0.88) (0,0,0) (0,0,0) (0,0,0) (0,0,0)

(0.85,0.78,0.80) (0.82,0.85,0.80) (0,0,0) (0,0,0) (0,0,0) (0,0,0) )
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The incidence matrix of resultant FNG is obtained from the combination of all attributes for each 

power plant 

𝑷(𝒘𝒊𝒕𝒉 𝒓𝒆𝒔𝒑𝒆𝒄𝒕 𝒂𝒍𝒍 𝒂𝒕𝒕𝒓𝒊𝒃𝒖𝒕𝒆𝒔)

=  

(

 
 
 

(0,0,0) (0,0.85,0.89) (0,0,0) (0.75,0.95,0.87) (0,0.85,0.88) (0,0.78,0.80)

(0,0.85,0.80) (0,0,0) (0,0,0) (0,0.82,0.83) (0,0.90,0.92) (0,0.85,0.80)

(0,0.82,0.84) (0,0.85,0.91) (0,0,0) (0,0,0) (0,0,0) (0,0.90,0.92)
(0.75,0.95,0.87) (0,0,0) (0,0.82,0.84) (0,0,0) (0,0.95,0.92) (0,0,0)

(0,0.90,0.92) (0,0.85,0.88) (0,0,0) (0,0.95,0.92) (0,0,0) (0,0.90,0.92)

(0,0.78,0.80) (0,0.85,0.80) (0,0.85,0.91) (0,0,0) (0,0.90,0.92) (0,0,0) )

 
 
 

 

 

Tabular representation of score values of incidence  matrix of resultant FNG with average score 

function  𝑆 =  
𝑇+𝐼+1−𝐹

3
. 

 

Clearly, the maximum score value is 2.28, scored by the plant 𝑃4.  According the data Geothermal 

power plant is the beast choice. 

 

 

8. Conclusion  

Fuzzy theory plays a vital role in uncertainty situations. The extension of fuzzy sets are the popular 

Intuitionistic fuzzy sets and then Smarandache introduced the most general concept called the 

Neutrosophic sets. There are many variants of NS are available in the literature like Pythagorean 

Neutrosophic, Single Valued Neutrosophic, Bipolar Neutrosophic sets. In the list, we have 

introduced a new class of set namely, Fermatean Neutrosophic sets in this work. We have discussed 

various types of Fermatean Neutrosophic graphs and the properties of these graphs in this paper. We 

also apply this new type of graph in a decision making problem. We are extending our research on 

this new concept to introduce Fermatean Neutrosophic number and Fermatean triangle and 

trapezoidal Neutrosophic number and its applications in our future work.  

 

 

 𝑷𝟏 𝑷𝟐 𝑷𝟑 𝑷𝟒 𝑷𝟓 𝑷𝟔 Overall 

𝑷𝟏 0.333333 0.32 0.333333 0.61 0.323333 0.326667 2.246667 

𝑷𝟐 0.35 0.333333 0.333333 0.33 0.326667 0.35 2.023333 

𝑷𝟑 0.326667 0.313333 0.333333 0.333333 0.343333 0.326667 1.976667 

𝑷𝟒 0.61 0.333333 0.326667 0.333333 0.343333 0.333333 2.28 

𝑷𝟓 0.326667 0.323333 0.333333 0.343333 0.333333 0.326667 1.986667 

𝑷𝟔 0.326667 0.313333 0.313333 0.333333 0.326667 0.333333 1.946667 
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1. Introduction 

Fuzzy concept has invaded almost all branches of Mathematics since its introduction by 

Zadeh[23]. Fuzzy sets have applications in many fields such as information [21] and control [22]. The 

theory of fuzzy topological spaces was introduced and developed by Chang[7] and from then 

various notions in classical topology have been extended to fuzzy topological spaces[4, 5, 6]. 

Following this concept K.Atanassov[1,2,3] in 1983 devised the idea of intuitionistic fuzzy set on a 

universe X as a generalization of fuzzy set. Here besides the degree of membership a degree of 

non-membership for each element is also defined. The topological framework of intuitionistic fuzzy 

set was initiated by D.Coker[8].  

As a generalization of intuitionistic fuzzy sets neutrosophic set was formulated by 

Smarandache. Smarandache[16,17,18] originally gave the definition of a neutrosophic set and 

neutrosophic logic. The neutrosophic logic is a formal frame trying to measure the truth, 

indeterminacy and falsehood. In 2012 Salama and Alblowi[19,21] introduced the concept of 

neutrosophic topological spaces. Prem Kumar Singh [14,15] introduced the concept of neutrosophic 

context analysis at distinct multi-granulation using single valued  neutrosophic numbers and also 

graphical representation of lattices by applying interval valued neutrosophic numbers 

The orbit in mathematics has an important role in the study of dynamical systems, an orbit is 

a collection of points associated by the evolution function of the dynamical system. One of the 

objectives of the modern theory of dynamical systems is using topological methods to 

understanding the properties of dynamical systems[12]. The concept of the fuzzy orbit set was 

introduced by R.Malathi and M.K.Uma[13] in 2017, as a generalization to the concept of the orbit 

mailto:madhumanoj1822@gmail.com
mailto:nirmalairudayam@ymail.com
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point in general metric space[9]. Also, R.Malathi and M.K.Uma[13] introduced the concept of  fuzzy 

orbit open sets and fuzzy  orbit continuous mappings.  
In this paper various novel concepts of neutrosophic orbit open set, almost-neutrosophic orbit 

continuous, weakly-neutrosophic orbit continuous, neutrosophic orbit* continuous are created 
which paves way to discuss. Some of its interesting properties and characterizations. Also 
neutrosophic orbit* continuous mappings are discussed with necessary examples and 
counterexamples. 

2. Preliminaries  

2.1 Definition [13] Let X be a non empty set. A neutrosophic set (NS for short) A is an object having 

the form A = <x,AT,AI,AF> where AT,AI,AF represent the degree of membership , the degree of 

indeterminacy and the degree of non-membership respectively of each element x∈X to the set A. 

2.2 Definition [13] Let X be a non empty set, A = <x,AT,AI,AF> and B = <x,BT,BI,BF> be neutrosophic 

sets on X, and let {Ai : i∈ J} be an arbitrary family of neutrosophic sets in X, where Ai = <x,AT, AI, AF> 

(i) A  B if and only if AT  BT, AI  BI and AF  BF 

(ii) A = B if and only if A  B and B  A.  

(iii) A = <x,AF,1-AI,AT> 

(iv) A∩B=<x,AT BT,AI BI,AF BF> 

(v) A∪B=<x,AT BT,AI BI,AF BF> 

(vi) ∪Ai = <x, AiT, AiI, AiF> 

(vii) ∩Ai = <x, AiT, AiI, AiF> 

(viii) A − B = A  B .  

(ix) 0N = <x,0,1,1>; 1N = <x,1,0,0>. 

2.3 Definition [18] A neutrosophic topology (NT for short) on a nonempty set X is a family τ of 

neutrosophic set in X satisfying the following axioms:  

(i) 0N, 1N∈τ.  

(ii) G1 G2 ∈ τ for any G1,G2∈ τ.  

(iii) Gi∈ τ for any arbitrary family {Gi :i∈J} ⊆ τ. 

In this case the pair (X, τ) is called a neutrosophic topological space (NTS for short) and any 

neutrosophic set in τ is called a neutrosophic open set(NOS for short) in X. The complement A of a 

neutrosophic open set A is called a neutrosophic closed set (NCS for short) in X. 

2.4 Definition [18] Let (X, τ) be a neutrosophic topological space and A = <X,AT,AI,AF> be a  set in X. 

Then the closure and interior of A are defined by  

Ncl(A) = {K : K is a neutrosophic closed set in X and A  K},  

Nint(A) = {G : G is a neutrosophic open set in X and G  A}. 
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It can be also shown that Ncl(A) is a neutrosophic closed set and Nint(A) is a neutrosophic open set 

in X, and A is a neutrosophic closed set in X iff Ncl(A) = A; and A is a neutrosophic open set in X iff 

Nint(A) = A. 

2.5 Definition [9] Orbit of a point x in X under the mapping f is Of(x)={x, f(x), f 2(x),...} 

2.6 Definition [10] A neutrosophic set A=<x, AT, AI, AF> in a neutrosophic topological space (X, τ) is 

said to be a neutrosophic neighbourhood of a neutrosophic point xr,t,s, x X, if there exists a 

neutrosophic open set  B=<x, BT, BI, BF> with xr,t,s  

2.7 Corollary [11] Let A, Ai(i  be neutrosophic sets in X, B, Bi(i ) be neutrosophic sets in Y and 

f: X → Y a function. Then 

(a) A1 A2 f(A1)  f(A2), 

(b) B1 B2 f -1(A1)  f -1(A2), 

(c) A f -1(f(A)){If f is injective, then A= f -1(f(A))},  

(d) f -1(f (B)) B{If f is surjective, then f -1(f (B))= B},  

(e) )()( AfAf  , if f is surjective, 

(f) )()( 11 BfBf   . 

3. Properties and characterization of neutrosophic orbit continuous Mappings 

3.1 Definition A neutrosophic set A in a neutrosophic topological space (X, τ) is a  neighbourhood 

of a neutrosophic set B, if there exists a neutrosophic open set  O such that B . 

3.2 Definition Let (X, ) and (Y, ) be any two neutrosophic topological spaces. Let f: (X, ) → (Y, 

) is said to be almost neutrosophic continuous, if for every neutrosophic set  and every 

neutrosophic open set  with , there exists a neutrosophic open set  with  

such that . 

3.3 Definition Let (X, ) and (Y, ) be any two neutrosophic topological spaces. Let f: (X, ) → (Y, 

) is said to be weakly neutrosophic continuous, if for every neutrosophic set  and every 

neutrosophic open set  with , there exists a neutrosophic open set  with  
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such that . 

3.4 Definition Let (X, ) and (Y, ) be any two neutrosophic topological spaces. Let f: (X, ) → (Y, 

) is said to be slightly neutrosophic continuous, if for every neutrosophic set  and every 

neutrosophic open set  with , there exists a neutrosophic open set  with  

such that . 

3.5 Definition Let X be a nonempty set and f : X → X be any mapping. Let  be any neutrosophic set 

in X. The neutrosophic orbit Of( ) of  under the mapping f is defined as OfT( ) = 

{ ,f1( ),f2( ),...fn( )}, OfI( ) = { ,f1( ),f2( ),...fn( )} , OfF( ) = { ,f1( ),f2( ),...fn( )}  for  ∈ X and 

n ∈ Z+.  

3.6 Definition Let X be a nonempty set and let f : X→ X be any mapping. The neutrosophic orbit set 

of  under the mapping f is defined as NOf( ) = < ,OfT( ),OfI( ),OfF( )> for  ∈ X, where OfT( )= 

{ f1( ) f2( ) ... fn( )}, OfI( )= { f1( ) f2( ) ... fn( )}, OfF( )= 

{ f1( ) f2( ) ... fn( )}. 

3.7 Example Let X={a, b,  c}. Define a neutrosophic set where  

 

  as follows 

Define f : X→ X as f(a)=b, f(b)=c, f(c)=a. The neutrosophic orbit set of  under the mapping f is 

defined as NOf( ) = f1( ) f2( ) ... fn( ) 

NOf( )(a)=<x, 0.7, 0.6, 0.3>, NOf( )(b)=<x, 0.5, 0.4, 0.5>, NOf( )(c)=<x, 0.6, 0.5, 0.4> 
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3.8 Definition Let (X, ) be a neutrosophic topological space. Let f : X → X be any mapping. The 

neutrosophic orbit set under the mapping f which is in neutrosophic topology  is called 

neutrosophic orbit open set under the mapping f. Its complement is called a neutrosophic orbit 

closed set under the mapping f. 

3.9 Example Let X={a, b, c}=Y. Define  = {0N, 1N,  }where  

 

 
are defined as 

 

 

 

 

. 

Define f : X→ X as f(a)=a, f(b)=a, f(c)=a. The neutrosophic orbit set of  under the mapping f is 

defined as NOf( ) = f1( ) f2( ) ... fn( ), NOf( )= . Then  is a neutrosophic orbit open 

set under the mapping f. 

3.10 Definition Let (X, ) be a neutrosophic topological space. Let f : X → X be any mapping. The 

neutrosophic orbit under the mapping f in a neutrosophic topological space (X, T) is said to be 

neutrosophic orbit clopen set under the mapping f, if it is both neutrosophic orbit open and 

neutrosophic orbit closed under the mapping f. 

3.11 Definition A neutrosophic set  in a neutrosophic topological space (X, ) is a neutrosophic 

orbit neighborhood, or NOnbhd for short, of a neutrosophic set , if there exists a neutrosophic 

orbit open set  such that  

3.12 Definition Let (X, τ) be a neutrosophic topological space and  = <X, , ,  > be a  set in 
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X. Then the closure and interior of  are defined by  

Ncl( ) = {  :  is a neutrosophic orbit closed set in X and    },  

Nint( ) = {  :  is a neutrosophic orbit open set in X and    }. 

3.13 Definition  Let (X, ) and (Y, ) be any two neutrosophic topological spaces. Let f: X → X be a 

mapping. A mapping g : (X, ) → (Y, ) is said to be neutrosophic orbit continuous, if the inverse 

image of every neutrosophic open set in (Y, ) is neutrosophic orbit open set under the mapping f in 

(X, ). 

3.14 Proposition Let (X, ) and (Y, ) be any two neutrosophic topological spaces. Let g : (X, ) → 

(Y, ) and f1 : X → X be any two mappings. Then the following are equivalent 

(i) g is neutrosophic orbit continuous mapping 

(ii) inverse image of every neutrosophic closed set in (Y, ) is a neutrosophic orbit closed set 

     under the mapping f1 in (X, ).   

Proof: (i)  (ii): Assume that g is a neutrosophic orbit continuous mapping. Let  be any 

neutrosophic closed set in (Y, ). Then  is a neutrosophic open set in in (Y, ). Thus by 

assumption,  is a neutrosophic orbit open set under the mapping f1 in (X, ). Now, 

 So,  is a neutrosophic orbit closed set under the mapping f1 

in (X, ). 

(ii)  (i): The proof is similar to (i)  (ii).  

3.15 Proposition Let (X, ) and (Y, ) be any two neutrosophic topological spaces. Let g : (X, ) → 

(Y, ) and f1 : X → X and f2 : Y → Y be any two mappings. Then the following are equivalent 

(i) g is neutrosophic orbit continuous mapping 

(ii) for each neutrosophic set  of X and every neutrosophic neighbourhood  of 
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      is a neutrosophic orbit neighbourhood of  

(iii) for each neutrosophic set  of X and every neutrosophic neighbourhood  of  

     there exists a  neutrosophic orbit neighbourhood  of  such that   

Proof:(i)  (ii): Let  be a neutrosophic set of X. Let  be a neutrosophic neighbourhood of  

Then there exists a neutrosophic open set  such that  Now 

 By hypothesis,  is a neutrosophic orbit open set under 

the mapping f1 in (X, ). But, . Thus  is a neutrosophic orbit 

neighbourhood of  

(ii)  (iii): Let  be a neutrosophic set of X. Let  be a neutrosophic neighborhood of  By 

hypothesis,  is a neutrosophic orbit neighbourhood of  in (X, ) such that 

  

(iii)  (i): Let  be a neutrosophic set of X such that  Let  be a neutrosophic orbit 

open set under the mapping f2 in (Y, ). Since every neutrosophic orbit open set is a neutrosophic 

neighborhood,  is a neutrosophic neighbourhood of  in (Y, ). Then by hypothesis, 

 is a neutrosophic orbit neighbourhood of  in (X, ). Since every neutrosophic orbit 

neighborhood set is a neutrosophic orbit open set,  is a neutrosophic orbit open set under 

the mapping f1 in (X, ). Thus g is neutrosophic orbit continuous. 

3.16 Proposition Let (X, ), (Y, ) and (Z, )  be any three neutrosophic topological spaces. Let f1 : 

X → X be any mappings. Let g : (X, ) → (Y, ) be neutrosophic orbit continuous and h : (Y, ) → 

(Z, ) be neutrosophic continuous mappings, then their composition h  g is neutrosophic orbit 

continuous. 
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Proof: Let  be a open set of (Z, ). By Definition,  is a neutrosophic open set of  (Y, ). 

Since f is neutrosophic orbit continuous,  is a neutrosophic orbit open set under the 

mapping f1 of (X, ). But  Then  is neutrosophic orbit 

continuous.  

3.17 Definition  Let (X, ) and (Y, ) be any two neutrosophic topological spaces. Let f1 : X → X 

and f2 : Y → Y be any two mappings. A mapping g : (X, ) → (Y, ) is said to be neutrosophic orbit* 

continuous, if for every neutrosophic set  and every neutrosophic orbit open set  under the 

mapping f2 with g( ) , there exists a neutrosophic orbit open set  under the mapping f1 with 

  such that g( )  . 

3.18 Example Let X={a, b, c}=Y. Define  = {0N, 1N,  }and = {0N, 1N, } where 

 

 

 
are such that 

 

 

 

 

 

 

 

 



Neutrosophic Sets and Systems, Vol. 50, 2022     295  

 

 
T.Madhumathi and F.Nirmala Irudayam, Neutrosophic Orbit Continuous Mappings     
 

Clearly  and  are neutrosophic topological spaces. 

Define g : (X, ) → (Y, ), f1 : X → X and f2 : Y→ Y as g(a) = b, g(b) = c, g(c) =a, f1(a) = c, f1(b) =c, f1(c) = 

c and f2(a) = b, f2(b) =c, f2(c) = a. 

Let  

 

 be any neutrosophic set such that 

For the neutrosophic orbit open set  under the mapping f2 in (Y, ), g( ) . Now,  is a  

neutrosophic orbit open set under the mapping f1 in (X, ) with   such that g( ) . Hence 

g is neutrosophic orbit* continuous. 

3.19 Proposition Let (X, ) and (Y, ) be any two neutrosophic topological spaces. Let g : (X, ) → 

(Y, ) be a mappings. Then the following are equivalent 

(i) g is neutrosophic orbit* continuous. 

(ii) inverse image of every neutrosophic orbit open set of (Y, ) is neutrosophic orbit open set 

     of (X, ).   

(iii) inverse image of every neutrosophic orbit clopen set of (Y, ) is neutrosophic orbit open 

     set of (X, ).   

Proof:(i)  (ii): Let f1 : X → X and f2 : Y → Y be any two mappings. Let  be a neutrosophic orbit 

open set under the mapping f2 of (Y, ) and any neutrosophic set  with g( ) . Since g is 

neutrosophic orbit* continuous, there exists a neutrosophic orbit open set  under the mapping f1 of 

(X, ) with   such that g( )  . Hence  is a neutrosophic orbit open set. 
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(ii)  (iii): Let  be a neutrosophic orbit open set under the mapping f2 of (Y, ). By (ii)  

is a neutrosophic orbit open set under the mapping f1 of (X, ). Now  is also neutrosophic 

orbit clopen set. By (ii)  is neutrosophic orbit open set under the mapping f1 in (X, ). 

So  is neutrosophic orbit closed set under the mapping f1 in (X, ). This implies 

that  is neutrosophic orbit closed. Therefore,  is a neutrosophic orbit open set 

clopen set in (X, ).        

(iii)  (i): Let  be a neutrosophic orbit clopen set under the mapping f2 and any fuzzy set  with 

g( ) . Now  is neutrosophic orbit open set under the mapping f1 of (X, ) and 

. Hence, g is neutrosophic orbit* continuous.      

3.20 Definition Let (X, ) and (Y, ) be any two neutrosophic topological spaces. Let f1 : X → X and 

f2 : Y → Y be an y two mappings. A mapping g : (X, ) → (Y, ) is said to be almost-neutrosophic 

orbit continuous, if for every neutrosophic set  and every neutrosophic orbit open set  under the 

mapping f2 with g( ) , there exists a neutrosophic orbit open set  under the mapping f1 with 

  such that g( )  int (cl( )). 

3.21 Definition Let (X, ) and (Y, ) be any two neutrosophic topological spaces. Let f1 : X → X and 

f2 : Y → Y be any two mappings. A mapping g : (X, ) → (Y, ) is said to be weakly-neutrosophic 

orbit continuous, if for every neutrosophic set  and every neutrosophic orbit open set  under the 

mapping f2 with g( ) , there exists a neutrosophic orbit open set  under the mapping f1 with 

  such that g( )  cl( ). 

3.22 Remark  
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Figure 1.  

 

 

 

 

 

 

 

 

3.23 Proposition Let (X, ) and (Y, ) be any two neutrosophic topological spaces. If g : (X, ) → 

(Y, ) is neutrosophic orbit continuous, then g is almost neutrosophic orbit continuous. 

Proof. Let f1 : X → X and f2 : Y→ Y be any two mappings. Let  be any neutrosophic set and be 

any neutrosophic orbit open set under the mapping f2 with g  By Corollary 2.7, 

. Then  . Since g is neutrosophic orbit continuous, 

is a neutrosophic orbit open set under the mapping f1. By Corollary 2.7, 

. Thus g( ) = . Since  is neutrosophic orbit open,  is neutrosophic 

open and hence  int(cl( )) which implies that g( )  int(cl( )). So g is almost-neutrosophic 

orbit continuous. 

3.24 Remark The converse of the Proposition 3.15 need not be true as shown in the following 

example. 

3.25 Example Let X={a, b, c}=Y. Define  = {0N, 1N,  }and = {0N, 1N, } where 

 

neutrosophic orbit  

continuous 

neutrosophic orbit*  

continuous 

 

Almost neutrosophic orbit  

continuous 

 

Weakly neutrosophic orbit 

continuous 
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are such that 

 

 

 

 

 

 

 

 

 

 

 

 

Clearly  and  are neutrosophic topological spaces. 

Define g : (X, ) → (Y, ), f1 : X → X and f2 : Y→ Y as g(a) = b, g(b) = c, g(c) =a, f1(a) = c, f1(b) =c, f1(c) = 

c and f2(a) = b, f2(b) =c, f2(c) = a. 

Let  
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be any neutrosophic set such that 

For the neutrosophic orbit open set  under the mapping f2 in (Y, ) with g( ) . 

Now the neutrosophic orbit open set  under the mapping f1 in (X, ) with   such that g( ) 

 int (cl( )). Then g is almost neutrosophic orbit continuous. 

Now the neutrosophic open sets  in (Y, ), but  and  

are not neutrosophic orbit open under the mapping f1 in (X, ). Thus g is not neutrosophic orbit 

continuous. 

3.26 Proposition Let (X, ) and (Y, ) be any two neutrosophic topological spaces. If g : (X, ) → 

(Y, ) is neutrosophic orbit continuous, then g is weakly neutrosophic orbit continuous. 

Proof: Let f1 : X → X and f2 : Y→ Y be any two mappings. Let  be any neutrosophic set and be 

any neutrosophic orbit open set under the mapping f2 with g  By Corollary 2.7, 

. Then   . Since g is neutrosophic orbit continuous, 

is a neutrosophic orbit open set under the mapping f1. By Corollary 2.7, 

. Thus g( ) =  So g is weakly neutrosophic orbit continuous. 

3.27 Remark The converse of the Proposition 3.18 need not be true as shown in the following 

example. 

3.28 Example Let X={a, b, c}=Y. Define  = {0N, 1N,  }and = {0N, 1N, } where 

 

 

 
are such that 
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Clearly  and  are neutrosophic topological spaces. 

Define g : (X, ) → (Y, ), f1 : X → X and f2 : Y→ Y as g(a) = b, g(b) = c, g(c) =a, f1(a) = b, f1(b) =b, f1(c) = 

b and f2(a) = b, f2(b) =c, f2(c) = a. 

Let  

 

be any neutrosophic set such that 

For the neutrosophic orbit open set  under the mapping f2 in (Y, ) with g( ) . 
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Now the neutrosophic orbit open set  under the mapping f1 in (X, ) with   such that g( ) 

 cl( ). Then g is weakly neutrosophic orbit continuous. 

Now the neutrosophic open sets  in (Y, ), but  and  

are not neutrosophic orbit open under the mapping f1 in (X, ). Thus g is not neutrosophic orbit 

continuous. 

3.29 Proposition Let (X, ) and (Y, ) be any two neutrosophic topological spaces. If g : (X, ) → 

(Y, ) is almost neutrosophic orbit continuous, then g is weakly neutrosophic orbit continuous. 

Proof. Let f1 : X → X and f2 : Y→ Y be any two mappings. Let  be any neutrosophic set and be 

any neutrosophic orbit open set under the mapping f2 with g  Since g is almost 

neutrosophic orbit continuous, there exists a neutrosophic orbit open set  under the mapping f1 

with   such that g( )  int(cl( )), which implies that g( )  cl( ). Then g is weakly 

neutrosophic orbit continuous. 

3.30 Remark  The converse of the Proposition 3.21 need not be true as shown in the following 

example. 

3.31 Example Let X={a, b, c}=Y. Define  = {0N, 1N,  }and = {0N, 1N, } where 

 

 

 
are such that 
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Clearly  and  are neutrosophic topological spaces. 

Define g : (X, ) → (Y, ), f1 : X → X and f2 : Y→ Y as g(a) = b, g(b) = c, g(c) =a, f1(a) = b, f1(b) =b, f1(c) = 

b and f2(a) = b, f2(b) =c, f2(c) = a. 

Let  

 

 be any neutrosophic set such that 

For the neutrosophic orbit open set  under the mapping f2 in (Y, ) with g( ) . 

Now the neutrosophic orbit open set  under the mapping f1 in (X, ) with   such that g( ) 

 cl( ). Then g is weakly neutrosophic orbit continuous. 

Now, g( ) . But there is no neutrosophic orbit open set  under the mapping f1 with   

such that g( )  int(cl( )).Thus g is not almost neutrosophic orbit continuous. 
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3.32 Proposition Let (X, ) and (Y, ) be any two neutrosophic topological spaces. If g : (X, ) → 

(Y, ) is  neutrosophic orbit* continuous, then g is almost neutrosophic orbit continuous. 

Proof. Let f1 : X → X and f2 : Y→ Y be any two mappings. Let  be any neutrosophic set and be 

any neutrosophic orbit open set under the mapping f2 with g  Since g is  neutrosophic 

orbit* continuous, there exists a neutrosophic orbit open set  under the mapping f1 with   

such that g( )  Since  is neutrosophic open, which implies that g( )  int(cl( )). Then g is 

almost neutrosophic orbit continuous. 

3.33 Remark The converse of the Proposition 3.24 need not be true as shown in the following 

example. 

3.34 Example Let X={a, b, c}=Y. Define  = {0N, 1N,  }and = {0N, 1N, } where  

 

 

 
are such that 
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Clearly  and  are neutrosophic topological spaces. 

Define g : (X, ) → (Y, ), f1 : X → X and f2 : Y→ Y as g(a) = b, g(b) = c, g(c) =a, f1(a) = b, f1(b) =c, f1(c) = 

a and f2(a) = b, f2(b) =c, f2(c) = a. 

Let   

 

be any neutrosophic set such that 

For the neutrosophic orbit open set  under the mapping f2 in (Y, ) with g( ) . 

Now the neutrosophic orbit open set  under the mapping f1 in (X, ) with   such that g( ) 

 int(cl( ). Then g is almost  neutrosophic orbit continuous. 

Now, g( ) . But there is no neutrosophic orbit open set  under the mapping f1 with   

such that g( )  .Thus g is not neutrosophic orbit* continuous. 

3.35 Proposition Let (X, ) and (Y, ) be any two neutrosophic topological spaces. If g : (X, ) → 

(Y, ) is  neutrosophic orbit* continuous, then g is weakly neutrosophic orbit continuous. 

Proof. Let f1 : X → X and f2 : Y→ Y be any two mappings. Let  be any neutrosophic set and be 

any neutrosophic orbit open set under the mapping f2 with g  Since g is  neutrosophic 

orbit* continuous, there exists a neutrosophic orbit open set  under the mapping f1 with   

such that g( )  which implies that g( )  cl( ). Then g is weakly neutrosophic orbit 

continuous. 

3.36 Remark The converse of the Proposition 3.27 need not be true as shown in the following 

example. 
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3.37 Example Let X={a, b, c}=Y. Define  = {0N, 1N,  }and = {0N, 1N, } where 

 

 

 
are such that 

 

 

 

 

 

 

 

 

Clearly  and  are neutrosophic topological spaces. 

Define g : (X, ) → (Y, ), f1 : X → X and f2 : Y→ Y as g(a) = b, g(b) = c, g(c) =a, f1(a) = b, f1(b) =b, f1(c) = 

b and f2(a) = b, f2(b) =c, f2(c) = a. 

Let  

 

 be any neutrosophic set such that 

For the neutrosophic orbit open set  under the mapping f2 in (Y, ) with g( ) . 
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Now the neutrosophic orbit open set  under the mapping f1 in (X, ) with   such that g( ) 

 cl( ). Then g is weakly neutrosophic orbit continuous. 

Now, g( ) . But there is no neutrosophic orbit open set  under the mapping f1 with   

such that g( )  .Thus g is not neutrosophic orbit* continuous. 

3.38 Proposition Let (X, ) and (Y, ) be any two neutrosophic topological spaces. If g : (X, ) → 

(Y, ) is neutrosophic orbit continuous, then g is neutrosophic orbit* continuous. 

Proof: Let f1 : X → X and f2 : Y→ Y be any two mappings. Let  be any neutrosophic  set and be 

any neutrosophic orbit open set under the mapping f2 with g  By Corollary 2.7, 

. Then   . Since g is neutrosophic orbit continuous, 

is a neutrosophic orbit open set under the mapping f1. By Corollary 2.7, 

. Therefore g( ) = which implies that g( )  . Then g is 

neutrosophic orbit* continuous. 

3.39 Remark The converse of the Proposition 3.30 need not be true as shown in the following 

example. 

3.40 Example Let X={a, b, c}=Y. Define  = {0N, 1N,  }and = {0N, 1N, } where 

 

 

 
are such that 
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Clearly  and  are neutrosophic topological spaces. 

Define g : (X, ) → (Y, ), f1 : X → X and f2 : Y→ Y as g(a) = b, g(b) = c, g(c) =a, f1(a) = c, f1(b) =c, f1(c) = 

c and f2(a) = b, f2(b) =c, f2(c) = a. 

Let  

 

 be any neutrosophic set such that 

For the neutrosophic orbit open set  under the mapping f2 in (Y, ), g( ) . 

Now the neutrosophic orbit open set  under the mapping f1 in (X, ) with   such that g( ) 

. Then g is neutrosophic orbit* continuous. 

Now the neutrosophic open sets in (Y, ), but  is not neutrosophic orbit open under 

the mapping f1 in (X, ). Thus g is not neutrosophic orbit continuous. 

4. Conclusions  

In this paper, we study the collection of neutrosophic orbit open sets under the mapping f : X → 

X. The characterization of neutrosophic orbit continuous functions are studied. Some interrelations 

are discussed with suitable examples. This paper paves way in future to introduce and study the 

family of all neutrosophic orbit open sets constructs a neutrosophic topological space.  
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Abstract: In this paper, we introduce the concept of balanced neutrosophic graphs based on 

density functions and investigate some of their properties. The necessary conditions for a 

neutrosophic graph to be a balanced neutrosophic graph are identified if graph G is a self-

complementary, regular, complete, and strong neutrosophic graph. Some properties of complement 

neutrosophic graphs are presented here. 

Keywords: Density of a neutrosophic graphs, Balanced neutrosophic graphs. 

 

 

1. Introduction  

Euler was the first to establish the concept of graph theory in 1736. In mathematical history, Euler's 

approach to the well-known Konigsberg bridge problem is considered as the first theorem of graph 

theory. This is now widely accepted as a branch of combinatorial mathematics. In many domains, 

such as geometry, combinatorics, elliptic curves, topography, decision theory, optimization, and data 

science, the theory of graphs provides a strong tool for determining combinatorial challenges. 

The density of a graph G (D(G)) is associated with the network's connectivity patterns. Because of the 

rapid growth in network size, graph problems become ambiguous, which we address using the fuzzy 

logic method. The density D(H) ≤ D(G) for all subgraphs H of G in balanced graphs. Balanced graphs 

[10] first appeared in the work of random graphs, and the term Balanced neutrosophic graph is 

represented here based on the density functions given in [5]. A complete graph has the highest 

density, while a null graph has the lowest density. Several papers on balanced graph extension 

[25][32][14] have been published, and it has numerous applications in computer networks, image 

analysis, robotic systems, artificial intelligence , and decision making. Lotfi A Zadeh [29][30][31] 

developed a fuzzy set theory in 1965, and the idea of a fuzzy set is welcomed because it addresses 

uncertainty and vagueness that crisp set cannot, and it provides a meaningful and powerful 

recognition of quantification of ambiguity. Rosenfeld [24] developed the theory of fuzzy graphs in 

1975 after studying fuzzy relations on fuzzy sets. Atanassov's [6][7] intuitionistic fuzzy graphs (IFGs) 

provide a way to incorporate uncertainty with an additional degree. A bipolar fuzzy graph is a fuzzy 

graph extension with a membership degree range of [-1, 1]. Akram [1][2] introduced the concept of 

bipolar fuzzy graphs and defined various operations on them. Talal Al Hawary [4] investigated some 

fuzzy graph operations and defined balanced fuzzy graphs. Balanced fuzzy graphs are increasingly 
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being used to represent complex systems in which the amount of data and information varies with 

different levels of precision. 

A neutrosophic graph can comply with the uncertainty of any real-world problem's inconsistent and 

indeterminate information, whereas fuzzy graphs may lack sufficient satisfactory results. Florentin 

Smarandache et al [12][26-28] defined neutrosophic graphs and single valued neutrosophic graphs 

(SVNS) as a new dimension of graph theory as a generalisation of the fuzzy graph and the 

intuitionistic fuzzy graph. Said Broumi et al [8][9] developed the concept of SVNG and investigated 

its components. Motivated by the concept of a balanced graph and its extensions [3] [13] [15-20] 

[22][23] [27], we focused on introducing balanced and strictly balanced, in single valued neutrosophic 

graphs. The important properties of a balanced neutrosophic graph are discussed in this paper. 

Section 2 discusses the fundamental definitions and theorems required. Section 3 discusses the 

necessary conditions for a neutrosophic graph to be a balanced neutrosophic graph if graph G is a 

self-complementary, regular, complete, and strong neutrosophic graph. We also discussed some of 

the properties of complementary and a self-complementary balanced neutrosophic graphs. The paper 

is concluded in Section 4. 

2. Preliminaries  

Definition 2.1 [12]“A single valued neutrosophic graph (SVN-graph) with underlying set 𝑉  is 

defined to be a pair 𝐺 = (𝐴, 𝐵) where 

 1. The functions 𝑇𝐴: 𝑉 →  [0, 1],  𝐼𝐴: 𝑉 →  [0, 1],  and 𝐹𝐴: 𝑉 →  [0, 1],  denote the degree of truth-

membership, degree of indeterminacy-membership and falsity-membership of the element 𝑣𝑖 ∈ 𝑉, 

respectively, and 0 ≤ 𝑇𝐴(𝑣𝑖) + 𝐼𝐴(𝑣𝑖) + 𝐹𝐴(𝑣𝑖) ≤ 3 for all 𝑣𝑖 ∈ 𝑉. 

 2. The functions 𝑇𝐵: E ⊆  V x V → [0, 1], 𝐼𝐵: E ⊆  V x V → [0, 1], and 𝐹𝐵: E ⊆  V x V → [0, 1]  are 

defined by 𝑇𝐵(𝑣𝑖 , 𝑣𝑗) ≤  𝑇𝐴(𝑣𝑖) ⋀ 𝑇𝐴(𝑣𝑗),   𝐼𝐵(𝑣𝑖 , 𝑣𝑗) ≥  𝐼𝐴(𝑣𝑖)  ∨   𝐼𝐴(𝑣𝑗)  and 𝐹𝐵(𝑣𝑖 , 𝑣𝑗) ≥  𝐹𝐴(𝑣𝑖)  ∨

 F(𝑣𝑗) denotes the degree of truth-membership, indeterminacy-membership and falsity-membership 

of the edge (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸  respectively, where 0 ≤ 𝑇𝐵(𝑣𝑖 , 𝑣𝑗) + 𝐼𝐵(𝑣𝑖 , 𝑣𝑗) + 𝐹𝐵(𝑣𝑖 , 𝑣𝑗) ≤ 3 for all 

(𝑣𝑖 , 𝑣𝑗) ∈ 𝐸   (i, j =  1, 2, … , n). We call A the single valued neutrosophic vertex set of V, B the single 

valued neutrosophic edge set of E, respectively.” 
 

Definition 2.2 [8]” A partial SVN-subgraph of SVN-graph 𝐺 = (𝐴, 𝐵)  is a SVN-graph 𝐻 = (𝑉′,

𝐸′) such that  𝑉′ ⊆  V, where 𝑇′𝐴(𝑣𝑖) ≤  𝑇𝐴(𝑣𝑖), 𝐼′𝐴(𝑣𝑖) ≥  𝐼𝐴(𝑣𝑖), and 𝐹′𝐴(𝑣𝑖) ≥  𝐹𝐴(𝑣𝑖) for all 𝑣𝑖 ∈

𝑉  and 𝐸′ ⊆  E , where   𝑇′𝐵(𝑣𝑖 , 𝑣𝑗) ≤ 𝑇𝐵(𝑣𝑖 , 𝑣𝑗),  𝐼′𝐵(𝑣𝑖 , 𝑣𝑗) ≥ 𝐼𝐵(𝑣𝑖 , 𝑣𝑗) , 𝐹′𝐵(𝑣𝑖 , 𝑣𝑗) ≥ 𝐹𝐵(𝑣𝑖 , 𝑣𝑗)  for all 

(𝑣𝑖 , 𝑣𝑗) ∈ 𝐸.” 

 

Definition 2.3 [11]”Let 𝐺 = (𝐴, 𝐵)  be an SVNG. G is said to be a strong SVNG if 

𝑇B(𝑢, 𝑣) = 𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣), 

𝐼B(𝑢, 𝑣) =  𝐼𝐴(𝑢)  ∨   𝐼𝐴(𝑣) and 

𝐹B(𝑢, 𝑣) =  𝐹𝐴(𝑢)  ∨  𝐹𝐴(𝑣)  for every (𝑢, 𝑣) ∈  𝐸.” 

 

Definition 2.4 [11] “Let 𝐺 = (𝐴, 𝐵)  be an SVNG. G is said to be a complete SVNG if 

𝑇B(𝑢, 𝑣) = 𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣), 

𝐼B(𝑢, 𝑣) =  𝐼𝐴(𝑢)  ∨   𝐼𝐴(𝑣) and 
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𝐹B(𝑢, 𝑣) =  𝐹𝐴(𝑢)  ∨  𝐹𝐴(𝑣)  for every 𝑢, 𝑣 ∈  𝑉.” 

 

Definition 2.5 [11] “Let 𝐺 = (𝐴, 𝐵) be an SVNG. �̅� = (�̅�, �̅�) is the complement of an SVNG if 

�̅� = 𝐴  𝑎𝑛𝑑 �̅�  is computed as below. 

𝑇𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣) − 𝑇B(𝑢, 𝑣),             

𝐼𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  𝐼𝐴(𝑢)  ∨   𝐼𝐴(𝑣) − 𝐼B(𝑢, 𝑣)        

 and 𝐹𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  𝐹𝐴(𝑢)  ∨  𝐹𝐴(𝑣) − 𝐹B(𝑢, 𝑣)  for every (𝑢, 𝑣) ∈  𝐸.   

Here, 𝑇𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝐼𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 𝐹𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  denote the true, intermediate, and false membership degree 

for edge (𝑢, 𝑣) of �̅�.” 

 

Definition 2.6 [11] “Let 𝐺 = (𝐴, 𝐵) be an SVNG. G is a regular neutrosophic graph if it satisfies the 

following conditions. 

∑ 𝑇B(𝑢, 𝑣) = constant,     

𝑢≠𝑣

∑ 𝐼B(𝑢, 𝑣) = constant, and     

𝑢≠𝑣

∑ 𝐹B(𝑢, 𝑣) = constant.     

𝑢≠𝑣

 

“ 

Definition 2.7 [11] Let 𝐺 = (𝐴, 𝐵) be an SVNG.“G is a regular strong neutrosophic graph if it 

satisfies the following conditions.” 

𝑇B(𝑢, 𝑣) = 𝑇𝐴(𝑢) ⋀ 𝑇𝐴(𝑣)  and ∑ 𝑇B(𝑢, 𝑣) = constant,     𝑢≠𝑣  

𝐼B(𝑢, 𝑣) =  𝐼𝐴(𝑢)  ∨   𝐼𝐴(𝑣) and ∑ 𝐼B(𝑢, 𝑣) = constant,       𝑢≠𝑣  

𝐹B(𝑢, 𝑣) =  𝐹𝐴(𝑢)  ∨  𝐹𝐴(𝑣)  and ∑ 𝐹B(𝑢, 𝑣) = constant.    𝑢≠𝑣  

 

Definition 2.8 [4] “The density of the complete fuzzy graph 𝐺 = (𝑉, 𝐸) is 

𝐷(𝐺) =
2 ∑  (𝜇(𝑢,𝑣))𝑢,𝑣𝜖𝑉

∑  (𝜎(𝑢) ⋀  𝜎(𝑣))(𝑢,𝑣)𝜖𝑉
  , for all 𝑢, 𝑣 𝜖 𝑉. “ 

Definition 2.9[4]” A fuzzy graph 𝐺 = (𝑉, 𝐸)is balanced if 𝐷(𝐻) ≤ 𝐷(𝐺), for all sub graphs H of G.” 

Definition 2.10 [21] “A fuzzy graph 𝐺 = (𝑉, 𝐸)is a self-complementary if 𝜇(𝑢, 𝑣) =
1

2
(𝜎(𝑢) ⋀  𝜎(𝑣)) 

for all 𝑢, 𝑣 𝜖 𝑉.” 

Table 1: Some basic notations  

Notation  Meaning 

𝐺 = (𝑉, 𝐸) Fuzzy graph 

𝐺 = (𝐴, 𝐵)   Single Valued Neutrosophic Graph (SVNG) 

V Vertex Set 

E Edge set 

𝑇𝐴(𝑣) , 𝐼𝐴(𝑣), 𝐹𝐴(𝑣) True membership value, indeterminacy 

membership value, falsity membership 

value of the vertex 𝑣 of 𝐺 = (𝐴, 𝐵)   

𝑇𝐵(𝑢, 𝑣), 𝐼𝐵(𝑢, 𝑣), 𝐹𝐵(𝑢, 𝑣) True membership value, indeterminacy 

membership value, falsity membership 

value of the edge (𝑢, 𝑣) of 𝐺 = (𝐴, 𝐵)   

�̅� = (�̅�, �̅�) Complement of an SVNG 

𝑇𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝐼𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  , 𝐹𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  True membership value, indeterminacy 
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membership value, falsity membership 

value of the edge (𝑢, 𝑣) of �̅� = (�̅�, �̅�) 

 

𝐷𝑇(𝐺), 𝐷𝐼(𝐺), 𝐷𝐹(𝐺) Density of true membership value, indeterminacy 

membership value, falsity membership 

value of 𝐺 = (𝐴, 𝐵)   

𝐷(𝐺) = (𝐷𝑇(𝐺), 𝐷𝐼(𝐺), 𝐷𝐹(𝐺)) Density of a SVNG 𝐺 = (𝐴, 𝐵) 

3. Balanced Neutrosophic Graphs 

Definition 3.1  

“The density of a single valued neutrosophic graph 𝐺 = (𝐴, 𝐵)  of  𝐺∗ = (𝑉, 𝐸) , is 𝐷(𝐺) =

(𝐷𝑇(𝐺), 𝐷𝐼(𝐺), 𝐷𝐹(𝐺)), where 

       𝐷𝑇(𝐺) is defined by 𝐷𝑇(𝐺) =
2 ∑ 𝑇B(𝑢,𝑣)𝑢,𝑣𝜖𝑉

∑  𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣)(𝑢,𝑣)𝜖𝑉
  , for 𝑢, 𝑣𝜖𝑉, 

  𝐷𝐼(𝐺) is defined by 𝐷𝐼(𝐺) =
2 ∑ 𝐼B(𝑢,𝑣)𝑢,𝑣𝜖𝑉

∑  𝐼𝐴(𝑢) ∨  𝐼𝐴(𝑣)(𝑢,𝑣)𝜖𝑉
   , for 𝑢, 𝑣𝜖𝑉 and  

  𝐷𝐹(𝐺) is defined by 𝐷𝐼(𝐺) =
2 ∑ 𝐹B(𝑢,𝑣)𝑢,𝑣𝜖𝑉

∑  𝐹𝐴(𝑢) ∨ 𝐹𝐴(𝑣)(𝑢,𝑣)𝜖𝑉
   , for 𝑢, 𝑣𝜖𝑉. “ 

Definition 3.2  

“A single valued neutrosophic graph 𝐺 = (𝐴, 𝐵)  is balanced if 𝐷(𝐻) ≤ 𝐷(𝐺) , that is, 𝐷𝑇(𝐻) ≤

 𝐷𝑇(𝐺), 𝐷𝐼(𝐻) ≤  𝐷𝐼(𝐺) , 𝐷𝐹(𝐻) ≤  𝐷𝐹(𝐺)  for all sub graphs H of G.” 

 

 

Example 1. Consider a neutrosophic graph, 𝐺 = (𝑉, 𝐸) ,such that 𝑉 = {(𝑣1, 𝑣2, 𝑣3, 𝑣4 )}, 

 𝐸 = {(𝑣1, 𝑣2), (𝑣2, 𝑣3), (𝑣3, 𝑣4), (𝑣4 , 𝑣1 ), (𝑣1, 𝑣3)}. 

 

 

Fig.1 Balanced Neutrosophic Graph 

“ 

𝑇 −density 

𝐷𝑇(𝐺) =2(
0.18+0.18+0.24+0.3+0.24

0.3+0.3+0.4+0.5+0.4
) = 1.2 

𝐼 −density 

𝐷𝐼(𝐺) =2(
0.5+1+1+0.5+1

0.4+0.8+0.8+0.4+0.8
) = 2.5 

𝐹 −density 
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𝐷𝐹(𝐺) =2(
0.66+0.66+0.55+0.55+0.44

0.6+0.6+0.5+0.5+0.4
) = 2.2 

𝐷(𝐺) = (𝐷𝑇(𝐺), 𝐷𝐼(𝐺), 𝐷𝐹(𝐺)) = (1.2, 2.5, 2.2). 

Let 𝐻1 = {(𝑣1, 𝑣2)}, 𝐻2 = {(𝑣2, 𝑣3)}, 𝐻3 = {(𝑣3, 𝑣4)}, 𝐻4 = {(𝑣2, 𝑣4)}, 𝐻5 = {(𝑣1, 𝑣4)}, 𝐻6 = {(𝑣1, 𝑣3)},  

𝐻7 = {(𝑣1, 𝑣3, 𝑣4)}, 𝐻8 = {(𝑣1, 𝑣2, 𝑣3)}, 𝐻9 = {(𝑣1, 𝑣2, 𝑣4)}, 𝐻10 = {(𝑣2, 𝑣3, 𝑣4)}, 𝐻11 = {(𝑣1, 𝑣2, 𝑣3, 𝑣4)} be 

non-empty subgraphs of G. Density (𝐷𝑇(𝐻), 𝐷𝐼(𝐻), 𝐷𝐹(𝐻))  is 𝐷(𝐻1) = (1.2, 2.5, 2.2) ,  𝐷(𝐻2) =

(1.2, 2.5, 2.2) ,  𝐷(𝐻3) = (1.2, 2.5, 2.2) ,  𝐷(𝐻4) = (0, 0, 0) ,  𝐷(𝐻5) = (1.2, 2.5, 2.2) ,  𝐷(𝐻6) =

(1.2, 2.5, 2.2) ,  𝐷(𝐻7) = (1.2, 2.5, 2.2) ,  𝐷(𝐻8) = (1.2, 2.5, 2.2) ,  𝐷(𝐻9) = (1.2, 2.5, 2.2) ,  𝐷(𝐻10) =

(1.2, 2.5, 2.2), 𝐷(𝐻11) = (1.2, 2.5, 2.2). So 𝐷(𝐻) ≤ 𝐷(𝐺) for all subgraphs H of G. Hence G is balanced 

neutrosophic graph. 

” 

Definition 3.3  

“A single valued neutrosophic graph 𝐺 = (𝐴, 𝐵) is strictly balanced if for 𝑢, 𝑣 𝜖 𝑉, 𝐷(𝐻) = 𝐷(𝐺) for 

all sub graphs H of G.” 

 

Example 2. Consider a neutrosophic graph, 𝐺 = (𝑉, 𝐸) ,such that 𝑉 = {(𝑣1, 𝑣2, 𝑣3, 𝑣4 )}, 

 𝐸 = {(𝑣1, 𝑣2), (𝑣2, 𝑣3), (𝑣3, 𝑣4), (𝑣4 , 𝑣1 ), (𝑣1, 𝑣3), (𝑣2, 𝑣4)}. 

 

 

Fig. 2 Strictly Balanced Neutrosophic Graph 

“ 

𝑇 −density 

𝐷𝑇(𝐺) =2(
0.225+0.225+0.15+0.15+0.15+0.3

0.3+0.3+0.2+0.2+0.4+0.2
) = 1.5 

𝐼 −density 

𝐷𝐼(𝐺) =2(
0.69+0.575+0.805+0.805+0.69+0.805

0.6+0.5+0.7+0.7+0.7+0.6
) = 2.3 

𝐹 −density 

𝐷𝐹(𝐺) =2(
0.78+0.78+0.78+0.65+0.78+0.65

0.6+0.6+0.4+0.5+0.5+0.6
) = 2.6 

𝐷(𝐺) = (𝐷𝑇(𝐺), 𝐷𝐼(𝐺), 𝐷𝐹(𝐺)) = (1.5, 2.3, 2.6). 

Let 𝐻1 = {(𝑣1, 𝑣2)}, 𝐻2 = {(𝑣2, 𝑣3)}, 𝐻3 = {(𝑣1, 𝑣4)}, 𝐻4 = {(𝑣2, 𝑣4)}, 𝐻5 = {(𝑣2, 𝑣4)}, 𝐻6 = {(𝑣1, 𝑣3)},  

 𝐻7 = {(𝑣1, 𝑣2, 𝑣3)},𝐻8 = {(𝑣1, 𝑣3, 𝑣4)}, 𝐻9 = {(𝑣1, 𝑣2, 𝑣4)}, 𝐻10 = {(𝑣2, 𝑣3, 𝑣4)}, 𝐻11 = {(𝑣1, 𝑣2, 𝑣3, 𝑣4)} be 

non-empty subgraphs of G. Density (𝐷𝑇(𝐻), 𝐷𝐼(𝐻), 𝐷𝐹(𝐻))  is 𝐷(𝐻1) = (1.5, 2.3, 2.6) ,  𝐷(𝐻2) =

(1.5, 2.3, 2.6), 𝐷(𝐻3) = (1.5, 2.3, 2.6) ,  𝐷(𝐻4) = (1.5, 2.3, 2.6) ,  𝐷(𝐻5) = (11.5, 2.3, 2.6) ,  𝐷(𝐻6) =

(1.5, 2.3, 2.6) ,  𝐷(𝐻7) = (1.5, 2.3, 2.6) ,  𝐷(𝐻8) = (1.5, 2.3, 2.6) ,  𝐷(𝐻9) = (1.5, 2.3, 2.6) ,  𝐷(𝐻10) =
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(1.5, 2.3, 2.6), 𝐷(𝐻11) = (1.5, 2.3, 2.6). So 𝐷(𝐻) = 𝐷(𝐺) for all subgraphs H of G. Hence G is strictly 

balanced neutrosophic graph. 

” 

Theorem 3.4 Every complete single valued neutrosophic graph is balanced. 
Proof: 

Let 𝐺 = (𝐴, 𝐵) be a complete single valued neutrosophic graph, then by the definition of complete 

neutrosophic graph, we have “𝑇B(𝑢, 𝑣) = 𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣) , 𝐼B(𝑢, 𝑣) =  𝐼𝐴(𝑢)  ∨   𝐼𝐴(𝑣)  and 𝐹B(𝑢, 𝑣) =

 𝐹𝐴(𝑢)  ∨  𝐹𝐴(𝑣)  for every 𝑢, 𝑣 ∈  𝑉. 

∴∑ 𝑇B(𝑢, 𝑣)𝑢,𝑣𝜖𝑉 = ∑  𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣)(𝑢,𝑣)𝜖𝑉   
  ∑ 𝐼B(𝑢, 𝑣)𝑢,𝑣𝜖𝑉 =  ∑  𝐼𝐴(𝑢)  ∨   𝐼𝐴(𝑣)(𝑢,𝑣)𝜖𝑉  and 
 ∑ 𝐹B(𝑢, 𝑣)𝑢,𝑣𝜖𝑉 =  ∑  𝐹𝐴(𝑢)  ∨  𝐹𝐴(𝑣)(𝑢,𝑣)𝜖𝑉 . 

Now 𝐷(𝐺) = (
2 ∑ 𝑇B(𝑢,𝑣)𝑢,𝑣𝜖𝑉

∑  𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣)(𝑢,𝑣)𝜖𝑉
   ,

2 ∑ 𝐼B(𝑢,𝑣)𝑢,𝑣𝜖𝑉

∑  𝐼𝐴(𝑢) ∨  𝐼𝐴(𝑣)(𝑢,𝑣)𝜖𝑉
,

2 ∑ 𝐹B(𝑢,𝑣)𝑢,𝑣𝜖𝑉

∑  𝐹𝐴(𝑢) ∨ 𝐹𝐴(𝑣)(𝑢,𝑣)𝜖𝑉
 ) 

         𝐷(𝐺) = (
2 ∑  𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣)(𝑢,𝑣)𝜖𝑉

∑  𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣)(𝑢,𝑣)𝜖𝑉
 ,

2 ∑  𝐼𝐴(𝑢) ∨  𝐼𝐴(𝑣)(𝑢,𝑣)𝜖𝑉

∑  𝐼𝐴(𝑢) ∨  𝐼𝐴(𝑣)(𝑢,𝑣)𝜖𝑉
,

2 ∑  𝐹𝐴(𝑢) ∨ 𝐹𝐴(𝑣)(𝑢,𝑣)𝜖𝑉

∑  𝐹𝐴(𝑢) ∨ 𝐹𝐴(𝑣)(𝑢,𝑣)𝜖𝑉
) 

          𝐷(𝐺) = (2, 2, 2). 

Let H be a non-empty subgraph of G then, 𝐷(𝐻) = (2, 2, 2) for every 𝐻 ⊆ 𝐺. 

Thus, G is balanced.” 

Note 3.5. The converse of the preceding theorem do not have to be true. Each balanced 

neutrosophic graph does not have to be complete. 

Example 3. Consider a neutrosophic graph, 𝐺 = (𝑉, 𝐸) ,such that 𝑉 = {(𝑣1, 𝑣2, 𝑣3, 𝑣4 )}, 

 𝐸 = {(𝑣1, 𝑣2), (𝑣2, 𝑣3), (𝑣3, 𝑣4), (𝑣4 , 𝑣1 )}. 

                   

                    Fig. 3 Balanced but not complete neutrosophic graph 

“𝐷(𝐺) = (𝐷𝑇(𝐺), 𝐷𝐼(𝐺), 𝐷𝐹(𝐺)) = (1.4, 2, 2.5). 

Let 𝐻1 = {(𝑣1, 𝑣2)}, 𝐻2 = {(𝑣2, 𝑣3)}, 𝐻3 = {(𝑣1, 𝑣4)}, 𝐻4 = {(𝑣2, 𝑣4)}, 𝐻5 = {(𝑣2, 𝑣4)}, 𝐻6 = {(𝑣1, 𝑣3)},  

 𝐻7 = {(𝑣1, 𝑣2, 𝑣3)},𝐻8 = {(𝑣1, 𝑣3, 𝑣4)}, 𝐻9 = {(𝑣1, 𝑣2, 𝑣4)}, 𝐻10 = {(𝑣2, 𝑣3, 𝑣4)}, 𝐻11 = {(𝑣1, 𝑣2, 𝑣3, 𝑣4)} be 

non-empty subgraphs of G. Density (𝐷𝑇(𝐻), 𝐷𝐼(𝐻), 𝐷𝐹(𝐻))  is 𝐷(𝐻1) = (1.4, 2, 2.5) ,  𝐷(𝐻2) =

(1.4, 2, 2.5), 𝐷(𝐻3) = (1.4, 2, 2.5), 𝐷(𝐻4) = (1.4, 2, 2.5) ,  𝐷(𝐻5) = (1.4, 2, 2.5) ,  𝐷(𝐻6) =

(1.4, 2, 2.5) ,  𝐷(𝐻7) = (1.4, 2, 2.5) ,  𝐷(𝐻8) = (1.4, 2, 2.5) ,  𝐷(𝐻9) = (1.4, 2, 2.5) ,  𝐷(𝐻10) =

(1.4, 2, 2.5), 𝐷(𝐻11) = (1.5, 2.3, 2.6). So 𝐷(𝐻) ≤ 𝐷(𝐺) for all subgraphs H of G. Hence G is balanced 

neutrosophic graph. 

From the above graph easy to see that: 

𝑇B(𝑢, 𝑣) ≠ 𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣), 𝐼B(𝑢, 𝑣) =  𝐼𝐴(𝑢)  ∨   𝐼𝐴(𝑣) and 𝐹B(𝑢, 𝑣) ≠  𝐹𝐴(𝑢)  ∨  𝐹𝐴(𝑣)  for every 𝑢, 𝑣 ∈

 𝑉. Hence G is balanced not complete.” 



Neutrosophic Sets and Systems, Vol. 50, 2022     315  

 

 
Sivasankar S, Said Broumi. Balanced Neutrosophic Graphs     
 

 

Corollary 3.6 Every strong single valued neutrosophic graph is balanced.  

 

Theorem 3.7 

Let G = (A, B) be a self-complementary neutrosophic graph. Then D(G) = (1,1,1).  

Proof: 

Let 𝐺 = (𝐴, 𝐵) be a self-complementary neutrosophic graph, then  

“    ∑ 𝑇B(𝑢, 𝑣)𝑢,𝑣𝜖𝑉 =
1

2
∑  𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣)(𝑢,𝑣)𝜖𝑉   

  ∑ 𝐼B(𝑢, 𝑣)𝑢,𝑣𝜖𝑉 =
1

2
 ∑  𝐼𝐴(𝑢)  ∨   𝐼𝐴(𝑣)(𝑢,𝑣)𝜖𝑉  and 

 ∑ 𝐹B(𝑢, 𝑣)𝑢,𝑣𝜖𝑉 =  
1

2
∑  𝐹𝐴(𝑢)  ∨  𝐹𝐴(𝑣)(𝑢,𝑣)𝜖𝑉 . 

Now 𝐷(𝐺) = (
2 ∑ 𝑇B(𝑢,𝑣)𝑢,𝑣𝜖𝑉

∑  𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣)(𝑢,𝑣)𝜖𝑉
   ,

2 ∑ 𝐼B(𝑢,𝑣)𝑢,𝑣𝜖𝑉

∑  𝐼𝐴(𝑢) ∨  𝐼𝐴(𝑣)(𝑢,𝑣)𝜖𝑉
,

2 ∑ 𝐹B(𝑢,𝑣)𝑢,𝑣𝜖𝑉

∑  𝐹𝐴(𝑢) ∨ 𝐹𝐴(𝑣)(𝑢,𝑣)𝜖𝑉
 ) 

         𝐷(𝐺) = (
2 ∑  𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣)(𝑢,𝑣)𝜖𝑉

2 ∑  𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣)(𝑢,𝑣)𝜖𝑉
 ,

2 ∑  𝐼𝐴(𝑢) ∨  𝐼𝐴(𝑣)(𝑢,𝑣)𝜖𝑉

2 ∑  𝐼𝐴(𝑢) ∨  𝐼𝐴(𝑣)(𝑢,𝑣)𝜖𝑉
,

2 ∑  𝐹𝐴(𝑢) ∨ 𝐹𝐴(𝑣)(𝑢,𝑣)𝜖𝑉

2 ∑  𝐹𝐴(𝑢) ∨ 𝐹𝐴(𝑣)(𝑢,𝑣)𝜖𝑉
) 

 Hence 𝐷(𝐺) = (1, 1, 1).” 

Theorem 3.8 

Let G = (A, B) be a strictly balanced neutrosophic graph and �̅� = (�̅�, �̅�) be its complement then 

D(G) + D(�̅�) = (2, 2, 2). 

Proof: 

Let G = (A, B) be a strictly balanced neutrosophic graph and �̅� = (�̅�, �̅�)  be its complement. 

Let H be a subgraph of G which is non-empty. D(G) = D(H) for all H ⊆ G and u, v ∈ V since G is 

strictly balanced. 

“In �̅�, 𝑇𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣) − 𝑇B(𝑢, 𝑣),             (1) 

      𝐼𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  𝐼𝐴(𝑢)  ∨   𝐼𝐴(𝑣) − 𝐼B(𝑢, 𝑣)                 (2) 

 and 𝐹𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  𝐹𝐴(𝑢)  ∨  𝐹𝐴(𝑣) − 𝐹B(𝑢, 𝑣)  for every (𝑢, 𝑣) ∈  𝐸.        (3) 

 

Dividing (1) by 𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣) 

             
𝑇𝐵(𝑢,𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣)
= 1 −

𝑇B(𝑢,𝑣)

𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣)
 ,         for every 𝑢, 𝑣 ∈  𝑉 

Similarly dividing (2) by 𝐼𝐴(𝑢)  ∨   𝐼𝐴(𝑣) 

            
𝐼𝐵(𝑢,𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝐼𝐴(𝑢) ∨  𝐼𝐴(𝑣)
= 1 −

𝐼B(𝑢,𝑣)

𝐼𝐴(𝑢) ∨  𝐼𝐴(𝑣)
 ,      for every 𝑢, 𝑣 ∈  𝑉 

and dividing (3) by 𝐹𝐴(𝑢)  ∨   𝐹𝐴(𝑣) 

            
𝐹𝐵(𝑢,𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝐹𝐴(𝑢) ∨  𝐹𝐴(𝑣)
= 1 −

𝐹B(𝑢,𝑣)

𝐹𝐴(𝑢) ∨  𝐹𝐴(𝑣)
 ,     for every 𝑢, 𝑣 ∈  𝑉 

then  

 

∑
𝑇𝐵(𝑢,𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣)𝑢,𝑣∈𝑉 = 1 − ∑
𝑇B(𝑢,𝑣)

𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣)𝑢,𝑣∈𝑉  ,      for every 𝑢, 𝑣 ∈  𝑉 
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∑
𝐼𝐵(𝑢,𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝐼𝐴(𝑢) ∨  𝐼𝐴(𝑣)𝑢,𝑣∈𝑉 = 1 − ∑
𝐼B(𝑢,𝑣)

𝐼𝐴(𝑢) ∨  𝐼𝐴(𝑣)𝑢,𝑣∈𝑉  ,      for every 𝑢, 𝑣 ∈  𝑉 

 

∑
𝐹𝐵(𝑢,𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝐹𝐴(𝑢) ∨  𝐹𝐴(𝑣)𝑢,𝑣∈𝑉 = 1 − ∑
𝐹B(𝑢,𝑣)

𝐹𝐴(𝑢) ∨  𝐹𝐴(𝑣)𝑢,𝑣∈𝑉  ,     for every 𝑢, 𝑣 ∈  𝑉 

Multiply the above equations by 2 on both sides 

2 ∑
𝑇𝐵(𝑢,𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣)𝑢,𝑣∈𝑉 = 2 − 2 ∑
𝑇B(𝑢,𝑣)

𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣)𝑢,𝑣∈𝑉  ,      for every 𝑢, 𝑣 ∈  𝑉 

 

2 ∑
𝐼𝐵(𝑢,𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝐼𝐴(𝑢) ∨  𝐼𝐴(𝑣)𝑢,𝑣∈𝑉 = 2 − 2 ∑
𝐼B(𝑢,𝑣)

𝐼𝐴(𝑢) ∨  𝐼𝐴(𝑣)𝑢,𝑣∈𝑉  ,      for every 𝑢, 𝑣 ∈  𝑉 

 

2 ∑
𝐹𝐵(𝑢,𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝐹𝐴(𝑢) ∨  𝐹𝐴(𝑣)𝑢,𝑣∈𝑉 = 2 − 2 ∑
𝐹B(𝑢,𝑣)

𝐹𝐴(𝑢) ∨  𝐹𝐴(𝑣)𝑢,𝑣∈𝑉  ,     for every 𝑢, 𝑣 ∈  𝑉 

𝐷𝑇(�̅�) = 2 - 𝐷𝑇(𝐺), 𝐷𝐼(�̅�) = 2 - 𝐷𝐼(𝐺) and 𝐷𝐹(�̅�) = 2 - 𝐷𝐹(𝐺) 

Now, D(G) + D(�̅�) = (𝐷𝑇(𝐺), 𝐷𝐼(𝐺), 𝐷𝐹(𝐺)) + (𝐷𝑇(�̅�), 𝐷𝐼(�̅�), 𝐷𝐹(�̅�)) 

      D(G) + D(�̅�) =((𝐷𝑇(𝐺) + 𝐷𝑇(�̅�)), (𝐷𝐼(𝐺) + 𝐷𝐼(�̅�)), (𝐷𝐹(𝐺) + 𝐷𝐹(�̅�))) 

Hence D(G) + D(�̅�) =(2, 2, 2).” 

 

Theorem 3.9 

“The complement of a single valued neutrosophic graph that is strictly balanced is also strictly 

balanced.” 

Proof: 

Let G = (A, B) be a strictly balanced neutrosophic graph and �̅� = (�̅�, �̅�) be its complement. 

Let H be a subgraph of G which is non-empty. D(G) = D(H) for all H ⊆ G and u, v ∈ V since G is 

strictly balanced. 

As G is strictly balanced by Theorem 3.7, D(G) + D(�̅�) =(2, 2, 2) 

Since D(H) + D(𝐻) =(2, 2, 2) for every 𝐻 ⊆ 𝐺. 

Which implies D(𝐻) = D(�̅�) 

Hence �̅� is strictly balanced. 

 

Theorem 3.10 

The complement of strongly regular SVNG is balanced. 

Proof: 

Let G = (A, B) be a strongly regular neutrosophic graph and �̅� = (�̅�, �̅�) be its complement. 

Since G is strongly, we have “𝑇B(𝑢, 𝑣) = 𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣), 𝐼B(𝑢, 𝑣) =  𝐼𝐴(𝑢)  ∨   𝐼𝐴(𝑣) and 

𝐹B(𝑢, 𝑣) =  𝐹𝐴(𝑢)  ∨  𝐹𝐴(𝑣)  for every (𝑢, 𝑣) ∈  𝐸.          (1) 

In �̅�, 𝑇𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣) − 𝑇B(𝑢, 𝑣),              

      𝐼𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  𝐼𝐴(𝑢)  ∨   𝐼𝐴(𝑣) − 𝐼B(𝑢, 𝑣)                 

 and 𝐹𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  𝐹𝐴(𝑢)  ∨  𝐹𝐴(𝑣) − 𝐹B(𝑢, 𝑣)  for every (𝑢, 𝑣) ∈  𝐸.  
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Since G is strongly regular, we have 𝑇𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0, 𝐼𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0 and 𝐹𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0 by (1) for every 

 (𝑢, 𝑣) ∈  𝐸 and  

      𝑇𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣),              

      𝐼𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  𝐼𝐴(𝑢)  ∨   𝐼𝐴(𝑣)                

 and 𝐹𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  𝐹𝐴(𝑢)  ∨  𝐹𝐴(𝑣)  for every (𝑢, 𝑣) ∈  �̅� .  

⟹ �̅� is a strong neutrosophic graph. Then by Corollary 3.6, �̅� is balanced.” 

 

Theorem 3.11 

Let G = (A, B) be a SVNG and �̅� = (�̅�, �̅�) be its complement then �̿� = G. 

Proof: 

Let G = (A, B) be a SVNG �̅� = (�̅�, �̅�) be its complement. 

In �̅�, 𝑇𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣) − 𝑇B(𝑢, 𝑣),             (1) 

      𝐼𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  𝐼𝐴(𝑢)  ∨   𝐼𝐴(𝑣) − 𝐼B(𝑢, 𝑣)                 (2) 

 and 𝐹𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  𝐹𝐴(𝑢)  ∨  𝐹𝐴(𝑣) − 𝐹B(𝑢, 𝑣)  for every (𝑢, 𝑣) ∈  𝐸.        (3) 

Taking complement for (1), we get  𝑇B(𝑢, 𝑣)̿̿ ̿̿ ̿̿ ̿̿ ̿̿ = 𝑇𝐴(𝑢) ⋀  𝑇𝐴(𝑣) − 𝑇𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅    

Substitute  𝑇𝐴(𝑢) ⋀ 𝑇𝐴(𝑣)  = 𝑇B(𝑢, 𝑣) + 𝑇𝐵(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅   from (1) weget, 𝑇B(𝑢, 𝑣)̿̿ ̿̿ ̿̿ ̿̿ ̿̿ = 𝑇B(𝑢, 𝑣) 

Similarly, 𝐼B(𝑢, 𝑣)̿̿ ̿̿ ̿̿ ̿̿ ̿̿ = 𝐼B(𝑢, 𝑣) and 𝐹B(𝑢, 𝑣)̿̿ ̿̿ ̿̿ ̿̿ ̿̿ = 𝐹B(𝑢, 𝑣) 

Hence �̿� = G. 

 

4. Conclusion 

Neutrosophic graph theory is now commonly used in numerous sciences and technology, most 

notably in cognitive science, genetic algorithms, optimization techniques, cluster analysis, medical 

diagnosis, and decision theory. Florentin Smarandache created a neutrosophic graph based on 

neutrosophic sets. When compared to other traditional and fuzzy models, neutrosophic models 

provide the system with greater precision, adaptability, and compatibility. We introduced the 

concept of balanced neutrosophic graphs in this paper and we plan to expand our work on the 

application of balancing social network connectivity using density functions in the neutrosophic 

environment. 
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Abstract: COVID-19's fast spread in 2020 compelled the World Health Organization (WHO) to 

declare COVID-19 a worldwide pandemic. According to the WHO, one of the preventative 

countermeasures against this type of virus is to use face masks in public places. This paper proposes 

a face mask detection model by extracting features based on the neutrosophic RGB with deep 

transfer learning. The suggested model is divided into three steps, the first step is the conversion to 

the neutrosophic RGB domain. This work is considered one of the first trails of applying 

neutrosophic RGB conversion to image domain, as it was commonly used in the conversion of 

grayscale images. The second step is the feature extraction using Alexnet, which has been small 

number of layers. The detection model is created in the third step using two traditional machine 

learning algorithms: decision trees classifier and Support Vector Machine (SVM). The Simulated 

Masked Face dataset (SMF) and the Real-World Mask Face dataset (RMF) are merged to a single 

dataset with two categories (a face with a mask, and a face without a mask). According to the 

experimental results, the SVM classifier with the True (T) neutrosophic domain achieved the highest 

testing accuracy with 98.37%. 

Keywords: Neutrosophic RGB; COVID-19; Classical Machine Learning; Deep Learning; Face Mask 

Detection 

 

 

1. Introduction 

As COVID spread swiftly throughout the globe in 2020, the World Health Organization was 

forced to proclaim a worldwide pandemic. In more than 180 nations, more than seven million cases 

have been diagnosed with COVID-19 with a death rate of 3 percent, according to [1]. Extensive 

initiatives are underway around the globe to create innovative therapies and vaccinations for the 

disease. The new coronavirus known as severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) is a member of the pathogen family that caused respiratory illnesses during the 2002–2003 

pandemic (SARS-CoV-1) [2].  

COVID-19 is distinguished by a pre-symptomatic phase of transmission, as freshly infected 

persons may harm others inadvertently. The infection travels by direct touch and across polluted and 

overcrowded environments. The face mask is an effective way to prevent the COVID-19 spread of 

airborne particles [3]. According to [4], [5], having to wear face masks in crowded areas and public 

will help to reduce disease transmission all the time. In many societies, governments face tremendous 

obstacles and hazards in protecting people from coronavirus. When it comes to the dissemination 
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and transmission of COVID-19, policymakers confront a slew of concerns and dangers [6]. In several 

countries, people are required by law to wear face masks in public [7]. These recommendations and 

rules were created as part of an attempt to combat the rapidly growing number of fatalities in several 

nations. However, managing a large group of people is getting increasingly difficult. One possible 

and realistic solution is to have a screening process that includes the identification of someone who 

does not wear a face mask. Despite a few screening processes, the search for a better approach is still 

an open research question, particularly in this COVID era.  

Artificial intelligence contributes to the fight against the pandemic of COVID-19 in many ways. 

These days, several AI-powered initiatives focused on data analysis, 'machine learning' or 'big data' 

are being utilized in a broad variety of fields to anticipate, clarify and control the different health 

disaster scenarios [8]. AI technology and resources play a crucial role in every aspect of the COVID-

19 crisis response, helping to prevent or slow down the spread of the virus through surveillance and 

contact tracking [9]. Due to significant developments in the domain of machine learning algorithms, 

face mask recognition technology looks to be effectively handled [10]. This type of technology is more 

relevant nowadays than it was previously because it's used for static picture recognition and on-

monitoring as well as real-time inspection and supervision [11].  

Numerous researches have been conducted on various issues relating to COVID-19 and have 

been solved by the computer science field, for example, tracking COVID-19 geographical infections 

using real-time tweets [12], investigating the role of developing technology in the fight against the 

COVID -19 pandemic [13], determining the COVID-19's influence on the electrical industry [14], 

Using machine learning and deep learning models to classify potential coronavirus treatments on a 

single human cell  [15] and more. Numerous researches focus on the classification and 

categorization of COVID-19 CT and X-ray images [16]–[19]. 

Smarandache [20] proposed the principle of Neutrosophic logic in 1995 and then expanded it in 

1999 [21]. Neutrosophic logic has been utilized in various disciplines of computer science since that 

time, including pattern recognition [22], image processing and segmentation [23], and more. This 

leads to the resolution of many scientific and practical real-life problems in a variety of areas, such as 

economics [24], [25], agriculture, and space satellite [26]. Neutrosophic [27] is the foundation of a 

wide family of current mathematical theories that describe both classical and fuzzy analogues. The 

term neutro-sophy refers to the feeling of neutral thinking, and it is this justification that distinguishes 

fuzzy and intuitive fuzzy logic from set theory. A neutrosophic set [28] can be a generic method for 

analyzing data set uncertainty and, in particular, images in the field of artificial intelligence and deep 

learning. Various works used Neutrsophic theory and set with medical image analysis as presented 

in [29]. 

Because people in some countries are compelled by law to wear face masks in public, masked 

face recognition is a must for dealing with apps such as object detection. To battle and ultimately win 

the war against the COVID-19 pandemic, policymakers require advice and surveillance of 

individuals in public areas, particularly crowds, to guarantee that the legislation requiring the use of 

face masks is implemented. This might be expanded by combining surveillance technology with 

Artificial Intelligence models. 

The remainder of the paper is organized as follows. Section 2 is a synopsis of prior relevant 

works. Section 3 describes the data set's features. Section 4 describes the suggested model in detail. 

Section 5 summarizes and analyses the experimental data, and Section 6 offers the conclusions and 

future work options. 

2. Related Works  

In [30], the authors developed a novel method for identifying the face of the human characterized 

by the use of a mask or not. While wearing the face mask, they were able to distinguish three different 

sorts of conditions. Correct facemask wearing, improper facemask wearing, and no facemask wearing. 

The suggested technique achieved a face detection process accuracy of 98.70%. In [31], Convolutional 
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neural networks were utilized to suggest a unique approach known as face emotion recognition (FERC). 

A two-part convolutional neural network served as the foundation for the FERC. The FERC was able 

to properly depict the emotion with 96% accuracy. Nizam et al. [32] proposed a GAN-based structure 

capable of automatically eliminating masks enclosing the facial region and reconstructing the image by 

filling in the missing area The introduced method produced a full, natural, and realistic picture of the 

face.. Khan et al [9] developed a framework for automatically separating a face image into face parts 

and subsequently classifying the gender. The scientists used hand-labeled facial pictures to train a 

segmentation design based on Conditional Random Fields (CRFs). The CRF-based model was utilised 

to segment a facial picture into six separate classes: mouth, hair, eyes, nose, skin, and back. The 

proposed framework was almost 93 percent accurate. In [33], the authors used the YOLOv3 with 

Darknet-53 algorithm for facial detection. The introduced approach was trained on two public datasets 

including more than 600k images and testing was on the Face Detection Data Set and Benchmark 

(FDDB) dataset [34]. The introduced approach had reached an accuracy of 93.9%. Canping et al [35] 

suggested an unique deep neural network (DNN) training framework to speed the training process of 

the triplet loss-based DNN while improving face recognition performance The suggested model 

obtained 97.3 percent accuracy on the LFW benchmark, according to experimental findings [36]. Most 

of the related work focuses on facial construction and recognition of faces, there are few research focuses 

if the human wear a mask or not on his/her face. The goal of this study is to identify persons who do 

not wear medical face masks in order to reduce COVID-19 transmission and spread. 

3. Datasets Characteristics  

To train and test the proposed approach two publicly available masked face dataset are being 

utilized. The first dataset is Real-World Mask Face (RMF) dataset [37]. The RMF dataset contains 

95000 faces, both masked and unmasked. Figure 1 shows samples of peoples wearing masks and 

without masks. Only 5000 photos were chosen at random for this study's trials in order to balance 

the number of images for each class, as well as the second dataset. 

 

Figure 1. RMF samples pictures 

The Simulated Masked Face (SMF) [38] dataset is the second masked face dataset. The SMF 

dataset contains 1570 pictures, 785 of which are masked and unmasked faces. Figure 2 depicts several 

instances of SMF images. The combined dataset contains 3285 pictures for each class, for a total of 

6570 images. Each class has 2500 RMF pictures and 785 SMF images. 
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Figure 2. SMF samples pictures 

4. The Proposed Model Structure 

The suggested model structure is divided into three parts. The first part involves converting the 

original RGB domain to neutrosophic domain. The second part involves extracting features from 

dataset pictures using the Alexnet (A. Krizhevsky et al., 2017) . The third part is the classification 

process, which employs traditional machine techniques such as decision trees and support vector 

machines. Figure 3 depicts the suggested model structure in a graphical form. The next three 

subsections go into the specifics of these parts. 

 

Figure 3. The proposed model structure 
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4.1. Neutrosophic RGB Conversion 

The neutrosophic logic (NL) was created and implemented by Florentin Smarandache [39],[40]. 

In the NL, three neutrosophic subsets, true (T) value, indeterminacy (I) value and falsity (F) value are 

defined for any event. These neutrosophic values (T, I, F) are commonly used to transform a grayscale 

image into the neutrosophic image. The introduced research created a new neutrosophic definition 

on the masked face images, where T exemplify the masked face zone, I exemplify the masked face 

boundary, and F exemplify the background of image. The image converts to the neutrosophic image 

(NI) as illustrated in equations 1-4 [25] [41]: 

 

NI (𝑎, 𝑏) = {𝑇𝑎,𝑏 , 𝐼𝑎,𝑏 , 𝐹𝑎,𝑏}                                   (1) 

 

𝑇𝑎,𝑏 =  
𝑣(𝑎,𝑏) −𝑣𝑚𝑖𝑛

𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛
                                        (2) 

 

𝐹𝑎,𝑏 =  1 − 𝑇𝑎,𝑏                                             (3) 

 

𝐼𝑎,𝑏 =  1 −
𝑈(𝑎,𝑏) −𝑈𝑚𝑖𝑛

𝑈𝑚𝑎𝑥 − 𝑈𝑚𝑖𝑛
                                   (4) 

 

Let 𝑣(𝑎, 𝑏) is the local mean value of related pixels.  𝑣𝑚𝑎𝑥   and 𝑣𝑚𝑖𝑛  are the maximum and 

minimum absolute difference pixels of the histogram. 𝑈(𝑎, 𝑏) is the homogeneity value of 𝑇(𝑎, 𝑏). 

While 𝑈𝑚𝑎𝑥 and 𝑈𝑚𝑖𝑛 are the maximum and minimum peaks respectively, measured from 𝑈(𝑎, 𝑏).  

As mentioned above, the neutrosophic logics are commonly used with the grayscale domain. In 

this work, the authors introduced the neutrosophic RGB conversion. The main idea is to split the RGB 

domain into three domains (Red, Green, and Blue). After that, apply the equations of neutrosophic 

conversion in every domain separately. Then combine the resulted images again into the RGB 

domain. Figure 4 presents the flowchart of the neutrosophic RGB conversion. 

 

 

Figure 4. Neutrosophic RGB conversion flow chart 
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Figure 5 illustrates samples of (𝑇𝑎,𝑏 , 𝐼𝑎,𝑏 , 𝐹𝑎,𝑏 ) images after performing neutrosophic image 

transformation in the different domains (T, I, F). Where 𝑇𝑎,𝑏  domain is masked face object, 𝐼𝑎,𝑏  

domain is the edges and 𝐹𝑎,𝑏 domain is the background.  

 

Figure 5. Different neutrosophic RGB pictures domains were (a) original RGB images, (b) True 

domain, (c) Indeterminacy, and (d) Falsity domain pictures for two classes in the dataset. 

4.2. AlexNet as Features Extraction 

AlexNet is a deep transfer learning technique based on the convolution and pooling [42]. 

AlexNet is an 8-layer deep network that begins with a convolution layer and ends with a fully linked 

layer, as illustrated in Figure 6. To enhance our model performance in classification, the final layer in 

AlexNet was changed and replaced with two machine learning classifiers, SVM and DT, as shown in 

Figure 7. This study's primary contribution is the development of SVM and DT that do not overfit 

the training process. 

 

Figure 6. AlexNet Architecture 

 

Figure 7. Proposed AlexNet as features extractor 
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4.3. Machine Learning Classifiers 

SVM is a discriminative classifier based on hinge function 𝐻𝑣  as illustrated in Equation 5. The 

output y is calculated based on w and d of linear classification as illustrated in equation 6. Where 𝑔 

is a class between 0 to 1. To minimize the SVM function, we implemented a loss function as shown 

in Equation 7 [43] , [44]. SVM maximize the distance between no mask and mask face class points as 

shown in Figure 8. DT is a graph of classification technique in the form of a tree model. Entropy and 

information gain are the main formula to calculate DT as illustrated in equation 8,9. Where 𝑣 is 

related data, and u is a no masked face and masked face, and p( ui )  is the degree of u class. 

Information Gain (IG) is calculated as shown in equation 9. Where 𝑑 is a subset of related data [45] , 

[46]. 

𝐻𝑣 = max(0,1 − 𝑔𝑣𝑦)                                                    (5) 

𝑦 = (𝑤. 𝑥 − 𝑑)                                                                   (6) 

𝑓 =
1

𝑢
 ∑ max(0, 𝐻𝑗)

𝑢

𝑗=1

                                                      (7) 

𝐸𝑛(𝑣) = ∑ −p( ui ) . log ( p( ui ) ) 

𝑐

𝑖=1

                        (8) 

𝐼𝐺 = 𝐸𝑛(𝑣) − ∑ 𝑝(𝑣)𝐸𝑛(𝑣)

𝑑∈𝑣

                                     (9) 

 

Figure 8. Illustrate how SVM work to classify masked face 

5. Results and Discussions 

All the experiments were conducted on a computer server outfitted with an Intel Xeon CPU (2 

GHz) and 96 GB of RAM. The MATLAB software program was chosen for this study to create and 

implement the numerous experimental trails. During the experiments, the following specifications 

are chosen:  

• Two classifiers (decision trees, and Support Vector Machine). 

• Four domains of dataset images: 

 The original dataset domain (RGB). 

 The domain of the True (T) neutrosophic. 

 The domain of the Indeterminacy (I) neutrosophic. 

 The domain of the Falsity (F) neutrosophic. 
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• The dataset is divided into three components (70 percent of the data for the training process, 

10 percent for the validation process, and 20 percent for the testing process). 

Comprehensive research must examine how various classifiers perform on every dataset in 

order to investigate the ability of classifiers to generalize different datasets. The most common 

performance measures in machine learning evaluation models are, Accuracy, Precision, Recall, and 

F1 Score [47], and they are presented from Equation (10) to Equation (13). 

 

Accuracy =
TPos+TNeg

(TPos+FPos)+( 𝑇𝑁𝑒𝑔+𝐹𝑁𝑒𝑔) 
                        (10) 

Precision =
TPos

(TPos+FPos)
                                      (11) 

Recall =  
TPos

(TPos+FNeg)
                                        (12) 

F1 Score = 2 ∗
Precision∗Recall

(Precision+Recall)
                              (13) 

 

Where TPos denotes the total number of True Positive samples, TNeg denotes the total number 

of True Negative samples, FPos denotes the total number of False Positive samples, and FNeg denotes 

the total number of False Negative samples from a confusion matrix. The findings of the experiments 

will be reported in three subsections. The first subsection will provide the findings acquired using a 

decision tree classifier, while the second subsection will give the results obtained using the SVM 

classifier. The third component will present a comparison outcome with similar research. 

 

5.1. Experimental Results for DT Classifier 

The first metric to be measured is the validation accuracy along with the other performance 

metrices. Validation accuracy is vital as it reflects the accuracy of the classifier during and after the 

training. The validation accuracy is calculated over 10% of the dataset [48]. Figure 9 depicts the 

validation accuracy of a decision tree classifier together with performance metrics for four domains 

of dataset images. 

 

 

Figure 9. Validation accuracy and performance metrics for a DT classifier for four dataset image 

domains 



Neutrosophic Sets and Systems, Vol. 50, 2022     328  

 

 
Nour Eldeen Khalifa, Mohamed Loey, Ripon K. Chakrabortty, Mohamed Hamed N. Taha, Within the Protection of COVID-
19 Spreading: A Face Mask Detection Model Based on the Neutrosophic RGB with Deep Transfer Learning. 

Figure 9 illustrates that The True (T) neutrosophic domain achieved the highest possible 

validation accuracy with 90% while the original dataset validation accuracy is 88%. The improvement 

of validation accuracy is due to that the True (T) neutrosophic domain reflects the median actual pixel 

value depending on its neighbors’ pixels. The performance metrics also support the obtained result 

for the achieved validation accuracy for True (T) neutrosophic domain with 0.9009, 0.9009, and 0.9039 

for recall, precision, and F1 score accordingly. In Indeterminacy (I) neutrosophic domain achieved 

the least possible validation accuracy with performance metrics as according to the nature of the 

dataset, the borders of images which is the output result for the Indeterminacy (I) neutrosophic 

domain are not enough to improve the accuracy to differentiate between the masked and unmasked 

face images. Also, in the Falsity (F) neutrosophic domain, the validation accuracy is decreased than 

the validation accuracy for the original dataset. As in the Falsity (F) neutrosophic domain, some 

features are vanished due to the conversion process which reflected in the validation accuracy and 

other performance metrics. Validation accuracy does not reflect an accurate accuracy for the model 

as it is only present 10% of the dataset. So, the testing accuracy which is calculated over 20% will be 

more accurate and insightful for the proposed model. Figure 10 depicts the decision tree classifier's 

testing accuracy along with performance metrics for four domains of dataset images. 

 

 

Figure 10. For four domains of dataset pictures, the DT classifier's accuracy was tested using 

performance measures. 

Figure 10 illustrates that the testing accuracy with performance metrics for the original and the 

True (T) neutrosophic domain was the highest. The testing accuracy for both domains was 92.92%. 

With the same achieved performance metrics accuracy for both domains. True (T) neutrosophic 

domain doesn’t improve the testing accuracy while the Indeterminacy (I) neutrosophic domain, and 

the Falsity (F) neutrosophic domain decrease the testing accuracy for the original dataset from 0.92 

to 0.87 by using the Falsity (F) neutrosophic domain, and from 0.92 to 0.85 by using the Indeterminacy 

(I) neutrosophic domain. The reason is some of the important features in the images were 

disappeared due to the conversion process and the boundaries of the image for objects in the images 

are not enough to differentiate between the masked and the unmasked class. 

To conclude this subsection concerning the decision tree classifier accuracy, the decision tree 

classifier was able to classify between the masked and unmasked face images using the original 

domain or the True (T) neutrosophic domain with a testing accuracy of 0.92 % along with 

performance metrics with the same value of accuracy of 0.92%. 

 

 

5.2. Experimental Results for SVM Classifier 
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The validation accuracy with associated performance measures is the first statistic to be 

measured. Figure 11 depicts the validation accuracy of the SVM classifier together with performance 

characteristics for the four dataset picture domains. 

 

 

Figure 11. Validation accuracy of the SVM classifier using performance indicators for four dataset 

image domains. 

Figure 11 shows that for each of the four domains, the SVM classifier outperforms the decision 

tree classifier in terms of validation accuracy. The SVM scores 0.9784 in validation accuracy in the 

original RGB domain, whereas the decision tree classifier reaches 0.8858. The same behavior is 

repeated in all the other neutrosophic domains. The highest accuracy possible achieved by the True 

(T) neutrosophic domain with 0.9871 validation accuracy. The performance metrics strengthen the 

validation accuracy for the True (T) neutrosophic domain with the same value of validation accuracy 

0.9871 for recall, precision, and F1 score. Figure 12 depicts the SVM classifier's testing accuracy as 

well as performance metrics for four dataset image domains. 

 

 

Figure 12. For four domains of image pictures, the SVM classifier's accuracy was tested using 

performance measures. 

The testing accuracy is an accurate measure for the model accuracy is it present a large sample 

of data (20%). Figure 12 illustrates the SVM classifier achieves higher testing accuracy than the 

decision tree classifier in the four domains of images. In the True (T) neutrosophic domain, the SVM 

classifier achieves 0.9837 in the testing accuracy while the decision tree classifier achieved 0.9292. The 

improvement in testing accuracy by using the SVM classifier is notable and strengthen by the 

calculated performance metrics over the decision tree classifier. 

It is clearly shown in Figure 12 that the True (T) neutrosophic domain achieves the highest 

accuracy possible with 0.9837 while the nearest accuracy achieved by the original RGB with 0.9829. 
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The difference is not very large, but it is considered an improvement for the testing accuracy of the 

proposed model. This improvement in the True (T) neutrosophic domain is due to that the True (T) 

neutrosophic domain correctly represent the features of the image which help in classifying between 

masked and unmasked face images correctly. 
Figure 13 depicts the time spent by the various classifiers throughout the training process. It is 

well understood that the spent time is proportional to the dataset size and machine capabilities, yet 

it provides an indication of the classifier's performance. 

 

 

Figure 13. Training time spent by various classifiers for various image domains. 

Figure 13 shows that the SVM classifier required less time to train in three of the four domains. 

The original domain RGB domain, the True (T) neutrosophic domain, and the Falsity (F) neutrosophic 

domain are the domains in which the SVM classifier obtained less time in training. To summaries this 

part, it is apparent that the SVM classifier outperforms the decision tree classifier in terms of 

validation, testing accuracy, performance metrics, and training time. With testing accuracy and 

performance metrics equal to 0.9837, the SVM classifier obtained the highest achievable accuracy in 

the True (T) neutrosophic domain. 

The confusion matrix is also an excellent indicator of the performance of the model as it views 

more insights about the testing accuracy for every class in the dataset. Figure 14 presents the 

confusion matrix for the SVM classifier for the original RGB domain, and the True (T) neutrosophic 

domain. 

 

 

Figure 14. Confusion matrix for (a) the original RGB domain, and (b) the True (T) neutrosophic 

domain 

Figure 14 shows that the accuracy for the face "Mask" class is 98.4 percent for both the original 

RGB domain and the True (T) neutrosophic domain. The improvement is in the face “No Mask” class, 
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where the testing accuracy is 98.5 for the True (T) neutrosophic domain and 98.2 percent for the 

original RGB domain. 

5.3. Comparative Results 

The study described in [37] employed the RMF dataset, and their model obtained testing 

accuracy ranging from 50% to 95%. The testing accuracy in the current work is 98.37% when utilizing 

the SVM classifier and the True (T) neutrosophic domain. According to the authors of the dataset 

[38], there is no documented accuracy for the simulated masked dataset SMF, there is no reported 

accuracy according to the author of the dataset. In this paper, we use the SVM classifier and the True 

(T) neutrosophic to achieve 98.37 percent testing accuracy. Table 1 compares related studies and 

prospective efforts that use the same datasets. 

Table 1. A table comparing similar works and prospective efforts that use the same datasets 

 Short description  Accuracy 

[37] 

key features extractions in visible parts of the 

masked face, such as face contour, ocular and 

periocular details, forehead with nearest 

neighbor algorithm. 

50% to 95% 

Proposed model SVM classifier with the True (T) neutrosophic 98.37% 
 

6. Conclusion and Future Works 

A worldwide health catastrophe is triggered by the COVID-19 coronavirus pandemic. 

Governments all around the globe are battling to halt the spread of this sort of virus. Protection 

against COVID-19 infection, according to the World Health Organization (WHO), is a required 

countermeasure. Wearing a face mask in public places is one of the required countermeasures. A face 

mask classification model based on neutrosophic RGB with Convolutional Neural Network (CNN) 

for feature extraction and conventional machine learning was presented in this study. The suggested 

model was divided into three stages, the first of which was the conversion to the neutrosophic RGB 

domain. This study was regarded one of the earliest trails of using neutrosophic RGB conversion, 

since it was frequently utilized in grayscale picture conversion. The second state was the features 

extraction using Alexnet. It will be used as a feature extractor throughout the proposed model. The 

third phase was the detection model using classical machine learning. Two classical machine learning 

algorithms were investigated, and they were the decision tress classifier and Support Vector Machine 

(SVM). A dataset consisted of two different datasets, and they were the Real-World Mask Face dataset 

(RMF) and the Simulated Masked Face dataset (SMF). The combined dataset contained two classes 

(with a mask, and without a mask). The SVM classifier using the True (T) neutrosophic domain had 

the highest testing accuracy with 98.37 percent, according to the experimental findings. The acquired 

findings were validated by performance measures like as Precision, Recall, and F1 Score. At the end 

of the study, a comparison result was obtained, and the suggested model outperformed the findings 

of the related works in terms of testing accuracy. Deeper deep learning models for feature extraction, 

such as Resnet50 or Inception-ResNet-v2, may be included as one of the potential future efforts. In 

addition, other traditional machine learning techniques, such as Ensemble classifier, may be used to 

improve testing accuracy. 
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Abstract  

The fuzzy set and its application play a major role to most of the uncertainty situations of 

inventory management problem. At present, as an enlargement of fuzzy set, the notion of neutrosophic 

set is initiated to implement in inventory models for uncertain parameters. In this paper, the Trapezoidal 

Bipolar Neutrosophic Number (TrBNN) is enforced to the container inventory model. Because of the 

imbalanced flow of containers, the container management organization faces the major issue of scarcity of 

containers. One-way Free Use (OFU) of container and renting of containers are employed to restore the 

shortfall units. An algorithm is designed to make a decision on various conditions to compute the 

expected total cost. Also, this paper scrutinizes a condition that some fraction of deficit containers is one-

way free used and the remaining are leased. Unpredictable parameters such as the fraction of received 

containers after used, the fraction of amendable containers from received units, and the fraction of one-

way free used containers are presumed as TrBNN. In the view of reduce the total cost, a neutrosophic 

container inventory model is framed to obtain the optimal duration of inspection process and the optimal 

duration of leasing process. To flourish this study more effective, the proposed container inventory 

model is compared with the model by presuming Triangular Bipolar Neutrosophic Number (TBNN).   

Keywords: Trapezoidal bipolar neutrosophic number, Triangular bipolar neutrosophic number, 

Container inventory, One-way free use, Lease. 

 

1. Introduction  

The major aspect of any business trading is to attract the customers from the competitors 

throughout the globe. So that, the import and export trading has been developing day by day in most of 

the countries. The import and export traders spend lots of cost for cargoes transportation and thus for 

minimizing their cost and transporting cargoes safely, they chosen the Reusable Containers (RCs). In 

order to transporting goods from one destination to another, the non-vessel operating common carrier, or 

the shipping companies provides the RCs to the consigners. This study examines some of the issues and 

the various cost of maintaining the reusable container faced by the Container Management Organization 

(CMO).  

The objective of any CMO is to satisfy the consigner's requirements. Because of imbalanced 

business trading, shortage of container will occur. This research prescribes the CMO to implement the 

following strategies in order to avoid from scarcity of containers. One of the main strategies is one-way 
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free use; the OFU containers only make one trip. To return the containers at OFU vendor’s depot, they 

allow OFU of containers from their surplus area to slack area instead of repositioning under free of cost. 

OFU containers help business to minimize the costs. Since, the OFU vendor offers only limited number of 

units, all the deficit containers are unable to replace under OFU option. Thus, the proportion of shortfall 

units are one-way free used and the remaining are restored from another CMO as rent. There is no cost 

spent for OFU when compared to leasing or purchasing a container. That is, OFU of container does not 

incurred costs like repositioning cost, carrying charge as well as repairing charge but it incurred only the 

screening charge.  

Since the proportion of received containers after used, the proportion of amendable containers 

from received RCs, and the fraction of OFU RCs are uncertain, the present model framed under bipolar 

neutrosophic arena to reach the most approximate solutions. A container inventory model with price 

sensitive demand is developed and the costs under various strategies are framed. Neutrosophication of 

the various proportions of the proposed model leads the CMO to attain most approximate ratio.  In this 

study, these proportions are considered as single type linear TrBNN and then removal area technique of 

de-bipolarization is applied. The proposed study is compared with TrBNN and TBNN. The research 

works related to these topics are discussed as follows.    

Buchanan and Abad [9] framed the single and N-periods study on inventory model for routine 

system of reusable transport containers. A notion of repositioning empty containers on container 

inventory model along with leasing option under (s,S) policy is analyzed by Yun et al. [38]. Further, in 

2014, Kim and Glock [22] scrutinized the RFID and its usage to the management of reusable containers by 

presuming the proportion of returned units as stochastic. Glock and Kim [16] studied an inventory model 

of combined finished goods and RTIs under some safety measures. Hariga et al. [19] designed the 

reusable container inventory model with finished goods of single vendor single retailer along with the 

renting option of RTIs for delay returns.  

Cobb [13] studied the container inventory control problem to attain the optimal inspection 

length, the optimal mending period and the optimal purchasing. This study presumed that the 

investigation procedure as well as the mending procedure done subsequently and analyzed about the 

early returned containers which are stored as safety stock. The studies [15, 20, 23, 24] examine the 

container inventory model under various strategies. Further, the works [17] and [25] analyzed the 

container inventory model with the notion of repositioning of empty container. Maity et al. [26] analyzed 

the EOQ model under cloudy fuzzy logic. Rajeswari et al. [30] examined the work of Cobb [13] and 

presented a container management model with customer charge sensitive demand by utilizing the ECR 

as well as the renting option instead of buying new containers under fuzzy arena. Recently, [31 and 32] 

studied the notion of prepayment strategy in fuzzy EOQ model under various situations. 

The uncertainty situation leads the researchers of various fields to use the approach of the fuzzy 

set and its applications. First of all, the fuzzy set and its approach were initiated by Zadeh [39]. Heilpern 

[21] formulated the expected value along with the expected value interval of fuzzy number. Then 

Atanassov [2] elongated the fuzzy set as intuitionistic fuzzy set and some researchers classified the 

intuitionistic fuzzy set under various types and applied to various situations. Shaw and Row [33] 

established the trapezoidal intuitionistic fuzzy set along with the arithmetic operations then applied to 

reach the accurate result.  

As an enlargement of the fuzzy set and intuitionistic fuzzy set, the neutrosophic set is established 

by Smarandache [34]. For easy understanding, Wang et al. [36] designed the neutrosophic set as the 

singled valued neutrosophic set. For effective results, [3, 4, 8, 18, 29, 37] utilizes various measures on 

neutrosophic numbers to decision making models under various environments. A new de-

netrosophication method of pentagonal neutrosophic number using removal area method is established 
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by Chakraborty et al. [10] and utilized this method to a minimal spanning tree. Further, [27, 28] 

developed the inventory models with various strategies under neutrosophic arena.  

By the view of negative and positive part of the human decision-making techniques, Bosc and 

Pivert [5] established the bipolar fuzzy set. Subsequently, Abdullah et al. [1] designed the bipolar fuzzy 

soft set and utilized to decision theory. Followed by these works, the concept bipolar neutrosophic set is 

initiated by Deli et al. [14] and applied its notion to decision making problem. In 2016, Broumi et al. [6] 

proposed the approach of bipolar single valued neutrosophic under graph theory and [7] utilizes the 

application of bipolar neutrosophic set and solved the shortest path problem. For effective outcomes, [11, 

12, 35] framed the various measures on different bipolar neutrosophic numbers to decision making 

models under various situations. 

The objective of this research is to help the CMO in order to supply the RC to their consigner 

without scarcity under minimum cost. The novelty of this study is to utilizing the OFU and leasing option 

to avoid the revenue loss from deficit containers instead of repositioning the empty container or 

purchasing new container. To attain the outcomes pore effective, this model is proposed under bipolar 

neutrosophic environment. The main contribution of this paper is the OFU option, which helps the CMO 

reduce the total cost. The advantage of utilizing the one-way free use strategy is the CMO compensates 

for the shortfall containers without spending much cost.   

The elementary definitions on fuzzy set, Intuitionistic fuzzy set, Neutrosophic set and bipolar 

neutrosophic set are provided in section 2. In section 3, the container inventory costs under various 

strategies say serviceable container cost, OFU cost, ECR cost and least cost are computed, and an 

algorithm is given to make decision on choosing these strategies. Then the container inventory model 

under bipolar neutrosophic environment is framed by presuming the proportions of return rate, repair 

rate, and the OFU rate as TrBNN and also the de-bipolrization of TrBNN and TBNN are provided. The 

numerical computation and sensitivity analysis is performed in section 4. In the last section, the outcomes 

of the study are deliberated. 

2. Preliminaries  

Some of the preliminaries related to this research are as follows.  

Fuzzy set [39]: A set of 2-tuples 𝜉 = (𝓏′, 𝜇�̃�(𝓏
′)): 𝓏′ ∈ 𝒰 is said to be a a fuzzy set 𝜉 in 𝒰 (Universe of 

discourse) where 𝜇�̃� (𝓏
′) represents the membership degree of 𝓏′ such that 𝜇�̃� (𝓏

′) ∈ [0,1]. 

Fuzzy number [39]: Let ℝ be a real line then 𝜉 ⊂ ℝ is said to be a fuzzy number whose membership 

degree 𝜇�̃�  satisfies the given conditions  

i. 𝜇�̃� (𝓏
′) is piecewise continuous in its domain. 

ii. 𝜉  is normal, i.e., ∃ 𝓏0
′ ∈ 𝜉 such that 𝜇�̃�(𝓏0

′ ) = 1. 

iii.  𝜉  is convex, i.e., 𝜇�̃� (𝜖𝓏1
′ + (1 − 𝜖)𝓏2

′ ) ≥ 𝑚𝑖𝑛 (𝜇�̃� (𝓏1
′), 𝜇�̃� (𝓏2

′ )) ∀ 𝓏1
′ , 𝓏2

′  in 𝒰. 

Trapezoidal Fuzzy number:[3] Let 𝜉 = (σ1, σ2, σ3, σ4) be a trapezoidal fuzzy number then it has a 

membership degree 

𝜇�̃�(𝓏
′) =

{
 
 
 

 
 
 𝓏 ′ −σ1
σ2−σ1

, σ1 ≤ 𝓏 ′  ≤ σ2

1, σ2 ≤ 𝓏
′  ≤ σ3

σ4−𝓏
′ 

σ4−σ3
, σ3 ≤ 𝓏

′  ≤ σ4

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.    

where, 𝜇�̃�(𝓏 ′) satisfies the following conditions: 



Neutrosophic Sets and Systems, Vol. 50, 2022                                                                                                                          339 

 

_____________________________________________________________________________________ 
C. Sugapriya, S. Rajeswari, D. Nagarajan, Zarife Zararsız, Zakiya Said Mahad Al Amri, An effective container inventory model 
under bipolar neutrosophic environment 
 

(i) 𝜇�̃�(𝓏 ′) is a continuous mapping from ℝ to [0,1], 
(ii)  𝜇�̃�(𝓏 ′) = 0 for every 𝓏 ′ ∈ (−∞,σ1], 
(iii) 𝜇�̃�(𝓏 ′) is strictly increasing and continuous on [σ1, σ2], 
(iv)  𝜇�̃�(𝓏 ′) = 0 for every 𝓏 ′ ∈ [σ2, σ3], 
(v) 𝜇�̃�(𝓏 ′) is strictly decreasing and continuous on [σ3, σ4], 
(vi) 𝜇�̃�(𝓏 ′) = 0 for every 𝓏 ′ ∈ (σ4, ∞, ]. 
Intuitionistic Fuzzy Set [2]: An intuitionistic fuzzy set 𝜉 in 𝒰 (finite universe of discourse) is 
given as 𝜉 = {〈𝓏 ′, φ�̃�(𝓏

′), ψ�̃�(𝓏
′)〉 |𝓏 ′ ∈ 𝒰}, where φ�̃�: 𝒰 → [0,1] and ψ�̃�: 𝒰 → [0,1] satisfying 

the condition 0 ≤ φ�̃�(𝓏
′) + ψ�̃�(𝓏

′) ≤ 1 and φ�̃�(𝓏 ′) denotes the membership degree of  𝓏 ′ ∈ 𝒰 
in 𝜉 and ψ�̃�(𝓏 ′) represents the non-membership function of  𝓏 ′ ∈ 𝒰 in 𝜉. Along with this, the 
hesitance degree of 𝓏 ′ ∈ 𝒰 in 𝜉 is denoted as ε�̃�(𝓏 ′) and is given as ε�̃�(𝓏 ′) = 1 − φ�̃�(𝓏

′) −

ψ�̃�(𝓏
′). For convenience, the intuitionistic fuzzy number is considered as 𝜉 = (φ�̃�(𝓏

′), ψ�̃�(𝓏
′)). 

Trapezoidal Intuitionistic Fuzzy Number [33]: A fuzzy number ℱ̃ =
(σ1, σ2, σ3, σ4), (σ1

1, σ2
1, σ3

1, σ4
1) is a trapezoidal intuitionistic fuzzy number where 

σ1, σ2, σ3, σ4, σ1
1, σ2

1, σ3
1, σ4

1  are real and its membership degree 𝜇 ℱ̃(ℊ) and non-membership 
degree 𝜗ℱ̃(ℊ)  are given as below:  

𝜇ℱ̃(ℊ) =

{
 
 

 
 (

ℊ−σ1

σ2−σ1
),                            σ1 ≤ ℊ ≤ σ2

1,                                        σ2 ≤ ℊ ≤ σ3

(
σ4−ℊ

σ4−σ3
),                            σ3 ≤ ℊ ≤ σ4

0,                                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

and 𝜗ℱ̃(ℊ) =

{
 
 

 
 (

σ2
1−ℊ

σ2
1−σ1

1),                            σ1
1 ≤ ℊ ≤ σ2

1

0,                                        σ2
1 ≤ ℊ ≤ σ3

1

(
ℊ−σ3

1

σ4
1−σ3

1),                            σ3
1 ≤ ℊ ≤ σ4

1

1,                                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. 

Neutrosophic Set [34]: A neutrosophic set �̃�𝑁 in 𝒰 (Universe of discourse) is catogorized as 
functions of a truth membership 𝑇�̃�𝑁

(ℊ), an indeterminacy membership 𝐼�̃�𝑁
(ℊ) and a falsity 

membership 𝐹�̃�𝑁
(ℊ). The functions 𝑇�̃�𝑁

,  𝐼�̃�𝑁
  and 𝐹�̃�𝑁

 are real standard or non-standard 
subsets of ]−0, 1+[  i.e., 𝑇�̃�𝑁

: 𝒰 →]−0, 1+[ ; 𝐼�̃�𝑁
: 𝒰 →]−0, 1+[ ;  𝐹�̃�𝑁

: 𝒰 →]−0, 1+[. 𝑇�̃�𝑁
(ℊ), 

 𝐼�̃�𝑁
(ℊ), and 𝐹�̃�𝑁

(ℊ) satisfy the relation -0 ≤ supT�̃�𝑁
(ℊ) ≤ sup I�̃�𝑁

(ℊ) ≤ sup F�̃�𝑁
(ℊ) ≤ 3+, 

where ℊ ∈ 𝒰 
Fuzzy Neutrosophic Number [3]: Let �̃�𝑁 be a fuzzy neutrosophic number in the set of real 
numbers ℝ then its validity membership degree, indeterminacy membership degree and negation 
membership degree are respectively written as below: 

𝑇�̃�𝑁
(ℊ) = ⟨

𝑇�̃�𝑁

𝐿 (ℊ)             σ11 ≤ ℊ ≤ σ12
1                       σ12 ≤ ℊ ≤ σ13
𝑇�̃�𝑁

𝑈 (ℊ)            σ13 ≤ ℊ ≤ σ14

0                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

⟩ 
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𝐼�̃�𝑁
(𝑦) = ⟨

𝐼�̃�𝑁

𝐿 (ℊ)             σ21 ≤ ℊ ≤ σ22
0                        σ22 ≤ ℊ ≤ σ23
𝐼�̃�𝑁

𝑈 (ℊ)             σ23 ≤ ℊ ≤ σ24

1                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       

⟩ 

𝐹�̃�𝑁
(𝑦) = ⟨

𝐹�̃�𝑁

𝐿 (ℊ)             σ31 ≤ ℊ ≤ σ32
0                         σ32 ≤ ℊ ≤ σ33
𝐹�̃�𝑁

𝑈 (ℊ)             σ33 ≤ ℊ ≤ σ34

1                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

⟩ 

where 0 ≤ sup 𝑇�̃�𝑁
(ℊ) ≤ sup 𝐼�̃�𝑁

(ℊ) ≤ sup𝐹�̃�𝑁
(ℊ) ≤ 3, ∀ ℊ ∈ 𝒰 and for all 𝑖 = 1,2,3; 𝑗 =

1,2,3,4;  σ𝑖𝑗  ∈ R, such that σ11 ≤ σ12 ≤ σ13 ≤ σ14; σ21 ≤ σ22 ≤ σ23 ≤ σ24 and σ31 ≤ σ32 ≤
σ33 ≤ σ34. Here 𝑇�̃�𝑁

𝐿 (ℊ), 𝐼�̃�𝑁

𝑈 (ℊ), 𝐹�̃�𝑁

𝑈 (ℊ) ∈ [0,1] are continuous monotonic increasing 
functions and 𝑇�̃�𝑁

𝑈 (ℊ), 𝐼�̃�𝑁

𝐿 (ℊ), 𝐹�̃�𝑁

𝐿 (ℊ) ∈ [0,1] are continuous monotonic decreasing functions.  
Single-valued Neutrosophic Set [36]: A single-valued neutrosophic set �̃�𝑁 in 𝒰 (Universe of 
discourse) is catogorized as functions of a truth membership 𝑇�̃�𝑁

(ℊ), an indeterminacy 
membership 𝐼�̃�𝑁

(ℊ) and a falsity membership 𝐹�̃�𝑁
(ℊ)and is given by 

�̃� = {ℊ, 〈𝑇�̃�𝑁
(ℊ),  𝐼�̃�𝑁

(ℊ), 𝐹�̃�𝑁
(ℊ)〉 | ℊ ∈ 𝒰}. 

Here 𝑇�̃�𝑁
(ℊ),  𝐼�̃�𝑁

(ℊ), 𝐹�̃�𝑁
(ℊ) ∈ [0,1] and the relation 0 ≤ sup𝑇�̃�𝑁

(ℊ) ≤ sup 𝐼�̃�𝑁
(ℊ) ≤

sup𝐹�̃�𝑁
(ℊ) ≤ 3 holds for all ℊ ∈ 𝒰. 

Trapezoidal neutrosophic number [3]: 
A trapezoidal fuzzy neutrosophic number (TrFNN) �̃�𝑁   in 𝒰 (Universe of discourse) is defined as 
follows: 

�̃�𝑁 = 〈(σ11, σ12, σ13, σ14), (σ21, σ22, σ23, σ24), (σ31, σ32, σ33, σ34)〉 
where σ11 ≤ σ12 ≤ σ13 ≤ σ14; σ21 ≤ σ22 ≤ σ23 ≤ σ24 and σ31 ≤ σ32 ≤ σ33 ≤ σ34. Its truth 
member function is given as 

𝑇�̃�𝑁
(ℊ) = ⟨

ℊ−σ11
σ12−σ11

             σ11 ≤ ℊ ≤ σ12

1                        σ12 ≤ ℊ ≤ σ13
σ14−ℊ

σ14−σ13
             σ13 ≤ ℊ ≤ σ14

0                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

⟩  

Its indeterminacy membership function is written as  

𝐼�̃�𝑁
(ℊ) = ⟨

σ22−ℊ

σ22−σ21
             σ21 ≤ ℊ ≤ σ22

0                       σ22 ≤ ℊ ≤ σ23
ℊ−σ24
σ24−σ23

             σ23 ≤ ℊ ≤ σ24

1                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

⟩  

and its falsity membership function is written as 

𝐹�̃�𝑁
(ℊ) = ⟨

σ32−ℊ

σ32−σ31
             σ31 ≤ ℊ ≤ σ32

0                       σ32 ≤ ℊ ≤ σ33
ℊ−σ34
σ34−σ33

             σ33 ≤ ℊ ≤ σ34

1                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

⟩  

Bipolar Neutrosophic Set [14]: A set �̃�𝐵𝑖 in 𝒰 (finite universe of discourse) is said to be the 
bipolar neutrosophic set if   
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�̃�𝐵𝑖 = {〈ℊ, [𝑇�̃�𝐵𝑖

+(ℊ), 𝐼�̃�𝐵𝑖

+(ℊ), 𝐹�̃�𝐵𝑖

+(ℊ), 𝑇�̃�𝐵𝑖

−(ℊ), 𝐼�̃�𝐵𝑖

−(ℊ), 𝐹�̃�𝐵𝑖

−(ℊ)]〉 | ℊ ∈ 𝒰}, where 
𝑇�̃�𝐵𝑖

+(ℊ):𝒰 → [0,1], 𝑇�̃�𝐵𝑖

−(ℊ):𝒰 → [−1,0] represents the truth membership function, 
𝐼�̃�𝐵𝑖

+(ℊ):𝒰 → [0,1], 𝐼�̃�𝐵𝑖

−(ℊ):𝒰 → [−1,0] represents the indeterminacy membership function 
and 𝐹�̃�𝐵𝑖

+(ℊ):𝒰 → [0,1], 𝐹�̃�𝐵𝑖

−(ℊ):𝒰 → [−1,0] represents the falsity membership function.  
Triangular bipolar neutrosophic number [3]: 
A triangular bipolar neutrosophic number (TBNN) �̃�𝐵𝑖   in 𝒰 (Universe of discourse) is defined as 
follows: 

�̃�𝐵𝑖 = 〈(σ11, σ12, σ13), (σ21, σ22, σ23), (σ31, σ32, σ33)〉 
where σ11 ≤ σ12 ≤ σ13; σ21 ≤ σ22 ≤ σ23 and σ31 ≤ σ32 ≤ σ33.  Its validity membership degree, 
indeterminacy membership degree and the negation membership degree of TBNN are written as 

𝑇�̃�𝐵𝑖

+(ℊ) = ⟨

ℊ−σ11

σ12−σ11
             σ11 ≤ ℊ < 𝜌2

1                     ℊ = σ12
σ13−ℊ

σ13−σ12
             σ12 < ℊ ≤ 𝜌4

0                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

⟩,    𝑇�̃�𝐵𝑖

−(ℊ) = ⟨

σ12−ℊ

σ12−𝜌1
             σ11 ≤ ℊ < 𝜌2

−1                  ℊ = σ12
ℊ−σ13

σ13−σ12
             σ12 < ℊ ≤ σ13

0                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

⟩ ; 

𝐼�̃�𝐵𝑖

+(ℊ) = ⟨

σ22−ℊ

σ22−σ21
             σ21 ≤ ℊ < σ22

0                            ℊ = σ22
ℊ−σ23

σ23−σ22
             σ22 < ℊ ≤ σ23

1                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

⟩,    𝐼�̃�𝐵𝑖

−(ℊ) = ⟨

ℊ−σ22

σ22−σ21
             σ21 ≤ ℊ < σ22

0                  ℊ = σ22
σ23−ℊ

σ23−σ22
             σ22 < ℊ ≤ σ23

−1                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

⟩ and 

𝐹�̃�𝐵𝑖

+(ℊ) = ⟨

σ32−ℊ

σ32−σ31
             σ31 ≤ ℊ < σ32

0                     ℊ = σ32
ℊ−σ33

σ33−σ32
            σ32 < ℊ ≤ σ33

1                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

⟩,    𝐹�̃�𝐵𝑖

−(ℊ) = ⟨

ℊ−𝜗2

𝜗2−σ31
             σ31 ≤ ℊ < σ32

0                         ℊ = σ32
σ33−ℊ

σ33−𝜗3
             σ32 < ℊ ≤ σ33

−1                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

⟩ 

where −3 ≤ 𝑇�̃�𝐵𝑖
(ℊ) + 𝐼�̃�𝐵𝑖(ℊ) + 𝐹�̃�𝐵𝑖(ℊ) ≤ 3 +.  

Trapezoidal bipolar neutrosophic number [12]: A trapezoidal bipolar neutrosophic number 
(TrBNN) �̃�𝑩𝒊 in 𝒰 (finite universe of discourse) characterized by three independent membership 
degrees as follows: 
 �̃�𝐵𝑖 = 〈(𝜌1, 𝜌2, 𝜌3, 𝜌4), (σ1, σ2, σ3, σ4), (𝜗1, 𝜗2, 𝜗3, 𝜗4)〉 
Where 𝜌1 ≤ 𝜌2 ≤ 𝜌3 ≤ 𝜌4; σ1 ≤ σ2 ≤ σ3 ≤ σ4 and 𝜗1 ≤ 𝜗2 ≤ 𝜗3 ≤ 𝜗4. 



Neutrosophic Sets and Systems, Vol. 50, 2022                                                                                                                          342 

 

_____________________________________________________________________________________ 
C. Sugapriya, S. Rajeswari, D. Nagarajan, Zarife Zararsız, Zakiya Said Mahad Al Amri, An effective container inventory model 
under bipolar neutrosophic environment 
 

 
Fig. 1 Linear Trapezoidal Bipolar Neutrosophic Number  

Let the positive and the negative portion of truth membership function are denoted by 𝑇�̃�𝐵𝑖

+ and 
𝑇�̃�𝐵𝑖

− respectively, the positive and the negative portion of indeterminacy membership function 
are represented by 𝐼�̃�𝐵𝑖

+ and 𝐼�̃�𝐵𝑖

− respectively and the positive and the negative portion of 
negation membership function are denoted by 𝐹�̃�𝐵𝑖

+ and 𝐹�̃�𝐵𝑖

− respectively then the validity 
membership degree, indeterminacy membership degree and the negation membership degree of 
TrBNN are written as 

𝑇�̃�𝐵𝑖

+(ℊ) = ⟨

ℊ−𝜌1

𝜌2−𝜌1
             𝜌1 ≤ ℊ < 𝜌2

1                     𝜌2 ≤ ℊ ≤ 𝜌3
𝜌4−ℊ

𝜌4−𝜌3
             𝜌3 < ℊ ≤ 𝜌4

0                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

⟩,    𝑇�̃�𝐵𝑖

−(ℊ) = ⟨

𝜌2−ℊ

𝜌2−𝜌1
             𝜌1 ≤ ℊ < 𝜌2

−1                  𝜌2 ≤ ℊ ≤ 𝜌3
ℊ−𝜌4

𝜌4−𝜌3
             𝜌3 < ℊ ≤ 𝜌4

0                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

⟩ ; 

𝐼�̃�𝐵𝑖

+(ℊ) = ⟨

σ2−ℊ

σ2−σ1
             σ1 ≤ ℊ < σ2

0                     σ2 ≤ ℊ ≤ σ3
ℊ−σ4

σ4−σ3
             σ3 < ℊ ≤ σ4

1                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

⟩,    𝐼�̃�𝐵𝑖

−(ℊ) = ⟨

ℊ−σ2

σ2−σ1
             σ1 ≤ ℊ < σ2

0                  σ2 ≤ ℊ ≤ σ3
σ4−ℊ

σ4−σ3
             σ3 < ℊ ≤ σ4

−1                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

⟩ and 

𝐹�̃�𝐵𝑖

+(ℊ) = ⟨

𝜗2−ℊ

𝜗2−𝜗1
             𝜗1 ≤ ℊ < 𝜗2

0                     𝜗2 ≤ ℊ ≤ 𝜗3
ℊ−𝜗4

𝜗4−𝜗3
             𝜗3 < ℊ ≤ 𝜗4

1                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

⟩,    𝐹�̃�𝐵𝑖

−(ℊ) = ⟨

ℊ−𝜗2

𝜗2−𝜗1
             𝜗1 ≤ ℊ < 𝜗2

0                  𝜗2 ≤ ℊ ≤ 𝜗3
𝜗4−ℊ

𝜗4−𝜗3
             𝜗3 < ℊ ≤ 𝜗4

−1                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

⟩ 

The de-bipolarization of single typed linear TrBNN is adopted from Chakraborty et al. [12] which is 
written as 

𝑆(𝐷�̃�𝒜𝐵𝑖,0
) =

𝜌1+𝜌2+𝜌3+𝜌4+σ1+σ2+σ3+σ4+𝜗1+𝜗2+𝜗3+𝜗4

6
.                                                    (1) 

The de-bipolarization of single typed linear TBNN is adopted from Chakraborty et al. [11] which is 
written as 

𝑆(𝐷�̃�𝒜𝐵𝑖,0
) =

σ11+2σ12+σ13+σ21+2σ22+σ23+σ31+2σ32+σ33

6
.                                                    (2) 
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3. Problem development: 

 
Fig.2 Diagrammatic representation of container flow per cycle 

 For the purpose of import and export trading, the container management organization 
affords the empty container to its consigner. Every CMO managing and supplies the large 
number of empty containers for trading. Fig. 2 clearly shows the container flow under various 
strategies on a closed loop supply chain. For the convenience, in this study, it is presumed that 
the CMO supplied the demand of 𝒹 per supply chain, and it is assumed as price sensitive 
demand, that is 𝒹 = 𝐴 − 𝐵𝓅, where 𝓅 represents the rent acquires from customer per container, 
𝐴 > 0 and 𝐵 > 0 are constant and price dependent coefficients respectively. Because of the 
imbalance flow of containers, this study scrutinizes the shortage territory. According to [16], 
instead of 𝒹 units, 𝜔 fraction of used containers received and the balance (1 − 𝜔)𝒹 units being 
unreturned in that supply chain. After receiving the used containers, they are subjected to the 
process of inspecting during the time 𝜏𝐼 at constant rate 𝜑, as well as the process of repairing 
begins simultaneously at the rate 𝑅. While screening 𝜔𝒹 units, it is observed that 𝜗fraction of 
received units is restorable but the remaining (1 − 𝜗)𝜔𝒹 units are not reusable which are kept as 
salvaged units. Here, the unreturned and the salvaged units are considered as deficit containers. 
The duration to mend 𝜗𝜔𝒹 is considered as 𝜏𝑅. The number of reusable containers inspected 
during 𝜏𝐼 is 𝜑𝜏𝐼 and 𝜏𝑅 =

𝜗𝜑𝑇𝑖

𝑅
 is the repairing process duration. After the repairing process, the 

𝜗𝜔𝒹 RCs are assigned as ready to service units. To restore the deficit containers, the OFU of 
container is considered and OFU vendor allows only a limited unit for one-way free use.  So that, 
the proportion of shortfall RCs say 𝛿(1 − 𝜔𝜗)𝒹 is presumed as OFU and the remaining (1 −
𝛿)(1 − 𝜔𝜗)𝒹 RCs are leased from another CMO and stored with containers that are ready to 
service.  
 

 
                                                                                Fig. 3 (a)              
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                                                                                                                Fig. 3 (b)       

 
                                                                                                            Fig. 3 (c)    

 
  Fig. 3 (d) 

Fig. 3 Inventory level of the Containers under various strategies 

3.1. Maximum inventory level 
 The amount of received RCs, the number of amendable ones, the number of RCs that are 
ready to service and the amount of rented RCs and then the maximum units of all the above 
strategies are conferred as follows. 
In this study, it is hypothesized that 𝜔𝒹 reusable containers are received after the use and the left 
over (1 − 𝜔)𝒹 containers are not received in that cycle. Fig. 3(a) clearly indicates that the 
duration inspecting the received container is 𝜏𝐼 and the number of units examined per length 
is 𝜑𝜏𝐼. Thus, for each inspection procedure, the proportion of a year is 𝜑𝜏𝐼

𝜔𝐷
, where 𝐷 = 𝓂𝒹, is 

the annual demand and 𝓂 denotes the total working days per annum. The idle time between the 
inspection procedure per unit time and the RCs stocked over that time is 𝓂 𝜑𝜏𝐼

𝜔𝐷
− 𝜏𝐼 . Also, by 

observing Figs. 3(a)-3(c), it is noted that the examining and the mending works proceeds 
simultaneously. Once a container is screened, it has been sent for mending process and then kept 
as ready to service RCs. 

The maximum unit of received RCs = (𝓂 𝜑𝜏𝐼

𝜔𝐷
− 𝜏𝐼)𝜔𝒹 

                                                                                               = 𝜏𝐼(𝜑 − 𝜔(𝐴 − 𝐵𝓅))    (3) 
Here, the inventory level reduces at a rate of 𝜑 − 𝜔(𝐴 − 𝐵𝓅) per day and the containers 
received at the fraction of 𝜔(𝐴 − 𝐵𝓅) per day when the inspection period is idle. 
 It is clear that the number of containers sent for repairing process is 𝜗𝜑𝜏𝐼 = 𝑅𝜏𝑅. During 
the time 𝜏𝐼, the rate of 𝜗𝜑 − 𝑅 containers received for repairing process.  

Thus, the maximum unit of amendable RCs = 𝜏𝐼 (𝜗𝜑 − 𝑅).                                         (4) 
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The total days that mending process done per year is 𝜗𝜑𝐷
𝑅

 and percentage of mending process per 

year is 𝜗𝜑𝐷
𝓂𝑅

. Clearly, the stock level reduces at the rate of 𝑅 for one unit time during the 
period 𝜏𝐼 (𝜗𝜑 − 𝑅)/𝑅.  
 On observing Fig. 3(b) and Fig. 3(c), the RCs are stored as ready to service units after the 
completion of the mending process. Thus, the serviceable containers compile by 𝑅 −
𝜗𝜑(𝐴 − 𝐵𝓅) for one unit time which reduces by the rate of 𝜗𝜑(𝐴 − 𝐵𝓅) when the mending 
time is idle. Hence, 

The maximum stock of serviceable RCs =𝜏𝑅(𝑅 − 𝜗𝜑(𝐴 − 𝐵𝓅)).                                (5) 
 To rectify the issue of unbalancing container flow, the CMO preferred some effective 
strategies such as OFU and leasing option. Since, the OFU vendor offers only limited number of 
containers for OFU, the fraction 𝛿(1 − 𝜔𝜗)𝒹 is considered as OFU and the remaining units are 
restored using leasing option. Therefore, the maximum number of containers for OFU are 𝛿(1 −
𝜔𝜗)(𝐴 − 𝐵𝓅).  
It is clearly noted that from Fig. 3(d), the time 𝜏𝐿 represents the successive leasing cycles. During 
this time period, the expected maximum number of rented RCs per cycle is given as follows.    
The maximum stock of rented RCs = 𝜏𝐿(1 − 𝛿)(1 − 𝜔𝜗)(𝐴 − 𝐵𝓅).                                (6) 
Here, the inventory reduces at the rate of (1 − 𝛿)(1 − 𝜔𝜗)(𝐴 − 𝐵𝓅) per leasing cycle.  
3.2. Cost model 
3.2.1. Serviceable container cost 
 The serviceable container cost is the charges for screening and repairing process of 
returned containers which includes the fixed charge and the variable charge of screened and 
repairable units and the storage charge of received, repaired and serviceable RCs. The variable 
charges of all the categories are computed with respect to number of RCs processed. The 
integrated fixed costs and the variable costs obtained from the stock of received RCs and 
amendable RCs is given as, 

𝐹𝐶𝐼𝑅 +  𝑉𝐶𝐼𝑅 =
𝓂𝜔(𝐴 − 𝐵𝓅)(𝑊𝒾 +𝑊𝓇)

𝜑𝜏𝐼
+𝓂𝜔(𝐴 − 𝐵𝓅)(𝑤𝒾 + 𝜗𝑤𝓇).                (7)    

The storage cost is the charge received by the empty yard for the stock of received RCs, 
amendable RCs and the ready to service RCs which is derived as, 

𝐻𝐶𝑈 =
𝜏𝐼

2
[(𝜑 − 𝜔(𝐴 − 𝐵𝓅))ℋ𝓊  ].             (8) 

𝐻𝐶𝑅 =
𝜏𝐼

2
[
𝜔𝜗(𝐴−𝐵𝓅)(𝜑𝜗−𝑅)

𝑅
ℋ𝓇  ].             (9) 

𝐻𝐶𝑆 =
𝜏𝐼

2
[
𝜑𝜗(𝑅−𝜗𝜔(𝐴−𝐵𝓅))

𝑅
ℋ𝓈 ].              (10) 

The serviceable container cost for returned container is derived as 
𝑆𝐶𝐶 = 𝐹𝐶𝐼𝑅 +  𝑉𝐶𝐼𝑅 + 𝐻𝐶𝑈 +𝐻𝐶𝑅 + 𝐻𝐶𝑆              (11) 

          =
𝓂𝜔(𝐴 − 𝐵𝓅)(𝑊𝒾 +𝑊𝓇)

𝜑𝜏𝐼
+𝓂𝜔(𝐴 − 𝐵𝓅)(𝑤𝒾 + 𝜗𝑤𝓇)

+
𝜏𝐼
2
[(𝜑 − 𝜔(𝐴 − 𝐵𝓅))ℋ𝓊 +

𝜔𝜗(𝐴 − 𝐵𝓅)(𝜑𝜗 − 𝑅)

𝑅
ℋ𝓇   

+
𝜑𝜗(𝑅 − 𝜗𝜔(𝐴 − 𝐵𝓅))

𝑅
ℋ𝓈].                                                              (12) 
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where 𝑊𝒾 and 𝑤𝒾 denotes the fixed and variable inspection charge per container; 𝑊𝓇 and 𝑤𝓇 
represents the fixed and variable mending charge per container; ℋ𝓊, ℋ𝓇and ℋ𝓈 are the unit 
storage charge for returned, repaired and serviceable containers respectively.   
3.2.2. One-way Free Use cost  
 For OFU containers, the customer should pick the serviceable containers from the OFU 
vendor’s empty depot. So that, there is no cost spent for repairing as well as carrying the OFU 
containers but for survey process, the inspection charge will arise. In OFU, the variable 
inspection charge per container is considered as (1 − 𝜃) proportion of unit variable screening 
charge of returned container 𝑤𝒾. Thus, the one-way free use cost is given as 

𝑂𝐹𝑈𝐶 = 𝓂𝛿(1 − 𝜔𝜗)(𝐴 − 𝐵𝓅)(1 − 𝜃)𝑤𝒾.             (13) 
3.2.3. Lease cost 
 The fixed ordering charge and the rent for a leased container are 𝑊ℓ and 𝑤ℓ respectively 
and ℋℓ denotes the unit storage charge per leased container. Thus, the combined fixed costs and 
the variable costs of leased containers is given as, 

𝐹𝐶𝐿 +  𝑉𝐶𝐿 =
𝓂𝑊ℓ

𝜏𝐿
+𝓂(1 − 𝛿)(1 − 𝜔𝜗)(𝐴 − 𝐵𝓅)𝑤ℓ.                                   (14) 

The carrying charge of leased containers is derived as 
𝐻𝐶𝐿 =

𝜏𝐿

2
[(1 − 𝛿)(1 − 𝜔𝜗)(𝐴 − 𝐵𝓅)ℋℓ].              (15) 

Therefore, the lease cost is given as 
𝐿𝐶 = 𝐹𝐶𝐿 +  𝑉𝐶𝐿 + 𝐻𝐶𝐿.              (16) 

      =
𝓂𝑊ℓ

𝜏𝐿
+𝓂(1 − 𝛿)(1 − 𝜔𝜗)(𝐴 − 𝐵𝓅)𝑤ℓ

+
𝜏𝐿
2
[(1 − 𝛿)(1 − 𝜔𝜗)(𝐴 − 𝐵𝓅)ℋℓ].                                                 (17) 

An algorithm is designed to make decision on various strategies for computing the total cost.  

 
Fig. 4 Flow chart for decision making 

Step 1: Initialize all parameters. 
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Step 2: Calculate 𝑆𝐶𝐶, 𝑂𝐹𝑈𝐶 and 𝐿𝐶. 
Step 3: If 𝜔 = 1 and 𝜗 = 1, then the total cost 𝑇𝐶 = 𝑆𝐶𝐶, using Equation (12).  
Step 4: If 𝜔 ≠ 1, 𝜗 ≠ 1 and 𝛿 = 1, then the total cost 𝑇𝐶 = 𝑆𝐶𝐶 + 𝑂𝐹𝑈𝐶, using Equations (12) 

and (13).  
Step 5: If 𝜔 ≠ 1, 𝜗 ≠ 1 and 𝛿 ≠ 1 then the total cost 𝑇𝐶 = 𝑆𝐶𝐶 + 𝑂𝐹𝑈𝐶 + 𝐿𝐶, using Equations 

(12), (13) and (17).  
In this paper, it is considered that 𝜔 ≠ 1, 𝜗 ≠ 1 and 𝛿 ≠ 1. 
Thus, the total cost, 𝑇𝐶 = 𝑆𝐶𝐶 + 𝑂𝐹𝑈𝐶 + 𝐿𝐶.                        (18) 
Therefore, the total cost is obtained as 

𝑇𝐶(𝜏𝐼, 𝜏𝐿) =
𝓂𝜔(𝐴− 𝐵𝓅)(𝑊𝒾 +𝑊𝓇)

𝜑𝜏𝐼
+
𝓂𝑊ℓ

𝜏𝐿
+𝓂(𝐴− 𝐵𝓅)[𝜔(𝑤𝒾 + 𝜗(𝑤𝓇 − 𝛿(1 − 𝜃)𝑤𝒾 − (1 − 𝛿)𝑤ℓ))+ 𝛿(1 − 𝜃)𝑤𝒾
+ (1 − 𝛿)𝑤ℓ]

+
𝜏𝐼
2
[(𝜑−𝜔(𝐴− 𝐵𝓅))ℋ𝓊 +

𝜔𝜗(𝐴− 𝐵𝓅)(𝜑𝜗− 𝑅)

𝑅
ℋ𝓇   

+
𝜑𝜗(𝑅−𝜔𝜗(𝐴− 𝐵𝓅))

𝑅
ℋ𝓈]

+
𝜏𝐿
2
[(1 − 𝛿])(1 −𝜔𝜗)(𝐴

− 𝐵𝓅)ℋℓ].                                                                                                                         (19) 
3.3 Bipolar Neutrosophic container inventory model 

The container inventory model under bipolar neutrosophic arena is framed by presuming 
the proportion of received RCs, the fraction of repairable from received RCs and the fraction of 
OFU RCs as TrBNN. That is,    

�̃� = 〈(𝜔11, 𝜔12, 𝜔13, 𝜔14), (𝜔21, 𝜔22, 𝜔23, 𝜔24), (𝜔31, 𝜔32, 𝜔33, 𝜔34)〉; 
�̃� = 〈(𝜗11, 𝜗12, 𝜗13, 𝜗14), (𝜗21, 𝜗22, 𝜗23, 𝜗24), (𝜗31, 𝜗32, 𝜗33, 𝜗34)〉; 
�̃� = 〈(𝛿11, 𝛿12, 𝛿13, 𝛿14), (𝛿21, 𝛿22, 𝛿23, 𝛿24), (𝛿31, 𝛿32, 𝛿33, 𝛿34)〉 . 

Therefore, the total cost in bipolar neutrosophic sense, 𝑇𝐶𝐵𝑖(𝜏𝐼, 𝜏𝐸, 𝜏𝐿)̃  is obtained as, 

𝑇𝐶𝐵𝑖(𝜏𝐼, 𝜏𝐿)̃ =
𝓂�̃�(𝐴 − 𝐵𝓅)(𝑊𝒾 +𝑊𝓇)

𝜑𝜏𝐼
+
𝓂𝑊ℓ

𝜏𝐿
+𝓂(𝐴 − 𝐵𝓅)[�̃� (𝑤𝒾 + �̃�(𝑤𝓇 − �̃�(1 − 𝜃)𝑤𝒾 − (1 − �̃�)𝑤ℓ))+ �̃�(1 − 𝜃)𝑤𝒾

+ (1 − �̃�)𝑤ℓ]

+
𝜏𝐼
2
[(𝜑− �̃�(𝐴− 𝐵𝓅))ℋ𝓊 +

�̃��̃�(𝐴− 𝐵𝓅)(𝜑𝜗− 𝑅)

𝑅
ℋ𝓇   

+
𝜑�̃� (𝑅− �̃��̃�(𝐴− 𝐵𝓅))

𝑅
ℋ𝓈]

+
𝜏𝐿
2
[(1 − �̃�])(1 − �̃��̃�)(𝐴

− 𝐵𝓅)ℋℓ].                                                                                                          (20) 
 
From equation (1), the de-bipolarization of TrBNNs �̃�, �̃� and �̃� are obtained as follows: 
𝜔𝐵𝑛𝑒𝑢𝐷̃ =

𝜔11+𝜔12+𝜔13+𝜔14+𝜔21+𝜔22+𝜔23+𝜔24+𝜔31+𝜔32+𝜔33+𝜔34

6
,                                 (21)  
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𝜗𝐵𝑛𝑒𝑢𝐷̃ =
𝜗11+𝜗12+𝜗13+𝜗14+𝜗21+𝜗22+𝜗23+𝜗24+𝜗31+𝜗32+𝜗33+𝜗34

6
,                                          (22)     

𝛿𝐵𝑛𝑒𝑢𝐷̃ =
𝛿11+𝛿12+𝛿13+𝛿14+𝛿21+𝛿22+𝛿23+𝛿24+𝛿31+𝛿32+𝛿33+𝛿34

6
                                            (23)     

Hence, by de-bipolarization it is obtained as 

𝑇𝐶𝐵𝑛𝑒𝑢𝐷(𝜏𝐼, 𝜏𝐿)̃ =
𝓂𝜔𝐵𝑛𝑒𝑢𝐷̃ (𝐴− 𝐵𝓅)(𝑊𝒾 +𝑊𝓇)

𝜑𝜏𝐼
+
𝓂𝑊ℓ

𝜏𝐿
+𝓂(𝐴− 𝐵𝓅)𝜔𝐵𝑛𝑒𝑢𝐷̃ (𝑤𝒾 + 𝜗𝐵𝑛𝑒𝑢𝐷̃ (𝑤𝓇 − 𝛿𝐵𝑛𝑒𝑢𝐷̃ (1 − 𝜃)𝑤𝒾 − (1 − 𝛿𝐵𝑛𝑒𝑢𝐷̃ )𝑤ℓ))

+ 𝛿𝐵𝑛𝑒𝑢𝐷̃ (1 − 𝜃)𝑤𝒾 + (1 − 𝛿𝐵𝑛𝑒𝑢𝐷̃ )𝑤ℓ]

+
𝜏𝐼
2
[(𝜑−𝜔𝐵𝑛𝑒𝑢𝐷̃ (𝐴− 𝐵𝓅))ℋ𝓊 +

𝜔𝐵𝑛𝑒𝑢𝐷̃ 𝜗𝐵𝑛𝑒𝑢𝐷̃ (𝐴− 𝐵𝓅)(𝜑𝜗𝐵𝑛𝑒𝑢𝐷̃ −𝑅)

𝑅
ℋ𝓇   

+
𝜑𝜗𝐵𝑛𝑒𝑢𝐷̃ (𝑅−𝜔𝐵𝑛𝑒𝑢𝐷̃ 𝜗𝐵𝑛𝑒𝑢𝐷̃ (𝐴− 𝐵𝓅))

𝑅
ℋ𝓈]

+
𝜏𝐿
2
[(1 − 𝛿𝐵𝑛𝑒𝑢𝐷̃ )(1 − 𝜔𝐵𝑛𝑒𝑢𝐷̃ 𝜗𝐵𝑛𝑒𝑢𝐷̃ )(𝐴

− 𝐵𝓅)ℋℓ].                                                                                                                  (24) 
 

To flourish this paper more effective, the proposed model is also computed by 
considering the unpredictable parameters 𝜔, 𝜗 and 𝛿 as TBNN. That is,  

�̃� = 〈(𝜔11
′ , 𝜔12

′ , 𝜔13
′ ), (𝜔21

′ , 𝜔22
′ , 𝜔23

′ ), (𝜔31
′ , 𝜔32

′ , 𝜔33
′ )〉; 

�̃� = 〈(𝜗11
′ , 𝜗12

′ , 𝜗13
′
) , (𝜗21

′ , 𝜗22
′ , 𝜗23

′
) , (𝜗31

′ , 𝜗32
′ , 𝜗33

′
)〉; 

�̃� = 〈(𝛿11
′ , 𝛿12

′ , 𝛿13
′
) , (𝛿21

′ , 𝛿22
′ , 𝛿23

′
) , (𝛿31

′ , 𝛿32
′ , 𝛿33

′
)〉; . 

Thus, from equation (2), the de-bipolarization of TBNNs �̃�, �̃� and �̃� are obtained as follows: 
𝜔𝐵𝑛𝑒𝑢𝐷̃ =

𝜔11
′ +2𝜔12

′ +𝜔13
′ +𝜔21

′ +2𝜔22
′ +𝜔23

′ +𝜔31
′ +2𝜔32

′ +𝜔33
′

6
,                                                (25)  

𝜗𝐵𝑛𝑒𝑢𝐷̃ =
𝜗11
′ +2𝜗12

′ +𝜗13
′ +𝜗21

′ +2𝜗22
′ +𝜗23

′ +𝜗31
′ +2𝜗32

′ +𝜗33
′

6
,                                                      (26)     

𝛿𝐵𝑛𝑒𝑢𝐷̃ =
𝛿11
′ +2𝛿12

′ +𝛿13
′ +𝛿21

′ +2𝛿22
′ +𝛿23

′ +𝛿31
′ +2𝛿32

′ +𝛿33
′

6
.                                                       (27)     

The above set of equations is substituted in the equation (24) to obtain the result under TBNN 
environment. 
Preposition: 
(a) 𝑇𝐶𝐵𝑛𝑒𝑢𝐷(𝜏𝐼, 𝜏𝐿)̃  is strictly convex. 
(b) The optimal inspection duration and the optimal leasing duration are 
    𝜏𝐼∗ =

√
2𝑅𝓂𝜔𝐵𝑛𝑒𝑢𝐷̃ (𝐴−𝐵𝓅)(𝑊𝒾+𝑊𝓇)

𝜑𝑅(𝜑−𝜔𝐵𝑛𝑒𝑢𝐷̃ (𝐴−𝐵𝓅))ℋ𝓊+𝜑𝜔𝐵𝑛𝑒𝑢𝐷̃ 𝜗𝐵𝑛𝑒𝑢𝐷̃ (𝐴−𝐵𝓅)(𝜑𝜗𝐵𝑛𝑒𝑢𝐷̃ −𝑅)ℋ𝓇+𝜑2𝜗𝐵𝑛𝑒𝑢𝐷̃ (𝑅−𝜔𝐵𝑛𝑒𝑢𝐷̃ 𝜗𝐵𝑛𝑒𝑢𝐷̃ (𝐴−𝐵𝓅))ℋ𝓈
  

      (28)       

and 𝜏𝐿∗ = √
2𝓂𝑊ℓ

(1−𝛿𝐵𝑛𝑒𝑢𝐷̃ )(1−𝜔𝐵𝑛𝑒𝑢𝐷̃ 𝜗𝐵𝑛𝑒𝑢𝐷̃ )(𝐴−𝐵𝓅)ℋℓ
 .                           (29)   

Proof: 

Differentiating eqn. (24) partially with respect to 𝜏𝐼 and 𝜏𝐿, it is obtained as 
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𝜕𝑇𝐶𝐵𝑛𝑒𝑢𝐷(𝜏𝐼, 𝜏𝐿)̃

𝜕𝜏𝐼

=  
−𝓂𝜔𝐵𝑛𝑒𝑢𝐷̃ (𝐴− 𝐵𝓅)(𝑊𝒾 +𝑊𝓇)

𝜑𝜏𝐼2

+
1

2
[(𝜑 − 𝜔𝐵𝑛𝑒𝑢𝐷̃ (𝐴− 𝐵𝓅))ℋ𝓊

+
𝜔𝐵𝑛𝑒𝑢𝐷̃ 𝜗𝐵𝑛𝑒𝑢𝐷̃ (𝐴− 𝐵𝓅)(𝜑𝜗𝐵𝑛𝑒𝑢𝐷̃ −𝑅)

𝑅
ℋ𝓇   

+
𝜑𝜗𝐵𝑛𝑒𝑢𝐷̃ (𝑅 −𝜔𝐵𝑛𝑒𝑢𝐷̃ 𝜗𝐵𝑛𝑒𝑢𝐷̃ (𝐴− 𝐵𝓅))

𝑅
ℋ𝓈], 

𝜕𝑇𝐶𝐵𝑛𝑒𝑢𝐷(𝜏𝐼,𝜏𝐿)̃

𝜕𝜏𝐿
=

−𝓂𝑊ℓ

𝜏𝐿2
+
(1−𝛿𝐵𝑛𝑒𝑢𝐷̃ )(1−𝜔𝐵𝑛𝑒𝑢𝐷̃ 𝜗𝐵𝑛𝑒𝑢𝐷̃ )(𝐴−𝐵𝓅)ℋℓ

2
.  

Again, differentiating partially with respect to 𝜏𝐼, 𝜏𝐸  and 𝜏𝐿, it follows as 
𝜕2𝑇𝐶𝐵𝑛𝑒𝑢𝐷(𝜏𝐼,𝜏𝐿)̃

𝜕𝜏𝐼2
=

2𝓂𝜔𝐵𝑛𝑒𝑢𝐷̃ (𝐴−𝐵𝓅)(𝑊𝒾+𝑊𝓇)

𝜑𝜏𝐼3
,  

and 𝜕
2𝑇𝐶𝐵𝑛𝑒𝑢𝐷(𝜏𝐼,𝜏𝐿)̃

𝜕𝜏𝐿2
=

2𝓂𝑊ℓ

𝜏𝐿3
 

Also, 
𝜕2𝑇𝐶𝐵𝑛𝑒𝑢𝐷(𝜏𝐼,𝜏𝐿)̃

𝜕𝜏𝐼𝜕𝜏𝐿
=

𝜕2𝑇𝐶𝐵𝑛𝑒𝑢𝐷(𝜏𝐼,𝜏𝐿)̃

𝜕𝜏𝐿𝜕𝜏𝐼
= 0.  

Therefore, the Hessian matrix for 𝑇𝐶𝐵𝑛𝑒𝑢𝐷(𝜏𝐼, 𝜏𝐿)̃  is  

𝐻 =
𝜕2𝐸[𝑇𝐶𝐵𝑖(𝜏𝐼,𝜏𝐸,𝜏𝐿)̃ ]

𝜕𝜏𝐼2

𝜕2𝐸[𝑇𝐶𝐵𝑖(𝜏𝐼,𝜏𝐸,𝜏𝐿)̃ ]

𝜕𝜏𝐿2
− [

𝜕2𝑇𝐶𝐵𝑛𝑒𝑢𝐷(𝜏𝐼,𝜏𝐿)̃

𝜕𝜏𝐼𝜕𝜏𝐿
]
2

  

=
2𝓂𝜔𝐵𝑛𝑒𝑢𝐷̃ (𝐴−𝐵𝓅)(𝑊𝒾+𝑊𝓇)

𝜑𝜏𝐼3
.
2𝓂𝑊ℓ

𝜏𝐿3
> 0  

Hence, the expected total cost 𝑇𝐶𝐵𝑛𝑒𝑢𝐷(𝜏𝐼, 𝜏𝐿)̃  is strictly convex.  

By setting, 𝜕𝐸[𝑇𝐶𝐵𝑖(𝜏𝐼,𝜏𝐿)
̃ ]

𝜕𝜏𝐼
= 0 and 𝜕𝐸[𝑇𝐶𝐵𝑖(𝜏𝐼,𝜏𝐿)

̃ ]

𝜕𝜏𝐿
= 0, the optimal inspection duration and the 

optimal renting period of RCs are attained.  
Hence, 

𝜏𝐼
∗ = √

2𝑅𝓂𝜔𝐵𝑛𝑒𝑢𝐷̃ (𝐴−𝐵𝓅)(𝑊𝒾+𝑊𝓇)

𝜑𝑅(𝜑−𝜔𝐵𝑛𝑒𝑢𝐷̃ (𝐴−𝐵𝓅))ℋ𝓊+𝜑𝜔𝐵𝑛𝑒𝑢𝐷̃ 𝜗𝐵𝑛𝑒𝑢𝐷̃ (𝐴−𝐵𝓅)(𝜑𝜗𝐵𝑛𝑒𝑢𝐷̃ −𝑅)ℋ𝓇+𝜑
2𝜗𝐵𝑛𝑒𝑢𝐷̃ (𝑅−𝜔𝐵𝑛𝑒𝑢𝐷̃ 𝜗𝐵𝑛𝑒𝑢𝐷̃ (𝐴−𝐵𝓅))ℋ𝓈

  

and   𝜏𝐿∗ = √
2𝓂𝑊ℓ

(1−𝛿𝐵𝑛𝑒𝑢𝐷̃ )(1−𝜔𝐵𝑛𝑒𝑢𝐷̃ 𝜗𝐵𝑛𝑒𝑢𝐷̃ )(𝐴−𝐵𝓅)ℋℓ
 . 

This completes the proof. 
4. Numerical Analysis 
Some parameters below are utilized from [13]: 
𝐴 = 6000, 𝐵 = 20, 𝓅 = $50/unit, 𝜑 = 8000,  𝑅 = 6000,  𝑊𝒾 = $200, 𝑊𝓇 = $400,   𝑊ℓ =
$100, 𝑤𝒾 = $2/unit, 𝑤𝓇 = $4/unit, 𝑤ℓ = $10, 𝑤𝒽 = $5/unit, 𝑤𝓉 = $8/unit,  ℋ𝓊 = $2/unit, 
ℋ𝓇 = $3/unit, ℋ𝓈 = $5/unit, ℋℓ = $5/unit, 𝜃 = 0.75, 𝓂 = 240 days. 
The proportion of the received RCs, the proportion of repairable RCs and the fraction of OFU 
RCs as TrBNN which are given as 
�̃� = 〈(0.5,0.75,1,1.5), (0.05,0.1,0.15,0.2), (0.15,0.2,0.4,0.55)〉; 



Neutrosophic Sets and Systems, Vol. 50, 2022                                                                                                                          350 

 

_____________________________________________________________________________________ 
C. Sugapriya, S. Rajeswari, D. Nagarajan, Zarife Zararsız, Zakiya Said Mahad Al Amri, An effective container inventory model 
under bipolar neutrosophic environment 
 

�̃� = 〈(0.7,0.9,1,1.25), (0.05,0.075,0.1,0.125), (0.15,0.25,0.5,0.65)〉; 
�̃� = 〈(0.08,0.12,0.25,0.75), (0.04,0.1,0.24,0.34), (0.05,0.13,0.5,0.55)〉.  
To compute the numerical studies of the proposed model using TBNN, the following parameters 
are used: 
�̃� = 〈(0.5,1,1.5), (0.075,0.1,0.15), (0.15,0.25,0.5)〉; 
�̃� = 〈(0.75,1,1.5), (0.05,0.075,0.1), (0.15,0.25,0.5)〉; 
�̃� = 〈(0.1,0.2,0.3), (0.2,0.25,0.4), (0.15,0.3,0.5)〉.  
According to the hypothesis of this study, it is considered that the values 𝜔 ≠ 1, 𝜗 ≠ 1 and 𝛿 ≠
1. From equations (21) - (24), (28) and (29), the expected total cost under TrBNN is  
 𝑇𝐶𝐵𝑖(𝜏𝐼, 𝜏𝐿)̃ = $7,218,500, the optimal inspection duration and the optimal leasing duration are 
𝜏𝐼
∗ = 2.8527 days and 𝜏𝐿∗ = 5.9666 days. From equations (24) - (29), the expected total cost 

under TBNN is   𝑇𝐶𝐵𝑖(𝜏𝐼 , 𝜏𝐿)̃ = $7,233,000, the optimal inspection duration and the optimal 
leasing duration are 𝜏𝐼∗ = 2.8713 days and 𝜏𝐿∗ = 5.8704 days. 
 
4.1 Comparison study  
Table 1: Comparison study of the three decision making strategy in the proposed study 

Option Condition 𝑇𝐶𝐵𝑖(𝜏𝐼, 𝜏𝐿)̃  
(USD) 

[Using TrBNN] 

𝑇𝐶𝐵𝑖(𝜏𝐼, 𝜏𝐿)̃  
(USD) 

[Using TBNN] 
I 𝜔 = 1, 𝜗 = 1 7,249,400 7,249,400 
II 𝜔 ≠ 1, 𝜗 ≠ 1, 𝛿 = 1 6,595,600 6,589,700 
III 𝜔 ≠ 1, 𝜗 ≠ 1, 𝛿 ≠ 1 7,218,500 7,233,000 

 The option I indicates that all the used containers are returned as well as there is no 
salvaged units found while inspection. In option II, it is considered that the fraction of containers 
are unreturned and some of the returned units are salvaged. All the shortfall RCs are one-way 
free used. In option III, a proportion of  shortfall RCs that are unable to OFU are leased from the 
local dealer. From table 1, it is clear that the option II that is, all the deficit containers are 
replaced by OFU option is the best result when compared to other two options under both 
TrBNN as well as TBNN, which is shown in Fig 5. So that, the OFU is comparitively better 
option while leasing the containers. It is also observed that the model using TrBNN is provided 
the best outcomes when compared to the model under the TBNN environment.     

 

Fig.5 The total cost of various strategies 

      Fig. 5(a)                                                                                                        Fig. 5(b) 
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The below table shows the comparison of the outcome of the proposed study with the results of 
relative research works. As per the research works [13] and [30], the proposed research considers 
to sold the deficit RCs at scrap price. 
 
Table 2: Comparison study of the proposed research with related studies 
 

 
Table 3: Descriptive comparison analysis of the proposed research with related studies 
References Implemented options to restore 

the deficit RC 
Remarks when comparing with the 

proposed study 
[13] Purchase new RTIs By setting 𝐴 = 10000, 𝐵 = 40, 𝓅 =

$50/unit, 𝜑 = 12000 and 𝑅 = 10000 and 
by considering the salvage RCs are sold at 
$40 in the proposed study, the value of the 
parameters in this study is similar to [13]. 
Thus, the total cost is $8,570,100 and the 
optimal screening length is 2.4698 days 
which is the better result when compared 
to [13]. In [13], the total cost is 
$31,258,000 and the optimal screening 
length is 2.5 days.    

[30] Repositioning and leasing of 
RCs 

By considering the salvage RCs are sold at 
$100 in the proposed study, the total cost 
is $2,593,500 but the total cost in [30] is 
$3,819,800. Thus, the OFU option with 
ECR and the leasing of RCs helps the 
CMO to reduce the total cost when 
compare to [30]. 

 
The studies [15] and [22] consider purchasing new RTIs to restore the deficit RTIs. 

According to the present study, instead of buying new RTIs, the repositioning of RTIs and the 
leasing of RTIs, as well as the OFU option, lead the model to minimize the total cost. Also, the 
study [19] presumes the renting option to restore the deficit RCs, along with renting option, the 
implementation of the OFU option analyzed in the proposed study will lead the outcomes of [19] 
to better results. 
4.2 Sensitivity analysis 
The sensitivity analysis of the trapezoidal bipolar neutrosophic container inventory model is 
examined as follows.  
Table 4: Effect of TrBNNs �̃�, �̃� and �̃� on the optimal solutions 

References 
Implemented options 
to restore the deficit 

RC 
Demand 

Scrap 
price 
($) 

Total cost 
($)  

Result obtained in the proposed study 

Demand Scrap 
price ($) 

Total cost ($) 
[Using 

TrBNN] 

[13] 
Purchase new 
Returnable Transport 
Items (RTIs) 

8000 40 31,258,000 8000 40 8,570,100 

[30] Repositioning and 
leasing of RCs 5000 100 3,819,800 5000 100 2,593,500 
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Para   
meter Value of the parameter 𝜏𝐼

∗ 𝜏𝐿
∗ 𝑇𝐶𝐵𝑖(𝜏𝐼 , 𝜏𝐿)̃  

 〈(0.46,0.71,0.06,1.46), (0.01,0.06,0.11,0.16), (0.11,0.16,0.36,0.51)〉 2.5501 4.6099 7,124,800 
�̃� 〈(0.48,0.73,0.08,1.48), (0.03,0.08,0.13,0.18), (0.13,0.18,0.38,0.53)〉 2.6955 5.1589 7,171,800 
 〈(0.5,0.75,1,1.5), (0.05,0.1,0.15,0.2), (0.15,0.2,0.4,0.55)〉 2.8527 5.9666 7,218,500 
 〈(0.52,0.77,1.02,1.52), (0.07,0.12,0.17,0.22), (0.17,0.22,0.42,0.57)〉 3.0240 7.3311 7,264,900 
 〈(0.66,0.86,0.96,1.21), (0.01,0.035,0.06,0.085), (0.11,0.21,0.46,0.61)〉 2.8723 4.6425 7,310,300 
�̃� 〈(0.68,0.88,0.98,1.23), (0.03,0.055,0.08,0.105), (0.13,0.23,0.48,0.63)〉 2.8611 5.1817 7,264,500 
 〈(0.7,0.9,1,1.25), (0.05,0.075,0.1,0.125), (0.15,0.25,0.5,0.65)〉 2.8527 5.9666 7,218,500 
 〈(0.72,0.92,1.02,1.27), (0.07,0.095,0.12,0.145), (0.17,0.27,0.52,0.67)〉 2.8472 7.2970 7,172,200 
 〈(0.04,0.08,0.21,0.71), (0,0.06,0.2,0.3), (0.01,0.09,0.46,0.51)〉 2.8527 5.5198 7,322,700 
𝛿 〈(0.06,0.1,0.23,0.73), (0.02,0.08,0.22,0.32), (0.03,0.11,0.48,0.53)〉 2.8527 5.7302 7,270,600 
 〈(0.08,0.12,0.25,0.75), (0.04,0.1,0.24,0.34), (0.05,0.13,0.5,0.55)〉 2.8527 5.9666 7,218,500 
 〈(0.1,0.14,0.27,0.77), (0.06,0.12,0.26,0.36), (0.07,0.15,0.52,0.57)〉 2.8527 6.2349 7,166,400 

  
 From the table 4, it is observed that when the bipolar neutrosophic proportion of the 
returned containers �̃� raises, the optimal screening period 𝜏𝐼∗ and the optimal leasing duration 
𝜏𝐿
∗ are increase but the total cost reduces. Also, when the bipolar neutrosophic proportion of the 

repaired units �̃� raises, the optimal renting period is increases but the optimal screening period 
and the total cost reduce. When the bipolar neutrosophic variable �̃� raises, the optimal time 
length 𝜏𝐿∗ increase but the total cost reduces but the optimal screening cycle length, 𝜏𝐼∗, remains 
unchange.   
 
Table 5: Effect of customers’ rent price on the optimal solutions 
  

𝓅 𝜏𝐼
∗ 𝜏𝐿

∗ 𝑇𝐶𝐵𝑖(𝜏𝐼 , 𝜏𝐿)̃  
$ 

40 3.0106 5.8507 7,503,600 
45 2.9300 5.9078 7,361,100 
50 2.8527 5.9666 7,218,500 
55 2.7784 6.0272 7,076,000 
60 2.7069 6.0896 6,933,400 

 
 In the notion of customers’ rent price for a container, without loss of generality it is 
obtained that the increase of customer rent price per RC leads to increase the optimal leasing 
period whereas the optimal screening period and the total cost decreasing, which is clearly 
shown in Table 5.  
 
Table 6: Effect of container storage costs ℋ𝓊 and ℋ𝓇 on the optimal solutions 
  

ℋ𝓊 ℋ𝓇 𝜏𝐼
∗ 𝑇𝐶𝐵𝑖(𝜏𝐼 , 𝜏𝐿)̃  

$ 

1 3 3.1218 7211600 
2 3 2.8527 7218500 
3 3 2.6430 7224600 
4 3 2.4737 7230100 
5 3 2.3332 7235100 
2 1 3.0416 7214900 
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2 2 2.9426 7216700 
2 3 2.8527 7218500 
2 4 2.7706 7220300 
2 5 2.6951 7222200 

 

 The container storage cost is the major cost of any CMO for maintaining the empty containers. In 

this study, there is no storage charge for OFU containers because the customer used to pick the 

serviceable containers from the OFU vendor’s empty depot but different storage cost is acquired for the 

used containers that are received after the usage, repairable containers, the serviceable containers and the 

leased units. Also, in this analysis, the storage cost for serviceable containers, (ℋ𝓈) and the storage charge 

for leased containers, (ℋℓ) are fixed as $5/unit. Here, the sensitive analysis is performed when the storage 

cost for received containers, (ℋ𝓊) and the storage charge for repairable from received units, (ℋ𝓇) are 

varies from $1 to $5 per container on optimal solutions. On observing from Table 6, when ℋ𝓊varies from 

$1 to $5 per container and the storage cost for repairable from received container is consider as in 

numerical analysis, the optimal inspection length reduces but the total cost increases. The same result 

attains when ℋ𝓇  varies from $1 to $5 per container and the storage cost for received containers after the 

usage is consider as in numerical analysis.  

   

 

5. Conclusion 

 A container inventory model under uncertain situation is performed in this research. 

This uncertainty condition leads the present model to utilize the notion of bipolar neutrosophic arena. 

The serviceable container cost, OFU cost and the lease cost are obtained under price sensitive demand by 

computing the expected maximum inventory of received, restorable, ready to service units, OFU units 

and leased units. The framed algorithm helps to make decision on various strategies for computing the 

total cost. The total cost is framed by presuming that the fraction of deficit units is one-way free used, and 

the fraction of remaining containers are leased from local dealer. The bipolar neutrosophic container 

inventory model is developed by which the fraction of received RCs, the fraction of repairable from 

received RCs and the fraction of one-way free used RCs are considered as TrBNNs. The container 

inventory model is performed by presuming the received rate, the repairable rate, and the OFU rate as 

Triangular Bipolar Neutrosophic Number (TBNN), and then the outcomes under both TrBNN as well as 

TBNN are compared. 

The optimal time lengths of inspection process and leasing procedure in order to minimize the 

total cost are attained. The numerical computation on the comparison of four decision making strategies 

shows that, the OFU of all the deficit containers minimizes the CMO’s total cost. The bipolar neutrosophic 

received proportion, the bipolar neutrosophic repaired proportion and the bipolar neutrosophic OFU 

proportion and its impact on optimal solutions are shown in sensitivity analysis. Finally, the comparison 

result of this study with the work of [13] on optimal screening length is given. The comparison analysis of 

present model and [30] is also given and then suggests the studies [15] and [22] to utilizing the OFU 

option in order to minimize the container management costs. 
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Abstract: In this paper we have considered a multi-objective asset portfolio selection optimization 

model with the objectives maximization of the expected return of the portfolio and simultaneously 

minimizing the overall risk of the asset portfolio. Our model is an improved and enlarged version in 

a particular direction. In our model we had incorporated transaction cost in the first objective. We 

had considered absolute deviation as risk measure. Our portfolio optimization model had been 

solved by generalized neutrosophic goal programming method.  

For applicability of this technique and demonstration of the methodology we have 

illustrated it numerically by data taken from National Stock Exchange (NSE). And finally the result 

obtained using generalized neutrosophic goal programming approach is compared with that of the 

result obtained different method of aggregation for objective functions. 

Keywords: Portfolio; Generalized Neutrosophic Goal Programming, Arithmetic Aggregation, 

Geometric Aggregation. 

 

 

1. Introduction 

Portfolio management is one of the most important aspects of economic management. Essentially, 

portfolio management is the process of building a portfolio with the goal of satisfying an investor's 

risk and return expectations. The primary goal of portfolio management is to select a proper 

combination of assets in order to provide the best predicted return while maintaining a suitable level 

of risk. 

An investor's goal in portfolio optimization is to maximise portfolio return while maintaining a 

reasonable level of risk at the same time. Because risk will repay the return, investors will need to 

manage the risk-return trade-off for their investments. As a result, a single optimization portfolio is 

ineffective. As a result, when determining the best portfolio, one must consider the investor's 

risk-reward preferences. 

The Mean-Variance (MV) model, established by Markowitz[1] in 1952, is considered the first model 

in the field of portfolio management. Markowitz trade-off between expected return and portfolio 
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risk in the basic mean-variance model of the portfolio framework, where mean is represented by the 

average mean of the past performances, i.e. the mean of asset’s return and the dispersion of the 

return as risk, respectively. 

Over the last few years, the pioneer model proposed by Markowitz, mathematical programming 

approaches have grown to be vital tools to guide financial decision-making systems and have been 

widely deployed in real-world scenarios. There are numbers of well-known mathematical tools that 

are used to find the best solution in portfolio optimization. Forecasting, simulation, statistical 

models, and mathematical programming models are some examples. Among these approaches, 

mathematical programming is a good option for a decision maker looking for the best solution. 

According to the existing literatures, a mathematical model for portfolio addressing transaction cost 

generally seeks to generate a changed portfolio from cash, i.e., preferring to pass from a present 

portfolio to a new one. The majority of the models add at least one more binary variable to the 

portfolio, as well as new constraints will be added. As a result, the majority of these transaction 

pricing components will add complexity to the problems. Let us now have a look at the available 

literature of the transaction cost. Angelelli et al. [2] used a mixed integer linear programming model 

that included transaction cost and cardinality constraints with CVaR and MAD model. In the 

generalised MV Markowitz model, Chen and Cai [3] added transaction cost. According to the 

assumptions, transaction costs are a V-shaped function that is known at the beginning of the period 

and paid at the conclusion. In the transaction cost model, Baule [4] took transaction cost into account 

as a non-convex function. In the mixed quadratic portfolio optimization model technique, Adcock 

and Meade [5] included a weighting factor to account for variable transaction costs. There are also a 

few additional journals, as well as the concept of transaction price in portfolio optimization. 

Integer programming technique [6], goal programming technique [7], lexiographic goal 

programming technique [8], and other precise method based techniques were used to solve portfolio 

optimization models. Simulated annealing [9], genetic algorithm [10], particle swarm optimization 

[11], and ant colony optimization [12] are some of the meta-heuristics-based techniques used. 
However, in practice, if you want to make good portfolio decisions, you'll need to use a few vaguely 

defined financial characteristics like the return is greater than 20%, the risk is less than 10%, and so 

on. It's difficult to put together satisfying portfolios using crisp or interval numbers when the 

language is so hazy. In such a situation, the decision maker must enlist the help of fuzzy set theory in 

order to build portfolio selection models. Fuzzy set theory not only manages uncertainty and 

ambiguity, but it also helps decision makers make flexible choices by considering the choices of 

investors. 

Financial risks are the component of the uncertainty that pertains to asset returns as a result of 

unforeseeable and unpredictable events. Risks cannot be quantified in portfolio selection or asset 

assessment for a variety of reasons, including a lack or plenty of information, subjective estimation 

and perception, insufficient knowledge, the complexity of the researched systems, and so on. In 

these instances, language judgements rather than numerical values are a more realistic approach.But 

there is a lot of uncertainty and ambiguity related with these linguistic expressions, such as, “high”, 

“low”, “moderate”. So traditional two valued logic of probability is not enough to handle the dual 
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presence of uncertainty and ambiguity. In this scenario, fuzzy set theory proposed by Professor L.A. 

Zadeh becomes a natural choice since it can define the linguistic information in a more logical and 

meaningful fashion. It is also quite impossible for decision maker to determine or estimate the 

movement in financial markets. So the decision maker faces the dilemma of guessing the market 

direction in order to meet the return target for asset under management. Under these circumstances, 

an uncertainty may be included in their estimation. Because of some uncertainty and ambiguity 

present in the Asset Liability Management and portfolio optimization, concept of fuzzy set theory is 

used in this area. Watada [13] had used fuzzy computational intelligence in portfolio selection 

problem. Yager [14] contributed in taking decisions on uncertain issue like portfolio selection using 

fuzzy mathematics. In [15] the authors described the selection of fuzzy portfolio using the concept 

like expected value  of fuzzy numbers and ranking .  

Bellmann and Zadeh [16] proposed the concept of fuzzy decision theory, which was based on 

Zadeh's 1965 [17] presentation of fuzzy sets. Several writers had also used the fuzzy framework to 

select the most efficient portfolio using the mean-variance model. 

 This is also a tough procedure due to elements like insufficient information that is frequently 

offered in real-life decision-making scenarios. Our major goal in this decision-making process is to 

identify a value from the chosen set that has the maximum degree of membership in the decision set 

and that agrees with the goals only under certain constraints. However, there may be many times 

when some of the selected values from the set are incompatible with the aim, i.e., those values are 

strongly opposed to the purpose due to limitations that cannot be accepted. Such values may be 

found in this case from the selected set with the lowest degree of non-membership in the choice set. 

In such instances, intuitionistic fuzzy can help the decision maker deal with partial data, but it is 

unable to deal with indeterminate and inconsistent data, which are also common in the systems. 

Atanassov [18],[19] developed the concept of intuitionistic fuzzy sets. Truth membership, falsity 

membership, and indeterminacy membership are all independent in the neutrosophic set presented 

by Smarandache [20], and indeterminacy can be quantified directly. As a result, it is evident that the 

value in the decision set from the chosen set with the highest degree of truth membership, falsity 

membership, and indeterminacy membership should be considered. As a result, we have chosen a 

neutrosophic environment to deal with asset liability management decisions for commercial banks. 

Different authors have used the concept of neutrosophic optimization in a variety of fields. This 

approach was used to the reliability problem by Sahidul Islam and Tanmay Kundu [21], to the 

multi-objective welded beam optimization by M. Sarkar and T.K. Roy [22], to the riser design 

problem by Pintu Das and T.K. Roy [23], and to optimization problems in a variety of other domains. 

S.Islam and Partha Ray [24] created a multi-objective portfolio selection model with entropy using 

the Neutrosophic optimization technique for portfolio selection. 

With the above observation in mind, we will attempt to propose a multi-objective portfolio 

optimization model in this paper. In a specific direction, our model is a better and larger version. 

One of the objectives of our approach was to include transaction costs. We used absolute deviation 
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as a risk indicator. The generalised neutrosophic goal programming method which is just a 

generalisation of Neutrosophic Goal programming method proposed by M.Abdel-Baset, I.M.Heza, 

and F.Smarandache [28] was used to solve our portfolio optimization model. The portfolio 

optimization model was validated in this research using data from the National Stock Exchange 

(NSE). 

2. Mathematical Model: 

In this section we will discuss about proposed optimization model for selection of portfolio. The 

notations used for this model are listed below: 

𝑛 :  the number of assets which are available for investment. 

𝑥𝑖 :the proportion of the total fund invested in i-th asset, for 𝑖 = 1,2, ……… . . , 𝑛 . 

𝑥𝑖
0 : the proportion of the total funds had been invested in i-th asset, for 𝑖 = 1,2, ……… . . , 𝑛 . 

𝑅𝑖 : the rate of return of i-th asset which is basically a random variable for  𝑖 = 1,2, …………… . . , 𝑛.   

𝑟𝑖 : the expected rate of return on the i-th asset, for 𝑖 = 1,2, ……… . . , 𝑛. 𝑟𝑖 = 𝐸[𝑅𝑖] 

𝑟𝑛+1 : the rate of return for the risk free asset. 

𝜆𝑖 : the rate of transaction cost on i-th asset , for  𝑖 = 1,2, …………… . . , 𝑛.   

𝐿𝑖 : The lower limit of the fund that can be invested on the i-th asset for  𝑖 = 1,2, …………… . . , 𝑛.   

𝑈𝑖 : The upper limit of the fund that can be invested on the i-th asset for  𝑖 = 1,2, …………… . . , 𝑛.   

 

In this model we had considered absolute deviation as risk measure. Before introducing the 

mathematical model let us give some introduction to this measure of risk. 

2.1 Absolute deviation 

The main aim of every investor in portfolio selection is to get portfolio return 𝑟(𝑥1, 𝑥2, ……… , 𝑥𝑛) as 

high as possible. Also an investor would also prefer to have minimum variation or dispersion in the 

portfolio return. Variance is the most common measure to quantify risk of portfolio, which measures 

the variation from the expected return. Despite its shortcomings, researchers continue to choose 

variance as a prominent risk metric. The biggest disadvantage of utilizing variance as a risk indicator 

is that it penalizes extreme upside and downside deviations from the expected return. As a result, 

the variance will be a less appropriate measure of portfolio risk in the case of an asymmetric 

probability distribution of asset return. This is due to the fact that, in exchange for a larger predicted 

return, the obtained portfolio may provide a risk. As a result, a downside risk metric may be 

preferable to variance. Only negative deviations from a reference return level are included in this 

risk assessment. Another downside risk metric, known as semi variance, was established by 

Markowitz. 

 Both the above mentioned risk measure have some advantages and simultaneously have 

some limitations. In order to improve both the theoretical and computational performance of the 

mean-variance model or mean-Semi variance model Konno and Yamazaki [27] had considered an 

alternative risk measure namely absolute deviation to quantify risk and introduced a linear 

programming portfolio selection model. So far the formulation of the risk function was based on the 

notion of 𝐿2 metric, we had discussed these earlier. The risk function namely absolute deviation is 
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defined based on the notion of 𝐿1 metric on ℝ𝑛. Normally this risk measure is applicable to the 

problems having a-symmetric distributions of the rate of return. 𝐿1  risk function draw much 

attention of the researcher since a portfolio selection model with 𝐿1 risk function can easily be 

converted into a scalar parametric linear programming problem. Another benefit of using absolute 

deviation in a portfolio optimization model is computational ease and simplicity even for large 

number of assets also.  

 The expected absolute for the difference between the random variables and its mean is 

known as absolute deviation of a random variable. This measure of portfolio risk is denoted by 

𝑚(𝑥1, 𝑥2, ……… , 𝑥𝑛) and is expressed as: 

                                 𝑚(𝑥1, 𝑥2, ……… , 𝑥𝑛) = 𝐸[|∑ 𝑅𝑖𝑥𝑖 − 𝐸[∑ 𝑅𝑖𝑥𝑖
𝑛
𝑖=1 ]𝑛

𝑖=1 |].   

Since we shall approximate expected value of the random variable by the average derived from the 

past data, so we shall use 𝑟𝑖 = 𝐸[𝑅𝑖] =
∑ 𝑟𝑖𝑡
𝑇
𝑡=1

𝑇
 , the absolute deviation is approximated as 

𝑚(𝑥1, 𝑥2, ……… , 𝑥𝑛) = 𝐸[|∑ 𝑅𝑖𝑥𝑖 − 𝐸[∑ 𝑅𝑖𝑥𝑖
𝑛
𝑖=1 ]𝑛

𝑖=1 |] =
1

𝑇
∑ |∑ (𝑟𝑖𝑡 − 𝑟𝑖)𝑥𝑖

𝑛
𝑖=1 |𝑇

𝑡=1 . 

2.2 The proposed Mathematical model: 

(P 1.1) 

                                𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑍1 =  ∑ (𝑟𝑖𝑥𝑖 − 𝜆𝑖|𝑥𝑖 − 𝑥𝑖
0|)𝑛+1

𝑖=1  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍2 =    
1

𝑇
∑|∑(𝑟𝑖𝑡 − 𝑟𝑖)𝑥𝑖

𝑛

𝑖=1

|

𝑇

𝑡=1

  

  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∶ 

∑𝑥𝑖 = 1,

𝑛

𝑖=1

 

𝑥𝑖 ≥ 0 , 

𝐿𝑖 ≤ 𝑥𝑖 ≤ 𝑈𝑖 

𝑖 = 1,2, …………………… . , 𝑛 

Because of the existence of the absolute value function the above mathematical model is 

non-linear and non-smooth. For elimination the absolute value function the above mathematical 

model had been transformed into the following form 

 

(P 1.2) 

                                   𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒  𝐸𝑟 =  ∑ (𝑟𝑖𝑥𝑖 − 𝜆𝑖𝑞𝑖)
𝑛+1
𝑖=1  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝐴𝑑 =   
1

𝑇
∑𝑝𝑡

𝑇

𝑡=1

  

  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∶ 
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∑𝑥𝑖 = 1,

𝑛

𝑖=1

 

𝑞𝑖 ≥ (𝑥𝑖 − 𝑥𝑖
0) 

𝑞𝑖 ≥ −(𝑥𝑖 − 𝑥𝑖
0) 

𝑝𝑡 ≥∑(𝑟𝑖𝑡 − 𝑟𝑖)𝑥𝑖

𝑛

𝑖=1

 

𝑝𝑡 ≥ −∑(𝑟𝑖𝑡 − 𝑟𝑖)𝑥𝑖

𝑛

𝑖=1

 

𝑥𝑖 ≥ 0 , 

𝑝𝑡 ≥ 0 

𝑞𝑖 ≥ 0 

𝐿𝑖 ≤ 𝑥𝑖 ≤ 𝑈𝑖 

𝑖 = 1,2, …………………… . , 𝑛 

2.3 Descriptions of the Objectives and the Constraints 

The first objective is maximization of expected return of the portfolio, which is difference 

between the rate of expected return of the portfolio and the transaction cost of the portfolio. In 

the first objective ∑ (𝑟𝑖𝑥𝑖 − 𝜆𝑖|𝑥𝑖 − 𝑥𝑖
0|)𝑛+1

𝑖=1  ,  ∑ 𝑟𝑖𝑥𝑖
𝑛+1
𝑖=1  is the rate of expected return , and 

∑ 𝜆𝑖|𝑥𝑖 − 𝑥𝑖
0|𝑛+1

𝑖=1  is the transaction cost of the portfolio. And the second objective is minimization 

of absolute deviation.  ∑ 𝑥𝑖 = 1
𝑛
𝑖=1  is the capital budget constraint. 𝐿𝑖 ≤ 𝑥𝑖 ≤ 𝑈𝑖 , 𝑖 = 1,2, …… , 𝑛 

is the maximal and minimal fraction of the total capital to be invested in each asset. 

 

3. Mathematical Analysis 

In this section we will discuss about some preliminary concepts of the neutrosophic set and then the 

Neutrosophic goal programming technique which will be used in this paper to deal with the 

portfolio selection model. 

3.1 Some definitions 

Fuzzy Sets 

Let �̃� is a fuzzy set and X be considered as universe of discourse. Then fuzzy set �̃�-can be defined 

as follow-�̃� = {< 𝑥, 𝜇�̃�(𝑥)  >: 𝑥 ∈ 𝑋}; where 𝜇�̃�(𝑥) is a mapping from X to [0, 1], which is the 

membership function of the corresponding fuzzy set�̃�. 

Intuitionistic Fuzzy Sets 

An intuitionistic fuzzy sets (IFS) �̃�𝑖  in the universe of discourse 𝑋  is defined by �̃�𝑖 =

{〈𝑥, 𝜇�̃�𝑖(𝑥), 𝜈�̃�𝑖(𝑥)〉|𝑥 ∈ 𝑋} 

Where, 𝜇�̃�𝑖(𝑥): 𝑋 → [0,1]  is the degree of membership of 𝑥 ∈ 𝑋 and 𝜈�̃�𝑖(𝑥): 𝑋 → [0,1]  is the degree 

of non-membership of 𝑥 ∈ 𝑋. Also for every-𝑥 ∈ 𝑋, 0 ≤ 𝜇�̃�𝑖(𝑥) + 𝜈�̃�𝑖(𝑥) ≤ 1. 

Now for each element-𝑥 ∈ 𝑋, the value of Π�̃�𝑖(𝑥) = 1 − 𝜇�̃�𝑖(𝑥) − 𝜈�̃�𝑖(𝑥) is said to be the degree of 

uncertainty of the element 𝑥 ∈ 𝑋 to the IFS �̃�𝑖. 
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Neutrosophic Sets 

Let 𝑋 be the universe of discourse and 𝑥 be a generic element of this set. A neutrosophic set (NS) 

denoted by �̃�𝑁 in 𝑋 is characterized by a truth membership function 𝜇𝐵(𝑥), a falsity membership 

function 𝜈𝐵(𝑥)and an indeterminacy membership function 𝜎𝐵(𝑥) and having the form  

 �̃�𝑁 = {〈𝑥, 𝜇𝐵(𝑥), 𝜈𝐵(𝑥), 𝜎𝐵(𝑥)〉|𝑥 ∈ 𝑋} 

Where,  

 𝜇𝐵(𝑥): 𝑋 → ]0−, 1+[ 

 𝜈𝐵(𝑥): 𝑋 → ]0−, 1+[ 

 𝜎𝐵(𝑥): 𝑋 → ]0−, 1+[ 

i.e. 𝜇𝐵(𝑥), 𝜈𝐵(𝑥), 𝜎𝐵(𝑥) are real standard or non standard subsets of ]0−, 1+[ . 

Also 0− ≤ Sup 𝜇𝐵(𝑥) + 𝑆𝑢𝑝 𝜈𝐵(𝑥) + 𝑆𝑢𝑝 𝜎𝐵(𝑥) ≤ 3+ . 

The NS takes the value from the real standard or non-standard subsets of ]0−, 1+[  from the 

philosophical point of view, but in application of real life in engineering and scientific problems it is 

difficult to use NS with value from the subsets of]0−, 1+[. 

3.2 Neutrosophic Goal Programming 

Let us consider a goal programming problem as 

To find 𝑋 = (𝑥1, 𝑥2, …… , 𝑥𝑛−1, 𝑥𝑛)
𝑇 

to achieve : 

  𝑓𝑖 = 𝑡𝑖, 𝑖 = 1,2, …… , 𝑘 

Under the conditions, 𝑥 ∈ 𝑋  

where 𝑋 is a feasible set of all the constraints,𝑡𝑖 are scalars representing level of  achievement for 

the objective functions, which the decision maker want to attain in the feasible set.  

More generally a non-linear goal programming problem can be expressed as 

(P 1.3) 

To find 𝑋 = (𝑥1, 𝑥2, …… , 𝑥𝑛−1, 𝑥𝑛)
𝑇 

In order to 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓𝑖  ,having the target value 𝑡𝑖 , acceptance tolerance 𝑎𝑖, rejection tolerance 𝑐𝑖, 

and indeterminacy tolerance 𝑑𝑖 

 𝑔𝑗(𝑥) ≤ 𝑏𝑗, 𝑗 = 1,2, ……… ,𝑚 

 𝑥𝑖 ≥ 0, 𝑖 = 1,2, …… , 𝑛 

The truth-membership functions, falsity-membership functions and 

indeterminacy-membership-functions as given by Mohamed Abdel-Baset et all [28] are respectively  

 𝑇𝑖(𝑓𝑖) = {

 1 

(
𝑡𝑖+𝑎𝑖−𝑓𝑖

𝑎𝑖
)

0

         

𝑖𝑓 𝑓𝑖 ≤ 𝑡𝑖
𝑖𝑓 𝑡𝑖 ≤ 𝑓𝑖 ≤ 𝑡𝑖 + 𝑎𝑖
𝑖𝑓  𝑓𝑖 ≥ 𝑡𝑖 + 𝑎𝑖

 

 𝐹𝑖(𝑓𝑖) = {

0

(
𝑓𝑖−𝑡𝑖

𝑐𝑖
)

1

          

𝑖𝑓 𝑓𝑖 ≤ 𝑡𝑖
𝑖𝑓 𝑡𝑖 ≤ 𝑓𝑖 ≤ 𝑡𝑖 + 𝑐𝑖
𝑖𝑓  𝑓𝑖 ≥ 𝑡𝑖 + 𝑐𝑖

 

 𝐼𝑖(𝑓𝑖) =

{
 
 

 
 

0

(
𝑓𝑖−𝑡𝑖

𝑑𝑖
)

(
𝑡𝑖+𝑎𝑖−𝑓𝑖

𝑎𝑖−𝑑𝑖
)

0

       

𝑖𝑓 𝑓𝑖 ≤ 𝑡𝑖
𝑖𝑓 𝑡𝑖 ≤ 𝑓𝑖 ≤ 𝑡𝑖 + 𝑎𝑖

𝑖𝑓 𝑡𝑖 + 𝑑𝑖 ≤ 𝑓𝑖 ≤ 𝑡𝑖 + 𝑎𝑖
𝑖𝑓  𝑓𝑖 ≥ 𝑡𝑖 + 𝑎𝑖
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Now the formulation to minimize the degree of rejection and maximize the degree of acceptance as 

well as the degree of the indeterminacy of objectives and constraints for a given nonlinear goal 

programming is as follow: 

(P 1.4) 

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑇𝑓𝑖(𝑓𝑖) , 𝑖 = 1,2, …… , 𝑘 

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐼𝑓𝑖(𝑓𝑖) , 𝑖 = 1,2, …… , 𝑘 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹𝑓𝑖(𝑓𝑖) , 𝑖 = 1,2, …… , 𝑘 

Subject to 

 0 ≤ 𝑇𝑓𝑖(𝑓𝑖) + 𝐼𝑓𝑖(𝑓𝑖) + 𝐹𝑓𝑖(𝑓𝑖) ≤ 3, 𝑖 = 1,2, …… , 𝑘 

 𝑇𝑓𝑖(𝑓𝑖) ≥ 0, 𝐼𝑓𝑖(𝑓𝑖) ≥ 0, 𝐹𝑓𝑖(𝑓𝑖) ≥ 0 , 𝑖 = 1,2, …… , 𝑘 

 𝑇𝑓𝑖(𝑓𝑖) ≥ 𝐼𝑓𝑖(𝑓𝑖), 𝑖 = 1,2,…… , 𝑘 

 𝑇𝑓𝑖(𝑓𝑖) ≥ 𝐹𝑓𝑖(𝑓𝑖), 𝑖 = 1,2, …… , 𝑘 

 𝑔𝑗(𝑥) ≤ 𝑏𝑗, 𝑗 = 1,2, ……… ,𝑚 

 𝑥𝑖 ≥ 0, 𝑖 = 1,2, …… , 𝑛 

Here the truth-membership function, falsity-membership function and indeterminacy-membership 

function of the corresponding neutrosophic decision set are respectively 𝑇𝑓𝑖(𝑓𝑖), 𝐹𝑓𝑖(𝑓𝑖) and 𝐼𝑓𝑖(𝑓𝑖). 

Now using the truth-membership function, falsity-membership function and 

indeterminacy-membership function in generating the corresponding crisp programming model of 

P(1.4) which is non-linear goal programming problem be expressed as follow 

(P 1.5) 

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐴 

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐶 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐵 

 𝑇𝑓𝑖(𝑓𝑖) ≥ 𝐴, 𝑖 = 1,2, …… , 𝑘 

  𝐼𝑓𝑖(𝑓𝑖) ≥ 𝐶, 𝑖 = 1,2, …… , 𝑘 

 𝐹𝑓𝑖(𝑓𝑖) ≤ 𝐵, 𝑖 = 1,2, …… , 𝑘 

 𝑓𝑖 ≤ 𝑡𝑖, 𝑖 = 1,2, …… , 𝑘 

 0 ≤ 𝐴 + 𝐵 + 𝐶 ≤ 3; 

 𝐴 ≥ 0, 𝐶 ≥ 0, 𝐵 ≤ 1; 

 𝑔𝑗(𝑥) ≤ 𝑏𝑗, 𝑗 = 1,2, ……… ,𝑚 

 𝑥𝑖 ≥ 0, 𝑖 = 1,2, …… , 𝑛 

3.3 Generalized Neutrosophic Goal Programming 

In the case of generalized neutrosophic goal programming, the truth-membership functions, 

falsity-membership functions and the indeterminacy-membership-functions as defined by Mridula 

Sarkar et all [29] are defined respectively as  

 𝑇𝑖
𝑤1(𝑓𝑖) = {

 𝑤1 

 𝑤1  (
𝑡𝑖+𝑎𝑖−𝑓𝑖

𝑎𝑖
)

0

         

𝑖𝑓 𝑓𝑖 ≤ 𝑡𝑖
𝑖𝑓 𝑡𝑖 ≤ 𝑓𝑖 ≤ 𝑡𝑖 + 𝑎𝑖
𝑖𝑓  𝑓𝑖 ≥ 𝑡𝑖 + 𝑎𝑖

 

 𝐹𝑖
𝑤2(𝑓𝑖) = {

0

𝑤2  (
𝑓𝑖−𝑡𝑖

𝑐𝑖
)

 𝑤2 

            

𝑖𝑓 𝑓𝑖 ≤ 𝑡𝑖
𝑖𝑓 𝑡𝑖 ≤ 𝑓𝑖 ≤ 𝑡𝑖 + 𝑐𝑖
𝑖𝑓  𝑓𝑖 ≥ 𝑡𝑖 + 𝑐𝑖
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 𝐼𝑖
𝑤3(𝑓𝑖) =

{
 
 

 
 

0

𝑤3  (
𝑓𝑖−𝑡𝑖

𝑑𝑖
)

𝑤3  (
𝑡𝑖+𝑎𝑖−𝑓𝑖

𝑎𝑖−𝑑𝑖
)

0

       

𝑖𝑓 𝑓𝑖 ≤ 𝑡𝑖
𝑖𝑓 𝑡𝑖 ≤ 𝑓𝑖 ≤ 𝑡𝑖 + 𝑎𝑖

𝑖𝑓 𝑡𝑖 + 𝑑𝑖 ≤ 𝑓𝑖 ≤ 𝑡𝑖 + 𝑎𝑖
𝑖𝑓  𝑓𝑖 ≥ 𝑡𝑖 + 𝑎𝑖

 

where 𝑤1, 𝑤2, 𝑤3 are degree of gradations of the truth-membership functions, falsity-membership 

functions and the indeterminacy-membership-functions respectively. Also the target value is 𝑡𝑖 , 

acceptance tolerance is 𝑎𝑖, rejection tolerance 𝑐𝑖, and indeterminacy tolerance is 𝑑𝑖 

 

 

 

 

 

 

 

 

 

 

 

 

The general formulation of Neutrosophic goal programming is as follow: 

(P 1.6) 

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑇𝑓𝑖(𝑓𝑖) , 𝑖 = 1,2, …… , 𝑘 

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐼𝑓𝑖(𝑓𝑖) , 𝑖 = 1,2, …… , 𝑘 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹𝑓𝑖(𝑓𝑖) , 𝑖 = 1,2, …… , 𝑘 

Subject to 

 0 ≤ 𝑇𝑓𝑖(𝑓𝑖) + 𝐼𝑓𝑖(𝑓𝑖) + 𝐹𝑓𝑖(𝑓𝑖) ≤ 𝑤1 + 𝑤2 + 𝑤3, 𝑖 = 1,2, …… , 𝑘 

 𝑇𝑓𝑖(𝑓𝑖) ≥ 0, 𝐼𝑓𝑖(𝑓𝑖) ≥ 0, 𝐹𝑓𝑖(𝑓𝑖) ≥ 0 , 𝑖 = 1,2, …… , 𝑘 

 𝑇𝑓𝑖(𝑓𝑖) ≥ 𝐼𝑓𝑖(𝑓𝑖), 𝑖 = 1,2,…… , 𝑘 

 𝑇𝑓𝑖(𝑓𝑖) ≥ 𝐹𝑓𝑖(𝑓𝑖), 𝑖 = 1,2, …… , 𝑘 

 0 ≤ 𝑤1 +𝑤2 + 𝑤3 ≤ 3 

 𝑤1, 𝑤2, 𝑤3 ∈ [0,1] 

 𝑔𝑗(𝑥) ≤ 𝑏𝑗, 𝑗 = 1,2, ……… ,𝑚 

 𝑥𝑖 ≥ 0, 𝑖 = 1,2, …… , 𝑛 

The above problem is equivalent to 

(P 1.7) 

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐴 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐵 

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐶 

 𝑇𝑓𝑖(𝑓𝑖) ≥ 𝐴, 𝑖 = 1,2, …… , 𝑘 

  𝐼𝑓𝑖(𝑓𝑖) ≥ 𝐶, 𝑖 = 1,2, …… , 𝑘 
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 𝐹𝑓𝑖(𝑓𝑖) ≤ 𝐵, 𝑖 = 1,2, …… , 𝑘 

 𝑓𝑖 ≤ 𝑡𝑖, 𝑖 = 1,2, …… , 𝑘 

 0 ≤ 𝐴 + 𝐵 + 𝐶 ≤ 𝑤1 + 𝑤2 + 𝑤3 ; 

 𝐴 ∈ [0, 𝑤1], 𝐵 ∈ [0, 𝑤2]  , 𝐶 ∈ [0, 𝑤3]; 

  0 ≤ 𝑤1 + 𝑤2 + 𝑤3 ≤ 3 

 𝑤1, 𝑤2, 𝑤3 ∈ [0,1] 

 𝑔𝑗(𝑥) ≤ 𝑏𝑗, 𝑗 = 1,2, ……… ,𝑚 

 𝑥𝑖 ≥ 0, 𝑖 = 1,2, …… , 𝑛 

Again using the corresponding membership function, finally this problem is equivalent to  

(P 1.8) 

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐴 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐵 

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐶 

 𝑓𝑖 ≤ 𝑡𝑖 + 𝑎𝑖 (1 −
𝐴

𝑤1
) , 𝑖 = 1,2, …… , 𝑘 

  𝑓𝑖 ≤ 𝑡𝑖 +
𝑐𝑖

𝑤2
𝐵, 𝑖 = 1,2, …… , 𝑘 

 𝑓𝑖 ≥ 𝑡𝑖 +
𝑑𝑖

𝑤3
𝐶, 𝑖 = 1,2, …… , 𝑘 

 𝑓𝑖 ≤ 𝑡𝑖 + 𝑎𝑖 −
1

𝑤3
(𝑎𝑖 − 𝑑𝑖)𝐶, 𝑖 = 1,2, …… , 𝑘 

 𝑓𝑖 ≤ 𝑡𝑖, 𝑖 = 1,2, …… , 𝑘 

 0 ≤ 𝐴 + 𝐵 + 𝐶 ≤ 𝑤1 + 𝑤2 + 𝑤3 ; 

 𝐴 ∈ [0, 𝑤1], 𝐵 ∈ [0, 𝑤2]  , 𝐶 ∈ [0, 𝑤3]; 

  0 ≤ 𝑤1 + 𝑤2 + 𝑤3 ≤ 3 

 𝑤1, 𝑤2, 𝑤3 ∈ [0,1] 

 𝑔𝑗(𝑥) ≤ 𝑏𝑗, 𝑗 = 1,2, ……… ,𝑚 

 𝑥𝑖 ≥ 0, 𝑖 = 1,2, …… , 𝑛 

 

Now using generalized truth, falsity and indeterminacy membership function and under the 

consideration of arithmetic aggregation operator the generalized neutrosophic goal programming 

can be formulated as  

(P 1.9) 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 {
(1−𝐴)+𝐵+(1−𝐶)

3
} 

Under the same set of constraints as of  (P 1.8) 

Also using geometric aggregation operator same generalized neutrosophic goal programming can 

be formulated as : 

(P 1.10) 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 √(1 − 𝐴)𝐵(1 − 𝐶)
3

 

Under the same set of constraints as of  (P 1.8) 
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Finally to get the solution of multi-objective non-linear programming problem by generalized 

neutrosophic goal programming approach, we can take help of some appropriate mathematical 

programming to solve the non linear programming problem (P 1.8 or P 1.9 or P 1.10). 

 

4. Solution of Multi-Objective Portfolio Optimization Model by Generalized Neutrosophic 

Goal Programming 

Multi-objective neutrosophic portfolio optimization model can be expressed as  

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐸𝑟(𝑋), with target value 𝐸0 , acceptance tolerance 𝑎𝐸, indeterminacy tolerance 𝑑𝐸 , 

and rejection tolerance 𝑐𝐸. 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐴𝑑(𝑋), with target value 𝐴0 , acceptance tolerance 𝑎𝐴, indeterminacy tolerance 𝑑𝐴 , 

and rejection tolerance 𝑐𝐴. 

  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∶ 

 ∑ 𝑥𝑖 = 1,𝑛
𝑖=1  

 𝑥𝑖 ≥ 0 , 

 𝐿𝑖 ≤ 𝑥𝑖 ≤ 𝑈𝑖 

 𝑖 = 1,2, …………………… . , 𝑛 

Where 𝑋 =

(

 
 

𝑥1
𝑥2
⋮

𝑥𝑛−1
𝑥𝑛 )

 
 

 are the decision variables. 

In case of generalized neutrosophic goal programming the truth-membership functions, 

falsity-membership functions and indeterminacy-membership-functions for the objective functions 

are  defined respectively as  

        𝑇𝐸𝑟(𝑋)
𝑤1 (𝐸𝑟(𝑋)) = {

 𝑤1 

 𝑤1  (
𝐸𝑟(𝑋)−𝐸0+𝑎𝐸

𝑎𝐸
)

0

         

𝑖𝑓 𝐸𝑟(𝑋) ≥ 𝐸0
𝑖𝑓 𝐸0 − 𝑎𝐸 ≤ 𝐸𝑟(𝑋) ≤ 𝐸0
𝑖𝑓  𝐸𝑟(𝑋) ≤ 𝐸0 − 𝑎𝐸

 

       𝐹𝐸𝑟(𝑋)
𝑤2 (𝐸𝑟(𝑋)) = {

0

𝑤2  (
𝐸0−𝐸𝑟(𝑋)

𝑐𝐸
)

 𝑤2 

             

𝑖𝑓 𝐸𝑟(𝑋) ≥ 𝐸0
𝑖𝑓 𝐸0 − 𝑐𝐸 ≤ 𝐸𝑟(𝑋) ≤ 𝐸0
𝑖𝑓  𝐸𝑟(𝑋) ≤ 𝐸0 − 𝑐𝐸

 

 𝐼𝐸𝑟(𝑋)
𝑤3 (𝐸𝑟(𝑋)) =

{
 
 

 
 

0

𝑤3  (
𝑎𝐸+𝐸𝑟(𝑋)−𝐸0

𝑎𝐸−𝑑𝐸
)

𝑤3  (
−𝐸𝑟(𝑋)+𝐸0

𝑑𝐸
)

0

       

𝑖𝑓 𝐸𝑟(𝑋) ≤ 𝐸0 − 𝑎𝐸
𝑖𝑓 𝐸0 − 𝑎𝐸 ≤ 𝐸𝑟(𝑋) ≤ 𝐸0 − 𝑑𝐸
𝑖𝑓 𝐸0 − 𝑑𝐸 ≤ 𝐸𝑟(𝑋) ≤ 𝐸0

𝑖𝑓  𝐸𝑟(𝑋) ≥ 𝐸0

 

Where  𝑑𝐸 =
𝑤1

𝑤1
𝑎𝐸
+
𝑤2
𝑐𝐸

 

And 

      𝑇𝐴𝑑(𝑋)
𝑤1 (𝐴𝑑(𝑋)) = {

 𝑤1 

 𝑤1  (
𝐴0+𝑎𝐴−𝐴𝑑(𝑋)

𝑎𝐴
)

0

         

𝑖𝑓 𝐴𝑑(𝑋) ≤ 𝐴0
𝑖𝑓 𝐴0 ≤ 𝐴𝑑(𝑋) ≤ 𝐴0 + 𝑎𝐴
𝑖𝑓  𝐴𝑑(𝑋) ≥ 𝐴0 + 𝑎𝐴
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       𝐹𝐴𝑑(𝑋)
𝑤2 (𝐴𝑑(𝑋)) = {

0

𝑤2  (
𝐴𝑑(𝑋)−𝐴0

𝑐𝐴
)

 𝑤2 

            

𝑖𝑓 𝐴𝑑(𝑋) ≤ 𝐴0
𝑖𝑓 𝐴0 ≤ 𝐴𝑑(𝑋) ≤ 𝐴0 + 𝑐𝐴
𝑖𝑓  𝐴𝑑(𝑋) ≥ 𝐴0 + 𝑐𝐴

 

 𝐼𝐴𝑑(𝑋)
𝑤3 (𝐴𝑑(𝑋)) =

{
 
 

 
 

0

𝑤3  (
𝐴𝑑(𝑋)−𝐴0

𝑑𝐴
)

𝑤3  (
𝐴0+𝑎𝐴−𝐴𝑑(𝑋)

𝑎𝐴−𝑑𝐴
)

0

       

𝑖𝑓 𝐴𝑑(𝑋) ≤ 𝐴0
𝑖𝑓 𝐴0 ≤ 𝐴𝑑(𝑋) ≤ 𝐴0 + 𝑎𝐴

𝑖𝑓 𝐴0 + 𝑑𝐴 ≤ 𝐴𝑑(𝑋) ≤ 𝐴0 + 𝑎𝐴
𝑖𝑓  𝐴𝑑(𝑋) ≥ 𝐴0 + 𝑎𝐴

 

Where  𝑑𝐴 =
𝑤1

𝑤1
𝑎𝐴
+
𝑤2
𝑐𝐴

 

Now using generalized neutrosophic goal programming technique and incorporating truth, falsity 

and indeterminacy membership functions the problem (P 1.2) can be formulated as the following (P 

1.11) 

(P 1.11) 

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐴 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐵 

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐶 

 𝐸𝑟(𝑋) ≥ 𝐸0 + 𝑎𝐸 (
𝐴

𝑤1
− 1),   

 𝐸𝑟(𝑋) ≥ 𝐸0 −
𝑐𝐸

𝑤2
𝐵,   

 𝐸𝑟(𝑋) ≤ 𝐸0 −
𝑑𝐸

𝑤3
𝐶, 

 𝐸𝑟(𝑋) ≥ 𝐸0 − 𝑎𝐸 +
𝐶

𝑤3
(𝑎𝐸 − 𝑑𝐸),  

 𝐸𝑟(𝑋) ≥ 𝐸0,  

 Ad(𝑋) ≤ 𝐴0 + 𝑎𝐴 (1 −
𝐴

𝑤1
),   

 Ad(𝑋) ≤ 𝐴0 +
𝑐𝐴

𝑤2
𝐵,   

 Ad(𝑋) ≥ 𝐴0 +
𝑑𝐴

𝑤3
𝐶, 

 𝐴𝑑(𝑋) ≤ 𝐴0 + 𝑎𝐴 −
𝐶

𝑤3
(𝑎𝐴 − 𝑑𝐴),  

 𝐴𝑑(𝑋) ≤ 𝐴0,  

 0 ≤ 𝐴 + 𝐵 + 𝐶 ≤ 𝑤1 + 𝑤2 + 𝑤3 ; 

 𝐴 ∈ [0, 𝑤1], 𝐵 ∈ [0, 𝑤2]  , 𝐶 ∈ [0, 𝑤3]; 

  0 ≤ 𝑤1 + 𝑤2 + 𝑤3 ≤ 3 

 𝑤1, 𝑤2, 𝑤3 ∈ [0,1] 

 𝑔𝑗(𝑥) ≤ 𝑏𝑗, 𝑗 = 1,2, ……… ,𝑚 

 𝑥𝑖 ≥ 0, 𝑖 = 1,2, …… , 𝑛 

 ∑ 𝑥𝑖 = 1,𝑛
𝑖=1  
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 𝑞𝑖 ≥ (𝑥𝑖 − 𝑥𝑖
0) 

 𝑞𝑖 ≥ −(𝑥𝑖 − 𝑥𝑖
0) 

 𝑝𝑡 ≥ ∑ (𝑟𝑖𝑡 − 𝑟𝑖)𝑥𝑖
𝑛
𝑖=1  

 𝑝𝑡 ≥ −∑ (𝑟𝑖𝑡 − 𝑟𝑖)𝑥𝑖
𝑛
𝑖=1  

 𝑥𝑖 ≥ 0 , 

 𝑝𝑡 ≥ 0 

 𝑞𝑖 ≥ 0 

 𝐿𝑖 ≤ 𝑥𝑖 ≤ 𝑈𝑖 

 𝑖 = 1,2, …………………… . , 𝑛 

 

5. Numerical Illustration 

Our portfolio optimization model had been solved by generalized neutrosophic goal 

programming method. In this paper the portfolio optimization model had been validated by 

data taken from National Stock Exchange (NSE). For demonstration a data set of 10 randomly 

selected assets had been considered from NSE for an entire financial year i.e. 12 months, here 

each rows are data of any companies like ABL, ALL, etc for the entire financial year and 

columns are data for 1st month, 2nd month, etc of the financial year. The data is given below 

 

Table1: Return of assets of some companies taken from National stock exchange 

 

 

 

Using this data set the problem reduces to 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒  𝐸𝑟(𝑋) with target value 0.28745, truth 

tolerance 0.1295, and indeterminacy tolerance 
𝑤1

7.72 𝑤1+20 𝑤2
  and rejection tolerance 0.05. 

and 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝐴𝑑(𝑋)with target value 0.0877, truth tolerance 0.08, and indeterminacy tolerance 

𝑤1

12.5 𝑤1+6.67 𝑤2
  and rejection tolerance 0.15. 

Company 1 2 3 4 5 6 7 8 9 10 11 12

ABL 0.072 0.32032 0.2971 0.236 -0.05161 0.50633 -0.02516 0.90484 0.03214 0.45968 0.227 -0.87871

ALL -0.14433 0.19032 0.75032 0.03433 -0.33581 0.247 0.49968 0.27032 -0.32786 0.31968 0.11933 -0.50903

BHL 0.08667 1.05613 0.05516 0.27567 -0.21839 0.49233 1.11516 0.57613 0.17143 0.92258 0.22367 -0.67903

CGL -0.18567 0.76774 0.16194 0.48633 -0.2071 0.47833 0.2571 0.59484 -0.02321 0.55387 0.07333 -0.11871

HHM 0.18233 0.33 0.13677 0.46533 -0.12774 0.56067 0.10839 0 0.14321 0.00968 -0.15767 -0.27258

HCC -0.157 0.61226 1.23548 0.56067 -0.71065 0.97333 0.32839 0.61581 0.03286 0.49935 -0.03733 -0.59452

KMB 0.18567 0.27806 0.55097 0.02733 -0.46613 0.73333 0.20581 0.17065 -0.05286 0.6671 0.373 -0.08355

MML 0.37533 0.65903 0.1929 0.16533 -0.15226 0.80867 0.39097 0.29 0.1975 0.21839 0.031 -0.06548

SIL -0.10467 0.200552 0.31161 0.43333 -0.3171 1.104 0.37194 0.73097 0.03321 0.75903 0.09467 -0.44903

UNL 0.26367 0.41581 0.24484 0.12967 -0.0829 0.54 0.93258 0.61871 0.2275 0.68968 0.65433 0.65258
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Solving the portfolio optimization model by the above mentioned methods using LINGO the 

solutions so obtained is given below in tabular form.   

 

Table2: Optimal solutions using different methods 

 

 

 

𝑍1(𝑥) 𝑍2(𝑥) 

Generalized neutrosophic goal 

programming 

𝑤1 = 0.3, 𝑤2 = 0.5, 𝑤3 = 0.7 

0.3159 0.0784 

Generalized neutrosophic optimization 

based on arithmetic aggregation 

operator 

𝑤1 = 0.3, 𝑤2 = 0.5, 𝑤3 = 0.7 0.3255 0.0781 

Generalized neutrosophic optimization 

based on geometric aggregation 

operator 

𝑤1 = 0.3, 𝑤2 = 0.5, 𝑤3 = 0.7 0.3491 0.0698 

 

For different value of  𝑤1, 𝑤2, 𝑤3 using different method of aggregation for objective functions 

the solutions so obtained are almost same. Although the best solutions have been obtained using 

geometric aggregation method for objective functions for different value of  𝑤1, 𝑤2, 𝑤3.  

It is clear from the above table that in neutrosophic goal programming method based upon 

distinct aggregation operator, all the objective functions attained their respective goal and also 

the restrictions of truth, falsity and indeterminacy membership functions. The sum of truth, 

falsity and indeterminacy membership function of each of the objective is less than sum of 

degree of gradiation 𝑤1 + 𝑤2 + 𝑤3, which in turn satisfies the condition of neutrosophic set. 

6. Conclusion 

It was explored in this study that, when the neutrosophic goal programming considered as a 

method for determining the best portfolio the the best result obtained utilizing different 

aggregation methods for the mathematical model of this study was obtained by employing 

geometric aggregation method. The degree of truth membership function is defined using the 

neutrosophic optimization technique; however, it is not simply a complement of degree of 

falsehood; rather, these two degrees of membership are independent of degree of 

indeterminacy. Because we used the neutrosophic goal programming technique to optimize 

portfolios, it may also be applied to solve other optimization problems of several fields.   
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Abstract: The aim of this paper is to introduce the concept of β*-closed sets in terms of 

neutrosophic topological spaces. We also study some of the properties of neutrosophic β*-closed 

sets. Further we introduce Nβ*-continuity and Nβ*-contra continuity in neutrosophic topological 

spaces. 

Keywords: neutrosophic topology, Nβ*-closed set, Nβ*-Continuity and Nβ*-Contra Continuity. 

 

1. Introduction 

Zadeh [19] introduced and studied the fuzzy set theory. An intuitionistic fuzzy set was 

introduced by Atanassov [9]. Coker [10] developed intuitionistic fuzzy topology. Neutrality, the 

degree of indeterminacy, as an independent concept, was introduced by Smarandache [3,4] in 1998. 

He also defined the neutrosophic set on three components (t, f, i) = (truth, falsehood, indeterminacy). 

The Neutrosophic crisp set concept was converted into neutrosophic topological spaces by                

Salama etal. in [3]. This opened up a wide range of investigation in terms of neutosophic topology 

and its application in decision-making algorithms. Renu Thomas etal.[17] introduced and studied 

semi pre-open(or β-open) sets in neutrosophic topological spaces. R. Dhavaseelan and S. Jafari[11] 

introduced generalized neutrosophic closed sets. In this article, the neutrosophic β*-closed sets are 

introduced in neutrosophic topological space. Moreover, we introduce and investigate      

neutrosophic β*-continuous and neutrosophic contra β*-continuous mappings.  

2. Preliminaries  

Definition 2.1. [6] Let X be a non-empty fixed set. A neutrosophic set (NS) A is an object having the 

form A = {〈x, μA(x), σA(x), νA(x)〉: x ∈ X} where μA(x), σA(x), νA(x) represent the degree of membership, 

degree of indeterminacy and the degree of non-membership respectively of each element x ∈ X to 

the set A.  

A Neutrosophic set A = {〈x, μA(x), σA(x), νA(x)〉: x ∈ X} can be identified as an ordered triple           

〈 μA(x), σA(x), νA(x)〉 in ] −0, 1 +[ on X.  

Definition 2.2. [6] Let A =〈 μA(x), σA(x), νA(x)〉 be a NS on X, then the complement C(A) may be 

defined as  

1. C(A) = {〈x, 1 − μA(x), 1 − νA(x)〉: x ∈ X}  
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2. C(A) = {〈x, νA(x), σA (x), μA(x)〉: x ∈ X}  

3. C(A) = {〈x, νA(x), 1 − σA(x), μA(x)〉: x ∈ X}  

Note that for any two neutrosophic sets A and B,  

4. C(A ∪ B) = C(A) ∩ C(B)  

5. C(A ∩ B) = C(A) ∪ C(B).  

Definition 2.3. [6] For any two neutrosophic sets A = {〈x, μA(x), σA(x), νA(x)〉: x ∈ X} and                  

B = {〈x, μB(x), σB(x), νB(x)〉: x ∈ X} we may have  

1. A ⊆ B ⇔ μA(x) ≤ μB(x), σA(x) ≤ σB(x) and νA(x) ≥ νB(x)∀ x ∈ X  

2. A ⊆ B ⇔ μA(x) ≤ μB(x), σA(x) ≥ σB(x) and νA(x) ≥ νB(x)∀ x ∈ X  

3. A ∩ B = 〈x, μA(x) ⋀ μB(x), σA(x) ⋀ σB(x) and νA(x) ⋁ νB(x)〉  

4. A ∩ B = 〈x, μA(x) ⋀ μB(x), σA(x) ⋁ σB(x) and νA(x) ⋁ νB(x)〉  

5. A ∪ B = 〈x, μA(x) ∨ μB(x), σA(x) ⋁ σB(x) and νA(x) ∧ νB(x)〉  

6. A ∪ B = 〈x, μA(x) ∨ μB(x), σA(x) ∧ σB(x) and νA(x) ∧ νB(x)〉  

Definition 2.4. [6] A neutrosophic topology (NT) on a non-empty set X is a family τ of neutrosophic 

subsets in X satisfies the following axioms:  

(NT1 ) 0N, 1N ∈ τ  

(NT2 ) G1 ∩ G2 ∈ τ for any G1 , G2 ∈ τ  

(NT3 ) ∪ Gi ∈ τ ∀{Gi : i ∈ J} ⊆ τ  

Definition 2.5. [5] Let A be an Neutrosophic Set in NTS X. Then Nint(A) = ∪ {G ∶ G is an NOS in X and 

G ⊆ A} is called a neutrosophic interior of A Ncl(A) = ∩ {K ∶ K is an NCS in X and A ⊆ K} is called a 

neutrosophic closure of A. 

Definition 2.6.  A NS A of a NTS X is said to be  

(1) a neutrosophic semi-open set (NSOS)[15] if A ⊆ NCl(NInt(A)) and a neutrosophic semi-closed set 

(NSCS) if NInt(NCl(A)) ⊆ A.  

(2) a neutrosophic α-open set (NαOS)[8] if A ⊆ NInt(NCl(NInt(A))) and a neutrosophic α-closed set 

(NαCS) if NCl(NInt(NCl(A))) ⊆ A.  

(3) a neutrosophic semi-pre open set or β-open(NβOS) [17] if A ⊆ NCl(NInt(NCl(A))) and a 

neutrosophic semi-pre closed set or β-closed(NβCS ) if NInt(NCl(NInt(A))) ⊆ A. 

 

Definition 2.7. [17] Consider a NS A in a NTS (X, τ). Then the neutrosophic β interior and the 

neutrosophic β closure are defined as  

Nβint(A) = ∪{G: G is a Nβ-open set in X and G ⊆ A}  

Nβcl(A) = ∩ {K: K is a Nβ-closed set in X and A ⊆ K }  

 

Definition 2.8. [16] A subset A of a neutrosophic topological space (X, τ) is called a neutrosophic 

generalized closed (Ng-closed) set if Ncl(A) ⊆ U whenever A ⊆ U and U is neutrosophic open set in 

(X, τ). 
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Definition 2.9. [18] A subset A of a neutrosophic topological space (X,τ) is called                              

a neutrosophic  ω– closed (Nω-closed) set if Ncl(A) ⊆ U whenever A ⊆ U and U is neutrosophic 

semi - open set in (X, τ). 

3. Neutrosophic β*-closed set 

In this section, the new concept of neutrosophic β*-closed sets in neutrosophic topological spaces 

was defined and studied. 

Definition 3.1: A subset A of a neutrosophic topological space (X, τ) is called a neutrosophic                

β*- closed (Nβ*-closed) set if Nβcl(A) ⊆ U whenever A ⊆ U and U is neutrosophic g-open set in                

(X, τ). 

 

Example 3.2. Let X = {a,b,c} with τN = {0N,G,1N} where G = 〈(a,0.5,0.6,0.4),(b,0.4,0.5,0.2), (c,0.7,0.6,0.9)〉. 

Here A = 〈(a,0.2,0.2,0.1),(b,0,1,0.2),(c,0.9,0.4,0.7)〉 , B = 〈(a,0.1,0.7,0.3),(b,0.2,0,0),(c,0.8,0.3,0.9)〉, 

C = 〈(a,0.4,0.5,0.2),(b,0.2,0.1,0.4),(c,0.6,0.5,1)〉, D = 〈(a,0.3,0.2,0.8),(b,0.1,0.3,0.6),(c,0.7,0.2,0.8)〉 are some 

examples of Nβ*-closed sets. 

 

Theorem 3.3. Each Neutrosophic Closed Set is an Nβ*-closed set in X.  

Proof. Let A ⊆ U where U is a neutrosophic g-open set in X. Since A is a neutrosophic closed set 

Ncl(A) = A. We have Nβcl(A) ⊆ Ncl(A) = A ⊆ U. Hence Nβcl(A) ⊆ U. Therefore A is a Nβ*-closed set 

in X.  

 

The converse of the above theorem need not be true as shown in the following example. 

Example 3.4. Let X = {a,b,c} with τN = {0N,G,1N} where G = 〈(a,0.5,0.6,0.4),(b,0.4,0.5,0.2), (c,0.7,0.6,0.9)〉. 

Here A = 〈(a,0.4,0.5,0.5),(b,0.3,0.2,0.3),(c,0.5,0.4,1)〉 is a Nβ*-closed set, however A is not a 

Neutrosophic Closed Set.  

 

Theorem 3.5. Each Nβ − closed set is an Nβ*-closed set in X.  

Proof. Let A ⊆ U where U is a neutrosophic g-open set in X. Let A be an Nβ−closed set in X. Hence 

Nβcl(A) = A ⊆ U. Hence Nβcl(A) ⊆ U. Therefore A is a Nβ*-closed set in X.  

 

The converse of the above theorem need not be true as shown in the following example. 

Example 3.6. Let X = {a,b,c} with τN = {0N,A,B,1N} where                                                        

A = 〈(a,0.5,0.5,0.4),(b,0.7,0.5,0.5), (c,0.4,0.5,0.5)〉 and B = 〈(a,0.3,0.4,0.4),(b,0.4,0.5,0.5),(c,0.3,0.4,0.6)〉.                                       

Here C = 〈(a,0.7,0.6,0.3),(b,0.9,0.7,0.2), (c,0.5,0.7,0.3)〉 is a Nβ*-closed set, but C is not an Nβ − Closed 

Set.  

 

Theorem 3.7. Each Nsemi-closed set is an Nβ*-closed set in X.  

Proof. Let 𝐴 ⊆ 𝑈 where U is a neutrosophic g-open set in X. Since A is an Nsemi-closed set in X, we 

have Nβcl(A) ⊆ Nscl(A) = A ⊆ U. Hence Nβcl(A) ⊆ U. Therefore A is an Nβ*-closed set in X. 

 

The converse of the above theorem need not be true as shown in the following example. 

Example 3.8. Let X = {a,b} with τN = {0N,A,B,1N} where A = 〈(a,0.4,0.3,0.5),(b,0.1,0.2,0.5)〉 and                       

B = 〈(a,0.4,0.4,0.5),(b,0.4,0.3,0.4)〉. Here C = 〈(a,0.4,0.6,0.5),(b,0.3,0.6,0.9)〉 is a Nβ*-closed set, but C is 

not an N semi − Closed Set.  

 

Theorem 3.9. Each Neutrosophic generalized-closed set is an Nβ*-closed set in X.  
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Proof. Let 𝐴 ⊆ 𝑈 be a neutrosophic generalized closed set, where U is a neutrosophic open set in X. 

Since every neutrosophic open set in X is a neutrosophic g-open set, we have Ncl(A) ⊆ U. Also we 

have Nβcl(A) ⊆ Ncl(A) ⊆ U. Hence Nβcl(A) ⊆ U. Therefore A is an Nβ*-closed set in X. 

 

The converse of the above theorem need not be true as shown in the following example. 

Example 3.10. Let X = {a,b} with τN = {0N,A,B,1N} where A = 〈(a,0.4,0.3,0.5),(b,0.1,0.2,0.5)〉 and                       

B = 〈(a,0.4,0.4,0.5),(b,0.4,0.3,0.4)〉. Here C = 〈(a,0.3,0.3,0.6),(b,0.3,0.2,0.5)〉 is a Nβ*-closed set, but C is 

not a Neutrosophic g− Closed Set.  

 

Theorem 3.11. Each Neutrosophic ω-closed set is an Nβ*-closed set in X.  

Proof. Let 𝐴 ⊆ 𝑈 be a neutrosophic ω- closed set, where U is a neutrosophic semi-open set in X. Since 

every neutrosophic semi-open set in X is a neutrosophic g-open set, we have Ncl(A) ⊆ U. Also we 

have Nβcl(A) ⊆ Ncl(A) ⊆ U. Hence Nβcl(A) ⊆ U. Therefore A is an Nβ*-closed set in X. 

 

The converse of the above theorem need not be true as shown in the following example. 

Example 3.12. Let X = {a,b,c} with τN = {0N,A,B,1N} where   

A = 〈(a,0.5,0.5,0.4),(b,0.7,0.5,0.5), (c,0.4,0.5,0.5)〉 and B = 〈(a,0.3,0.4,0.4),(b,0.4,0.5,0.5),(c,0.3,0.4,0.6)〉.                                       

Here C = 〈(a,0.2,0.3,0.5),(b,0.3,0.2,0.6), (c,0.1,0.2,0.9)〉 is an Nβ*-closed set, but C is not an Nω− Closed 

Set.  

 

Remark 3.13. The following diagram shows the relationships of Nβ*-closed set with other know 

existing sets. A      B represents A implies B but not conversely. 

 
 

Theorem 3.14. If A and B are Nβ*-closed sets in (X, τN), then A ∪ B is an Nβ*-closed set in (X,τN).  

Proof: Let A and B are Nβ*-closed sets in (X,τN). Then Nβcl(A) ⊆ U whenever A ⊆ U and U is 
neutrosophic g-open set in (X, τN) and Nβcl(B) ⊆ U whenever B ⊆ U and U is neutrosophic g-open set in                
(X, τN). Since A ⊆ U and B ⊆ U, which implies A ∪ B ⊆ U and U is neutrosophic g-open set, then                     
Nβcl(A) ⊆ U and Nβcl(B) ⊆ U implies Nβcl(A) ∪ Nβcl(B) ⊆ U, hence Nβcl(A ∪ B) ⊆ U. Thus A ∪ B is an 
Nβ*-closed set in X.  

 

Theorem 3.15. A neutrosophic set A is Nβ*-closed set then Nβcl(A) – A does not contain any 

nonempty Nβ-closed sets.  

Proof: Suppose that A is an Nβ*-closed set. Let F be an Nβ-closed set such that F ⊆ Nβcl(A) – A 

which implies F ⊆ Nβcl(A)∩Ac. Then A ⊆ Fc. Since A is Nβ*-closed set, we have Nβcl(A) ⊆ Fc . 

Consequently F ⊆ (Nβcl(A))c . We have F ⊆ Nβcl(A). Thus F ⊆ Nβcl(A)∩(Nβcl(A))c = ϕ.                   

Hence F is empty.  

 

Theorem 3.16.  If A is an Nβ*-closed set in (X,τN) and A ⊆ B ⊆ Nβcl(A), then B is Nβ*-closed.  
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Proof: Let B ⊆ U where U is a Neutrosophic g-open set in (X,τN). Then A ⊆ B implies A ⊆ U.        

Since A is an Nβ*-closed set, we have Nβcl(A)⊆U. Also A ⊆ Nβcl(B) implies Nβcl(B) ⊆ Nβcl(A). 

Thus Nβcl(B)⊆ U and so B is an Nβ*-closed set in (X,τN). 

  

Theorem 3.17. If A is Neutrosophic g-open and Nβ*-closed, then A is Nβ-closed set.  

Proof: Since A is Neutrosophic g-open and Nβ*-closed, then Nβcl(A) ⊆ A. Therefore Nβcl(A) =A. 

Hence A is Nβ-closed. 

4. On Nβ*-Continuity and Nβ*-Contra Continuity  

 

Definition 4.1. Let f be a mapping from a neutrosophic topological space (X, τ ) to a neutrosophic 

topological space (Y, 𝜎). Then f is said to be a neutrosophic β*-continuous (Nβ*-continuous) 

mapping if 𝑓−1 (A) is a Nβ*-closed set in X, for each neutrosophic-closed set A in Y.  

 

Theorem 4.2. Consider a mapping 𝑓∶ (𝑋, 𝜏 ) → (𝑌, 𝜎). Then the following statements are equal.  

(1) f is Nβ*-continuous  

(2) The inverse image of each neutrosophic-closed set A in Y is Nβ*-closed set in X.  

Proof. The result is obvious from the Definition 4.1.  

 

Theorem 4.3. Consider an Nβ*-continuous mapping 𝑓 ∶ (𝑋, 𝜏) → (𝑌, 𝜎) then the following assertions 

hold:  

(1) for all neutrosophic sets A in X, 𝑓(𝑁β*- 𝑁𝑐𝑙(𝐴)) ⊆ 𝑁𝑐𝑙(𝑓(𝐴))  

(2) for all neutrosophic sets B in Y, 𝑁β*𝑁𝑐𝑙 (𝑓−1(𝐵)) ⊆ 𝑓−1 (𝑁𝑐𝑙(𝐵)).  

Proof. (1) Let A be a neutrosophic set in X, then Ncl(f (A)) be a neutrosophic closed set in Y and f be 

Nβ*-continuous, then it follows that 𝑓−1(Ncl(f(A))) is Nβ*-closed in X. In view that 𝐴 ⊆ 𝑓−1(𝑁𝑐𝑙(𝑓(𝐴))) 

and 𝑁β*𝑐𝑙(𝐴) ⊆ 𝑓−1(𝑁𝑐𝑙(𝑓(𝐴))). Hence, 𝑓(𝑁β*- 𝑁𝑐𝑙(𝐴)) ⊆ 𝑁𝑐𝑙(𝑓(𝐴)).  

(2) We get 𝑓(𝑁β*-N𝑐𝑙(𝑓−1 (𝐵))) ⊆ 𝑁𝑐𝑙𝑓(𝑓 −1(𝐵))) ⊆ 𝑁𝑐𝑙(𝐵). Hence, 𝑁β*-N𝑐𝑙(𝑓 −1 (𝐵)) ⊆ 𝑓 −1 (𝑁𝑐𝑙(𝐵)) by 

way of changing A with B in (1).  

 

Definition 4.4. Let f be a mapping from a neutrosophic topological space (X, τ) to a neutrosophic 

topological space (Y, 𝜎). Then f is known as neutrosophic β*-contra continuous (Nβ*-contra 

continuous) mapping if 𝑓−1 (B) is a Nβ*-closed set in X for each neutrosophic-open set B in Y.  

 

Theorem 4.5. Consider a mapping 𝑓 ∶ (𝑋, 𝜏 ) → (𝑌, 𝜎). Then the following assertions are equivalent:  

(1) f is a Nβ*- contra continuous mapping  

(2) 𝑓 −1(B) is an Nβ*-closed set in X, for each neutrosophic open set B in Y.  

Proof. (1) ⟹ (2) Assume that f is Nβ*-contra continuous mapping and B is a NOS in Y. Then Bc is an 

NCS in Y. It follows that, 𝑓 −1 (𝐵𝑐 ) is an Nβ*-open set in X. For this reason, 𝑓 −1(B) is an Nβ*closed set 

in X.  

(2) ⟹ (1) The converse is similar.  
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Theorem 4.6. Consider a bijective mapping 𝑓 ∶ (𝑋, 𝜏) → (𝑌, 𝜎) from a NTS(X, 𝜏 ) into an NTS(Y, 𝜎). If 

𝑁𝑐𝑙(𝑓(𝐴)) ⊆ 𝑓(𝑁β*𝑖𝑛𝑡(𝐴)), for each NS B in X, then the mapping f is Nβ*-contra continuous.  

Proof. Consider a NCS B in Y. Then 𝑁𝑐𝑙(𝐵) = 𝐵 and f is onto, by way of assumption, 𝑓(𝑁β*𝑖𝑛𝑡(𝑓 −1(𝐵))) 

⊆ 𝑁𝑐𝑙(𝑓(𝑓 −1(𝐵))) = 𝑁𝑐𝑙(𝐵) = 𝐵. Consequently, 𝑓 −1 (𝑓(𝑁β*𝑖𝑛𝑡(𝑓 −1 (𝐵)))) ⊆ 𝑓 −1(𝐵). Additionally due to 

the fact that f is an into mapping, we have 𝑁β*𝑖𝑛𝑡(𝑓 −1 (𝐵)) = 𝑓 −1 (𝑓(𝑁β*𝑖𝑛𝑡(𝑓 −1 (𝐵)))) ⊆ 𝑓 −1(𝐵). 

Consequently, 𝑁β*𝑖𝑛𝑡(𝑓 −1 (𝐵)) = 𝑓 −1(𝐵), so 𝑓 −1(𝐵) is an Nβ*-open set in X. Hence, f is an Nβ*-contra 

continuous mapping. 

 

5. Conclusion and Future work  

In this paper we have introduced Nβ*-closed set, Nβ*- continuous function, Nβ*- contra continuous 

function and discussed some of its properties and derived some contradicting examples. This idea 

can be developed and extended in the area of homeomorphisms, compactness and connectedness 

and so on. 
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Abstract 

In the present paper, we propose the Hyperbolic Sine Similarity Measure (HSSM) for 

pentapartitioned neutrosophic sets which is based on hyperbolic sine function. We also establish 

some properties of the similarity measures by providing some suitable examples. Further we 

develop an MADM (Multi-Attribute-Decision-Making) model for single valued pentapartitioned 

neutrosophic set (SVPNS) environment based on the similarity measure which we call 

HSSM-MADM strategy. We also validate our proposed model by solving a numerical example.  

Keywords: MADM; Neutrosophic Set; Pentapartitioned Neutrosophic Set; Similarity Measure.  

________________________________________________________________________________________ 

1. Introduction: 

Smarandache grounded the idea of Neutrosophic Set (NS) [1] as an extension of Fuzzy Set (FS) [2], 

and Intuitionistic Fuzzy Set (IFS) [3] to deal with incomplete and indeterminate information. In NS 

theory, truth-membership, indeterminacy-membership, and falsity-membership values are 

independent of each other. The concept of Single Valued NS (SVNS) was presented by Wang et al. 

[4], which is the subclass of an NS. By using SVNS, we can represent incomplete, imprecise, and 

indeterminate information that helps in decision making in the real- world problems. NS and the 

various extensions of NSs were studied and used for model/algorithm in different areas of research  

such as medical diagnosis ([5-7], social problems [8], conflict resolution [9], decision making [10-27], 

etc. Detail theoretical development and applications of NS and its extensions can be found in the 

studies [28-37].   

Chatterjee et al. [38] defined the Quadripartitioned SVNS (QSVNS) by introducing contradiction and 

ignorance membership functions in place of indeterminacy membership function. Mallick and 

Pramanik [39] defined Pentapartitioned Neutrosophic Set (PNS) by introducing unknown 

membership function in QSVNS to handle uncertainty and indeterminacy comprehensively. 
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Similarity measures [40-68] were defined in various NS environments and were utilized for 

decision, medical diagnosis, etc.  Mondal and Pramanik [69] proposed Hyperbolic Sine Similarity 

Measure (HSSM) and proved their basic properties in SVNS environment. Receiving motivation 

from the work of Mondal and Pramanik [70],  we extend the HSSM for Single Valued PNSs 

(SVPNSs) and prove their basic properties.  Based on HSSM, we propose an HSSM based MADM 

strategy which we call the HSSM-MADM model under SVPNS environment. Also, we validate our 

model by solving an illustrative example of an MADM problem. 

The remaining part of this paper is divided into several sections: 

In section 2, we recall PNS, and some relevant properties of PNSs. In section 3, we introduce the 

notion of SVPNS and HSSM between them. In section 4, we develop the SVPNS- MADM strategy. In 

section 5, we validate the proposed strategy by solving an illustrative MADM problem. In section 6, 

we conclude the paper by stating the future scope of research.   

   

2. Some Relevant Definitions:  

Definition 2.1. [4] An SVNS K over a non-empty set L is defined as follows: 

K = {(u, TK(u), IK(u), FK(u)): u ∈L}, where TK, IK, FK are truth, indeterminacy, and falsity membership 

mappings from L to]-0,1+[, and -0≤ TK(u) + IK(u) + FK(u) ≤ 3+. 

Example 2.1. Let L= {q, w, e} be a universe of discourse. Then {(q, 0.9, 0.6, 0.4), (w, 0.4, 0.6, 0.7), (e, 0.2, 

0.7, 0.7)} is an SVNS over L.  

Definition 2.2. [4] Suppose that L be a universe of discourse. Then P, a pentapartitioned 

neutrosophic set (P-NS) over L is denoted as follows: 

P= {(u, TP(q), CP(u), GP(u), UP(u), FP(u)): uL}, where TP, CP, GP, UP, FP : L ]0,1[ are the truth, 

contradiction, ignorance, unknown, falsity membership functions and so  0 TP(q)+CP(q)+GP(q)+ 

UP(q)+FP(q)5. 

Example 2.2. Let L = {q, w} be a universe of discourse. Then {(q, 0.9, 0.6, 0.4, 0.3, 0.5), (w, 0.4, 0.6, 0.7, 

0.8, 0.2)} is a PNS over L.  

Definition 2.3.[4] Assume that X= {(q, TX(q), CX(q), GX(q), UX(q), FX(q)): qW} and Y = {(q, TY(q), CY(q), 

GY(q), UY(q), FY(q)): qW} be two PNSs over W. Then X  Y  TX(q) TY(q), CX(q) CY(q), GX(q) GY(q), 

UX(q) UY(q), FX(q) FY(q), for all qW. 

Example 2.3. Let L= {q, w} be a universe of discourse. Consider two PNSs X={(q, 0.5, 0.6, 0.5, 0.7, 0.3), 

(w, 0.8, 0.8, 0.3, 0.3, 0.3)} and Y={(q, 0.9, 0.9, 0.3, 0.3, 0.3), (w, 1.0, 0.8, 0.2, 0.1, 0.3)} over L. Then XY.  

Definition 2.4.[4] Suppose that X= {(u, TX(u), CX(u), GX(u), UX(u), FX(u)): uL} and Y= {(u, TY(u), CY(u), 

GY(u), UY(u), FY(u)): uL} be two PNSs over L. Then X  Y= {(u, max {TX(u), TY(u)}, max {CX(u), CY(u)}, 

min {GX(u), GX(u)}, min {UX(u), UX(u)}, min {FX(u), FX(u)}): uL}. 

Example 2.4. Suppose that L= {q, w}. Consider two PNSs X= {(q, 0.7, 0.5, 0.5, 0.7 ,0.7), (w, 0.5, 0.6, 0.7, 

0.7, 0.6)} and Y= {(q,1.0, 0.6, 0.8, 0.7, 0.7), (w, 0.6, 0.7, 0.8, 0.4, 0.6)} over L. Then X  Y= 

{(q,1.0, 0.6, 0.5, 0.7, 0.7), (w, 0.6, 0.7, 0.7, 0.4, 0.6)}. 

Definition 2.5.[4] Suppose that X= {(u, TX(u), CX(u), GX(u), UX(u), FX(u)): uW} and Y= {(u, TY(u), 

CY(u), GY(u), UY(u), FY(u)): uL} are two PNSs over L. Then Xc= {(u, FX(u), UX(u), 1-GX(u), CX(u), TX(u)): 

uL}. 
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Example 2.5. Suppose that L= {q, w} be a universe of discourse and X= {(q, 0.5, 0.7, 0.7, 0.6, 1.0), (w, 

1.0,0.5, 0.5, 0.5, 1.0)} be a PNS over L. Then Xc= {(q, 1.0, 0.6, 0.3, 0.7, 0.5), (w,1.0, 0.5, 0.5, 0.5, 1.0)}. 

Definition 2.6.[4] Suppose that X= {(u, TX(u), CX(u), GX(u), UX(u), FX(u)): uL} and Y= {(u, TY(u), CY(u), 

GY(u), UY(u), FY(u)): uL} be two PNSs over L. Then X  Y = {(u, min {TX(u), TY(u)}, min {CX(u), CY(u)}, 

max {GX(u), GX(u)}, max {UX(u), UX(u)}, max {FX(u), FX(u)}): uL}. 

Example 2.6. Suppose that X and Y be two PNSs over a non-empty set L, as shown in Example 2.4. 

Then X  Y= {(q, 0.7, 0.5, 0.8, 0.7, 0.7), (w, 0.5, 0.6, 0.8, 0.7, 0.6)}. 

Definition 2.7. [4] The null PNS (0PN) and the absolute PNS (1PN) over L are defined by 

(i) 0PN = {(u, 0, 0, 1, 1, 1): uL}; 

(ii) 1PN = {(u,1, 1, 0, 0, 0): uL}. 

 

3. Single Valued Pentapartitioned Neutrosophic Set (SVPNS): 

Definition 3.1. [39] Assume that L be a universe of discourse. An SVPNS Y over L is characterized by 

a truth-membership function TY, a contradiction-membership function CY, an 

ignorance-membership function GY, an unknown-membership function UY, a falsity-membership 

function FY. For each element uL, TY(u), CY(u), GY(u), UY(u), FY(u)[0,1]. 

The SVPNS Y is denoted as follows: 

Y= {(u, TY(u), CY(u), GY(u), UY(u), FY(u)): uL}. 

Definition 3.2. [39] Suppose that B= {(u, TB(u), CB(u), GB(u), UB(u), FB(u)): uL} and A= {(u, TA(u), 

CA(u), GA(u), UA(u), FA(u)): uL} be any two SVPNSs over L. Then  

(i) B=A  TB(u) = TA(u), CB(u) = CA(u), GB(u) = GA(u), UB(u) = UA(u), FB(u) = FA(u), for each uL; 

(ii) BY TB(u)  TA(u), CB(u)  CA(u), GB(u)  GA(u), UB(u)  UA(u), FB(u)  FA(u), for each uL. 

Definition 3.3. Suppose that M= {(u, TM(u), CM(u), GM(u), UM(u), FM(u)): uL} and W = {(u, TW(u), 

CW(u), GW(u), UW(u), FW(u)): uL} are any two SVPNSs over L. Then the hyperbolic sine similarity 

measure between M and W is defined by: 

HSSM(M, W)= 

1- 
1

𝑛
∑ (

𝑠𝑖𝑛ℎ(|𝑇𝑀(𝑢𝑖)−𝑇𝑊(𝑢𝑖)| +  |𝐶M(𝑢𝑖)−𝐶𝑊(𝑢𝑖)| + |𝐺M(𝑢𝑖)−𝐺𝑊(𝑢𝑖)| +  |𝑈M(𝑢𝑖)−𝑈𝑊(𝑢𝑖)| + |𝐹M(𝑢𝑖)−𝐹𝑊(𝑢𝑖)|)

75
)𝑛

𝑖=1         (1) 

Definition 3.4. Suppose that M = {(u, TM(u), CM(u), GM(u), UM(u), FM(u)): uL} and W = {(u, TW(u), 

CW(u), GW(u), UW(u), FW(u)): uL} be any two SVPNSs over L. Then the weighted hyperbolic sine 

similarity measure between M and W is defined by: 

WHSSM(M, W)= 

1- 
1

𝑛
∑ 𝑤𝑖 (

𝑠𝑖𝑛ℎ(|𝑇𝑀(𝑢𝑖)−𝑇𝑊(𝑢𝑖)| +  |𝐶M(𝑢𝑖)−𝐶𝑊(𝑢𝑖)| + |𝐺M(𝑢𝑖)−𝐺𝑊(𝑢𝑖)| +  |𝑈M(𝑢𝑖)−𝑈𝑊(𝑢𝑖)| + |𝐹M(𝑢𝑖)−𝐹𝑊(𝑢𝑖)|)

75
)𝑛

𝑖=1      (2) 

where 0  𝑤𝑖 1 and ∑ 𝑤𝑖
𝑛
𝑖= =1. 

Theorem 3.1. Assume that HSSM(M, W) is the hyperbolic sine similarity measure between two 

SVPNSs M and W. Then 0 ≤ HSSM(M, W) ≤ 1. 

Proof. Suppose that M={(u, TM(u), CM(u), GM(u), UM(u), FM(u)): uL} and W={(u, TW(u), CW(u), GW(u), 

UW(u), FW(u)): uL} aew any two SVPNSs over L.  

Now 0TM(ui), CM(ui), GM(ui), UM(ui), FM(ui), TW(ui), CW(ui), GW(ui), UW(ui), FW(ui)1.  
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 0 | TM(ui)- TW(ui) |+| CM(ui)- CW(ui) |+| GM(ui)- GW(ui) |+| UM(ui)- UW(ui) |+| FM(ui)- FW(ui) | 5.  

 0  (
𝑠𝑖𝑛ℎ(|𝑇𝑀(𝑢𝑖)−𝑇𝑊(𝑢𝑖)| +  |𝐶M(𝑢𝑖)−𝐶𝑊(𝑢𝑖)| + |𝐺M(𝑢𝑖)−𝐺𝑊(𝑢𝑖)| +  |𝑈M(𝑢𝑖)−𝑈𝑊(𝑢𝑖)| + |𝐹M(𝑢𝑖)−𝐹𝑊(𝑢𝑖)|)

75
)  1. 

 0  1- 
1

𝑛
∑ (

𝑠𝑖𝑛ℎ(|𝑇𝑀(𝑢𝑖)−𝑇𝑊(𝑢𝑖)| +  |𝐶M(𝑢𝑖)−𝐶𝑊(𝑢𝑖)| + |𝐺M(𝑢𝑖)−𝐺𝑊(𝑢𝑖)| +  |𝑈M(𝑢𝑖)−𝑈𝑊(𝑢𝑖)| + |𝐹M(𝑢𝑖)−𝐹𝑊(𝑢𝑖)|)

75
)𝑛

𝑖=1   1. 

 0 ≤ HSSM(M, W) ≤ 1. 

Theorem 3.2. Assume that HSSM(M, W) is the hyperbolic sine similarity measure between two 

SVPNSs M and W. Then HSSM(M, W) = 1 if M = W. 

Proof. Suppose that M= {(u, TM(u), CM(u), GM(u), UM(u), FM(u)): uL} and W= {(u, TW(u), CW(u), GW(u), 

UW(u), FW(u)): uL} are any two SVPNSs over L such that M=W.  

So TM(ui) = TW(ui), CM(ui)= CW(ui), GM(ui)= GW(ui), UM(ui)= UW(ui), FM(ui)= FW(ui) for each uiL.  

|TM(ui)- TW(ui)|=0,|CM(ui)- CW(ui)|=0,|GM(ui)- GW(ui)|=0,|UM(ui)- UW(ui)|=0,|FM(ui)- FW(ui)|=0 for 

each uiL. 

𝑠𝑖𝑛ℎ (
|𝑇𝑀(𝑢𝑖) − 𝑇𝑊(𝑢𝑖)|+ |𝐶M(𝑢𝑖) − 𝐶𝑊(𝑢𝑖)| + |𝐺M(𝑢𝑖) − 𝐺𝑊(𝑢𝑖)|

+|𝑈M(𝑢𝑖) − 𝑈𝑊(𝑢𝑖)| + |𝐹M(𝑢𝑖) − 𝐹𝑊(𝑢𝑖)|
)= 0. 

 
1

𝑛
∑ (

𝑠𝑖𝑛ℎ(|𝑇𝑀(𝑢𝑖)−𝑇𝑊(𝑢𝑖)| +  |𝐶M(𝑢𝑖)−𝐶𝑊(𝑢𝑖)| + |𝐺M(𝑢𝑖)−𝐺𝑊(𝑢𝑖)| +  |𝑈M(𝑢𝑖)−𝑈𝑊(𝑢𝑖)| + |𝐹M(𝑢𝑖)−𝐹𝑊(𝑢𝑖)|)

75
)𝑛

𝑖=1 = 0 

1- 
1

𝑛
∑ (

𝑠𝑖𝑛ℎ(|𝑇𝑀(𝑢𝑖)−𝑇𝑊(𝑢𝑖)| +  |𝐶M(𝑢𝑖)−𝐶𝑊(𝑢𝑖)| + |𝐺M(𝑢𝑖)−𝐺𝑊(𝑢𝑖)| +  |𝑈M(𝑢𝑖)−𝑈𝑊(𝑢𝑖)| + |𝐹M(𝑢𝑖)−𝐹𝑊(𝑢𝑖)|)

75
)𝑛

𝑖=1 = 1 

 HSSM(M, W) = 1. 

Theorem 3.3. Assume that HSSM(M, W) is the hyperbolic sine similarity measure between two 

SVPNSs M and W. Then HSSM(M, W) = HSSM(W, M). 

Proof. Suppose that M = {(u, TM(u), CM(u), GM(u), UM(u), FM(u)): uL} and W = {(u, TW(u), CW(u), GW(u), 

UW(u), FW(u)): uL}  any two SVPNSs over L. 

Now HSSM(M, W)= 

1- 
1

𝑛
∑ (

𝑠𝑖𝑛ℎ(|𝑇𝑀(𝑢𝑖)−𝑇𝑊(𝑢𝑖)| +  |𝐶𝑀(𝑢𝑖)−𝐶𝑊(𝑢𝑖)| + |𝐺𝑀(𝑢𝑖)−𝐺𝑊(𝑢𝑖)| +  |𝑈𝑀(𝑢𝑖)−𝑈𝑊(𝑢𝑖)| + |𝐹𝑀(𝑢𝑖)−𝐹𝑊(𝑢𝑖)|)

75
)𝑛

𝑖=1  

=1- 
1

𝑛
∑ (

𝑠𝑖𝑛ℎ(|𝑇𝑊(𝑢𝑖)−𝑇𝑀(𝑢𝑖)| +  |𝐶𝑊(𝑢𝑖)−𝐶𝑀(𝑢𝑖)| + |𝐺𝑊(𝑢𝑖)−𝐺𝑀(𝑢𝑖)| +  |𝑈𝑊(𝑢𝑖)−𝑈𝑀(𝑢𝑖)| + |𝐹𝑊(𝑢𝑖)−𝐹𝑀(𝑢𝑖)|)

75
)𝑛

𝑖=1  

= HSSM(W, M). 

Therefore HSSM(M, W)= HSSM(M, W). 

Theorem 3.4. Assume that SSM(M, W) is the hyperbolic sine similarity measure between the 

SVPNSs M and W. If Q is an SVPNS over L such that MWQ, then HSSM(M, W) HSSM(M, Q), 

HSSM(W, Q)   HSSM(M, Q). 

Proof. Suppose that M= {(u, TM(u), CM(u), GM(u), UM(u), FM(u)): uL} and W= {(u, TW(u), CW(u), GW(u), 

UW(u), FW(u)): uL} are any two SVPNSs over L. Let Q be an SVPNS over L such that MWQ. Since 

MWQ, so |TM(ui)-TW(ui)||TM(ui)-TQ(ui)|, |CM(ui)-CW(ui)||CM(ui)-CQ(ui)|, |GM(ui)-GW(ui)| 

|GM(ui)-GQ(ui)|, |UM(ui)-UW(ui)||UM(ui)-UQ(ui)|, |FM(ui)-FW(ui)||FM(ui)-FQ(ui)|.  

Now HSSM(M, W)= 

1- 
1

𝑛
∑ (

𝑠𝑖𝑛ℎ(|𝑇𝑀(𝑢𝑖)−𝑇𝑊(𝑢𝑖)| +  |𝐶𝑀(𝑢𝑖)−𝐶𝑊(𝑢𝑖)| + |𝐺𝑀(𝑢𝑖)−𝐺𝑊(𝑢𝑖)| +  |𝑈𝑀(𝑢𝑖)−𝑈𝑊(𝑢𝑖)| + |𝐹𝑀(𝑢𝑖)−𝐹𝑊(𝑢𝑖)|)

75
)𝑛

𝑖=1  
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 1- 
1

𝑛
∑ (

𝑠𝑖𝑛ℎ(|𝑇𝑀(𝑢𝑖)−𝑇𝑄(𝑢𝑖)| +  |𝐶𝑀(𝑢𝑖)−𝐶𝑄(𝑢𝑖)| + |𝐺𝑀(𝑢𝑖)−𝐺𝑄(𝑢𝑖)| +  |𝑈𝑀(𝑢𝑖)−𝑈𝑄(𝑢𝑖)| + |𝐹𝑀(𝑢𝑖)−𝐹𝑄(𝑢𝑖)|)

75
)𝑛

𝑖=1   

  = HSSM(M, Q). 

Therefore, HSSM(M, W)  HSSM(M, Q). 

Again, from MWQ, we can say that |TW(ui)-TQ(ui)||TM(ui)-TQ(ui)|, 

|CW(ui)-CQ(ui)||CM(ui)-CQ(ui)|, |GW(ui)-GQ(ui)||GM(ui)-GQ(ui)|, |UW(ui)-UQ(ui)||UM(ui)-UQ(ui)|, 

|FM(ui)-FW(ui)||FM(ui)-FQ(ui)|.   

Now, HSSM(W, Q)= 

1- 
1

𝑛
∑ (

𝑠𝑖𝑛ℎ(|𝑇𝑊(𝑢𝑖)−𝑇𝑄(𝑢𝑖)| +  |𝐶𝑊(𝑢𝑖)−𝐶𝑄(𝑢𝑖)| + |𝐺𝑊(𝑢𝑖)−𝐺𝑄(𝑢𝑖)| +  |𝑈𝑊(𝑢𝑖)−𝑈𝑄(𝑢𝑖)| + |𝐹𝑊(𝑢𝑖)−𝐹𝑄(𝑢𝑖)|)

75
)𝑛

𝑖=1  

 1- 
1

𝑛
∑ (

𝑠𝑖𝑛ℎ(|𝑇𝑀(𝑢𝑖)−𝑇𝑄(𝑢𝑖)| +  |𝐶𝑀(𝑢𝑖)−𝐶𝑄(𝑢𝑖)| + |𝐺𝑀(𝑢𝑖)−𝐺𝑄(𝑢𝑖)| +  |𝑈𝑀(𝑢𝑖)−𝑈𝑄(𝑢𝑖)| + |𝐹𝑀(𝑢𝑖)−𝐹𝑄(𝑢𝑖)|)

75
)𝑛

𝑖=1   

  = HSSM(M, Q). 

Therefore, HSSM(M, W)  HSSM(M, Q). 

 

4.  SVPNS- MADM Strategy 

Suppose that Q = {Q1, Q2, ..., Qn} is a finite set of possible alternatives from which a decision maker 

needs to choose the best alternative. Let P= {P1, P2, ..., Pm} be the finite collection of attributes for every 

alternative. A decision maker provides their evaluation information of each alternative Qi (i = 1, 2,..., 

n) against the attribute Pj (j = 1, 2, ..., m) in terms of single valued pentapartitioned numbers. The 

whole evaluation information of all alternatives can be expressed by a decision matrix. The steps of 

proposed HSSM-MADM strategy (see figure 1) are described as follows: 

 

Step-1: Construct the decision matrix  

The whole evaluation information of each alternative Qi (i = 1, 2,..., n) based on the attributes Pj (j = 1, 

2, ..., m) is expressed in terms of  SVPNS 𝐸𝑄𝑖
= {(Pj,𝑇𝑖𝑗(Qi, Pj),𝐶𝑖𝑗(Qi, Pj),𝐺𝑖𝑗(Qi, Pj),𝑈𝑖𝑗(Qi, Pj),𝐹𝑖𝑗(Qi, Pj)): 

PjP}, where (𝑇𝑖𝑗(Qi, Pj),𝐶𝑖𝑗(Qi, Pj),𝐺𝑖𝑗(Qi, Pj),𝑈𝑖𝑗(Qi, Pj),𝐹𝑖𝑗(Qi, Pj)) denotes the evaluation assessment 

of Qi (i = 1, 2,..., n) against Pj (j = 1, 2, ..., m).  

Then the Decision Matrix (DM[Q|P] ) can be expressed as: 

DM[Q|P] = 

 

 P1 P2 …...

.... 

…..... Pm 

Q1 <𝑇11(Q1, P1),𝐶11(Q1, P1), 

𝐺11(Q1, P1),𝑈11(Q1, P1), 

𝐹11(Q1, P1)> 

𝑇12(Q1, P2),𝐶12(Q1, P2), 

𝐺12(Q1, P2),𝑈12(Q1, P2), 

𝐹12(Q1, P2) 

.......

.. 

….... 𝑇1𝑚(Q1, Pm),𝐶1𝑚(Q1, Pm), 

𝐺1𝑚(Q1, Pm),𝑈1𝑚(Q1, Pm), 

𝐹1𝑚(Q1, Pm) 

Q2 𝑇21(Q2, P1),𝐶21(Q2, P1), 

𝐺21(Q2, P1),𝑈21(Q2, P1), 

𝐹21(Q2, P1) 

𝑇22(Q2, P2),𝐶22(Q2, P2), 

𝐺22(Q2, P2),𝑈22(Q2, P2), 

𝐹22(Q2, P2) 

…

…

….. 

…..... 𝑇2𝑚(Q2, Pm),𝐶2𝑚(Q2, Pm), 

𝐺2𝑚(Q2, Pm),𝑈2𝑚(Q2, Pm), 

𝐹2𝑚(Q2, Pm) 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
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. 

 

. 

 

. 

 

 

. 

 

. 

 

 

Qn 𝑇𝑛1(Qn, P1),𝐶𝑛1(Qn, P1), 

𝐺𝑛1(Qn, P1),𝑈𝑛1(Qn, P1), 

𝐹𝑛1(Qn, P1) 

𝑇𝑛2(Qn, P2),𝐶𝑛2(Qn, P2), 

𝐺𝑛2(Qn, P2),𝑈𝑛2(Qn, P2), 

𝐹𝑛2(Qn, P2) 

…

…

….. 

……

…. 

𝑇𝑛𝑚(Qn, Pm),𝐶𝑛𝑚(Qn, Pm), 

𝐺𝑛𝑚(Qn, Pm),𝑈𝑛𝑚(Qn, Pm), 

𝐹𝑛𝑚(Qn, Pm) 

 

Step-2: Determine the weights of the attributes 

In an MADM strategy, the weights of the attributes play an important role in taking decision. When 

the weights of the attributes are totally unknown to the decision makers, then the attribute weights 

can be determined by using the compromise function defined in equation (3). 

Compromise Function: The compromise function of Q is defined by: 

𝑗=∑ 𝑛
𝑖=1 (3+𝑇𝑖𝑗(Qi, Pj)+𝐶𝑖𝑗(Qi, Pj)-𝐺𝑖𝑗(Qi, Pj)-𝑈𝑖𝑗(Qi, Pj)-𝐹𝑖𝑗(Qi, Pj))/5                                 (3) 

Then the desired weight of the jth attribute is defined by wj = 
𝑗

∑ 𝑗
𝑚
𝑗=1

                              (4) 

Here ∑ 𝑤𝑗
𝑚
𝑗=1 =1. 

 

Step-3: Determination of ideal solution 

In every MADM process, the attributes chosen by the decision maker can be split into two different 

types. One is “benefit type” attribute and the other is “cost type” attribute. In our proposed 

SVPNS-MADM model, an ideal alternative can be identified by the decision maker using the 

following operators: 

(i) For the cost type attributes (Pj), we use the maximum operator to determine the best value (Pj*) of 

each attribute among all the alternatives. The best value (Pj*) is defined by: 

Pj* = (max 𝑇11(Q1, P1),max 𝐶11(Q1, P1),min 𝐺11(Q1, P1),min 𝑈11(Q1, P1),min 𝐹11(Q1, P1))         (5) 

where j=1, 2, ….., m. 

(ii) For the benefit type attributes (Pj), we use the minimum operator to determine the best value (Pj*) 

of each attribute among all the alternatives. The best value (Pj*) is defined by: 

Pj* = (min 𝑇11(Q1, P1),min 𝐶11(Q1, P1),max 𝐺11(Q1, P1),max 𝑈11(Q1, P1),max 𝐹11(Q1, P1))        (6) 

where j=1, 2, ….., m. 

Then we define an ideal solution as follows: 

Q*= {P1*, P2*, ……., Pm*}, which is also an SVPNS. 

 

Step-4: Determination of hyperbolic sine similarity value. 

After the formation of ideal solution in step-3, by using eq (1), we calculate the HSSM values for 

every alternative between the ideal solutions and the corresponding SVPNS from decision matrix 

DM[Q|P]. 

 

Step-5: Ranking order of the alternatives. 

The rank of the alternatives Q1, Q2, ……., Qn is determined based on the ascending order of hyper 

sine similarity values. The alternative with lowest hyper sine similarity value is the best alternative 

among the set of possible alternatives. 
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Step-6: End. 

 

 

 

Figure 1: Flow chart of the SVPNS- MADM strategy  

 

4. Validation of the Proposed Model: 

In this section, we validate our proposed model / strategy by giving a numerical example.   

4.1. Numerical example: 

In this section, we demonstrate a numerical example as a real- life application of our proposed 

strategy. In our daily life time management is very important for everyone. Suppose a passenger 

needs to travel from the city-X to the city-Y by road. The passenger wants to book a car (alternative) 

by an online App to reach his/her destination. The selection of car by the passenger can be done 

based on some attributes, namely, Charges(P1), Payment mode (P2),  AC / Non-AC(P3), Rating(P4). 

So, the selection of affordable car (for travelling) by an online App can be considered as a MADM 

approach. 

 

Then the MADM strategy is presented by using the following steps. 

Step-1: Construct the decision matrix under single valued pentapartitioned neutrosophic 

environment. 

The decision matrix is shown in table 1. 
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Table-1: Decision matrix 

 𝑃1 𝑃2 𝑃3 𝑃4 

𝑄1 (0.7,0.3,0.1,0.3,0.4) (0.8,0.4,0.2,0.3,0.8) (0.8,0.2,0.5,0.7,0.3) (0.8,0.4,0.2,0.3,0.6) 

𝑄2 (0.7,0.4,0.3,0.6,0.2) (0.7,0.4,0.4,0.7,0.5) (0.6,0.2,0.4,0.5,0.7) (0.9,0.3,0.9,0.2,0.3) 

𝑄3 (0.5,0.4,0.6,0.3,0.4) (0.6,0.4,0.4,0.7,0.9) (0.5,0.3,0.4,0.5,0.6) (0.7,0.5,0.7,0.3,0.8) 

 

Step-2: Determine the weights of attributes. 

By using the eq. (3) and (4), we have the weight vector as follows: 

(w1, w2, w3, w4) = (0.279, 0.234, 0.222, 0.263). 

 

Step-3: Determine the ideal solution. 

In this problem, the attribute P1 is cost type attribute and P2, P3, P4 are the benefit type attributes. The 

ideal solution is given in the table 2: 

 

Table-2:  The ideal solution 

 𝑃1
∗ 𝑃2

∗ 𝑃3
∗ 𝑃4

∗ 

𝑄∗ (0.7,0.4,0.1,0.3,0.2) (0.6,0.4,0.4,0.4,0.7,0.9) (0.5,0.2,0.5,0.7,0.7) (0.7,0.3,0.9,0.7,0.8) 

 

Step-4: Determine the weighted hyperbolic sine similarity values. 

By using eq. (2), we calculate the similarity measure values for each alternative. The weighted 

hyperbolic sine similarity values are:  

WHSSM(Q1, Q) = 0.996488; 

WHSSM(Q2, Q) = 0.997482; 

WHSSM(Q3, Q) = 0.997881. 

Step-5: Ranking the alternatives. 

From the above step, we see that WHSSM(Q1, Q) < WHSSM(Q2, Q) < WHSSM(Q3, Q). Therefore, Q1 

is the best suitable alternative (car) for the passenger to book for travelling.  

 

5. Conclusions: 

In the study, we propose a hyperbolic sine similarity measure and weighted hyperbolic sine 

similarity measures for single valued pentapartitioned neutrosophic set and prove some of their 

basic properties. We develop a novel HSSM-MADM strategy based on the proposed weighted 

hyperbolic sine similarity measure to solve MADM problems. We also validate the proposed 

strategy by solving an illustrative MADM problem to demonstrate the effectiveness of the proposed 

SVPNS-MADM strategy. 

The proposed SVPNS-MADM strategy can also be used to deal with other decision-making 

problems such as teacher selection [71], weaver selection [72], brick selection [73], logistic center 

location selection [74], personnel selection [75], etc. 
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Abstract: The main aim of this paper defines some -neutrosophic supra topological 

continuous mappings and some -neutrosophic supra topological open mappings by weak 

neutrosophic supra topological open sets and their different properties are discussed. The 

relation between these -neutrosophic supra continuous mappings are established with suitable 

examples.  

Keywords: -neutrosophic continuous mapping, - -neutrosophic -open mapping, 

- -neutrosophic -continuous mapping, -supra neutrosophic -open mapping, -supra 

neutrosophic -continuous mapping. 
 

 

1. Introduction 

Zadeh [26] introduced the concept of fuzzy set theory by studying each element its 

membership values. The fuzzy topological space is a topological space defined on fuzzy sets, 

initiated by Chang [7]. Fuzzy supra topological spaces and their supra continuous mappings 

were defined by Abd El-Monsef and Ramadan [2]. Jayaparthasarathy [11] derived some 

contradicting examples of the statements of Abd El-Monsef and Ramadan [2] in fuzzy supra 

topological spaces. In 1986, Atanassov [4] introduced an intuitionistic fuzzy set as a 

generalization of the fuzzy set. Dogan Coker [9] extended the concept of fuzzy topological spaces 

into intuitionistic fuzzy topological spaces. The concept of intuitionistic fuzzy supra topological 

space was initiated by Turnal [19]. Florentin Smarandache [24] was the first one to develop the 

neutrosophic set theory, which is the generalization of Atanassov’s intuitionistic fuzzy set theory. 

Recently many researchers [1, 6, 10, 25] developed the applications of neutrosophic sets in various 

fields such as artificial intelligence, biology, control systems, data analysis, economics, medical 

diagnosis, probability, etc. Salama et al. [22] defined the neutrosophic crisp sets and neutrosophic 

topological space. 
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In 1963, Levine [16] introduced semi-open sets and semi-continuous functions in classical 

topological spaces. Njastad [20] derived a classical topology using the -open sets. Mashhour et 

al. [17] investigated the properties of pre-open sets. Andrijevic [3] established the behavior of 

-open sets in classical topology. Mashhour et al. [18] introduced the concept of supra topological 

spaces by removing one topological condition and they further defined the supra semi-open set 

and supra semi-continuous function. Devi et al. [8] introduced the properties of -open sets and 

-continuous functions in supra topological spaces. Supra topological pre-open sets and their 

continuous functions are defined by Sayed [23]. Saeid Jafari et al. [21] investigated the properties 

of supra -open sets and their continuity. In 2016, Lellis Thivagar et al. [13, 14, 27] originated the 

-topological space with its own open sets. Apart from this, Lellis Thivagar et al. [15] introduced 

N-neutrosophic topological spaces with several properties.  

Motivation of the work: The neutrosophic supra topological space is a new space developed by 

Jayaparthasarathy et al. [11]. In this area, some neutrosophic supra topological open sets, and 

their continuous mappings are defined. Arockia Dasan et al. [5], and Jayaparthasarathy et al. [12] 

further extended these neutrosophic supra topological spaces to -neutrosophic supra 

topological spaces. In -neutrosophic supra topological spaces, some weak open sets with some 

operators are only defined so far. Hence the motivation of this paper extends to define different 

properties of continuous and open mappings by using -neutrosophic supra topological open 

sets as well as its weak open sets.  

Organization of the paper: Section 2 of this paper presents some basic preliminaries of 

neutrosophic fuzzy sets and -neutrosophic supra topological spaces. Section 3 introduces 

continuous mappings and open mappings using -neutrosophic supra topological open sets. In 

section 4, we define some weak forms of continuous and weak open mappings in -neutrosophic 

supra topological spaces, and the last section states summary and some of the future work in the 

conclusion and future work of this paper. 

2 Preliminary 
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In this section, we discuss the basic definitions and properties of -neutrosophic supra topological 

spaces which are useful in the sequel. 

Definition 2.1 [24] Let  be a non-empty set. A neutrosophic set  having the form 

, where  and   represent the 

degree of membership (namely , the degree of indeterminacy (namely ) and the 

degree of non-membership (namely ) respectively of each  to the set A such that  
- for all . For denotes the collection of all 

neutrosophic sets of . 

Definition 2.2 [24] The following statements are true for neutrosophic sets  and  on : 

1. ,   and   for all if and only if  

2. and if and only if . 

3. . 

4.  

More generally, the intersection and the union of a collection of neutrosophic sets  , are 

defined by  and 

 

Definition 2.3 [11] Let be two neutrosophic sets of , then the difference of  and  is a 

neutrosophic set on , defined 

as , , . 

Clearly and  

Notation 2.4 [11] Let be a non-empty set. We consider the neutrosophic empty set as 

 and the neutrosophic whole set as  

Definition 2.5 [12] Let be a non-empty set,  be  arbitrary neutrosophic 

supra topologies defined on . Then the collection  is 

said to be a -neutrosophic supra topology if it satisfies the following axioms: 

1.  

2. for all  

Then the -neutrosophic supra topological space is the non-empty set together with the 

collection ,denoted by  and its elements are known as -open sets on  A 

neutrosophic subset of is said to be -closed on if is -open on . The set of 

all -open sets on  and the set of all -closed sets on are respectively denoted by 

and  

Definition 2.6 [12] Let  be a -neutrosophic supra topological space and be a 

neutrosophic set of .Then 

1. The -interior of is defined by  = and is -open . 

2. The -closure of  is defined by  = and  is -closed . 
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Definition 2.7 [5] A neutrosophic set of a -neutrosophic supra topological space  is 

called 

1. -neutrosophic supra -open set if  

2. -neutrosophic supra semi-open set if  

3.  -neutrosophic supra pre-open set if  

4.  -neutrosophic supra -open set if  

5.  -neutrosophic supra regular-open if  

The set of all -neutrosophic supra -open (resp. -neutrosophic supra semi-open, 

-neutrosophic supra pre-open, -neutrosophic supra -open, -neutrosophic supra 

regular-open) sets of  is denoted by  (resp. , 

 and  The complement of  set of all -neutrosophic supra -open (resp. 

-neutrosophic supra semi-open, -neutrosophic supra pre-open and -neutrosophic 

supra -open) sets of  is called -neutrosophic supra -closed (resp. -neutrosophic 

supra semi-closed, -neutrosophic supra pre-closed, -neutrosophic supra -closed 

and -neutrosophic supra regular closed) sets, denoted by  (resp. 

,  and  Hereafter -neutrosophic supra -open set 

(shortly -open set) is can be any one of the following: -open set, -open set, 

semi-open set, pre-open set, -open set and - open set. 

Definition 2.8 [5] Let  be a -Neutrosophic supra topological space and  be a subset 

of  

1. The -interior of , is defined by 

and  

2. The -closure of , is defined by 

          and  

Definition 2.9 [15] Let  be a non-empty set, then be -arbitrary 

neutrosophic-topologies defined on  then the collection   

,  is called -neutrosophic topology if the following axioms are 

satisfied. 

1.  

2.  for all  

3.  for all . 
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Then  is called -topological space on . The element of  are known as -open 

sets on  and its complement is called -closed set on . 

Definition 2.10 [15] Let and  be -neutrosophic topological spaces. A mapping 

 is said to be -neutrosophic continuous on  if the inverse image of every  -open 

set in  is  -open in  

3. Some Mappings in -neutrosophic Supra Topological Spaces 

In this section, we introduce continuous mappings in -neutrosophic supra topological spaces 

and discuss their different properties. 

Definition 3.1 Let and  be -neutrosophic topological spaces,  and  

be associated -neutrosophic supra topologies with respect to  and . A mapping 

 is said to be -supra neutrosophic continuous on  if the inverse image of every 

-open set in  is -open in  If , then  is a supra neutrosophic continuous on 

 [11]. 

Definition 3.2 Let and  be -neutrosophic topological spaces. and  

be associated -neutrosophic supra topologies with respect to  and . A mapping 

 is said to be - -neutrosophic continuous if the inverse image of every 

N-neutrosophic open set in  is N-neutrosophic supra open in .If , then  

is a -neutrosophic continuous on  [11]. 

Lemma 3.3. i. Every -neutrosophic continuous mapping is - -neutrosophic continuous, but 

the converse need not be true. 

ii. Every -supra neutrosophic continuous mapping is - -neutrosophic continuous, but the 

converse need not be true. 

iii. -supra neutrosophic continuous and -neutrosophic continuous mappings are independent 

each other. 

Proof. The proof follows from the definition the converse and the independency are shown in the 

following example. 

Example 3.4.(i) For  let  and with the neutrosophic topologies are 

, , 

 and ,   

 Then , 

,  and 

 Let  

 

 

and  

be the associated -neutrosophic supra topological space. Define by , 

 Clearly,  is -3-neutrosophic continuous and -supra neutrosophic continuous 

mapping on  but it is not -neutrosophic continuous map. 
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(ii) For  let  and with the neutrosophic topologies are 

 

and Let

 and   

be the associated neutrosophic supra 

topological space. Define by ,  Clearly,  is -neutrosophic 

continuous and neutrosophic continuous mapping on  but it is not supra neutrosophic 

continuous. 

Theorem 3.5. Let  and  be -neutrosophic supra topological space. Then the 

following are equivalent: 

i. A mapping  is -supra neutrosophic continuous.  

ii. The inverse image of every -neutrosophic supra closed set in  is a 

-neutrosophic supra closed set in  

iii.  for every neutrosophic set in  

iv.  for every neutrosophic set  of  

v.  for every neutrosophic subset  in 

 

Proof. : Assume that  is -supra neutrosophic continuous on  and let  be a 

-closed set in  Then  is a -open set in  Since  is -supra neutrosophic 

continuous on  then  is -open set in  Then  is -open set in 

 Then  is -closed set in  

: Let  be -open set in , then  is -closed set in  and by assumption, 

 is -closed in . Thus  is -open in  

: Since for each neutrosophic set  in ,  is a -closed set in  Then 

 is -closed in  Thus 

 and implies 

, since . 

: Let  be the neutrosophic set in  then 

 and so  

. 

: Let  be -closed set in  and  then 

 and . 

Therefore  is -closed in . 

: Let  be a -open set in , then is -open in  and 

 Thus 

, since . 
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: Let  be -open set in , then and so 

 is -open in  

Theorem 3.6. Let  be -neutrosophic supra topological spaces. Then the 

following are equivalent: 

i. A mapping  is - - neutrosophic continuous.  

ii. The inverse image of every -neutrosophic closed set in  is -neutrosophic 

supra closed set in  

iii.  for every neutrosophic set in  

iv.  for every neutrosophic set of  

v.  for every neutrosophic subset  in  

Proof. The proof is similarly follows from the theorem 3.5. 

Theorem 3.7.  If  and  are -supra neutrosophic continuous mappings, then 

 is -supra neutrosophic continuous. 

Proof. Let  be neutrosophic supra open set in  then  is neutrosophic supra open in  

and  is neutrosophic supra open in , by hypothesis. Therefore  is 

neutrosophic supra open in  and so  is -supra neutrosophic continuous. 

Remark 3.8. The composition of two - -neutrosophic continuous mappings need not be 

- -neutrosophic continuous. 

Example 3.9. For , let and with the neutrosophic 

topologies are  

{  

,  and  with 

the -neutrosophic topologies are  

   and 

. Let  

and

 

 be the associated -neutrosophic supra topologies with respect to 

 and . Then the mapping  and  are defined respectively by 

 are - -neutrosophic continuous. But is not 

- -neutrosophic continuous.  

Theorem 3.10. If  is - -neutrosophic continuous and  is -neutrosophic  

continuous, then  is - -neutrosophic continuous. 

Proof. Let  be -neutrosophic open set in , then by hypothesis,  is -neutrosophic 

open in  and  is -neutrosophic supra open in  implies  is 

-neutrosophic supra open in . Therefore  is - -neutrosophic continuous. 

Theorem 3.11. If  is -supra neutrosophic continuous and  is 

- -neutrosophic continuous, then  is - -neutrosophic continuous. 

Proof. Let  be -neutrosophic open set in  then  is -neutrosophic supra open in  

and  is -neutrosophic supra open in  implies  is -neutrosophic 

supra open in . Therefore  is - -neutrosophic continuous. 

Definition 3.12. Let and  be -neutrosophic topological spaces.  

and  be associated -neutrosophic supra topologies with respect to  and . A 
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mapping  is said to be -supra neutrosophic open if the image of every -open set 

in  is a -open set in  

Definition 3.13. Let and  be -neutrosophic topological spaces.  

and  be associated -neutrosophic supra topologies with respect to  and . A 

mapping  is said to be - -neutrosophic open if the image of every neutrosophic 

-open set in  is -open set in . 

Lemma 3.14. Every -supra neutrosophic open mapping is - -neutrosophic open, but the 

converse need not be true. 

Proof. The proof follows from the definitions, the converse part is shown in the following 

example. 

Example 3.15. Consider the example 3.4 (ii), define  by ,  Clearly, g 

is -  neutrosophic open map but it is not supra neutrosophic open map. 

Theorem 3.16. Let  be a -supra neutrosophic open mapping. Then for each 

neutrosophic subset  of  

i.  

ii.  

Proof.  

i. Since  then  and 

 Since  is -open in , then 

 is -open in  Therefore  Hence 

. 

ii. Since  then  and  

Since  is -closed set in  then  is -open set in 

and  is -open in  That is  is -open in  

implies that  is -closed in  and so . 

Therefore, . 

Theorem 3.17. Let  be a - -neutrosophic open mapping. Then for each neutrosophic 

subset  of  

i.  

ii.  

Proof. The proof follows directly from theorem 3.16. 

 

4 Some Weak Mappings in -Topological Space 

In this section, we introduce some weak forms of continuous functions in -neutrosophic supra 

topological spaces and investigate the relationship between them. Throughout the section, 

-neutrosophic supra -open set (shortly -open set) is can be any one of the following: 

-open set, -open set, semi-open set, pre-open set, -open set, and 

- open set. 

Definition 4.1. Let and  be -neutrosophic topological spaces.  and  

be associated -neutrosophic supra topologies with respect to  and . A mapping 

 is said to be -supra neutrosophic -continuous ((shortly -continuous) is can be 
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any one of the following: -continuous, semi continuous, pre continuous, 

-continuous and - continuous) on  if the inverse image of every -open set in 

 is a -open in  

Definition 4.2. Let and  be -neutrosophic topological spaces.  and 

 be associated -neutrosophic supra topologies with respect to  and . A mapping 

 is said to be - -neutrosophic -continuous (is can be any one of the following: 

- -neutrosophic -continuous, - -neutrosophic semi continuous, - -neutrosophic pre 

continuous, - -neutrosophic -continuous and - -neutrosophic -continuous) if the 

inverse image of every -neutrosophic open set in  is -neutrosophic supra -open set 

in . 

Lemma 4.3. Every -supra neutrosophic -continuous mapping is - -neutrosophic 

-continuous, but the converse need not be true. 

Proof. The proof follows from the definition; the converse part is shown in the following example. 

Example 4.4. Consider the example 3.4(i),  is -3-neutrosophic -continuous and -supra 

neutrosophic -continuous mapping on .  

Theorem 4.5. Let  and  be -neutrosophic supra topological space. Then the 

following are equivalent: 

i. A mapping  is -supra neutrosophic -continuous.  

ii. The inverse image of every -neutrosophic supra closed set in  is a 

-neutrosophic supra -closed set in  

iii.  for every neutrosophic set of  

iv.  for every neutrosophic set  of  

v.  for every neutrosophic subset  of  

Proof. The proof can be similarly derive as that of theorem 3.5 

Theorem 4.6. Let  and  be -neutrosophic supra topological space. Then the 

following are equivalent: 

i. A mapping  is - - neutrosophic -continuous.  

ii. The inverse image of every -neutrosophic closed set in  is a -neutrosophic 

supra -closed set in  

iii.  for every neutrosophic set of  

iv.  for every neutrosophic set  of  

v.  for every neutrosophic subset of  

Proof. The proof is straightforward from theorem 3.5. 

Theorem 4.7. The following statements are true for the mapping : 

i. Every -supra neutrosophic -continuous is -supra neutrosophic continuous. 

ii. Every -supra neutrosophic continuous is -supra neutrosophic -continuous. 

iii. Every -supra neutrosophic -continuous is -supra neutrosophic semi-continuous. 

iv. Every -supra neutrosophic -continuous is -supra neutrosophic pre-continuous. 

v. Every -supra neutrosophic semi-continuous is -supra neutrosophic -continuous. 

vi. Every -supra neutrosophic pre-continuous is -supra neutrosophic -continuous. 
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Proof. The proof follows directly from the fact that theorem 4.2 of [12] and theorem 14 of [5]. 

The converse of the above theorem need not be true as shown in the following example. 

Example 4.8. (i) For Let  and  with the neutrosophic topologies are 

,  

, and

, , 

, and  Then  

,  

 and   

 

 Let  be the associated -neutrosophic 

supra topological space. Define by ,  Clearly,  is -supra 

neutrosophic continuous mapping on  but it is not -supra neutrosophic -continuous 

mapping on  

(ii) For let and with the neutrosophic topologies are 

and 

 Then , , 

 and   

Let  

 and  

} be the associated -neutrosophic supra topological space. Define  

by  and Therefore,  is -supra neutrosophic -continuous, -supra 

neutrosophic semi-continuous, -supra neutrosophic pre-continuous and -supra neutrosophic 

-continuous on  but not -supra neutrosophic continuous. 

(iii) For let and Consider  

 and  and 

Then   

 

and . Let  and 

 be the associated -neutrosophic supra topological space. Define  

by  and . Then  is -supra neutrosophic semi-continuous and -supra 

neutrosophic -continuous but it is not -supra neutrosophic -continuous and not -supra 

neutrosophic pre-continuous. 

(iv) For let and Consider  

.  

Then  

and Let 

{

 and 

 be the associated 

-neutrosophic supra topological space. Define  by  and . Then  is 

-supra neutrosophic pre-continuous and -supra neutrosophic -continuous but it is not 

-supra neutrosophic -continuous and not -supra neutrosophic semi-continuous. 

Theorem 4.9. The following statements are true for the mapping : 

i. Every - -neutrosophic -continuous is - -neutrosophic continuous. 
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ii. Every - -neutrosophic continuous is - -neutrosophic -continuous. 

iii. Every - -neutrosophic -continuous is - -neutrosophic semi-continuous. 

iv. Every - -neutrosophic -continuous is - -neutrosophic pre-continuous. 

v. Every - -neutrosophic semi-continuous is - -neutrosophic -continuous. 

vi. Every - -neutrosophic pre-continuous is - -neutrosophic -continuous. 

Proof. The proof follows directly from the fact that theorem 4.2 of [12] and theorem 14 of [5]. 

The converse of the above theorem need not be true as shown in the following example. 

Example 4.10.Consider the example 4.8(i)  is - -neutrosophic continuous mapping on  but 

it is not -neutrosophic -continuous mapping on  

Consider the example 4.8.(ii) ,  is - -neutrosophic -continuous, - -neutrosophic 

semi-continuous, - -neutrosophic pre-continuous and - -neutrosophic -continuous on  

but not - -neutrosophic continuous. 

Consider the example 4.8.(iii),  is - -neutrosophic semi-continuous and - -neutrosophic 

-continuous but it is not - -neutrosophic -continuous and not - -neutrosophic pre- 

continuous. 

Consider the example 4.8.(iv), Then  is - -neutrosophic pre-continuous and  - - 

neutrosophic -continuous but it is not - -neutrosophic -continuous and not - - 

neutrosophic semi-continuous. 

Theorem 4.11.A function  is -supra neutrosophic -continuous on  if and only if 

-supra neutrosophic semi-continuous and -supra neutrosophic pre-continuous. 

Proof. The proof can be derive from the fact of theorem 4.6 of [12]  

Theorem 4.12.A function  is - -neutrosophic -continuous on  if and only if 

- -neutrosophic semi-continuous and - -neutrosophic pre-continuous. 

Proof. The proof of the theorem is directly following from theorem 4.6 of [12]. 

Theorem 4.13.  If  and  are -supra neutrosophic -continuous mappings, 

then  is -supra neutrosophic -continuous. 

Proof. Let  be a -neutrosophic supra -open set in , then  is neutrosophic supra 

-open in  and  is neutrosophic supra -open in  implies  is 

neutrosophic supra -open in . Therefore  is -supra neutrosophic -continuous. 

Remark 4.14. The composition of two - -neutrosophic -continuous mappings need not be 

- -neutrosophic -continuous. 

Example 4.15. For , let and with the neutrosophic 

topologies are ,  

and with the -neutrosophic topologies are 

 

and . Let 
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and

 be the associated -neutrosophic supra 

topologies with respect to  and . Then the mapping  and  are defined 

respectively by  are - -neutrosophic 

-continuous - -neutrosophic semi-continuous - -neutrosophic pre-continuous, 

- -neutrosophic -continuous. But is not - -neutrosophic -continuous. Consider the 

example 3.9. and  is - -neutrosophic -continuous. But is not - -neutrosophic 

-continuous.  

Theorem 4.16. If  be - -neutrosophic -continuous and  is 

-neutrosophic continuous, then  is - -neutrosophic -continuous. 

Proof. Let  be a -neutrosophic open set in , then  is -neutrosophic open in  and 

 is -neutrosophic supra -open in  implies  is -neutrosophic 

supra -open in . Therefore  is - -neutrosophic -continuous. 

Theorem 4.17. If  is -supra neutrosophic -continuous and  is 

- -neutrosophic -continuous (or -neutrosophic continuous), then  is 

- -neutrosophic -continuous. 

Proof. Let  be a -neutrosophic open set in . Since  is - -neutrosophic -continuous, 

then  is -neutrosophic supra -open in . Since  is -supra neutrosophic 

-continuous, then  is -neutrosophic supra -open in  implies  is 

-neutrosophic supra -open in . Therefore  is - -neutrosophic -continuous. 

Definition 4.18. Let and  be -neutrosophic topological spaces.  and 

 be associated -neutrosophic supra topologies with respect to  and . A mapping 

 is said to be -supra neutrosophic -open on  if the image of every -open set in 

 is a -open in  

Definition 4.19. Let and  be -neutrosophic topological spaces.  and 

 be associated -neutrosophic supra topologies with respect to  and . A mapping 

 is said to be -supra neutrosophic -closed on  if the image of every -closed set 

in  is a -closed in  

Definition 4.20. Let and  be -neutrosophic topological spaces.  

and  be associated -neutrosophic supra topologies with respect to  and . A 

mapping  is said to be - -neutrosophic -open mapping on  if the image of every 

-neutrosophic open set in  is -neutrosophic supra -open in . 

Definition 4.21. Let and  be -neutrosophic topological spaces.  and 

 be associated -neutrosophic supra topologies with respect to  and . A mapping 
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 is said to be - -neutrosophic -closed mapping on  if the image of every 

-neutrosophic closed set in  is -neutrosophic supra -closed in . 

Lemma 4.22. Every -supra neutrosophic -open mapping is - -neutrosophic -open but the 

converse need not be true. 

Proof. The proof is trivially true from the definition, the converse part is shown in the following 

example. 

Example 4.23 Consider the example 3.15.(ii),  is -2-neutrosophic -open map on  but it is 

not -supra neutrosophic -open map 

Theorem 4.24. Let  be a - supra neutrosophic -open mapping. Then for each 

neutrosophic subset  of  

i.  

ii.  

Proof. The proof is similarly follows from theorem 3.16. 

Theorem 4.25. Let  be a - -neutrosophic open mapping. Then for each neutrosophic 

subset  of  

i.  

ii.  

Proof. This proof is straightforward from theorem 3.17. 

Theorem 4.26. Let and  be -neutrosophic topological spaces.  and  

be associated -neutrosophic supra topologies with respect to  and . Let  be then 

neutrosophic subset of  Then 

i. If  is -supra neutrosophic -closed if and only if 

 

ii. If  is -supra neutrosophic semi-closed if and only if 

 

iii. If  is -supra neutrosophic pre-closed if and only if 

 

iv. If  is -supra neutrosophic -closed if and only if 

 

Proof. i. Assume that  be -supra neutrosophic -closed and  and  is 

-closed in  Then  is -closed in  and so, 

 Now  then 

and

Hence 

 Conversely, suppose the condition holds. Let  be 

any -closed set in  Then  By the condition, 

 which gives  is -closed in  and 

so  is -supra neutrosophic -closed. 

ii. Assume that  be -supra neutrosophic semi-closed and  and  is 

-closed in  Then  is -semi closed in  

and  Now  then 

 

and Then
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 Conversely, suppose the condition holds. Let  be any 

-closed set in  Then  By the condition, 

 which gives  is -semi-closed in So  is 

-supra neutrosophic semi-closed. 

iii. Assume that  be -supra neutrosophic pre-closed and  Then  is 

-closed in  Hence  is -pre closed in  and so, 

 Now  That is 

 We have 

 Hence  

 Conversely, suppose the condition holds. Let  be any 

-closed set in  Then  By the condition, 

 which gives  is -pre-closed in  So  is 

-supra neutrosophic supra pre-closed. 

iv. Assume that  be -supra neutrosophic -closed and  Then  is -closed 

in  Hence  is -closed in  and so, 

 Now  That is 

 We have 

 Hence 

 Conversely, suppose the condition holds. Let  be 

any -closed set in  Then  By the condition, 

 which gives  is -pre closed in 

So  is -supra neutrosophic -closed mapping. 

Theorem 4.27. Let and  be -neutrosophic topological spaces.  and  

be associated -neutrosophic supra topologies with respect to  and . Let  be then 

neutrosophic subset of  Then 

i. If  is - -neutrosophic -closed if and only 

 

ii. If  is - -neutrosophic semi-closed if and only if 

 

iii. If  is - -neutrosophic pre-closed if and only if 

. 
iv. If  is - -neutrosophic -closed if and only if 

 

Proof. This proof is similarly follows from theorem 4.26 

Theorem 4.28.Let and  be -neutrosophic topological spaces.  and  

be associated -neutrosophic supra topologies with respect to  and . Let  be then 

neutrosophic subset of  Then 

i. If  is -supra neutrosophic -open if and only if 

 

ii. If  is -supra neutrosophic semi-open if and only if 

 

iii. If  is - supra neutrosophic pre-open if and only if 

 

iv. If  is -supra neutrosophic -open 
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Proof. This proof follows from theorem 4.26. 

Theorem 4.29. Let and  be -neutrosophic topological spaces.  and  

be associated -neutrosophic supra topologies with respect to  and . Let  be then 

neutrosophic subset of  Then 

i.  is - -neutrosophic -open if and only if 

 

ii.  is - -neutrosophic  semi-open if and only if 

 

iii. A mapping  is - -neutrosophic pre-open if and only if 

 

iv. A mapping  is - -neutrosophic  -open if and only if 

 

Proof. This proof is straightforward from theorem 4.26. 

5 Conclusion and Future Work 

Neutrosophic supra topological space is one of the new research areas to deal with the 

uncertainty concept and it is a generalized form of fuzzy supra topological spaces as well as 

intuitionistic fuzzy supra topological spaces. This paper theoretically introduced -neutrosophic 

supra topological mappings with suitable examples. The properties and relationship between 

-neutrosophic supra topological mappings are derived. We can construct the real-life 
application of these -neutrosophic supra topological sets and mappings in the future and 

implement these concepts to other applicable research areas of topology such as Rough topology, 

Fuzzy topology, intuitionistic topology, Digital topology, and so on.  
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Abstract  

In this article, we propose a MADM-strategy based on hyperbolic cosine similarity measures under 

the single valued neutrosophic set environment. Further, we also give some properties of the 

similarity measures by giving some suitable examples. We also solve a numerical example to validate 

our proposed MADM-model. 

 

Keywords: MADM-Strategy; Neutrosophic Set; Similarity Measure; Distillation Unit. 

 

1. Introduction 

In the year 1998, Smarandache [18] grounded the concept of neutrosophic set (in short NS) as a 

generalization of the notion of fuzzy set [27] and intuitionistic fuzzy set (in short IFS) [1] theory to 

deal with incomplete and indeterminate information. In every NS, truth membership, indeterminacy 

membership, and falsity membership values of each element are independent of each other. 

Indeterminacy-membership plays a vital role in many real world multi attribute decision making (in 

short MADM) problems. In the year 2010, Wang et al. [21] presented the concept of single valued 

neutrosophic set (in short SVNS), which is the subclass of an NS. By using SVNS, we can represent 

incomplete, imprecise, and indeterminate information that helps in decision making in the real world. 

The notion of SVNS and the various extensions of SVNS have been used in the formation of MADM-

model / MADM-algorithm in different branch (branches) of real world such as medical diagnosis, 

mailto:bimalshil738@gmail.com
mailto:rakhaldas95@gmail.com
mailto:carlosgranadosortiz@outlook.es
mailto:sumandas18842@gmail.com
mailto:bipuldasmbbc@gmail.com
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educational problem, social problems, decision making problems, conflict resolution, etc. In the year 

(In) 2014, Biswas et al. [2] proposed the entropy based grey relational analysis (in short GRA) method 

and developed a MADM-strategy under SVNS-environment. Afterwards, Dey et al. [4] proposed a 

MADM model for the select ion of weaver based on extended GRA method under the interval NS 

environment. Later on, Dey et al. [5] also proposed a MADM-strategy under the interval NS 

environment based on extended projection method. In the year 2016, Mondal et al. [11] studied the 

role of SVNS in data mining. In the year 2016, Pramanik et al. [13] proposed a MADM-strategy to 

choose the logistic center location. Later on, Mondal et al. [10] defined a similarity measure under the 

SVNS environment namely single valued neutrosophic hyperbolic sine similarity measure, and 

proposed a MADM-strategy based on it. In the year 2015, Pramanik and Mondal [15, 16] proposed 

two MADM-strategies under the rough neutrosophic set environment. Afterwards, several MADM-

strategies has been developed by Ye [22-25], Ye and Zhang [26], etc. using different similarity measure 

under the SVNS environment. 

In this study, we propose a MADM-strategy based using (on) the single valued weighted 

hyperbolic cosine similarity measure under the SVNS-environment. Further, we validate the 

proposed model by solving an illustrative numerical example entitled “Selection of the Most Suitable 

Distillation Unit under SVNS-Environment”. 

There is no study in the literature relating to MADM-strategy using single valued neutrosophic 

weighted hyperbolic cosine similarity measure under the SVNS-environment. To fill the research 

gap, we propose this MADM-strategy under SVNS-environment based on single valued 

neutrosophic weighted hyperbolic cosine similarity measure. 

The rest of the paper has been split into the following sections: 

In section-2, we recall SVNS and its different properties. In section-3, we introduce a new 

similarity measure namely single valued neutrosophic weighted hyperbolic cosine similarity 

measure of similarities between two single valued neutrosophic numbers. In section-4, we propose a 

MADM-strategy based on single valued neutrosophic weighted hyperbolic cosine similarity measure 

under the SVNS-environment. In section-5, we give a numerical example to show the applicability 

and effectiveness of the proposed MADM-strategy. In section-6, we conclude the work done in this 

paper by stating some future scope of research. 

 

2. Preliminaries and Definitions 

In this section, we give some basic definitions and results those are relevant for developing the 

main results of this article.  

Definition 2.1. [18] A single valued neutrosophic set K over a fixed set L is defined by 

K={(u, TK(u), IK(u), FK(u)): u ∈L}, where TK, IK, FK are truth, indeterminacy and falsity membership 

mappings from L to [0, 1], and so 0 ≤ TK(u) + IK(u) + FK(u) ≤ 3. 

The null SVNS (0N) and the absolute SVNS (1N) over a fixed set L are defined as follows: 

(i) 0N = {(u, 0, 1, 1) : uL},  

(ii) 1N = {(u, 1, 0, 0) : uL}. 

Example 2.1. Assume that L={a, b} be a fixed set. Then, K={(a,0.3,0.2,0.6), (b,0.9,0.5,0.8)} is a SVNS over 

L. 
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Definition 2.2. [18] Suppose that X={(u, TX(u), IX(u), FX(u)): uL} and Y={(u, TY(u), IY(u), FY(u)): uL} 

be two SVNSs over L. Then, X  Y if and only if TX(u)  TY(u), IX(u)  IY(u), FX(u) FY(u), for all uL. 

Example 2.2. Assume that L={a, b} be a fixed set. Let K={(a,0.3,0.5,0.6), (b,0.2,0.5,0.8)} and 

S={(a,0.4,0.3,0.6), (b,0.4,0.5,0.6)} be two SVNSs over L. Then, K  S. 

Definition 2.3. [18] Assume that X = {(u, TX(u), IX(u), FX(u)): uL} and Y = {(u, TY(u), IY(u), FY(u)): uL} 

be two SVN-Sets over L. Then, XY={(u, max {TX(u), TY(u)}, min {IX(u), IX(u)}, min {FX(u), FX(u)}): uL}. 

Example 2.3. Suppose that K={(a,0.3,0.7,0.2), (b,0.9,0.4,0.8)} and S={(a,0.4,0.3,0.6), (b,0.4,0.5, 0.6)} be two 

SVNSs over a fixed set L={a, b}. Then, KS={(a,0.4,0.3,0.2), (b,0.9,0.4,0.6)}. 

Definition 2.4. [18] Suppose that X = {(u, TX(u), IX(u), FX(u)): uL} and Y = {(u, TY(u), IY(u), FY(u)): uL} 

be two SVN-Sets over L. Then, XY = {(u, min {TX(u), TY(u)}, max {IX(u), IX(u)}, max {FX(u), FX(u)}): 

uL}. 

Example 2.4. Suppose that K and S be two SVNSs over a fixed set L={a, b} as shown in Example 2.3. 

Then, KS={(a,0.3,0.7,0.6), (b,0.4,0.5,0.8)}. 

Definition 2.5. [18] Suppose that X = {(u, TX(u), IX(u), FX(u)): uW} and Y = {(u, TY(u), IY(u), FY(u)): uL} 

be two SVN-Sets over L. Then, Xc= {(u, 1-TX(u), 1-IX(u), 1-FX(u)): uL}. 

Example 2.5. Assume that K={(a,0.3,0.2,0.6), (b,0.9,0.5,0.8)} be a SVNS over L={a, b} as shown in 

Example 2.1. Then, Kc={(a,0.7,0.8,0.4), (b,0.1,0.5,0.2)}. 

 

3. Single Valued Neutrosophic Hyperbolic Cosine Similarity Measure 

In this section, we introduce a new similarity measure namely single valued neutrosophic 

weighted hyperbolic cosine similarity measure under the SVNS-environment. Then, we formulate 

some basic results based on it.  

Definition 3.1. Suppose that M = {(ui, TM(ui), IM(ui), FM(ui)): uiL, i=1, 2, …, n} and W = {(ui, TW(ui), IW(ui), 

FW(ui)): uiL, i=1, 2, …, n } be two SVNS over a non-empty set L. Then, the single valued neutrosophic 

hyperbolic cosine similarity measure (in short SVNHCSM) of the similarity between the SVNSs M 

and W is defined by: 

SVNHCSM (M, W) = 1- 
1

𝑛
∑ (

𝑐𝑜𝑠ℎ(|𝑇𝑀(𝑢𝑖)−𝑇𝑊(𝑢𝑖)| +  |𝐼M(𝑢𝑖)−𝐼𝑊(𝑢𝑖)| + |𝐹M(𝑢𝑖)−𝐹𝑊(𝑢𝑖)|)

11
)𝑛

𝑖=1             (1) 

Example 3.1. Let M = {(a,0.5,0.3,0.5), (b,0.3,0.5,0.4)} and W = {(a,0.6,0.4,0.3), (b,0.7,0.5, 0.4)} be two 

SVNSs over a fixed set L={a, b}. Then, SVNHCSM (M, W) = 0.9017206935. 

 

Definition 3.2. Suppose that M = {(ui, TM(ui), IM(ui), FM(ui)): uiL, i=1, 2, …, n} and W = {(ui, TW(ui), IW(ui), 

FW(ui)): uiL, i=1, 2, …, n} be two SVNSs over a fixed set L. Then, the single valued neutrosophic 

weighted hyperbolic cosine similarity measure (in short SVNWHCSM) of the similarity between the 

SVNSs M and W is defined by: 

SVNWHCSM (M, W) = 1 - 
1

𝑛
∑ 𝑤𝑖 (

𝑐𝑜𝑠ℎ(|𝑇𝑀(𝑢𝑖)−𝑇𝑊(𝑢𝑖)| +  |𝐼M(𝑢𝑖)−𝐼𝑊(𝑢𝑖)| + |𝐹M(𝑢𝑖)−𝐹𝑊(𝑢𝑖)|)

11
)𝑛

𝑖=1 ,            (2)  

where 0  𝑤𝑖 1 and ∑ 𝑤𝑖
𝑛
𝑖= =1. 

Example 3.2. Let us consider two SVNSs M and W as shown in Example 3.1. Assume that 𝑤1= 0.5 

and 𝑤2= 0.4 be the corresponding weights of M and W. Then, SVNWHCSM (M, W) = 0.9557743121.   

Theorem 3.1. Let SVNHCSM (M, W) be the single valued neutrosophic hyperbolic cosine similarity 

measure between the SVNSs M and W. Then, 0 ≤ SVNHCSM (M, W) ≤ 1. 
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Proof. Suppose that M = {(ui, TM(ui), IM(ui), FM(ui)): uL, i=1, 2, …, n} and W = {(ui, TW(ui), IW(ui), FW(ui)): 

uiL, i=1, 2, …, n} be two SVN-Sets over a fixed set L. 

Now, 0  TM(ui), IM(ui), FM(ui), TW(ui), IW(ui), FW(ui)  1, for each i=1, 2, …, n 

 0  |TM(ui) - TW(ui)| + |IM(ui) - IW(ui)| + |FM(ui)- FW(ui)|  3, for each i=1, 2, …, n  

 0  
𝑐𝑜𝑠ℎ(|𝑇𝑀(𝑢𝑖)−𝑇𝑊(𝑢𝑖)| +  |𝐼M(𝑢𝑖)−𝐼𝑊(𝑢𝑖)| + |𝐹M(𝑢𝑖)−𝐹𝑊(𝑢𝑖)|)

11
  1, for each i=1, 2, …, n 

 0  1 - 
1

𝑛
∑

𝑐𝑜𝑠ℎ(|𝑇𝑀(𝑢𝑖)−𝑇𝑊(𝑢𝑖)| + |𝐼M(𝑢𝑖)−𝐼𝑊(𝑢𝑖)| + |𝐹M(𝑢𝑖)−𝐹𝑊(𝑢𝑖)|)

11

𝑛
𝑖=1   1 

 0 ≤ SVNHCSM (M, W) ≤ 1. 

Theorem 3.2. Assume that SVNHCSM (M, W) be the single valued neutrosophic hyperbolic cosine 

similarity measure of the similarities between two SVPNSs M and W. If M = W, then SVNHCSM (M, 

W) = 1. 

Proof. Suppose that M = {(ui, TM(ui), IM(ui), FM(ui)): uiL, i=1, 2, …, n} and W = {(ui, TW(ui), IW(ui), FW(ui)): 

ui L, i=1, 2, …, n} be two SVN-Sets over a fixed set L such that M = W. 

So, TM(ui) = TW(ui), IM(ui) = IW(ui), FM(ui) = FW(ui), for each uiL (i=1, 2, …, n) 

 |TM(ui) - TW(ui)| = 0, |IM(ui) - IW(ui)| = 0, |FM(ui) - FW(ui)| = 0, for each uiL (i=1, 2, …, n) 

 𝑐𝑜𝑠ℎ(|𝑇𝑀(𝑢𝑖) − 𝑇𝑊(𝑢𝑖)|  +  |𝐼M(𝑢𝑖) − 𝐼𝑊(𝑢𝑖)|  +  |𝐹M(𝑢𝑖) − 𝐹𝑊(𝑢𝑖)|) = 0, for each uiL (i=1, 2, …, n) 

  
1

𝑛
∑

𝑐𝑜𝑠ℎ(|𝑇𝑀(𝑢𝑖)−𝑇𝑊(𝑢𝑖)| + |𝐼M(𝑢𝑖)−𝐼𝑊(𝑢𝑖)| + |𝐹M(𝑢𝑖)−𝐹𝑊(𝑢𝑖)|)

11

𝑛
𝑖=1  = 0 

 1 - 
1

𝑛
∑

𝑐𝑜𝑠ℎ(|𝑇𝑀(𝑢𝑖)−𝑇𝑊(𝑢𝑖)| + |𝐼M(𝑢𝑖)−𝐼𝑊(𝑢𝑖)| + |𝐹M(𝑢𝑖)−𝐹𝑊(𝑢𝑖)|)

11

𝑛
𝑖=1  = 1 

 SVNHCSM (M, W) = 1. 

Theorem 3.3. Assume that SVNHCSM (M, W) be the single valued neutrosophic hyperbolic cosine 

similarity measure of the similarities between two SVN-Sets M and W. Then, SVNHCSM (M, W) = 

SVNHCSM (W, M). 

Proof. Suppose that M = {(𝑢𝑖, TM(𝑢𝑖), IM(𝑢𝑖), FM(𝑢𝑖)): uL, i=1, 2, …, n} and W = {(𝑢𝑖, TW(𝑢𝑖), IW(𝑢𝑖), 

FW(𝑢𝑖)): 𝑢𝑖L, i=1, 2, …, n} be two SVN-Sets over L. 

Now, SVNHCSM (M, W) 

= 1- 
1

𝑛
∑ (

𝑐𝑜𝑠ℎ(|𝑇𝑀(𝑢𝑖)−𝑇𝑊(𝑢𝑖)| +  |𝐼𝑀(𝑢𝑖)−𝐼𝑊(𝑢𝑖)| + |𝐹𝑀(𝑢𝑖)−𝐹𝑊(𝑢𝑖)|)

11
)𝑛

𝑖=1  

= 1- 
1

𝑛
∑ (

𝑐𝑜𝑠ℎ(|𝑇𝑊(𝑢𝑖)−𝑇𝑀(𝑢𝑖)| +  |𝐼𝑊(𝑢𝑖)−𝐼𝑀(𝑢𝑖)| + |𝐹𝑊(𝑢𝑖)−𝐹𝑀(𝑢𝑖)|)

11
)𝑛

𝑖=1  

= SVNHCSM (W, M). 

Therefore, SVNHCSM (M, W) = SVNHCSM (M, W). 

Theorem 3.4. Suppose that SVNHCSM (M, W) be the single valued neutrosophic hyperbolic cosine 

similarity measure of the similarity between the SVN-Sets M and W. If Q be a SVN-Set over L such 

that MWQ, then SVNHCSM (M, W)  SVNHCSM (M, Q) and SVNHCSM (W, Q)  SVNHCSM (M, 

Q). 

Proof. Suppose that M = {(ui, TM(ui), IM(ui), FM(ui)): uiL, i=1, 2, …, n} and W = {(ui, TW(ui), IW(ui), FW(ui)): 

uiL, i=1, 2, …, n} be two SVN-Sets over L. Let Q be a SVN-Set over L such that MWQ. Since 

MWQ, so |TM(ui)-TW(ui)|  |TM(ui)-TQ(ui)|, |IM(ui)-IW(ui)|  |IM(ui)-IQ(ui)|, |FM(ui)-FW(ui)|  |FM(ui)-

FQ(ui)|, uiL, i=1, 2, …, n.  
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Now, we have 

SVNHCSM (M, W) 

= 1- 
1

𝑛
∑ (

𝑐𝑜𝑠ℎ(|𝑇𝑀(𝑢𝑖)−𝑇𝑊(𝑢𝑖)| +  |𝐼𝑀(𝑢𝑖)−𝐼𝑊(𝑢𝑖)| + |𝐹𝑀(𝑢𝑖)−𝐹𝑊(𝑢𝑖)|)

11
)𝑛

𝑖=1  

       1- 
1

𝑛
∑ (

𝑐𝑜𝑠ℎ(|𝑇𝑀(𝑢𝑖)−𝑇𝑄(𝑢𝑖)| +  |𝐼𝑀(𝑢𝑖)−𝐼𝑄(𝑢𝑖)| + |𝐹𝑀(𝑢𝑖)−𝐹𝑄(𝑢𝑖)|)

11
)𝑛

𝑖=1  

= SVNHCSM (M, Q). 

Therefore, SVNHCSM (M, W)  SVNHCSM (M, Q). 

Again, from MWQ it can be say that |TW(ui)-TQ(ui)||TM(ui)-TQ(ui)|, |IW(ui)-IQ(ui)||IM(ui)-

IQ(ui)|, |FM(ui)-FW(ui)||FM(ui)-FQ(ui)|, uiL, i=1, 2, …, n. 

Now, we have 

SVNHCSM (W, Q) 

= 1- 
1

𝑛
∑ (

𝑐𝑜𝑠ℎ(|𝑇𝑊(𝑢𝑖)−𝑇𝑄(𝑢𝑖)| + |𝐼𝑊(𝑢𝑖)−𝐼𝑄(𝑢𝑖)| + |𝐹𝑊(𝑢𝑖)−𝐹𝑄(𝑢𝑖)|)

11
)𝑛

𝑖=1  

   1- 
1

𝑛
∑ (

𝑐𝑜𝑠ℎ(|𝑇𝑀(𝑢𝑖)−𝑇𝑄(𝑢𝑖)| + |𝐼𝑀(𝑢𝑖)−𝐼𝑄(𝑢𝑖)| + |𝐹𝑀(𝑢𝑖)−𝐹𝑄(𝑢𝑖)|)

11
)𝑛

𝑖=1  

   = SVNHCSM (M, Q). 

Therefore, SVNHCSM (M, W)  SVNHCSM (M, Q). 

 

4. SVNWHCSM Based MADM Strategy 

Let Q = {Q1, Q2, ..., Qn} be the fixed set of possible alternatives and P = {P1, P2, ..., Pm} be the 

collection of attributes for a multi attribute decision making (in short MADM) problem. Then, a 

decision maker can provide their evaluation information of each alternative Qi (i = 1, 2, ..., n) against 

the attributes Pj (j = 1, 2, ..., m) in terms of SVNS. Then, the whole evaluation information of all 

alternatives can be expressed by a decision matrix. 

 

The following are the steps of the proposed MADM-technique: 

 

Step-1: Construct the Decision Matrix Using the SVNS 

The whole evaluation information of each alternative Qi (i = 1, 2,..., n) based on the attributes Pj 

(j = 1, 2, ..., m) is expressed in terms of  SVN-Set 𝐸𝑄𝑖
= {(Pj, 𝑇𝑖𝑗(Qi, Pj), 𝐼𝑖𝑗(Qi, Pj), 𝐹𝑖𝑗(Qi, Pj)): PjP}, 

where (𝑇𝑖𝑗(Qi, Pj), 𝐼𝑖𝑗(Qi, Pj), 𝐹𝑖𝑗(Qi, Pj)) denotes the evaluation assessment of Qi (i = 1, 2,..., n) against 

Pj (j = 1, 2, ..., m).  

Then, we can build the decision matrix (DM[Q|P] ) as follows: 

 P1 P2 …. Pm 

Q1 [𝑇11 (Q1, P1), 𝐼11 (Q1, P1), 

𝐹11(Q1, P1)] 

[𝑇12(Q1, P2), 𝐼12(Q1, P2), 

𝐹12(Q1, P2)] 

…. [𝑇1𝑚 (Q1, Pm), 𝐼1𝑚 (Q1, Pm), 

𝐹1𝑚(Q1, Pm)] 

Q2 [𝑇21 (Q2, P1), 𝐼21 (Q2, P1), 

𝐹21(Q2, P1)] 

[𝑇22(Q2, P2), 𝐼22(Q2, P2), 

𝐹22(Q2, P2)] 

…. [𝑇2𝑚(Q2, Pm), 𝐼2𝑚(Q2, Pm), 

𝐹2𝑚(Q2, Pm)] 

…. 

 

……………………… 

 

………………………… 

 

…. 

 

……………………… 
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Qn [𝑇𝑛1 (Qn, P1), 𝐼𝑛1 (Qn, P1), 

𝐹𝑛1(Qn, P1)] 

[𝑇𝑛2(Qn, P2), 𝐼𝑛2(Qn, P2), 

𝐹𝑛2(Qn, P2)] 

…. [𝑇𝑛𝑚(Qn, Pm), 𝐼𝑛𝑚(Qn, Pm), 

𝐹𝑛𝑚(Qn, Pm)] 

 

Step-2: Determination of the Attributes Weight 

In an MADM-strategy, the weights of the attributes play an important role in taking decision. 

When the weights of the attributes are totally unknown to the decision makers, then the attribute 

weights can be determined by using the compromise function defined in equation (3). 

Compromise Function: The compromise function of Q is defined by: 

𝑗=∑ 𝑛
𝑖=1 (2+𝑇𝑖𝑗(Qi, Pj)-𝐼𝑖𝑗(Qi, Pj)-𝐹𝑖𝑗(Qi, Pj))/3                                                      (3)  

Then the desired weight of the jth attribute is defined by wj = 
𝑗

∑ 𝑗
𝑚
𝑗=1

                               (4)  

Here, ∑ 𝑤𝑗
𝑚
𝑗=1 =1. 

 

Step-3: Determination of ideal solution 

In any similarity measure based MADM-strategy, the selection of ideal solution is the key factor 

to find the most suitable alternative. In our proposed MADM-strategy, we take the absolute SVNS 1N 

as an ideal solution to find the suitable alternative. 

 

Step-4: Determination of single valued neutrosophic weighted hyperbolic cosine similarity value 

After the formation of ideal solution in step-3, by using eq. (1), we calculate the SVNWHCSM 

values for every alternative between the ideal solution and the corresponding SVNS from decision 

matrix DM[Q|P] that formed in step-1. 

 

Step-5: Ranking Order of the Alternatives 

In this step, we arrange the all the single valued neutrosophic weighted hyperbolic cosine 

similarity value in ascending order. The alternative with the lowest single valued neutrosophic 

weighted hyperbolic cosine similarity value with the ideal solution is the most suitable alternative 

for selection. 

 

Step-6: End. 

 

5. Validation of the Proposed MADM-strategy 

In this section, we demonstrate a numerical example to show the real life applicability of the 

proposed MADM-strategy. 

Example 5.1. “Selection of the Most Suitable Distillation Unit under SVNS-Environment” 

Distillation units are one of the essential laboratory equipment in modern day science. A solvent 

distillation unit or distilled machine comes in various designs, capacities and lab grade solvent purity 

level. The distillation process removes minerals and microbiological contaminants and can reduce 

levels of chemical contaminants through boiling the target solvent. The distillation apparatus 
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structurally consists of flask with heating elements embedded in glass and a fused spiral coil tapered 

round glass, joints at the top double walled condenser with ground glass joints.  

Successful distillation depends on several factors, including the difference in boiling points of the 

materials in the mixture, and therefore the difference in their vapor pressures, the type of apparatus 

used, and the care exercised by the experimentalist. In heating, the lowest boiling distills first (most 

volatile), having a maximum boiling point distills last, and others subsequently or not at all. 

Distillation is a simple apparatus with entirely satisfactory for the purification of a solvent containing 

nonvolatile material and is reasonably adequate for separating liquids of wide-ranged boiling points. 

Industrially, distillation is the basis for the separation of crude oil into the various, more useful 

hydrocarbon fractions. Chemically, distillation is the principal method for purifying liquids (e.g. 

samples, or solvents for performing reactions). 

Structure:  

A distilling flask, a source of heat or a hot bath, condenser, receiving flask to collect the condensed 

vapors or distillate are the basic structural units of an ideal distillation apparatus. For laboratory use, 

the apparatus is commonly made of glass and connected with corks, rubber bungs, or ground-glass 

joints, wherein in industrial applications, larger equipment of metal or ceramic is used. The 

underlying mechanism of distillation is the differences in volatility between individual components. 

With sufficient heat applied, a gas phase (vapor) is formed from the liquid solution. The liquid 

product is subsequently condensed from the gas phase by the removal of the heat. 

Process:  

There are many types of distillation units used in modern laboratories and industries based on 

their application. Some are simple distillation, fractional distillation, steam distillation, and vacuum 

distillation.  

(i) Simple distillation: In simple distillation heating of the liquid mixture at the boiling point 

and immediately condensing the resulting vapors. This method is only effective for mixtures 

wherein the boiling points of the liquids are considerably different (~ 25oC). 

(ii) Fractional distillation: Simple distillation is not efficient for separating liquids whose boiling 

points lie close to one another. Fractional distillation is often used to separate mixtures of 

liquids that have similar boiling points. It involves several vaporization-condensation steps 

(which take place in a fractioning column). This process is also known as rectification.  

(iii) Steam distillation: Steam distillation is often used to separate components from a mixture of 

heat-sensitive components. The process is processed by passing steam through the mixture 

(which is slightly heated) to vaporize it. It establishes a high heat transfer rate without the 

need for a source of high temperatures. The resultant vapor is condensed to afford the 

required distillate liquid. The process of steam distillation is used to obtain essential oil 

constituents and herbal distillates from several aromatic flowers/herbs. 

(iv) Vacuum distillation: Vacuum distillation is ideal for separating mixtures of liquids with 

very high boiling points. To boil these compounds, heating to high temperatures is an 

inefficient method. Therefore, the pressure of the surroundings is lowered instead. The 

lowering of the pressure enables the component to boil at lower temperatures. Once the 

vapor pressure of the component is equal to the surrounding pressure, it is converted into 

vapor. These vapors are then condensed and collected as the distillate. The vacuum 

https://science.jrank.org/pages/7250/Volatility.html
https://science.jrank.org/pages/3262/Heat.html
https://byjus.com/chemistry/steam-distillation/
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distillation method is also used to obtain high-purity samples of compounds that decompose 

at high temperatures. 

Suppose that, a bio-science department of an institution needs a distillation unit for their laboratory 

research. In market there are several types of distillation units. But it is difficult to choose the most 

suitable distillation unit among the possible distillation units those are available in the market. For 

this the decision maker (institution) can choose the some attributes on which basis customers /users/ 

institutions are being interested to buy distillation unit for their laboratory purpose or other needs. 

 Capacity or productivity (E1): Production of required solvent as per hour is one of the most 

important criteria that buyers looking for. On average a laboratory distillation unit can 

produce 2.0-2.5 liters of distillate per hour where an industrial unit can produce much more 

than a laboratory distillation unit.  

 The material used in the vessel (E2): The distillation flask should preferably be round-

bottomed rather than a flat-bottomed one for smoothness of boiling. The material used in the 

vessel should be very heat resistant and light-weighted. There are two major glass materials 

used maximum glass distillation units i.e. borosilicate glass and quartz glass material.  

 Automation Grade of machine (E3): Machine-operating systems are the most advanced 

technology for all of us where it works automatically and without human involvement. So 

the criteria should be either a semi-automatic or automatic process.  

 Usage/Application of machine (E4): The application of any machine defines the existence of 

that machine. This is one of the price-dependent criteria among all.  

 Temperature Control Range (E5): Temperature measurement is a common control parameter 

in distillation cooling and heating processes. Depending upon the application and process 

fluid, temperature control may be used for cooling distillate to condense high volatility 

products into liquid phase, or heating of process fluid to vaporize the high volatility 

components for easier separation. The lower limit of the range is the temperature indicated 

by the thermometer when the first drop of condensate leaves the tip of the condenser, and 

the upper limit is the temperature at which the last drop evaporates from the lowest point in 

the distillation flask.  

 Price (E6): Generally, there are two types of cost named fixed cost and variable cost, which 

are used along with numbers of units for determining the selling price of the product. Cost 

of materials plays a very significant role in their selection. The application and material of 

glass are charged with the cost of distillation units issued to them.  

Hence, the selection of a suitable distillation unit for biological laboratory can be considered as a 

multi-attribute-decision-making problem. 

Assume that, the decision maker select four alternatives after the initial screening. Let Ű = 

{P1, P2, P3, P4} be the universal set of available distillation units from which the decision maker will 

buy a suitable distillation unit. Let E = {E1, E2, E3, E4, E5, E6} be the set of attributes based on which the 

decision maker will select the most suitable distillation units. Then, the tabular representation of the 

information of distillation units P1, P2, P3, P4 against the attributes E1, E2, E3, E4, E5, E6 are given in 

Table-1. 
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Table-1 

 

Now, by using the eq. (3) and eq. (4), we have w1= 0.1607378, w2 = 0.1528327, w3 = 0.1712780, w4 = 

0.1699605, w5 = 0.1778656, and w6 = 0.1673254. 

The ideal solution is 𝑃∗= 1N = {(E1, 1, 0, 0), (E2, 1, 0, 0), (E3, 1, 0, 0), (E4, 1, 0, 0), (E5, 1, 0, 0), (E6, 1, 0, 0)}. 

The single valued neutrosophic weighted hyperbolic cosine similarity measure of similarities 

between the possible alternatives (distillation units) and the ideal solution (ideal distillation unit) are:  

SVNWHCSM (P1, P) = 0.9833013, 

SVNWHCSM (P2, P) = 0.9669271,  

SVNWHCSM (P3, P) = 0.9734845,  

and SVNWHCSM (P4, P) = 0.9830226. 

 

Here, SVNWHCSM (P2, P) < SVNWHCSM (P3, P) < SVNWHCSM (P4, P) < SVNWHCSM (P1, P). 

Therefore, the alternative P2 is the most suitable alternative among the set of possible alternative. 

Hence, the institution can buy the distillation unit P2 for their laboratory related work. 

 

6. Conclusions 

In the study, we have proposed a new similarity measure namely single valued neutrosophic 

weighted hyperbolic cosine similarity measures of similarities between two SVNSs and proved some 

of their basic properties. Further, we have developed a novel MADM-strategy based on the proposed 

single valued neutrosophic weighted hyperbolic cosine similarity measure under the SVNS 

environment. Then, we validate our proposed MADM-strategy by solving an illustrative MADM-

problem namely “Selection of the Most Suitable Distillation Unit for Biological Laboratory under 

SVNS-environment” to demonstrate the applicability and effectiveness of our proposed MADM-

strategy. 

The proposed MADM-strategy also can be used to deal with other real life problems in real world 

such as decision making [3-4, 6-8, 13], data mining [11], medical diagnosis [15-16]. 

     The data used in this paper has not taken from any source. We have considered these numbers 

for the verification of our algorithm. However, this algorithm can apply for any real source data. 
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Abstract: In this paper, the concept of a neutrosophic stable random variable is introduced. Two 

definitions of a neutrosophic random variable are presented. We introduced both the neutrosophic 

probability distribution function and the neutrosophic probability density function, and the 

convolution with the neutrosophic concept. In addition, we proved some properties of a 

neutrosophic stable random variable, and three examples are discussed. 

Keywords: Random Variables; Stable Distributions; Gaussian Distribution; Cauchy Distribution; 

Lévy Distribution. 

 

 

1. Introduction 

    The term stability in probability theory refers to a property of some probability distributions, 

which is that the random variable indicative of a sum of independent and identically distributed 

random variables has the same probability distribution for each of these variables. This property is 

true for a finite or infinite sum of random variables. Variables that achieve this specificity are called 

stable random variables. Stability in this concept is called classical stability, and stable distributions 

represent a large part of the family of all probability distributions. Regarding the tail of the 

distribution, all stable distributions are heavy-tailed except for the normal distribution, which is 

light-tailed. 

    In 1925, Paul Lévy [1] presented stable distributions as a generalization of the normal 

distribution in several ways. The theory of stable distributions was developed in the messages 

exchanged between Lévy (1937) [2] and Khintchine (1938) [3], and work on these results was 

expanded by Gnedenko and Kolmogorov (1949) [4] and then Feller (1970) [5]. Paul Lévy defined a 

stable distribution by defining its characteristic function and used a Lévy- Khintchine representation 

for the infinitely divisible distributions. The second definition is the definition related to the stability 

property of independent and identically distributed random variables, and the third is the 

generalized central limit theorem, in which the stable distributions appear as the end of a set of 

independent and identically distributed random variables without imposing the condition 

contained in the central limit theorem [4], which revolves around the limitation of variance. A recent 

and condensed overview of the theory of stable distributions can be found in [6–12]. 

     Fuzzy logic can be generalized to Neutrosophic logic by adding the component of 

indeterminacy. 

     In probability theory, F. Smarandache defined the neutrosophic probability measure and the 

probability function. Some researchers introduced many other concepts through the neutrosophic 

mailto:az.ahm2020@gmail.com
mailto:ozeitouny70@gmail.com
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concept such as queuing theory, time series prediction, and modeling in many cases such as linear 

models, moving averages, and logarithmic models, more information can be founded at [13–23].  

     In this paper, depending on the geometric isometry (AH-Isometry) [20] (Under publication in 

Neutrosophic Sets and Systems), the concept of a stable neutrosophic random variable is introduced 

and provides two definitions of a neutrosophic stable random variable. We also presented some 

basic properties and present several well-known examples. 

2. Preliminaries  

   2.1.  -Stable distributions 

     Definition 2.1.1. A random variable X  (which is non-degenerate) is said to have a stable 

distribution if for any positive numbers A  and B , there is a positive number C  and a real number 

D  such that 

1 2  ,
d

AX BX CX D    

where 1 2,  X X  are independent copies of X , and where 
d
  denotes equality in distribution. That 

X  is called strictly stable if the relation 1 2  
d

AX BX CX D    hold with 0D  . 

     Dedinition 2.1.2. (equivalent to definition 2.1). A random variable X  (which is non-degenerate) 

is said to have a stable distribution if for any 0n  , there is a positive number nC  and a real 

number nD  such that 

1 2 ...  ,n n n

d
X X X C X D      

where 
1 2, ,..., nX X X  are independent copies of X .  

And X  is called strictly stable if 
1 2 ...  n n n

d
X X X C X D      hold with 0nD  . 

     Theorem 2.1.3. If 
1 2 ...  n n

d
X X X C X    , nC  has the form 1/

nC n  . See [5,9] for a proof.  
     Theorem 2.1.4. If G  is strictly stable with characteristic parameter  , then  

 
1/1/ 1/

1 2 ,
d

X B X A B XA
 

    

holds for all 0,  0A B  . See [5] for a proof. 

   2.2. Neutrosophic Functions on ( )R I  

Depending on information in [20], here are some interesting facts : 

     Definition 2.2.1. 

Let  ( ) ;  ,R I a bI a b R    where 
2I I  be the neutrosophic field of reals. The one-dimensional 

isometry (AH-Isometry) is defined as follows: [19] 

 

: ( )T R I R R   

( ) ( , ).T a bI a a b    

Some properties of an algebraic isomorphism T : 
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1. T  is bijective.  

2. T  is invertible by 

1 : ( )T R R R I
   

1 ( , ) ( )a b a b a IT 
    

3. 

        T a bI c dI T a bI T c dI        

   And 

        . .T a bI c dI T a bI T c dI     .  

And more can be found in [20]. 

3. Neutrosophic Stable Random Variables 

Definition 3.1. Aneutrosophic random variable NX X YI   is said to have a neutrosophic 

stable distribution if for any positive numbers 
1 2NA A A I   and 

1 2NB B B I   , there is a positive 

number 
1 2NC C C I   and a number 

1 2ND D D I   such that 

(1) (2)
   (1),                                                              N NN N N N N

d
X X C X DA B    

where 
(1)

1 1NX X Y I   and 
(2)

2 2NX X Y I   are independent copies of NX , and where "
d
 " denotes 

equality in distribution. 

     Remark 3.1. The right hand side of (1) takes the form 

1 1[ ]N N N NC X D C X I L C X D    , 

where 
1 2

,  C C L X Y     . 

Proof By taking T  for the left hand side of (1) we obtain 

 (1) (2)

1 1 2 1 1 1 1 1 2 2 2 2
( , )( , ) ( , )( , )N NN N

d
A X B X A A A X X Y B B B X X YT       , 

                                       
1 1 1 2 1 1 1 2 1 2 2 2

( , ( )( )) ( , ( )( ))
d

A X A A X Y B X B B X Y     , 

                                      
1 1 1 2 1 2 1 1 1 2 2 2

( , ( )( ) ( )( ))
d

A X B X A A X Y B B X Y      . 

By taking 
1T 
 for both sides we obtain 

(1) (2)

1 1 1 2 1 2 1 1 1 2 2 2 1 1 1 2
[( )( ) ( )( ) ]N NN N I

d
X X A X B X A A X Y B B X Y A X B XA B          . 

Since 1 11 1 1 2
X D

d
A X B X C  , 

1 2 1 1 1 2 2 2 1 2 1 2
( )( ) ( )( ) ( )( ) ( )

d
A A X Y B B X Y C C X Y D D           then 

1 1

(1) (2)
1 11 2 1 2

[ )( )( ) ( ) ( ]N NN N X D
d

X X C I C C X Y D D C X DA B         , 
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and                     1 1

(1) (2)
11 2 2

[( )( ) ]N NN N X X
d

X X C I C C X Y C D D IA B       . 

Finally 

                             1 1[ ] .                                                            (2)N N N NC X D C X I L C X D     

     Definition 3.2. A neutrosophic stable random variable is called neutrosophic strictly stable if 

(1) holds with 0 0 0N N
D I   . 

     Definition 3.3. Aneutrosophic random variable NX X YI   is referred to as neutrosophic 

stable if there exist constants 
( ) ( ) ( )

1 20 N

n n n
A A A I    and 

( ) ( ) ( )
1 2N

n n n
B B B I   such that 

( ) ( ) ( )
,                                                                                               

1
(3)N N

n n n
NN

n

i

d
X B A X



   

where 
(1) ( 2)

, , ...N NX X  are independent neutrosophic random variables each having the same 

distribution as NX .  

Again, if 
( )

0N

n

N
B  , then NX  in (3) is called neutrosophic strictly stable, i.e. 

( ) ( )
,                                                                                               

1
  (4)N

n n
NN

n

i

d
X A X



  

     Theorem 3.1. In relation (4), the constant 
( )n
NA  has the form 

 ( )
,    

1 / 1 / 1/ 1/1/ 1/ 0 ,   .N NN Nn
N N

A n n n I n n n I I    
           

Proof Rewriting (4) as the sequence of sums 

(1) (2) (2)

(1) (2) (3) (3)

(1) (2) (3) (4) (4)

                          ...                                                                                             

N NN N

N NN N N

N NN N N N

d
X X A X

d
X X X A X

d
X X X X A X

 

  

   

                  (5)

 

We cosider only those sums which contain 2k
 terms, 1, 2, ... :k   

1 2

(1) (2) (2)

(1) (2) (3) (4) (4)

(1) (2) (3) (4) (5) (6) (7) (8) (8)

(1) (2) (2 ) (2 ) ( )

                                              ...

  

...
k k k

N NN N

N NN N N N

N NN N N N N N N N

N NN N N N

d
X X A X

d
X X X X A X

d
X X X X X X X X A X

d
X X X X A X



 

   

       

    

                                            ...
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Making use the first formula, we transform the second one as follows: 

 
2(4) (1) (2) (3) (4) (2) (1) (2) (2)

.( ) ( ) ( )N N N NN N N N N N

d d
S X X X X A X X A X        

Here we keep in mind that 
(1) (2) (3) (4)
N N N N

d
X X X X   . Applying this reasoning to the third formula, we 

obtain 

   

   

(8) (1) (2) (3) (4) (5) (6) (7) (8)

(2) (1) (2) (2) (5) (6)

2 2(2) (1) (2) (5)

2 3(2) (1) (5) (2)
       .

( ) ( ) ( ) ( )

    ( ) ( )

    

( )

N N N N N N N N N

N NN N N N

N NN N

N N NN N

S X X X X X X X X

d
A X X A X X

d
A X A X

d
A X X A X

       

   

 

  

 

For the sum of 2k
 terms, we similarly obtain 

( 2 )(2 ) ( )
.

kk k
N N N NN

d d
S A X A X   

Comparing this with (4), with 2
k

n  , we obtain: 

   
(log )/log 2( ) (2) (2)

;
k nn

N N NA A A   

hence   

( 2)(2)( ) (log )/log2
.log [(log ) / log 2] log log Nn

N N
A

A n A n   

Thus, for the sequence of sums we obtain 

( 2 )1 /( )( ) (2) (2)
,   ,    log 2 / log =2 ,    1, 2, ... .                                            (6)NNn k

N N NA n A n k


    

     Choosing now from (5) those sums which contain 3k
 terms, and repeating the above 

reasoning, we arrive at  

            
( 3 )1 / ( )( ) ( 3 ) ( 3 )

,   ,    l o g 3 / l o g = 3 ,    1 , 2 , . . .                                              (7)NNn k
N N NA n A n k


    

In the general case, 

 
( )1 /( )( ) ( ) ( )

,   ,    log / log = ,    1, 2, ...                                             (8)
m

NNn m m
N N N

k
A n m A n m k


    

     We set 4m  . By virtue of (8), 

(4) (4)
,log 4 / logN NA   

whereas (6) with 2k   yields 
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 ( 2)(4)
.log 1 / log 4N NNA   

Comparing the two last formulae, we conclude that  

( 2) ( 4)
N N  . 

By induction, we come to the conlusion that all 
( )m
N  are equal to each other: 

( )
.

m
N N   

The following expression hence holds for the scale factors 
( )n
N

A : 

( ) 1 /
,           =1,2,3,...                                                               (9)N Nn

N
A n n


  

 whereas (4) takes the form 

( )( ) 1 /
,                                                                               

1
(10)Nn N

NN
n

N

n

i

d
X XS n





  

   

 

 

 

1 /

1,2
1 1 ,2

( )

(1/ ,2/(2 )) 1/ 1/

0

= .

( , )

                ( , ) ,

N N

I I
TI IT n T T n In n n

n n n n

  
   

   

 

   

   
      
 
 



 

By taking 
1T 
 for both sides of the last relation, then                      

 1 / 1/ 1/ 1/ .N Nn n I n n
   

                                       

     Remark 3.2. The right hand side of the relation (4) takes the form 

 1 / 1/ 1/ 1/( ) .N N
N

n X n X I n X Y n X
   

     

In fact 

 

     
 

 

   

   

11

( 1, 1) 1/ ,1/2

1 / ( ) (1 )( ) (1 )

2 (1,2) ) (1,2)

1/ 2/2 1/

0

, = ,

,

( , ) ( )                     ( , ) ( , )

                     

                     ,

N N
T

NN
N

T I TIT n X T T X YI T n I T X YI

X X Y X X Y

X X Y

n

n n n n

n n n

   

  

 





 


    

 



 
 
 



   1/, ( ) .X X Yn 


 

Note that 1 1N I  , and in the neutrosophic field: 11 1 .N
N N

N




 . 

By taking 
1T 
 for both sides of the last relation, the proof will be completed.  

Let us prove the relation 11 1 .N
N N

N




  in the general case where 1 2N I    : 
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1 2 1 2 1 1 2 1 1 2

1 1 ( 1)1
1 2 1 2 1 2

( 1, 1)
1 1 2

1 1 2 1 1 2

1,21 11 1 1 2, ,
,

1 . 1 1 1

1 1 1 2           =(1,2) , (1,2) , , .

N N

N N

T
N N

I IT T
I I

I I T I I T I T I

           

      

  
     

  

 

      
         

       

         
 

   
     

    

. 

     Theorem 3.2. If NG  is a neutrosophic strictly stable distribution with characteristic parameter 

N I     then 

     (1) (2)1 / 1 / 1/
,N NN N

N N

d

NA X B X A B X
  

   

for 0,  A B  . 

Proof By recognizing the relation (10), for any positive numbers ,,  A B let 

 number B number
( ) ,  ,1,2,..., 1,..., .

A
i

NX i A A n   

be neutrosophic strictly stable random variables. 

Then, we have 
( ) ( )

1

A i
NN

A

i
S X



  , 
( ) ( )

1

B i
NN

n

i A
S X

 

  , and 
( ) ( )

1

A B i
NN

A B

i
S X





  , hence 

 
( ) ( ) (1)1/

1

A i
N NN

dA

i
S X A X





  , 
( ) ( ) (2)1/

1

B i
N NN

n d

i A
S X B X



 

  , and  ( ) ( ) 1/

1

A B i
N NN

A B d

i A
S X A B X






 

  . 

Since 
( ) ( ) ( )A B A B
N N N

S S S 
  , then      (1) (2)1 / 1 / 1/

.N NN N
N N

d

NA X B X A B X
  

                      

The neutrosophic convolution 

     Let NX  be a neutrosophic random variable, its neutrosophic density function is ( )
N NXf x . We 

stand for the neutrosophic probability distribution function by ( )
N NXF x  and we define it as 

   ( ) P  .
N

N

N

N

N N NN NX

x
F x X x f dtt



     

What the right hand side form is? 

Suppose that NX X YI  , and the probability density functions of ,  X Y  are ,  f g  respectively. 

By taking T  for both sides, we obtain 

 

   ( ) .                                                             (11) 
N

N
N N NN

N
XT F x T

x
f t dt

 
 

   

 

        (12) .                                                   
NN

N N N N N N
NN

xx
T T T f Tf t dt t d t






 
    
 

 
 
 

 



Neutrosophic Sets and Systems, Vol. 50, 2022     427  

 

 
Azzam Mustafa Nouri, Omar Zeitouny and Sadeddin Alabdallah, Neutrosophic Stable Random Variables 

 

By taking ,
N

N

x

I

x yI x yx
T T

 

 

 

    
       
       

      
,        1 1 2),( *N N X X YT f f f gt t t t  , 

and            1 2 1 2 1 1 2 1 1 2(, , )NT T d t t I T dt Idt dt dt dt dt d t td t        . 

Hence, the right hand side of (12) becomes 

            

   

1 1 2 1 1 2

1 1 1 2 1 2

, ) (

= ) (

,( , )*

                                                     , ( ) .*

N
N N N X X Y

N

X X Y

x yx

x yx

x
T T f T f f g dt d t t

f dt f g d t t

t d t t t t

t t t



 













 





  

   
        
    

    
      
      

 

Now, the relation (11) becomes 

     1 1 1 2 1 2( ) ) (, ( )*N X X YNX

x yx
T F x f dt f g d t tt t t 



 

 

   
        
    

 

By taking 
1T 
 for both sides, we obtain 

 1 1 1 2 1 2 1 1( ) ( ) ( ) ( ( ) ( (13)) ) .                              *N NX

x yx
X X Y X

x
F x f t dt I f g t t d t t f t dt




  

        

     Definition 3.4. Suppose that ,  N NX Y  are two independent neutrosophic random variables. 

( ),
N NXF x  ( )

N NYG y and ( ),
N NN Xf f x  ( )

N NN Yg g y are their neutrosophic probability 

distribution functions and neutrosophic probability density functions respectively. The 

neutrosophic convolution of ( )
N NN XF F x  and ( )

N NN Y yG G  can be defined as 

         (14)*  ,                                                             *
N

N

N

x

N N NN N N
F f g d tG



   

where 

     * ( 1 5 ).                                        
N

N

N N N N NN N N Nf dyg f t y g y




   

     Theorem 3.3. According to the above hypotheses, the relations (14) and (15) hold, and (15) 

takes the form 

1 1 2 11 2 1 2* 1 1 1 1
( )( )+ ( )( + ) ( )( ) (16)* * * ,                          

NN N X Y X X Y Y X Yf f g t I f g t t f g tg
 

  
 

 

where 
1 21 2 1 2

( )( + )*X X Y Yf g t t
 

is the convolution of the variables 1 2X X X   and 1 2Y Y Y  . 

Proof Because of the independence of ,  N NX Y : 

    ( (*  ) )
N N

N N

N NN N N NN N N
F G f x y d x d yg

 

 

    



Neutrosophic Sets and Systems, Vol. 50, 2022     428  

 

 
Azzam Mustafa Nouri, Omar Zeitouny and Sadeddin Alabdallah, Neutrosophic Stable Random Variables 

 

   

   

   

= ( (

= ( (

= ( ( ).

                  ) )

                  ) )

                 )

N N

N N

N

N N

N N

N

N

N N

N

N

N

N N

N

N

N

N

N N N N

N N N

N N N N

t y

x
t y t

x
t y

f d x y d y

f d y d y

f y d y d t

x g

g

g



 



 



 

 
  
 
 

 
  
 
 

 
  
 
 

 

Prove the relation (16) is similar to prove (13).                                                     

Based on the previous facts, the convolution can be generalized for n .   

4. Applications  

There are three fundamental and well-known examples of stable laws, let ( )q x  is the probability 

density function of stable random variable X : 

     4.1. Gaussian Distribution  

In (16), two classical convolutions are well-known for the gaussian distribution. Because of the 

independence and identically in distribution for stable random variables, 

1 21 2 1 2
( )( + )*X X Y Yf g t t

 
becomes the convolution of four gaussian random variables with one 

dimensional. The same applies to the rest of the examples. 

We have 

 
 

2
2

2

1; , exp ,    ,    0.
22

x a
q x a x 



  
       

  

 

Since (See [9]) 

2 2
1 1 2 2 1 2 1 2( ; , ) ( ; , ) ( ; , ),q x a q x a q x a a      

2 2 2 2
1 1 2 2 3 3 4 4 1 2 3 4 1 2 3 4( ; , ) ( ; , ) ( ; , ) ( ; , ) ( ; , ),q x a q x a q x a q x a q x a a a a                  

then  

2 2 2 2 2 2 2 2
* 1 2 1 2 1 2 3 4 1 2 3 4 1 2 1 2( ; , ) ( ; , ) ( ; , ) .

NN Nq q q x a a I q x a a a a q x a a                    
 

 

     4.2. Cauchy Distribution  

Without losing generality, it is known that the convolution of a Cauchy probability density function 

with a scale parameter equal to one is  

1 2

1( ) ( ) .
2 2X X

xq x q x q 

 
   

 
 

And 
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1 2 3 4

1( ) ( ) ( ) ( ) .
4 4X X X X

xq x q x q x q x q   

 
     

 
 

Then 

1 2 1 2 3 4 1 2*
1 1 1 .
2 2 4 4 2 2NN N X X X X X X X X

x x xq q q I q q    

      
        

      

 

     4.3. Lévy Distribution 

We have for Lévy Distribution that       

( ) ( ) (1 4) ( 4).q x q x q x   

And 

           ( ) ( ) (1 4) ( 4).
( ) ( ) ( ) ( ) (1 16) ( 16).

q x q x q x
q x q x q x q x q x

 

   
 

Then 

 * (1 4) ( 4) (1 16) ( 16) (1 4) ( 4) .
NN Nq q q x I q x q x    

 

5. Conclusions 

     In this paper, we suggested some basic definitions of the neutrosophic stable random variable 

and generalize some of the main properties of the classical stable distributions to the neutrosophic 

field. We also defined both the neutrosophic probability distribution function and the neutrosophic 

probability density function, then we defined the convolution with the neutrosophic concept.  

Finally, we supported the article with three examples of stable distributions with the neutrosophical 

concept, which are famous distributions in classical stability. Later, we will extend the work in the 

field of neutrosophic stability and work to generalize and prove more profound facts.   
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Abstract. Soft set-like models deal with single argument approximate functions while hypersoft set, an exten-

sion of the soft set, deals with multi-argument approximate functions. The soft set cannot handle situations

when attributes are required to be further divided into disjoint attribute-valued sets. To overcome this situation,

a hypersoft set has been developed. In different fields like decision making and medical diagnosis, many re-

searchers developed models based on the soft set for the solution of many problems. But these models deal with

only one expert who creates many problems for the users, primarily in designing questionnaires. To remove this

discrepancy, we present a neutrosophic hypersoft expert set. This model not only solves the problem of dealing

with one expert but also solves the problem of different parametric-valued sets parallel to different character-

istics. In this study, we first introduce the concept of neutrosophic hypersoft expert sets, which is a amalgam

of both structures i.e., neutrosophic set and hypersoft expert sets. Certain essential basic characteristics (i.e.,

subset, equal set, agree, disagree set, null set, whole relative set, and whole absolute set), aggregation opera-

tions (i.e., complement, restricted union, extended intersection, AND and OR ), and results (i.e., idempotent,

absorption, domination, identity, commutative, associative and distributive law ) are discussed with examples.

Some hybrid structures of the neutrosophic hypersoft expert set are developed with illustrated examples. In

the end, a decision-making application is presented for the validity of the proposed theory.

Keywords: Soft Set; Soft Expert Set; Neutrosophic set; Hypersoft Set; Neutrosophic Hypersoft Expert Set.

—————————————————————————————————————————-

1. Introduction

In some real-life issues in professional and information systems where we have a situation

to deal with the truth-membership along with the falsity-membership for a correct description

of an object in an uncertain and an ambiguous environment. Smarandache [1–3] character-

ized neutrosophic set as a generalization of classical sets, fuzzy set, intuitionistic fuzzy set.

Membership functions are use to define fuzzy sets [4], while membership and non-membership
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functions both are used for intuitionistic fuzzy sets [5] and are used for solving problems hav-

ing the data of imprecise, indeterminacy and inconsistent. Neutrosophic set (NS) has wide

applications in different fields like decision making, medical diagnosis, data bases, control the-

ory and topology etc. Wang et al [6] introduced single valued neutrosophic set (SVNS) and

presented its set operations and different properties. The use NS and its hybridized structures

in various fields has been continuing quickly [7]- [32].

Molodtsov [34] constructed soft set by taking the advantage of parameterization tool. Rah-

man et al. [35, 36] conceptualized m-convexity (m-concavity) and (m, n)-convexity ((m, n)-

concavity) on soft sets with some properties. Maji et al. [37] made development by introducing

fuzzy soft set to solve parametrization problems with uncertainty. Many researchers [38]- [44]

advanced this theory and used in many fields. Rahman et al. [45] conceptualized (m-n)-

convexity(concavity)on fuzzy soft set with applications in first and second senses. Alkhazaleh

et al. [46,47] made extensions in soft set by introducing soft and fuzzy soft expert sets. They

used these structures for applications in decision-making problems(DMPs). Ihsan et al. [48,49]

conceptualized convexity on soft expert set and fuzzy soft expert set with certain properties.

Broumi et al. [50] conceptualized intuitionistic fuzzy soft expert set and made its use in DMPs.

Mehmet et al. [33] defined neutrosophic soft expert sets and applied it in DMPs.

In 2018, Smarandache [51] extended soft set to hypersoft set and used in daily life problems.

In 2020, Saeed et al. [52] advanced this theory and explained its structures. In 2020, Rahman

et al. [53], [54] worked on hypersoft set and introduced its some new structures like complex

fuzzy hypersoft set. They also gave the concept of convexity (concavity) on it and proved its

some basic properties. Ihsan et al. [58, 59] introduced the structures of hypersoft expert set

and fuzzy hypersoft expert set with applications in DMPs. Kamaci and Saqlain [60] worked

on n-ary fuzzy hypersoft expert set and applied in real life problem. Kamaci [61] gave hy-

brid structures of hypersoft set and rough set and applied in DMPs. He [62] introduced the

structure of simplified neutrosophic multiplicative refined sets and their correlation coefficients

with Application in medical pattern recognition. The neutrosophic soft set like structures have

been investigated and applied in different fields like game theory and DMPs in [63–65].

Having motivation from [33]- [50], new notions of neutrosophic hypersoft expert set are devel-

oped and some hybrids of neutrosophic hypersoft expert set are established.

The remaining portion of the paper is constructed as: Section 2 describes the basic definitions

of soft set, fuzzy set, intuitionistic fuzzy set, neutrosophic set, fuzzy soft expert set, hypersoft

set and relevant definitions used in the proposed work. Section 3, presents notions of fuzzy

hypersoft expert set, neutrosophic hypersoft expert set with properties. Section 4, describes

the set theoretic operations of NHSES. Section 5, presents the basic properties and laws of
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NHSES. Section 6 shows the hybrids of NHSES. Section 7, presents an application in decision

making and section 8 contains the conclusions of the paper.

2. Preliminaries

In this portion, some elementary definitions are presented from the literature.

Suppose W be a set of experts and O be a set of opinions, T = F ×W ×O. Taking S ⊆ T

and ∆ as a set of universe with P (∆) is the power set of universe, while parameters set is F.

Definition 2.1. [40] A set ”Fz” is called a fuzzy set written as Fz = {(r̂, B(r̂))|r̂ ∈ ∆} with

B : ∆→ I and B(r̂) represents the membership value of r̂ ∈ Fz.

Definition 2.2. [41] A set ” J ” is called an intuitionistic fuzzy set written as J = {(ǎ, <
ZJ (ǎ), XJ (ǎ) >), |(ǎ) ∈ ∆} with ZJ : I → ∆, XJ : I → ∆ and ZJ (ǎ), XJ (ǎ) represent the

truth, falsity membership functions of ǎ ∈ ∆ satisfying the inequality 0 ≤ ZJ (ǎ) + XJ (ǎ) ≤ 1.

Definition 2.3. [39] A neutrosophic set N in ∆ is defined by

N = {< y, (TN (y), IN (y), FN (y)) >: y ∈ F, TN , IN , FN ∈]−0, 1+[}
where TN , IN , FN are truth, indeterminacy, and falsity membership functions and are real

standard or nonstandard subsets of ]−0, 1+[. Their sum does not have any restriction, that is,

0− ≤ TN (y), IN (y), FN (y) ≤ 3+. Here ]−0, 1+[ is named the nonstandard subset, which is the

extension of real standard subsets [0, 1] where the nonstandard number 1+ = 1 + ε, 1 is named

the standard part, and ε is named the nonstandard part. −0 = 0 − ε, 0 is the standard part

and ε is named the nonstandard part, where ε is closed to positive real number zero.

Definition 2.4. [34] A pair (ΨM ,F) is named as soft set and ΨM is characterized by a

mapping

ΨM : F→ P (∆)

where P (∆) is the power set of universe of discourse.

Definition 2.5. [37] Let C ⊆ F. A fuzzy soft set is a pair (R,C) and R is characterized as

R : C → I∆

where I∆ represents the collection of all fuzzy subsets of ∆.

Definition 2.6. [46] A soft expert set is a pair (ΦH , S) with ΦH is characterized by a mapping

ΦH : S → P (∆)

where S ⊆ F×W ×O.
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Definition 2.7. [47] A fuzzy soft expert set is a pair (ΨF , S) with ΨF is characterized by a

mapping

ΨF : S → I∆

where S ⊆ F×W ×O and I∆ represents the collection of all fuzzy subsets of ∆.

Definition 2.8. [6] Let Kð,Lð andMð represent truth, indeterminacy and falsity membership

functions, then ð represents a single valued neutrosophic set such that 0 ≤ Kð(β) + Lð(β) +

Mð(β) ≤ 3. While Kð, Lð, Mð ∈ [0, 1] for all β in ∆.

Definition 2.9. [51]

Let n1,n2,n3, .....,nε, with ε ≥ 1 , be ε different characters having parrallel characteristics

values are the sets Z1,Z2,Z3, .....,Zε, with Zp∩Zq = ∅, for p 6= q, and p, q ∈ {1, 2, 3, ..., ε}. Then

hypersoft expert set is a pair (Υ, L) with Υ is characterized by a mapping

Υ : L→ P (∆)

where L = Z1 × Z2 × Z3 × .....× Zε.

3. Neutrosophic Hypersoft Expert Set (NHSES)

In this portion, neutrosophic hypersoft expert set has been developed with the help of

existing concept of neutrosophic soft expert set and some basic properties are presented.

Definition 3.1. [59] Fuzzy Hypersoft Expert Set (FHSES)

A pair (£,F) represents a FHSES with £ is characterized by a mapping

ξ : F → I∆

• I∆ is being used a collection of all fuzzy subsets of ∆

• F ⊆ H = Æ×Œ× Å

• Æ = Æ1×Æ2×Æ3× ....×Æp where Æi are different characteristics-valued sets parallel

to different characteristics æi, i = 1, 2, 3, ..., p

• Œ represents an expert set

• Å represents a conclusion set.

Definition 3.2. Neutrosophic Hypersoft Expert Set (NHSES)

A neutrosophic hypersoft expert set represents a pair (~,G) if

~ : G→ NF∆

with NF∆ is being used as collection of all neutrosophic subsets of ∆ and Æ ⊆ H = Æ×Œ×Å.
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Example 3.3. Assume that a worldwide organization expects to continue the assessment

of specific experts about its sure items. Let ∆ = {w1, w2, w3, w4} be a set of products and

Æ1 = {p11, p12}, Æ2 = {p21, p22}, Æ3 = {p31, p32}, be different characteristics sets for different

characteristics p1= simple to use, p2= nature, p3= modest. Now Æ = Æ1 ×Æ2 ×Æ3

Æ =

 υ1 = (p11, p21, p31), υ2 = (p11, p21, p32), υ3 = (p11, p22, p31), υ4 = (p11, p22, p32),

υ5 = (p12, p21, p31), υ6 = (p12, p21, p32), υ7 = (p12, p22, p31), υ8 = (p12, p22, p32)


Now H = Æ×Œ× Å.

H =



(υ1, c, 0), (υ1, c, 1), (υ1, d, 0), (υ1, d, 1), (υ1, e, 0), (υ1, e, 1), (υ2, c, 0), (υ2, c, 1),

(υ2, d, 0), (υ2, d, 1), (υ2, e, 0), (υ2, e, 1), (υ3, c, 0), (υ3, c, 1), (υ3, d, 0), (υ3, d, 1),

(υ3, e, 0), (υ3, e, 1), (υ4, c, 0), (υ4, c, 1), (υ4, d, 0), (υ4, d, 1), (υ4, e, 0), (υ4, e, 1),

(υ5, c, 0), (υ5, c, 1), (υ5, d, 0), (υ5, d, 1), (υ5, e, 0), (υ5, e, 1), (υ6, c, 0), (υ6, c, 1),

(υ6, d, 0), (υ6, d, 1), (υ6, e, 0), (υ6, e, 1), (υ7, c, 0), (υ7, c, 1), (υ7, d, 0), (υ7, d, 1),

(υ7, e, 0), (υ7, e, 1), (υ8, c, 0), (υ8, c, 1), (υ8, d, 0), (υ8, d, 1), (υ8, e, 0), (υ8, e, 1)


.

let

G =


(υ1, c, 0), (υ1, c, 1), (υ1, d, 0), (υ1, d, 1), (υ1, e, 0), (υ1, e, 1),

(υ2, c, 0), (υ2, c, 1), (υ2, d, 0), (υ2, d, 1), (υ2, e, 0), (υ2, e, 1),

(υ3, c, 0), (υ3, c, 1), (υ3, d, 0), (υ3, d, 1), (υ3, e, 0), (υ3, e, 1),


be a subset of H and Œ = {c, d, e, } be a set of specialists.

Following check relates the varieties of three specialists:

~1 = ~(υ1, c, 1) =
{

w1
<0.2,0.5,0.4> ,

w2
<0.7,0.2,0.5> ,

w3
<0.5,0.4,0.6> ,

w4
<0.1,0.3,0.6>

}
,

~2 = ~(υ1, d, 1) =
{

w1
<0.4,0.2,0.3> ,

w2
<0.8,0.1,0.5> ,

w3
<0.4,0.5,0.6> ,

w4
<0.2,0.5,0.3>

}
,

~3 = ~(υ1, e, 1) =
{

w1
<0.7,0.2,0.3> ,

w2
<0.5,0.3,0.6> ,

w3
<0.6,0.3,0.7> ,

w4
<0.3,0.5,0.6>

}
,

~4 = ~(υ2, c, 1) =
{

w1
<0.9,0.1,0.3> ,

w2
<0.4,0.5,0.4> ,

w3
<0.7,0.2,0.6> ,

w4
<0.3,0.4,0.8>

}
,

~5 = ~(υ2, d, 1) =
{

w1
<0.4,0.5,0.6> ,

w2
<0.8,0.1,0.7> ,

w3
<0.3,0.6,0.5> ,

w4
<0.2,0.6,0.7>

}
,

~6 = ~(υ2, e, 1) =
{

w1
<0.5,0.4,0.7> ,

w2
<0.3,0.6,0.4> ,

w3
<0.6,0.2,0.5> ,

w4
<0.8,0.1,0.6>

}
,

~7 = ~(υ3, c, 1) =
{

w1
<0.2,0.7,0.5> ,

w2
<0.9,0.1,0.4> ,

w3
<0.4,0.5,0.7> ,

w4
<0.5,0.4,0.8>

}
,

~8 = ~(υ3, d, 1) =
{

w1
<0.4,0.3,0.2> ,

w2
<0.6,0.3,0.1> ,

w3
<0.7,0.2,0.3> ,

w4
<0.9,0.1,0.4>

}
,

~9 = ~(υ3, e, 1) =
{

w1
<0.7,0.2,0.6> ,

w2
<0.3,0.5,0.7> ,

w3
<0.5,0.4,0.5> ,

w4
<0.2,0.7,0.8>

}
,

~10 = ~(υ1, c, 0) =
{

w1
<0.3,0.2,0.1> ,

w2
<0.2,0.4,0.5> ,

w3
<0.4,0.5,0.8> ,

w4
<0.1,0.8,0.3>

}
,

~11 = ~(υ1, d, 0) =
{

w1
<0.1,0.8,0.4> ,

w2
<0.9,0.1,0.2> ,

w3
<0.6,0.3,0.4> ,

w4
<0.2,0.7,0.5>

}
,
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~12 = ~(υ1, e, 0) =
{

w1
<0.2,0.7,0.5> ,

w2
<0.1,0.8,0.6> ,

w3
<0.3,0.5,0.7> ,

w4
<0.5,0.4,0.6>

}
,

~13 = ~(υ2, c, 0) =
{

w1
<0.8,0.1,0.6> ,

w2
<0.3,0.6,0.7> ,

w3
<0.5,0.4,0.8> ,

w4
<0.7,0.2,0.9>

}
,

~14 = ~(υ2, d, 0) =
{

w1
<0.7,0.2,0.5> ,

w2
<0.2,0.6,0.4> ,

w3
<0.9,0.1,0.6> ,

w4
<0.4,0.5,0.7>

}
,

~15 = ~(υ2, e, 0) =
{

w1
<0.6,0.2,0.5> ,

w2
<0.7,0.2,0.4> ,

w3
<0.3,0.5,0.4> ,

w4
<0.2,0.7,0.6>

}
,

~16 = ~(υ3, c, 0) =
{

w1
<0.1,0.7,0.5> ,

w2
<0.4,0.5,0.7> ,

w3
<0.7,0.2,0.9> ,

w4
<0.8,0.2,0.4>

}
,

~17 = ~(υ3, d, 0) =
{

w1
<0.2,0.7,0.4> ,

w2
<0.9,0.1,0.6> ,

w3
<0.8,0.2,0.4> ,

w4
<0.3,0.5,0.7>

}
,

~18 = ~(υ3, e, 0) =
{

w1
<0.5,0.4,0.2> ,

w2
<0.3,0.6,0.1> ,

w3
<0.6,0.3,0.2> ,

w4
<0.1,0.8,0.3>

}
.

The NHSES can be described as (~,G) =

(
(υ1, c, 1),

{
w1

<0.2,0.5,0.4> ,
w2

<0.7,0.2,0.5> ,
w3

<0.5,0.4,0.6> ,
w4

<0.1,0.3,0.6>

} )
,

(
(υ1, d, 1),

{
w1

<0.4,0.2,0.3> ,
w2

<0.8,0.1,0.5> ,
w3

<0.4,0.5,0.6> ,
w4

<0.2,0.5,0.3>

} )
,(

(υ1, e, 1),

{
w1

<0.7,0.2,0.3> ,
w2

<0.5,0.3,0.6> ,
w3

<0.6,0.3,0.7> ,
w4

<0.3,0.5,0.6>

} )
,

(
(υ2, c, 1),

{
w1

<0.9,0.1,0.3> ,
w2

<0.4,0.5,0.4> ,
w3

<0.7,0.2,0.6> ,
w4

<0.3,0.4,0.8>

} )
,(

(υ2, d, 1),

{
w1

<0.4,0.5,0.6> ,
w2

<0.8,0.1,0.7> ,
w3

<0.3,0.6,0.5> ,
w4

<0.2,0.6,0.7>

} )
,

(
(υ2, e, 1),

{
w1

<0.5,0.4,0.7> ,
w2

<0.3,0.6,0.4> ,
w3

<0.6,0.2,0.5> ,
w4

<0.8,0.1,0.6>

} )
,(

(υ3, c, 1),

{
w1

<0.2,0.7,0.5> ,
w2

<0.9,0.1,0.4> ,
w3

<0.4,0.5,0.7> ,
w4

<0.5,0.4,0.8>

} )
,

(
(υ3, d, 1),

{
w1

<0.4,0.3,0.2> ,
w2

<0.6,0.3,0.1> ,
w3

<0.7,0.2,0.3> ,
w4

<0.9,0.1,0.4>

} )
,(

(υ3, e, 1),

{
w1

<0.7,0.2,0.6> ,
w2

<0.3,0.5,0.7> ,
w3

<0.5,0.4,0.5> ,
w4

<0.2,0.7,0.8>

} )
,

(
(υ1, c, 0),

{
w1

<0.3,0.2,0.1> ,
w2

<0.2,0.4,0.5> ,
w3

<0.4,0.5,0.8> ,
w4

<0.1,0.8,0.3>

} )
,(

(υ1, d, 0),

{
w1

<0.1,0.8,0.4> ,
w2

<0.9,0.1,0.2> ,
w3

<0.6,0.3,0.4> ,
w4

<0.2,0.7,0.5>

} )
,

(
(υ1, e, 0),

{
w1

<0.2,0.7,0.5> ,
w2

<0.1,0.8,0.6> ,
w3

<0.3,0.5,0.7> ,
w4

<0.5,0.4,0.6>

} )
,(

(υ2, c, 0),

{
w1

<0.8,0.1,0.6> ,
w2

<0.3,0.6,0.7> ,
w3

<0.5,0.4,0.8> ,
w4

<0.7,0.2,0.9>

} )
,

(
(υ2, d, 0),

{
w1

<0.7,0.2,0.5> ,
w2

<0.2,0.6,0.4> ,
w3

<0.9,0.1,0.6> ,
w4

<0.4,0.5,0.7>

} )
,(

(υ2, e, 0),

{
w1

<0.6,0.2,0.5> ,
w2

<0.7,0.2,0.4> ,
w3

<0.3,0.5,0.4> ,
w4

<0.2,0.7,0.6>

} )
,

(
(υ3, c, 0),

{
w1

<0.1,0.7,0.5> ,
w2

<0.4,0.5,0.7> ,
w3

<0.7,0.2,0.9> ,
w4

<0.8,0.2,0.4>

} )
,(

(υ3, d, 0),

{
w1

<0.2,0.7,0.4> ,
w2

<0.9,0.1,0.6> ,
w3

<0.8,0.2,0.4> ,
w4

<0.3,0.5,0.7>

} )
,

(
(υ3, e, 0),

{
w1

<0.5,0.4,0.2> ,
w2

<0.3,0.6,0.1> ,
w3

<0.6,0.3,0.2> ,
w4

<0.1,0.8,0.3>

} )
,



.

Definition 3.4. Neutrosophic Hypersoft Expert Subset

A NHSES (~1,G) is said to be NHSE subset of (~2,P), if

(i) G ⊆ P, (ii) ∀ γ ∈ G, ~1(γ) ⊆ ~2(γ) and denoted by (~1,G) ⊆ (~2,P).

Example 3.5. Considering Example 3.3, with two NHSESs

G1 =
{

(υ1, c, 1), (υ3, c, 0), (υ1, d, 1), (υ3, d, 1), (υ3, d, 0), (υ1, e, 0), (υ3, e, 1)
}

G2 =
{

(υ1, c, 1), (υ3, c, 0), (υ3, c, 1), (υ1, d, 1), (υ3, d, 1), (υ1, d, 0), (υ3, d, 0), (υ1, e, 0), (υ3, e, 1), (υ1, e, 1)
}
.
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It is clear that G1 ⊂ G2. Suppose (~1,G1) and (~2,G2) be defined as following

(~1,G1) =



(
(υ1, c, 1),

{
w1

<0.1,0.6,0.7> ,
w2

<0.6,0.5,0.8> ,
w3

<0.4,0.6,0.9> ,
w4

<0.1,0.8,0.6>

})
,(

(υ1, d, 1),
{

w1
<0.3,0.4,0.5> ,

w2
<0.6,0.4,0.6> ,

w3
<0.2,0.5,0.7> ,

w4
<0.1,0.5,0.6>

})
,(

(υ3, d, 1),
{

w1
<0.2,0.6,0.4> ,

w2
<0.5,0.4,0.7> ,

w3
<0.6,0.5,0.8> ,

w4
<0.8,0.6,0.4>

})
,(

(υ3, e, 1),
{

w1
<0.6,0.4,0.3> ,

w2
<0.2,0.7,0.6> ,

w3
<0.4,0.5,0.3> ,

w4
<0.1,0.7,0.4>

})
,(

(υ1, e, 0),
{

w1
<0.1,0.6,0.3> ,

w2
<0.1,0.7,0.4> ,

w3
<0.2,0.7,0.6> ,

w4
<0.1,0.6,0.7>

})
,(

(υ3, c, 0),
{

w1
<0.1,0.8,0.6> ,

w2
<0.3,0.6,0.5> ,

w3
<0.6,0.3,0.4> ,

w4
<0.7,0.2,0.6>

})
,(

(υ3, d, 0),
{

w1
<0.1,0.7,0.4> ,

w2
<0.6,0.3,0.6> ,

w3
<0.7,0.2,0.5> ,

w4
<0.2,0.7,0.4>

})



(~2,G2) =



(
(υ1, c, 1),

{
w1

<0.2,0.3,0.6> ,
w2

<0.7,0.4,0.7> ,
w3

<0.5,0.4,0.8> ,
w4

<0.2,0.4,0.5>

})
,(

(υ1, d, 1),
{

w1
<0.4,0.3,0.4> ,

w2
<0.8,0.3,0.5> ,

w3
<0.4,0.3,0.6> ,

w4
<0.2,0.6,0.5>

})
,(

(υ3, c, 1),
{

w1
<0.1,0.3,0.4> ,

w2
<0.9,0.1,0.3> ,

w3
<0.4,0.5,0.4> ,

w4
<0.5,0.3,0.4>

})
,(

(υ3, d, 1),
{

w1
<0.4,0.2,0.3> ,

w2
<0.6,0.3,0.6> ,

w3
<0.7,0.4,0.5> ,

w4
<0.9,0.5,0.2

})
,(

(υ1, e, 1),
{

w1
<0.7,0.2,0.4> ,

w2
<0.5,0.2,0.6> ,

w3
<0.6,0.2,0.7> ,

w4
<0.3,0.5,0.8

})
,(

(υ3, e, 1),
{

w1
<0.7,0.3,0.1> ,

w2
<0.3,0.5,0.4> ,

w3
<0.5,0.4,0.2> ,

w4
<0.2,0.6,0.3>

})
,(

(υ1, e, 0),
{

w1
<0.2,0.5,0.1> ,

w2
<0.2,0.6,0.3> ,

w3
<0.3,0.5,0.4> ,

w4
<0.5,0.3,0.5>

})
,(

(υ1, d, 0),
{

w1
<0.1,0.6,0.4> ,

w2
<0.9,0.1,0.6> ,

w3
<0.6,0.3,0.8> ,

w4
<0.2,0.6,0.8>

})
,(

(υ3, c, 0),
{

w1
<0.2,0.7,0.4> ,

w2
<0.4,0.5,0.3> ,

w3
<0.7,0.2,0.1> ,

w4
<0.8,0.1,0.5>

})
,(

(υ3, d, 0),
{

w1
<0.2,0.5,0.1> ,

w2
<0.7,0.2,0.3> ,

w3
<0.8,0.2,0.4> ,

w4
<0.3,0.5,0.2>

})



which shows that (~1,G1) ⊆ (~2,G2).

Definition 3.6. Two NHSESs (~1,G1) and (~2,G2) over ∆ are said to be equal if (~1,G1) is

a NHSE subset of (~2,G2) and (~2,G2) is a neutrosophic hypersoft expert subset of (~1,G1).

Definition 3.7. The complement of a NHSES is characterized by as

(~,G)c = c̃(~(ς)) ∀ ς ∈ ∆ while c̃ is a neutrosophic complement.
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Example 3.8. Finding complement of NHSES find in 3.3, we have

(~,G)c =



(
(υ1, c, 1),

{
w1

<0.4,0.5,0.2> ,
w2

<0.5,0.8,0.7> ,
w3

<0.6,0.6,0.5> ,
w4

<0.6,0.7,0.1>

})
,(

(υ1, d, 1),
{

w1
<0.3,0.8,0.6> ,

w2
<0.5,0.9,0.8> ,

w3
<0.6,0.5,0.4> ,

w4
<0.3,0.5,0.2>

})
,(

(υ1, e, 1),
{

w1
<0.3,0.8,0.7> ,

w2
<0.6,0.7,0.5> ,

w3
<0.7,0.7,0.6> ,

w4
<0.6,0.5,0.3>

})
,(

(υ2, c, 1),
{

w1
<0.3,0.9,0.9> ,

w2
<0.4,0.5,0.4> ,

w3
<0.6,0.8,0.7> ,

w4
<0.8,0.6,0.3>

})
,(

(υ2, d, 1),
{

w1
<0.6,0.5,0.4> ,

w2
<0.7,0.9,0.8> ,

w3
<0.5,0.4,0.3> ,

w4
<0.7,0.4,0.2>

})
,(

(υ2, e, 1),
{

w1
<0.7,0.6,0.5> ,

w2
<0.4,0.4,0.3> ,

w3
<0.5,0.8,0.6> ,

w4
<0.6,0.9,0.8>

})
,(

(υ3, c, 1),
{

w1
<0.5,0.3,0.2> ,

w2
<0.4,0.9,0.9> ,

w3
<0.7,0.5,0.4> ,

w4
<0.8,0.6,0.5>

})
,(

(υ3, d, 1),
{

w1
<0.2,0.7,0.4> ,

w2
<0.1,0.7,0.6> ,

w3
<0.3,0.8,0.7> ,

w4
<0.4,0.9,0.9>

})
,(

(υ3, e, 1),
{

w1
<0.6,0.8,0.7> ,

w2
<0.7,0.5,0.3> ,

w3
<0.5,0.6,0.5> ,

w4
<0.8,0.3,0.2>

})
,(

(υ1, c, 0),
{

w1
<0.1,0.8,0.3> ,

w2
<0.5,0.6,0.2> ,

w3
<0.8,0.5,0.4> ,

w4
<0.3,0.2,0.1>

})
,(

(υ1, d, 0),
{

w1
<0.4,0.2,0.1> ,

w2
<0.2,0.9,0.9> ,

w3
<0.4,0.7,0.6> ,

w4
<0.5,0.3,0.2>

})
,(

(υ1, e, 0),
{

w1
<0.5,0.3,0.2> ,

w2
<0.6,0.2,0.1> ,

w3
<0.7,0.5,0.3> ,

w4
<0.6,0.6,0.5>

})
,(

(υ2, c, 0),
{

w1
<0.6,0.9,0.8> ,

w2
<0.7,0.4,0.3> ,

w3
<0.8,0.6,0.5> ,

w4
<0.9,0.8,0.7>

})
,(

(υ2, d, 0),
{

w1
<0.5,0.8,0.7> ,

w2
<0.4,0.4,0.2> ,

w3
<0.6,0.9,0.9> ,

w4
<0.7,0.5,0.4>

})
,(

(υ2, e, 0),
{

w1
<0.5,0.8,0.6> ,

w2
<0.4,0.8,0.7> ,

w3
<0.4,0.5,0.3> ,

w4
<0.6,0.3,0.2>

})
,(

(υ3, c, 0),
{

w1
<0.5,0.3,0.1> ,

w2
<0.7,0.5,0.3> ,

w3
<0.9,0.8,0.8> ,

w4
<0.4,0.8,0.8>

})
,(

(υ3, d, 0),
{

w1
<0.4,0.3,0.2> ,

w2
<0.6,0.9,0.9> ,

w3
<0.4,0.8,0.8> ,

w4
<0.7,0.5,0.3>

})
,(

(υ3, e, 0),
{

w1
<0.2,0.6,0.5> ,

w2
<0.1,0.4,0.3> ,

w3
<0.2,0.7,0.6> ,

w4
<0.3,0.2,0.1>

})



.

Definition 3.9. An agree-NHSES is described by as (~,Æ)ag = {~ag(ς) : ς ∈ Æ×Œ× {1}}.

Example 3.10. Finding agree-NHSES calculated in 3.3, we get

(~,G) =



(
(υ1, c, 1),

{
w1

<0.2,0.5,0.4> ,
w2

<0.7,0.2,0.5> ,
w3

<0.5,0.4,0.6> ,
w4

<0.1,0.3,0.6>

})
,(

(υ1, d, 1),
{

w1
<0.4,0.2,0.3> ,

w2
<0.8,0.1,0.5> ,

w3
<0.4,0.5,0.6> ,

w4
<0.2,0.5,0.3>

})
,(

(υ1, e, 1),
{

w1
<0.7,0.2,0.3> ,

w2
<0.5,0.3,0.6> ,

w3
<0.6,0.3,0.7> ,

w4
<0.3,0.5,0.6>

})
,(

(υ2, c, 1),
{

w1
<0.9,0.1,0.3> ,

w2
<0.4,0.5,0.4> ,

w3
<0.7,0.2,0.6> ,

w4
<0.3,0.4,0.8>

})
,(

(υ2, d, 1),
{

w1
<0.4,0.5,0.6> ,

w2
<0.8,0.1,0.7> ,

w3
<0.3,0.6,0.5> ,

w4
<0.2,0.6,0.7>

})
,(

(υ2, e, 1),
{

w1
<0.5,0.4,0.7> ,

w2
<0.3,0.6,0.4> ,

w3
<0.6,0.2,0.5> ,

w4
<0.8,0.1,0.6>

})
,(

(υ3, c, 1),
{

w1
<0.2,0.7,0.5> ,

w2
<0.9,0.1,0.4> ,

w3
<0.4,0.5,0.7> ,

w4
<0.5,0.4,0.8>

})
,(

(υ3, d, 1),
{

w1
<0.4,0.3,0.2> ,

w2
<0.6,0.3,0.1> ,

w3
<0.7,0.2,0.3> ,

w4
<0.9,0.1,0.4>

})
,(

(υ3, e, 1),
{

w1
<0.7,0.2,0.6> ,

w2
<0.3,0.5,0.7> ,

w3
<0.5,0.4,0.5> ,

w4
<0.2,0.7,0.8>

})



.

Definition 3.11. A disagree-NHSES is described by as

(~,Æ)dag = {~dag(ς) : ς ∈ Æ×Œ× {0}}.
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Example 3.12. Getting disagree-NHSES calculated in 3.3,

(~,G) =



(
(υ1, c, 0),

{
w1

<0.3,0.2,0.1> ,
w2

<0.2,0.4,0.5> ,
w3

<0.4,0.5,0.8> ,
w4

<0.1,0.8,0.3>

})
,(

(υ1, d, 0),
{

w1
<0.1,0.8,0.4> ,

w2
<0.9,0.1,0.2> ,

w3
<0.6,0.3,0.4> ,

w4
<0.2,0.7,0.5>

})
,(

(υ1, e, 0),
{

w1
<0.2,0.7,0.5> ,

w2
<0.1,0.8,0.6> ,

w3
<0.3,0.5,0.7> ,

w4
<0.5,0.4,0.6>

})
,(

(υ2, c, 0),
{

w1
<0.8,0.1,0.6> ,

w2
<0.3,0.6,0.7> ,

w3
<0.5,0.4,0.8> ,

w4
<0.7,0.2,0.9>

})
,(

(υ2, d, 0),
{

w1
<0.7,0.2,0.5> ,

w2
<0.2,0.6,0.4> ,

w3
<0.9,0.1,0.6> ,

w4
<0.4,0.5,0.7>

})
,(

(υ2, e, 0),
{

w1
<0.6,0.2,0.5> ,

w2
<0.7,0.2,0.4> ,

w3
<0.3,0.5,0.4> ,

w4
<0.2,0.7,0.6>

})
,(

(υ3, c, 0),
{

w1
<0.1,0.7,0.5> ,

w2
<0.4,0.5,0.7> ,

w3
<0.7,0.2,0.9> ,

w4
<0.8,0.2,0.4>

})
,(

(υ3, d, 0),
{

w1
<0.2,0.7,0.4> ,

w2
<0.9,0.1,0.6> ,

w3
<0.8,0.2,0.4> ,

w4
<0.3,0.5,0.7>

})
,(

(υ3, e, 0),
{

w1
<0.5,0.4,0.2> ,

w2
<0.3,0.6,0.1> ,

w3
<0.6,0.3,0.2> ,

w4
<0.1,0.8,0.3>

})
,



.

Definition 3.13. A NHSES (~1,G1) is called a relative null NHSES w.r.t G1 ⊂ G, denoted

by (~1,G1) , if ~1(g) = ∅, ∀ g ∈ G1.

Example 3.14. Considering Example 3.3, we

(~1,G1) = {((w1, c, 1), ∅), ((w2, d, 1), ∅), ((w3, e, 1), ∅)}.

Definition 3.15. A NHSES (~2,G2) is called a relative whole NHSES w.r.t G2 ⊂ G, denoted

by (~2,G2)∆ , if ~1(g) = ∆, ∀ g ∈ G2.

Example 3.16. Considering Example 3.3, we have

(~2,G2)∆ = {((w1, c, 1),∆), ((w2, d, 1),∆), ((w3, e, 1),∆)} where G2 ⊆ G.

Definition 3.17. A NHSES (~,G) is called absolute whole NHSES denoted by (~,G)∆, if

~(g) = ∆, ∀ g ∈ G.

Example 3.18. Considering Example 3.3, we have

(Ψ,S)∆ =



((w1, c, 1),∆) , ((w1, d, 1),∆) , ((w1, e, 1),∆) , ((w3, c, 1),∆) ,

((w3, d, 1),∆) , ((w3, e, 1),∆) , ((w5, c, 1),∆) , ((w5, d, 1),∆) ,

((w5, e, 1),∆) , ((w1, c, 0),∆) , ((w1, d, 0),∆) , ((w1, e, 0),∆) ,

((w3, c, 0),∆) , ((w3, d, 0),∆) , ((w3, e, 0),∆) , ((w5, c, 0),∆) ,

((w5, d, 0),∆) , ((w5, e, 0),∆)


.

Proposition 3.19. Suppose (~1,G1)∆, (~2,G2)∆, (~3,G3)∆, be three NHSES-sets over ∆,

then

• (~1,G1) ⊂ (~2,G2)∆,

• (~1,G1)~ ⊂ (~1,G1),

• (~1,G1) ⊂ (~1,G1),

• If (~1,G1) ⊂ (~2,G2), and (~2,G2) ⊂ (~3,G3), then (~1,G1) ⊂ (~3,S3).
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• If (~1,G1) = (~2,G2), and (~2,G2) = (~3,G3), then (~1,G1) = (~3,G3).

Proposition 3.20. If (~,G) is a NHSES over ∆, then

(1) ((~,G)c)c = (~,G)

(2) (~,G)cag = (~,G)dag

(3) (~,G)cdag = (~,G)ag.

4. Set Theoretic Operations of NHSES

In this portion, some set theoretic operations are presented with detailed examples.

Definition 4.1. The union of (~1,G) and (~2,R) over ∆ is (~3,L) with L = G∪R, defined as

~3(ς) =


~1(ς)

~2(ς)

∪(~1(ς), ~2(ς))

; ς ∈ G− R
; ς ∈ R−G
; ς ∈ G ∩ R.

where ∪(~1(ς), ~2(ς)) = {< u, max {υ1(ς), υ2(ς)}, 1/2{ν1(ς) + ν2(ς)}, min {ω1(ς), ω2(ς)} >:

u ∈ ∆}.

Example 4.2. Considering Example 3.3, we see

G1 =
{

(υ1, c, 1), (υ3, c, 0), (υ1, d, 1), (υ3, d, 1), (υ3, d, 0), (υ1, e, 0), (υ3, e, 1)
}

G2 =
{

(υ1, c, 1), (υ3, c, 0), (υ3, c, 1), (υ1, d, 1), (υ3, d, 1), (υ1, e, 1), (υ3, d, 0), (υ1, e, 0), (υ3, e, 1), (υ1, d, 0)
}
.

Suppose (~1,G1) and (~2,G2) over ∆ are two NHSESs such that

(~1,G1) =



(
(υ1, c, 1),

{
w1

<0.1,0.6,0.4> ,
w2

<0.6,0.3,0.2> ,
w3

<0.4,0.5,0.1> ,
w4

<0.1,0.8,0.5>

})
,(

(υ1, d, 1),
{

w1
<0.3,0.4,0.5> ,

w2
<0.6,0.2,0.3> ,

w3
<0.2,0.5,0.6> ,

w4
<0.1,0.5,0.3>

})
,(

(υ3, d, 1),
{

w1
<0.2,0.6,0.7> ,

w2
<0.5,0.2,0.3> ,

w3
<0.6,0.3,0.5> ,

w4
<0.8,0.1,0.9>

})
,(

(υ3, e, 1),
{

w1
<0.6,0.2,0.4> ,

w2
<0.2,0.7,0.6> ,

w3
<0.4,0.3,0.5> ,

w4
<0.1,0.5,0.4>

})
,(

(υ1, e, 0),
{

w1
<0.1,0.3,0.5> ,

w2
<0.1,0.7,0.6> ,

w3
<0.2,0.7,0.4> ,

w4
<0.4,0.6,0.8>

})
,(

(υ3, c, 0),
{

w1
<0.1,0.6,0.9> ,

w2
<0.3,0.6,0.7> ,

w3
<0.6,0.1,0.2> ,

w4
<0.7,0.2,0.3>

})
,(

(υ3, d, 0),
{

w1
<0.1,0.7,0.3> ,

w2
<0.8,0.1,0.2> ,

w3
<0.7,0.2,0.4> ,

w4
<0.2,0.7,0.6>

})
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(~2,G2) =



(
(υ1, c, 1),

{
w1

<0.2,0.3,0.4> ,
w2

<0.7,0.4,0.5> ,
w3

<0.5,0.4,0.6> ,
w4

<0.2,0.4,0.7>

})
,(

(υ1, d, 1),
{

w1
<0.4,0.3,0.8> ,

w2
<0.8,0.3,0.5> ,

w3
<0.4,0.3,0.5> ,

w4
<0.2,0.6,0.7>

})
,(

(υ3, c, 1),
{

w1
<0.1,0.3,0.6> ,

w2
<0.9,0.1,0.7> ,

w3
<0.4,0.5,0.8> ,

w4
<0.5,0.3,0.5>

})
,(

(υ3, d, 1),
{

w1
<0.4,0.2,0.3> ,

w2
<0.6,0.3,0.5> ,

w3
<0.7,0.4,0.5> ,

w4
<0.9,0.5,0.7

})
,(

(υ1, e, 1),
{

w1
<0.7,0.2,0.3> ,

w2
<0.5,0.2,0.4> ,

w3
<0.6,0.2,0.4> ,

w4
<0.3,0.5,0.6

})
,(

(υ3, e, 1),
{

w1
<0.7,0.3,0.7> ,

w2
<0.3,0.5,0.6> ,

w3
<0.5,0.4,0.3> ,

w4
<0.2,0.6,0.4>

})
,(

(υ1, e, 0),
{

w1
<0.2,0.5,0.4> ,

w2
<0.2,0.6,0.3> ,

w3
<0.3,0.5,0.6> ,

w4
<0.5,0.3,0.7>

})
,(

(υ1, d, 0),
{

w1
<0.1,0.6,0.3> ,

w2
<0.9,0.1,0.2> ,

w3
<0.6,0.3,0.4> ,

w4
<0.2,0.6,0.3>

})
,(

(υ3, c, 0),
{

w1
<0.2,0.7,0.5> ,

w2
<0.4,0.5,0.6> ,

w3
<0.7,0.2,0.3> ,

w4
<0.8,0.1,0.4>

})
,(

(υ3, d, 0),
{

w1
<0.2,0.5,0.4> ,

w2
<0.7,0.2,0.3> ,

w3
<0.8,0.2,0.6> ,

w4
<0.3,0.5,0.7>

})



.

Then (~1,G1) ∪ (~2,G2) = (~3,G3)

(~3,G3) =



(
(υ1, c, 1),

{
w1

<0.2,0.45,0.4> ,
w2

<0.7,0.35,0.2> ,
w3

<0.5,0.45,0.1> ,
w4

<0.2,0.6,0.5>

})
,(

(υ1, d, 1),
{

w1
<0.4,0.35,0.5> ,

w2
<0.8,0.25,0.3> ,

w3
<0.4,0.4,0.5> ,

w4
<0.2,0.55,0.3>

})
,(

(υ3, c, 1),
{

w1
<0.1,0.30,0.6> ,

w2
<0.9,0.10,0.7> ,

w3
<0.4,0.5,0.8> ,

w4
<0.5,0.3,0.5>

})
,(

(υ3, d, 1),
{

w1
<0.4,0.40,0.3> ,

w2
<0.6,0.25,0.3> ,

w3
<0.7,0.35,0.5> ,

w4
<0.9,0.30,0.7

})
,(

(υ1, e, 1),
{

w1
<0.7,0.20,0.3> ,

w2
<0.5,0.20,0.4> ,

w3
<0.6,0.20,0.4> ,

w4
<0.3,0.50,0.6

})
,(

(υ3, e, 1),
{

w1
<0.7,0.20,0.4> ,

w2
<0.3,0.50,0.6> ,

w3
<0.5,0.3,0.3> ,

w4
<0.2,0.5,0.4>

})
,(

(υ1, e, 0),
{

w1
<0.2,0.40,0.4> ,

w2
<0.2,0.65,0.3> ,

w3
<0.3,0.6,0.4> ,

w4
<0.5,0.45,0.7>

})
,(

(υ1, d, 0),
{

w1
<0.1,0.60,0.3> ,

w2
<0.9,0.10,0.2> ,

w3
<0.6,0.30,0.4> ,

w4
<0.2,0.60,0.3>

})
,(

(υ3, c, 0),
{

w1
<0.2,0.65,0.5> ,

w2
<0.4,0.55,0.6> ,

w3
<0.7,0.15,0.2> ,

w4
<0.8,0.15,0.3>

})
,(

(υ3, d, 0),
{

w1
<0.2,0.60,0.3> ,

w2
<0.8,0.15,0.2> ,

w3
<0.8,0.20,0.4> ,

w4
<0.3,0.60,0.6>

})



.

Definition 4.3. Restricted Union of two NHSESs (~1,G1) and (~2,G2) over ∆ is (~3,L) with

L = G1 ∩G2, defined as ~3(ς) = ~1(ς) ∪R ~2(ς) for ς ∈ G1 ∩G2.

Example 4.4. Considering Example 3.3, we see

G1 =
{

(υ1, c, 1), (υ3, c, 0), (υ1, d, 1), (υ3, d, 1), (υ3, d, 0), (υ1, e, 0), (υ3, e, 1)
}

, G2 ={
(υ1, c, 1), (υ3, c, 0), (υ3, c, 1), (υ1, d, 1), (υ3, d, 1), (υ1, d, 0), (υ3, d, 0), (υ1, e, 0), (υ3, e, 1), (υ1, e, 1)

}
.
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Suppose (~1,G1) and (~2,G2) over ∆ are two NHSESs such that

(~1,G1) =



(
(υ1, c, 1),

{
w1

<0.1,0.6,0.4> ,
w2

<0.6,0.3,0.2> ,
w3

<0.4,0.5,0.1> ,
w4

<0.1,0.8,0.5>

})
,(

(υ1, d, 1),
{

w1
<0.3,0.4,0.5> ,

w2
<0.6,0.2,0.3> ,

w3
<0.2,0.5,0.6> ,

w4
<0.1,0.5,0.3>

})
,(

(υ3, d, 1),
{

w1
<0.2,0.6,0.7> ,

w2
<0.5,0.2,0.3> ,

w3
<0.6,0.3,0.5> ,

w4
<0.8,0.1,0.9>

})
,(

(υ3, e, 1),
{

w1
<0.6,0.2,0.4> ,

w2
<0.2,0.7,0.6> ,

w3
<0.4,0.3,0.5> ,

w4
<0.1,0.5,0.4>

})
,(

(υ1, e, 0),
{

w1
<0.1,0.3,0.5> ,

w2
<0.1,0.7,0.6> ,

w3
<0.2,0.7,0.4> ,

w4
<0.4,0.6,0.8>

})
,(

(υ3, c, 0),
{

w1
<0.1,0.6,0.9> ,

w2
<0.3,0.6,0.7> ,

w3
<0.6,0.1,0.2> ,

w4
<0.7,0.2,0.3>

})
,(

(υ3, d, 0),
{

w1
<0.1,0.7,0.3> ,

w2
<0.8,0.1,0.2> ,

w3
<0.7,0.2,0.4> ,

w4
<0.2,0.7,0.6>

})



(~2,G2) =



(
(υ1, c, 1),

{
w1

<0.2,0.3,0.4> ,
w2

<0.7,0.4,0.5> ,
w3

<0.5,0.4,0.6> ,
w4

<0.2,0.4,0.7>

})
,(

(υ1, d, 1),
{

w1
<0.4,0.3,0.8> ,

w2
<0.8,0.3,0.5> ,

w3
<0.4,0.3,0.5> ,

w4
<0.2,0.6,0.7>

})
,(

(υ3, c, 1),
{

w1
<0.1,0.3,0.6> ,

w2
<0.9,0.1,0.7> ,

w3
<0.4,0.5,0.8> ,

w4
<0.5,0.3,0.5>

})
,(

(υ3, d, 1),
{

w1
<0.4,0.2,0.3> ,

w2
<0.6,0.3,0.5> ,

w3
<0.7,0.4,0.5> ,

w4
<0.9,0.5,0.7

})
,(

(υ1, e, 1),
{

w1
<0.7,0.2,0.3> ,

w2
<0.5,0.2,0.4> ,

w3
<0.6,0.2,0.4> ,

w4
<0.3,0.5,0.6

})
,(

(υ3, e, 1),
{

w1
<0.7,0.3,0.7> ,

w2
<0.3,0.5,0.6> ,

w3
<0.5,0.4,0.3> ,

w4
<0.2,0.6,0.4>

})
,(

(υ1, e, 0),
{

w1
<0.2,0.5,0.4> ,

w2
<0.2,0.6,0.3> ,

w3
<0.3,0.5,0.6> ,

w4
<0.5,0.3,0.7>

})
,(

(υ1, d, 0),
{

w1
<0.1,0.6,0.3> ,

w2
<0.9,0.1,0.2> ,

w3
<0.6,0.3,0.4> ,

w4
<0.2,0.6,0.3>

})
,(

(υ3, c, 0),
{

w1
<0.2,0.7,0.5> ,

w2
<0.4,0.5,0.6> ,

w3
<0.7,0.2,0.3> ,

w4
<0.8,0.1,0.4>

})
,(

(υ3, d, 0),
{

w1
<0.2,0.5,0.4> ,

w2
<0.7,0.2,0.3> ,

w3
<0.8,0.2,0.6> ,

w4
<0.3,0.5,0.7>

})



.

Then (~1,G1) ∪R (~2,G2) = (~3,L)

(~3,L) =



(
(υ1, c, 1),

{
w1

<0.2,0.45,0.4> ,
w2

<0.7,0.35,0.2> ,
w3

<0.5,0.45,0.1> ,
w4

<0.2,0.6,0.5>

})
,(

(υ1, d, 1),
{

w1
<0.4,0.35,0.5> ,

w2
<0.8,0.25,0.3> ,

w3
<0.4,0.4,0.5> ,

w4
<0.2,0.55,0.3>

})
,(

(υ3, d, 1),
{

w1
<0.4,0.40,0.3> ,

w2
<0.6,0.25,0.3> ,

w3
<0.7,0.35,0.5> ,

w4
<0.9,0.30,0.7

})
,(

(υ1, e, 1),
{

w1
<0.7,0.20,0.3> ,

w2
<0.5,0.20,0.4> ,

w3
<0.6,0.20,0.4> ,

w4
<0.3,0.50,0.6

})
,(

(υ3, e, 1),
{

w1
<0.7,0.20,0.4> ,

w2
<0.3,0.50,0.6> ,

w3
<0.5,0.3,0.3> ,

w4
<0.2,0.5,0.4>

})
,(

(υ1, e, 0),
{

w1
<0.2,0.60,0.4> ,

w2
<0.2,0.10,0.3> ,

w3
<0.3,0.30,0.4> ,

w4
<0.5,0.60,0.7>

})
,(

(υ3, c, 0),
{

w1
<0.2,0.65,0.5> ,

w2
<0.4,0.55,0.6> ,

w3
<0.7,0.15,0.2> ,

w4
<0.8,0.15,0.3>

})
,(

(υ3, d, 0),
{

w1
<0.2,0.60,0.3> ,

w2
<0.8,0.15,0.2> ,

w3
<0.8,0.20,0.4> ,

w4
<0.3,0.60,0.6>

})



.

Proposition 4.5. If (~1,G1),(~2,G2) and (~3,G3) are three NHSESs, then

(1) (~1,G1) ∪ (~2,G2) = (~2,G2) ∪ (~1,G1)

(2) ((~1,G1) ∪ (~2,G2)) ∪ (~3,G3) = (~1,G1) ∪ ((~2,G2) ∪ (~3, N3))

(3) (~,G) ∪ Φ = (~,G).
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Definition 4.6. The intersection of two NHSESs (~1,G) and (~2,R) over ∆ is (~3,L) with

L = G ∩ R, defined as

~3(ς) =


~1(ς)

~2(ς)

∩(~1(ς), ~2(ς))

; ς ∈ G− R
; ς ∈ R−G
; ς ∈ G ∩ R

where ∩(~1(ς), ~2(ς)) = {< u, min {υ1(ς), υ2(ς)}, 1/2{ν1(ς) + ν2(ς)}, max {ω1(ς), ω2(ς)} >:

u ∈ ∆}.

Example 4.7. Reconsidering Example 3.3, we have

G1 =
{

(υ1, c, 1), (υ3, c, 0), (υ1, d, 1), (υ3, d, 1), (υ3, d, 0), (υ1, e, 0), (υ3, e, 1)
}

G2 =
{

(υ1, c, 1), (υ3, c, 0), (υ3, c, 1), (υ1, d, 1), (υ3, d, 1), (υ1, d, 0), (υ3, d, 0), (υ1, e, 0), (υ3, e, 1), , (υ1, e, 1)
}

Suppose (~1,G1) and (~2,G2) are two NHSESs over ∆ such that

(~1,G1) =



(
(υ1, c, 1),

{
w1

<0.1,0.6,0.4> ,
w2

<0.6,0.3,0.2> ,
w3

<0.4,0.5,0.1> ,
w4

<0.1,0.8,0.5>

})
,(

(υ1, d, 1),
{

w1
<0.3,0.4,0.5> ,

w2
<0.6,0.2,0.3> ,

w3
<0.2,0.5,0.6> ,

w4
<0.1,0.5,0.3>

})
,(

(υ3, d, 1),
{

w1
<0.2,0.6,0.7> ,

w2
<0.5,0.2,0.3> ,

w3
<0.6,0.3,0.5> ,

w4
<0.8,0.1,0.9>

})
,(

(υ3, e, 1),
{

w1
<0.6,0.2,0.4> ,

w2
<0.2,0.7,0.6> ,

w3
<0.4,0.3,0.5> ,

w4
<0.1,0.5,0.4>

})
,(

(υ1, e, 0),
{

w1
<0.1,0.3,0.5> ,

w2
<0.1,0.7,0.6> ,

w3
<0.2,0.7,0.4> ,

w4
<0.4,0.6,0.8>

})
,(

(υ3, c, 0),
{

w1
<0.1,0.6,0.9> ,

w2
<0.3,0.6,0.7> ,

w3
<0.6,0.1,0.2> ,

w4
<0.7,0.2,0.3>

})
,(

(υ3, d, 0),
{

w1
<0.1,0.7,0.3> ,

w2
<0.8,0.1,0.2> ,

w3
<0.7,0.2,0.4> ,

w4
<0.2,0.7,0.6>

})



(~2,G2) =



(
(υ1, c, 1),

{
w1

<0.2,0.3,0.4> ,
w2

<0.7,0.4,0.5> ,
w3

<0.5,0.4,0.6> ,
w4

<0.2,0.4,0.7>

})
,(

(υ1, d, 1),
{

w1
<0.4,0.3,0.8> ,

w2
<0.8,0.3,0.5> ,

w3
<0.4,0.3,0.5> ,

w4
<0.2,0.6,0.7>

})
,(

(υ3, c, 1),
{

w1
<0.1,0.3,0.6> ,

w2
<0.9,0.1,0.7> ,

w3
<0.4,0.5,0.8> ,

w4
<0.5,0.3,0.5>

})
,(

(υ3, d, 1),
{

w1
<0.4,0.2,0.3> ,

w2
<0.6,0.3,0.5> ,

w3
<0.7,0.4,0.5> ,

w4
<0.9,0.5,0.7

})
,(

(υ1, e, 1),
{

w1
<0.7,0.2,0.3> ,

w2
<0.5,0.2,0.4> ,

w3
<0.6,0.2,0.4> ,

w4
<0.3,0.5,0.6

})
,(

(υ3, e, 1),
{

w1
<0.7,0.3,0.7> ,

w2
<0.3,0.5,0.6> ,

w3
<0.5,0.4,0.3> ,

w4
<0.2,0.6,0.4>

})
,(

(υ1, e, 0),
{

w1
<0.2,0.5,0.4> ,

w2
<0.2,0.6,0.3> ,

w3
<0.3,0.5,0.6> ,

w4
<0.5,0.3,0.7>

})
,(

(υ1, d, 0),
{

w1
<0.1,0.6,0.3> ,

w2
<0.9,0.1,0.2> ,

w3
<0.6,0.3,0.4> ,

w4
<0.2,0.6,0.3>

})
,(

(υ3, c, 0),
{

w1
<0.2,0.7,0.5> ,

w2
<0.4,0.5,0.6> ,

w3
<0.7,0.2,0.3> ,

w4
<0.8,0.1,0.4>

})
,(

(υ3, d, 0),
{

w1
<0.2,0.5,0.4> ,

w2
<0.7,0.2,0.3> ,

w3
<0.8,0.2,0.6> ,

w4
<0.3,0.5,0.7>

})
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Then (~1,G1) ∩ (~2,G2) = (~3,G3)

(~3,G3) =



(
(υ1, c, 1),

{
w1

<0.1,0.45,0.4> ,
w2

<0.6,0.35,0.5> ,
w3

<0.4,0.45,0.6> ,
w4

<0.1,0.6,0.7>

})
,(

(υ1, d, 1),
{

w1
<0.3,0.35,0.8> ,

w2
<0.6,0.25,0.5> ,

w3
<0.2,0.4,0.6> ,

w4
<0.1,0.55,0.7>

})
,(

(υ3, d, 1),
{

w1
<0.2,0.4,0.7> ,

w2
<0.5,0.25,0.5> ,

w3
<0.6,0.35,0.5> ,

w4
<0.8,0.30,0.7>

})
,(

(υ3, e, 1),
{

w1
<0.6,0.25,0.7> ,

w2
<0.2,0.60,0.6> ,

w3
<0.4,0.35,0.5> ,

w4
<0.1,0.55,0.4>

})
,(

(υ1, e, 0),
{

w1
<0.1,0.40,0.5> ,

w2
<0.1,0.65,0.6> ,

w3
<0.2,0.60,0.6> ,

w4
<0.4,0.45,0.8>

})
,(

(υ3, c, 0),
{

w1
<0.1,0.65,0.9> ,

w2
<0.3,0.55,0.7> ,

w3
<0.6,0.15,0.3> ,

w4
<0.7,0.15,0.4>

})
,(

(υ3, d, 0),
{

w1
<0.1,0.60,0.4> ,

w2
<0.8,0.15,0.3> ,

w3
<0.7,0.20,0.6> ,

w4
<0.2,0.60,0.7>

})
,



.

Definition 4.8. Extended intersection of two NHSESs (~1, S) and (~2,R) over ∆ is (~3,L)

with L = S ∪ R, defined as

~3(ς) =


~1(ς)

~2(ς)

~1(ς) ∩ ~2(ς)

; ς ∈ S− R
; ς ∈ R− S
; ς ∈ S ∩ R.

Example 4.9. Considering Example 3.3, we have

G1 =
{

(υ1, c, 1), (υ3, c, 0), (υ1, d, 1), (υ3, d, 1), (υ3, d, 0), (υ1, e, 0), (υ3, e, 1)
}

G2 =
{

(υ1, c, 1), (υ3, c, 0), (υ3, c, 1), (υ1, d, 1), (υ3, d, 1), (υ1, d, 0), (υ3, d, 0), (υ1, e, 0), (υ3, e, 1), (υ1, e, 1)
}
.

Suppose (~1,G1) and (~2,G2) are two NHSESs over ∆ such that

(~1,G1) =



(
(υ1, c, 1),

{
w1

<0.1,0.6,0.4> ,
w2

<0.6,0.3,0.2> ,
w3

<0.4,0.5,0.1> ,
w4

<0.1,0.8,0.5>

})
,(

(υ1, d, 1),
{

w1
<0.3,0.4,0.5> ,

w2
<0.6,0.2,0.3> ,

w3
<0.2,0.5,0.6> ,

w4
<0.1,0.5,0.3>

})
,(

(υ3, d, 1),
{

w1
<0.2,0.6,0.7> ,

w2
<0.5,0.2,0.3> ,

w3
<0.6,0.3,0.5> ,

w4
<0.8,0.1,0.9>

})
,(

(υ3, e, 1),
{

w1
<0.6,0.2,0.4> ,

w2
<0.2,0.7,0.6> ,

w3
<0.4,0.3,0.5> ,

w4
<0.1,0.5,0.4>

})
,(

(υ1, e, 0),
{

w1
<0.1,0.3,0.5> ,

w2
<0.1,0.7,0.6> ,

w3
<0.2,0.7,0.4> ,

w4
<0.4,0.6,0.8>

})
,(

(υ3, c, 0),
{

w1
<0.1,0.6,0.9> ,

w2
<0.3,0.6,0.7> ,

w3
<0.6,0.1,0.2> ,

w4
<0.7,0.2,0.3>

})
,(

(υ3, d, 0),
{

w1
<0.1,0.7,0.3> ,

w2
<0.8,0.1,0.2> ,

w3
<0.7,0.2,0.4> ,

w4
<0.2,0.7,0.6>

})
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(~2,G2) =



(
(υ1, c, 1),

{
w1

<0.2,0.3,0.4> ,
w2

<0.7,0.4,0.5> ,
w3

<0.5,0.4,0.6> ,
w4

<0.2,0.4,0.7>

})
,(

(υ1, d, 1),
{

w1
<0.4,0.3,0.8> ,

w2
<0.8,0.3,0.5> ,

w3
<0.4,0.3,0.5> ,

w4
<0.2,0.6,0.7>

})
,(

(υ3, c, 1),
{

w1
<0.1,0.3,0.6> ,

w2
<0.9,0.1,0.7> ,

w3
<0.4,0.5,0.8> ,

w4
<0.5,0.3,0.5>

})
,(

(υ3, d, 1),
{

w1
<0.4,0.2,0.3> ,

w2
<0.6,0.3,0.5> ,

w3
<0.7,0.4,0.5> ,

w4
<0.9,0.5,0.7

})
,(

(υ1, e, 1),
{

w1
<0.7,0.2,0.3> ,

w2
<0.5,0.2,0.4> ,

w3
<0.6,0.2,0.4> ,

w4
<0.3,0.5,0.6

})
,(

(υ3, e, 1),
{

w1
<0.7,0.3,0.7> ,

w2
<0.3,0.5,0.6> ,

w3
<0.5,0.4,0.3> ,

w4
<0.2,0.6,0.4>

})
,(

(υ1, e, 0),
{

w1
<0.2,0.5,0.4> ,

w2
<0.2,0.6,0.3> ,

w3
<0.3,0.5,0.6> ,

w4
<0.5,0.3,0.7>

})
,(

(υ1, d, 0),
{

w1
<0.1,0.6,0.3> ,

w2
<0.9,0.1,0.2> ,

w3
<0.6,0.3,0.4> ,

w4
<0.2,0.6,0.3>

})
,(

(υ3, c, 0),
{

w1
<0.2,0.7,0.5> ,

w2
<0.4,0.5,0.6> ,

w3
<0.7,0.2,0.3> ,

w4
<0.8,0.1,0.4>

})
,(

(υ3, d, 0),
{

w1
<0.2,0.5,0.4> ,

w2
<0.7,0.2,0.3> ,

w3
<0.8,0.2,0.6> ,

w4
<0.3,0.5,0.7>

})



.

Then (~1,G1) ∩E (~2,G2) = (~3,L)

(~3,L) =



(
(υ1, c, 1),

{
w1

<0.1,0.6,0.4> ,
w2

<0.6,0.4,0.5> ,
w3

<0.4,0.5,0.6> ,
w4

<0.1,0.8,0.7>

})
,(

(υ1, d, 1),
{

w1
<0.3,0.4,0.8> ,

w2
<0.6,0.3,0.5> ,

w3
<0.2,0.5,0.6> ,

w4
<0.1,0.6,0.7>

})
,(

(υ3, d, 1),
{

w1
<0.2,0.6,0.7> ,

w2
<0.5,0.4,0.5> ,

w3
<0.6,0.4,0.5> ,

w4
<0.8,0.1,0.7>

})
,(

(υ3, e, 1),
{

w1
<0.6,0.3,0.7> ,

w2
<0.2,0.7,0.6> ,

w3
<0.4,0.4,0.5> ,

w4
<0.1,0.6,0.4>

})
,(

(υ1, e, 0),
{

w1
<0.1,0.5,0.5> ,

w2
<0.1,0.6,0.6> ,

w3
<0.2,0.7,0.6> ,

w4
<0.4,0.6,0.8>

})
,(

(υ3, c, 0),
{

w1
<0.1,0.7,0.9> ,

w2
<0.3,0.6,0.7> ,

w3
<0.6,0.2,0.3> ,

w4
<0.7,0.2,0.4>

})
,(

(υ3, d, 0),
{

w1
<0.1,0.7,0.4> ,

w2
<0.8,0.2,0.3> ,

w3
<0.7,0.2,0.6> ,

w4
<0.2,0.7,0.7>

})
,(

(υ1, d, 0),
{

w1
<0.1,0.6,0.3> ,

w2
<0.9,0.1,0.2> ,

w3
<0.6,0.3,0.4> ,

w4
<0.2,0.6,0.3>

})
,(

(υ1, e, 0),
{

w1
<0.2,0.5,0.4> ,

w2
<0.2,0.6,0.3> ,

w3
<0.3,0.5,0.6> ,

w4
<0.5,0.3,0.7>

})
,(

(υ3, c, 1),
{

w1
<0.1,0.3,0.6> ,

w2
<0.9,0.1,0.7> ,

w3
<0.4,0.5,0.8> ,

w4
<0.5,0.3,0.5>

})
,



.

Proposition 4.10. If (~1,G1),(~2,G2) and (~3,G3) are three NHSESs then

(1) (~1,G1) ∩ (~2,G2) = (~2,G2) ∩ (~1,G1)

(2) ((~1,G1) ∩ (~2,G2)) ∩ (~3,G3) = (~1,G1) ∩ ((~2,G2) ∩ (~3,G3))

(3) (~,G) ∩ φ = φ.

Proposition 4.11. If (~1,G1),(~2,G2) and (~3,G3) are three NHSESs, then

(1) (~1,G1) ∪ ((~2,G2) ∩ (~3,G3)) =

((~1,G1) ∪ ((~2,G2)) ∩ ((~1,G1) ∪ (~3,G3))

(2) (~1,G1) ∩ ((~2,G2) ∪ (~3,G3)) = ((~1,G1) ∩ ((~2,G2)) ∪ ((~1,G1) ∩ (~3,G3)).

Definition 4.12. If (~1,G1) and (~2,G2) are two NHSESs over ∆ then (~1,G1) AND (~2,G2)

denoted by (~1,G1) ∧ (~2,G2) is defined by

(~1,G1) ∧ (~2,G2) = (~3,G1 ×G2), while ~3(ς, γ) = ~1(ς) ∩ ~2(γ),∀(ς, γ) ∈ G1 ×G2.
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Example 4.13. Considering Example 3.3, we have

G1 =
{

(υ1, c, 1), (υ1, d, 1), (υ3, c, 0)
}

, G2 =
{

(υ1, c, 0), (υ3, c, 1)
}

.

Suppose (~1,G1) and (~2,G2) over ∆ are two NHSESs such that

(~1,G1) =


(

(υ1, c, 1),
{

w1
<0.1,0.6,0.4> ,

w2
<0.6,0.4,0.5> ,

w3
<0.4,0.5,0.6> ,

w4
<0.1,0.8,0.7>

})
,(

(υ1, d, 1),
{

w1
<0.3,0.4,0.8> ,

w2
<0.6,0.3,0.5> ,

w3
<0.2,0.5,0.6> ,

w4
<0.1,0.6,0.7>

})
,(

(υ3, c, 0),
{

w1
<0.1,0.6,0.9> ,

w2
<0.3,0.6,0.7> ,

w3
<0.6,0.1,0.2> ,

w4
<0.7,0.2,0.3>

})
,

 .

(~2,G2) =


(

(υ1, c, 0),
{

w1
<0.2,0.1,0.3> ,

w2
<0.7,0.2,0.4> ,

w3
<0.5,0.2,0.5> ,

w4
<0.2,0.3,0.6>

})
,(

(υ3, c, 1),
{

w1
<0.1,0.5,0.6> ,

w2
<0.4,0.2,0.5> ,

w3
<0.7,0.1,0.2> ,

w4
<0.8,0.1,0.4>

})
,

 .

Then (~1,G1) ∧ (~2,G2) = (~3,G1 ×G2),

(~3,G1 ×G2) =



(
((υ1, c, 1), (υ1, c, 0)),

{
w1

<0.1,0.35,0.4> ,
w2

<0.6,0.30,0.5> ,
w3

<0.4,0.35,0.6> ,
w4

<0.1,0.55,0.7>

})
,(

((υ1, d, 1), (υ1, c, 0)),
{

w1
<0.2,0.25,0.8> ,

w2
<0.6,0.25,0.5> ,

w3
<0.2,0.35,0.6> ,

w4
<0.1,0.45,0.7>

})
,(

((υ1, d, 1), (υ3, c, 1)),
{

w1
<0.1,0.45,0.8> ,

w2
<0.4,0.25,0.5> ,

w3
<0.2,0.30,0.6> ,

w4
<0.1,0.35,0.7>

})
,(

((υ1, c, 1), (υ3, c, 1)),
{

w1
<0.1,0.55,0.6> ,

w2
<0.4,0.30,0.5> ,

w3
<0.4,0.30,0.6> ,

w4
<0.1,0.45,0.7>

})
,(

((υ3, c, 0), (υ1, c, 0)),
{

w1
<0.1,0.35,0.9> ,

w2
<0.3,0.40,0.7> ,

w3
<0.5,0.15,0.5> ,

w4
<0.2,0.25,0.6>

})
,(

((υ3, c, 0), (υ3, c, 1)),
{

w1
<0.1,0.55,0.9> ,

w2
<0.3,0.40,0.7> ,

w3
<0.6,0.10,0.2> ,

w4
<0.7,0.15,0.4>

})
,


.

Definition 4.14. If (~1,G1) and (~2,G2) are two NHSESs over ∆, then (~1,G1) OR (~2,G2)

denoted by (~1,G1)∨(~2,G2) is defined by (~1,G1)∨(~2,G2) = (~3,G1×G2), while ~3(δ, γ) =

~1(δ) ∪ ~2(γ),∀(δ, γ) ∈ G1 ×G2.

Example 4.15. Considering Example 3.3, we see

G1 =
{

(υ1, c, 1), (υ1, d, 1), (υ3, c, 0)
}

, G2 =
{

(υ1, c, 0), (υ3, c, 1)
}

.

Suppose (~1,G1) and (~2,G2) over ∆ are two NHSESs such that

(~1,G1) =


(

(υ1, c, 1),
{

w1
<0.1,0.6,0.4> ,

w2
<0.6,0.4,0.5> ,

w3
<0.4,0.5,0.6> ,

w4
<0.1,0.8,0.7>

})
,(

(υ1, d, 1),
{

w1
<0.3,0.4,0.8> ,

w2
<0.6,0.3,0.5> ,

w3
<0.2,0.5,0.6> ,

w4
<0.1,0.6,0.7>

})
,(

(υ3, c, 0),
{

w1
<0.1,0.6,0.9> ,

w2
<0.3,0.6,0.7> ,

w3
<0.6,0.1,0.2> ,

w4
<0.7,0.2,0.3>

})


(~2,G2) =


(

(υ1, c, 0),
{

w1
<0.2,0.1,0.3> ,

w2
<0.7,0.2,0.4> ,

w3
<0.5,0.2,0.5> ,

w4
<0.2,0.3,0.6>

})
,(

(υ3, c, 1),
{

w1
<0.1,0.5,0.6> ,

w2
<0.4,0.2,0.5> ,

w3
<0.7,0.1,0.2> ,

w4
<0.8,0.1,0.4>

})
,

 .

Muhammad Ihsan, Muhammad Saeed, Atiqe Ur Rahman, Neutrosophic Hypersoft Expert
Set with Application in Decision Making

Neutrosophic Sets and Systems, Vol. 50, 2022                                                                               446



Then (~3,G3) ∨ (~2,G2) = (~3,G1 ×G2),

(~3,G1 ×G2) =



(
((υ1, c, 1), (υ1, c, 0)),

{
w1

<0.2,0.35,0.3> ,
w2

0<0.7,0.30,0.4> ,
w3

<0.5,0.35,0.5> ,
w4

<0.2,0.55,0.6>

})
,(

((υ1, d, 1), (υ1, c, 0)),
{

w1
<0.3,0.25,0.3> ,

w2
<0.7,0.25,0.4> ,

w3
<0.5,0.35,0.5> ,

w4
<0.2,0.45,0.6>

})
,(

((υ1, d, 1), (υ3, c, 1)),
{

w1
<0.3,0.45,0.6> ,

w2
<0.6,0.25,0.5> ,

w3
<0.7,0.30,0.2> ,

w4
<0.8,0.35,0.4>

})
,(

((υ1, c, 1), (υ3, c, 1)),
{

w1
<0.1,0.55,0.4> ,

w2
<0.6,0.30,0.5> ,

w3
<0.7,0.30,0.2> ,

w4
<0.8,0.45,0.4>

})
,(

((υ3, c, 0), (υ1, c, 0)),
{

w1
<0.2,0.35,0.3> ,

w2
<0.7,0.40,0.4> ,

w3
<0.6,0.15,0.2> ,

w4
<0.7,0.25,0.3>

})
,(

((υ3, c, 0), (υ3, c, 1)),
{

w1
<0.1,0.55,0.6> ,

w2
<0.4,0.40,0.5> ,

w3
<0.7,0.10,0.2> ,

w4
<0.8,0.15,0.4>

})
,


.

Proposition 4.16. If (~1,G1),(~2,G2) and (~3,G3) are three NHSESs over ∆, then

(1) ((~1,G1) ∧ (~2,G2))c = ((~1,G1))c ∨ ((~2,G2))c

(2) ((~1,G1) ∨ (~2,G2))c = ((~1,G1))c ∧ ((~2,G2))c.

Proposition 4.17. If (~1,G1),(~2,G2) and (~3,G3) are three NHSESs over ∆, then

(1) ((~1,G1) ∧ (~2,G2)) ∧ (~3,G3) = (~1,G1) ∧ ((~2,G2) ∧ (~3,G3))

(2) ((~1,G1) ∨ (~2,G2)) ∨ (~3,G3) = (~1,G1) ∨ ((~2,G2) ∨ (~3,G3))

(3) (~1,G1) ∨ ((~2,G2) ∧ (~3,G3) = ((~1,G1) ∨ ((~2,G2)) ∧ ((~1,G1) ∨ (~3,G3))

(4) (~1,G1) ∧ ((~2,G2) ∨ (~3,G3)) = ((~1,G1) ∧ ((~2,G2)) ∨ ((~1,G1) ∧ (~3,G3)).

5. Basic Properties and Laws of Neutrosophic Hypersoft Expert Set Operations

In this important part of the paper, certain important characteristics and laws are explained

for NHSES.

Here (~,G), (~,G1), (~,G2), (~,G3) and (~1,G) are NHSESs over ∆

• Idempotent Laws

(a) (~,G) ∪ (~,G) = (~,G) = (~,G) ∪R (~,G)

(b) (~,G) ∩ (~,G) = (~,G) = (~,G) ∩ε (~,G)

• Identity Laws

(a) (~,G) ∪ (~,G)Φ = (~,G) = (~,G) ∪R (~,G)Φ

(b) (~,G) ∩ (~,G)∆ = (~,G) = (~,G) ∩ε (~,G)∆.

• Domination Laws

(a) (~,G) ∪ (~,G)∆ = (~,G)∆ = (~,G) ∪R (~,G)∆

(b) (~,G) ∩ (~,G)Φ = (~,G)Φ = (~,G) ∩ε (~,G)Φ.

• Characteristic of Exclusion

(~,G) ∪ (~,G)c = (~,G)∆ = (~,G) ∪R (~,G)c.

• Characteristic of Contradiction

(~,G) ∩ (~,G)c = (~,G)Φ = (~,G) ∩ε (~,G)c.
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• Absorption Laws

(a) (~,G1) ∪ ((~,G1) ∩ (~,G1)) = (~,G1)

(b) (~,G1) ∩ ((~,G1) ∪ (~,G1)) = (~, G1)

(c) (~,G1) ∪R ((~,G1) ∩ε (~,G1)) = (~,G1)

(d) (~,G1) ∩ε ((~,G1) ∪R (~,G1)) = (~,G1).

• Absorption Laws

(a) ((~,G1) ∪ (~,G2)) = ((~,G1) ∪ (~,G2))

(b) ((~,G1) ∪R (~,G2)) = ((~,G1) ∪R (~,G2))

(c) ((~,G1) ∩ (~,G2)) = ((~,G1) ∩ (~,G2))

(d) ((~,G1) ∩ε (~,G2)) = ((~,G1) ∩ε (~,G2)).

• Associative Laws

(a) (~,G1) ∪ ((~,G2) ∪ (~1, G3)) = ((~,G1) ∪ (~,G2)) ∪ (~1,G3)

(b) (~,G1) ∪R ((~,G2) ∪R (~1,G3)) = ((~,G1) ∪R (~, G2)) ∪R (~1,G3)

(c) (~,G1) ∩ ((~,G2) ∩ (~1, G3)) = ((~,G1) ∩ (~,G2)) ∩ (~1,G3)

(d) (~,G1) ∩ε ((~,G2) ∩ε (~1,G3)) = ((~,G1) ∩ε (~,G2)) ∩ε (~1,G3)

(e) (~,G1)
∨

((~,G2)
∨

(~1, G3)) = ((~,G1)
∨

(~,G2))
∨

(~1,G3)

(e) (~,G1)
∧

((~,G2)
∧

(~1,G3)) = ((~,G1)
∧

(~,G2))
∧

(~1,G3).

• De Morgan’s Laws

(a) ((~,G1) ∪ (~,G2))c = (~,G1)c ∩ε (~,G2)c

(b) ((~,G1) ∩ε (~,G2))c = (~,G1)c ∪ (~,G2)c

(c) ((~,G1)
∨

(~,G2))c = (~,G1)c
∧

(~,G2)c

(d) ((~,G1)
∧

(~,G2))c = (~,G1)c
∨

(~,G2)c.

• Distributive Laws

(a) (~,G1) ∪ ((~,G2) ∩ (~1,G3)) = ((~,G1) ∪ (~,G2)) ∩ ((~,G1) ∪ (~1,G3))

(b) (~,G1) ∩ ((~,G2) ∪ (~1,G3)) = ((~,G1) ∩ (~,G2)) ∪ ((~,G1) ∩ (~1,G3))

(c) (~,G1) ∪R ((~,G2) ∩ε (~1,G3)) = ((~,G1) ∪R (~,G2)) ∩ε ((~,G1) ∪R (~1,G3))

(d) (~,G1) ∩ε ((~,G2) ∪R (~1,G3)) = ((~,G1) ∩ε (~,G2)) ∪R ((~,G1) ∩ε (~1,G3))

(c) (~,G1) ∪R ((~,G2) ∩ (~1,G3)) = ((~,G1) ∪R (~, G2)) ∩ ((~,G1) ∪R (~1,G3))

(e) (~,G1) ∩ ((~,G2) ∪R (~1,G3)) = ((~,G1) ∩ (~,G2)) ∪R ((~,G1) ∩ (~1,G3)).

6. Hybrids of Neutrosophic Hypersoft Expert Set

In this study, some hybridized structures of NHSES are presented. Suppose Y denotes the

set of expert and O be a set of opinions, T = F×Y ×O. Taking A ⊆ T and ∆ denotes the

universe, while F used for parameters.
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Definition 6.1. A bipolar neutrosophic hypersoft expert set is a pair (B, A) and is character-

ized by a mapping

B : A→ P (∆)

where

(B, A) = {〈x, υ+
B(e)(x), ν+

B(e)(x), ω+
B(e)(x), υ−B(e)(x), ν−B(e)(x), ω−B(e)(x)〉 : ∀e ∈ A, x ∈ ∆}

, where υ+
B(e), ν

+
B(e), ω

+
B(e) : ∆→ [0, 1], υ−B(e), ν

−
B(e), ω

−
B(e) : ∆→ [0, 1].

Example 6.2. Considering Example 3.3 with ∆ = {w1, w2}, we have bipolar neutrosophic

hypersoft expert set as

(B,A) =



(
(υ1, c, 1),

{
w1

<0.2,0.5,0.4,−0.1,−0.2,−0.3> ,
w2

<0.1,0.3,0.6,−0.2,−0.3,−0.2>

})
,(

(υ1, d, 1),
{

w1
<0.4,0.2,0.3,−0.1,−0.1,−0.2> ,

w2
<0.2,0.5,0.3,−0.1,−0.2,−0.5>

})
,(

(υ1, e, 1),
{

w1
<0.7,0.2,0.3,−0.3,−0.1,−0.2> ,

w2
<0.3,0.5,0.6,−0.2,−0.3,−0.4>

})
,(

(υ2, c, 1),
{

w1
<0.9,0.1,0.3,−0.3,−0.2,−0.1> ,

w2
<0.3,0.4,0.8,−0.1,−0.7,−0.4>

})
,(

(υ2, d, 1),
{

w1
<0.4,0.5,0.6,−0.2,−0.3,−0.4> ,

w2
<0.2,0.6,0.7,−0.1,−0.3,−0.4>

})
,(

(υ2, e, 1),
{

w1
<0.5,0.4,0.7,−0.1,−0.2,−0.3> ,

w2
<0.8,0.1,0.6,−0.2,−0.2,−0.3>

})
,(

(υ1, c, 0),
{

w1
<0.3,0.2,0.1,−0.1,−0.2,−0.3> ,

w2
<0.1,0.8,0.3,−0.1,−0.7,−0.2>

})
,(

(υ1, d, 0),
{

w1
<0.1,0.8,0.4,−0.1,−0.2,−0.3> ,

w2
<0.2,0.7,0.5,−0.1,−0.3,−0.4>

})
,(

(υ1, e, 0),
{

w1
<0.2,0.7,0.5,−0.1,−0.3,−0.4> ,

w2
<0.5,0.4,0.6,−0.1,−0.3,−0.4>

})
,



.

Definition 6.3. A complex neutrosophic hypersoft expert set (C, A) is characterized by a

mapping

C : A→ CN∆

where CN∆ denotes the collection of all complex neutrosophic subsets of ∆ and

(C, A) = {〈x, υC(e)(x), νC(e)(x), ωC(e)(x)〉 : ∀e ∈ A, x ∈ ∆}, where

υC(e)(x) = aC(e)(x).ejC(e)(x), νC(e)(x) = bC(e)(x).ejC(e)(x), ωC(e)(x) = cC(e)(x).ejC(e)(x)

for all u ∈ ∆ while υC(e), νC(e), ωC(e) are complex-valued truth, indeterminacy and fal-

sity membership functions and these values lie within the unit circle in the complex

plane and both the amplitude terms aC(e)(x), bC(e)(x), cC(e)(x) and the phase terms

υC(e)(x), νC(e)(x), ωC(e)(x) are real valued such that 0 ≤ aC(e)(x)+bC(e)(x)+cC(e)(x) ≤ 3

while aC(e)(x), bC(e)(x), cC(e)(x) ∈ [0, 1].
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Example 6.4. Considering Example 3.3, we have complex neutrosophic hypersoft expert as

(C,A) =



(
(υ1, c, 1),

{
w1

〈0.1ej2π(0.3), 0.6ej2π(0.3), 0.7ej2π(0.3)〉 ,
w2

〈0.9ej2π(0.3), 0.7ej2π(0.3), 0.8ej2π(0.3)〉

})
,(

(υ1, d, 1),
{

w1

〈0.2ej2π(0.3), 0.6ej2π(0.3), 0.3ej2π(0.3)〉 ,
w2

〈0.1ej2π(0.3), 0.8ej2π(0.3), 0.2ej2π(0.3)〉

})
,(

(υ1, e, 1),
{

w1

〈0.6ej2π(0.3), 0.7ej2π(0.3), 0.8ej2π(0.3)〉 ,
w2

〈0.6ej2π(0.3), 0.9ej2π(0.3), 0.2ej2π(0.3)〉

})
,(

(υ2, c, 1),
{

w1

〈0.4ej2π(0.3), 0.5ej2π(0.3), 0.4ej2π(0.3)〉 ,
w2

〈0.1ej2π(0.3), 0.8ej2π(0.3), 0.5ej2π(0.3)〉

})
,(

(υ2, d, 1),
{

w1

〈0.4ej2π(0.3), 0.7ej2π(0.3), 0.4ej2π(0.3)〉 ,
w2

〈0.6ej2π(0.3), 0.8ej2π(0.3), 0.1ej2π(0.3)〉

})
,(

(υ2, e, 1),
{

w1

〈0.4ej2π(0.3), 0.7ej2π(0.3), 0.2ej2π(0.3)〉 ,
w2

〈0.4ej2π(0.3), 0.6ej2π(0.3), 0.6ej2π(0.3)〉

})
,(

(υ1, c, 0),
{

w1

〈0.3ej2π(0.3), 0.3ej2π(0.3), 0.2ej2π(0.3)〉 ,
w2

〈0.1ej2π(0.3), 0.6ej2π(0.3), 0.1ej2π(0.3)〉

})
,(

(υ1, d, 0),
{

w1

〈0.7ej2π(0.3), 0.4ej2π(0.3), 0.2ej2π(0.3)〉 ,
w2

〈0.1ej2π(0.3), 0.6ej2π(0.3), 0.2ej2π(0.3)〉

})
,(

(υ1, e, 0),
{

w1

〈0.6ej2π(0.3), 0.7ej2π(0.3), 0.4ej2π(0.3)〉 ,
w2

〈0.5ej2π(0.3), 0.9ej2π(0.3), 0.4ej2π(0.3)〉

})
,(

(υ2, c, 0),
{

w1

〈0.6ej2π(0.3), 0.7ej2π(0.3), 0.5ej2π(0.3)〉 ,
w2

〈0.7ej2π(0.3), 0.9ej2π(0.3), 0.3ej2π(0.3)〉

})



.

Definition 6.5. A pair (F,H) is called a fuzzy parameterized complex neutrosophic hypersoft

expert set(FP-CNHSES) over ∆, where F is a mapping given by

F : H → CN∆

where CN∆ is the collection of all complex neutrosophic subsets of ∆.

It can also be written as (F, H) =
{(
t,
{

w
F (t)(x) : x ∈ ∆

})
: t ∈ H

}
where H ⊆ G×D×C =

{(
α
=(α) : β, γ ∈ ∆

)
: α ∈ G, β ∈ D, γ ∈ C

}
with = is a corresponding

membership function of fuzzy set and

(F,H) = 〈x, υC(e)(x), νC(e)(x), ωC(e)(x)〉 : ∀e ∈ H,x ∈ ∆,

where

υC(e)(x) = aC(e)(x).ejC(e)(x), νC(e)(x) = bC(e)(x).ejC(e)(x), ωC(e)(x) = cC(e)(x).ejC(e)(x)

for all x ∈ ∆ while υC(e), νC(e), ωC(e) are complex-valued truth, indeterminacy and falsity

membership functions for or the FP-CNHSES and these values lie within the unit circle in the

complex plane and both the amplitude terms aC(e)(x), bC(e)(x), cC(e)(x) and the phase terms

υC(e)(x), νC(e)(x), ωC(e)(x) are real valued such that 0 ≤ aC(e)(x)+bC(e)(x)+cC(e)(x) ≤ 3.
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Example 6.6. Considering Example 3.3 with = =
{
υ1
0.2 ,

υ2
0.3 ,

υ3
0.5

}
as a fuzzy subset of FZ(E).

We can define FP-CNHSES as

(F,H) =



(
( υ10.2 , c, 1),

{
w1

〈0.1e2π(0.2), 0.6e2π(0.2), 0.7e2π(0.2)〉 ,
w2

〈0.9e2π(0.2), 0.7e2π(0.2), 0.8e2π(0.2)〉

})
,(

( υ20.3 , d, 1),
{

w1

〈0.2e2π(0.2), 0.6e2π(0.2), 0.3e2π(0.2)〉 ,
w2

〈0.1e2π(0.2), 0.8e2π(0.2), 0.2e2π(0.2)〉

})
,(

( υ30.5 , e, 1),
{

w1

〈0.6e2π(0.2), 0.7e2π(0.2), 0.8e2π(0.2)〉 ,
w2

〈0.6e2π(0.2), 0.9e2π(0.2), 0.2e2π(0.2)〉

})
,(

( υ10.2 , c, 1),
{

w1

〈0.4e2π(0.2), 0.5e2π(0.2), 0.4e2π(0.2)〉 ,
w2

〈0.1e2π(0.3), 0.8e2π(0.2), 0.5e2π(0.2)〉

})
,(

( υ20.3 , d, 1),
{

w1

〈0.4e2π(0.2), 0.7e2π(0.2), 0.4e2π(0.2)〉 ,
w2

〈0.6e2π(0.2), 0.8e2π(0.2), 0.1e2π(0.2)〉

})
,(

( υ30.5 , e, 1),
{

w1

〈0.4e2π(0.2), 0.7e2π(0.2), 0.2e2π(0.2)〉 ,
w2

〈0.4e2π(0.2), 0.6e2π(0.2), 0.6e2π(0.2)〉

})
,(

( υ10.2 , c, 0),
{

w1

〈0.3e2π(0.3), 0.3e2π(0.2), 0.2e2π(0.2)〉 ,
w2

〈0.1e2π(0.3), 0.6e2π(0.2), 0.1e2π(0.2)〉

})
,(

( υ20.3 , d, 0),
{

w1

〈0.7e2π(0.2), 0.4e2π(0.2), 0.2e2π(0.2)〉 ,
w2

〈0.1e2π(0.2), 0.6e2π(0.2), 0.2e2π(0.2)〉

})
,(

( υ30.5 , e, 0),
{

w1

〈0.6e2π(0.2), 0.7e2π(0.2), 0.4e22π(0.2)〉 ,
w2

〈0.5e2π(0.2), 0.9e2π(0.2), 0.4e2π(0.2)〉

})
,(

( υ10.2 , c, 0),
{

w1

〈0.6e2π(0.2), 0.7e2π(0.2), 0.5e2π(0.2)〉 ,
w2

〈0.7e2π(0.3), 0.9e2π(0.2), 0.3e2π(0.2)〉

})



.

Definition 6.7. A pair (V,A) is called a neutrosophic vague hypersoft expert set is a pair

(V,A), with V representing a mapping V : A→ NV ∆, and NV ∆ is being used for the power

neutrosophic vague set of ∆. Let mapping V is defined by as V (t) = V (t)(x), x ∈ ∆. For

each ti ∈ A, V (ti) = V (ti)(x), where V (ti) represents the truth, indeterminacy and falsity

membership functions of ∆ in V (ti). Hence V (ti) can be written as

V (ti) =
{

xi
V (ti)xi

}
, for i = 1, 2, 3, ...

where V (ti)(xi) = [υ−ω(ti)(xi), υ+ω(ti)(xi)], [I −ω(ti)(xi), I +ω(ti)(xi)], [ω−ω(ti)(xi), ω+

ω(ti)(xi)] and υ + ω(ti)(xi) = 1 − ω(ti)(xi), ω + ω(ti)(xi) = 1 − υ − ω(ti)(xi) with

[υω(ti)(xi), υ + ω(ti)(xi)], [I − ω(ti)(xi), I + ω(ti)(xi)] representing the truth, indeterminacy

and falsity-membership functions of each of the elements xi ∈ ∆, respectively.

Example 6.8. Considering Example 3.3 with ∆ = {w1, w2}, we have neutrosophic vague

hypersoft expert set as

(B,A) =



(
(υ1, c, 1),

{
w1

<[0.2,0.5],[0.4,0.1],[0.2,0.3]> ,
w2

<[0.1,0.3],[0.6,0.2],[0.3,0.2]>

})
,(

(υ1, d, 1),
{

w1
<[0.4,0.2],[0.3,0.1],[0.1,0.2]> ,

w2
<[0.2,0.5],[0.3,0.1],[0.2,0.5]>

})
,(

(υ1, e, 1),
{

w1
<[0.7,0.2],[0.3,0.8],[0.1,0.6]> ,

w2
<[0.3,0.5],[0.6,0.2],[0.3,0.4]>

})
,(

(υ2, c, 1),
{

w1
<[0.9,0.1],[0.3,0.3],[0.2,0.1]> ,

w2
<[0.3,0.4],[0.8,0.1],[0.7,0.4]>

})
,(

(υ2, d, 1),
{

w1
<[0.4,0.5],[0.6,0.2],[0.3,0.4]> ,

w2
<[0.2,0.6],[0.7,0.1],[0.3,0.4]>

})
,(

(υ2, e, 1),
{

w1
<[0.5,0.4],[0.7,0.1],[0.2,0.3]> ,

w2
<[0.8,0.1],[0.6,0.2],[0.2,0.3]>

})
,(

(υ1, c, 0),
{

w1
<[0.3,0.2],[0.1,0.1],[0.2,0.3]> ,

w2
<[0.1,0.8],[0.3,0.1],[0.7,0.2]>

})
,(

(υ1, d, 0),
{

w1
<[0.1,0.8],[0.4,0.1],[0.2,0.3]> ,

w2
<[0.2,0.7],[0.5,0.1],[0.3,0.4]>

})
,(

(υ1, e, 0),
{

w1
<[0.2,0.7],[0.5,0.1],[0.3,0.4]> ,

w2
<[0.5,0.4],[0.6,0.1],[0.3,0.4]>

})
,



.
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7. An Application to Neutrosophic Hypersoft Expert Set

An application of NHSES theory related to the decision-making problem is presented while

using an algorithmic technique..

Statement of the problem

Mr Jay needs to buy a mask from a business opportunity for his own wellbeing. He takes help

from his a few companions (Henry, John and Watson) who have skill in mask buying.

Proposed Algorithm For Selection Of Mask

The accompanying calculation is embraced for this choice (purchase).

(1) Construct NHSES (~,G),

(2) Determine an Agree and Disagree-NHSES,

(3) Compute di=
∑

i tij for Agree-NHSES,

(4) Determine qi=
∑

i tij for Disagree-NHSES,

(5) Determine gj = dj − qj for Agree and Disaree-NHSES,

(6) Compute n, for which pn= max pj for best solution of the product.

Step-1

Let eight categories of mask which are being used for the universe of discourse Ω =

{b1, b2, b3, b4, b5, b6, b7, b8} and X = {ρ1 = Henry, ρ2 = John, ρ3 = Watson} be a set of

experts. The prescribed attributes for the attribute-valued sets are :

O1 = Brand = {o1 = new, o2 = old}
O2 = Price = {o3 = l00dollar, o4 = 50dollar}
O3 = Colour = {o5 = black, o6 = blue}
O4 = Quality = {o7 = good, o8 = better}
O5 = Shape = {o9 = circular, o10 = square}
and then O = O1 ×O2 ×O3 ×O4 ×O5

O =



(o1, o3, o5, o7, o9), (o1, o3, o5, o7, o10), (o1, o3, o5, o8, o9), (o1, o3, o5, o8, o10), (o1, o3, o6, o7, o9),

(o1, o3, o6, o7, o10), (o1, o3, o6, o8, o9), (o1, o3, o6, o8, o10), (o1, o4, o5, o7, o9), (o1, o4, o5, o7, o10),

(o1, o4, o5, o8, o9), (o1, o4, o5, o8, o10), (o1, o4, o6, o7, o9), (o1, o4, o6, o7, o10), (o1, o4, o6, o8, o9),

(o1, o4, o6, o8, o10), (o2, o3, o5, o7, o9), (o2, o3, o5, o7, o10), (o2, o3, o5, o8, o9), (o2, o3, o5, o8, o10),

(o2, o3, o6, o7, o9), (o2, o3, o6, o7, o10), (o2, o3, o6, o8, o9), (o2, o3, o6, o8, o10), (o2, o4, o5, o7, o9),

(o2, o4, o5, o7, o10), (o2, o4, o5, o8, o9), (o2, o4, o5, o8, o10), (o2, o4, o6, o7, o9), (o2, o4, o6, o7, o10),

(o2, o4, o6, o8, o9), (o2, o4, o6, o8, o10)


Now take Q ⊆ O as

Q = {q1 = (o1, o3, o5, o7, o9), q2 = (o1, o3, o6, o7, o10), q3 = (o1, o4, o6, o8, o9), q4 =
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(o2, o3, o6, o8, o9), q5 = (o2, o4, o6, o7, o10)}

(~,G) =



((q1, ρ1, 1) = {o2, o3, o4, o5, o6, o8}), ((q1, ρ2, 1) = {o1, o2, o3, o7}) , ((q2, ρ1, 1) = {o5, o8}) ,
((q2, ρ2, 1) = {o1, o2, o3, o4, o5, o6, o8}) , ((q3, ρ1, 1) = {o4, o7}), ((q3, ρ2, 1) = {o1, o2, o4, o5, o8}) ,
((q3, ρ3, 1) = {o1, o5, o7, o8}) ,
((q4, ρ1, 1) = {o1, o7, o8}), ((q4, ρ2, 1) = {o1, o4, o8}) , ((q4, ρ3, 1) = {o1, o6, o7, o8}) ,
((q5, ρ1, 1) = {o3, o7, o8}), ((q5, ρ2, 1) = {o1, o2, o3, o4, o5, o8}) , ((q5, ρ3, 0) = {o1, o3, o6})
((q5, ρ3, 1) = {o2, o3, o5, o7, o8}) , ((q1, ρ1, 0) = {o3, o5, o6}), ((q1, ρ2, 0) = {o2, o3, o6, o7}) ,
((q1, ρ3, 0) = {o3, o4}) , ((q2, ρ1, 0) = {o1, o2, o4, o5, o6, o7}), ((q2, ρ2, 0) = {o2, o7}) ,
((q2, ρ3, 0) = {o2, o3, o4, o5, o6}) , ((q3, ρ1, 0) = {o1, o2, o6, o8}), ((q3, ρ2, 0) = {o3, o4, o6, o7}) ,
((q3, ρ3, 0) = {o2, o3, o4, o5, o7}), ((q5, ρ1, 0) = {o4, o6, o7}) , ((q4, ρ1, 0) = {o2, o3, o3, o4, o5, o7}) ,
((q4, ρ3, 0) = {o2, o3, o4, o5}) , ((q5, ρ2, 0) = {o2, o3, o6, o7}) ,
((q1, ρ3, 1) = {o1, o3, o4, o6, o7, o8}), ((q4, ρ2, 0) = {o2, o3, o6, o7}) ,
((q2, ρ3, 1) = {o1, o2, o4, o7, o8}) ,


is a NHSES.

Step-2

The Agree and Disagree-NHSES are represented by Table 1 and Table 2 respectively, also

when oi ∈ F1(β) then oij = X = 1 diversely oij = × = 0, and if

oi ∈ F0(β)

then oij = X = 1 diversely oij = × = 0 while oij are being used as members of Tables 1 and

2.

Step-(3-5)

presents The di=
∑

i oij for Agree-NHSES, qi=
∑

i oij for Disagree-NHSES are presented in

Table 3 and gj = dj − qj have been shown and to choose product pn= max pj for solution.

Step-6-Decision

Since g8 is maximum in above Table 3, so category b8 is preferred to be selected for purchase.

8. Conclusions

In this paper,

• The fundamentals of neutrosophic hypersoft expert set are established and some neces-

sary properties like subset, equal set, agree and disagree set, relative whole and relative

null set, absolute whole set are explained with detailed examples.

• Some theoretic operations like union, restricted union, intersection, extended intersec-

tion, complement, AND and OR are generalized.

• Some basic laws such as idempotent, absorption, domination, identity, associative and

distributive are discussed with examples.
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Table 1. Agree-NHSES

B b1 b2 b3 b4 b5 b6 b7 b8

(p1, ρ1) × X X X X X × ×
(p2, ρ1) × X × × × × X ×
(p3, ρ1) × × × X × × X ×
(p4, ρ1) X × × × × × X X

(p5, ρ1) X X X X × × × X

(p1, ρ2) X × X × × × X ×
(p2, ρ2) X X X × X X × X

(p3, ρ2) × X X × × × X ×
(p4, ρ2) X × × × × × × X

(p5, ρ2) × × × × X × × ×
(p1, ρ3) X × X X × X X ×
(p2, ρ3) X X × X X × X ×
(p3, ρ3) X × X × X × X ×
(p4, ρ3) X X X X × X X ×
(p5, ρ3) × X X X X × X ×
dj =

∑
i nij d1 = 09 d2 = 08 d3 = 9 d4 = 7 d5 = 06 d6 = 4 d7 = 10 d8 = 11

Table 2. Disagree-NHSES

B b1 b2 b3 b4 b5 b6 b7 b8

(p1, ρ1) × × X × × X × ×
(p2, ρ1) X X × X × X X ×
(p3, ρ1) X X × × × X × X

(p4, ρ1) × X X X X X × ×
(p5, ρ1) × × × X × X X ×
(p1, ρ2) × X X × × X X ×
(p2, ρ2) × X × × × × X ×
(p3, ρ2) X X × × × X × X

(p4, ρ2) × X X × × X X ×
(p5, ρ2) × X X × × X X ×
(p1, ρ3) × × X X × × × ×
(p2, ρ3) × × X × X X × ×
(p3, ρ3) × X X X X X × ×
(p4, ρ3) × X X X X × × ×
(p5, ρ3) × X × X × X × ×
pi=

∑
i nij p1 = 3 p2 = 11 p3 = 9 p4 = 7 p5 = 4 p6 = 12 p7 = 6 p8 = 2

• Some hybridized structures of neutrosophic hypersoft expert set are established with

illustrative examples.
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Table 3. Optimal

di=
∑

i nij qi=
∑

i nij gj = dj − qj
d1 = 09 q1 = 3 g1 = 6

d2 = 8 q2 = 11 g2 = −3

d3 = 9 q3 = 9 g3 = 0

d4 = 7 q4 = 7 g4 = 0

d5 = 06 q5 = 4 g5 = 2

d6 = 4 q6 = 12 g6 = −8

d7 = 10 q7 = 6 g7 = 4

d8 = 11 q8 = 2 g8 = 9

• An algorithm is developed to explain the procedure of decision making problem.

• An application related to the mask purchasing is described with the help of proposed

algorithm.

• Future task may include the extension of the existing work for other neutrosophic

hypersoft expert-like hybrids i.e., generalized neutrosophic, generalized interval val-

ued neutrosophic, neutrosophic vague , interval-valued neutrosophic, etc. This new

work will give an outstanding extension to existing theories for dealing with truthness,

indeterminacy and falsity membership functions.
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Abstract. The aim of the study is to introduce a neutrosophic N−subalgebra and neutrosophic N−ideal of

a Sheffer stroke BCH-algebras. We prove that the level-set of a neutrosophic N−subalgebra (neutrosophic

N−ideal) of a Sheffer stroke BCH-algebra is its subalgebra (ideal) and vice versa. Then it is shown that the

family of all neutrosophicN−subalgebras of a Sheffer stroke BCH-algebra forms a complete distributive modular

lattice. Also, we state that every neutrosophic N−ideal of a Sheffer stroke BCH-algebra is its neutrosophic

N−subalgebra but the inverse is generally not true. We examine relationships between neutrosophic N−ideals

of Sheffer stroke BCH-algebras by means of a surjective homomorphism between these algebras. Finally, certain

subsets of a Sheffer stroke BCH-algebra are defined by means of N−functions on this algebraic structure and

some properties are investigated.

Keywords: Sheffer stroke BCH-algebra; subalgebra; neutrosophic N− subalgebra; neutrosophic N−ideal.

—————————————————————————————————————————-

1. Introduction

Sheffer stroke (or Sheffer operation) introduced by H. M. Sheffer is one of the two operators

that can be used by itself, without any other logical operators to build a logical formal sys-

tem [22]. Since it provides new, basic and easily applicable axiom systems for many algebraic

structures, this operation has many applications in algebraic structures such as orthoimplica-

tion algebras [1], ortholattices [3], Boolean algebras [15], strong Sheffer stroke non-associative

MV-algebras [4] and their neutrosophic N -structures [19], Sheffer Stroke Hilbert algebras [16]

and their neutrosophic N -structures [17]. Besides, the concepts of BCK-algebras and BCI-

algebras were introduced by Y. Imai and K. Iséki ( [10], [11]) and BCK-algebras are proper

subclasses of BCI-algebras. Also, a new class of these algebras so-called BCH-algebras is in-

troduced and studied by Hu and Li ( [8], [9]) and the new class contains BCK-algebras and

BCI-algebras. Some properties of these new algebraic structures have been investigated by

Chaudhry ( [5], [6]), Dudek and Thomys [7]. Recently, BCH-algebras with Sheffer stroke,
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subalgebras, minimal and medial elements and BCA-parts of these algebras are studied by

Oner et al [18].

On the other side, Zadeh introduced the fuzzy set theory [26] which is a generalization of

ordinary sets, has the truth (t) (membership) function and positive meaning of information.

Hence, scientists have been interested in negative meaning of information, and so, Atanassov

introduced the intuitionistic fuzzy set theory [2] which is a generalization of fuzzy sets, has truth

(t) (membership) and the falsehood (f) (nonmembership) functions. Besides, Smarandache

introduced the neutrosophic set theory which is a generalization of the intuitionistic fuzzy set

theory and has the indeteminacy/neutrality (i) function with membership and nonmembership

functions [23, 24]. Thus, neutrosophic sets are defined on three components (t, i, f) [27]. In

recent times, neutrospohic sets are applied to the algebraic structures such as BCK/BCI-

algebras and BE-algebras [12–14,20,25].

We give basic definitions and notions on Sheffer stroke BCH-algebras, neutrosophic N−
functions and neutrosophic N−structures. Also, neutrosophic N−subalgebra, a neutrosophic

N−ideal and a level set on neutrosophic N−structures are introduced on Sheffer stroke BCH-

algebras. Then we prove that the level set of a neutrosophic N−subalgebra of a Sheffer stroke

BCH-algebra is its subalgebra and the inverse always is true, and that the family of all neutro-

sophic N−subalgebras of a Sheffer stroke BCH-algebra forms a complete distributive modular

lattice. Moreover, it is shown that every neutrosophicN−ideal of a Sheffer stroke BCH-algebra

is its neutrosophic N−subalgebra but the inverse does not mostly hold. Finally, we define spe-

cial subsets of a Sheffer stroke BCH-algebra by means of the N−functions TN , IN and FN and

its any elements at, ai, af and show that these subsets are ideals of this algebraic structure if

a neutrosophic N−structure on this algebraic structure is the neutrosophic N−ideal.

2. Preliminaries

In this section, we give basic definitions and notions about Sheffer stroke BCH-algebras and

neutrosophic N−structures.

Definition 2.1. [3] Let A = 〈A, |〉 be a groupoid. The operation ◦ on S is said to be a Sheffer

operation (or Sheffer stroke) if it satisfies the following conditions for all a, b, c ∈ A:

(S1) a|b = b|a,
(S2) (a|a)|(a|b) = a,

(S3) a|((b|c)|(b|c)) = ((a|b)|(a|b))|c,
(S4) (a|((a|a)|(b|b)))|(a|((a|a)|(b|b))) = a.

Definition 2.2. [18] A Sheffer stroke BCH-algebra is an algebra (A, |, 0) of type (2, 0) such

that 0 is the constant in A the following axioms are satisfied:

(sBCH.1) (a|(a|a))|(a|(a|a)) = 0,
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(sBCH.2) (a|(b|b))|(a|(b|b)) = (b|(a|a))|(b|(a|a)) = 0 imply a = b,

(sBCH.3) ((a|(b|b))|(a|(b|b)))|(c|c) = ((a|(c|c))|(a|(c|c)))|(b|b),
for all a, b, c ∈ A.

Definition 2.3. [18] Let (A, |, 0) be a Sheffer stroke BCH-algebra. Then a relation 6 on A

defined by

a 6 b if and only if (a|(b|b))|(a|(b|b)) = 0,

is a partial order on A.

Lemma 2.4. [18] Let (A, |, 0) be a Sheffer stroke BCH-algebra. Then the following features

hold for all a, b, c ∈ A:

(1) (a|(a|a))|(a|a) = a,

(2) a|(((a|(b|b))|(b|b))|((a|(b|b))|(b|b))) = 0|0,

(3) (0|0)|(a|a) = a,

(4) (a|(0|0))|(a|(0|0)) = a,

(5) a|((b|(c|c))|(b|(c|c))) = b|((a|(c|c))|(a|(c|c))),
(6) ((a|(a|(b|b)))|(a|(a|(b|b))))|(b|b) = 0|0,

(7) ((a|(b|b))|(a|(b|b)))|(a|a) = 0|(b|b),
(8) 0|(a|(b|b)) = ((0|(a|a))|(0|(a|a)))|(0|(b|b)),
(9) a 6 b implies 0|(a|a) = 0|(b|b).

Definition 2.5. [18] Let (A, |, 0) be a Sheffer stroke BCH-algebra. Then a nonempty subset

S of A is called a subalgebra of A, if (a|(b|b))|(a|(b|b)) ∈ S, for all a, b ∈ S.

Definition 2.6. [18] A nonempty subset I of a Sheffer stroke BCH-algebra (A, |, 0) is called

an ideal of A if it satisfies

(I1) 0 ∈ I,

(I2) (a|(b|b))|(a|(b|b)) ∈ I and a2 ∈ I imply a1 ∈ I,

for all a, b ∈ A.

Definition 2.7. [21] A modular lattice is any lattice which satisfies a 6 b −→ a ∨ (b ∧ c) =

b ∧ (a ∨ c).

Theorem 2.8. [21] Every distributive lattice is a modular lattice.

Definition 2.9. [12] F(A, [−1, 0]) denotes the collection of functions from a set A to [−1, 0]

and a element of F(A, [−1, 0]) is called a negative-valued function from A to [−1, 0] (briefly,

N−function on A). An N−structure refers to an ordered pair (A, f) of A and N−function f

on A.
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Definition 2.10. [14] A neutrosophic N−structure over a nonempty universe A is defined

by

AN :=
A

(TN , IN , FN )
= { A

(TN (a), IN (a), FN (a))
: a ∈ A}

where TN , IN and FN are N−function on A, called the negative truth membership function,

the negative indeterminacy membership function and the negative falsity membership function,

respectively.

Every neutrosophic N−structure AN over A satisfies the condition

(∀a ∈ A)(−3 6 TN (a) + IN (a) + FN (a) 6 0).

3. Neutrosophic N−structures

In this section, neutrosophic N−subalgebras and neutrosophic N−ideals of Sheffer stroke

BCH-algebras. Unless indicated otherwise, A denotes a Sheffer stroke BCH-algebra.

Definition 3.1. A neutrosophic N−subalgebra AN of a Sheffer stroke BCH-algebra A is a

neutrosophic N−structure on A satisfying the condition

TN ((a|(b|b))|(a|(b|b))) 6 max{TN (a), TN (b)},
min{IN (a), IN (b)} 6 IN ((a|(b|b))|(a|(b|b)))

and

min{FN (a), FN (b)} 6 FN ((a|(b|b))|(a|(b|b))),

(1)

for all a, b ∈ A.

Example 3.2. Consider the Sheffer stroke BCH-algebra A where A = {0, x, y, 1} and Sheffer

stroke | on A has Cayley table in Table 1 [18]:

Table 1. Cayley table of Sheffer stroke | on A

◦ 0 x y 1

0 1 1 1 1

x 1 y 1 y

y 1 1 x x

1 1 y x 0

Then a neutrosophic N−structure

AN = { a

(−0.63,−0.3,−0.08)
: a ∈ A− {1}} ∪ { 1

(0,−0.98,−0.84)
}

on A is a neutrosophic N−subalgebra of A.
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Definition 3.3. Let AN be a neutrosophic N−structure on a Sheffer stroke BCH-algebra A

and α, β, γ be any elements of [−1, 0] such that −3 ≤ α+ β + γ ≤ 0. For the sets

TαN := {a ∈ A : TN (a) 6 α},

IβN := {a ∈ A : β 6 IN (a)}

and

F γN := {a ∈ A : γ 6 FN (a)},

the set AN (α, β, γ) := {a ∈ A : TN (a) 6 α, β 6 IN (a) and γ 6 FN (x)} is called the

(α, β, γ)−level set of AN . Moreover, AN (α, β, γ) = TαN ∩ I
β
N ∩ F

γ
N .

Theorem 3.4. Let AN be a neutrosophic N−structure on a Sheffer stroke BCH-algebra A

and α, β, γ be any elements of [−1, 0] with −3 6 α + β + γ 6 0. If AN is a neutrosophic

N−subalgebra of A, then the nonempty level set AN (α, β, γ) of AN is a subalgebra of A.

Proof. Let AN be a neutrosophic N−subalgebra of A and a, b be any elements of AN (α, β, γ),

for α, β, γ ∈ [−1, 0] with −3 6 α + β + γ 6 0. Then TN (a), TN (b) 6 α;β 6 IN (a), IN (b) and

γ 6 FN (a), FN (b). Since

TN ((a|(b|b))|(a|(b|b))) 6 max{TN (a), TN (b)} 6 α,

β 6 min{IN (a), IN (b)} 6 IN ((a|(b|b))|(a|(b|b)))

and

γ 6 min{FN (a), FN (b)} 6 FN ((a|(b|b))|(a|(b|b))),

for all a, b ∈ A, it follows that (a|(b|b))|(a|(b|b)) ∈ TαN , I
β
N , F

γ
N . Then

(a|(b|b))|(a|(b|b)) ∈ TαN ∩ I
β
N ∩ F

γ
N = AN (α, β, γ).

Thus, AN (α, β, γ) is a subalgebra of A.

Theorem 3.5. Let AN be a neutrosophic N−structure on a Sheffer stroke BCH-algebra A

and TαN , I
β
N and F γN be subalgebras of A, for all α, β, γ ∈ [−1, 0] with −3 6 α + β + γ 6 0.

Then AN is a neutrosophic N−subalgebra of A.

Proof. Let TαN , I
β
N and F γN be subalgebras of A, for all α, β, γ ∈ [−1, 0] with

−3 6 α+ β + γ 6 0.

Assume that

α1 = max{TN (a), TN (b)} < TN ((a|(b|b))|(a|(b|b))) = α2,

β1 = IN ((a|(b|b))|(a|(b|b))) < min{IN (a), IN (b)} = β2
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and

γ1 = FN ((a|(b|b))|(a|(b|b))) < min{FN (a), FN (b)} = γ2.

If α =
1

2
(α1 + α2), β =

1

2
(β1 + β2), γ =

1

2
(γ1 + γ2) ∈ [−1, 0), then α1 < α < α2, β1 < β < β2

and γ1 < γ < γ2. Hence, a, b ∈ TαN , I
β
N , F

γ
N but (a|(b|b))|(a|(b|b)) /∈ TαN , I

β
N , F

γ
N which is a

contradiction. Thus,

TN ((a|(b|b))|(a|(b|b))) 6 max{TN (a), TN (b)},

min{IN (a), IN (b)} 6 IN ((a|(b|b))|(a|(b|b)))

and

min{FN (a), FN (b)} 6 FN ((a|(b|b))|(a|(b|b))),

for all a, b ∈ A. Thereby, AN is a neutrosophic N−subalgebra of A.

Theorem 3.6. Let {ANi : i ∈ N} be a family of all neutrosophic N−subalgebras of a Sheffer

stroke BCH-algebra A. Then {ANi : i ∈ N} forms a complete distributive modular lattice.

Proof. Let S be a nonempty subset of {ANi : i ∈ N}. Since every ANi is a neutrosophic

N−subalgebra of A, for all i ∈ N, it satisfies the condition (1), for all a, b ∈ A. Then
⋂
S

satisfies the condition (1), and so,
⋂
S is a neutrosophic N−subalgebra of A. Let B be

a family of all neutrosophic N−subalgebras of A containing
⋃
{ANi : i ∈ N}. Thus,

⋂
B

is a neutrosophic N−subalgebra of A. If
∧
i∈NANi =

⋂
i∈NANi and

∨
i∈NANi =

⋂
B, then

({ANi : i ∈ N},
∨
,
∧

) forms a complete lattice. Also, this lattice is distibutive by the definitions

of
∨

and
∧

, and so, it is modular from Theorem 2.8.

Lemma 3.7. Let AN be a neutrosophic N−subalgebra of a Sheffer stroke BCH-algebra A.

Then

TN (0) 6 TN (a), IN (a) 6 IN (0) and FN (a) 6 FN (0), (2)

for all a ∈ A.

Proof. Let AN be a neutrosophic N−subalgebra of A. Then it is obtained from (sBCH.1) that

TN (0) = TN ((a|(a|a))|(a|(a|a))) 6 max{TN (a), TN (a)} = TN (a),

IN (a) = min{IN (a), IN (a)} 6 IN ((a|(a|a))|(a|(a|a))) = IN (0)

and

FN (a) = min{FN (a), FN (a)} 6 FN ((a|(a|a))|(a|(a|a))) = FN (0),

for all a ∈ A.

The inverse of Lemma 3.7 is not true in general.

Tahsin Oner, Tugce Katican and Akbar Rezaei, Neutrosophic N−structures on Sheffer
stroke BCH-algebras

Neutrosophic Sets and Systems, Vol. 50, 2022                                                                               464



Example 3.8. Consider the Sheffer stroke BCH-algebra A in Example 3.2. Then a neutro-

sophic N−structure

AN = { x

(−0.05,−0.3,−0.29)
} ∪ { a

(−1,−0.03,−0.08)
: a ∈ A− {x}}

on A satisfies the condition (2) but it is not a neutrosophic N−subalgebra of A since

IN ((x|(0|0))|(x|(0|0))) = IN (x) = −0.3 < −0.03 = min{IN (x), IN (0)}.

Lemma 3.9. A neutrosophic N−subalgebra AN of a Sheffer stroke BCH-algebra A satisfies

TN ((a|(b|b))|(a|(b|b))) 6 TN (b),

IN (b) 6 IN ((a|(b|b))|(a|(b|b)))
and

FN (b) 6 FN ((a|(b|b))|(a|(b|b))),

(3)

for all a, b ∈ A if and only if TN , IN and FN are constant.

Proof. Let AN be a a neutrosophic N−subalgebra of A satisfying the condition (3). Since

TN (a) = TN ((a|(0|0))|(a|(0|0))) 6 TN (0), IN (0) 6 IN ((a|(0|0))|(a|(0|0))) = IN (a) and

FN (0) 6 FN ((a|(0|0))|(a|(0|0))) = FN (a) from Lemma 2.4 (4), it is obtained from Lemma

3.7 that TN (a) = TN (0), IN (a) = IN (0) and FN (a) = FN (0), for all a ∈ A. Therefore, TN , IN

and FN are constant. Conversely, it is clear since TN , IN and FN are constant.

Definition 3.10. A neutrosophic N−structure AN on a Sheffer stroke BCH-algebra A is

called a neutrosophic N−ideal of A if

TN (0) 6 TN (a) 6 max{TN ((a|(b|b))|(a|(b|b))), TN (b)},
min{IN ((a|(b|b))|(a|(b|b))), IN (b)} 6 IN (a) 6 IN (0)

and

min{FN ((a|(b|b))|(a|(b|b))), FN (b)} 6 FN (a) 6 FN (0),

(4)

for all a, b ∈ A.

Example 3.11. Consider the Sheffer stroke BCH-algebra A in Example 3.2. Then a neutro-

sophic N−structure

AN = { a

(−0.71,−0.11,−0.07)
: x = 0, x} ∪ { a

(−0.48,−0.35,−1)
: a = y, 1}

on A is a neutrosophic N−ideal of A.

Lemma 3.12. Let AN be a neutrosophic N−structure on a Sheffer stroke BCH-algebra A.

Then AN is a neutrosophic N−ideal of A if and only if

(1) a 6 b implies TN (a) 6 TN (b), IN (b) 6 IN (a) and FN (b) 6 FN (a),

(2) TN ((a|a)|(b|b)) 6 max{TN (a), TN (b)}, min{IN (a), IN (b)} 6 IN ((a|a)|(b|b)) and

min{FN (a), FN (b)} 6 FN ((a|a)|(b|b)),
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for all a, b ∈ A.

Proof. Let AN be a neutrosophic N−ideal of A.

(1) Suppose that a 6 b. Then (a|(b|b))|(a|(b|b)) = 0. Thus, we have from Lemma 3.7 that

TN (a) 6 max{TN ((a|(b|b))|(a|(b|b))), TN (b)} = max{TN (0), TN (b)} = TN (b),

IN (b) = min{IN (0), IN (b)} = min{IN ((a|(b|b))|(a|(b|b))), IN (b)} 6 IN (a)

and

FN (b) = min{FN (0), FN (b)} = min{FN ((a|(b|b))|(a|(b|b))), FN (b)} 6 FN (a),

for all a, b ∈ A.

(2) Since (((((a|a)|(b|b))|(b|b))|(((a|a)|(b|b))|(b|b)))|(a|a))|(((((a|a)|(b|b))|(b|b))|(((a|a)|(b|
b))|(b|b)))|(a|a)) = (((a|a)|(b|b))|(((a|a)|(b|b))|((a|a)|(b|b))))|(((a|a)|(b|b))|(((a|a)|(b|b))|
((a|a)|(b|b)))) = 0 from (S1), (S3) and (sBCH.1), we obtain from Definition 2.3 and

(1) that

TN ((a|a)|(b|b)) 6 max{TN ((((a|a)|(b|b))|(b|b))|(((a|a)|(b|b))|(b|b))), TN (b)}
6 max{TN (a), TN (b)},

min{IN (a), IN (b)} 6 min{IN ((((a|a)|(b|b))|(b|b))|(((a|a)|(b|b))|(b|b))), IN (b)}
6 IN ((a|a)|(b|b))

and

min{FN (a), FN (b)} 6 min{FN ((((a|a)|(b|b))|(b|b))|(((a|a)|(b|b))|(b|b))), FN (b)}
6 FN ((a|a)|(b|b)),

for all a, b ∈ A.

Conversely, let AN be a neutrosophic N−structure on A satisfying (1) and (2). Since

(0|(a|a))|(0|(a|a)) = (((0|0)|(0|0))|((0|0)|a))|(((0|0)|(0|0))|((0|0)|a)) = 0 from (S1)-(S2) and

Lemma 2.4 (4), we get that 0 6 a, for all a ∈ A. Then it follows from (1)

that TN (0) 6 TN (a), IN (a) 6 IN (0) and FN (a) 6 FN (0), for all a ∈ A. Since

(a|(((a|(b|b))|(b|b))|((a|(b|b))|(b|b))))|(a|(((a|(b|b))|(b|b))|((a|(b|b))|(b|b)))) = 0 from Lemma 2.4

(2) and (S2), we have from Definition 2.3 that a 6 (a|(b|b))|(b|b), for all a, b ∈ A. Hence, it is

obtained (1), (2) and (S2) that

TN (a) 6 TN ((a|(b|b))|(b|b))
= TN ((((a|(b|b))|(a|(b|b)))|((a|(b|b))|(a|(b|b))))(b|b))
6 max{TN ((a|(b|b))|(a|(b|b))), TN (b)},

min{IN ((a|(b|b))|(a|(b|b))), IN (b)} 6 IN ((((a|(b|b))|(a|(b|b)))|((a|(b|b))|(a|(b|b))))(b|b))
= IN ((a|(b|b))|(b|b))
6 IN (a)
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and

min{FN ((a|(b|b))|(a|(b|b))), FN (b)} 6 FN ((((a|(b|b))|(a|(b|b)))|((a|(b|b))|(a|(b|b))))|(b|b))
= FN ((a|(b|b))|(b|b))
6 FN (a),

for all a, b ∈ A. Thus, AN is a neutrosophic N−ideal of A.

Lemma 3.13. Let AN be a neutrosophic N−ideal of a Sheffer stroke BCH-algebra A. Then

(1) TN (b) 6 TN (a|(b|b)), IN (a|(b|b)) 6 IN (b) and FN (a|(b|b)) 6 FN (b),

(2) TN ((a|(b|b))|(a|(b|b))) 6 max{TN (a), TN (b)}, min{IN (a), IN (b)} 6 IN ((a|(b|b))|(a|(b|
b))) and min{FN (a), FN (b)} 6 FN ((a|(b|b))|(a|(b|b))),

(3) TN (a) 6 TN ((a|(b|b))|(b|b)), IN ((a|(b|b))|(b|b)) 6 IN (a) and FN ((a|(b|b))|(b|b)) 6

FN (a).

for all a, b, c ∈ A.

Proof. Let AN be a neutrosophic N−ideal of A. Then

(1) Since

(b|((a|(b|b))|(a|(b|b))))|(b|((a|(b|b))|(a|(b|b))))
= (a|((b|(b|b))|(b|(b|b))))|(a|((b|(b|b))|(b|(b|b))))
= (a|0)|(a|0)

= (((0|0)|(0|0))|((0|0)|(a|a)))|(((0|0)|(0|0))|((0|0)|(a|a)))

= 0

from (sBCH.1), (S1)-(S2), Lemma 2.4 (3) and (5), we obtain that b 6 a|(b|b), for all a, b ∈ A.

Thus, it follows from Lemma 3.12 (1) that

TN (b) 6 TN (a|(b|b)), IN (a|(b|b)) 6 IN (b) and FN (a|(b|b)) 6 FN (b),

for all a, b ∈ A.

(2) Since

(((a|(b|b))|(a|(b|b)))|(a|a))|(((a|(b|b))|(a|(b|b)))|(a|a))

= ((b|b)|((a|(a|a))|(a|(a|a))))|((b|b)|((a|(a|a))|(a|(a|a))))

= ((b|b)|0)|((b|b)|0)

= (((0|0)|(0|0))|((0|0)|b))|(((0|0)|(0|0))|((0|0)|b))
= 0

from (S1)-(S3), Lemma 2.4 (3), it is obtained that (a|(b|b))|(a|(b|b)) 6 a, for all a, b ∈ A.

Hence, we have from Lemma 3.12 (1) that

TN ((a|(b|b))|(a|(b|b))) 6 TN (a) 6 max{TN (a), TN (b)},

min{IN (a), IN (b)} 6 IN (a) 6 IN ((a|(b|b))|(a|(b|b)))
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and

min{FN (a), FN (b)} 6 FN (a) 6 FN ((a|(b|b))|(a|(b|b))),

for all a, b ∈ A.

(3) Since

(a|(((a|(b|b))|(b|b))|((a|(b|b))|(b|b))))|(a|(((a|(b|b))|(b|b))|((a|(b|b))|(b|b))))
= ((a|(b|b))|((a|(b|b))|(a|(b|b))))|((a|(b|b))|((a|(b|b))|(a|(b|b))))
= 0

from Lemma 2.4 (5) and (sBCH.1), it follows from Lemma 3.12 (1) that

TN (a) 6 TN ((a|(b|b))|(b|b)), IN ((a|(b|b))|(b|b)) 6 IN (a) and FN ((a|(b|b))|(b|b)) 6 FN (a),

for all a, b ∈ A.

Theorem 3.14. Let AN be a neutrosophic N−structure on a Sheffer stroke BCH-algebra A.

Then AN is a neutrosophic N−ideal of A if and only if

((b|(c|c))|(b|(c|c)))|(a|a) = 0|0 implies TN (b) 6 max{TN (a), TN (c)},
min{IN (a), IN (c)} 6 IN (b) and min{FN (a), FN (c)} 6 FN (b),

(5)

for all a, b, c ∈ A.

Proof. Let AN be a neutrosophic N−ideal of A and ((b|(c|c))|(b|(c|c)))|(a|a) = 0|0.

Since (((b|(c|c))|(b|(c|c)))|(a|a))|(((b|(c|c))|(b|(c|c)))|(a|a)) = 0 from (S2), it follows that

(b|(c|c))|(b|(c|c)) 6 a. Then it is obtained from Lemma 3.12 (1) that

TN (b) 6 max{TN ((b|(c|c))|(b|(c|c))), TN (c)} 6 max{TN (a), TN (c)},

min{IN (a), IN (c)} 6 min{IN ((b|(c|c))|(b|(c|c))), IN (c)} 6 IN (b)

and

min{FN (a), FN (c)} 6 min{FN ((b|(c|c))|(b|(c|c))), FN (c)} 6 FN (b),

for all a, b, c ∈ A.

Conversely, let AN be a neutrosophic N−structure on A satisfying the condition (5). Since

((0|(a|a))|(0|(a|a)))|(a|a) = 0|(a|a)

= ((0|0)|(0|0))|((0|0)|a)

= 0|0

from (S2), (S3) and Lemma 2.4 (3), we have from the condition (5) that

TN (0) 6 max{TN (a), TN (a)} = TN (a),

IN (a) = min{IN (a), IN (a)} 6 IN (0)

and

FN (a) = min{FN (a), FN (a)} 6 FN (0),
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for all a ∈ A. Since

((a|(b|b))|(a|(b|b)))|(((a|(b|b))|(a|(b|b)))|((a|(b|b))|(a|(b|b))))
= (a|(b|b))|((a|(b|b))|(a|(b|b)))
= 0|0

from (S1), (S2) and (sBCH.1), it follows from the condition (5) that

TN (a) 6 max{TN ((a|(b|b))|(a|(b|b))), TN (b)},

min{IN ((a|(b|b))|(a|(b|b))), IN (b)} 6 IN (a)

and

min{FN ((a|(b|b))|(a|(b|b))), FN (b)} 6 FN (a),

for all a, b ∈ A. Therefore, AN is a neutrosophic N−ideal of A.

Theorem 3.15. Let AN be a neutrosophic N−structure on a Sheffer stroke BCH-algebra A

and α, β, γ be any elements of [−1, 0] with −3 6 α + β + γ 6 0. If AN is a neutrosophic

N−ideal of A, then the nonempty (α, β, γ)-level set AN (α, β, γ) of AN is an ideal of A.

Proof. Let AN be a neutrosophic N−ideal of A and AN (α, β, γ) 6= ∅, for α, β, γ ∈ [−1, 0] with

−3 6 α+ β + γ 6 0. Since TN (0) 6 TN (a) 6 α, β 6 IN (a) 6 IN (0) and γ 6 FN (a) 6 FN (0),

for all a ∈ A, it is obtained that 0 ∈ TN (α, β, γ). Let (a|(b|b))|(a|(b|b)), b ∈ AN (α, β, γ). Since

TN ((a|(b|b))|(a|(b|b))), TN (b) 6 α,

β 6 IN ((a|(b|b))|(a|(b|b))), IN (b)

and

γ 6 FN ((a|(b|b))|(a|(b|b))), FN (b),

it follows that

TN (a) 6 max{TN ((a|(b|b))|(a|(b|b))), TN (b)} 6 α,

β 6 min{IN ((a|(b|b))|(a|(b|b))), IN (b)} 6 IN (a)

and

γ 6 min{FN ((a|(b|b))|(a|(b|b))), FN (b)} 6 FN (a),

for all a, b ∈ A, which imply that a ∈ AN (α, β, γ). Thus, AN (α, β, γ) is an ideal of A.

Theorem 3.16. Let AN be a neutrosophic N−structure on a Sheffer stroke BCH-algebra A

and TαN , I
β
N , F

γ
N be ideals of A, for all α, β, γ ∈ [−1, 0] with −3 6 α+ β + γ 6 0. Then AN is

a neutrosophic N−ideal of A.
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Proof. Let AN be a neutrosophic N−structure on A and TαN , I
β
N , F

γ
N be ideals of A, for all

α, β, γ ∈ [−1, 0] with −3 6 α + β + γ 6 0. Assume that TN (a) < TN (0), IN (0) < IN (a)

and FN (0) < FN (a), for some a ∈ A. If α =
1

2
(TN (0) + TN (a)), β =

1

2
(IN (0) + IN (a))

and γ =
1

2
(FN (0) + FN (a)) in [−1, 0), then TN (a) < α < TN (0), IN (0) < β < IN (a) and

FN (x0) < γ < FN (a). Thus, 0 /∈ TαN , I
β
N , F

γ
N which is a contradiction with (I1). Hence,

TN (0) 6 TN (a), IN (a) 6 IN (0) and FN (a) 6 FN (0), for all a ∈ A. Suppose that

α1 = max{TN ((a|(b|b))|(a|(b|b))), TN (b)} < TN (a) = α2,

β1 = IN (a) < min{IN ((a|(b|b))|(a|(b|b))), IN (b)} = β2,

and

γ1 = FN (a) < min{FN ((a|(b|b))|(a|(b|b))), FN (b)} = γ2.

If α∗ =
1

2
(α1 + α2), β

∗ =
1

2
(β1 + β2) and γ∗ =

1

2
(γ1 + γ2) in [−1, 0), then α1 < α∗ < α2,

β1 < β∗ < β2 and γ1 < γ∗ < γ2. Thus, (a|(b|b))|(a|(b|b)), b ∈ Tα
∗

N , Iβ
∗

N , F γ
∗

N but

a /∈ Tα∗
N , Iβ

∗

N , F γ
∗

N , which is a contradiction with (I2). Thus,

TN (a) 6 max{TN ((a|(b|b))|(a|(b|b)), TN (b)},

min{IN ((a|(b|b))|(a|(b|b))), IN (b)} 6 IN (a)

and

min{FN ((a|(b|b))|(a|(b|b))), FN (b)} 6 IN (a),

for all a, b ∈ A. Hence, AN is a neutrosophic N−ideal of A.

Definition 3.17. Let (A, |A, 0A) and (B, |B, 0B) be Sheffer stroke BCH-algebras. Then a

mapping f : A −→ B is called a homomorphism if f(a|Ab) = f(a)|Bf(b), for all a, b ∈ A and

f(0A) = 0B.

Theorem 3.18. Let (A, |A, 0A) and (B, |B, 0B) be Sheffer stroke BCH-algebras, f : A −→ B

be a surjective homomorphism and BN =
B

(TN , IN , FN )
be a neutrosophic N−structure on B.

Then BN is a neutrosophic N−ideal of B if and only if Bf
N =

A

(T fN , I
f
N , F

f
N )

is a neutrosophic

N−ideal of A where the N−functions T fN , I
f
N , F

f
N : A −→ [−1, 0] on A are defined by T fN (a) =

TN (f(a)), IfN (a) = IN (f(a)) and F fN (a) = FN (f(a)), for all a ∈ A, respectively.

Proof. Let (A, |, 0) and (B, |, 0) be Sheffer stroke BCH-algebras, f : A −→ B be a surjective

homomorphism and BN =
B

(TN , IN , FN )
be a neutrosophic N−ideal of B. Then T fN (0A) =

TN (f(0A)) = TN (0B)) 6 TN (x) = TN (f(a)) = T fN (a), IfN (a) = IN (f(a)) = IN (x) 6 IN (0B) =
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IN (f(0A)) = IfN = (0A) and F fN (a) = FN (f(a)) = FN (x) 6 FN (0B) = FN (f(0A)) = F fN =

(0A), for all a ∈ A. Moreover,

T fN (a) = TN (f(a))

6 max{TN ((f(a)|B(f(b)|Bf(b)))|B(f(a)|B(f(b)|Bf(b)))), TN (f(b))}
= max{TN (f((a|A(b|Ab))|A(a|A(b|Ab)))), TN (f(b))}
= max{T fN ((a|A(b|Ab))|A(a|A(b|Ab))), T fN (b)},

min{IfN ((a|A(b|Ab))|A(a|A(b|Ab))), IfN (b)}
= min{IN (f((a|A(b|Ab))|A(a|A(b|Ab)))), IN (f(b))}
= min{IN ((f(a)|B(f(b)|Bf(b)))|B(f(a)|B(f(b)|Bf(b)))), IN (f(b))}
6 IN (f(a))

= IfN (a)

and

min{F fN ((a|A(b|Ab))|A(a|A(b|Ab))), F fN (b)}
= min{FN (f((a|A(b|Ab))|A(a|A(b|Ab)))), FN (f(b))}
= min{FN ((f(a)|B(f(b)|Bf(b)))|B(f(a)|B(f(b)|Bf(b)))), FN (f(b))}
6 FN (f(a))

= F fN (a),

for all a, b ∈ A. Hence, Bf
N =

A

(T fN , I
f
N , F

f
N )

is a neutrosophic N−ideal of A.

Conversely, let Bf
N be a neutrosophic N−ideal of A. Thus,

TN (0B) = TN (f(0A)) = T fN (0A) 6 T fN (a) = TN (f(a)) = TN (x),

IN (x) = IN (f(a)) = IfN (a) 6 IfN (0A) = IN (f(0A)) = IN (0B)

and

FN (x) = FN (f(a)) = F fN (a) 6 F fN (0A) = FN (f(0A)) = FN (0B),

for all x ∈ B. Also,

TN (x) = TN (f(a))

= T fN (a)

6 max{T fN ((a|A(b|Ab))|A(a|A(b|Ab))), T fN (b)}
= max{TN (f((a|A(b|Ab))|A(a|A(b|Ab)))), TN (f(b))}
= max{TN ((f(a)|B(f(b)|Bf(b)))|B(f(a)|B(f(b)|Bf(b)))), TN (f(b))}
= max{TN ((x|B(y|By))|B(x|B(y|By))), TN (y)},

Tahsin Oner, Tugce Katican and Akbar Rezaei, Neutrosophic N−structures on Sheffer
stroke BCH-algebras

Neutrosophic Sets and Systems, Vol. 50, 2022                                                                               471



min{IN ((x|B(y|By))|B(x|B(y|By))), IN (y)}
= min{IN ((f(a)|B(f(b)|Bf(b)))|B(f(a)|B(f(b)|Bf(b)))), IN (f(b))}
= min{IN (f((a|A(b|Ab))|A(a|A(b|Ab)))), IN (f(b))}
= min{IfN ((a|A(b|Ab))|A(a|A(b|Ab))), IfN (b)}
6 IfN (a)

= IN (f(a))

= IN (x)

and

min{FN ((x|B(y|By))|B(x|B(y|By))), FN (y)}
= min{FN ((f(a)|B(f(b)|Bf(b)))|B(f(a)|B(f(b)|Bf(b)))), FN (f(b))}
= min{FN (f((a|A(b|Ab))|A(a|A(b|Ab)))), FN (f(b))}
= min{F fN ((a|A(b|Ab))|A(a|A(b|Ab))), F fN (b)}
6 F fN (a)

= FN (f(a))

= FN (x)

for all x, y ∈ B. Therefore, BN =
B

(TN , IN , FN )
is a neutrosophic N−ideal of B.

Theorem 3.19. Every neutrosophic N−ideal of a Sheffer stroke BCH-algebra A is a neutro-

sophic N−subalgebra of A.

Proof. Let AN be a neutrosophic N−ideal of A. Since

(((a|(b|b))|(a|(b|b)))|(a|a))|(((a|(b|b))|(a|(b|b)))|(a|a))

= (0|(b|b))|(0|(b|b))
= (((0|0)|(0|0))|((0|0)|b))|(((0|0)|(0|0))|((0|0)|b))
= 0

from (S2), Lemma 2.4 (3) and (7), it follows that (a|(b|b))|(a|(b|b)) 6 a, for all a, b ∈ A. Then

it is obtained from Lemma 3.12 (1) that

TN ((a|(b|b))|(a|(b|b))) 6 TN (a) 6 max{TN (a), TN (b)},

min{IN (a), IN (b)} 6 IN (a) 6 IN ((a|(b|b))|(a|(b|b)))

and

min{FN (a), FN (b)} 6 FN (a) 6 FN ((a|(b|b))|(a|(b|b))),

for all a, b ∈ A. Thereby, AN is a neutrosophic N−subalgebra of A.

The inverse of Theorem 3.19 does notusually hold.
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Example 3.20. Consider the Sheffer stroke BCH-algebra S in Example 3.2. Then a neutro-

sophic N−structure

AN = { 0

(−0.82,−0.49,−0.17)
,

1

(−0.1,−0.91,−0.5)
} ∪ { a

(−0.61,−0.54,−0.3)
: a = x, y}

on A is a neutrosophic N−subalgebra of A but it is not a neutrosophic N−ideal of A since

IN (1) = −0.91 < −0.54 = min{IN ((1|(y|y))|(1|(y|y))), IN (y)}.

Lemma 3.21. Let AN be a neutrosophic N−subalgebra of a Sheffer stroke BCH-algebra A

satisfying

TN (a|(b|b)) 6 max{TN ((a|((b|(c|c))|(b|(c|c))))|(a|((b|(c|c))|(b|(c|c))))), TN (a|(c|c))}
min{IN ((a|((b|(c|c))|(b|(c|c))))|(a|((b|(c|c))|(b|(c|c))))), IN (a|(c|c))} 6 IN (a|(b|b))

and

min{FN ((a|((b|(c|c))|(b|(c|c))))|(a|((b|(c|c))|(b|(c|c))))), FN (a|(c|c))} 6 FN (a|(b|b)),

(6)

for all a, b, c ∈ A. Then AN is a neutrosophic N−ideal of A.

Proof. Let SN be a neutrosophic N−subalgebra of A satisfying the condition (6). By Lemma

3.7, TN (0) 6 TN (a), IN (a) 6 IN (0) and FN (a) 6 FN (0), for all a ∈ A. By substituting

[a := 0|0], [b := a] and [c := b] in the condition (6), simultaneously, it follows from Lemma 2.4

(3) that

TN (a) = TN ((0|0)|(a|a))

6 max{TN (((0|0)|((a|(b|b))|(a|(b|b))))|((0|0)|((a|(b|b))|(a|(c|c))))), TN ((0|0)|(b|b))}
= max{TN ((a|(b|b))|(a|(b|b))), TN (b)},

min{IN ((a|(b|b))|(a|(b|b))), IN (b)} = min{IN (((0|0)|((a|(b|b))|(a|(b|b))))|((0|
0)|((a|(b|b))|(a|(b|b))))), IN ((0|0)|(b|b))}

6 IN ((0|0)|(a|a))

= IN (a)

and

min{FN ((a|(b|b))|(a|(b|b))), FN (b)} = min{FN (((0|0)|((a|(b|b))|(a|(b|b))))|((0|
0)|((a|(b|b))|(a|(b|b))))), FN ((0|0)|(b|b))}

6 FN ((0|0)|(a|a))

= FN (a),

for all a, b ∈ A. Thus, AN is a neutrosophic N−ideal of A.

Lemma 3.22. Let AN be a neutrosophic N−ideal of a Sheffer stroke BCH-algebra A. Then

the subsets ATN = {a ∈ A : TN (a) = TN (0)}, AIN = {a ∈ A : IN (a) = IN (0)} and

AFN
= {a ∈ A : FN (a) = FN (0)} of A are ideals of A.

Tahsin Oner, Tugce Katican and Akbar Rezaei, Neutrosophic N−structures on Sheffer
stroke BCH-algebras

Neutrosophic Sets and Systems, Vol. 50, 2022                                                                               473



Proof. Let AN be a neutrosophic N−ideal of A. Then it is clear that 0 ∈ ATN , AIN , AFN
.

Suppose that (a|(b|b))|(a|(b|b)), b ∈ ATN , AIN , AFN
. Since

TN (b) = TN (0) = TN ((a|(b|b))|(a|(b|b))),

IN (b) = IN (0) = IN ((a|(b|b))|(a|(b|b)))

and

FN (b) = FN (0) = FN ((a|(b|b))|(a|(b|b))),

it follows that

TN (a) = TN (a) 6 max{TN ((a|(b|b))|(a|(b|b))), TN (b)} = max{TN (0), TN (0)} = TN (0),

IN (0) = min{IN (0), IN (0)} = min{IN ((a|(b|b))|(a|(b|b))), IN (b)} 6 IN (a)

and

FN (0) = min{FN (0), FN (0)} = min{FN ((a|(b|b))|(a|(b|b))), FN (b)} 6 FN (a).

Thus, TN (a) = TN (0), IN (a) = IN (0) and FN (a) = FN (0), and so, a ∈ ATN , AIN , AFN
. Hence,

ATN , AIN and AFN
are ideals of A.

Definition 3.23. Let A be a Sheffer stroke BCH-algebra. Define the subsets

AatN := {a ∈ A : TN (a) 6 TN (at)},

AaiN := {a ∈ A : IN (ai) 6 IN (a)}

and

A
af
N := {a ∈ A : FN (af ) 6 FN (a)}

of S, for all at, ai, af ∈ A. Also, it is obvious that at ∈ AatN , ai ∈ A
ai
N and af ∈ A

af
N .

Example 3.24. Consider the Sheffer stroke BCH-algebra A in Example 3.2. Let

TN (a) =


0, if a = 0, 1

−0.46, if a = x

−0.23, a = y,

IN (a) =

{
−0.17, if a = 1

0, otherwise,

FN (a) =

{
−1, if a = 0

−0.4, otherwise,
at = x, ai = 0 and af = 1.

Then

AatN = {a ∈ A : TN (a) 6 TN (x)} = {x},

AaiN = {a ∈ A : IN (0) 6 IN (a)} = {0, x, y}

and

A
af
N = {a ∈ A : FN (1) 6 FN (a)} = {x, y, 1}.
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Theorem 3.25. Let at, ai and af be any elements of a Sheffer stroke BCH-algebra A. If AN

is a neutrosophic N−ideal of A, then AatN , A
ai
N and A

af
N are ideals of A.

Proof. Let at, ai and af be any elements of A and AN be a neutrosophic N−ideal of A. since

TN (0) 6 TN (at)}, IN (ai) 6 IN (0) and FN (af ) 6 FN (0), for all at, ai, af ∈ A, it is obtained

that 0 ∈ AatN , A
ai
N , A

af
N . Suppose that (a|(b|b))|(a|(b|b)), b ∈ AatN , A

ai
N , A

af
N . Since

TN ((a|(b|b))|(a|(b|b))), TN (b) 6 TN (at),

IN (ai) 6 IN ((a|(b|b))|(a|(b|b))), IN (b)

and

FN (af ) 6 FN ((a|(b|b))|(a|(b|b))), FN (b),

it follows that

TN (a) 6 max{TN ((a|(b|b))|(a|(b|b))), TN (b)} 6 TN (at),

IN (ai) 6 min{IN ((a|(b|b))|(a|(b|b))), IN (b)} 6 IN (a)

and

FN (af ) 6 min{FN ((a|(b|b))|(a|(b|b))), FN (b)} 6 FN (a),

which imply that a ∈ AatN , A
ai
N , A

af
N . Hence, AatN , A

ai
N and A

af
N are ideals of A.

Example 3.26. Consider the Sheffer stroke BCH-algebra A in Example 3.2. For a neutro-

sophic N−ideal

AN = { a

(−1,−0.47,−0.81)
: a = 0, x} ∪ { a

(−0.34,−0.69,−0.95)
: a = y, 1}

of A and at = 0, ai = x, af = y ∈ S, the subsets

AatN = {a ∈ A : TN (a) 6 TN (0)} = {0, x},

AaiN = {a ∈ A : IN (x) 6 IN (a)} = {0, x}

and

A
af
N = {a ∈ A : FN (y) 6 FN (a)} = A

of A are ideals of A.

Theorem 3.27. Let at, ai and af be any elements of a Sheffer stroke BCH-algebra A and AN

be a neutrosophic N−structure on A.
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(1) If AatN , A
ai
N and A

af
N are ideals of A, then

max{TN ((b|(c|c))|(b|(c|c))), TN (c)} 6 TN (a)⇒ TN (b) 6 TN (a),

IN (a) 6 min{IN ((b|(c|c))|(b|(c|c))), IN (c)} ⇒ IN (a) 6 IN (b) and

FN (a) 6 min{FN ((b|(c|c))|(b|(c|c))), FN (c)} ⇒ FN (a) 6 FN (b),

(7)

for all a, b, c ∈ A.

(2) If AN satisfies the condition (7) and

TN (0) 6 TN (a), IN (a) 6 IN (0) and FN (a) 6 FN (0), (8)

for all a ∈ A, then AatN , A
ai
N and A

af
N are ideals of A, for all at ∈ T−1N , ai ∈ I−1N and

af ∈ F−1N .

Proof. Let at, ai and af be any elements of A and AN be a neutrosophic N−structure on A.

(1) Suppose that AatN , A
ai
N and A

af
N are ideals of A and

max{TN ((b|(c|c))|(b|(c|c))), TN (c)} 6 TN (a),

IN (a) 6 min{IN ((b|(c|c))|(b|(c|c))), IN (c)}

and

FN (a) 6 min{FN ((b|(c|c))|(b|(c|c))), FN (c)}.

Since (b|(c|c))|(b|(c|c)), c ∈ AatN , A
ai
N , A

af
N where at = ai = af = a, it is obtained that b ∈

AatN , A
ai
N , A

af
N where at = ai = af = a. Thus, TN (b) 6 TN (a), IN (a) 6 IN (b) and FN (a) 6

FN (b), for all a, b, c ∈ A.

(2) Let AN be a neutrosophic N−structure on A satisfying the conditions (7) and (8),

for any at ∈ T−1N , ai ∈ I−1N and af ∈ F−1N . Then it follows from the condition (8) that

0 ∈ AatN , A
ai
N , A

af
N . Assume that (a|(b|b))|(a|(b|b)), b ∈ AatN , A

ai
N , A

af
N . Thus,

TN ((a|(b|b))|(a|(b|b))), TN (b) 6 TN (at),

IN (ai) 6 IN ((a|(b|b))|(a|(b|b))), IN (b)

and

FN (af ) 6 FN ((a|(b|b))|(a|(b|b))), FN (b).

Since

max{TN ((a|(b|b))|(a|(b|b))), TN (b)} 6 TN (at),

IN (ai) 6 min{IN ((a|(b|b))|(a|(b|b))), IN (b)}

and

FN (af ) 6 min{FN ((a|(b|b))|(a|(b|b))), FN (b)},
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we have from the condition (7) that

TN (a) 6 TN (at), IN (ai) 6 IN (a) and FN (af ) 6 FN (a),

which imply that a ∈ AatN , A
ai
N , A

af
N . Hence, AatN , A

ai
N and A

af
N are ideals of A.

Example 3.28. Consider the Sheffer stroke BCH-algebra A in Example 3.2. Let

TN (a) =

{
−1, if a = 0, y

−0.05, otherwise,
IN (a) =

{
−0.79, if a = x, 1

0, otherwise,

FN (a) =

{
−0.02, if a = 0

−0.72, otherwise,
and at = 0, ai = 1 af = y ∈ A.

Then the ideals

AatN = {0, y}, AaiN = A and A
af
N = A

of A satisfy the condition (7).

Let

AN = { a

(−0.8,−0.32, 0)
: a = 0, y} ∪ { a

(−0.27,−0.45,−0.51)
: a = x, 1}

be a neutrosophic N−structure on A satisfying the conditions (7) and (8). Then the subsets

AatN = A,AaiN = {0, y} and A
af
N = {0, y} of A are ideals of A, where at = x, ai = y and af = 0.

4. Conclusion

In this study, we introduce a neutrosophic N−subalgebra, a neutrosophic N−ideal and a

level-set of neutrosophic N−structures on Sheffer stroke BCH-algebras. Then we show that

the level-set of a neutrosophic N−subalgebra (a neutrosophic N−ideal) of a Sheffer stroke

BCH-algebra is its subalgebra (an ideal) and vice versa. Also, we prove that the family of all

neutrosophic N−subalgebras of a Sheffer stroke BCH-algebra forms a complete distributive

modular lattice. We analyze the situations which N−functions are constant. Moreover, we

present new statements equivalent to the definition of a neutrosophic N−ideal of a Sheffer

stroke BCH-algebra and its properties. By defining a homomorphism on a Sheffer stroke BCH-

algebra, we demonstrate relationships between neutrosophic N−ideals of two Sheffer stroke

BCH-algebras by means of a surjective homomorphism. We propound that every neutrosophic

N−ideal of a Sheffer stroke BCH-algebra is its neutrosophic N−subalgebra but the inverse is

not true in general. Besides, the subsets ATN , AIN and AFN
of a Sheffer stroke BCH-algebra are

its ideals for the neutrosophic N−ideal which is defined by means of the N−functions TN , IN

and FN . After that we describe the subsets AatN , A
ai
N and A

af
N of a Sheffer stroke BCH-algebra

for its any elements at, ai, af and state that these subsets are ideals of this algebraic structure

if a neutrosophic N−structure on this algebraic structure is the neutrosophic N−ideal.
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In future works, we wish to study on fuzzy and plithogenic structures on Sheffer stroke

BCH-algebras.
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10. Imai, Y.; Iséki, K. On axiom systems of proposional calculi. XIV. Proc. Jpn. Acad., Ser. A, Math. Sci. 1966,

42, pp. 19-22.
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Abstract: In this article, we first provide a modified definition of SuperHyperGraphs (SHG) and we call 

it Restricted SuperHyperGraphs (R-SHG). We then generalize the R-SHG to the neutrosophic graphs and 

then define the corresponding trees. In the following, we examine the Helly property for subtrees of 

SuperHyperGraphs. 

Keywords: SuperHyperGraphs; Restricted SuperHyperGraphs; Neutrosophic SuperHyperGraphs; 

Neutrosophic SuperHyperTrees; Helly property; chordal graph; subtree. 

 

 

1. Introduction 

          Hypergraph theory is one of the most widely used theories in modeling large and complex 

problems. In recent years, many efforts have been made to find different properties of these graphs [1-

5]. One of these features that is also very important is the property of Helly. To read more about this 

property, you can refer to [4, 5]. Here we first rewrite the definition of SuperHyperGraphs from [1], 

which has the advantage that we have reduced the empty set from the set of vertices because in practice 

the empty vertex is not much applicable, and we have also categorized the set of vertices and edges 

according to its type. Then the adjacency matrix. We define the incidence matrix and the Laplacian 

matrix. 

 Obviously, if a super hyper power graph contains a triangle, it will not have a highlight feature. We 

show here that some defined super hyper power graphs have subtrees that have Helly property.  
There are algorithms for detecting Helly property in subtrees that the reader can refer to [4] to view. 

In graph theory, a chordal graph is a graph in which each cycle is four or more lengths and contains 

at least one chord. In other words, each induction cycle in these graphs has a maximum of three vertices. 

Chord graphs have unique features and applications. To study an example of the applications of chordal 

graphs, you can refer to [7]. 

Definition 1 [4]. Let 𝐴 be a set. We say that 𝐴 has Helly property if and only if, for every non-empty set 𝑆 

such that 𝑆 ⊆ 𝐴 and for all sets 𝑥, 𝑦 such that 𝑥, 𝑦 ∈ 𝑆 holds 𝑥 meets 𝑦 holds ∩ 𝑆 ≠ ∅.  

Proposition 1 [4]. Let 𝑇 be a tree and 𝑋 be a finite set such that for every set 𝑥 such that 𝑥 ∈ 𝑋 there exists a 

subtree 𝑡 of 𝑇 such that 𝑥 is equal the vertices of 𝑡. Then 𝑋 has Helly property. 
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2. Neutrosophic Restricted SuperHyperGraphs 

In this section, we provide a modified definition of Restricted SuperHyperGraphs (RSHG), and then generalize this definition 

to neutrosophic graphs. 

Definition 2. SuperHyperGraph (𝑺𝑯G))[1] 

A Super Hyper Graph (𝑆𝐻𝐺) is an ordered pair 𝑆𝐻𝐺 = (𝑋 ⊆ 𝑃(𝑉)\∅, 𝐸 ⊆ 𝑃(𝑉) × 𝑃(𝑉)), where  
i. 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} is a finite set of 𝑛 ≥ 0 vertices, or an infinite set. 

ii. 𝑃(𝑉) is the power set of 𝑉 (all subset of 𝑉). therefore, an 𝑆𝐻𝐺-vertex may be a single (classical) vertex (𝑉𝑆𝑖), or a super-

vertex (𝑉𝑆𝑢) (a subset of many vertices) that represents a group (organization), or even an indeterminate-vertex (𝑉𝐼) 

(unclear, unknown vertex);  

iii. 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑚}, for 𝑚 ≥ 1, is a family of subsets of 𝑉 × 𝑉, and each 𝑒𝑖 is an 𝑆𝐻𝐺 −edge, 𝑒𝑖 ∈ 𝑃(𝑉) × 𝑃(𝑉). An 

𝑆𝐻𝐺 −edge may be a (classical) edge, or a super-edge (edge between super vertices) that represents connections 

between two groups (organizations), or hyper-super-edge that represents connections between three or more groups 

(organizations), or even an indeterminate-edge (unclear, unknown edge); ∅ represents the null-edge (edge that means 

there is no connection between the given vertices). 

Definition 2-1(2-Restricted SuperHyperGraphs) 

2-Restricted SuperHyperGraphs are a special case of SuperHyperGraphs, where we look at the system from the part to the whole. 

So, according to definition 2, we have 

1. Single Edges (𝐸𝑆𝑖), as in classical graphs. 

2. Hyper Edges (𝐸𝐻), edges connecting three or more single- vertices. 

3. Super Edges (𝐸𝑆𝑢), edges connecting only two 𝑆𝐻𝐺- vertices and at least one vertex is super Vertex. 

4. Hyper Super Edges (𝐸𝐻𝑆), edges connecting three or more single- vertices (and at least one vertex is super vertex. 

5. Indeterminate Edges (𝐸𝐼), either we do not know their value, or we do not know what vertices they might 

connect. 

 

Then, 𝐺 = (𝑋, 𝐸) where 𝑋 = (𝑉𝑆𝑖 , 𝑉𝑆𝑢 , 𝑉𝐼) ⊆ 𝑃(𝑉)\∅, and 𝐸 = (𝐸𝑆𝑖 , 𝐸𝐻 , 𝐸𝑆𝑢 , 𝐸𝐻𝑆, 𝐸𝐼) ⊆ 𝑃(𝑉) × 𝑃(𝑉). 

Definition 3. (Neutrosophic  Restricted SuperHyperGraphs) Let 𝐺 = (𝑋, 𝐸) be a Restricted SuperHyperGraph. If all vertices and 

edges of 𝐺 belong to the neutrosophic set, then the SHG is a Neutrosophic Restricted SuperHyperGraphs (NRSHG). If 𝑥 is a 

neutrosophic super vertex containing vertices  {𝑣1, 𝑣2, … , 𝑣𝑘}, where 𝑣𝑖 ∈ 𝑉 for 1 ≤ 𝑖 ≤ 𝑘, then  

 

𝑇𝑋(𝑥) = min{𝑇𝑋(𝑣𝑖), 1 ≤ 𝑖 ≤ 𝑘}, 
𝐼𝑋(𝑥) = min{𝐼𝑋(𝑣𝑖), 1 ≤ 𝑖 ≤ 𝑘}, 
𝐹𝑋(𝑥) = max{𝐹𝑋(𝑣𝑖), 1 ≤ 𝑖 ≤ 𝑘}. 

 
Definition 4. Let 𝐺 = (𝑋, 𝐸) be a 2-Restricted SuperHyperGraph, with 𝑋 = (𝑉𝑆𝑖 , 𝑉𝑆𝑢 , 𝑉𝐼) ⊆ 𝑃(𝑉)\∅, and 𝐸 = (𝐸𝑆𝑖 , 𝐸𝐻 , 𝐸𝑆𝑢 , 𝐸𝐻𝑆, 𝐸𝐼) ⊆

𝑃(𝑉) × 𝑃(𝑉). Then, the adjacency matrix 𝐴(𝐺) = (𝑎𝑖𝑗) of 𝐺 is defined as a square matrix which columns and rows its, is shown by the 

vertices of 𝐺 and for each 𝑣𝑖 , 𝑣𝑗  ∈ 𝑋,  

 

𝑎𝑖𝑗 =

{
 
 

 
 
0                 there should be no edge between vertices 𝑣𝑖  and 𝑣𝑗 ; 

1                        there is a single edge between vertices 𝑣𝑖  and 𝑣𝑗 ;

S                         there is a super edge between vertices 𝑣𝑖  and 𝑣𝑗 ; 

H                        there is a hyper edge between vertices 𝑣𝑖  and 𝑣𝑗 ;

SH          there is a super hyper edge between vertices 𝑣𝑖  and 𝑣𝑗 .

 

 

Note that in the adjacency matrix 𝐴, a value of one can be placed instead of non-numeric values (𝑆, 𝐻 and 𝑆𝐻)  if necessary for 

calculations. So that, since 𝐴 is a symmetric and values of 𝐴 is positive, eigenvalues of 𝐴 are real. 

 

Definition 5. Let 𝐺 = (𝑋, 𝐸) be a Restricted SuperHyperGraph, with 𝑋 = (𝑉𝑆𝑖 , 𝑉𝑆𝑢 , 𝑉𝐼) ⊆ 𝑃(𝑉)\∅, and 𝐸 = (𝐸𝑆𝑖 , 𝐸𝐻 , 𝐸𝑆𝑢 , 𝐸𝐻𝑆, 𝐸𝐼) ⊆ 𝑃(𝑉) ×

𝑃(𝑉). If 𝐸 = (𝑒1, 𝑒2, … , 𝑒𝑚) then an incidence matrix 𝐵(𝐺) = (𝑏𝑖𝑗) define as 
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𝑏𝑖𝑗 = {
1              𝑖𝑓 𝑣𝑖 ∈ 𝑒𝑗 ,

0            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

 

Definition 6. Let 𝐺 = (𝑋, 𝐸) be a Restricted SuperHyperGraph, with 𝑋 = (𝑉𝑆𝑖 , 𝑉𝑆𝑢 , 𝑉𝐼) ⊆ 𝑃(𝑉)\∅, and 𝐸 = (𝐸𝑆𝑖 , 𝐸𝐻 , 𝐸𝑆𝑢 , 𝐸𝐻𝑆, 𝐸𝐼) ⊆ 𝑃(𝑉) ×

𝑃(𝑉). If 𝐷 = 𝑑𝑖𝑎𝑔(𝐷(𝑣1), 𝐷(𝑣2),… , 𝐷(𝑣𝑛)) where 𝐷(𝑣𝑖) = ∑ 𝑎𝑣𝑖𝑣𝑗𝑣𝑗∈𝑋
, then, a laplacian matrix define as  

𝐿(𝐺) = 𝐷 − 𝐴(𝐺). 

Example 1. Consider 𝐺 = (𝑋, 𝐸) as shown in figure 1 (This figure is selected from reference [1]). Where 𝑋 =

{𝑉1, 𝑉2, 𝑉3, 𝑉4, 𝑉5, 𝑉6, 𝑉7, 𝑉8, 𝐼𝑉9, 𝑆𝑉4,5, 𝑆𝑉1,2,3} and 𝐸 = {𝑆𝑖𝐸5,6, 𝐼𝐸7,8, 𝑆𝐸123,45, 𝐻𝐸459,3, 𝐻𝑆𝐸123,7,8}. We now obtain the SuperHyperGraph – 

related matrices in figure 1 using the above definitions. 

 

 

Figure 1. a Restricted SuperHyperGraph𝐺 = (𝑋, 𝐸) 

 

 

a. Adjacency matrix 



Neutrosophic Sets and Systems, Vol. 50, 2022     483  

 
M. Ghods, Z. Rostami, F. Smarandache. Introduction to Neutrosophic Restricted SuperHyperGraphs and Neutrosophic Restricted 
SuperHyperGraphsTrees and several of their properties  

 

b. incidence matrix 

 

c. Laplacian matrix  

To calculate the Laplacian matrix, we first obtain the diameter matrix 𝐷, in which the vertices 

on the principal diameter, the degree of vertices, and the other vertices are 0. Then its Laplacian 

matrix is calculated as follows. 

3. Neutrosophic SuperHyperTree 

In this section, we first provide a definition of Neutrosophic SuperHyperTree. We then define the 

subtree for Neutrosophic SuperHyperGraphs. In the following, we will examine the Helly property in 

this type of power graphs. 

Definition 7. Let 𝐺 = (𝑋, 𝐸) be a Neutrosophic SuperHyperGraph. Then 𝐺 is called a Neutrosophic 

SuperHyperTree (NSHG) if 𝐺 be a connected Neutrosophic SuperHyperGraph  without a neutrosophic 

cycle. 

Definition 8. Let 𝐻 = (𝐴, 𝐵) be a Neutrosophic SuperHyperGraph. Then 𝐻 is called a subtree NSHG if 

there exists a tree 𝑇 with the same vertex set 𝑉 such that each hyperedge, superedge, or hypersuperedge 

𝑒 ∈ 𝐸 induces a subtree in 𝑇. 

Note. Here we consider the underlying graph 𝐻∗ to find the subtree of NSHG. 
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Example 2. Consider  𝐺 = (𝑋, 𝐸) a Restricted SuperHyperGraph as shown in figure 2.  

Figure 2. A Restricted SuperHyperGraph 

As you can see, since 𝐺 contains the cycle, so that 𝐺 is not a Restricted SuperHyperTree. An 

𝑅𝑆𝐻 −subgraph induced by the subset {𝑒7, 𝑒8, 𝑒9, 𝑒5} of 𝑋, is a RSHT. 

Example 3. Consider  𝐺 = (𝑋, 𝐸) a Neutrosophic Super Hyper Power Graph as shown in figure 3. 

Note that in this example all vertices and edges belong to the neutrosophic sets. As you can see, G is 

a Restricted SuperHyperTree. 
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Figure 3. A Neutrosophic Restricted SuperHyperTree 𝐺 

 

 Now we find a subtree according to definition 7 for 𝐺. 

 

Figure 4. A subtree for NRSHG 𝐺 

 

Now, let 𝑇 = (𝐴, 𝐶) be a tree, that is, 𝑇 is a connected neutrosophic graph without cycle. Then, 

we build a connected NRSHGraph 𝐻 in the following way: 
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1. The set of vertices of 𝐻 is the set of vertices of 𝑇; 

2. The set of edges (hyperedges, superedges or superhyperedges) are a family E of subset V such 

that induced subgraph 𝑇𝑖  is a subtree of T where 𝑇𝑖  is produced by vertices located on edge 𝑒𝑖 ∈ 𝐸. 

so that subgraph 𝑇𝑖  is a tree. 

 

Theorem 1. Let 𝑇 = (𝑉, 𝐸′) be a tree. Also, 𝐻 is a subtree Restricted SuperHyperGraph according to 𝑇. 

Then 𝐻 has the Helly property. 

 

Proof. Since for each tree there exist exactly one path between the two vertices 𝑣𝑖 , 𝑣𝑗 . The path between 

two vertices 𝑣𝑖 , 𝑣𝑗 denoted 𝑃[𝑣𝑖 , 𝑣𝑗].suppose that, 𝑣𝑖 , 𝑣𝑗  and 𝑣𝑘 are three vertices of 𝐻. The paths 𝑃[𝑣𝑖 , 𝑣𝑗], 

𝑃[𝑣𝑗 , 𝑣𝑘] and 𝑃[𝑣𝑘 , 𝑣𝑖] have one common vertex. Now, using theorem 1, for each family of edges 

(hyperedges, superedges and superhyperedges) where the edge contains at least two of the vertices 

𝑣𝑖 , 𝑣𝑗  and 𝑣𝑘 have a non-empty intersection. 

 

 

Theorem 2. Let 𝑇 = (𝑉, 𝐸′) be a tree. Also, 𝐻 is a subtree Restricted SuperHyperGraph according to 𝑇. 

Then 𝐿(𝐻) is a chordal graph. 

 

Proof. Consider 𝑇 = (𝑉, 𝐸′) is a tree. Suppose 𝐻 is a subtree Restricted SuperHyperGraph according 

to T. If |𝑉| = 1, then 𝐻 include exactly one vertex and one hyperdege, so that, the linegraph of H has 

only one vertex hence H is a clique.  It turns out that 𝐻 is a chordal graph. Next, assume that the 

assertion is true for each tree with |𝑉| = 𝑛 − 1, 𝑛 > 1. 
 Now we have to show that the problem assumption is valid for 𝑛 vertices as well. For that, 

suppose 𝑣 ∈ 𝑉 is a vertex leaf on 𝐻. remember that in a tree with at least two vertices there exist at 

least two leaves. If 𝑇1 = (𝑉 − {𝑣}, 𝐸1
′), where 𝑇1 is the subgraph on 𝑉 − {𝑣}, and 

 

𝐻1(𝑉 − {𝑣}) = (𝑉 − {𝑣}, 𝐸1),  |𝑉| > 1. 

 

The 𝑇1 = (𝑉 − {𝑣}, 𝐸1
′) is a tree moreover 𝐻1 = (𝑉 − {𝑣}, 𝐸1) is an induced subtree Restricted 

SuperHyperGraph associated with 𝑇1. Hence 𝐿(𝐻1) is chordal. 

Now, if the number of edges should be the same, that is, |𝐸′| = |𝐸1
′| then we have 𝐿(𝐻) ≈ 𝐿(𝐻1) 

so that 𝐿(𝐻) is a chordal graph.  

If |𝐸′| ≠ |𝐸1
′| then we have 

{𝑣} ∈ 𝐸′ 𝑎𝑛𝑑 |𝐸′| > |𝐸1
′|. 

 

It is easy to show that a neighborhood from {𝑣} in 𝐿(𝐻) is a clique. Hence any cycle passing 

through {v} is chordal in 𝐿(𝐻) and so 𝐿(𝐻) is chordal. 

 
 

Corollary 1. A  Restricted SuperHyperGraph 𝐺 is a subtr Restricted SuperHyperGraph if and only if 𝐺 

has the Helly property and its line graph is a chordal graph. 

4. Conclusions  

In this article, we have defined a SuperHyperTree and Neutrosophic SuperHyperTree, and 

examined the Helly property, which is one of the most important and practical properties in subtrees, 
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for the super hyper tree introduced in this article. There are also algorithms for detecting Helly 

property that we have omitted here. 
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Abstract. This paper introduced and studied for the first time the object of neutrosophic quasigroup Q(Q,·)

over a quasigroup (Q, ·). It was shown that the direct product of any two neutrosophic quasigroups is a

neutrosophic quasigroup. Also, it was established that the holomorph of any neutrosophic quasigroup is a

neutrosophic quasigroup. The soft set theory which Molodtsov innovated is a potent mathematical tool used

for solving mathematical problems with uncertainties and things that are not clearly defined. We broaden soft

set theory by introducing soft neutrosophic quasigroup (NF , A)Q(Q,·) over a neutrosophic quasigroup Q(Q,·).

We introduced and established the order of a finite soft neutrosophic quasigroup with varied mathematical

inequality expressions which exist between the order of a finite neutrosophic quasigroup and that of its soft

neutrosophic quasigroup.

Keywords: Soft set, Neutrosophic set, Quasigroup, Neutrosophic quasigroup, Neutrosophic subquasigroup,

Soft neutrosophic quasigroup, soft neutrosophic subquasigroup

—————————————————————————————————————————-

1. Introduction

Molodtsov [14] introduced a better and more potent generalisation of set theory in solving

classic mathematical problems represented by problems involving data structure that are de-

ficient. Before then there exists some mathematical tools like rough set, fuzzy set, vague set,

probability theory, intuitionistic set and neutrosophic sets among others. However, they have

some limitations due to absence of adequate parametrisation tools that exists when solving

mathematical uncertainties. Soft set has characteristics that makes it different from other

A. Oyem, T.G. Jaiyéo. lá, J.O. Olaleru and B. Osoba, Soft Neutrosophic Quasigroups
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mathematical tools. For instance, it’s effectiveness is by using parametrisation in solving

problems that involves incomplete data where grade of membership that is imperative in

fuzzy set and grade of estimation in rough set are not needed.

Smarandache [18] launched the object of neutrosophic set in an attempt to generalise set

theory involving uncertainties. Neutrosophic set is a mathematical tool that probe the origin,

nature and the range of neutralities that is used for the generalisation of classical set, fuzzy set,

interval fuzzy set and rough set etc. Neutrosophic set is used to solve mathematical problems

involving imprecision, indeterminate, and inconsistencies.

In the concept of neutrosophy, each suggestion or idea is approximated to have certain degree

of subset of truthfulness T ?, indeterminacy I? and falsehood F?. Neutrosophic set theory is

used in solving problems involving informations that are imprecise, indeterminate, false

and not properly defined which exist mainly in belief methodology. Since its introduction,

many authors have published works in it, such as Vasantha and Smarandache [25] in-

troduced certain algebraic neutrosophic structures and N-Algebraic neutrosophic structures,

neutrosophic vector space and neutrosophic loops. Ali et al. [15] introduced soft neutrosophic

loops and their generalizations, and Ali et al. [16] worked on soft neutrosophic groupiod and

their generalisations. Maji [13] worked on neutrosophic soft sets.

Quasigroups are structures that generalises groups but they are not associative like groups.

Quasigroups theory was introduced more than two centuries ago. Effectiveness of the applica-

tion of the theory of quasigroups is based on its “generalized permutations” of some sort and

the number of quasigroups of order n is larger than n! - (Denes and Keedwell [17]). Namely,

both left and right translations properties in quasigroups are permutations.

We refer readers to Aktas and Cagman [3], Molodtsov [14], Maji et. al. [13] and studies

in [4, 5, 8, 12,19,20,23,24] for works on soft sets.

After the introduction of neutrosophic sets as generalization of intuitionistic fuzzy sets by

Smarandache [18] in 2002, Vasantha and Smarandache [25] did a comprehensive introduction of

algebraic neutrosophic structures and N-algebraic neutrosophic structures in 2006. Thereafter,

Ali et al. [15, 16] studied neutrosophic groupoid, neutrosophic quasigroup and their soft sets

deeply. Some recent developments in the study of 'soft neutrosophic' versions of various

algebraic structures have been reported in [28, 29, 36] while some latest developments in the

study of 'neutrosophic soft' versions of some algebraic structures have been reported in [30–

32,37].

The exploits done by different authors on algebraic characteristics of soft sets in general,

and recent exploits on soft quasigroups in Oyem et al. [33–35] inspired us to institute the
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research on soft neutrosophic quasigroup structures. In this work, we introduced neutrosophic

quasigroups and their soft sets.

2. Preliminaries

We start by reviewing some results concerning neutrosophic sets, quasigroups and soft

sets. Various algebraic structures of neutrosophic sets have been introduced and studied

in [6, 13,15,16,18,25].

Definition 2.1. (Neutrosophic Set) If X is a universal set of discourse, then the set A on X
is regarded as a neutrosophic set and denoted as;

A = {< x, TA(x), IA(x)},FA(x) >, x ∈ X

where T ?, I?,F? : X −→]−0, 1+[ and −0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+

Quasigroups and loops have been studied in [1, 2, 7, 9–11,22,26].

Definition 2.2. (Groupoid, Quasigroup)

If G is a non-empty set with a binary operation (·) on G, the pair (G, ·) is called a groupoid

or Magma if for all x, y ∈ G, x · y ∈ G. If for any m,n ∈ G, the equations:

m · x = n and y ·m = n

have unique solutions x and y in G respectively, then (G, ·) is called a quasigroup.

Let (G, ·) be a quasigroup. (G, ·) is called a loop if e ∈ G such that for any x ∈ G, x · e =

e · x = x.

Assuming x is a member of a groupoid (G, ·);x ∈ G, such that the left and right translation

maps of G represented as Lx and Rx are defined as

yLx = x · y and yRx = y · x.

If in the groupoid (G, ·), the left and right translation maps are permutations, then the

groupoid (G, ·) becomes a quasigroup. Thus, their inverse mappings L−1x and R−1x exist.

Therefore

x\y = yL−1x and x/y = xR−1y

and note that

x\y = z ⇔ x · z = y and x/y = z ⇔ z · y = x.

Definition 2.3. (Subquasigroup [22])

Assuming (Q, ·) is a non-empty quasigroup and H ⊂ Q. Then H will be regarded as a

subquasigroup of (Q, ·) if (H, ·) is closed under the operation of (Q, ·) and it is a quasigroup

on its own right.

A. Oyem, T.G. Jaiyéo. lá, J.O. Olaleru and B. Osoba. Soft Neutrosophic Quasigroups

Neutrosophic Sets and Systems, Vol. 50, 2022                                                                               490



In quasigroups, the cancellation rule holds, that is, if for x, y, z ∈ Q, x·y = x·z or y ·x = z ·x
then y = z. It means that in the Cayley table for a quasigroup, each element appears exactly

once in each row and in each column, so the table forms a Latin square. The body of any

finite quasigroup represented in Cayley table represents a Latin square.

The following results and definitions will be used for our main results.

Proposition 2.1. ( [26])

Take Q as a quasigroup of order n and P as a proper subquasigroup of Q or order p. Then,

2p ≤ n.

Proof. Let x ∈ Q − P , if y ∈ P , then xy ∈ Q − P . So xP ⊂ Q − P . But xP has the order p

since Q− P has order n− p; which implies that p ≤ n− p = 2p ≤ n.
Therefore the order of a subquasigroup is equal to or less than half of order of the quasigroup.

Proposition 2.2. Take Q to be a quasigroup, and let P and H be subquasigroups of Q, so

that Q = P ∪H. Then, either P = Q or H = Q.

Proof. Assuming P 6= H. If p ∈ P −H and h ∈ H, then ph /∈ H, and therefore ph ∈ P and

h ∈ P . So, H ≤ P , therefore P = Q.

Lemma 2.1. ( [26])

Take P to be a proper subquasigroup of (Q, ·), so if

(1) a ∈ Q and P ⊂ Q, then |P | = |a · P | = |P · a|.
(2) (P, ·) is a groupoid and P ⊂ Q, then P ⊂ Q.

(3) a ∈ P and P ⊂ Q, a ∈ P and b 6∈ P means ab 6∈ P .

Theorem 2.1. ( [26])

Take Q be a quasigroup with a proper subquasigroup P . Then,

2|P | ≤ |Q|.

Definition 2.4. (Lagrange Property [22])

Take Q to be a finite quasigroup such that P ⊂ Q. Then the subquasigroup P of Q is said

to be Lagrange-like if |P | divides |Q|.

Definition 2.5. (Weak Lagrange Property [22])

Take Q to be a finite quasigroup and let P ⊆ Q. Then Q is said to satisfy the weak Lagrange

property if every subquasigroup P of Q is Lagrange-like, that is |P | divides |Q| for all P ⊂ Q.
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Definition 2.6. (Strong Lagrange Property [22])

Take Q to be a finite quasigroup and P ⊆ Q. Q is said to have a strong Lagrange property

if P satisfies the weak Lagrange property for all the P ⊂ Q.

Remark 2.1. The order of a subquasigroup is not necessarily a factor of the order of the

quasigroup, that is the Lagrange properties does not in general hold for quasigroups. For

example, let Q be a quasigroup of order 10 with only two subquasigroups H,K of orders |H| = 2

and |K| = 5 respectively such that H ≤ K ≤ Q. Since 2, 5 divide 10, then Q has the weak

Lagrange property. But Q does not have the strong Lagrange property since |H| is not a divisor

of |K|.

We now introduce soft sets and operations defined on them. Throughout this subsection,

Q∗ denotes an initial universe, E is the set of defined parameters and A ⊆ E.

Definition 2.7. (Soft Sets, Soft Subset, Equal Soft Sets [3, 5, 12, 14, 19, 23, 33])

Assume Q∗ is a universal set of discourse and E is a set of defined parameters such that

C ⊂ E. The couple (G,C) is called a soft set over Q∗, whenever G(c) ⊂ Q∗ ∀ c ∈ C; and

F is a function mappings C to all the non-empty subsets of Q∗, i.e G : C −→ 2Q
∗\{∅}. A

soft set (G,C) over a set Q∗ is described as a set of ordered pairs: (G,C) = {(c,G(c)) : c ∈
C and G(a) ∈ 2Q

∗}. The set of all soft sets, over Q∗ under a defined set of parameters C, is

denoted by SS(Q∗C).

Suppose that (G∗, C) and (K∗, D) are two soft sets defined over Q∗, then (K∗, D) will be

regarded as a soft subset of (G∗, C) if,

(1) D ⊆ C; and

(2) K∗(c) ⊆ G∗(c) ∀ c ∈ D.

Definition 2.8. (Restricted Intersection)

Consider (G∗, C) and (K∗, D) to be two soft sets over Q∗ so that C∩D 6= ∅. We define their

restricted intersection as a soft set (G∗, C) ∩ (K∗, D) = (Z∗, E) where (Z∗, E) is represented

as Z∗(e) = G∗(e) ∩K∗(e) ∀ e ∈ E and E = C ∩D.

Definition 2.9. (Extended Intersection)

Consider (G∗, C) and (K∗, D) be two soft sets over Q∗ so that C ∩D is not empty. Their

extended intersection is a soft set (Z∗, E), where E = C ∪D ∀ e ∈ E, Z∗(e) can be defined as;

Z∗(e) =


G∗(e) whenever e ∈ C −D
K∗(e) whenever e ∈ D − C
G∗(e) ∩K∗(e) whenever e ∈ C ∩D.
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Definition 2.10. (Union)

The extended union of two soft sets (G∗, C) and (K∗, D) over Q∗ is defined as

(G∗, C)
⋃

(K∗, D) and it is called a soft set (Z,E) over Q∗, as E = C ∪D ∀ e ∈ E and

Z∗(e) =


G∗(e) whenever e ∈ C −D
K∗(e) whenever e ∈ D − C
G∗(e) ∪K∗(e) whenever e ∈ C ∩D.

3. MAIN RESULTS

3.1. Neutrosophic Quasigroup

Definition 3.1. (Neutrosophic Quasigroup)

Let (Q, ·) be a quasigroup. The neutrosophic quasigroup over a quasigroup Q is Q =〈
Q ∪Ne

〉
generated by Q and neutrosophic element Ne coupled with a binary operation �

such that Q =
(〈
Q ∪Ne

〉
,�
)

is a quasigroup. Q being a neutrosophic quasigroup over (Q, ·)
will sometimes represented by Q(Q,·) or QQ.

Remark 3.1. If QQ is neutrosophic quasigroup over Q, then Q contains Q as a subquasigroup.

Example 3.1. Let (Q, ·) be a quasigroup of order 4 where Q = {1, 2, 3, 4} and let

Q =
〈
Q ∪Ne

〉
= {1, 2, 3, 4, 1Ne, 2Ne, 3Ne, 4Ne}

be represented by the multiplication Table 1. Then Q(Q,·) = QQ = Q =
(〈
Q ∪Ne

〉
,�
)

is a the

neutrosophic quasigroup over Q.

Table 1. Neutrosophic quasigroup of order 8

� 1 2 3 4 1Ne 2Ne 3Ne 4Ne
1 1 2 4 3 1Ne 2Ne 3Ne 4Ne
2 2 1 3 4 2Ne 1Ne 4Ne 3Ne
3 3 4 2 1 3Ne 4Ne 2Ne 1Ne
4 4 3 1 2 4Ne 3Ne 1Ne 2Ne

1Ne 2Ne 1Ne 4Ne 3Ne 2 1 4 3

2Ne 1Ne 2Ne 3Ne 4Ne 1 2 3 4

3Ne 4Ne 3Ne 1Ne 2Ne 3 4 1 2

4Ne 3Ne 4Ne 2Ne 1Ne 4 3 2 1

Example 3.2. Consider (G,+) to be a quasigroup of order 3 where G = {i, j, k} and let

G =
〈
G ∪Ne

〉
= {i, j, k, iNe, jNe, kNe}

be represented by the multiplication Table 2 . Then G(G,+) = GG = G =
(〈
G ∪Ne

〉
,⊕
)

is a the

neutrosophic quasigroup over G.
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Table 2. Neutrosophic quasigroup of order 6

⊕ i j k iNe jNe kNe
i i j k iNe jNe kNe
j j k i jNe kNe iNe
k k i j kNe iNe jNe
iNe jNe kNe iNe i j k

jNe iNe jNe kNe k i j

kNe kNe iNe jNe j k i

Definition 3.2. (Neutrosophic Subquasigroup)

Consider QQ =
(〈
Q ∪Ne

〉
,�
)

to be a neutrosophic quasigroup over Q and ∅ 6= H ⊆ Q.

Then, HH will be regarded as a neutrosophic subquasigroup of Q if there exists H ≤ Q such

that HH =
(〈
H ∪Ne

〉
,�
)

is a neutrosophic quasigroup over H. This will often be expressed

as HH ≤Ne QQ..

Remark 3.2. In Definition 3.2, if HH = H, then HH will be called a trivial neutrosophic

subquasigroup of Q. Also, HH = QQ will be regarded as a trivial neutrosophic subquasigroup

of Q.

Example 3.3.

(1) In Example 3.1, HH = {1, 2, 1Ne, 2Ne} is a neutrosophic subquasigroup of QQ i.e.

HH ≤Ne QQ because (HH ,�) is a neutrosophic quasigroup over H going by Table 1.

However, K = {1, 2, 3Ne, 4Ne} is not a neutrosophic subquasigroup of QQ even though

K ≤ QQ. This is because by Table 1, there is no K ≤ Q, such that KK =
〈
K ∪Ne

〉
=

{1, 2, 3Ne, 4Ne}. Neither {1, 2} nor {3, 4} can be K.

(2) In Example 3.2, QQ has no nontrivial neutrosophic subquasigroup judging by Table 2.

Remark 3.3. Based on Example 3.3(1), not every subquasigroup of a neutrosophic quasigroup

QQ is a neutrosophic subquasigroup of QQ. Ofcourse, every neutrosophic subquasigroup of a

neutrosophic quasigroup QQ is a subquasigroup of QQ.

3.2. Direct Product of Neutrosophic Quasigroups

The direct product Q×H of two groups (quasigroups,loops) Q,H is a group (quasigroup,

loop). For group (loop), it clearly contains at least one subgroup (subloop) isomorphic to Q,

namely Q×{e}. However, this is not the case for a direct product of two quasigroups. Bruck [7]

gave examples of finite nontrivial quasigroups Q and H whose direct product has no proper

subquasigroup. Foguel [21] considered when the direct product Q × H of two quasigroups
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Q,H contains a subquasigroup isomorphic Q. We shall now consider the direct product of two

neutrosophic quasigroups.

Theorem 3.1. (Direct Product of Neutrosophic Quasigroups)

Take Q(Q,·) =
(〈
Q ∪Ne

〉
,�
)

and H(H,∗) =
(〈
H ∪Nb

〉
,~
)

to be any two neutrosophic

quasigroups. Their direct product

(Q×H)(Q×H,(·,∗)) = (Q×H)Q×H = Q×H =
(〈
Q×H ∪

(
Ne,Nb

)〉
, (·, ∗)

)
is a neutrosophic quasigroup.

Proof.

QQ ×HH =
〈
Q ∪Ne

〉
×
〈
H ∪Nb

〉
={

(q, h), (qNe, h), (q, hNb), (qNe, hNb)|q ∈ Q, h ∈ H
}

=
〈
Q×H ∪

(
Ne,Nb

)〉
.

So, QQ ×HH is a generated by Q×H and
(
Ne,Nb

)
, and thus

(〈
Q×H ∪

(
Ne,Nb

)〉
, (·, ∗)

)
is

a quasigroup and has Q×H as a subquasigroup.

Corollary 3.1. Let Q(Q,·) =
(〈
Q ∪Ne

〉
,�
)

and H(H,∗) =
(〈
H ∪Nb

〉
,~
)

be any two neutro-

sophic quasigroups with neutrosophic subquasigroups Q′(Q′,·) and H′(H′,∗) respectively. Then,

(Q′ ×H′)(Q′×H′,(·,∗)) ≤(Ne,Nb) (Q×H)(Q×H,(·,∗))

Proof. Going by Theorem 3.1, (Q×H)(Q×H,(·,∗)). Since Q′(Q′,·) and H′(H′,∗) are neutrosophic

quasigroups, then by Theorem 3.1. Thus,

(Q′ ×H′)(Q′×H′,(·,∗)) ≤(Ne,Nb) (Q×H)(Q×H,(·,∗))

because Q′ ×H′ ⊆ Q×H and Q′ ×H ′ ≤ Q×H.

Example 3.4. By considering the direct product of the neutrosophic quasigroups Q(Q,·) and

G(G,+) in Example 3.1 and Example 3.2 respectively, the multiplication table of the neutro-

sophic quasigroup (Q× G)(Q×G,(·,+)) can be constructed by using the multiplication Table 1

and Table 2.

3.3. Holomorph of Neutrosophic Quasigroups

We recall the definition of the holomorph of a quasigroup.

Definition 3.3. If we take (Q, ·) to be a quasigroup and let A(Q, ·) = A(Q) ≤ AUM(Q, ·) =

AUM(Q) be the subgroup of the automorphism group of (Q, ·). Let H(Q, ·) = H(Q) = A(Q)×
Q and define ◦ on H(Q) as follows (α, x) ◦ (β, y) = (αβ, xβ · y) for all x, y in Q and for all

α, β ∈ A(Q). Then, the pair (H(Q), ◦) (or H(Q)) is called the A(Q)-holomorph (or holomorph)
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of Q. (H(Q), ◦) is a quasigroup. The A(Q)-holomorph H(Q) of a quasigroup Q is a semi-direct

product of Q and an automorphism group A(Q) of it.

Moreover, many authors such as [38, 40–42, 44, 52, 53] have considered the holomorphs of

A-loops, Bruck loops, Bol loops, conjugacy closed loops, extra loops, inverse property loops,

weak inverse property loops. Jaiyéo. lá [11, 47, 48] also derived some results on the holomorph

of certain varieties of loops. Adeniran et. al. [39] studied the holomorph of generalized Bol

Loops. Results on the holomorphy of Osborn loops and the holomorphy of middle Bol loops

can be seen on Jaiyéo. lá and Popoola [49]; Isere et. al. [46] and Jaiyéo. lá et al. [50]. Recently,

Ogunrinade et al. [51] studied the holomorphy of self distributive quasigroup, Ilojide et al. [45]

studied the holomorphy of Fenyves BCI-algebras; Oyebo et al. [54] considered the Holomorphy

of (r, s, t)-inverse loops while Effiong et al. [43] considered the holomorphy of Basarab loops.

Specifically, we cite the work of Bruck [40] on inverse property loops (IPL), where he established

that the holomorph of IPL is an IPL. Also, Huthnance Jr. [44] established that the holomorph

of WIP loops is a WIP loop.

Let us now introduce the holomorph of a neutrosophic quasigroup and investigate if it is a

neutrosophic quasigroup.

Theorem 3.2. Take (Q, ·) to be a quasigroup with A(Q)-holomorph (H(Q, ·), ◦). Let Q(Q,·) =(〈
Q ∪Ne

〉
,�
)

be a neutrosophic quasigroup over (Q, ·) then,

(1)
(
H(H(Q,·),◦),}

)
is a quasigroup and the A

(
Q(Q,·),�

)
-holomorph of

(
Q(Q,·),�

)
; and

(2)
(
H(H(Q,·),◦),}

)
is a neutrosophic quasigroup over (H(Q, ·), ◦).

Proof.

(1) Note that since A(Q, ·) ≤ AUM(Q, ·), then A
(
Q(Q,·),�

)
≤ AUM

(
Q(Q,·),�

)
. Thus,

since (H(Q, ·),�) is a quasigroup, then with H =
〈
Q ∪Ne

〉
∪ A

(
Q(Q,·)

)
= Q(Q,·) ∪

A
(
Q(Q,·)

)
,
(
H(H(Q,·),◦),}

)
is a quasigroup, and so, A

(
Q(Q,·),�

)
- is holomorph of(

Q(Q,·),�
)
.

(2) Notice that A(Q, ·) =
{
α ∈ A

(
Q(Q,·)

)
|α = α|(Q,·)

}
≤ A

(
Q(Q,·)

)
. Thus, (H(Q, ·), ◦) ≤(

H(H(Q,·),◦),}
)
. Therefore,

(
H(H(Q,·),◦),}

)
is a neutrosophic quasigroup over

(H(Q, ·), ◦).

3.4. Soft Neutrosophic Quasigroup

Definition 3.4. (Soft Neutrosophic Quasigroup)

Assuming that Q(Q,·) is a neutrosophic quasigroup, and suppose that E is a set of defined

parameters and A ⊂ E. The couple (NF , A)Q(Q,·) is regarded as a soft neutrosophic quasigroup

over Q(Q,·) if NF (a) is neutrosophic subquasigroup of QQ ∀ a ∈ A, where NF : A −→ 2QQ.
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We shall sometimes write (NF , A)Q(Q,·) = {NF (a)|a ∈ A}.

Example 3.5. Table 1 defines a finite neutrosophic quasigroup as a Latin square table; where

Q(Q,·) =
〈
Q ∪Ne

〉
= {1, 2, 3, 4, 1Ne, 2Ne, 3Ne, 4Ne}

Assume A = {β1, β2, β3} to be a set of parameters and let

NF : A→ 2Q ↑ NF (β1) = {1, 2}, NF (β2) = {1, 2, 3, 4}, NF (β3) = {1, 2, 1Ne, 2Ne}.

Then, (NF , A)Q(Q,·) is regarded as soft neutrosophic quasigroup over neutrosophic quasigroup

Q(Q,·) because NF (βi) ≤Ne QQ for i = 1, 2, 3.

Now assume B = {β1, β2, β3, β4} be set of defined parameters and

NF : B → 2Q ↑ NF (β1) = {1, 2}, NF (β2) = {1, 2, 3, 4},

NF (β3) = {1, 2, 1Ne, 2Ne}, NF (β4) = {1, 2, 3Ne, 4Ne}.

Then, (NF , B)Q(Q,·) is not a soft neutrosophic quasigroup over neutrosophic quasigroup Q(Q,·)

because NF (βi) ≤Ne QQ for i = 1, 2, 3 but NF (β4) 6≤Ne QQ.

Definition 3.5. (Soft sub-neutrosophic quasigroup)

If (NF , A)Q(Q,·) and (NG, B)Q(Q,·) are two soft neutrosophic quasigroups over a common

neutrosophic quasigroup Q(Q,·). (NF , A)Q(Q,·) is called soft neutrosophic subquasigroup of

(NG, B)Q(Q,·) if

(1) A ⊆ B, and

(2) NF (a) ≤Ne NG(a), for all a ∈ A.

This will be expressed as (NF , A) ≤Ne (NG, B).

3.5. Order of Soft Neutrosophic Quasigroup

Pflugfelder [22] and Wall [26] established that quasigroups might not neccessarily obey

Lagrange’s theorem. We extend some results of Wall [26] to soft neutrosophic quasigroup.

The existence of identity element in the definition of the order of soft group in Aktas [3]

was considered. Hence we introduced new definition for the order of a soft neutrosophic

quasigroup that is independent of identity element and associative property. We introduce

the order of a soft neutrosophic quasigroup (NF , χ) over a finite neutrosophic quasigroup QQ
and to check for divisibility properties between |QQ| and |(NF , χ)|, and prove that there are

some algebraic connections existing between the orders of a neutrosophic quasigroup QQ and

its soft neutrosophic quasigroup (NF , χ).

Definition 3.6. (The Order of Soft Neutrosophic Quasigroups)

Consider (NF , χ)Q(Q,·) to be a soft neutrosophic quasigroup over a finite neutrosophic quasi-

group Q(Q,·). (NF , χ)Q(Q,·) will be called a finite soft neutrosophic quasigroup. The order of
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a finite soft neutrosophic quasigroup (NF , χ)Q(Q,·), where χ is the set of parameters, will be

defined as;

|(NF , χ)|Q(Q,·) = |(NF , χ)|QQ = |(NF , χ)|Q = |(NF , χ)| =
∑
a∈χ
|NF (a)|, NF (a) ∈ (NF , χ), a ∈ χ.

Definition 3.7. Consider (NF , χ)QQ to be soft neutrosophic quasigroup over a neutrosophic

quasigroup QQ. Then, we defined the arithmetic mean of a soft neutrosophic quasigroup and

the geometric mean of soft neutrosophic quasigroup (NF , χ), where χ 6= 0 as;

AMQ(NF , χ) =
1

|χ|
∑
a∈χ
|NF (a)|; GMQ(NF , χ) = |χ|

√∏
a∈χ
|NF (a)|;

Remark 3.4. (NF , χ)Q is a soft neutrosophic quasigroup over a finite neutrosophic quasigroup

Q as in Example 3.5. We note that |NF (a)|
∣∣∣|(NF , χ)| and |NF (a)|

∣∣∣|Q| occurred for just one

case of a ∈ χ, |NF (a)|
∣∣∣|(NF , χ)| occurred one case of a ∈ χ and |NF (a)|

∣∣∣|Q| occurred in all

cases for a ∈ χ.

Lemma 3.1. Consider
(
Q(Q,·),�

)
to be a finite neutrosophic quasigroup, then

i If (NF , χ)Q is a finite soft neutrosophic quasigroup over
(
Q(Q,·),�

)
. For any a ∈(

Q(Q,·),�
)
, |NF (a)| = |α�NF (a)| = |NF (a)� α|∀α ∈

(
Q(Q,·),�

)
.

ii If (NF , χ)Q is a soft set over
(
Q(Q,·),�

)
. Then (NF , χ)Q is soft neutrosophic quasi-

group iff (NF , χ)Q is soft neutrosophic groupoid.

iii Consider (NF , χ)Q to be soft neutrosophic quasigroup. Hence,

(a) if for any α ∈ χ, α ∈ NF (α) and β 6∈ NF (α) means α� β 6∈
(
Q(Q,·),�

)
.

(b) NF (α)�
(
Q(Q,·),�

)
\NF (α) ⊂

(
Q(Q,·),�

)
\NF (α) for all α ∈ χ.

Proof.

(1) Assume (NF , χ) to be a soft neutrosophic quasigroup over a finite neutrosophic quasi-

group
(
Q(Q,·),�

)
. From (i) of Lemma 2.1; NF (a) ⊂

(
Q(Q,·),�

)
for all a ∈ χ, for any

α ∈ Q(Q,·), |NF (a)| = |α�NF (a)| = |NF (a)� α| ∀ α ∈
(
Q(Q,·),�

)
.

(2) If (NF , χ) is soft set over
(
Q(Q,·),�

)
, and (NF , χ)(Q(Q,·),�) is soft neutrosophic quasi-

group, and (NF , χ)(Q(Q,·),�) a soft neutrosophic groupoid. Hence, if (NF , χ)(Q(Q,·),�)
is soft neutrosophic groupoid, then NF (a) is also neutrosophic subgroupoid of(
Q(Q,·),�

)
∀a ∈ χ. From (ii) of Lemma 2.1, NF (a) is neutrosophic subquasigroup

of
(
Q(Q,·),�

)
∀ a ∈ χ. Therefore, (NF , χ)(Q(Q,·),�) is soft neutrosophic quasigroup.

(3) If (NF , χ)Q(Q,·) is soft neutrosophic quasigroup, therefore

(a) NF (a) ≤Ne
(
Q(Q,·),�

)
∀a ∈ χ, from (iii) of Lemma 2.1, for any a ∈ χ, α ∈ NF (a)

and β 6∈ NF (a) imply α� β 6∈
(
Q(Q,·),�

)
.

(b) This follows from (a) above.
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Theorem 3.3. Consider (NF , χ)(Q(Q,·),�) to be a finite soft neutrosophic quasigroup. Then

the following holds;

1. |(NF , χ)| = |χ|AM(NF , χ); 2. 2|(NF , χ)| ≤ |χ||
(
Q(Q,·),�

)
|; 3. |

(
Q(Q,·),�

)
| ≥ 2AM(NF , χ).

Proof. We derived |(NF , χ)| = |χ|AM(NF , χ) from the combination of the definition of

|(NF , χ)| and AM(NF , χ). If (NF , χ)(Q(Q,·),�) is a soft neutrosophic quasigroup, then

NF (a) ≤Ne
(
Q(Q,·),�

)
∀a ∈ χ. From Theorem 2.1, 2|NF (a)| ⊂ |

(
Q(Q,·),�

)
| for all a ∈ χ. So

from χ = {a1, a2, · · · , an},

2|NF (a1)|+2|NF (a2)|+· · ·+2|NF (an)| ≤ |χ||
(
Q(Q,·),�

)
| ⇒ 2

∑
a∈χ
|NF (a)| ≤ |χ||

(
Q(Q,·),�

)
| ⇒

2|(NF , χ)| ≤ |χ||
(
Q(Q,·),�

)
|.

Also, 2
∑
a∈χ
|NF (a)| ≤ |χ||

(
Q(Q,·),�

)
| ⇒ |

(
Q(Q,·),�

)
| ≥ 2

|χ|
∑
a∈χ
|NF (a)| ⇒ |

(
Q(Q,·),�

)
| ≥

2AM(NF , χ).

Remark 3.5.

(1) From Theorem 3.3, if equation |(NF , χ)| = |χ|AM(F, χ) is considered as a Lagrange’s

Formula for finite soft neutrosophic quasigroup. We let |χ| and AM(NF , χ) to take

the character of the order of subgroup and its index in the group theory, which may

not be an integer.

(2) In Theorem 3.3 both |(NF , χ)| = |χ|AM(NF , χ);and 2|(NF , χ)| ⊂ |χ||
(
Q(Q,·),�

)
|

gives both an upper and lower bound for the order of a finite soft neutrosophic quasi-

group.

Also in Theorem 3.3, the second part from is proved from 1 of Lemma 3.1, such that for any

a ∈
(
Q(Q,·),�

)
, |NF (a)| = |α�NF (a)| = |NF (a)�α|∀α ∈

(
Q(Q,·),�

)
. Hence, if α ∈

(
Q(Q,·),�

)
and α 6∈ NF (a), clearly from 3 of Lemma 3.1,

|(NF , χ)| ≤
∑
a∈χ
|
(
Q(Q,·),�

)
\NF (a)| ⇒ |(NF , χ)| ≤

∑
a∈χ

(
|
(
Q(Q,·),�

)
| − |NF (a)|

)
=

∑
a∈χ
|
(
Q(Q,·),�

)
| −
∑
a∈A
|NF (a)| ⇒ |(NF , χ)| ≤ |χ||

(
Q(Q,·),�

)
| − |(NF , χ)| ⇒

2|(NF , χ)| ≤ |χ||
(
Q(Q,·),�

)
|.

From Example 3.5, if we consider (NF , χ) as a soft neutrosophic quasigroup over a finite

neutrosophic quasigroup
(
Q(Q,·),�

)
. Then it can be observed that if |χ| = 3, |

(
Q(Q,·),�

)
| =

8, |(NF , χ)| = 10, then the equations in Theorem 3.3 will be satisfied.
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Theorem 3.4. Consider (NF , χ)(Q(Q,·),�) to be a finite soft neutrosophic quasigroup. We

have,

(i) |
(
Q(Q,·),�

)
| ≥ 2× |χ|

√∏
a∈χ
|NF (a)|, (ii) |

(
Q(Q,·),�

)
| ≥ 2AM(NF , χ) and

(iii) |
(
Q(Q,·),�

)
| ≥ AM(NF , χ) + GM(NF , χ).

Proof. From Theorem 2.1, we have,

∏
a∈χ

2|NF (a)| ≤
|χ|∏
i=1

|
(
Q(Q,·),�

)
| ⇒ 2|χ| ×

∏
a∈χ
|NF (a)| ≤

|χ|∏
i=1

|
(
Q(Q,·),�

)
|

⇒ 2|χ| ×
∏
a∈χ
|NF (a)| ≤ |

(
Q(Q,·),�

)
||χ| ⇒

(
|
(
Q(Q,·),�

)
|

2

)|χ|
≥
∏
a∈χ
|F (a)|

⇒
|
(
Q(Q,·),�

)
|

2
≥ |χ|

√∏
a∈χ
|NF (a)| ⇒ |

(
Q(Q,·),�

)
| ≥ 2× |χ|

√∏
a∈χ
|NF (a)| ⇒

|
(
Q(Q,·),�

)
| ≥ 2GM(NF , χ).

By Theorem 3.3, |
(
Q(Q,·),�

)
| ≥ 2AM(NF , χ), therefore 2|

(
Q(Q,·),�

)
| ≥ 2AM(NF , χ) +

2GM(NF , χ)⇒ |
(
Q(Q,·),�

)
| ≥ AM(NF , χ) + GM(NF , χ).

Remark 3.6. The (i) and (ii) of Theorem 3.4 defines the lower bounds of the soft neutro-

sophic quasigroup by taking into consideration the order of the soft neutrosophic quasigroup in

relations to both the arithmetic and geometric means of the soft neutrosophic quasigroup.

Example 3.6. Based on Table 1 and Example 3.5, (NF , χ) is a soft neutrosophic quasigroup

over a finite neutrosophic quasigroup
(
Q(Q,·),�

)
. It will be noticed that;

|χ| = 3, |
(
Q(Q,·),�

)
| = 8, |(NF , χ)| = 10, AM(NF , χ) =

10

3
, GM(NF , χ) =

3
√

32.

Therefore, all the inequalities in Theorem 3.4 are satisfied.

4. Conclusion

In conclusion, we introduced and studied the abstraction of neutrosophic quasigroup(
Q(Q,·),�

)
over a quasigroup (Q, ·). It was discovered that the direct product of any two

neutrosophic quasigroups is neutrosophic quasigroup and that the holomorph of any neutro-

sophic quasigroup is a neutrosophic quasigroup. Furthermore, soft set theory was broadened

by studying soft neutrosophic quasigroup (NF , χ)(Q(Q,·),�) over a neutrosophic quasigroup(
Q(Q,·),�

)
. From the study of order of finite soft neutrosophic quasigroup, we introduced and

established the order of finite soft neutrosophic quasigroup with varied mathematical inequality

expressions that exist among the order of finite neutrosophic quasigroup and the order of soft
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neutrosophic quasigroup over the same quasigroup. From the study of their arithmetic mean

AM(NF , χ) and geometric mean GM(NF , χ) of finite soft neutrosophic quasigroup (NF , χ),

Lagrange’s like Formula |(NF , χ)| = |χ|AM(NF , χ) for finite soft neutrosophic quasigroup was

established. In future work, Definition 2.8, Definition 2.9 and Definition 2.10 will be studied

for soft neutrosophic quasigroups.
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—————————————————————————————————————————-

1. Introduction

Fuzzy set is introduced and described using membership functions by Zadeh in 1965 [14] in

1965. The notion of Rough sets was introduced by Pawlak [7] in his seminal paper of 1982.

Crisp set and equivalence relation are the basic elements of Rough set theory. Rough set is

based on result of approximating crisp sets known as the lower approximation and the upper

approximation of a set introduced by Biswas and Nanda [2] in 1994. Approximation spaces are

sets with multiple memberships but, fuzzy sets are with partial memberships. Many scholars

Dubios et al [4], Gong et al [5], Leung et al [6], Sun et al [12] has developed many models

upon different aspects. Rough sets and fuzzy sets, vague set and Intuitionistic fuzzy sets

combine with various notions such as Generalized fuzzy rough sets, Intuitionistic fuzzy rough

sets, Rough Intuitionistic fuzzy sets, and Rough vague sets were introduced.

Atanassov (1983) [1] introduced the notion of Intuitionistic fuzzy sets. They are the sets whose

elements having degrees of membership and non-membership. Selvan, Senthil Kumar [8–10],
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introduced the notion of rough intuitionistic fuzzy ideal(prime ideal) in rings in 2012. The

generalizations of the theory of intuitionistic fuzzy sets is the theory of neutrosophic sets. The

words neutrosophy and neutrosophic were introduced by Smarandache [11]. Neutrosophic

concepts are very much useful in real life problem. For example, If a opinion is asked about a

statement one may assign that the possibility that the statement true is 0.6 and the statement

false is 0.8 and if it is not sure is 0.2. This idea is very much needful in various problems

in real life situation. Neutrosophic sets are characterized by truth membership function ,

indeterminacy membership function and falsity membership function . Vildan cetkin and

Halis Aygun [13] introduced an approach to single valued Neutrosophic ideals over a classical

ring and Neutrosophic subring in 2018. Rough neutrosophic set is introduced by Broumi,

Smarandache, and Dhar [3].

In this paper, we prove that any neutrosophic subring (ideal) of a ring is an upper and lower

rough neutrosophic subring (ideal) of the ring.

2. Preliminaries

See [3], [7], [13] for basic concepts which are used in this work.

3. Operations on Rough Neutrosophic sets in a Ring

In this section we introduce the notion of RNI in a ring. Some basic properties of these

ideals are proved and examples are given. Let CR denote the congruence relation on R,

throughout this section.

Theorem 3.1. Let CR and CR
′
be the two congruence relations on R. If P and Q are any

two NS of R, then the following properties are,

(a)CR(P ) ⊆ P ⊆ CR(P )

(b)CR(CR(P )) = CR(P )

(c)CR(CR(P )) = CR(P )

(d)CR(CR(P )) = CR(P )

(e)CR(CR(P )) = CR(P )

(f)(CR(P c))
c

= CR(P )

(g)(CR(P c))c = CR(P )

(h)CR(P ∩Q) = CR(P ) ∩ CR(Q)

(i)CR(P ∩Q) ⊆ CR(P ) ∩ CR(Q)

(j)CR(P ∪Q) = CR(P ) ∪ CR(Q)

(k)CR(P ∪Q) ⊇ CR(P ) ∪ CR(Q)

(l)P ⊆ Q⇒ CR(P ) ⊆ CR(Q)

(m)P ⊆ Q⇒ CR(P ) ⊆ CR(Q)

V.S. Subha, G. Rajasekar and S. Soundaravalli, Rough Neutrosophic Ideals in a Ring

Neutrosophic Sets and Systems, Vol. 50, 2022                                                                               505



(n)CR ⊆ CR
′ ⇒ CR(P ) ⊇ CR

′
(P )

(o)CR ⊆ CR
′ ⇒ CR(P ) ⊆ CR

′
(P ).

Proof. Proof is obvious.

Theorem 3.2. If P and Q are any two NS of R, then CR(P ) + CR(Q) ⊆ CR(P +Q).

Proof. Since P and Q be any two NS of R. Then

CR(P ) + CR(Q) = {[CR(P (nt)) + CR(Q(nt))], [CR(P (ni)) + CR(Q(ni))],

[CR(P (nf )) + CR(Q(nf ))]}.
CR(P +Q) = {[CR(P (nt) +Q(nt))], [CR(P (ni) +Q(ni))], [CR(P (nf ) +Q(nf ))]}.

we’ve to prove, CR(P ) + CR(Q) ⊆ CR(P +Q).

For this we want to prove, ∀ α ∈ R
(CR(P (nt)) + CR(Q(nt)))(α) ≤ CR(P (nt) +Q(nt))(α)

(CR(P (ni)) + CR(Q(ni)))(α) ≥ CR(P (ni) +Q(ni))(α)

(CR(P (nf )) + CR(Q(nf )))(α) ≥ CR(P (nf ) +Q(nf ))(α)

Consider,

(CR(P (nt)) + CR(Q(nt)))(α) = ∨
α=β+γ

[CR(P (nt))(β) ∧ CR(Q(nt))(γ)]

= ∨
α=β+γ

[( ∨
x∈[β]CR

(P (nt)(x)) ∧ ( ∨
y∈[γ]CR

(Q(nt)(y))]

= ∨
α=β+γ

[( ∨
x∈[β]CR

y∈[γ]CR

(P (nt)(x) ∧Q(nt)(y))]

≤ ∨
α=β+γ

[( ∨
x+y∈[β+γ]CR

(P (nt)(x) ∧Q(nt)(y))]

= ∨
x+y∈[α]CR

(P (nt)(x) ∧Q(nt)(y))

= ∨
z∈[α]CR
z=x+y

(P (nt)(x) ∧Q(nt)(y))

= ∨
z∈[α]CR

∨
z=x+y

(P (nt)(x) ∧Q(nt)(y))

= ∨
z∈[α]CR

[P (nt) +Q(nt)](z)

= CR(P (nt) +Q(nt))(z)
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And

(CR(P (ni)) + CR(Q(ni)))(α) = ∧
α=β+γ

[CR(P (ni))(β) ∨ CR(Q(ni))(γ)]

= ∧
α=β+γ

[( ∧
x∈[β]CR

(P (ni)(x)) ∨ ( ∧
y∈[γ]CR

(Q(ni)(y))]

= ∧
α=β+γ

[( ∧
x∈[β]CR

y∈[γ]CR

(P (ni)(x) ∨Q(ni)(y))]

≥ ∧
α=β+γ

[( ∧
x+y∈[β+γ]CR

(P (ni)(x) ∨Q(ni)(y))]

= ∧
x+y∈[α]CR

(P (ni)(x) ∨Q(ni)(y))

= ∧
z∈[α]CR
z=x+y

(P (ni)(x) ∨Q(ni)(y))

= ∧
z∈[α]CR

∧
z=x+y

(P (ni)(x) ∨Q(ni)(y))

= ∧
z∈[α]CR

[P (ni) +Q(ni)](z)

= CR(P (ni) +Q(ni))(z)

Also,

(CR(P (nf )) + CR(Q(nf )))(α) = ∧
α=β+γ

[CR(P (nf ))(β) ∨ CR(Q(nf ))(γ)]

= ∧
α=β+γ

[( ∧
x∈[β]CR

(P (nf )(x)) ∨ ( ∧
y∈[γ]CR

(Q(nf )(y))]

= ∧
α=β+γ

[( ∧
x∈[β]CR

y∈[γ]CR

(P (nf )(x) ∨Q(nf )(y))]

≥ ∧
α=β+γ

[( ∧
x+y∈[β+γ]CR

(P (nf )(x) ∨Q(nf )(y))]

= ∧
x+y∈[α]CR

(P (nf )(x) ∨Q(nf )(y))

= ∧
z∈[α]CR
z=x+y

(P (nf )(x) ∨Q(nf )(y))

= ∧
z∈[α]CR

∧
z=x+y

(P (nf )(x) ∨Q(nf )(y))

= ∧
z∈[α]CR

[P (nf ) +Q(nf )](z)

= CR(P (nf ) +Q(nf ))(z)

Hence Proved.
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Theorem 3.3. If P and Q are any two NS of R, then CR(P ) + CR(Q) ⊆ CR(P +Q).

Proof. This proof is similar to Theorem 3.2.

Theorem 3.4. Let P and Q are any two NS of R, then CR(P ).CR(Q) ⊆ CR(P.Q).

Proof. Since P and Q be any two NS of R. Then,

CR(P ).CR(Q) = {[CR(P (nt)).CR(Q(nt))], [CR(P (ni)).CR(Q(ni))], [CR(P (nf )).CR(Q(nf ))]}
CR(P.Q) = {[CR(P (nt).Q(nt))], [CR(P (ni).Q(ni))], [CR(P (nf ).Q(nf ))]}
To prove, CR(P ).CR(Q) ⊆ CR(P.Q).

It is enough to prove that, ∀ α ∈ R
(CR(P (nt)).CR(Q(nt)))(α) ≤ CR(P (nt).Q(nt))(α)

(CR(P (ni)).CR(Q(ni)))(α) ≥ CR(P (ni).Q(ni))(α)

(CR(P (nf )).CR(Q(nf )))(α) ≥ CR(P (nf ).Q(nf ))(α)

Consider,

(CR(P (nt)).CR(Q(nt)))(α) = ∨
α=βγ

[CR(P (nt))(β) ∧ CR(Q(nt))(γ)]

= ∨
α=βγ

[( ∨
x∈[β]CR

(P (nt)(x)) ∧ ( ∨
y∈[γ]CR

(Q(nt)(y))]

= ∨
α=βγ

[( ∨
x∈[β]CR

y∈[γ]CR

(P (nt)(x) ∧Q(nt)(y))]

≤ ∨
α=βγ

[( ∨
xy∈[βγ]CR

(P (nt)(x) ∧Q(nt)(y))]

= ∨
xy∈[α]CR

(P (nt)(x) ∧Q(nt)(y))

= ∨
z∈[α]CR
z=xy

(P (nt)(x) ∧Q(nt)(y))

= ∨
z∈[α]CR

∨
z=xy

(P (nt)(x) ∧Q(nt)(y))

= ∨
z∈[α]CR

[P (nt).Q(nt)](z)

= CR(P (nt).Q(nt))(z)
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(CR(P (ni)).CR(Q(ni)))(α) = ∧
α=βγ

[CR(P (ni))(β) ∨ CR(Q(ni))(γ)]

= ∧
α=βγ

[( ∧
x∈[β]CR

(P (ni)(x)) ∨ ( ∧
y∈[γ]CR

(Q(ni)(y))]

= ∧
α=βγ

[( ∧
x∈[β]CR

y∈[γ]CR

(P (ni)(x) ∨Q(ni)(y))]

≥ ∧
α=βγ

[( ∧
xy∈[βγ]CR

(P (ni)(x) ∨Q(ni)(y))]

= ∧
xy∈[α]CR

(P (ni)(x) ∨Q(ni)(y))

= ∧
z∈[α]CR
z=xy

(P (ni)(x) ∨Q(ni)(y))

= ∧
z∈[α]CR

∧
z=xy

(P (ni)(x) ∨Q(ni)(y))

= ∧
z∈[α]CR

[P (ni).Q(ni)](z)

= CR(P (ni).Q(ni))(z)

(CR(P (nf )) · CR(Q(nf )))(α) = ∧
α=β+γ

[CR(P (nf ))(β) ∨ CR(Q(nf ))(γ)]

= ∧
α=βγ

[( ∧
x∈[β]CR

(P (nf )(x)) ∨ ( ∧
y∈[γ]CR

(Q(nf )(y))]

= ∧
α=βγ

[( ∧
x∈[β]CR

y∈[γ]CR

(P (nf )(x) ∨Q(nf )(y))]

≥ ∧
α=βγ

[( ∧
xy∈[βγ]CR

(P (nf )(x) ∨Q(nf )(y))]

= ∧
xy∈[α]CR

(P (nf )(x) ∨Q(nf )(y))

= ∧
z∈[α]CR
z=xy

(P (nf )(x) ∨Q(nf )(y))

= ∧
z∈[α]CR

∧
z=xy

(P (nf )(x) ∨Q(nf )(y))

= ∧
z∈[α]CR

[P (nf ).Q(nf )](z)

= CR(P (nf ).Q(nf ))(z)

Hence proved.

Theorem 3.5. Let P and Q are any two NS of R, then

CR(P ).CR(Q) ⊆ CR(P.Q).

Proof. This proof is similar to Theorem 3.4.
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4. Rough Neutrosophic Subring (RNSR) of Ring

Definition 4.1. A NSR is called an RNSR if it is both upper RNSR and lower RNSR of

R.

Definition 4.2. A NSR is said to be an lower (upper) RNSR of R if its lower(upper)

approximation is also a NSR of R.

Theorem 4.3. If K be a NSR of R, then K is an upper RNSR of R.

Proof. Since K is a NSR of R. Now,∀ a, b ∈ R

CR(K(nt))(a− b) = ∨
c∈[a−b]CR

K(nt)(c)

= ∨
x−y∈[a]CR

−[b]CR

K(nt)(x− y)

≥ ∨
x∈[a]CR

y∈[b]CR

[K(nt)(x) ∧K(nt)(y)]

= [ ∨
x∈[a]CR

K(nt)(x)] ∧ [ ∨
y∈[b]CR

K(nt)(y)]

= CR(K(nt))(x) ∧ CR(K(nt))(y)

CR(K(ni))(a− b) = ∧
c∈[a−b]CR

K(ni)(c)

= ∧
x−y∈[a]CR

−[b]CR

K(ni)(x− y)

≤ ∧
x∈[a]CR

y∈[b]CR

[P (ni)(x) ∨K(ni)(y)]

= [ ∧
x∈[a]CR

K(ni)(x)] ∨ [ ∧
y∈[b]CR

K(ni)(y)]

= CR(K(ni))(x) ∨ CR(K(ni))(y)

CR(K(nf ))(a− b) = ∧
c∈[a−b]CR

K(nf )(c)

= ∧
x−y∈[a]CR

−[b]CR

K(nf )(x− y)

≤ ∧
x∈[a]CR

y∈[b]CR

[K(nf )(x) ∨K(nf )(y)]

= [ ∧
x∈[a]CR

K(nf )(x)] ∨ [ ∧
y∈[b]CR

K(nf )(y)]

= CR(K(nf ))(x) ∨ CR(K(nf ))(y)
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∀a, b ∈ R

CR(K(nt))(ab) = ∨
c∈[ab]CR

K(nt)(c)

= ∨
xy∈[a]CR

[b]CR

K(nt)(xy)

≥ ∨
x∈[a]CR

,y∈[b]CR

[K(nt)(x) ∧K(nt)(y)]

= [ ∨
x∈[a]CR

K(nt)(x)] ∧ [ ∨
y∈[b]CR

K(nt)(y)]

= CR(K(nt))(x) ∧ CR(K(nt))(y)

CR(K(ni))(ab) = ∧
c∈[ab]CR

K(ni)(c)

= ∧
xy∈[a]CR

[b]CR

K(ni)(xy)

≤ ∧
x∈[a]CR

,y∈[b]CR

[K(ni)(x) ∨K(ni)(y)]

= [ ∧
x∈[a]CR

K(ni)(x)] ∨ [ ∧
y∈[b]CR

K(ni)(y)]

= CR(K(ni))(x) ∨ CR(K(ni))(y)

CR(K(nf ))(ab) = ∧
c∈[ab]CR

K(nf )(c)

= ∧
xy∈[a]CR

[b]CR

K(nf )(xy)

≤ ∧
x∈[a]CR

,y∈[b]CR

[K(nf )(x) ∨K(nf )(y)]

= [ ∧
x∈[a]CR

K(nf )(x)] ∨ [ ∧
y∈[b]CR

K(nf )(y)]

= CR(K(nf ))(x) ∨ CR(K(nf ))(y)

Hence, CR(K) is a NSR of R. Thus K is an upper RNSR of R.

Theorem 4.4. If K be a NSR of R, then K is a lower RNSR of R.

Proof. This proof is similar to Theorem 4.3

Corollary 4.5. Let K be the NSR of R. Then K is a rough RNSR of R.

Proof. By applying Theorem 4.3 and 4.4 we get the result.

Definition 4.6. A NI is called an RNI if it is both upper RNI and lower RNI of R.
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Definition 4.7. A NI is said to be an lower (upper) RNI of R if its lower(upper) approxi-

mation is also an NI of R.

Theorem 4.8. If K be a NI of R, then K is an upper RNI of R.

Proof. Since K is a NI of R. We’ve to prove that, ∀ a, b ∈ R
CR(K(nt))(ab) ≥ CR(K(nt))(a) ∨ CR(K(nt))(b)

CR(K(ni))(ab) ≤ CR(K(ni))(a) ∧ CR(K(ni))(b)

CR(K(nf ))(ab) ≤ CR(K(nf ))(a) ∧ CR(K(nf ))(b)

Now,

CR(K(ni))(ab) = ∨
c∈[ab]CR

K(nt)(c)

≥ ∨
c∈[a]CR

[b]CR

K(nt)(c)

= ∨
xy∈[a]CR

[b]CR

K(nt)(xy)

≥ ∨
x∈[a]CR

,y∈[b]CR

[K(nt)(x) ∨K(nt)(y)]

= [ ∨
x∈[a]CR

K(nt)(x)] ∨ [ ∨
y∈[b]CR

K(nt)(y)]

= CR(K(nt))(x) ∨ CR(K(nt))(y)

CR(K(ni))(ab) = ∧
c∈[ab]CR

K(ni)(c)

≤ ∧
c∈[a]CR

[b]CR

K(ni)(c)

= ∧
xy∈[a]CR

[b]CR

K(ni)(xy)

≤ ∧
x∈[a]CR

,y∈[b]CR

[K(ni)(x) ∧K(ni)(y)]

= [ ∧
x∈[a]CR

K(ni)(x)] ∧ [ ∧
y∈[b]CR

K(ni)(y)]

= CR(K(ni))(x) ∧ CR(K(ni))(y)
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CR(K(nf ))(ab) = ∧
c∈[ab]CR

K(nf )(c)

≤ ∧
c∈[a]CR

[b]CR

K(nf )(c)

= ∧
xy∈[a]CR

[b]CR

K(nf )(xy)

≤ ∧
x∈[a]CR

,y∈[b]CR

[K(nf )(x) ∧K(nf )(y)]

= [ ∧
x∈[a]CR

K(nf )(x)] ∧ [ ∧
y∈[b]CR

K(nf )(y)]

= CR(K(nf ))(x) ∧ CR(K(nf ))(y)

Hence, CR(K) is a NI of R. Thus K is an upper RNI of R.

Theorem 4.9. If K be a NI of R, then K is a lower RNI of R.

Proof. This proof is similar to Theorem 4.8.

Corollary 4.10. If K be the NI of R. then K is a RNI of R.

Proof. By applying Theorem 4.8 and 4.9 we get the result.

5. Conclusion

In this paper, we discussed the notion of rough neutrosophic set in a ring and their properties.

Also, we proved that any neutrosophic ideal of a ring is an rough neutrosophic ideal of a ring.

For further research one can extend this to other algebraic systems.
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Abstract. Models of universe problems are brimming with complexities and uncertainties in almost every

field of study, including engineering, mathematics, medical sciences, computer science, physics, management

sciences, artificial intelligence, and operations research. To address these uncertainties, various theories have

been developed, including probability, rough sets, fuzzy sets, soft ideals, and neutrosophic sets. Neutrosophic

set theory is the focus of this paper. In this paper, we introduce the notions of neutrosophic ℵ-filters and

neutrosophic ℵ-bi-filters in a semigroup and investigate several properties. Moreover, the relations of prime bi-

ideal subset and prime neutrosophic ℵ-bi- ideal structure; neutrosophic ℵ-bi-filter and neutrosophic ℵ-bi-ideal

structure; left (resp., right) filter and neutrosophic ℵ-left (resp., right) filter; neutrosophic ℵ-left(resp., right)

filter and prime neutrosophic ℵ-left (resp., right) ideals in semigroups are discussed. Finally we prove that: let

X be a semigroup and XN be any neutrosophic structure. Then XN is a neutrosophic ℵ-bi-filter of X if and

only if XNc is a prime neutrosophic ℵ-bi-ideal of X.

Keywords: Semigroup; fuzzy sets; filter; bi-ideal; neutrosophic ℵ-bi-ideals.

—————————————————————————————————————————-

1. Introduction

In 1965, L.A. Zadeh [22] introduced the idea of Fuzzy sets which were represented using

membership functions. Rather than a classic set, in the case of a fuzzy set A, x is an object

that belong to this set with varying membership degrees in the range [0, 1], where 0 and 1
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denote, respectively, lack of membership and full membership. The investigation of algebraic

structures has begun with the presentation of the idea of fuzzy subgroups in the spearheading

paper of Rosenfeld [18]. Subsequently, many authors further studied fuzzy concept in semi-

groups(See [9–11,19]). Of several higher-order fuzzy sets, the intuitionistic fuzzy set presented

by Atanassov [3] has been seen as a profoundly useful idea in managing vagueness. Follow-

ing the introduction of the intuitionistic fuzzy set concept, mathematicians published several

papers extending classical and fuzzy mathematical concepts to the case of intuitionistic fuzzy

mathematics.

In 1999, F. Smarandache [20] introduced the concept of neutrosophic set, which is the gener-

alizations of fuzzy sets and intuitionistic fuzzy set. Neutrosophic set is a useful mathematical

tool for dealing with incomplete, inconsistent and indeterminate information. The neutro-

sophic set theory is applied to algebraic structures, multiple attribute decision-making, and so

on [1, 2, 6, 7, 12–17,21].

For additional informations about neutrosophic set theory, we refer the readers to the below

website http://fs.unm.edu/neutrosophy.htm.

In [12], M. Khan et al. introduced and investigated the concept of a neutrosophic ℵ-sub

semigroup of a semigroup. The conditions for neutrosophic ℵ-structure to be neutrosophic

ℵ-subsemigroup were given, and the characterization of neutrosophic ℵ-subsemigroup was dis-

cussed using neutrosophic ℵ-product. They also proved that the homomorphic preimage of a

neutrosophic ℵ-subsemigroup is a neutrosophic ℵ-subsemigroup and that the onto homomor-

phic image of a neutrosophic ℵ-subsemigroup is a neutrosophic ℵ-subsemigroup. The notions

of neutrosophic ℵ-ideals and neutrosophic ℵ- bi-ideals were defined to semigroups and obtained

many useful results (See [5, 17]).

As a follow-up, in this paper we define the concept of neutrosophic ℵ-left (resp., bi-)filters in

semigroup and describe the semigroup in terms of these notions. We also define prime neutro-

sophic ℵ-left ideals and prime neutrosophic ℵ-bi-ideal structures of semigroup and characterize

the relations of neutrosophic ℵ-left filters and prime neutrosophic ℵ-left ideals in semigroups.

Throughout this paper, X denotes a semigroup and for K,S ⊆ X, we denote KS :=

{ks : k ∈ K, s ∈ S}.

Definition 1.1. [4] Let X be a semigroup and φ 6= K ⊆ X. Then

(i) K is called a subsemigroup of X if K2 ⊆ K.
(ii) K is called a left (resp., right) ideal of X if XK ⊆ K (resp., KX ⊆ K).

(iii) If K is both a left and a right ideal of X, then it is called an ideal of X.

(iv) K is called a bi-ideal subset of X if k ∈ K and s ∈ X imply ksk ∈ K.

Definition 1.2. [10] Let X be a semigroup and K a subsemigroup of X. Then
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(i) K is called left (resp., right) filter of X if r, s ∈ X, rs ∈ K implies s ∈ K (resp., r ∈ K).

(ii) K is called a bi-filter of X if r, s ∈ X, rsr ∈ K implies r ∈ K.

Definition 1.3. [11] Let X be a semigroup and φ 6= K ⊆ X. Then

(i) K is called a prime subset of X if r, s ∈ X, rs ∈ K implies r ∈ K or s ∈ K.

Equivalently, S, T ⊆ X, ST ⊆ K implies S ⊆ K or T ⊆ K.

(ii) K is called a semiprime subset of X if r ∈ X, r2 ∈ K implies r ∈ K.

Equivalently, S ⊆ X, S2 ⊆ K implies S ⊆ K .

2. Preliminary definitions and results of Neutrosophic ℵ- structure

In this section, we present the necessary fundamental concepts of neutrosophic ℵ-structures

of X that we need in the sequel.

For a semigroup X, F(X, [−1, 0]) is the collection of negative-valued functions from a set

X to [−1, 0]. An element g ∈ F(X, [−1, 0]) is called a ℵ-function on X and ℵ-structure means

(X, g) of X.

Definition 2.1. [12] A neutrosophic ℵ- structure of X is defined to be the structure:

XM := X
(TM ,IM ,FM ) =

{
l

TM (l),IM (l),FM (l) : l ∈ X
}

where TM is the negative truth membership function on X, IM is the negative indeterminacy

membership function on X and FM is the negative falsity membership function on X.

Note that for any k ∈ X,XM fulfills the condition −3 ≤ TM (k) + IM (k) + FM (k) ≤ 0.

Definition 2.2. For a subset K of X, consider the neutrosophic ℵ-structure

χK(XN ) = X
(χK(T )N ,χK(I)N ,χK(F )N )

where

χK(T )N : X → [−1, 0], x→

−1 if x ∈ K

0 if x /∈ K,

χK(I)N : X → [−1, 0], x→

0 if x ∈ K

−1 if x /∈ K,

χK(F )N : X → [−1, 0], x→

−1 if x ∈ K

0 if x /∈ K,
which is called the characteristic neutrosophic ℵ-structure of K over X.

Definition 2.3. [12] Let X be a semigroup. Then for any XN := X
(TN ,IN ,FN ) and XM :=

X
(TM ,IM ,FM ) .
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(i) XM is called a neutrosophic ℵ-substructure of XN , denoted by XN ⊆ XM , if it satisfies

the below condition for any l ∈ X,

TN (l) ≥ TM (l), IN (l) ≤ IM (l), FN (l) ≥ FM (l).

If XN ⊆ XM and XM ⊆ XN , then we say that XN = XM .

(ii) The union of XN and XM is a neutrosophic ℵ-structure over X is defined as

XN ∪XM = XN∪M = (X;TN∪M,IN∪M,FN∪M ),

where

(TN ∪ TM )(k) =TN∪M (k) = TN (k) ∧ TM (k),

(IN ∪ IM )(k) =IN∪M (k) = IN (k) ∨ IM (k),

(FN ∪ FM )(k) =FN∪M (k) = FN (k) ∧ FM (k) for any k ∈ X.

(iii) The intersection of XN and XM is a neutrosophic ℵ-structure over X is defined as

XN ∩XM = XN∩M = (X;TN∩M,IN∩M,FN∩M ),

where

(TN ∩ TM )(k) =TN∩M (k) = TN (k) ∨ TM (k),

(IN ∩ IM )(k) =IN∩M (k) = IN (k) ∧ IM (k),

(FN ∩ FM )(k) =FN∩M (k) = FN (k) ∨ FM (k) for any k ∈ X.

Definition 2.4. [12] Let XN = X
(TN ,IN ,FN ) . Then the complement of XN , denoted by XNc

over U, is defined to be a neutrosophic ℵ-structure

XNc := X
(TNc ,INc ,FNc )

,

over X, where TNc(l) = −1− TN (l); INc(l) = −1− IN (l) and FNc(l) = −1− FN (l) ∀l ∈ X.

Definition 2.5. [12] Let XN = X
(TN ,IN ,FN ) and µ, λ, ν ∈ [−1, 0] with −3 ≤ µ + λ + ν ≤ 0.

Consider the following sets:

TµN = {k ∈ X | TN (k) ≤ µ},
IλN = {k ∈ X | IN (k) ≥ λ},
IνN = {k ∈ X|FN (k) ≤ ν}.

Then the set XN (µ, λ, ν) = {k ∈ X|TN (k) ≤ µ, IN (k) ≥ λ, FN (k) ≤ ν} is called a (µ, λ, ν)-level

set of XN . Note that XN (µ, λ, ν) = TµN ∩ IλN ∩ F νN .

Definition 2.6. [12] A neutrosophic ℵ-structure XM of X is called a neutrosophic ℵ-

subsemigroup if it satisfies:

(∀ k, s ∈ X)

 TM (ks) ≤ TM (k) ∨ TM (s)

IM (ks) ≥ IM (k) ∧ IM (s)

FM (ks) ≤ FM (k) ∨ FM (s)

 .
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Definition 2.7. [5] A neutrosophic ℵ-structure XM of X is called a neutrosophic ℵ-left (resp.,

right) ideal if it satisfies the below condition: for any k, s ∈ X TM (ks) ≤ TM (s)(resp., TM (ks) ≤ TM (k))

IM (ks) ≥ IM (s)(resp., IM (ks) ≥ IM (k))

FM (ks) ≤ FM (s)(resp., FM (ks) ≤ FM (k))

 .

If XM is both a neutrosophic ℵ-left and a neutrosophic ℵ-right ideal of X, then it is called

a neutrosophic ℵ-ideal of X.

Definition 2.8. A neutrosophic ℵ-subsemigroup XM is called a neutrosophic ℵ-left(resp.,

right) filter of X if it satisfies the below condition: for any k, s ∈ X TM (ks) ≥ TM (s)(resp., TM (ks) ≥ TM (k))

IM (ks) ≤ IM (s)(resp., IM (ks) ≤ IM (k))

FM (ks) ≥ FM (s)(resp., FM (ks) ≥ FM (k))

 .

Definition 2.9. A neutrosophic ℵ-subsemigroup XM is called a neutrosophic ℵ-filter if it both

a neutrosophic ℵ-left filter and a neutrosophic ℵ-right filter of X.

Equivalently, a neutrosophic ℵ-subsemigroup XM over X is called a neutrosophic ℵ-filter of

X if it satisfies:

(∀k, s ∈ X)

 TM (ks) = TM (k) ∨ TM (s)

IM (ks) = IM (k) ∧ IM (s)

FM (ks) = FM (k) ∨ FM (s)

 .

The following example shows that there are some neutrosophic ℵ-subsemigroups in X, which

are neither neutrosophic ℵ-left filters nor neutrosophic ℵ-right filters of X.

Example 2.10. Consider the semigroup X, the set of all positive integers, with respect to

multiplication. Then XN =
{

k
(− 1

k
,0,− 1

k
)

: k ∈ X
}

is a neutrosophic ℵ-subsemigroup of X, but

not a neutrosophic ℵ-left filter as well as not a neutrosophic ℵ-right filter of X. 2

Example 2.11. Let X = {1, 2, 3, 4, 5} be a finite semigroup with the below multiplication

table:

. 1 2 3 4 5

1 1 1 1 1 1

2 1 2 3 1 1

3 1 1 1 2 3

4 1 4 5 1 1

5 1 1 1 4 5

Then XN =
{

1
(−0.5,−0.7,−0.4) ,

2
(−0.4,−0.8,−0.3) ,

3
(−0.4,−0.8,−0.3) ,

4
(−0.4,−0.7,−0.3) ,

5
(−0.4,−0.7,−0.3)

}
is

a neutrosophic ℵ-subsemigroup of X. Here IN (3.3) � IN (3). So XN is neither a neutrosophic

ℵ-left filter nor a neutrosophic ℵ-right filter of X. 2
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Example 2.12. Let X = {k, r, s} be a semigroup with the below multiplication table:

. k r s

k k k k

r r r r

s s s s

Then XN =
{

k
(−0.5,−0.5,−0.7) ,

r
(−0.4,−0.6,−0.6) ,

s
(−0.3,−0.7,−0.5)

}
is a neutrosophic ℵ-right filter,

but not a neutrosophic ℵ-left filter of X as TN (kr) � TN (r), IN (kr) � IN (r) and FN (kr) �
FN (r). 2

Definition 2.13. A neutrosophic structure XN of X is a neutrosophic ℵ-bi-ideal structure if

it satisfies:

(∀k, s ∈ X)

 TN (ksk) ≤ TN (k)

IN (ksk) ≥ IN (k)

FN (ksk) ≤ FN (k)

 .

Definition 2.14. A neutrosophic ℵ-subsemigroup XN of X is called a neutrosophic ℵ-bi-filter

if it satisfies:

(∀k, s ∈ X)

 TN (ksk) ≥ TN (k)

IN (ksk) ≤ IN (k)

FN (ksk) ≥ FN (k)

 .

Example 2.15. Let X be the set of all non-negative integers except one. Then X is a

semigroup with usual multiplication.

Consider XM =

{
0

(−0.1,−0.8,−0.1) ,
2

(−0.6,−0.5,−0.6) ,
3

(−0.7,−0.4,−0.8) ,
6

(−0.8,−0.3,−0.9) ,
otherwise

(−0.2,−0.6,−0.3)

}
.

Then XM is a neutrosophic ℵ-bi-filter of X, but not a filter as TN (2.3) = TN (6) = −0.8 �
TN (3) . 2

Definition 2.16. Let XN = X
(TN ,IN ,FN ) . Then XN is called prime neutrosophic ℵ-structure

of X if it satisfies:

(∀k, s ∈ X)

 TN (ks) ≥ TN (k) ∧ TN (s)

IN (ks) ≤ IN (k) ∨ IN (s)

FN (ks) ≥ FN (k) ∧ FN (s)

 .

Definition 2.17. Let XN = X
(TN ,IN ,FN ) . Then XN is called semiprime neutrosophic ℵ-

structure of X if it satisfies:

(∀k ∈ X)

 TN (k2) ≥ TN (k)

IN (k2) ≤ IN (k)

FN (k2) ≥ FN (k)

 .

Note 2.18. Clearly every prime neutrosophic ℵ-structure of X is a semi prime neutrosophic

ℵ-structure of X, but converse is not true.
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Example 2.19. Let X = {0, k, r, s} be a semigroup with the following multiplication table:

. 0 k r s

0 0 0 0 0

k 0 0 s r

r 0 s 0 k

s 0 r k 0

Then XN=
{

0
(−0.1,−0.9,−0.2 ,

k
(−0.4,−0.5,−0.6) ,

r
(−0.5,−0.6,−0.7) ,

s
(−0.6,−0.4,−0.8)

}
is a semi-prime

neutrosophic ℵ- structure of X, but it is not a prime neutrosophic ℵ-structure of X since

TN (kr) � TN (k) ∧ TN (r); IN (kr) � IN (k) ∨ IN (r) and FN (kr) � FN (k) ∧ FN (r). 2

3. Neutrosophic ℵ-filters and Neutrosophic ℵ-bi-filters

Lemma 3.1. Let XN = X
(TN ,IN ,FN ) ; XM = X

(TM ,IM ,FM ) and XO = X
(TO,IO,FO) . Then

(i) XN ⊆ XM if and only if XNc ⊇ XMc .

(ii) XO ⊆ XN ∪XM if and only if XOc ⊇ XNc ∩XMc.

(iii) XO ⊆ XN ∩XM if and only if XOc ⊇ XNc ∪XMc.

Proof: (i) For any a ∈ X, we have

XN ⊆ XM ⇔

 TN (a) ≥ TM (a)

IN (a) ≤ IM (a)

FN (a) ≥ FM (a)



⇔

 −TN (a) ≤ −TM (a)

−IN (a) ≥ −IM (a)

−FN (a) ≤ −FM (a)



⇔

 −1−TN (a) ≤ −1− TM (a)

−1−IN (a) ≥ −1−IM (a)

−1− FN (a) ≤ −1− FM (a)


⇔XNc ⊇ XMc.
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(ii) For any a ∈ X, we have

XO ⊆ XM ∪XN

⇔

 TO(a) ≥ TM (a) ∧ TN (a)

IO(a) ≤ IM (a) ∨ IN (a)

FO(a) ≥ FM (a) ∧ FN (a)



⇔

 −TO(a) ≤ −(TM (a) ∧ TN (a))

−IO(a) ≥ −(IM (a) ∨ IN (a))

−FO(a) ≤ −(FM (a) ∧ FN (a))



⇔

 −TO(a) ≤ −TM (a) ∨ −TN (a))

−IO(a) ≥ −IM (a) ∧ −IN (a))

−FO(a) ≤ −FM (a) ∨ −FN (a))



⇔

 −1− TO(a) ≤ (−1− TM (a)) ∨ (−1− TN (a))

−1− IO(a) ≥ (−1− IM (a)) ∧ (−1− IN (a))

−1− FO(a) ≤ (−1− FM (a)) ∨ (−1− FN (a))


⇔XOc ⊇ XMc ∩XNc .

(iii) For any a ∈ X, we have

XO ⊆ XM ∩XN

⇔

 TO(a) ≥ TM (a) ∨ TN (a)

IO(a) ≤ IM (a) ∧ IN (a)

FO(a) ≥ FM (a) ∨ FN (a)



⇔

 −TO(a) ≤ −(TM (a) ∨ TN (a))

−IO(a) ≥ −(IM (a) ∧ IN (a))

−FO(a) ≤ −(FM (a) ∨ FN (a))



⇔

 −TO(a) ≤ −TM (a) ∧ −TN (a))

−IO(a) ≥ −IM (a) ∨ − IN (a))

−FO(a) ≤ −FM (a) ∧ −FN (a))



⇔

 −1− TO(a) ≤ (−1− TM (a)) ∧ ( −1− TN (a))

−1− IO(a) ≥ (−1− IM (a)) ∨ (−1− IN (a))

−1− FO(a) ≤ (−1− FM (a)) ∧ (−1− FN (a))


⇔XOc ⊇ XMc ∪XNc .

So XO ⊆ XN ∪XM if and only if XOc ⊇ XNc ∩XMc . 2

Theorem 3.2. For Φ 6= K ⊆ X and XN = X
(TN ,IN ,FN ) , the below assertions are equivalent:

(i) χK(XN ) of X is a neutrosophic ℵ-subsemigroup,
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(ii) K of X is a subsemigroup.

Proof: Suppose χK(XN ) is a neutrosophic ℵ-subsemigroup of X. Let k, s ∈ K. Then

χK(T )N (ks) ≤ χK(T )N (k) ∨ χK(T )N (s) = −1,

χK(I)N (ks) ≥ χK(I)N (k) ∧ χK(I)N (s) = 0,

χK(F )N (ks) ≤ χK(F )N (k) ∨ χK(F )N (s) = −1.

Thus ks ∈ K and hence K is a subsemigroup of X.

Conversely, suppose that K is a subsemigroup of X and let k, s ∈ X.
If k, s ∈ K, then ks ∈ K. Now

χK(T )N (ks) = −1 = χK(T )N (k) ∨ χK(T )N (s),

χK(I)N (ks) = 0 = χK(I)N (k) ∧ χK(I)N (k),

χK(F )N (ks) = −1 = χK(F )N (k) ∨ χK(F )N (k).

If k /∈ K or s /∈ K, then

χK(T )N (ks) ≤ 0 = χK(T )N (k) ∨ χK(T )N (s),

χK(I)N (ks) ≥ −1 = χK(I)N (k) ∧ χK(I)N (s),

χK(F )N (ks) ≤ 0 = χK(F )N (k) ∨ χK(F )N (s).

So χK(XN ) of X is a neutrosophic ℵ-subsemigroup. 2

Theorem 3.3. For Φ 6= K ⊆ X and XN = X
(TN ,IN ,FN ) , the below assertions are equivalent:

(i) χK(XN ) of X is a neutrosophic ℵ-bi-ideal structure,

(ii) K is a bi-ideal subset of X.

Proof: Suppose χK(XN ) is a neutrosophic ℵ−bi-ideal structure of X. Let k ∈ K and s ∈ X.
Then

χK(T )N (ksk) ≤ χK(T )N (k) = −1,

χK(I)N (ksk) ≥ χK(I)N (k) = 0,

χK(F )N (ksk) ≤ χK(F )N (k) = −1.

Thus ksk ∈ K and hence K is a bi-ideal subset of X.

Conversely, suppose K is a bi-ideal subset of X. Let k, s ∈ X.
If k ∈ K, then ksk ∈ K. Now

χK(T )N (ksk) = −1 = χK(T )N (k),

χK(I)N (ksk) = 0 = χK(I)N (k),

χK(F )N (ksk) = −1 = χK(F )N (k).

If k /∈ K, then

χK(T )N (ksk) ≤ 0 = χK(T )N (k),

χK(I)N (ksk) ≥ −1 = χK(I)N (k)

χK(F )N (ksk) ≤ 0 = χK(F )N (k).

Therefore χK(XN ) of X is a neutrosophic ℵ−bi-ideal structure. 2

Theorem 3.4. For Φ 6= K ⊆ X and XN = X
(TN ,IN ,FN ) , the below assertions are equivalent:
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(i) χK(XN ) of X is a neutrosophic ℵ-bi-filter,

(ii) K of X is a bi-filter.

Proof: Suppose χK(XN ) of X is a neutrosophic ℵ-bi-ideal. Then by Theorem 3.2, K is a

subsemigroup of X. Let k ∈ K and s ∈ X with ksk ∈ K. Then

−1 = χK(T )N (ksk) ≤ χK(T )N (k) = −1,

0 = χK(I)N (ksk) ≥ χK(I)N (k) = 0,

−1 = χK(F )N (ksk ) ≤ χK(F )N (k) = −1.

Thus k ∈ K and hence K is a bi-filter of X,

Conversely, suppose K of X is a bi-filter. Then by Theorem 3.2, we have χK(XN ) of X is

a neutrosophic ℵ-subsemigroup.

Let s, k ∈ X.
If k∈ K, then ksk ∈ K. Now

χK(T )N (ksk) = −1 = χK(T )N (k),

χK(I)N (ksk) = 0 = χK(I)N (k),

χK(F )N (ksk) = −1 = χK(F )N (k).

If k /∈ K, then

χK(T )N (ksk) ≤ 0 = χK(T )N (k),

χK(I)N (ksk) ≥ −1 = χK(I)N (k),

χK(F )N (ksk) ≤ 0 = χK(F )N (k).

So χK(XN ) of X is a neutrosophic ℵ-bi-filter. 2

Theorem 3.5. For XN = X
(TN ,IN ,FN ) , the below assertions are equivalent:

(i) XN of X is a neutrosophic ℵ− left (resp., right) ideal,

(ii) The non-empty sets TαN , I
β
N and F γN are left (resp., right) ideals of X ∀α, β, γ ∈ [−1, 0].

Proof: Suppose XN is a neutrosophic ℵ-left ideal of X and α, β, γ ∈ [−1, 0].

Let k ∈ TαN ∩ I
β
N ∩ F

γ
N ; s ∈ X. Then

TN (sk) ≤ TN (k) ≤ α,
IN (sk) ≥ IN (k) ≥ β,
FN (sk) ≤ FN (k) ≤ γ

which imply sk ∈ TαN ∩ I
β
N ∩ F

γ
N . So TαN , I

β
N and F γN are left ideals of X.

Conversely, assume that TαN , I
β
N and F γN are left ideals of X for any α, β, γ ∈ [−1, 0]. Then

by Theorem 3.2 of [5], XN of X is a neutrosophic ℵ-left ideal. 2

Theorem 3.6. For Φ 6= K ⊆X and XN = X
(TN ,IN ,FN ) , the below statements are equivalent:

(i) K is a prime left (resp., right) ideal of X,

(ii) χK(XN ) is a prime neutrosophic ℵ-left (resp., right) ideal of X.
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Proof: Suppose that K is a prime left ideal of X. Then by Theorem 3.2 of [5], χK(XN ) of

X is a neutrosophic ℵ-left ideal. Let k, s ∈ X.
If ks /∈ K, then

χK(T )N (ks) = 0 ≥ χK(T )N (k) ∧ χK(T )N (s),

χK(I)N (ks) = −1 ≤ χK(I)N (k) ∨ χK(I)N (s),

χK(F )N (ks) = 0 ≥ χK(F )N (k) ∧ χK(F )N (s).

If ks ∈ K, then k ∈ K or s ∈ K. So

χK(T )N (ks) = −1 = χK(T )N (k) ∧ χK(T )N (s),

χK(I)N (ks) = 0 = χK(I)N (k) ∨ χK(I)N (s),

χK(F )N (ks) = −1 = χK(F )N (k) ∧ χK(F )N (s).

Hence χK(XN ) is a prime neutrosophic ℵ− left ideal of X.

Conversely, suppose χK(XN ) of X is a prime neutrosophic ℵ− left (resp., right) ideal. Then

by Theorem 3.2 of [5], K of X is a left ideal.

Let k, s ∈ S with ks ∈ K. Suppose that k /∈ K and s/∈ K. Then

−1 =χK(T )N (ks) ≥ χK(T )N (k) ∧ χK(T )N (s) = 0,

0 =χK(I)N (ks) ≤ χK(I)N (k) ∨ χK(T )N (s) = −1,

−1 =χK(F )N (ks) ≥ χK(F )N (k) ∧ χK(T )N (s) = 0

which are not possible. Thus k ∈ K or s ∈ K, and hence K of X is a prime left ideal. 2

Theorem 3.7. Let XN = X
(TN ,IN ,FN ) . Then the below assertions are equivalent:

(i) XN of X is a prime neutrosophic ℵ- left (resp., right) ideal,

(ii) The non-empty sets TαN , I
β
N and F γN are prime left (resp., right) ideals of X for all

α, β, γ ∈ [−1, 0].

Proof: Suppose XN of X is a prime neutrosophic ℵ-left ideal. Then by Theorem 3.5, TαN ,

IβN and F γN are left ideals of X for α, β, γ ∈ [−1, 0].

Let k, s ∈ X with ks ∈ TαN ∩I
β
N ∩F

γ
N . Then α ≥ TN (ks) ≥ TN (k)∧TN (s) implies α ≥ TN (k)

or α ≥ TN (s). So k ∈ TαN or s ∈ TαN . Also β ≤ IN (ks) ≤ IN (k) ∨ IN (s) gives β ≤ IN (k) or

β ≤ IN (s). So k ∈ IβN or s ∈ IβN . Also γ ≥ FN (ks) ≥ FN (k) ∧ FN (s) implies γ ≥ FN (k) or

γ ≥ FN (s). So k ∈ F γN or s ∈ F γN .
Therefore TαN , I

β
N and F γN are prime left ideals of X.

Conversely, suppose TαN , I
β
N and F γN are prime left ideals of X for all α, β, γ ∈ [−1, 0]. Then

by Theorem 3.5, XN of X is a neutrosophic ℵ-left ideal.

Let k, s ∈ X. Then TN (ks) = α1; IN (ks) = β1 and FN (ks) = γ1 for some α1, β1, γ1 ∈ [−1, 0]

which imply s ∈ Tα1
N ∩I

β1
N ∩F

γ1
N . Since Tα1

N is prime, we have k ∈ Tα1
N or s ∈ Tα1

N which implies

TN (k) ≤ α1 or TN (s) ≤ α1. Since Iβ1N is prime, we have k ∈ Iβ1N or s ∈ Iβ1N which implies
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IN (k) ≥ β1 or IN (s) ≥ β1. Since F γ1N is prime, we have k ∈ F γ1N or s ∈ F γ1N which implies

FN (k) ≤ γ1 or FN (s) ≤ γ1. Now

TN (ks) = α1 ≥ TN (k) ∧ TN (s),

IN (ks) = β1 ≤ IN (k) ∨ IN (s),

FN (ks) = γ1 ≥ FN (k) ∧ FN (s).

So XN of X is a prime neutrosophic ℵ- left ideal. 2

Theorem 3.8. For XN = X
(TN ,IN ,FN ) , the below assertions are equivalent:

(i) XN of X is a semiprime neutrosophic ℵ- left (resp., right) ideal,

(ii) The non-empty sets TαN , I
β
N and IγN are semiprime left (resp., right) ideals of X for any

α, β, γ ∈ [−1, 0].

Proof: Suppose XN of X is a semiprime neutrosophic ℵ- left ideal. Then by Theorem 3.5,

TαN , I
β
N and F γN are left ideals of X for α, β, γ ∈ [−1, 0].

Let r ∈ X with r2 ∈ TαN ∩ I
β
N ∩ F

γ
N . Then α ≥ TN (r2) ≥ TN (r) implies α ≥ TN (r). So

r ∈ TαN . Also β ≤ IN (r2) ≤ IN (r) implies β ≤ IN (r). So r ∈ IβN . Also γ ≥ FN (r2) ≥ FN (r)

implies γ ≥ FN (r). So r ∈ F γN . Hence TαN , I
β
N and F γN are semiprime left ideals of X.

Conversely, suppose TαN , I
β
N and F γN are semiprime left ideals of X ∀α, β, γ ∈ [−1, 0]. Then

by Theorem 3.5, XN of X is a neutrosophic ℵ- left ideal. Let r ∈ X. Then TN (r2) = α1;

IN (r2) = β1 and FN (r2) = γ1 for some α1, β1, γ1 ∈ [−1, 0] which imply r2 ∈ Tα1
N ∩ I

β1
N ∩ F

γ1
N .

Since Tα1
N , Iβ1N and F γ1N are semiprime, we have r ∈ Tα1

N gives TN (r) ≤ α1; r ∈ Iβ1N gives

IN (r) ≥ β1 and r ∈ F γ1N gives FN (r) ≤ γ1.
Now

TN (r2) = α1 ≥ TN (r),

IN (r2) = β1 ≤ IN (r),

FN (r2) = γ1 ≥ FN (r).

So XN is semiprime neutrosophic ℵ-left ideal. 2

Theorem 3.9. Let XN = X
(TN ,IN ,FN ) . Then the below assertions are equivalent:

(i) XN of X is a neutrosophic ℵ-bi-ideal structure,

(ii) The non-empty sets TαN , I
β
N and F γN are bi-ideal subsets of X for all α, β, γ ∈ [−1, 0].

Proof: Suppose XN of X is a neutrosophic ℵ-bi-ideal structure and α, β, γ ∈ [−1, 0].

Let k ∈ TαN ∩ I
β
N ∩ F

γ
N ; s ∈ X. Then

TN (ksk) ≤ TN (k) ≤ α,
IN (ksk) ≥ IN (k) ≥ β,
FN (ksk) ≤ FN (k) ≤ γ

which imply ksk ∈ TαN ∩ I
β
N ∩ F

γ
N . So TαN , I

β
N and F γN are bi-ideal subsets of X.

Conversely, suppose TαN , I
β
N and F γN are bi-ideal subsets of X for all α, β, γ ∈ [−1, 0].

B. Elavarasan et. al., Neutrosophic ℵ-filters in semigroups

Neutrosophic Sets and Systems, Vol. 50, 2022                                                                              526



If there are r, s ∈ X such that TN (rsr) > TN (r), then TN (rsr) > tα ≥ TN (r) for some

tα ∈ [−1, 0) which implies r ∈ T tαN (r) and rsr /∈ T tαN (r), a contradiction. So TN (rsr) ≤ TN (r).

If there are r, s ∈ X such that IN (rsr) < IN (r), then IN (rsr) < tβ ≤ IN (r) for some

tβ ∈ (−1, 0] which implies r ∈ ItβN (r) and rsr /∈ ItβN (r), a contradiction. So IN (rsr) ≥ IN (r).

If there are r, s ∈ X such that FN (rsr) > FN (r), then FN (rsr) > tγ ≥ FN (r) for some

tγ ∈ [−1, 0) which implies r ∈ F tγN (r) and rsr /∈ F tγN (r), a contradiction. So FN (rsr) ≤ FN (r).

Therefore XN is a neutrosophic ℵ-bi-ideal structure. 2

Theorem 3.10. Let XN = X
(TN ,IN ,FN ) . Then the below assertions are equivalent:

(i) XN of X is a prime neutrosophic ℵ-bi-ideal structure,

(ii) The non-empty sets TαN , I
β
N and F γN are prime bi-ideal subsets of X for any α, β, γ ∈

[−1, 0].

Proof: Suppose XN of X is a prime neutrosophic ℵ- bi-ideal structure and α, β, γ ∈ [−1, 0].

Let k, s ∈ X with ks ∈ TαN ∩ I
β
N ∩F

γ
N . Then α ≥ TN (ks) ≥ TN (k)∧ TN (s) implies α ≥ TN (k)

or α ≥ TN (s). So k ∈ TαN or s ∈ TαN . Also β ≤ IN (ks) ≤ IN (k) ∨ IN (s) implies β ≤ IN (k) or

β ≤ IN (s). So k ∈ IβN or s ∈ IβN . Also γ ≥ FN (ks) ≥ FN (k) ∧ FN (s) implies γ ≥ FN (k) or

γ ≥ FN (s). So k ∈ F γN or s ∈ F γN . Hence TαN , I
β
N and F γN are prime left ideals of X.

Conversely, suppose TαN , I
β
N and F γN are prime bi-ideal subsets of X ∀α, β, γ ∈ [−1, 0].

Then by Theorem 3.9, XN of X is a neutrosophic ℵ-bi-ideal. Let k, s ∈ X. Then TN (ks) =

α1;IN (ks) = β1 and FN (ks) = γ1 for some α1, β1, γ1 ∈ [−1, 0] which imply ks ∈ Tα1
N ∩I

β1
N ∩F

γ1
N .

Since Tα1
N is prime bi-ideal, k ∈ Tα1

N or s ∈ Tα1
N which implies TN (k) ≤ α1 or TN (s) ≤ α1.

Since Iβ1N is prime bi-ideal, k ∈ Iβ1N or s ∈ Iβ1N which implies IN (k) ≥ β1 or IN (s) ≥ β1. Also

F γ1N is prime bi-ideal, k ∈ F γ1N or s ∈ F γ1N which implies FN (k) ≤ γ1 or FN (s) ≤ γ1. Now

TN (ks) = α1 ≥ TN (k) ∧ TN (s),

IN (ks) = β1 ≤ IN (k) ∨ IN (s),

FN (ks) = γ1 ≥ FN (k) ∧ FN (s).

Therefore XN is a prime neutrosophic ℵ-bi-ideal structure of X. 2

Theorem 3.11. For XN = X
(TN ,IN ,FN ) , the below assertions are equivalent:

(i) XN is a semiprime neutrosophic ℵ-bi- ideal structure of X,

(ii) The non-empty sets TαN , I
β
N and F γN are semiprime bi-ideal subsets of X for all α, β, γ ∈

[−1, 0].

Proof: It is similar to the proof of Theorem 3.10. 2

Theorem 3.12. For XN = X
(TN ,IN ,FN ) and Φ 6= K ⊆ X, the below statements are equivalent:

(i) K is a prime bi-ideal subset of X,

(ii) χK(XN ) of X is a prime neutrosophic ℵ-bi-ideal structure.
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Proof: It is similar to the proof of Theorem 3.6. 2

Theorem 3.13. For XN = X
(TN ,IN ,FN ) , the below assertions are equivalent:

(i) XN of X is a neutrosophic ℵ-bi-filter,

(ii) XNc of X is a neutrosophic ℵ-bi-ideal structure.

Proof: It is trivial as for k, s ∈ X, we have TN (ksk) ≥ TN (k)

IN (ksk) ≤ IN (k)

FN (ksk) ≥ FN (k)

⇔
 TNc(ksk) ≤ TNc(k)

INc(ksk) ≥ INc(k)

FNc(ksk) ≤ FNc(k)

 .

2

Theorem 3.14. For Φ 6= K ⊆ X and XN = X
(TN ,IN ,FN ) , the below assertions are equivalent:

(i) K is a left (resp., right) filter of X,

(ii) χK(XN ) is a neutrosophic ℵ-left (resp., right) filter of X.

Proof: Suppose K of X is a left filter. Then by Theorem 3.12, χK(XN ) of X is a neutro-

sophic ℵ-subsemigroup. Let k, t ∈ X.
If kt /∈ K, then

χK(T )N (kt) = 0 ≥ χK(T )N (t),

χK(I)N (kt) = −1 ≤ χK(I)N (t),

χK(F )N (kt) = 0 ≥ χK(F )N (t).

If kt ∈ K, then k ∈ K. So

χK(T )N (kt) = −1 = χK(T )N (t),

χK(I)N (kt) = 0 = χK(I)N (t),

χK(F )N (kt) = −1 = χK(F )N (t).

Hence χK(XN ) of X is a neutrosophic ℵ-left filter.

Conversely, suppose χK(XN ) of X is a neutrosophic ℵ-left (resp., right) filter. Then by

Theorem 3.12, K is a subsemigroup of X.

Let r, s ∈ S such that rs ∈ K. Suppose that s /∈ K. Then

−1 = χK(T )N (rs) ≥ χK(T )N (s) = 0,

0 = χK(I)N (rs) ≤ χK(I)N (s) = −1,

−1 = χK(F )N (xy) ≥ χK(F )N (s) = 0,

which are not possible.

Thus s ∈ K and hence K of X is a left filter. 2

Theorem 3.15. Let XN= X
(TN , IN , FN ) . Then the below statements are equivalent:

(i) XN is a neutrosophic ℵ− left (resp., right) filter of X,

(ii) XNc is a prime neutrosophic ℵ− left (resp., right) ideal of X.
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Proof: Suppose XN of X is a neutrosophic ℵ− left filter. Then XN of X is a neutrosophic

ℵ− subsemigroup. For k, s ∈ X, we have TN (ks) ≥ TN (s)

IN (ks) ≤ IN (s)

FN (ks) ≥ FN (s)

⇔
 TNc(ks) ≤ TNc(s)

INc(ks) ≥ INc(s)

FNc(ks) ≤ FNc(s)

 (a)

So XNc of X is a neutrosophic ℵ− left ideal.

Since XN is neutrosophic ℵ- subsemigroup, we have TN (ks) ≤ TN (k) ∨ TN (s)

IN (ks) ≥ IN (k) ∧ IN (s)

FN (ks) ≤ FN (k) ∨ FN (s)

⇔
 TNc(ks) ≥ TNc(k) ∧ TNc(s)

INc(ks) ≤ INc(k) ∨ INc(s)

FNc(ks) ≥ FNc(k) ∧ FNc(s)

 .

Therefore XNc is a prime neutrosophic ℵ-left ideal of X.

Conversely, suppose XNc of X is a prime neutrosophic ℵ- left ideal. Then XNc of X is a

neutrosophic ℵ- left ideal. Then by (a), we have XN of X is a neutrosophic ℵ-left filter. 2

Theorem 3.16. Let XN = X
(TN ,IN ,FN ) . Then the below statements are equivalent:

(i) XN is a neutrosophic ℵ-bi-filter of X,

(ii) XNc is a prime neutrosophic ℵ-bi-ideal structure of X.

Proof: Suppose XN is a neutrosophic ℵ-bi-filter of X. Then XN is a neutrosophic ℵ-

subsemigroup of X. For any k, s ∈ X, we have TN (ksk) ≤ TN (k)

IN (ksk) ≥ IN (k)

FN (ksk) ≤ FN (k)

⇔
 TNc(ksk) ≥ TNc(k)

INc(ksk) ≤ INc(k)

FNc(ksk) ≥ FNc(k)

 (1)

So XNc is a neutrosophic ℵ-bi-ideal structure of X.

Since XN is a neutrosophic ℵ-subsemigroup of X, we have TN (ks) ≤ TN (k) ∨ TN (s)

IN (ks) ≥ IN (k) ∧ IN (s)

FN (ks) ≤ FN (k) ∨ FN (s)

⇔
 TNc(ks) ≥ TNc(k) ∧ TNc(s)

INc(ks) ≤ INc(k) ∨ INc(s)

FNc(ks) ≥ FNc(k) ∧ FNc(s)


Therefore XNc is a prime neutrosophic ℵ-bi-ideal structure of X.

Conversely, suppose XNc of X is a prime neutrosophic ℵ-bi-ideal structure. Then XNc of

X is a neutrosophic ℵ-bi-ideal structure. Then by (1), we have XN of X is a neutrosophic

ℵ-bi-filter. 2

4. Conclusion

In this paper, we have characterized the concept neutrosophic ℵ-bi-filter of X and described

semigroup as far as neutrosophic ℵ-bi-ideal and neutrosophic ℵ-bi-filter of X. We likewise
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characterized the notions neutrosophic ℵ-left filters and prime neutrosophic ℵ-left ideals of X

and portrayed semigroup in terms of these notions.
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Abstract. Neutrosophic vague hypersoft set (nVHs-set) is a novel hybrid model that is projected to address the

limitations of existing fuzzy vague set-like structures for degree of indeterminacy and multi argument approxi-

mate function. This function maps the cartesian product of disjoint attribute valued sets to power set of initial

universe. This study aims to characterize nVHs-set to tackle uncertainties more efficiently. Some essential prop-

erties and set-theoretic cum aggregation operations of nVHs-set are characterized by employing axiomatic and

analytical approaches respectively and explained with the help of suitable examples. An algorithm is proposed

based on aggregations of nVHs-set for dealing real-world decision-making issues and problems. The proposed

algorithm is validated by its implementation in real-world decision-making problem for the optimal selection of

farmhouse. Moreover advantageous aspects of proposed model are assessed with the help of evaluating features

through comparison analysis.

Keywords: Soft set; Vague set; Hypersoft set; Neutrosophic vague soft set; Neutrosophic vague hypersoft set;

Decision making.

—————————————————————————————————————————-

1. Introduction

The concept of fuzzy set was generated by Zadeh [1] to address uncertainty and vagueness in

daily life problems. Real life problems involving indecisive and ambiguous environment under

fuzzy sets and fuzzy logic were addressed by different authors [2–5]. Gau et al. [6], Atanassov [7]

and Pawlak [8] also worked on research problems under uncertain situations. Neutrosophic

set theory [9] generalized the concept of classical set, fuzzy set and intuitionistic fuzzy set.

Neutrosophic logic is a logic where every proposition has different values for truth, falsehood,

and indeterminacy which means that there exists some neutral part which is neither true,

nor false, rather it is vague. Soft set theory was conceptualized by Molodtsov [10] to handle
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vagueness and uncertainty in data. The idea of soft set and fuzzy set with their amplified

impacts on set theory were undertaken by Maji et al. [11], Feng et al. [12] Zhang et al. [13],

Salleh et al. [14] and Alkhazaleh et al. [15]. Xu et al. [16] developed the innovative concept

of vague soft set where as Alhazaymeh et al. [17] generalized the concept. Alhazaymeh et

al. [18] also discussed vague soft sets relations and functions. Intuitionistic fuzzy soft set and

neutrosophic soft set were initiated by Maji et al. [19, 20]. Broumi et al. [21] and Deli [22]

depicted the idea of intuitionistic neutrosophic soft set and interval-valued neutrosophic soft

sets and applied the concept in decision making. Recent work on interval-valued vague soft

sets by Alhazaymeh et al. [23–26] has created many slits for researchers [27–31]. Different

vague soft set variants were discussed by Hassan et al. [32,33]. Vague set and neutrosophic set

were hybridized to form neutrosophic vague set [34] which became an efficient tool to discuss

and solve problems with uncertain, incomplete and inconsistent data.

Al Quran et al. [35] developed neutrosophic vague soft set nVs-set as hybrid model of soft

set and neutrosophic vague set which made it more effective and efficient for solving decision

making problems. nVs-set deals with uncertain, incomplete and indeterminate type of data.

1.1. Research gap and Motivation

In many real life problems, it is essential to partition attributes into sets of sub attributive

values. Soft set theory is incompatible and inadequate to deal with such type of problems. The

concept of hypersoft set [36] introduces multi argument approximate function which fulfills the

insufficiency of soft set. Fundamentals of hypersoft set have been elaborated in [37]. Many

hypersoft set variants under uncertain environment have already been examined by Rahman et

al. [38–44] and Saeed et al. [45–50]. Recently the researchers [51–59] made rich contributions

towards the characterization of various hybrids of hypersoft set ad their application in decision

making and other fields.

The question arises ”Can we mingle the concept of neutrosophic vague soft set and hypersoft

set”? In other words ”How is multi argument approximate function applicable to neutrosophic

vague soft sets?” and ”How can this new hybrid structure of hypersoft set and neutrosophic

vague soft set be more effective and useful than existing models”? The research paper aims

to answer these questions.

1.2. Main Contributions

The major contributions of the study are given hereafter:

(1) The existing models [34–36] are made adequate with nVHs-set,

(2) the scenario where parameters are divided into sub-parameters, is dealt,
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(3) multi-attribute decision making is discussed based on nVHs-set through algorithmic

approach,

(4) real life decision making problem is solved using nVHs-set,

(5) proposed model is compared with existing relevant models,

(6) validity and generalization of proposed model is discussed.

1.3. Paper Layout

The research paper is divided into different sections as given below:

Some basic definitions are discussed in section 2. The concept of nVHs-set is originated in

section 3 whereas a decision making problem is solved in section 4. Comparison analysis

of proposed model with existing models is done in section 5. Merits of proposed model are

discussed in section 6. Finally section 7 concludes the paper with future directions.

2. Preliminaries

In this section, some basic definitions from literature are recalled. In this paper Z will

represent universe of discourse.

Definition 2.1. [6] Let z be a generic element of Z. Let V in Z denote vague set which

contains a truth membership function TV whereas TV (z) ∈ [0, 1] is lower bound on grade

of membership taken from the evidence for z and false membership function FV whereas

FV (z) ∈ [0, 1] is lower bound on grade of non-membership taken from the evidence against z

with condition TV (z) + FV (z) ≤ 1.

Definition 2.2. [9] A neutrosophic set N defined on universal set Z is given by

N = {< z; TN (z); IN (z);FN (z) >; z ∈ Z} ,

such that T ; I;F : Z → ]−0, 1+[ with −0 ≤ TN (z) + IN (z) + FN (z) ≤ 3+.

Definition 2.3. [34] Let Z be universe of discourse. A neutrosophic vague set NV on Z
denoted by nV-set can be given by

NV = {< z; TNV (z); INV (z);FNV (z) >; z ∈ Z} ,

were TNV (z) = [T −, T +], INV (z) = [I−, I+] and FNV (z) = [F−,F+] are truth membership,

indeterminacy and false membership respectively and satisfy following conditions T + = 1−F−,

F+ = 1− T −, −0 ≤ T + I + F ≤ 2+.

Definition 2.4. [34] For two nV-sets NV1 and NV2 , NV1 is called nV-subset of NV2 if following

conditions hold for all zi ∈ Z and i = 1, 2, 3, ..., n; TNV1 (zi) ≤ TNV2 (zi), INV1 (zi) ≥ INV2 (zi)

and FNV1 (zi) ≥ FNV2 (zi).
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Definition 2.5. [34] Two nV-sets NV1 and NV2 are nV-set equal if following conditions hold

for all zi ∈ Z and i = 1, 2, 3, ..., n; TNV1 (zi) = TNV2 (zi), INV1 (zi) = INV2 (zi) and FNV1 (zi) =

FNV2 (zi).

Definition 2.6. [34] N c
V , the complement of nV-set NV on Z is given by

N c
V =

{
< z; T cNV (z); IcNV (z);FcNV (z) >; z ∈ Z

}
,

where T cNV (z) = [1−T +, 1−T −], IcNV (z) = [1−I+, 1−I−], and FcNV (z) = [1−F+, 1−F−].

Definition 2.7. [34] The intersection NV of two nV-sets NV1 and NV2 denoted by NV =

NV1 ∩ NV2 is nV-set with following conditions ∀zi ∈ Z and i = 1, 2, 3, ..., n; TNV (zi) =[
min(T −NV1 , T

−
NV2

),min(T +
NV1

, T +
NV2

)
]
, INV (zi) =

[
max(I−NV1 , I

−
NV2

),max(I+
NV1

, I+
NV2

)
]

and

FNV (zi) =
[
max(F−NV1 ,F

−
NV2

),max(F+
NV1

,F+
NV2

)
]
.

Definition 2.8. [34] The union NV of two nV-sets NV1 and NV2 denoted by NV =

NV1 ∪ NV2 is nV-set with following conditions ∀zi ∈ Z and i = 1, 2, 3, ..., n; TNV (zi) =[
max(T −NV1 , T

−
NV2

),max(T +
NV1

, T +
NV2

)
]
, INV (zi) =

[
min(I−NV1 , I

−
NV2

),min(I+
NV1

, I+
NV2

)
]

and

FNV (zi) =
[
min(F−NV1 ,F

−
NV2

),min(F+
NV1

,F+
NV2

)
]
.

Definition 2.9. [35] Let E be set of parameters for Z and Λ ⊂ E . A neutrosophic vague

soft set (NVS ,Λ) on Z denoted by nVs-set can be given by NVS : Λ → NV(Z) where NV(Z)

represents set of all nV-subsets of Z.

Definition 2.10. [35] For two nVs-sets (NVS1 ,Λ) and (NVS2∆), (NVS1 ,Λ) is called nVs-

subset of (NVS2 ,∆) i.e. (NVS1 ,Λ) ⊆ (NVS2∆) if following conditions hold: Λ ⊆ ∆, NVS1(θ) is

nV-subset of NVS2(θ) for all θ ∈ Λ.

Definition 2.11. [35] Two nVs-sets (NVS1 ,Λ) and (NVS2∆), are nVs-set equal if (NVS1 ,Λ) ⊆
(NVS2 ,∆) and (NVS2 ,∆) ⊆ (NVS1Λ).

Definition 2.12. [35] A nVs-set (NVS ,Λ) is null nVs-set written as ΦNVS if following con-

ditions holds for all values π ∈ Z and θ ∈ Λ; TNVS(θ)(π) = [0, 0], INVS(θ)(π) = [1, 1], and

FNVS(θ)(π) = [1, 1].

Definition 2.13. [35] A nVs-set (NVS ,Λ) is absolute nVs-set written as ΨNVS if following

conditions holds for all values π ∈ Z and θ ∈ Λ; TNVS(θ)(π) = [1, 1], INVS(θ)(π) = [0, 0], and

FNVS(θ)(π) = [0, 0].

Definition 2.14. [35] The compliment (NVS ,Λ)ς of nVs-set (NVS ,Λ) is given by (NVS ,Λ)ς =

(N ς
VS ,Λ) where N ς

VS : Λ→ NV(Z) is defined as N ς
VS(π) = ς(NVS(π)),∀π ∈ Λ such that NV(Z)

represents set of all nV-subsets of Z and ς is neutrosophic vague compliment.
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Definition 2.15. [35] The intersection (NVS ,Υ) of two nVs-sets (NVS1 ,Λ) and (NVS2 ,∆)

denoted by NVS = NVS1∩̂NVS2 where Υ = Λ ∪∆ and ∀θ ∈ Υ, is given by

(NVS ,Υ) =


NVS1(θ)

NVS2(θ)

NVS1(θ)∩̂NVS2(θ)

; θ ∈ Λ−∆

; θ ∈ ∆− Λ

; θ ∈ Λ ∩∆

 ,

where ∩̂ is nV-set intersection.

Definition 2.16. [35] The union (NVS ,Υ) of two nVs-sets (NVS1 ,Λ) and (NVS2 ,∆) denoted

by NVS = NVS1∪̌NVS2 where Υ = Λ ∪∆ and ∀θ ∈ Υ, is given by

(NVS ,Υ) =


NVS1(θ)

NVS2(θ)

NVS1(θ)∩̌NVS2(θ)

; θ ∈ Λ−∆

; θ ∈ ∆− Λ

; θ ∈ Λ ∩∆

 ,

where ∪̌ is nV-set union.

3. NEUTROSOPHIC VAGUE HYPERSOFT SET (nVHs-set)

Neutrosophic vague hypersoft set (nVHs-set) is introduced in this section. Some basic

operations of (nVHs-set) are also discussed.

Definition 3.1. For a universal set Z, let E be set of parameters and Λ ⊆ E . The pair

(NVHS ,Λ) is called neutrosophic vague hypersoft set (nVHs-set) over Z where NVHS is defined

by NVHS : Λ→ NV (Z) such that Λ = Λ1 × Λ2 × ...× Λn with Λi, i = 1, 2, 3, .., n are disjoint

attribute-valued sets corresponding to distinct attributes εi, i = 1, 2, 3, ..., n respectively and θ

is a n-tuple element of Λ and NVHS(θ) is an approximate element of nVHs-set over Z.

Example 3.2. A company wants to supply antibacterial soap for cure of Covid-19 patient in

a hospital. Let Z = {z1, z2, ..., z5} be the universal set consisting of five kinds of antibacterial

soap for cure of Covid-19 patient available in market. Let E be the set of parameters. Let Λi

be the nonempty subset of E for each i = 1, 2, 3 represent multi attribute set corresponding

to each element of E and Λ = Λ1 × Λ2 × Λ3, where Λ1 = {a11} ,Λ2 = {b11, b12} ,Λ3 = {c11}.
Let Λ = {θ1, θ2, θ3} i.e. we have three criteria for evaluation of material where θ1 stands for

ingredient of soap which triclosan, triclocarban and benzalkonium chloride, θ2 stands for color

of soap which is blue, green and white, and θ3 stands for price which is low, medium and high.

A mapping is defined as follows NVHS : Λ→ NV (Z). Consider

NVHS(θ1) =


z1/ < [0.1, 0.3]; [0.2, 0.4]; [0.7, 0.9] >, z2/ < [0.2, 0.5]; [0.3, 0.4]; [0.5, 0.8] >,

z3/ < [0.2, 0.6]; [0.2, 0.4]; [0.4, 0.8] >, z4/ < [0.1, 0.7]; [0.4, 0.5]; [0.3, 0.9] >,

z5/ < [0.2, 0.4]; [0.4, 0.5]; [0.6, 0.8] >
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Table 1. nVHs-set (NVHS ,Λ)

Z θ1 θ2 θ3

z1 < [0.1, 0.3]; [0.2, 0.4]; [0.7, 0.9] > < [0.2, 0.5]; [0.3, 0.5]; [0.5, 0.8] > < [0.3, 0.5]; [0.1, 0.3]; [0.5, 0.7] >

z2 < [0.2, 0.5]; [0.3, 0.4]; [0.5, 0.8] > < [0.2, 0.3]; [0.2, 0.4]; [0.7, 0.8] > < [0.2, 0.7]; [0.3, 0.4]; [0.3, 0.8] >

z3 < [0.2, 0.6]; [0.2, 0.4]; [0.4, 0.8] > < [0.4, 0.5]; [0.2, 0.6]; [0.5, 0.6] > < [0.1, 0.3]; [0.5, 0.8]; [0.7, 0.9] >

z4 < [0.1, 0.7]; [0.4, 0.5]; [0.3, 0.9] > < [0.1, 0.3]; [0.1, 0.5]; [0.7, 0.9] > < [0.2, 0.5]; [0.3, 0.7]; [0.5, 0.8] >

z5 < [0.2, 0.4]; [0.4, 0.5]; [0.6, 0.8] > < [0.3, 0.6]; [0.4, 0.7]; [0.4, 0.7] > < [0.3, 0.6]; [0.2, 0.3]; [0.4, 0.7] >

NVHS(θ2) =


z1/ < [0.2, 0.5]; [0.3, 0.5]; [0.5, 0.8] >, z2/ < [0.2, 0.3]; [0.2, 0.4]; [0.7, 0.8] >,

z3/ < [0.4, 0.5]; [0.2, 0.6]; [0.5, 0.6] >, z4/ < [0.1, 0.3]; [0.1, 0.5]; [0.7, 0.9] >,

z5/ < [0.3, 0.6]; [0.4, 0.7]; [0.4, 0.7] >



NVHS(θ3) =


z1/ < [0.3, 0.5]; [0.1, 0.3]; [0.5, 0.7] >, z2/ < [0.2, 0.7]; [0.3, 0.4]; [0.3, 0.8] >,

z3/ < [0.1, 0.3]; [0.5, 0.8]; [0.7, 0.9] >, z4/ < [0.2, 0.5]; [0.3, 0.7]; [0.5, 0.8] >,

z5/ < [0.3, 0.6]; [0.2, 0.3]; [0.4, 0.7] >


It can also be written as

(NVHS ,Λ) =



θ1,


z1/ < [0.1, 0.3]; [0.2, 0.4]; [0.7, 0.9] >, z2/ < [0.2, 0.5]; [0.3, 0.4]; [0.5, 0.8] >,

z3/ < [0.2, 0.6]; [0.2, 0.4]; [0.4, 0.8] >, z4/ < [0.1, 0.7]; [0.4, 0.5]; [0.3, 0.9] >,

z5/ < [0.2, 0.4]; [0.4, 0.5]; [0.6, 0.8] >


 ,

θ2,


z1/ < [0.2, 0.5]; [0.3, 0.5]; [0.5, 0.8] >, z2/ < [0.2, 0.3]; [0.2, 0.4]; [0.7, 0.8] >,

z3/ < [0.4, 0.5]; [0.2, 0.6]; [0.5, 0.6] >, z4/ < [0.1, 0.3]; [0.1, 0.5]; [0.7, 0.9] >,

z5/ < [0.3, 0.6]; [0.4, 0.7]; [0.4, 0.7] >


 ,

θ3,


z1/ < [0.3, 0.5]; [0.1, 0.3]; [0.5, 0.7] >, z2/ < [0.2, 0.7]; [0.3, 0.4]; [0.3, 0.8] >,

z3/ < [0.1, 0.3]; [0.5, 0.8]; [0.7, 0.9] >, z4/ < [0.2, 0.5]; [0.3, 0.7]; [0.5, 0.8] >,

z5/ < [0.3, 0.6]; [0.2, 0.3]; [0.4, 0.7] >





nVHs-set (NVHS ,Λ) can also be represented in the form of table 1

Definition 3.3. For two nVHs-sets (NVHS1 ,Λ) and (NVHS2∆), (NVHS1 ,Λ) is called nVHs-

subset of (NVHS2 ,∆) i.e. (NVHS1 ,Λ) ⊆ (NVHS2∆) if following conditions hold; Λ ⊆ ∆ and

NVHS1(θ) is nVs-subset of NVHS2(θ) for all θ ∈ Λ.

Example 3.4. Consider Example 3.2 where Λ = {θ2, θ3} for θi ∈ Λ1 × Λ2 × Λ3, i = 2, 3 and

∆ = {θ1, θ2, θ3} for θi ∈ ∆1 ×∆2 ×∆3, i = 1, 2, 3. Suppose (NVHS1 ,Λ) and (NVHS2 ,∆) are

two nVHs-sets of defined as follow and demonstrated in table 2 and table 3:

(NVHS1 ,Λ) =
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Table 2. nVHs-set (NVHS1 ,Λ)

Z θ2 θ3

z1 < [0.2, 0.4]; [0.3, 0.6]; [0.6, 0.8] > < [0.2, 0.4]; [0.2, 0.5]; [0.6, 0.8] >

z2 < [0.1, 0.3]; [0.2, 0.5]; [0.7, 0.9] > < [0.2, 0.6]; [0.3, 0.5]; [0.4, 0.8] >

z3 < [0.3, 0.5]; [0.2, 0.7]; [0.5, 0.7] > < [0.1, 0.2]; [0.6, 0.9]; [0.8, 0.9] >

z4 < [0.1, 0.3]; [0.1, 0.7]; [0.7, 0.9] > < [0.2, 0.4]; [0.4, 0.8]; [0.6, 0.8] >

z5 < [0.2, 0.5]; [0.4, 0.8]; [0.5, 0.8] > < [0.2, 0.5]; [0.4, 0.7]; [0.5, 0.8] >

Table 3. nVHs-set (NVHS2 ,∆)

Z θ1 θ2 θ3

z1 < [0.1, 0.3]; [0.2, 0.4]; [0.7, 0.9] > < [0.2, 0.5]; [0.3, 0.5]; [0.5, 0.8] > < [0.3, 0.5]; [0.1, 0.3]; [0.5, 0.7] >

z2 < [0.2, 0.5]; [0.3, 0.4]; [0.5, 0.8] > < [0.2, 0.3]; [0.2, 0.4]; [0.7, 0.8] > < [0.2, 0.7]; [0.3, 0.4]; [0.3, 0.8] >

z3 < [0.2, 0.6]; [0.2, 0.4]; [0.4, 0.8] > < [0.4, 0.5]; [0.2, 0.6]; [0.5, 0.6] > < [0.1, 0.3]; [0.5, 0.8]; [0.7, 0.9] >

z4 < [0.1, 0.7]; [0.4, 0.5]; [0.3, 0.9] > < [0.1, 0.3]; [0.1, 0.5]; [0.7, 0.9] > < [0.2, 0.5]; [0.3, 0.7]; [0.5, 0.8] >

z5 < [0.2, 0.4]; [0.4, 0.5]; [0.6, 0.8] > < [0.3, 0.6]; [0.4, 0.7]; [0.4, 0.7] > < [0.3, 0.6]; [0.2, 0.3]; [0.4, 0.7] >



θ2,


z1/ < [0.2, 0.4]; [0.3, 0.6]; [0.6, 0.8] >, z2/ < [0.1, 0.3]; [0.2, 0.5]; [0.7, 0.9] >,

z3/ < [0.3, 0.5]; [0.2, 0.7]; [0.5, 0.7] >, z4/ < [0.1, 0.3]; [0.1, 0.7]; [0.7, 0.9] >,

z5/ < [0.2, 0.5]; [0.4, 0.8]; [0.5, 0.8] >


 ,

θ3,


z1/ < [0.2, 0.4]; [0.2, 0.5]; [0.6, 0.8] >, z2/ < [0.2, 0.6]; [0.3, 0.5]; [0.4, 0.8] >,

z3/ < [0.1, 0.2]; [0.6, 0.9]; [0.8, 0.9] >, z4/ < [0.2, 0.4]; [0.4, 0.8]; [0.6, 0.8] >,

z5/ < [0.2, 0.5]; [0.4, 0.7]; [0.5, 0.8] >





(NVHS2 ,∆) =

θ1,


z1/ < [0.1, 0.3]; [0.2, 0.4]; [0.7, 0.9] >, z2/ < [0.2, 0.5]; [0.3, 0.4]; [0.5, 0.8] >,

z3/ < [0.2, 0.6]; [0.2, 0.4]; [0.4, 0.8] >, z4/ < [0.1, 0.7]; [0.4, 0.5]; [0.3, 0.9] >,

z5/ < [0.2, 0.4]; [0.4, 0.5]; [0.6, 0.8] >


 ,

θ2,


z1/ < [0.2, 0.5]; [0.3, 0.5]; [0.5, 0.8] >, z2/ < [0.2, 0.3]; [0.2, 0.4]; [0.7, 0.8] >,

z3/ < [0.4, 0.5]; [0.2, 0.6]; [0.5, 0.6] >, z4/ < [0.1, 0.3]; [0.1, 0.5]; [0.7, 0.9] >,

z5/ < [0.3, 0.6]; [0.4, 0.7]; [0.4, 0.7] >


 ,

θ3,


z1/ < [0.3, 0.5]; [0.1, 0.3]; [0.5, 0.7] >, z2/ < [0.2, 0.7]; [0.3, 0.4]; [0.3, 0.8] >,

z3/ < [0.1, 0.3]; [0.5, 0.8]; [0.7, 0.9] >, z4/ < [0.2, 0.5]; [0.3, 0.7]; [0.5, 0.8] >,

z5/ < [0.3, 0.6]; [0.2, 0.3]; [0.4, 0.7] >





It can easily be seen that nVHs-set (NVHS1 ,Λ) ⊆ nVHs-set (NVHS2 ,∆) where as Λ ⊆ ∆.

Definition 3.5. Two nVHs-sets (NVHS1 ,Λ) and (NVHS2∆), are nVHs-set equal if

(NVHS1 ,Λ) ⊆ (NVHS2 ,∆) and (NVHS2 ,∆) ⊆ (NVHS1Λ)

Muhammad Arshad, Muhammad Saeed, Atiqe Ur Rahman, A Novel Intelligent
Multi-Attributes Decision-Making Approach Based on Generalized Neutrosophic Vague
Hybrid Computing

Neutrosophic Sets and Systems, Vol. 50, 2022                                                                              538



Table 4. (NVHS ,Λ)ς

Z θ1 θ2 θ3

z1 < [0.7, 0.9]; [0.6, 0.8]; [0.1, 0.3] > < [0.5, 0.8]; [0.5, 0.8]; [0.2, 0.5] > < [0.5, 0.7]; [0.7, 0.9]; [0.3, 0.5] >

z2 < [0.5, 0.8]; [0.6, 0.7]; [0.2, 0.5] > < [0.7, 0.8]; [0.6, 0.8]; [0.2, 0.3] > < [0.3, 0.8]; [0.6, 0.7]; [0.2, 0.7] >

z3 < [0.4, 0.8]; [0.6, 0.8]; [0.2, 0.6] > < [0.5, 0.6]; [0.4, 0.8]; [0.4, 0.5] > < [0.7, 0.9]; [0.2, 0.5]; [0.1, 0.3] >

z4 < [0.3, 0.9]; [0.5, 0.6]; [0.1, 0.7] > < [0.7, 0.9]; [0.5, 0.9]; [0.1, 0.3] > < [0.5, 0.8]; [0.3, 0.7]; [0.2, 0.5] >

z5 < [0.6, 0.8]; [0.5, 0.6]; [0.2, 0.4] > < [0.4, 0.7]; [0.3, 0.6]; [0.3, 0.6] > < [0.4, 0.7]; [0.7, 0.8]; [0.3, 0.6] >

Definition 3.6. A nVHs-set (NVS ,Λ) is null nVHs-set written as ΦNVHS if following condi-

tions holds for all values π ∈ Z and θ ∈ Λ; TNVHS(θ)(π) = [0, 0], INVHS(θ)(π) = [1, 1], and

FNVHS(θ)(π) = [1, 1].

Definition 3.7. A nVHs-set (NVHS ,Λ) is absolute nVHs-set written as ΨNVHS if following

conditions holds for all values π ∈ Z and θ ∈ Λ; TNVHS(θ)(π) = [1, 1], INVHS(θ)(π) = [0, 0], and

FNVHS(θ)(π) = [0, 0].

Definition 3.8. The compliment (NVHS ,Λ)ς of nVs-set (NVHS ,Λ) is given by (NVHS ,Λ)ς =

(N ς
VHS ,Λ) where N ς

VHS : Λ→ NV(Z) is defined as N ς
VHS(π) = ς(NVHS(π)),∀π ∈ Λ such that

NV(Z) represents set of all nVHs-subsets of Z and ς is neutrosophic vague compliment.

Example 3.9. Consider (NVHS ,Λ) is nVHs-set defined as in Example 3.2 where Λ =
{θ1, θ2, θ3} for θi ∈ Λ1×Λ2×Λ3, i = 1, 2, 3. The compliment (NVHS ,Λ)ς of nVHs-set (NVHS ,Λ)
is demonstrated in table 4 and given by:

(NVHS ,Λ)ς =



θ1,


z1/ < [0.7, 0.9]; [0.6, 0.8]; [0.1, 0.3] >, z2/ < [0.5, 0.8]; [0.6, 0.7]; [0.2, 0.5] >,

z3/ < [0.4, 0.8]; [0.6, 0.8]; [0.2, 0.6] >, z4/ < [0.3, 0.9]; [0.5, 0.6]; [0.1, 0.7] >,

z5/ < [0.6, 0.8]; [0.5, 0.6]; [0.2, 0.4] >


 ,

θ2,


z1/ < [0.5, 0.8]; [0.5, 0.8]; [0.2, 0.5] >, z2/ < [0.7, 0.8]; [0.6, 0.8]; [0.2, 0.3] >,

z3/ < [0.5, 0.6]; [0.4, 0.8]; [0.4, 0.5] >, z4/ < [0.7, 0.9]; [0.5, 0.9]; [0.1, 0.3] >,

z5/ < [0.4, 0.7]; [0.3, 0.6]; [0.3, 0.6] >


 ,

θ3,


z1/ < [0.5, 0.7]; [0.7, 0.9]; [0.3, 0.5] >, z2/ < [0.3, 0.8]; [0.6, 0.7]; [0.2, 0.7] >,

z3/ < [0.7, 0.9]; [0.2, 0.5]; [0.1, 0.3] >, z4/ < [0.5, 0.8]; [0.3, 0.7]; [0.2, 0.5] >,

z5/ < [0.4, 0.7]; [0.7, 0.8]; [0.3, 0.6] >






.

Definition 3.10. The intersection (NVHS ,Υ) of two nVHs-sets (NVHS1 ,Λ) and (NVHS2 ,∆)

denoted by NVHS = NVHS1∩̂NVHS2 where Υ = Λ ∪∆ and ∀θ ∈ Υ, is given by

(NVHS ,Υ) =


NVHS1(θ)

NVHS2(θ)

NVHS1(θ)∩̂NVHS2(θ)

, ifθ ∈ Λ−∆

, ifθ ∈ ∆− Λ

, ifθ ∈ Λ ∩∆,

 ,

where ∩̂ is nV-set intersection.
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Table 5. nVHs-set (NVHS1 ,Λ)

Z θ1 θ2

z1 < [0.1, 0.3]; [0.2, 0.4]; [0.7, 0.9] > < [0.3, 0.6]; [0.2, 0.5]; [0.4, 0.7] >

z2 < [0.2, 0.5]; [0.3, 0.4]; [0.5, 0.8] > < [0.1, 0.3]; [0.2, 0.5]; [0.7, 0.9] >

z3 < [0.2, 0.6]; [0.2, 0.4]; [0.4, 0.8] > < [0.3, 0.6]; [0.2, 0.4]; [0.4, 0.7] >

z4 < [0.1, 0.7]; [0.4, 0.5]; [0.3, 0.9] > < [0.2, 0.3]; [0.3, 0.5]; [0.7, 0.8] >

z5 < [0.2, 0.4]; [0.4, 0.5]; [0.6, 0.8] > < [0.3, 0.4]; [0.5, 0.7]; [0.6, 0.7] >

Table 6. nVHs-set (NVHS2 ,∆)

Z θ2 θ3

z1 < [0.2, 0.5]; [0.3, 0.5]; [0.5, 0.8] > < [0.3, 0.5]; [0.1, 0.3]; [0.5, 0.7] >

z2 < [0.2, 0.3]; [0.2, 0.4]; [0.7, 0.8] > < [0.2, 0.7]; [0.3, 0.4]; [0.3, 0.8] >

z3 < [0.4, 0.5]; [0.2, 0.6]; [0.5, 0.6] > < [0.1, 0.3]; [0.5, 0.8]; [0.7, 0.9] >

z4 < [0.1, 0.3]; [0.1, 0.5]; [0.7, 0.9] > < [0.2, 0.5]; [0.3, 0.7]; [0.5, 0.8] >

z5 < [0.3, 0.6]; [0.4, 0.7]; [0.4, 0.7] > < [0.3, 0.6]; [0.2, 0.3]; [0.4, 0.7] >

Example 3.11. Let (NVHS1 ,Λ) and (NVHS2 ,∆) are two nVHs-sets where Λ = {θ1, θ2} for
θi ∈ Λ1 × Λ2 × Λ3, i = 1, 2 and ∆ = {θ2, θ3} for θi ∈ ∆1 ×∆2 ×∆3, i = 2, 3, as discussed in
Example 3.2 and demonstrated in table 5 and table 6 and given as following:

(NVHS1 ,Λ) =



θ1,


z1/ < [0.1, 0.3]; [0.2, 0.4]; [0.7, 0.9] >, z2/ < [0.2, 0.5]; [0.3, 0.4]; [0.5, 0.8] >,

z3/ < [0.2, 0.6]; [0.2, 0.4]; [0.4, 0.8] >, z4/ < [0.1, 0.7]; [0.4, 0.5]; [0.3, 0.9] >,

z5/ < [0.2, 0.4]; [0.4, 0.5]; [0.6, 0.8] >


 ,

θ2,


z1/ < [0.3, 0.6]; [0.2, 0.5]; [0.4, 0.7] >, z2/ < [0.1, 0.3]; [0.2, 0.5]; [0.7, 0.9] >,

z3/ < [0.3, 0.6]; [0.2, 0.4]; [0.4, 0.7] >, z4/ < [0.2, 0.3]; [0.3, 0.5]; [0.7, 0.8] >,

z5/ < [0.3, 0.4]; [0.5, 0.7]; [0.6, 0.7] >


 ,


.

(NVHS2
,∆) =



θ2,


z1/ < [0.2, 0.5]; [0.3, 0.5]; [0.5, 0.8] >, z2/ < [0.2, 0.3]; [0.2, 0.4]; [0.7, 0.8] >,

z3/ < [0.4, 0.5]; [0.2, 0.6]; [0.5, 0.6] >, z4/ < [0.1, 0.3]; [0.1, 0.5]; [0.7, 0.9] >,

z5/ < [0.3, 0.6]; [0.4, 0.7]; [0.4, 0.7] >


 ,

θ3,


z1/ < [0.3, 0.5]; [0.1, 0.3]; [0.5, 0.7] >, z2/ < [0.2, 0.7]; [0.3, 0.4]; [0.3, 0.8] >,

z3/ < [0.1, 0.3]; [0.5, 0.8]; [0.7, 0.9] >, z4/ < [0.2, 0.5]; [0.3, 0.7]; [0.5, 0.8] >,

z5/ < [0.3, 0.6]; [0.2, 0.3]; [0.4, 0.7] >





.

The intersection (NVHS ,Υ) of two nVHs-sets (NVHS1 ,Λ) and (NVHS2 ,∆) represented by NVHS = NVHS1 ∩̂NVHS2

where Υ = Λ ∪∆ and ∀θ ∈ Υ, is demonstrated in table 7 and given by (NVHS ,Υ) = (NVHS1
,Λ)∩̂(NVHS2

,∆)

(NVHS ,Υ) =



θ1,


z1/ < [0.1, 0.3]; [0.2, 0.4]; [0.7, 0.9] >, z2/ < [0.2, 0.5]; [0.3, 0.4]; [0.5, 0.8] >,

z3/ < [0.2, 0.6]; [0.2, 0.4]; [0.4, 0.8] >, z4/ < [0.1, 0.7]; [0.4, 0.5]; [0.3, 0.9] >,

z5/ < [0.2, 0.4]; [0.4, 0.5]; [0.6, 0.8] >


 ,

θ2,


z1/ < [0.2, 0.5]; [0.3, 0.5]; [0.5, 0.8] >, z2/ < [0.1, 0.3]; [0.2, 0.5]; [0.7, 0.9] >,

z3/ < [0.3, 0.5]; [0.2, 0.6]; [0.5, 0.7] >, z4/ < [0.1, 0.3]; [0.3, 0.5]; [0.7, 0.9] >,

z5/ < [0.3, 0.4]; [0.5, 0.7]; [0.6, 0.7] >


 ,

θ3,


z1/ < [0.3, 0.5]; [0.1, 0.3]; [0.5, 0.7] >, z2/ < [0.2, 0.7]; [0.3, 0.4]; [0.3, 0.8] >,

z3/ < [0.1, 0.3]; [0.5, 0.8]; [0.7, 0.9] >, z4/ < [0.2, 0.5]; [0.3, 0.7]; [0.5, 0.8] >,

z5/ < [0.3, 0.6]; [0.2, 0.3]; [0.4, 0.7] >
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Table 7. (NVHS ,Υ) = (NVHS1 ,Λ)∩̂(NVHS2 ,∆)

Z θ1 θ2 θ3

z1 < [0.1, 0.3]; [0.2, 0.4]; [0.7, 0.9] > < [0.2, 0.5]; [0.3, 0.5]; [0.5, 0.8] > < [0.3, 0.5]; [0.1, 0.3]; [0.5, 0.7] >

z2 < [0.2, 0.5]; [0.3, 0.4]; [0.5, 0.8] > < [0.1, 0.3]; [0.2, 0.5]; [0.7, 0.9] > < [0.2, 0.7]; [0.3, 0.4]; [0.3, 0.8] >

z3 < [0.2, 0.6]; [0.2, 0.4]; [0.4, 0.8] > < [0.3, 0.5]; [0.2, 0.6]; [0.5, 0.7] > < [0.1, 0.3]; [0.5, 0.8]; [0.7, 0.9] >

z4 < [0.1, 0.7]; [0.4, 0.5]; [0.3, 0.9] > < [0.1, 0.3]; [0.3, 0.5]; [0.7, 0.9] > < [0.2, 0.5]; [0.3, 0.7]; [0.5, 0.8] >

z5 < [0.2, 0.4]; [0.4, 0.5]; [0.6, 0.8] > < [0.3, 0.4]; [0.5, 0.7]; [0.6, 0.7] > < [0.3, 0.6]; [0.2, 0.3]; [0.4, 0.7] >

Table 8. nVHs-set (NVHS ,Υ)

Z θ1 θ2 θ3

z1 < [0.1, 0.3]; [0.2, 0.4]; [0.7, 0.9] > < [0.2, 0.5]; [0.3, 0.5]; [0.5, 0.8] > < [0.3, 0.5]; [0.1, 0.3]; [0.5, 0.7] >

z2 < [0.2, 0.5]; [0.3, 0.4]; [0.5, 0.8] > < [0.1, 0.3]; [0.2, 0.5]; [0.7, 0.9] > < [0.2, 0.7]; [0.3, 0.4]; [0.3, 0.8] >

z3 < [0.2, 0.6]; [0.2, 0.4]; [0.4, 0.8] > < [0.3, 0.5]; [0.2, 0.6]; [0.5, 0.7] > < [0.1, 0.3]; [0.5, 0.8]; [0.7, 0.9] >

z4 < [0.1, 0.7]; [0.4, 0.5]; [0.3, 0.9] > < [0.1, 0.3]; [0.3, 0.5]; [0.7, 0.9] > < [0.2, 0.5]; [0.3, 0.7]; [0.5, 0.8] >

z5 < [0.2, 0.4]; [0.4, 0.5]; [0.6, 0.8] > < [0.3, 0.4]; [0.5, 0.7]; [0.6, 0.7] > < [0.3, 0.6]; [0.2, 0.3]; [0.4, 0.7] >

Definition 3.12. The union (NVHS ,Υ) of two nVHs-sets (NVHS1 ,Λ) and (NVHS2 ,∆) denoted

by NVHS = NVHS1∪̌NVHS2 where Υ = Λ ∪∆ and ∀θ ∈ Υ, is given by

(NVHS ,Υ) =


NVHS1(θ)

NVHS2(θ)

NVHS1(θ)∩̌NVHS2(θ)

, ifθ ∈ Λ−∆

, ifθ ∈ ∆− Λ

, ifθ ∈ Λ ∩∆,

 ,

where ∪̌ is nV-set union.

Example 3.13. Let (NVHS1 ,Λ) and (NVHS2 ,∆) are two nVHs-sets as discussed in example
3.2 and defined in example 3.11
The union (NVHS ,Υ) of (NVHS1 ,Λ) and (NVHS2 ,∆) represented by NVHS = NVHS1∪̌NVHS2
where Υ = Λ ∪ ∆ and ∀θ ∈ Υ, is demonstrated in table 8 and given by (NVHS ,Υ) =
(NVHS1 ,Λ)∪̌(NVHS2 ,∆) =

(NVHS ,Υ) =



θ1,


z1/ < [0.1, 0.3]; [0.2, 0.4]; [0.7, 0.9] >, z2/ < [0.2, 0.5]; [0.3, 0.4]; [0.5, 0.8] >,

z3/ < [0.2, 0.6]; [0.2, 0.4]; [0.4, 0.8] >, z4/ < [0.1, 0.7]; [0.4, 0.5]; [0.3, 0.9] >,

z5/ < [0.2, 0.4]; [0.4, 0.5]; [0.6, 0.8] >


 ,

θ2,


z1/ < [0.3, 0.6]; [0.2, 0.5]; [0.4, 0.7] >, z2/ < [0.2, 0.3]; [0.2, 0.4]; [0.7, 0.8] >,

z3/ < [0.4, 0.6]; [0.2, 0.4]; [0.4, 0.6] >, z4/ < [0.2, 0.3]; [0.1, 0.5]; [0.7, 0.8] >,

z5/ < [0.3, 0.6]; [0.4, 0.7]; [0.4, 0.7] >


 ,

θ3,


z1/ < [0.3, 0.5]; [0.1, 0.3]; [0.5, 0.7] >, z2/ < [0.2, 0.7]; [0.3, 0.4]; [0.3, 0.8] >,

z3/ < [0.1, 0.3]; [0.5, 0.8]; [0.7, 0.9] >, z4/ < [0.2, 0.5]; [0.3, 0.7]; [0.5, 0.8] >,

z5/ < [0.3, 0.6]; [0.2, 0.3]; [0.4, 0.7] >






.

Proposition 3.14. Let (NVHS1 ,Λ) and (NVHS2 ,∆) are two nVHs-sets over Z, the following

laws hold.

(1) (NVHS1 ,Λ)∩̂(NVHS1 ,Λ) = (NVHS1 ,Λ)
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(2) (NVHS1 ,Λ)∪̌(NVHS1 ,Λ) = (NVHS1 ,Λ)

(3) (NVHS1 ,Λ)∩̂(NVHS2 ,∆) = (NVHS2 ,∆)∩̂(NVHS1 ,Λ)

(4) (NVHS1 ,Λ)∪̌(NVHS2 ,∆) = (NVHS2 ,∆)∪̌(NVHS1 ,Λ)

Proposition 3.15. Let (NVHS1 ,Λ), (NVHS2 ,∆) and (NVHS3 ,Υ) are three nVHs-sets over Z,
the following laws hold.

(1) (NVHS1 ,Λ)∩̂((NVHS2 ,∆)∩̂(NVHS1 ,Υ)) = ((NVHS1 ,Λ)∩̂(NVHS2 ,∆))∩̂(NVHS1 ,Υ),

(2) (NVHS1 ,Λ)∪̌((NVHS2 ,∆)∪̌(NVHS1 ,Υ)) = ((NVHS1 ,Λ)∪̌(NVHS2 ,∆))∪̌(NVHS1 ,Υ),

(3) (NVHS1 ,Λ)∩̂((NVHS2 ,∆)∪̌(NVHS3 ,Υ)) =

((NVHS1 ,Λ)∩̂(NVHS2 ,∆))∪̌((NVHS1 ,Λ)∩̂(NVHS3 ,Υ)),

(4) (NVHS1 ,Λ)∪̌((NVHS2 ,∆)∩̂(NVHS3 ,Υ)) =

((NVHS1 ,Λ)∪̌(NVHS2 ,∆))∩̂((NVHS1 ,Λ)∪̌(NVHS3 ,Υ)).

Proposition 3.16. Let (NVHS ,Λ) be nVHs-set over Z, the follow-

ing laws hold. 1) (NVHS ,Λ)∩̂(NVHS ,Λ)ς = (ΦNVHS ,Λ) where (ΦNVHS ,Λ) is null nVHs-set

2) (NVHS ,Λ)∪̌(NVHS ,Λ)ς = (ΨNVHS ,Λ) where (ΨNVHS ,Λ) is called absolute nVHs-set

Proposition 3.17. Let (NVHS1 ,Λ) and (NVHS2 ,∆) are two nVHs-sets over Z, the following

laws hold.

1) ((NVHS1 ,Λ)∩̂(NVHS2 ,∆))ς = (NVHS1 ,Λ)ς ∪̌(NVHS2 ,∆)ς

2) ((NVHS1 ,Λ)∪̌(NVHS2 ,∆))ς = (NVHS1 ,Λ)ς ∩̂(NVHS2 ,∆)ς

4. Decision Making Technique based on nVHs-set

A decision making nVHs-set based problem is discussed and an approach is made to address

and solve this problem but first of all concept of level soft set is discussed.

Definition 4.1. Let L̄ =
{

(ᾱ, β̄, γ̄)
}

where ᾱ, β̄, γ̄ ∈ Ī and Ī is set of all close subintervals of

[0, 1], ᾱ = [ᾱ1, ᾱ2], β̄ =
[
β̄1, β̄2

]
and γ̄ = [γ̄1, γ̄2], 0 ≤ ᾱ2 + β̄2 + γ̄2 ≤ 2. The relation 'L̄ on set

L̄ is called partial ordering on L̄ if it satisfies following conditions:

∀(ᾱ, β̄, γ̄), (µ̄, ν̄, ω̄) ∈ L̄, (ᾱ, β̄, γ̄) 'L̄ (µ̄, ν̄, ω̄) ∈ L̄ ⇔ ᾱ ≥ µ̄, β̄ ≤ ν̄, γ̄ ≤ ω̄, which means

[ᾱ1, ᾱ2] ≥ [µ̄1, µ̄2] i.e. ᾱ1 ≥ µ̄1 and ᾱ2 ≥ µ̄2. Similarly β̄1 ≤ ν̄1, β̄2 ≤ ν̄2 and γ̄1 ≤ ω̄1, γ̄2 ≤ ω̄2

Definition 4.2. For a universal set Z, let E be set of parameters and Λ ⊆ E . z = (NVHS ,Λ)

be nVHs-set over Z. (ᾱ, β̄, γ̄)−level hypersoft set of z is crisp hypersoft set L̄(z; ᾱ, β̄, γ̄) =

(NVHS (ᾱ,β̄,γ̄),Λ), for ᾱ, β̄, γ̄ ∈ L̄ and is given by

NVHS (ᾱ,β̄,γ̄)(θ) =
{
NVHS (θ)(z) 'L̄ (ᾱ, β̄, γ̄)∀z ∈ Z

}
=
{
TNVHS (θ)(z) ≥ ᾱ, INVHS (θ)(z) ≤ β̄,FNVHS(θ) (z) ≤ γ̄,∀z ∈ Z, θ ∈ Λ

}
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The above definition was restated by replacing threshold parameter constant value triplets

by function as thresholds on truth membership, indeterminacy and false membership values.

Definition 4.3. For a universal set Z, let E be set of parameters and Λ ⊆ E . z = (NVHS ,Λ)

be nVHs-set over Z. Let χ : Λ → I × I × I be nVHs-set where I = [0, 1]. On the basis of χ,

the level hypersoft set of z is a crisp hypersoft set L̄(z, χ) = (NVHS ,Λ) given by

NVHSχ(θ) = L̄(NVHS(θ);χ(θ))

=
{
NVHS (θ)(z)'L̄ χ(θ)∀z ∈ Z

}
=
{
TNVHS (θ)(z) ≥ Tχ(θ), INVHS (θ)(z) ≤ Iχ(θ),FNVHS (θ)(z) ≤ Fχ(θ),∀z ∈ Z, θ ∈ Λ

}
Consider the following example

Example 4.4. For a universal set Z, let E be set of parameters and Λ ⊆ E . z = (NVHS ,Λ)

be nVHs-set over Z. Let avgz : Λ→ I × I × I be nV-set where I = [0, 1] and is given by

T Lavgz(θ) =
1

|Z|
∑
z∈Z
T LNVHS(θ)(z), T

R
avgz(θ) =

1

|Z|
∑
z∈Z
T RNVHS(θ)(z)

ILavgz(θ) =
1

|Z|
∑
z∈Z
ILNVHS(θ)(z), I

R
avgz(θ) =

1

|Z|
∑
z∈Z
IRNVHS(θ)(z)

FLavgz(θ) =
1

|Z|
∑
z∈Z
FLNVHS(θ)(z),F

R
avgz(θ) =

1

|Z|
∑
z∈Z
FRNVHS(θ)(z)

Here nV-set avgz is known as avg−threshold of nVHs-set z. L̄(z; avgz) = (NVHSavgz,Λ) is

called avg−level hypersoft set of z and can be given as

NVHSavgz(θ) = L̄(NVHS(θ); avgz(θ)) = {NVHSθ(z) 'L̄ avgz(θ)}

=
{
TNVHS(θ)(z) ≥ Tavgz(θ), INVHS(θ)(z) ≤ Iavgz(θ),FNVHS(θ)(z) ≤ Favgz(θ), z ∈ Z, θ ∈ Λ

}
Example 4.5. An individual wants to buy a farmhouse from a real estate agent. He can

construct a nVHs-set z = (F,Λ) according to his preference which describes characteristics

of farmhouse. Let Z = {z1, z2, ..., z5} be the universal set consisting of five farmhouses under

consider-

ation. Let E = {covered area = θ1, beautiful = θ2, cheap = θ3, location = θ4, altitude = θ5}
be the set of parameters. Let Λi be the nonempty subset of E for each i = 1, 2, 3 repre-

sent multi attribute set corresponding to each element of E and Λ = Λ1 × Λ2 × Λ3, where

Λ1 = {a11, a12} ,Λ2 = {b11} ,Λ3 = {c11}. Let Λ = {θ1, θ2, θ3} i.e. we have three criteria for

evaluation where θ1 stands for price which is low, high, very high, θ2 stands for covered area

which is less than 1 sq. mile, between 1 sq. mile to 5 sq. mile, more than 5 sq. miles and θ3

stands for location which is sea shore, hilly area, desert.
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Table 9. (F,Λ)

Z θ1 θ2 θ3

z1 < [0.2, 0.3]; [0.2, 0.4]; [0.8, 0.9] > < [0.2, 0.5]; [0.2, 0.5]; [0.5, 0.8] > < [0.2, 0.5]; [0.1, 0.3]; [0.5, 0.8] >

z2 < [0.3, 0.5]; [0.3, 0.4]; [0.5, 0.7] > < [0.1, 0.3]; [0.2, 0.4]; [0.7, 0.9] > < [0.2, 0.4]; [0.3, 0.4]; [0.6, 0.8] >

z3 < [0.2, 0.6]; [0.2, 0.4]; [0.4, 0.8] > < [0.4, 0.5]; [0.2, 0.6]; [0.5, 0.6] > < [0.1, 0.3]; [0.4, 0.8]; [0.7, 0.9] >

z4 < [0.1, 0.7]; [0.4, 0.6]; [0.3, 0.9] > < [0.2, 0.4]; [0.1, 0.5]; [0.6, 0.8] > < [0.2, 0.5]; [0.3, 0.7]; [0.5, 0.8] >

z5 < [0.1, 0.4]; [0.4, 0.5]; [0.6, 0.9] > < [0.3, 0.6]; [0.3, 0.7]; [0.4, 0.7] > < [0.2, 0.6]; [0.2, 0.3]; [0.4, 0.8] >

Consider

F(θ1) =


z1/ < [0.2, 0.3]; [0.2, 0.4]; [0.8, 0.9] >, z2/ < [0.3, 0.5]; [0.3, 0.4]; [0.5, 0.7] >,

z3/ < [0.2, 0.6]; [0.2, 0.4]; [0.4, 0.8] >, z4/ < [0.1, 0.7]; [0.4, 0.6]; [0.3, 0.9] >,

z5/ < [0.1, 0.4]; [0.4, 0.5]; [0.6, 0.9] >


F(θ2) =


z1/ < [0.2, 0.5]; [0.2, 0.5]; [0.5, 0.8] >, z2/ < [0.1, 0.3]; [0.2, 0.4]; [0.7, 0.9] >,

z3/ < [0.4, 0.5]; [0.2, 0.6]; [0.5, 0.6] >, z4/ < [0.2, 0.4]; [0.1, 0.5]; [0.6, 0.8] >,

z5/ < [0.3, 0.6]; [0.3, 0.7]; [0.4, 0.7] >


F(θ3) =


z1/ < [0.2, 0.5]; [0.1, 0.3]; [0.5, 0.8] >, z2/ < [0.2, 0.4]; [0.3, 0.4]; [0.6, 0.8] >,

z3/ < [0.1, 0.3]; [0.4, 0.8]; [0.7, 0.9] >, z4/ < [0.2, 0.5]; [0.3, 0.7]; [0.5, 0.8] >,

z5/ < [0.2, 0.6]; [0.2, 0.3]; [0.4, 0.8] >


It can also be written as

(F,Λ) =



θ1,


z1/ < [0.2, 0.3]; [0.2, 0.4]; [0.8, 0.9] >, z2/ < [0.3, 0.5]; [0.3, 0.4]; [0.5, 0.7] >,

z3/ < [0.2, 0.6]; [0.2, 0.4]; [0.4, 0.8] >, z4/ < [0.1, 0.7]; [0.4, 0.6]; [0.3, 0.9] >,

z5/ < [0.1, 0.4]; [0.4, 0.5]; [0.6, 0.9] >


 ,

θ2,


z1/ < [0.2, 0.5]; [0.2, 0.5]; [0.5, 0.8] >, z2/ < [0.1, 0.3]; [0.2, 0.4]; [0.7, 0.9] >,

z3/ < [0.4, 0.5]; [0.2, 0.6]; [0.5, 0.6] >, z4/ < [0.2, 0.4]; [0.1, 0.5]; [0.6, 0.8] >,

z5/ < [0.3, 0.6]; [0.3, 0.7]; [0.4, 0.7] >


 ,

θ3,


z1/ < [0.2, 0.5]; [0.1, 0.3]; [0.5, 0.8] >, z2/ < [0.2, 0.4]; [0.3, 0.4]; [0.6, 0.8] >,

z3/ < [0.1, 0.3]; [0.4, 0.8]; [0.7, 0.9] >, z4/ < [0.2, 0.5]; [0.3, 0.7]; [0.5, 0.8] >,

z5/ < [0.2, 0.6]; [0.2, 0.3]; [0.4, 0.8] >






.

The nVHs-set (F,Λ) can also be represented in the form of table 9 avg−threshold of z = (F,Λ) can

easily be calculated as:

avg(F,Λ) =


< [0.18, 0.50]; [0.30, 0.46]; [0.50, 0.72]\ θ1 >,
< [0.24, 0.46]; [0.20, 0.67]; [0.54, 0.76]\ θ2 >,
< [0.18, 0.46]; [0.26, 0.50]; [0.54, 0.72]\ θ3 >


L̄(z, avg), the avg−level hypersoft set of z = (F,Λ) can be evaluated as:

Favgz(θ1) = L̄(F(θ1); avgz(θ1)) = {z2, z3}

Favgz(θ2) = L̄(F(θ2); avgz(θ2)) = {z3}

Favgz(θ3) = L̄(F(θ3); avgz(θ3)) = {z1, z5}
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4.1. Level hypersoft set based approach

An algorithm based on nVHs-set is developed for decision making

————————————————————————————————————

Algorithm I

————————————————————————————————————

. Start

. Input Stage:

———1. Consider Z as universe of discourse

———2. Consider Λ as subset of set of parameters

———3. Classify parameters into disjoint parametric valued sets Λ1,Λ2,Λ3, ...,Λn

———4. Λ = Λ1 × Λ2 × Λ3 × ...× Λn

. Construction Stage:

———5. Construct nVHs-set z = (F,Λ)

———6. Choose threshold value triple (ᾱ, β̄, γ̄) ∈ L̄
OR

———6. Construct threshold nV-set χ : Λ→ I × I × I where I = [0, 1]

OR

———6. Choose avg−level decision rule.

. Computation Stage:

———7. Compute (ᾱ, β̄, γ̄)−level hypersoft set L̄(z, ᾱ, β̄, γ̄)

OR

———7. Compute level hypersoft set L̄(z, χ)

OR

———7. Compute avg−level hypersoft set L̄(z, avg)

. Output Stage:

———8. Present L̄(z, ᾱ, β̄, γ̄) or L̄(z, χ) or L̄(z, avg) in tabular form.

———9. Compute choice value cp of zp for any zp ∈ Z
———10. Select zm if cm = maxzp∈Z(cp).

———11. Choose any value zm if m has more than one values

. End

————————————————————————————————————

Example 4.6. Let z = (F,Λ) is nVHs-set as discussed in example 4.5 and demonstrated in

table 9. By avg−level rule, L̄((F,Λ); avg) is obtained which is demonstrated in table 10. The

elements of table 10 are represented by zpq = 1 if zp ∈ Favgz(θq), otherwise zpq = 0.
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Figure 1. Algorithm I : Optimal Selection of material for manufacturing of

Surgical Masks

Table 10. L̄((F,Λ); avg) with choice vales

Z θ1 θ2 θ3 choice value

z1 0 0 1 1

z2 1 0 0 1

z3 1 1 0 2

z4 0 0 0 0

z5 0 0 1 1

Choice value can be obtained by cp =
5∑
q=1

zpq i.e. c1 = 1, c2 = 1, c3 = 2, c4 = 0 and c5 = 1

Farmhouse z3 is selected as c3 = maxzp∈Z(cp)

5. Comparison Analysis

Different decision making approaches have already been discussed in literature [12, 13, 17,

22, 23] that were based on hybridized structures of fuzzy set, intuitionistic fuzzy soft set and
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Table 11. The advantage of the proposed study

Sr. No. Author Structure Multi-argument

approximate function

1 Smarandache [9] Neutrosophic set Insufficient

2 Molodtsov [10] Soft set Insufficient

3 Xu et al. [16] Vague soft set Insufficient

4 Alhazaymeh et al. [17] Generalized vague soft set Insufficient

5 Maji et al. [20] Neutrosophic soft set Insufficient

6 Alhazaymeh et al. [23] Interval valued vague soft set Insufficient

7 Alkhazaleh [34] Neutrosophic vague set Insufficient

8 Al Quran et al. [35] Neutrosophic vague soft set Insufficient

9 Smarandache [36] Hypersoft set Insufficient

10 Proposed Structure Neutrosophic vague hypersoft set Sufficient

neutrosophic set. Decision making is greatly affected due to many factors where attributes are

not further classified into their disjoint attributive valued sets. The above mentioned existing

decision making models are insufficient either for vague soft sets or for multi-argument approx-

imate function but in proposed model, the inadequacies of these models have been addressed.

The consideration of neutrosophic vague hypersoft set will make the decision making process

more reliable and trust-worthy.

6. Discussion and Merits

In this section some merits of proposed structure are discussed:

The introduced approach took the significance of the idea of nVHs-set to deal with current

decision making issues. The presented idea enables the researchers to deal with real-world

scenario where problems involving indeterminacy and vagueness needs more attention. The

core idea in this association has tremendous potential in the genuine depiction inside the

space of computational incursions. As the proposed structure emphasizes on in-depth study of

attributes (i.e. further partitioning of attributes) rather than focussing on attributes merely

therefore it makes the decision-making process better, flexible and more reliable. It covers

the characteristics and properties of the existing relevant structures i.e. fuzzy set, soft set,

fuzzy soft set, intuitionistic fuzzy set, neutrosophic set, vague set, vague soft set, hypersoft set,

neutrosophic vague soft set etc., so one can call it the generalized form of all these structures.

The advantage of the proposed study can easily be judged from the table 11.

7. Conclusion

The summary of the proposed study is highlighted as:
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(1) The relevant literature on fuzzy set, neutrosophic set, soft set, vague set and hypersoft

set has been reviewed to support the main results.

(2) Some axiomatic and algebraic properties, set-theoretic operations and laws of nVHs-set

have been investigated and explained with the help of illustrative examples.

(3) An algorithm based on set-theoretic operational concept of nVHs-set has been proposed

to asses the role of proposed model in real-world decision-making scenario.

(4) A real-world decision-making application has been discussed by implementing the steps

of proposed algorithm which opted the best farmhouse from real estate dealer.

(5) The advantageous aspects of the proposed model have been judged by comparing it

with most relevant existing models.

(6) Many other real-world decision-making problems can be resolved with the help of the

proposed algorithm.

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. Zadeh, L. (1965). Fuzzy set. Information and Control, 8(3), 338-353.

2. Ahmadian, A., Senu, N., Salahshour, S. & Suleiman, M. (2016). Nearest interval-valued approximation of

interval-valued fuzzy numbers. Malaysian Journal of Mathematical Sciences, 10(S), 325-336.

3. Paul, A. & Bhattacharya, B. (2015). New types of functions and separation axiom by γ-open sets in fuzzy

bitopological spaces. Malaysian Journal of Mathematical Sciences, 9(3), 397-407.

4. Ramli, N. & Mohamad, D. (2014). Ranking fuzzy numbers based on Sokal and Sneath index with Hurwicz

criterion. Malaysian Journal of Mathematical Sciences, 8(1), 117-137.

5. Ramli, N. A., Ismail, M. T. & Wooi, H. C. (2014). Application of fuzzy optimization and time series for early

warning system in predicting currency crisis. Malaysian Journal of Mathematical Sciences, 8(2), 239-253.

6. Gau, W. & Buehrer, D. (1993). Vague sets. IEEE Transactions on Systems, Man and Cybernetics, 23(2),

610-614.

7. Atanassov, K. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87-96.

8. Pawlak, Z. (1982). Rough sets. International Journal of Information and Computer Sciences, 11(5), 341-356.

9. Smarandache, F. (2005). Neutrosophic set-A generalisation of the intuitionistic fuzzy sets. International

Journal of Pure and Applied Mathematics, 24(3), 287-297.

10. Molodtsov, D. (1999). Soft set theory-First results. Computer and Mathematics with Applications, 37(2),

19-31.

11. Maji, P., Biswas, R. & Roy, A. (2001). Fuzzy soft set theory. Journal of Fuzzy Mathematics, 3(9), 589-602.

12. Feng, F., Jun, Y. B., Liu, X. & Li, L. (2010). An adjustable approach to fuzzy soft set based decision

making. Journal of Computational and Applied Mathematics, 234(1), 10-20.

13. Zhang, Z. & Zhang, S. (2012). Type-2 fuzzy soft sets and their applications in decision making. Journal of

Applied Mathematics, Article ID 608681.

14. Salleh, A. R., Alkhazaleh, S., Hassan, N. & Ahmad, A. G. (2012). Multiparameterized soft set. Journal of

Mathematics and Statistics, 8(1), 92-97.

Muhammad Arshad, Muhammad Saeed, Atiqe Ur Rahman, A Novel Intelligent
Multi-Attributes Decision-Making Approach Based on Generalized Neutrosophic Vague
Hybrid Computing

Neutrosophic Sets and Systems, Vol. 50, 2022                                                                              548



15. Alkhazaleh, S., Salleh, A. R. & Hassan, N. (2011). Possibility fuzzy soft set. Advances in Decision Sciences,

Article ID 479756.

16. Xu, W., Ma, J., Wang, S. & Hao, G. (2010). Vague soft sets and their properties. Computer and Mathematics

with Applications, 59(2), 787-794.

17. Alhazaymeh, K. & Hassan, N. (2012). Generalized vague soft set and its application. International Journal

of Pure and Applied Mathematics, 77(3), 391-401.

18. Alhazaymeh, K. & Hassan, N. (2015). Vague soft sets relations and functions. Journal of Intelligent and

Fuzzy Systems, 28(3), 1205-1212.

19. Maji, P. K., Biswas, R. & Roy, A. (2001). Intuitionistic fuzzy soft sets. Journal of Fuzzy Mathematics, 9(3),

677-692.

20. Maji, P. K. (2013). Neutrosophic soft set. Annals of Fuzzy Mathematics and Informatics, 5(1), 157-168.

21. Broumi, S. & Smarandache, F. (2013). Intuitionistic neutrosophic soft set. Journal of Information and

Computing Science, 8(2), 130-140.

22. Deli, I. (2017). Interval-valued neutrosophic soft sets and its decision making. International Journal of

Machine Learning and Cybernetics, 8(2), 665-676.

23. Alhazaymeh, K. & Hassan, N. (2012). Interval-valued vague soft sets and its application. Advances in Fuzzy

Systems, Article ID 208489.

24. Alhazaymeh, K. & Hassan, N. (2013). Generalized interval-valued vague soft set. Applied Mathematical

Sciences, 7(140), 6983-6988.

25. Alhazaymeh, K. & Hassan, N. (2013). Possibility interval-valued vague soft set. Applied Mathematical

Sciences, 7(140), 6989-6994.

26. Alhazaymeh, K. & Hassan, N. (2014). Mapping on generalized vague soft expert set. International Journal

of Pure and Applied Mathematics, 93(3), 369-376.

27. Alhazaymeh, K. & Hassan, N. (2012). Generalized vague soft set and its application. International Journal

of Pure and Applied Mathematics, 77(3), 391-401.

28. Alhazaymeh, K. & Hassan, N. (2012). Possibility vague soft set and its application in decision making.

International Journal of Pure and Applied Mathematics, 77(4), 549-563.

29. Alhazaymeh, K. & Hassan, N. (2014). Vague soft multiset theory. International Journal of Pure and Applied

Mathematics, 93(4), 511-523.

30. Alhazaymeh, K. & Hassan, N., (2017). Einstein-operations on vague soft set. AIP Conference Proceedings,

1830, 070001, doi,10.1063/1.4980950.

31. Alhazaymeh, K. & Hassan, N. (2017). Vague soft expert set and its application in decision making. Malaysian

Journal of Mathematical Sciences, 11(1), 23-39.

32. Hassan, N. & Alhazaymeh, K. (2013). Vague soft expert set theory. AIP Conference Proceedings, 1522,

953-958.

33. Hassan, N. & Al-Quran, A. (2017). Possibility neutrosophic vague soft expert set for decision under uncer-

tainty. AIP Conference Proceedings, 1830, 070007, doi,10.1063/1.4980956.

34. Alkhazaleh, S. (2015). Neutrosophic vague set theory. Critical Review, X, 29-39.

35. Al-Quran, A. & Hassan, N. (2017). Neutrosophic vague soft set and its applications. Malaysian Journal of

Mathematical Sciences, 11(2), 141-163.

36. Smarandache, F. (2018). Extension of Soft Set of Hypersoft Set, and then to Plithogenic Hypersoft Set,

Neutrosophic Sets and Systems, 22, 168-170, https,//doi.org/10.5281/zenodo.2838716

37. Saeed, M., Rahman, A. U., Ahsan, M. & Smarandache, F. (2021). An Inclusive Study on Fundamentals of

Hypersoft Set. In Theory and Application of Hypersoft Set, Pons Publication House, Brussel, 1-23.

Muhammad Arshad, Muhammad Saeed, Atiqe Ur Rahman, A Novel Intelligent
Multi-Attributes Decision-Making Approach Based on Generalized Neutrosophic Vague
Hybrid Computing

Neutrosophic Sets and Systems, Vol. 50, 2022                                                                              549



38. Rahman, A. U., Saeed, M., Smarandache, F. & Ahmad, M. R. (2020). Development of Hybrids of Hypersoft

Set with Complex Fuzzy Set, Complex Intuitionistic Fuzzy set and Complex Neutrosophic Set. Neutrosophic

Sets and Systems, 38, 335-354, https,//doi.org/10.5281/zenodo.4300520

39. Rahman, A. U., Saeed, M. & Smarandache, F. (2020). Convex and Concave Hypersoft Sets with Some

Properties. Neutrosophic Sets and Systems, 38, 497-508, https,//doi.org/10.5281/zenodo.4300580

40. Rahman, A. U., Saeed, M. & Dhital, A. (2021). Decision Making Application Based on

Neutrosophic Parameterized Hypersoft Set Theory. Neutrosophic Sets and Systems, 41, 1-14,

https,//doi.org/10.5281/zenodo.4625665

41. Rahman, A. U., Saeed, M. & Zahid, S. (2021). Application in Decision Making Based on Fuzzy Parameter-

ized Hypersoft Set Theory. Asia Mathematika, 5(1), 19-27, https,//doi.org/10.5281/zenodo.4721481

42. Rahman, A. U., Hafeez, A., Saeed, M., Ahmad, M.R. & Farwa, U. (2021). Development of Rough Hypersoft

Set with Application in Decision Making for the Best Choice of Chemical Material. In Theory and Applica-

tion of Hypersoft Set, Pons Publication House, Brussel, 192-202, https,//doi.org/10.5281/zenodo.4743367

43. Rahman, A. U., Saeed, M. & Hafeez, A. (2021). Theory of Bijective Hypersoft Set with

Application in Decision Making. Punjab University Journal of Mathematics, 53(7), 511-526,

https,//doi.org/10.52280/pujm.2021.530705

44. Rahman, A. U., Saeed, M., Alodhaibi, S. S. & Abd, H. (2021). Decision Making Algorithmic Approaches

Based on Parameterization of Neutrosophic Set under Hypersoft Set Environment with Fuzzy, Intuitionistic

Fuzzy and Neutrosophic Settings. CMES-Computer Modeling in Engineering and Sciences, 128(2), 743-777,

https,//doi.org/10.32604/cmes.2021.016736

45. Saeed, M., Ahsan, M., Saeed, M. H., Mehmood, A. & Abdeljawad, T. (2021). An Application of Neutro-

sophic Hypersoft Mapping to Diagnose Hepatitis and Propose Appropriate Treatment, IEEE Access, 9,

70455-70471, http,//doi.org/10.1109/ACCESS.2021.3077867

46. Saeed, M., Ahsan, M. & Abdeljawad, T. (2021). A Development of Complex Multi-Fuzzy Hypersoft Set

With Application in MCDM Based on Entropy and Similarity Measure, IEEE Access, 9, 60026-60042,

http,//doi.org/10.1109/ACCESS.2021.3073206

47. Saeed, M., Rahman, A. U. & Arshad, M. (2021). A study on some operations and product of neutrosophic

hypersoft graphs. Journal of Applied Mathematics and Computing, https,//doi.org/10.1007/s12190-021-

01614-w

48. Saeed, M., Ahsan, M., Rahman, A. U., Saeed, M. H. & Mehmood, A. (2021). An application of neutrosophic

hypersoft mapping to diagnose brain tumor and propose appropriate treatment. Journal of Intelligent and

Fuzzy Systems, 41, 1677-1699, http,//doi.org/10.3233/JIFS-210482

49. Saeed, M., Ahsan, M. & Rahman, A. U. (2021). A novel approach to mappings on hypersoft classes

with application, In Theory and Application of Hypersoft Set, Pons Publication House, Brussel, 175-191,

http,//doi.org/10.5281/zenodo.4743384

50. Saeed, M., Siddique, M. K., Ahsan, M., Ahmad, M.R. & Rahman, A.U. (2021). A Novel Approach to the

Rudiments of Hypersoft Graphs, In Theory and Application of Hypersoft Set, Pons Publication House,

Brussel, 203-214, http,//doi.org/10.5281/zenodo.4736620

51. Saeed, M., Rahman, A. U., & Harl, M. I. (2022). An Abstract Approach to W-Structures Based on Hypersoft

Set with Properties. Neutrosophic Sets and Systems, 48, 433-442.

52. Ihsan, M., Saeed, M., Rahman, A. U., & Smarandache, F. (2022). Multi-Attribute Decision Support Model

Based on Bijective Hypersoft Expert Set. Punjab University Journal of Mathematics, 54(1), 55-73.

53. Rahman, A. U., Saeed, M., Arshad, M., & El-Morsy, S. (2021). Multi-Attribute Decision-Support System

Based on Aggregations of Interval-Valued Complex Neutrosophic Hypersoft Set. Applied Computational

Intelligence and Soft Computing, 2021.

Muhammad Arshad, Muhammad Saeed, Atiqe Ur Rahman, A Novel Intelligent
Multi-Attributes Decision-Making Approach Based on Generalized Neutrosophic Vague
Hybrid Computing

Neutrosophic Sets and Systems, Vol. 50, 2022                                                                              550



54. Saeed, M., Rahman, A. U., & Farw, U. E. (2021) Optimal Supplier Selection Via Decision-Making Algorith-

mic Technique Based on Single-Valued Neutrosophic Fuzzy Hypersoft Set. Neutrosophic Sets and Systems,

47, 472-490.

55. Rahman, A. U., Saeed, M., Khalifa, H. A. E. W., & Afifi, W. A. (2022). Decision making algorithmic tech-

niques based on aggregation operations and similarity measures of possibility intuitionistic fuzzy hypersoft

sets. AIMS Mathematics, 7(3), 3866-3895.

56. Zulqarnain, R. M., Xin, X. L., Saqlain, M., & Smarandache, F. (2020). Generalized aggregate operators on

neutrosophic hypersoft set. Neutrosophic Sets and Systems, 36, 271-281.

57. Zulqarnain, R. M., Xin, X. L., Saqlain, M., Saeed, M., Smarandache, F., & Ahamad, M. I. (2021). Some

fundamental operations on interval valued neutrosophic hypersoft set with their properties. Neutrosophic

Sets and Systems, 40, 134-148.

58. Zulqarnain, R. M., Xin, X. L., Ali, B., Broumi, S., Abdal, S., & Ahamad, M. I. (2021). Decision-making

approach based on correlation coefficient with its properties under interval-valued neutrosophic hypersoft

set environment. Neutrosophic Sets and Systems, 40, 12-28.

59. Zulqarnain, R. M., Siddique, I., Ahmad, S., Ayaz, S., & Broumi, S. (2021). An Algorithm Based on

Correlation Coefficient Under Neutrosophic hypersoft set environment with its Application for Decision-

Making. Neutrosophic Sets and Systems, 46, 128-140.

Muhammad Arshad, Muhammad Saeed, Atiqe Ur Rahman, A Novel Intelligent
Multi-Attributes Decision-Making Approach Based on Generalized Neutrosophic Vague
Hybrid Computing

Neutrosophic Sets and Systems, Vol. 50, 2022                                                                              551

Received: Feb 6, 2022. Accepted: Jun 15, 2022



University of New Mexico

An Enumeration Technique for Transshipment Problem in

Neutrosophic Environment

Ashok Kumar1,∗, Ritika Chopra2 and Ratnesh Rajan Saxena3

1Department of Mathematics, University of Delhi, Delhi-110007; ashokganguly05@gmail.com
2Department of Mathematics, Shaheed Rajguru College of Applied Sciences For Women, University of Delhi,

Delhi-110096; ritikaritsin17@gmail.com
3Department of Mathematics, Deen Dayal Upadhyaya College, University of Delhi, Delhi-110078;

ratnesh65@gmail.com
∗Correspondence: ashokganguly05@gmail.com

Abstract. Neutrosophic sets, which are the generalization of fuzzy, and intuitionistic fuzzy sets, have been

introduced to express uncertain, incomplete, and indeterminacy knowledge regarding a real-world problem. This

paper is intended for the first time to introduce a transshipment problem mathematically in a neutrosophic

environment. The neutrosophic transshipment problem is a special type of neutrosophic transportation problem

in which available commodities regularly travel from one origin to other origins/destinations before arriving at

their final destination. This article provides a technique for solving transshipment problems in a neutrosophic

environment. A fully neutrosophic transshipment problem is considered in this article and the parameters

(transshipment cost, supply and demand) are expressed in trapezoidal neutrosophic numbers. The possibility

mean ranking function is used in the proposed technique. The proposed technique gives a direct optimal

solution. The proposed technique is simple to implement and can be used to find the neutrosophic optimal

solution to real-world transshipment problems. A numerical example is provided to demonstrate the efficacy of

the proposed technique in the neutrosophic environment.

Keywords: Decision-Making Problem, Transshipment Problem, Neutrosophic Transshipment Problem, Single-

Valued Trapezoidal Neutrosophic Number

—————————————————————————————————————————-

When a particular product needs to be transported from source to sink in a network, trans-

portation is one of the most important engineering challenges. A common transportation

problem arises when a certain bulk of commodity needs to shipped from their origins to their

destinations through multiple intermediate points (transshipment points). This classic form of

transporters problem is called a transshipment problem. This problem was first proposed by
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Orden [1]. The concept of the transshipment problem can also be applied to determining the

shortest path between two nodes in a network. As an application of transshipment problem,

King and Logan [2] established a mathematical method for simultaneously identifying threads

in a network linking to product processor market points, while Rhody [3] suggested a method

based on a reduced matrix. Judges et al. [4] proposed a general linear model extension of

the transshipment problem to a multi-plant, multi-product, and multiregional problem. The

alternative formulations of transshipment problems under the transport model was discussed

by Hurt and Tramel [5] , which would allow for answers to common difficulties that King and

Logan articulated without the requirement for artificial variables to be subtracted. “The time-

minimizing transshipment problem” was investigated by Garg and Prakash [6]. Subsequently,

Herer and Tzur [7] examined the dynamic transshipment problem. Ozdemir et al. [8] then

looked on the problem of multilocation transshipment with capacitated manufacturing and

lost sales.

Transshipment problem formulation requires the understanding of parameters such as de-

mand, supply, associated cost, time, stock space, budget, etc. Traditional methods can be

used to solve the transshipment problem when the decision parameters are known. However,

in real-world scenarios, numerous types of uncertainty arise mathematically when designing

transshipment due to factors such as a lack of precise information, information that cannot

be obtained, rapid changes in the fuel rate or traffic jam, or whether conditions. Therefore,

the transshipment problem with impricise information cannot be solved by traditional math-

ematical techniques. Zadeh [9] introduced the idea of fuzzy sets to deal with uncertainties. In

order to handle unsure information, Zadeh effectively applied the theory of fuzzy set (FS) in

various fields. The applications of this theory are rapidly growing in the field of optimization

after the foremost work by Bellman and Zadeh [10]. Zimmermann [11] demonstrated that

the solutions generated by fuzzy linear programming are always optimal and efficient. Fuzzy

transshipment problem is the name given to the transshipment problem that is explored in

fuzzy theory, which has been discussed by many researchers ( [12]- [16]). Only the membership

degrees are insufficient to indicate the element’s marginal attainment in the fuzzy decision set,

as was shown later on in the research. The intuitionistic fuzzy set (IFS), which incorporates

both a membership and a non-membership function, was developed by Atanassov [17]. It is

recommended that the sum of an element’s membership and non-membership degrees does

not exceed 1 in an intuitionistic fuzzy set. The transportation problem discussed in IFS is

known as intuitionistic fuzzy transportation problem. Paramanik and Roy [18–20] discussed

transportation and goal programming in IFS. Later, the transshipment problem in IFS has

been discussed by many researchers ( [21], [22]).
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As a result of the presence of neutral ideas in the decision-making process, the extension

of FS and IFS were required. Smarandache [23] introduced the neutrosophic set (NS) as a

way to deal with the degree of indeterminacy and neutrality. Truth (degree of belonging-

ness), indeterminacy (degree of belongingness up to a certain extant), and falsity (degree of

non-belongingness) are three different membership functions for the element into a feasible

solution set that the NS evaluates. But NS is difficult to implement without explicit detail

in real-life problems. A single-valued neutrosophic set (SVNS) has been proposed for NS ex-

tension by Wang et al. [24]. By combining trapezoidal fuzzy numbers with a single-valued

neutrosophic set, Ye [25] introduced single-valued trapezoidal neutrosophic (SVTrN) numbers.

Many researchers such as Ahmad et al. [26], Garai et al. [27], Ahmad [28], Touqeer et al. [29],

have recently used the concept of NS in decision-making problems. The effects of ignoring

the values of propositions between the truth and falsity degrees are indeterminacy/neutral

thoughts. As a result, when dealing with transshipment problems, it is important to consider

the degree of indeterminacy.

Despite the fact that many researchers ( [30]- [33]) applied the concept of neutrosophic

theories to transportation problems. Neuosophic logic has not been applied to existing supply

chain theories of transshipment models, to the best of our knowledge. This article aims to

provide a simple yet effective method for solving neutrosophic transshipment problems in a

day-to-day situation. There are a number of advantages to using the technique:

• All parameters are represented as trapezoidal neutrosophic numbers in a fully neutro-

sophic transshipment problem.

• The proposed technique is based on the possiblility mean ranking function.

• The technique proposed produces an optimal solution directly.

• The proposed method is simple to comprehend and can be used to solve real-life trans-

shipment issues.

The following is how this article is organised. The neutrosophic set and neutrosophic numbers

are introduced in Section 2. In the Section 3 formulates the airthmetic operations on single

valued neutrosophic numbers, while the Section 4 presents the possilibity mean and ranking

function on SVTrN-numbers. The mathematical structure of the transshipment problem in a

neutrosophic environment was formulated in Section 5. The proposed technique’s steps were

addressed in Section 6. In Section 7, an example is given to show the effectiveness of the

proposed solution strategy. The paper comes to a close with the conclusion.

1. Mathematical Preliminaries

This section provides an overview of key conceptions and definitions related to neutrosophic

sets.
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Definition 1. [23] Let M be a universe and y in M . The neutrosophic set N over M is defined

by N = 〈y, TN (y), IN (y), FN (y) : y ∈ M〉, where the functions TN , IN , FN : P →]−0, 1+[ rep-

resent the truth-membership, indeterminate-membership, falsity-membership respectively such

that −0 ≤ TN (y) + IN (y) + FN (y) ≤ 3+

Definition 2. [23] Let M be a universe and y in M . Then a single valued neutrosophic set

N is characterized by truth-membership TN , indeterminacy-membership function IN , falsity-

membership function FN , where TN , IN , FN : M → [0, 1] are functions such that 0 ≤ TN (y) +

IN (y) + FN (y) ≤ 3.

Definition 3. [27] A single valued trapezoidal neutrosophic number is defined by m̃ =

〈(m1,m2,m3,m4); tm̃, im̃, fm̃〉, where tm̃, im̃, fm̃ ∈ [0, 1] and m1,m2,m3,m4 in R with con-

dition that m1 ≤ m2 ≤ m3 ≤ m4. The truth-membership, indeterminacy-membership, and

falsity-membership functions of m̃ are given as follows:

µm̃(y) =



tm̃( y−m1

m2−m1
); m1 ≤ y ≤ m2

tm̃; m2 ≤ y ≤ m3

tm̃( m4−y
m4−m3

); m3 ≤ y ≤ m4

0; otherwise,

νm̃(y) =



m2−y+im̃(y−m1)
m2−m1

; m1 ≤ y ≤ m2

im̃; m2 ≤ y ≤ m3

y−m3+im̃(m4−y)
m4−m3

; m3 ≤ y ≤ m4

1; otherwise

λm̃ =



m2−y+fm̃(y−m1)
m2−m1

; m1 ≤ y ≤ m2

fm̃; m2 ≤ y ≤ m3

y−m3+fm̃(m4−y)
m4−m3

; m3 ≤ y ≤ m4

1; otherwise,

where tm̃, im̃ and fm̃ are represents the maximum truth-membership degree, minimum-

indeterminacy membership degree, minimum falsity-membership degree respectively. The geo-

metrical representation of SVTrNF-number is shown by Fig. 1.

Definition 4. [34] Let m̃ = 〈(m1,m2,m3,m4); tm̃, im̃, fm̃〉 and ñ = 〈(n1, n2, n3, n4); tñ, iñ, fñ〉
be two single valued trapezoidal neutrosophic numbers and k 6= 0 be any number and ∧= min,

∨ = max, then the operations on them are defined as follows :

(1) m̃⊕ ñ = 〈(m1 + n1,m2 + n2,m3 + n3,m4 + n4); tm̃ ∧ tñ, im̃ ∨ iñ, fm̃ ∨ fñ〉,
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0 m1 m2 m3 m4

R

tm̃

im̃

fm̃

µm̃(y)

νm̃(y)

λm̃(y)

1

Figure 1. SVTrN-number

(2) m̃	 ñ = 〈(m1 − n4,m2 − n3,m3 − n2,m4 − n1); tm̃ ∧ tñ, im̃ ∨ iñ, fm̃ ∨ fñ〉,
(3)

m̃⊗ ñ =


〈(m1
n4
, m2
n3
, m3
n2
, m4
n1

); tm̃ ∧ tñ, im̃ ∨ iñ, fm̃ ∨ fñ〉 if m4 > 0, n4 > 0

〈(m4
n4
, m3
n3
, m2
n2
, m1
n1

); tm̃ ∧ tñ, im̃ ∨ iñ, fm̃ ∨ fñ〉 if m4 < 0, n4 > 0

〈(m4
n1
, m3
n2
, m2
n3
, m1
n4

); tm̃ ∧ tñ, im̃ ∨ iñ, fm̃∨〉 if m4 < 0, n4 < 0

(4)

cm̃ =

〈(cm1, cm2, cm3, cm4); tm̃, im̃, fm̃〉 if c > 0

〈(cm4, cm3, cm2, cm1); tm̃, im̃, fm̃〉 if c < 0

(5) m̃−1 = 〈( 1
m4
, 1
m3
, 1
m2
, 1
m1

); tm̃, im̃, fm̃〉,where m̃ 6= 0.

2. The Possibility Mean and The Ranking Function for SVTrN-numbers

Sometimes, decision information supplied by a decision maker in difficult decision-making

situations is vague or inaccurate due to time restrictions, a lack of facts, or the restricted

attention and information processing capacity of the decision maker. As a result, incorporating

the possibility mean into the neutrosophic decision-making process in transshipment is critical

for scientific study and real-world application. Therefore, in this section the possibilty mean

and the ranking function based on the possiblity mean are defined.
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2.1. The Possibility Mean Functions for SVTrN-Number

Let m̃ = 〈(m1,m2,m3,m4); tm̃, im̃, fm̃〉 be any SVTrN-number. Then the possibilty mean

functions are defined as follows: [27]

1. α-cut set of the SVTrN-number m̃ for truth-membership function is obtained as

m̃α = [ML,MR] = [m1 + α(m2−m1)
tm̃

,m3 − α(m3−m2)
tm̃

]

where α ∈ [0, tm̃]. The possibility mean of truth-membership function for SVTrN-number m̃

is given by

Pµ(m̃) =
m1 + 2m2 + 2m3 +m4

6
t2m̃

2. β-cut set of the SVTrN-number m̃ for indeterminacy membership function is obtained as

m̃β = [ML,MR] = [m1 + (1−β)(m2−m1)
1−im̃ ,m3 − (1−β)(m3−m1)

1−im̃ ]

where β ∈ [νm̃, 1]. The possibility mean of indeterminacy-membership function for SVTrN-

number m̃ is given by

Pν(m̃) =
m1 + 2m2 + 2m3 +m4

6
(1− im̃)2

3. γ-cut set of the SVTrN-number m̃ for falsity-membership function is obtained as

m̃γ = [ML,MR] = [m1 + (1−γ)(m2−m1)
1−im̃ ,m3 − (1−γ)(m3−m1)

1−im̃ ]

where γ ∈ [fm̃, 1]. The possibility mean of falsity-membership function for SVTrN-number m̃

is given by

Pλ(m̃) =
m1 + 2m2 + 2m3 +m4

6
(1− fm̃)2

2.2. The Ranking Function Based on The Possibility Mean Function

The ranking fuction based on possiblity mean values for a SVTrN-number m̃ =

〈(m1,m2,m3,m4); tm̃, im̃, fm̃〉 is given by

Pθ(m̃) = θPµ(m̃) + (1− θ)Pν(m̃) + (1− θ)Pλ(m̃)

Theorem 1. Let m̃ = 〈(m1,m2,m3,m4); tm̃, im̃, fm̃〉 and ñ = 〈(n1, n2, n3, n4); tñ, iñ, fñ〉 be

two SVTrN-numbers and θ ∈ [0, 1]. For the possibility mean values of the SVTrN-numbers m̃

and ñ, the following illustrantions hold true.

(1) If Pθ(m̃) > Pθ(ñ), than m̃ � ñ.
(2) If Pθ(m̃) < Pθ(ñ), than m̃ ≺ ñ.
(3) If Pθ(m̃) = Pθ(ñ), than m̃ ≈ ñ.

Proof. It is evident from the definition of ranking function.
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3. Mathematical Formulation of SVNTrP

We have mathematically formulated a transshipment problem in a neutrosophic environ-

ment in this section. The parameters of the problem under consideration are single-valued

trapezoidal neutrosophic numbers. i.e., the decision maker is unsure about the cost of trans-

shipment, supply and demand. The primary goal of the transshipment problem is to transport

any item/product from one origin or destination to another origin or destination while min-

imising total transshipment costs. In a neutrosophic environment, the mathematical structure

of the transshipment problem is as follows:

minz̃N =
m+n∑
i=1

m+n∑
j=1

C̃Nij ⊗ X̃N
ij

Subject to
m+n∑
j=1

X̃N
ij −

m+n∑
j=1

X̃N
ji = ãNi , i = 1, 2, ...,m.

m+n∑
i=1

X̃N
ij −

m+n∑
i=1

X̃N
ji = b̃Nj , j = m+ 1,m+ 2, ...,m+ n.

X̃N
ij ≥ 0, i, j = 1, 2, ...,m+ n; i 6= j.

The problem is said to be balanced if
∑m

i=1 ã
N
i ≈

∑n
j=1 b̃

N
j , otherwise it is know as unbalance

problem. Where,

• m and n denote total number of supply sources and total number of demand points,

respectively.

• aNi denotes available commodity at ith source.

• bNj denotes demand of the commodity at jth destination.

• C̃Nij = (cij,1, cij,2, cij,3, cij,4 ;wã, uã, yã) denotes the neutrosophic transshipment cost of

a unit commodity from ith source to jth destination.

• The number of units of the commodity to be carried from the ith source to the jth

destination is denoted by Xij .

4. Methodology

In this section, a noval transshipment problem technique is presented, that uses the pos-

sibility mean ranking function to obtain the optimal solution. The technique is explained in

detail below in a step-by-step manner.

Step 1 Construct a neutrosophic transshipment problem in Table form in which either all

parameters are taken as SVTrNF-numbers.

Step 2 Put zeros where demand and supply are unknown.
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Step 3 Assign zero values to each digonal cell and delete the rows/columns whose demand

has been met.

Step 4 The transshipment cost is then converted to a crisp number using the possibility mean

based ranking function that is discussed in Section 4.

Step 5 From the matrix obtained after Step 4, choose minimum element from each row then

subtract it from each element of corresponding row.

Step 6 From the matrix obtained after Step 5, choose minimum element from each column

then subtract it from each element of corresponding column.

Step 7 In this manner, each row and column will have at least one zero value. Then, for each

cell having a zero value, use the following formula to determine the zero average value Oij .

Oij = the average of the ith row’s and jth column’s minimum values.

Step 8 Select the maximum zero average value and assign it to the appropriate cell with the

minimum demand/supply, then delete the row/column whose supply/demand has reached its

limit.

Step 9 Pick an allocation that assigns the highest feasible demand in the same rank case.

Step 10 Follow steps 7 to 9 until the total demands are not fulfilled.

Step 11 Add the product of the assigned demand/supply and the cost value for each cell to

get the total transshipment cost. The neutrosophic optimal solution is provided by this total

transshipment cost.

5. Numerical Example

We provide an example of our proposed solution methodology in this section. A neutrosophic

transshipment problem with two origins (A,B) and two destinations (C,D) has been considered.

Table 1 shows the availability at the origins, the requirements at the destinations, and the

transshipment costs.

Table 1. SVTrN transshipment problem

Destination → A B C D Supply

Sources ↓

A (0, 0, 0, 0) (5, 7, 9, 11 ; 0.4, 0.8, 0.5) (4, 6, 9, 11 ; 0.9, 0.3, 0.7) (1, 3, 8, 10; 0.3, 0.9, 0.4) (14, 20, 21, 27 ; 0.2, 0.7, 0.9)

B (7, 10, 12, 15 ; 0.1, 0.6, 0.8) (0, 0, 0, 0) (2, 5, 9, 12 ; 0.6, 0.3, 0.1) (6, 9, 12, 15 ; 0.5, 0.2, 0.6) (13, 18, 23, 28 ; 0.5, 0.3, 0.6)

C (3, 7, 9, 13 ; 0.4, 0.7, 0.3) (5, 8, 12, 15 ; 0.2, 0.4, 0.7) (0, 0, 0, 0) (7, 12, 14, 19 ; 0.8, 0.3, 0.2) −

D (2, 6, 9, 13 ; 0.9, 0.7, 0.8) (6, 7, 8, 9 ; 0.3, 0.8, 0.6) (1, 5, 7, 11 ; 0.2, 0.9, 0.7) (0, 0, 0, 0) −

Demand − − (12, 18, 20, 26 ; 0.4, 0.3, 0.5) (15, 20, 24, 29 ; 0.7, 0.8, 0.4)
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For each column or row, write zero value for unknown demand/supply.

Table 2. Balance tansshipment problem

Destination → A B C D Supply

Sources ↓

A (0, 0, 0, 0) (5, 7, 9, 11 ; 0.4, 0.8, 0.5) (4, 6, 9, 11 ; 0.9, 0.3, 0.7) (1, 3, 8, 10; 0.3, 0.9, 0.4) (14, 20, 21, 27 ; 0.2, 0.7, 0.9)

B (7, 10, 12, 15 ; 0.1, 0.6, 0.8) (0, 0, 0, 0) (2, 5, 9, 12 ; 0.6, 0.3, 0.1) (6, 9, 12, 15 ; 0.5, 0.2, 0.6) (13, 18, 23, 28 ; 0.5, 0.3, 0.6)

C (3, 7, 9, 13 ; 0.4, 0.7, 0.3) (5, 8, 12, 15 ; 0.2, 0.4, 0.7) (0, 0, 0, 0) (7, 12, 14, 19 ; 0.8, 0.3, 0.2) (0, 0, 0, 0)

D (2, 6, 9, 13 ; 0.9, 0.7, 0.8) (6, 7, 8, 9 ; 0.3, 0.8, 0.6) (1, 5, 7, 11 ; 0.2, 0.9, 0.7) (0, 0, 0, 0) (0, 0, 0, 0)

Demand (0, 0, 0, 0) (0, 0, 0, 0) (12, 18, 20, 26 ; 0.4, 0.3, 0.5) (15, 20, 24, 29 ; 0.7, 0.8, 0.4)

The lowest cost value in each row is zero. We discover that zero is the smallest unit cost in

each row, so we place zero in the diagonal cell of the transshipment matrix. Table 2 illustrates

this.

Table 3. Reduced tansshipment problem

Destination → A B C D Supply

Sources ↓

A (0, 0, 0, 0) (5, 7, 9, 11 ; 0.4, 0.8, 0.5) (4, 6, 9, 11 ; 0.9, 0.3, 0.7) (1, 3, 8, 10; 0.3, 0.9, 0.4) (14, 20, 21, 27 ; 0.2, 0.7, 0.9)

(0,0,0,0)

B (7, 10, 12, 15 ; 0.1, 0.6, 0.8) (0, 0, 0, 0) (2, 5, 9, 12 ; 0.6, 0.3, 0.1) (6, 9, 12, 15 ; 0.5, 0.2, 0.6) (13, 18, 23, 28 ; 0.5, 0.3, 0.6)

(0,0,0,0)

C (3, 7, 9, 13 ; 0.4, 0.7, 0.3) (5, 8, 12, 15 ; 0.2, 0.4, 0.7) (0, 0, 0, 0) (7, 12, 14, 19 ; 0.8, 0.3, 0.2) (0, 0, 0, 0)

(0,0,0,0)

D (2, 6, 9, 13 ; 0.9, 0.7, 0.8) (6, 7, 8, 9 ; 0.3, 0.8, 0.6) (1, 5, 7, 11 ; 0.2, 0.9, 0.7) (0, 0, 0, 0) (0, 0, 0, 0)

(0,0,0,0)

Demand (0, 0, 0, 0) (0, 0, 0, 0) (12, 18, 20, 26 ; 0.4, 0.3, 0.5) (15, 20, 24, 29 ; 0.7, 0.8, 0.4)

Delete the rows or columns whose demands have been met.

Table 4. New tansshipment problem

Destination → C D Supply

Sources ↓

A (4, 6, 9, 11 ; 0.9, 0.3, 0.7) (1, 3, 8, 10; 0.3, 0.9, 0.4) (14, 20, 21, 27 ; 0.2, 0.7, 0.9)

B (2, 5, 9, 12 ; 0.6, 0.3, 0.1) (6, 9, 12, 15 ; 0.5, 0.2, 0.6) (13, 18, 23, 28 ; 0.5, 0.3, 0.6)

Demand (12, 18, 20, 26 ; 0.4, 0.3, 0.5) (15, 20, 24, 29 ; 0.7, 0.8, 0.4)
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Now, using the possibility mean-based ranking function discussed in the section 3, apply it to

the cost of transshipment.

Table 5. De-neutrosophic transshipment problem

Destination → C D Supply

Sources ↓

A 5.21 1.26 (14, 20, 21, 27 ; 0.2, 0.7, 0.9)

B 5.81 5051 (13, 18, 23, 28 ; 0.5, 0.3, 0.6)

Demand (12, 18, 20, 26 ; 0.4, 0.3, 0.5) (15, 20, 24, 29 ; 0.7, 0.8, 0.4)

We obtained the final optimal table (Table 6) by completing the remaining steps of the pro-

posed technique .

Table 6. Final Optimal Table

Destination → A B C D

Sources ↓

A (0, 0, 0, 0) (5, 7, 9, 11 ; 0.4, 0.8, 0.5) (4, 6, 9, 11 ; 0.9, 0.3, 0.7) (1, 3, 8, 10; 0.3, 0.9, 0.4)

(0,0,0,0) (14,20,21,27 ; 0.2,0.7,0.9)

B (7, 10, 12, 15 ; 0.1, 0.6, 0.8) (0, 0, 0, 0) (2, 5, 9, 12 ; 0.6, 0.3, 0.1) (6, 9, 12, 15 ; 0.5, 0.2, 0.6)

(0,0,0,0) (12,18,20,26 ; 0.4,0.2,0.6) (−12,−1,4,15 ; 0.2,0.8,0.9)

C (3, 7, 9, 13 ; 0.4, 0.7, 0.3) (5, 8, 12, 15 ; 0.2, 0.4, 0.7) (0, 0, 0, 0) (7, 12, 14, 19 ; 0.8, 0.3, 0.2)

(0,0,0,0)

D (2, 6, 9, 13 ; 0.9, 0.7, 0.8) (6, 7, 8, 9 ; 0.3, 0.8, 0.6) (1, 5, 7, 11 ; 0.2, 0.9, 0.7) (0, 0, 0, 0)

(0,0,0,0)

The optimal solution of trapezoidal neutrosophic transshipment problem, given in Ta-

ble 1, is (1, 3, 8, 10; 0.3, 0.9, 0.4) ⊗ (14, 20, 21, 27; 0.2, 0.7, 0.9) ⊕ (2, 5, 9, 12; 0.6, 0.3, 0.1) ⊗
(12, 18, 20, 26; 0.4, 0.2, 0.6)⊕(6, 9, 12, 15; 0.5, 0.2, 0.6)⊗(−12,−1, 4, 15; 0.2, 0.8, 0.9) = (−34, 141

, 396, 807; 0.2, 0.9, 0.9).

6. Conclusion

Neutrosophic sets, a generalisation of intuitionistic fuzzy sets, can represent both indetermi-

nacy and uncertainty. Though many decision-making problems have been studied with various

forms of input data, this study looked at solutions to the transshipment problem in a neutro-

sophic environment. The proposed method has proven to be effective in solving transshipment

problems involving single-valued trapezoidal neutrosophic numbers. The proposed technique

has been based on the possibility mean ranking function. The technique is simple to implement
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in real-world transshipment problems. Further, the technique produces an optimal solution

directly. While the proposed technique analyses the solutions to neutrosophic transshipment

problem in concrete form, the prediction of qualitative and complex data solutions does have

certain limitations. Genetic algorithm approaches can overcome computational complexity in

the management of higher dimensional problems. The research can be further expanded to

address multiobjective transshipment problems in neutrosophic environment.

Funding: “This research received no external funding”.

Acknowledgments: This research is dedicated to my late father “Shree Jai Ram Meena”.

Conflict of interest:“Authors Ashok Kumar, Ritika Chopra, Ratnesh Rajan Saxena declare

that they have no conflict of interest”.

References

[1] Orden A, Transshipment problem, Manag. Sci., vol. 3, 276–285 (1956).

[2] King GA, Logan SH, Optimum location, number, and size of processing plants with raw product and final

product shipments, J. Farm Econ., 46, 94–108 (1964).

[3] Rhody D, Interregional competitive position of the hog-pork industry in the southeast United States, PhD

thesis, Iowa State University (1963).

[4] Judge G, Havlicek J, Rizek R, An interregional model: Its formulation and application to the livestock

industry, Agriculture and Economy and Revision, 7, 1–9 (1965).

[5] Hurt V, Tramel T, Alternative formulations of the transshipment problem J. Farm Econ., 47, 763–773

(1965).

[6] Garg R, Prakash S, Time minimizing transshipment problem, Indian Journal of Pure and Applied Mathe-

matics, 16, 449–460 (1985).

[7] Here Y, Tzur M, The dynamic transshipmen problem Naval Research Logistics Quaterely, 48, 386–408

(2001).

[8] Ozdemir D, Yucesan E, Herer Y, Multilocation transshipment problem with capacitated production and

lost sales, In Proceedings of the 2006 Winter Simulation Conference, 1470-1476 (2006).

[9] Zadeh LA, Fuzzy sets Inf. Control, 8, 338–353 (1965).

[10] Bellman RE, Zadeh LA, Decision-making in a fuzzy environment, Manag. Sci., 17, 141–164 (1970).

[11] Zimmermann HJ, Fuzzy programming and linear programming with several objective functions, Fuzzy Sets

and Systems, 1, 45-55 (1978).

[12] Baskaran R, Dharmalingam KM, Assarudeen SM, Fuzzy transshipment problem with transit points, Int.

J. Pure Appl. Math., 107(4), 1053–1062 (2016).

[13] Mohanpriya S, Jeyanthi V, Modified procedure to solve fuzzy transshipment problem by using trapezoidal

fuzzy number Int. J. Math. Stat. Invent., 4, 30–34 (2016).

[14] Ghosh D, Mondal S, An integrated production-distribution planning with transshipment between ware-

houses, Int. J. Adv. Oper. Manag., 9, 23–36 (2017).

[15] Kaur A, Kacprzyk J, Kumar A, New improved methods for solving the fully fuzzy transshipment problems

with parameters given as the LR flat fuzzy numbers, In: Fuzzy transportation and transshipment problems,

Springer, Cham, 103–144 (2020).

[16] Garg H, Mahmoodirad A, Niroomand S, Fractional two-stage transshipment problem under uncertainty:

application of the extension principle approach, Complex Intell. Syst. 7, 807–822 (2021).

[17] Atanassov KT, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, 87–96 (1986).

Ashok Kumar , Ritika Chopra and Ratnesh Rajan Saxena , An enumeration technique for
transshipment problem in neutrosophic environment

Neutrosophic Sets and Systems, Vol. 50, 2022                                                                                562



[18] Pramanik S, Roy, TK, An intuitionistic fuzzy goal programming approach to vector optimization problem,

Notes on Intuitionistic Fuzzy Sets, 11, 1-14 (2005).

[19] Pramanik S, Roy TK, Intuitionist fuzzy goal programming and its application in solving multi-objective

transportation problem, Tamsui Oxford Journal of Management Sciences, 23, 1-16 (2007).

[20] Pramanik S, Roy TK, . Multiobjective transportation model with fuzzy parameters: a priority based

fuzzy goal programming, Journal of Transportation Systems Engineering and Information Technology, 8, 40-

48 (2008).

[21] Gani A, Abbas S, A new approach on solving intuitionistic fuzzy transshipment problem, Int. J. Appl.

Eng. Res., 9, 9509–9518 (2014).

[22] Kumar A, Chopra R, Saxena R, An Efficient Algorithm to Solve Transshipment Problem in Uncertain

Environment, Int. J. Fuzzy Syst., 22, 2613–2624 (2020). https://doi.org/10.1007/s40815-020-00923-9

[23] Smarandache F, A unifying field in logics: neutrosophic logic, In Philosophy, American Research Press,

1–141 (1999).

[24] Wang H, Smarandache F, Zhang Y, Sunderraman R, Single valued neutrosophic Sets, Coimbatore, India:

Infinite study, (2010).

[25] Ye J, Trapezoidal neutrosophic set and its application to multiple attribute decision-making, Neural Com-

put. Appl., 26, 1157–1166 (2015).

[26] Ahmad F, Adhami AY, Smarandache F, neutrosophic optimization model and computational algorithm

for optimal shale gas water management under uncertainty, Symmetry, 11, 544 (2019).

[27] Garai T, Garg H, Roy TK, A ranking method based on possibility mean for multi-attribute deci-

sion making with single valued neutrosophic numbers, J. Ambient Intell Humaniz Comput., 1–14 (2020).

https://doi.org/10.1007/s12652-020-01853-y

[28] Ahmad F, Interactive neutrosophic optimization technique for multiobjective programming problems: an

application to pharmaceutical supply chain management, Ann. Oper. Res., 1-35 (2021).

[29] Touqeer M, Umer R, Ahmadian A, Salahshour S, Ferrara M, An optimal solution of energy scheduling

problem based on chance-constraint programming model using interval-valued neutrosophic constraints, Optim.

Eng., (2021). https://doi.org/10.1007/s11081-021-09622-2

[30] Thamaraiselvi A, Santhi R, A new approach for optimization of real life transportation problem in neu-

trosophic environment, Math. Probl. Eng., (2016). doi:10.1155/2016/5950747

[31] Singh A, Kumar A, Appadoo SS, Modified approach for optimization of real life transportation problem

in neutrosophic environment, Math. Probl. Eng., 1–9 (2017).

[32] Rizk-Allah RM, Hassanien AE, Elhoseny M, A multi-objective transportation model under neutrosophic

environment, Compu Electrical Eng., 69, 705-719 (2018).

[33] Saini RK, Sangal A, Manisha, Application of single valued trapezoidal neutrosophic numbers in trans-

portation problem, neutrosophic sets and systems, 35, 563-583 (2020).
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Abstract. This research proposes the idea of implementing an innovative mechanism to detect the edges in

distinct MR brain medical images based on the aspect of Neutrosophic sets (NSs). NS-based entropy is one

of the emerging tools to procure a neutrosophic image from the crisp image. Followed by the aforementioned

procedure, fusion has been done for the neutrosophic image in order to acquire fused neutrosophic images

(FNI) then the FNI’s are again regenerated to form a fused crisp image. Later, the Bell-Shaped (BS) function

and the Sobel operator works on the FNI to obtain a combination of three subsets. After determining the

neutrosophic subsets, various entropies such as Norm, Threshold, Sure, and Shannon act on it to provide

their threshold values, and the computed subsets along with thresholds are incorporated to produce a new

binarized image. Subsequently, morphological operations were implemented to construct the image edges. The

resultant images with different entropies are compared by using the performance measurement factors. Based

on the measurement factors, the proposed Norm entropy image edge detection innovations have proven to be

an efficient tool with reference to other entropies. In addition, the Norm entropy-based proposed method was

compared with some of the other existing edge detection methods inclusive of Sobel, Chan, Tian, and Wu. FOM

and PSNR factors have been applied to estimate the results of edge detection achieved through five distinct

methods. The findings confirmed that the implementation of the proposed object edge detection mechanism is

much stronger compared to other existing methods.

Keywords: Neutrosophic set; Image Fusion; Segmentation; Entropy; Edge detection; Homogeneity

—————————————————————————————————————————-

1. Introduction

Over the past few decades, two key applications such as image fusion and segmentation have

become much clearer and they are significant in the field of image processing and computer
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vision, see references [1, 2] for more details. Nowadays, a substantial number of analytically

validated image fusion and segmentation, that have been applied to fuse and segment the

image objects, and also have been defined to eliminate the noise and its related uncertainty

factors. In general, the scheme of fusion is characterized into three parts such as feature, pixel,

and decision level. One of the fusion methods is, every pixel of the source images is summed

and takes the average then gets the fused image, this algorithm gives the lower performance.

So, various types of multi-resolution transform appeared to deal with this problem and they

are employed in image fusion. Many image fusion schemes are available, but some schemes are

frequently handled, they are spatial fusion, transform fusion, contourlet transform, gradient

pyramid, Laplacian pyramid, MSVD, wavelet transform, curvelet transform, etc. The image is

fused by the notion of SVD called singular value decomposition that execution is more similar

to wavelets. The MSVD based image fusion has been viewed as a faster performance than

approximated SVD, see the reference [3] for further details.

Edge detection is a kind of crucial step in the human visual system and image analysis,

which is the wild development research area in image processing. The edge detection process

substantially alleviates the amount of information because it divides the meaningful data and

shields the foremost geometric features. To illustrate the object edges, the object data is per-

formed by either analog / digital computation. The edge is noted as a significant local change

in the intensity of the image. In general, the edge is correlated with pixel discontinuity and it

occurs between distinct gray level regions of the image. It should be noted that many Gradient

and Laplacian operators such as Roberts [4], Canny [5], Prewitt [6], Sobel [7], and others, have

been presented for classical edge detection. And these operators based edge detection meth-

ods are listed as follows: (a) Cellular Automata [8] (b) particle swarm optimization (PSO) [9]

(c) Wavelet [10], (d) Anisotropic Gaussian Kernels (AGK) [11], (e) Ant colony optimization

(ACO) [12]. Besides, the swarm intelligence-based ACO algorithm has been offered by Dorigo

et al. and it was motivated by the universal collective behavior of ants in the present environ-

ment [13], an important method derived from the development of ACO modifications. Zhang

et al. suggested topology-preserving 3D image segmentation based On hyperelastic regulariza-

tion [14]. The authors Liu and Li [15] recommended a fabric defect detection technique based

on the aspect of low-rank decomposition with structural constraints. Further information on

edge detection method through active contour without edge has also been available in the lit-

erature [16]. In addition, new edge detection approaches have been published in peer-reviewed

journals [17]. The main limitations of the edge detection algorithms include illumination sen-

sitivity, noise sensitivity, and unadjusted parameters, according to [18, 19]. Hence, there are

distinct edge detection methods that have so far been framed to reduce the limitations of the

aforementioned edge detection approaches while maximizing their enforcement [20]. Methods
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of edge detection based on the fuzzy notion, which have some difficulties in the formation

of fuzzy rules. The use of NS-based edge detection helps to alleviate these issues. Just a

few works are done in NS based framework and it exposes the originality of the current re-

search. Therefore, the goal of this research is to contribute to future studies that use NS for

segmentation and edge detection.

In this continuation, the Neutrosophic Set (NS) was discovered by the premise of Neutroso-

phy theory and it was first introduced by Florentin Smarandache in the year 2003 [21]. With

the help of the NS approach, the origin, scope, and nature of neutralities are discussed. NS is

a new philosophical branch [22] and it is a recent method that successfully addresses the prob-

lem of vagueness and indeterminacy in circumstances [23] such as biomedical, stock exchange,

weather, law, and so on. Hence, the NS domain act as a decision support system in order to

overcome the limitations of vagueness. Nonetheless, the neutrosophication functions and their

application by MATLAB were recommended by the authors, Bakro et al. [24]. Meanwhile, the

same authors offered the neutrosophic method to digital images in their paper [25]. However,

NS has been applied successfully in a wide range of domains, including filtering, image pro-

cessing, segmentation, edge detection, and so on. For remarkable efficiencies in the analysis of

neutrosophic information, neutrosophic-based edge detection of medical images is a specialized

area of research.

In the literature, only a few works can be obtained from the premise of NS-based segmenta-

tion technique [26], which is a popular segmentation methodology for obtaining indeterminate

situations of the images, where the indeterminacy of the image is approximated by distur-

bances like noise, low quality of an image, and so on. This method leads to the problem of

uncertainties and inconsistent information. According to [27], the authors used Chan-Vese

approaches and NS to segment the images. Dhar and Kundu [28] utilized the two concepts

like NS and digital shearlet transform (DST) to segment (text region) the images. Antera and

Hassenian (2018) [29] designed an NS segmentation framework for CT liver tumors by using

the fast fuzzy C-means algorithm (FFCM) and particle swarm optimization (PSO). We were

able to obtain a better CT image with less noise by using NS-based pre-processing. Guo et al.

(2017) [30] demonstrated the new method to identify the myocardial contrast of the myocardial

echocardiography in the left ventricle and the method is computed by combining two strate-

gies such as active contour method and neutrosophic similarity score. Besides that, employing

chest X-ray images, Yasser et al [31]. developed a hybrid automated intelligent COVID-19

classification based on Neutrosophic logic and machine learning approaches. Singh, after that,

proffered a multiple thresholding technique depending on type-2 neutrosophic entropy-fusion

for the classification of brain tumor tissue structures [32]. Following that, Dhar [33] described
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a technique for accurately sectioning multi-class images using weak continuity constraints and

a neutrosophic set.

In addition, Mehrdad et al. [34] formed a new framework and it is applied in the liver

dome in which the liver is automatically detected by utilizing the random walker method.

The authors of [35] devised a multi-atlas extraction method for fast automated (with/without

abnormality) liver image segmentation from computational tomography angiography (CTA)

and this method contains the local decision fusion. Platero et al. [36] constructed a unique

segmentation process, it is to extract the liver image from a CT scan, where the process is

formed by the combination of an affine probabilistic atlas, low-level operations, and a multi

atlas-based segmentation. Li et al. [37] presented the automatic 3D (liver) object extraction

procedure, which is to divide the Object and Background of the image via the concept of

convolution neural network and the graph cut. In [38], the author proposed the thyroid

nodule segmentation process and it is fundamentally based on the perspective like level-sets

and spatial information with clustering. Further, Salah et al. [39] suggested a new method

based on the convolutional neural network for human skin detection.

On the other hand, MR image analysis has become a remarkable research field due to the

rapid advancement in computer vision and image analysis techniques. However, due to the

presence of objects that are inconsistent with their edges and textures, it is necessary to de-

velop a method of recognition and vision for MR images but it is complicated. In order to

address this issue, many researchers are now focusing their greater efforts on the separation

approach. The varying distribution of gray level pixels can be applied to distinguish various ar-

eas (i.e., gray matter, white matter, and cerebrospinal fluid) of the MR image separation. The

MR image separation has gone through various incarnations since its advances. In addition,

extraction of gray matter into the spine, Datta et al. [40] a threshold-based technique (TBT)

is furnished, that is primarily based on the morphological geodetic active contour (MGAC)

technique. Taheri et al. [41] advised TBT for extracting the tumor, which has been based

on the technique in a level set. The authors [42] recommended an automated and adaptive

technique for extracting the MR image of the liver vessels. For the past few decades, MR

image analysis is not examined in terms of NS theory.

Inspired by the before talks and compared to the present research accomplishments, the

great contributions of this study are suggested by being given at the upcoming points.

(1) As a first attempt, the NS-based edge detection system is framed in this research article

for images with not only noises but also unstable situations. The concept of NS, NS-

based entropy, and the fusion rule were combined in the design of NS to create a new

fusion mechanism.
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(2) A new powerful edge detection methodology for finding edges in the fused images is

elaborated in a supervised manner, and it ensures the rejection of disturbances inclusive

of noise and unstable information. The proposed NS-based edge detection method can

be easily implemented, and it has the amount of truth, false and indeterminant degrees

that is simply obtained through a combination of Bell Shaped (BS) function, Sobel

operator, and Neutrosophic Theory.

(3) The resulting subsets are changed into the form of binary using the threshold values

and these values of threshold are calculated by applying different entropies such as

Norm, Threshold, Sure, and Shannon. Applying the morphological operations on the

generated images, then acquire the edge detected images.

(4) For the experimental purposes, distinct performance measurement factors such as FOM

and PSNR are employed. Ultimately, the statistical values, including comparative

research, are provided to reveal the efficacy of the Norm entropy-based image edge

detection scheme introduced in this work.

(5) Additionally, the aforementioned method has been compared to some of the methods

found in the literature via Sobel [7], Tian [13], Chan [16], and Wu [18]. As a result,

these process activities demonstrated the reliability of the industry and the systematic

superiority of the proposed method.

The scheme of the research paper is arranged below. Section 2 gathers the theoretical back-

ground of NS, which consists of some subsections such as Basics of neutrosophy, Preprocessing,

Neutrosophic image fusion, and Neutrosophic edge detection. Section 3 presents the perfor-

mance measurement factors. Section 4 describes the statistical findings of the present work

in terms of NS-based edge detection of different images. Lastly, numerous closing quotes are

briefly showed in the final section.

2. Theoretical Background

2.1. Basics of Neutrosophy

Smarandache [21] firstly initiated the new idea of neutrosophy motivated by the aspect of

philosophical precedence, which simultaneously separates each concept from a certain degree

of truth, falsity, and indeterminacy. Since, neutrosophy has laid solid foundations for new

mathematical theories such as NS, neutrosophic probability, neutrosophic logic, and neutro-

sophic statistics. In this, each statement is evaluated as belonging to the amount of true subset

T , false subset F , and indeterminant subset I, respectively. The NS holds some sets like the

dialetheist set, paraconsistent set, fuzzy set, tautological set, and intuitionistic fuzzy set. In a

multidisciplinary way, NS has solved many problems. Further, neutrosophic logic delivers the
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structure of neutrosophic connectives such as conjunction, negation, and disjunction. Further-

more, the neutrosophic images are mathematically formulated and it is being shown in the

upcoming part of the research article.

Moreover, MR brain changes can be noticed in terms of gray matter, white matter, and

cerebrospinal fluid. The before-mentioned changes are extremely imprecise and cannot be

exactly specified at the idea of probability computation. Since NS theory can be recognized as

a suitable approach. This explains some of the ambiguities and these ambiguities correlated

with the MR images can be represented with three distinct membership degrees. In this, MR

brain image is split into three subsets respectively, T , F , and I in the NS domain. The subset

T specifies the image object, the subset F describes the image background and the subset I

refers to the image edge. Figure. 1 exhibits the flow diagram of the NS-based image edge

detection process. In Figure. 1, the test image can be initially transferred to grey scale form,

then the gray image is processed (removing disturbances) by employing a median filter. As a

result, the filtered image is changed into the NS domain (partitioned into T , F , and I subsets).

Later, NS-based entropy is implemented on these subsets to create a new image. Moreover, the

gained image is decomposed into the blocks and applies the fusion rule to form a neutrosophic

fused image. Then the obtained image is processed by edge detection. In the flow chart 1, the

object having the edges is gained at the final stage.

2.2. Preprocessing

The initial image (original) changes to a grayscale domain by using direct Matlab code and

then it is drained by applying a median filter (MF). MF is a noise removal approach that helps

to eliminate the disturbances in the image and gives exclusive results in the image segmentation

process. This offers a superior noiseless edge detected image during the segmentation process.

Additionally, it protects the features of the edges in the image. More number of filters were

available in the literature but this study preferred MF, because of the simplest one and it

yields good results in our edge detection mechanism.

2.3. Neutrosophic image fusion

To employ NS design for image processing, the image must be converted to a neutrosophic

field. Particularly, we expand an NS-based image processing system that selects three degrees

via., one for the T and the others F and I. They are degrees of truth, false and indeterminate

subsets respectively. In consequence, a test image (TI) whose length is specified by the symbol

‘l’and the width is symbolized by ‘w’. Each image element TI(l, w) in the image is reset by

a neutrosophic field design [21], and that can be visualized by the following format: TINS =

{T (l, w), F (l, w), I(l, w)} or TINS = TI(t, f, i), where the image element t indicates the true
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Figure 1. Flowchart of the proposed mechanism

Premalatha Rathnasabapathy and Dhanalakshmi Palanisami, An Innovative Neutrosophic Combinatorial
Approach Towards the Fusion and Edge Detection of MR Brain Medical Images

Neutrosophic Sets and Systems, Vol. 50, 2022                                                                               570



subset, f mentions the false subset and i refers the indeterminate subset. Here, t differs in

the white pixel set T , f varies in the black pixel set F and i fluctuate in the noise pixel set I.

These are described as follows:

T (l, w) =
G(l, w)−Gmin

Gmax −Gmin
(1)

F (l, w) = 1− T (l, w) (2)

I(l, w) =
√
T (l, w)2 + F (l, w)2 (3)

In equ (1), the notations Gmax, Gmin, respectively depicts the maximum and minimum val-

ues of the image (TI) also the symbol G(l, w) indicates the (l, w)th gray level of the test image.

Then, each image element (l, w) belongs to the image (TI), which can then be defined as NS us-

ing the aforementioned equation. For this depiction, the maximum and minimum values from

the gray level G in the image (TI) are applied, and they can be derived from Gmin and Gmax.

The main benefit of those received formulas is that they can control truth, false, and indeter-

minate subsets between the ranges 0 and 1. Combining the previously obtained neutrosophic

components (T , F , and I) can provide complete information about inherited uncertainty at

the problem space. Now, the entropy can be applied to compute an inherited ambiguity in

indefinite circumstances. If such ambiguities are reported using NS, their estimation is also

achievable from entropy. The neutrosophic entropy information (NEI) function [43] is used for

this specific purpose, which can determine the values of each Neutrosophic Information (NI)
entropy and it is illustrated as follows.

The function ENT(NI) : ENT(NI)→ [0, 1] is known as NEI of an NI, it can be signified by

the following design

ENT(NI) = 1− 1

3

∑
l,w∈G

(T (l, w) + F (l, w) + I(l, w))× E1E2E3 (4)

Where, E1 = |T (l, w) − T c(l, w)|, E2 = |F (l, w) − F c(l, w)|, E3 = |I(l, w) − Ic(l, w)|, T c =

F (l, w), F c = T (l, w) and Ic = 1− I(l, w).

2.3.1. NS-based image fusion algorithm

The image fusion algorithm is drawn by the notion of NS [21], which is augmented by the

upcoming steps.

(1) The representation of two test images given by TI1 and TI2. These test images have

L levels of grayness and G(l, w) is the intensity of the image element at the particular

position (l, w), where the (l, w) varies from 0 to 255. The test images can be written
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in the following matrix design.

TI1 =


G(1, 1) G(1, 2) · · · G(1, w)

G(2, 1) G(2, 2) · · · G(2, w)
...

...
. . .

...

G(l, 1) G(l, 2) · · · G(l, w)

 (5)

Here, ‘l′ and ‘w′ signifies the length and width of the test image TI1 and ∀G(l, w) ∈ TI1.
This formation is same for test image TI2.

(2) At first, each image element (∀G(l, w)) of the test images characterized individually

in NI format (this contains true, false and indeterminate degrees) that can be mathe-

matically encoded as NI(l, w), which is defined by the following matrix form.

TI(NI) =


〈T (1, 1), F (1, 1), I(1, 1)〉 〈T (1, 2), F (1, 2), I(1, 2)〉 · · · 〈T (1, w), F (1, w), I(1, w)〉
〈T (2, 1), F (2, 1), I(2, 1)〉 〈T (2, 2), F (2, 2), I(2, 2)〉 · · · 〈T (2, w), F (2, w), I(2, w)〉

...
...

. . .
...

〈T (l, 1), F (l, 1), I(l, 1)〉 〈T (l, 2), F (l, 2), I(l, 2)〉 · · · 〈T (l, w), F (l, w), I(l, w)〉


(OR)

TI(NI) =


NI(1, 1) NI(1, 2) · · · NI(1, w)

NI(2, 1) NI(2, 2) · · · NI(2, w)

...
...

. . .
...

NI(l, 1) NI(l, 2) · · · NI(l, w)



(6)

(3) Thereafter, each NI(l, w)th values of test images TI1 and TI2 are assessed by the fun-

damental concept of NEI function in equ (4) and it is generally notified by the symbol

is ENT(NI(l, w)), then their matrix representation is given in the upcoming equation

ENT(NI) =


ENT(NI(1, 1)) ENT(NI(1, 2)) · · · ENT(NI(1, w))

ENT(NI(2, 1)) ENT(NI(2, 2)) · · · ENT(NI(2, w))
...

...
. . .

...

ENT(NI(l, 1)) ENT(NI(l, 2)) · · · ENT(NI(l, w))

 (7)

(4) The entropy values in the above matrix ENT(NI(l, w)) for the test images TI1 and TI2
are decomposed into p × q blocks. In general, the mth blocks of decomposed images

are specified by the variables TINS1m and TINS2m respectively.

(5) Evaluate the sum of amount of whiteness and blackness of the two associated blocks.

(6) Each block is combined with each other with the help of the following fusion rule

TINSm(l, w) =


min{TINS1m(l, w),TINS2m(l, w)}, if count(blackness)¿count(whiteness)

max{TINS1m(l, w),TINS2m(l, w)}, if count(blackness)¡count(whiteness)

TINS1m(l,w)+TINS2m(l,w)
2 , otherwise

(8)

Here, max & min in equ (8) indicate the maximum and minimum actions on the NS

domain images respectively.
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(7) The gained blocks are re-modeled to an image, then attain a fused neutrosophic image

without ambiguities.

(8) In the previous step, the neutrosophic image was discovered, and then the image was

regenerated to the crisp format (IFused), by applying the reverse function of Equ (1).

2.4. Neutrosophic Edge detection

2.4.1. The procedure for finding T and F subsets

By introducing the design of bell-shaped function (BS-function), which acts as a suitable

and a virtual soft computer tool for addressing the brightness level of the gray image, hence

studies of BS-function are growing rapidly in many realistic areas [27]. Here, the BS-function is

employed to fused image (IFused), as a result of T subset is found out. According to the design

of BS-function, the mathematical formulation of neutrosophic T subset is explored below.

T (l, w) = π(IFused(l, w), b1, b2, b3, b4)



0 if 0 ≤ IFused(l, w) ≤ b1

(IFused(l,w)−b1)2
(b4−b1)(b4−b1) if b1 ≤ IFused(l, w) ≤ b2

1− (IFused(l,w)−b2)
(b4−b3)(b4−b3) if b2 ≤ IFused(l, w) ≤ b3

(IFused−b4)2
(b4−b3)(b4−b3) if b3 ≤ IFused(l, w) ≤ b4

0 if IFused(l, w) > b4

(9)

F (l, w) = 1− T (l, w) (10)

Where IFused(l, w) denotes the grayness of (l, w)th pixel of the fused image IFused. The input

parameters b1, b2, b3 and b4 of the BS-function computes the shape of the function. The action

of the BS-function is shown in Algorithm 1.

Obtaining b1, b2, b3 and b4 Parameters: The parameters b1, b2, b3 and b4 are to be

computed by employing a histogram based method as explored below:

(1) Compute the histogram of the (IFused) fused image.

(2) Obtain local maxima of the histogram

IFusedmax(g1), IFusedmax(g2), IFusedmax(g3), ..., IFusedmax(gn).

(3) Obtain the mean of local maxima

IFusedmax =

( N∑
i=1

IFusedmax(gi)

)
/N

(4) Evaluate (peak values ¿IFusedmax) then

b2 ← First peak value

b3 ← Last peak value
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Algorithm 1 BS-Function Algorithm

1: if 0 ≤ IFused(l, w) ≤ b1 then

2: T (l, w)← 0

3: else if b1 ≤ IFused(l, w) ≤ b2 then

4: T (l, w)← (IFused(l,w)−b1)2
(b4−b1)(b4−b1)

5: else if b2 ≤ IFused(l, w) ≤ b3 then

6: T (l, w)← 1− (IFused(l,w)−b2)
(b4−b3)(b4−b3)

7: else if b3 ≤ IFused(l, w) ≤ b4 then

8: T (l, w)← (IFused(l,w)−b4)2
(b4−b3)(b4−b3)

9: else if IFused(l, w) > b4 then

10: T (l, w)← 0

11: end if

12: end if

(5) Find out the standard deviation (std) of the fused image

std =

(
1
N

N∑
i=1

(IFused(i)− If )2
)1/2

, where If = 1
N

N∑
i=1

IFused(i)

(6) Obtaining the values of b1 and b4 are given below

b1 ← b2 − std
b4 ← b3 + std.

2.4.2. The procedure for finding I subset

The neutrosophic subset I was determined by utilizing Zhang et al. [11] method. One of

the significant research domains is Homogeneity (homo) because it plays a vital role in edge

detection schemes, and it is correlated with local information. In some situations like back-

ground transitions, color transitions, and edge regions, this domain (homo) value is increased.

Algorithm 2 refers to the process for determining the I subset. The homo consists of two

main parts such as standard deviation (std.div) and the discontinuity (dis) of the gray level

pixels. The std.div is one of the most effective methods for representing the contrast level of

the pixels, whereas the changes in the gray pixels are symbolized in dis. The std.div and dis

are enumerated at beginning of algorithm 2. The edge values are illustrated by utilizing the
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dis of the pixel (l, w). The Sobel operator is a frequently used system to provide dis of a pixel

in the image due to its appropriateness.

Algorithm 2 The process of obtaining the I subset

1: Determine the each coordinate pixel (l, w)th std.div of the IFused image is given by

std.div(l, w) =

√√√√√√√√
l+(D−1)/2∑

p=l−(D−1)/2

w+(D−1)/2∑
q=w−(D−1)/2

IFused(l, w)−

l+(D−1)/2∑
p=l−(D−1)/2

w+(D−1)/2∑
q=w−(D−1)/2

IFused(l,w)

D2


2

D2

(11)

2: Illustrate every pixel coordinate (l, w)th dis of the IFused image by applying the Sobel

operator, which is given below

dis(l, w) =
√
G2

x +G2
y (12)

where, Gy and Gx indicates the vertical and horizontal derivatives.

3: Find out the homo(l, w) of each pixel coordinate (l, w) of the IFused and it is represented

as

homo(l, w) = 1− std.div(l, w)

max(std.div)
× dis(l, w)

max(dis)
(13)

4: Compute the indeterminant subset I(l, w) of the IFused image and it is defined by

I(l, w) = 1− homo(l, w) (14)

2.4.3. Finding binarized T , F and I Subsets

The computed subsets T , F , and I (previous step) are in the grayscale domain, hence

the subsets are transformed into a binarized form (Black and White image) by employing

the threshold values. The thresholds are an important and main kind of tool in segmentation

schemes and they perform automatically and spontaneously in image processing. The threshold

values are directly determined by the following entropies.

Implemented entropy types:

In our segmentation process, some specific entropies are considered to estimate the threshold

value within the subsets T , F , and I. Then, the edge detection assessment is tested in terms

of selected entropies. The implemented entropies are namely Norm, Threshold, Sure, and

Shannon. The mathematical design of these entropies is displayed in the upcoming points.

(1) Norm Entropy= 1
L×W

L∑
l=1

W∑
w=1
|T (l, w)|p, where 1 ≤ p < 2
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(2) Threshold Entropy= 1
L×W

L∑
l=1

W∑
w=1

Thres(l, w) = 1 if |T (l, w)| > ε

Thres(l, w) = 0 if |T (l, w)| ≤ ε
, where ε is a pos-

itive threshold value.

(3) Sure Entropy= 1
L×W

L∑
l=1

W∑
w=1

Sure(l, w) = min(T 2(l, w), ε2), if |T (l, w)| ≤ ε

Sure(l, w) = 0, otherwise
, where

ε is a positive threshold value.

(4) Shannon Entropy= −1
L×W

L∑
l=1

W∑
w=1

T 2(l, w).log2(T
2(l, w))

The same points are repeated in the remaining subsets F and I to get all threshold values

of the subsets T, F , and I. The variables Object, Edge and Background are received in this

step. The process of these variables is depicted in Algorithm 3. In this segmentation analysis,

the respective parameters Tt, Ff , and Ii are implemented for Object, Edge and Background

variables to be acquired. The threshold values of the parameters Tt, Ff and Ii are determined

with the help of neutrosophic subsets (T , F , I) and before mentioned four entropies. Sub-

sequently, the IFused image is divided into three sub-images namely Object, Background and

Edge by using the calculated thresholds. The achieved sub-images are combined with each

other to get a new IBinary image, which returns the 0 (Black), 1 (White) values from the

image.

2.4.4. Edge detection process

Edge detection is accomplished by using the images IFused and IBinary. The scheme of edge

detection is expressed in Algorithm 4. Morphological operations were achieved on the image

IBinary then the edge of the image is acquired. Further, the obtained edges are reassigned to

the variable IEdge. Ultimately, to earn a new edge detected image IED, the IEdge is exaggerated

in the fused image, and its edges are detected.

3. Performance measurement factors

In this research, performance measurement factors such as Figure of Merit (FOM), Peak

Signal to Noise Ration (PSNR) were taken into account, which was applied to find the success

of the edge detection method. The FOM [44] is computed using the given form

FOM =
1

max(NED, NEA)

NED∑
i=1

1

1 + dm2(i)
(15)

Here, the symbols NED and NEA denote the number of detected edge pixels by the edge detec-

tion method and actual edge pixels. The notations m(i) and d respectively denote the closest

distance to the actual edge and scaling constant. The FOM value is directly proportional to

the quality of the discovered edges. Although the FOM result fluctuates between 0 and 1, the

efficiency of edge detection is much better if the above value meets 1.
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Algorithm 3 Edge detection process

1: If (T (l, w) ≥ Tt AND I(l, w)¡Ii)

2: Object(l, w) ← true

3: else

4: Object(l, w) ← false

5: end

6: If (T (l, w) ¡ Tt OR F (l, w)¡Ff) AND I(l, w) ≥ Ii)

7: Edge(l, w) ← true

8: else

9: Edge(l, w) ← false

10: end

11: If (F (l, w) ≥ Ff AND I(l, w)¡Ii)

12: Background(l, w) ← true

13: else

14: Background(l, w) ← false

15: end

16: If (Object(l, w) OR Edge(l, w) OR Background(l, w))=true

17: IBinary(l, w) ← true

18: else

19: IBinary(l, w) ← false

20: end

Algorithm 4 Edge detection algorithm

1: IDilation ← Image dilation activation IBinary

2: IFill ← Fills the internal gaps on the (IDilation) image

3: IClear ← Extract the connected objects on the (IFill) image

4: ISkeleton ← Identify the skeleton image (IClear)

5: IEdge ← Determines the complement of the (ISkeleton) image

6: IED ← Fused image (IFused)

7: [Length Width] ← Computes the (IEdge) image size

8: for l=1:Length

9: for w=1:Width

10: if IEdge(l, w) ← 0

11: IED(l, w, 1) ← 255

12: IED(l, w, 2) ← 0

13: IED(l, w, 3) ← 0

14: end

15: end

16: end
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On the other hand, PSNR [45], which was recommended by the author Pratt, is a remarkable

factor in evaluating the effectiveness of edge detection. Equ. (16) is the formula used to do

the PSNR analysis. PSNR is determined using the formula below.

PSNR = 10.log10

 2552

1
L×W

L∑
l=1

W∑
w=1

(NEA(l, w)−NED(l, w))2

 (16)

where L, W specifies the dimensions of the image. NEA(l, w) and NED(l, w) indicates the

(l, w)th image element of the actual edges and the detected image edges obtained by using

proposed technique. The largest value of PSNR specifies the high similarity between actual

and detected image edges. If the PSNR reaches its minimum, then the similarity will be

reduced.

4. Experimental results

In this section, different test images of MR brain were considered for our experiment and

are aligned in the proper manner as displayed in Figure. 2. The MR brain medical images

were gathered from the link address http://www.med.harvard.edu/AANLIB/home.html. The

medical images of MR brain (Figure. 2 (A) and 2 (B)) are provided for the purpose of fusion

by the proposed fusion technique, and then the fused image result is given in the Figure. 3

(A). The another MR brain images (Figure 2 (C) and 2 (D)) are utilized for the proposed

fusion technique and their fused result is presented in the Figure. 3 (B). Similarly, the fusion

results of remaining MR brain medical images (Figure 2 (E) - (F), Figure 2 (G) - (H) and

Figure 2 (I) - (J)) from the proposed NS-technique were shown in Figure. 3 (C) - 3 (E).

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2. Test images of medical MR brain
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(a) (b) (c) (d) (e)

Figure 3. Fusion results of medical MR brain images

Norm
Results

Threshold
Results

Sure
Results

Shannon
Results

Figure 4. Edge detection of fused image 3(A) using different entropies

4.1. Entropy performance test

To examine the achievement of edge detection for the Norm entropy used in the proposed

method, which was compared with some other entropies in NS-based edge detection methods

including Threshold, Sure, and Shannon. During this manner, five fused images that are tough

to find on the edge are applied. In the initial method analysis, the first fused image of MR
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Threshold
Results

Norm
Results

Sure
Results

Shannon
Results

Figure 5. Edge detection of fused image 3(B) using different entropies

Table 1. The edge detection results for fused images by using FOM

and PSNR analysis.

Fused Norm entropy Threshold entropy Sure entropy Shannon entropy

Images FOM PSNR FOM PSNR FOM PSNR FOM PSNR

Image-1 0.93 33.01 0.86 29.79 0.83 28.94 0.90 31.16

Image-2 0.96 34.20 0.92 32.30 0.90 31.48 0.95 33.40

Image-3 0.91 31.65 0.85 29.48 0.83 28.70 0.83 30.36

Image-4 0.95 33.88 0.91 31.06 0.88 30.52 0.93 32.50

Image-5 0.88 30.85 0.82 28.95 0.80 27.61 0.85 29.99

brain (Figure. 3 (A)) is utilized, which is then converted by a neutrosophic field in terms of

three subsets by applying the BS-function and Sobel operator. Then, the subset thresholds of

fused MR brain image are calculated by implementing the above four entropies. Further, the

subsets are to be generated in the binary form with the help of obtained thresholds for each
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Table 2. Statistical effects about edge detection results.

Norm entropy Threshold entropy Sure entropy Shannon entropy

FOM PSNR FOM PSNR FOM PSNR FOM PSNR

Minimum 0.88 30.85 0.82 28.95 0.80 27.61 0.85 29.99

Average 0.93 32.72 0.87 30.32 0.85 29.45 0.89 31.48

Maximum0.96 34.20 0.92 32.30 0.90 31.48 0.95 33.40

Threshold
Results

Norm
Results

Sure
Results

Shannon
Results

Figure 6. Edge detection of fused image 3(C) using different entropies

entropy. By using algorithm 3, the binarised subsets of each entropies were combined with

each other in order to obtain IBinary images, which are presented in the first column of Figure.

4. Furthermore, the morphological operations are executed in the obtained IBinary images,

and the detected results are also shown in the last column of the Figure. 4. In addition, the

performance measurement factors such as FOM, and PSNR were analyzed for the edge detected

images at different entropies to confirm edge detection performance. The statistical values of

the performance measurement factors with different entropies of the proposed mechanism are
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Table 3. The edge detection results for fused images by using FOM

and PSNR analysis.

Fused Sobel Method Tian Method Chan Method Wu Method Proposed Method

Images FOM PSNR FOM PSNR FOM PSNR FOM PSNR FOM PSNR

Image-1 0.89 31.41 0.90 32.29 0.92 32.45 0.93 33.50 0.95 33.88

Image-2 0.90 31.47 0.91 31.94 0.92 32.01 0.94 32.95 0.96 33.58

Image-3 0.89 30.89 0.91 31.87 0.94 33.12 0.95 33.80 0.96 34.20

Image-4 0.81 25.35 0.83 28.70 0.85 28.24 0.86 31.71 0.89 32.66

Image-5 0.86 30.11 0.87 30.43 0.88 30.88 0.91 31.36 0.93 32.92

Threshold
Results

Norm
Results

Sure
Results

Shannon
Results

Figure 7. Edge detection of fused image 3(D) using different entropies

displayed in Tables 1 - 2. From the Tables. 1 and 2 , the high-performance entropy of the

proposed edge detection mechanism is highlighted in bold characters and the tabulated values

are plotted in Figures. 10 (a)- 10 (b). At last, Table. 1 and Figure. 10 shows that the
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proposed Norm entropy in the edge detection mechanism gives the significant performance

with reference to other entropies.

Table 4. Statistical effects about edge detection results.

Sobel Method Tian Method Chan Method Wu Method Proposed Method

FOM PSNR FOM PSNR FOM PSNR FOM PSNR FOM PSNR

Minimum 0.81 25.35 0.83 28.70 0.85 29.24 0.86 31.36 0.89 32.66

Average 0.87 29.85 0.88 31.05 0.90 31.34 0.92 32.67 0.94 33.45

Maximum 0.90 31.47 0.91 31.94 0.94 33.12 0.95 33.80 0.96 34.20

Norm
Results

Threshold
Results

Sure
Results

Shannon
Results

Figure 8. Edge detection of fused image 3(E) using different entropies

Subsequently, the second fused image of the MR brain (Figure. 3 (B)) is considered for

the edge detection process. Firstly, the taken image is transferred to the domain of NS and

it includes the terms of three subsets. Subsets can be calculated using the BS function and

the Sobel operator. Each subset threshold value is determined by the concept of the different
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Sobel Method [7] Tian Method [13] Chan Method [16] Wu Method [18] Proposed Method

Figure 9. Edge detection results for different methods

entropies. Using each entropy threshold value, three subsets are generated by the form of

binary images and the resulting images are combined by using algorithm 3 and it produces the

new image called as IBinary. Each entropy of the IBinary images is exhibited in the first column

of the Figure. 5. Moreover, the computed IBinary images are processed by the morphological

operations, and the gained images are shown in the last column of the Figure. 5. Images

detected in distinct entropy are intended to confirm the effectiveness of the proposed edge

detection by the measurement factors and the statistical values of the measurement factors

that are presented in Tables. 1 - 2. The table values (Table 1 ) of FOM and PSNR are

plotted, which are given in Figure. 10 (a) - (b). Finally, the Figures 10 (a) and 10 (b) provide
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the result as a Norm entropy with the proposed approach offers higher accuracy than other

existing entropy because it offers higher FOM and PSNR values.

Figure 10. Geometric representation of FOM and PSNR analysis for

various entropies.

In this continuation, 4 distinct entropies and remaining medical MR brain images are con-

sidered for the analysis. The complete information of the previously mentioned test process is

employed in the considered images, which are presented in Figure. 2 (E) - 2 (J). At this end, 5

edge detected images were found utilizing the proposed mechanism and these images are given

in Figures. 6 - 8. In consequence, the statistical values of the measurement factors in the edge

detected images are gained under the proposed edge detection mechanism with 5 MR brain

fused images and 4 individual entropies, which are displayed in the aforementioned Tables

1 and 2. In Tables 1 - 2, the Norm entropy produces maximum values in the measurement

factors FOM and PSNR values whereas Sure entropy has the minimal FOM and PSNR values.
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Figure 11. Geometric representation of FOM and PSNR analysis for

different methods.

Then, the tabulated results (Table 1) of the remaining resultant images are also made available

in the Figures. 10 (a) - (b). Thus with the acquired results, it is evidenced that the norm

entropy provides constructive performance. While Sure entropy reveals contrast results which

have been evidenced in Figure. 10 and Tables. 1 - 2. Hence our study implicates the efficacy

of norm entropy as a sustainable tool in the edge detection process of MR brain images.

4.2. Comparative applications of the proposed and different object edge detection

methods

Norm entropy with the proposed method was compared to other existing methods which

includes Sobel [7], Tian [13], Chan [16] and Wu [18] to assess the proposed edge detection

performance. In the aforementioned methods, the edges are seen to be thicker. As a result,
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the final image was subjected to morphological operations. To examine the edge detection

efficiency, five fused images utilized in entropy analysis were applied, while the five edge de-

tection methods mentioned earlier were employed to these same images. Further, the fused

image edges are depicted in Figure 9. The proposed Norm entropy, as shown in Figure. 9, was

discovered to be the most effective edge detection method. The performance measurement

factors such as FOM and PSNR were executed to compare the real performance of detected

edges of the mentioned fused images. Table 3 also includes FOM and PSNR factor data,

which are plotted in Figures. 11 (a) - (b), respectively. The proposed method’s FOM and

PSNR factor values are superior to those acquired by the other four edge detection methods.

Moreover, statistical analysis of the FOM and PSNR outcomes earned by the five edge detec-

tion methods was performed, and these outcomes are given in Table 4. Also, in Table 4 it

can be observed that the minimum, arithmetic average, and maximum values related to the

FOM and PSNR effects achieved in the suggested method are larger than the other method.

Those effects intimate that this proposed method offers edge detection through a greater level

compared via distinct methods.

For the presented Table 2, the average values of the Norm entropy of FOM and PSNR

are 0.93 and 32.72, respectively. For these values are larger compared to the different other

entropies that can be recommended that the Norm entropy under NS improves the edge

detection efficacy. Similarly, in Table 4 given, the average values based on the proposed

method of FOM and PSNR are 0.94 and 33.45 respectively. These results are extremely high

when compared to the other methods. The most important finding from the experiment is

that the suggested method significantly outperforms other methods in detecting the object’s

edges because these effects are significantly larger when compared to other methods.

5. Conclusion

In this report, a new edge detection mechanism based on the category of the NS scheme has

been nominated. This was achieved by the frame of image fusion with edge detection. This

mechanism is capable to handle the uncertainties and indeterminant situations of the images.

First, the proposed image fusion has been found with the help of NS structure and fusion

rules. As a result, images are reproduced by the NS framework using the BS function and the

Sobel operator. The resultant images contain three subsets and their values of the threshold

are found using distinct entropies. Afterward, the computed thresholds and the subsets are

integrated and it produces a new binarised image. Morphological operations are accomplished

in the binarised image then the edges of the image are acquired. The same process acts

on each entropy and it presents several detected edges. The efficacy of this mechanism is

well established through the measurement factors. The given edge detection scheme is also

appropriately implemented when a norm entropy appears. Further, the proposed method

based on norm entropy was compared with other methods including Sobel, Chan, Tian, and

Wu. According to the statistical results of performance measurement factors such as FOM
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and PSNR, the mentioned factor values of the proposed method are greater compared to the

other existing four methods, which illustrate the superiority of the proposed mechanism.

In future research, the neutrosophic set and its extensions will be further applied in medical

image processing such as image denoising, segmentation, etc.

Acknowledgments

This study was financially supported via a funding grant by Department of Science and Tech-

nology (DST)-Promotion of University Research and Scientific Excellence (PURSE) Phase-II,

Government of India, New Delhi (Memo No. BU/DST PURSE (II)/APPOINTMENT/515).

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Bhat, S. , Koundal. D. (2021). Multi-focus Image Fusion using Neutrosophic based Wavelet Transform.

Applied Soft Computing, 106, 107307.

2. Balasubramaniam, P. , and Ananthi, V. P. (2014). Image fusion using intuitionistic fuzzy sets, Information

Fusion, 20, 21−30.

3. Kakarla, R. , Ogunbona, P. O. (2001). Signal analysis using a multiresolution form of the singular value

decomposition. IEEE Transactions Image Process, 10(5), 724−735.

4. Rosenfeld, A. (1981). The max Roberts operator is a Hueckel−Type edge detector. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 3(1), 101-103.

5. Canny, J. A. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 8(6), 679-698.

6. Seif, A. , Salut, M. M. , and Marsono, M. N. (2010). A hardware architecture of Prewitt edge detection.

In Proceedings of the IEEE conference on sustainable utilization and development in engineering and

technology. IEEE. 99-101.

7. Sobel, J. (1990). Machine vision for three-dimensional scenes. New York: Academic Pres.

8. Amrogowicz, S. , Zhao, Y. , and Zhao, Y. (2016). An edge detection method using outer Totalistic Cellular

Automata. Neurocomputing, 214 , 643-653 .

9. Mahdi, S. , Mengjie, Z. , and Mark, J. (2013). A novel particle swarm optimisation approach to detecting

continuous, thin and smooth edges in noisy images. Information Sciences, 246(10), 28-51.

10. Tua, G. J. , and Karstoft, H. (2015). Logarithmic dyadic wavelet transform with its applications in edge

detection and reconstruction. Applied Soft Computing, 26, 193-201.

11. Ming, Z. , Zhang, L. , and Cheng. H.D. (2010). A neutrosophic approach to image segmentation based on

watershed method. Signal Processing, 90, 1510-1517.

12. Liu, X. , and Fang, S. (2015). A convenient and robust edge detection method based on ant colony opti-

mization. Optics Communications, 353, 147-157 .

13. Tian, J. , Yu, W. , Chen, L. , and Ma, L. (2011). Image edge detection using variation-adaptive ant colony

optimization. In Transactions on computational collective intelligence, Springer. V, 27-40 .

14. Zhang, D. , Lui, L. M. (2021). Topology-Preserving 3D Image Segmentation Based on Hyperelastic Regu-

larization. J Sci Comput, 87, 74. https://doi.org/10.1007/s10915-021-01433-y.

Premalatha Rathnasabapathy and Dhanalakshmi Palanisami, An Innovative Neutrosophic Combinatorial
Approach Towards the Fusion and Edge Detection of MR Brain Medical Images

Neutrosophic Sets and Systems, Vol. 50, 2022                                                                               588

https://doi.org/10.1007/s10915-021-01433-y


15. Liu, G. , Li, F. (2021). Fabric defect detection based on low-rank decomposition with structural constraints.

Vis Comput. https://doi.org/10.1007/s00371-020-02040-y.

16. Chan, T. F. , and Vese, L. A. (2001). Active contours without edges. IEEE Transactions on Image Process-

ing, 10, 266-277.

17. Martinez, A. Gelb, A. , and Gutierrez, A. (2014). Edge Detection from Non-Uniform Fourier Data Using

the Convolutional Gridding Algorithm. J Sci Comput, 61, 490-512.

18. Wu, Z. , Lu, X. , and Deng, Y. (2015). Image edge detection based on local dimension: a complex networks

approach. Physica A, 440 , 9-18 .

19. Thirumavalavan, S. , and Jayaraman, S. (2016). An improved teaching-learning based robust edge detection

algorithm for noisy images. Journal of Advanced Research, 7(6), 979-989.

20. Er-sen, L. , Shu-long, Z. , Bao-shan, Z. , Yong, Z. , Chao-gui, X. , and Li-hua, S. (2009). An adaptive

edge detection method based on the canny operator. In Proceedings of the IEEE international conference

environmental science and information application technology. IEEE. 265-269.

21. Smarandache, F. (2003). A unifying field in logics neutrosophic logic. neutrosophy, neutrosophic set, neu-

trosophic probability . USA: American Research Press.

22. Sert, E. (2018). A new modified neutrosophic set segmentation approach. Comput.Electr. Eng, 65, 576-592.

23. Abdel-Basset, M. , Manogaran, G. , Mohamed, M. , and Chilamkurt, N. (2018). Three-way decisions based

on neutrosophic sets and AHP-QFD framework for supplier selection problem. Future Generation Computer

Systems, 89 , 19-30.

24. Bakro, M. , Al-Kamha, R. , and Kanafani, Q. (2021). Neutrosophication functions and their implementation

by MATLAB program. Neutrosophic Sets and Systems, 40(1), 169-178.

25. Bakro, M. , Al-Kamha, R. , and Kanafani, Q. (2020). A Neutrosophic Approach to Digital Images. Neu-

trosophic Sets and Systems, 36, 12-23.

26. Eser, S. , and AVCI, D. (2019). A new edge detection approach via neutrosophy based on maximum norm

entropy. Expert Systems With Applications, 115, 499-511.

27. Sangeeta, K. S. , and Mrityunjaya, V. L. (2017). Combined endeavor of Neutrosophic Set and Chan-Vese

model to extract accurate liver image from CT scan. Computer Methods and Programs in Biomedicine,

151, 101-109.

28. Dhar, S. , and Kundu, M. K. (2017). Accurate segmentation of complex document image using digital

shearlet transform with neutrosophic set as uncertainty handling tool. Applied Soft Computing, 61, 412-

426.

29. Antera, A. M. , and Hassenian, A. E. (2018). Computational intelligence optimization approach based on

particle swarm optimizer and neutrosophic set for abdominal CT liver tumor segmentation. Journal of

Computational Science, 25, 376-387.

30. Guo, Y. , Du, G.-Q. , Xue, J.-Y. , Xia, R. , and Wang, Y.-H. (2017). A novel myocardium segmentation

approach based on neutrosophic active contour model. Computer Methods and Programs in Biomedicine,

142, 109-116.

31. Yasser I. , Abd El-Khalek A. A. , Twakol A. , Abo-Elsoud ME. , Salama A. A. , Khalifa F. (2022). A

Hybrid Automated Intelligent COVID-19 Classification System Based on Neutrosophic Logic and Machine

Learning Techniques Using Chest X-Ray Images. In: Hassanien AE., Elghamrawy S.M., Zelinka I. (eds)

Advances in Data Science and Intelligent Data Communication Technologies for COVID-19. Studies in

Systems, Decision and Control, 378. https://doi.org/10.1007/978-3-030-77302-1_7.

32. Singh, P. (2021). A type-2 neutrosophic-entropy-fusion based multiple thresholding method for the brain

tumor tissue structures segmentation. Applied Soft Computing, 103, 107119.

33. Dhar, S. , Kundu, M. (2021). Accurate multi-class image segmentation using weak continuity constraints

and neutrosophic set. Applied Soft Computing, 112, 107759.

Premalatha Rathnasabapathy and Dhanalakshmi Palanisami, An Innovative Neutrosophic Combinatorial
Approach Towards the Fusion and Edge Detection of MR Brain Medical Images

Neutrosophic Sets and Systems, Vol. 50, 2022                                                                               589

https://doi.org/10.1007/s00371-020-02040-y
https://doi.org/10.1007/978-3-030-77302-1_7


34. Mehrdad, M. et al. (2016). Automatic liver segmentation on computed tomography using random walkers

for treatment planning. EXCLI J, 15, 500.

35. Ding. X , et al. (2016). Fast automated liver delineation from computational tomography angiography,

Procedia Comput. Sci. 90, 87-92.

36. Platero, C. , Tobar, M. C. (2014). A multiatlas segmentation using graph cuts with applications to liver

segmentation in CT scans. Comput. Math. Methods Med, 16 Article ID 182909.

37. Lu, F. et al. (2017). Automatic 3D liver location and segmentation via convolution neural network and

graph cut. Int. J. Comput. Assisted Radiol. Surg, 12(2), 171-182.

38. Koundal, D. , Gupta, S. , and Singh, S. (2016). Automated delineation of thyroid nodules in ultrasound

images using spatial neutrosophic clustering and level set. Applied Soft Computing, 40, 86-97.

39. Salah, K.B. , Othmani, M. , and Kherallah, M. (2021). A novel approach for human skin detection using

convolutional neural network. Vis Comput. https://doi.org/10.1007/s00371-021-02108-3.

40. Datta, E. , Papinutto, N. , Schlaeger, R. , Zhu, A. , Carballido-Gamio, J. , Henry, R. G. (2017). Gray

matter segmentation of the spinal cord with active contours in MR images. Neuroimage, 147, 788-799.

41. Taheri, S. , Ong, S. H. , Chong, V. (2010). Level-set segmentation of brain tumors using a threshold-based

speed function. Image Vis. Comput, 28(1), 26-37.

42. Goceri, E. , Shah, Z. K. , Gurcan, M. N. (2017). Vessel segmentation from abdominal magnetic resonance

images: adaptive and reconstructive approach. Int. J. Numer. Method Biomed. Eng, 33(4), e2811.

43. Pritpal and Singh. (2020). A neutrosophic-entropy based clustering algorithm (NEBCA) with HSV color

system: A special application in segmentation of Parkinson’s disease (PD) MR images. Computer Methods

and Programs in Biomedicine, 189, 105317. https://doi.org/10.1016/j.cmpb.2020.105317.

44. Abdou, I. E. , and Pratt, W. K. (1979). Quantitative design and evaluation of enhancement/thresholding

edge detectors. Proc. IEEE, 67(5), 753-763.

45. Pratt, W. K. (1978). Digital image processing . USA: John Wiley and Sons.

Premalatha Rathnasabapathy and Dhanalakshmi Palanisami, An Innovative Neutrosophic Combinatorial
Approach Towards the Fusion and Edge Detection of MR Brain Medical Images

Neutrosophic Sets and Systems, Vol. 50, 2022                                                                               590

Received: Feb 8, 2022. Accepted: Jun 2, 2022

https://doi.org/10.1007/s00371-021-02108-3
https://doi.org/10.1016/j.cmpb.2020.105317


University of New Mexico

Eigenspace of a Circulant Fuzzy Neutrosophic Soft Matrix

Kavitha M 1,∗ and Murugadass P 2

1Department of Mathematics, Bharath Institute of Higher Education and Research, Chennai-73;

kavithakathir3@gmail.com
1,2 PG and Research Department of Mathematics, Government Arts and Science College

(Autonomous),Veerapandi, Theni - 639 005, India; bodi muruga@yahoo.com ∗Correspondence:

bodi muruga@yahoo.com; Tel.: (+91 9486594135)
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—————————————————————————————————————————-

1. Introduction

In real world, we face so many uncertainties in all walks of life. However most of the existing

mathematical tools for formal modeling, reasoning and computing are crisp and precise in

character. There are theories viz,theory of probability, evidence, fuzzy set [31], intuitionistic

fuzzy set [3], neutrosophic set [26], vague set, interval mathematics, rough set for dealing with

uncertainties. These theories have their own difficulties as pointed out by Molodtsov [21].

In 1999, Molodtsov [21] initiated a novel concept of soft set theory, which is completely a

new approach for modeling vagueness and uncertainties. Soft set theory has a rich potential

for application in solving practical problems in economics, social science, medical science etc..

Later on Maji et al. [22] have proposed the theory of fuzzy soft set. Maji et al. [18,19] extended

soft sets to intuitionistic fuzzy soft sets and neutrosophic soft sets.

Eigenvectors of a max-min matrix characterize stable state of the corresponding discrete-

events system. Investigation of the max-min eigenvectors of a given matrix is therefore of

a great practical importance. The eigenproblem in max-min algebra has been studied by

many authors. Interesting results were found in describing the structure of the eigenspace,

and algorithms for computing the maximal eigenvector of a given matrix were sugested, see

e.g. [5, 6, 23, 24, 31, 32]. The structure of the eigenspace as a union of intervals of increasing
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eigenvectors is described in [7].

Fuzzy matrices defined first time by Thomason in 1977 [25] and he discussed about the

convergence of the powers of a fuzzy matrix. The theory of fuzzy matrices were developed by

Kim and Roush [16] as an extension of Boolean matrices. Manoj Bora et al. [20] have applied

intuitionistic fuzzy soft matrices in the medical diagnosis problem. Arockiarani and Sumathi

[1, 2] introduced Fuzzy Neutrosophic Soft Matrix (FNSM) and used them in decision making

problems. Broumi et al. [4] proposed the concept of generalized interval neutrosophic soft set

and studied their operations. Also, they presented an application of it in decision making

problem. First time Kavitha et al. [10–13, 15] introduced the concept of unique solvability

of max-min operation through FNSM equation Ax = b and explained strong regularity of

FNSMs over fuzzy neutrosophic soft algebra and computing the greatest X-eigenvector of fuzzy

neutrosophic soft matrix. They also introduced the power of FNSM and Periodicity of Interval

Fuzzy Neutrosophic Soft Matrices. Murugadas et al. proposed the ideas of the Monotone

interval fuzzy neutrosophic soft eigenproblem and Solveability of System of Netrosophic Soft

Linear Equations in [17]. In [30], Uma et. al, introduced the concept of FNSMs of Type-1 and

Type-2.

By max-min FNSA we understand a triplet (N ,⊕,⊗), where N is a linearly ordered FNSS,

and ⊕ = max, ⊗ = min are binary operations on N . The notation N(n,n),N(n) denotes the

set of all Fuzzy Neutrosophic Soft Square Matrices( FNSSMs) (all FNSVs) of given dimension

n over N . Operations ⊕,⊗ are extended to FNSMs and FNSVs in formal way.

The eigenproblem for a given FNSM A ∈ N(n,n) in max-min FNSA consists of finding a

FNSV 〈xT , xI , xF 〉 ∈ N(n) (FNSEv) such that the equation

A ⊗ 〈xT , xI , xF 〉 = 〈xT , xI , xF 〉 holds true. By the eigenspace of a given FNSM we mean the

set of all its FNSEvs.

In this paper the eigenspace structure for a special case of so-called CFNSMs is studied. The

paper presents a detailed description of all possible types of FNSEvs of any given CFNSM.

2. Preliminaries

In this section, some basic notions related to this topics are recalled.

Definition 2.1. [26] A neutrosophic set A on the universe of discourse X is defined as

A = {〈x, TA(x), IA(x), FA(x)〉, x ∈ X}, where T, I, F : X → ]−0, 1+[ and

−0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+. (1)]

From philosophical point of view the NS set takes the value from real standard or non-

standard subsets of ]−0, 1+[. But in real life application especially in Scientific and Engineer-

ing problems it is difficult to use NS with value from real standard or non-standard subset

of ]−0, 1+[. Hence we consider the NS which takes the value from the subset of [0, 1]. Therefore
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we can rewrite equation (1) as 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3. In short an element ã in the

NS A, can be written as ã = 〈aT , aI , aF 〉, where aT denotes degree of truth, aI denotes degree

of indeterminacy, aF denotes degree of falsity such that 0 ≤ aT + aI + aF ≤ 3.

Definition 2.2. [1] A NS A on the universe of discourse X is defined as A =

{x, 〈TA(x), IA(x), FA(x)〉, x ∈ X}, where T, I, F : X → [0, 1] and 0 ≤ TA(x)+IA(x)+FA(x) ≤

3.

Definition 2.3. [21] Let U be the initial universe set and E be a set of parameter. Consider

a non-empty set A,A ⊂ E. Let P (U) denotes the set of all NSs of U. The collection (F,A) is

termed to be the NSS over U, where F is a mapping given by F : A → P (U). Here after we

simply consider A as NSS over U instead of (F,A).

Definition 2.4. [2] Let U = {c1, c2, ..., cm} be the universal set and E be the set of parame-

ters given by E = {e1, e2, ..., em}. Let A ⊂ E. A pair (F,A) be a NSS over U. Then the subset

of U × E is defined by RA = {(u, e); e ∈ A, u ∈ FA(e)}

which is called a relation form of (FA, E). The membership function, indeterminacy member-

ship function and non membership function are written by

TRA
: U × E → [0, 1], IRA

: U × E → [0, 1] and FRA
: U × E → [0, 1] where TRA

(u, e) ∈

[0, 1], IRA
(u, e) ∈ [0, 1] and FRA

(u, e) ∈ [0, 1] are the membership value, indeterminacy value

and non membership value respectively of u ∈ U for each e ∈ E.

If [(Tij , Iij , Fij)] = [Tij(ui, ej), Iij(ui, ej) , Fij(ui, ej)] we define a matrix

[〈Tij , Iij , Fij〉]m×n =




〈T11, I11, F11〉 · · · 〈T1n, I1n, F1n〉

〈T21, I21, F21〉 · · · 〈T2n, I2n, F2n〉
...

...
...

〈Tm1, Im1, Fm1〉 · · · 〈Tmn, Imn, Fmn〉



.

Which is called an m× n FNSM of the NSS (FA, E) over U.

Definition 2.5. [30] Let A = (〈aTij , aIij , aFij〉), B = 〈(bTij , bIij , bFij〉) ∈ N(m,n), NSM of

order m × n) and N(n)-denotes a square NSM of order n. The component wise addition and

component wise multiplication is defined as

A⊕B = (sup{aTij , bTij}, sup{aIij , bIij}, inf{aFij , bFij})

A⊗B = (inf{aTij , bTij}, inf{aIij , bIij}, sup{aFij , bFij})
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Definition 2.6. Let A ∈ N(m,n), B ∈ N(n,p, the composition of A and B is defined as

A ◦B =

(
n∑

k=1

(aTik ∧ bTkj),
n∑

k=1

(aIik ∧ bIkj),
n∏

k=1

(aFik ∨ bFkj)

)

equivalently we can write the same as

=

(
n∨

k=1

(aTik ∧ bTkj),
n∨

k=1

(aIik ∧ bIkj),
n∧

k=1

(aFik ∨ bFkj)

)
.

The product A ◦B is defined if and only if the number of columns of A is same as the number

of rows of B. Then A and B are said to be conformable for multiplication. We shall use AB

instead of A ◦B.

Where
∑

(aTik ∧ bTkj) means max-min operation and
n∏

k=1

(aFik ∨ bFkj) means min-max operation.

3. Eigenvectors of CFNSM

The characterization of the eigenspace structure for a CFNSM is discussed in this section.

Circulancy of FNSM is analogous to circulancy of classical matrix. Formally, FNSM A ∈

N(n,n) is circulant if

〈aTij , a
I
ij , a

F
ij〉 = 〈aT

i
′
j
′ , aI

i
′
j
′ , aF

i
′
j
′ 〉 whenever i− i

′

≡ j − j
′

(mod n).

Hence, CFNSM A is totally determined by its inputs

〈aT0 , a
I
0, a

F
0 〉, 〈a

T
1 , a

I
1, a

F
1 〉, ..., 〈a

T
n−1, a

I
n−1, a

F
n−1〉 in the first row. 〈aT0 , a

I
0, a

F
0 〉 is the common in

all diagonal , and similarly each 〈aTi , a
I
i , a

F
i 〉 is common in a line parallel to the FNSM diago-

nal,

A(〈aT0 , a
I
0, a

F
0 〉, 〈a

T
1 , a

I
1, a

F
1 〉, ..., 〈a

T
n−1, a

I
n−1, a

F
n−1〉) =




〈aT
0 aI

0 aF
0 〉 〈aT

1 aI
1 aF

1 〉 〈aT
2 aI

2 aF
2 〉 · · · 〈aT

n−1 aI
n−1 aF

n−1〉

〈aT
n−1 aI

n−1 aF
n−1〉 〈aT

0 aI
0 aF

0 〉 〈aT
1 aI

1 aF
1 〉 · · · 〈aT

n−2 aI
n−2 aF

n−2〉

〈aT
n−2 aI

n−2 aF
n−2〉 〈aT

n−1 aI
n−1 aF

n−1〉 〈aT
0 aI

0 aF
0 〉 · · · 〈aT

n−3 aI
n−3 aF

n−3〉

...
...

... · · ·
...

〈aT
1 aI

1 aF
1 〉 〈aT

2 aI
2 aF

2 〉 〈aT
3 aI

3 aF
3 〉 · · · 〈aT

0 aI
0 aF

0 〉



.

Set N = {1, 2, ..., n} and N0 = {0, 1, ..., n − 1}. Further for a given CFNSM A =

A(〈aT0 , a
I
0, a

F
0 〉, 〈a

T
1 , a

I
1, a

F
1 〉, ..., 〈a

T
n−1, a

I
n−1, a

F
n−1〉), a strictly non increasing sequence M(A) =

(s1, s2, ...) of the length l(A) by repetition

sr =




max{〈aTi , a

I
i , a

F
i 〉; i ∈ N0} for r = 1

max{〈aTi , a
I
i , a

F
i 〉 < sr−1; i ∈ N0} for r > 1
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Here sr = 〈sTr , s
I
r , s

F
r 〉. Henceforth s1 > s2 > ... and l(A) the length of the sequence

M(A) is the first l satisfying {〈aTi , a
I
i , a

F
i 〉; i ∈ N0} = {sr; 1 ≤ r ≤ l}. Use the notation

L(A) = {1, 2, ..., l(A)}. Denote Pr as the set of all positions of the value sr in the first row of

the FNSM A, for any r ∈ L(A) i.e.

Pr = {i ∈ N0; 〈aTi , a
I
i , a

F
i 〉 = sr}

and we set the highest common factors(HCF) dr, er as follows

dr = HCF (Pr ∪ {n}), er = HCF (d1, d2, ..., dr) = HCF (er−1, dr).

Remark 3.1. The indices of FNSM values 〈aTi , a
I
i , a

F
i 〉, and their placements, are numbers in

N0 = {0, 1, ..., n− 1}, while the row and columns of the FNSM are indexed between 1 and n.

Thus, for all k ∈ N, the kth row of A will be like this

Ak = (..., 〈aTkk, a
I
kk, a

F
kk〉, 〈a

T
kk+1, a

I
kk+1, a

F
kk+1〉, 〈a

T
kk+2, a

I
kk+2, a

F
kk+2〉, ...)

and for any position p ∈ Pr, we have 〈aTkk+p, a
I
kk+p, a

F
kk+p〉 = sr (here the column index is

computed modulo k + p n).

The next two lemmas are vital in this work.

Lemma 3.2. Let CFNSM A = A(〈aT0 , a
I
0, a

F
0 〉, 〈a

T
1 , a

I
1, a

F
1 〉, ..., 〈a

T
n−1, a

I
n−1, a

F
n−1〉) be given,

let (〈xT , xI , xF 〉) = (〈xT1 , x
I
1, x

F
1 〉, 〈x

T
2 , x

I
2, x

F
2 〉, ..., 〈x

T
n , x

I
n, x

F
n 〉) be FNSEv of A, let k ∈ N, r ∈

L(A) and p ∈ Pr(A). If 〈x
T
k , x

I
k, x

F
k 〉 < sr, then 〈xTk , x

I
k, x

F
k 〉 = 〈xTk+p, x

I
k+p, x

F
k+p〉.

Proof. Assume that 〈xTk , x
I
k, x

F
k 〉 < 〈xTk+p, x

I
k+p, x

F
k+p〉. Then by Remark 3.1

〈xTk , x
I
k, x

F
k 〉 < sr ⊗ 〈xTk+p, x

I
k+p, x

F
k+p〉 = 〈aTkk+p, a

I
kk+p, a

F
kk+p〉 ⊗ 〈xTk+p, x

I
k+p, x

F
k+p〉 ≤

Ak ⊗ (〈xT , xI , xF 〉),

i.e (〈xT , xI , xF 〉) cannot be eigenvector of A, a contradiction. Then 〈xTk , x
I
k, x

F
k 〉 ≥

〈xTk+p, x
I
k+p, x

F
k+p〉. Repeating like this we get, due to the cyclicity of A,

〈xTk , x
I
k, x

F
k 〉 ≥ 〈xTk+p, x

I
k+p, x

F
k+p〉 ≥ 〈xTk+2p, x

I
k+2p, x

F
k+2p〉 ≥ ... ≥ 〈xTk , x

I
k, x

F
k 〉

hence, 〈xTk , x
I
k, x

F
k 〉 = 〈xTk+p, x

I
k+p, x

F
k+p〉 must be hold true.

Lemma 3.3. Let CFNSM A = A(〈aT0 , a
I
0, a

F
0 〉, 〈a

T
1 , a

I
1, a

F
1 〉, ..., 〈a

T
n−1, a

I
n−1, a

F
n−1〉) be given.

Let (〈xT , xI , xF 〉) be FNSEv of A, let k, l ∈ N, r ∈ L(A). If 〈xTk , x
I
k, x

F
k 〉 < sr, then the

following result hold

(i) if k ≡ l mod dr then 〈xTk , x
I
k, x

F
k 〉 = 〈xTl , x

I
l , x

F
l 〉,

(ii)if k ≡ l mod er then 〈xTk , x
I
k, x

F
k 〉 = 〈xTl , x

I
l , x

F
l 〉.

Proof. (i) Clearly dr can be expressed as a linear combination of values in Pr ∪ {n} with

non-negative coefficients from number theory. By repeated use of Lemma 3.2 (i) is obtained.

(ii) follows directly from the definition of er and (i).
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Theorem 3.4. Let CFNSM A = A(〈aT0 , a
I
0, a

F
0 〉, 〈a

T
1 , a

I
1, a

F
1 〉, ..., 〈a

T
n−1, a

I
n−1, a

F
n−1〉) be given,

let 〈xT , xI , xF 〉 be FNSEv of A. Then 〈xTk , x
I
k, x

F
k 〉 < s1, holds true for every k ∈ N.

Proof: By contradiction, that if〈xTk , x
I
k, x

F
k 〉 > s1 for some k ∈ N. Then, the inequal-

ity 〈xTk , x
I
k, x

F
k 〉 > 〈aTi , a

I
i , a

F
i 〉 holds for every i ∈ N0, by definition of s1, which gives

〈xTk , x
I
k, x

F
k 〉 > 〈aTkj , a

I
kj , a

F
kj〉 for every j ∈ N. Hence

〈xTk , x
I
k, x

F
k 〉 >

⊕
j∈N

(〈aTkj , a
I
kj , a

F
kj〉 ⊗ 〈xTj , x

I
j , x

F
j 〉) = Ak ⊗ (〈xT , xI , xF 〉),

i.e. 〈xTk , x
I
k, x

F
k 〉 6= Ak ⊗ (〈xT , xI , xF 〉) and, thus, (〈xT , xI , xF 〉) is not a eigenvector of A.

Theorem 3.5. Let CFNSM A = A(〈aT0 , a
I
0, a

F
0 〉, 〈a

T
1 , a

I
1, a

F
1 〉, ..., 〈a

T
n−1, a

I
n−1, a

F
n−1〉) be given,

such that the diagonal input 〈aT0 , a
I
0, a

F
0 〉 is greater than all other inputs of the FNSM. If a

FNSV (〈xT , xI , xF 〉) ∈ N(n) has inputs fulfilling the inequalities s2 ≤ 〈xTk , x
I
k, x

F
k 〉 ≤ s1 for

every k ∈ N, then (〈xT , xI , xF 〉) is FNSEv of A.

Proof: By definition of Pr, the hypothesis of the theorem gives P1 = {0} and thus

Ak ⊗ (〈xT , xI , xF 〉) =
⊕
j∈N

(〈aTkj , a
I
kj , a

F
kj〉 ⊗ 〈xTj , x

I
j , x

F
j 〉) =

(〈aTkk, a
I
kk, a

F
kk〉 ⊗ 〈xTk , x

I
k, x

F
k 〉)⊕

⊕
j∈N\{k}

(〈aTkj , a
I
kj , a

F
kj〉 ⊗ 〈xTj , x

I
j , x

F
j 〉).

Further, we have 〈aTkk, a
I
kk, a

F
kk〉 ⊗ 〈xTk , x

I
k, x

F
k 〉 = s1 ⊗ 〈xTk , x

I
k, x

F
k 〉 = 〈xTk , x

I
k, x

F
k 〉,⊕

j∈N\{k}

(〈aTkj , a
I
kj , a

F
kj〉 ⊗ 〈xTj , x

I
j , x

F
j 〉 ≤

⊕
j∈N\{k}

(s2 ⊗ 〈xTj , x
I
j , x

F
j 〉) = s2,

hence 〈xTk , x
I
k, x

F
k 〉 = 〈aTkk, a

I
kk, a

F
kk〉 ⊗ 〈xTk , x

I
k, x

F
k 〉 ≤ Ak ⊗ 〈xT , xI , xF 〉 ≤ 〈xTk , x

I
k, x

F
k 〉 ⊕ s2 =

〈xTk , x
I
k, x

F
k 〉.

for every k ∈ N, i.e. A⊗ (〈xT , xI , xF 〉) = (〈xT , xI , xF 〉).

Remark 3.6. Theorem 3.5 is a special case of the sufficient part of Theorem 3.8. The asser-

tions of Lemma 3.3 are fulfilled, as in Theorem 3.5 we have P1 = {0} and d1 = e1 = n, hence,

the equivalence relation modulo n is the identity relation on N0.

Remark 3.7. If the maximal input of the CFNSM is not unique, or if it is placed on other

position than the diagonal one, then 0 < e1 < n and the equivalence modulo e1 differs from

the identity relation on N0. Hence, the inputs of any FNSEv cannot be arbitrary value in the

interval 〈s2, s1〉 but according to Lemma 3.3, some repetitions must occur, see Example 4.2.

Theorem 3.8. Let CFNSM A = A(〈aT0 , a
I
0, a

F
0 〉, 〈a

T
1 , a

I
1, a

F
1 〉, ..., 〈a

T
n−1, a

I
n−1, a

F
n−1〉) be given.

A FNSV (〈xT , xI , xF 〉) ∈ N(n) is FNSEv of A if and only if there is a partition T , on N, such

that for every class t ∈ T there exist (〈xT (t), xI(t), xF (t)〉) ∈ N and r(t) ∈ L(A), satisfying

the following conditions

(i) 〈xTk , x
I
k, x

F
k 〉 = 〈xT (t), xI(t), xF (t)〉 ≤ s1 for every k ∈ t,

(ii)r(t) = max{r ∈ S(A);x(t) < sr},
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(iii) t is an equivalence class in N modulo er(t).

Proof:(⇒) The conditions (i)-(iii) follow from Lemma 3.3 and Theorem 3.4.

(⇐) Let (i)-(iii) be satisfied. If (〈xT (t), xI(t), xF (t)〉) = s1, then according to (ii), r(t) is the

maximum of the ∅, which is the least element in S(A), i.e. r(t) = 1 in this case.

For arbitrary, but fixed k ∈ N, there is t ∈ T with k ∈ t and P1 6= ∅ by definition, hence there

is p ∈ P1, and 〈aTp , a
I
p, a

F
p 〉 = s1. Therefore, k ≡ k + p mod er(t) and by conditions (i),(iii), we

have

〈xTk , x
I
k, x

F
k 〉 = 〈xTk+p, x

I
k+p, x

F
k+p〉 = s1 ⊗ 〈xTk+p, x

I
k+p, x

F
k+p〉 = 〈aTkk+p, a

I
kk+p, a

F
kk+p〉 ⊗

〈xTk+p, x
I
k+p, x

F
k+p〉 ≤

⊕
j∈N

(〈aTkj , a
I
kj , a

F
kj〉 ⊗ 〈xTj , x

I
j , x

F
j 〉) = Ak ⊗ 〈xT , xI , xF 〉.

To prove the otherside, consider any j ∈ N. If j ∈ t, then 〈xTj , x
I
j , x

F
j 〉 = 〈xTk , x

I
k, x

F
k 〉, by (i).

Thus,
⊕
j∈t

(〈aTkj , a
I
kj , a

F
kj〉 ⊗ 〈xTj , x

I
j , x

F
j 〉) =

⊕
j∈t

(〈aTkj , a
I
kj , a

F
kj〉 ⊗ 〈xTk , x

I
k, x

F
k 〉) ≤ 〈xTk , x

I
k, x

F
k 〉.

If j /∈ t, then j, k 6∼= moder(t). Therefore, p = j − k is not a multiple of the HCF er(T ), and so,

the difference p cannot be expressed as a linear combination with integer coefficients, of the

values in P1∪P2∪ ...∪Pr(t)∪{n}, from definition of er(t). As a result we have 〈aTp , a
I
p, a

F
p 〉 = sq

for some q > r(t), which implies sq ≤ 〈xT (t), xI(t), xF (t)〉, by assumption (ii). Therefore

〈aTkj , a
I
kj , a

F
kj〉 = 〈aTkk+p, a

I
kk+p, a

F
kk+p〉 = sq ≤ 〈xTk , x

I
k, x

F
k 〉. Thus we have

⊗
j∈N\t

(〈aTkj , a
I
kj , a

F
kj〉 ⊗ 〈xTj , x

I
j , x

F
j 〉) ≤

⊗
j∈N\t

(〈aTkj , a
I
kj , a

F
kj〉 ≤ 〈xTk , x

I
k, x

F
k 〉.

Summarizing we get

〈xTk , x
I
k, x

F
k 〉 ≤ Ak ⊗ (〈xT , xI , xF 〉) =

⊗
j∈t

(〈aTkj , a
I
kj , a

F
kj〉 ⊗ 〈xTj , x

I
j , x

F
j 〉) ⊕

⊗
j∈N\t

(〈aTkj , a
I
kj , a

F
kj〉 ⊗

〈xTj , x
I
j , x

F
j 〉.

As k ∈ N is arbitrary, we have

A⊗ (〈xT , xI , xF 〉) = (〈xT , xI , xF 〉).

4. Examples of FNSEvs

Examples of FNSEvs of CFNSM are illustrated here.

Example 4.1. Let n = 6 and let

A = A(〈1, 1, 0〉, 〈0.1, 0.1, 0.9〉, 〈0.3, 0.2, 0.7〉, 〈0.7, 0.6, 0.3〉, 〈0.3, 0.2, 0.7〉, 〈0, 0, 1〉) be a CFNSM

generated by inputs on positions (0, 1, ..., 5) in the first row. Then M(A) = (s1, s2, ..., s5) =

(〈1, 1, 0〉, 〈0.7, 0.6, 0.3〉, 〈0.3, 0.2, 0.7〉, 〈0.1, 0.1, 0.9〉, 〈0, 0, 1〉). The maximal input s1 = 〈1, 1, 0〉

is on the diagonal, i.e. on position 0 and nowhere else, the second largest input has value

s2 = 〈0.7, 0.6, 0.3〉. Hence, in view of Theorem 3.5, any FNSV with arbitrary inputs from

interval [〈0.7, 0.6, 0.3〉, 〈1, 1, 0〉], e.g.

(〈xT , xI , xF 〉) = (〈0.9, 0.8, 0.1〉, 〈0.8, 0.7, 0.2〉, 〈0.7, 0.6, 0.3〉, 〈0.8, 0.7, 0.2〉, 〈0.8, 0.7, 0.2〉,

〈0.7, 0.6, 0.3〉)t is an FNSEv of A.
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A =


〈1, 1, 0〉 〈0.1, 0.1, 0.9〉 〈0.3, 0.2, 0.7〉 〈0.7, 0.6, 0.3〉 〈0.3, 0.2, 0.7〉 〈0, 0, 1〉

〈0, 0, 1〉 〈1, 1, 0〉 〈0.1, 0.1, 0.9〉 〈0.3 0.2 0.7〉 〈0.7, 0.6, 0.3〉 〈0.3, 0.2, 0.7〉

〈0.3, 0.2, 0.7〉 〈0, 0, 1〉 〈1, 1, 0〉 〈0.1, 0.1, 0.9〉 〈0.3, 0.2, 0.7〉 〈0.7, 0.6, 0.3〉

〈0.7, 0.6, 0.3〉 〈0.3, 0.2, 0.7〉 〈0, 0, 1〉 〈1, 1, 0〉 〈0.1, 0.1, 0.9〉 〈0.3, 0.2, 0.7〉

〈0.3, 0.2, 0.7〉 〈0.7, 0.6, 0.3〉 〈0.3, 0.2, 0.7〉 〈0, 0, 1〉 〈1, 1, 0〉 〈0.1, 0.1, 0.9〉

〈0.1, 0.1, 0.9〉 〈0.3, 0.2, 0.7〉 〈0.7, 0.6, 0.3〉 〈0.3, 0.2, 0.7〉 〈0, 0, 1〉 〈1, 1, 0〉




⊗




〈0.9, 0.8, 0.1〉

〈0.8, 0.7, 0.2〉

〈0.7, 0.6, 0.3〉

〈0.8, 0.7, 0.2〉

〈0.8, 0.7, 0.2〉

〈0.7, 0.6, 0.3〉




=




〈0.9, 0.8, 0.1〉

〈0.8, 0.7, 0.2〉

〈0.7, 0.6, 0.3〉

〈0.8, 0.7, 0.2〉

〈0.8, 0.7, 0.2〉

〈0.7, 0.6, 0.3〉




.

Example 4.2. In this example we show further FNSEvs of the FNSM

A = A(〈1, 1, 0〉, 〈0.1, 0.1, 0.9〉, 〈0.3, 0.2, 0.7〉, 〈0.7, 0.6, 0.3〉, 〈0.3, 0.2, 0.7〉, 〈0, 0, 1〉) from the pre-

vious example. If an FNSEv should contain inputs not belonging to the interval 〈s2, s1〉 =

〈〈0.7, 0.6, 0.3〉, 〈1, 1, 0〉〉, then in view of Theorem 3.4, such inputs con not be large then

s1 = 〈1, 1, 0〉. Hence such inputs must be less than the value s2 = 〈0.7, 0.6, 0.3〉 and some

repetitions must occur, by Lemma 3.3.

The position sets for particular inputs are P1 = {0} for s1 = 〈1, 1, 0〉, P2 = {3} for

s2 = 〈0.7, 0.6, 0.3〉, P3 = {2, 4} for s3 = 〈0.3, 0.2, 0.7〉, P4 = {1} for s4 = 〈0.1, 0.1, 0.9〉, P5 = {1}

for s5 = 〈0, 0, 1〉. By definition of the HCF dr, er we get

d1 = HCF (P1 ∪ {n}) = HCF (0, 6) = 6 e1 = 6

d2 = HCF (P2 ∪ {n}) = HCF (3, 6) = 3 e2 = HCF (d1, d2) = HCF (6, 3) = 3

d3 = HCF (P3 ∪ {n}) = HCF (2, 4, 6) = 2 e3 = HCF (e2, d3) = HCF (3, 2) = 1

d4 = HCF (P4 ∪ {n}) = HCF (1, 6) = 1 e4 = HCF (e3, d4) = HCF (1, 1) = 1

Further e5 = 1. By Lemma 3.3, any input

〈xTk , x
I
k, x

F
k 〉 < sr must be repeated in 〈xT , xI , xF 〉 after er positions. In particular, inputs

less than value s2 = 〈0.7, 0.6, 0.3〉 must be repeated after 3rd positions, inputs less than

s3 = 〈0.3, 0.2, 0.7〉 must be repeated on every second position. However, inputs which are not

less than s2 = 〈0.7, 0.6, 0.3〉 can be arbitrary. The above conditions are satisfied e.g. by FNSV

(〈xT , xI , xF 〉) = (〈0.4, 0.3, 0.6〉, 〈0.5, 0.4, 0.6〉,

〈0.6, 0.5, 0.4〉, 〈0.4, 0.3, 0.6〉, 〈0.5, 0.4, 0.6〉, 〈0.6, 0.5, 0.4〉)t which is therefore an FNSEv of A, in

the view of Theorem 3.8
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A =


〈1, 1, 0〉 〈0.1, 0.1, 0.9〉 〈0.3, 0.2, 0.7〉 〈0.7, 0.6, 0.3〉 〈0.3, 0.2, 0.7〉 〈0, 0, 1〉

〈0, 0, 1〉 〈1, 1, 0〉 〈0.1, 0.1, 0.9〉 〈0.3 0.2 0.7〉 〈0.7, 0.6, 0.3〉 〈0.3, 0.2, 0.7〉

〈0.3, 0.2, 0.7〉 〈0, 0, 1〉 〈1, 1, 0〉 〈0.1, 0.1, 0.9〉 〈0.3, 0.2, 0.7〉 〈0.7, 0.6, 0.3〉

〈0.7, 0.6, 0.3〉 〈0.3, 0.2, 0.7〉 〈0, 0, 1〉 〈1, 1, 0〉 〈0.1, 0.1, 0.9〉 〈0.3, 0.2, 0.7〉

〈0.3, 0.2, 0.7〉 〈0.7, 0.6, 0.3〉 〈0.3, 0.2, 0.7〉 〈0, 0, 1〉 〈1, 1, 0〉 〈0.1, 0.1, 0.9〉

〈0.1, 0.1, 0.9〉 〈0.3, 0.2, 0.7〉 〈0.7, 0.6, 0.3〉 〈0.3, 0.2, 0.7〉 〈0, 0, 1〉 〈1, 1, 0〉




⊗




〈0.4, 0.3, 0.6〉

〈0.5, 0.4, 0.6〉

〈0.6, 0.5, 0.4〉

〈0.4, 0.3, 0.6〉

〈0.5, 0.4, 0.6〉

〈0.6, 0.5, 0.4〉




=




〈0.4, 0.3, 0.6〉

〈0.5, 0.4, 0.6〉

〈0.6, 0.5, 0.4〉

〈0.4, 0.3, 0.6〉

〈0.5, 0.4, 0.6〉

〈0.6, 0.5, 0.4〉




.

We may note that if an FNSEv (〈xT , xI , xF 〉) of A should contain an input 〈xTk , x
I
k, x

F
k 〉 <

s3 = 〈0.3, 0.2, 0.7〉, then such an input would be repeated after every e2 = 1 position, in other

words the FNSEv would have only that single input, i.e. it would be a constant FNSV.

Example 4.3. labelE3 This example illustrates Remark 3.7 by analyzing FNSEvs of the

FNSM B = B(〈1, 1, 0〉, 〈0.1, 0.1, 0.9〉, 〈1, 1, 0〉, 〈0.7, 0.6, 0.3〉, 〈0.3, 0.2, 0.7〉, 〈0, 0, 1〉) which differs

from FNSM A in a single input, namely 〈bT3 , b
I
3, b

F
3 〉 = 〈1, 1, 0〉. Thus, the maximal input of

the FNSM B is placed on the diagonal position 0 and also on a non-diagonal position 3. We

have P1 = {0, 3} for s1 = 〈1, 1, 0〉 and e1 = d1 = HCF (0, 2, 6) = 2. Theorem 3.5 can not be

applied, and the input values belonging to the interval 〈s2, s1〉 = 〈〈0.7, 0.6, 0.3〉, 〈1, 1, 0〉〉 must

be repeated after e1 = 2 positions. In fact, the same is true for all input values in the interval

〈s3, s1〉, because it can be easily computed that e1 = e2 = 2.

B =


〈1, 1, 0〉 〈0.1, 0.1, 0.9〉 〈1, 1, 0〉 〈0.3.0.2, 0.7〉 〈0.7, 0.6, 0.3〉 〈0, 0, 1〉

〈0, 0, 1〉 〈1, 1, 0〉 〈0.1, 0.1, 0.9〉 〈1, 1, 0〉 〈0.3 0.2 0.7〉 〈0.7, 0.6, 0.3〉

〈0.7, 0.6, 0.3〉 〈0, 0, 1〉 〈1, 1, 0〉 〈0.1, 0.1, 0.9〉 〈1, 1, 0〉 〈0.3, 0.2, 0.7〉

〈0.3, 0.2, 0.7〉 〈0.7, 0.6, 0.3〉 〈0, 0, 1〉 〈1, 1, 0〉 〈0.1, 0.1, 0.9〉 〈1, 1, 0〉

〈1, 1, 0〉 〈0.3, 0.2, 0.7〉 〈0.7, 0.6, 0.3〉 〈0, 0, 1〉 〈1, 1, 0〉 〈0.1, 0.1, 0.9〉

〈0.1, 0.1, 0.9〉 〈1, 1, 0〉 〈0.3, 0.2, 0.7〉 〈0.7, 0.6, 0.3〉 〈0, 0, 1〉 〈1, 1, 0〉




⊗




〈0.3, 0.2, 0.7〉

〈0.4, 0.3, 0.6〉

〈0.3, 0.2, 0.7〉

〈0.4, 0.3, 0.6〉

〈0.3, 0.2, 0.7〉

〈0.4, 0.3, 0.6〉




=




〈0.3, 0.2, 0.7〉

〈0.4, 0.3, 0.6〉

〈0.3, 0.2, 0.7〉

〈0.4, 0.3, 0.6〉

〈0.3, 0.2, 0.7〉

〈0.4, 0.3, 0.6〉




.
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5. Conclusion

We study the eigenspace of a circulant max-min matrix, and propose the characterization of

eigenspace structure for circulant fuzzy neutrosophic soft matrix. Further examples are given

for all possible types of fuzzy neutrosophic soft eigenvectors.
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Abstract. A number of types of semi-continuous linguistic neutrosophic functions are introduced in this paper.

Furthermore, these types of functions are demonstrated with appropriate examples. Theorems and properties

are discussed in great detail.
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1. Introduction

In many system oriented implementations in which typical and standard logic was not

suitable due to contradictory circumstances or unpredictability, the Fuzzy logic was utilized

primarily, which was discovered by Zadeh(1965) [7]. This idea concerned with the mem-

bership or truth value of every elements of the fuzzy set. Along with truth value, the

false value or non-membership was adjoined in intuitionistic fuzzy sets which was found by

Atanassov [1]. Furthermore, in a new class of sets called neutrosophic sets which was given by

Smarandache(1999) [5], possesses an additional membership called indeterminate membership.

Neutrosophic sets have a wide range of applications over many real life fields.

Linguistic sets were invented by Fang [3], which has a variety of applications in day to day

life. Gayathri and Helen(2021) [4] have found a topological space merging linguistic neutro-

sophic sets and topological spaces, termed as linguistic neutrosophic topology. The concept of

linguistic neutrosophic semi continuous function is recasted into many forms of continuity by

using linguistic neutrosophic semi open sets. Interrelations are analyzed among these types of
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linguistic neutrosophic continuity and counter examples are established to vindicate that the

reverse implication of the result is not holds true.

2. Preambles

Definition 2.1. [7] Let S be a space of points (objects), with a generic element in x denoted

by S. A neutrosophic set A in S is characterized by a truth-membership function TA, an

indeterminacy membership function IA and a falsity-membership function FA. TA(x), IA(x)

and FA(x) are real standard or non-standard subsets of ]0−, 1+[. That is

TA : S →]0−, 1+[, IA : S →]0−, 1+[, FA : S →]0−, 1+[

There is no restriction on the sum of TA(x), IA(x) and FA(x), so 0− ≤ sup TA(x)+ sup IA(x)+

sup FA(x) ≤ 3+.

Definition 2.2. [7] Let S be a space of points (objects), with a generic element in x denoted

by S. A single valued neutrosophic set (SVNS) A in S is characterized by truth-membership

function TA, indeterminacy-membership function IA and falsity-membership function FA. For

each point S in S, TA(x), IA(x), FA(x) ∈ [0, 1].

When S is continuous, a SVNS A can be written as A =
∫
〈T (x), I(x), F (x)〉/x ∈ S.

When S is discrete, a SVNS A can be written as A =
∑
〈T (xi), I(xi), F (xi)〉/xi ∈ S.

Definition 2.3. [3] Let S = {sθ|θ = 0, 1, 2, ....., τ} be a finite and totally ordered discrete

term set, where τ is the even value and sθ represents a possible value for a linguistic variable.

Su [8] extended the discrete linguistic term set S into a continuous term set S = {sθ|θ ∈
[0, q]}, where, if sθ ∈ S, then w call sθ the original term, otherwise it is called as a virtual

term.

Definition 2.4. [3] Let Q = {s0, s1, s2, ..., st} be a linguistic term set (LTS) with odd cardi-

nality t+1 and Q = {sh/s0 ≤ sh ≤ st, h ∈ [0, t]}. Then, a linguistic single valued neutrosophic

set A is defined by,

A = {〈x, sθ(x), sψ(x), sσ(x)〉|x ∈ S}, where sθ(x), sψ(x), sσ(x) ∈ Q represent the linguistic

truth, linguistic indeterminacy and linguistic falsity degrees of S to A, respectively, with con-

dition 0 ≤ θ+ψ+σ ≤ 3t. This triplet (sθ, sψ, sσ) is called a linguistic single valued neutrosophic

number.

Definition 2.5. [3] Let α = (sθ, sψ, sσ), α1 = (sθ1, sψ1, sσ1), α2 = (sθ2, sψ2, sσ2) be three

LSVNNs, then

(1) αc = (sσ, sψ, sθ);

(2) α1 ∪ α2 = (max(θ1, θ2),max(ψ1, ψ2),min(σ1, σ2));

(3) α1 ∩ α2 = (min(θ1, θ2),min(ψ1, ψ2),max(σ1, σ2));
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(4) α1 = α2 iff θ1 = θ2, ψ1 = ψ2, σ1 = σ2;

Definition 2.6. [4] For a linguistic neutrosophic topology τ , the collection of linguistic

neutrosophic sets should obey,

(1) 0LN , 1LN ∈ τ
(2) K1

⋂
K2 ∈ τ for any K1,K2 ∈ τ

(3)
⋃
Ki ∈ τ,∀{Ki : i ∈ J} ⊆ τ

We call, the pair (SLN , τLN ), a linguistic neutrosophic topological space.

Definition 2.7. [4] Let (SLN , τLN ) be a linguistic neutrosophic topological space (LNTS).

Then,

• (SLN , τLN )c is the dual linguistic neutrosophic topology, whose elements are KC
LN for

KLN ∈ (SLN , τLN ).

• Any open set in τLN is known as linguistic neutrosophic open set(LNOS).

• Any closed set in τLN is known as linguistic neutrosophic closed set(LNCS) if and only

if it’s complement is linguistic neutrosophic open set.

3. Types of Linguistic Neutrosophic Semi continuous Functions

Definition 3.1. A mapping from f : SLN → TLN is a linguistic neutrosophic quasi semi

continuous if the inverse image f−1(KLN ) of every linguistic neutrosophic semi open set KLN

of TLN is a linguistic neutrosophic open set in SLN .

Theorem 3.2. A mapping from f : SLN → TLN is a linguistic neutrosophic quasi semi

continuous if and only if the inverse image f−1(KLN ) of every linguistic neutrosophic semi

closed set KLN of TLN is a linguistic neutrosophic closed set in SLN .

Proof: Necessity Part: Let f : SLN → TLN be linguistic neutrosophic quasi semi continuous

and VLN be any linguistic neutrosophic semi closed set in TLN . Then TLN\VLN is linguistic

neutrosophic semi open set in TLN . As f is linguistic neutrosophic quasi semi continuous,

f−1(TLN\VLN ) = SLN\f−1(VLN ) is linguistic neutrosophic semi open set in SLN . Hence,

the set f−1(VLN ) is linguistic neutrosophic semi closed and thus the function f is linguistic

neutrosophic quasi semi continuous.

Sufficiency Part: Let the set f−1(VLN ) be linguistic neutrosophic semi closed in SLN for each

linguistic neutrosophic closed set in TLN . Let VLN be any linguistic neutrosophic open set in

TLN , then TLN\VLN is linguistic neutrosophic closed set in TLN .

By assumption, the set f−1(TLN\VLN ) = SLN\f−1(VLN ) is linguistic neutrosophic semi closed

in SLN , which implies f−1(VLN ) is linguistic neutrosophic semi open in SLN . So, the mapping

f is linguistic neutrosophic quasi semi continuous.
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Remark 3.3. The above theorem is established by the following example.

Example 3.4. Let the universe of discourse be U = {p, q, r, s, t} and let SLN = {q, r} = TLN .

The set of all linguistic term set be L= {never familiar(l0), almost never familiar(l1), slightly

familiar(l2), some what familiar(l3),occasionally familiar(l4),moderately familiar(l5), almost

every time familiar(l6), frequently familiar(l7), extremely familiar(l8)}. Let f : (SLN , τLN )→
(TLN , ηLN ) be the linguistic neutrosophic identity mapping, where τLN = {0LN , 1LN ,KLN}
and ηLN = {0LN , 1LN , HLN}. The linguistic neutrosophic sets KLN and HLN are given by

KLN = {〈, q, (l3, l6, l3)〉, 〈r, (l4, l3, l2)〉} and HLN = {〈q, (l3, l6, l3)〉, 〈r, (l2, l3, l4)〉} respectively.

Here the inverse image f−1(HLN ) is linguistic neutrosophic closed in SLN .

Theorem 3.5. If the mapping f : SLN → TLN is linguistic neutrosophic strongly semi con-

tinuous, then it is linguistic neutrosophic quasi semi continuous.

Proof: Let VLN be a linguistic neutrosophic semi open set in TLN . Since f is linguistic

neutrosophic strongly semi continuous, f−1(VLN ) is linguistic neutrosophic semi cl-open in

SLN . Thus, f is linguistic neutrosophic quasi semi continuous.

Remark 3.6. The converse part of the above theorem need not be true in general, which is

given by a counter example.

Example 3.7. Let the universe of discourse be as in example (3.4). And let f : (SLN , τLN )→
(TLN , ηLN ) be a linguistic neutrosophic mapping defined by f(a) = c, f(c) = a, where

τLN = {0LN , 1LN ,KLN , HLN} and ηLN = {0LN , 1LN ,MLN}. The linguistic neutro-

sophic sets KLN , HLN and MLN are given by KLN = {〈q, (l4, l5, l2)〉, 〈r, (l3, l2, l4)〉}, HLN =

{〈q, (l4, l6, l4)〉, 〈r, (l4, l3, l8)〉} and MLN = {〈q, (l4, l6, l4)〉, 〈r, (l8, l3, l4)〉} respectively. Now, the

mapping f is linguistic neutrosophic quasi continuous but not linguistic neutrosophic strongly

semi continuous.

Definition 3.8. A mapping from f : SLN → TLN is said to be a linguistic neutrosophic

perfectly semi continuous mapping if the inverse image f(ELN ) of every linguistic neutrosophic

semi open set ELN of TLN is linguistic neutrosophic cl-open set in SLN .

Example 3.9. Let the universe of discourse be as in example (3.4). And let f :

(SLN , τLN )→ (TLN , ηLN ) be a linguistic neutrosophic mapping defined by f(a) = c, f(c) = a,

where τLN = {0LN , 1LN , ELN , FLN} and ηLN = {0LN , 1LN , GLN}. The linguistic neutro-

sophic sets ELN , FLN and GLN are given by ELN = {〈q, (l3, l6, l3)〉, 〈r, (l2, l5, l2)〉}, FLN =

{〈q, (l3, l5, l3)〉, 〈r, (l4, l5, l8)〉} and GLN = {〈q, (l3, l6, l3)〉, 〈r, (l2, l5, l2)〉} respectively. Now, the

mapping f is linguistic neutrosophic perfectly semi continuous.
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Theorem 3.10. A mapping f : SLN → TLN is linguistic neutrosophic perfectly semi continu-

ous if and only if the inverse image f−1(ELN ) of every linguistic neutrosophic semi closed set

ELN of TLN is linguistic neutrosophic cl-open set in SLN .

Proof:

Necessity Part: Let f : SLN → TLN be linguistic neutrosophic perfectly semi continuous and

VLN be any linguistic neutrosophic semi closed set in TLN . Then TLN\VLN is linguistic neu-

trosophic semi open set in TLN . As f is linguistic neutrosophic perfectly semi continuous,

f−1(TLN\VLN ) = SLN\f−1(VLN ) is linguistic neutrosophic cl-open set in SLN . Hence, the set

f−1(VLN ) is linguistic neutrosophic cl-open and thus the function f is linguistic neutrosophic

perfectly semi continuous.

Sufficiency Part: Let the set f−1(VLN ) be linguistic neutrosophic cl-open in SLN for each

linguistic neutrosophic semi closed set in TLN . Let VLN be any linguistic neutrosophic semi

open set in TLN , then TLN\VLN is linguistic neutrosophic semi closed set in TLN . By assump-

tion, the set f−1(TLN\VLN ) = SLN\f−1(VLN ) is linguistic neutrosophic cl-open in SLN , which

implies f−1(VLN ) is linguistic neutrosophic cl-open in SLN . So, the mapping f is linguistic

neutrosophic perfectly semi continuous.

Theorem 3.11. If the mapping f : SLN → TLN is linguistic neutrosophic perfectly semi

continuous, then it is linguistic neutrosophic quasi semi continuous.

Proof: Let VLN be a linguistic neutrosophic semi open set in TLN . Since f is linguistic

neutrosophic perfectly semi continuous, f−1(VLN ) is linguistic neutrosophic cl-open in SLN .

Thus, f is linguistic neutrosophic quasi semi continuous.

Remark 3.12. The converse part of the above theorem need not be true in general, which is

given by a counter example.

Example 3.13. Let the linguistic term set be as in example (3.5) and f : SLN → TLN be

any linguistic neutrosophic mapping. Now, the mapping f is linguistic neutrosophic quasi

continuous but not linguistic neutrosophic perfectly semi continuous.

Theorem 3.14. If the mapping f : SLN → TLN is linguistic neutrosophic strongly continuous,

then it is linguistic neutrosophic perfectly semi continuous.

Proof: Let VLN be a linguistic neutrosophic semi open set in TLN . Since f is linguistic

neutrosophic strongly semi continuous, f−1(VLN ) is linguistic neutrosophic cl-open in SLN .

Thus, f is linguistic neutrosophic perfectly semi continuous.

Remark 3.15. The reverse part of the above theorem need not be true in general, which is

given by a counter example.
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Example 3.16. Let the universe of discourse be U = {p, q, r, s, t} and let SLN =

{p, q, r} = TLN and the linguistic term set be as in example (3.5). Let f :

(SLN , τLN ) → (TLN , ηLN ) be a linguistic neutrosophic identity mapping, where τLN =

{0LN , 1LN , ELN} and ηLN = {0LN , 1LN , ALN , BLN}. The linguistic neutrosophic sets

ELN , ALN and BLN are given by ELN = {〈p, (l3, l5, l3)〉, 〈q, (l2, l1, l2)〉, 〈r, (l8, l5, l8)〉}, ALN =

{〈p, (l3, l5, l3)〉, 〈q, (l2, l1, l2)〉, 〈r, (l8, l5, l8)〉} and

BLN = {〈p, (l7, l5, l2)〉, 〈q, (l6, l6, l3)〉, 〈r, (l3, l2, l3)〉} respectively. The inverse image of HLN

in TLN , is ELN in SLN , which is a linguistic neutrosophic cl-open set. Then the mapping f

is linguistic neutrosophic perfectly semi continuous but not linguistic neutrosophic strongly

continuous.

Theorem 3.17. Let (SLN , τLN ) be a discrete linguistic neutrosophic topological space and

(TLN , ηLN ) be any linguistic neutrosophic topological space such that f : (SLN , τLN ) →
(TLN , ηLN ) is a mapping. Then the following are equivalent.

(1) f is linguistic neutrosophic perfectly semi continuous

(2) f is linguistic neutrosophic quasi semi continuous

Proof: (1)⇒ (2): Let ULN be linguistic neutrosophic semi open set in (TLN , ηLN ) and the func-

tion f be linguistic neutrosophic perfectly semi continuous, (i.e) the inverse image f−1(ULN )

of any linguistic neutrosophic semi open set in (TLN , ηLN ), is linguistic neutrosophic cl-open

in (SLN , τLN ). This implies the function f is linguistic neutrosophic quasi semi continuous.

(2) ⇒ (1): Let ULN be linguistic neutrosophic semi open set in (TLN , ηLN ), then the set

f−1(ULN ) is linguistic neutrosophic open in (SLN , τLN ), since the function f is linguistic

neutrosophic quasi semi continuous. Thus, f−1(ULN ) is linguistic neutrosophic closed as

(SLN , τLN ) is a discrete linguistic neutrosophic topological space, (i.e) f−1(ULN ) is linguis-

tic neutrosophic cl-open which implies the mapping f is linguistic neutrosophic perfectly semi

continuous.

Theorem 3.18. Let f : (SLN , τLN ) → (TLN , ηLN ) and g : (TLN , ηLN ) → (PLN , µLN ) be any

two mappings. Then their composition g ◦ f is

(1) linguistic neutrosophic semi continuous if g is linguistic neutrosophic strongly contin-

uous and f is linguistic neutrosophic semi continuous.

(2) linguistic neutrosophic perfectly semi continuous if g is linguistic neutrosophic perfectly

semi continuous and f is linguistic neutrosophic continuous.

Proof: (1): Let g : (TLN , ηLN ) → (PLN , µLN ) be linguistic neutrosophic strongly continuous

and f is linguistic neutrosophic semi continuous. Let ULN be any linguistic neutrosophic closed

set in (PLN , µLN ). Then, g−1(ULN ) is linguistic neutrosophic cl-open set in (TLN , ηLN ) as g
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is linguistic neutrosophic strongly semi continuous. Now, f−1(g−1(ULN )) = (g ◦ f)−1(ULN ) is

linguistic neutrosophic semi closed set in (SLN , τLN ), since f is linguistic neutrosophic semi

continuous. Thus, g ◦f : (SLN , τLN )→ (PLN , µLN ) is linguistic neutrosophic semi continuous.

(2): Let f be linguistic neutrosophic continuous and g be linguistic neutrosophic perfectly

semi continuous. Let ULN be any linguistic neutrosophic semi closed set in (PLN , µLN ). Then,

g−1(ULN ) is linguistic neutrosophic cl-open set in (TLN , ηLN ) as g is linguistic neutrosophic

perfectly semi continuous. Since f is linguistic neutrosophic continuous, f−1(g−1(ULN )) =

(g ◦ f)−1(ULN ) is linguistic neutrosophic semi closed set in (SLN , τLN ), which implies g ◦ f :

(SLN , τLN )→ (PLN , µLN ) is linguistic neutrosophic perfectly semi continuous.

Definition 3.19. A function f : (SLN , τLN )→ (TLN , ηLN ) is called as linguistic neutrosophic

totally semi continuous if the inverse image of every linguistic neutrosophic open subset of

(TLN , ηLN ) is a linguistic neutrosophic semi cl-open subset of (SLN , τLN ).

Remark 3.20. It is clear that every linguistic neutrosophic totally continuous function is

linguistic neutrosophic totally semi continuous but the reverse implication is not true which

can be seen from the counter example.

Example 3.21. Let the universe of discourse be U = {x, y, z, w}. The set of all lin-

guistic terms be L= { very strongly disagree(l0), strongly disagree(l1), disagree(l2), mostly

disagree(l3), slightly disagree(l4), neither disagree nor agree(l5), slightly agree(l6), mostly

agree(l7), agree(l8), strongly agree(l9), very strongly agree(l10)}.
And SLN = {y, z} = TLN , τLN = {0LN , 1LN , ELN , FLN} and ηLN = {0LN , 1LN ,KLN}, de-

fines linguistic neutrosophic topology where, ELN = {〈y, (l3, l4, l2)〉, 〈z, (l3, l5, l3)〉} , FLN =

{〈y, (l2, l4, l3)〉, 〈z, (l3, l5, l3)〉),KLN = (〈y, l4, l2, l3〉, 〈z, l5, l3, l3〉) . The mapping A function f :

(SLN , τLN )→ (TLN , ηLN is defined by f(a) = c, f(b) = a, f(c) = b. Then f is a linguistic neu-

trosophic totally semi continuous function but not linguistic neutrosophic totally continuous.

Definition 3.22. A function f : (SLN , τLN ) → (TLN , ηLN ) is called as linguistic neutro-

sophic strongly semi continuous if the inverse image of every linguistic neutrosophic subset of

(TLN , ηLN ) is a linguistic neutrosophic semi cl-open subset of (SLN , τLN ).

Remark 3.23. Obviously, LN strong semi continuity ⇒ LN totally semi continuity ⇒ LN

semi continuity.

Given below is an example of a linguistic neutrosophic function which is linguistic neutrosophic

totally semi continuous but not linguistic neutrosophic strongly semi continuous.

Example 3.24. In example (3.5), the mapping f is linguistic neutrosophic semi continuous.

Clearly, the inverse image f−1(HLN ) is not linguistic neutrosophic closed and hence it is
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not linguistic neutrosophic semi cl-open. Thus, f is not linguistic neutrosophic totally semi

continuous and linguistic neutrosophic strongly semi continuous.

Theorem 3.25. Every linguistic neutrosophic totally semi continuous function into T1 space

is linguistic neutrosophic strongly semi continuous.

Proof:

In a T1 space all linguistic neutrosophic singleton sets are closed. Hence, f−1(ALN ) is linguistic

neutrosophic semi cl-open in SLN for every linguistic neutrosophic subset ALN of TLN .

Definition 3.26. A function f : (SLN , τLN )→ (TLN , ηLN ) is called as linguistic neutrosophic

slightly semi continuous if for every s ∈ SLN and for each cl-open subset VLN of TLN containing

f(s), there exists a linguistic neutrosophic semi open subset ULN of SLN such that s ∈ ULN
and f(ULN ) ⊆ VLN .

Theorem 3.27. Every linguistic neutrosophic slightly semi continuous function into a lin-

guistic neutrosophic discrete space is linguistic neutrosophic strongly semi continuous.

Proof:

Let f : (SLN , τLN )→ (TLN , ηLN ) be a linguistic neutrosophic slightly semi continuous function

from a linguistic neutrosophic space SLN into a linguistic neutrosophic discrete space TLN . Let

ALN be any linguistic neutrosophic subset of TLN , then ALN is a linguistic neutrosophic cl-

open subset of TLN . Hence f−1(ALN ) is linguistic neutrosophic cl-open set of SLN . Thus, f

is linguistic neutrosophic strongly semi continuous.

Theorem 3.28. If f : (SLN , τLN )→ (TLN , ηLN ) is linguistic neutrosophic slightly semi contin-

uous function and g : (TLN , ηLN )→ (RLN , µLN ) is linguistic neutrosophic totally continuous,

then g ◦ f is linguistic neutrosophic totally semi continuous.

Proof:

Let ALN be linguistic neutrosophic open subset of (RLN , µLN ). Then g−1(ALN ) is a linguistic

neutrosophic semi cl-open subset of (TLN , ηLN ). As f is linguistic neutrosophic slightly semi

continuous, we have, f−1(g−1(ALN )) = (g ◦ f)−1(ALN ) is linguistic neutrosophic semi cl-open

subset of (SLN , τLN ). Hence g ◦ f is linguistic neutrosophic totally semi continuous.

Definition 3.29. A function f : (SLN , τLN ) → (TLN , ηLN ) is called as linguistic neutro-

sophic totally continuous if the inverse image of every linguistic neutrosophic open subset of

(TLN , ηLN ) is a linguistic neutrosophic cl-open subset of (SLN , τLN ).

Definition 3.30. A function f : (SLN , τLN )→ (TLN , ηLN ) is called as linguistic neutrosophic

semi totally continuous if the inverse image of every linguistic neutrosophic semi open subset

of (TLN , ηLN ) is a linguistic neutrosophic cl-open subset of (SLN , τLN ).
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Example 3.31. Let the universe of discourse be U = {a, b, c, d, e} and let SLN = {b} = TLN .

The set of all linguistic term set be L= {no healing(l0), deterioting(l1), chronic(l2), some

what chronic(l3), extremely chronic(l4), very ill(l5), ill(l6), no healing(l7), healing(l8), slowly

healing(l9), fastly healing(l10)}. Let f : (SLN , τLN ) → (TLN , ηLN ) be the linguistic neutro-

sophic mapping defined by f(b) = c, f(c) = b. And τLN = {0LN , 1LN , 〈b, (l3, l1, l3)〉} and

ηLN = {0LN , 1LN , 〈b, (l3, l2, l1)〉, 〈b, (l1, l1, l2)〉} be linguistic neutrosophic topologies. The set

ELN = 〈b, (l3, l2, l1)〉 is linguistic neutrosophic semi open subset of (TLN , ηLN ). The inverse

image f−1(ELN ) in (SLN , τLN ) is both linguistic neutrosophic semi closed and linguistic neu-

trosophic semi open. Thus, the map f is linguistic neutrosophic semi totally continuous.

Theorem 3.32. A function f : (SLN , τLN ) → (TLN , ηLN ) is linguistic neutrosophic semi

totally continuous if and only if the inverse image of each linguistic neutrosophic semi closed

subset of (TLN , ηLN ) is a linguistic neutrosophic cl-open subset of (SLN , τLN ).

Proof:

Let KLN be any linguistic neutrosophic semi closed subset in (TLN , ηLN ), then TLN\KLN is lin-

guistic neutrosophic semi open subset of TLN . Then f−1(TLN\KLN ) is linguistic neutrosophic

cl-open in SLN , (i.e) SLN\f−1(KLN ) is linguistic neutrosophic cl-open in SLN . Therefore,

f−1(KLN ) is linguistic neutrosophic cl-open in SLN .

Conversely, if HLN is linguistic neutrosophic semi open subset of (TLN , ηLN ), then TLN\HLN

is linguistic neutrosophic semi closed subset of TLN . Then, f−1(TLN\HLN ) = SLN\f−1(HLN )

is linguistic neutrosophic cl-open in SLN and hence f−1(HLN ) is linguistic neutrosophic cl-

open in SLN . Therefore, the inverse image of every linguistic neutrosophic semi open subset

of TLN is a linguistic neutrosophic cl-open subset of SLN . Thus, f is linguistic neutrosophic

semi totally continuous.

Theorem 3.33. Every linguistic neutrosophic semi totally continuous mapping is a linguistic

neutrosophic totally continuous mapping.

Proof:

Let HLN be any linguistic neutrosophic open subset of TLN , where f : (SLN , τLN ) →
(TLN , ηLN ) is linguistic neutrosophic semi totally continuous mapping. As each linguistic

neutrosophic open set is linguistic neutrosophic semi open, HLN is linguistic neutrosophic

semi open in TLN and f−1(HLN ) is linguistic neutrosophic cl-open subset of SLN . Thus, the

inverse image of every open subset of TLN is linguistic neutrosophic cl-open in SLN which im-

plies, f is totally continuous. The converse part is not holds true which is given by a counter

example.

Example 3.34. Let the universe of discourse be U = {x, y, z} and SLN = {y, z} = TLN .

The set of all linguistic term set be L= {no healing(l0), deterioting(l1), chronic(l2), some
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what chronic(l3), extremely chronic(l4), very ill(l5), ill(l6), no healing(l7), healing(l8), slowly

healing(l9), fastly healing(l10)}.
Let f : (SLN , τLN ) → (TLN , ηLN ) be a linguistic neutrosophic mapping,defined by f(b) =

c, f(c) = b where τLN = {0LN , 1LN ,KLN} and ηLN = {0LN , 1LN , HLN}. The linguistic

neutrosophic sets KLN and HLN are given by KLN = {〈y, (l4, l5, l4)〉, 〈z, (l9, l9, l9)〉} and

HLN = {〈y, (l5, l4, l4)〉, 〈z, (l9, l9, l9)〉} respectively. The inverse image f−1(HLN ) is linguistic

neutrosophic cl-open in SLN . Thus, the map f is linguistic neutrosophic totally continuous.

Let DLN = 〈y, (l2, l4, l5)〉, 〈z, (l6, l5, l9)〉 be any linguistic neutrosophic set in TLN . Then DLN

is linguistic neutrosophic semi open but the inverse image is not linguistic neutrosophic cl-open

subset of SLN . Thus, the map f is not linguistic neutrosophic semi totally continuous.

Theorem 3.35. Every linguistic neutrosophic semi totally continuous mapping is a linguistic

neutrosophic totally semi continuous mapping.

Proof:

Let HLN be any linguistic neutrosophic open subset of TLN , where f : (SLN , τLN ) →
(TLN , ηLN ) is linguistic neutrosophic semi totally continuous mapping. As each linguistic

neutrosophic open set is linguistic neutrosophic semi open, HLN is linguistic neutrosophic

semi open in TLN and f−1(HLN ) is linguistic neutrosophic semi cl-open subset of SLN , as f

is linguistic neutrosophic semi totally continuous mapping. Thus, the inverse image of every

open subset of TLN is linguistic neutrosophic semi cl-open in SLN which implies, f is totally

semi continuous. The converse part is not holds true which is given by a counter example.

Example 3.36. In example (3.5), let SLN = {q, t} = TLN . Let f : (SLN , τLN ) →
(TLN , ηLN ) be the linguistic neutrosophic mapping defined by f(b) = c, f(c) = b.

And τLN = {0LN , 1LN ,KLN} and ηLN = {0LN , 1LN , HLN} be linguistic neutro-

sophic topologies.The linguistic neutrosophic sets KLN and HLN are given by KLN =

{〈q, (l3, l4, l2)〉, 〈t, (l5, l5, l2)〉} and HLN = {〈q, (l3, l3, l2)〉, 〈ts, (l4, l4, l5)〉} respectively. Linguis-

tic neutrosophic semi open sets in SLN are {0LN , 1LN , 〈q, (l3, l2, l3)〉, 〈t, (l4, l5, l4)〉} and in TLN

are {0LN , 1LN , 〈q, (l4, l5, l0)〉, 〈t, (l4, l6, l2)〉}.
Then the inverse image of the linguistic neutrosophic open set in (TLN , ηLN ) is linguistic neu-

trosophic semi cl-open in (SLN , τLN ) whereas the inverse image of the linguistic neutrosophic

semi open set in TLN is not linguistic neutrosophic semi cl-open. Thus, the map f is linguistic

neutrosophic totally semi continuous but not linguistic neutrosophic semi totally continuous.

Theorem 3.37. Every linguistic neutrosophic strongly continuous mapping is a linguistic

neutrosophic semi totally continuous mapping.

Proof:

Let f : (SLN , τLN ) → (TLN , ηLN ) is linguistic neutrosophic strongly continuous mapping and
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MLN be any linguistic neutrosophic semi open subset of TLN . Now, f−1(MLN ) is linguistic

neutrosophic semi cl-open subset of SLN , by definition. Thus, the inverse image of every semi

open subset of TLN is linguistic neutrosophic cl-open in SLN which implies,f is semi totally

continuous. The converse part is not holds true which is given by a counter example.

Example 3.38. In example (3.5), let SLN = {q, t} = TLN . Let f : (SLN , τLN ) →
(TLN , ηLN ) be the linguistic neutrosophic identity mapping. And τLN = {0LN , 1LN ,KLN}
and ηLN = {0LN , 1LN , HLN} be linguistic neutrosophic topologies.The linguistic neutro-

sophic sets KLN and HLN are given by KLN = {〈q, (l3, l2, l3)〉, 〈t, (l4, l5, l4)〉} and HLN =

{〈q, (l3, l4, l2)〉, 〈t, (l5, l5, l3)〉} respectively. Linguistic neutrosophic semi open sets in TLN are

{0LN , 1LN , 〈q, (l3, l2, l3)〉, 〈t, (l4, l5, l4)〉}.
Now, the inverse image of the linguistic neutrosophic semi open set in TLN is linguistic neu-

trosophic open in SLN . Let {〈q, (l3, l6, l0)〉, 〈t, (l3, l3, l1)〉} be any linguistic neutrosophic set

whose inverse image is neither linguistic neutrosophic open nor linguistic neutrosophic closed

in SLN . Therefore, the map f is linguistic neutrosophic semi totally continuous but not lin-

guistic neutrosophic strongly continuous mapping.

Theorem 3.39. Let f : (SLN , τLN ) → (TLN , ηLN ) be a mapping, from a linguistic neutro-

sophic topological space (SLN , τLN ) into a linguistic neutrosophic topological space (TLN , ηLN ).

Then the following statements are equivalent.

(1) f is linguistic neutrosophic semi totally continuous mapping.

(2) for every s ∈ SLN and for each linguistic neutrosophic semi open set MLN in

(TLN , ηLN ) with f(s) ∈ TLN , there exists a linguistic neutrosophic cl-open set KLN

in SLN such that s ∈ KLN and f(KLN ) ⊂MLN .

Proof:

(1) ⇒ (2): If f is linguistic neutrosophic semi totally continuous and MLN be any linguistic

neutrosophic semi open set in (TLN , ηLN ) containing f(s) so that s ∈ f−1(MLN ). Since f is

linguistic neutrosophic semi totally continuous, f−1(MLN ) is linguistic neutrosophic cl-open

in SLN and s ∈ MLN . Also, let KLN = f−1(MLN ), then f(KLN ) = f(f−1(MLN )) ⊂ MLN

which implies f(KLN ) ⊂MLN .

(2) ⇒ (1): Let MLN be linguistic neutrosophic semi open set in TLN and s ∈ f−1(MLN )

be any arbitrary linguistic neutrosophic point, then f(s) ∈ MLN . Thus, from the assump-

tion, there exists a linguistic neutrosophic cl-open set f(GLN ) ∈ SLN containing s such that

f(GLN ) ⊂MLN , which implies s ∈ GLN ⊂ f−1(MLN ).

Now, f−1(MLN ) is linguistic neutrosophic cl-open neighborhood of s. As s is arbitrary,

f−1(MLN ) is linguistic neutrosophic cl-open neighborhood of each of its points. Thus,
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f−1(MLN ) is linguistic neutrosophic cl-open set in SLN and hence f is linguistic neutrosophic

semi totally continuous.

Remark 3.40. The implications of all linguistic neutrosophic continuous functions are given

below.



A B C D E F G

A − 1 0 1 0 0 1

B 0 − 0 0 0 0 0

C 0 1 − 1 0 0 0

D 0 0 0 − 0 0 0

E 1(indiscrete) 0 0 0 − 0 0

F 0 0 0 0 0 − 0

G 1(T1) 0 0 0 0 0 −


where, A - LN strongly semi continuous, B - LN quasi semi continuous, C - LN perfectly semi

continuous, D - LN contra semi continuous, E - LN slightly semi continuous, F - LN semi

totally continuous, G - LN totally semi continuous, respectively.
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—————————————————————————————————————————-

1. Introduction

The theory of hyperstructure came into existence in 1934 when Marty [1] defined hyper-

groups as being generalized. To propose an overlying homomorphism, Corsini [2] developed

the concept of hypering and general forms of hypering. The Hv-ring, the Hv-subring, and the

Hv-ideals of the Hv-ring, all these are modifying the thoughts introduced by Corsini [2], have

been invented by Vougiouklis [3, 4]. Generally, [5] offers a variety of rates in [0, 1] stated by

a single real number. In order to relieve ambiguities, a fuzzy set model was created by the

Turksen [6], which was utilized to assess membership of the fuzzy set framework. An enhance-

ment of fuzzy sets is intuitionistic sets, suggested in 1986 by Atanassov [7]. This approach

was analogous to the interval-valued fuzzy sets described in [8]. Intuitionistic fuzzy sets can

execute flawed data and not inexhaustible information, frequently in real-life [8]. Rosenfeld [9]

launched the fuzzy algebra work, extending it to several fuzzy models such as intuitionistic

fuzzy sets, fuzzy soft sets, and imprecise soft sets. Some artworks related to soft, fuzzy rings
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and ideal vague soft groups, vague soft rings, and soft ideals are also found in [10–13]. In 1998,

to attain these goals, Smarandache suggested the neutrosophic paradigm in [14]. In [15–20],

numerous new neutrosophic theoretical fads were launched.

Wang et al. [8] pioneered the theory of a single-valued neutrosophic set (SV NS), whereas

Smaranache plithogenic was presented into [21] as a refinement of neutrosophic structure. Hy-

perstructure theory is often used in numerous mathematical ideas. Algebraic hyperstructures

have a wide range of applications, including fuzzy sets, design and data, artificial intelligence,

lattices, automation, and combinatorics, and etc. As a result of fuzzy algebra research, fuzzy

hyperalgebraic theory was produced. Liu [22] created the idea of fuzzy ideals of a ring. A

lot of hyperstructure work has been done over the last two decades, such as fuzzy hyperalge-

bras [23], fuzzy hyperrings [24], fuzzy topological F-polygroups [25], Bipolar-valued fuzzy soft

hyper BCK ideals [26], fuzzy hypergroup degree [27], fuzzy hypergraphs [28], hyper-spectral

image analysis [29], fundamental relations on fuzzy hypermodules [30], and so on.

There are works available of hyperstructures related to hyperrings in these manuscripts: fuzzy

hyperings [31], Γ-hyperrings [32], soft hyperrings [33], topological hyperrings [34], and topo-

logical structures of lower and upper rough subsets in a hyperring [35], etc. In [36], Davvaz

initiated the generalization of fuzzy hyperideal. Bharathi and Vimala subsequently established

the notions of fuzzy l-ideal in [37], and the fuzzy l-ideal was then expanded in [38]. In [39–41],

Selvachandran et al. introduced the hypergroup and hyperring theory for imprecise soft sets,

and some other important works on fuzzy sets are studied in [42–45].

In this paper, we focus on the theories of ($, ε, ς)-SV NHRs and ($, ε, ς)-SV NHIs in order

to contribute to the advancement of the neutrosophic theory of hyperalgebraic.

2. Preliminaries

Let Ξ be a set of points where n̂ refers to a generic element of Ξ.

Definition 2.1. [8] A SV NS Υ neutrosophic set that is characterized by a truth member-

ship function τΥ(n̂), an indeterminacy-membership function ιΥ(n̂), and a falsity-membership

function zΥ(n̂), where τΥ(n̂), ιΥ(n̂),zΥ(n̂) ∈ [0, 1]. This set Υ can thus be written as:

Υ = {〈n̂, τΥ(n̂), ιΥ(n̂),zΥ(n̂)〉 : n̂ ∈ Ξ)}.

The sum of τΥ(n̂), ιΥ(n̂) and zΥ(n̂) must fulfill the clause 0 ≤ τΥ(n̂)+ιΥ(n̂)+zΥ(n̂) ≤ 3. For

a SV NS Υ in Ξ, the triplet (τΥ(n̂), ιΥ(n̂),zΥ(n̂)) is referred to as a single valued neutrosophic

number (SVNN). Let n̂ = (τn̂, ιn̂,zn̂) stand for a SVNN.

Definition 2.2. [8] Assume Υ and Γ are two SV NSs in a universe Ξ.

(1) Υ is contained in Γ, if τΥ(n̂) ≤ τΓ(n̂), ιΥ(n̂) ≤ ιΓ(n̂), and zΥ(n̂) ≥ zΓ(n̂), ∀ n̂ ∈ Ξ.

This relationship is denoted as Υ ⊆ Γ.
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(2) Υ=Γ if Υ ⊆ Γ and Γ ⊆ Υ.

(3) Υc = (n̂, (zΥ(n̂), 1− ιΥ(n̂), τΥ(n̂)), ∀ n̂ ∈ Ξ.

(4) Υ ∪ Γ = (n̂, (
∨

(τΥ, τΓ),
∨

(ιΥ, ιΓ),
∧

(zΥ,zΓ))), ∀ n̂ ∈ Ξ.

(5) Υ ∩ Γ = (n̂, (
∧

(τΥ, τΓ),
∧

(ιΥ, ιΓ),
∨

(zΥ,zΓ))), ∀ n̂ ∈ Ξ.

Definition 2.3. [1] A hypergroup 〈H, ◦〉 is a set H with an associative hyperoperation

(◦) : H ∗H −→ P (H) which satisfies n̂ ◦H = H ◦ n̂ = H, ∀ n̂ ∈ H (reproduction axiom).

Definition 2.4. [36] If the following properties satisfy, a hyperstructure 〈H, ◦〉 is termed a

Hv-group:

(1) n̂ ◦ (ô ◦ p̂) ∩ (n̂ ◦ ô) ◦ p̂ 6= φ, ∀ n̂, ô, p̂ ∈ H, (Hv-semigroup).

(2) n̂ ◦H = H ◦ n̂ = H, ∀ n̂ ∈ H.

Definition 2.5. [1] A subset W of H is termed as subhypergroup if 〈W, ◦〉 is a hypergroup.

Definition 2.6. [2] A Hv-ring is a multi-valued system (R,+, ◦) that satisfies the following

axioms:

(1) (R,+) must a Hv-group,

(2) (R, ◦) must a Hv-semigroup,

(3) The hyperoperation “ ◦ ” is weak distributive over the hyperoperation “ + ”, that is for

each n̂, ô, p̂ ∈ R the clauses n̂ ◦ (ô+ p̂) ∩ ((n̂ ◦ ô) + (n̂ ◦ p̂)) 6= φ and

(n̂+ ô) ◦ p̂ ∩ ((n̂ ◦ p̂) + (ô ◦ p̂)) 6= φ must satisfy.

Definition 2.7. [2] A nonempty subset R
′

of R is a subhyperring of (R,+, ◦) if (R
′
,+) is a

subhypergroup of (R,+) and ∀ n̂, ô, p̂ ∈ R′ , n̂ ◦ ô ∈ P ∗(R
′
), where P ∗(R

′
) denotes the set of

all non-empty subsets of R
′
.

Definition 2.8. [2] Suppose Hv-ring be R. a nonempty subset I of R is called a left (resp.

right) Hv-ideal if the following axioms hold:

(1) (I,+) be a Hv-subgroup of (R,+),

(2) R ◦ I ⊆ I(resp. I ◦R ⊆ I).

If I is both a left and right Hv-ideal of R, then I is called Hv-ideal of R.

3. ($, ε, ς)-Single Valued Neutrosophic Hyperrings

We represent hyperring (R,+, ◦) by R throughout this section.

Definition 3.1. If Υ be a single valued neutrosophic subset of Ξ then ($, ε, ς)-single valued

neutrosophic Υ subset of Ξ is categorize as,

Υ($,ε,ς) =
{
〈n̂, τ$Υ (n̂), ιεΥ(n̂),zς

Υ(n̂)〉|τ$Υ (n̂) =
∧
{τΥ(n̂), $}, ιεΥ(n̂) =

∧
{ιΥ(n̂), ε},zς

Υ(n̂) =
∨
{zΥ(n̂), ς}, n̂ ∈ Ξ

}
,
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and 0 ≤ τ$Υ (n̂)+ιεΥ(n̂)+zς
Υ(n̂) ≤ 3, where $, ε, ς ∈ [0, 1] also τ, ι,z : Υ→ [0, 1], such that τ$Υ ,

ιεΥ, zς
Υ represents the functions of truth, indeterminacy, and falsity-membership, respectively.

Definition 3.2. Let Υ be a ($, ε, ς)-SV NS over R. Then Υ is called a ($, ε, ς)-SV NHR

over R, if,

(1) ∀ k̂, l̂ ∈ R,∧
{τ$Υ (k̂), τ$Υ (l̂)} ≤ inf{τ$Υ (m̂) : m̂ ∈ k̂ + l̂},∨
{ιεΥ(k̂), ιεΥ(l̂)} ≥ sup{ιεΥ(m̂) : m̂ ∈ k̂ + l̂}, and∨
{zς

Υ(k̂),zς
Υ(l̂)} ≥ sup{zς

Υ(m̂) : m̂ ∈ k̂ + l̂}.
(2) ∀ n̂, k̂ ∈ R, ∃ l̂ ∈ R such that k̂ ∈ n̂+ l̂ and∧

{τ$Υ (n̂), τ$Υ (k̂)} ≤ τ$Υ (l̂),∨
{ιεΥ(n̂), ιεΥ(k̂)} ≥ ιεΥ(l̂), and∨
{zς

Υ(n̂),zς
Υ(k̂)} ≥ zς

Υ(l̂)

(3) ∀ n̂, k̂ ∈ R, ∃ m̂ ∈ R such that k̂ ∈ m̂+ n̂ and∧
{τ$Υ (n̂), τ$Υ (k̂)} ≤ τ$Υ (m̂),∨
{ιεΥ(n̂, ιεΥ(k̂)} ≥ ιεΥ(m̂), and∨
{zς

Υ(n̂,zς
Υ(k̂)} ≥ zς

Υ(m̂).

(4) ∀ k̂, l̂ ∈ R,∧
{τ$Υ (k̂), τ$Υ (l̂} ≤ inf{τ$Υ (m̂) : m̂ ∈ k̂ ◦ l̂},∨
{ιεΥ(k̂), ιεΥ(l̂)} ≥ sup{ιεΥ(m̂) : m̂ ∈ k̂ ◦ l̂}, and∨
{zς

Υ(k̂),zς
Υ(l̂)} ≥ sup{zς

Υ(m̂) : m̂ ∈ k̂ ◦ l̂}.

Example 3.3. The family of t-level sets of ($, ε, ς)-SV NSs over R is a subhyperring of R is

resulting below:

Υ
($,ε,ς)
t = {k̂ ∈ R : τ$Υ (k̂) ≥ t, ιεΥ(k̂) ≤ t, zς

Υ(k̂) ≤ t}, ∀ t ∈ [0, 1].

Then Υ over R is a ($, ε, ς)-SV NHR.

Theorem 3.4. Υ is a ($, ε, ς)-SV NS over R. Then Υ is a ($, ε, ς)-SV NHR over R if

and only if Υ is ($, ε, ς)-single valued neutrosophic semi hypergroup over (R, ◦) and also a

($, ε, ς)-single valued neutrosophic hypergroup over (R,+).

Proof. The definition 3.2 readily indicates this proof.

Proposition 3.5. If Υ and Γ be two ($, ε, ς)-single-valued neutrosophic subset of ring R then

(Υ ∩ Γ)($,ε,ς)=Υ($,ε,ς) ∩ Γ($,ε,ς).
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Proof. Assume that Υ and Γ are two ($, ε, ς)-single-valued neutrosophic subset of ring R.

(Υ∩Γ)($,ε,ς)(n̂) =
{

min{min{τΥ(n̂), τΓ(n̂)}, $},min{min{ιΥ(n̂), ιΓ(n̂)}, ε},max{max{zΥ(n̂),zΓ(n̂)}, ς}
}

=
{

min{min{τΥ(n̂), $},min{τΓ(n̂), $}},min{min{ιΥ(n̂), ε},max{ιΓ(n̂), ε}},max{max{zΥ(n̂), ς},max{zΓ(n̂), ς}}
}

=
{

min({τ$Υ (n̂)}, {τ$Γ (n̂)}),min({ιεΥ(n̂)}, {ιεΓ(n̂)}),max({zς
Υ(n̂)}, {zς

Γ(n̂)})
}

= Υ($,ε,ς)(n̂)∩Γ($,ε,ς)(n̂), ∀ n̂ ∈ R.

Theorem 3.6. Let Υ and Γ be ($, ε, ς)-SV NHRs over R. Then Υ∩Γ is a ($, ε, ς)-SV NHR

over R if it is non-null.

Proof. Let Υ and Γ are ($, ε, ς)-SV NHRs over R. By using Definition 3.2, and Proposition

3.5

(Υ ∩ Γ)($,ε,ς) = Υ($,ε,ς) ∩ Γ($,ε,ς) = {〈k̂, (τ$Υ
∧

τ$Γ )(k̂), (ιεΥ
∧

ιεΓ)(k̂), (zς
Υ

∨
zς

Γ)(k̂)〉 : k̂ ∈ R},

where

(τ$Υ
∧

τ$Γ )(k̂) =
∧

(τ$Υ (k̂), τ$Γ (k̂)),

(ιεΥ
∧

ιεΓ)(k̂) =
∧

(ιεΥ(k̂), ιεΓ(k̂)),

(zς
Υ

∨
zς

Γ)(k̂) =
∨

(zς
Υ(k̂),zς

Γ(k̂)).

Assuming ∀ k̂, l̂ ∈ R, we are only proven to include all four clauses for membership terms τ$Υ ,

τ$Γ and indeterminacy terms ιεΥ, ιεΓ. Indications for falsity functions of zς
Υ, zς

Γ correspondingly

derived.

(1)
∧
{(τ$Υ

∧
τ$Γ )(k̂), (τ$Υ

∧
τ$Γ )(l̂)} =

∧
{
∧

(τ$Υ (k̂), τ$Γ (k̂)),
∧

(τ$Υ (l̂), τ$Γ (l̂))}

≤
∧
{
∧

(τ$Υ (k̂), τ$Υ (l̂)),
∧

(τ$Γ (k̂), τ$Γ (l̂))}

≤
∧
{inf{τ$Υ (m̂) : m̂ ∈ k̂ + l̂}, inf{τ$Γ (m̂) : m̂ ∈ k̂ + l̂}}

≤ inf{
∧

(τ$Υ (m̂), τ$Γ (m̂)) : m̂ ∈ k̂ + l̂}

= inf{(τ$Υ
∧

τ$Γ )(m̂) : m̂ ∈ k̂ + l̂}.

⇒
∧
{(τ$Υ

∧
τ$Γ )(k̂), (τ$Υ

∧
τ$Γ )(l̂)} ≤ inf{(τ$Υ

∧
τ$Γ )(m̂) : m̂ ∈ k̂ + l̂}.
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Also

∨
{(ιεΥ

∧
ιεΓ)(k̂), (ιεΥ

∧
ιεΓ)}(l̂)} =

∨
{
∧

(ιεΥ(k̂), ιεΓ(k̂)),
∧

(ιεΥ(l̂), ιεΓ(l̂))}

≥
∧
{
∨

(ιεΥ(k̂), ιεΥ(l̂)),
∨

(ιεΓ(k̂), ιεΓ(l̂))}

≥
∧
{sup{ιεΥ(m̂) : m̂ ∈ k̂ + l̂}, sup{ιεΓ(m̂) : m̂ ∈ k̂ + l̂}}

≥ sup{
∧

(ιεΥ(m̂), ιεΓ(m̂)) : m̂ ∈ k̂ + l̂}

= sup{(ιεΥ(m̂)
∧
ιεΓ(m̂)) : m̂ ∈ k̂ + l̂}.

⇒
∨
{(ιεΥ

∧
ιεΓ)(k̂), (ιεΥ

∧
ιεΓ)}(l̂)} ≥ sup{(ιεΥ(m̂)

∧
ιεΓ(m̂)) : m̂ ∈ k̂ + l̂}.

Similarly,

∨
{(zς

Υ

∨
zς

Γ)(k̂), (zς
Υ

∨
zς

Γ)}(l̂)} ≥ sup{(zς
Υ(m̂)

∨
zς

Γ(m̂)) : m̂ ∈ k̂ + l̂}.

(2) ∃ ∀ n̂, k̂ ∈ R such that k̂ ∈ n̂+ l̂ then it argues that:

∧
{(τ$Υ

∧
τ$Γ )(n̂), (τ$Υ

∧
τ$Γ )(k̂)} =

∧
{
∧

(τ$Υ (n̂), τ$Γ (n̂)),
∧

(τ$Υ (k̂), τ$Γ (k̂))}

≤
∧
{
∧

(τ$Υ (n̂), τ$Υ (k̂)),
∧

(τ$Γ (n̂), τ$Γ (k̂))}

≤ {
∧

(τ$Υ (l̂), τ$Γ (l̂))}

= (τ$Υ
∧

τ$Γ )(l̂).

⇒
∧
{(τ$Υ

∧
τ$Γ )(n̂), (τ$Υ

∧
τ$Γ )(k̂)} ≤ {(τ$Υ

∧
τ$Γ )(l̂) : k̂ ∈ n̂+ l̂}.

Also, ∃ ∀ n̂, k̂ ∈ R such that k̂ ∈ n̂+ l̂ then it argues that:

∨
{(ιεΥ

∧
ιεΓ)(n̂), (ιεΥ

∧
ιεΓ)(k̂)} =

∨
{
∧

(ιεΥ(n̂), ιεΓ(n̂)),
∧

(ιεΥ(k̂), ιεΓ(k̂))}

≥
∨
{
∧

(ιεΥ(n̂), ιεΥ(k̂)),
∧

(ιεΓ(n̂), ιεΓ(k̂))}

≥ {
∧

(ιεΥ(l̂), ιεΓ(l̂))}

= {(ιεΥ(l̂)
∧
ιεΓ(l̂))}.

⇒
∨
{(ιεΥ

∧
ιεΓ)(n̂), (ιεΥ

∧
ιεΓ)(k̂)} ≥ {(ιεΥ(l̂)

∧
ιεΓ(l̂)) : k̂ ∈ n̂+ l̂}

Similarly,

∨
{(zς

Υ

∨
zς

Γ)(n̂), (zς
Υ

∨
zς

Γ)(k̂)} ≥ {(zς
Υ(l̂)

∨
zς

Γ(l̂)) : k̂ ∈ n̂+ l̂}
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(3) ∀ n̂, k̂ ∈ R ∃ m̂ ∈ R where k̂ ∈ m̂+ n̂ can be readily proved that∧
{(τ$Υ

∧
τ$Γ )(n̂), (τ$Υ

∧
τ$Γ )(k̂)} =

∧
{
∧

(τ$Υ (n̂), τ$Γ (n̂)),
∧

(τ$Υ (k̂), τ$Γ (k̂))}

≤
∧
{
∧

(τ$Υ (n̂), τ$Υ (k̂)),
∧

(τ$Γ (n̂), τ$Γ (k̂))}

≤ {
∧

(τ$Υ (m̂), τ$Γ (m̂))}

= (τ$Υ
∧

τ$Γ )(m̂).

⇒
∧
{(τ$Υ

∧
τ$Γ )(n̂), (τ$Υ

∧
τ$Γ )(k̂)} ≤ {(τ$Υ

∧
τ$Γ )(m̂) : k̂ ∈ m̂+ n̂}.

Also, ∀ n̂, k̂ ∈ R ∃ m̂ ∈ R where k̂ ∈ m̂+ n̂ then it argues that:∨
{(ιεΥ

∧
ιεΓ)(n̂), (ιεΥ

∧
ιεΓ)(k̂)} =

∨
{
∧

(ιεΥ(n̂), ιεΓ(n̂)),
∧

(ιεΥ(k̂), ιεΓ(k̂))}

≥
∨
{
∧

(ιεΥ(n̂), ιεΥ(k̂)),
∧

(ιεΓ(n̂), ιεΓ(k̂))}

≥ {
∧

(ιεΥ(m̂), ιεΓ(m̂))}

= {(ιεΥ(m̂)
∧
ιεΓ(m̂))}.

⇒
∨
{(ιεΥ

∧
ιεΓ)(n̂), (ιεΥ

∧
ιεΓ)(k̂)} ≥ {(ιεΥ(m̂)

∧
ιεΓ(m̂)) : k̂ ∈ m̂+ n̂}

Similarly,∨
{(zς

Υ

∨
zς

Γ)(n̂), (zς
Υ

∨
zς

Γ)(k̂)} ≥ {(zς
Υ(m̂)

∨
zς

Γ(m̂)) : k̂ ∈ m̂+ n̂}

(4) ∀ k̂, l̂ ∈ R,∧
{(τ$Υ

∧
τ$Γ )(k̂), (τ$Υ

∧
τ$Γ )(l̂)} ≤ inf{(τ$Υ

∧
τ$Γ )(m̂) : m̂ ∈ k̂ ◦ l̂},∨

{(ιεΥ
∧

τ εΓ)(k̂), (ιεΥ
∧

ιεΓ)(l̂)} ≥ sup{(ιεΥ
∧

τ εΓ) (m̂) : m̂ ∈ k̂ ◦ l̂},∨
{(zς

Υ

∧
zς

Γ)(k̂), (zς
Υ

∧
zς

Γ)(l̂)} ≥ sup{(zς
Υ

∧
zς

Γ)(m̂) : m̂ ∈ k̂ ◦ l̂}.

Hence, Υ ∩ Γ is ($, ε, ς)-SV NHR over R.

Theorem 3.7. Let Υ be a ($, ε, ς)-SV NHR over R. Then for every t ∈ [0, 1], Υ
($,ε,ς)
t 6= φ

is a subhyperring over R.

Proof. Let Υ be a ($, ε, ς)-SV NHR over R. ∀ t ∈ [0, 1], let k̂, l̂ ∈ Υ
($,ε,ς)
t .

Then τ$Υ (k̂), τ$Υ (l̂) ≥ t, ιεΥ(k̂), ιεΥ(l̂) ≤ t and zς
Υ(k̂),zς

Υ(l̂) ≤ t.
Since Υ is a ($, ε, ς)-single valued neutrosophic subhypergroup of (R,+), we have the following

inf{τ$Υ (m̂) : m̂ ∈ k̂ + l̂} ≥
∧
{τ$Υ (k̂), τ$Υ (l̂)} ≥

∧
{t, t} = t,

sup{ιεΥ(m̂) : m̂ ∈ k̂ + l̂} ≤
∨
{ιεΥ(k̂), ιεΥ(l̂)} ≤

∨
{t, t} = t,

and

sup{zς
Υ(m̂) : m̂ ∈ k̂ + l̂} ≤

∨
{zς

Υ(k̂),zς
Υ(l̂)} ≤

∨
{t, t} = t.
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This implies that m̂ ∈ Υ
($,ε,ς)
t and then for every m̂ ∈ k̂ + l̂, we obtain k̂ + l̂ ⊆ Υ

($,ε,ς)
t .

As such, for every m̂ ∈ Υ
($,ε,ς)
t , we obtain m̂+ Υ

($,ε,ς)
t ⊆ Υ

($,ε,ς)
t .

Now let k̂, m̂ ∈ Υ
($,ε,ς)
t . Then τ$Υ (k̂), τ$Υ (m̂) ≥ t, ιεΥ(k̂), ιεΥ(m̂) ≤ t and zς

Υ(k̂), zς
Υ(m̂) ≤ t.

Υ is a ($, ε, ς)-single valued neutrosophic subhypergroup of (R,+), ∃ l̂ ∈ R such that

k̂ ∈ m̂ + l̂ and τ$Υ (l̂) ≥
∧

(τ$Υ (k̂), τ$Υ (m̂)) ≥ t, ιεΥ(l̂) ≤
∨

(ιεΥ(k̂), ιεΥ(m̂)) ≤ t, zς
Υ(l̂) ≤∨

(zς
Υ(k̂), zς

Υ(m̂)) ≤ t, and this implies that l̂ ∈ Υ
($,ε,ς)
t . Therefore, we obtain Υ

($,ε,ς)
t ⊆

m̂+ Υ
($,ε,ς)
t .

As such, we obtain m̂+ Υ
($,ε,ς)
t = Υ

($,ε,ς)
t . As a result, Υ

($,ε,ς)
t is a subhypergroup of (R,+).

Let k̂, l̂ ∈ Υ
($,ε,ς)
t , then τ$Υ (k̂), τ$Υ (l̂) ≥ t, ιεΥ(k̂), ιεΥ(l̂) ≤ t and zς

Υ(k̂), zς
Υ(l̂) ≤ t. Since Υ is

a ($, ε, ς)-single valued neutrosophic sub-semihypergroup of (R, ◦), then ∀ k̂, l̂ ∈ R, we have

the following:

inf{τ$Υ (m̂) : m̂ ∈ k̂ ◦ l̂} ≥
∧
{τ$Υ (k̂), τ$Υ (l̂)} = t,

sup{ιεΥ(m̂) : m̂ ∈ k̂ ◦ l̂} ≤
∨

(ιεΥ(k̂), ιεΥ(l̂)) = t,

and

sup{zς
Υ(m̂) : m̂ ∈ k̂ ◦ l̂ ≤

∨
(zς

Υ(k̂), zς
Υ(l̂) = t.

This implies that m̂ ∈ Υ
($,ε,ς)
t and consequently k̂ ◦ l̂ ∈ Υ

($,ε,ς)
t .

Therefore, for every k̂, l̂ ∈ Υ
($,ε,ς)
t we obtain k̂ ◦ l̂ ∈ P ∗(R). Hence Υ

($,ε,ς)
t is a subhyperring

over R.

Theorem 3.8. Let Υ be a ($, ε, ς)-single valued neutrosophic set over R. Then the following

statements are equivalent:

(1) Υ is a ($, ε, ς)-SV NHR over R.

(2) ∀ t ∈ [0, 1], a non-empty Υ
($,ε,ς)
t is a subhyperring over R.

Proof. (1)⇒(2) ∀ t ∈ [0, 1], by Theorem 3.7, Υ
($,ε,ς)
t is subhyperring over R.

(2)⇒(1) Assume that Υ
($,ε,ς)
t is a subhyperring over R. Let k̂, l̂ ∈ Υ

($,ε,ς)
t and therefore

k̂ + l̂ ⊆ Υ
($,ε,ς)
t0

. Then for every m̂ ∈ k̂ + l̂ we have τ$Υ (m̂) ≥ t0, ιεΥ(m̂) ≤ t0 and zς
Υ(m̂) ≤ t0,

which implies that: ∧
(τ$Υ (k̂), τ$Υ (l̂)) ≤ inf{τ$Υ (m̂) : m̂ ∈ k̂ + l̂},∨
(ιεΥ(k̂), ιεΥ(l̂)) ≥ sup{ιεΥ(m̂) : m̂ ∈ k̂ + l̂},

and ∨
(zς

Υ(k̂),zς
Υ(l̂)) ≥ sup{zς

Υ(m̂) : m̂ ∈ k̂ + l̂}.

Thus, clause (1) of Definition 3.2 has been fulfilled.

Next, let n̂, k̂ ∈ Υ
($,ε,ς)
t1

for every t1 ∈ [0, 1] which means that ∃ l̂ ∈ Υ
($,ε,ς)
t1

such that k̂ ∈ n̂◦ l̂.
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Since l̂ ∈ Υ
($,ε,ς)
t1

, we have τ$Υ (l̂) ≥ t1, ιεΥ(l̂) ≤ t1 and zς
Υ(l̂) ≤ t1, and thus we have

τ$Υ (l̂) ≥ t1 =
∧

(τ$Υ (k̂), τ$Υ (m̂)),

ιεΥ(l̂) ≤ t1 =
∨

(ιεΥ(k̂), ιεΥ(m̂)),

and

zς
Υ(l̂) ≤ t1 =

∨
(zς

Υ(k̂),zς
Υ(m̂)).

Thus, clause (2) of Definition 3.2 has been fulfilled.

Assurance of (3) of Definition 3.2 can be satisfied in a similar way.

As a result, Υ is a ($, ε, ς)-single valued neutrosophic subhypergroup of (R,+).

Now since Υ
($,ε,ς)
t is a sub-semihypergroup of the semihypergroup (R, ◦), we got the following.

Let k̂, l̂ ∈ Υ
($,ε,ς)
t2

and therefore we have k̂ ◦ l̂ ∈ Υ
($,ε,ς)
t2

. Thus for every m̂ ∈ k̂ ◦ l̂, we obtain

τ$Υ (m̂) ≥ t2, ιεΥ(m̂) ≤ t2 and zς
Υ(m̂) ≤ t2, and therefore it follows that:∧

(τ$Υ (k̂), τ$Υ (l̂)) ≤ inf{τ$Υ (m̂) : m̂ ∈ k̂ ◦ l̂},∨
(ιεΥ(k̂), ιεΥ(l̂)) ≥ sup{ιεΥ(m̂) : m̂ ∈ k̂ ◦ l̂},

and ∨
(zς

Υ(k̂), zς
Υ(l̂)) ≥ sup{zς

Υ(m̂) : m̂ ∈ k̂ ◦ l̂}.

which reveals that clause (4) of Definition 3.2 is verified.

Hence Υ is a ($, ε, ς)-SV NHR over R.

4. ($, ε, ς)-Single Valued Neutrosophic Hyperideals

Definition 4.1. Let Υ be a ($, ε, ς)-SV NS over R. Then Υ is ($, ε, ς)-single valued neutro-

sophic left (resp. right) hyperideal over R, if,

(1) ∀ k̂, l̂ ∈ R,∧
{τ$Υ (k̂), τ$Υ (l̂)} ≤ inf{τ$Υ (m̂) : m̂ ∈ k̂ + l̂},∨
{ιεΥ(k̂), ιεΥ(l̂)} ≥ sup{ιεΥ(m̂) : m̂ ∈ k̂ + l̂}, and∨
{zς

Υ(k̂), zς
Υ(l̂)} ≥ sup{zς

Υ(m̂) : m̂ ∈ k̂ + l̂}.
(2) ∀ n̂, k̂ ∈ R, ∃ l̂ ∈ R such that k̂ ∈ n̂+ l̂, and∧

{τ$Υ (n̂), τ$Υ (k̂)} ≤ τ$Υ (l̂),∨
{ιεΥ(n̂), ιεΥ(k̂)} ≥ ιεΥ(l̂), and∨
{zς

Υ(n̂), zς
Υ(k̂)} ≥ zς

Υ(l̂).

(3) ∀ n̂, k̂ ∈ R, ∃ m̂ ∈ R such that k̂ ∈ m̂+ n̂, and∧
{τ$Υ (n̂), τ$Υ (k̂)} ≤ τ$Υ (m̂),∨
{ιεΥ(n̂), ιεΥ(k̂)} ≥ ιεΥ(m̂), and∨
{zς

Υ(n̂), zς
Υ(k̂)} ≥ zς

Υ(m̂).
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(4) ∀ k̂, l̂ ∈ R,

τ$Υ (l̂) ≤ inf{τ$Υ (m̂) : m̂ ∈ k̂ ◦ l̂} (resp. τ$Υ (k̂) ≤ inf{τ$Υ (m̂) : m̂ ∈ k̂ ◦ l̂}),
ιεΥ(l̂) ≥ sup{ιεΥ(m̂) : m̂ ∈ k̂ ◦ l̂} (resp. ιεΥ(k̂) ≥ sup{ιεΥ(m̂) : m̂ ∈ k̂ ◦ l̂}), and

zς
Υ(l̂) ≥ sup{zς

Υ(m̂) : m̂ ∈ k̂ ◦ l̂} (resp. zς
Υ(k̂) ≥ sup{zς

Υ(m̂) : m̂ ∈ k̂ ◦ l̂}).

If Υ is a ($, ε, ς)-single valued neutrosophic left (resp. right) hyperideal of R then Υ is a

($, ε, ς)-single valued neutrosophic subhypergroup of (R,+) by clauses (1), (2) and (3).

Definition 4.2. Let Υ be a ($, ε, ς)-SV NS over R. Then Υ is a ($, ε, ς)-SV NHI over R, if

aforementioned clauses are met:

(1) ∀ k̂, l̂ ∈ R,∧
{τ$Υ (k̂), τ$Υ (l̂)} ≤ inf{τ$Υ (m̂) : m̂ ∈ k̂ + l̂},∨
{ιεΥ(k̂), ιεΥ(l̂)} ≥ sup{ιεΥ(m̂) : m̂ ∈ k̂ + l̂}, and∨
{zς

Υ(k̂), zς
Υ(l̂)} ≥ sup{zς

Υ(m̂) : m̂ ∈ k̂ + l̂}.
(2) ∀ n̂, k̂ ∈ R, ∃ l̂ ∈ R such that k̂ ∈ n̂+ l̂, and∧

{τ$Υ (n̂), τ$Υ (k̂)} ≤ τ$Υ (l̂),∨
{ιεΥ(n̂), ιεΥ(k̂)} ≥ ιεΥ(l̂), and∨
{zς

Υ(n̂), zς
Υ(k̂)} ≥ zς

Υ(l̂).

(3) ∀ n̂, k̂ ∈ R, ∃ m̂ ∈ R such that k̂ ∈ m̂+ n̂, and∧
{τ$Υ (n̂), τ$Υ (k̂)} ≤ τ$Υ (m̂),∨
{ιεΥ(n̂), ιεΥ(k̂)} ≥ ιεΥ(m̂), and∨
{zς

Υ(n̂), zς
Υ(k̂)} ≥ zς

Υ(m̂).

(4) ∀ k̂, l̂ ∈ R,∨
{τ$Υ (k̂), τ$Υ (l̂)} ≤ inf{τ$Υ (m̂) : m̂ ∈ k̂ ◦ l̂},∨
{ιεΥ(k̂), ιεΥ(l̂)} ≥ sup{ιεΥ(m̂) : m̂ ∈ k̂ ◦ l̂}, and∨
{zς

Υ(k̂),zς
Υ(l̂)} ≥ sup{zς

Υ(m̂) : m̂ ∈ k̂ ◦ l̂}.

Υ is a ($, ε, ς)-single valued neutrosophic subhypergroup of (R,+) by clauses (1), (2) and

(3). Clause (4) indicate that Υ is both ($, ε, ς)-single valued neutrosophic left hyperideal and

($, ε, ς)-single valued neutrosophic right hyperideal.

⇒ Υ is a ($, ε, ς)-SV NHI of R.

Theorem 4.3. Let Υ be a non-null ($, ε, ς)-SV NS over R. Υ is a ($, ε, ς)-SV NHI over R if

and only if Υ is a ($, ε, ς)-single valued neutrosophic hypergroup over (R,+) and also Υ is both

a ($, ε, ς)-single valued neutrosophic left hyperideal and a ($, ε, ς)-single valued neutrosophic

right hyperideal of R.

Proof. With the help of Definitions 4.1 and 4.2, we get the required proof.
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Theorem 4.4. Let Υ and Γ be two ($, ε, ς)-SV NHIs over R. Then Υ ∩ Γ is a ($, ε, ς)-

SV NHI over R if it is non-null.

Proof. Let Υ and Γ are ($, ε, ς)-SV NHIs over R. By using Definition 3.2, and Proposition

3.5

(Υ ∩ Γ)($,ε,ς) = Υ($,ε,ς) ∩ Γ($,ε,ς) = {〈k̂, (τ$Υ
∧

τ$Γ )(k̂), (ιεΥ
∧

ιεΓ)(k̂), (zς
Υ

∨
zς

Γ)(k̂)〉 : k̂ ∈ R},

where

(τ$Υ
∧

τ$Γ )(k̂) =
∧

(τ$Υ (k̂), τ$Γ (k̂)),

(ιεΥ
∧

ιεΓ)(k̂) =
∧

(ιεΥ(k̂), ιεΓ(k̂)),

(zς
Υ

∨
zς

Γ)(k̂) =
∨

(zς
Υ(k̂),zς

Γ(k̂)).

Assuming ∀ k̂, l̂ ∈ R, we are only proven to include all four clauses for membership terms τ$Υ ,

τ$Γ and indeterminacy terms ιεΥ, ιεΓ.

(1)
∧
{(τ$Υ

∧
τ$Γ )(k̂), (τ$Υ

∧
τ$Γ )(l̂)} =

∧
{
∧

(τ$Υ (k̂), τ$Γ (k̂)),
∧

(τ$Υ (l̂), τ$Γ (l̂))}

≤
∧
{
∧

(τ$Υ (k̂), τ$Υ (l̂)),
∧

(τ$Γ (k̂), τ$Γ (l̂))}

≤
∧
{inf{τ$Υ (m̂) : m̂ ∈ k̂ + l̂}, inf{τ$Γ (m̂) : m̂ ∈ k̂ + l̂}}

≤ inf{
∧

(τ$Υ (m̂), τ$Γ (m̂)) : m̂ ∈ k̂ + l̂}

= inf{(τ$Υ
∧

τ$Γ )(m̂) : m̂ ∈ k̂ + l̂}.

⇒
∧
{(τ$Υ

∧
τ$Γ )(k̂), (τ$Υ

∧
τ$Γ )(l̂)} ≤ inf{(τ$Υ

∧
τ$Γ )(m̂) : m̂ ∈ k̂ + l̂}.

Also

∨
{(ιεΥ

∧
ιεΓ)(k̂), (ιεΥ

∧
ιεΓ)}(l̂)} =

∨
{
∧

(ιεΥ(k̂), ιεΓ(k̂)),
∧

(ιεΥ(l̂), ιεΓ(l̂))}

≥
∧
{
∨

(ιεΥ(k̂), ιεΥ(l̂)),
∨

(ιεΓ(k̂), ιεΓ(l̂))}

≥
∧
{sup{ιεΥ(m̂) : m̂ ∈ k̂ + l̂}, sup{ιεΓ(m̂) : m̂ ∈ k̂ + l̂}}

≥ sup{
∧

(ιεΥ(m̂), ιεΓ(m̂)) : m̂ ∈ k̂ + l̂}

= sup{(ιεΥ(m̂)
∧
ιεΓ(m̂)) : m̂ ∈ k̂ + l̂}.

⇒
∨
{(ιεΥ

∧
ιεΓ)(k̂), (ιεΥ

∧
ιεΓ)}(l̂)} ≥ sup{(ιεΥ(m̂)

∧
ιεΓ(m̂)) : m̂ ∈ k̂ + l̂}.

Similarly,

∨
{(zς

Υ

∨
zς

Γ)(k̂), (zς
Υ

∨
zς

Γ)}(l̂)} ≥ sup{(zς
Υ(m̂)

∨
zς

Γ(m̂)) : m̂ ∈ k̂ + l̂}.
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(2) ∃ ∀ n̂, k̂ ∈ R such that k̂ ∈ n̂+ l̂ then it argues that:∧
{(τ$Υ

∧
τ$Γ )(n̂), (τ$Υ

∧
τ$Γ )(k̂)} =

∧
{
∧

(τ$Υ (n̂), τ$Γ (n̂)),
∧

(τ$Υ (k̂), τ$Γ (k̂))}

≤
∧
{
∧

(τ$Υ (n̂), τ$Υ (k̂)),
∧

(τ$Γ (n̂), τ$Γ (k̂))}

≤ {
∧

(τ$Υ (l̂), τ$Γ (l̂))}

= (τ$Υ
∧

τ$Γ )(l̂).

⇒
∧
{(τ$Υ

∧
τ$Γ )(n̂), (τ$Υ

∧
τ$Γ )(k̂)} ≤ {(τ$Υ

∧
τ$Γ )(l̂) : k̂ ∈ n̂+ l̂}.

Also, ∃ ∀ n̂, k̂ ∈ R such that k̂ ∈ n̂+ l̂ then it argues that:∨
{(ιεΥ

∧
ιεΓ)(n̂), (ιεΥ

∧
ιεΓ)(k̂)} =

∨
{
∧

(ιεΥ(n̂), ιεΓ(n̂)),
∧

(ιεΥ(k̂), ιεΓ(k̂))}

≥
∨
{
∧

(ιεΥ(n̂), ιεΥ(k̂)),
∧

(ιεΓ(n̂), ιεΓ(k̂))}

≥ {
∧

(ιεΥ(l̂), ιεΓ(l̂))}

= {(ιεΥ(l̂)
∧
ιεΓ(l̂))}.

⇒
∨
{(ιεΥ

∧
ιεΓ)(n̂), (ιεΥ

∧
ιεΓ)(k̂)} ≥ {(ιεΥ(l̂)

∧
ιεΓ(l̂)) : k̂ ∈ n̂+ l̂}

Similarly, ∨
{(zς

Υ

∨
zς

Γ)(n̂), (zς
Υ

∨
zς

Γ)(k̂)} ≥ {(zς
Υ(l̂)

∨
zς

Γ(l̂)) : k̂ ∈ n̂+ l̂}

(3) ∀ n̂, k̂ ∈ R ∃ m̂ ∈ R where k̂ ∈ m̂+ n̂ can be readily proved that∧
{(τ$Υ

∧
τ$Γ )(n̂), (τ$Υ

∧
τ$Γ )(k̂)} =

∧
{
∧

(τ$Υ (n̂), τ$Γ (n̂)),
∧

(τ$Υ (k̂), τ$Γ (k̂))}

≤
∧
{
∧

(τ$Υ (n̂), τ$Υ (k̂)),
∧

(τ$Γ (n̂), τ$Γ (k̂))}

≤ {
∧

(τ$Υ (m̂), τ$Γ (m̂))}

= (τ$Υ
∧

τ$Γ )(m̂).

⇒
∧
{(τ$Υ

∧
τ$Γ )(n̂), (τ$Υ

∧
τ$Γ )(k̂)} ≤ {(τ$Υ

∧
τ$Γ )(m̂) : k̂ ∈ m̂+ n̂}.

Also, ∀ n̂, k̂ ∈ R ∃ m̂ ∈ R where k̂ ∈ m̂+ n̂ then it argues that:∨
{(ιεΥ

∧
ιεΓ)(n̂), (ιεΥ

∧
ιεΓ)(k̂)} =

∨
{
∧

(ιεΥ(n̂), ιεΓ(n̂)),
∧

(ιεΥ(k̂), ιεΓ(k̂))}

≥
∨
{
∧

(ιεΥ(n̂), ιεΥ(k̂)),
∧

(ιεΓ(n̂), ιεΓ(k̂))}

≥ {
∧

(ιεΥ(m̂), ιεΓ(m̂))}

= {(ιεΥ(m̂)
∧
ιεΓ(m̂))}.

⇒
∨
{(ιεΥ

∧
ιεΓ)(n̂), (ιεΥ

∧
ιεΓ)(k̂)} ≥ {(ιεΥ(m̂)

∧
ιεΓ(m̂)) : k̂ ∈ m̂+ n̂}

Similarly,∨
{(zς

Υ

∨
zς

Γ)(n̂), (zς
Υ

∨
zς

Γ)(k̂)} ≥ {(zς
Υ(m̂)

∨
zς

Γ(m̂)) : k̂ ∈ m̂+ n̂}
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(4) ∀ k̂, l̂ ∈ R, ∨
{τ$Υ (k̂), τ$Υ (l̂)} ≤ inf{τ$Υ (m̂) : m̂ ∈ k̂ ◦ l̂},∨
{ιεΥ(k̂), ιεΥ(l̂)} ≥ sup{ιεΥ(m̂) : m̂ ∈ k̂ ◦ l̂}, and∨
{zς

Υ(k̂),zς
Υ(l̂)} ≥ sup{zς

Υ(m̂) : m̂ ∈ k̂ ◦ l̂}.

Hence, it is verified that Υ ∩ Γ is a ($, ε, ς)-SV NHI over R.

5. Conclusions

This research has introduced the novel concepts of the ($, ε, ς)-single valued neutrosophic

theory of hyperrings and hyperideals through the introduction of a few hyperalgebraic struc-

tures and the analysis of some basic properties, outcomes, and structural characteristics of

these concepts. We plan to meld more hyperalgebraic theory with real-world applications in

the future for plithogenic sets for ($, ε, ς)-single-valued neutrosophic sets and ($, ε, ς)-interval-

valued neutrosophic sets.
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Abstract: In this paper one introduces for the first time the IndetermSoft Set, as extension of the 

classical (determinate) Soft Set, that deals with indeterminate data, and similarly the HyperSoft Set 

extended to IndetermHyperSoft Set, where ‘Indeterm’ stands for ‘Indeterminate’ (uncertain, conflicting, 

not unique outcome). They are built on an IndetermSoft Algebra that is an algebra dealing with 

IndetermSoft Operators resulted from our real world. Afterwards, the corresponding Fuzzy / 

Intuitionistic Fuzzy / Neutrosophic / and other fuzzy-extension IndetermSoft Set & 

IndetermHyperSoft Set are presented together with their applications. 

Keywords: Soft Set; HyperSoft Set; IndetermSoft Set; IndetermHyperSoft Set; IndetermSoft Operators; 

IndetermSoft Algebra. 

1. Introduction

The classical Soft Set is based on a determinate function (whose values are certain, and unique), 

but in our world there are many sources that, because of lack of information or ignorance, provide 

indeterminate (uncertain, and not unique – but hesitant or alternative) information. 

They can be modelled by operators having some degree of indeterminacy due to the imprecision 

of our world. 

The paper recalls the definitions of the classical Soft Set and HyperSoft Set, then shows the 

distinction between determinate and indeterminate soft functions. 

The neutrosophic triplets <Function, NeutroFunction, AntiFunction> and <Operator, NeutroOperator, 

AntiOperator> are brought into discussion, as parts of the <Algebra, NeutroAlgebra, AntiAlgebra> 

(Smarandache, 2019). 

Similarly, distinctions between determinate and indeterminate operators are taken into 

consideration.  

Afterwards, an IndetermSoft Algebra is built, using a determinate soft operator (joinAND), and 

three indeterminate soft operators (disjoinOR, exclussiveOR, NOT), whose properties are further on 

studied.  

IndetermSoft Algebra and IndetermHyperSoft Algebra are subclasses of the IndetermAlgebra. 

The IndetermAlgebra is introduced as an algebra whose space or operators have some degree of 

indeterminacy ( I > 0 ), and it is a subclass of the NeutroAlgebra.  

It was proved that the IndetermSoft Algebra and IndetermHyperSoft Algebra are non-Boolean 

Algebras, since many Boolean Laws fail. 

2. Definition of Classical Soft Set
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Let U  be a universe of discourse, H a non-empty subset of U, with P(𝐻) the powerset of 𝐻, and a 

an attribute, with its set of attribute values denoted by A. Then the pair (F, 𝐻), where 𝐹: 𝐴 → 𝑃(𝐻), is 

called a Classical Soft Set over 𝐻. 

Molodtsov [1] has defined in 1999 the Soft Set, and Maji [2] the Neutrosophic Soft Set in 2013. 

3. Definition of the Determinate (Classical) Soft Function

The above function 𝐹: 𝐴 → 𝑃(𝐻) , where for each , ( ) ( ),x A f x P H   and f(x) is certain and 

unique, is called a Determinate (Classical) Function. 

4. Definition of the IndetermSoft Function

One introduces it for the first time. Let 𝑈 be a universe of discourse, H a non-empty subset of 𝑈,

and P(𝐻) the powerset of 𝐻. Let a be an attribute, and  𝐴 be a set of this attribute values. 

A function 𝐹: 𝐴 → 𝑃(𝐻) is called an IndetermSoft Function if: 

i. the set A has some indeterminacy;

ii. or P(H) has some indeterminacy;

iii. or there exist at least an attribute value v A , such that F(v) = indeterminate (unclear,

uncertain, or not unique);

iv. or any two or all three of the above situations.

The IndetermSoft Function has some degree of indeterminacy, and as such it is a particular case of 

the NeutroFunction [6, 7], defined in 2014 – 2015, that one recalls below. 

5. <Function, NeutroFunction, AntiFunction>

We have formed the above neutrosophic triplet [10, 11]. 

i. (Classical) Function, which is a function well-defined (inner-defined) for all elements in

its domain of definition, or (T, I, F) = (1,0,0).

ii. NeutroFunction (or Neutrosophic Function), which is a function partially well-defined

(degree of truth T), partially indeterminate (degree of indeterminacy I), and partially

outer-defined (degree of falsehood F) on its domain of definition, where

( , , ) {(1,0,0),(0,0,1)}T I F  .

iii. AntiFunction, which is a function outer-defined for all the elements in its domain of

definition, or (T, I, F) = (0, 0, 1).

6. Applications of the Soft Set

A detective must find the criminal(s) out of a crowd of suspects. He uses the testimonies of several 

witnesses. 

Let the crowd of suspects be the set S = {s1, s2, s3, s4, s5} { } , where { } is the empty (null) 

element, and the attribute c = criminal, 

which has two attribute-values C = {yes, no}. 

i. Let the function 1 : ( )F C P S→ , where ( )P S  is the powerset of S, represent the 

information provided by the witness W1. 

For example,  

F1(yes) = s3, which means that, according to the witness W1, the suspect s3 is the criminal, 

and F1(no) = s4, which similarly means, according to the witness W1, that the suspect s4 is not the 

criminal. 

These are determined (exact) information, provided by witness W1, therefore this is a classical Soft 

Set. 
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ii. Further on, let the function 2 : ( )F C P S→ , where ( )P S  is the powerset of S, represent the 

information provided by the witness W2. 

For example, 

F2(yes) = { } , the null-element, which means that according to the witness W2, none of the suspects 

in the set S is the criminal. This is also a determinate information as in classical Soft Set. 

7. Indeterminate Operator as Extension of the Soft Set

iii. Again, let the function 3 : ( )F C P S→ , where ( )P S  is the powerset of S, represent the 

information provided by the witness W3. 

This witness is not able to provide a certain and unique information, but some indeterminate 

(uncertain, not unique but alternative) information. 

For example: 

F3(yes) = NOT(s2) 

and F3(no) = s3 OR s4 

The third source (W3) provides indeterminate (unclear, not unique) information, 

since NOT(s2) means that s2 is not the criminal, then consequently:  either one, or two, or more suspects 

from the remaining set of suspects {s1, s3, s4, s5} may be the criminal(s), or { } (none of the remaining 

suspects is the criminal), whence one has:  
1 2 3 4 4
4 4 4 4 1 2 16C C C C+ + + + = = possibilities (alternatives, or outcomes), resulted from a single input, 

to chose from, where 
m
nC means combinations of n elements taken into groups of m elements, for

integers  0 m n  . 

Indeterminate information again, since: 

 s3 OR s4 means: either {s3 yes, and s4 no}, or {s3 no, and s4 yes}, or {s3 yes, and s4 yes}, 

therefore 3 possible (alternatives) outcomes to chose from. 

Thus, 
3 : ( )F C P S→ is an Indeterminate Soft Function (or renamed/contracted as IndetermSoft 

Function). 

8. Indeterminate Attribute-Value Extension of the Soft Set

Let’s extend the previous Applications of the Soft Set  with the crowd of suspects being the set S = 

{s1, s2, s3, s4, s5} { } , where { } is the empty (null) element, and the attribute c = criminal, but the 

attribute c has this time three attribute-values K = {yes, no, maybe}, as in the new branch of philosophy, 

called neutrosophy, where between the opposites <A> = yes, and <antiA> = no, there is the 

indeterminacy (or neutral) <neutA> = maybe. 

And this is provided by witness W4 and defined as: 

4 : ( )F K P S→

For example: F4(maybe) = s5, which means that the criminal is maybe s5. 

There also is some indeterminacy herein as well because the attribute-value “maybe” means 

unsure, uncertain. 

One can transform this one into a Fuzzy (or Intuitionistic Fuzzy, or Neutrosophic, or other Fuzzy-

Extension) Soft Sets in the following ways: 

F4(maybe) = s5 is approximately equivalent to F4(yes) = s5(some appurtenance degree) 

or 

F4(maybe) = s5 is approximately equivalent to F4(no) = s5(some non-appurtenance degree) 

Let’s consider the bellow example. 

Fuzzy Soft Set as: 
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F4(maybe) = s5 is approximately equivalent to F4(yes) = s5(0.6), or the chance that s5 be a criminal is 

60%; 

Intuitionistic Fuzzy Soft Set as: 

F4(maybe) = s5 is approximately equivalent to F4(yes) = s5(0.6, 0.3), or the chance that s5 be a criminal 

is 60%, and chance that s5 not be a criminal is 30%; 

Neutrosophic Soft Set as: 

F4(maybe) = s5 is approximately equivalent to F4(yes) = s5(0.6, 0.2, 0.3), or the chance that s5 is a 

criminal is 60%, indeterminate-chance of criminal-noncriminal is 20%, and chance that s5 not be a 

criminal is 30%. 

   And similarly for other Fuzzy-Extension Soft Set. 

Or, equivalently, employing the attribute-value “no”, one may consider: 

Fuzzy Soft Set as: 

F4(maybe) = s5 is approximately equivalent to F4(no) = s5(0.4), or the chance that s5 is not a criminal is 

40%; 

Intuitionistic Fuzzy Soft Set as: 

F4(maybe) = s5 is approximately equivalent to F4(no) = s5(0.3, 0.6), or the chance that s5 is not a 

criminal is 30%, and chance that s5 is a criminal is 60%; 

Neutrosophic Soft Set as: 

F4(maybe) = s5 is approximately equivalent to F4(no) = s5(0.3, 0.2, 0.6), or the chance that s5 is not a 

criminal is 30%, indeterminate-chance of criminal-noncriminal is 20%, and chance that s5 is a criminal is 

60%. 

   And similarly for other Fuzzy-Extension Soft Set. 

9. HyperSoft Set

Smarandache has extended in 2018 the Soft Set to the HyperSoft Set [3, 4] by transforming the 

function F from a uni-attribute function into a multi-attribute function. 

9.1. Definition of HyperSoft Set 

Let 𝒰 be a universe of discourse, H a non-empty set included in U, and P(𝐻) the powerset of 𝐻. Let 

𝑎1, 𝑎2, … 𝑎𝑛, where 𝑛 ≥ 1, be 𝑛 distinct attributes, whose corresponding attribute values are respectively 

the sets 𝐴1, 𝐴2, … , 𝐴𝑛, with 𝐴𝑖 ∩ 𝐴𝑗 = ∅ for 𝑖 ≠ 𝑗, and 𝑖, 𝑗 ∈ {1, 2, … , 𝑛}. Then the pair (𝐹, 𝐴1 × 𝐴2 × …× 𝐴𝑛), 

where 𝐴1 × 𝐴2 × …× 𝐴𝑛 represents a Cartesian product, with  

𝐹: 𝐴1 × 𝐴2 × …× 𝐴𝑛 → 𝑃(𝐻) 

is called a HyperSoft Set. 

For example,  

let 

1 2 1 2( , ,..., ) ...n ne e e A A A   

then 

1 2( , ,..., ) ( )nF e e e G P H=  .

9.2. Classification of HyperSoft Sets 

With respect to the types of sets, such as: classical, fuzzy, intuitionistic fuzzy, neutrosophic, 

plithogenic, and all other fuzzy-extension sets, one respectively gets: the Crisp HyperSoft Set, Fuzzy 

HyperSoft Set, Intuitionistic Fuzzy HyperSoft Set, Neutrosophic HyperSoft Set, Plithogenic HyperSoft 

Set, and all other fuzzy-extension HyperSoft Sets [3, 5-9]. 



Neutrosophic Sets and Systems, Vol. 50, 2022   633

Florentin Smarandache, Introduction to the IndetermSoft Set and IndetermHyperSoft Set 

The HyperSoft degrees of T = truth, I = indeterminacy, F = falsehood, H = hesitancy, N = neutral 

etc. assigned to these Crisp HyperSoft Set, Fuzzy HyperSoft Set, Intuitionistic Fuzzy HyperSoft Set, 

Neutrosophic HyperSoft Set, Plithogenic HyperSoft Set, and all other fuzzy-extension HyperSoft Sets 

verify the same conditions of inclusion and inequalities as in their corresponding fuzzy and fuzzy- 

extension sets. 

9.3. Applications of HyperSoft Set and its corresponding Fuzzy / Intuitionistic Fuzzy / Neutrosophic HyperSoft 

Set 

Let H = {h1, h2, h3, h4} be a set of four houses, and two attributes:  

s = size, whose attribute values are S = {small, medium, big},  

and l = location, whose attribute values are L = {central, peripherical}. 

Then : ( )F S L P H → is a HyperSoft Set. 

i. For example, F(small, peripherical) = {h2, h3}, which means that the houses that are small

and peripherical are h2 and h3.

ii. A Fuzzy HyperSoft Set may assign some fuzzy degrees, for example:

F(small, peripherical) = {h2(0.7), h3(0.2)}, which means that with respect to the attributes’ values small 

and peripherical all together, h2 meets the requirements of being both small and peripherical in a fuzzy 

degree of 70%, while h3 in a fuzzy degree of 20%. 

iii. Further on, a Intuitionistic Fuzzy HyperSoft Set may assign some intuitionistic fuzzy

degrees, for example:

F(small, peripherical) = {h2(0.7, 0.1), h3(0.2, 0.6)}, which means that with respect to the attributes’ 

values small and peripherical all together, h2 meets the requirements of being both small and peripherical 

in a intuitionistic fuzzy degree of 70%, and does not meet it in a intuitionistic fuzzy degree of 10%;  and 

similarly for h3. 

iv. Further on, a Neutrosophic HyperSoft Set may assign some neutrosophic degrees, for

example:

F(small, peripherical) = {h2(0.7, 0.5, 0.1), h3(0.2, 0.3, 0.6)}, which means that with respect to the 

attributes’ values small and peripherical all together, h2 meets the requirements of being both small and 

peripherical in a neutrosophic degree of 70%, the indeterminate-requirement in a neutrosophic degree 

of 50%, and does not meet the requirement in a neutrosophic degree of 10%.  And similarly, for h3. 

v. In the same fashion for other fuzzy-extension HyperSoft Sets.

10. Operator, NeutroOperator, AntiOperator

Let U be a universe of discourse and H a non-empty subset of U.

Let 1n   be an integer, and   be an operator defined as: 

: nH H →
Let’s take a random n-tuple 1 2( , ,..., ) n

nx x x H . 

There are three possible cases: 

i. 1 2( , ,..., )nx x x H  and 1 2( , ,..., )nx x x is a determinate (clear, certain, unique) output; 

this is called degree of well-defined (inner-defined), or degree of Truth (T). 

ii.  1 2( , ,..., )nx x x is an indeterminate (unclear, uncertain, undefined, not unique) output; 

this is called degree of Indeterminacy (I). 

iii. 1 2( , ,..., )nx x x U H  − ; this is called degree of outer-defined (since the output is 

outside of H), or degree of Falsehood (F). 

Consequently, one has a Neutrosophic Triplet of the form 

<Operator, NeutroOperator, AntiOperator> 
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defined as follows [12, 13, 14]: 

10.1. (Classical) Operator 

For any n-tuple 1 2( , ,..., ) n
nx x x H , one has 1 2( , ,..., )nx x x H  and 1 2( , ,..., )nx x x  is a 

determinate (clear, certain, unique) output. Therefore (T, I, F) = (1, 0, 0). 

10.2. NeutroOperator 

There are some n-tuples 1 2( , ,..., ) n
nx x x H  such that 1 2( , ,..., )nx x x H  and 1 2( , ,..., )nx x x

are determinate (clear, certain, unique) outputs (degree of truth T); 

other n-tuples 1 2( , ,..., ) n
ny y y H such that 1 2( , ,..., )ny y y H  and 1 2( , ,..., )ny y y are 

indeterminate (unclear, uncertain, not unique) output (degree of indeterminacy I); 

and other n-tuples 1 2( , ,..., ) n
nz z z H such that 1 2( , ,..., )nz z z U H  − (degree of falsehood F); 

where ( , , ) {(1,0,0),(0,0,1)}T I F   that represent the first (Classical Operator), and respectively 

the third case (AntiOperator). 

10.3. AntiOperator 

For any n-tuple 1 2( , ,..., ) n
nx x x H , one has 1 2( , ,..., )nx x x U H  − . Therefore

(T, I, F) = (0, 0, 1). 

11. Particular Cases of Operators

11.1. Determinate Operator 

A Determinate Operator is an operator whose degree of indeterminacy I = 0, 

while the degree of truth T = 1 and degree of falsehood F = 0. 

Therefore, only the Classical Operator is a Determinate Operator. 

11.2. IndetermOperator 

As a subclass of the above NeutroOperator, there is the IndetermOperator (Indeterminate Operator), 

which is an operator that has some degree of indeterminacy (I > 0). 

12. Applications of the IndetermOperators to the Soft Sets

Let H be a set of finite number of houses (or, in general, objects, items, etc.):

𝐻 = {ℎ1, ℎ2, … , ℎ𝑛} ∪ {∅}, 1 ≤ 𝑛 < ∞, 

where h1 = house1, h2 = house2, etc. 

and ∅ is the empty (or null) element (no house). 

13. Determinate and Indeterminate Soft Operators

Let us define four soft operators on 𝐻.

13.1. joinAND 

joinAND, or put together, denoted by ⩓, defined as: 

𝑥 ⩓ y = x and y, or put together x and y; herein the conjunction “and” has the common sense from 

the natural language. 
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𝑥 ⩓ y = {𝑥, 𝑦} is a set of two objects. 

For example:  

h1 ⩓ h2 = house1 ⩓ house2 = house1 and house2  

= put together house1 and house2 = {house1, house2} = {h1, h2}. 

joinAND is a Determinate Soft Operator since one gets one clear (certain) output. 

13.2. disjoinOR 

disjoinOR, or separate in parts, denoted by ⩔, defined as: 

𝑥 disjoinOR 𝑦 =  𝑥 ⩔ y = {𝑥}, or {𝑦}, or both {𝑥, 𝑦}  

      = x, or y, or both x and y; 

herein, similarly, the disjunction “or” (and the conjunction “and” as well) have the common sense 

from the natural language. 

But there is some indeterminacy (uncertainty) to choose among three alternatives. 

For example:  

h1 ⩔ h2 = house1 ⩔ house2 = house1, or house2, or both houses together {house1 and house2}. 

disjoinOR is an IndetermSoft Operator, since it does not have a clear unique output, but three 

possible alternative outputs to choose from. 

13.3. exclusiveOR 

exclusiveOR, meaning either one, or the other; it is an IndetermSoft Operator (to choose among 

two alternatives). 

h1 ⩔E h2 = either h1, or h2, and no both {h1, h2}. 

13.4. NOT 

NOT, or no, or sub-negation/sub-complement, denoted by ⫬, where 

NOT(ℎ) = ⫬ ℎ = 𝑛𝑜 ℎ, in other words all elements from 𝐻, except h, either single elements, or two 

elements, …, or 𝑛 − 1 elements from 𝐻 − {ℎ}, or the empty element ∅. 

The “not” negation has the common sense from the natural language; when we say “not John” that 

means “someone else” or “many others”. 

13.4.1. Theorem 1 

Let the cardinal of the set H-{h} be |H – {h}| = m ≥ 1. 

Then ( ) { , ( { })}NOT h x x P H h=  −  and the cardinal |NOT(h)| = 2n-1. 

Proof: 

Because NOT(ℎ) means all elements from 𝐻, except h, 

either by single elements, or by two elements, …, or by 𝑛 − 1 elements from 𝐻 − {ℎ}, or the empty 

element ∅, then one obtains: 

𝐶𝑛−1
1 + 𝐶𝑛−1

2 +⋯+ 𝐶𝑛−1
𝑛−1 + 1 = (2𝑛−1 − 1) + 1 = 2𝑛−1 possibilities (alternatives to h).

The NOT operator has as output a multitude of sub-negations (or sub-complements). 

NOT is also an IndetermSoft Operator. 

13.4.2. Example 

Let 𝐻 = {𝑥1, 𝑥2, 𝑥3, 𝑥4}  

Then,  

NOT(x1) = ⫬ 𝑥1 = either 𝑥2, or 𝑥3, or 𝑥4, 

or {𝑥2, 𝑥3}, or {𝑥2, 𝑥4}, or {𝑥3, 𝑥4}, 
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or {𝑥2, 𝑥3, 𝑥4}, 

or ∅; 

therefore 𝐶3
1 + 𝐶3

2 + 𝐶3
3 + 1 = 3 + 3 + 1 + 1 = 8 = 23 possibilities/alternatives.

Graphic representations: 

Or another representation (equivalent to the above) is below: 

2
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4

2 3
1

2 4

3 4

2 3 4
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{ , }
{ , }
{ , , }
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x
x
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x
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x x
x x x









 = 







The NOT operator is equivalent to (2𝑛−1 − 1) OR disjunctions (from the natural language).  

14. Similarities between IndetermSoft Operators and Classical Operators

(i) joinAND is similar to the classical logic AND operator (∧) in the following way.

Let A, B, C be propositions, where 𝐶 = 𝐴 ∧ 𝐵.

Then the proposition C is true, if both: A = true, and B = true.

(ii) disjoinOR is also similar to the classical logic OR operator (∨) in the following way.

Let A, B, D be propositions, where 𝐷 = 𝐴 ∨ 𝐵.

Then the proposition D is true if:

either A = true, 

or B = true,  

or both A = true and B = true 

(therefore, one has three possibilities). 

(iii) exclusiveOR is also similar to the classical logic exclusive OR operator (∨E) in the following

way. 

Let A, B, D be propositions, where D = A ∨E B 

Then the proposition D is true if: 

either A = true, 

or B = true, 

and not both A and B are true simultaneously 

(therefore, one has two possibilities). 

(iv) NOT resembles the classical set, or complement operator (¬), in the following way.
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Let A, B, C, D be four sets, whose intersections two by two are empty, from the universe of 

discourse 𝒰 = 𝐴 ∪ 𝐵 ∪ 𝐶 ∪ 𝐷. 

Then ¬𝐴 = 𝑁𝑜𝑡𝐴 = 𝒰 ∖ 𝐴 = the complement of A with respect to 𝒰. 

While ¬𝐴 has only one exact output (𝒰 ∖ 𝐴) in the classical set theory, the NOT operator ⫬ 𝐴 has 8 

possible outcomes: either the empty set (∅), or B, or C, or D, or {𝐵, 𝐶}, or {𝐵, 𝐷}, or {𝐶, 𝐷}, or or {𝐵, 𝐶, 𝐷}. 

15. Properties of Operators

Let 𝑥, 𝑦, 𝑧 ∈ H(⩓,⩔, ⩔E, ⫬).

15.1. Well-Defined Operators 

Let consider the set 𝐻 closed under these four operators: H(⩓,⩔, ⩔E, ⫬). 

Therefore, for any 𝑥, 𝑦 ∈ 𝐻 one has:  

𝑥 ⩓ y ∈ H(⩓,⩔, ⩔E, ⫬), because {𝑥, 𝑦} ∈ H(⩓,⩔, ⩔E, ⫬),  

and 𝑥 ⩔ y ∈ H(⩓,⩔, ⩔E, ⫬), because each of {𝑥}, {𝑦}, {𝑥, 𝑦} ∈ H(⩓,⩔, ⩔E, ⫬), 

also x ⩔E y ∈ H(⩓,⩔, ⩔E, ⫬), because each of {𝑥}, {𝑦} ∈ H(⩓,⩔, ⩔E, ⫬), 

Then the NOT operator is also well-defined because it is equivalent to a multiple of disjoinOR 

operators. 

Thus: 

⩓ : 𝐻2 → H(⩓,⩔, ⩔E, ⫬) 

⩔ : 𝐻2 → H(⩓,⩔, ⩔E, ⫬) 

⩔E: 𝐻2 → H(⩓,⩔, ⩔E, ⫬) 

⫬ : 𝐻 → H(⩓,⩔, ⩔E, ⫬) 

15.2. Commutativity 

𝑥 ⩓ y = 𝑦 ⩓ 𝑥, and 𝑥 ⩔ 𝑦 = 𝑦 ⩔ 𝑥, and x ⩔E y =  y ⩔E x 

Proof 

𝑥 ⩓ y = {𝑥, 𝑦} = {𝑦, 𝑥} = 𝑦 ⩓ x  

𝑥 ⩔ 𝑦 = ({𝑥}, or {𝑦}, or {𝑥, 𝑦}) = ({𝑦} or {𝑥}, or {𝑦, 𝑥}) = 𝑦 ⩔ 𝑥 

x ⩔E y = (either {x}, or {y}, but not both x and y) = 

= (either {y}, or {x}, but not both y and x) = y ⩔E x. 

15.3. Associativity 

𝑥 ⩓ (𝑦 ⩓ 𝑧) = (𝑥 ⩓ 𝑦) ⩓ 𝑧, 

and 𝑥 ⩔ (𝑦 ⩔ 𝑧) = (x ⩔ y) ⩔ z, and x ⩔E  ( y ⩔E z = ( x ⩔E  y ) ⩔E z 

Proof 

𝑥 ⩓ (𝑦 ⩓ 𝑧) = {𝑥, 𝑦 ⩓ 𝑧} = {𝑥, {𝑦, 𝑧}} 

= {𝑥, 𝑦, 𝑧} = {{𝑥, 𝑦}, 𝑧} 

= (𝑥 ⩓ y) ⩓ z. 

𝑥 ⩔ (𝑦 ⩔ 𝑧) = (x ⩔ y) ⩔ z 

𝑥 or (𝑦 or 𝑧) = 𝑥 or {

𝑦
𝑧

𝑦 or 𝑧
  = 𝑥 or 

{

𝑦
𝑧

𝑦 or 𝑧 {

𝑦
𝑧

{𝑦, 𝑧}
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= 

{

𝑥 or 𝑦 = {

𝑥
𝑦

{𝑥, 𝑦}

𝑥 or 𝑧 =  {

𝑥
𝑧

{𝑥, 𝑧}

{

𝑥 or 𝑦
𝑥 or 𝑧

𝑥 or {𝑦, 𝑧} = {

𝑥
{𝑦, 𝑧}

{𝑥, 𝑦, 𝑧}

=  𝑥, 𝑦, 𝑧, {𝑥, 𝑦}, {𝑥, 𝑧}, {𝑦, 𝑧}, {𝑥, 𝑦, 𝑧}. 

(𝑥 or 𝑦) or 𝑧 = {

𝑥
𝑦

{𝑥, 𝑦}
 or 𝑧 =

{

𝑥 or 𝑧 {

𝑥
𝑧

{𝑥, 𝑧}

𝑦 or 𝑧 {

𝑦
𝑧

{𝑦, 𝑧}

{𝑥, 𝑧} or 𝑧 {
{𝑥, 𝑦}
𝑧

{𝑥, 𝑦, 𝑧}

=  𝑥, 𝑦, 𝑧, {𝑥, 𝑦}, {𝑥, 𝑧}, {𝑦, 𝑧}, {𝑥, 𝑦, 𝑧}. 

Therefore, (x or y) or z = x or (y or z) = x, y, z, {x, y}, {y, z}, {z, x}, {x, y, z} with 23 − 1 = 8 − 1 = 7 

possibilities. 

x ⩔E  ( y ⩔E z ) = 

either x, or ( y⩔E z ), and no both x and ( y ⩔E z ) = either x, or (y, or z, and no both y and z), and no both x 

and (either y or z) = either x, or y, or z, and no both {y, z}, and (no x and no (either y or z)) =  either x, or y, or z, 

and no {y, z}, no {x, y}, no {x, z} = ( x ⩔E   y) ⩔E z 

15.4. Distributivity of joinAND over disjoinOR and exclusiveOR 

𝑥 ⩓ (𝑦 ⩔ 𝑧) = (x ⩓ y) ⩔ (x ⩓ z) 

P roof 

𝑥 ⩓ (𝑦 ⩔ 𝑧) = 𝑥 and (𝑦 or 𝑧) = 𝑥 and (𝑦, or 𝑧, or {𝑦, 𝑧})  

= x and y, or x and z, or x and {𝑦, 𝑧} 

= {𝑥, 𝑦}, or {𝑥, 𝑧}, or {𝑥, 𝑦, 𝑧} 

= {𝑧, 𝑦}, {𝑥, 𝑧}, {𝑥, 𝑦, 𝑧}. 

(𝑥 ⩓ 𝑦) ⩔ (𝑥 ⩓ 𝑧) = {𝑥, 𝑦}  

or {𝑥, 𝑧} = {𝑥, 𝑦}, {𝑥, 𝑧}, {𝑥, 𝑦, 𝑥, 𝑧} = {𝑥, 𝑦}, {𝑥, 𝑧}, {𝑥, 𝑦, 𝑧}. 

x ⩓ ( y ⩔E z ) = x and ( either y, or z, and no both {y, z}) = either x and y, or x and z, 

 and x and no both {y, z} = either {x, y}, or {x, z}, and {x, no { y, z} } = 

= either {x, y}, or {x, z}, and no {x, y, z} =  (x ⩓ y) ⩔E (x ⩓ z) 

15.5. No distributivity of disjoinOR and exclusiveOR over joinAND 

𝑥 ⩔ (𝑦 ⩓ 𝑧) ≠ (x ⩔ y) ⩓ (𝑥 ⩔ 𝑧)  

𝑥 ⩔ (𝑦 ⩓ 𝑧) = 𝑥 or (𝑦 and 𝑧) = 𝑥 𝑜𝑟 {𝑦, 𝑧} =  𝑥, {𝑦, 𝑧}, {𝑥, 𝑦, 𝑧} 

But 

(𝑥 ⩔ 𝑦) ⩓ (𝑥 ⩔ 𝑧) = (𝑥, 𝑦, {𝑥, 𝑦}) and (𝑥, 𝑧, {𝑥, 𝑧}) 

= {𝑥, 𝑥}, {𝑥, 𝑧}, {𝑥, 𝑧}, {𝑦, 𝑧}, {𝑦, 𝑥}, {𝑥, 𝑦, 𝑧}, {𝑥, 𝑦}, {𝑥, 𝑦, 𝑧}, {𝑥, 𝑦, 𝑧} 

=  𝑥, {𝑥, 𝑦}, {𝑥, 𝑧}, {𝑦, 𝑧}, {𝑥, 𝑦, 𝑧}. 

Whence in general 𝑥, {𝑦, 𝑧}, {𝑥, 𝑦, 𝑧} ≠ 𝑥, {𝑥, 𝑦}, {𝑥, 𝑧}, {𝑦, 𝑧}, {𝑥, 𝑦, 𝑧}. 
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While in classical Boolean Algebra the distribution of or over and is valid: 

𝑥 ∨ (𝑦 ∧ 𝑧) = (𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧). 

x ⩔E (y ⩓ z) = either x, or {y, z}, and no {x, y, z} 

 (x⩔E y) ⩓ (𝑥⩔E y) = (either x, or y, and no {x, y}) and (either x, or z, and no {x, z}) 

15.6. Idempotence 

𝑥 ⩓ 𝑥 = {𝑥, 𝑥} = 𝑥  

𝑥 ⩔ 𝑥 = either 𝑥, or 𝑥, or {𝑥, 𝑥} 

= 𝑥, or 𝑥, or 𝑥 

= 𝑥. 

x ⩔E x = either x, or x, and no {x, x} = impossible. 

15.6.1. Theorem 2 

Let 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ (𝐻,⩓,⩔, ⫬), for 𝑛 ≥ 2. Then: 

(i) 𝑥1 ⩓ 𝑥2 ⩓ …⩓ 𝑥𝑛 = {𝑥1, 𝑥2, … , 𝑥𝑛},

and 

(ii) 𝑥1 ⩔ 𝑥2 ⩔ …⩔ 𝑥𝑛 = 𝑥1, 𝑥2, … , 𝑥𝑛,

{𝑥1, 𝑥2}, {𝑥1, 𝑥3}, …, {𝑥𝑛−1, 𝑥𝑛},

{𝑥1, 𝑥2, 𝑥3}, …

… … … … … …

{𝑥1, 𝑥2, … , 𝑥𝑛−1}, …

{𝑥1, 𝑥2, … , 𝑥𝑛−1, 𝑥𝑛}.

There are: 𝐶𝑛
1 + 𝐶𝑛

2 +⋯+ 𝐶𝑛
𝑛−1 + 𝐶𝑛

𝑛 = 2𝑛 − 1 possibilities/alternatives.

The bigger is n, the bigger the indeterminacy.

(iii) x1 ⩔E  x2 ⩔E …⩔E  xn = 𝑥1, 𝑥2, … , 𝑥𝑛 =

= either x1, or x2, …, or xn,

  and no two or more variables be true simultaneously. 

There are: 𝐶𝑛
1 = 𝑛 possibilities.

The bigger is n, the bigger the indeterminacy due to many alternatives. 

Proof 

(i) The joinAND equality is obvious.

(ii) The disjoinOR outputs from the fact that for the disjunction of n proposition to be true, it is

enough to have at least one which is true. As such, we may have only one proposition true, or only two 

propositions true, and so on, only 𝑛 − 1 propositions true, up to all 𝑛 propositions true.  

(iii) It is obvious.

15.7. The classical Boolean Absorption Law1 

𝑥 ∧ (𝑥 ∨ 𝑦) = 𝑥 does not work in this structure, since 𝑥 ⩓ (𝑥 ⩔ 𝑦) ≠ 𝑥. 

Proof 

𝑥 ⩓ (𝑥 ⩔ 𝑦)   = 𝑥 and (𝑥 or 𝑦) 

= x and {

𝑥
𝑦

{𝑥, 𝑦}

= {𝑥, 𝑥} or {𝑥, 𝑦} or {𝑥, 𝑥, 𝑦} 

= x or {𝑥, 𝑦} or {𝑥, 𝑦} 

= x or {𝑥, 𝑦} 
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= {

𝑥
{𝑥, 𝑦}

{𝑥, 𝑥, 𝑦}
= {

𝑥
{𝑥, 𝑦}

{𝑥, 𝑦}
 = {

𝑥
{𝑥, 𝑦} ≠ 𝑥.

But this one work:  

𝑥 ⩓ (x ⩔E  y) = x and (either x, or y, and no {x, y} ) = 

     = (x and x), or (x and y), and (x and no{x, y}) = x. 

15.8. The classical Boolean Absorption Law2 

𝑥 ∨ (𝑥 ∧ 𝑦) = 𝑥 does not work in this structure, since 𝑥 ⩔ (𝑥 ⩓ 𝑦) ≠ 𝑥. 

Proof 

𝑥 ⩓ (𝑥 ⩔ 𝑦) = 𝑥 and (𝑥 or 𝑦) 

x or (x and y) = x or {𝑥, 𝑦} 

= {

𝑥
{𝑥, 𝑦}

{𝑥, 𝑥, 𝑦}
= {

𝑥
{𝑥, 𝑦}

{𝑥, 𝑦}
 

= {
𝑥

{𝑥, 𝑦} ≠ 𝑥.

But this one work:  

x ⩔E (x ⩓ y ) = (either x), or {x, y}, and (no {x, y}) = x. 

15.9. Annihilators and Identities for IndetermSoft Algebra 

While 0 is an annihilator for conjunction ∧  in the classical Boolean Algebra, 𝑥 ∧ 0 = 0 , in 

IndetermSoft Algebra ∅ is an identity for ⩓, while for the others it does not work. 

Proof 

𝑥 ⩓ ∅ = 𝑥 and ∅ 

= x and nothing 

= x put together with nothing 

= x. 

15.10. ∅ is neither an identity, nor an annihilator for disjoinOR nor for exclusiveOR 

While 0 is an identity for the ∨ in the classical Boolean Algebra, 𝑥 ∨ 0 = 𝑥 in IndetermAlgebra ∅ is 

neither an identity, nor an annihilator. 

Proof 

𝑥 ⩔ ∅ = 𝑥, or ∅ (nothing), or {𝑥, ∅} 

= x, or ∅, or x 

= x, or ∅. 

x ⩔E ∅ = either x, or ∅, and no {x, ∅}. 

15.11. The negation of ∅ has multiple solutions 

While in the classical Boolean Algebra the negation of 0 is 1 (one solution only), ¬0 = 1, in 

IndetermAlgebra the negation of ∅ has multiple solutions. 

Proof 

⫬ ∅ = 𝑁𝑂𝑇(∅), 

 = not nothing 

 = one or more elements from the set that the operator ⫬ is defined upon. 

Example 

Let 𝐻 = {𝑥1, 𝑥2, 𝑥3} ∪ ∅. 

Then, ⫬ ∅ = 𝑥1, or 𝑥2, or 𝑥3, or {𝑥1, 𝑥2}, or {𝑥1, 𝑥3}, or {𝑥2, 𝑥3}, or {𝑥1, 𝑥2, 𝑥3}, 



Neutrosophic Sets and Systems, Vol. 50, 2022   641

Florentin Smarandache, Introduction to the IndetermSoft Set and IndetermHyperSoft Set 

therefore 7 alternative solutions. 

15.12. The Double Negation is invalid on IndetermSoft Algebra 

While in the classical Boolean Algebra the Double Negation Law is valid: ¬(¬𝑥) = 𝑥 , in 

IndetermAlgebra it is not true: 

In general, ⫬ (⫬ 𝑥) ≠ 𝑥. 

Proof 

A counter-example: 

Let 𝐻 = {𝑥1, 𝑥2, 𝑥3} ∪ ∅. 

⫬ 𝑥1 = what is not 𝑥1 or does not contain 𝑥1 

= 𝑥2, 𝑥3, { 𝑥2, 𝑥3}, ∅. 

Thus one has 4 different values of the negation of 𝑥1. 

Let us choose ⫬ 𝑥1 = 𝑥2; then ⫬ (⫬ 𝑥1) = 𝑥2 = (𝑥1, 𝑥3, {𝑥1, 𝑥3}, ∅) ≠ 𝑥1. 

Similarly for taking other values of ⫬ 𝑥1. 

Let 𝐻 = {𝑥1, 𝑥2, … , 𝑥𝑛} ∪ ∅, 𝑛 ≥ 2. Let 𝑥 ∈ 𝐻. 

Minimum and Maximum elements with respect to the relation of inclusion are: 

∅ = the empty (null) element 

and respectively 

𝑥1 ⩓ 𝑥2 ⩓ …⩓ 𝑥𝑛

notation
= {𝑥1, 𝑥2, … , 𝑥𝑛} = 𝐻, 

but in the Boolean Algebra they are 0 and 1 respectively. 

15.13. The whole set H is an annihilator for joinAND 

While in the classical Boolean Algebra the identity for ∧ is 1, since 𝑥 ∧ 1 = 𝑥, in the IndetermSoft 

Algebra for ⩓ there is an annihilator H, since 𝑥 ⩓ 𝐻 = 𝐻, since 𝑥 ⩓ 𝐻 = {𝑥1, 𝑥2, … , 𝑥𝑛 , 𝑥} = 𝐻, because 𝑥 ∈

𝐻 so x is one of 𝑥1, 𝑥2, … , 𝑥𝑛. 

16. The maximum (H) is neither annihilator nor identity

While in the classical Boolean Algebra the annihilator for ∨  is 1, because 𝑥 ∨ 1 = 1 , in the

IndetermSoft Algebra for ⩔ the maximum H is neither annihilator nor identity, 

𝑥 ⩔ 𝐻 = 𝑥 or 𝐻 = 𝑥, H, {𝑥, 𝐻} = 𝑥, 𝐻, 𝐻 = 𝑥,𝐻. 

x ⩔E  H = either x, or H, and (no x and no H). 

17. Complementation1

In the classical Boolean Algebra, Complementation1 is: 𝑥 ∧ ¬𝑥 = 0.

In the IndetermSoft Algebra, 𝑥 ⩓ (⫬ 𝑥) ≠ ∅, and 𝑥 ⩓ (⫬ 𝑥) ≠ 𝐻. 

Counter-Example 

𝑀 = {𝑥1, 𝑥2, 𝑥3} ∪ ∅  

⫬ 𝑥1 = 𝑥2, 𝑥3, {𝑥2, 𝑥3}, ∅  

𝑥1 ⩓ (⫬ 𝑥1) = 𝑥1 ⩓ (𝑥2, 𝑥3, {𝑥2, 𝑥3}, ∅) = 

= (𝑥1 and 𝑥2)  or (𝑥1 or 𝑥3) 

or (𝑥1 and {𝑥2, 𝑥3}) 

or (𝑥1 and ∅) =  

= (𝑥1, {𝑥1, 𝑥2}, {𝑥1, 𝑥3}, {𝑥1, 𝑥2, 𝑥3}) ≠ ∅ ≠ 𝑀. 

18. Complementation2
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In the classical Boolean Algebra, Complementation2 is: 𝑥 ∨ ¬𝑥 = 1. 

In the IndetermSoft Algebra, 𝑥 ⩔⫬ 𝑥 ≠ 𝐻, and 𝑥 ⩔⫬ 𝑥 ≠ ∅. 

Counter-Example 

The above 𝐻 = {𝑥1, 𝑥2, 𝑥3} ∪ ∅ 

and ⫬ 𝑥1 = 𝑥2, 𝑥3, {𝑥2, 𝑥3}, ∅, then 

𝑥1 ⩔⫬ 𝑥1 = 𝑥1 ⩔ (𝑥2, 𝑥3, {𝑥2, 𝑥3}, ∅) = {

𝑥1
𝑥2, 𝑥3, {𝑥2, 𝑥3}, ∅ 

𝑥1, 𝑥2, 𝑥3, {𝑥2, 𝑥3}, ∅

= 𝑥1, or (𝑥2, 𝑥3, {𝑥2, 𝑥3}, ∅), or (𝑥1, 𝑥2, 𝑥3, {𝑥2, 𝑥3}, ∅) 

    which is different from H and from ∅. 

And: 

𝑥1 ⩔E  ⫬ 𝑥1 = 𝑥1 ⩔E (𝑥2, 𝑥3, {𝑥2, 𝑥3}, ∅) = 
1

2 3 2 3, ,{ , },
x

x x x x 

 
 
 

and no 1 2 3 2 3( , , ,{ , }, )x x x x x  ,

which is different from H and from ∅. 

19. De Morgan Law1 in the IndetermSoft Algebra

De Morgan Law1 from Classical Boolean Algebra is:

¬(𝑥 ∨ 𝑦) = (¬𝑥) ∧ (¬𝑦)  

is also true in the IndetermSoft Algebra: 

⫬ (𝑥 ⩔ 𝑦) = (⫬ 𝑥) ⩓ (⫬ 𝑦) 

Proof 

⫬ (𝑥 ⩔ 𝑦) =⫬ (𝑥, or 𝑦, or {𝑥 and 𝑦}) 

=⫬ 𝑥, and ⫬ 𝑦, and ⫬ {𝑥1 and y} 

=⫬ 𝑥1, and ⫬ 𝑦, and (⫬ 𝑥, or ⫬ y) 

=⫬ 𝑥, and ⫬ 𝑦  

= (⫬ 𝑥) ⩓ (⫬ 𝑦). 

Example 

𝑀 = {𝑥1, 𝑥2, 𝑥3} ∪ ∅  

⫬ (𝑥1 ⩔ 𝑥2)      =⫬ (𝑥1, or 𝑥2, or {𝑥1 and 𝑥2}) 

=⫬ 𝑥1, and ⫬ 𝑥2, and (⫬ 𝑥1 or ⫬ 𝑥2) 

=⫬ 𝑥1, and ⫬ 𝑥2  

= (⫬ 𝑥1) ⩓ (⫬ 𝑥2). 

⫬ 𝑥1 = (𝑥2, 𝑥3, {𝑥2, 𝑥3}, ∅)  

⫬ 𝑥2 = (𝑥1, 𝑥3, {𝑥1, 𝑥3}, ∅)  
(⫬ 𝑥1) ⩓ (⫬ 𝑥2) = (𝑥2, 𝑥3, {𝑥2, 𝑥3}, ∅) ⩓ (𝑥1, 𝑥3, {𝑥1, 𝑥3}, ∅) 

= 𝑥1, 𝑥2, 𝑥3, {𝑥1, 𝑥3}, {𝑥2, 𝑥3}, ∅. 

20. De Morgan Law2 in the IndetermSoft Algebra

De Morgan Law2 in the classical Boolean Algebra is

¬(𝑥 ∧ 𝑦) = (¬𝑥) ∨ (¬𝑦)  

is also true in the new structure called IndetermSoft Algebra: 

⫬ (𝑥 ⩓ 𝑦) = (⫬ 𝑥) ⩔ (⫬ 𝑦) 

Proof 

⫬ (𝑥 ⩓ 𝑦) =⫬ ({𝑥 and 𝑦}) = ⫬ 𝑥, or ⫬ 𝑦, 𝑜𝑟 {⫬ 𝑥, 𝑎𝑛𝑑 ⫬ 𝑦} = (⫬ 𝑥) ⩔ (⫬ 𝑦) 

Example 

⫬ (𝑥1 ⩓ 𝑥2)      =⫬ ({𝑥1, 𝑥2}) 

= (⫬ 𝑥1, 𝑜𝑟 ⫬ 𝑥2, or (⫬ 𝑥1 and ⫬ 𝑥2)) 

= (𝑥2, 𝑥3, {𝑥2, 𝑥3}, ∅) = 
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or (𝑥2, 𝑥3, {𝑥2, 𝑥3}, ∅) 

or (𝑥1, 𝑥3, {𝑥1, 𝑥3}, ∅) 

or (𝑥1, 𝑥2, 𝑥3, {𝑥1, 𝑥3}, {𝑥2, 𝑥3}, ∅) = 

= (𝑥1, 𝑥2, 𝑥3, {𝑥1, 𝑥3}, {𝑥2, 𝑥3}, ∅)  
(⫬ 𝑥1) ⩔ (⫬ 𝑥2) =⫬ 𝑥1, or ⫬ 𝑥2, or (⫬ 𝑥1 ⩓ ⫬ 𝑥2) = 

(𝑥2, 𝑥3, {𝑥2, 𝑥3}, ∅)  

or (𝑥1, 𝑥3, {𝑥1, 𝑥3}, ∅) 

or (𝑥1, 𝑥2, 𝑥3, {𝑥1, 𝑥3}, {𝑥2, 𝑥3}, ∅) 

= (𝑥1, 𝑥2, 𝑥3, {𝑥1, 𝑥3}, {𝑥2, 𝑥3}, ∅) 

= ⫬ (𝑥1 ⩓ 𝑥2) 

* 

This IndetermSoft Algebra is not a Boolean Algebra because many of Boolean Laws do not work, 

such as: 

• Identity for ⩓

• Identity for ⩔

• Identity for ⩔E

• Annihilator for ⩓

• Annihilator for ⩔

• Annihilator for ⩔E

• Absorption1 [𝑥 ⩓ (𝑥 ⩔ 𝑦) = x]

• Absorption2 [𝑥 ⩔ (𝑥 ⩓ 𝑦) = x]

• Double Negation

• Complementation1 [𝑥 ⩓ ⫬ 𝑥 = ∅]

• Complementation2 { [𝑥 ⩔ ⫬ 𝑥 = 𝐻] and [x ⩔E  ⫬ 𝑥 = 𝐻] }

21. Practical Applications of Soft Set and IndetermSoft Set

Let 𝐻 = {ℎ1, ℎ2, ℎ3, ℎ4} a set of four houses, and the attribute a = color, whose values are

A = {white, green, blue, red}. 

21.1. Soft Set 

The function 

𝐹: 𝐴 → 𝒫(𝐻)  

where 𝒫(𝐻) is the powerset of H, 

is called a classical Soft Set. 

For example, 

F (white) = ℎ3, i.e. the house ℎ3 is painted white; 

F (green) = {ℎ1, ℎ2}, i.e. both houses ℎ1 and ℎ2 are painted green; 

F (blue) = ℎ4, i.e. the house ℎ4 is painted blue; 

F (red) = ∅, i.e. no house is painted red. 

Therefore, the information about the houses’ colors is well-known, certain. 

21.2. IndetermSoft Set 

But there are many cases in our real life when the information about the attributes’ values of the 

objects (or items – in general) is unclear, uncertain. 

That is why we need to extend the classical (Determinate) Soft Set to an Indeterminate Soft Set. 

The determinate (exact) soft function 

𝐹: 𝐴 → 𝒫(𝐻)  



Neutrosophic Sets and Systems, Vol. 50, 2022   644

Florentin Smarandache, Introduction to the IndetermSoft Set and IndetermHyperSoft Set 

is extended to an indeterminate soft function 

𝐹: 𝐴 → 𝐻(⩓, ⩔, ⩔E, ⫬),  

where (⩓, ⩔, ⩔E, ⫬) is a set closed under ⩓, ⩔, ⩔E, and ⫬, and f(x) is not always determinate. 

For example, 

F (white) = ℎ3 ⩔ ℎ4,  

means the houses ℎ3 or ℎ4 are white, but we are not sure which one, 

whence one has three possibilities/outcomes/alternatives: 

either ℎ3 is white (and ℎ4 is not), 

or ℎ4 is white (and ℎ3 is not), 

or both ℎ3 and ℎ4 are white. 

This is an indeterminate information. 

We may also simply write: 

F (white) = {

ℎ3
ℎ4

{ℎ3, ℎ4}

or F(white) = ℎ3, ℎ4, {ℎ3, ℎ4},  

where {ℎ3, ℎ4} means {ℎ3 and ℎ4}, 

that we read as: either ℎ3, or ℎ4, or {ℎ3 and ℎ4}. 

Another example: 

F(blue) = ⫬ ℎ2, or the house ℎ2 is not blue, 

therefore other houses amongst {ℎ1, ℎ3, ℎ4} may be blue, 

or no house (∅) may be blue. 

This is another indeterminate information. 

The negation of ℎ2 (denoted as NOT(ℎ2) = ⫬ ℎ2) is not equal to the classical complement of 𝐶(ℎ2) 

of the element h2 with respect to the set 𝐻, since 

𝒞(ℎ2) = 𝐻 ∖ {ℎ2} = {ℎ1, ℎ3, ℎ4}, 

but ⫬ ℎ2 may be any subset of 𝐻 ∖ {ℎ2}, or any sub-complement of 𝐶(ℎ2), 

again many (in this example 8) possible outcomes to choose from: 

⫬ ℎ2         = ℎ1, ℎ3, ℎ4, {ℎ1, ℎ3}, {ℎ1, ℎ4}, {ℎ3, ℎ4}, {ℎ1, ℎ3, ℎ4}, ∅ = 

= either ℎ1, or ℎ3, or ℎ4, 

  or {ℎ1 and ℎ3}, {ℎ1 and ℎ4}, {ℎ3 and ℎ4}, 

  or {ℎ1 and ℎ3 and ℎ4}, 

  or ∅ (null element, i.e. no other house is blue). 

The negation (⫬ ℎ2) produces a higher degree of indeterminacy than the previous unions: (ℎ3 ⩔ ℎ4) 

and respectively (h3 ⩔E h4). 

The intersection (⩓) is a determinate (certain) operator. 

For example, 

F (green) = ℎ1 ⩓ ℎ2, which is equal to {ℎ1, ℎ2}, i.e. ℎ1 and ℎ2 put together, {ℎ1 and ℎ2}. 

A combination of these operators may occur, so the indeterminate (uncertain) soft function 

becomes more complex. 

Example again. 

F (green) = ℎ1 ⩓ (⫬ ℎ4), where of course ⫬ ℎ4 ≠ ℎ1, which means that: 

the house ℎ1 is green, 

and other houses amongst {ℎ2, ℎ3} may be blue, 

or ∅ (no other house is blue). 

ℎ1 ⩓ (⫬ ℎ4)   = ℎ1 and (NOTℎ4) 

  = ℎ1 and (ℎ1, ℎ2, ℎ3, {ℎ1, ℎ2}, {ℎ1, ℎ3}, {ℎ2, ℎ3}, {ℎ1, ℎ2, ℎ3}, ∅) 

  [one cuts ℎ1 since ⫬ ℎ4 suppose to be different from ℎ1] 
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  = ℎ1 and (ℎ2, ℎ3, {ℎ2, ℎ3}, ∅) 

  = (ℎ1 and ℎ2) or (ℎ1 and ℎ3) 

or (ℎ1 and {ℎ2, ℎ3}) 

or ∅ 

 = (ℎ1 and ℎ2) or (ℎ1 and ℎ3) or (ℎ1 and ℎ2 and ℎ3) or ∅ 

notation
=

 {ℎ1, ℎ2}, {ℎ1, ℎ3}, {ℎ1, ℎ2, ℎ3}, ∅. 

Thus, 4 possibilities.

22. Definitions of <Algebra, NeutroAlgebra, AntiAlgebra>

Let 𝒰 be a universe of discourse, and 𝐻 a non-empty set included in 𝒰. Also, H is endowed with

some operations and axioms. 

22.1. Algebra 

An algebraic structure whose all operations are well-defined, and all axioms are totally true, is 

called a classical Algebraic Structure (or Algebra). Whence (T, I, F) = (1, 0, 0). 

22.2. NeutroAlgebra 

If at least one operation or one axiom has some degree of truth (T), some degree of indeterminacy 

(I), and some degree of falsehood (F), where (T, I, F) ∉ {(1, 0, 0), (0, 0, 1)}, and no other operation or 

axiom is totally false (F = 1), then this is called a NeutroAlgebra. 

22.3. AntiAlgebra 

An algebraic structure that has at least one operation that is totally outer-defined (F = 1) or at least 

one axiom that is totally false (F = 0), is called AntiAlgebra.  

23. Definition of IndetermAlgebra

We introduce now for the first time the concept of IntermAlgebra (= Indeterminate Algebra), as a

subclass of NeutroAlgebra. 

IndetermAlgebra results from real applications, as it will be seen further. 

Let 𝒰 be a universe of discourse, and 𝐻 a non-empty set included in 𝒰. 

If at least one operation or one axiom has some degree of indeterminacy ( I > 0 ), the degree of 

falsehood F = 0, and all other operations and axioms are totally true, then 𝐻 is an IndetermAlgebra. 

24. Definition of IndetermSoft Algebra

The set H(⩓, ⩔, ⩔E, ⫬) closed under the following operators:

joinAND (denoted by ⩓), which is a determinate operator; 

disjoinOR (denoted by ⩔), which is an indeterminate operator; 

exclusiveOR (denoted by ⩔E), which is an indeterminate operator, 

and sub-negation/sub-complement NOT (denoted by ⫬), which is an indeterminate operator; 

is called an IndetermSoft Algebra. 

The IndetermSoft Algebra extends the classical Soft Set Algebra. 

The IndetermSoft Algebra is a particular case of the IndetermAlgebra, and of the NeutroAlgebra. 

The operator joinAND 

⩓:𝐻2 ⟶ H(⩓, ⩔, ⩔E, ⫬) 
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is determinate (in the classical sense): 

∀𝑥, 𝑦 ∈ 𝐻, 𝑥 ≠ 𝑦, 𝑥 ⩓ 𝑦 = 𝑥 joinAND 𝑦 = {𝑥, 𝑦} ∈ 𝐻(⩓, ⩔, ⩔E, ⫬) 

therefore, the aggregation of x and y by using the operator ⩓ gives a clear and unique output, i.e. 

the classical set of two elements: {𝑥, 𝑦}. 

But the operator disjoinOR 

⩔:𝐻2 ⟶ H(⩓, ⩔, ⩔E, ⫬) 

is indeterminate because: 

∀𝑥, 𝑦 ∈ 𝐻, 𝑥 ≠ 𝑦, 𝑥 ⩔ 𝑦 = 𝑥 disjoinOR 𝑦 = {

either 𝑥
or 𝑦

or both {𝑥 and 𝑦}
 = {

𝑥
𝑦

{𝑥, 𝑦}

Thus, the aggregation of x and y by using the operator ⩔ gives an unclear output, with three 

possible alternative solutions (either x, or y, or {𝑥 and 𝑦}). 

The exclusiveOR operator is also indeterminate: 

∀𝑥, 𝑦 ∈ 𝐻, 𝑥 ≠ 𝑦, x ⩔E y = 𝑥 exclusiveOR 𝑦 = either x, or y, and no {x, y}, 

therefore two possible solutions: 

⩔E: 𝐻2 ⟶ H(⩓,⩔, ⩔E, ⫬). 

Similarly, the operator sub-negation / sub-complement NOT 

⫬:𝐻 ⟶ H(⩓, ⩔, ⩔E, ⫬) 

is indeterminate because of many elements 𝑥 ∈ 𝐻,  

    NOT(x) =  ⫬ 𝑥 = a part of the complement of x with respect to H 

  =  a subset of 𝐻 ∖ {𝑥}. 

But there are many subsets of 𝐻 ∖ {𝑥}, therefore there is an unclear (uncertain, ambiguous) output, 

with multiple possible alternative solutions. 

25. Definition of IndetermSoft Set

Let U  be a universe of discourse, H a non-empty subset of U, and H(⩓, ⩔, ⩔E, ⫬) the IndetermSoft

Algebra generated by closing the set H under the operators ⩓, ⩔, ⩔E, and ⫬. 

Let a be an attribute, with its set of attribute values denoted by A. Then the pair 

(F, A), where 𝐹: 𝐴 → H(⩓,⩔, ⩔E, ⫬),  is called an IndetermSoft Set over 𝐻. 

26. Fuzzy / Intuitionistic Fuzzy / Neutrosophic / and other fuzzy-extension / IndetermSoft Set

One may associate fuzzy / intuitionistic fuzzy / neutrosophic etc. degrees and extend the

IndetermSoft Set to some Fuzzy / Intuitionistic Fuzzy / Neutrosophic / and other fuzzy-extension / 

IndetermSoft Set. 

26.1. Applications of (Fuzzy/ Intuitionistic Fuzzy / Neutrosophic / and other fuzzy-extension ) IndetermSoft Set 

Let H = {h1, h2, h3, h4} be a set of four houses, and the IndetermSoft Algebra generated by closing the 

set H under the previous soft operators, H(⩓, ⩔, ⩔E, ⫬). 

Let the attribute c = color, and its attribute values be the set C = {white, green, blue}. 

The IndetermSoft Function F : A → H(⩓, ⩔, ⩔E, ⫬) forms an IndetermSoft Set. 

Let an element h H , and one denotes by: 

( )d h = any type of degree (either fuzzy, or intuitionistic fuzzy, or neutrosophic, or any other 

fuzzy-extension) of the element h. 

We extend the soft operators ⩓, ⩔, ⩔E, ⫬  by assigning some degree  0(.) [0,1]pd  , where: 

p = 1 for classical and fuzzy degree, p = 2 for intuitionistic fuzzy degree, p = 3 for neutrosophic 

degree, and so on p = n for n-valued refined neutrosophic degree, to the elements involved in the 
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operators, where , ,    represent the conjunction, disjunction, and negation respectively of these 

degrees in their corresponding fuzzy-extension sets or logics. 

For examples: 

i. From F(white) = h1 ⩓ h2 as in IndetermSoft Set, one extends to:

F(white) = 1 1( )h d ⩓ 2 2( )h d , which means the degree (chance) that h1 be white is 1d and the degree 

(chance) that h2 be white is 2d , whence: 

F(white) = 1 1( )h d ⩓ 2 2( )h d = 1 2 1 2{ , }( )h h d d

As such, the degree of both houses {h1, h2} = {h1 and h2} be white is 1 2d d . 

ii. Similarly, F(white) = 1 1( )h d
⩔ 2 2( )h d

 = {h1 or h2} 1 2( )d d
, 

or the degree of at least one house {h1 or h2} be white is 1 2( )d d
. 

iii. F(white) = 1 1( )h d
⩔E 2 2( )h d

 = 

      = { h1 and (no h2)}, or { (no h1) and h2 }, and { (no h1) and (no h2) } 

      = ( either h1 is white, or h2 is white, and [no both {h1, h2}] are white simultaneously ) has the 

degree of 1 2 1 2( ) ( )d d d d − 
. 

iv. F(white) =  (⫬h1)(𝑑1
° ), which means that the degree (chance) for h1 not to be white is 𝑑1

° .

(⫬ h1 = NOT(h1) = either h2, or h3, or h4,

      or {h2, h3}, {h2, h4}, {h3, h4}, 

     or {h2, h3, h4}, 

     or   (no house). 

There are 8 alternatives, thus NOT(h1) is one of them. 

Let’s assume that NOT(h1) = {h3, h4}. Then the degree of both houses {h3, h4} be white is ¬𝑑1
° . 

27. Definition of IndetermHyperSoft Set

Let U  be a universe of discourse, H a non-empty subset of U, and H(⩓, ⩔, ⩔E, ⫬) the IndetermSoft

Algebra generated by closing the set H under the operators ⩓, ⩔, ⩔E, and ⫬. 

Let 𝑎1, 𝑎2, … 𝑎𝑛 , where 𝑛 ≥ 1, be 𝑛  distinct attributes, whose corresponding attribute values are 

respectively the sets 𝐴1, 𝐴2, … , 𝐴𝑛, with 𝐴𝑖 ∩ 𝐴𝑗 = ∅ for 𝑖 ≠ 𝑗, and 𝑖, 𝑗 ∈ {1, 2, … , 𝑛}. Then the pair (𝐹, 𝐴1 ×

𝐴2 × …× 𝐴𝑛), where 𝐴1 × 𝐴2 × …× 𝐴𝑛 represents a Cartesian product, with  

𝐹: 𝐴1 × 𝐴2 × …× 𝐴𝑛 → H(⩓, ⩔, ⩔E, ⫬), is called an IndetermHyperSoft Set. 

Similarly, one may associate fuzzy / intuitionistic fuzzy / neutrosophic etc. degrees and extend the 

IndetermHyperSoft Set to some Fuzzy / Intuitionistic Fuzzy / Neutrosophic etc. IndetermHyperSoft Set. 

28. Applications of the IndetermHyperSoft Set

Let’s again  𝐻 = {ℎ1, ℎ2, ℎ3, ℎ4} be a set of four houses, and the attribute c = color, whose values are

C = {white, green, blue, red}, and another attribute p = price, whose values are P = {cheap, expensive}. 

The function 

𝐹: 𝐶𝑃 → 𝒫(𝐻)  

where 𝒫(𝐻) is the powerset of H, is a HyperSoft Set. 

𝐹: 𝐶 × 𝑃 → H(⩓, ⩔, ⩔E, ⫬), is called an IndetermHyperSoft Set. 

Examples:  

F(white, cheap) = h2⩔ h4 

F(green, expensive) = h1 ⩔E h2 

F(red, expensive) = ⫬ h3 
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For a Neutrosophic IndetermHyperSoft Set one has neutrosophic degrees, for example: 

F(white, cheap) = h2(0.4, 0.2, 0.3)⩔ h4 (0.5, 0.1, 0.4) 

In the same way as above (Section 26.1), one extends the HyperSoft operators ⩓, ⩔, ⩔E, ⫬  by 

assigning some degree 
0(.) [0,1]pd  , where: p = 1 for classical and fuzzy degree, p = 2 for 

intuitionistic fuzzy degree, p = 3 for neutrosophic degree, and so on p = n for n-valued refined 

neutrosophic degree, to the elements involved in the operators, where , ,    represent the 

conjunction, disjunction, and negation respectively of these degrees in their corresponding fuzzy-

extension sets or logics. 

29. Definition of Neutrosophic Triplet Commutative Group

Let 𝒰 be a universe of discourse, and (𝐻,∗) a non-empty set included in 𝒰, where * is a binary

operation (law) on 𝐻. 

(i) The operation * on 𝐻 is well-defined, associative, and commutative.

(ii) For each element 𝑥 ∈ 𝐻 there exist an element 𝑦 ∈ 𝐻, called the neutral of x, such that y is

different from the unit element (if any), with 𝑥 ∗ 𝑦 = 𝑦 ∗ 𝑥 = 𝑥, and there exist an element 

𝑧 ∈ 𝐻,  called the inverse of x, such that 𝑥 ∗ 𝑧 = 𝑧 ∗ 𝑥 = 𝑦, then 〈𝑥, 𝑦, 𝑧〉 is called a neutrosophic 

triplet. 

Then (𝐻, ∗) is Neutrosophic Triplet Commutative Group. 

In general, a Neutrosophic Triplet Algebra is different from a Classical Algebra. 

29.1. Theorem 3 

The joinAND Algebra (𝐻, ⩓)  and the disjoinOR Algebra (𝐻, ⩔)  are Neutrosophic Triplet 

Commutative Groups. 

Proof 

We have previously proved that the operators ⩓ and ⩔ are each of them: well-defined, associative, 

and commutative. 

We also proved that the two operators are idempotent: 

∀𝑥 ∈ 𝐻, 𝑥 ⩓ 𝑥 = 𝑥 and 𝑥 ⩔ 𝑥 = 𝑥. 

Therefore, for (𝐻,⩓) and respectively (𝐻,⩔) one has neutrosophic triplets of the form: 〈𝑥, 𝑥, 𝑥〉. 

30. Enriching the IndetermSoft Set and IndetermHyperSoft Set

The readers are invited to extend this research, since more determinate and indeterminate soft

operators may be added to the IndetermSoft Algebra or IndetermHyperSoft Algebra, resulted from, or 

needed to, various real applications - as such one gets stronger soft and hypersoft structures.  

A few suggestions: 

F(white) = at least k houses; 

or F(white) = at most k houses; 

or F(green, small) = between k1 and k2 houses; 

where k, k1 and k2 are positive integers, with k1 ≤ k2. 

Etc. 

31. Conclusions

The indeterminate soft operators, presented in this paper, have resulted from our real-world

applications. An algebra closed under such operators was called an indeterminate soft algebra. 
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IndetermSoft Set and IndetermHyperSoft Set, and their corresponding Fuzzy / Intuitionistic Fuzzy 

/ Neutrosophic forms, constructed on this indeterminate algebra, are introduced for the first time as 

extensions of the classical Soft Set and HyperSoft Set. 

Many applications and examples are showed up. 
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Abstract: In current Chinese higher education, the teaching quality assessment (TQA) of teachers 

in colleges/universities is an essential way to promotes the improvement of teacher teaching 

quality in the teaching process. In the TQA process of teachers, the evaluation information of 

experts/decision makers implies incompleteness, uncertainty and inconsistency corresponding to 

experts' cognition and judgment on evaluation indicators. Neutrosophic multiple attribute 

decision making (MADM) is one of key research topics in indeterminate and inconsistent 

decision-making problems. This paper presents a novel MADM technique using tangent 

trigonometric aggregation operators for single-valued neutrosophic numbers (SvNNs) to assess 

the teaching quality of teachers. First, we propose novel operational laws of tangent trigonometric 

SvNNs based on tangent trigonometric function. In view of the tangent trigonometric SvNN 

operational laws, we present tangent trigonometric SvNN weighted averaging and geometric 

operators to aggregate tangent trigonometric SvNNs. Then, we establish the MADM technique 

using the proposed two aggregation operators to perform MADM problems, and provide an 

actual example about the TQA of teachers and the comparison of existing related MADM 

techniques in the SvNN environment to reveal the efficiency and suitability of the proposed 

technique. 

Keywords: single-valued neutrosophic number; tangent trigonometric operation; tangent 

trigonometric aggregation operator; decision making; teaching quality assessment 

 

 

1. Introduction 

The teaching quality of teachers reveals significance in the training and competition of modern 

talents in current Chinese higher education. In this case, the teaching quality assessment (TQA) 

mechanism in colleges and universities plays an important role in the teaching process and 

promotes the improvement of teachers' teaching quality. Since the TQA of teachers contains many 

evaluation indicators/attributes, such as teaching level and skill, teaching means and method, 

teaching attitude, TQA is a multiple attribute decision-making (MADM) issue. Then, in the TQA 

process of teachers, the evaluation information of experts implies incompleteness, uncertainty, and 

inconsistency corresponding to experts' cognition and judgment on evaluation indicators. 

In the environment of incompleteness, uncertainty and inconsistency, a neutrosophic set (NS) 

was presented by Smarandache [1] in view of the true, false and indeterminate membership 

functions subject to a non-standard interval ]0, 1+[. Then, some researchers introduced an interval 

NS (INS) [2], a single-valued NS (SvNS) [3], and a simplified NS [4] based on a real-standard 
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interval [0, 1] to suit the application of engineering and science fields. Due to the merit of simplified 

NSs, including INSs and SvNSs, the simplified NSs have been used for many MADM issues [5-8]. 

Recently, neutrosophic MADM models have been applied to the TQA of teachers [9-11].  

Neutrosophic decision making is a current research hotspot. It is very vital to establish 

reasonable information representations and operations in decision-making models. It is worth 

noting that the neutrosophic aggregation operation plays an important role in neutrosophic MADM 

issues. Some researchers [12-14] proposed the operational laws of logarithmic single-valued 

neutrosophic numbers (SvNNs) and sine trigonometric SvNNs (ST-SvNNs) and their weighted 

aggregation operators for MADM problems in the SvNS setting. Then, the merit of the sine 

trigonometric function is its periodicity and symmetry about the origin, which meets the preference 

of decision-makers for multiple time phase parameters. Another periodic function, except the sine 

trigonometric function, is the tangent trigonometric function. In terms of the superiority of the 

tangent trigonometric function, this paper needs to build up some new operational laws of tangent 

trigonometric SvNNs (TT-SvNNs) and studies their aggregation operators, then establishes the 

MADM technique to perform the assessment mechanism of teaching quality in Shaoxing University 

in China under the environment of SvNSs. 

The remainder of this article is arranged as follows. Section 2 introduces some preliminaries 

related to SvNNs. In Section 3, we give the definition of TT-SvNN and some novel operational laws of 

TT-SvNNs. In Section 4, we propose the TT-SvNN weighted averaging (TT-SvNNWA) and 

TT-SvNN weighted geometric (TT-SvNNWG) operators, along with the related proof of their 

properties. Section 5 establishes the MADM technique in terms of the TT-SvNNWA and 

TT-SvNNWG operators to perform MADM problems with SvNN information. Section 6 applies the 

established MADM technique to an actual example about the TQA problem of teachers in Shaoxing 

University in China and conducts the comparison of existing related MADM techniques to show 

the efficiency and suitability of the established MADM technique in the environment of SvNSs. The 

article ends with conclusions and future research in Section 7. 

2. Some Preliminaries of SvNNs 

2.1 Operations and sorting rules of SvNNs 

The SvNS SN in a universe set Y is denoted as SN = {<y, Nt(y), Nu(y), Nf(y)>|y  Y} [3], where 

Nt(y), Nu(y), Nf(y)  [0, 1] are the true, indeterminate, and false membership functions subject to 0  

Nt(y) + Nu(y) + Nf(y)  3 for y  Y. Then, <y, Nt(y), Nu(y), Nf(y)> in SN is denoted as Ns = <Nt, Nu, Nf> 

for simplicity, which is named SvNN. 

Set two SvNNs as Ns1 = <Nt1, Nu1, Nf1> and Ns2 = <Nt2, Nu2, Nf2> with h > 0. Then, their 

operations are defined below [4, 7]: 

(1) Ns1  Ns2  Nt1  Nt2, Nu1  Nu2, and Nf1  Nf2; 

(2) Ns1 = Ns2  Ns1  Ns2 and Ns2  Ns1; 

(3) 1 2 1 2 1 2 1 2, ,Ns Ns Nt Nt Nu Nu Nf Nf    ; 

(4) 1 2 1 2 1 2 1 2, ,Nt Nt Nt Nt Nu Nu Nf Nf    ; 

(5) 1 1 1 1( ) ,1 ,cNs Nf Nu Nt   (Complement of Ns1); 

(6) 1 2 1 2 1 2 1 2 1 2, ,Ns Ns Nt Nt Nt Nt Nu Nu Nf Nf    ; 

(7) 1 2 1 2 1 2 1 2 1 2 1 2, ,Ns Ns Nt Nt Nu Nu Nu Nu Nf Nf Nf Nf      ; 
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(8) 1 1 1 11 (1 ) , ,h h hh Ns Nt Nu Nf    ; 

(9) 1 1 1 1,1 (1 ) ,1 (1 )h h h hNs Nt Nu Nf     . 

Set Nsg = <Ntg, Nug, Nfg> (g = 1, 2, …, n) as a group of SvNNs with their weight vector H = (h1, h2, 

…, hn) subject to 0  hg  1 and 
1

1n
gg

h


 . Then, the weighted averaging and geometric operators 

of SvNNs are denoted as SvNNWA and SvNNWG and defined by the following equations [7]: 

     1 2
1 1 1 1

( , ,..., ) 1 1 , ,g g g
n n nn h h h

n g g g g g
g g g g

SvNNWA Ns Ns Ns h Ns Nt Nu Nf
   

       ,  (1) 

       1 2
1 1 1 1

( , ,..., ) ,1 1 ,1 1g g g g
n n n nh h h h

n g g g g
g g g g

SvNNWG Ns Ns Ns Ns Nt Nu Nf
   

         . (2) 

To compare two SvNNs Nsg = <Ntg, Nug, Nfg> (g = 1, 2), the score and accuracy functions of 

SvNNs are defined as follows [7]: 

( ) (2 ) / 3g g g gF Ns Nt Nu Nf     for ( ) [0,1]gF Ns  ,                  (3) 

( )g g gG Ns Nt Nf   for ( ) [ 1,1]gG Ns   .                         (4) 

In terms of the score and accuracy functions, a sorting method of two SvNNs is defined by the 

following rules: 

(1) If F(Ns1) > F(Ns2), then Ns1 > Ns2; 

(2) If F(Ns1) = F(Ns2) and G(Ns1) > G(Ns2), then Ns1 > Ns2; 

(3) If F(Ns1) = F(Ns2) and G(Ns1) = G(Ns2), then Ns1  Ns2. 

2.2 Operational Laws of ST-SvNNs 

Set SvNN as Ns = <Nt, Nu, Nf>. Then, ST-SvNN is defined as 

2 2 2sin( ) sin( ),1 sin( ),1 sin( )Ns Nt Nu Nf        [14], where the true, indeterminate, and 

false membership degrees are 2sin( ) : [0,1]Nt Y  , 21 sin( ) : [0,1]Nu Y   , and 

21 sin( ) : [0,1]Nf Y   , respectively. 

Set two ST-SvNNs as 1 1 1 12 2 2sin( ) sin( ),1 sin( ),1 sin( )Ns Nt Nu Nf        and 

2 2 2 22 2 2sin( ) sin( ),1 sin( ),1 sin( )Ns Nt Nu Nf        with h > 0. Then, their operational laws 

are defined below [14]: 

(1) 
1 22 2

1 2 1 22 2

1 22 2

1 (1 sin( ))(1 sin( )),
sin( ) sin( ) (1 sin( ))(1 sin( )),

(1 sin( ))(1 sin( ))

Nt Nt
Ns Ns Nu Nu

Nf Nf

 

 

 

  

     

   

, 

(2) 
1 22 2

1 2 1 22 2

1 22 2

sin( )sin( ),
sin( ) sin( ) 1 sin( )sin( ),

1 sin( )sin( )

Nt Nt
Ns Ns Nu Nu

Nf Nf

 

 

 

    

  

, 
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(3) 1 1 1 12 2 2sin( ) 1 (1 sin( )) ,(1 sin( )) ,(1 sin( ))h h hh Ns Nt Nu Nf          , 

(4) 1 1 1 12 2 2(sin( )) (sin( )) ,1 (sin( )) ,1 (sin( ))h h h h
fNs Nt Nu N       . 

Set Nsg = <Ntg, Nug, Nfg> (g = 1, 2, …, n) as a group of SvNNs with their weight vector H = (h1, h2, 

…, hn) subject to 0  hg  1 and 
1

1n
gg

h


 . Then, the ST-SvNN weighted averaging and geometric 

operators are denoted as ST-SvNNWA and ST-SvNNWG and defined by the following equations 

[14]: 

        

1 2
1

2 2 2
1 1 1

( , ,..., ) sin( )

1 1 sin , 1 sin , 1 sing g g

n

n g g
g

n n nh h h

g g g
g g g

ST SvNNWA Ns Ns Ns h Ns

Nt Nu Nf  



  

 

 
       
 



  

,  (5) 

 

     

1 2
1

2 2 2
1 1 1

( , ,..., ) sin( )

sin( ) ,1 sin( ) ,1 sin( )

g

g g g

n h

n g
g

n n nh h h

g g g
g g g

ST SvNNWG Ns Ns Ns Ns

Nt Nu Nf  



  

 

 
     
 



  

.         (6) 

3. Operational Laws of TT-SvNNs 

This section defines TT-SvNN and some operational laws of TT-SvNNs.  

First, we give the definition of TT-SvNN. 

Definition 1. Set SvNN as Ns = <Nt, Nu, Nf>. Then, TT-SvNN is defined below: 

4 4 4tan( ) tan( ),1 tan( (1 ),1 tan( (1 )Ns Nt Nu Nf       , 

where the true, false, and indeterminate membership degrees are given, respectively, by 

4 4tan( ) : [0,1], 0 tan( ) 1Nt Y Nt    , 

4 41 tan( (1 )) : [0,1], 0 1 tan( (1 )) 1Nf Y Nf        , 

4 41 tan( (1 )) : [0,1], 0 1 tan( (1 )) 1Nu Y Nu        . 

Definition 2. Set SvNN as Ns = <Nt, Nu, Nf>. If 

4 4 4tan( ) tan( ),1 tan( (1 )),1 tan( (1 ))Ns Nt Nu Nf       , then tan(Ns) is named the tangent 

trigonometric operator and its value is named TT-SvNN. 

Definition 3. Set two TT-SvNNs as 1 1 1 14 4 4tan( ) tan( ),1 tan( (1 )),1 tan( (1 ))Ns Nt Nu Nf        

and 2 2 2 24 4 4tan( ) tan( ),1 tan( (1 )),1 tan( (1 ))Ns Nt Nu Nf       . Then, their operational 

laws are defined below: 

(1) 
1 24 4

1 2 1 24 4

1 24 4

1 (1 tan( ))(1 tan( )),
tan( ) tan( ) (1 tan( (1 )))(1 tan( (1 ))),

(1 tan( (1 )))(1 tan( (1 )))

Nt Nt
Ns Ns Nu Nu

Nf Nf

 

 

 

  

     

   

, 



Neutrosophic Sets and Systems, Vol. 50, 2022    655  

 

 
Mailing Zhao, Jun Ye, MADM Technique Using Tangent Trigonometric SvNN Aggregation Operators for the Teaching 
Quality Assessment of Teachers  

(2) 
1 24 4

1 2 1 24 4

1 24 4

tan( ) tan( ),
tan( ) tan( ) 1 tan( (1 )) tan( (1 )),

1 tan( (1 )) tan( (1 ))

Nt Nt
Ns Ns Nu Nu

Nf Nf

 

 

 

    

  

, 

(3) 1 1 1 14 4 4tan( ) 1 (1 tan( )) ,(1 tan( (1 ))) ,(1 tan( (1 )))h h hh Ns Nt Nu Nf          , 

(4) 1 1 1 14 4 4(tan( )) (tan( )) ,1 (tan( (1 ))) ,1 (tan( (1 )))h h h hNs Nt Nu Nf       . 

4. TT-SvNN Aggregation Operators 

This section proposes two weighted aggregation operators of TT-SvNNWA and TT-SvNNWG 

in terms of the proposed operational laws of TT-SvNNs and indicates their properties.  

3.1 TT-SvNNWA Operator 

Definition 4. Set Nsg = <Ntg, Nug, Nfg> (g = 1, 2, …, n) as a group of SvNNs with their weight vector H 

= (h1, h2, …, hn) subject to 0  hg  1 and 
1

1n
gg

h


 . Then, the TT-SvNN weighted averaging 

operator is denoted by TT-SvNNWA and defined below:  

1 2 1 2

1

( , ,..., ) tan( ) tan( ) ... tan( )

tan( )

n g g n n

n

g g
g

TT SvNNWA Ns Ns Ns h Ns h Ns h Ns

h Ns


    


.   (7) 

Theorem 1. Set Nsg = <Ntg, Nug, Nfg> (g = 1, 2, …, n) as a group of SvNNs with their weight vector H = 

(h1, h2, …, hn) subject to 0  hg  1 and 
1

1n
gg

h


 . Then, the value of the TT-SvNNWA operator is 

obtained by the following equation: 

        

1 2
1

4 4 4
1 1 1

( , ,..., ) tan( )

1 1 tan , 1 tan (1 ) , 1 tan (1 )g g g

n

n g g
g

n n nh h h

g g g
g g g

TT SvNNWA Ns Ns Ns h Ns

Nt Nu Nf  



  

 

 
       
 



  

. (8) 

Proof: We can verify Theorem 1 in view of mathematical induction and Definition 3. 

For n = 2, we obtain the operational result: 

1 2

1 2

1 2

2

1 2
1

1 24 4

1 1 2 2 1 24 4

1 24 4

( , ) tan( )

1 (1 tan( )) , 1 (1 tan( )) ,

tan( ) tan( ) (1 tan( (1 ))) , (1 tan( (1 ))) ,

(1 tan( (1 ))) (1 tan( (1 )))

g g
g

h h

h h

h h

TT SvNNWA Ns Ns h Ns

Nt Nt

h Ns h Ns Nu Nu

Nf Nf

 

 

 



 

      
   

          
          



2 2 2

4 4 4
1 1 1

1 (1 tan( )) , (1 tan( (1 ))) , (1 tan( (1 ))) .g g gh h h
g g g

g g g

Ns Nu Nf  

  



 
       
 

  

 

Assume that Eq. (8) holds for n = p as follows: 
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1 2
1

4 4 4
1 1 1

( , ,..., ) tan( )

1 1 tan , 1 tan (1 ) , 1 tan (1 ) .g g g

p

p g g
g

p p ph h h

g g g
g g g

TT SvNNWA Ns Ns Ns h Ns

Nt Nu Nf  



  

 

 
       
 



  

 

For n = p + 1, we have the following result: 

        

1 1

1 2 1 1 1
1

4 4 4
1 1 1

1 1 14 4 4

( , ,..., , ) tan( ) tan( )

1 1 tan , 1 tan (1 ) , 1 tan (1 )

1 (1 tan( )) , (1 tan( (1 ))) , (1 tan( (1 )

g g g

p p

p

p p g g g p
g

p p ph h h

g g g
g g g

h h
p p p

TT SvNNWA Ns Ns Ns Ns h Ns h Ns

Nt Nu Nf

Ns Nu Nf

  

   

  



  

  

  

 
       
 

      



  

 

        

1

1 1 1

4 4 4
1 1 1

))

1 1 tan , 1 tan (1 ) , 1 tan (1 ) .

p

g g g

h

p p ph h h

g g g
g g g

Nt Nu Nf  



  

  

 
       
 

  

 

Thus, Eq. (8) can hold for n = p+1. 

Therefore, Eq. (8) also holds for any n. This proof is finished.  

Example 1. Set three SvNNs as Ns1 = <0.76, 0.23, 0.2>, Ns2 = <0.83, 0.3, 0.22>, and Ns3 = <0.67, 0.12, 

0.15> with the weight vector H = <0.35, 0.2, 0.45>. Using Eq. (8), we give the following calculational 

process: 

        

        

     

3

1 2 3
1

0.35 0.2 0.45

4 4 4

0.35 0.2 0.45

4 4 4

0.35 0.2

4 4 4

( , , ) tan( )

1 1 tan 0.76 1 tan 0.83 1 tan 0.67 ,

1 tan (1 0.23) 1 tan (1 0.3) 1 tan (1 0.12) ,

1 tan (1 0.2) 1 tan (1 0.22) 1 tan (1 0.1

g g
g

TT SvNNWA Ns Ns Ns h Ns

  

  

  



 

        

        

       



  
0.45

5)

0.6596, 0.2488, 0.2478 . 

 

Theorem 2. The proposed TT-SvNNWA operator contains some properties based on the tangent 

trigonometric function as follows: 

(i) Idempotency: If Nsg = <Ntg, Nug, Nfg> = <Nt, Nu, Nf> = Ns (g = 1, 2, …, n), there 

is 1 2( , ,..., ) tan( )nTT SvNNWA Ns Ns Ns Ns  . 

(ii) Boundedness: Set min( ),max( ),max( )g g gg g g
Ns Nt Nu Nf   and max( ),min( ),min( )g g gg gg

Ns Nt Nu Nf   

as the minimum SvNN and the maximum SvNN, respectively. Then, there is 

1 2tan( ) ( , ,..., ) tan( )nNs TT SvNNWA Ns Ns Ns Ns    . 

(iii) Monotonicity: Set , ,g g g gNs Nt Nu Nf  and * * * *, ,g g gNs Nt Nu Nf  (g = 1, 2, …, n) as two groups 

of SvNNs. Then
 

* * *
1 2 1 2( , , , ) ( , , , )n nTT SvNNWA Ns Ns Ns TT SvNNWA Ns Ns Ns    exists when 

*
g gNs Ns . 

Proof:  

(i) For Nsg = Ns, using Eq. (8), we obtain 
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   1

1 2
1

4 4 4
1 1 1

4 4 4
1 1 1

4

( , ,..., ) tan( )

1 1 tan , 1 tan (1 ) , 1 tan (1 )

1 1 tan , 1 tan (1 ) , 1 tan (1 )

1 1

 

tan ,

g g g

g g g

n
gg

n

n g g
g

n n nh h h

g g g
g g g

n n nh h h

g g g

h

TT SvNNWA Ns Ns Ns h Ns

Nt Nu Nf

Nt Nu Nf

Nt

  

  

 



  

  

 

 
       
 

 
       
 


  



  

  

     

      

1 1
4 4

4 4 4

1 tan (1 ) , 1 tan (1 )

tan ,1 tan (1 ) ,1 tan (1 ) tan( ).

n n
g gg g

h h
Nu Nf

Nt Nu Nf Ns

 

  

   
    

 

     

 

(ii) When gNs Ns Ns   , tan( ) tan( ) tan( )gNs Ns Ns    exists since tan (x) for 0  x  /4 

is an increasing function. Then, there is also 

1 1 1
tan( ) tan( ) tan( )n n n

g g g gg g g
h Ns h Ns h Ns 

  
    . Therefore, based on the property 

(i), there is 1 2tan( ) ( , ,..., ) tan( )nNs TT SvNNWA Ns Ns Ns Ns    . 

(iii) When 
*

g gNs Ns , there is *tan( ) tan( )g gNs Ns  since tan (x) for 0  x  /4 is an increasing 

function. 
*

1 1
tan( ) tan( )n n

g g g gg g
h Ns h Ns

 
   can hold in view of the property (ii). Thus, 

* * *
1 2 1 2( , , , ) ( , , , )n nTT SvNNWA Ns Ns Ns TT SvNNWA Ns Ns Ns    exists. 

3.2 TT-SvNNWG Operator 

Definition 5. Set Nsg = <Ntg, Nug, Nfg> (g = 1, 2, …, n) as a group of SvNNs with their weight vector H 

= (h1, h2, …, hn) subject to 0  hg  1 and 
1

1n
gg

h


 . Then, the TT-SvNN weighted geometric 

operator is denoted by TT-SvNNWG and defined below:  

     

 

1 2

1 2 1 2

1

( , ,..., ) tan( ) tan( ) ... tan( )

tan( )

n

g

h h h
n n

n h

g
g

TT SvNNWG Ns Ns Ns Ns Ns Ns

Ns


    


.  (9) 

Theorem 3. Set Nsg = <Ntg, Nug, Nfg> (g = 1, 2, …, n) as a group of SvNNs with their weight vector H = 

(h1, h2, …, hn) subject to 0  hg  1 and 
1

1n
gg

h


 . Then, the value of the TT-SvNNWG operator is 

obtained by the following equation: 

 

     

1 2
1

4 4 4
1 1 1

( , ,..., ) tan( )

tan( ) ,1 tan( (1 )) ,1 tan( (1 ))

g

g g g

n h

n g
g

n n nh h h

g g g
g g g

TT SvNNWG Ns Ns Ns Ns

Nt Nu Nf  



  

 

 
     
 



  

.   (10) 

In view of the similar proof process of Theorem 1, we can easily verify Theorem 3, which is 

omitted. 

Example 2. Set three SvNNs as Ns1 = <0.8, 0.2, 0.1>, Ns2 = <0.7, 0.2, 0.2>, and Ns3 = <0.9, 0.1, 0.1> with 

the weight vector H = (0.35, 0.25, 0.4). Using Eq. (10), we give the following calculational process: 



Neutrosophic Sets and Systems, Vol. 50, 2022    658  

 

 
Mailing Zhao, Jun Ye, MADM Technique Using Tangent Trigonometric SvNN Aggregation Operators for the Teaching 
Quality Assessment of Teachers  

 

        

        

        

3

1 2 3
1

0.35 0.25 0.4

4 4 4

0.35 0.25 0.4

4 4 4

0.35 0.25 0.4

4 4 4

( , , ) tan( )

tan 0.8 tan 0.7 tan 0.9 ,

1 tan (1 0.2) tan (1 0.2) tan (1 0.1) ,

1 tan (1 0.1) tan (1 0.2) tan (1 0.1)

0.7428, 0.2249,

gh

g
g

TT SvNNWG Ns Ns Ns Ns

  

  

  



 

    

      

     





 0.1798 .

 

Theorem 4. The proposed TT-SvNNWG operator contains some properties based on the tangent 

trigonometric function as follows: 

(i) Idempotency: If Nsg = <Ntg, Nug, Nfg> = <Nt, Nu, Nf> = Ns (g = 1, 2, …, n), there is 

1 2( , ,..., ) tan( )nTT SvNNWG Ns Ns Ns Ns  .  

(ii) Boundedness: Set min( ),max( ),max( )g g gg g g
Ns Nt Nu Nf   and max( ),min( ),min( )g g gg gg

Ns Nt Nu Nf   

as the minimum SvNN and the maximum SvNN, respectively. Then, there is 

1 2tan( ) ( , ,..., ) tan( )nNs TT SvNNWG Ns Ns Ns Ns    . 

(iii) Monotonicity: Set , ,g g g gNs Nt Nu Nf  and * * * *, ,g g gNs Nt Nu Nf  (g = 1, 2, …, n) as two groups 

of SvNNs. Then
 

* * *
1 2 1 2( , , , ) ( , , , )n nTT SvNNWG Ns Ns Ns TT SvNNWG Ns Ns Ns    exists when 

*
g gNs Ns . 

Obviously, the proof process of Theorem 4 is similar to that of Theorem 2, which is omitted. 

5. MADM Technique 

This section establishes a MADM technique using the proposed TT-SvNNWA and 

TT-SvNNWG operators in the SvNS setting. 

MADM problems usually contain a set of p alternatives K = {K1, K2, …, Kp} and a set of n 

attributes L = {L1, L2, …, Ln} and then indicate decision matrix M = (Nskg)pn, where Nskg (k = 1, 2, …, p; g 

= 1, 2, …, n) are SvNNs corresponding to satisfactory assessments of an alternative Kk over attributes 

Lg given by decision makers. The weight vector of the attributes is presented by H = (h1, h2, …, hn) 

subject to 0  hg  1 and 
1

1n
gg

h


 . Regarding MADM problems with SvNN information, the 

MADM algorithm is composed of the following steps. 

Step 1: In view of the satisfactory levels of each teacher with respect to the teaching quality 

indicators, the experts give the decision matrix of SvNNs M = (Nskg)pn. 

Step 2: The aggregated values Nsk for Kk (k = 1, 2, …, p) are calculated by the following 

TT-SvNNWA or TT-SvNNWG operator: 

        

1 2
1

4 4 4
1 1 1

( , ,..., ) tan( )

1 1 tan , 1 tan (1 ) , 1 tan (1 )g g g

n

k k k kn g kg
g

n n nh h h

kg kg kg
g g g

Ns TT SvNNWA Ns Ns Ns h Ns

Nt Nu Nf  



  

  

 
       
 



  

. (11) 
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or 

 

     

1 2
1

4 4 4
1 1 1

( , ,..., ) tan( )

tan( ) ,1 tan( (1 )) ,1 tan( (1 ))

g

g g g

n h

k k k kn kg
g

n n nh h h

kg kg kg
g g g

Ns TT SvNNWG Ns Ns Ns Ns

Nt Nu Nf  



  

  

 
     
 



  

.   (12) 

Step 3: The score values of F(Nsk) (the accuracy values of G(Nsk)) are calculated by Eq. (3) (Eq. 

(4)). 

Step 4: Alternatives are sorted in descending order in terms of the score values (accuracy 

values) and the best one and the worst one are determined. 

Step 5: End. 

6. Actual Example about the TQA of Teachers 

6.1. TQA Example of Teachers 

In current Chinese higher education, the teaching quality of teachers is becoming more and 

more important in the training and competition of modern talents. In this case, the assessment 

mechanism of teaching quality in colleges and universities reveals its importance and necessary in 

the teaching process. Since the TQA problem of teachers contain many evaluation 

indicators/attributes, liking teaching level and skill, teaching means and methods, teaching attitude, 

etc. Therefore, TQA is a MADM issue, where evaluation data of the indicators/attributes contain 

incomplete, uncertain and inconsistent information in the evaluation process. This section applies 

the established MADM technique to an actual example about the TQA of teachers to show the 

efficiency and suitability of the established MADM technique in the environment of SvNSs. 

Shaoxing University in China needs to establish the TQA system of teachers as an effective 

teaching management strategy. To evaluate the teaching quality of teachers, the teaching 

management department preliminarily chooses five teachers as the evaluated objects, which are 

denoted as a set of the five alternatives K = {K1, K2, K3, K4, K5}. In the TQA process, they must evaluate 

the satisfactory levels of each teacher with respect to the indicators/attributes of teaching quality, 

including the teaching level and skill (L1), the teaching means and method (L2), the teaching attitude 

(L3), the teaching innovation (L4), and the satisfaction of students (L5), which are denoted as a set of 

the attributes L = {L1, L2, L3, L4, L5}. The weight vector of the five attributes is presented by H = (0.23, 

0.2, 0.2, 0.17, 0.2). 

In this MADM problem with SvNNs, the established MADM technique is applied to this actual 

example. Then, the decision steps are given below. 

Step 1: In view of the satisfactory levels of each teacher with respect of the teaching quality 

indicators, the experts give the following decision matrix of SvNNs: 

0.6,0.2,0.3 0.7,0.3,0.2 0.7,0.3,0.3 0.8,0.1,0.2 0.6,0.1,0.4
0.7,0.1,0.2 0.6,0.1,0.1 0.9,0.4,0.3 0.9,0.2,0.2 0.8,0.2,0.4
0.8,0.1,0.2 0.9,0.3,0.3 0.6,0.1,0.3 0.8,0.4,0.3 0.8,0.3,0.3
0.

M

         

         

          

 9,0.1,0.2 0.7,0.4,0.2 0.9,0.4,0.5 0.7,0.1,0.5 0.6,0.4,0.4
0.7,0.4,0.5 0.8,0.3,0.3 0.9,0.3,0.3 0.6,0.3,0.1 0.9,0.1,0.2

 
 
 
 
 

         
           

. 

Step 2: Using Eq. (11) or Eq. (12), the aggregated values of Nsk for Kk (k = 1, 2, …, p) are given 

below: 

Ns1 = <0.5960, 0.2491, 0.3569>, Ns2 = <0.7361, 0.2346, 0.2906>, Ns3 = <0.7289, 0.2649, 0.3574>, Ns4 = 

<0.7332, 0.3020, 0.4074>, and Ns5 = <0.7455, 0.3363, 0.3365>. 
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Or Ns1 = <0.5827, 0.2794, 0.3710>, Ns2 = <0.6909, 0.2745, 0.3244>, Ns3 = <0.6990, 0.3150, 0.3627>, Ns4 

= <0.6812, 0.3735, 0.4503>, and Ns5 = <0.7017, 0.3723, 0.3869>. 

Step 3: Applying Eq. (3), the score values of F(Nsk) are obtained as follows: 

F(Ns1) = 0.6633, F(Ns2) = 0.7370, F(Ns3) = 0.7022, F(Ns4) = 0.6746, and F(Ns5) = 0.6909. 

Or F(Ns1) = 0.6441, F(Ns2) = 0.6973, F(Ns3) = 0.6738 F(Ns4) = 0.6191, and F(Ns5) = 0.6475. 

Step 4: The sorting order of the five teachers is K2 > K3 > K5 > K4 > K1 or K2 > K3 > K5 > K1 > K4, and 

the best one is K2 and the worst one is K1 or K4 in the TQA process of the teachers. 

It is obvious that the sorting orders of the five teachers obtained based on the proposed 

TT-SvNNWA and TT-SvNNWG operators in the SvNS setting reveal some differences, which show 

that different aggregation algorithms may affect the sorting order. 

6.2. Related Comparison 

To reveal the efficiency and suitability of the established MADM technique for the TQA 

problem of teachers, this part compares the established MADM technique with the related 

techniques in the environment of SvNSs. 

Using Eqs. (1)–(6), the evaluation results of the five teachers are given by existing MADM 

techniques [7, 14]. Then, all the decision results based on the established MADM technique and the 

existing MADM techniques [7, 14] are shown in Table 1. 

 
Table 1. Decision results of various MADM techniques 

MADM technique Score value Sorting order 
The best 

one 

The worst 

one 

Existing MADM technique 

using Eq. (1) [7] 

0.7425, 0.8058, 0.7768, 

0.7499, 0.7658 

K2 > K3 > K5 > 

K4 > K1 
K2 K1 

Existing MADM technique 

using Eq. (2) [7] 

0.7251, 0.7708, 0.7516, 

0.6989, 0.7264 

K2 > K3 > K5 > 

K1 > K4 
K2 K4 

Existing MADM technique 

using Eq. (5) [14] 

0.9418, 0.9719, 0.9650, 

0.9582, 0.9638 

K2 > K3 > K5 > 

K4 > K1 
K2 K1 

Existing MADM technique 

using Eq. (6) [14] 

0.9324, 0.9534, 0.9516, 

0.9309, 0.9429 

K2 > K3 > K5 > 

K1 > K4 
K2 K4 

Established MADM 

technique using Eq. (11) 

0.6633, 0.7370, 0.7022, 

0.6746, 0.6909 

K2 > K3 > K5 > 

K4 > K1 
K2 K1 

Established MADM 

technique using Eq. (12) 

0.6441, 0.6973, 0.6738, 

0.6191, 0.6475 

K2 > K3 > K5 > 

K1 > K4 
K2 K4 

 
In Table 1, the sorting orders given by the established MADM technique using Eqs. (11) and (12) 

and the existing MADM techniques using Eqs. (1) and (2) and Eqs. (5) and (6) are the same. In the 

meantime, the best one is K2 and the worst one is K1 or K4 in the MADM problem. In the existing 

MADM techniques [7, 14] and the established MADM technique, different aggregation operators 

will affect the sorting order of the five teachers. In general, the weighted average aggregation 

operators mainly tend to group opinions, while the weighted geometric aggregation operators 

mainly tend to individual opinions. However, one of the aggregation operators is selected 

depending on decision makers’ preference and some actual requirements in the TQA process. 

7. Conclusions 
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Since the TQA of teachers shows its importance and necessity to improve the teaching quality 

in colleges/universities, it is critical to establish a suitable assessment mechanism in the teaching 

process. Then, the evaluation information for the teaching quality of teachers implies 

incompleteness, indeterminacy, and inconsistency due to the indeterminacy and inconsistency of 

human cognition and judgements to the evaluated objects. In this case, this research proposed an 

MADM technique for the TQA of teachers in the SvNN situation. To perform this task, we proposed 

the operational laws of TT-SvNNs and the TT-SvNNWA and TT-SvNNWG operators, and then 

established an MADM technique using the TT-SvNNWA and TT-SvNNWG operators in the SvNS 

setting. Consequently, the established MADM technique was applied in an actual MADM example 

about the TQA problem of teachers and compared with existing related MADM techniques. The 

comparative results revealed the efficiency and suitability of the established MADM technique in 

the SvNS setting.  

However, the established MADM technique is another complement to existing MADM 

techniques. Since the tangent trigonometric function shows the main superiority of its periodicity 

and symmetry about the origin, fitting the preference of decision makers for multiple time phase 

parameters, this new technique will also be extended to new aggregation operations and applied to 

the areas of slope stability/risk assessment and medical diagnosis in the environment of simplified 

NSs (SvNSs and INSs). 
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