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Abstract:  

n-refined neutrosophic structures are considered as generalizations of classical structures, 

and neutrosophic structures. 

The main goal of this paper, is to study several structures generated by using 3-refined 

neutrosophic numbers, where we find the mathematical formulas of 3-refined 

neutrosophic real functions. Also, the inner products over 3-refined neutrosophic vector 

spaces and orthogonal properties. In addition, we present the foundations of 3-refined 

neutrosophic number theory, especially division, congruencies, and some related 

equations.  

Keywords: 3-refined neutrosophic real function, 3-refined neutrosophic inner product, 

3-refined neutrosophic vector space, 3-refined neutrosophic number theory 

Introduction and basic concepts 

The concept of neutrosophic structures plays an important role in the theory of algebraic 

structures and analysis. Many concepts and structures were defined previously, such as 

neutrosophic vector spaces, neutrosophic matrices, and algebraic rings [1-3, 5-7, 14-16]. 

Laterally, refined neutrosophic structures were defined to generalize the neutrosophic 

structures, where refined neutrosophic rings, modules, and other structures were 

presented [4, 8-11, 24-28]. 
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The concept of n-refined neutrosophic structure is considered as a generalization of refined 

structure [12, 29]. For each value of the integer n, we get a generalized structure. 

This work will study some of 3-refined neutrosophic structures, where we present the 

formulas of 3-refined neutrosophic real functions, 3-refined neutrosophic inner products 

defined over 3-refined neutrosophic vector spaces, and 3-refined number theoretical 

concepts. 

First, we recall some basic concepts. 

Definition: 

Let (R,+,×) be a ring, 𝑅(𝐼) = {𝑎 + 𝑏𝐼 ;  𝑎, 𝑏 ∈ 𝑅} is called the neutrosophic ring where I is a 

neutrosophic element with condition 𝐼2 = 𝐼. 

Definition: 

Let (R,+,×) be a ring, (R(𝐼1, 𝐼2) , + ,×) is called a refined neutrosophic ring generated by R 

, 𝐼1, 𝐼2. 

Definition: 

Let (R,+,×) be a ring and 𝐼𝑘; 1 ≤ 𝑘 ≤ 𝑛 be n indeterminacies. We define 𝑅𝑛(I)={𝑎0 + 𝑎1𝐼 +

⋯+ 𝑎𝑛𝐼𝑛 ;  𝑎𝑖 ∈ 𝑅} to be n-refined neutrosophic ring.  

Addition and multiplication on 𝑅𝑛(I) are defined as: 

∑ 𝑥𝑖𝐼𝑖 + ∑ 𝑦𝑖𝐼𝑖 = ∑ (𝑥𝑖 + 𝑦𝑖)𝐼𝑖 ,
𝑛
𝑖=0 ∑ 𝑥𝑖𝐼𝑖 × ∑ 𝑦𝑖𝐼𝑖 = ∑ (𝑥𝑖 × 𝑦𝑗)𝐼𝑖𝐼𝑗

𝑛
𝑖,𝑗=0

𝑛
𝑖=0

𝑛
𝑖=0

𝑛
𝑖=0

𝑛
𝑖=0 . 

Where × is the multiplication defined on the ring R. 

For n=3, we get the 3-refined neutrosophic ring. 

Main Discussion 

Definition.  

Let 𝑅3(𝐼) be the 3-refined neutrosophic ring of reals, 𝑓: 𝑅3(𝐼) → 𝑅3(𝐼); 𝑓 = 𝑓(𝑋); 𝑋 ∈ 𝑅3(𝐼). 

𝑓 is called 3-refined neutrosophic real function with one variable. 

Theorem. 

𝑅3(𝐼) ≅ 𝑅
4. 

Proof. 

We define 𝑔: 𝑅3(𝐼) → 𝑅4; 𝑔(𝑎 + 𝑏𝐼1 + 𝑐𝐼2 + 𝑑𝐼3) = (𝑎, 𝑎 + 𝑏 + 𝑐 + 𝑑, 𝑎 + 𝑐 + 𝑑, 𝑎 + 𝑑). 
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It is clear that 𝑔 is well defined function. 

𝑘𝑒𝑟(𝑔) = {0}, thus 𝑔 is injective. 

𝐼𝑚(𝑔) = 𝑅4, thus 𝑔 is surjective, so that 𝑔 is one-to-one. 

Now, let 𝐴 = 𝑎0 + 𝑎1𝐼1 + 𝑎2𝐼2 + 𝑎3𝐼3, 𝐵 = 𝑏0 + 𝑏1𝐼1 + 𝑏2𝐼2 + 𝑏3𝐼3, 

𝐴 + 𝐵 = (𝑎0 + 𝑏0) + (𝑎1 + 𝑏1)𝐼1 + (𝑎2 + 𝑏2)𝐼2 + (𝑎3 + 𝑏3)𝐼3 

𝑔(𝐴 + 𝐵) = 𝑔(𝐴) + 𝑔(𝐵). 

𝐴. 𝐵 = 𝑎0𝑏0 + [(𝑎0 + 𝑎1 + 𝑎2 + 𝑎3)(𝑏0 + 𝑏1 + 𝑏2 + 𝑏3) − (𝑎0 + 𝑎2 + 𝑎3)(𝑏0 + 𝑏2 + 𝑏3)]𝐼1

+ [(𝑎0 + 𝑎2 + 𝑎3)(𝑏0 + 𝑏2 + 𝑏3) − (𝑎0 + 𝑎3)(𝑏0 + 𝑏3)]𝐼2

+ [(𝑎0 + 𝑎3)(𝑏0 + 𝑏3) − 𝑎0𝑏0]𝐼3 

𝑔(𝐴. 𝐵) = 𝑔(𝐴). 𝑔(𝐵), hence 𝑔 is a ring isomorphism. 

Remark. 

Let 𝑓: 𝑅3(𝐼) → 𝑅3(𝐼) be a 3-refined neutrosophic real function with one variable, then 𝑓 

can be represented by four classical real functions by taking the direct isomorphic image 

𝑔(𝑓(𝑋)). 

Example. 

Take 𝑓(𝑋) = (1 + 𝐼1)𝑋
2 + (2 − 𝐼2 − 𝐼3)𝑋 + 1 + 2𝐼1 + 𝐼2 + 𝐼3 , 𝑓  can be represented as 

follows: 

𝑔(𝑓(𝑋)) = 𝑔(1 + 𝐼1)(𝑔(𝑋))
2
+ 𝑔(2 − 𝐼2 − 𝐼3)𝑔(𝑋) + 𝑔(1 + 2𝐼1 + 𝐼2 + 𝐼3) 

𝑔(𝑓(𝑋)) = (1,2,1,1)(𝑥0
2, (𝑥0 + 𝑥1 + 𝑥2 + 𝑥3)

2, (𝑥0 + 𝑥2 + 𝑥3)
2, (𝑥0 + 𝑥3)

2)

+ (2,0,0,1)(𝑥0, 𝑥0 + 𝑥1 + 𝑥2 + 𝑥3, 𝑥0 + 𝑥2 + 𝑥3, 𝑥0 + 𝑥3) + (1,5,3,2) 

𝑔(𝑓(𝑋)) = (𝑥0
2 + 2𝑥0 + 1,2(𝑥0 + 𝑥1 + 𝑥2 + 𝑥3)

2 + 5, (𝑥0 + 𝑥2 + 𝑥3)
2 + 3, (𝑥0 + 𝑥3)

2

+ (𝑥0 + 𝑥3) + 2) 

The four classical functions that represent (𝑓) are: 

𝑓1: 𝑅 → 𝑅; 𝑓1(𝑥0) = 𝑥0
2 + 2𝑥0 + 1 

𝑓2: 𝑅 → 𝑅; 𝑓2(𝑥0 + 𝑥1 + 𝑥2 + 𝑥3) = 2(𝑥0 + 𝑥1 + 𝑥2 + 𝑥3)
2 + 5 

𝑓3: 𝑅 → 𝑅; 𝑓3(𝑥0 + 𝑥2 + 𝑥3) = (𝑥0 + 𝑥2 + 𝑥3)
2 + 3 

𝑓4: 𝑅 → 𝑅; 𝑓4(𝑥0 + 𝑥3) = (𝑥0 + 𝑥3)
2 + (𝑥0 + 𝑥3) + 2 

Theorem. 

Let 𝑔: 𝑅3(𝐼) → 𝑅4 be the isomorphism defined above, then: 

𝑔−1: 𝑅4 → 𝑅3(𝐼); 𝑔
−1(𝑎, 𝑏, 𝑐, 𝑑) = 𝑎 + (𝑏 − 𝑐)𝐼1 + (𝑐 − 𝑑)𝐼2 + (𝑑 − 𝑎)𝐼3. 

The proof is easy. 

Remark. 
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To find the formula of a 3-refined neutrosophic real function 𝑓: 𝑅3(𝐼) → 𝑅3(𝐼), we went 

compute: 

𝑔−1 (𝑔(𝑓(𝑋))). 

Example. 

For the function 𝑓(𝑋) = (1 + 𝐼1)𝑋
2 + (2 − 𝐼2 − 𝐼3)𝑋 + 1 + 2𝐼1 + 𝐼2 + 𝐼3, we compute: 

𝑔−1 (𝑔(𝑓(𝑋))) = (𝑥0
2 + 2𝑥0 + 1) + [2(𝑥0 + 𝑥1 + 𝑥2 + 𝑥3)

2 + 5 − (𝑥0 + 𝑥2 + 𝑥3)
2 − 3]𝐼1

+ [(𝑥0 + 𝑥2 + 𝑥3)
2 + 3 − (𝑥0 + 𝑥3)

2 − (𝑥0 + 𝑥3) − 2]𝐼2

+ [(𝑥0 + 𝑥3)
2 + (𝑥0 + 𝑥3) + 2 − 𝑥0

2 − 2𝑥0 − 1]𝐼3 

= 𝑥0
2 + 2𝑥0 + 1 + [2(𝑥0 + 𝑥1 + 𝑥2 + 𝑥3)

2 − (𝑥0 + 𝑥2 + 𝑥3)
2 + 2]𝐼1

+ [(𝑥0 + 𝑥2 + 𝑥3)
2 − (𝑥0 + 𝑥3)

2 − (𝑥0 + 𝑥3) + 1]𝐼2

+ [(𝑥0 + 𝑥3)
2 + (𝑥0 + 𝑥3) − 𝑥0

2 − 2𝑥0 + 1]𝐼3 

Definition. 

Let 𝑓: 𝑅3(𝐼) → 𝑅3(𝐼)  be a 3-refined neutrosophic real function, and 𝑔(𝑓(𝑋)) =

(𝑓1, 𝑓2, 𝑓3, 𝑓4), with 𝑓𝑖: 𝑅 → 𝑅; 1 ≤ 𝑖 ≤ 4, we say: 

a). 𝑓 is differentiable if and only if 𝑓𝑖 are differentiable. 

b). 𝑓 is integrable if and only if 𝑓𝑖 are integrable. 

We mean by differentiable/integrable on all 𝑅 not only for sub-domains ]𝑎, 𝑏[ ⊆ 𝑅. 

Example on famous functions. 

1. 𝑓: 𝑅3(𝐼) → 𝑅3(𝐼), 𝑓(𝑋) = 𝑠𝑖𝑛(𝑋).  

It's formula is 𝑓(𝑋) = 𝑔−1 (𝑔(𝑓(𝑋))) = 𝑠𝑖𝑛(𝑥0) + [𝑠𝑖𝑛(𝑥0 + 𝑥1 + 𝑥2 + 𝑥3) − 𝑠𝑖𝑛(𝑥0 + 𝑥2 +

𝑥3)]𝐼1 + [𝑠𝑖𝑛(𝑥0 + 𝑥2 + 𝑥3) − 𝑠𝑖𝑛(𝑥0 + 𝑥3)]𝐼2 + [𝑠𝑖𝑛(𝑥0 + 𝑥3) − 𝑠𝑖𝑛(𝑥0)]𝐼3. 

2.  𝑓(𝑋) = 𝑐𝑜𝑠(𝑋) = 𝑔−1 (𝑔(𝑓(𝑋))) = 𝑐𝑜𝑠(𝑥0) + [𝑐𝑜𝑠(𝑥0 + 𝑥1 + 𝑥2 + 𝑥3) −

𝑐𝑜𝑠(𝑥0 + 𝑥2 + 𝑥3)]𝐼1 + [𝑐𝑜𝑠(𝑥0 + 𝑥2 + 𝑥3) − 𝑐𝑜𝑠(𝑥0 + 𝑥3)]𝐼2 + [𝑐𝑜𝑠(𝑥0 + 𝑥3) −

𝑐𝑜𝑠(𝑥0)]𝐼3.  

3. 𝑓(𝑋) = 𝑡𝑎𝑛(𝑋) = 𝑡𝑎𝑛(𝑥0) + [𝑡𝑎𝑛(𝑥0 + 𝑥1 + 𝑥2 + 𝑥3) − 𝑡𝑎𝑛(𝑥0 + 𝑥2 + 𝑥3)]𝐼1 +

[𝑡𝑎𝑛(𝑥0 + 𝑥2 + 𝑥3) − 𝑡𝑎𝑛(𝑥0 + 𝑥3)]𝐼2 + [𝑡𝑎𝑛(𝑥0 + 𝑥3) − 𝑡𝑎𝑛(𝑥0)]𝐼3 

4. 𝑓(𝑋) = 𝑐𝑜𝑡(𝑋) = 𝑐𝑜𝑡(𝑥0) + [𝑐𝑜𝑡(𝑥0 + 𝑥1 + 𝑥2 + 𝑥3) − 𝑐𝑜𝑡(𝑥0 + 𝑥2 + 𝑥3)]𝐼1 +

[𝑐𝑜𝑡(𝑥0 + 𝑥2 + 𝑥3) − 𝑐𝑜𝑡(𝑥0 + 𝑥3)]𝐼2 + [𝑐𝑜𝑡(𝑥0 + 𝑥3) − 𝑐𝑜𝑡(𝑥0)]𝐼3 

5. 𝑓(𝑋) = 𝑒𝑋 = 𝑒𝑥0 + [𝑒𝑥0+𝑥1+𝑥2+𝑥3 − 𝑒𝑥0+𝑥2+𝑥3]𝐼1 + [𝑒𝑥0+𝑥2+𝑥3 − 𝑒𝑥0+𝑥3]𝐼2 +

[𝑒𝑥0+𝑥3 − 𝑒𝑥0]𝐼3 
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6. 𝑓(𝑋) = 𝑙𝑛(𝑋) = 𝑙𝑛(𝑥0) + [𝑙𝑛(𝑥0 + 𝑥1 + 𝑥2 + 𝑥3) − 𝑙𝑛(𝑥0 + 𝑥2 + 𝑥3)]𝐼1 + [𝑙𝑛(𝑥0 +

𝑥2 + 𝑥3) − 𝑙𝑛(𝑥0 + 𝑥3)]𝐼2 + [𝑙𝑛(𝑥0 + 𝑥3) − 𝑙𝑛(𝑥0)]𝐼3, with 𝑋 > 0. 

7. 𝑓(𝑋) = 𝑋𝑛 = 𝑥0𝑛 + [(𝑥0 + 𝑥1 + 𝑥2 + 𝑥3)𝑛 − (𝑥0 + 𝑥2 + 𝑥3)𝑛]𝐼1 + [(𝑥0 + 𝑥2 + 𝑥3)𝑛 −

(𝑥0 + 𝑥3)
𝑛]𝐼2 + [(𝑥0 + 𝑥3)

𝑛 − 𝑥0
𝑛]𝐼3; 𝑛 ∈ 𝑁. 

Definition. 

Let 𝑉 be vector space over 𝑅, the 3-refined neutrosophic vector space is defined as follows: 

𝑉3(𝐼) = 𝑉 + 𝑉𝐼1 + 𝑉𝐼2 + 𝑉𝐼3 = {𝑥 + 𝑦𝐼1 + 𝑧𝐼2 + 𝑡𝐼3 ; 𝑥, 𝑦, 𝑧, 𝑡 ∈ 𝑅} 

Remark. 

Addition on 𝑉3(𝐼) is defined: 

(𝑥0 + 𝑦0𝐼1 + 𝑧0𝐼2 + 𝑡0𝐼3) + (𝑥1 + 𝑦1𝐼1 + 𝑧1𝐼2 + 𝑡1𝐼3)

= (𝑥0 + 𝑥1) + (𝑦0 + 𝑦1)𝐼1 + (𝑧0 + 𝑧1)𝐼2 + (𝑡0 + 𝑡1)𝐼3 

Where 𝑥𝑖, 𝑦𝑖 , 𝑧𝑖 , 𝑡𝑖 ∈ 𝑉 ; 0 ≤ 𝑖 ≤ 1. 

Multiplication on 𝑉3(𝐼) is defined: 

(𝑎 + 𝑏𝐼1 + 𝑐𝐼2 + 𝑑𝐼3). (𝑥 + 𝑦𝐼1 + 𝑧𝐼2 + 𝑡𝐼3)

= (𝑎. 𝑥) + (𝑎𝑦 + 𝑏𝑥 + 𝑏𝑦 + 𝑏𝑧 + 𝑏𝑡 + 𝑐𝑦 + 𝑑𝑦)𝐼1 + (𝑎𝑧 + 𝑐𝑥 + 𝑐𝑧 + 𝑐𝑡 + 𝑑𝑧)𝐼2

+ (𝑎𝑡 + 𝑑𝑥 + 𝑑𝑡)𝐼3 

Where 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑅 , 𝑥, 𝑦, 𝑧, 𝑡 ∈ 𝑉 

Remark. 

(𝑉3(𝐼),+, . ) Is a module over 𝑅3(𝐼). 

Definition. 

Let 𝑓: 𝑉3(𝐼) × 𝑉3(𝐼) → 𝑅3(𝐼) be a well defined mapping, we call 𝑓 a 3-refined neutrosophic 

real inner product if and only if the following conditions hold: 

1). 𝑓(𝑋, 𝑋) ≥ 0 ; ∀𝑋 ∈ 𝑉3(𝐼). 

2). 𝑓(𝑋, 𝑋) = 0 ⇔ 𝑋 = 0. 

3). 𝑓(𝑋, 𝑌) = 𝑓(𝑌, 𝑋) ;  ∀𝑋, 𝑌 ∈ 𝑉3(𝐼). 

4). 𝑓(𝛼𝑋 + 𝛽𝑌, 𝑍) = 𝛼𝑓(𝑋, 𝑍) + 𝛽𝑓(𝑋, 𝑍) ;  ∀𝑋, 𝑌, 𝑍 ∈ 𝑉3(𝐼) , 𝛼, 𝛽 ∈ 𝑅3(𝐼). 

Theorem. 

Let 𝑔: 𝑉 × 𝑉 → 𝑅be an inner production on 𝑉 , then for 𝑋 = 𝑥0 + 𝑥1𝐼1 + 𝑥2𝐼2 + 𝑥3𝐼3, 𝑌 =

𝑦0 + 𝑦1𝐼1 + 𝑦2𝐼2 + 𝑦3𝐼3 ∈ 𝑉3(𝐼), the mapping 𝑓: 𝑉3(𝐼) × 𝑉3(𝐼) → 𝑅3(𝐼)such that: 
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𝑓(𝑋, 𝑌) = 𝑔(𝑥0, 𝑦0)

+ (𝑔(𝑥0 + 𝑥1 + 𝑥2 + 𝑥3, 𝑦0 + 𝑦1 + 𝑦2 + 𝑦3) − 𝑔(𝑥0 + 𝑥2 + 𝑥3, 𝑦0 + 𝑦2 + 𝑦3))𝐼1

+ (𝑔(𝑥0 + 𝑥2 + 𝑥3, 𝑦0 + 𝑦2 + 𝑦3) − 𝑔(𝑥0 + 𝑥3, 𝑦0 + 𝑦3))𝐼2

+ (𝑔(𝑥0 + 𝑥3, 𝑦0 + 𝑦3) − 𝑔(𝑥0, 𝑦0))𝐼3 

Is a 3-refined neutrosophic inner product. 

Proof. 

𝑓(𝑋, 𝑋) = 𝑔(𝑥0, 𝑥0)

+ (𝑔(𝑥0 + 𝑥1 + 𝑥2 + 𝑥3, 𝑥0 + 𝑥1 + 𝑥2 + 𝑥3) − 𝑔(𝑥0 + 𝑥2 + 𝑥3, 𝑥0 + 𝑥2 + 𝑥3))𝐼1

+ (𝑔(𝑥0 + 𝑥2 + 𝑥3, 𝑥0 + 𝑥2 + 𝑥3) − 𝑔(𝑥0 + 𝑥3, 𝑥0 + 𝑥3))𝐼2

+ (𝑔(𝑥0 + 𝑥3, 𝑥0 + 𝑥3) − 𝑔(𝑥0, 𝑥0))𝐼3 

= ‖𝑥0‖
2 + (‖𝑥0 + 𝑥1 + 𝑥2 + 𝑥3‖

2 − ‖𝑥0 + 𝑥2 + 𝑥3‖
2)𝐼1 + (‖𝑥0 + 𝑥2 + 𝑥3‖

2 − ‖𝑥0 + 𝑥3‖
2)𝐼2

+ (‖𝑥0 + 𝑥3‖
2 − ‖𝑥0‖

2)𝐼3 ≥ 0 

According to the concept of partial ordering on 𝑅3(𝐼). 

𝑓(𝑋, 𝑋) = 0 ⇔ ‖𝑥0‖
2 = ‖𝑥0 + 𝑥1 + 𝑥2 + 𝑥3‖

2 = ‖𝑥0 + 𝑥2 + 𝑥3‖
2 = ‖𝑥0 + 𝑥3‖

2 = 0 

Thus 𝑥0 = 𝑥1 = 𝑥2 = 𝑥3 = 0and 𝑋 = 0. 

It is clear that 𝑓(𝑋, 𝑌) = 𝑓(𝑌, 𝑋). 

Now, let 𝐴 = 𝑎0 + 𝑎1𝐼1 + 𝑎2𝐼2 + 𝑎3𝐼3, 𝐵 = 𝑏0 + 𝑏1𝐼1 + 𝑏2𝐼2 + 𝑏3𝐼3 ∈ 𝑅3(𝐼)  and 𝑍 = 𝑧0 +

𝑧1𝐼1 + 𝑧2𝐼2 + 𝑧3𝐼3 ∈ 𝑉3(𝐼), we have: 

𝐴𝑋 + 𝐵𝑌 = (𝑎0𝑥0 + 𝑏0𝑦0) + ((𝑎0 + 𝑎1 + 𝑎2 + 𝑎3)(𝑥0 + 𝑥1 + 𝑥2 + 𝑥3) − (𝑎0 + 𝑎2 + 𝑎3)(𝑥0 +

𝑥2 + 𝑥3) + (𝑏0 + 𝑏1 + 𝑏2 + 𝑏3)(𝑦0 + 𝑦1 + 𝑦2 + 𝑦3) − (𝑏0 + 𝑏2 + 𝑏3)(𝑦0 + 𝑦2 + 𝑦3))𝐼1 +

((𝑎0 + 𝑎2 + 𝑎3)(𝑥0 + 𝑥2 + 𝑥3) − (𝑎0 + 𝑎3)(𝑥0 + 𝑥3) + (𝑏0 + 𝑏2 + 𝑏3)(𝑦0 + 𝑦2 + 𝑦3) −

(𝑏0 + 𝑏3)(𝑦0 + 𝑦3))𝐼2 + ((𝑎0 + 𝑎3)(𝑥0 + 𝑥3) − 𝑎0𝑥0 + (𝑏0 + 𝑏3)(𝑦0 + 𝑦3) − 𝑏0𝑦0)𝐼3  
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𝑓(𝐴𝑋 + 𝐵𝑌, 𝑍) = 𝑔(𝑎0𝑥0 + 𝑏0𝑦0, 𝑧0)

+ (𝑔((𝑎0 + 𝑎1 + 𝑎2 + 𝑎3)(𝑥0 + 𝑥1 + 𝑥2 + 𝑥3)

+ (𝑏0 + 𝑏1 + 𝑏2 + 𝑏3)(𝑦0 + 𝑦1 + 𝑦2 + 𝑦3), 𝑧0 + 𝑧1 + 𝑧2 + 𝑧3)

− 𝑔((𝑎0 + 𝑎2 + 𝑎3)(𝑥0 + 𝑥2 + 𝑥3) + (𝑏0 + 𝑏2 + 𝑏3)(𝑦0 + 𝑦2 + 𝑦3), 𝑧0 + 𝑧2

+ 𝑧3)) 𝐼1

+ (𝑔((𝑎0 + 𝑎2 + 𝑎3)(𝑥0 + 𝑥2 + 𝑥3) + (𝑏0 + 𝑏2 + 𝑏3)(𝑦0 + 𝑦2 + 𝑦3), 𝑧0 + 𝑧2

+ 𝑧3) − 𝑔((𝑎0 + 𝑎3)(𝑥0 + 𝑥3) + (𝑏0 + 𝑏3)(𝑦0 + 𝑦3), 𝑧0 + 𝑧3)) 𝐼2

+ (𝑔((𝑎0 + 𝑎3)(𝑥0 + 𝑥3) + (𝑏0 + 𝑏3)(𝑦0 + 𝑦3), 𝑧0 + 𝑧3)

− 𝑔(𝑎0𝑥0 + 𝑏0𝑦0, 𝑧0)) 𝐼3 

= (𝑎0 + 𝑎1𝐼1 + 𝑎2𝐼2 + 𝑎3𝐼3)𝑓(𝑋, 𝑍) + (𝑏0 + 𝑏1𝐼1 + 𝑏2𝐼2 + 𝑏3𝐼3)𝑓(𝑋, 𝑍) 

Theorem. 

Let 𝑓: 𝑉3(𝐼) × 𝑉3(𝐼) → 𝑅3(𝐼) be a 3-refined neutrosophic real inner product, then 𝑔: 𝑉 ×

𝑉 → 𝑅 such that: 

𝑔(𝑥, 𝑦) = 𝑓(𝑥 + 0𝐼1 + 0𝐼2 + 0𝐼3, 𝑦 + 0𝐼1 + 0𝐼2 + 0𝐼3) is a classical inner product on 𝑉. 

The proof is clear. 

Definition. 

Let 𝑋 = 𝑥0 + 𝑥1𝐼1 + 𝑥2𝐼2 + 𝑥3𝐼3 ∈ 𝑉3(𝐼)  and 𝑓: 𝑉3(𝐼) × 𝑉3(𝐼) → 𝑅3(𝐼)  be a 3-refined 

neutrosophic real inner product, then: 

1. If 𝑌 = 𝑦0 + 𝑦1𝐼1 + 𝑦2𝐼2 + 𝑦3𝐼3 ∈ 𝑉3(𝐼), then 𝑋 ⊥ 𝑌 if and only if 𝑓(𝑋, 𝑌) = 0. 

2. ‖𝑋‖2 = 𝑓(𝑋, 𝑋).  

Theorem. 

Let 𝑓 be a 3-refined neutrosophic real inner product on 𝑉3(𝐼) and 𝑋 = 𝑥0 + 𝑥1𝐼1 + 𝑥2𝐼2 +

𝑥3𝐼3, 𝑌 = 𝑦0 + 𝑦1𝐼1 + 𝑦2𝐼2 + 𝑦3𝐼3 ∈ 𝑉3(𝐼), then: 

1). 𝑋 ⊥ 𝑌 if and only if {
𝑥0 ⊥ 𝑦0, 𝑥0 + 𝑥3 ⊥ 𝑦0 + 𝑦3
𝑥0 + 𝑥2 + 𝑥3 ⊥ 𝑦0 + 𝑦2 + 𝑦3

𝑥0 + 𝑥1 + 𝑥2 + 𝑥3 ⊥ 𝑦0 + 𝑦1 + 𝑦2 + 𝑦3

 

2). ‖𝑋‖ = ‖𝑥0‖ + (‖𝑥0 + 𝑥1 + 𝑥2 + 𝑥3‖ − ‖𝑥0 + 𝑥2 + 𝑥3‖)𝐼1 + (‖𝑥0 + 𝑥2 + 𝑥3‖ −

‖𝑥0 + 𝑥3‖)𝐼2 + (‖𝑥0 + 𝑥3‖ − ‖𝑥0‖)𝐼3 

Proof. 

1). 𝑋 ⊥ 𝑌 ⇔ 𝑓(𝑋, 𝑌) = 0 ⇔ 𝑔(𝑥0, 𝑦0) = 𝑔(𝑥0 + 𝑥3, 𝑦0 + 𝑦3) = 𝑔(𝑥0 + 𝑥1 + 𝑥2 + 𝑥3, 𝑦0 + 𝑦1 +

𝑦2 + 𝑦3) = 𝑔(𝑥0 + 𝑥2 + 𝑥3, 𝑦0 + 𝑦2 + 𝑦3) = 0, hence the proof holds. 
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2). We put 𝑇 = ‖𝑥0‖ + (‖𝑥0 + 𝑥1 + 𝑥2 + 𝑥3‖ − ‖𝑥0 + 𝑥2 + 𝑥3‖)𝐼1 + (‖𝑥0 + 𝑥2 + 𝑥3‖ −

‖𝑥0 + 𝑥3‖)𝐼2 + (‖𝑥0 + 𝑥3‖ − ‖𝑥0‖)𝐼3 

We compute 𝑇2 = ‖𝑥0‖
2 + (‖𝑥0 + 𝑥1 + 𝑥2 + 𝑥3‖

2 − ‖𝑥0 + 𝑥2 + 𝑥3‖
2)𝐼1 + (‖𝑥0 + 𝑥2 +

𝑥3‖
2 − ‖𝑥0 + 𝑥3‖

2)𝐼2 + (‖𝑥0 + 𝑥3‖
2 − ‖𝑥0‖

2)𝐼3 = 𝑓(𝑋, 𝑋) = ‖𝑋‖
2, thus 𝑇 = ‖𝑋‖. 

Example. 

Let 𝑋 = 3 + 2𝐼1 − 𝐼2 − 𝐼3, 𝑥0 = 3, 𝑥1 = 2, 𝑥2 = −1, 𝑥3 = −1, then: 

‖𝑋‖ = |3| + (|3| − |1|)𝐼1 + (|1| − |2|)𝐼2 + (|2| − |3|)𝐼3 = 3 + 2𝐼1 − 𝐼2 − 𝐼3 

Example. 

Let 𝑉 = 𝑅2, 𝑉3(𝐼) = 𝑅3
2(𝐼), take 𝑋 = (1,1) + (2,1)𝐼1 + (3,−1)𝐼2 + (−1,4)𝐼3. 

𝑥0 = (1,1), ‖𝑥0‖ = √2 , 𝑥0 + 𝑥3 = (0,5), ‖𝑥0 + 𝑥3‖ = 5 , 𝑥0 + 𝑥2 + 𝑥3 = (3,4), ‖𝑥0 + 𝑥2 +

𝑥3‖ = 5, +𝑥1 + 𝑥2𝑥0 + 𝑥3 = (5,5), ‖𝑥0 + 𝑥1 + 𝑥2 + 𝑥3‖ = 5√2 

‖𝑋‖ = √2 + (5√2 − 5)𝐼1 + (5 − 5)𝐼2 + (5 − √2)𝐼3 = √2 + (5√2 − 5)𝐼1 + (5 − √2)𝐼3 

Remark. 

∀𝑋, 𝑌 ∈ 𝑉3(𝐼), then: ‖𝑋‖ ≥ 0, ‖𝑋 + 𝑌‖ ≤ ‖𝑋‖ + ‖𝑌‖. 

Theorem. 

Let 𝑋, 𝑌 ∈ 𝑉3(𝐼), then |𝑓(𝑋, 𝑌)| ≤ ‖𝑋‖. ‖𝑌‖. 

Proof. 

𝑓(𝑋, 𝑌) = 𝑔(𝑥0, 𝑦0)

+ (𝑔(𝑥0 + 𝑥1 + 𝑥2 + 𝑥3, 𝑦0 + 𝑦1 + 𝑦2 + 𝑦3) − 𝑔(𝑥0 + 𝑥2 + 𝑥3, 𝑦0 + 𝑦2 + 𝑦3))𝐼1

+ (𝑔(𝑥0 + 𝑥2 + 𝑥3, 𝑦0 + 𝑦2 + 𝑦3) − 𝑔(𝑥0 + 𝑥3, 𝑦0 + 𝑦3))𝐼2

+ (𝑔(𝑥0 + 𝑥3, 𝑦0 + 𝑦3) − 𝑔(𝑥0, 𝑦0))𝐼3 

According to Cauchy-Shwartz inequality on the space 𝑉, we have: 

|𝑔(𝑥0, 𝑦0)| ≤ ‖𝑥0‖. ‖𝑦0‖, |𝑔(𝑥0 + 𝑥2 + 𝑥3, 𝑦0 + 𝑦2 + 𝑦3)| ≤ ‖𝑥0 + 𝑥2 + 𝑥3‖. ‖𝑦0 + 𝑦2 + 𝑦3‖ 

|𝑔(𝑥0 + 𝑥3, 𝑦0 + 𝑦3)| ≤ ‖𝑥0 + 𝑥3‖. ‖𝑦0 + 𝑦3‖ 

|𝑔(𝑥0 + 𝑥1 + 𝑥2 + 𝑥3, 𝑦0 + 𝑦1 + 𝑦2 + 𝑦3)| ≤ ‖𝑥0 + 𝑥1 + 𝑥2 + 𝑥3‖. ‖𝑦0 + 𝑦1 + 𝑦2 + 𝑦3‖ 

Thus, |𝑓(𝑋, 𝑌)| ≤ ‖𝑋‖. ‖𝑌‖, according to the definition of partial order relation. 

Example. 

Take 𝑉3(𝐼) = 𝑅3
2(𝐼), 𝑋 = (1,1) + (1,0)𝐼1 + (0,1)𝐼2, 𝑌 = (2,0) + (0,3)𝐼1 + (1,0)𝐼2 + (0,1)𝐼3 

𝑥0 = (1,1), 𝑦0 = (2,0), 𝑔(𝑥0, 𝑦0) = 2, ‖𝑥0‖ = √2, ‖𝑦0‖ = 2 , 𝑥0 + 𝑥3 = (1,1), ‖𝑥0 + 𝑥3‖ =

√2, 𝑦0 + 𝑦3 = (2,1), ‖𝑦0 + 𝑦3‖ = √5, 𝑔(𝑥0 + 𝑥3, 𝑦0 + 𝑦3) = 3 , 𝑥0 + 𝑥2 + 𝑥3 = (1,2), ‖𝑥0 +

𝑥2 + 𝑥3‖ = √3, 𝑦0 + 𝑦2 + 𝑦3 = (3,1), ‖𝑦0 + 𝑦2 + 𝑦3‖ = √10, , 𝑥0 + 𝑥1 + 𝑥2 + 𝑥3 =
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(2,2), ‖𝑥0 + 𝑥1 + 𝑥2 + 𝑥3‖ = 2√2, 𝑦0 + 𝑦1 + 𝑦2 + 𝑦3 = (3,4), ‖𝑦0 + 𝑦1 + 𝑦2 + 𝑦3‖ = 5 , 

𝑔(𝑥0 + 𝑥2 + 𝑥3, 𝑦0 + 𝑦2 + 𝑦3) = 5, 𝑔(𝑥0 + 𝑥1 + 𝑥2 + 𝑥3, 𝑦0 + 𝑦1 + 𝑦2 + 𝑦3) = 14. 

𝑓(𝑋, 𝑌) = 2 + (14 − 5)𝐼1 + (5 − 3)𝐼2 + (3 − 2)𝐼3 = 2 + 9𝐼1 + 2𝐼2 + 𝐼3 

|𝑓(𝑋, 𝑌)| = 2 + 9𝐼1 + 2𝐼2 + 𝐼3 

‖𝑋‖ = √2 + (2√2 − √5)𝐼1 + (√5 − √2)𝐼2 + (√2 − √2)𝐼3

= √2 + (2√2 − √5)𝐼1 + (√5 − √2)𝐼2 

‖𝑋‖ = 2 + (5 − √10)𝐼1 + (√10 − √5)𝐼2 + (√5 − √2)𝐼3 

‖𝑋‖. ‖𝑌‖ = 2√2 + (10√2 − 5√2)𝐼1 + (5√2 − √10)𝐼2 + (√10 − 2√2)𝐼3

= 2√2 + 5√2𝐼1 + (5√2 − √10)𝐼2 + (√10 − 2√2)𝐼3 

On the other hand, we have: 

2 ≤ 2√2, 2 + 1 = 3 ≤ √10, 5 ≤ 5√2, 14 ≤ 10√2, hence |𝑓(𝑋, 𝑌)| ≤ ‖𝑋‖. ‖𝑌‖ 

 

The Foundations 3-Refined Number Theory  

Definition. 

Let 𝑍3(𝐼) = {𝑎 + 𝑏𝐼1 + 𝑐𝐼2 + 𝑑𝐼3; 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑍}  be a set. It is called the ring of 3-refined 

neutrosophic integers if 𝐼𝑖. 𝐼𝑗 = 𝐼𝑚𝑖𝑛(𝑖,𝑗), 𝐼𝑖
2 = 𝐼𝑖; 1 ≤ 𝑖 ≤ 3. 

It is a special case of the n-refined neutrosophic ring with 𝑛 = 3. 

Definition. 

Let 𝑋 = 𝑥0 + 𝑥1𝐼1 + 𝑥2𝐼2 + 𝑥3𝐼3, 𝑌 = 𝑦0 + 𝑦1𝐼1 + 𝑦2𝐼2 + 𝑦3𝐼3, 𝑍 = 𝑧0 + 𝑧1𝐼1 + 𝑧2𝐼2 + 𝑧3𝐼3 ∈

𝑍3(𝐼), we define: 

1). 𝑋 ∖ 𝑌 if there exists 𝑇 = 𝑡0 + 𝑡1𝐼1 + 𝑡2𝐼2 + 𝑡3𝐼3 ∈ 𝑍3(𝐼) such that 𝑇. 𝑋 = 𝑌. 

2). 𝑋 ≡ 𝑌(𝑚𝑜𝑑 𝑍) if and only if 𝑍 ∖ 𝑋 − 𝑌. 

3). 𝑋 ≥ 𝑌 if and only if {

𝑥0 ≥ 𝑦0
𝑥0 + 𝑥1 + 𝑥2 + 𝑥3 ≥ 𝑦0 + 𝑦1 + 𝑦2 + 𝑦3

𝑥0 + 𝑥2 + 𝑥3 ≥ 𝑦0 + 𝑦2 + 𝑦3
𝑥0 + 𝑥3 ≥ 𝑦0 + 𝑦3

 

Theorem. 

Let 𝑋, 𝑌, 𝑍 be the previous 3-refined neutrosophic integers, then: 

1. 𝑋 ∖ 𝑌 if and only if 𝑥0 ∖ 𝑦0, 𝑥0 + 𝑥1 + 𝑥2 + 𝑥3 ∖ 𝑦0 + 𝑦1 + 𝑦2 + 𝑦3, 𝑥0 + 𝑥2 + 𝑥3 ∖ 𝑦0 +

𝑦2 + 𝑦3, 𝑥0 + 𝑥3 ∖ 𝑦0 + 𝑦3. 

2. If 𝑋 ∖ 𝑌, then 𝑋 ≤ 𝑌. 
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3. 𝑋 ≡ 𝑌(𝑚𝑜𝑑 𝑍) if and only if 

{

𝑥0 ≡ 𝑦0(𝑚𝑜𝑑 𝑧0) 
𝑥0 + 𝑥1 + 𝑥2 + 𝑥3 ≡ 𝑦0 + 𝑦1 + 𝑦2 + 𝑦3(𝑚𝑜𝑑 𝑧0 + 𝑧1 + 𝑧2 + 𝑧3)

𝑥0 + 𝑥2 + 𝑥3 ≡ 𝑦0 + 𝑦2 + 𝑦3(𝑚𝑜𝑑 𝑧0 + 𝑧2 + 𝑧3)
𝑥0 + 𝑥3 ≡ 𝑦0 + 𝑦3(𝑚𝑜𝑑 𝑧0 + 𝑧3)

 

Proof. 

1. Assume that 𝑋 ∖ 𝑌, this is true if and only if there exists 𝑇 = 𝑡0 + 𝑡1𝐼1 + 𝑡2𝐼2 + 𝑡3𝐼3 ∈

𝑍3(𝐼) such that 𝑌 = 𝑋.T. 

We have: 

𝑋. 𝑇 = (𝑥0 + 𝑥1𝐼1 + 𝑥2𝐼2 + 𝑥3𝐼3)(𝑡0 + 𝑡1𝐼1 + 𝑡2𝐼2 + 𝑡3𝐼3)

= 𝑥0𝑡0 + (𝑥0𝑡1 + 𝑥1𝑡0 + 𝑥1𝑡1 + 𝑥1𝑡2 + 𝑥1𝑡3 + 𝑥2𝑡1 + 𝑥3𝑡1)𝐼1

+ (𝑥0𝑡2 + 𝑥2𝑡0 + 𝑥2𝑡2 + 𝑥3𝑡2)𝐼2 + (𝑥0𝑡3 + 𝑥3𝑡0 + 𝑥3𝑡3)𝐼3

= 𝑦0 + 𝑦1𝐼1 + 𝑦2𝐼2 + 𝑦3𝐼3 

Thus: 

{
 

 
𝑦0 = 𝑥0𝑡0… (1)

𝑦1 = 𝑥0𝑡1 + 𝑥1𝑡0 + 𝑥1𝑡1 + 𝑥1𝑡2 + 𝑥1𝑡3 + 𝑥2𝑡1 + 𝑥3𝑡1… (2)

𝑦2 = 𝑥0𝑡2 + 𝑥2𝑡0 + 𝑥2𝑡2 + 𝑥3𝑡2… (3)

𝑦3 = 𝑥0𝑡3 + 𝑥3𝑡0 + 𝑥3𝑡3… (4)

 

We add (1) to (4), (1) to (2) to (4), (1) to (2) to (3) to (4). 

{

𝑦0 = 𝑥0𝑡0
𝑦0 + 𝑦3 = (𝑥0 + 𝑥3)(𝑡0 + 𝑡3)

𝑦0 + 𝑦2 + 𝑦3 = (𝑥0 + 𝑥2 + 𝑥3)(𝑡0 + 𝑡2 + 𝑡3)

𝑦0 + 𝑦1 + 𝑦2 + 𝑦3 = (𝑥0 + 𝑥1 + 𝑥2 + 𝑥3)(𝑡0 + 𝑡1 + 𝑡2 + 𝑡3)

 

Thus, the proof of (1) is complete. 

2. If 𝑋 ∖ 𝑌,then 𝑥0 ∖ 𝑦0, so 𝑥0 ≤ 𝑦0. 

Also:  

{

𝑥0 + 𝑥3 ∖ 𝑦0 + 𝑦3, so 𝑥0 + 𝑥3 ≤ 𝑦0 + 𝑦3
𝑥0 + 𝑥2 + 𝑥3 ∖ 𝑦0 + 𝑦2 + 𝑦3, so 𝑥0 + 𝑥2 + 𝑥3 ≤ 𝑦0 + 𝑦2 + 𝑦3

𝑥0 + 𝑥1 + 𝑥2 + 𝑥3 ∖ 𝑦0 + 𝑦1 + 𝑦2 + 𝑦3, so 𝑥0 + 𝑥1 + 𝑥2 + 𝑥3 ≤ 𝑦0 + 𝑦1 + 𝑦2 + 𝑦3

 

Thus 𝑋 ≤ 𝑌. 

3. 𝑋 ≡ 𝑌(𝑚𝑜𝑑 𝑍) if and only if 𝑍 ∖ 𝑋 − 𝑌, thus: 

{
 

 
𝑧0 ∖ 𝑥0 − 𝑦0

𝑧0 + 𝑧3 ∖ (𝑥0 + 𝑥3) − (𝑦0 + 𝑦3)

𝑧0 + 𝑧2 + 𝑧3 ∖ (𝑥0 + 𝑥2 + 𝑥3) − (𝑦0 + 𝑦2 + 𝑦3)

𝑧0 + 𝑧1 + 𝑧2 + 𝑧3 ∖ (𝑥0 + 𝑥1 + 𝑥2 + 𝑥3) − (𝑦0 + 𝑦1 + 𝑦2 + 𝑦3)

 

Thus 𝑥0 ≡ 𝑦0(𝑚𝑜𝑑 𝑧0), 𝑥0 + 𝑥3 ≡ 𝑦0 + 𝑦3(𝑚𝑜𝑑 𝑧0 + 𝑧3), 𝑥0 + 𝑥2 + 𝑥3 ≡ 𝑦0 + 𝑦2 +

𝑦3(𝑚𝑜𝑑 𝑧0 + 𝑧2 + 𝑧3), 𝑥0 + 𝑥1 + 𝑥2 + 𝑥3 ≡ 𝑦0 + 𝑦1 + 𝑦2 + 𝑦3(𝑚𝑜𝑑 𝑧0 + 𝑧1 + 𝑧2 + 𝑧3). 
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Example. 

Take 𝑋 = 3 + 2𝐼1 + 𝐼2 − 𝐼3, 𝑌 = 3 + 4𝐼1 + 2𝐼2 + 𝐼3, we have 𝑋 ∖ 𝑌 that is because: 

3 ∖ 3, 3 − 1 = 2 ∖ 3 + 1 = 4, 3 + 1 − 1 = 3 ∖ 3 + 2 + 1 = 6, 3 + 2 + 1 − 1 ∖ 3 + 4 + 2 + 1 =

10. 

Example. 

Take 𝑋 = 7 + 3𝐼1 + 𝐼2 + 5𝐼3, 𝑌 = 4 + 𝐼1 + 𝐼2 + 𝐼3, 𝑍 = 3 + 2𝐼1 + 𝐼3 , we have 7 ≡ 4(𝑚𝑜𝑑 3) , 

7 + 5 = 12 ≡ 4 + 1(𝑚𝑜𝑑 3 + 4) ,  7 + 1 + 5 = 13 ≡ 4 + 1 + 1(𝑚𝑜𝑑 3 + 0 + 4) ,  7 + 3 + 1 +

5 = 16 ≡ 4 + 1 + 1 + 1 (𝑚𝑜𝑑9) thus, 𝑋 ≡ 𝑌(𝑚𝑜𝑑 𝑍). 

Theorem. 

The relation (≤) is a partial order relation. 

Proof. 

𝑋 ≤ 𝑌 clearly. 

If 𝑋 ≤ 𝑌  and 𝑌 ≤ 𝑍 , then 𝑥0 ≤ 𝑦0 ≤ 𝑧0 ,  𝑥0 + 𝑥3 ≤ 𝑦0 + 𝑦3 ≤ 𝑧0 + 𝑧3 ,  𝑥0 + 𝑥2 + 𝑥3 ≤ 𝑦0 +

𝑦2 + 𝑦3 ≤ 𝑧0 + 𝑧2 + 𝑧3, 𝑥0 + 𝑥1 + 𝑥2 + 𝑥3 ≤ 𝑦0 + 𝑦1 + 𝑦2 + 𝑦3 ≤ 𝑧0 + 𝑧1 + 𝑧2 + 𝑧3. 

Thus 𝑋 ≤ 𝑍. 

If 𝑋 ≤ 𝑌  and 𝑌 ≤ 𝑋 , then 𝑥0 = 𝑦0 , 𝑥0 + 𝑥3 = 𝑦0 + 𝑦3 ,  𝑥0 + 𝑥2 + 𝑥3 = 𝑦0 + 𝑦2 + 𝑦3 ,  𝑥0 +

𝑥1 + 𝑥2 + 𝑥3 = 𝑦0 + 𝑦1 + 𝑦2 + 𝑦3, thus 𝑋 = 𝑌. 

Theorem. 

Let 𝑋 = 𝑥0 + 𝑥1𝐼1 + 𝑥2𝐼2 + 𝑥3𝐼3, 𝑌 = 𝑦0 + 𝑦1𝐼1 + 𝑦2𝐼2 + 𝑦3𝐼3, 𝑍 = 𝑧0 + 𝑧1𝐼1 + 𝑧2𝐼2 + 𝑧3𝐼3, 𝑇 =

𝑡0 + 𝑡1𝐼1 + 𝑡2𝐼2 + 𝑡3𝐼3, 𝑆 = 𝑠0 + 𝑠1𝐼1 + 𝑠2𝐼2 + 𝑠3𝐼3 ∈ 𝑍3(𝐼), then: 

1). If 𝑋 ≡ 𝑌(𝑚𝑜𝑑 𝑍) ,  𝑇 ≡ 𝑆(𝑚𝑜𝑑 𝑍) ,then 𝑋 + 𝑇 ≡ 𝑌 + 𝑆(𝑚𝑜𝑑 𝑍)  and 𝑋 − 𝑇 ≡ 𝑌 −

𝑆(𝑚𝑜𝑑 𝑍), 𝑋. 𝑇 ≡ 𝑌. 𝑆(𝑚𝑜𝑑 𝑍). 

2). 𝑋𝑛 = 𝑥0
𝑛 + [(𝑥0 + 𝑥1 + 𝑥2 + 𝑥3)

𝑛 − (𝑥0 + 𝑥2 + 𝑥3)
𝑛]𝐼1 + [(𝑥0 + 𝑥2 + 𝑥3)

𝑛 − (𝑥0 +

𝑥3)
𝑛]𝐼2 + [(𝑥0 + 𝑥3)

𝑛 − 𝑥0
𝑛]𝐼3 ; 𝑛 ∈ 𝑁. 

3). 𝑋𝑛 ≡ 𝑌𝑛(𝑚𝑜𝑑 𝑍𝑛) ; 𝑛 ∈ 𝑁. 

Proof. 

1). 𝑋 + 𝑇 = (𝑥0 + 𝑡0) + (𝑥1 + 𝑡1)𝐼1 + (𝑥2 + 𝑡2)𝐼2 + (𝑥3 + 𝑡3)𝐼3. 

𝑌 + 𝑆 = (𝑦0 + 𝑠0) + (𝑦1 + 𝑠1)𝐼1 + (𝑦2 + 𝑠2)𝐼2 + (𝑦3 + 𝑠3)𝐼3. 

Since 𝑧0 ∖ 𝑥0 − 𝑦0 ,  𝑧0 ∖ 𝑡0 − 𝑠0 , then 𝑧0 ∖ (𝑥0 + 𝑡0) − (𝑦0 + 𝑠0)  and 𝑥0 + 𝑡0 ≡ 𝑦0 +

𝑠0( 𝑚𝑜𝑑 𝑧0). 
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𝑧0 + 𝑧3 ∖ (𝑥0 + 𝑥3) − (𝑦0 + 𝑦3), 𝑧0 ∖ (𝑡0 + 𝑡3) − (𝑠0 + 𝑠3), then: 

𝑧0 + 𝑧3 ∖ (𝑥0 + 𝑥3 + 𝑡0 + 𝑡3) − (𝑦0 + 𝑦3 + 𝑠0 + 𝑠3), thus: 

(𝑥0 + 𝑥3) + (𝑡0 + 𝑡3) ≡ (𝑦0 + 𝑦3) + (𝑠0 + 𝑠3)( 𝑚𝑜𝑑 𝑧0 + 𝑧3) 

By a similar discussion, we get: 

𝑧0 + 𝑧2 + 𝑧3 ∖ (𝑥0 + 𝑥2 + 𝑥3 + 𝑡0 + 𝑡2 + 𝑡3) − (𝑦0 + 𝑦2 + 𝑦3 + 𝑠0 + 𝑠2 + 𝑠3) 

𝑧0 + 𝑧1 + 𝑧2 + 𝑧3 ∖ (𝑥0 + 𝑥1 + 𝑥2 + 𝑥3 + 𝑡0 + 𝑡1 + 𝑡2 + 𝑡3)

− (𝑦0 + 𝑦1 + 𝑦2 + 𝑦3 + 𝑠0 + 𝑠1 + 𝑠2 + 𝑠3) 

So that 𝑋 + 𝑇 ≡ 𝑌 + 𝑆(𝑚𝑜𝑑 𝑍). 

It is easy check that 𝑋 − 𝑇 ≡ 𝑌 − 𝑆(𝑚𝑜𝑑 𝑍), 𝑋. 𝑇 ≡ 𝑌. 𝑆(𝑚𝑜𝑑 𝑍). 

2). For 𝑛 = 1 it is true clearly. 

Assume that it is true for 𝑛 = 𝑘, we must prove it for 𝑛 = 𝑘 + 1. 

𝑋𝑘+1 = 𝑋. 𝑋𝑘 = [𝑥0 + 𝑥1𝐼1 + 𝑥2𝐼2 + 𝑥3𝐼3][𝑥0
𝑛 + [(𝑥0 + 𝑥1 + 𝑥2 + 𝑥3)

𝑛 − (𝑥0 + 𝑥2 + 𝑥3)
𝑛]𝐼1

+ [(𝑥0 + 𝑥2 + 𝑥3)
𝑛 − (𝑥0 + 𝑥3)

𝑛]𝐼2 + [(𝑥0 + 𝑥3)
𝑛 − 𝑥0

𝑛]𝐼3] 

= 𝑥0
𝑛+1 + [𝑥0(𝑥0 + 𝑥1 + 𝑥2 + 𝑥3)

𝑛 − 𝑥0(𝑥0 + 𝑥2 + 𝑥3)
𝑛 + 𝑥1(𝑥0 + 𝑥1 + 𝑥2 + 𝑥3)

𝑛

− 𝑥1(𝑥0 + 𝑥2 + 𝑥3)
𝑛 + 𝑥1𝑥0

𝑛 + 𝑥1(𝑥0 + 𝑥2 + 𝑥3)
𝑛 − 𝑥1(𝑥0 + 𝑥3)

𝑛

+ 𝑥1(𝑥0 + 𝑥3)
𝑛 − 𝑥1𝑥0

𝑛 + 𝑥2(𝑥0 + 𝑥1 + 𝑥2 + 𝑥3)
𝑛 − 𝑥2(𝑥0 + 𝑥2 + 𝑥3)

𝑛

+ 𝑥3(𝑥0 + 𝑥1 + 𝑥2 + 𝑥3)
𝑛 − 𝑥3(𝑥0 + 𝑥2 + 𝑥3)

𝑛]𝐼1

+ [𝑥0(𝑥0 + 𝑥2 + 𝑥3)
𝑛 − 𝑥0(𝑥0 + 𝑥3)

𝑛 + 𝑥2𝑥0
𝑛 + 𝑥2(𝑥0 + 𝑥2 + 𝑥3)

𝑛

− 𝑥2(𝑥0 + 𝑥3)
𝑛 + 𝑥2(𝑥0 + 𝑥3)

𝑛 − 𝑥2𝑥0
𝑛 + 𝑥3(𝑥0 + 𝑥2 + 𝑥3)

𝑛 − 𝑥3(𝑥0 + 𝑥3)
𝑛]𝐼2

+ [𝑥0(𝑥0 + 𝑥3)
𝑛 − 𝑥0

𝑛+1 + 𝑥3𝑥0
𝑛 + 𝑥3(𝑥0 + 𝑥3)

𝑛 − 𝑥3𝑥0
𝑛]𝐼3 

= 𝑥0
𝑛+1 + [(𝑥0 + 𝑥1 + 𝑥2 + 𝑥3)

𝑛+1 − (𝑥0 + 𝑥2 + 𝑥3)
𝑛+1]𝐼1

+ [(𝑥0 + 𝑥2 + 𝑥3)
𝑛+1 − (𝑥0 + 𝑥3)

𝑛+1]𝐼2 + [(𝑥0 + 𝑥3)
𝑛+1 − 𝑥0

𝑛+1]𝐼3 

This implies that is true by induction. 

3). It holds directly from (1) and (2). 

Example. 

Take 𝑋 = 1 + 2𝐼1 − 𝐼2 + 𝐼3, 𝑛 = 2, then: 

𝑋2 = 1 + [(3)2 − 1]𝐼1 + [1 − (2)
2]𝐼2 + [(2)

2 − 1]𝐼3 = 1 + 8𝐼1 − 3𝐼2 + 3𝐼3 

Theorem.  

Let 𝑋, 𝑌 ∈ 𝑍3(𝐼) , then 𝑔𝑐𝑑(𝑋, 𝑌) = 𝑔𝑐𝑑(𝑥0, 𝑦0) + [𝑔𝑐𝑑(𝑥0 + 𝑥1 + 𝑥2 + 𝑥3, 𝑦0 + 𝑦1 + 𝑦2 +

𝑦3) − 𝑔𝑐𝑑(𝑥0 + 𝑥2 + 𝑥3, 𝑦0 + 𝑦2 + 𝑦3)]𝐼1 + [𝑔𝑐𝑑(𝑥0 + 𝑥2 + 𝑥3, 𝑦0 + 𝑦2 + 𝑦3) − 𝑔𝑐𝑑(𝑥0 +

𝑥3, 𝑦0 + 𝑦3)]𝐼2 + [𝑔𝑐𝑑(𝑥0 + 𝑥3, 𝑦0 + 𝑦3) − 𝑔𝑐𝑑(𝑥0, 𝑦0)]𝐼3 

Example. 

Take 𝑋 = 4 + 3𝐼1 + 5𝐼2 − 𝐼3, 𝑌 = 7 + 𝐼1 + 𝐼2 + 3𝐼3. 
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𝑔𝑐𝑑(4,7) = 1, 𝑔𝑐𝑑(11,13) = 1, 𝑔𝑐𝑑(8,11) = 1, 𝑔𝑐𝑑(3,10) = 1, thus 𝑔𝑐𝑑(𝑋, 𝑌) = 1. 

Remark. 

𝑋, 𝑌 are called coprime (relatively prime) if and only if 𝑔𝑐𝑑(𝑋, 𝑌) = 1, which is equivalent 

to: 

𝑔𝑐𝑑(𝑥0, 𝑦0) = 𝑔𝑐𝑑(𝑥0 + 𝑥3, 𝑦0 + 𝑦3) = 𝑔𝑐𝑑(𝑥0 + 𝑥2 + 𝑥3, 𝑦0 + 𝑦2 + 𝑦3) = 𝑔𝑐𝑑(𝑥0 + 𝑥1 + 𝑥2 +

𝑥3, 𝑦0 + 𝑦1 + 𝑦2 + 𝑦3) = 1. 

Definition. 

Let 𝑋 = 𝑥0 + 𝑥1𝐼1 + 𝑥2𝐼2 + 𝑥3𝐼3 ∈ 𝑍3(𝐼), with 𝑋 > 0, we define: 

𝜑𝑠(𝑋) = 𝜑(𝑥0) + [𝜑(𝑥0 + 𝑥1 + 𝑥2 + 𝑥3) − 𝜑(𝑥0 + 𝑥2 + 𝑥3)]𝐼1

+ [𝜑(𝑥0 + 𝑥2 + 𝑥3) − 𝜑(𝑥0 + 𝑥3)]𝐼2 + [𝜑(𝑥0 + 𝑥3) − 𝜑(𝑥0)]𝐼3 

where 𝜑 is the ordinary Euler's function, 𝜑𝑠 is called the special 3-refined neutrosophic 

Euler's function. 

Example. 

Take 𝑋 = 3 + 𝐼1 + 𝐼2 + 𝐼3 > 0 ; 𝑥0 = 3, 𝑥1 = 1, 𝑥2 = 𝑥3 = 1. 

𝜑(𝑥0) = 2, 𝜑(𝑥0 + 𝑥1 + 𝑥2 + 𝑥3) = 2, 𝜑(𝑥0 + 𝑥2 + 𝑥3) = 4, 𝜑(𝑥0 + 𝑥3) = 2. 

Thus  

𝜑𝑠(𝑋) = 2 + [2 − 4]𝐼1 + [4 − 2]𝐼2 + [2 − 2]𝐼3 = 2 − 2𝐼1 + 2𝐼2 + 0𝐼3. 

It is clear that 𝜑𝑠(𝑋) > 0; ∀𝑋 > 0. 

Theorem. 

Let 𝐴 = 𝑎0 + 𝑎1𝐼1 + 𝑎2𝐼2 + 𝑎3𝐼3, 𝑀 = 𝑚0 +𝑚1𝐼1 +𝑚2𝐼2 +𝑚3𝐼3 ∈ 𝑍3(𝐼), such that: 

𝐴 > 0,𝑀 > 0 and 𝑔𝑐𝑑(𝐴,𝑀) = 1, then: 

1). 𝐴𝜑𝑠(𝑀) ≡ 1 (𝑚𝑜𝑑 𝑀). 

2). 𝐴−1 (𝑚𝑜𝑑 𝑀) ≡ 𝑎0
−1 (𝑚𝑜𝑑𝑚0) + [(𝑎0 + 𝑎1 + 𝑎2 + 𝑎3)

−1(𝑚𝑜𝑑 𝑚0 +𝑚1 +𝑚2 +𝑚3) −

(𝑎0 + 𝑎2 + 𝑎3)
−1(𝑚𝑜𝑑 𝑚0 +𝑚2 +𝑚3)]𝐼1 + [(𝑎0 + 𝑎2 + 𝑎3)

−1(𝑚𝑜𝑑 𝑚0 +𝑚2 +𝑚3) −

(𝑎0 + 𝑎3)
−1(𝑚𝑜𝑑 𝑚0 +𝑚3)]𝐼2 + [(𝑎0 + 𝑎3)

−1(𝑚𝑜𝑑 𝑚0 +𝑚3) − 𝑎0
−1 (𝑚𝑜𝑑𝑚0)]𝐼3. 

Proof. 

1). 𝐴𝜑𝑠(𝑀) = 𝑎0
𝜑(𝑚0)  + [(𝑎0 + 𝑎1 + 𝑎2 + 𝑎3)

𝜑(𝑚0+𝑚1+𝑚2+𝑚3) − (𝑎0 + 𝑎2 +

𝑎3)
𝜑(𝑚0+𝑚2+𝑚3)]𝐼1 + [(𝑎0 + 𝑎2 + 𝑎3)

𝜑(𝑚0+𝑚2+𝑚3) − (𝑎0 + 𝑎3)
𝜑(𝑚0+𝑚3)]𝐼2 + [(𝑎0 +

𝑎3)
𝜑(𝑚0+𝑚3) − 𝑎0

𝜑(𝑚0)]𝐼3 ≡ 1 (𝑚𝑜𝑑 𝑀). 

2). It holds directly by computing the product 𝐴𝐴−1. 

3-refined Diophantine equations: 
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Definition. 

Let 𝐴 = 𝑎0 + 𝑎1𝐼1 + 𝑎2𝐼2 + 𝑎3𝐼3, 𝐵 = 𝑏0 + 𝑏1𝐼1 + 𝑏2𝐼2 + 𝑏3𝐼3, 𝐶 = 𝑐0 + 𝑐1𝐼1 + 𝑐2𝐼2 + 𝑐3𝐼3, 𝑋 =

𝑥0 + 𝑥1𝐼1 + 𝑥2𝐼2 + 𝑥3𝐼3, 𝑌 = 𝑦0 + 𝑦1𝐼1 + 𝑦2𝐼2 + 𝑦3𝐼3, where 𝑎𝑖 , 𝑏𝑖, 𝑐𝑖, 𝑥𝑖, 𝑦𝑖 ∈ 𝑍3(𝐼). 

We define the 3-refined neutrosophic linear Diophantine equation with two variables as 

follows: 

𝐴𝑋 + 𝐵𝑌 = 𝐶. 

Example. 

Consider the following 3-refined neutrosophic linear Diophantine equation: 

(3 + 2𝐼1 + 𝐼2 + 𝐼3)𝑋 + (2 + 4𝐼2)𝑌 = 3 + 9𝐼1 − 7𝐼3 

Theorem. 

Let 𝐴𝑋 + 𝐵𝑌 = 𝐶  be a 3-refined neutrosophic linear Diophantine equation, then it is 

equivalent to: 

{
 

 
𝑎0𝑥0 + 𝑏0𝑦0 = 𝑐0

(𝑎0 + 𝑎3)(𝑥0 + 𝑥3) + (𝑏0 + 𝑏3)(𝑦0 + 𝑦3) = 𝑐0 + 𝑐3
(𝑎0 + 𝑎2 + 𝑎3)(𝑥0 + 𝑥2 + 𝑥3) + (𝑏0 + 𝑏2 + 𝑏3)(𝑦0 + 𝑦2 + 𝑦3) = 𝑐0 + 𝑐2 + 𝑐3

(𝑎0 + 𝑎1 + 𝑎2 + 𝑎3)(𝑥0 + 𝑥1 + 𝑥2 + 𝑥3) + (𝑏0 + 𝑏1 + 𝑏2 + 𝑏3)(𝑦0 + 𝑦1 + 𝑦2 + 𝑦3) = 𝑐0 + 𝑐1 + 𝑐2 + 𝑐3

 

Proof. 

We compute 𝐴𝑋 = 𝑎0𝑥0 + [(𝑎0 + 𝑎1 + 𝑎2 + 𝑎3)(𝑥0 + 𝑥1 + 𝑥2 + 𝑥3) − (𝑎0 + 𝑎2 + 𝑎3)(𝑥0 +

𝑥2 + 𝑥3)]𝐼1 + [(𝑎0 + 𝑎2 + 𝑎3)(𝑥0 + 𝑥2 + 𝑥3) − (𝑎0 + 𝑎3)(𝑥0 + 𝑥3)]𝐼2 + [(𝑎0 + 𝑎3)(𝑥0 + 𝑥3) −

𝑎0𝑥0]𝐼3 

On the other hand, we have: 

𝐵𝑌 = 𝑏0𝑦0 + [(𝑏0 + 𝑏1 + 𝑏2 + 𝑏3)(𝑦0 + 𝑦1 + 𝑦2 + 𝑦3) − (𝑏0 + 𝑏2 + 𝑏3)(𝑦0 + 𝑦2 + 𝑦3)]𝐼1

+ [(𝑏0 + 𝑏2 + 𝑏3)(𝑦0 + 𝑦2 + 𝑦3) − (𝑏0 + 𝑏3)(𝑦0 + 𝑦3)]𝐼2

+ [(𝑏0 + 𝑏3)(𝑦0 + 𝑦3) − 𝑏0𝑦0]𝐼3 

The equation 𝐴𝑋 + 𝐵𝑌 = 𝐶 equivalents: 

{
 

 
𝑎0𝑥0 + 𝑏0𝑦0 = 𝑐0

(𝑎0 + 𝑎3)(𝑥0 + 𝑥3) + (𝑏0 + 𝑏3)(𝑦0 + 𝑦3) = 𝑐0 + 𝑐3
(𝑎0 + 𝑎2 + 𝑎3)(𝑥0 + 𝑥2 + 𝑥3) + (𝑏0 + 𝑏2 + 𝑏3)(𝑦0 + 𝑦2 + 𝑦3) = 𝑐0 + 𝑐2 + 𝑐3

(𝑎0 + 𝑎1 + 𝑎2 + 𝑎3)(𝑥0 + 𝑥1 + 𝑥2 + 𝑥3) + (𝑏0 + 𝑏1 + 𝑏2 + 𝑏3)(𝑦0 + 𝑦1 + 𝑦2 + 𝑦3) = 𝑐0 + 𝑐1 + 𝑐2 + 𝑐3

 

Example. 

Find a solution of the equation: 

(3 + 2𝐼1 + 𝐼2 + 𝐼3)𝑋 + (2 + 4𝐼2)𝑌 = 3 + 9𝐼1 − 7𝐼3 

We have 𝑎0 = 3, 𝑎1 = 2, 𝑎2 = 1, 𝑎3 = 1, 𝑏0 = 2, 𝑏1 = 0, 𝑏2 = 4, 𝑏3 = 0, 𝑐0 = 3, 𝑐1 = 9, 𝑐2 =

0, 𝑐3 = −7 
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The equivalent system is: 

{
 

 
3𝑥0 + 2𝑦0 = 3… (1)

4(𝑥0 + 𝑥3) + 2(𝑦0 + 𝑦3) = −4… (2)

5(𝑥0 + 𝑥2 + 𝑥3) + 7(𝑦0 + 𝑦2 + 𝑦3) = −4… (3)

7(𝑥0 + 𝑥1 + 𝑥2 + 𝑥3) + 6(𝑦0 + 𝑦1 + 𝑦2 + 𝑦3) = 5… (4)

 

The equation (1) has a solution 𝑥0 = 1, 𝑦0 = 0. 

The equation (2) has a solution 𝑥0 + 𝑥3 = −1, 𝑦0 + 𝑦3 = 0, thus 𝑥3 = −2, 𝑦3 = 0. 

The equation (3) has a solution 𝑥0 + 𝑥2 + 𝑥3 = 9, 𝑦0 + 𝑦2 + 𝑦3 = −7, thus 𝑥2 = 10, 𝑦2 =

−7. 

The equation (4)  has a solution 𝑥0 + 𝑥1 + 𝑥2 + 𝑥3 = 5, 𝑦0 + 𝑦1 + 𝑦2 + 𝑦3 = 5 , thus 𝑥1 =

−4, 𝑦1 = 12. 

This means that 𝑋 = 1 − 4𝐼1 + 10𝐼2 − 2𝐼3, 𝑌 = 12𝐼1 − 7𝐼2. 

Future research directions and suggestions 

3-refined neutrosophic number as generalizations of classical real numbers and integers, 

may have a great impact on many areas of scientific knowledge. 

In the following, we suggest many possible applications of 3-refined neutrosophic real 

numbers. 

1-) How can we build a crypto-system from 3-refined neutrosophic integers which 

generalize RSA algorithm. [19] 

2-) How can we build a crypto-system from 3-refined neutrosophic integers which 

generalize El-Gamal algorithm. [20-21] 

3-) How can we solve 3-refined neutrosophic differential equations, and integral equations. 

4-) How can we define Hillbert and Banach 3-refined neutrosophic spaces, and do classical 

functional inequalities still true in this case. 
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Abstract: 

The main goal behind mathematical cryptography is to keep messages and 

multimedia messages secret at a time when modern means of communication have 

spread and become very diverse. 

Fuzzy matrices as strong tools which was defined to deal with incomplete and 

uncertain data and many relationships in real life problems especially those which 

are related to images and graphs, may considered as important subjects for secret 

information and communication. 

The aim of this research paper is to present a new model and method for encrypting 

2×2 fuzzy matrices using the basic concepts in neutrosophic number theory and El 

Gamal algorithm in cryptography, where we generalize El Gamal algorithm  to 

become applicable to the ring of neutrosophic integer numbers that represents the 

studied fuzzy matrices. 

On the other hand, we study the applications of the novel algorithm to the 

encryption and decryption of some fuzzy relations represented in terms of fuzzy 

functions. 
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In addition, we illustrate many examples to clarify the validity of the new 

algorithm. 

Key words: 

Neutrosophic integer, fuzzy matrix, fuzzy relation, fuzzy graph, EL-Gamal 

crypto-system 

Introduction and Preliminaries 

The concept of fuzzy logic and fuzzy set was presented by Zadeh [10]. The main 

point of fuzzy approach is to deal with a degree for truth and a degree for falsity. 

Smarandache has generalized fuzzy ideas by introducing neutrosophic logic [16], 

which deals with a degree of truth (T), a degree of falsity (F), and a degree of 

indeterminacy (I). 

If X is a non-empty set. A fuzzy set (subset) μ of the set X is defined as a function μ: 

X → [0, 1], and if μ is a fuzzy subset of a set X. For t ∈ [0, 1], the set 𝑋𝑡= {𝑥 ∈

 𝑋 ; 𝜇 ( 𝑥 )  ≥  𝑡}, then μ is called a t-level subset of the fuzzy subset μ [3]. 

In the literature, we find many applications and approaches built over the ideas of 

fuzzy logic especially in probability, algebra, and graph theory [5, 7, 23]. 

The concept of fuzzy matrix was introduced in [6], and then it was studied widely 

in [8-9, 13], especially the algebraic properties and applications of these matrices. 

A square 2 × 2 fuzzy matrix is defined as follows: 

A=(
𝑎11 𝑎12

𝑎21 𝑎22
) with 𝑎𝑖𝑗 ∈ [0,1]. 

Mathematical Asymmetric cryptography is a branch of applied mathematics and 

theoretical computer science that applies mathematical methods and models to 

encrypt messages and multimedia [4]. Many systems and algorithms were 

presented such as RSA algorithm and El-Gamal algorithm [4, 15]. In addition, many 

attacks and applications of some special numbers can be found in [20-21]. 
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In [19], the first suggestion of using the generalizations of integers in cryptology 

was presented, where authors have suggested the usage of neutrosophic numbers, 

split-complex numbers, and dual numbers in cryptology. 

Neutrosophic cryptography became known recently by using neutrosophic number 

theory in generalizing classical crypto-systems into more complex and powerful 

systems. We find a neutrosophic version of RSA and refined El-Gamal 

crypto-algorithm [18, 22]. 

In this paper, we continuo the previous efforts for applying neutrosophic number 

theory in cryptology, where a neutrosophic version of El-Gamal algorithm based on 

the foundations of neutrosophic number theory will be presented and handled. In 

addition, we apply this algorithm to encrypt and decrypt fuzzy 2 × 2 matrices 

with rational entries. 

First, we recall some important concepts and definitions. 

The description of El Gamal crypto-scheme: 

Assume that we have two sides 𝐴  and 𝐵 , the first side 𝐴  wants to send an 

encrypted message to 𝐵. 

The recipient 𝐵 picks a large prime number 𝑝 and a generator 1 < 𝑔 < 𝑝 − 1, then 

𝐵 picks 𝑥 that 0 < 𝑥 < 𝑝 − 2 and computes 𝑋 = 𝑔𝑥(𝑚𝑜𝑑 𝑝). The number 𝑥 is kept 

as the secret key suppose that 𝐴 wants to send (𝑚) as a message to 𝐵. 

𝐴 should pick 0 < 𝑟 < 𝑝 − 2and compute 𝑅 = 𝑔𝑟(𝑚𝑜𝑑 𝑝) , the shared key 𝐾  is 

computed as follows 𝐾 = 𝑋𝑟(𝑚𝑜𝑑 𝑝). 

𝐴 encrypts the message as follows 𝑆 = 𝑚 × 𝑘, and sends the encrypted message to 

𝐵 as a duplet (𝑅, 𝑆). 

The second side 𝐵 decrypts the message by using her/his secret key 𝑥 as follows 

𝑚 = 𝑅−𝑥 × 𝑆. 

Definition: (Neutrosophic integers) [1] 
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Let R be any ring, I be an indeterminacy with the property 𝐼2 = 𝐼. Then 𝑅(𝐼) = {𝑎 +

𝑏𝐼; 𝑎, 𝑏 ∈ 𝑅} is called a neutrosophic ring. 

If 𝑅 = 𝑍  is the ring of integers, then 𝑍(𝐼) = {𝑎 + 𝑏𝐼; 𝑎, 𝑏 ∈ 𝑍}  is called the 

neutrosophic ring of integers. Elements of Z(I) are called neutrosophic integers. 

Theorem: (neutrosophic congruencies) [1] 

Let 𝑥 = 𝑎 + 𝑏𝐼, 𝑦 = 𝑐 + 𝑑𝐼, 𝑧 = 𝑚 + 𝑛𝐼 be three elements in Z(I). Then 𝑥 ≡ 𝑦(𝑚𝑜𝑑𝑧) 

if and only if 

𝑎 ≡ 𝑐(𝑚𝑜𝑑 𝑚), 𝑎 + 𝑏 ≡ 𝑐 + 𝑑(𝑚𝑜𝑑 𝑚 + 𝑛). 

Theorem: (neutrosophic powers) [2] 

(𝑎 + 𝑏𝐼)𝑐+𝑑𝐼 = 𝑎𝑐 + 𝐼[(𝑎 + 𝑏)𝑐+𝑑 − 𝑎𝑐]. 

Definition [2] 

Let 𝑍(𝐼) = {𝑎 + 𝑏𝐼;  𝑎, 𝑏 ∈ 𝑍} be the neutrosophic ring of integers, we say that 𝑎 +

𝑏𝐼 ≤ 𝑐 + 𝑑𝐼 if and only if 𝑎 ≤ 𝑐 𝑎𝑛𝑑 𝑎 + 𝑏 ≤ 𝑐 + 𝑑. 

Z(I) is a partially ordered set with the previous relation. 

Main Discussion 

Neutrosophic Version of EL-Gamal algorithm: 

To build a neutrosophic version of EL-Gamal Algorithm, we substitute each integer 

𝑡 by a positive neutrosophic integer 𝑡1 + 𝑡2𝐼 ;  𝑡1 > 0 , 𝑡1 + 𝑡2 > 0 . 

The recipient (𝐵)  picks a neutrosophic positive integer 𝑝 = 𝑝1 + 𝑝2𝐼 , where 

𝑝1, 𝑝1 + 𝑝2 are large primes. 

(𝐵)picks a generator 0 < 𝑔 = 𝑔1 + 𝑔2𝐼 < 𝑝 = 𝑝1 + 𝑝2𝐼 − 1  , i.e 𝑔1 < 𝑝1 − 1 , 𝑔1 +

𝑔2 < 𝑝1 + 𝑝2 − 1. 

(𝐵)  picks 0 < 𝑥 = 𝑥1 + 𝑥2𝐼 < 𝑝 = 𝑝1 + 𝑝2𝐼 − 2  , i.e 𝑥1 < 𝑝1 − 2 , 𝑥1 + 𝑥2 < 𝑝1 +

𝑝2 − 2 and then computes 𝑋 = 𝑔𝑥(𝑚𝑜𝑑 𝑝) = 𝑔1
𝑥(𝑚𝑜𝑑 𝑝1) + 𝐼[(𝑔1 + 𝑔2)𝑥(𝑚𝑜𝑑 𝑝1 +

𝑝2) − 𝑔1
𝑥(𝑚𝑜𝑑 𝑝1)]. 

The publish key is (𝑔, 𝑋). 

Assume that (𝐴) will send 𝑚 = 𝑚1 + 𝑚2𝐼 to (𝐵). 

(𝐴) should pick 0 < 𝑟 = 𝑟1 + 𝑟2𝐼 < 𝑝 = 𝑝1 + 𝑝2𝐼 − 2 and compute: 



23 
 

 

Mohammad Abobala, Ali Allouf, On A Novel Security Scheme for The Encryption and Decryption Of 2×2 Fuzzy Matrices 

with Rational Entries Based on The Algebra of Neutrosophic Integers and El-Gamal Crypto-System 
 

𝑅 = 𝑔𝑟(𝑚𝑜𝑑 𝑝) = 𝑔1
𝑟1(𝑚𝑜𝑑 𝑝1) + 𝐼[(𝑔1 + 𝑔2)𝑟1+𝑟2(𝑚𝑜𝑑 𝑝1 + 𝑝2) − 𝑔1

𝑟1(𝑚𝑜𝑑 𝑝1)] =

𝑡1 + 𝑡2𝐼. 

The shared key 

𝐾 = 𝑋𝑟(𝑚𝑜𝑑 𝑝)

= 𝑔1
𝑥1𝑟1(𝑚𝑜𝑑 𝑝1)

+ 𝐼[(𝑔1 + 𝑔2)(𝑥1+𝑥2)(𝑟1+𝑟2)(𝑚𝑜𝑑 𝑝1 + 𝑝2) − 𝑔1
𝑥1𝑟1(𝑚𝑜𝑑 𝑝1)] = 𝑘1 + 𝑘2𝐼 

(𝐴) encrypts its message as follows: 

𝑆 = 𝑚 × 𝑘 = (𝑚1 + 𝑚2𝐼)(𝑘1 + 𝑘2𝐼) = 𝑚1𝑘1 + 𝐼(𝑚1𝑘2 + 𝑚2𝑘1 + 𝑚2𝑘2) 

The other side (𝐵)decrypts the message as follows: 

𝑚 = 𝑅−𝑥(𝑚𝑜𝑑 𝑝); 𝑅−1 = 𝑡1
−1(𝑚𝑜𝑑 𝑝1) + 𝐼[(𝑡1 + 𝑡2)−1(𝑚𝑜𝑑 𝑝1 + 𝑝2) − 𝑡1

−1(𝑚𝑜𝑑 𝑝1)] 

Example. 

Consider that (𝐵) has picked 𝑝 = 𝑝1 + 𝑝2𝐼 = 5 + 6𝐼, the generator 𝑔 = 3 + 2𝐼 =

𝑔1 + 𝑔2𝐼, the secret key 𝑥 = 𝑥1 + 𝑥2𝐼 = 2 + 5𝐼. 

𝐾 = 𝑔𝑥(𝑚𝑜𝑑 𝑝) = 32(𝑚𝑜𝑑 5) + 𝐼[57(𝑚𝑜𝑑 11) − 32(𝑚𝑜𝑑 5)] = 4 + 𝐼[3 − 4] = 4 − 𝐼, 

the publick key is (𝑔, 𝑋) = (3 + 2𝐼, 4 − 𝐼) 

Assume that (𝐴)has decided to send 𝑚 = 4 + 4𝐽 to (𝐵). 

(𝐴) picks 𝑟 = 𝑟1 + 𝑟2𝐼 = 2 + 𝐼 and computes: 

𝑅 = 𝑔𝑟(𝑚𝑜𝑑 𝑝) = 32(𝑚𝑜𝑑 5) + 𝐼[53(𝑚𝑜𝑑 11) − 32(𝑚𝑜𝑑 5)] = 4 + 𝐼[5 − 4] = 4. 

The shared key 𝐾 ≡ 𝑋𝑟(𝑚𝑜𝑑 𝑝) = 42(𝑚𝑜𝑑 5) + 𝐼[33(𝑚𝑜𝑑 11) − 42(𝑚𝑜𝑑 5)] = 1 +

𝐼[5 − 1] = 1 + 4𝐼 = 𝑘1 + 𝑘2𝐼. 

The encrypted message  

𝑆 = 𝑚 × 𝑘 = (4 + 4𝐼)(1 + 4𝐼) = 4 + 𝐼(16 + 4 + 16) = 4 + 36𝐼. 

(𝐵) decrypts the message as follows: 

𝑚 = 𝑅−𝑥. 𝑠 (𝑚𝑜𝑑 𝑝), 𝑤ℎ𝑒𝑟𝑒: 

𝑅−1 = 4−1(𝑚𝑜𝑑 5) + 𝐼[4−1(𝑚𝑜𝑑 11) − 4−1(𝑚𝑜𝑑 5)] = 4 + 𝐼(3 − 4) = 4 − 𝐼 

𝑚 ≡ 𝑅−𝑥. 𝑠 (𝑚𝑜𝑑 𝑝) = (4 − 𝐼)2+5𝐼 . (4 + 36𝐼)(𝑚𝑜𝑑𝑝)

≡ [42 + 𝐼(37 − 42)](4 + 36𝐼)(𝑚𝑜𝑑𝑝) 

= (16 + 271𝐼)(4 + 36𝐼)(𝑚𝑜𝑑𝑝) = (64 + 87416𝐼)(𝑚𝑜𝑑𝑝) ≡ 64(𝑚𝑜𝑑 5) +

𝐼[(87416 + 64)(𝑚𝑜𝑑 11) − 64(𝑚𝑜𝑑 5)] = 4 + 𝐼(8 − 4) = 4 + 4𝐼. 
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Which is the plain text. 

Example. 

Consider the (𝐵)has picked 𝑝 = 𝑝1 + 𝑝2𝐼 = 13 + 6𝐼, the generator 𝑔 = 𝑔1 + 𝑔2𝐼 =

5 + 3𝐼, the secret key is 𝑥1 + 𝑥2𝐼 = 6 + 3𝐼. 

𝑋 ≡ 𝑔𝑥(𝑚𝑜𝑑 𝑝) = 56(𝑚𝑜𝑑 13) + 𝐼[89(𝑚𝑜𝑑 19) − 56(𝑚𝑜𝑑 13)] = 12 + 𝐼[18 − 12]

= 12 + 6𝐼 

The public key is (𝑔, 𝑋) = (5 + 3𝐼, 12 + 6𝐼). 

Assume that (𝐴) has decided to send 𝑚 = 10 + 𝐼 to (𝐵). 

(𝐴) picks 𝑟1 + 𝑟2𝐼 = 3 + 2𝐼 and computes: 

𝑅 ≡ 𝑔𝑟(𝑚𝑜𝑑 𝑝) = 53(𝑚𝑜𝑑 13) + 𝐼[85(𝑚𝑜𝑑 19) − 53(𝑚𝑜𝑑 13)] = 8 + 𝐼[12 − 8]

= 8 + 4𝐼 

The shared key: 

𝐾 ≡ 𝑋𝑟(𝑚𝑜𝑑 𝑝) = 123(𝑚𝑜𝑑 13) + 𝐼[185(𝑚𝑜𝑑 19) − 123(𝑚𝑜𝑑 13)] = 12 +

𝐼[18 − 12] = 12 + 6𝐼 = 𝑘1 + 𝑘2𝐼. 

The encrypted message is: 

𝑆 = 𝑚 × 𝑘 = (10 + 𝐼)(12 + 6𝐼) = 120 + 𝐼(60 + 12 + 6) = 120 + 78𝐼. 

(𝐵) decrypts the message as follows: 

𝑅−1 = 8−1(𝑚𝑜𝑑 13) + 𝐼[12−1(𝑚𝑜𝑑 19) − 8−1(𝑚𝑜𝑑 13)] = 5 + 𝐼(8 − 5) = 5 + 3𝐼 

𝑚 = (𝑅−1)𝑥𝑆 (𝑚𝑜𝑑 𝑝), 𝑤𝑒 ℎ𝑎𝑣𝑒 (5 + 3𝐼)6+3𝐼 . (𝑚𝑜𝑑𝑝) ≡ [56 + 𝐼(89 − 56)](𝑚𝑜𝑑𝑝) 

= 56(𝑚𝑜𝑑 13) + 𝐼[89(𝑚𝑜𝑑 19) − 56(𝑚𝑜𝑑 13)] = 12 + (18 − 12) = 12 + 6𝐼 

(120 + 78𝐼)(𝑚𝑜𝑑𝑝) = 120(𝑚𝑜𝑑 13) + 𝐼[198(𝑚𝑜𝑑 19) − 120(𝑚𝑜𝑑 13)]

= 3 + (8 − 3) = 3 + 5𝐼 

𝑚 = (12 + 6𝐼)(3 + 5𝐼) = (36 + 60𝐼 + 18𝐼 + 30𝐼) = (36 + 108𝐼)(𝑚𝑜𝑑 𝑝) ≡

36(𝑚𝑜𝑑 13) + 𝐼[144(𝑚𝑜𝑑 19) − 36(𝑚𝑜𝑑 13)] = 10 + 𝐼[11 − 10] = 10 + 𝐼. 

Which is the plain text. 

Fuzzy Matrices as Neutrosophic Points: 

Definition: 

Let A be a fuzzy 2 × 2 matrix  
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A=(
𝑎11 𝑎12

𝑎21 𝑎22
) 

Then A can be written in term of a 2-dimensional neutrosophic point as follows: 

𝐴𝑁 = (𝑎11 + 𝑎12𝐼, 𝑎21 + 𝑎22𝐼). 

Example: 

Consider the following fuzzy matrix: 

A=(
0.3 0.2
1 0.9

), then A can be written in the following form: 𝐴𝑁 = (0.3 + 0.2𝐼, 1 +

0.9𝐼). 

The encryption/decryption of a fuzzy 𝟐 × 𝟐 matrix: 

Let A be a fuzzy 2 × 2 matrix with rational entries  

A=(
𝑎11 𝑎12

𝑎21 𝑎22
), assume that the sender (X) has decided to send the matrix A to the 

recipient (Y) as a cipher text. 

As a first step, (X) should transform the fuzzy matrix A to a 2-dimensional 

neutrosophic point 

𝐴𝑁 = (𝑎11 + 𝑎12𝐼, 𝑎21 + 𝑎22𝐼), then (X) picks a weight 𝑤 ∈ 𝑍+ with the property 

𝑤𝑎11, 𝑤𝑎22, 𝑤𝑎12, 𝑤𝑎21 ∈ 𝑍+. This implies that 𝑤(𝑎11 + 𝑎12𝐼), 𝑤(𝑎21 + 𝑎22𝐼) ∈ 𝑍(𝐼), 

and (X) should send w to (Y). 

The recipient (Y) generates the public key as we explained above in neutrosophic 

El-Gamal algorithm, and shares his/her key with (X). 

(X) decrypts the 𝑤(𝑎11 + 𝑎12𝐼), 𝑤(𝑎21 + 𝑎22𝐼)  by using the key, and sends the 

cipher neutrosophic point to (Y). 

(Y) decrypts the message as we have shown previously, and divide it by the weight 

w. Then (Y) rearranges the values into matrix rows to get the plain text. 

Example: 

We explain the validity of the novel scheme by the following example. 

Consider the following fuzzy matrix: 

A=(
0.3 0.2
0.1 0.4

), then A can be written in the following form: 𝐴𝑁 = (0.3 + 0.2𝐼, 0.1 +

0.4𝐼). (X) picks w=10 and computes the new point 𝑤𝐴𝑁 = (3 + 2𝐼, 1 + 4𝐼), thaen (X) 

shares w=10 with (Y). 

Assume that the recipient (Y) has generated the public key as follows: 

Consider the (𝑌)has picked 𝑝 = 𝑝1 + 𝑝2𝐼 = 13 + 6𝐼, the generator 𝑔 = 𝑔1 + 𝑔2𝐼 =

5 + 3𝐼, the secret key is 𝑥1 + 𝑥2𝐼 = 6 + 3𝐼. 

𝑋 ≡ 𝑔𝑥(𝑚𝑜𝑑 𝑝) = 56(𝑚𝑜𝑑 13) + 𝐼[89(𝑚𝑜𝑑 19) − 56(𝑚𝑜𝑑 13)] = 12 + 𝐼[18 − 12]

= 12 + 6𝐼 

The public key is (𝑔, 𝑋) = (5 + 3𝐼, 12 + 6𝐼). 
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(𝑋) will send 𝑤𝐴𝑁 = (3 + 2𝐼, 1 + 4𝐼) to (𝑌). 

(𝑋) picks 𝑟1 + 𝑟2𝐼 = 3 + 2𝐼 and computes: 

𝑅 ≡ 𝑔𝑟(𝑚𝑜𝑑 𝑝) = 53(𝑚𝑜𝑑 13) + 𝐼[85(𝑚𝑜𝑑 19) − 53(𝑚𝑜𝑑 13)] = 8 + 𝐼[12 − 8]

= 8 + 4𝐼 

The shared key: 

𝐾 ≡ 𝑋𝑟(𝑚𝑜𝑑 𝑝) = 123(𝑚𝑜𝑑 13) + 𝐼[185(𝑚𝑜𝑑 19) − 123(𝑚𝑜𝑑 13)] = 12 +

𝐼[18 − 12] = 12 + 6𝐼 = 𝑘1 + 𝑘2𝐼. 

The encrypted message is: 

𝑆 = 𝑤𝐴𝑁 × 𝑘 = (3 + 2𝐼, 1 + 4𝐼)(12 + 6𝐼) = (36 + 54𝐼, 12 + 78𝐼). 

(𝑌) decrypts the message as follows: 

𝑅−1 = 8−1(𝑚𝑜𝑑 13) + 𝐼[12−1(𝑚𝑜𝑑 19) − 8−1(𝑚𝑜𝑑 13)] = 5 + 𝐼(8 − 5) = 5 + 3𝐼 

𝑚 = (𝑅−1)𝑥 × 𝑆 (𝑚𝑜𝑑 𝑝), 𝑤𝑒 ℎ𝑎𝑣𝑒 (5 + 3𝐼)6+3𝐼(𝑚𝑜𝑑𝑝) ≡ [56 + 𝐼(89 − 56)](𝑚𝑜𝑑𝑝) 

= 56(𝑚𝑜𝑑 13) + 𝐼[89(𝑚𝑜𝑑 19) − 56(𝑚𝑜𝑑 13)] = 12 + (18 − 12) = 12 + 6𝐼. 

On the other hand, (36 + 54𝐼, 12 + 78𝐼)(𝑚𝑜𝑑 𝑝) = (36(𝑚𝑜𝑑 13) + 𝐼[90(𝑚𝑜𝑑 19) −

36(𝑚𝑜𝑑 13)], 12 (𝑚𝑜𝑑 13) + 𝐼[90(𝑚𝑜𝑑 19) − 12(𝑚𝑜𝑑 13)])= 

(10 + 4𝐼, 12 + 2𝐼). 

The plain text is 𝑤𝐴𝑁 = (12 + 6𝐼). (10 + 4𝐼, 12 + 2𝐼)(𝑚𝑜𝑑 𝑝) = (120 + 132𝐼, 144 +

108𝐼)(𝑚𝑜𝑑 𝑝) ≡ (120(𝑚𝑜𝑑 13) + 𝐼[252(𝑚𝑜𝑑 19) − 120(𝑚𝑜𝑑 13)], 144(𝑚𝑜𝑑 13) +

𝐼[252(𝑚𝑜𝑑 19) − 144(𝑚𝑜𝑑 13)]) = (3 + 2𝐼, 1 + 4𝐼). 

Now, (Y) should divide the plain text by w=10, and rearrange it as rows of a matrix 

to get: 

A=(
0.3 0.2
0.1 0.4

). 

A Comparison between El-Gamal algorithm and neutrosophic El-Gamal 

algorithm: 

Since fuzzy matrices may have entries such as 0 or 1, then the encryption by using 

classical El-Gamal algorithm may be easy to be broken. Meanwhile, transforming 

them to neutrosophic points keeps the information secret. We explain it through the 

following example. 
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Example: 

Consider the following fuzzy matrix: 

A=(
0.3 0
0 0.4

), then A can be written in the following form: 𝐴𝑁 = (0.3, 0.4𝐼). (X) 

picks w=10 and computes the new point 𝑤𝐴𝑁 = (3, 4𝐼), then (X) shares w=10 with 

(Y). 

Assume that the recipient (Y) has generated the public key as follows: 

Consider the (𝑌)has picked 𝑝 = 𝑝1 + 𝑝2𝐼 = 13 + 6𝐼, the generator 𝑔 = 𝑔1 + 𝑔2𝐼 =

5 + 3𝐼, the secret key is 𝑥1 + 𝑥2𝐼 = 6 + 3𝐼. 

𝑋 ≡ 𝑔𝑥(𝑚𝑜𝑑 𝑝) = 56(𝑚𝑜𝑑 13) + 𝐼[89(𝑚𝑜𝑑 19) − 56(𝑚𝑜𝑑 13)] = 12 + 𝐼[18 − 12]

= 12 + 6𝐼 

The public key is (𝑔, 𝑋) = (5 + 3𝐼, 12 + 6𝐼). 

(𝑋) will send 𝑤𝐴𝑁 = (3 + 2𝐼, 1 + 4𝐼) to (𝑌). 

(𝑋) picks 𝑟1 + 𝑟2𝐼 = 3 + 2𝐼 and computes: 

𝑅 ≡ 𝑔𝑟(𝑚𝑜𝑑 𝑝) = 53(𝑚𝑜𝑑 13) + 𝐼[85(𝑚𝑜𝑑 19) − 53(𝑚𝑜𝑑 13)] = 8 + 𝐼[12 − 8]

= 8 + 4𝐼 

The shared key: 

𝐾 ≡ 𝑋𝑟(𝑚𝑜𝑑 𝑝) = 123(𝑚𝑜𝑑 13) + 𝐼[185(𝑚𝑜𝑑 19) − 123(𝑚𝑜𝑑 13)] = 12 +

𝐼[18 − 12] = 12 + 6𝐼 = 𝑘1 + 𝑘2𝐼. 

The encrypted message is: 

𝑆 = 𝑤𝐴𝑁 × 𝑘 = (3, 4𝐼)(12 + 6𝐼) = (36 + 18𝐼, 72𝐼). 

(𝑌) decrypts the message as follows: 

𝑅−1 = 8−1(𝑚𝑜𝑑 13) + 𝐼[12−1(𝑚𝑜𝑑 19) − 8−1(𝑚𝑜𝑑 13)] = 5 + 𝐼(8 − 5) = 5 + 3𝐼 

𝑚 = (𝑅−1)𝑥 × 𝑆 (𝑚𝑜𝑑 𝑝), 𝑤𝑒 ℎ𝑎𝑣𝑒 (5 + 3𝐼)6+3𝐼(𝑚𝑜𝑑𝑝) ≡ [56 + 𝐼(89 − 56)](𝑚𝑜𝑑𝑝) 

= 56(𝑚𝑜𝑑 13) + 𝐼[89(𝑚𝑜𝑑 19) − 56(𝑚𝑜𝑑 13)] = 12 + (18 − 12) = 12 + 6𝐼. 

On the other hand, (36 + 18𝐼, 72𝐼)(𝑚𝑜𝑑 𝑝) = (36(𝑚𝑜𝑑 13) + 𝐼[54(𝑚𝑜𝑑 19) −

36(𝑚𝑜𝑑 13)], 0 (𝑚𝑜𝑑 13) + 𝐼[72(𝑚𝑜𝑑 19) − 0(𝑚𝑜𝑑 13)])= 

(10 + 6𝐼, 15𝐼). 
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The plain text is 𝑤𝐴𝑁 = (12 + 6𝐼). (10 + 6𝐼, 15𝐼)(𝑚𝑜𝑑 𝑝) = (120 +

168𝐼, 270𝐼)(𝑚𝑜𝑑 𝑝) ≡ (120(𝑚𝑜𝑑 13) + 𝐼[288(𝑚𝑜𝑑 19) −

120(𝑚𝑜𝑑 13)], 0(𝑚𝑜𝑑 13) + 𝐼[270(𝑚𝑜𝑑 19) − 0(𝑚𝑜𝑑 13)]) = (3, 4𝐼). 

Now, (Y) should divide the plain text by w=10, and rearrange it as rows of a matrix 

to get: 

A=(
0.3 0
0 0.4

). 

On the other hand, if (X) has ciphered his numbers with classical El-Gamal 

algorithm, then he gets 0 as a cipher text twice, that is because when he computes 

𝑆 = (0) × 𝑘 = 0  which is equal to the plain text. Meanwhile, when he uses 

neutrosophic formulas, he gets (10 + 6𝐼, 15𝐼) which is different from the original 

message. From this point of view, we can say that the usage of neutrosophic 

numbers and neutrosophic El-Gamal algorithm is better that using classical 

algorithm only, especially in the case of ciphering 0 and 1 entries. 

Applications to fuzzy relations 

Let 𝑋 = {𝑥1, 𝑥2},𝑌 = {𝑦1, 𝑦2} be two sets with two elements, with a fuzzy relation 

R(X,Y) defined on X as follows: 

𝑓𝑖𝑗(𝑥𝑖 , 𝑦𝑗) = 𝑎𝑖𝑗 ∈ [0,1] . Then this relation can be represented as a fuzzy 2 × 2 

matrix  

A=(
𝑎11 𝑎12

𝑎21 𝑎22
), so that by using neutrosophic El-Gamal algorithm we can encrypt it 

as a secret message. 

We clarify that by the following example. 

Example: 

Assume that we have two men 𝑚1, 𝑚2, and two hospitals 𝐻1, 𝐻2. Suppose that the 

first man goes to the first hospital in 30% of cases of illness, and in 70% of cases, he 

goes to the second hospital. 

As for the second man, he goes to the first hospital in 90% of cases, and he goes to 

the second hospital in 10% of cases. 
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Then, we can represent this information as a fuzzy relation, 𝑓(𝑚1, 𝐻1) = 0.3,  

𝑓(𝑚1, 𝐻2) = 0.7, 𝑓(𝑚2, 𝐻1) = 0.9, 𝑓(𝑚2, 𝐻2) = 0.1.  

So, it can be described by the following fuzzy matrix with rational entries: 

A=(
0.3 0.7
0.9 0.1

). 

Then A can be written in the following form: 𝐴𝑁 = (0.3 + 0.7𝐼, 0.9 + 0.1𝐼). (X) picks 

w=10 and computes the new point 𝑤𝐴𝑁 = (3 + 7𝐼, 9 + 𝐼), then (X) shares w=10 with 

(Y). 

Assume that the recipient (Y) has generated the public key as follows: 

Consider the (𝑌)has picked 𝑝 = 𝑝1 + 𝑝2𝐼 = 13 + 6𝐼, the generator 𝑔 = 𝑔1 + 𝑔2𝐼 =

5 + 3𝐼, the secret key is 𝑥1 + 𝑥2𝐼 = 6 + 3𝐼. 

𝑋 ≡ 𝑔𝑥(𝑚𝑜𝑑 𝑝) = 56(𝑚𝑜𝑑 13) + 𝐼[89(𝑚𝑜𝑑 19) − 56(𝑚𝑜𝑑 13)] = 12 + 𝐼[18 − 12]

= 12 + 6𝐼 

The public key is (𝑔, 𝑋) = (5 + 3𝐼, 12 + 6𝐼). 

(𝑋) will send 𝑤𝐴𝑁 = (3 + 7𝐼, 9 + 𝐼) to (𝑌). 

(𝑋) picks 𝑟1 + 𝑟2𝐼 = 3 + 2𝐼 and computes: 

𝑅 ≡ 𝑔𝑟(𝑚𝑜𝑑 𝑝) = 53(𝑚𝑜𝑑 13) + 𝐼[85(𝑚𝑜𝑑 19) − 53(𝑚𝑜𝑑 13)] = 8 + 𝐼[12 − 8]

= 8 + 4𝐼 

The shared key: 

𝐾 ≡ 𝑋𝑟(𝑚𝑜𝑑 𝑝) = 123(𝑚𝑜𝑑 13) + 𝐼[185(𝑚𝑜𝑑 19) − 123(𝑚𝑜𝑑 13)] = 12 +

𝐼[18 − 12] = 12 + 6𝐼 = 𝑘1 + 𝑘2𝐼. 

The encrypted message is: 

𝑆 = 𝑤𝐴𝑁 × 𝑘 = (3 + 7𝐼, 9 + 𝐼)(12 + 6𝐼) = (36 + 144𝐼, 108 + 72𝐼). 

(𝑌) decrypts the message as follows: 

𝑅−1 = 8−1(𝑚𝑜𝑑 13) + 𝐼[12−1(𝑚𝑜𝑑 19) − 8−1(𝑚𝑜𝑑 13)] = 5 + 𝐼(8 − 5) = 5 + 3𝐼 

𝑚 = (𝑅−1)𝑥 × 𝑆 (𝑚𝑜𝑑 𝑝), 𝑤𝑒 ℎ𝑎𝑣𝑒 (5 + 3𝐼)6+3𝐼(𝑚𝑜𝑑𝑝) ≡ [56 + 𝐼(89 − 56)](𝑚𝑜𝑑𝑝) 

= 56(𝑚𝑜𝑑 13) + 𝐼[89(𝑚𝑜𝑑 19) − 56(𝑚𝑜𝑑 13)] = 12 + (18 − 12) = 12 + 6𝐼. 

On the other hand, (36 + 144𝐼, 108 + 72𝐼)(𝑚𝑜𝑑 𝑝) = (36(𝑚𝑜𝑑 13) +

𝐼[180(𝑚𝑜𝑑 19) − 36(𝑚𝑜𝑑 13)], 108 (𝑚𝑜𝑑 13) + 𝐼[180(𝑚𝑜𝑑 19) − 108(𝑚𝑜𝑑 13)])= 

(10 − 𝐼, 4 + 5𝐼). 
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The plain text is 𝑤𝐴𝑁 = (12 + 6𝐼). (10 − 𝐼, 4 + 5𝐼)(𝑚𝑜𝑑 𝑝) = (120 + 42𝐼, 48 +

114𝐼)(𝑚𝑜𝑑 𝑝) ≡ (120(𝑚𝑜𝑑 13) + 𝐼[162(𝑚𝑜𝑑 19) − 120(𝑚𝑜𝑑 13)], 48(𝑚𝑜𝑑 13) +

𝐼[162(𝑚𝑜𝑑 19) − 48(𝑚𝑜𝑑 13)]) = (3 + 7𝐼, 9 + 𝐼). 

Now, (Y) should divide the plain text by w=10, and rearrange it as rows of a matrix 

to get: 

A=(
0.3 0.7
0.9 0.1

). This means that (Y) is able to reform the secret fuzzy relation in the 

original form   

𝑓(𝑚1, 𝐻1) = 0.3,  

𝑓(𝑚1, 𝐻2) = 0.7, 𝑓(𝑚2, 𝐻1) = 0.9, 𝑓(𝑚2, 𝐻2) = 0.1. 

Conclusion 

In this paper, we have used the basics of neutrosophic number theory and classical 

El-Gamal crypto-system to build a new version, which we call neutrosophic 

EL-Gamal algorithm. 

In addition, we use the novel algorithm to encrypt and decrypt messages that 

contain 2 × 2 fuzzy matrices with rational entries. 

On the other hand, some application of decrypting fuzzy relations and fuzzy 

functions, which can be represented as 2 × 2 fuzzy matrices with rational entries 

were presented and illustrated by examples. 

In the future, we aim to find algorithm to encrypt and decrypt 𝑛 × 𝑛 fuzzy matrices 

with rational entries by using neutrosophic algebraic structures. 
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Abstract:  

The symbolic n-plithogenic sets and algebraic structures are a new branch of pure algebra 

released as new generalizations of classical algebraic structures.  

The main goal of this paper is to define for the first time the concept of symbolic 

2-plithogenic module over a symbolic 2-plithogenic ring. Algebraic substructures of 

symbolic 2-plithogenic modules such as sub-modules, AH-homomorphisms, and 

algebraic basis.   

Keywords: 2-plithogenic symbolic set, 2-plithogenic module, 2-plithogenic ring 

Introduction 

The concept of symbolic plithogenic sets was defined by Smarandache in [13-17 ,30], and he 

suggested an algebraic approach of these sets. Laterally, the concept of symbolic 

2-plithogenic rings [31], where the concepts such as symbolic AH-ideals, and 

AH-homomorphisms were presented and discussed. 

In general, we can say that symbolic plithogenic structures are very close to neutrosophic 

algebraic structures with many differences in the definition of multiplication operation 

[1-10]. 

Let 𝑅 be a ring, the symbolic 2-plithogenic ring is defined as follows: 

2 − 𝑆𝑃𝑅 = {𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2;  𝑎𝑖 ∈ 𝑅, 𝑃𝑗
2 = 𝑃𝑗, 𝑃1 × 𝑃2 = 𝑃𝑚𝑎𝑥(1,2) = 𝑃2}. 

Smarandache has defined algebraic operations on 2 − 𝑆𝑃𝑅 as follows: 

mailto:ntaffash@windowslive.com
mailto:khagijabenothman33@gmail.com
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Addition: 

[𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2] + [𝑏0 + 𝑏1𝑃1 + 𝑏2𝑃2] = (𝑎0 + 𝑏0) + (𝑎1 + 𝑏1)𝑃1 + (𝑎2 + 𝑏2)𝑃2. 

Multiplication: 

[𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2]. [𝑏0 + 𝑏1𝑃1 + 𝑏2𝑃2] = 𝑎0𝑏0 + 𝑎0𝑏1𝑃1 + 𝑎0𝑏2𝑃2 + 𝑎1𝑏0𝑃1
2 + 𝑎1𝑏2𝑃1𝑃2 +

𝑎2𝑏0𝑃2 + 𝑎2𝑏1𝑃1𝑃2 + 𝑎2𝑏2𝑃2
2 + 𝑎1𝑏1𝑃1𝑃1 = 𝑎0𝑏0 + (𝑎0𝑏1 + 𝑎1𝑏0 + 𝑎1𝑏1)𝑃1 + (𝑎0𝑏2 + 𝑎1𝑏2 +

𝑎2𝑏0 + 𝑎2𝑏1 + 𝑎2𝑏2)𝑃2. 

In this paper, we study the symbolic 2-plithogenic modules according to many points of 

view, where substructures such as AH-submodules, and AH-homomorphisms will be 

presented in terms of theorems. In addition, many examples will be illustrated to explain 

the novelty of these ideas. 

Main Discussion 

Definition.  

Let 𝑀  be a module over the ring R, let 2 − 𝑆𝑃𝑅  be the corresponding symbolic 

2-plithogenic ring.  

2 − 𝑆𝑃𝑅 = {𝑥 + 𝑦𝑃1 + 𝑧𝑃2;  𝑥, 𝑦, 𝑧 ∈ 𝑅, 𝑃𝑖
2 = 𝑃𝑖, 𝑃1𝑃2 = 𝑃2𝑃1 = 𝑃2}. 

We define the symbolic 2-plithogenic module as follows: 

2 − 𝑆𝑃𝑀 = 𝑀 +𝑀𝑃1 +𝑀𝑃2 = {𝑎 + 𝑏𝑃1 + 𝑐𝑃2;  𝑎, 𝑏, 𝑐 ∈ 𝑀}. 

Operations on 2 − 𝑆𝑃𝑀 can be defined as follows: 

Addition: (+): 2 − 𝑆𝑃𝑀 → 2 − 𝑆𝑃𝑀, such that: 

[𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2] + [𝑦0 + 𝑦1𝑃1 + 𝑦𝑠2𝑃2] = (𝑥0 + 𝑦0) + (𝑥1 + 𝑦1)𝑃1 + (𝑥2 + 𝑦2)𝑃2 

Multiplication: (. ): 2 − 𝑆𝑃𝑅 × 2 − 𝑆𝑃𝑀 → 2 − 𝑆𝑃𝑀, such that: 

[𝑎 + 𝑏𝑃1 + 𝑐𝑃2]. [𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2] = 𝑎𝑥0 + (𝑎𝑥1 + 𝑏𝑥0 + 𝑏𝑥1)𝑃1 + (𝑎𝑥2 + 𝑏𝑥2 + 𝑐𝑥0 + 𝑐𝑥1 +

𝑐𝑥2)𝑃2. 

where 𝑥𝑖, 𝑦𝑖 ∈ 𝑀, 𝑎, 𝑏, 𝑐 ∈ 𝑅 

Theorem. 

Let (2 − 𝑆𝑃𝑀 , +, . ) Is a module over the ring 2 − 𝑆𝑃𝑅. 

Proof. 

Let 𝑋 = 𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2, 𝑌 = 𝑦0 + 𝑦1𝑃1 + 𝑦2𝑃2 ∈ 2 − 𝑆𝑃𝑀 , 𝐴 = 𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2, 𝐵 = 𝑏0 +

𝑏1𝑃1 + 𝑏2𝑃2 ∈ 2 − 𝑆𝑃𝑅 we have: 

1. 𝑋 = 𝑋, (𝑋 + 𝑌) + 𝑍 = 𝑋 + (𝑌 + 𝑍), 𝑋 + (−𝑋) = −𝑋 + 𝑋 = 0, 𝑋 + 0 = 0 + 𝑋 = 𝑋 
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Also 

𝐴(𝑋 + 𝑌) = (𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2)[(𝑥0 + 𝑦0) + (𝑥1 + 𝑦1)𝑃1 + (𝑥2 + 𝑦2)𝑃2]

= 𝑎0(𝑥0 + 𝑦0) + (𝑎0(𝑥1 + 𝑦1) + 𝑎1(𝑥0 + 𝑦0) + 𝑎1(𝑥1 + 𝑦1))𝑃1

+ (𝑎0(𝑥2 + 𝑦2) + 𝑎1(𝑥2 + 𝑦2) + 𝑎2(𝑥0 + 𝑦0) + 𝑎2(𝑥1 + 𝑦1) + 𝑎2(𝑥2 + 𝑦2))𝑃2

= 𝐴. 𝑋 + 𝐴. 𝑌 

(𝐴 + 𝐵)𝑋 = [(𝑎0 + 𝑏0) + (𝑎1 + 𝑏1)𝑃1 + (𝑎2 + 𝑏2)𝑃2](𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2)

= (𝑎0 + 𝑏0)𝑥0 + ((𝑎0 + 𝑏0)𝑥1 + (𝑎1 + 𝑏1)𝑥0 + (𝑎1 + 𝑏1)𝑥1)𝑃1

+ ((𝑎0 + 𝑏0)𝑥2 + (𝑎1 + 𝑏1)𝑥2 + (𝑎2 + 𝑏2)𝑥0 + (𝑎2 + 𝑏2)𝑥1 + (𝑎2 + 𝑏2)𝑥2)𝑃2

= 𝐴. 𝑋 + 𝐵. 𝑋 

(𝐴. 𝐵). 𝑋 = [𝑎0𝑏0 + (𝑎0𝑏1 + 𝑎1𝑏0 + 𝑎1𝑏1)𝑃1 + (𝑎0𝑏2 + 𝑎1𝑏2 + 𝑎2𝑏0 + 𝑎2𝑏1 + 𝑎2𝑏2)𝑃2](𝑥0 +

𝑥1𝑃1 + 𝑥2𝑃2) = 𝑎0𝑏0𝑥0 + [𝑎0𝑏0𝑥1 + (𝑎0𝑏1 + 𝑎1𝑏0 + 𝑎1𝑏1)𝑥0 + (𝑎0𝑏1 + 𝑎1𝑏0 + 𝑎1𝑏1)𝑥1]𝑃1 +

[𝑎0𝑏0𝑥2 + (𝑎0𝑏2 + 𝑎2𝑏0 + 𝑎1𝑏1)𝑥2 + (𝑎0𝑏2 + 𝑎1𝑏2 + 𝑎2𝑏0 + 𝑎2𝑏1 + 𝑎2𝑏2)𝑥0 + (𝑎0𝑏2 + 𝑎1𝑏2 +

𝑎2𝑏0 + 𝑎2𝑏1 + 𝑎2𝑏2)𝑥1 + (𝑎0𝑏2 + 𝑎1𝑏2 + 𝑎2𝑏0 + 𝑎2𝑏1 + 𝑎2𝑏2)𝑥2]𝑃2 = 𝐴(𝐵. 𝑋). 

Example. 

Let 𝑀 = 𝑍3 be the module over the ring 𝑅 =. 

The corresponding symbolic 2-plithogenic vector space over 2 − 𝑆𝑃𝑍 is: 

2 − 𝑆𝑃𝑍3 = {(𝑥0, 𝑦0, 𝑧0) + (𝑥1, 𝑦1, 𝑧1)𝑃1 + (𝑥2, 𝑦2, 𝑧2)𝑃2; 𝑥𝑖, 𝑦𝑖 , 𝑧𝑖 ∈ 𝑍} 

Consider 𝑋 = (1,1,0) + (2,−1,1)𝑃1 + (0,1,−1)𝑃2 ∈ 2 − 𝑆𝑃𝑍3 , 𝐴 = 2 + 𝑃1 + 𝑃2 ∈ 2 − 𝑆𝑃𝑍. We 

have: 

𝐴. 𝑋 = (2,2,0) + [(4,−2,2) + (1,1,0) + (2,−1,1)]𝑃1 + [(0,2,2) + (0,1,1) + (1,1,0) +

(2,−1,1) + (0,1,1)]𝑃2 = (2,2,0) + (7,−2,3)𝑃1 + (3,4,5)𝑃2. 

Definition. 

Let 2 − 𝑆𝑃𝑀 be a symbolic 2-plithogenic module over 2 − 𝑆𝑃𝑅, let 𝑀0,𝑀1,𝑀2 be the three 

sub-modules of 𝑉, we define the AH-submodule as follows: 

𝑊 = 𝑀0 +𝑀1𝑃1 +𝑀2𝑃2 = {𝑥 + 𝑦𝑃1 + 𝑧𝑃2;  𝑥 ∈ 𝑀0, 𝑦 ∈ 𝑀1, 𝑧 ∈ 𝑀2}. 

If 𝑀0 = 𝑀1 = 𝑀2, then 𝑊 is called an AHS-sub-module. 

Example. 

Consider 2 − 𝑆𝑃𝑍3 , we have 𝑀0 = {(𝑎, 0,0);  𝑎 ∈ 𝑅},𝑀1 = {(0, 𝑏, 0);  𝑏 ∈ 𝑅},𝑀2 =

{(0,0, 𝑐);  𝑐 ∈ 𝑍} are three sub-modules of 𝑀 = 𝑍3. 

𝑊 = 𝑀 +𝑀1𝑃1 +𝑀2𝑃2 = {(𝑎, 0,0) + (0, 𝑏, 0)𝑃1 + (0,0, 𝑐)𝑃2;  𝑎, 𝑏, 𝑐 ∈ 𝑍} is an AH-submodule 

of 2 − 𝑆𝑃𝑍3. 
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𝑇 = 𝑀1 +𝑀𝑃1 +𝑀1𝑃2 = {(0, 𝑎, 0) + (0, 𝑏, 0)𝑃1 + (0, 𝑐, 0)𝑃2;  𝑎, 𝑏, 𝑐 ∈ 𝑍}  is an 

AHS-submodule. 

Theorem. 

Let 2 − 𝑆𝑃𝑀  be a symbolic 2-plithogenic module over 2 − 𝑆𝑃𝑅 , let 𝑊  be an 

AHS-submodule of 2 − 𝑆𝑃𝑀, then 𝑊 is a submodule of 2 − 𝑆𝑃𝑀. 

Proof. 

Suppose that 𝑊 is an AHS-submodule, then there exists a submodule 𝑀0 ≤ 𝑀, such that  

𝑊 = 𝑀0 +𝑀0𝑃1 +𝑀0𝑃2 = {𝑥 + 𝑦𝑃1 + 𝑧𝑃2;  𝑥, 𝑦, 𝑧 ∈ 𝑀0}. 

Let 𝑋 = 𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2, 𝑌 = 𝑦0 + 𝑦1𝑃1 + 𝑦2𝑃2 ∈ 𝑊, then: 

𝑋 − 𝑌 = (𝑥0 − 𝑦0) + (𝑥1 − 𝑦1)𝑃1 + (𝑥2 − 𝑦2)𝑃2 ∈ 𝑊 

∀ 𝐴 = 𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2 ∈ 2 − 𝑆𝑃𝑅, then: 

𝐴. 𝑋 = 𝑎0𝑥0 + (𝑎0𝑥1 + 𝑎1𝑥0 + 𝑎1𝑥1)𝑃1 + (𝑎0𝑥2 + 𝑎1𝑥2 + 𝑎2𝑥0 + 𝑎2𝑥1 + 𝑎2𝑥2)𝑃2 ∈ 𝑊 , that is 

because 𝑎0𝑥0 ∈ 𝑀0, 𝑎0𝑥1 + 𝑎1𝑥0 + 𝑎1𝑥1 ∈ 𝑀0, 𝑎0𝑥2 + 𝑎1𝑥2 + 𝑎2𝑥0 + 𝑎2𝑥1 + 𝑎2𝑥2 ∈ 𝑀0 , this 

implies the proof. 

Definition. 

Let 𝑉,𝑊 be two modules over the ring R. Let 2 − 𝑆𝑃𝑉 , 2 − 𝑆𝑃𝑊  be the corresponding 

symbolic 2-plithogenic modules over 2 − 𝑆𝑃𝑅. 

Let 𝐿0, 𝐿1, 𝐿2: 𝑉 → 𝑊  be three homomorphisms, we define the AH-homomorphism as 

follows: 

𝐿: 2 − 𝑆𝑃𝑉 → 2 − 𝑆𝑃𝑊, 𝐿 = 𝐿0 + 𝐿1𝑃1 + 𝐿2𝑃2 ; 𝐿(𝑥 + 𝑦𝑃1 + 𝑧𝑃2) = 𝐿0(𝑥) + 𝐿1(𝑦)𝑃1 + 𝐿2(𝑧)𝑃2. 

If 𝐿0 = 𝐿1 = 𝐿2, then 𝐿 is called AHS-homomorphism. 

Definition. 

Let 𝐿 = 𝐿0 + 𝐿1𝑃1 + 𝐿2𝑃2: 2 − 𝑆𝑃𝑉 → 2 − 𝑆𝑃𝑊 be an AH-homomorphism, we define: 

1. 𝐴𝐻 − 𝑘𝑒𝑟(𝐿) = 𝑘𝑒𝑟(𝐿0) + 𝑘𝑒𝑟(𝐿1)𝑃1 + 𝑘𝑒𝑟(𝐿2)𝑃2 = {𝑥 + 𝑦𝑃1 + 𝑧𝑃2}; 𝑥 ∈ 𝑘𝑒𝑟(𝐿0), 𝑦 ∈

𝑘𝑒𝑟(𝐿1), 𝑧 ∈ 𝑘𝑒𝑟(𝐿2). 

2. 𝐴𝐻 − 𝐼𝑚(𝐿) = 𝐼𝑚(𝐿0) + 𝐼𝑚(𝐿1)𝑃1 + 𝐼𝑚(𝐿2)𝑃2 = {𝑎 + 𝑏𝑃1 + 𝑐𝑃2}; 𝑎 ∈ 𝐼𝑚(𝐿0), 𝑏 ∈

𝐼𝑚(𝐿1), 𝑐 ∈ 𝐼𝑚(𝐿2) 

If 𝐿 is AHS-linear homomorphism, then we get 𝐴𝐻𝑆 − 𝑘𝑒𝑟𝑛𝑒𝑙, 𝐴𝐻𝑆 − 𝐼𝑚𝑎𝑔𝑒. 

Theorem. 

Let 𝐿 = 𝐿0 + 𝐿1𝑃1 + 𝐿2𝑃2: 2 − 𝑆𝑃𝑉 → 2 − 𝑆𝑃𝑊 be an AH-homomorphism, then: 

1. 𝐴𝐻 − 𝑘𝑒𝑟(𝐿) is AH-submodule of 2 − 𝑆𝑃𝑉. 
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2. 𝐴𝐻 − 𝐼𝑚(𝐿) is AH-submodule of 2 − 𝑆𝑃𝑊. 

Proof. 

1. Since 𝑘𝑒𝑟(𝐿0), 𝑘𝑒𝑟(𝐿1), 𝑘𝑒𝑟(𝐿2)  are submodules of 𝑉 , then 𝐴𝐻 − 𝑘𝑒𝑟(𝐿)  is an 

AH-submodule of 2 − 𝑆𝑃𝑉. 

2. It is holds by the same. 

Remark. 

If 𝐿0, 𝐿1, 𝐿2 are isomorphisms, then 𝑘𝑒𝑟(𝐿0) = 𝑘𝑒𝑟(𝐿1) = 𝑘𝑒𝑟(𝐿2) = {0}, 𝐼𝑚(𝐿0) = 𝐼𝑚(𝐿1) =

𝐼𝑚(𝐿2) = 𝑊, thus 𝐴𝐻 − 𝑘𝑒𝑟(𝐿) = {0}, 𝐴𝐻 − 𝐼𝑚(𝐿) = 2 − 𝑆𝑃𝑊. 

Example. 

Take 𝑉 = 𝑍3, 𝑊 = 𝑍, 𝐿0, 𝐿1, 𝐿2: 𝑉 → 𝑊 such that: 

𝐿0(𝑥, 𝑦, 𝑧) = (𝑥), 𝐿1(𝑥, 𝑦, 𝑧) = (𝑦), 𝐿2(𝑥, 𝑦, 𝑧) = (𝑧) 

The corresponding AH-homomorphism is: 

𝐿 = 𝐿0 + 𝐿1𝑃1 + 𝐿2𝑃2: 2 − 𝑆𝑃𝑍3 → 2 − 𝑆𝑃𝑍: 

𝐿[(𝑥0, 𝑦0, 𝑧0) + (𝑥1, 𝑦1, 𝑧1)𝑃1 + (𝑥2, 𝑦2, 𝑧2)𝑃2] = 𝐿0(𝑥0, 𝑦0, 𝑧0) + 𝐿1(𝑥1, 𝑦1, 𝑧1)𝑃1 +

𝐿2(𝑥2, 𝑦2, 𝑧2)𝑃2 = (𝑥0) + (𝑦1)𝑃1 + (𝑧2)𝑃2. 

For example, take 𝑋 = (1,9,8) + (9,10,−9)𝑃1 + (3,2,1)𝑃2, then: 

𝐿(𝑋) = 1 + (10)𝑃1 + 𝑃2. 

{
 

 
𝑘𝑒𝑟(𝐿0) = { (0, 𝑦0, 𝑧0); 𝑦0, 𝑧0 ∈ 𝑍}

𝑘𝑒𝑟(𝐿1) = {(𝑥1, 0, 𝑧1); 𝑥1, 𝑧1 ∈ 𝑍}

𝑘𝑒𝑟(𝐿2) = {(𝑥2, 𝑦2, 0);  𝑥2, 𝑦2 ∈ 𝑍}

𝐴𝐻 − 𝑘𝑒𝑟(𝐿) = {(0, 𝑦0, 𝑧0) + (𝑥1, 0, 𝑧1)𝑃1 + (𝑥2, 𝑦2, 0)𝑃2; 𝑦0, 𝑧0, 𝑥1, 𝑧1, 𝑥2, 𝑦2 ∈ 𝑍}

 

Also,  

{
 

 
𝐼𝑚(𝐿0) = 𝑍

𝐼𝑚(𝐿1) = 𝑍

𝐼𝑚(𝐿2) = 𝑍

𝐴𝐻 − 𝐼𝑚(𝐿) = 𝑍 + 𝑍𝑃1 + 𝑍𝑃2 = 2 − 𝑆𝑃𝑊

 

 

Theorem. 

Let 𝐿 = 𝑓 + 𝑓𝑃1 + 𝑓𝑃2: 2 − 𝑆𝑃𝑉 → 2 − 𝑆𝑃𝑊 be an AHS-homomorphism, then 𝐿 is a module 

homomorphism. 

Proof. 

Let 𝑋 = 𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2, 𝑌 = 𝑦0 + 𝑦1𝑃1 + 𝑦2𝑃2 ∈ 2 − 𝑆𝑃𝑉, then: 
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𝐿(𝑋 + 𝑌) = 𝑓(𝑥0 + 𝑦0) + 𝑓(𝑥1 + 𝑦1)𝑃1 + 𝑓(𝑥2 + 𝑦2)𝑃2

= [𝑓(𝑥0) + 𝑓(𝑥1)𝑃1 + 𝑓(𝑥2)𝑃2] + [𝑓(𝑦0) + 𝑓(𝑦1)𝑃1 + 𝑓(𝑦2)𝑃2] = 𝐿(𝑋) + 𝐿(𝑌) 

Let 𝐴 = 𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2 ∈ 2 − 𝑆𝑃𝐹, then: 

𝐿(𝐴. 𝑋) = 𝑓(𝑎0𝑥0) + 𝑓(𝑎0𝑥1 + 𝑎1𝑥0 + 𝑎1𝑥1)𝑃1 + 𝑓(𝑎0𝑥2 + 𝑎2𝑥0 + 𝑎2𝑥2 + 𝑎1𝑥2 + 𝑎2𝑥1)𝑃2

= 𝑎0𝑓(𝑥0) + (𝑎0𝑓(𝑥1) + 𝑎1𝑓(𝑥0) + 𝑎1𝑓(𝑥1))𝑃1

+ (𝑎0𝑓(𝑥2) + 𝑎2𝑓(𝑥0) + 𝑎2𝑓(𝑥2) + 𝑎1𝑓(𝑥2) + 𝑎2𝑓(𝑥1))𝑃2

= [𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2]. [𝑓(𝑥0) + 𝑓(𝑥1)𝑃1 + 𝑓(𝑥2)𝑃2] = 𝐴. 𝐿(𝑋) 

Thus, 𝐿 is a module homomorphism. 

The algebraic relations between symbolic 2-plithogenic modules and neutrosophic 

modules . 

Theorem. 

Let 𝑀 be a module over the ring R, consider 𝑀(𝐼) = 𝑀 +𝑀𝐼 = {𝑥 + 𝑦𝐼; 𝑥, 𝑦 ∈ 𝑀} is the 

corresponding neutrosophic module over the neutrosophic ring 𝑅(𝐼) = {𝑎 + 𝑏𝐼; 𝑎, 𝑏 ∈ 𝑅}. 

𝑀(𝐼1, 𝐼2) = 𝑀 +𝑀𝐼1 +𝑀𝐼2 = {𝑥 + 𝑦𝐼1 + 𝑧𝐼2; 𝑥, 𝑦, 𝑧 ∈ 𝑀}  is the corresponding refined 

neutrosophic module over the refined neutrosophic ring 𝑅(𝐼1, 𝐼2) = {𝑎 + 𝑏𝐼1 + 𝑐𝐼2; 𝑎, 𝑏, 𝑐 ∈

𝑅}. 

2 − 𝑆𝑃𝑀 = 𝑀 +𝑀𝑃1 +𝑀𝑃2 = {𝑥 + 𝑦𝑃1 + 𝑧𝑃2; 𝑥, 𝑦, 𝑧 ∈ 𝑀}  is the corresponding symbolic 

2-plithogenic module over 2 − 𝑆𝑃𝑅, then: 

1. 2 − 𝑆𝑃𝑀 is semi homomorphic to 𝑀(𝐼). 

2. 2 − 𝑆𝑃𝑀 is semi isomorphic to 𝑀(𝐼1, 𝐼2). 

Proof. 

1. We define 𝑓: 2 − 𝑆𝑃𝑀 → 𝑀(𝐼), 𝑔: 2 − 𝑆𝑃𝑅 → 𝑅(𝐼) such that: 

𝑓(𝑥 + 𝑦𝑃1 + 𝑧𝑃2) = 𝑥 + 𝑦𝐼; 𝑥, 𝑦, 𝑧 ∈ 𝑀 

𝑔(𝑎 + 𝑏𝑃1 + 𝑐𝑃2) = 𝑎 + 𝑏𝐼; 𝑎, 𝑏, 𝑐 ∈ 𝑅 

We have the following: 

𝑔 is a ring homomorphism, that is because: 

𝐴 = 𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2, 𝐵 = 𝑏0 + 𝑏1𝑃1 + 𝑏2𝑃2;  𝑎𝑖 , 𝑏𝑖 ∈ 𝑅, then: 

If 𝐴 = 𝐵, then 𝑎𝑖 = 𝑏𝑖 for all 𝑖, thus 𝑎0 + 𝑎1𝐼 = 𝑏0 + 𝑏1𝐼, 𝑖. 𝑒.  𝑔(𝐴) = 𝑔(𝐵). 

𝑔(𝐴 + 𝐵) = 𝑔[(𝑎0 + 𝑏0) + (𝑎1 + 𝑏1)𝑃1 + (𝑎2 + 𝑏2)𝑃2] = 𝑎0 + 𝑏0 + (𝑎1 + 𝑏1)𝐼 = 𝑔(𝐴) + 𝑔(𝐵). 

𝑔(𝐴. 𝐵) = 𝑔[𝑎0𝑏0 + (𝑎0𝑏1 + 𝑎1𝑏0 + 𝑎1𝑏1)𝑃1 + (𝑎0𝑏2 + 𝑎1𝑏2 + 𝑎2𝑏 + 𝑎2𝑏1 + 𝑎2𝑏2)𝑃2] =

𝑎0𝑏0 + (𝑎0𝑏1 + 𝑎1𝑏0 + 𝑎1𝑏1)𝐼 = (𝑎0 + 𝑎1𝐼)(𝑏0 + 𝑏1𝐼) = 𝑔(𝐴). 𝑔(𝐵). 
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On the other hand, 𝑓 is well defined, that is because: 

If 𝑋 = 𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2, 𝑌 = 𝑦0 + 𝑦1𝑃1 + 𝑦2𝑃2, then 𝑥𝑖 = 𝑦𝑖  for all 𝑖, hence 𝑎0 + 𝑎1𝐼 = 𝑏0 +

𝑏1𝐼, thus  𝑓(𝑋) = 𝑓(𝑌). 

𝑓 preserves addition, that is because: 

For 𝑋 = 𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2, 𝑌 = 𝑦0 + 𝑦1𝑃1 + 𝑦2𝑃2, we have: 

𝑓(𝑋 + 𝑌) = 𝑓[(𝑥0 + 𝑦0) + (𝑥1 + 𝑦1)𝑃1 + (𝑥2 + 𝑦2)𝑃2] = 𝑥0 + 𝑦0 + (𝑥1 + 𝑦1)𝐼 = 𝑓(𝑋) + 𝑓(𝑌). 

𝑓 preserves multiplication, that is because: 

For 𝐴 = 𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2 ∈ 2 − 𝑆𝑃𝑀, we have: 

𝑓(𝐴. 𝑋) = 𝑎0𝑥0 + (𝑎0𝑥1 + 𝑎1𝑥0 + 𝑎1𝑥1)𝐼 = (𝑎0 + 𝑎1𝐼)(𝑥0 + 𝑥1𝐼) = 𝑔(𝐴). 𝑓(𝑋) 

Thus 𝑓 is a semi module homomorphism. 

We define 𝑓: 2 − 𝑆𝑃𝑀 → 𝑀(𝐼1, 𝐼2) , 𝑔: 2 − 𝑆𝑃𝑅 → 𝑀(𝐼1, 𝐼2) , where 𝑓(𝑥 + 𝑦𝑃1 + 𝑧𝑃2) = 𝑥 +

𝑧𝐼1 + 𝑦𝐼2, and 𝑔(𝑎 + 𝑏𝑃1 + 𝑐𝑃2) = 𝑎 + 𝑐𝐼1 + 𝑏𝐼2; 𝑥, 𝑦, 𝑧 ∈ 𝑀, 𝑎, 𝑏, 𝑐 ∈ 𝑅. 

(𝑔) is well defined, that is because: 

If 𝐴 = 𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2, 𝐵 = 𝑏0 + 𝑏1𝑃1 + 𝑏2𝑃2, then: 

𝑎0 = 𝑎1, 𝑏0 = 𝑏1, 𝑐0 = 𝑐1, hence: 𝑎0 + 𝑐0𝐼1 + 𝑏0𝐼2 = 𝑎1 + 𝑐1𝐼1 + 𝑏1𝐼2, so that 𝑔(𝐴) = 𝑔(𝐵). 

(𝑓) is well defined by a similar discussion. 

(𝑔) is one-to-one mapping, that is because: 

𝑘𝑒𝑟(𝑔) = {𝑎 + 𝑏𝑃1 + 𝑐𝑃2; 𝑔(𝑎 + 𝑏𝑃1 + 𝑐𝑃2) = 0} = 𝑂 

𝐼𝑚(𝑔) = {𝑎 + 𝑐𝐼1 + 𝑏𝐼2; 𝑔(𝑎 + 𝑏𝑃1 + 𝑐𝑃2) ∈ 𝑅(𝐼1, 𝐼2); ∃𝐴 ∈ 2 − 𝑆𝑃𝑅 , 𝑔(𝐴) = 𝑎 + 𝑐𝐼1 + 𝑏𝐼2} =

𝑅(𝐼1, 𝐼2). 

(𝑓) is one-to-one mapping, it can be proved by the same. 

(𝑔) and (𝑓) preserve addition, that is because: 

Consider 𝐴 = 𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2, 𝐵 = 𝑏0 + 𝑏1𝑃1 + 𝑏2𝑃2 ∈ 2 − 𝑆𝑃𝑅 ,  𝑋 = 𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2, 𝑌 =

𝑦0 + 𝑦1𝑃1 + 𝑦2𝑃2 ∈ 2 − 𝑆𝑃𝑀, then: 

𝑔(𝐴 + 𝐵) = 𝑔[(𝑎0 + 𝑏0) + (𝑎1 + 𝑏1)𝑃1 + (𝑎2 + 𝑏2)𝑃2] = 𝑎0 + 𝑏0 + (𝑎1 + 𝑏1)𝐼1 + (𝑎2 + 𝑏2)𝐼2

= 𝑔(𝐴) + 𝑔(𝐵) 

𝑓(𝑋 + 𝑌) = 𝑓(𝑋) + 𝑓(𝑌) by a similar discussion. 

(𝑔) preserves multiplication, that is because: 

𝑔(𝐴. 𝐵) = 𝑎0𝑏0 + (𝑎0𝑏2 + 𝑎2𝑏0 + 𝑎2𝑏2 + 𝑎1𝑏2 + 𝑎2𝑏1)𝐼1 + (𝑎0𝑏1 + 𝑎1𝑏0 + 𝑎1𝑏1)𝐼2 =

𝑔(𝐴). 𝑔(𝐵). 

(𝑓) is semi module homomorphism, that is because: 
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𝑓(𝐴. 𝑋) = 𝑎0𝑥0 + (𝑎0𝑥2 + 𝑎2𝑥0 + 𝑎2𝑥2 + 𝑎1𝑥2 + 𝑎2𝑥1)𝐼1 + (𝑎0𝑥1 + 𝑎1𝑥0 + 𝑎1𝑥1)𝐼2

= (𝑎0 + 𝑎1𝐼1 + 𝑎2𝐼2)(𝑥0 + 𝑥2𝐼1 + 𝑥1𝐼2) = 𝑔(𝐴). 𝑓(𝑋) 

The basis of a symbolic 2-plithogenic module: 

Theorem. 

Let 𝑇 = {𝑡1, … , 𝑡𝑛} be a basis of the module 𝑉 over the ring R, then the set: 

𝑇𝑃 = {𝑡𝑖 + (𝑡𝑗 − 𝑡𝑖)𝑃1 + (𝑡𝑘 − 𝑡𝑗)𝑃2; 1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑛} is a basis of 2 − 𝑆𝑃𝑉. 

Proof. 

Let 𝑋 = 𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2 ∈ 2 − 𝑆𝑃𝑀 , 𝑥0, 𝑥1, 𝑥2 ∈ 𝑀. 

𝑥0 = ∑ 𝛼𝑖𝑡𝑖
𝑛
𝑖=1 , 𝑥0 + 𝑥1 = ∑ 𝛽𝑗𝑡𝑗

𝑛
𝑗=1 , 𝑥0 + 𝑥1 + 𝑥2 = ∑ 𝛾𝑘𝑡𝑘

𝑛
𝑘=1 ; 𝛼𝑖, 𝛽𝑗, 𝛾𝑘 ∈ 𝑅. 

We put 𝐴𝑖,𝑗,𝑘 = 𝛼𝑖 + (𝛽𝑗 − 𝛼𝑖)𝑃1 + (𝛾𝑘 − 𝛽𝑗)𝑃2; 1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑛 

𝑇𝑖,𝑗,𝑘 = 𝑡𝑖 + (𝑡𝑗 − 𝑡𝑖)𝑃1 + (𝑡𝑘 − 𝑡𝑗)𝑃2; 1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑛 

∑ 𝐴𝑖,𝑗,𝑘

𝑛

𝑖,𝑗,𝑘=1

𝑇𝑖,𝑗,𝑘

=∑[𝛼𝑖𝑡𝑖 + [𝛽𝑗𝑡𝑗 − 𝛽𝑗𝑡𝑖 − 𝛼𝑖𝑡𝑗 + 𝛼𝑖𝑡𝑖 + 𝛽𝑗𝑡𝑖 − 𝛼𝑖𝑡𝑖 + 𝛼𝑖𝑡𝑗 − 𝛼𝑖𝑡𝑖]𝑃1

𝑛

𝑖=1

+ [𝛼𝑖𝑡𝑘 − 𝛼𝑖𝑡𝑗 + 𝛾𝑘𝑡𝑖 − 𝛽𝑗𝑡𝑖 − 𝛾𝑘𝑡𝑗 + 𝛾𝑘𝑡𝑖 − 𝛽𝑗𝑡𝑗 + 𝛽𝑗𝑡𝑖 + 𝛾𝑘𝑡𝑘 − 𝛾𝑘𝑡𝑗 − 𝛽𝑗𝑡𝑘

+−𝛽𝑗𝑡𝑗 + 𝛽𝑗𝑡𝑘 − 𝛽𝑗𝑡𝑗 − 𝛼𝑖𝑡𝑘 + 𝛼𝑖𝑡𝑗]𝑃2] 

∑𝛼𝑖𝑡𝑖

𝑛

𝑖=1

+ 𝑃1 [∑𝛽𝑗𝑡𝑗

𝑛

𝑗=1

−∑𝛼𝑖𝑡𝑖

𝑛

𝑖=1

] + 𝑃2 [∑ 𝛾𝑘𝑡𝑘

𝑛

𝑘=1

−∑𝛽𝑗𝑡𝑗

𝑛

𝑗=1

]

= 𝑥0 + 𝑃1[𝑥0 + 𝑥1 − 𝑥0] + 𝑃2[𝑥0 + 𝑥1 + 𝑥2 − (𝑥0 + 𝑥1)] = 𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2

= 𝑋 

Thus 𝑇 generates 2 − 𝑆𝑃𝑀. 

On the other hand, 𝑇 is linearly independent, that is because: 

If ∑ 𝐴𝑖,𝑗,𝑘
𝑛
𝑖,𝑗,𝑘=1 . 𝑋 = 0, then: 

∑ 𝛼𝑖𝑡𝑖
𝑛
𝑖=1 = 0,∑ 𝛽𝑗𝑡𝑗

𝑛
𝑗=1 = 0,∑ 𝛾𝑘𝑡𝑘

𝑛
𝑘=1 = 0 , hence𝛼𝑖 = 𝛽𝑗 = 𝛾𝑘 = 0 for all 𝑖, 𝑗, 𝑘, thus 𝐴𝑖,𝑗,𝑘 =

0. 

This implies that 𝑇 is a basis of 2 − 𝑆𝑃𝑀. 

Example. 

Find a basis of 2 − 𝑆𝑃𝑍2 . 

Solution. 

First of all, we have {𝑢1 = (1,0), 𝑢2 = (0,1)} is a basis of 𝑍2. 
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The corresponding basis of 2 − 𝑆𝑃𝑍2  is: 

𝑇 = {𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇5, 𝑇6, 𝑇7, 𝑇8} such that: 

𝑇1 = (1,0), 𝑇2 = (0,1), 𝑇3 = 𝑢1 + (𝑢2 − 𝑢1)𝑃1 + (𝑢2 − 𝑢2)𝑃2 = (1,0) + (−1,1)𝑃1 

𝑇4 = 𝑢1 + (𝑢2 − 𝑢1)𝑃1 + (𝑢1 − 𝑢2)𝑃2 = (1,0) + (−1,1)𝑃1 + (1,−1)𝑃2 

𝑇5 = 𝑢2 + (𝑢2 − 𝑢1)𝑃1 + (𝑢1 − 𝑢1)𝑃2 = (0,1) + (1,−1)𝑃1 

𝑇6 = 𝑢2 + (𝑢2 − 𝑢1)𝑃1 + (𝑢2 − 𝑢1)𝑃2 = (0,1) + (1,−1)𝑃1 + (−1,1)𝑃2 

𝑇7 = 𝑢1 + (𝑢1 − 𝑢1)𝑃1 + (𝑢2 − 𝑢1)𝑃2 = (1,0) + (−1,1)𝑃2 

𝑇8 = 𝑢2 + (𝑢2 − 𝑢2)𝑃1 + (𝑢1 − 𝑢2)𝑃2 = (0,1) + (1,−1)𝑃2 

Remark. 

𝑑𝑖𝑚 (2 − 𝑆𝑃𝑀) = (𝑑𝑖𝑚𝑀)
3 

Conclusion 

In this paper we have defined the concept of symbolic 2-plithogenic modules over a 

symbolic 2-plithogenic ring, where we have presented some of their elementary properties 

such as basis, homomorphisms, and AH-submodules. On the other hand, we have 

suggested many examples to clarify the validity of our work. 
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Abstract: 

The fusion of symbolic plithogenic sets with algebraic structures generates novel algebraic 

neutrosophic structures that generalize the classical known structures. The objective of 

this paper is to define the concept of symbolic 2-plithogenic vector space over a symbolic 

2-plitogenic field. 

Concepts such as AH-subspace and AH-linear transformation will be presented and 

discussed in terms of theorems.  

Keywords: 2-plithogenic symbolic set, 2-plithogenic vector space, 2-plithogenic 

dimension 

Introduction 

The concept of symbolic plithogenic sets was defined by Smarandache in [13-17 ,30], and he 

suggested an algebraic approach of these sets. Laterally, the concept of symbolic 

2-plithogenic rings [31], where the concepts such as symbolic AH-ideals, and 

AH-homomorphisms were presented and discussed. 

In general, we can say that symbolic plithogenic structures are very close to neutrosophic 

algebraic structures with many differences in the definition of multiplication operation 

[1-10]. 

Let 𝑅 be a ring, the symbolic 2-plithogenic ring is defined as follows: 
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2 − 𝑆𝑃𝑅 = {𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2;  𝑎𝑖 ∈ 𝑅, 𝑃𝑗
2 = 𝑃𝑗, 𝑃1 × 𝑃2 = 𝑃𝑚𝑎𝑥(1,2) = 𝑃2}. 

Smarandache has defined algebraic operations on 2 − 𝑆𝑃𝑅 as follows: 

Addition: 

[𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2] + [𝑏0 + 𝑏1𝑃1 + 𝑏2𝑃2] = (𝑎0 + 𝑏0) + (𝑎1 + 𝑏1)𝑃1 + (𝑎2 + 𝑏2)𝑃2. 

Multiplication: 

[𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2]. [𝑏0 + 𝑏1𝑃1 + 𝑏2𝑃2] = 𝑎0𝑏0 + 𝑎0𝑏1𝑃1 + 𝑎0𝑏2𝑃2 + 𝑎1𝑏0𝑃1
2 + 𝑎1𝑏2𝑃1𝑃2 +

𝑎2𝑏0𝑃2 + 𝑎2𝑏1𝑃1𝑃2 + 𝑎2𝑏2𝑃2
2 + 𝑎1𝑏1𝑃1𝑃1 = 𝑎0𝑏0 + (𝑎0𝑏1 + 𝑎1𝑏0 + 𝑎1𝑏1)𝑃1 + (𝑎0𝑏2 + 𝑎1𝑏2 +

𝑎2𝑏0 + 𝑎2𝑏1 + 𝑎2𝑏2)𝑃2. 

It is clear that (2 − 𝑆𝑃𝑅) is a ring. 

Also, if 𝑅 is commutative, then 2 − 𝑆𝑃𝑅 is commutative, and if 𝑅 has a unity (1), than 2 −

𝑆𝑃𝑅 has the same unity (1). 

If R is a field, then 2 − 𝑆𝑃𝑅 is called a symbolic 2-plithogenic field. 

In this paper, we study the symbolic 2-plithogenic vector spaces according to many points 

of view, where substructures such as AH-subspaces, and AH-linear transformations will be 

presented in terms of theorems. In addition, many examples will be illustrated to explain 

the novelty of these ideas. 

Main Discussion 

Definition.  

Let 𝑉  be a vector space over the field 𝐹 , let 2 − 𝑆𝑃𝐹  be the corresponding symbolic 

2-plithogenic field.  

2 − 𝑆𝑃𝐹 = {𝑥 + 𝑦𝑃1 + 𝑧𝑃2;  𝑥, 𝑦, 𝑧 ∈ 𝐹, 𝑃𝑖
2 = 𝑃𝑖 , 𝑃1𝑃2 = 𝑃2𝑃1 = 𝑃2}. 

We define the symbolic 2-plithogenic vector space as follows: 

2 − 𝑆𝑃𝑉 = 𝑉 + 𝑉𝑃1 + 𝑉𝑃2 = {𝑎 + 𝑏𝑃1 + 𝑐𝑃2;  𝑎, 𝑏, 𝑐 ∈ 𝑉}. 

Operations on 2 − 𝑆𝑃𝑉 can be defined as follows: 

Addition: (+): 2 − 𝑆𝑃𝑉 → 2 − 𝑆𝑃𝑉, such that: 

[𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2] + [𝑦0 + 𝑦1𝑃1 + 𝑦𝑠2𝑃2] = (𝑥0 + 𝑦0) + (𝑥1 + 𝑦1)𝑃1 + (𝑥2 + 𝑦2)𝑃2 

Multiplication: (. ): 2 − 𝑆𝑃𝐹 × 2 − 𝑆𝑃𝑉 → 2 − 𝑆𝑃𝑉, such that: 

[𝑎 + 𝑏𝑃1 + 𝑐𝑃2]. [𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2]

= 𝑎𝑥0 + (𝑎𝑥1 + 𝑏𝑥0 + 𝑏𝑥1)𝑃1 + (𝑎𝑥2 + 𝑏𝑥2 + 𝑐𝑥0 + 𝑐𝑥1 + 𝑐𝑥2)𝑃2 

where 𝑥𝑖, 𝑦𝑖 ∈ 𝑉, 𝑎, 𝑏, 𝑐 ∈ 𝐹 
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Theorem. 

Let (2 − 𝑆𝑃𝑉 , +, . ) Is a module over the ring 2 − 𝑆𝑃𝐹. 

Proof. 

Let 𝑋 = 𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2, 𝑌 = 𝑦0 + 𝑦1𝑃1 + 𝑦2𝑃2 ∈ 2 − 𝑆𝑃𝑉 , 𝐴 = 𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2, 𝐵 = 𝑏0 +

𝑏1𝑃1 + 𝑏2𝑃2 ∈ 2 − 𝑆𝑃𝐹 we have: 

1. 𝑋 = 𝑋, (𝑋 + 𝑌) + 𝑍 = 𝑋 + (𝑌 + 𝑍), 𝑋 + (−𝑋) = −𝑋 + 𝑋 = 0, 𝑋 + 0 = 0 + 𝑋 = 𝑋 

Also 

𝐴(𝑋 + 𝑌) = (𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2)[(𝑥0 + 𝑦0) + (𝑥1 + 𝑦1)𝑃1 + (𝑥2 + 𝑦2)𝑃2]

= 𝑎0(𝑥0 + 𝑦0) + (𝑎0(𝑥1 + 𝑦1) + 𝑎1(𝑥0 + 𝑦0) + 𝑎1(𝑥1 + 𝑦1))𝑃1

+ (𝑎0(𝑥2 + 𝑦2) + 𝑎1(𝑥2 + 𝑦2) + 𝑎2(𝑥0 + 𝑦0) + 𝑎2(𝑥1 + 𝑦1) + 𝑎2(𝑥2 + 𝑦2))𝑃2

= 𝐴. 𝑋 + 𝐴. 𝑌 

(𝐴 + 𝐵)𝑋 = [(𝑎0 + 𝑏0) + (𝑎1 + 𝑏1)𝑃1 + (𝑎2 + 𝑏2)𝑃2](𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2)

= (𝑎0 + 𝑏0)𝑥0 + ((𝑎0 + 𝑏0)𝑥1 + (𝑎1 + 𝑏1)𝑥0 + (𝑎1 + 𝑏1)𝑥1)𝑃1

+ ((𝑎0 + 𝑏0)𝑥2 + (𝑎1 + 𝑏1)𝑥2 + (𝑎2 + 𝑏2)𝑥0 + (𝑎2 + 𝑏2)𝑥1 + (𝑎2 + 𝑏2)𝑥2)𝑃2

= 𝐴. 𝑋 + 𝐵. 𝑋 

(𝐴. 𝐵). 𝑋 = [𝑎0𝑏0 + (𝑎0𝑏1 + 𝑎1𝑏0 + 𝑎1𝑏1)𝑃1 + (𝑎0𝑏2 + 𝑎1𝑏2 + 𝑎2𝑏0 + 𝑎2𝑏1 + 𝑎2𝑏2)𝑃2](𝑥0

+ 𝑥1𝑃1 + 𝑥2𝑃2)

= 𝑎0𝑏0𝑥0 + [𝑎0𝑏0𝑥1 + (𝑎0𝑏1 + 𝑎1𝑏0 + 𝑎1𝑏1)𝑥0 + (𝑎0𝑏1 + 𝑎1𝑏0 + 𝑎1𝑏1)𝑥1]𝑃1

+ [𝑎0𝑏0𝑥2 + (𝑎0𝑏2 + 𝑎2𝑏0 + 𝑎1𝑏1)𝑥2 + (𝑎0𝑏2 + 𝑎1𝑏2 + 𝑎2𝑏0 + 𝑎2𝑏1 + 𝑎2𝑏2)𝑥0

+ (𝑎0𝑏2 + 𝑎1𝑏2 + 𝑎2𝑏0 + 𝑎2𝑏1 + 𝑎2𝑏2)𝑥1

+ (𝑎0𝑏2 + 𝑎1𝑏2 + 𝑎2𝑏0 + 𝑎2𝑏1 + 𝑎2𝑏2)𝑥2]𝑃2 = 𝐴(𝐵. 𝑋) 

Example. 

Let 𝑉 = 𝑅3 be the Euclidean space over the field 𝐹 = 𝑅. 

The corresponding symbolic 2-plithogenic vector space over 2 − 𝑆𝑃𝐹 is: 

2 − 𝑆𝑃𝑅3 = {(𝑥0, 𝑦0, 𝑧0) + (𝑥1, 𝑦1, 𝑧1)𝑃1 + (𝑥2, 𝑦2, 𝑧2)𝑃2; 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ∈ 𝑅} 

Consider 𝑋 = (1,1,0) + (2,−1,1)𝑃1 + (0,1,−1)𝑃2 ∈ 2 − 𝑆𝑃𝑅3 , 𝐴 = 2 + 𝑃1 + 𝑃2 ∈ 2 − 𝑆𝑃𝑅. We 

have: 

𝐴. 𝑋 = (2,2,0) + [(4,−2,2) + (1,1,0) + (2,−1,1)]𝑃1

+ [(0,2,2) + (0,1,1) + (1,1,0) + (2,−1,1) + (0,1,1)]𝑃2

= (2,2,0) + (7,−2,3)𝑃1 + (3,4,5)𝑃2 

Definition. 

Let 2 − 𝑆𝑃𝑉  be a symbolic 2-plithogenic vector space over 2 − 𝑆𝑃𝐹 , let 𝑉0, 𝑉1, 𝑉2 be the 

three subspaces of 𝑉, we define the AH-subspace as follows: 
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𝑊 = 𝑉0 + 𝑉1𝑃1 + 𝑉2𝑃2 = {𝑥 + 𝑦𝑃1 + 𝑧𝑃2;  𝑥 ∈ 𝑉0, 𝑦 ∈ 𝑉1, 𝑧 ∈ 𝑉2} 

If 𝑉0 = 𝑉1 = 𝑉2, then 𝑊 is called an AHS-subspace. 

Example. 

Consider 2 − 𝑆𝑃𝑅3, we have 𝑉0 = {(𝑎, 0,0);  𝑎 ∈ 𝑅}, 𝑉1 = {(0, 𝑏, 0);  𝑏 ∈ 𝑅}, 𝑉2 = {(0,0, 𝑐);  𝑐 ∈

𝑅} are three subspaces of 𝑉 = 𝑅3. 

𝑊 = 𝑉0 + 𝑉1𝑃1 + 𝑉2𝑃2 = {(𝑎, 0,0) + (0, 𝑏, 0)𝑃1 + (0,0, 𝑐)𝑃2;  𝑎, 𝑏, 𝑐 ∈ 𝑅} is an AH-subspace of 

2 − 𝑆𝑃𝑅3. 

𝑇 = 𝑉1 + 𝑉1𝑃1 + 𝑉1𝑃2 = {(0, 𝑎, 0) + (0, 𝑏, 0)𝑃1 + (0, 𝑐, 0)𝑃2;  𝑎, 𝑏, 𝑐 ∈ 𝑅} is an AHS-subspace. 

Theorem. 

Let 2 − 𝑆𝑃𝑉  be a symbolic 2-plithogenic vector space over 2 − 𝑆𝑃𝐹 , let 𝑊  be an 

AHS-subspace of 2 − 𝑆𝑃𝑉, then 𝑊 is a submodule of 2 − 𝑆𝑃𝑉. 

Proof. 

Suppose that 𝑊 is an AHS-subspace, then there exists a subspace 𝑉0 ≤ 𝑉, such that  

𝑊 = 𝑉0 + 𝑉0𝑃1 + 𝑉0𝑃2 = {𝑥 + 𝑦𝑃1 + 𝑧𝑃2;  𝑥, 𝑦, 𝑧 ∈ 𝑉0}. 

Let 𝑋 = 𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2, 𝑌 = 𝑦0 + 𝑦1𝑃1 + 𝑦2𝑃2 ∈ 𝑊, then: 

𝑋 − 𝑌 = (𝑥0 − 𝑦0) + (𝑥1 − 𝑦1)𝑃1 + (𝑥2 − 𝑦2)𝑃2 ∈ 𝑊 

∀ 𝐴 = 𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2 ∈ 2 − 𝑆𝑃𝐹, then: 

𝐴. 𝑋 = 𝑎0𝑥0 + (𝑎0𝑥1 + 𝑎1𝑥0 + 𝑎1𝑥1)𝑃1 + (𝑎0𝑥2 + 𝑎1𝑥2 + 𝑎2𝑥0 + 𝑎2𝑥1 + 𝑎2𝑥2)𝑃2 ∈ 𝑊 , that is 

because 𝑎0𝑥0 ∈ 𝑉0, 𝑎0𝑥1 + 𝑎1𝑥0 + 𝑎1𝑥1 ∈ 𝑉0, 𝑎0𝑥2 + 𝑎1𝑥2 + 𝑎2𝑥0 + 𝑎2𝑥1 + 𝑎2𝑥2 ∈ 𝑉0 , this 

implies the proof. 

Definition. 

Let 𝑉,𝑊  be two vector spaces over the field 𝐹 . Let 2 − 𝑆𝑃𝑉 , 2 − 𝑆𝑃𝑊  be the 

corresponding symbolic 2-plithogenic vector spaces over 2 − 𝑆𝑃𝐹. 

Let 𝐿0, 𝐿1, 𝐿2: 𝑉 → 𝑊  be three linear transformations, we define the AH-linear 

transformation as follows: 

𝐿: 2 − 𝑆𝑃𝑉 → 2 − 𝑆𝑃𝑊, 𝐿 = 𝐿0 + 𝐿1𝑃1 + 𝐿2𝑃2 ; 𝐿(𝑥 + 𝑦𝑃1 + 𝑧𝑃2) = 𝐿0(𝑥) + 𝐿1(𝑦)𝑃1 + 𝐿2(𝑧)𝑃2. 

If 𝐿0 = 𝐿1 = 𝐿2, then 𝐿 is called AHS-linear transformation. 

Definition. 

Let 𝐿 = 𝐿0 + 𝐿1𝑃1 + 𝐿2𝑃2: 2 − 𝑆𝑃𝑉 → 2 − 𝑆𝑃𝑊 be an AH-linear transformation, we define: 

1. 𝐴𝐻 − 𝑘𝑒𝑟(𝐿) = 𝑘𝑒𝑟(𝐿0) + 𝑘𝑒𝑟(𝐿1)𝑃1 + 𝑘𝑒𝑟(𝐿2)𝑃2 = {𝑥 + 𝑦𝑃1 + 𝑧𝑃2}; 𝑥 ∈ 𝑘𝑒𝑟(𝐿0), 𝑦 ∈

𝑘𝑒𝑟(𝐿1), 𝑧 ∈ 𝑘𝑒𝑟(𝐿2). 
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2. 𝐴𝐻 − 𝐼𝑚(𝐿) = 𝐼𝑚(𝐿0) + 𝐼𝑚(𝐿1)𝑃1 + 𝐼𝑚(𝐿2)𝑃2 = {𝑎 + 𝑏𝑃1 + 𝑐𝑃2}; 𝑎 ∈ 𝐼𝑚(𝐿0), 𝑏 ∈

𝐼𝑚(𝐿1), 𝑐 ∈ 𝐼𝑚(𝐿2) 

If 𝐿 is AHS-linear transformation, then we get 𝐴𝐻𝑆 − 𝑘𝑒𝑟𝑛𝑒𝑙, 𝐴𝐻𝑆 − 𝐼𝑚𝑎𝑔𝑒. 

Theorem. 

Let 𝐿 = 𝐿0 + 𝐿1𝑃1 + 𝐿2𝑃2: 2 − 𝑆𝑃𝑉 → 2 − 𝑆𝑃𝑊 be an AH-linear transformation, then: 

1. 𝐴𝐻 − 𝑘𝑒𝑟(𝐿) is AH-subspace of 2 − 𝑆𝑃𝑉. 

2. 𝐴𝐻 − 𝐼𝑚(𝐿) is AH-subspace of 2 − 𝑆𝑃𝑊. 

Proof. 

1. Since 𝑘𝑒𝑟(𝐿0), 𝑘𝑒𝑟(𝐿1), 𝑘𝑒𝑟(𝐿2)  are subspaces of 𝑉 , then 𝐴𝐻 − 𝑘𝑒𝑟(𝐿)  is an 

AH-subspace of 2 − 𝑆𝑃𝑉. 

2. It is holds by the same. 

Remark. 

If 𝐿0, 𝐿1, 𝐿2 are isomorphism, then 𝑘𝑒𝑟(𝐿0) = 𝑘𝑒𝑟(𝐿1) = 𝑘𝑒𝑟(𝐿2) = {0}, 𝐼𝑚(𝐿0) = 𝐼𝑚(𝐿1) =

𝐼𝑚(𝐿2) = 𝑊, thus 𝐴𝐻 − 𝑘𝑒𝑟(𝐿) = {0}, 𝐴𝐻 − 𝐼𝑚(𝐿) = 2 − 𝑆𝑃𝑊. 

Example. 

Take 𝑉 = 𝑅3, 𝑊 = 𝑅3, 𝐿0, 𝐿1, 𝐿2: 𝑉 → 𝑊 such that: 

𝐿0(𝑥, 𝑦, 𝑧) = (𝑥, 𝑦), 𝐿1(𝑥, 𝑦, 𝑧) = (2𝑥, 𝑧), 𝐿2(𝑥, 𝑦, 𝑧) = (𝑥 − 𝑦, 𝑦 − 𝑧) 

The corresponding AH-linear transformation is: 

𝐿 = 𝐿0 + 𝐿1𝑃1 + 𝐿2𝑃2: 2 − 𝑆𝑃𝑅3 → 2 − 𝑆𝑃𝑅2: 

𝐿[(𝑥0, 𝑦0, 𝑧0) + (𝑥1, 𝑦1, 𝑧1)𝑃1 + (𝑥2, 𝑦2, 𝑧2)𝑃2]

= 𝐿0(𝑥0, 𝑦0, 𝑧0) + 𝐿1(𝑥1, 𝑦1, 𝑧1)𝑃1 + 𝐿2(𝑥2, 𝑦2, 𝑧2)𝑃2

= (𝑥0, 𝑦0) + (2𝑥1, 𝑧1)𝑃1 + (𝑥2 − 𝑦2, 𝑦2 − 𝑧2)𝑃2 

For example, take 𝑋 = (1,2,1) + (4,3,−5)𝑃1 + (1,1,1)𝑃2, then: 

𝐿(𝑋) = (1,2) + (8,−5)𝑃1 + (0,0)𝑃2 = (1,2) + (8,−5)𝑃1. 

{
 

 
𝑘𝑒𝑟(𝐿0) = {(0,0, 𝑧0); 𝑧0 ∈ 𝑅}

𝑘𝑒𝑟(𝐿1) = {(0, 𝑦1, 0);  𝑦1 ∈ 𝑅}

𝑘𝑒𝑟(𝐿2) = {(𝑥2, 𝑥2, 𝑥2); 𝑥2 ∈ 𝑅}

𝐴𝐻 − 𝑘𝑒𝑟(𝐿) = {(0,0, 𝑧0) + (0, 𝑦1, 0)𝑃1 + (𝑥2, 𝑥2, 𝑥2)𝑃2; 𝑧0, 𝑦1, 𝑥2 ∈ 𝑅}

 

Also,  

{
 
 

 
 𝐼𝑚(𝐿0) = 𝑅

2

𝐼𝑚(𝐿1) = 𝑅
2

𝐼𝑚(𝐿2) = 𝑅
2

𝐴𝐻 − 𝐼𝑚(𝐿) = 𝑅2 + 𝑅2𝑃1 + 𝑅
2𝑃2 = 2 − 𝑆𝑃𝑊

 

Example. 
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Take 𝑊 = 𝑉 = 𝑅2, 𝐿0, 𝐿1, 𝐿2: 𝑉 → 𝑊 such that: 

𝐿0(𝑥, 𝑦) = (3𝑥, −2𝑥), 𝐿1(𝑥, 𝑦) = (𝑥 − 𝑦, 2𝑥), 𝐿2(𝑥, 𝑦, 𝑧) = (𝑥 + 2𝑦, 𝑦) 

The corresponding AH-linear transformation is 𝐿 = 𝐿0 + 𝐿1𝑃1 + 𝐿2𝑃2: 2 − 𝑆𝑃𝑉 → 2 − 𝑆𝑃𝑊; 

𝐿[(𝑥0, 𝑦0) + (𝑥1, 𝑦1)𝑃1 + (𝑥2, 𝑦2)𝑃2] = 𝐿0(𝑥0, 𝑦0) + 𝐿1(𝑥1, 𝑦1)𝑃1 + 𝐿2(𝑥2, 𝑦2)𝑃2

= (3𝑥0, −2𝑥0) + (𝑥1 − 𝑦1, 2𝑥1)𝑃1 + (𝑥2 + 2𝑦2, 𝑦2)𝑃2 

For example 𝑋 = (1,4) + (2,8)𝑃1 + (3,−1)𝑃2 

𝐿(𝑋) = (1,4) + (2,8)𝑃1 + (3,−1)𝑃2. 

{
 

 
𝑘𝑒𝑟(𝐿0) = {(0, 𝑦0); 𝑦0 ∈ 𝑅}

𝑘𝑒𝑟(𝐿1) = {0}

𝑘𝑒𝑟(𝐿2) = {0}

𝐴𝐻 − 𝑘𝑒𝑟(𝐿) = {(0, 𝑦0) + 0𝑃1 + 0𝑃2; 𝑦0 ∈ 𝑅}

 

Also,  

{
 

 
𝐼𝑚(𝐿0) = {(𝑎, 0);  𝑎 ∈ 𝑅}

𝐼𝑚(𝐿1) = 𝑅
2

𝐼𝑚(𝐿2) = 𝑅
2

𝐴𝐻 − 𝐼𝑚(𝐿) = {(𝑎, 0) + (𝑎1, 𝑏1)𝑃1 + (𝑎2, 𝑏2)𝑃2; 𝑎, 𝑎1, 𝑎2, 𝑏2, 𝑏1 ∈ 𝑅}

 

Theorem. 

Let 𝐿 = 𝑓 + 𝑓𝑃1 + 𝑓𝑃2: 2 − 𝑆𝑃𝑉 → 2 − 𝑆𝑃𝑊  be an AHS-linear transformation, then 𝐿 is a 

module homomorphism. 

Proof. 

Let 𝑋 = 𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2, 𝑌 = 𝑦0 + 𝑦1𝑃1 + 𝑦2𝑃2 ∈ 2 − 𝑆𝑃𝑉, then: 

𝐿(𝑋 + 𝑌) = 𝑓(𝑥0 + 𝑦0) + 𝑓(𝑥1 + 𝑦1)𝑃1 + 𝑓(𝑥2 + 𝑦2)𝑃2

= [𝑓(𝑥0) + 𝑓(𝑥1)𝑃1 + 𝑓(𝑥2)𝑃2] + [𝑓(𝑦0) + 𝑓(𝑦1)𝑃1 + 𝑓(𝑦2)𝑃2] = 𝐿(𝑋) + 𝐿(𝑌) 

Let 𝐴 = 𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2 ∈ 2 − 𝑆𝑃𝐹, then: 

𝐿(𝐴. 𝑋) = 𝑓(𝑎0𝑥0) + 𝑓(𝑎0𝑥1 + 𝑎1𝑥0 + 𝑎1𝑥1)𝑃1 + 𝑓(𝑎0𝑥2 + 𝑎2𝑥0 + 𝑎2𝑥2 + 𝑎1𝑥2 + 𝑎2𝑥1)𝑃2

= 𝑎0𝑓(𝑥0) + (𝑎0𝑓(𝑥1) + 𝑎1𝑓(𝑥0) + 𝑎1𝑓(𝑥1))𝑃1

+ (𝑎0𝑓(𝑥2) + 𝑎2𝑓(𝑥0) + 𝑎2𝑓(𝑥2) + 𝑎1𝑓(𝑥2) + 𝑎2𝑓(𝑥1))𝑃2

= [𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2]. [𝑓(𝑥0) + 𝑓(𝑥1)𝑃1 + 𝑓(𝑥2)𝑃2] = 𝐴. 𝐿(𝑋) 

Thus, 𝐿 is a module homomorphism. 

The algebraic relations between symbolic 2-plithogenic vector spaces and neutrosophic 

vector spaces . 

Theorem. 
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Let 𝑉 be a vector space over the field 𝐹, consider 𝑉(𝐼) = 𝑉 + 𝑉𝐼 = {𝑥 + 𝑦𝐼; 𝑥, 𝑦 ∈ 𝑉} is the 

corresponding neutrosophic vector space over the neutrosophic field 𝐹(𝐼) = {𝑎 + 𝑏𝐼; 𝑎, 𝑏 ∈

𝐹}. 

𝑉(𝐼1, 𝐼2) = 𝑉 + 𝑉𝐼1 + 𝑉𝐼2 = {𝑥 + 𝑦𝐼1 + 𝑧𝐼2; 𝑥, 𝑦, 𝑧 ∈ 𝑉}  is the corresponding refined 

neutrosophic vector space over the refined neutrosophic field 𝐹(𝐼1, 𝐼2) = {𝑎 + 𝑏𝐼1 +

𝑐𝐼2; 𝑎, 𝑏, 𝑐 ∈ 𝐹}. 

2 − 𝑆𝑃𝑉 = 𝑉 + 𝑉𝑃1 + 𝑉𝑃2 = {𝑥 + 𝑦𝑃1 + 𝑧𝑃2; 𝑥, 𝑦, 𝑧 ∈ 𝑉}  is the corresponding symbolic 

2-plithogenic vector space over 2 − 𝑆𝑃𝐹, then: 

1. 2 − 𝑆𝑃𝑉 is semi homomorphic to 𝑉(𝐼). 

2. 2 − 𝑆𝑃𝑉 is semi isomorphic to 𝑉(𝐼1, 𝐼2). 

Proof. 

1. We define 𝑓: 2 − 𝑆𝑃𝑉 → 𝑉(𝐼), 𝑔: 2 − 𝑆𝑃𝐹 → 𝐹(𝐼) such that: 

𝑓(𝑥 + 𝑦𝑃1 + 𝑧𝑃2) = 𝑥 + 𝑦𝐼; 𝑥, 𝑦, 𝑧 ∈ 𝑉 

𝑔(𝑎 + 𝑏𝑃1 + 𝑐𝑃2) = 𝑎 + 𝑏𝐼; 𝑎, 𝑏, 𝑐 ∈ 𝐹 

We have the following: 

𝑔 is a ring homomorphism, that is because: 

𝐴 = 𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2, 𝐵 = 𝑏0 + 𝑏1𝑃1 + 𝑏2𝑃2;  𝑎𝑖 , 𝑏𝑖 ∈ 𝐹, then: 

If 𝐴 = 𝐵, then 𝑎𝑖 = 𝑏𝑖 for all 𝑖, thus 𝑎0 + 𝑎1𝐼 = 𝑏0 + 𝑏1𝐼, 𝑖. 𝑒.  𝑔(𝐴) = 𝑔(𝐵). 

𝑔(𝐴 + 𝐵) = 𝑔[(𝑎0 + 𝑏0) + (𝑎1 + 𝑏1)𝑃1 + (𝑎2 + 𝑏2)𝑃2] = 𝑎0 + 𝑏0 + (𝑎1 + 𝑏1)𝐼 = 𝑔(𝐴) + 𝑔(𝐵). 

𝑔(𝐴. 𝐵) = 𝑔[𝑎0𝑏0 + (𝑎0𝑏1 + 𝑎1𝑏0 + 𝑎1𝑏1)𝑃1 + (𝑎0𝑏2 + 𝑎1𝑏2 + 𝑎2𝑏 + 𝑎2𝑏1 + 𝑎2𝑏2)𝑃2]

= 𝑎0𝑏0 + (𝑎0𝑏1 + 𝑎1𝑏0 + 𝑎1𝑏1)𝐼 = (𝑎0 + 𝑎1𝐼)(𝑏0 + 𝑏1𝐼) = 𝑔(𝐴). 𝑔(𝐵) 

On the other hand, 𝑓 is well defined, that is because: 

If 𝑋 = 𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2, 𝑌 = 𝑦0 + 𝑦1𝑃1 + 𝑦2𝑃2, then 𝑥𝑖 = 𝑦𝑖  for all 𝑖, hence 𝑎0 + 𝑎1𝐼 = 𝑏0 +

𝑏1𝐼, thus  𝑓(𝑋) = 𝑓(𝑌). 

𝑓 preserves addition, that is because: 

For 𝑋 = 𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2, 𝑌 = 𝑦0 + 𝑦1𝑃1 + 𝑦2𝑃2, we have: 

𝑓(𝑋 + 𝑌) = 𝑓[(𝑥0 + 𝑦0) + (𝑥1 + 𝑦1)𝑃1 + (𝑥2 + 𝑦2)𝑃2] = 𝑥0 + 𝑦0 + (𝑥1 + 𝑦1)𝐼 = 𝑓(𝑋) + 𝑓(𝑌). 

𝑓 preserves multiplication, that is because: 

For 𝐴 = 𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2 ∈ 2 − 𝑆𝑃𝑉, we have: 

𝑓(𝐴. 𝑋) = 𝑎0𝑥0 + (𝑎0𝑥1 + 𝑎1𝑥0 + 𝑎1𝑥1)𝐼 = (𝑎0 + 𝑎1𝐼)(𝑥0 + 𝑥1𝐼) = 𝑔(𝐴). 𝑓(𝑋) 

Thus 𝑓 is a semi module homomorphism. 
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We define 𝑓: 2 − 𝑆𝑃𝑉 → 𝑉(𝐼1, 𝐼2) , 𝑔: 2 − 𝑆𝑃𝐹 → 𝐹(𝐼1, 𝐼2) , where 𝑓(𝑥 + 𝑦𝑃1 + 𝑧𝑃2) = 𝑥 +

𝑧𝐼1 + 𝑦𝐼2, and 𝑔(𝑎 + 𝑏𝑃1 + 𝑐𝑃2) = 𝑎 + 𝑐𝐼1 + 𝑏𝐼2; 𝑥, 𝑦, 𝑧 ∈ 𝑉, 𝑎, 𝑏, 𝑐 ∈ 𝐹. 

(𝑔) is well defined, that is because: 

If 𝐴 = 𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2, 𝐵 = 𝑏0 + 𝑏1𝑃1 + 𝑏2𝑃2, then: 

𝑎0 = 𝑎1, 𝑏0 = 𝑏1, 𝑐0 = 𝑐1, hence: 𝑎0 + 𝑐0𝐼1 + 𝑏0𝐼2 = 𝑎1 + 𝑐1𝐼1 + 𝑏1𝐼2, so that 𝑔(𝐴) = 𝑔(𝐵). 

(𝑓) is well defined by a similar discussion. 

(𝑔) is one-to-one mapping, that is because: 

𝑘𝑒𝑟(𝑔) = {𝑎 + 𝑏𝑃1 + 𝑐𝑃2; 𝑔(𝑎 + 𝑏𝑃1 + 𝑐𝑃2) = 0} = 𝑂 

𝐼𝑚(𝑔) = {𝑎 + 𝑐𝐼1 + 𝑏𝐼2; 𝑔(𝑎 + 𝑏𝑃1 + 𝑐𝑃2) ∈ 𝐹(𝐼1, 𝐼2); ∃𝐴 ∈ 2 − 𝑆𝑃𝐹 , 𝑔(𝐴) = 𝑎 + 𝑐𝐼1 + 𝑏𝐼2}

= 𝐹(𝐼1, 𝐼2) 

(𝑓) is one-to-one mapping, it can be proved by the same. 

(𝑔) and (𝑓) preserve addition, that is because: 

Consider 𝐴 = 𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2, 𝐵 = 𝑏0 + 𝑏1𝑃1 + 𝑏2𝑃2 ∈ 2 − 𝑆𝑃𝐹 ,  𝑋 = 𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2, 𝑌 =

𝑦0 + 𝑦1𝑃1 + 𝑦2𝑃2 ∈ 2 − 𝑆𝑃𝑉, then: 

𝑔(𝐴 + 𝐵) = 𝑔[(𝑎0 + 𝑏0) + (𝑎1 + 𝑏1)𝑃1 + (𝑎2 + 𝑏2)𝑃2] = 𝑎0 + 𝑏0 + (𝑎1 + 𝑏1)𝐼1 + (𝑎2 + 𝑏2)𝐼2

= 𝑔(𝐴) + 𝑔(𝐵) 

𝑓(𝑋 + 𝑌) = 𝑓(𝑋) + 𝑓(𝑌) by a similar discussion. 

(𝑔) preserves multiplication, that is because: 

𝑔(𝐴. 𝐵) = 𝑎0𝑏0 + (𝑎0𝑏2 + 𝑎2𝑏0 + 𝑎2𝑏2 + 𝑎1𝑏2 + 𝑎2𝑏1)𝐼1 + (𝑎0𝑏1 + 𝑎1𝑏0 + 𝑎1𝑏1)𝐼2 =

𝑔(𝐴). 𝑔(𝐵). 

(𝑓) is semi module homomorphism, that is because: 

𝑓(𝐴. 𝑋) = 𝑎0𝑥0 + (𝑎0𝑥2 + 𝑎2𝑥0 + 𝑎2𝑥2 + 𝑎1𝑥2 + 𝑎2𝑥1)𝐼1 + (𝑎0𝑥1 + 𝑎1𝑥0 + 𝑎1𝑥1)𝐼2

= (𝑎0 + 𝑎1𝐼1 + 𝑎2𝐼2)(𝑥0 + 𝑥2𝐼1 + 𝑥1𝐼2) = 𝑔(𝐴). 𝑓(𝑋) 

The basis of a symbolic 2-plithogenic vector spaces: 

Theorem. 

Let 𝑇 = {𝑡1, … , 𝑡𝑛} be a basis of the vector space 𝑉 over the field 𝐹, then the set: 

𝑇𝑃 = {𝑡𝑖 + (𝑡𝑗 − 𝑡𝑖)𝑃1 + (𝑡𝑘 − 𝑡𝑗)𝑃2; 1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑛} is a basis of 2 − 𝑆𝑃𝑉. 

Proof. 

Let 𝑋 = 𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2 ∈ 2 − 𝑆𝑃𝑉 , 𝑥0, 𝑥1, 𝑥2 ∈ 𝑉. 

𝑥0 = ∑ 𝛼𝑖𝑡𝑖
𝑛
𝑖=1 , 𝑥0 + 𝑥1 = ∑ 𝛽𝑗𝑡𝑗

𝑛
𝑗=1 , 𝑥0 + 𝑥1 + 𝑥2 = ∑ 𝛾𝑘𝑡𝑘

𝑛
𝑘=1 ; 𝛼𝑖, 𝛽𝑗, 𝛾𝑘 ∈ 𝐹. 

We put 𝐴𝑖,𝑗,𝑘 = 𝛼𝑖 + (𝛽𝑗 − 𝛼𝑖)𝑃1 + (𝛾𝑘 − 𝛽𝑗)𝑃2; 1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑛 

𝑇𝑖,𝑗,𝑘 = 𝑡𝑖 + (𝑡𝑗 − 𝑡𝑖)𝑃1 + (𝑡𝑘 − 𝑡𝑗)𝑃2; 1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑛 
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∑ 𝐴𝑖,𝑗,𝑘

𝑛

𝑖,𝑗,𝑘=1

𝑇𝑖,𝑗,𝑘

=∑[𝛼𝑖𝑡𝑖 + [𝛽𝑗𝑡𝑗 − 𝛽𝑗𝑡𝑖 − 𝛼𝑖𝑡𝑗 + 𝛼𝑖𝑡𝑖 + 𝛽𝑗𝑡𝑖 − 𝛼𝑖𝑡𝑖 + 𝛼𝑖𝑡𝑗 − 𝛼𝑖𝑡𝑖]𝑃1

𝑛

𝑖=1

+ [𝛼𝑖𝑡𝑘 − 𝛼𝑖𝑡𝑗 + 𝛾𝑘𝑡𝑖 − 𝛽𝑗𝑡𝑖 − 𝛾𝑘𝑡𝑗 + 𝛾𝑘𝑡𝑖 − 𝛽𝑗𝑡𝑗 + 𝛽𝑗𝑡𝑖 + 𝛾𝑘𝑡𝑘 − 𝛾𝑘𝑡𝑗 − 𝛽𝑗𝑡𝑘

+−𝛽𝑗𝑡𝑗 + 𝛽𝑗𝑡𝑘 − 𝛽𝑗𝑡𝑗 − 𝛼𝑖𝑡𝑘 + 𝛼𝑖𝑡𝑗]𝑃2] 

∑𝛼𝑖𝑡𝑖

𝑛

𝑖=1

+ 𝑃1 [∑𝛽𝑗𝑡𝑗

𝑛

𝑗=1

−∑𝛼𝑖𝑡𝑖

𝑛

𝑖=1

] + 𝑃2 [∑ 𝛾𝑘𝑡𝑘

𝑛

𝑘=1

−∑𝛽𝑗𝑡𝑗

𝑛

𝑗=1

]

= 𝑥0 + 𝑃1[𝑥0 + 𝑥1 − 𝑥0] + 𝑃2[𝑥0 + 𝑥1 + 𝑥2 − (𝑥0 + 𝑥1)] = 𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2

= 𝑋 

Thus 𝑇 generates 2 − 𝑆𝑃𝑉. 

On the other hand, 𝑇 is linearly independent, that is because: 

If ∑ 𝐴𝑖,𝑗,𝑘
𝑛
𝑖,𝑗,𝑘=1 . 𝑋 = 0, then: 

∑ 𝛼𝑖𝑡𝑖
𝑛
𝑖=1 = 0,∑ 𝛽𝑗𝑡𝑗

𝑛
𝑗=1 = 0,∑ 𝛾𝑘𝑡𝑘

𝑛
𝑘=1 = 0 , hence𝛼𝑖 = 𝛽𝑗 = 𝛾𝑘 = 0 for all 𝑖, 𝑗, 𝑘, thus 𝐴𝑖,𝑗,𝑘 =

0. 

This implies that 𝑇 is a basis of 2 − 𝑆𝑃𝑉. 

Example. 

Find a basis of 2 − 𝑆𝑃𝑅2 . 

Solution. 

First of all, we have {𝑢1 = (1,0), 𝑢2 = (0,1)} is a basis of 𝑅2. 

The corresponding basis of 2 − 𝑆𝑃𝑅2 is: 

𝑇 = {𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇5, 𝑇6, 𝑇7, 𝑇8} such that: 

𝑇1 = (1,0), 𝑇2 = (0,1), 𝑇3 = 𝑢1 + (𝑢2 − 𝑢1)𝑃1 + (𝑢2 − 𝑢2)𝑃2 = (1,0) + (−1,1)𝑃1 

𝑇4 = 𝑢1 + (𝑢2 − 𝑢1)𝑃1 + (𝑢1 − 𝑢2)𝑃2 = (1,0) + (−1,1)𝑃1 + (1,−1)𝑃2 

𝑇5 = 𝑢2 + (𝑢2 − 𝑢1)𝑃1 + (𝑢1 − 𝑢1)𝑃2 = (0,1) + (1,−1)𝑃1 

𝑇6 = 𝑢2 + (𝑢2 − 𝑢1)𝑃1 + (𝑢2 − 𝑢1)𝑃2 = (0,1) + (1,−1)𝑃1 + (−1,1)𝑃2 

𝑇7 = 𝑢1 + (𝑢1 − 𝑢1)𝑃1 + (𝑢2 − 𝑢1)𝑃2 = (1,0) + (−1,1)𝑃2 

𝑇8 = 𝑢2 + (𝑢2 − 𝑢2)𝑃1 + (𝑢1 − 𝑢2)𝑃2 = (0,1) + (1,−1)𝑃2 

Remark. 

𝑑𝑖𝑚 (2 − 𝑆𝑃𝑉) = (𝑑𝑖𝑚𝑉)
3. 

Conclusion 
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In this paper we have defined the concept of symbolic 2-plithogenic vector spaces over a 

symbolic 2-plithogenic field, where we have presented some of their elementary properties 

such as basis, linear transformations, and AH-subspaces. On the other hand, we have 

suggested many examples to clarify the validity of our work. 
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Abstract: 

The aim of this paper is to define and study the concept of symbolic 3-plithogenic rings as 

a novel extension of classical rings and symbolic 2-plithogenic rings respectively. Also, 

many related substructures will be presented such as idempotent elements, AH-ideals, 

AHS-homomorphisms, and kernels. 

On the other hand, many examples will be illustrated to show the validity of concepts and 

theorem. 

Keywords: Symbolic 3-plithogenic ring, AH-ideal, AH-homomorphism, symbolic 

plithogenic set 

Introduction 

The concept of symbolic neutrosophic algebraic structure has played an important role in 

the advances of pure algebra and logical algebra. Many interesting structures were defined 

from this point of view, such as neutrosophic rings, refined neutrosophic rings, 

neutrosophic spaces, and n-cyclic refined neutrosophic rings [1-5,8-11,13-20]. 

In [30], Smarandache has presented a novel approach to algebraic structures by using the 

concept of n-symbolic plithogenic sets, where he defined algebraic operations on these 

structures and asked many open problems about them. 
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In [31], the concept of symbolic 2-plithogenic ring was suggested, and concepts such as 

symbolic 2-plithogenic AH-homomorphisms, ideals, and kernels. 

This paper is considered as an additional effort which is dedicated to define a new 

algebraic structure built over the idea of symbolic n-plithogenic set with algebraic ring in a 

special case of n=3. 

Main Discussion 

Definition.  

Let 𝑅 be a ring, the symbolic 3-plithogenic ring is defined as follows: 

3 − 𝑆𝑃𝑅 = {𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2 + 𝑎3𝑃3;  𝑎𝑖 ∈ 𝑅, 𝑃𝑗
2 = 𝑃𝑗, 𝑃𝑖 × 𝑃𝑗 = 𝑃𝑚𝑎𝑥(𝑖,𝑗)}. 

Smarandache has defined algebraic operations on 3 − 𝑆𝑃𝑅 as follows: 

Addition: 

[𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2 + 𝑎3𝑃3] + [𝑏0 + 𝑏1𝑃1 + 𝑏2𝑃2 + 𝑏3𝑃3] = (𝑎0 + 𝑏0) + (𝑎1 + 𝑏1)𝑃1 +

(𝑎2 + 𝑏2)𝑃2 + (𝑎3 + 𝑏3)𝑃3. 

Multiplication: 

[𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2 + 𝑎3𝑃3]. [𝑏0 + 𝑏1𝑃1 + 𝑏2𝑃2 + 𝑏3𝑃3] = 𝑎0𝑏0 + 𝑎0𝑏1𝑃1 + 𝑎0𝑏2𝑃2 + 𝑎0𝑏3𝑃3 +

𝑎1𝑏0𝑃1
2 + 𝑎1𝑏2𝑃1𝑃2 + 𝑎2𝑏0𝑃2 + 𝑎2𝑏1𝑃1𝑃2 + 𝑎2𝑏2𝑃2

2 + 𝑎1𝑏3𝑃3𝑃1 + 𝑎2𝑏3𝑃2𝑃3 + 𝑎3𝑏3(𝑃3)
2 +

𝑎3𝑏0𝑃3 + 𝑎3𝑏1𝑃3𝑃1 + 𝑎3𝑏2𝑃2𝑃3 + 𝑎1𝑏1𝑃1𝑃1 = 𝑎0𝑏0 + (𝑎0𝑏1 + 𝑎1𝑏0 + 𝑎1𝑏1)𝑃1 + (𝑎0𝑏2 +

𝑎1𝑏2 + 𝑎2𝑏0 + 𝑎2𝑏1 + 𝑎2𝑏2)𝑃2 + (𝑎0𝑏3 + 𝑎1𝑏3 + 𝑎2𝑏3 + 𝑎3𝑏3 + 𝑎3𝑏0 + 𝑎3𝑏1 + 𝑎3𝑏2)𝑃3. 

It is clear that (3 − 𝑆𝑃𝑅) is a ring. 

Also, if 𝑅 is commutative, then 3 − 𝑆𝑃𝑅 is commutative, and if 𝑅 has a unity (1), than 3 −

𝑆𝑃𝑅 has the same unity (1). 

Example. 

Consider the ring 𝑅 = 𝑍5 = {0,1,2,3,4}, the corresponding 3 − 𝑆𝑃𝑅 is: 

3 − 𝑆𝑃𝑅 = {𝑎 + 𝑏𝑃1 + 𝑐𝑃2 + 𝑑𝑃3; 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑍5}. 

If 𝑋 = 1 + 2𝑃1 + 3𝑃2 + 𝑃3, 𝑌 = 𝑃1 + 2𝑃2, then: 

𝑋 + 𝑌 = 1 + 3𝑃1 + 𝑃2 + 𝑃3, 𝑋 − 𝑌 = 1 + 𝑃1 + 𝑃2 + 𝑃3, 𝑋. 𝑌 = 𝑃1 + 2𝑃2 + 2𝑃1 + 4𝑃2 + 3𝑃2 +

6𝑃2 + 𝑃3 + 2𝑃3 = 3𝑃1 + 3𝑃2 + 3𝑃3. 

Invertibility. 

Theorem. 

Let 3 − 𝑆𝑃𝑅 be a 3-plithogenic symbolic ring, with unity (1). 

Let 𝑋 = 𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2 + 𝑥3𝑃3 be an arbitrary element, then: 
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1. 𝑋  is invertible if and only if 𝑥0, 𝑥0 + 𝑥1, 𝑥0 + 𝑥1 + 𝑥2 ,  𝑥0 + 𝑥1 + 𝑥2 + 𝑥3  are 

invertible. 

2. 𝑋−1 = 𝑥0−1 + [(𝑥0 + 𝑥1)−1 − 𝑥0−1]𝑃1 + [(𝑥0 + 𝑥1 + 𝑥2)−1 − (𝑥0 + 𝑥1)−1]𝑃2 +[ (𝑥0 +

𝑥1 + 𝑥2 + 𝑥3)
−1 − (𝑥0 + 𝑥1 + 𝑥2)

−1]𝑃3. 

Proof. 

1. Assume that 𝑋  is invertible, than there exists 𝑌 = 𝑦0 + 𝑦1𝑃1 + 𝑦2𝑃2 + 𝑦3𝑃3  such 

that 𝑋. 𝑌 = 1, hence: 

{
 

 
𝑥0𝑦3 + 𝑥1𝑦3 + 𝑥2𝑦3 + 𝑥3𝑦3 + 𝑥3𝑦1 + 𝑥3𝑦2 + 𝑥3𝑦0 = 0 (1)

𝑥0𝑦0 = 1… (2)

𝑥0𝑦1 + 𝑥1𝑦0 + 𝑥1𝑦1 = 0… (3)

𝑥0𝑦2 + 𝑥2𝑦0 + 𝑥2𝑦2 + 𝑥1𝑦2 + 𝑥2𝑦1 = 0… (4),

 

Equation (2), means that 𝑥0 is invertible. 

By adding (3) to (2), we get (𝑥0 + 𝑥1)(𝑦0 + 𝑦1) = 1, thus 𝑥0 + 𝑥1 is invertible. 

By adding (4) to (3)𝑡𝑜 (2), we get (𝑥0 + 𝑥1 + 𝑥2)(𝑦0 + 𝑦1 + 𝑦2) = 1, hence 𝑥0 + 𝑥1 + 𝑥2 is 

invertible. 

By adding (1) to (2) to (3) to( 4), we get (𝑥0 + 𝑥1 + 𝑥2 + 𝑥3)(𝑦0 + 𝑦1 + 𝑦2 + 𝑦3) = 1, hence 

𝑥0 + 𝑥1 + 𝑥2+𝑥3 is invertible. 

The converse holds by the same. 

2. From the previous approach, we can see that: 

𝑦0 = 𝑥0
−1, 𝑦0 + 𝑦1 = (𝑥0 + 𝑥1)

−1, 𝑦0 + 𝑦1 + 𝑦2 = (𝑥0 + 𝑥1 + 𝑥2)
−1 , (𝑥0 + 𝑥1 + 𝑥2 + 𝑥3)

−1 =

𝑦0 + 𝑦1 + 𝑦2 + 𝑦3, then: 

3. 𝑌 = 𝑥0−1 + [(𝑥0 + 𝑥1)−1 − 𝑥0−1]𝑃1 + [(𝑥0 + 𝑥1 + 𝑥2)−1 − (𝑥0 + 𝑥1)−1]𝑃2 +[(𝑥0 + 𝑥1 +

𝑥2 + 𝑥3)
−1 − (𝑥0 + 𝑥1 + 𝑥2)

−1]𝑃3. 

= 𝑋−1. 

Example. 

Take 𝑅 = 𝑍5 = {0,1,2,3,4} , 3 − 𝑆𝑃𝑍5  is the corresponding symbolic 3-plithogenic ring, 

consider 𝑋 = 2 + 4𝑃1 + 2𝑃2 + 𝑃3 ∈ 2 − 𝑆𝑃𝑍5, then: 

𝑥0 = 2  is invertible with 𝑥0
−1 = 3 ,  𝑥0 + 𝑥1 = 1 is invertible with (𝑥0 + 𝑥1)

−1 = 1 , 𝑥0 +

𝑥1 + 𝑥2 = 3 is invertible with (𝑥0 + 𝑥1 + 𝑥2)
−1 = 2 ,  𝑥0 + 𝑥1 + 𝑥2 + 𝑥3 = 4, (𝑥0 + 𝑥1 + 𝑥2 +

𝑥3)
−1 = 4  hence: 

𝑋−1 = 3 + (1 − 3)𝑃1 + (2 − 1)𝑃2 + (4 − 2)𝑃3 = 3 + 3𝑃1 + 𝑃2 + 2𝑃3. 

Idempotency. 

Definition. 
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Let 𝑋 = 𝑎 + 𝑏𝑃1 + 𝑐𝑃2 + 𝑑𝑃3 ∈ 3 − 𝑆𝑃𝑅, then 𝑋 is idempotent if and only if 𝑋2 = 𝑋. 

Theorem. 

Let 𝑋 = 𝑎 + 𝑏𝑃1 + 𝑐𝑃2 + 𝑑𝑃3 ∈ 3 − 𝑆𝑃𝑅 , then 𝑋 is idempotent if and only if 𝑎, 𝑎 + 𝑏, 𝑎 +

𝑏 + 𝑐, 𝑎 + 𝑏 + 𝑐 + 𝑑 are idempotent. 

Proof. 

𝑋2 = 𝑋. 𝑋 = (𝑎 + 𝑏𝑃1 + 𝑐𝑃2 + 𝑑𝑃3)(𝑎 + 𝑏𝑃1 + 𝑐𝑃2 + 𝑑𝑃3) = 𝑎
2 + (𝑎𝑏 + 𝑏𝑎 + 𝑏2)𝑃1 +

(𝑎𝑐 + 𝑏𝑐 + 𝑐𝑎 + 𝑐𝑏 + 𝑐2)𝑃2 + (𝑎𝑑 + 𝑏𝑑 + 𝑐𝑑 + 𝑑. 𝑑 + 𝑑𝑎 + 𝑑𝑏 + 𝑑𝑐)𝑃3. 

𝑋2 = 𝑋. 𝑋 equivalents 

{
 

 
𝑎𝑑 + 𝑏𝑑 + 𝑐𝑑 + 𝑑. 𝑑 + 𝑑𝑎 + 𝑑𝑏 + 𝑑𝑐 = 0 (1)

𝑎2 = 𝑎… (2)

𝑎𝑏 + 𝑏𝑎 + 𝑏2 = 𝑏… (3)

𝑎𝑐 + 𝑏𝑐 + 𝑐𝑎 + 𝑐𝑏 + 𝑐2 = 𝑐… (4)

 

Equation (2) means that 𝑎 is idempotent. 

By adding (3) to (2), we get (𝑎 + 𝑏)2 = 𝑎 + 𝑏, hence 𝑎 + 𝑏 is idempotent. 

By adding (3)  to (2)  to (4) , we get (𝑎 + 𝑏 + 𝑐)2 = 𝑎 + 𝑏 + 𝑐 , hence 𝑎 + 𝑏 + 𝑐  is 

idempotent. 

By adding (1) to (2) to (3) to (4), we get (𝑎 + 𝑏 + 𝑐 + 𝑑)2 = 𝑎 + 𝑏 + 𝑐 + 𝑑, thus 𝑎 + 𝑏 + 𝑐 + 𝑑 

is idempotent. 

Thus the proof is complete. 

Example. 

Take 𝑅 = 𝑍6 = {0,1,2,3,4,5}, 3 − 𝑆𝑃𝑍6  is the corresponding symbolic 3-plithogenic ring, 

consider 𝑋 = 3 + 𝑃1 + 5𝑃2 ∈ 3 − 𝑆𝑃𝑍5 , we have: 

𝑋2 = 9 + 6𝑃1 + 𝑃1 + 30𝑃2 + 25𝑃2 + 10𝑃2 = 3 + 𝑃1 + 5𝑃2 = 𝑋. 

The following theorem clarifies the natural powers in 2 − 𝑆𝑃𝑅. 

Theorem. 

Let 3 − 𝑆𝑃𝑅 be a commutative symbolic 3-plithogenic ring, hence if 𝑋 = 𝑎 + 𝑏𝑃1 + 𝑐𝑃2 +

𝑑𝑃3 , then 𝑋𝑛 = 𝑎𝑛 + [(𝑎 + 𝑏)𝑛 − 𝑎𝑛]𝑃1 + [(𝑎 + 𝑏 + 𝑐)
𝑛 − (𝑎 + 𝑏)𝑛]𝑃2+ [(𝑎 + 𝑏 + 𝑐 + 𝑑)𝑛 −

(𝑎 + 𝑏 + 𝑐)𝑛]𝑃3for every 𝑛 ∈ 𝑍+. 

Proof. 

For 𝑛 = 1, it holds easily. Assume that it is true for 𝑛 = 𝑘, we prove it for 𝑛 = 𝑘 + 1. 

𝑋𝑘+1 = 𝑋. 𝑋𝑘 = (𝑎 + 𝑏𝑃1 + 𝑐𝑃2 + 𝑑𝑃3)(𝑎
𝑘 + [(𝑎 + 𝑏)𝑘 − 𝑎𝑘]𝑃1 + [(𝑎 + 𝑏 + 𝑐)

𝑘 −

(𝑎 + 𝑏)𝑘]𝑃2 + [(𝑎 + 𝑏 + 𝑐 + 𝑑)
𝑘 − (𝑎 + 𝑏 + 𝑐)𝑘]𝑃3) = 𝑎

𝑘+1 + [(𝑎 + 𝑏)𝑘+1 − 𝑎𝑘+1]𝑃1 +

[(𝑎 + 𝑏 + 𝑐)𝑘+1 − (𝑎 + 𝑏)𝑘+1]𝑃2 + [(𝑎 + 𝑏 + 𝑐 + 𝑑)
𝑘+1 − (𝑎 + 𝑏 + 𝑐)𝑘+1]𝑃3So, that proof is 

complete by induction. 



61 
 

 

Othman Al-Basheer, Arwa Hajjari, Rasha Dalla, On The Symbolic 3-Plithogenic Rings and Their Algebraic Properties 

Example. 

Take 𝑅 = 𝑍, the ring of integers. Let 3 − 𝑆𝑃𝑍 be the corresponding symbolic 3-plithogenic 

ring, hence 𝑋 = 1 + 2𝑃1 + 3𝑃2 + 𝑃3, 𝑋
3 = 13 + 𝑃1[(3)

3 − 13] + 𝑃2[(6)
3 − 33] + (73 −

63)𝑃3 = 1 + 26𝑃1 + 189𝑃2 + 127𝑃3 

Definition. 

𝑋 is called nilpotent if there exists 𝑛 ∈ 𝑍+ such that 𝑋𝑛 = 0. 

Theorem. 

Let 𝑋 ∈ 3 − 𝑆𝑃𝑅, where 𝑅 is a commutative ring, then 𝑋 is nilpotent if and only if 𝑎, 𝑎 +

𝑏, 𝑎 + 𝑏 + 𝑐, 𝑎 + 𝑏 + 𝑐 + 𝑑 are nilpotent. 

Proof. 

𝑋 = 𝑎 + 𝑏𝑃1 + 𝑐𝑃2 + 𝑑𝑃3 is nilpotent if and only if there exists 𝑛 ∈ 𝑍+ such that 𝑋𝑛 = 0, 

hence: 

{

(𝑎 + 𝑏 + 𝑐 + 𝑑)𝑛 − (𝑎 + 𝑏 + 𝑐)𝑛 = 0
𝑎𝑛 = 0

(𝑎 + 𝑏)𝑛 − 𝑎𝑛 = 0
(𝑎 + 𝑏 + 𝑐)𝑛 − (𝑎 + 𝑏)𝑛 = 0

⇔ {

(𝑎 + 𝑏 + 𝑐 + 𝑑)𝑛 = 0
𝑎𝑛 = 0

(𝑎 + 𝑏)𝑛 = 0
(𝑎 + 𝑏 + 𝑐)𝑛 = 0

, thus the proof is complete. 

Definition. 

Let 𝑄0, 𝑄13, 𝑄2,𝑄3 be ideals of the ring 𝑅, we define the symbolic 3-plithogenic AH-ideal as 

follows: 

𝑄 = 𝑄0 + 𝑄1𝑃1 + 𝑄2𝑃2 + 𝑄3𝑃3 = {𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2 + 𝑥3𝑃3;  𝑥𝑖 ∈ 𝑄𝑖}. 

If 𝑄0 = 𝑄1 = 𝑄2 = 𝑄3, then 𝑄 is called an AHS-ideal. 

Example. 

Let 𝑅 = 𝑍 be the ring of integers, then 𝑄0 = 2𝑍, 𝑄1 = 3𝑍, 𝑄2 = 5𝑍 are ideals of 𝑅. 

𝑄 = {2𝑚 + 3𝑛𝑃1 + 5𝑡𝑃2 + 5𝑠𝑃3;  𝑚. 𝑛. 𝑡, 𝑠 ∈ 𝑍} is an AHS-ideal of 3 − 𝑆𝑃𝑍. 

𝑀 = {2𝑚 + 2𝑛𝑃1 + 2𝑡𝑃2 + 2𝑠𝑃3;  𝑚. 𝑛. 𝑡, 𝑠 ∈ 𝑍} is an AHS-ideal of 3 − 𝑆𝑃𝑍. 

Theorem. 

Let 𝑄 be an AHS- ideal of 3 − 𝑆𝑃𝑅, then 𝑄 is an ideal by the classical meaning. 

Proof. 

𝑄 can be written as 𝑄 = 𝑄0 +𝑄0𝑃1 + 𝑄0𝑃2 +𝑄0𝑃3, where 𝑄0 is an ideal of 𝑅. It is clear that 

(𝑄,+) is a subgroup of (3 − 𝑆𝑃𝑅 , +). 

Let 𝑆 = 𝑠0 + 𝑠1𝑃1 + 𝑠2𝑃2 + 𝑠3𝑃3 ∈ 3 − 𝑆𝑃𝑅, then if 𝑋 = 𝑎 + 𝑏𝑃1 + 𝑐𝑃2 + 𝑑𝑃3 ∈ 𝑄, we have: 

𝑆. 𝑋 = 𝑠0𝑎 + (𝑠0𝑏 + 𝑠1𝑎 + 𝑠1𝑏)𝑃1 + (𝑠0𝑐 + 𝑠1𝑐 + 𝑠2𝑎 + 𝑠2𝑏 + 𝑠2𝑐)𝑃2 + (𝑠0𝑑 + 𝑠1𝑑 + 𝑠2𝑑 +

𝑠3𝑑 + 𝑠3𝑎 + 𝑠3𝑏 + 𝑠3𝑐)𝑃3 ∈ 𝑄, that is because: 
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𝑠0𝑎 ∈ 𝑄0, 𝑠0𝑏 + 𝑠1𝑎 + 𝑠1𝑏 ∈ 𝑄0, 𝑠0𝑐 + 𝑠1𝑐 + 𝑠2𝑎 + 𝑠2𝑏 + 𝑠2𝑐, 𝑠0𝑑 + 𝑠1𝑑 + 𝑠2𝑑 + 𝑠3𝑑 + 𝑠3𝑎 +

𝑠3𝑏 + 𝑠3𝑐 ∈ 𝑄0. 

Definition. 

Let 𝑅, 𝑇  be two rings, 3 − 𝑆𝑃𝑅 , 3 − 𝑆𝑃𝑇  are the corresponding symbolic 3-plithogenic 

rings, let 𝑓0, 𝑓1, 𝑓2, 𝑓3: 𝑅 → 𝑇 be four homomorphisms, we define the AH-homomorphism as 

follows: 

𝑓: 3 − 𝑆𝑃𝑅 → 3 − 𝑆𝑃𝑇 such that: 

𝑓(𝑎 + 𝑏𝑃1 + 𝑐𝑃2 + 𝑑𝑃3) = 𝑓0(𝑎) + 𝑓1(𝑏)𝑃1 + 𝑓2(𝑐)𝑃2+𝑓3(𝑑)𝑃3 

If 𝑓0 = 𝑓1 = 𝑓2 = 𝑓3, then 𝑓 is called AHS-homomorphism. 

Remark. 

If 𝑓0, 𝑓1, 𝑓2, 𝑓3 is isomorphisms, then 𝑓 is called AH-isomorphism. 

Example. 

Take 𝑅 = 𝑍, 𝑇 = 𝑍6, 𝑓0, 𝑓1: 𝑅 → 𝑇 such that: 

𝑓0(𝑥) = 𝑥(𝑚𝑜𝑑 6), 𝑓1(2) = 3𝑥(𝑚𝑜𝑑 6). It is clear that 𝑓0, 𝑓1 are homomorphisms. 

We define 𝑓: 3 − 𝑆𝑃𝑅 → 3 − 𝑆𝑃𝑇, where:  

𝑓(𝑥 + 𝑦𝑃1 + 𝑧𝑃2 + 𝑠𝑃3) = 𝑓0(𝑥) + 𝑓1(𝑦)𝑃1 + 𝑓2(𝑧)𝑃2 + 𝑓2(𝑠)𝑃3 = 𝑥(𝑚𝑜𝑑 6) + 𝑦(𝑚𝑜𝑑 6)𝑃1 +

(3𝑧 𝑚𝑜𝑑 6)𝑃2+(3𝑠 𝑚𝑜𝑑 6)𝑃3 

Which is an AH-homomorphism. 

Theorem. 

Let 𝑓 = 𝑓0 + 𝑓1𝑃1 + 𝑓2𝑃2 + 𝑓3𝑃3: 3 − 𝑆𝑃𝑅 → 3 − 𝑆𝑃𝑇 be a mapping, then: 

1. If 𝑓 is an AHS-homomorphism, then 𝑓 is a ring homomorphism by the classical 

meaning. 

2. If 𝑓 is an AHS-homomorphism, then it is an isomorphism by the classical meaning. 

Proof. 

1. Assume that 𝑓  is an AHS-homomorphism, then 𝑓0 = 𝑓1 = 𝑓2 = 𝑓3  are 

homomorphisms. 

Let 𝑋 = 𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2 + 𝑥3𝑃3, 𝑌 = 𝑦0 + 𝑦1𝑃1 + 𝑦2𝑃2 + 𝑦3𝑃3 ∈ 3 − 𝑆𝑃𝑅, we have: 

𝑓(𝑋 + 𝑌) = 𝑓0(𝑥0 + 𝑦0) + 𝑓0(𝑥1 + 𝑦1)𝑃1 + 𝑓0(𝑥2 + 𝑦2)𝑃2 + 𝑓0(𝑥3 + 𝑦3)𝑃3 = 𝑓(𝑋) + 𝑓(𝑌) 

𝑓(𝑋. 𝑌) = 𝑓0(𝑥0𝑦0) + 𝑓0(𝑥0𝑦1 + 𝑥1𝑦0 + 𝑥1𝑦1)𝑃1 + 𝑓0(𝑥0𝑦2 + 𝑥2𝑦0 + 𝑥2𝑦2 + 𝑥2𝑦1 + 𝑥1𝑦2)𝑃2 +

𝑓0(𝑥0𝑦3 + 𝑥1𝑦3 + 𝑥2𝑦3 + 𝑥3𝑦3 + 𝑥3𝑦1 + 𝑥3𝑦0 + 𝑥3𝑦2)𝑃3 = 𝑓0(𝑥0)𝑓0(𝑦0) + (𝑓0(𝑥0)𝑓0(𝑦1) +

𝑓0(𝑥1)𝑓0(𝑦0) + 𝑓0(𝑥1)𝑓0(𝑦1))𝑃1 + (𝑓0(𝑥0)𝑓0(𝑦2) + 𝑓0(𝑥2)𝑓0(𝑦0) + 𝑓0(𝑥2)𝑓0(𝑦2) +

𝑓0(𝑥2)𝑓0(𝑦1) + 𝑓0(𝑥1)𝑓0(𝑦2))𝑃2 + [(𝑓0(𝑥0)𝑓0(𝑦3) + 𝑓0(𝑥1)𝑓0(𝑦3) + 𝑓0(𝑥2)𝑓0(𝑦3) +
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𝑓0(𝑥3)𝑓0(𝑦3) + 𝑓0(𝑥3)𝑓0(𝑦1) + 𝑓0(𝑥3)𝑓0(𝑦2) + 𝑓0(𝑥3)𝑓0(𝑦0))]𝑃3 = [𝑓0(𝑥0) + 𝑓0(𝑥1)𝑃1 +

𝑓0(𝑥2)𝑃2 + 𝑓0(𝑥3)𝑃3][𝑓0(𝑦0) + 𝑓0(𝑦1)𝑃1 + 𝑓0(𝑦2)𝑃2 + 𝑓0(𝑦3)𝑃3] = 𝑓(𝑋) + 𝑓(𝑌). 

So that, the [roof is complete. 

2. By a similar discussion of statement 1, we get the proof. 

Definition. 

Let 𝑓 = 𝑓0 + 𝑓1𝑃1 + 𝑓2𝑃2 + 𝑓3𝑃3: 3 − 𝑆𝑃𝑅 → 3 − 𝑆𝑃𝑇 be an AH-homomorphism, we define: 

1. AH- 𝑘𝑒𝑟(𝑓) = 𝑘𝑒𝑟(𝑓0) + 𝑘𝑒𝑟(𝑓1)𝑃1 + 𝑘𝑒𝑟(𝑓2)𝑃2 + ker (𝑓3)𝑃3 = {𝑚0 +𝑚1𝑃1 +𝑚2𝑃2 +

𝑚3𝑃3; 𝑚𝑖 ∈ 𝑘𝑒𝑟(𝑓𝑖)}. 

2. AH-factor 3 − 𝑆𝑃𝑅 AH⁄ − 𝑘𝑒𝑟(𝑓) = 𝑅 𝑘𝑒𝑟(𝑓0)⁄ + 𝑅 𝑘𝑒𝑟(𝑓1)⁄ 𝑃1 + 𝑅 𝑘𝑒𝑟(𝑓2)⁄ 𝑃2 +

+𝑅 𝑘𝑒𝑟(𝑓3)⁄ 𝑃3 

If 𝑓0 = 𝑓1 = 𝑓2 = 𝑓3, then we get an AHS- 𝑘𝑒𝑟(𝑓) and AHS-factor. 

Example. 

Take 𝑅 = 𝑍10, 𝑓0: 𝑅 → 𝑇, 𝑓0(𝑥) = (𝑥 𝑚𝑜𝑑 10), 𝑘𝑒𝑟(𝑓0) = 10𝑍. 

The corresponding AHS-homomorphism is 𝑓 = 𝑓0 + 𝑓0𝑃1 + 𝑓0𝑃2 + 𝑓0𝑃3: 3 − 𝑆𝑃𝑅 → 3 − 𝑆𝑃𝑇, 

such that: 

𝑓(𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2) = 𝑓0(𝑥0) + 𝑓0(𝑥1)𝑃1 + 𝑓0(𝑥2)𝑃2 + 𝑓0(𝑥3)𝑃3

= (𝑥0 𝑚𝑜𝑑 10) + (𝑥1 𝑚𝑜𝑑 10)𝑃1 + (𝑥2𝑚𝑜𝑑 10)𝑃2 + (𝑥3𝑚𝑜𝑑 10)𝑃3 

AHS-𝑘𝑒𝑟(𝑓) = 10𝑍 + 10𝑍𝑃1 + 10𝑍𝑃2 = {10𝑥 + 10𝑦𝑃1 + 10𝑧𝑃2 + 10𝑠𝑃3;  𝑥, 𝑦, 𝑧, 𝑠 ∈ 𝑍} 

AHS-factor= 𝑍 10𝑍⁄ + 𝑍 10𝑍⁄ 𝑃1 + 𝑍 10𝑍⁄ 𝑃2 + 𝑍 10𝑍⁄ 𝑃3 

Definition.  

Let (𝐹,+, . ) be a field, then (3 − 𝑆𝑃𝐹 , +, . ) Is called a symbolic 3-plithogenic field. 

(3 − 𝑆𝑃𝐹 , +, . ) Is not a field in the algebraic meaning, that is because 𝑃𝑖 are not invertible, 

but it is a ring. 

Conclusion 

In this paper, we have defined the concept of 3-plithogenic rings, and we presented many 

interesting algebraic properties such as invertibility, nilpotency, and idempotency of their 

elements. 

Also, we have presented many related concepts such as AH-ideals, AH-kernels and 

homomorphisms with their elementary properties in terms of theorems with many clear 

examples. 

In the future, we look for many symbolic 3-plithogenic structures, especially symbolic 

3-pithogenic modules, vector spaces, and matrices. 
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Abstract: 

The objective of this paper is to answer the open problem proposed about the validity of 

phi-Euler’s theorem in the refined neutrosophic ring of integers 𝑍(𝐼1, 𝐼2) . This work 

presents an algorithm to compute the values of Euler’s function on refined neutrosophic 

integers, and it prove that phi-Euler’s theorem is still true in 𝑍(𝐼1, 𝐼2). 

On the other hand, we present a solution for another open question about the solutions of 

Fermat's Diophantine equation in refined neutrosophic ring of integers, where we 

determine the solutions of Fermat's Diophantine equation 𝑋𝑛 + 𝑌𝑛 = 𝑍𝑛; 𝑛 ≥ 3 in 𝑍(𝐼1, 𝐼2). 

Key Words: refined Neutrosophic integer, Neutrosophic Euler's function, Neutrosophic 

Fermat's equation  

1. Introduction 

Neutrosophy is a new generalization of fuzzy ideas by considering three membership 

states (truth, falsity, and indeterminacy) founded by Smarandache in 1995 [1]. 

mailto:Josefjumayel113@gmail.com
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In the literature [2], the indeterminacy element I was used to build some interesting 

extensions of algebraic rings. By adding I (with a logical property 𝐼2 = 𝐼) to any ring R, we 

get 𝑅(𝐼) the corresponding neutrosophic ring as follows: 

𝑅(𝐼) = {𝑎 + 𝑏𝐼; 𝑎, 𝑏 ∈ 𝑅}[2]. 

In [3], Agboola et.al, proposed the structure of refined neutrosophic rings. 

As a natural development, neutrosophic number theory was studied in [4,6], where we can 

find neutrosophic congruencies, Diophantine equations, primes, and neutrosophic Euler’s 

theorem. 

In [5], Ibrahim et.al, proposed the basic ideas in refined neutrosophic number theory, 

where they defined congruencies, Pell’s equation, and divisibility in 𝑍(𝐼1, 𝐼2). On the other 

hand, an interesting open question has been asked as follows: 

Define phi-Euler’s function in 𝑍(𝐼1, 𝐼2)? Is Euler’s theorem still true ?. 

Through this paper, we aim to solve this problem by proving that Euler's theorem is still 

true in refined neutrosophic number theory. 

Also, we find all possible solutions for The non-linear Fermat's Diophantine equation  

𝑋𝑛 + 𝑌𝑛 = 𝑍𝑛; 𝑛 ≥ 3, which was proposed as an open question in [7]. 

For more results and findings of neutrosophic number theory and algebraic structures, see 

[8-15]. 

For definitions and basic concepts in refined neutrosophic number theory, see [5]. 

 Main discussion : 

First of all, we will give an example to explain our idea. 
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Example : 

Let 𝑍(𝐼1, 𝐼2) be the refined neutrosophic ring of integers, consider 𝑥 = (3, 𝐼1, −𝐼2)𝜖𝑍(𝐼1, 𝐼2). 

To compute the value of 𝜑(𝑥), we have to know the number of refined neutrosophic 

integers: 

𝑦 = (𝑦0, 𝑦1𝐼1, 𝑦2𝐼2), with the property : 

{
gcd(𝑥, 𝑦) = (1,0,0)

0 < 𝑦 ≤ 𝑥
 

According to the definition of (gcd) in refined neutrosophic ring of integers, we get 

gcd(3, 𝑦0) = 1, gcd(2, 𝑦0 + 𝑦2) = 1, gcd(3, 𝑦0 + 𝑦1 + 𝑦2) = 1.Also, 𝑦 ≤ 𝑥 implies that: 

{

0 ≤ 𝑦 ≤ 3
0 ≤ 𝑦0 + 𝑦2 ≤ 2

0 ≤ 𝑦0 + 𝑦1 + 𝑦2 ≤ 3
 

The possible values of 𝑦0 are {1,2}. The possible values of 𝑦0 + 𝑦2 are {1}.The possible 

values of 𝑦0 + 𝑦1 + 𝑦2 are {1,2}. This implies that we get the following solutions : 

𝑦 = (1,0,0),   𝑦 = (1, 𝐼1, 0),   𝑦 = (2,0, 𝐼2),   𝑦 = (2, 𝐼1, −𝐼2) 

So, 𝜑(𝑥) = 4 which is equal to 𝜑(3) × 𝜑(2) ×  𝜑(3). Now, we are able to study the general 

case. 

Definition: 

Let 0 < 𝑥 = (𝑥0, 𝑥1𝐼1, 𝑥2𝐼2)𝜖𝑍(𝐼1, 𝐼2), we define Euler’s function as follows: 

𝜑(𝑥) = |{𝑦 = (𝑦0, 𝑦1𝐼1, 𝑦2𝐼2)𝜖𝑍(𝐼1, 𝐼2): gcd(𝑥, 𝑦) = (1,0,0)𝑎𝑛𝑑 0 < 𝑦 ≤ 𝑥}|. 

Theorem:: 

Let 𝑥 = (𝑥0, 𝑥1𝐼1, 𝑥2𝐼2)  be any positive refined neutrosophic integer, hence:  𝜑(𝑥) =

 𝜑(𝑥0) × 𝜑(𝑥0 + 𝑥2) ×  𝜑(𝑥0 + 𝑥1 + 𝑥2). 
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Proof: 

Let 𝑦 = (𝑦0, 𝑦1𝐼1, 𝑦2𝐼2) be a refined neutrosophic integer with {
0 ≤ 𝑦 ≤ 𝑥

gcd(𝑥, 𝑦) = (1,0,0)
 

We have, ( 𝑦0 ≤ 𝑥0, 𝑦0 + 𝑦2 ≤ 𝑥0 + 𝑥2,   𝑦0 + 𝑦1 + 𝑦2 ≤ 𝑥0 + 𝑥1 + 𝑥2 ) and ( gcd(𝑥0 , 𝑦0) =

gcd(𝑥0 + 𝑥2, 𝑦0 + 𝑦2) =  gcd( 𝑥0 + 𝑥1 + 𝑥2, 𝑦0 + 𝑦1 + 𝑦2) = (1,0,0). This implies that we have 

𝜑(𝑥0) ways to chose 𝑦0, 𝜑(𝑥0 + 𝑥2) ways to chose 𝑦0 +  𝑦2 and 𝜑(𝑥0 + 𝑥1 + 𝑥2) ways to 

chose 𝑦0 + 𝑦1 + 𝑦2 . By using the essential concept in combinatory, we get  𝜑(𝑥) =

 𝜑(𝑥0) × 𝜑(𝑥0 + 𝑥2) ×  𝜑(𝑥0 + 𝑥1 + 𝑥2). 

Example: 

Let 𝑥 = (4,0,2𝐼2), we have : 

𝜑(4) = 2,   𝜑(4 + 2) =  𝜑(6) = 2  , 𝜑(4 + 0 + 2) = 𝜑(6) = 2. 

Hence 𝜑(𝑥) = 2 × 2 × 2 = 8. 

We shall find the 8 refined neutrosophic integers with the property {
0 ≤ 𝑦 ≤ 𝑥

gcd(𝑥, 𝑦) = (1,0,0)
 

Let 𝑦 = (𝑦0, 𝑦1𝐼1, 𝑦2𝐼2) , we have 

:{

𝑦0 ≤ 4,   gcd(𝑦0 , 4) = 1 ⟹ 𝑦0 ∈ {1,3}

𝑦0 + 𝑦2 ≤ 6,   gcd(𝑦0 + 𝑦2 , 6) = 1 ⟹ 𝑦0 + 𝑦2 ∈ {1,5}

𝑦0 + 𝑦1 + 𝑦2 ≤ 6,   gcd(𝑦0 + 𝑦1 + 𝑦2 , 6) = 1 ⟹ 𝑦0 + 𝑦1 + 𝑦2 ∈ {1,5}
 

The possible solutions are: 

1) 𝑦 = (1,0,0). 

2) 𝑦 = (1, −4𝐼1, 4𝐼2). 

3) 𝑦 = (1,0,4𝐼2). 

4) 𝑦 = (1,4𝐼1, 0). 

5) 𝑦 = (3,0, −2𝐼2). 
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6) 𝑦 = (3,4𝐼1, −2𝐼2). 

7) 𝑦 = (1, −4𝐼1, 2𝐼2). 

8) 𝑦 = (1,0,2𝐼2). 

The following theorem clarifies how to compute natural powers in 𝑍(𝐼1, 𝐼2). 

Theorem : 

Let 𝑥 = (𝑥0, 𝑥1𝐼1, 𝑥2𝐼2) ∈ 𝑍(𝐼1, 𝐼2), let n be any positive integer, hence 𝑥𝑛 = (𝑥0
𝑛, 𝐼1[(𝑥0 +

𝑥1 + 𝑥2)𝑛 − (𝑥0 + 𝑥2)𝑛], 𝐼2[(𝑥0 + 𝑥2)𝑛 − 𝑥0
𝑛]). 

Theorem: 

 Let 𝑍(𝐼1, 𝐼2) be the refined neutrosophic ring of integers. Let 𝑥 = (𝑥0, 𝑥1𝐼1, 𝑥2𝐼2),  𝑦 =

(𝑦0, 𝑦1𝐼1, 𝑦2𝐼2) ∈ 𝑍(𝐼1, 𝐼2) with gcd(𝑥, 𝑦)=1, hence 𝑥𝜑(𝑦) = 1(𝑚𝑜𝑑 𝑦). 

Proof: 

According to the assumption , we have : 

𝑥𝜑(𝑦) = 𝑥𝜑(𝑦0)×𝜑(𝑦0+𝑦2)×𝜑(𝑦0+𝑦1+𝑦2) = (𝑥0
𝜑(𝑦)

, 𝐼1[(𝑥0 + 𝑥1 + 𝑥2)𝜑(𝑦) − (𝑥0 + 𝑥2)𝜑(𝑦)], 𝐼2[(𝑥0 +

𝑥2)𝜑(𝑦) − 𝑥0
𝜑(𝑦)

]). 

Now, let’s compute the following : 

𝑥0
𝜑(𝑦)

= [𝑥0
𝜑(𝑦0)

]𝜑(𝑦0+𝑦2)×𝜑(𝑦0+𝑦1+𝑦2) ≡ 1𝜑(𝑦0+𝑦2)×𝜑(𝑦0+𝑦1+𝑦2)(𝑚𝑜𝑑 𝑦0) ≡ 1(𝑚𝑜𝑑 𝑦0) . 

(That is because gcd(𝑥0, 𝑦0) = 1) 

(𝑥0 + 𝑥2)𝜑(𝑦) = [(𝑥0 + 𝑥2)𝜑(𝑦0+𝑦2)]𝜑(𝑦0)×𝜑(𝑦0+𝑦1+𝑦2) ≡ 1(𝑚𝑜𝑑 𝑦0 + 𝑦2). 

(That is because gcd(𝑥0 + 𝑥2, 𝑦0 + 𝑦2) = 1) 

(𝑥0 + 𝑥1 + 𝑥2)𝜑(𝑦) = [(𝑥0 + 𝑥1 + 𝑥2)𝜑(𝑦0+𝑦1+𝑦2)]𝜑(𝑦0)×𝜑(𝑦0+𝑦2) ≡ 1(𝑚𝑜𝑑 𝑦0 + 𝑦1 + 𝑦2). 

(That is because gcd(𝑥0 + 𝑥1 + 𝑥2, 𝑦0 + 𝑦1 + 𝑦2) = 1). 

We get that: 

𝑥0
𝜑(𝑦)

≡ 1(𝑚𝑜𝑑 𝑦0), 

𝑥0
𝜑(𝑦)

+ [(𝑥0 + 𝑥2)𝜑(𝑦) − 𝑥0
𝜑(𝑦)

] = (𝑥0 + 𝑥2)𝜑(𝑦) ≡ 1(mod 𝑦0 + 𝑦2), 
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𝑥0
𝜑(𝑦)

+ [(𝑥0 + 𝑥2)𝜑(𝑦) − 𝑥0
𝜑(𝑦)

] + [(𝑥0 + 𝑥1 + 𝑥2)𝜑(𝑦) − (𝑥0 + 𝑥2)𝜑(𝑦) = (𝑥0 + 𝑥1 + 𝑥2)𝜑(𝑦) ≡

1(mod 𝑦0 + 𝑦1 + 𝑦2), 

Under the definition of congruencies in refined neutrosophic rings we can write: 

𝑥𝜑(𝑦) ≡ (1,0,0) (𝑚𝑜𝑑 𝑦). 

This implies that Euler’s theorem is true in 𝑍(𝐼1, 𝐼2). 

Definition : [7] 

Let R be a ring, 𝐹 = (𝑋, 𝑌, 𝑍) be a triple, where 𝑋, 𝑌, 𝑍 ∈ 𝑅. F is called a general Fermat's 

triple if and only if 𝑋𝑛 + 𝑌𝑛 = 𝑍𝑛; 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 𝑛 ≥ 3 . 

This is equivalent to the condition that (𝑋, 𝑌, 𝑍) is a solution of Fermat's equation.  

Theorem : 

Let 𝑍(𝐼1, 𝐼2) be the refined neutrosophic ring of integers. The Equation 𝑋𝑛 + 𝑌𝑛 = 𝑍𝑛; 𝑛 ≥

3 has only 27 solutions. 

Proof: 

𝑋𝑛 + 𝑌𝑛 = 𝑍𝑛 ⟺ {

𝑥0
𝑛 + 𝑦0

𝑛 = 𝑧0
𝑛 … (1)

(𝑥0 + 𝑥2)𝑛 + (𝑦0 + 𝑦2)𝑛 = (𝑧0 + 𝑧2)𝑛 … (2)

(𝑥0 + 𝑥1 + 𝑥2)𝑛 + (𝑦0 + 𝑦1 + 𝑦2)𝑛 = (𝑧0 + 𝑧1 + 𝑧2)𝑛 … (3)
 

Now, solutions of (1) is. 

{

𝑥0 = 𝑦0 = 𝑧0 = 0 … (𝑎)
𝑥0 = 𝑧0 = 1, 𝑦0 = 0 … (𝑏)
𝑦0 = 𝑧0 = 1, 𝑥0 = 0 … (𝑐)

 

solutions of (2) is. 

{

𝑥0 + 𝑥2 = 𝑦0 + 𝑦2 = 𝑧0 + 𝑧2 = 0 … (𝑑)
𝑥0 + 𝑥2 = 𝑧0 + 𝑧2 = 1, 𝑦0 + 𝑦2 = 0 … (𝑒)
𝑦0 + 𝑦2 = 𝑧0 + 𝑧2 = 1, 𝑥0 + 𝑥2 = 0 … (𝑓)

 

solutions of (3) is. 

{

𝑥0 + 𝑥1 + 𝑥2 = 𝑦0 + 𝑦1 + 𝑦2 = 𝑧0 + 𝑧1 + 𝑧2 = 0 … (𝑔)
𝑥0 + 𝑥1 + 𝑥2 = 𝑧0 + 𝑧1 + 𝑧2 = 1, 𝑦0 + 𝑦1 + 𝑦2 = 0 … (ℎ)
𝑦0 + 𝑦1 + 𝑦2 = 𝑧0 + 𝑧1 + 𝑧2 = 1, 𝑥0 + 𝑥1 + 𝑥2 = 0 … (𝑖)

 

We discuss possible cases. 

Case1. If (𝑎), (𝑑), (𝑔), then 𝑋 = 𝑌 = 𝑍 = (0,0,0). 

Case2. If (𝑎), (𝑑), (ℎ), then 𝑋 = (0,1,0), 𝑍 = (0,1,0), 𝑌 = (0,0,0). 

Case3. If (𝑎), (𝑑), (𝑖), then 𝑋 = (0,0,0), 𝑍 = (0, 𝐼1, 0), 𝑌 = (0, 𝐼1, 0). 

Case4. If (𝑎), (𝑒), (𝑔), then 𝑋 = (0, −𝐼1, 𝐼2), 𝑍 = (0, −𝐼1, 𝐼2), 𝑌 = (0,0,0). 
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Case5. If (𝑎), (𝑒), (𝑔), then 𝑋 = (0, −𝐼1, 𝐼2), 𝑍 = (0,0, 𝐼2), 𝑌 = (0,0,0). 

Case6. If (𝑎), (𝑒), (ℎ), then 𝑋 = (0,0, 𝐼2), 𝑍 = (0,0, 𝐼2), 𝑌 = (0,0,0). 

Case7. If (𝑎), (𝑓), (𝑔), then 𝑋 = (0,0,0), 𝑍 = (0, −𝐼1, 𝐼2), 𝑌 = (0, −𝐼1, 𝐼2). 

Case8. If (𝑎), (𝑓), (ℎ), then 𝑋 = (0, 𝐼1, 0), 𝑍 = (0, −𝐼1, 𝐼2), 𝑌 = (0, −𝐼1, 𝐼2). 

Case9. If (𝑎), (𝑓), (𝑖), then 𝑋 = (0,0,0), 𝑍 = (0,0, 𝐼2), 𝑌 = (0,0, 𝐼2). 

Case10. If (𝑏), (𝑑), (𝑔), then 𝑋 = (1,0, −𝐼2), 𝑍 = (1,0, −𝐼2), 𝑌 = (0,0,0). 

Case11. If (𝑏), (𝑑), (ℎ), then 𝑋 = (1, 𝐼1, −𝐼2), 𝑍 = (1, 𝐼1, −𝐼2), 𝑌 = (0,0, 𝐼2). 

Case12. If (𝑎), (𝑑), (𝑖), then 𝑋 = (1,0, −𝐼2), 𝑍 = (1, 𝐼1, 𝐼2), 𝑌 = (0, 𝐼1, 0). 

Case13. If (𝑏), (𝑒), (𝑔), then 𝑋 = (1, −𝐼1, 0), 𝑍 = (1, −𝐼1, 0), 𝑌 = (0,0,0). 

Case14. If (𝑏), (𝑒), (ℎ), then 𝑋 = (1,0,0), 𝑍 = (1,0,0), 𝑌 = (0, 𝐼1, 0). 

Case15. If (𝑏), (𝑒), (𝑖), then 𝑋 = (1, −𝐼1, 0), 𝑍 = (1,0,0), 𝑌 = (0, 𝐼1, 0). 

Case16. If (𝑏), (𝑓), (𝑔), then 𝑋 = (1,0, −𝐼2), 𝑍 = (1, −𝐼1, 0), 𝑌 = (0, −𝐼1, 𝐼2). 

Case17. If (𝑏), (𝑓), (ℎ), then 𝑋 = (1, 𝐼1, 𝐼2), 𝑍 = (1,0,0), 𝑌 = (0, −𝐼1, 𝐼2). 

Case18. If (𝑏), (𝑓), (𝑖), then 𝑋 = (1,0, −𝐼2), 𝑍 = (1,0,0), 𝑌 = (0,0, 𝐼2). 

Case19. If (𝑐), (𝑑), (ℎ), then 𝑋 = (0, 𝐼1, 0), 𝑍 = (1, 𝐼1, −𝐼2), 𝑌 = (1,0, −𝐼2). 

Case20. If (𝑐), (𝑑), (𝑔), then 𝑋 = (0,0,0), 𝑍 = (1,0, −𝐼2), 𝑌 = (1,0, −𝐼2). 

Case21. If (𝑐), (𝑑), (𝑖), then 𝑋 = (0,0,0), 𝑍 = (1, 𝐼1, −𝐼2), 𝑌 = (1, 𝐼1, −𝐼2). 

Case22. If (𝑐), (𝑒), (𝑔), then 𝑋 = (0, −𝐼1, 𝐼2), 𝑍 = (1, −𝐼1, 0), 𝑌 = (1,0, −𝐼2). 

Case23. If (𝑎), (𝑒), (ℎ), then 𝑋 = (0,0, −𝐼2), 𝑍 = (1,0,0), 𝑌 = (1,0, −𝐼2). 

Case24. If (𝑐), (𝑒), (𝑖), then 𝑋 = (0, −𝐼1, 𝐼2), 𝑍 = (1,0,0), 𝑌 = (1, 𝐼1, 𝐼2). 

Case25. If (𝑐), (𝑓), (𝑔), then 𝑋 = (0,0,0), 𝑍 = (1, −𝐼1, 0), 𝑌 = (1, −𝐼1, 0). 

Case26. If (𝑐), (𝑓), (ℎ), then 𝑋 = (0, 𝐼1, 0), 𝑍 = (1,0,0), 𝑌 = (1, −𝐼1, 0). 

Case27. If (𝑐), (𝑓), (𝑖), then 𝑋 = (0,0,0), 𝑍 = (1,0,0), 𝑌 = (1,0,0). 

 

 Conclusion 

 

In this paper, we have defined the Euler's function in the refined neutrosophic ring of 

integers (𝐼1, 𝐼2) , as well as, we have presented an algorithm to compute the values of this 
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function. 

Also, we have proved that Euler's famous theorem is still true in the case of refined 

neutrosophic number theory. 

In particular, we have determined the possible solutions of Fermat's equation in the refined 

neutrosophic ring of integers. 

As a future research direction, we aim to study the Euler's theorem in n-refined 

neutrosophic number theory and n-cyclic refined neutrosophic integers, as well as Fermat's 

equation in these rings. 
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Abstract: 

The n-cyclic refined neutrosophic algebraic structures are very diverse and rich materials. 

In this paper, we study the elementary algebraic properties of 2-cyclic refined neutrosophic 

square matrices, where we find formulas for computing determinants, eigen values, and 

inverses. On the other hand, we solve the diagonalization problem of these matrices, where 

a complete algorithm to diagonlaize every diagonalizable 2-cyclic refined neutrosophic 

square matrix is obtained and illustrated by many related examples.  

Key Words: n-cyclic refined neutrosophic ring, n –cyclic refined neutrosophic matrix, the 

diagonalization problem.  

1.Introduction 

Neutrosophic algebraic structures were defined firstly in [1], by adding an algebraic 

indeterminacy element I to classical algebraic structures to obtain n novel extensions. For 

example, we can find neutrosophic geometry, neutrosophic functions, neutrosophic rings, 

and neutrosophic spaces [2-7]. 
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The concept of n-cyclic neutrosophic algebraic structure was supposed in [8], and then it 

has been studied widely, see [9-12]. 

As an important algebraic structure, neutrosophic matrices with many types were handled 

and studied, where we can see many results about inverses, eigen vectors, 

diagonalizations, and determinants were proven and established [13-24]. In the literature, 

we have many types of neutrosophic matrices, refined neutrosophic matrices, and 

n-refined neutrosophic matrices, and n-cyclic refined neutrosophic matrices [17]. 

The diagonalization algorithm for n-cyclic refined neutrosophic matrix has been asked as 

an open problem in [12], and it is still open for all values of n. 

This motivates us to study the diagonalization problem for n =2, and to present an effective 

algorithm to diagonlaize a 2-cyclic refined neutrosophic square matrix, as well as many 

related concepts, especially eigen values computing. 

2. Preliminaries 

Definition [8] 

Let (R,+,×) be a ring and 𝐼𝑘; 1 ≤ 𝑘 ≤ 𝑛 be n sub-indeterminacies. We define 𝑅𝑛(I)={𝑎0 +

𝑎1𝐼 + ⋯ + 𝑎𝑛𝐼𝑛 ;  𝑎𝑖 ∈ 𝑅} to be n-cyclic refined neutrosophic ring. 

Operations on 𝑅𝑛(I) are defined as: 

∑ 𝑥𝑖𝐼𝑖 + ∑ 𝑦𝑖𝐼𝑖 = ∑ (𝑥𝑖 + 𝑦𝑖)𝐼𝑖 ,𝑛
𝑖=0 ∑ 𝑥𝑖𝐼𝑖 × ∑ 𝑦𝑖𝐼𝑖 = ∑ (𝑥𝑖 × 𝑦𝑗)𝐼𝑖𝐼𝑗 =𝑛

𝑖,𝑗=0
𝑛
𝑖=0

𝑛
𝑖=0

𝑛
𝑖=0

𝑛
𝑖=0 ∑ (𝑥𝑖 ×𝑛

𝑖,𝑗=0

𝑦𝑗)𝐼(𝑖+𝑗 𝑚𝑜𝑑𝑛) . 

 × is the multiplication on the ring R. 

In this paper, we study open problem 3, open problem 4, and open problem 5 in [12]. 

3. Main discussion : 

Definition. 

Let 𝑀 = 𝑀0 + 𝑀1𝐼1 + 𝑀2𝐼2  be a 2-cyclic refined neutrosophic matrix, then 𝑀  is 

diagonalizable if and only if there exists a 2-cyclic refined neutrosophic diagonal matrix 𝐾 

and invertible matrix 𝑈 such that 𝑀 = 𝑈𝐾𝑈−1. 

Theorem. 
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Let 𝑀 = 𝑀0 + 𝑀1𝐼1 + 𝑀2𝐼2  be a 2-cyclic refined neutrosophic matrix, then 𝑀  is 

diagonalizable if and only if: 𝑀0, 𝑀0 + 𝑀1 + 𝑀2 , 𝑀0 − 𝑀1 + 𝑀2 are diagonalizable. 

Proof. 

Assume that 𝑀 is diagonalizable, then there exists a diagonal matrix 𝐾 = 𝐾0 + 𝐾1𝐼1 + 𝐾2𝐼2 

and an invertible matrix 𝑈 = 𝑈0 + 𝑈1𝐼1 + 𝑈2𝐼2 such that 𝑀 = 𝑈𝐾𝑈−1. 

The matrix equation 𝑈𝐾𝑈−1 = 𝑀 is equivalent to: 

𝑈0𝐾0𝑈0
−1 +

1

2
𝐼1[(𝑈0 + 𝑈1 + 𝑈2)(𝐾0 + 𝐾1 + 𝐾2)(𝑈0 + 𝑈1 + 𝑈2)−1

− (𝑈0 − 𝑈1 + 𝑈2)(𝐾0 − 𝐾1 + 𝐾2)(𝑈0 − 𝑈1 + 𝑈2)−1]

+
1

2
𝐼2[(𝑈0 + 𝑈1 + 𝑈2)(𝐾0 + 𝐾1 + 𝐾2)(𝑈0 + 𝑈1 + 𝑈2)−1

− (𝑈0 − 𝑈1 + 𝑈2)(𝐾0 − 𝐾1 + 𝐾2)(𝑈0 − 𝑈1 + 𝑈2)−1 − 2𝑈0𝐾0𝑈0
−1]

= 𝑀0 + 𝑀1𝐼1 + 𝑀2𝐼2 

Thus: 

{

𝑈0𝐾0𝑈0
−1 = 𝑀0

(𝑈0 + 𝑈1 + 𝑈2)(𝐾0 + 𝐾1 + 𝐾2)(𝑈0 + 𝑈1 + 𝑈2)−1 = 𝑀0 + 𝑀1 + 𝑀2

(𝑈0 − 𝑈1 + 𝑈2)(𝐾0 − 𝐾1 + 𝐾2)(𝑈0 − 𝑈1 + 𝑈2)−1 = 𝑀0 − 𝑀1 + 𝑀2

 

This implies 𝑀0, 𝑀0 + 𝑀1 + 𝑀2 , 𝑀0 − 𝑀1 + 𝑀2 are diagonalizable. 

Conversely, assume that 𝑀0, 𝑀0 + 𝑀1 + 𝑀2 , 𝑀0 − 𝑀1 + 𝑀2 are diagonalizable, then there 

exists diagonal matrices 𝐷0, 𝐷1, 𝐷2 and invertible matrices 𝑃0, 𝑃1, 𝑃2 such that 𝑃0𝐷0𝑃0
−1 =

𝑀0, 𝑃1𝐷1𝑃1
−1 = 𝑀0 + 𝑀1 + 𝑀2, 𝑃2𝐷2𝑃2

−1 = 𝑀0 − 𝑀1 + 𝑀2. 

This implies that 𝑀1 =
1

2
(𝑃1𝐷1𝑃1

−1 − 𝑃2𝐷2𝑃2
−1), 𝑀2 =

1

2
(𝑃1𝐷1𝑃1

−1 + 𝑃2𝐷2𝑃2
−1 −

2𝑃0𝐷0𝑃0
−1)  

 We put 𝐷 = 𝐷0 +
1

2
𝐼1(𝐷1 − 𝐷2) +

1

2
𝐼2(𝐷1 + 𝐷2 − 2𝐷0) = 𝐿0 +

1

2
𝐼1𝐿1 +

1

2
𝐼2𝐿2; {

𝐿0 = 𝐷0

𝐿1 = 𝐷1 − 𝐷2

𝐿2 = 𝐷1 + 𝐷2 − 2𝐷0

. 

𝑃 = 𝑃0 +
1

2
𝐼1(𝑃1 − 𝑃2) +

1

2
𝐼2(𝑃1 + 𝑃2 − 2𝑃0) = 𝑁0 +

1

2
𝐼1𝑁1 +

1

2
𝐼2𝑁2; {

𝑁0 = 𝑃0

𝑁1 = 𝑃1 − 𝑃2

𝑁2 = 𝑃1 + 𝑃2 − 2𝑃0

. 

We have: 

𝑃−1 = 𝑁0
−1 +

1

2
𝐼1[(𝑁0 + 𝑁1 + 𝑁2)−1 − (𝑁0 − 𝑁1 + 𝑁2)−1] +

1

2
𝐼2[(𝑁0 + 𝑁1 + 𝑁2)−1 −

(𝑁0 − 𝑁1 + 𝑁2)−1 − 2𝑁0
−1] = 𝑃0

−1 +
1

2
𝐼1[𝑃1

−1 − 𝑃2
−1] +

1

2
𝐼2[𝑃1

−1 + 𝑃2
−1 − 2𝑃0

−1]   

It is easy to check that 𝑃𝐷𝑃−1 = 𝑀0 + 𝑀1𝐼1 + 𝑀2𝐼2 = 𝑀, thus 𝑀 is diagonalizable. 

Example. 
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Consider the following 2 × 2 2-cyclic refined matrix: 

𝑋 = (
3 +

1

2
𝐼1 −

3

2
𝐼2

1

2
𝐼1 +

1

2
𝐼2

1

2
𝐼1 −

1

2
𝐼2 2 −

3

2
𝐼1 +

1

2
𝐼2

) = (
3 0
0 2

) + (

1

2

1

2
1

2

−3

2

) 𝐼1 + (

−3

2

1

2
−1

2

1

2

) 𝐼2

= 𝑋0 + 𝑋1𝐼1 + 𝑋2𝐼2 

We have: 

𝑋0 = (
3 0
0 2

) , 𝑋0 + 𝑋1 + 𝑋2 = (
2 1
0 1

) , 𝑋0 − 𝑋1 + 𝑋2 = (
1 0

−1 4
) 

𝑋0 is diagonalizable with 𝑋0 = 𝑃0
−1𝐴0𝑃0, where 𝑃0 = (

1 0
0 1

), 𝐴0 = (
3 0
0 2

). 

𝑋0 + 𝑋1 + 𝑋2 is diagonalizable with 𝑋0 + 𝑋1 + 𝑋2 = 𝑃1
−1𝐴1𝑃1, where 𝑃1 = (

1 1
0 −1

), 𝐴1 =

(
2 0
0 1

) 

𝑋0 − 𝑋1 + 𝑋2  is diagonalizable with 𝑋0 − 𝑋1 + 𝑋2 = 𝑃2
−1𝐴2𝑃2 , where 𝑃2 = (

3 0
1 1

) , 𝐴2 =

(
1 0
0 4

) 

According the previous theorem, we have. 

𝑋 = 𝑃−1𝑌𝑃, where: 

𝑌 = 𝐴0 +
1

2
𝐼1(𝐴1 − 𝐴2) +

1

2
𝐼2(𝐴1 + 𝐴2 − 2𝐴0) = (

3 0
0 2

) + (

1

2
0

0
−3

2

) 𝐼1 + (

−3

2
0

0
1

2

) 𝐼2

= (
3 +

1

2
𝐼1 −

3

2
𝐼2 0

0 2 −
3

2
𝐼1 +

1

2
𝐼2

) 

𝑃 = 𝑃0
−1 +

1

2
𝐼1[𝑃1

−1 − 𝑃2
−1] +

1

2
𝐼2[𝑃1

−1 + 𝑃2
−1 − 2𝑃0

−1]

= (
1 0
0 1

) + (
−1

1

2
−1

2
−1

) 𝐼1 + (
1

1

2
1

2
−1

) 𝐼2 = (
1 − 𝐼1 + 𝐼2

1

2
𝐼1 +

1

2
𝐼2

−
1

2
𝐼1 +

1

2
𝐼2 1 − 𝐼1 − 𝐼2

) 

The Eigen Values. 

Definition. 

Let 𝐴 = 𝐴0 + 𝐴1𝐼1 + 𝐴2𝐼2 be an n-cyclic refined neutrosophic matrix, we say that 𝑇 = 𝑡0 +

𝑡1𝐼1 + 𝑡2𝐼2 ∈ 𝑅2(𝐼) is an eigen value if and only if 𝐴𝑋 = 𝑡𝑋 ; 𝑋 = 𝑋0 + 𝑋1𝐼1 + 𝑥2𝐼2  is an 

n-cyclic refined neutrosophic vector, where 𝑋𝑖 ∈ 𝑅𝑛. 

𝑋 is called n-cyclic refined neutrosophic vector. 
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Theorem. 

Let 𝐴 = 𝐴0 + 𝐴1𝐼1 + 𝐴2𝐼2 be an n-cyclic refined neutrosophic matrix, then 𝑇 = 𝑡0 + 𝑡1𝐼1 +

𝑡2𝐼2 ∈ 𝑅2(𝐼) is an eigen value with 𝑋 = 𝑋0 + 𝑋1𝐼1 + 𝑋2𝐼2 as eigen vector if and only if: 

𝑡0 is an eigen value of 𝐴0 with 𝑋0 as eigen vector, 𝑡0 + 𝑡1 + 𝑡2 is an eigen value of 𝐴0 +

𝐴1 + 𝐴2 with 𝑋0 + 𝑋1 + 𝑋2 as eigen vector, 𝑡0 − 𝑡1 + 𝑡2 is an eigen value of 𝐴0 − 𝐴1 + 𝐴2 

with 𝑋0 − 𝑋1 + 𝑋2 as eigen vector. 

Proof. 

The equation 𝐴𝑋 = 𝑡𝑋 is equivalent to: 

𝐴0𝑋0 +
1

2
𝐼1[(𝐴0 + 𝐴1 + 𝐴2)(𝑋0 + 𝑋1 + 𝑋2) − (𝐴0 − 𝐴1 + 𝐴2)(𝑋0 − 𝑋1 + 𝑋2)]

+
1

2
𝐼2[(𝐴0 + 𝐴1 + 𝐴2)(𝑋0 + 𝑋1 + 𝑋2) + (𝐴0 − 𝐴1 + 𝐴2)(𝑋0 − 𝑋1 + 𝑋2)

− 2𝐴0𝑋0]

= 𝑡0𝑋0 +
1

2
𝐼1[(𝑡0 + 𝑡1 + 𝑡2)(𝑋0 + 𝑋1 + 𝑋2) − (𝑡0 − 𝑡1 + 𝑡2)(𝑋0 − 𝑋1 + 𝑋2)]

+
1

2
𝐼2[(𝑡0 + 𝑡1 + 𝑡2)(𝑋0 + 𝑋1 + 𝑋2) + (𝑡0 − 𝑡1 + 𝑡2)(𝑋0 − 𝑋1 + 𝑋2) − 2𝑡0𝑋0] 

So that: 

{

𝑡0𝑋0 = 𝐴0𝑋0 … (1)

(𝑡0 + 𝑡1 + 𝑡2)(𝑋0 + 𝑋1 + 𝑋2) − (𝑡0 − 𝑡1 + 𝑡2)(𝑋0 − 𝑋1 + 𝑋2) = (𝐴0 + 𝐴1 + 𝐴2)(𝑋0 + 𝑋1 + 𝑋2) − (𝐴0 − 𝐴1 + 𝐴2)(𝑋0 − 𝑋1 + 𝑋2) … (2)

(𝑡0 + 𝑡1 + 𝑡2)(𝑋0 + 𝑋1 + 𝑋2) − (𝑡0 − 𝑡1 + 𝑡2)(𝑋0 − 𝑋1 + 𝑋2) = (𝐴0 + 𝐴1 + 𝐴2)(𝑋0 + 𝑋1 + 𝑋2) − (𝐴0 − 𝐴1 + 𝐴2)(𝑋0 − 𝑋1 + 𝑋2) … (3)
 

This equivalents: 

{

𝐴0𝑋0 = 𝑡0𝑋0

(𝐴0 + 𝐴1 + 𝐴2)(𝑋0 + 𝑋1 + 𝑋2) = (𝑡0 + 𝑡1 + 𝑡2)(𝑋0 + 𝑋1 + 𝑋2)

(𝐴0 − 𝐴1 + 𝐴2)(𝑋0 − 𝑋1 + 𝑋2) = (𝑡0 − 𝑡1 + 𝑡2)(𝑋0 − 𝑋1 + 𝑋2)
 

Thus, the proof is complete. 

Example. 

Consider the matrix: 

𝐴 = (
3 +

1

2
𝐼1 −

3

2
𝐼2

1

2
𝐼1 +

1

2
𝐼2

1

2
𝐼1 −

1

2
𝐼2 2 −

3

2
𝐼1 +

1

2
𝐼2

) = (
3 0
0 2

) + (

1

2

1

2
1

2

−3

2

) 𝐼1 + (

−3

2

1

2
−1

2

1

2

) 𝐼2

= 𝐴0 + 𝐴1𝐼1 + 𝐴2𝐼2 

The eigen values of 𝐴0 are {3,2}. 

The eigen values of 𝐴0 + 𝐴1 + 𝐴2 are {2,1}. 

The eigen values of 𝐴0 − 𝐴1 + 𝐴2 are {1,4}. 
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To find the corresponding 2 × 2 2-cyclic refined neutrosophic matrix 𝐴, we discuss the 

following cases: 

Case(1). If 𝑡0 = 3, 𝑡0 + 𝑡1 + 𝑡2 = 2, 𝑡0 − 𝑡1 + 𝑡2 = 1, then: 

 𝑡1 =
1

2
 , 𝑡2 =

−3

2
 , thus 𝑇1 = 3 +

1

2
𝐼1 −

3

2
𝐼2. 

Case(2). If 𝑡0 = 3, 𝑡0 + 𝑡1 + 𝑡2 = 2, 𝑡0 − 𝑡1 + 𝑡2 = 4, then: 

 𝑡1 = −1 , 𝑡2 = 0 , thus 𝑇2 = 3 − 𝐼1. 

Case(3). If 𝑡0 = 3, 𝑡0 + 𝑡1 + 𝑡2 = 1, 𝑡0 − 𝑡1 + 𝑡2 = 1, then: 

 𝑡1 = 0 , 𝑡2 = −2 , thus 𝑇3 = 3 − 2𝐼2. 

Case(4). If 𝑡0 = 3, 𝑡0 + 𝑡1 + 𝑡2 = 1, 𝑡0 − 𝑡1 + 𝑡2 = 4, then: 

 𝑡1 =
−3

2
 , 𝑡2 =

−1

2
 , thus 𝑇4 = 3 −

3

2
𝐼1 −

1

2
𝐼2. 

Case(5). If 𝑡0 = 2, 𝑡0 + 𝑡1 + 𝑡2 = 2, 𝑡0 − 𝑡1 + 𝑡2 = 1, then: 

 𝑡1 =
1

2
 , 𝑡2 =

−1

4
 , thus 𝑇5 = 3 +

1

2
𝐼1 −

1

4
𝐼2. 

Case(6). If 𝑡0 = 2, 𝑡0 + 𝑡1 + 𝑡2 = 2, 𝑡0 − 𝑡1 + 𝑡2 = 4, then: 

 𝑡1 = −1 , 𝑡2 = 1 , thus 𝑇6 = 3 − 𝐼1 + 𝐼2. 

Case(7). If 𝑡0 = 2, 𝑡0 + 𝑡1 + 𝑡2 = 1, 𝑡0 − 𝑡1 + 𝑡2 = 1, then: 

 𝑡1 = 0 , 𝑡2 = −1 , thus 𝑇7 = 3 − 𝐼2. 

Case(8). If 𝑡0 = 2, 𝑡0 + 𝑡1 + 𝑡2 = 1, 𝑡0 − 𝑡1 + 𝑡2 = 4, then: 

 𝑡1 =
−3

2
 , 𝑡2 =

1

2
 , thus 𝑇8 = 3 −

3

2
𝐼1 +

1

2
𝐼2. 

This implies that 𝐴 has 8 eigen values. 

The determinant of an n-cyclic refined neutrosophic matrix. 

According to the previous discussion, we have found an algorithm to compute n-cyclic 

refined neutrosophic matrix. 

From the point of view, we are forced to study the computing of eigen values by 

determinants. 

Definition. 

Let 𝐴 = 𝐴0 + 𝐴1𝐼1 + 𝐴2𝐼2  be an n-cyclic refined neutrosophic matrix, we define its 

determinant as follows: 

det 𝐴 = det 𝐴0 +
1

2
𝐼1[det(𝐴0 + 𝐴1 + 𝐴2) − det(𝐴0 − 𝐴1 + 𝐴2)] +

1

2
𝐼2[det(𝐴0 + 𝐴1 + 𝐴2) +

det(𝐴0 − 𝐴1 + 𝐴2) − 2 det 𝐴0]. 

Theorem. 
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Let 𝐴 = 𝐴0 + 𝐴1𝐼1 + 𝐴2𝐼2, 𝐵 = 𝐵0 + 𝐵1𝐼1 + 𝐵2𝐼2 be two 𝑛 × 𝑛 n-cyclic refined neutrosophic 

matrices, then: 

1). 𝐴 is invertible if and only if det 𝐴 is invertible. 

2). det 𝐴𝑇 = det 𝐴. 

3). det(𝐴. 𝐵) = det 𝐴 . det 𝐵. 

4). 𝑇 = 𝑡0 + 𝑡1𝐼1 + 𝑡2𝐼2 is an eigen of 𝐴 if and only if det(𝐴 − 𝑇𝑈𝑛×𝑛) = 0. 

Proof. 

1). It is clear and easy. 

2). 𝐴𝑇 = 𝐴0
𝑇 + 𝐴1

𝑇𝐼1 + 𝐴2
𝑇𝐼2, thus: 

det 𝐴𝑇 = det 𝐴0
𝑇 +

1

2
𝐼1[det(𝐴0 + 𝐴1 + 𝐴2)𝑇 − det(𝐴0 − 𝐴1 + 𝐴2)𝑇]

+
1

2
𝐼2[det(𝐴0 + 𝐴1 + 𝐴2)𝑇 = det(𝐴0 − 𝐴1 + 𝐴2)𝑇 − 2 det 𝐴0

𝑇] = det 𝐴 

3). 𝐴. 𝐵 = 𝐴0𝐵0 +
1

2
𝐼1[(𝐴0 + 𝐴1 + 𝐴2)(𝐵0 + 𝐵1 + 𝐵2) − (𝐴0 − 𝐴1 + 𝐴2)(𝐵0 − 𝐵1 + 𝐵2)] +

1

2
𝐼2[(𝐴0 + 𝐴1 + 𝐴2)(𝐵0 + 𝐵1 + 𝐵2) + (𝐴0 − 𝐴1 + 𝐴2)(𝐵0 − 𝐵1 + 𝐵2) − 2𝐴0𝐵0] = 𝐴0𝐵0 +

1

2
𝐼1(𝑇1 − 𝑇2) +

1

2
𝐼2(𝑇1 + 𝑇2 − 2𝐴0𝐵0), where: 

𝑇1 = (𝐴0 + 𝐴1 + 𝐴2)(𝐵0 + 𝐵1 + 𝐵2),𝑇2 = (𝐴0 − 𝐴1 + 𝐴2)(𝐵0 − 𝐵1 + 𝐵2)  

det(𝐴. 𝐵) = det 𝐴0𝐵0

+
1

2
𝐼1 [det (

1

2
𝑇1 −

1

2
𝑇2 +

1

2
𝑇1 +

1

2
𝑇2 − 𝐴0𝐵0 + 𝐴0𝐵0)

− det (𝐴0𝐵0 −
1

2
𝑇1 +

1

2
𝑇2 +

1

2
𝑇1 +

1

2
𝑇2 − 𝐴0𝐵0)]

+
1

2
𝐼2 [det (

1

2
𝑇1 −

1

2
𝑇2 +

1

2
𝑇1 +

1

2
𝑇2 − 𝐴0𝐵0 + 𝐴0𝐵0)

− det (𝐴0𝐵0 −
1

2
𝑇1 +

1

2
𝑇2 +

1

2
𝑇1 +

1

2
𝑇2 − 𝐴0𝐵0) − 2 det 𝐴0𝐵0]

= det 𝐴0 det 𝐵0 +
1

2
𝐼1[det 𝑇1 − det 𝑇2] +

1

2
𝐼2[det 𝑇1 + det 𝑇2 − 2 det 𝐴0 det 𝐵0]

= det 𝐴0 det 𝐵0

+
1

2
𝐼1[det(𝐴0 + 𝐴1 + 𝐴2) . det(𝐵0 + 𝐵1 + 𝐵2)

+ det(𝐴0 − 𝐴1 + 𝐴2) . det(𝐵0 − 𝐵1 + 𝐵2)]

+
1

2
𝐼2[det(𝐴0 + 𝐴1 + 𝐴2) . det(𝐵0 + 𝐵1 + 𝐵2)

− det(𝐴0 − 𝐴1 + 𝐴2) . det(𝐵0 − 𝐵1 + 𝐵2) − 2 det 𝐴0 det 𝐵0] = det 𝐴 det 𝐵 
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4). We have 𝐴 − 𝑇𝑈𝑛×𝑛 = (𝐴0 + 𝐴1𝐼1 + 𝐴2𝐼2) − (𝑡0 + 𝑡1𝐼1 + 𝑡2𝐼2)𝑈𝑛×𝑛 = (𝐴0 − 𝑡0𝑈𝑛×𝑛) +

(𝐴1 − 𝑡1𝑈𝑛×𝑛)𝐼1 + (𝐴2 − 𝑡2𝑈𝑛×𝑛)𝐼2. 

det(𝐴 − 𝑇𝑈𝑛×𝑛)

= det(𝐴0 − 𝑡0𝑈𝑛×𝑛)

+
1

2
𝐼1[det(𝐴0 + 𝐴1 + 𝐴2 − (𝑡0 + 𝑡1 + 𝑡2)𝑈𝑛×𝑛)

− det(𝐴0 − 𝐴1 + 𝐴2 − (𝑡0 − 𝑡1 + 𝑡2)𝑈𝑛×𝑛)]

+
1

2
𝐼2[det(𝐴0 + 𝐴1 + 𝐴2 − (𝑡0 + 𝑡1 + 𝑡2)𝑈𝑛×𝑛)

+ det(𝐴0 − 𝐴1 + 𝐴2 − (𝑡0 − 𝑡1 + 𝑡2)𝑈𝑛×𝑛) − 2 det(𝐴0 − 𝑡0𝑈𝑛×𝑛)] 

The equation det(𝐴 − 𝑇𝑈𝑛×𝑛) = 0 is equivalent to: 

{

det(𝐴0 − 𝑡0𝑈𝑛×𝑛) = 0

det(𝐴0 + 𝐴1 + 𝐴2 − (𝑡0 + 𝑡1 + 𝑡2)𝑈𝑛×𝑛) = 0

det(𝐴0 − 𝐴1 + 𝐴2 − (𝑡0 − 𝑡1 + 𝑡2)𝑈𝑛×𝑛) = 0

 

This is equivalent to: 

To is eigen value of 𝐴0, 𝑡0 + 𝑡1 + 𝑡2 is eigen value of 𝐴0 + 𝐴1 + 𝐴2, 𝑡0 − 𝑡1 + 𝑡2 is eigen 

value of 𝐴0 − 𝐴1 + 𝐴2, thus 𝑇 is an eigen value of 𝐴. 

 

Theorem. 

Let 𝐴 = 𝐴0 + 𝐴1𝐼1 + 𝐴2𝐼2, 𝐵 = 𝐵0 + 𝐵1𝐼1 + 𝐵2𝐼2 be two 𝑛 × 𝑛 n-cyclic refined neutrosophic 

matrices, then: 

𝐴. 𝐵 = 𝐴0𝐵0 +
1

2
𝐼1[(𝐴0 + 𝐴1 + 𝐴2)(𝐵0 + 𝐵1 + 𝐵2) − (𝐴0 − 𝐴1 + 𝐴2)(𝐵0 − 𝐵1 + 𝐵2)]

+
1

2
𝐼2[(𝐴0 + 𝐴1 + 𝐴2)(𝐵0 + 𝐵1 + 𝐵2) + (𝐴0 − 𝐴1 + 𝐴2)(𝐵0 − 𝐵1 + 𝐵2)

− 2𝐴0𝐵0] 

The proof is easy and clear. 

Example. 

Consider the following 2 × 2 2-cyclic refined neutrosophic matrix: 

𝐴 = (
1 2
0 2

) + (
2 1
1 1

) 𝐼1 + (
1 0
3 1

) 𝐼2 = (
1 + 2𝐼1 + 𝐼2 1 + 𝐼1

𝐼1 + 3𝐼2 2 + 𝐼1 + 𝐼2
) = 𝐴0 + 𝐴1𝐼1 + 𝐴2𝐼2 

𝐴0
−1 =

1

2
(

2 −2
0 1

) ,  (𝐴0 + 𝐴1 + 𝐴2) = (
4 3
4 4

) , (𝐴0 + 𝐴1 + 𝐴2)−1 =
1

4
(

4 −3
−4 4

) , (𝐴0 − 𝐴1 +

𝐴2) = (
0 1
2 2

),(𝐴0 − 𝐴1 + 𝐴2)−1 = −
1

2
(

2 −1
−2 0

) 
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𝐴−1 =
1

2
(

2 −2
0 1

) +
1

2
𝐼1 [

1

4
(

4 −3
−4 4

) −
−1

2
(

2 −1
−2 0

)]

+
1

2
𝐼2 [

1

4
(

4 −3
−4 4

) +
−1

2
(

2 −1
−2 0

) − 2 (
1

2
) (

2 −2
0 1

)]

= (
1 −1

0
1

2

) +
1

2
𝐼1 [( 1 −

3

4
−1 1

) + ( 1 −
1

2
−1 0

)]

+
1

2
𝐼2 [( 1 −

3

4
−1 1

) + (−1
1

2
1 0

) − (
2 −2
0 1

)]

= (
1 −1

0
1

2

) +
1

2
𝐼1 ( 2 −

5

4
−2 1

) +
1

2
𝐼2 (−2

7

4
0 0

)

= (
1 + 𝐼1 − 𝐼2 −1 −

5

8
𝐼1 +

7

8
𝐼2

−𝐼1

1

2
+

1

2
𝐼1

) 

Theorem. 

Let 𝑋 = 𝑋0 + 𝑋1𝐼1 + 𝑋2𝐼2 be a 2-cyclic refined neutrosophic matrix, then 𝑋 is invertible if 

and only if 𝑋0, 𝑋0 + 𝑋1 + 𝑋2, 𝑋0 − 𝑋1 + 𝑋2 are invertible, also: 

 

𝑋−1 = 𝑋0
−1 +

1

2
𝐼1[(𝑋0 + 𝑋1 + 𝑋2)−1 − (𝑋0 − 𝑋1 + 𝑋2)−1]

+
1

2
𝐼2[(𝑋0 + 𝑋1 + 𝑋2)−1 + (𝑋0 − 𝑋1 + 𝑋2)−1 − 2𝑋0] 

Proof. 

Assume that 𝑋 is invertible, the exists 𝑌 = 𝑌0 + 𝑌1𝐼1 + 𝑌2𝐼2 such that 𝑋. 𝑌 = 𝑈𝑛×𝑛. 

𝑋. 𝑌 = 𝑋0𝑌0 + 𝐼1[𝑋0𝑌1 + 𝑋1𝑌0 + 𝑋2𝑌1 + 𝑋1𝑌2] + 𝐼2[𝑋0𝑌2 + 𝑋2𝑌0 + 𝑋1𝑌1 + 𝑋2𝑌2]

= 𝑋0𝑌0 +
1

2
𝐼1[(𝑋0 + 𝑋1 + 𝑋2)(𝑌0 + 𝑌1 + 𝑌2) − (𝑋0 − 𝑋1 + 𝑋2)(𝑌0 − 𝑌1 + 𝑌2)]

+
1

2
𝐼2[(𝑋0 + 𝑋1 + 𝑋2)(𝑌0 + 𝑌1 + 𝑌2) + (𝑋0 − 𝑋1 + 𝑋2)(𝑌0 − 𝑌1 + 𝑌2) − 2𝑋0𝑌0]

= 𝑈𝑛×𝑛 

This implies that: 

{
𝑋0𝑌0 = 𝑈𝑛×𝑛

(𝑋0 + 𝑋1 + 𝑋2)(𝑌0 + 𝑌1 + 𝑌2) = (𝑋0 − 𝑋1 + 𝑋2)(𝑌0 − 𝑌1 + 𝑌2) = 𝑈𝑛×𝑛
 

Hence 𝑋0, 𝑋0 + 𝑋1 + 𝑋2, 𝑋0 − 𝑋1 + 𝑋2 are invertible. 

On the other hand, we get 𝑌0 = 𝑋0
−1 , 𝑌0 − 𝑌1 + 𝑌2 = (𝑋0 − 𝑋1 + 𝑋2)−1 , 𝑌0 + 𝑌1 + 𝑌2 =

(𝑋0 + 𝑋1 + 𝑋2)−1, thus: 

𝑌1 =
1

2
[(𝑋0 + 𝑋1 + 𝑋2)−1 − (𝑋0 − 𝑋1 + 𝑋2)−1] 
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𝑌2 =
1

2
[(𝑋0 + 𝑋1 + 𝑋2)−1 + (𝑋0 − 𝑋1 + 𝑋2)−1 − 2𝑋0

−1]. 

Conclusion 

In this paper, we have presented a full solution of the diagonalization problem of 2-cyclic 

refined neutrosophic matrices, where we have presented a novel algorithm to compute the 

eigen values and vectors of 2-cyclic refined neutrosophic matrices that helps in 

representing them as a product 𝐴−1𝐷𝐴, where A is an invertible matrix, and D is diagonal 

matrix. 

In the future, we suggest researchers to continue our efforts, and to study the possibility of 

diagonalization problem of 3-cyclic refined neutrosophic matrices. 
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Abstract: The objective of this paper is to solve two open problems about the group of units 

of some 2-cyclic refined neutrosophic rings asked by Sadiq. Where it provides a 

classification theorem for these rings, and uses this classification property to give a full 

answer of these open questions. 

Also, this work presents a novel algorithm to find all imperfect neutrosophic duplets and 

triplets in many numerical 2-cyclic refined neutrosophic rings by using the classification 

isomorphisms. 

1. Introduction 

Neutrosophic logic as a new generalization of fuzzy logic concerns with indeterminacy in 

science and real life problems [1]. Neutrosophy was proposed by Smarandache [6] for these 

logical purposes. 

Laterally, neutrosophy was applied to algebra and algebraic structures, were we find many 

algebraic structures defined by using an indeterminacy element (I) such as neutrosophic 

rings, neutrosophic spaces, neutrosophic modules, and matrices [2-5]. 

The concept of n-cyclic refined neutrosophic ring was presented firstly in [7], and studied 

widely in [8-9]. 

In [10], Sadiq has studied the group of units problem for 2-CRNR rings, where he proved 

that it is isomorphic to 3 times direct product of 𝑍2 . Also, he presented the following open 

research problems: [10]: 

mailto:Mohammadabobala777@gmail.com
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Open problem 1: If the ring R with no zero divisors, then is the group of units of 𝑅2(𝐼) is 

isomorphic to 𝑈(𝑅) × 𝑈(𝑅) × 𝑈(𝑅).  

Open problem 2: Find a homomorphism between 𝑅2(𝐼) and the direct product × 𝑅 × 𝑅 . 

Open problem 3: Is the group of units of the 2-cyclic refined ring of real numbers 

isomorphic to 𝑅∗ × 𝑅∗ × 𝑅∗ . 

This motivates us to continuo these efforts to classify the group of units of 2-cyclic refined 

rings, and to prove the validity of Sadiq's open problems. 

On the other hand, we classify all imperfect duplets and triplets in the ring of 2-cyclic 

refined neutrosophic integers by solving many related Diophantine equations. 

We denote the 2-cyclic refined ring by 2-CRNR.   

2. Preliminaries 

Definition 1.2: 

Let (R,+,×) be a ring and 𝐼𝑘; 1 ≤ 𝑘 ≤ 𝑛 be n sub-indeterminacies. We define 𝑅𝑛(I)={𝑎0 +

𝑎1𝐼 + ⋯ + 𝑎𝑛𝐼𝑛 ;  𝑎𝑖 ∈ 𝑅} to be n-cyclic refined neutrosophic ring. 

Operations on 𝑅𝑛(I) are defined as: 

∑ 𝑝𝑖𝐼𝑖 + ∑ 𝑞𝑖𝐼𝑖

𝑛

𝑖=0

𝑛

𝑖=0

= ∑(𝑝𝑖 + 𝑞𝑖)𝐼𝑖 ,

𝑛

𝑖=0

∑ 𝑝𝑖𝐼𝑖

𝑛

𝑖=0

× ∑ 𝑞𝑖𝐼𝑖 = ∑ (𝑝𝑖 × 𝑞𝑗)𝐼𝑖𝐼𝑗 =

𝑛

𝑖,𝑗=0

𝑛

𝑖=0

∑ (𝑝𝑖 × 𝑞𝑗)𝐼(𝑖+𝑗 𝑚𝑜𝑑𝑛)

𝑛

𝑖,𝑗=0

  

Example 2.2: 

(a) The 2-CRNR of integers is defined as follows: 

𝑍2(𝐼) = {𝑡0 + 𝑡1𝐼1 + 𝑡2𝐼2;  𝑡𝑖 ∈ 𝑍}. 

(b) Addition on 𝑍2(𝐼) : 

(𝑎 + 𝑏𝐼1 + 𝑐𝐼2) +  (𝑚 + 𝑛𝐼1 + 𝑡𝐼2) = (𝑎 + 𝑚) + 𝐼1(𝑏 + 𝑛) + 𝐼2(𝑐 + 𝑡). 

(c) Multiplication on 𝑍2(𝐼) : 

(𝑎 + 𝑏𝐼1 + 𝑐𝐼2)( 𝑚 + 𝑛𝐼1 + 𝑡𝐼2)= 𝑎𝑚 + 𝑎𝑛𝐼1 + 𝑎𝑡𝐼2 + 𝑏𝑚𝐼1 + 𝑏𝑛𝐼2 + 𝑏𝑡𝐼1 + 𝑐𝑚𝐼2 + 𝑐𝑛𝐼1 + 𝑐𝑡𝐼2 
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= 𝑎𝑚 + 𝐼1(𝑎𝑛 + 𝑏𝑚 + 𝑏𝑡 + 𝑐𝑛) + 𝐼2(𝑎𝑡 + 𝑏𝑛 + 𝑐𝑚 + 𝑐𝑡) . 

Where 𝐼1𝐼1 = 𝐼(1+1 𝑚𝑜𝑑2) = 𝐼2, 𝐼2𝐼2 = 𝐼(2+2 𝑚𝑜𝑑 2) = 𝐼2, 𝐼1𝐼2 = 𝐼(1+2 𝑚𝑜𝑑 2) = 𝐼1. 

Definition 3.2: 

Let R be a ring, a duplet (𝑥, 𝑦) is called an imperfect duplet with x acts as an identity if and 

only if 𝑥𝑦 = 𝑦𝑥 = 𝑦. 

A triple (𝑥, 𝑦, 𝑧) is called an imperfect triplet with x acts as an identity if and only if 𝑥𝑦 =

𝑦𝑥 = 𝑦, 𝑥𝑧 = 𝑧𝑥 = 𝑧, 𝑧𝑦 = 𝑦𝑧 = 𝑥. 

3. Main discussion 

Theorem 1.3 : Let 𝑍 be the ring of integers, and 𝑆 = {(𝑏0, 𝑏1, 𝑏2); 𝑏𝑖 ∈ 𝑍 𝑎𝑛𝑑 𝑏1 − 𝑏2 ∈ 2𝑍}, 

then (𝑆, +, . ) Is a subring of 𝑍 × 𝑍 × 𝑍. 

Proof: It is clear that 𝑆 ≠ ∅ 

∀ 𝑥, 𝑦 ∈ 𝑆 , 𝑥 = (𝑎0, 𝑎1, 𝑎2), 𝑦 = (𝑏0, 𝑏1, 𝑏2), where 𝑏1 − 𝑏2, 𝑎1 − 𝑎2 ∈ 2𝑍 

𝑥 + 𝑦 = (𝑎0 + 𝑏0, 𝑎1 + 𝑏1, 𝑎2 + 𝑏2) , 𝑥𝑦 = (𝑎0𝑏0, 𝑎1𝑏1, 𝑎2𝑏2) 

We have: (𝑎1 + 𝑏1) − (𝑎2 + 𝑏2) = (𝑎1 − 𝑎2) + (𝑏1 − 𝑏2) ∈ 2𝑍, thus 𝑥 + 𝑦 ∈ 𝑆 

Also, 𝑎1𝑏1 − 𝑎2𝑏2 = 𝑎1𝑏1 + 𝑎1𝑏2 − 𝑎1𝑏2 − 𝑎2𝑏2 = 𝑎1(𝑏1 + 𝑏2) − 𝑏2(𝑎1 + 𝑎2) . By the 

assumption, we have 𝑏1 − 𝑏2, 𝑎1 − 𝑎2 ∈ 2𝑍, hence 

𝑏1 + 𝑏2, 𝑎1 + 𝑎2 ∈ 2𝑍, this implies 𝑎1(𝑏1 + 𝑏2) − 𝑏2(𝑎1 + 𝑎2) ∈ 2𝑍 and 𝑥. 𝑦 ∈ 𝑆. 

Theorem 2.3: Let 𝑍2(𝐼) be the 2-CRNR of integers, then 𝑍2(𝐼) ≅ 𝑆. 

Proof: 

Define 𝑓: 𝑍2(𝐼)  → 𝑆; 𝑓(𝑎0 + 𝑎1𝐼1 + 𝑎2𝐼2) = (𝑎0, 𝑎0 + 𝑎1 + 𝑎2, 𝑎0 − 𝑎1 + 𝑎2). 

It's clear that 𝑓is well defined. On the other hand we have: 

(a). 𝑓is injective, ker 𝑓 = {𝑎0 + 𝑎1𝐼1 + 𝑎2𝐼2 ∈ 𝑍2(𝐼) ;  𝑓(𝑎0 + 𝑎1𝐼1 + 𝑎2𝐼2) = (0,0,0)}, hence. 

𝑎0 = 0, 𝑎0 + 𝑎1 + 𝑎2 = 0 , 𝑎0 − 𝑎1 + 𝑎2 = 0, thus 𝑎0 = 𝑎1 = 𝑎2 , this means that ker 𝑓 =

{0𝑆}. 

(b). 𝑓 is surjective, ∀ 𝑦 = (𝑎0, 𝑎1, 𝑎2) ∈ 𝑆 , we have:  𝑎1 − 𝑎2 ∈ 2𝑍 , hence 𝑥 = 𝑎0 +

𝐼1 (
𝑎1−𝑎2

2
) + 𝐼2 (

𝑎1+𝑎2−2𝑎0

2
) ∈ 𝑍2(𝐼). 

This is because 𝑎1 − 𝑎2, 𝑎1 + 𝑎2 − 2𝑎0 ∈ 2𝑍. 
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Now, we compute 𝑓(𝑥) = (𝑎0, 𝑎0 +
𝑎1−𝑎2

2
+

𝑎1+𝑎2−2𝑎0

2
, 𝑎0 −

𝑎1−𝑎2

2
+

𝑎1+𝑎2−2𝑎0

2
) =

(𝑎0, 𝑎1, 𝑎2) = 𝑦 

(c). 𝑓is a homomorphism because clearly 𝑓 preserves addition and multiplication, thus 

𝑆 ≅ 𝑍2(𝐼). 

Theorem 3.3: Let 𝑅 be a of real numbers, 𝑅2(𝐼) be the corresponding 22-CRNR of real 

numbers, then 𝑅2(𝐼) ≅ 𝑅3. 

Proof. Define 𝑓: 𝑅2(𝐼)  → 𝑅3; 𝑓(𝑎0 + 𝑎1𝐼1 + 𝑎2𝐼2) = (𝑎0, 𝑎0 + 𝑎1 + 𝑎2, 𝑎0 − 𝑎1 + 𝑎2). 

𝑓 is well defined and bijective. (the proof is exactly similar to the previous theorem). 

𝑓 is a homomorphism. ∀ 𝑥, 𝑦 ∈ 𝑅2(𝐼) , 𝑥 = 𝑎0 + 𝑎1𝐼1 + 𝑎2𝐼2, 𝑦 = 𝑏0 + 𝑏1𝐼1 + 𝑏2𝐼2. 

𝑥 + 𝑦 = 𝑎0 + 𝑏0 + (𝑎1 + 𝑏1)𝐼1 + (𝑎2 + 𝑏2)𝐼2. 

𝑓(𝑥 + 𝑦) = (𝑎0 + 𝑏0, 𝑎0 + 𝑏0 + 𝑎1 + 𝑏1 + 𝑎2 + 𝑏2, 𝑎0 + 𝑏0 − (𝑎1 + 𝑏1) + 𝑎2 + 𝑏2) 

𝑓(𝑥 + 𝑦) = (𝑎0, 𝑎0 + 𝑎1 + 𝑎2, 𝑎0 − 𝑎1 + 𝑎2) + (𝑏0, 𝑏0 + 𝑏1 + 𝑏2, 𝑏0 − 𝑏1 + 𝑏2) = 𝑓(𝑥) + 𝑓(𝑦). 

𝑥𝑦 = 𝑎0𝑏0 + (𝑎1𝑏0 + 𝑎0𝑏1 + 𝑎2𝑏1 + 𝑎1𝑏2)𝐼1 + (𝑎1𝑏0 + 𝑎0𝑏2 + 𝑎1𝑏1 + 𝑎2𝑏2)𝐼2 

𝑓(𝑥𝑦) = (𝑎0𝑏0, 𝑎0𝑏0 + 𝑎1𝑏0 + 𝑎0𝑏1 + 𝑎1𝑏1 + 𝑎2𝑏0 + 𝑎0𝑏2 + 𝑎1𝑏1 + 𝑎2𝑏2, 𝑎0𝑏0

− (𝑎1𝑏0 + 𝑎0𝑏1 + 𝑎2𝑏1 + +𝑎1𝑏2) + 𝑎2𝑏0 + 𝑎0𝑏2 + 𝑎1𝑏1 + 𝑎2𝑏2) 

𝑓(𝑥𝑦) = (𝑎0, 𝑎0 + 𝑎1 + 𝑎2, 𝑎0 − 𝑎1 + 𝑎2). (𝑏0, 𝑏0 + 𝑏1 + 𝑏2, 𝑏0 − 𝑏1 + 𝑏2) = 𝑓(𝑥). 𝑓(𝑦) , 

hence 𝑅2(𝐼) ≅ 𝑅3. 

Answers to the open questions 

The following theorem answers the open question 3. 

Theorem 4.3: Let ∪ (𝑅2(𝐼)) be the group of units of the 2-CRNR𝑅2(𝐼), then ∪ (𝑅2(𝐼)) ≅

𝑅∗3. 

Proof.  

According to the previous theorem, 𝑅2(𝐼) ≅ 𝑅 × 𝑅 × 𝑅 , hence. ∪ (𝑅2(𝐼)) ≅ ∪ (𝑅) ×∪

(𝑅) ×∪ (𝑅) = 𝑅∗3. 

The following remark answers the open question 2. 

Remark 5.3: If R is a ring, and 𝑅2(𝐼) is the corresponding 2-CRNR, hence the map 

𝑓: 𝑅2(𝐼)  → 𝑅 × 𝑅 × 𝑅; 𝑓(𝑎0 + 𝑎1𝐼1 + 𝑎2𝐼2) = (𝑎0, 𝑎0 + 𝑎1 + 𝑎2, 𝑎0 − 𝑎1 + 𝑎2), 
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Is a ring homomorphism (the proof is similar to Theorem 3.2). Thus the answer to the open 

question 2 is yes. Remark that f is not supposed to be an isomorphism, check Theorem 1.3 

for example. 

The first question is still open, but we can solve the problem in a special case for the ring of 

integers modulo n, with odd n. 

Theorem 6.3: Let 𝑅 be the ring of integers modulo n, with an odd integer n, then 𝑅2(𝐼) ≅

𝑍𝑛 × 𝑍𝑛 × 𝑍𝑛 

Proof. . Define 𝑓: 𝑅2(𝐼)  → 𝑍𝑛 × 𝑍𝑛 × 𝑍𝑛; 𝑓(𝑎0 + 𝑎1𝐼1 + 𝑎2𝐼2) = (𝑎0, 𝑎0 + 𝑎1 + 𝑎2, 𝑎0 − 𝑎1 +

𝑎2). 

It's clear that 𝑓 is a well defined homomorphism, by a similar argument of the previous 

theorem, we should prove that 𝑓 is a bijective map. 

ker 𝑓 = {𝑎0 + 𝑎1𝐼1 + 𝑎2𝐼2 ∈ 𝑅2(𝐼) ;  𝑓(𝑎0 + 𝑎1𝐼1 + 𝑎2𝐼2) = (0,0,0)}, hence. 

𝑎0 = 0 … (1) 

𝑎0 + 𝑎1 + 𝑎2 = 0 … (2) 

𝑎0 − 𝑎1 + 𝑎2 = 0 … (3) 

From equation (2) and (3), we get 2𝑎2 = 0, By the proposition of the theorem, n is odd, 

this means that gcd(2,n)=1 and 2 cannot be a zero divisor, thus  2𝑎2 = 0 ⟹ 𝑎2 = 0. 

This implies that 𝑎1 = 0, and ker 𝑓 = {(0,0,0)}. 

𝑓 is surjective: 

∀𝑦 = (𝑎0, 𝑎1, 𝑎2) ∈ 𝑍𝑛 × 𝑍𝑛 × 𝑍𝑛 , we have 𝑥 = 𝑎0 + 𝐼1((𝑎1 + 𝑎2)2−1) + 𝐼2((𝑎1 + 𝑎2 −

2𝑎0)2−1) ∈ 𝑅2(𝐼). 

That is because 2 is a unit in 𝑍𝑛 and 2−1 is existed. 

Now, we compute 

𝑓(𝑥) = (𝑎0, (𝑎1 − 𝑎2)2−1 + (𝑎1 + 𝑎2 + 2𝑎0)2−1 + 𝑎0, 𝑎0 + (𝑎1 − 𝑎2)2−1

+ (𝑎1 + 𝑎2 + 2𝑎0)2−1) 

= (𝑎0, 𝑎12−1 − 𝑎22−1 + 𝑎12−1 + 𝑎22−1 − 2𝑎02−1 + 𝑎0, 𝑎0 − 𝑎12−1 + 𝑎22−1 + 𝑎12−1 + 𝑎22−1

− 2𝑎02−1) 

= (𝑎0, 2𝑎12−1, 2𝑎22−1) = (𝑎0, 𝑎1, 𝑎2). 
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So that, 𝑅2(𝐼) ≅ 𝑍𝑛 × 𝑍𝑛 × 𝑍𝑛. 

Theorem 7.3: If 𝑅 = 𝑍𝑛 the ring of integers modulo n with an odd integer n, we have: 

∪ (𝑅2(𝐼)) ≅∪ (𝑍𝑛) ×∪ (𝑍𝑛) ×∪ (𝑍𝑛). 

The proof holds directly by the previous result. 

Theorem 8.3: If 𝑅 = 𝑍 the ring of integers, 𝑍2(𝐼) be the corresponding 2-CRNR, then 

𝑍2(𝐼) has exactly 8 forms of imperfect duplets. 

Proof. We have 𝑍2(𝐼) ≅ 𝑆; 𝑆 = {(𝑎0, 𝑎1, 𝑎2); 𝑎𝑖 ∈ 𝑍 𝑎𝑛𝑑 𝑎1 − 𝑎2 ∈ 2𝑍}. 

To find imperfect duplets in 𝑍2(𝐼), it is sufficient to compute duplets in 𝑆: 

Let 𝑥 = (𝑎0, 𝑎1, 𝑎2), 𝑦 = (𝑏0, 𝑏1, 𝑏2) be an imperfect duplet in 𝑆, with 𝑦 acts as an identity, 

we have. 

𝑥. 𝑦 = 𝑥 ⟹ {

𝑎0𝑏0 = 𝑎0

𝑎1𝑏1 = 𝑎1

𝑎2𝑏2 = 𝑎2

⟹ {

𝑎0 = 0 𝑜𝑟 𝑏0 = 0
𝑎1 = 0 𝑜𝑟 𝑏1 = 0
𝑎2 = 0 𝑜𝑟 𝑏2 = 0

. 

The possible imperfect duplets are: 

(1).𝑥 = (0, 0,0), 𝑦 = (𝑏0, 𝑏1, 𝑏2) 

(With 𝑏1 − 𝑏2 ∈ 2𝑍) 

(2). 𝑥 = (0, 𝑎1, 𝑎2), 𝑦 = (𝑏0, 1,1) 

(With 𝑎1 − 𝑎2 ∈ 2𝑍) 

(3). 𝑥 = (0, 0, 𝑎2), 𝑦 = (𝑏0, 𝑏1, 1) 

(With 𝑎2 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑎𝑛𝑑 𝑏1 𝑖𝑠 𝑜𝑑𝑑) 

(4). 𝑥 = (𝑎0, 0, 𝑎2), 𝑦 = (1, 𝑏1, 1) 

(With 𝑎2 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑎𝑛𝑑 𝑏1 𝑖𝑠 𝑜𝑑𝑑)  

(5). 𝑥 = (𝑎0, 𝑎1, 0), 𝑦 = (1, 1, 𝑏2) 

(With 𝑎1 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑎𝑛𝑑 𝑏2 𝑖𝑠 𝑜𝑑𝑑) 

(6). 𝑥 = (𝑎0, 𝑎1, 𝑎2), 𝑦 = (1, 1,1) 

(With 𝑎1 − 𝑎2 ∈ 2𝑍) 

(7). 𝑥 = (𝑎0, 0,0), 𝑦 = (1, 𝑏1, 𝑏2) 

(With 𝑏1 − 𝑏2 ∈ 2𝑍) 

(8). 𝑥 = (0, 𝑎1, 0), 𝑦 = (𝑏0, 1, 𝑏2) 
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(With 𝑎1 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑎𝑛𝑑 𝑏2 𝑖𝑠 𝑜𝑑𝑑) 

Thus, the imperfect duplets in 𝑍2(𝐼) are the converse image of the duplets in 𝑆, according 

to the isomorphism 

𝑓(𝑎0 + 𝑎1𝐼1 + 𝑎2𝐼2) = (𝑎0, 𝑎0 + 𝑎1 + 𝑎2, 𝑎0 − 𝑎1 + 𝑎2). 

𝑓−1(𝑎0 + 𝑎1𝐼1 + 𝑎2𝐼2) = (𝑎0 +
𝑎1−𝑎2

2
𝐼1 +

𝑎1+𝑎2−2𝑎0

2
𝐼2), so that the duplets of 𝑍2(𝐼)are: 

(1). 𝑥 = 0, 𝑦 = 𝑏0 + 𝑏1𝐼1 + 𝑏2𝐼2 

(With 𝑏1 − 𝑏2 ∈ 2𝑍) 

(2). 𝑥 =
𝑎1−𝑎2

2
𝐼1 +

𝑎1+𝑎2

2
𝐼2, 𝑦 = 𝑏0 +

2−2𝑏0

2
𝐼2 

(With 𝑎1 − 𝑎2 ∈ 2𝑍) 

(3). 𝑥 =
−𝑎2

2
𝐼1 +

𝑎2

2
𝐼2, 𝑦 = 𝑏0 +

𝑏1−1

2
𝐼1 +

𝑏1+1−2𝑏0

2
𝐼2 

(With 𝑎2 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑎𝑛𝑑 𝑏1 𝑖𝑠 𝑜𝑑𝑑) 

(4). 𝑥 = 𝑎0 +
−𝑎2

2
𝐼1 +

𝑎2−2𝑎0

2
𝐼2, 𝑦 = 1 +

𝑏1−1

2
𝐼1 +

𝑏1+1−2(1)

2
𝐼2 

(With 𝑎2 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑎𝑛𝑑 𝑏1 𝑖𝑠 𝑜𝑑𝑑)  

(5). 𝑥 = 𝑎0 +
𝑎1

2
𝐼1 +

𝑎1−2𝑎0

2
𝐼2, 𝑦 = 1 +

1−𝑏2

2
𝐼1 +

1+𝑏2−2(1)

2
𝐼2 

(With 𝑎1 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑎𝑛𝑑 𝑏2 𝑖𝑠 𝑜𝑑𝑑) 

(6). 𝑥 = 𝑎0 + 𝑎1𝐼1 + 𝑎2𝐼2, 𝑦 = 1 

(With 𝑎1 − 𝑎2 ∈ 2𝑍) 

(7). 𝑥 = 𝑎0 − 𝑎0𝐼2, 𝑦 = 1 +
𝑏1−𝑏2

2
𝐼1 +

𝑏1+𝑏2−2

2
𝐼2 

(With 𝑏1 − 𝑏2 ∈ 2𝑍) 

(8). 𝑥 =
𝑎1

2
𝐼1 +

𝑎1

2
𝐼2, 𝑦 = 𝑏0 +

1−𝑏2

2
𝐼1 +

1++𝑏2−2𝑏0

2
𝐼2 

(With 𝑎1 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑎𝑛𝑑 𝑏2 𝑖𝑠 𝑜𝑑𝑑) 

  

Theorem 9.3: Let 𝑅 be the ring of real numbers, 𝑅2(𝐼) be its 2-CRNR, then 𝑅2(𝐼) has 

exactly 8 forms of imperfect duplets. 

Proof. We have 𝑅2(𝐼) ≅ 𝑅 × 𝑅 × 𝑅 with the isomorphism: 

𝑓: 𝑅2(𝐼)  → 𝑅 × 𝑅 × 𝑅; 𝑓(𝑎0 + 𝑎1𝐼1 + 𝑎2𝐼2) = (𝑎0, 𝑎0 + 𝑎1 + 𝑎2, 𝑎0 − 𝑎1 + 𝑎2). 
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For determining the imperfect duplets in 𝑅2(𝐼), it is sufficient to find duplets in 𝑅 × 𝑅 × 𝑅 

and go back to 𝑅2(𝐼) by the inverse isomorphism. 

The imperfect duplets in 𝑅 × 𝑅 × 𝑅 are: 

(1). 𝑥 = (0, 0,0), 𝑦 = (𝑏0, 𝑏1, 𝑏2) 

(2). 𝑥 = (0, 𝑎1, 𝑎2), 𝑦 = (𝑏0, 1,1) 

(3). 𝑥 = (0, 0, 𝑎2), 𝑦 = (𝑏0, 𝑏1, 1) 

(4). 𝑥 = (𝑎0, 0, 𝑎2), 𝑦 = (1, 𝑏1, 1) 

(5). 𝑥 = (𝑎0, 𝑎1, 0), 𝑦 = (1, 1, 𝑏2) 

(6). 𝑥 = (𝑎0, 𝑎1, 𝑎2), 𝑦 = (1, 1,1) 

(7). 𝑥 = (𝑎0, 0,0), 𝑦 = (1, 𝑏1, 𝑏2) 

(8). 𝑥 = (0, 𝑎1, 0), 𝑦 = (𝑏0, 1, 𝑏2) 

Thus𝑅2(𝐼) has 8 forms of imperfect duplets. 

Remark 10.3: To find any imperfect duplets in𝑅2(𝐼), we should compute the inverse image 

of the corresponding duplet in 𝑅 × 𝑅 × 𝑅as follows: 

𝑓−1(𝑎0, 𝑎1, 𝑎2) = 𝑎0 +
𝑎1 − 𝑎2

2
𝐼1 +

𝑎1 + 𝑎2 − 2𝑎0

2
𝐼2 

Example 11.3: Let's, take a duplet with form:𝑥 = (2,0,3), 𝑦 = (1,5,1), it is clear 𝑥. 𝑦 = 𝑥. 

The corresponding duplet in 𝑅2(𝐼) is: 

𝑥1 = 𝑓−1(𝑥) = 2 +
−3

2
𝐼1 +

−1

2
𝐼2, 𝑦1 = 𝑓−1(𝑦) = 1 + 2𝐼1 + 2𝐼2. 

Remark 12.3: that  𝑥1. 𝑦1 = 2 + 4𝐼1 + 4𝐼2 =
−3

2
𝐼1 − 3𝐼2 − 3𝐼1 −

1

2
𝐼2 − 𝐼1 − 𝐼2 = 2 −

3

2
𝐼1 −

1

2
𝐼2 = 𝑥1. 

Theorem 13.3: Let 𝑍2(𝐼)  be the 2-CRNR of integers, then it has exactly 14 forms of 

imperfect triplets. 

Proof.  

Let 𝑥, 𝑦, 𝑧 be a triplet in 𝑆, then we have: 

𝑥𝑦 = 𝑦𝑥 = 𝑥  , 𝑦𝑧 = 𝑧𝑦 = 𝑧  , 𝑥𝑧 = 𝑧𝑥 = 𝑦, so that, (𝑥, 𝑦) , (𝑦, 𝑧) are imperfect duplets in 𝑆. 

We discuss the 8 forms of imperfect duplets to find the desired imperfect duplets: 
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Form 1: 𝑥 = (0, 0,0), 𝑦 = (𝑏0, 𝑏1, 𝑏2), 𝑧 = (0, 0,0) it is a triplet if and only if 𝑥𝑦 = 𝑧, thus 

, 𝑦 = (0, 0,0). 

(the first triplet is 𝑥 = 𝑦 = 𝑧 = (0, 0,0)). 

Form 2: 𝑥 = (0, 𝑎1, 𝑎2), 𝑦 = (𝑏0, 1,1), 𝑧 = (0, 𝑐1, 𝑐2) it is a triplet if and only if 𝑥𝑧 = 𝑦, thus 

, 𝑏0 = 0, 𝑎1𝑐1 = 1,𝑎2𝑐2 = 1. 

the possible triplets are: 

𝑥 = (0, 1,1), 𝑦 = (0, 1,1), 𝑧 = (0, 1,1). 

𝑥 = (0, 1, −1), 𝑦 = (0, 1,1), 𝑧 = (0, 1, −1) 

𝑥 = (0, 1, −1), 𝑦 = (0, 1,1), 𝑧 = (0, 1, −1) 

𝑥 = (0, −1,1), 𝑦 = (0, 1,1), 𝑧 = (0, −1, −1) 

Form 3: 𝑥 = (0, 0, 𝑎2), 𝑦 = (𝑏0, 𝑏1, 1), 𝑧 = (0, 0, 𝑐2) it is a triplet if and only if 𝑥𝑧 = 𝑦, thus 

, 𝑏0 = 𝑏1 = 0, ,𝑎2 = 𝑐2 = 1. 

the possible triplets are: 

𝑥 = (0, 0,1), 𝑦 = (0, 0,1), 𝑧 = (0, 1,1). 

𝑥 = (0, 0, −1), 𝑦 = (0, 0,1), 𝑧 = (0, 1, −1) 

Form 4: 𝑥 = (𝑎0, 0, 𝑎1), 𝑦 = (1, 𝑏1, 1), 𝑧 = (𝑐0, 0, 𝑐1) it is a triplet if and only if 𝑥𝑧 = 𝑦, thus 

, 𝑎0𝑐0 = 𝑎1𝑐1 = 1, 𝑏1 = 0. 

the possible triplets are: 

𝑥 = (1, 0,1), 𝑦 = (1, 0,1), 𝑧 = (1, 0,1) 

𝑥 = (−1, 0,1), 𝑦 = (1, 0,1), 𝑧 = (−1, 0,1). 

𝑥 = (1, 0, −1), 𝑦 = (1, 0,1), 𝑧 = (1, 0, −1) 

𝑥 = (−1, 0, −1), 𝑦 = (1, 0,1), 𝑧 = (−1, 0, −1) 

Form 5: 𝑥 = (𝑎0, 𝑎1, 0), 𝑦 = (1, 1, 𝑏2), 𝑧 = (𝑐0, 𝑐1, 0) it is a triplet if and only if 𝑥𝑧 = 𝑦, thus 

, 𝑎0𝑐0 = 1, 𝑎1𝑐1 = 1, 𝑏2 = 0. 

the possible triplets are: 

𝑥 = (1, 1,0), 𝑦 = (1, 1,0), 𝑧 = (1, 1,0) 

𝑥 = (−1, −1,0), 𝑦 = (1, 1,0), 𝑧 = (−1, −1,0). 

𝑥 = (−1, 1,0), 𝑦 = (1, 1,0), 𝑧 = (−1, 1,0) 
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𝑥 = (1, 1,0), 𝑦 = (1, 1, −1), 𝑧 = (1, −1,0) 

Form 6: 𝑥 = (𝑎0, 𝑎1, 𝑎2), 𝑦 = (1, 1,1), 𝑧 = (𝑐0, 𝑐1, 𝑐2)  it is a triplet if and only if 𝑥𝑧 = 𝑦 , 

thus, 𝑎0𝑐0 = 𝑎1𝑐1 = 𝑎2𝑐2 = 1. 

the possible triplets are: 

𝑥 = (1, 1,1), 𝑦 = (1, 1,1), 𝑧 = (1, 1,1) 

𝑥 = (1, 1, −1), 𝑦 = (1, 1,1), 𝑧 = (1, 1, −1) 

𝑥 = (1, −1,1), 𝑦 = (1, 1,1), 𝑧 = (1, −1,1) 

𝑥 = (−1, 1,1), 𝑦 = (1, 1,1), 𝑧 = (−1, 1,1) 

𝑥 = (−1, − 1,1), 𝑦 = (1, 1,1), 𝑧 = (−1, − 1,1) 

𝑥 = (1, −1, −1), 𝑦 = (1, 1,1), 𝑧 = (1, −1, −1) 

𝑥 = (−1, 1, −1), 𝑦 = (1, 1,1), 𝑧 = (−1, 1, −1) 

𝑥 = (−1, −1, −1), 𝑦 = (1, 1,1), 𝑧 = (−1, −1, −1) 

Form 7: 𝑥 = (𝑎0, 0,0), 𝑦 = (1, 𝑏1, 𝑏2), 𝑧 = (𝑐0, 0,0)  it is a triplet if and only if 𝑥𝑧 = 𝑦 , 

thus, 𝑎0𝑐0 = 1, 𝑏1 = 𝑏2 = 0. 

the possible triplets are: 

𝑥 = (1, 0,0), 𝑦 = (1, 0,0), 𝑧 = (1, 0,0) 

𝑥 = (−1, 0,0), 𝑦 = (1, 0,0), 𝑧 = (−1, 0,0) 

Form 8: 𝑥 = (0, 𝑎1, 0), 𝑦 = (𝑏0, 1, 𝑏2), 𝑧 = (0, 𝑐1, 0)  it is a triplet if and only if 𝑥𝑧 = 𝑦 , 

thus, 𝑎1𝑐1 = 1, 𝑏0 = 𝑏2 = 0. 

the possible triplets are: 

𝑥 = (0, 1,0), 𝑦 = (0, 1,0), 𝑧 = (0, 1,0) 

𝑥 = (0, −1,0), 𝑦 = (0, −1,0), 𝑧 = (0, 1,0). 
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Abstract: 

The main goal of this paper is to study three different types of algebraic symbolic 

2-plithogenic equations. The symbolic 2-plithogenic linear Diophantine equations, 

symbolic 2-plithogenic quadratic equations, and linear system of symbolic 2-plithgenic 

equations will be discussed and handled, where algorithms to solve the previous types 

will be presented and proved by transforming them to classical algebraic systems of 

equations.  

Keywords: symbolic 2-plithogenic Diophantine equation, symbolic 2-plithogenic 

quadratic equation, linear system, symbolic 2-plithogenic field 

Introduction and preliminaries 

The process of extending classical algebraic structures by using logical symbols and 

elements can be considered as a novel approach to generalize algebraic structures, where 

many algebraic structures were generalized by using neutrosophic elements, fuzzy 

elements, and refined neutrosophic elements [1-15].  
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Smarandache has defined the concept of Symbolic 2-plithogenic sets and structures [16-20] 

as new generalizations of classical structures. Also, he has presented many open research 

problems [20]. 

In [21], Smarandache ideas was discussed in a special case of n=2, where the symbolic 

2-plithogenic rings were defined and studied with many elementary interesting 

substructures and properties. 

Let 𝑅 be a ring, the symbolic 2-plithogenic ring is defined as follows: 

2 − 𝑆𝑃𝑅 = {𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2;  𝑎𝑖 ∈ 𝑅, 𝑃𝑗
2 = 𝑃𝑗, 𝑃1 × 𝑃2 = 𝑃𝑚𝑎𝑥(1,2) = 𝑃2}. 

Smarandache has defined algebraic operations on 2 − 𝑆𝑃𝑅 as follows: 

Addition: 

[𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2] + [𝑏0 + 𝑏1𝑃1 + 𝑏2𝑃2] = (𝑎0 + 𝑏0) + (𝑎1 + 𝑏1)𝑃1 + (𝑎2 + 𝑏2)𝑃2. 

Multiplication: 

[𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2]. [𝑏0 + 𝑏1𝑃1 + 𝑏2𝑃2] = 𝑎0𝑏0 + 𝑎0𝑏1𝑃1 + 𝑎0𝑏2𝑃2 + 𝑎1𝑏0𝑃1
2 + 𝑎1𝑏2𝑃1𝑃2 +

𝑎2𝑏0𝑃2 + 𝑎2𝑏1𝑃1𝑃2 + 𝑎2𝑏2𝑃2
2 + 𝑎1𝑏1𝑃1𝑃1 = 𝑎0𝑏0 + (𝑎0𝑏1 + 𝑎1𝑏0 + 𝑎1𝑏1)𝑃1 + (𝑎0𝑏2 + 𝑎1𝑏2 +

𝑎2𝑏0 + 𝑎2𝑏1 + 𝑎2𝑏2)𝑃2. 

It is clear that (2 − 𝑆𝑃𝑅) is a ring. 

If R is a field, then 2 − 𝑆𝑃𝑅 is called a symbolic 2-plithogenic field [22]. 

Also, the following open problems were asked in [22]: 

Problem (3): 

If F is a field then 2 − 𝑆𝑃𝐹 is called a 2-plithogenic symbolic field. Now, can we find a 

strong algorithm that explains how can we solve the previous equations by turning it into 

the classical equations. 

Problem (4): 

If Z is the ring of integers ring then 2 − 𝑆𝑃𝑍 is called a 2-plithogenic symbolic ring of 

integers. Can we find a strong algorithm that explains how can we solve the previous 

equations by turning it into the classical Diophantine equations. 

In this paper, we solve the previous two open problems by suggesting effective algorithms 

that help us to transform symbolic 2-plithogenic equations to classical algebraic equations. 

 Main Results 
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Definition.  

Let 2 − 𝑆𝑃𝑍 = {𝑎 + 𝑏𝑃1 + 𝑐𝑃2;  𝑎, 𝑏, 𝑐 ∈ 𝑍} be the symbolic 2-plithogenic ring of integers, the 

Diophantine equation with two variables is defined as follows: 

𝐴𝑋 + 𝐵𝑌 = 𝐶; 𝐴 = 𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2, 𝐵 = 𝑏0 + 𝑏1𝑃1 + 𝑏2𝑃2, 𝐶 = 𝑐0 + 𝑐1𝑃1 + 𝑐2𝑃2, 

𝑋 = 𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2, 𝑌 = 𝑦0 + 𝑦1𝑃1 + 𝑦2𝑃2, 𝑎𝑖 , 𝑏𝑖, 𝑐𝑖, 𝑥𝑖 , 𝑦𝑖 ∈ 2 − 𝑆𝑃𝑍. 

The following theorem describes an algorithm to solve the symbolic 2-plithogenic linear 

Diophantine equation with two variables. 

Theorem. 

Let 𝐴𝑋 + 𝐵𝑌 = 𝐶  be the symbolic 2-plithogenic linear Diophantine equation with two 

variables, it is solvable if and only if the following linear Diophantine equations are 

solvable. 

{

𝑎0𝑥0 + 𝑏0𝑦0 = 𝑐0
(𝑎0 + 𝑎1)(𝑥0 + 𝑥1) + (𝑏0 + 𝑏1)(𝑦0 + 𝑦1) = 𝑐0 + 𝑐1

(𝑎0 + 𝑎1 + 𝑎2)(𝑥0 + 𝑥1 + 𝑥2) + (𝑏0 + 𝑏1 + 𝑏2)(𝑦0 + 𝑦1 + 𝑦2) = 𝑐0 + 𝑐1 + 𝑐2

 

Proof. 

The equation 𝐴𝑋 + 𝐵𝑌 = 𝐶 equivalents: 

𝑎0𝑥0 + 𝑏0𝑦0 + (𝑎0𝑥1 + 𝑎1𝑥0 + 𝑎1𝑥1 + 𝑏0𝑦1 + 𝑏1𝑦0 + 𝑏1𝑦1)𝑃1

+ (𝑎0𝑥2 + 𝑎2𝑥0 + 𝑎2𝑥2 + 𝑎1𝑥2 + 𝑎2𝑥1 + 𝑏0𝑦2 + 𝑏2𝑦0 + 𝑏2𝑦2 + 𝑏1𝑦2 + 𝑏2𝑦1)𝑃2

= 𝑐0 + 𝑐1𝑃1 + 𝑐2𝑃2 

{

𝑎0𝑥0 + 𝑏0𝑦0 = 𝑐0… (1)

𝑎0𝑥1 + 𝑎1𝑥0 + 𝑎1𝑥1 + 𝑏0𝑦1 + 𝑏1𝑦0 + 𝑏1𝑦1 = 𝑐1… (2)

𝑎0𝑥2 + 𝑎2𝑥0 + 𝑎2𝑥2 + 𝑎1𝑥2 + 𝑎2𝑥1 + 𝑏0𝑦2 + 𝑏2𝑦0 + 𝑏2𝑦2 + 𝑏1𝑦2 + 𝑏2𝑦1 = 𝑐2… (3)
 

We add (1) to (2), and (1) to (2) to (3), we get: 

{

𝑎0𝑥0 + 𝑏0𝑦0 = 𝑐0
(𝑎0 + 𝑎1)(𝑥0 + 𝑥1) + (𝑏0 + 𝑏1)(𝑦0 + 𝑦1) = 𝑐0 + 𝑐1

(𝑎0 + 𝑎1 + 𝑎2)(𝑥0 + 𝑥1 + 𝑥2) + (𝑏0 + 𝑏1 + 𝑏2)(𝑦0 + 𝑦1 + 𝑦2) = 𝑐0 + 𝑐1 + 𝑐2

 

And the proof is complete. 

The description of the algorithm. 

To solve 𝐴𝑋 + 𝐵𝑌 = 𝐶 in 2 − 𝑆𝑃𝑍 , we must follow these steps. 

Step1. 

We compute 𝑔𝑐𝑑(𝑎0, 𝑏0), 𝑔𝑐𝑑(𝑎0 + 𝑎1, 𝑏0 + 𝑏1), 𝑔𝑐𝑑(𝑎0 + 𝑎1 + 𝑎2, 𝑏0 + 𝑏1 + 𝑏2). 

If 𝑔𝑐𝑑(𝑎0, 𝑏0)/𝑐0 , 𝑔𝑐𝑑(𝑎0 + 𝑎1, 𝑏0 + 𝑏1)/𝑐0 + 𝑐1 ,  𝑔𝑐𝑑(𝑎0 + 𝑎1 + 𝑎2, 𝑏0 + 𝑏1 + 𝑏2)/𝑐0 + 𝑐1 +

𝑐2, then it is solvable. 

Step2. 
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We solve the equivalent system and get the values of 𝑥𝑖 , 𝑦𝑖; 0 ≤ 𝑖 ≤ 2. 

Example. 

Consider the following symbolic 2-plithogenic linear Diophantine equation: 

 (2 + 𝑃1 + 𝑃2)𝑋 + (3 + 2𝑃1 − 𝑃2)𝑌 = 8 + 5𝑃1 + 7𝑃2. 

𝑔𝑐𝑑(𝑎0, 𝑏0) = 𝑔𝑐𝑑(2,3) = 1/8. 

𝑔𝑐𝑑(𝑎0 + 𝑎1, 𝑏0 + 𝑏1) = 𝑔𝑐𝑑(3,5) = 1/𝑐0 + 𝑐1 = 13. 

𝑔𝑐𝑑(𝑎0 + 𝑎1 + 𝑎2, 𝑏0 + 𝑏1 + 𝑏2) = 𝑔𝑐𝑑(4,4) = 4/𝑐0 + 𝑐1 + 𝑐2 = 20. 

So that, the equation is solvable. 

The equivalent system of linear Diophantine equations is: 

{

2𝑥0 + 3𝑦0 = 8…(1)

3(𝑥0 + 𝑥1) + 5(𝑦0 + 𝑦1) = 13… (2)

4(𝑥0 + 𝑥1 + 𝑥2) + 4(𝑦0 + 𝑦1 + 𝑦2) = 20… (3)
 

The equation (1) has a solution (𝑥0 = 1, 𝑦0 = 2). 

The equation (2) has a solution (𝑥0 + 𝑥1 = 1, 𝑦0 + 𝑦1 = 2), there for (𝑥1 = 0, 𝑦1 = 0). 

The equation (3)  has a solution (𝑥0 + 𝑥1 + 𝑥2 = 2, 𝑦0 + 𝑦1 + 𝑦2 = 3) , there for (𝑥2 =

1, 𝑦2 = 1). 

This implies a solution 𝑋 = 1 + 𝑃2, 𝑌 = 2 + 𝑃2. 

Example. 

Consider the following: 

(3 + 𝑃1 + 5𝑃2)𝑋 + (6 − 2𝑃1 + 10𝑃2)𝑌 = 5 + 𝑃1 + 𝑃2. 

𝑔𝑐𝑑(𝑎0, 𝑏0) = 𝑔𝑐𝑑(3,6) = 3 ‡ 5, there for it is not solvable. 

2-symbolic plithogenic Quadratic equation. 

Let 2 − 𝑆𝑃𝐹 be a symbolic 2-plithogenic field, the formula 

𝐴𝑋2 + 𝐵𝑌2 + 𝐶 = 0; 𝐴 = 𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2, 𝐵 = 𝑏0 + 𝑏1𝑃1 + 𝑏2𝑃2, 

𝐶 = 𝑐0 + 𝑐1𝑃1 + 𝑐2𝑃2, 𝑋 = 𝑥0 + 𝑥1𝑃1 + 𝑥2𝑃2, 𝑌 = 𝑦0 + 𝑦1𝑃1 + 𝑦2𝑃2, 𝑎𝑖 , 𝑏𝑖, 𝑐𝑖, 𝑥𝑖 , 𝑦𝑖 ∈ 2 − 𝑆𝑃𝐹. 

Is called the symbolic 2-plithogenic quadratic equation. 

Theorem. 

Let 𝐴𝑋2 + 𝐵𝑌2 + 𝐶 = 0 be a symbolic 2-plithogenic quadratic equation over 2 − 𝑆𝑃𝐹, then 

it is solvable if and only if the following system is solvable: 

{

𝑎0𝑥0
2 + 𝑏0𝑦0

2 + 𝑐0 = 0… (1)

(𝑎0 + 𝑎1)(𝑥0 + 𝑥1)
2 + (𝑏0 + 𝑏1)(𝑦0 + 𝑦1)

2 + (𝑐0 + 𝑐1) = 0… (2)

(𝑎0 + 𝑎1 + 𝑎2)(𝑥0 + 𝑥1 + 𝑥2)
2 + (𝑏0 + 𝑏1 + 𝑏2)(𝑦0 + 𝑦1 + 𝑦2)

2 + (𝑐0 + 𝑐1 + 𝑐2) = 0… (3)

 

Proof. 
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We have 𝑋2 = 𝑥0
2 + 𝑃1[(𝑥0 + 𝑥1)

2 − 𝑥0
2] + 𝑃2[(𝑥0 + 𝑥1 + 𝑥2)

2 − (𝑥0 + 𝑥1)
2], see [  ]. 

So that: 

𝐴𝑋2 = 𝑎0𝑥0
2 + 𝑃1[𝑎0(𝑥0 + 𝑥1)

2 − 𝑎0𝑥0
2 + 𝑎1(𝑥0 + 𝑥1)

2 − 𝑎1𝑥0
2 + 𝑎1𝑥0

2]

+ 𝑃2[𝑎0(𝑥0 + 𝑥1 + 𝑥2)
2 − 𝑎0(𝑥0 + 𝑥1)

2 + 𝑎1(𝑥0 + 𝑥1 + 𝑥2)
2 − 𝑎1(𝑥0 + 𝑥1)

2

+ 𝑎2(𝑥0 + 𝑥1 + 𝑥2)
2 − 𝑎2(𝑥0 + 𝑥1)

2 + 𝑎2𝑥0
2 + 𝑎2(𝑥0 + 𝑥1)

2 − 𝑎2𝑥0
2] 

𝐴𝑋2 = 𝑎0𝑥0
2 + 𝑃1[(𝑎0 + 𝑎1)(𝑥0 + 𝑥1)

2 − 𝑎0𝑥0
2]

+ 𝑃2[(𝑎0 + 𝑎1 + 𝑎2)(𝑥0 + 𝑥1 + 𝑥2)
2 − (𝑎0 + 𝑎1)(𝑥0 + 𝑥1)

2] 

There for, the equation 𝐴𝑋2 +𝐵𝑌2 + 𝐶 = 0 is equivalent to: 

{

𝑎0𝑥0
2 + 𝑏0𝑦0

2 + 𝑐0 = 0…(1)

(𝑎0 + 𝑎1)(𝑥0 + 𝑥1)
2 + (𝑏0 + 𝑏1)(𝑦0 + 𝑦1)

2 + (𝑐0 + 𝑐1) = 0…(2)

(𝑎0 + 𝑎1 + 𝑎2)(𝑥0 + 𝑥1 + 𝑥2)
2 + (𝑏0 + 𝑏1 + 𝑏2)(𝑦0 + 𝑦1 + 𝑦2)

2 + (𝑐0 + 𝑐1 + 𝑐2) = 0…(3)

 

The description of algorithm. 

To solve 𝐴𝑋2 + 𝐵𝑌2 + 𝐶 = 0 in 2 − 𝑆𝑃𝐹, follow these steps: 

Step1. 

Solve the equivalent classical system of quadratic equations. If (1), (2) , and (3)  are 

solvable in the field 𝐹,then the symbolic 2-plithogenic quadratic equation is solvable. 

Step2. 

Discuss all possible cases of 𝑥0, 𝑥1, 𝑥2. 

Remark. 

If 𝐴𝑋2 + 𝐵𝑌2 + 𝐶 = 0 is solvable in 2 − 𝑆𝑃𝐹, then it has at most 8 solutions. 

Example. 

Consider the following: 

(1 + 𝑃1 + 𝑃2)𝑋
2 + (3 − 𝑃1)𝑋 − 4 − 12𝑃2 = 0 

We have: 

{

𝑎0 = 1, 𝑎1 = 1, 𝑎2 = 1
𝑏0 = 3, 𝑏1 = −1, 𝑏2 = 0
𝑐0 = −4, 𝑐1 = 0, 𝑐2 = −12

 

The equivalent system is: 

{

𝑥0
2 + 3𝑥0 − 4 = 0…(1)

2(𝑥0 + 𝑥1)
2 + 2(𝑥0 + 𝑥1) − 4 = 0… (2)

3(𝑥0 + 𝑥1 + 𝑥2)
2 + 2(𝑥0 + 𝑥1 + 𝑥2) − 16 = 0…(3)

 

The solutions of (1): 𝑥0 = 1, 𝑥0 = −4. 

The solutions of (2): 𝑥0 + 𝑥1 = 1, 𝑥0 + 𝑥1 = −2. 

The solutions of (3): 𝑥0 + 𝑥1 + 𝑥2 = 2, 𝑥0 + 𝑥1 + 𝑥2 = −
8

3
. 
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Case1. 

If 𝑥0 = 1, 𝑥0 + 𝑥1 = 1, 𝑥0 + 𝑥1 + 𝑥2 = 2, then 𝑥1 = 0, 𝑥2 = 1, and 𝑋 = 1 + 𝑃2. 

Case2. 

If 𝑥0 = 1, 𝑥0 + 𝑥1 = 1, 𝑥0 + 𝑥1 + 𝑥2 = −
8

3
, then 𝑥1 = 0, 𝑥2 = −

11

3
, and 𝑋 = 1 −

11

3
𝑃2. 

Case3. 

If 𝑥0 = 1, 𝑥0 + 𝑥1 = −2, 𝑥0 + 𝑥1 + 𝑥2 = 2, then 𝑥1 = −3, 𝑥2 = 4, and 𝑋 = 1 − 3𝑃1 + 4𝑃2. 

Case4. 

If 𝑥0 = 1, 𝑥0 + 𝑥1 = −2, 𝑥0 + 𝑥1 + 𝑥2 = −
8

3
, then 𝑥1 = −3, 𝑥2 = −

2

3
, and 𝑋 = 1 − 3𝑃1 −

2

3
𝑃2. 

Case5. 

If 𝑥0 = −4, 𝑥0 + 𝑥1 = 1, 𝑥0 + 𝑥1 + 𝑥2 = 2, then 𝑥1 = 5, 𝑥2 = 1, and 𝑋 = −4 + 5𝑃1 + 𝑃2. 

Case6. 

If 𝑥0 = −4, 𝑥0 + 𝑥1 = 1, 𝑥0 + 𝑥1 + 𝑥2 = −
8

3
, then 𝑥1 = 5, 𝑥2 = −

11

3
, and 𝑋 = −4+ 5𝑃1 −

11

3
𝑃2. 

Case7. 

If 𝑥0 = −4, 𝑥0 + 𝑥1 = −2, 𝑥0 + 𝑥1 + 𝑥2 = 2, then 𝑥1 = 2, 𝑥2 = 4, and 𝑋 = −4 + 2𝑃1 + 4𝑃2. 

Case8. 

If 𝑥0 = −4, 𝑥0 + 𝑥1 = −2, 𝑥0 + 𝑥1 + 𝑥2 = −
8

3
, then 𝑥1 = 2, 𝑥2 = −

2

3
, and 𝑋 = −4+ 2𝑃1 −

2

3
𝑃2. 

So that, the solutions of the original symbolic 2-plithogenic quadratic equation are: 

𝑋 ∈ {−4 + 2𝑃1 −
2

3
𝑃2, −4 + 2𝑃1 + 4𝑃2, −4 + 5𝑃1 −

11

3
𝑃2, −4 + 5𝑃1 + 𝑃2, 1 − 3𝑃1 −

2

3
𝑃2, 1

− 3𝑃1 + 4𝑃2, 1 −
11

3
𝑃2, 1 + 𝑃2} 

Example. 

Consider the following: 

(2 + 3𝑃1 − 𝑃2)𝑋
2 + (4 + 𝑃1 + 𝑃2)𝑋 − 6 − 4𝑃1 = 0 

We have: 

{

𝑎0 = 2, 𝑎1 = 3, 𝑎2 = −1
𝑏0 = 4, 𝑏1 = 1, 𝑏2 = 1
𝑐0 = −6, 𝑐1 = −4, 𝑐2 = 0

 

The equivalent system is: 
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{

2𝑥0
2 + 4𝑥0 − 6 = 0…(1)

5(𝑥0 + 𝑥1)
2 + 5(𝑥0 + 𝑥1) − 10 = 0…(2)

4(𝑥0 + 𝑥1 + 𝑥2)
2 + 6(𝑥0 + 𝑥1 + 𝑥2) − 10 = 0…(3)

 

The solutions of (1): 𝑥0 = 1, 𝑥0 = −3. 

The solutions of (2): 𝑥0 + 𝑥1 = 1, 𝑥0 + 𝑥1 = −2. 

The solutions of (3): 𝑥0 + 𝑥1 + 𝑥2 = 1, 𝑥0 + 𝑥1 + 𝑥2 = −
5

2
. 

Case1. 

If 𝑥0 = 1, 𝑥0 + 𝑥1 = 1, 𝑥0 + 𝑥1 + 𝑥2 = 1, then 𝑥1 = 𝑥2 = 0, and 𝑋 = 1. 

Case2. 

If 𝑥0 = 1, 𝑥0 + 𝑥1 = 1, 𝑥0 + 𝑥1 + 𝑥2 = −
5

2
, then 𝑥1 = 0, 𝑥2 = −

7

2
, and 𝑋 = 1 −

5

2
𝑃2. 

Case3. 

If 𝑥0 = 1, 𝑥0 + 𝑥1 = −2, 𝑥0 + 𝑥1 + 𝑥2 = 1, then 𝑥1 = −3, 𝑥2 = 3, and 𝑋 = 1 − 3𝑃1 + 3𝑃2. 

Case4. 

If 𝑥0 = 1, 𝑥0 + 𝑥1 = −2, 𝑥0 + 𝑥1 + 𝑥2 = −
5

2
, then 𝑥1 = −3, 𝑥2 = −

1

2
, and 𝑋 = 1 − 3𝑃1 −

1

2
𝑃2. 

Case5. 

If 𝑥0 = −3, 𝑥0 + 𝑥1 = 1, 𝑥0 + 𝑥1 + 𝑥2 = 1, then 𝑥1 = 4, 𝑥2 = 0, and 𝑋 = −3 + 4𝑃1. 

Case6. 

If 𝑥0 = −3, 𝑥0 + 𝑥1 = 1, 𝑥0 + 𝑥1 + 𝑥2 = −
5

2
, then 𝑥1 = 4, 𝑥2 = −

7

2
, and 𝑋 = −3 + 4𝑃1 −

7

2
𝑃2. 

Case7. 

If 𝑥0 = −3, 𝑥0 + 𝑥1 = −2, 𝑥0 + 𝑥1 + 𝑥2 = 1, then 𝑥1 = 1, 𝑥2 = 3, and 𝑋 = −3 + 𝑃1 + 3𝑃2. 

Case8. 

If 𝑥0 = −3, 𝑥0 + 𝑥1 = −2, 𝑥0 + 𝑥1 + 𝑥2 = −
5

2
, then 𝑥1 = 1, 𝑥2 = −

1

2
, and 𝑋 = −3+ 𝑃1 −

1

2
𝑃2. 

So that, the solutions of the original symbolic 2-plithogenic quadratic equation are: 

𝑋 ∈ {1,1 −
5

2
𝑃2, 1 − 3𝑃1 + 3𝑃2, 1 − 3𝑃1 −

1

2
𝑃2, −3 + 4𝑃1, −3 + 4𝑃1 −

7

2
𝑃2, −3 + 𝑃1 + 3𝑃2, −3

+ 𝑃1 −
1

2
𝑃2} 

2-plithogenic Linear equations. 

We begin the simplest case, a symbolic 2-plithogenic linear equation with one variable 

𝐴. 𝑋 = 𝐵. 

This equation is solvable uniquely if and only if 𝐴 is invertible and 𝑋 = 𝐴−1𝐵. 
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According to [31], 𝐴−1 = 𝑎0
−1 + 𝑃1[(𝑎0 + 𝑎1)

−1 − 𝑎0
−1] + 𝑃2[(𝑎0 + 𝑎1 + 𝑎2)

−1 −

(𝑎0 + 𝑎1)
−1]. 

Example. 

Consider the equation (2 + 𝑃1 + 𝑃2)𝑋 = 3 − 𝑃1 over 2 − 𝑆𝑃𝑅. 

𝑎0 = 2, 𝑎0
−1 =

1

2
, 𝑎0 + 𝑎1 = 3, (𝑎0 + 𝑎1)

−1 =
1

3
, 𝑎0 + 𝑎1 + 𝑎2 = 4, (𝑎0 + 𝑎1 + 𝑎2)

−1 =
1

4
, thus: 

𝐴−1 =
1

2
−
1

6
𝑃1 −

1

12
𝑃2, there for: 

𝑋 = (
1

2
−
1

6
𝑃1 −

1

12
𝑃2) (3 − 𝑃1) =

3

2
−
1

2
𝑃1 −

1

2
𝑃1 +

1

6
𝑃1 −

1

4
𝑃2 +

1

12
𝑃2 =

3

2
−
5

6
𝑃1 −

1

6
𝑃2 

The general case is about a linear system of n symbolic 2-plithogenic equations 𝐴𝑖. 𝑋𝑖 =

𝐵𝑖; 1 ≤ 𝑖 ≤ 𝑛. 

To solve a system like that, we must transform it to an equivalent classical system. We 

present the following algorithm. 

To solve the symbolic 2-plithogenic linear system: 

{

𝐴11. 𝑋1 + 𝐴12. 𝑋2 +⋯+ 𝐴1𝑛. 𝑋𝑛 = 𝐵1𝑛
𝐴21. 𝑋1 + 𝐴22. 𝑋2 +⋯+ 𝐴2𝑛. 𝑋𝑛 = 𝐵2𝑛

⋮
𝐴𝑛1. 𝑋1 + 𝐴𝑛2. 𝑋2 +⋯+ 𝐴𝑛𝑛. 𝑋𝑛 = 𝐵𝑛𝑛

 

Where: 𝐴𝑖𝑗 = 𝑎𝑖𝑗
(0)
+ 𝑎𝑖𝑗

(1)
𝑃1 + 𝑎𝑖𝑗

(2)
𝑃2, 𝑋𝑖 = 𝑋𝑖

(0)
+ 𝑋𝑖

(1)
𝑃1 + 𝑋𝑖

(2)
𝑃2, 𝐵𝑖𝑗 = 𝑏𝑖𝑗

(0)
+ 𝑏𝑖𝑗

(1)
𝑃1 +

𝑏𝑖𝑗
(2)𝑃2 ∈ 2 − 𝑆𝑃𝐹. 

Follow these steps: 

Step1. 

Find the classical equivalent system as follows: 

{
 
 
 
 

 
 
 
 ∑ 𝑎𝑖𝑗

(0)𝑋𝑖
(0)

𝑛

𝑖,𝑗=1

= ∑ 𝑏𝑖𝑗
(0)

𝑛

𝑖,𝑗=1

∑ (𝑎𝑖𝑗
(0) + 𝑎𝑖𝑗

(1)) (𝑋𝑖
(0) + 𝑋𝑖

(1))

𝑛

𝑖,𝑗=1

= ∑ (𝑏𝑖𝑗
(0) + 𝑏𝑖𝑗

(1))

𝑛

𝑖,𝑗=1

∑ (𝑎𝑖𝑗
(0) + 𝑎𝑖𝑗

(1) + 𝑎𝑖𝑗
(2)) (𝑋𝑖

(0) + 𝑋𝑖
(1) + 𝑋𝑖

(2))

𝑛

𝑖,𝑗=1

= ∑ (𝑏𝑖𝑗
(0) + 𝑏𝑖𝑗

(1) + 𝑏𝑖𝑗
(2))

𝑛

𝑖,𝑗=1

 

step2. 

Solve each system and remark that: 

The first system gives the values of 𝑋𝑖
(0); 1 ≤ 𝑖 ≤ 𝑛. 

The second one gives the values of 𝑋𝑖
(0) + 𝑋𝑖

(1); 1 ≤ 𝑖 ≤ 𝑛. 

The third one gives values of 𝑋𝑖
(0) + 𝑋𝑖

(1) + 𝑋𝑖
(2); 1 ≤ 𝑖 ≤ 𝑛. 
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Step3. 

If each system is solvable, then the original 2-plithogenic system is solvable, and if the 

number of solutions of every classical system is 𝑘, then the number of solutions for the 

2-plithogenic system is 𝑘3. 

Example. 

Consider the following symbolic 2-plithogenic system of three linear equations with three 

variables: 

{

(1 + 𝑃2)𝑋1 + (3 − 𝑃1)𝑋2 + (1 + 𝑃1 − 𝑃2)𝑋3 = 5

𝑃2𝑋1 + 𝑃1𝑋2 + (𝑃1 − 𝑃2)𝑋3 = 2𝑃1 + 2𝑃2
(1 + 𝑃1 − 𝑃2)𝑋1 + (4 + 3𝑃1 − 𝑃2)𝑋2 + (5 + 2𝑃2)𝑋3 = 11 + 4𝑃2

 

the equivalent classical systems are: 

{

𝑋1
(0)
+ 3𝑋2

(0)
+ 𝑋3

(0)
= 5

0𝑋1
(0) + 0𝑋2

(0) + 0𝑋3
(0) = 0

2𝑋1
(0)
+ 4𝑋2

(0)
+ 5𝑋3

(0)
= 11

 … system(1) 

{
 
 

 
 (𝑋1

(0)
+ 𝑋1

(1)
) + 2 (𝑋2

(0)
+ 𝑋2

(1)
) + 2 (𝑋3

(0)
+ 𝑋3

(1)
) = 5

0 (𝑋1
(0)
+ 𝑋1

(1)
) + (𝑋2

(0)
+ 𝑋2

(1)
) + (𝑋3

(0)
+ 𝑋3

(1)
) = 2

3 (𝑋1
(0) + 𝑋1

(1)) + 7 (𝑋2
(0) + 𝑋2

(1)) + 5 (𝑋3
(0) + 𝑋3

(1)) = 15

 … system(2) 

{
 
 

 
 2(𝑋1

(0)
+ 𝑋1

(1)
++𝑋1

(2)
) + 2 (𝑋2

(0)
+ 𝑋2

(1)
+ 𝑋2

(2)
) + (𝑋3

(0)
+ 𝑋3

(1)
+ 𝑋3

(2)
) = 5

(𝑋1
(0) + 𝑋1

(1) ++𝑋1
(2)) + (𝑋2

(0) + 𝑋2
(1) + 𝑋2

(2)) + 2 (𝑋3
(0) + 𝑋3

(1) + 𝑋3
(2)) = 4

2 (𝑋1
(0)
+ 𝑋1

(1)
++𝑋1

(2)
) + 6 (𝑋2

(0)
+ 𝑋2

(1)
+ 𝑋2

(2)
) + 7 (𝑋3

(0)
+ 𝑋3

(1)
+ 𝑋3

(2)
) = 15

 … system(3) 

The system(1) has infinite solutions, thus the 2-plithogenic system has infinite solutions. 

We will find some solutions to clarify the algorithm. 

For example system(1) has a solution 𝑋1
(0) = 𝑋2

(0) = 𝑋3
(0) = 1. 

The system (2) has a solution 𝑋1
(0) + 𝑋1

(1) = 𝑋2
(0) + 𝑋2

(1) = 𝑋3
(0) + 𝑋3

(1) = 1 , thus 𝑋1
(1) =

𝑋2
(1) = 𝑋3

(1) = 0. 

The system (3) has a solution 𝑋1
(0) + 𝑋1

(1) + 𝑋1
(2) = 𝑋2

(0) + 𝑋2
(1) + 𝑋2

(2) = 𝑋3
(0) + 𝑋3

(1) + 𝑋3
(2) =

1, there for 𝑋1
(2) = 𝑋2

(2) = 𝑋3
(2) = 0, and 𝑋1 = 𝑋1

(0) + 𝑋1
(1)𝑃1 + 𝑋1

(2)𝑃2 = 1, 𝑋2 = 1,𝑋3 = 1 is a 

solution for the 2-plithogenic system. 

Also, the system (1) has a solution 𝑋1
(0) =

13

2
, 𝑋2

(0) = −
1

2
, 𝑋3

(0) = 0. 

The system (2) has a solution 𝑋1
(0) + 𝑋1

(1) = 𝑋2
(0) + 𝑋2

(1) = 𝑋3
(0) + 𝑋3

(1) = 1. 
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The system (3) has a solution 𝑋1
(0)
+ 𝑋1

(1)
+ 𝑋1

(2)
= 𝑋2

(0)
+ 𝑋2

(1)
+ 𝑋2

(2)
= 𝑋3

(0)
+ 𝑋3

(1)
+ 𝑋3

(2)
=

1. 

There for 𝑋1
(1) = 1 −

13

2
= −

11

2
,𝑋2
(1) = 1 +

1

2
=

3

2
,𝑋3
(1) = 1, 𝑋1

(2) = 𝑋2
(2) = 𝑋3

(2) = 0. 

This implies that: 

𝑋1 =
13

2
−
11

2
𝑃1, 𝑋2 = −

1

2
+
3

2
𝑃1, 𝑋3 = 𝑃1 is a solution of the 2-plithogenic system. 

Conclusion 

In this paper, we have presented novel algorithms to solve many different types of 

2-plithogenic algebraic equations (quadratic, linear, and linear Diophantine equations) by 

transforming them to classical systems of algebraic equations. Also, many examples were 

illustrated tp explain the validity of our work. 
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Abstract: 

The objective of this paper is to study for the first time the foundational concepts of 

number theory in 2-plithogenic rings of integers, where concepts such as symbolic 

2-plithogenic congruencies, division, semi primes, and greatest common divisors. 

In addition, many elementary properties will be discussed in details through many 

theorems and examples.  

Keywords: Symbolic 2-plithogenic integer, symbolic 2-plithogenic divison, 

symbolic 2-plithogenic semi prime. 

Introduction and basic concepts 

The concept of symbolic plithogenic sets was defined by Smarandache in [13-17 ,30], and he 

suggested an algebraic approach of these sets. Laterally, the concept of symbolic 

2-plithogenic rings [31]. In general, we can say that symbolic plithogenic structures are very 

close to neutrosophic algebraic structures with many differences in the definition of 

multiplication operation [1-10]. 

Let 𝑅 be a ring, the symbolic 2-plithogenic ring is defined as follows: 

2 − 𝑆𝑃𝑅 = {𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2;  𝑎𝑖 ∈ 𝑅, 𝑃𝑗
2 = 𝑃𝑗, 𝑃1 × 𝑃2 = 𝑃𝑚𝑎𝑥(1,2) = 𝑃2}. 

Smarandache has defined algebraic operations on 2 − 𝑆𝑃𝑅 as follows: 

mailto:Hamiyetmerkepci@gmail.com
mailto:ammarrawashde8932@gmail.com
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Addition: 

[𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2] + [𝑏0 + 𝑏1𝑃1 + 𝑏2𝑃2] = (𝑎0 + 𝑏0) + (𝑎1 + 𝑏1)𝑃1 + (𝑎2 + 𝑏2)𝑃2. 

Multiplication: 

[𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2]. [𝑏0 + 𝑏1𝑃1 + 𝑏2𝑃2] = 𝑎0𝑏0 + 𝑎0𝑏1𝑃1 + 𝑎0𝑏2𝑃2 + 𝑎1𝑏0𝑃1
2 + 𝑎1𝑏2𝑃1𝑃2 +

𝑎2𝑏0𝑃2 + 𝑎2𝑏1𝑃1𝑃2 + 𝑎2𝑏2𝑃2
2 + 𝑎1𝑏1𝑃1𝑃1 = 𝑎0𝑏0 + (𝑎0𝑏1 + 𝑎1𝑏0 + 𝑎1𝑏1)𝑃1 + (𝑎0𝑏2 + 𝑎1𝑏2 +

𝑎2𝑏0 + 𝑎2𝑏1 + 𝑎2𝑏2)𝑃2. 

It is clear that (2 − 𝑆𝑃𝑅) is a ring. 

Also, if 𝑅 is commutative, then 2 − 𝑆𝑃𝑅 is commutative, and if 𝑅 has a unity (1), than 2 −

𝑆𝑃𝑅 has the same unity (1). 

If R is a field, then 2 − 𝑆𝑃𝑅 is called a symbolic 2-plithogenic field. 

In this paper, we study the symbolic 2-plithogenicnumber theoretical concepts according to 

many points of view, where congruencies, Euclidean division, Euler's function, and gratest 

common divisors will be presented in terms of theorems. In addition, many examples will 

be illustrated to explain the novelty of these ideas. In addition, we suggest many future 

applications of symbolic 2-plithogenic integers in cryptography and public key 

neutrosophic cryptography. 

Main Discussion 

Definition.  

Let 𝐴 = 𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2, 𝐵 = 𝑏0 + 𝑏1𝑃1 + 𝑏2𝑃2 ∈ 2 − 𝑆𝑃𝑍, we say that 𝐴 ∖ 𝐵 if and only if 

there exists 𝐶 ∈ 2 − 𝑆𝑃𝑍 such that 𝐴 × 𝐵 = 𝐶. 

Definition. 

Let 𝐴 = 𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2, 𝐵 = 𝑏0 + 𝑏1𝑃1 + 𝑏2𝑃2, 𝐶 = 𝑐0 + 𝑐1𝑃1 + 𝑐2𝑃2  be three symbolic 

2-plithogenic integers, then 𝐴 ≡ 𝐵(𝑚𝑜𝑑 𝐶) if and only if 𝐶 ∖ 𝐴 − 𝐵. 

Also, 𝐶 = 𝑔𝑐𝑑(𝐴, 𝐵) if and only if 𝐶 ∖ 𝐴 and 𝐶 ∖ 𝐵 and for any 𝐷 ∖ 𝐴, 𝐷 ∖ 𝐵, then 𝐷 ∖ 𝐶. 

Definition. 

We say that 𝐴 ≤ 𝐵 if 𝑎0 ≤ 𝑏0, 𝑎0 + 𝑎1 ≤ 𝑏0 + 𝑏1, 𝑎0 + 𝑎1 + 𝑎2 ≤ 𝑏0 + 𝑏1 + 𝑏2. 

Theorem. 

Let 𝐴 = 𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2, 𝐵 = 𝑏0 + 𝑏1𝑃1 + 𝑏2𝑃2, 𝐶 = 𝑐0 + 𝑐1𝑃1 + 𝑐2𝑃2 ∈ 2 − 𝑆𝑃𝑍, then: 

1). (≤) is a partial order relation. 

2). 𝐴 ∖ 𝐵 if and only if 𝑎0 ∖ 𝑏0, 𝑎0 + 𝑎1 ∖ 𝑏0 + 𝑏1, 𝑎0 + 𝑎1 + 𝑎2 ∖ 𝑏0 + 𝑏1 + 𝑏2. 
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3). 𝑔𝑐𝑑(𝐴, 𝐵) = 𝐶 if and only if 𝑔𝑐𝑑(𝑎0, 𝑏0) = 𝑐0, 𝑔𝑐𝑑(𝑎0 + 𝑎1, 𝑏0 + 𝑏1) = 𝑐0 + 𝑐1, 𝑔𝑐𝑑(𝑎0 +

𝑎1 + 𝑎2, 𝑏0 + 𝑏1 + 𝑏2) = 𝑐0 + 𝑐1 + 𝑐2. 

4). 𝐴 ≡ 𝐵(𝑚𝑜𝑑 𝐶) if and only if: 

{

𝑎0 ≡ 𝑏0(𝑚𝑜𝑑 𝑐0)

𝑎0 + 𝑎1 ≡ 𝑏0 + 𝑏1(𝑚𝑜𝑑 𝑐0 + 𝑐1)

𝑎0 + 𝑎1 + 𝑎2 ≡ 𝑏0 + 𝑏1 + 𝑏2(𝑚𝑜𝑑 𝑐0 + 𝑐1 + 𝑐2)
 

Proof. 

1). 𝐴 ≤ 𝐴 that is because 𝑎0 ≤ 𝑎0, 𝑎0 + 𝑎1 ≤ 𝑎0 + 𝑎1, 𝑎0 + 𝑎1 + 𝑎2 ≤ 𝑎0 + 𝑎1 + 𝑎2. 

If 𝐴 ≤ 𝐵 and 𝐵 ≤ 𝐴, then: 

{

𝑎0 ≤ 𝑏0, 𝑏0 ≤ 𝑎0, 𝑡ℎ𝑢𝑠 𝑎0 = 𝑏0

𝑎0 + 𝑎1 ≤ 𝑏0 + 𝑏1, 𝑏0 + 𝑏1 ≤ 𝑎0 + 𝑎1, 𝑡ℎ𝑢𝑠 𝑎0 + 𝑎1 = 𝑏0 + 𝑏1, ℎ𝑒𝑛𝑐𝑒 𝑎1 = 𝑏1

𝑎0 + 𝑎1 + 𝑎2 ≤ 𝑏0 + 𝑏1 + 𝑏2, 𝑏0 + 𝑏1 + 𝑏2 ≤ 𝑎0 + 𝑎1 + 𝑎2, 𝑡ℎ𝑢𝑠 𝑎0 + 𝑎1 + 𝑎2 = 𝑏0 + 𝑏1 + 𝑏2, ℎ𝑒𝑛𝑐𝑒 𝑎2 = 𝑏2

 

Hence 𝐴 = 𝐵. 

If 𝐴 ≤ 𝐵  and 𝐵 ≤ 𝐶 , then 𝑎0 ≤ 𝑏0 ≤ 𝑐0 ,  𝑎0 + 𝑎1 ≤ 𝑏0 + 𝑏1 ≤ 𝑐0 + 𝑐1 ,  𝑎0 + 𝑎1 + 𝑎2 ≤ 𝑏0 +

𝑏1 + 𝑏2 ≤ 𝑐0 + 𝑐1 + 𝑐2, thus 𝐴 ≤ 𝐶. 

2). If 𝐴 ∖ 𝐵, then there exists 𝐶 such that 𝐴. 𝐶 = 𝐵. This equivalents: 

𝑎0𝑐0 + 𝑃1(𝑎0𝑐1 + 𝑎1𝑐0 + 𝑎1𝑐1) + 𝑃2(𝑎0𝑐2 + 𝑎2𝑐0 + 𝑎2𝑐2 + 𝑎1𝑐2 + 𝑎2𝑐1) = 𝑏0 + 𝑏1𝑃1 + 𝑏2𝑃2 , 

there for: 

{

𝑎0𝑐0 = 𝑏0 … (1)

𝑎0𝑐1 + 𝑎1𝑐0 + 𝑎1𝑐1 = 𝑏1 … (2)

𝑎0𝑐2 + 𝑎2𝑐0 + 𝑎2𝑐2 + 𝑎1𝑐2 + 𝑎2𝑐1 = 𝑏2 … (3)
 

We add (1) to (2) and (1) to (2) to (3), to get: 

{

𝑎0𝑐0 = 𝑏0

(𝑎0 + 𝑎1)(𝑐0 + 𝑐1) = 𝑏0 + 𝑏1

(𝑎0 + 𝑎1 + 𝑎2)(𝑐0 + 𝑐1 + 𝑐2) = 𝑏0 + 𝑏1 + 𝑏2

 

Thus 𝑎0 ∖ 𝑏0, 𝑎0 + 𝑎1 ∖ 𝑏0 + 𝑏1, 𝑎0 + 𝑎1 + 𝑎2 ∖ 𝑏0 + 𝑏1 + 𝑏2. 

3). Assume that 𝑔𝑐𝑑(𝐴, 𝐵) = 𝐶, then for any 𝐷 = 𝑑0 + 𝑑1𝑃1 + 𝑑2𝑃2 ∈ 2 − 𝑆𝑃𝑍 such that 𝐷 ∖

𝐴, 𝐷 ∖ 𝐵 implies 𝐷 ∖ 𝐶. 

According to (2) , we get 𝑑0 ∖ 𝑐0, 𝑑0 + 𝑑1 ∖ 𝑐0 + 𝑐1, 𝑑0 + 𝑑1 + 𝑑2 ∖ 𝑐0 + 𝑐1 + 𝑐2 , so that 

𝑔𝑐𝑑(𝑎0, 𝑏0) = 𝑐0, 𝑔𝑐𝑑(𝑎0 + 𝑎1, 𝑏0 + 𝑏1) = 𝑐0 + 𝑐1, 𝑔𝑐𝑑(𝑎0 + 𝑎1 + 𝑎2, 𝑏0 + 𝑏1 + 𝑏2) = 𝑐0 + 𝑐1 +

𝑐2. 

This implies that 𝑔𝑐𝑑(𝐴, 𝐵) = 𝑔𝑐𝑑(𝑎0, 𝑏0) + 𝑃1[𝑔𝑐𝑑(𝑎0 + 𝑎1, 𝑏0 + 𝑏1) − 𝑔𝑐𝑑(𝑎0, 𝑏0)] +

𝑃2[𝑔𝑐𝑑(𝑎0 + 𝑎1 + 𝑎2, 𝑏0 + 𝑏1 + 𝑏2) − 𝑔𝑐𝑑(𝑎0 + 𝑎1, 𝑏0 + 𝑏1)]. 

4). 𝐴 ≡ 𝐵(𝑚𝑜𝑑 𝐶) if and only if 𝐶 ∖ 𝐴 − 𝐵, thus: 

𝑐0 ∖ 𝑎0 − 𝑏0, 𝑐0 + 𝑐1 ∖ (𝑎0 + 𝑎1) − (𝑏0 + 𝑏1), 𝑐0 + 𝑐1 + 𝑐2 ∖ (𝑎0 + 𝑎1 + 𝑎2) − (𝑏0 + 𝑏1 + 𝑏2) 
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So that: 

{

𝑎0 ≡ 𝑏0(𝑚𝑜𝑑 𝑐0)

𝑎0 + 𝑎1 ≡ 𝑏0 + 𝑏1(𝑚𝑜𝑑 𝑐0 + 𝑐1)

𝑎0 + 𝑎1 + 𝑎2 ≡ 𝑏0 + 𝑏1 + 𝑏2(𝑚𝑜𝑑 𝑐0 + 𝑐1 + 𝑐2)
 

Theorem. 

Let 𝐴 = 𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2, 𝐵 = 𝑏0 + 𝑏1𝑃1 + 𝑏2𝑃2 ∈ 2 − 𝑆𝑃𝑍, then 𝑔𝑐𝑑(𝐴, 𝐵) = 1 if and only if 

𝑔𝑐𝑑(𝑎0, 𝑏0) = 1, 𝑔𝑐𝑑(𝑎0 + 𝑎1, 𝑏0 + 𝑏1) = 1, 𝑔𝑐𝑑(𝑎0 + 𝑎1 + 𝑎2, 𝑏0 + 𝑏1 + 𝑏2) = 1. 

The proof is clear. 

Theorem. 

Let 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 ∈ 2 − 𝑆𝑃𝑍, where: 

𝐴 = 𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2, 𝐵 = 𝑏0 + 𝑏1𝑃1 + 𝑏2𝑃2, 𝐶 = 𝑐0 + 𝑐1𝑃1 + 𝑐2𝑃2, 𝐷 = 𝑑0 + 𝑑1𝑃1 + 𝑑2𝑃2, 𝐸 =

𝑒0 + 𝑒1𝑃1 + 𝑒2𝑃2;  𝑐𝑖, 𝑎𝑖, 𝑏𝑖, 𝑒𝑖, 𝑑𝑖 ∈ 𝑍, then: 

1). If 𝐴 ≡ 𝐵(𝑚𝑜𝑑 𝐶), 𝐷 ≡ 𝐸(𝑚𝑜𝑑 𝐶), then 𝐴 + 𝐷 ≡ 𝐵 + 𝐸(𝑚𝑜𝑑 𝐶) , 𝐴 − 𝐷 ≡ 𝐵 − 𝐸(𝑚𝑜𝑑 𝐶). 

2). 𝐴. 𝐷 ≡ 𝐵. 𝐸(𝑚𝑜𝑑 𝐶). 

3). If 𝑔𝑐𝑑(𝐴, 𝐵) = 1, then: 

𝐴−1(𝑚𝑜𝑑 𝐵) = 𝑎0
−1(𝑚𝑜𝑑 𝑏0) + 𝑃1[(𝑎0 + 𝑎1)−1(𝑚𝑜𝑑 𝑏0 + 𝑏1) − 𝑎0

−1(𝑚𝑜𝑑 𝑏0)]

+ 𝑃2[(𝑎0 + 𝑎1 + 𝑎2)−1(𝑚𝑜𝑑 𝑏0 + 𝑏1 + 𝑏2) − (𝑎0 + 𝑎1)−1(𝑚𝑜𝑑 𝑏0 + 𝑏1)] 

Proof. 

1). Assume that 𝐴 ≡ 𝐵(𝑚𝑜𝑑 𝐶), 𝐷 ≡ 𝐸(𝑚𝑜𝑑 𝐶), thus: 

{

𝑎0 ≡ 𝑏0(𝑚𝑜𝑑 𝑐0)

𝑎0 + 𝑎1 ≡ 𝑏0 + 𝑏1(𝑚𝑜𝑑 𝑐0 + 𝑐1)

𝑎0 + 𝑎1 + 𝑎2 ≡ 𝑏0 + 𝑏1 + 𝑏2(𝑚𝑜𝑑 𝑐0 + 𝑐1 + 𝑐2)
 

And  

{

𝑑0 ≡ 𝑒0(𝑚𝑜𝑑 𝑐0)

𝑑0 + 𝑑1 ≡ 𝑒0 + 𝑒1(𝑚𝑜𝑑 𝑐0 + 𝑐1)

𝑑0 + 𝑑1 + 𝑑2 ≡ 𝑒0 + 𝑒1 + 𝑒2(𝑚𝑜𝑑 𝑐0 + 𝑐1 + 𝑐2)
 

This implies: 

{

𝑎0 + 𝑑0 ≡ 𝑏0 + 𝑒0(𝑚𝑜𝑑 𝑐0)

𝑎0 + 𝑎1 + 𝑑0 + 𝑑1 ≡ 𝑏0 + 𝑏1 + 𝑒0 + 𝑒1(𝑚𝑜𝑑 𝑐0 + 𝑐1)

𝑎0 + 𝑎1 + 𝑎2 + 𝑑0 + 𝑑1 + 𝑑2 ≡ 𝑏0 + 𝑏1 + 𝑏2 + 𝑒0 + 𝑒1 + 𝑒2(𝑚𝑜𝑑 𝑐0 + 𝑐1 + 𝑐2)
 

So that 𝐴 + 𝐷 ≡ 𝐵 + 𝐸(𝑚𝑜𝑑 𝐶). 

We can prove that 𝐴 − 𝐷 ≡ 𝐵 − 𝐸(𝑚𝑜𝑑 𝐶) by a similar. 

2). By using a similar discussion, we can write: 

{

𝑎0𝑑0 ≡ 𝑏0𝑒0(𝑚𝑜𝑑 𝑐0)

(𝑎0 + 𝑎1)(𝑑0 + 𝑑1) ≡ (𝑏0 + 𝑏1)(𝑒0 + 𝑒1)(𝑚𝑜𝑑 𝑐0 + 𝑐1)

(𝑎0 + 𝑎1 + 𝑎2)(𝑑0 + 𝑑1 + 𝑑2) ≡ (𝑏0 + 𝑏1 + 𝑏2)(𝑒0 + 𝑒1 + 𝑒2)(𝑚𝑜𝑑 𝑐0 + 𝑐1 + 𝑐2)
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Thus 𝐴. 𝐷 ≡ 𝐵. 𝐸(𝑚𝑜𝑑 𝐶). 

3). Suppose that 𝑔𝑐𝑑(𝐴, 𝐵) = 1, then 𝑔𝑐𝑑(𝑎0, 𝑏0) = 𝑔𝑐𝑑(𝑎0 + 𝑎1, 𝑏0 + 𝑏1) = 𝑔𝑐𝑑(𝑎0 + 𝑎1 +

𝑎2, 𝑏0 + 𝑏1 + 𝑏2) = 1. 

We put  

𝑇 = 𝑎0
−1(𝑚𝑜𝑑 𝑏0) + 𝑃1[(𝑎0 + 𝑎1)−1(𝑚𝑜𝑑 𝑏0 + 𝑏1) − 𝑎0

−1(𝑚𝑜𝑑 𝑏0)]

+ 𝑃2[(𝑎0 + 𝑎1 + 𝑎2)−1(𝑚𝑜𝑑 𝑏0 + 𝑏1 + 𝑏2) − (𝑎0 + 𝑎1)−1(𝑚𝑜𝑑 𝑏0 + 𝑏1)] 

𝐴. 𝑇 = 𝑎0𝑎0
−1(𝑚𝑜𝑑 𝑏0) + 𝑃1[(𝑎0 + 𝑎1)(𝑎0 + 𝑎1)−1(𝑚𝑜𝑑 𝑏0 + 𝑏1) − 𝑎0𝑎0

−1(𝑚𝑜𝑑 𝑏0)]

+ 𝑃2[(𝑎0 + 𝑎1 + 𝑎2)(𝑎0 + 𝑎1 + 𝑎2)−1(𝑚𝑜𝑑 𝑏0 + 𝑏1 + 𝑏2)

− (𝑎0 + 𝑎1)(𝑎0 + 𝑎1)−1(𝑚𝑜𝑑 𝑏0 + 𝑏1)] = 1 + 𝑃1(1 − 1) + 𝑃2(1 − 1) = 1 

Thus 𝑇 = 𝐴−1. 

Example: 

Consider 𝐴 = 5 + 4𝑃1 + 2𝑃2, 𝐵 = 2 + 𝑃1 + 𝑃2, 𝐶 = 3 + 4𝑃2, we have: 

5 ≡ 2(𝑚𝑜𝑑 3), 5 + 4 = 9 ≡ (2 + 1)(𝑚𝑜𝑑 3 + 0), 5 + 4 + 2 = 11 ≡ (2 + 1 + 1)(𝑚𝑜𝑑 3 + 0 +

4), thus 𝐴 ≡ 𝐵(𝑚𝑜𝑑 𝐶). 

𝑔𝑐𝑑(𝐴, 𝐵) = 𝑔𝑐𝑑(5,2) + 𝑃1[𝑔𝑐𝑑(9,3) − 𝑔𝑐𝑑(5,2)] + 𝑃2[𝑔𝑐𝑑(11,4) − 𝑔𝑐𝑑(9,3)] = 1 +

𝑃1(3 − 1) + 𝑃2(1 − 3) = 1 + 2𝑃1 − 2𝑃2. 

Example. 

Consider 𝐴 = 2 + 𝑃1 + 𝑃2, 𝐵 = 3 + 𝑃1 + 𝑃2, it is clear that 𝑔𝑐𝑑(𝐴, 𝐵) = 1. 

𝐴−1(𝑚𝑜𝑑 𝐵) = 2−1(𝑚𝑜𝑑 3) + 𝑃1[3−1(𝑚𝑜𝑑 4) − 2−1(𝑚𝑜𝑑 3)] + 𝑃2[4−1(𝑚𝑜𝑑 5) −

3−1(𝑚𝑜𝑑 4)] = 2 + 𝑃1(3 − 2) + 𝑃2(4 − 3) = 2 + 𝑃1 + 𝑃2. 

Definition. 

Let 𝐴 = 𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2 > 0 be a symbolic 2-plithogenic integer, we define 𝜑𝑆: 2 − 𝑆𝑃𝑍 →

2 − 𝑆𝑃𝑍 such that: 

𝜑𝑆(𝐴) = 𝜑(𝑎0) + 𝑃1[𝜑(𝑎0 + 𝑎1) − 𝜑(𝑎0)] + 𝑃2[𝜑(𝑎0 + 𝑎1 + 𝑎2) − 𝜑(𝑎0 + 𝑎1)]. 

Where 𝜑 is the classical phi-Euler's function. 

Example. 

Take 𝐴 = 3 + 5𝑃1 − 𝑃2, 𝑎0 = 3, 𝑎1 = 5, 𝑎2 = −1. We have: 

𝑎0 = 3 > 0, 𝑎0 + 𝑎1 = 8 > 0, 𝑎0 + 𝑎1 + 𝑎2 = 7 > 0, so that 𝐴 > 0. 

𝜑(𝑎0) = 2, 𝜑(𝑎0 + 𝑎1) = 4, 𝜑(𝑎0 + 𝑎1 + 𝑎2) = 6, hence: 

𝜑𝑆(𝐴) = 2 + 𝑃1[4 − 2] + 𝑃2[6 − 4] = 2 + 2𝑃1 + 2𝑃2. 

Theorem. 

Let 𝐴 = 𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2, 𝑀 = 𝑚0 + 𝑚1𝑃1 + 𝑚2𝑃2 ∈ 2 − 𝑆𝑃𝑍 such that 𝑔𝑐𝑑(𝐴, 𝑀) = 1, then 
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𝐴𝜑𝑆(𝑀) ≡ 1(𝑚𝑜𝑑 𝑀). 

Proof. 

According to [  ]: 

𝐴𝜑𝑆(𝑀) = 𝑎0
𝜑(𝑚0) + 𝑃1[(𝑎0 + 𝑎1)𝜑(𝑚0+𝑚1) − 𝑎0

𝜑(𝑚0)]

+ 𝑃2[(𝑎0 + 𝑎1 + 𝑎2)𝜑(𝑚0+𝑚1+𝑚2) − (𝑎0 + 𝑎1)𝜑(𝑚0+𝑚1)] 

Since 𝑔𝑐𝑑(𝐴, 𝑀) = 1, then 𝑔𝑐𝑑(𝑎0, 𝑚0) = 𝑔𝑐𝑑(𝑎0 + 𝑎1, 𝑚0 + 𝑚1) = 𝑔𝑐𝑑(𝑎0 + 𝑎1 + 𝑎2, 𝑚0 +

𝑚1 + 𝑚2) = 1, so that: 

{

𝑎0
𝜑(𝑚0) ≡ 1(𝑚𝑜𝑑 𝑚0)

(𝑎0 + 𝑎1)𝜑(𝑚0+𝑚1) ≡ 1(𝑚𝑜𝑑 𝑚0 + 𝑚1)

(𝑎0 + 𝑎1 + 𝑎2)𝜑(𝑚0+𝑚1+𝑚2) ≡ 1(𝑚𝑜𝑑 𝑚0 + 𝑚1 + 𝑚2)

 

Thus 𝐴𝜑𝑆(𝑀) ≡ 1 + 𝑃1(1 − 1) + 𝑃2(1 − 1)( 𝑚𝑜𝑑 𝑀) ≡ 1(𝑚𝑜𝑑 𝑀) 

Example. 

Take 𝐴 = 2 + 3𝑃1 − 2𝑃2, 𝑀 = 3 + 4𝑃1 + 4𝑃2, we have 𝑔𝑐𝑑(𝐴, 𝑀) = 1. 

𝜑𝑆(𝑀) = 2 + 𝑃1(6 − 2) + 𝑃2(10 − 6) = 2 + 4𝑃1 + 4𝑃2 

𝐴𝜑𝑆(𝑀) = 22 + 𝑃1[56 − 22] + 𝑃2[310 − 56] 

22 ≡ 1( 𝑚𝑜𝑑 3), 56 ≡ 1( 𝑚𝑜𝑑 7), 310 ≡ 1( 𝑚𝑜𝑑 11), thus 𝐴𝜑𝑆(𝑀) ≡ 1(𝑚𝑜𝑑 𝑀) 

Theorem. 

Let 𝐶 = 𝑔𝑐𝑑(𝐴, 𝐵) ∈ 2 − 𝑆𝑃𝑍, then there exists 𝑀, 𝑁 ∈ 2 − 𝑆𝑃𝑍 such that 𝐶 = 𝑀𝐴 + 𝑁𝐵. 

Proof. 

We assume that 𝐶 = 𝑔𝑐𝑑(𝐴, 𝐵), then: 

{

𝑐0 = 𝑔𝑐𝑑(𝑎0, 𝑏0)

𝑐1 = 𝑔𝑐𝑑(𝑎0 + 𝑎1, 𝑏0 + 𝑏1) − 𝑔𝑐𝑑(𝑎0, 𝑏0)

𝑐2 = 𝑔𝑐𝑑(𝑎0 + 𝑎1 + 𝑎2, 𝑏0 + 𝑏1 + 𝑏2) − 𝑔𝑐𝑑(𝑎0 + 𝑎1, 𝑏0 + 𝑏1)
 

So there exists 𝑚0, 𝑛0, 𝑚1, 𝑛1, 𝑚2, 𝑛2 ∈ 𝑍 such that: 

{

𝑐0 = 𝑚0𝑎0 + 𝑛0𝑏0

𝑐0 + 𝑐1 = 𝑚1(𝑎0 + 𝑎1) + 𝑛1(𝑛0 + 𝑛1)

𝑐0 + 𝑐1 + 𝑐2 = 𝑚2(𝑎0 + 𝑎1 + 𝑎2) + 𝑛2(𝑏0 + 𝑏1 + 𝑏2)
 

We put 𝑀 = 𝑚0 + (𝑚1 − 𝑚0)𝑃1 + (𝑚2 − 𝑚1)𝑃2, 𝑁 = 𝑛0 + (𝑛1 − 𝑛0)𝑃1 + (𝑛2 − 𝑛1)𝑃2 , now 

let us compute: 

𝑀. 𝐴 = [𝑚0 + (𝑚1 − 𝑚0)𝑃1 + (𝑚2 − 𝑚1)𝑃2][𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2] 

𝑀. 𝐴 = 𝑚0𝑎0 + 𝑃1(𝑚0𝑎1 + 𝑚1𝑎0 − 𝑚0𝑎0 + 𝑚1𝑎1 − 𝑚0𝑎1)

+ 𝑃2(𝑚0𝑎2 + 𝑚2𝑎0 − 𝑚1𝑎0 + 𝑚2𝑎1 − 𝑚1𝑎1 + 𝑚1𝑎2 − 𝑚0𝑎2 + 𝑚2𝑎2 − 𝑚1𝑎2) 

𝑀. 𝐴 = 𝑚0𝑎0 + 𝑃1(𝑚1𝑎0 + 𝑚1𝑎1 − 𝑚0𝑎0)

+ 𝑃2(𝑚2𝑎0 − 𝑚1𝑎0 + 𝑚2𝑎1 − 𝑚1𝑎1 + 𝑚1𝑎2 + 𝑚2𝑎2) 

𝑁. 𝐵 = 𝑛0𝑏0 + 𝑃1(𝑛1𝑏0 + 𝑛1𝑏1 − 𝑛0𝑏0) + 𝑃2(𝑛2𝑏0 − 𝑛1𝑏0 + 𝑛2𝑏1 − 𝑛1𝑏 + 𝑛1𝑏2 + 𝑛2𝑏2) 
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𝑀𝐴 + 𝑁𝐵 = (𝑚0𝑎0 + 𝑛0𝑏0) + 𝑃1[𝑚1(𝑎0 + 𝑎1) + 𝑛1(𝑏0 + 𝑏1) − 𝑛0𝑏0 − 𝑚0𝑎0]

+ 𝑃2[𝑚2(𝑎0 + 𝑎1 + 𝑎2) + 𝑛2(𝑏0 + 𝑏1 + 𝑏2) − 𝑚1(𝑎0 + 𝑎1) − 𝑛1(𝑏0 + 𝑏1)]

= 𝑐0 + 𝑐1𝑃1 + 𝑐2𝑃2 = 𝐶 

Example. 

Consider 𝐴 = 3 + 2𝑃1 + 𝑃2, 𝐵 = 3 + 𝑃1 + 3𝑃2, we have: 

𝑎0 = 3, 𝑎1 = 2, 𝑎2 = 1, 𝑏0 = 3, 𝑏1 = 1, 𝑏2 = 3. 

𝑔𝑐𝑑(𝑎0, 𝑏0) = 3, 𝑔𝑐𝑑(𝑎0 + 𝑎1, 𝑏0 + 𝑏1) = 𝑔𝑐𝑑(5,4) = 1, 𝑔𝑐𝑑(𝑎0 + 𝑎1 + 𝑎2, 𝑏0 + 𝑏1 + 𝑏2)

= 𝑔𝑐𝑑(6,7) = 1 

Thus 𝑔𝑐𝑑(𝐴, 𝐵) = 3 + (1 − 3)𝑃1 + (1 − 1)𝑃2 = 3 − 2𝑃1. 

On the other hand, we have: 

{

3 = 1.3 + 0.3 ℎ𝑒𝑛𝑐𝑒 𝑚0 = 1, 𝑛0 = 0
1 = 1.5 − 1.4 ℎ𝑒𝑛𝑐𝑒 𝑚1 = 1, 𝑛1 = −1

1 = −1.6 + 1.7 ℎ𝑒𝑛𝑐𝑒 𝑚2 = −1, 𝑛2 = 1
 

Thus 𝑀 = 1 + (1 − 3)𝑃1 + (−1 − 1)𝑃2 = 1 − 2𝑃2 , 𝑁 = 0 + (−1 − 0)𝑃1 + (1 + 1)𝑃2 = −𝑃1 +

2𝑃2 

We can see that: 

𝑀𝐴 + 𝑁𝐵 = (1 − 2𝑃2)(3 + 2𝑃1 + 𝑃2) + (−𝑃1 + 2𝑃2)(3 + 𝑃1 + 3𝑃2)

= 3 + 2𝑃1 + 𝑃2 − 6𝑃2 − 4𝑃2 − 2𝑃2 − 3𝑃1 − 𝑃1 − 3𝑃1 + 6𝑃2 + 2𝑃2 + 6𝑃2

= 3 − 2𝑃1 = 𝐶 = 𝑔𝑐𝑑(𝐴, 𝐵) 

Definition. 

Let 𝑆 = 𝑠0 + 𝑠1𝑃1 + 𝑠2𝑃2 ∈ 2 − 𝑆𝑃𝑍, we say that 𝑆 is a 2-plithogenic semi prime if 𝑠0, 𝑠0 +

𝑠1, 𝑠0 + 𝑠1 + 𝑠2 are primes. 

Example. 

The 2-plithogenic integer 𝑆 = 2 + 𝑃1 + 2𝑃2 is a semi prime, that is because 𝑠0 = 2, 𝑠0 +

𝑠1 = 3, 𝑠0 + 𝑠1 + 𝑠2 = 5 are primes. 

Application In Future Studies 

Symbolic 2-plithogenic number theory as a new research direction maybe very useful 

branches of knowledge. 

We suggest the following research points that symbolic 2-plithogenic integers may have a 

very big effect on it. 

1-). How can we use symbolic 2-plithogenic integers in the improvement of crypto-systems 

[39-41], for example: 

a). How can we build a 2-plithogenic version of RSA algorithm. 

b). How can we build a 2-plithogenic version of Diffie-Hellman key exchange algorithm. 
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c). How can we build a 2-plithogenic version of EL-Gamal algorithm for cryptography. 

2-). How can we a solve non-linear symbolic 2-plithogenic Diophantine equations 

and congruencies. 
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Abstract: In this paper we have successfully constructed the literal neutrosophic 

Kumaraswamy probability distribution. We mean by literal neutrosophic probability 

distribution that parameters of the distribution and the values that the random variable 

describing the distribution all take literal neutrosophic numbers of the form 𝜃𝑁 = 𝑎 +

𝑏𝐼 ; 𝐼2 = 𝐼  which differs from interval-valued neutrosophic probability distributions in 

which parameters of theses distributions take the form 𝜃𝑁 ∈ [𝐿, 𝑈]. We have derived the 

neutrosophic form of the probability density function, cumulative distribution function, 

statistical properties and maximum likelihood estimations of the parameters. Finally, a 

simulation study is performed to show the efficiency of the estimators provided by the 

neutrosophic MLE method. 

Keywords: Literal Neutrosophic Numbers; Probability Distributions Theory; Maximum 

Likelihood Estimation; Kumaraswamy Distribution; Simulation. 

 

 

1. Introduction 

Neutrosophic probability distributions from one point of view are a generalization of 

the concept of crisp probability distributions and fuzzy probability distributions that allow 

for the modeling of indeterminacy and uncertainty. In traditional probability theory, 
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probabilities are assigned to events and are represented as real numbers between 0 and 1. 

In neutrosophic probability theory, probabilities are assigned as a triplet of values (T, I, F) 

where 𝑇 represents the degree of truth, 𝐼 represents the degree of indeterminacy and 𝐹 

represents the degree of falsity. These values are used to model the degree to which an event 

is certain, uncertain, or false [1-6,32-38]. 

From another point of view according to the fact that neutrosophic field of reals 𝑅(𝐼) 

is a generalization of the field of reals 𝑅, literal neutrosophic probability theory is another 

way of generalizing crisp probability theory where each probability can be presented in the 

form 𝑃 = 𝑃1 + 𝑃2𝐼 ; 𝑃1, 𝑃2 ∈ [0,1] , 𝐼2 = 𝐼 [7-14]. 

Neutrosophic probability distributions can be used in a variety of fields such as decision 

making, artificial intelligence, and data analysis, where traditional probability distributions 

are inadequate to model the uncertainty and indeterminacy present in real-world systems. 

[15-29] 

The Kumaraswamy distribution [30] is a two-parameter continuous probability 

distribution that is commonly used in Bayesian statistics, reliability theory and other fields. 

The probability density function (PDF) of the classical Kumaraswamy distribution is 

defined as: 

𝑓(𝑥;  𝑎, 𝑏) =  𝑎  𝑏  𝑥𝑎−1  (1 − 𝑥𝑎)𝑏−1; 𝑥 ∈ [0, 1]  (1) 

Where 𝑎 and 𝑏 are the shape parameters of the distribution, and they are both positive 

real numbers. The cumulative distribution function (CDF) is given by: 

𝐹(𝑥;  𝑎, 𝑏)  =  1 −  (1 − 𝑥𝑎)𝑏   (2) 

The Kumaraswamy distribution is a generalization of the beta distribution, in the sense 

that the beta distribution is a special case of the Kumaraswamy distribution when 𝑎 =  𝑏. 

Many generalizations of the Kumaraswamy distribution were made to provide more 

flexibility in modeling various types of data, and they are widely used in various fields. 

It's worth noting that the Kumaraswamy distribution has some desirable properties 

such as it is closed under convolution, it has increasing failure rate, and it has increasing 

hazard rate. These properties make it useful for modeling various types of data in different 

fields. 
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In this paper, we are going to construct the neutrosophic form of Kumaraswamy 

distribution and study some properties of it depending on the One-Dimensional AH-

Isometry. 

2. Preliminaries 

 Definition 2.1 [7] 

Let 𝑅(𝐼) = {𝑎 + 𝑏𝐼 ; 𝑎, 𝑏 ∈ 𝑅 , 𝐼2 = 𝐼}  be the neutrosophic field of reals. One-

dimensional AH-isometry presented by Abobala and Hatip and its inverse are given by: 

𝑇: 𝑅(𝐼) → 𝑅2 ∶  𝑇(𝑎 + 𝑏𝐼) = (𝑎, 𝑎 + 𝑏)  (5) 

𝑇−1: 𝑅2 → 𝑅(𝐼) ∶  𝑇−1(𝑎, 𝑏) = 𝑎 + (𝑏 − 𝑎)𝐼   (6) 

Note: 

Let 𝒙𝑵, 𝒚𝑵 ∈ 𝑹(𝑰) and 𝑻 be the AH-Isometry, since 𝑻 is an algebraic isomorphism then it 

has the following properties: 

1. 𝑻(𝒙𝑵 + 𝒚𝑵) = 𝑻(𝒙𝑵) + 𝑻(𝒚𝑵) 

2. 𝑻(𝒙𝑵 ∙ 𝒚𝑵) = 𝑻(𝒙𝑵) ∙ 𝑻(𝒚𝑵) 

3. 𝑻 is correspondence one-to-one. 

Definition 2.2 [8] 

Let 𝑓: 𝑅(𝐼) → 𝑅(𝐼); 𝑓 = 𝑓(𝑥𝑁)  where 𝑥𝑁 = 𝑥 + 𝑦𝐼 ∈ 𝑅(𝐼)  then 𝑓  is called a 

neutrosophic real function with one neutrosophic variable. 

Definition 2.3 [9] 

Neutrosophic gamma function is a special function is defined by: 

𝛤(𝑎𝑁) = 𝛤(𝑎1) + 𝐼{𝛤(𝑎1 + 𝑎2) − 𝛤(𝑎1)} ; 𝑎𝑁 = 𝑎1 + 𝑎2𝐼 , 𝐼2 = 𝐼  

Where: 

𝛤(𝑎) = ∫ 𝑥𝑎−1𝑒−𝑥𝑑𝑥

∞

0

 ; 𝑎 > 0 
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Definition 2.4 [9] 

Neutrosophic beta function is a special function can be defined in one of the following 

forms: 

𝛽(𝑎𝑁 , 𝑏𝑁) = ∫ 𝑥𝑎𝑁−1(1 − 𝑥)𝑏𝑁−1𝑑𝑥

1

0

= 𝛽(𝑎1, 𝑏1) + {𝛽(𝑎1 + 𝑎2, 𝑏1 + 𝑏2) − 𝛽(𝑎1, 𝑏1)}𝐼

=
𝛤(𝑎𝑁)𝛤(𝑏𝑁)

𝛤(𝑎𝑁 + 𝑏𝑁)
 ; 𝑎𝑁 = 𝑎1 + 𝑎2𝐼 , 𝑏1 + 𝑏2𝐼 , 𝐼2 = 𝐼 

Definition 2.5 [9,11] 

A neutrosophic random variable is defined as follows: 

𝑋𝑁 = 𝑋1 + 𝑋2𝐼 ; 𝐼2 = 𝐼 , 0 ∙ 𝐼 = 0    (7) 

Where 𝑋, 𝑌 are crisp random variables taking values on 𝑅. 

Definition 2.6 [8] 

Neutrosophic power of neutrosophic numbers is defined as follows: 

(𝑎 + 𝑏𝐼)𝑐+𝑑𝐼 = 𝑎𝑐 + 𝐼[(𝑎 + 𝑏)𝑐+𝑑 − 𝑎𝑐]   (8) 

Definition 2.7 [10] 

Let 𝕏𝑁 = 𝑋1𝑁, 𝑋2𝑁, … , 𝑋𝑛𝑁 be a neutrosophic random sample of random variables, we call: 

𝐿𝑁 = 𝐿(𝕏𝑁; Θ𝑁) = 𝑓(𝕏𝑁; Θ𝑁) = ∏ 𝑓(𝑋𝑖𝑁; Θ𝑁)𝑛
𝑖=1 = 𝐿(𝕏; Θ1) + [𝐿(𝕏 + 𝕐; Θ1 + Θ2) −

𝐿(𝕏; Θ1)]𝐼 (9) 

The neutrosophic likelihood function. 

Definition 2.8 [10] 

Let 𝕏𝑁 = 𝑋1𝑁, 𝑋2𝑁, … , 𝑋𝑛𝑁 be a neutrosophic random sample of random variables, we call: 

ℒ𝑁 = 𝑙𝑛 𝐿(𝕏𝑁; Θ𝑁)    (10) 

The neutrosophic loglikelihood function and we have: 

ℒ𝑁 = ℒ(𝕏; Θ1) + [ℒ(𝕏 + 𝕐; Θ1 + Θ2) − ℒ(𝕏; Θ1)]𝐼  (11) 

4. Neutrosophic Kumaraswamy probability distribution 

In this section we are going to construct the neutrosophic form of Kumaraswamy 

probability distribution function, cumulative probability distribution function, statistical 

properties and MLE estimations. Building this probability distribution and its properties 

will be in an algebraic approach depending on the one-dimensional AH-Isometry. 
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3.1 Probability density function and cumulative distribution function 

Definition 3.1 

Neutrosophic Kumaraswamy probability density function is defined as follows: 

𝑓(𝑥𝑁;  𝑎𝑁 , 𝑏𝑁)  =  𝑎𝑁  𝑏𝑁  𝑥𝑁
𝑎𝑁−1

  (1 − 𝑥𝑁
𝑎𝑁)

𝑏𝑁−1
; 𝑥𝑁 ∈ [0, 1]   (12) 

Where: 𝑥𝑁 = 𝑥1 + 𝑥2𝐼, 𝑎𝑁 = 𝑎1 + 𝑎2𝐼, 𝑏𝑁 = 𝑏1 + 𝑏2𝐼, 𝐼2 = 𝐼 

Theorem 3.1 

The neutrosophic formal form of (12) is: 

𝑓(𝑥𝑁;  𝑎𝑁 , 𝑏𝑁) =  𝑎1 𝑏1  𝑥1
𝑎1−1

   (1 − 𝑥1
𝑎1)

𝑏1−1

+ 𝐼 [ (𝑎1 + 𝑎2)(𝑏1 + 𝑏2)  (𝑥1 + 𝑥2)𝑎1+𝑎2−1   (1 − (𝑥1 + 𝑥2)(𝑎1+𝑎2))
𝑏1+𝑏2−1

− 𝑎1 𝑏1  𝑥1
𝑎1−1

   (1 − 𝑥1
𝑎1)

𝑏1−1
] ; 𝑥1 ∈ [0, 1]& 𝑥1 + 𝑥2 ∈ [0,1] 

Proof 

𝑇[𝑓(𝑥𝑁;  𝑎𝑁 , 𝑏𝑁)] = 𝑇 [𝑎𝑁  𝑏𝑁  𝑥𝑁
𝑎𝑁−1

  (1 − 𝑥𝑁
𝑎𝑁)

𝑏𝑁−1
]

= 𝑇[𝑎𝑁]𝑇[𝑏𝑁  ]𝑇[ 𝑥𝑁
𝑎𝑁−1

]𝑇 [(1 − 𝑥𝑁
𝑎𝑁)

𝑏𝑁−1
]

= (𝑎1, 𝑎1 + 𝑎2)(𝑏1, 𝑏1

+ 𝑏2)(𝑥1
𝑎1−1

, (𝑥1 + 𝑥2)𝑎1+𝑎2−1) ((1 − 𝑥1
𝑎1)

𝑏1−1
, (1 − (𝑥1 + 𝑥2)𝑎1+𝑎2)𝑏1+𝑏2−1)

= (𝑎1𝑏1𝑥1
𝑎1−1

(1 − 𝑥1
𝑎1)

𝑏1−1
, (𝑎1 + 𝑎2)(𝑏1

+ 𝑏2)(𝑥1 + 𝑥2)𝑎1+𝑎2−1(1 − (𝑥1 + 𝑥2)𝑎1+𝑎2)𝑏1+𝑏2−1)

= (𝑓(𝑥1; 𝑎1, 𝑏1), 𝑓(𝑥1 + 𝑥2; 𝑎1 + 𝑎2, 𝑏1 + 𝑏2) ) 

Taking 𝑇−1:s 

𝑓(𝑥𝑁;  𝑎𝑁, 𝑏𝑁) = 𝑎1𝑏1𝑥1
𝑎1−1

(1 − 𝑥1
𝑎1)

𝑏1−1

+ [(𝑎1 + 𝑎2)(𝑏1 + 𝑏2)(𝑥1 + 𝑥2)𝑎1+𝑎2−1(1 − (𝑥1 + 𝑥2)𝑎1+𝑎2)𝑏1+𝑏2−1

− 𝑎1𝑏1𝑥1
𝑎1−1

(1 − 𝑥1
𝑎1)

𝑏1−1
] 𝐼

= 𝑓(𝑥1; 𝑎1, 𝑏1) + 𝐼[𝑓(𝑥1 + 𝑥2; 𝑎1 + 𝑎2, 𝑏1 + 𝑏2) − 𝑓(𝑥1; 𝑎1, 𝑏1)] 

Theorem 3.2 

Equation (12) represents probability density function in classical sense. 

Proof 

We have: 
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𝑇 [∫ 𝑓(𝑥𝑁;  𝑎𝑁, 𝑏𝑁)
1

0

𝑑𝑥𝑁] = (∫ 𝑓(𝑥1; 𝑎1, 𝑏1)𝑑𝑥1

1

0

, ∫ 𝑓(𝑥1 + 𝑥2; 𝑎1 + 𝑎2, 𝑏1 + 𝑏2)𝑑(𝑥1 + 𝑥2)

1

0

)

= (∫ 𝑎1𝑏1𝑥1
𝑎1−1

(1 − 𝑥1
𝑎1)

𝑏1−1
𝑑𝑥1

1

0

, ∫(𝑎1 + 𝑎2)(𝑏1

1

0

+ 𝑏2)(𝑥1 + 𝑥2)𝑎1+𝑎2−1(1 − (𝑥1 + 𝑥2)𝑎1+𝑎2)𝑏1+𝑏2−1 𝑑(𝑥1 + 𝑥2))

= (− ∫ 𝑑(1 − 𝑥1
𝑎1)

𝑏1

1

0

, − ∫ 𝑑(1 − (𝑥1 + 𝑥2)𝑎1+𝑎2)𝑏1+𝑏2−1

1

0

) = (1,1) 

So: 

∫ 𝑓(𝑥𝑁;  𝑎𝑁 , 𝑏𝑁)
1

0

𝑑𝑥𝑁 = 𝑇−1(1,1) = 1 

Also, depending on [7] it is easy to see that 𝑇[𝑓(𝑥𝑁;  𝑎𝑁 , 𝑏𝑁)] are two continuous functions 

on [0,1] ⊆ 𝑅 so 𝑓(𝑥𝑁; 𝑎𝑁 , 𝑏𝑁) is continuous on [0,1]. 

Depending on previous results we can prove that given neutrosophic function is a 

neutrosophic probability density function in classical sense. 

Theorem 3.3 

Cumulative distribution function of neutrosophic Kumaraswamy distribution is: 

𝐹(𝑥𝑁;  𝑎𝑁 , 𝑏𝑁)  =  1 −  (1 − 𝑥𝑁
𝑎𝑁)

𝑏𝑁  (13) 

Proof 

𝐹(𝑥𝑁;  𝑎𝑁, 𝑏𝑁) = ∫ 𝑓(𝑡𝑁; 𝑎𝑁 , 𝑏𝑁)
𝑥𝑁

0

𝑑𝑡𝑁 
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𝑇[𝐹(𝑥𝑁;  𝑎𝑁, 𝑏𝑁)] = 𝑇 [∫ 𝑓(𝑡𝑁;  𝑎𝑁 , 𝑏𝑁)
𝑥𝑁

0

𝑑𝑡𝑁]

= (∫ 𝑓(𝑡1; 𝑎1, 𝑏1)𝑑𝑡1

𝑥1

0

, ∫ 𝑓(𝑡1 + 𝑡2; 𝑎1 + 𝑎2, 𝑏1 + 𝑏2)𝑑(𝑡1 + 𝑡2)

𝑥1+𝑥2

0

)

= (∫ 𝑎1𝑏1𝑡1
𝑎1−1

(1 − 𝑡1
𝑎1)

𝑏1−1
𝑑𝑡1

𝑥1

0

, ∫ (𝑎1 + 𝑎2)(𝑏1

𝑥1+𝑥2

0

+ 𝑏2)(𝑡1 + 𝑡2)𝑎1+𝑎2(1 − (𝑡1 + 𝑡2)𝑎1+𝑎2−1)𝑏1+𝑏2−1 𝑑(𝑡1 + 𝑡2))

= (− ∫ 𝑑(1 − 𝑡1
𝑎1)

𝑏1

𝑥1

0

, − ∫ 𝑑(1 − (𝑡1 + 𝑡2)𝑎1+𝑎2−1)𝑏1+𝑏2−1

𝑥1+𝑥2

0

)

= (1 − (1 − 𝑥1
𝑎1)

𝑏1
, 1 − (1 − (𝑥1 + 𝑥2)𝑎1+𝑎2)𝑏1+𝑏2−1) 

So: 

𝐹(𝑥𝑁; 𝑎𝑁 , 𝑏𝑁) = 𝑇−1 [1 − (1 − 𝑥1
𝑎1)

𝑏1 , 1 − (1 − (𝑥1 + 𝑥2)𝑎1+𝑎2)𝑏1+𝑏2−1]

= 1 − (1 − 𝑥1
𝑎1)

𝑏1 + [1 − (1 − (𝑥1 + 𝑥2)𝑎1+𝑎2)𝑏1+𝑏2−1 − 1 + (1 − 𝑥1
𝑎1)

𝑏1
] 𝐼 

Which is the neutrosophic formal form of the function: 

𝐹(𝑥𝑁;  𝑎𝑁 , 𝑏𝑁)  =  1 − (1 − 𝑥𝑁
𝑎𝑁)

𝑏𝑁 

3.2 Statistical properties of Kumaraswamy distribution 

Theorem 3.4 

Let 𝑋𝑁  be a neutrosophic random variable following Kumaraswamy distribution with 

parameters 𝑎𝑁 , 𝑏𝑁 then: 

1) 𝐸(𝑋𝑁
𝑟 ) = 𝑏1𝛽 (

𝑟

𝑎1
+ 1, 𝑏1) + [(𝑏1 + 𝑏2)𝛽 (

𝑟

𝑎1+𝑎2
+ 1, 𝑏1 + 𝑏2) − 𝑏1𝛽 (

𝑟

𝑎1
+ 1, 𝑏1)] 𝐼 

2) 𝐸(𝑋𝑁) = 𝑏1𝛽 (
1

𝑎1
+ 1, 𝑏1) + [(𝑏1 + 𝑏2)𝛽 (

1

𝑎1+𝑎2
+ 1, 𝑏1 + 𝑏2) − 𝑏1𝛽 (

1

𝑎1
+ 1, 𝑏1)] 𝐼 

3) 𝑉(𝑋𝑁) = 𝑏1𝛽 (
2

𝑎1
+ 1, 𝑏1) + [(𝑏1 + 𝑏2)𝛽 (

2

𝑎1+𝑎2
+ 1, 𝑏1 + 𝑏2) − 𝑏1𝛽 (

2

𝑎1
+ 1, 𝑏1)] 𝐼 −

[𝑏1𝛽 (
1

𝑎1
+ 1, 𝑏1) + [(𝑏1 + 𝑏2)𝛽 (

1

𝑎1+𝑎2
+ 1, 𝑏1 + 𝑏2) − 𝑏1𝛽 (

1

𝑎1
+ 1, 𝑏1)] 𝐼]

2
 

4) Median=(1 − 2
− 

1

𝑏1)

1

𝑎1
+ [(1 − 2

− 
1

𝑏1+𝑏2)

1

𝑎1+𝑎2
− (1 − 2

− 
1

𝑏1)

1

𝑎1
] 𝐼 

Proof 

1) We have: 

𝑥𝑁
𝑟 𝑓(𝑥𝑁;  𝑎𝑁 , 𝑏𝑁) = 𝑎𝑁  𝑏𝑁  𝑥𝑁

𝑎𝑁+𝑟−1
  (1 − 𝑥𝑁

𝑎𝑁)
𝑏𝑁−1
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𝑇[𝑥𝑁
𝑟 𝑓(𝑥𝑁;  𝑎𝑁 , 𝑏𝑁)] = 𝑇[𝑥𝑁

𝑟 ]𝑇[𝑓(𝑥𝑁; 𝑎𝑁 , 𝑏𝑁)]

= (𝑥1
𝑟, (𝑥1 + 𝑥2)𝑟) (𝑎1𝑏1𝑥1

𝑎1−1
(1 − 𝑥1

𝑎1)
𝑏1−1

, (𝑎1 + 𝑎2)(𝑏1

+ 𝑏2)(𝑥1 + 𝑥2)𝑎1+𝑎2−1(1 − (𝑥1 + 𝑥2)𝑎1+𝑎2)𝑏1+𝑏2−1)

= (𝑎1𝑏1𝑥1
𝑎1+𝑟−1

(1 − 𝑥1
𝑎1)

𝑏1−1
, (𝑎1 + 𝑎2)(𝑏1

+ 𝑏2)(𝑥1 + 𝑥2)𝑎1+𝑎2+𝑟−1(1 − (𝑥1 + 𝑥2)𝑎1+𝑎2)𝑏1+𝑏2−1) 

So: 

𝑇 [∫ 𝑥𝑁
𝑟 𝑓(𝑥𝑁;  𝑎𝑁 , 𝑏𝑁)

1

0

𝑑𝑥𝑁]

= (∫ 𝑎1𝑏1𝑥1
𝑎1+𝑟−1

(1 − 𝑥1
𝑎1)

𝑏1−1
𝑑𝑥1

1

0

, ∫(𝑎1 + 𝑎2)(𝑏1

1

0

+ 𝑏2)(𝑥1 + 𝑥2)𝑎1+𝑎2+𝑟−1(1 − (𝑥1 + 𝑥2)𝑎1+𝑎2)𝑏1+𝑏2−1𝑑(𝑥1 + 𝑥2)) = (𝐿, 𝑅) 

In 𝐿 let 𝑥1
𝑎1 = 𝑡 then 𝑥1

𝑟 = 𝑡
𝑟

𝑎1 and 𝑎1𝑥1
𝑎1−1

𝑑𝑥1 = 𝑑𝑡 so: 

𝐿 = ∫ 𝑏1𝑡
𝑟
𝑎(1 − 𝑡)𝑏1−1𝑑𝑡 = 𝑏1𝛽 (

𝑟

𝑎1
+ 1, 𝑏1)

1

0

 

In 𝑅  similarly we let (𝑥1 + 𝑥2)𝑎1+𝑎2 = 𝑡  so (𝑥1 + 𝑥2)𝑟 = 𝑡
𝑟

𝑎1+𝑎2  and (𝑎1 + 𝑎2)(𝑥1 +

𝑥2)𝑎1+𝑎2−1𝑑(𝑥1 + 𝑥2) = 𝑑𝑡 that yields: 

𝑅 = ∫(𝑏1 + 𝑏2)𝑡
𝑟

𝑎1+𝑎2(1 − 𝑡)𝑏1+𝑏2−1𝑑𝑡

1

0

= (𝑏1 + 𝑏2)𝛽 (
𝑟

𝑎1 + 𝑎2
+ 1, 𝑏1 + 𝑏2) 

Then we have: 

𝑇 [∫ 𝑥𝑁
𝑟 𝑓(𝑥𝑁;  𝑎𝑁 , 𝑏𝑁)

1

0

𝑑𝑥𝑁] = (𝑏1𝛽 (
𝑟

𝑎1
+ 1, 𝑏1) , (𝑏1 + 𝑏2)𝛽 (

𝑟

𝑎1 + 𝑎2
+ 1, 𝑏1 + 𝑏2)) 

So: 

 

𝐸(𝑋𝑁
𝑟 ) = ∫ 𝑥𝑁

𝑟 𝑓(𝑥𝑁; 𝑎𝑁 , 𝑏𝑁)

1

0

𝑑𝑥𝑁 = 𝑇−1 (𝑏1𝛽 (
𝑟

𝑎1
+ 1, 𝑏1) , (𝑏1 + 𝑏2)𝛽 (

𝑟

𝑎1 + 𝑎2
+ 1, 𝑏1 + 𝑏2))

= 𝑏1𝛽 (
𝑟

𝑎1
+ 1, 𝑏1) + [(𝑏1 + 𝑏2)𝛽 (

𝑟

𝑎1 + 𝑎2
+ 1, 𝑏1 + 𝑏2) − 𝑏1𝛽 (

𝑟

𝑎1
+ 1, 𝑏1)] 𝐼 

2) By substituting 𝑟 = 1 we get the required formula directly. 
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3) Straightforward from definition of variance (see [9]). 

4) Median is the point that 50% of the area under the density curve is preceded by it, 

so it satisfies the following: 

∫ 𝑓(𝑥𝑁;  𝑎𝑁 , 𝑏𝑁)

𝑀𝑒𝑑𝑖𝑎𝑛

0

𝑑𝑥𝑁 = 0.5 

Or equivalently: 

𝐹(𝑀𝑒𝑑𝑖𝑎𝑛; 𝑎𝑁 , 𝑏𝑁) =  1 − (1 − 𝑀𝑒𝑑𝑖𝑎𝑛𝑎𝑁)𝑏𝑁 = 0.5 

By solving the previous equation with respect to the Median we get: 

𝑀𝑒𝑑𝑖𝑎𝑛 = (1 − 2
− 

1
𝑏𝑁)

1
𝑎𝑁

 

Following rules of calculating neutrosophic powers presented in equation (8) we get: 

𝑀𝑒𝑑𝑖𝑎𝑛 = (1 − 2
− 

1
𝑏𝑁)

1
𝑎𝑁

= (1 − 2
− 

1
𝑏1)

1
𝑎1

+ [(1 − 2
− 

1
𝑏1+𝑏2)

1
𝑎1+𝑎2

− (1 − 2
− 

1
𝑏1)

1
𝑎1

] 𝐼 

4.3 Parameters’ estimation using neutrosophic MLE method 

Let 𝕏𝑁 = 𝑋1𝑁 , 𝑋2𝑁, … , 𝑋𝑛𝑁 be a neutrosophic random sample drawn from neutrosophic 

Kumaraswamy distribution presented in equation (12) then the neutrosophic likelihood 

function will be: 

𝐿𝑁 = 𝐿(𝕏𝑁; Θ𝑁) = 𝑓(𝕏𝑁; Θ𝑁) = ∏ 𝑓(𝑋𝑖𝑁; 𝑎𝑁, 𝑏𝑁)

𝑛

𝑖=1

= ∏ 𝑎𝑁  𝑏𝑁  𝑋𝑖𝑁
𝑎𝑁−1

  (1 − 𝑋𝑖𝑁
𝑎𝑁)

𝑏𝑁−1
𝑛

𝑖=1

= 𝑎𝑁
𝑛  𝑏𝑁

𝑛   ∏ 𝑋𝑖𝑁
𝑎𝑁−1

𝑛

𝑖=1

 ∏(1 − 𝑋𝑖𝑁
𝑎𝑁)

𝑏𝑁−1
𝑛

𝑖=1

  

So, the loglikelihood function will be: 

ℒ𝑁 = 𝑙𝑛𝐿(𝕏𝑁; Θ𝑁) = 𝑛 ln 𝑎𝑁 + 𝑛 ln  𝑏𝑁 + (𝑎𝑁 − 1) ∑ ln 𝑋𝑖𝑁
𝑛
𝑖=1 + (𝑏𝑁 − 1) ∑ ln(1 −𝑛

𝑖=1

𝑋𝑖𝑁
𝑎𝑁) (14) 

Taking partial derivatives of equation (14) with respect to 𝑎𝑁 , 𝑏𝑁 yields to: 

𝜕

𝜕𝑎𝑁
ℒ𝑁 =

𝑛

𝑎𝑁
+  ∑ ln 𝑋𝑖𝑁

𝑛
𝑖=1 + (𝑏𝑁 − 1) ∑

−𝑋𝑖𝑁

𝑎𝑁 ln 𝑋𝑖𝑁

𝑎𝑁

1−𝑋
𝑖𝑁

𝑎𝑁
𝑛
𝑖=1   (15) 

𝜕

𝜕𝑏𝑁
ℒ𝑁 =

𝑛

𝑏𝑁
+ ∑ ln(1 − 𝑋𝑖𝑁

𝑎𝑁)𝑛
𝑖=1   (16) 

 

Equations (15-16) are equivalent to the following four equations in 𝑅2 (using the AH-

Isometry): 



133 
 

 

Mohamed Bisher Zeina, Mohammad Abobala, Ahmad Hatip, Said Broumi, Sarah Jalal Mosa, Algebraic Approach to Literal 

Neutrosophic Kumaraswamy Probability Distribution 

{

𝜕

𝜕𝑎1
ℒ1 =

𝑛

𝑎1
+  ∑ ln 𝑋𝑖1

𝑛
𝑖=1 + (𝑏1 − 1) ∑

−𝑋𝑖1
𝑎1 ln 𝑋𝑖1

𝑎1

1−𝑋
𝑖1
𝑎1

𝑛
𝑖=1

𝜕(ℒ1+ℒ2)

𝜕(𝑎1+𝑎2)
=

𝑛

𝑎1+𝑎2
+ ∑ ln(𝑋𝑖1 + 𝑋𝑖2)𝑛

𝑖=1 + (𝑏1 + 𝑏2 − 1) ∑
−(𝑋𝑖1+𝑋𝑖2)𝑎1+𝑎2 ln(𝑋𝑖1+𝑋𝑖2)𝑎1+𝑎2

1−(𝑋𝑖1+𝑋𝑖2)𝑎1+𝑎2

𝑛
𝑖=1

 

 (17) 

{

𝜕

𝜕𝑏1
ℒ1 =

𝑛

𝑏1
+ ∑ ln(1 − 𝑋𝑖1

𝑎1)𝑛
𝑖=1

𝜕(ℒ1+ℒ2)

𝜕(𝑏1+𝑏2)
=

𝑛

𝑏1+𝑏2
+ ∑ ln(1 − (𝑋𝑖1 + 𝑋𝑖2)𝑎1+𝑎2)𝑛

𝑖=1

  (18) 

Solving these sets of equations is not easy analytically, we will provide simulation study 

to show the efficiency of these neutrosophic MLE estimation. 

 

4.4 Simulation study and random numbers generating 

To do a simulation study we first derive a formula for random numbers generating 

noticing that equation (13) can be written as follows: 

𝐹(𝑥𝑁;  𝑎𝑁 , 𝑏𝑁) =  1 − (1 − 𝑥𝑁
𝑎𝑁)

𝑏𝑁 = 𝑝1 + 𝑝2𝐼 = 𝑃𝑁 

Where 𝑃𝑁 is neutrosophically uniform distributed on [0,1] So: 

1 − 𝑥𝑁
𝑎𝑁 = (1 − 𝑃𝑁)

1
𝑏𝑁 

𝑥𝑁 = (1 − (1 − 𝑃𝑁)
1

𝑏𝑁)

1

𝑎𝑁
 (19) 

Taking AH-isometry to equation (19) yields to the following two equations: 

𝑥1 = (1 − (1 − 𝑝1)
1

𝑏1)

1

𝑎1
  (20) 

𝑥1 + 𝑥2 = (1 − (1 − 𝑝1 − 𝑝2)
1

𝑏1+𝑏2)

1

𝑎1+𝑎2
 (19) 

 

We can use equations (20-21) to generate random numbers following classical 

Kumaraswamy distribution with selected parameters, and takin 𝑇−1  to the generated 

numbers yields to neutrosophic Kumaraswamy distribution. 

Now, performance of MLE estimators will be evaluated based on Monte Carlo simulation 

to the Kumaraswamy neutrosophic probability distribution with total replication of 𝑁 =

10000 times and with sample sizes of 5,15,30,50 and 100 and with fixed parameters 𝑎𝑁 =

3 + 2𝐼, 𝑏𝑁 = 2 + 4𝐼.  

Goodness of estimation is assessed depending on average bias and root mean square error 

defined below: [31] 
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𝐴𝐵 =
∑ (𝜃𝑁𝑖 − 𝜃𝑁)𝑁

𝑖=1

𝑁
 

𝑅𝑀𝑆𝐸 = √∑ (𝜃𝑁𝑖 − 𝜃𝑁)
2𝑁

𝑖=1

𝑁
 

Where 𝜃𝑁𝑖 is the ith estimator of 𝜃𝑁. 

Table 1. Simulation results of neutrosophic Kumaraswamy distribution parameters’ 

estimation 

N Average 𝒂̂𝑵 𝑹𝑴𝑺𝑬(𝒂̂𝑵) 𝑨𝑩(𝒂̂𝑵) Average 𝒃̂𝑵 𝑹𝑴𝑺𝑬(𝒃̂𝑵) 𝑨𝑩(𝒃̂𝑵) 

5 
4.287

+ 1.642𝐼 

2.380

− 0.237𝐼 

1.287

− 0.358𝐼 

3.311

+ 2.109𝐼 

2.522

− 0.279𝐼 

1.311

− 1.891𝐼 

15 
3.434

+ 2.149𝐼 

1.109

+ 0.390𝐼 

0.434

+ 0.149𝐼 

2.586

+ 3.365𝐼 

1.344

+ 0.615𝐼 

0.586

− 0.635𝐼 

30 
3.209

+ 2.075𝐼 

0.714

+ 0.270𝐼 

0.209

+ 0.075𝐼 

2.297

+ 3.953𝐼 

0.807

+ 0.923𝐼 

0.297

− 0.047𝐼 

50 
3.093

+ 2.090𝐼 

0.503

+ 0.233𝐼 

0.093

+ 0.090𝐼 

2.139

+ 4.123𝐼 

0.522

+ 0.977𝐼 

0.139

+ 0.123𝐼 

100 
3.043

+ 2.017𝐼 

0.339

+ 0.169𝐼 

0.043

+ 0.017𝐼 

2.063

+ 4.140𝐼 

0.330

+ 0.869𝐼 

0.063

+ 0.140𝐼 

 

Table (1) shows results of simulation analysis for neutrosophic Kumaraswamy 

distribution where we notice that average bias of estimators is when sample size increases, 

which proves by simulation that proposed estimators are asymptotically unbiased. 

5. Conclusions and future research directions 

We have derived the neutrosophic Kumaraswamy probability distribution function, 

cumulative distribution function and statistical properties of the distribution, such as the 

mean, median, variance, and general moments. Additionally, we have derived the 

maximum likelihood estimations of the distributions’ parameters. 

The simulation study demonstrated the efficiency of the derived estimators and have 

shown that the estimators are unbiased. These results indicate that the neutrosophic 

Kumaraswamy distribution and its associated estimators can be useful in a variety of 

applications, including those involving uncertain or incomplete information. 
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Overall, this work has contributed to the development of neutrosophic probability 

theory and has practical implications for data analysis in various fields. Further research can 

be done to explore the potential of the neutrosophic Kumaraswamy distribution in other 

statistical applications.  
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Abstract: determinacy is a philosophical concept which introduced by Smarandache and 

used in structure of mathematical systems. In this article we use this concept to introduced 

Particular Structure of neutrosophic ring and studied some theorem and properties 

according to classical axiomatic ring theory.  
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1. Introduction 

Neutrosophic ring established first time by Kandasamy and Smarandache in 2006 see 

[19], in this paper we introduced particular neutrosophic ring depend on classical axioms of 

ring theory and studied some theorems and properties of neutrosophic ring theory.     

 

2. Neutrosophic Rings and Their Examples 

 

In this section we introduced the concept of neutrosophic ring was introduced in 2006 by 

Kandasamy and Smarandache see [19] with examples, but by applying the axioms of 
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classical ring theory with concept of indeterminate. The neutrosophic element as 𝐼 where 

𝐼 is an indeterminate and 𝐼 is such that 𝐼2 = 𝐼. If   𝐼2 = 𝐼 ⇏ 𝐼(𝐼 − 1) = 0 or any relation is 

just saying  𝐼2 = 𝐼 

Definition 2.1. [19] Let 𝑅  be any ring. The neutrosophic ring 〈𝑅 ∪  𝐼〉  is also a ring 

generated by 𝑅 and 𝐼 under the operations of 𝑅.  

Theorem 2.2. [19] Let 〈𝑅 ∪  𝐼〉 be a neutrosophic ring. 〈𝑅 ∪  𝐼〉 is a ring. 

Note. In sated of notation 〈𝑅 ∪  𝐼〉  and 〈𝑅\{0}  ∪  𝐼〉, we use notation 𝑅 [ 𝐼]  and 𝑅∗[ 𝐼] 

respectively.  

Definition 2.2. Let  𝑅 be a nonempty set and the triple  (𝑅, +,•)  be a ring, and consider 

the neutrosophic (NS):𝑅[I] = {𝑎 + 𝑏𝐼: 𝑎, 𝑏 ∈ 𝑅}, then the neutrosophic algebra structure 

(NAS): 

 𝑁(𝑅)  = 〈𝑅[𝐼], +,•〉 is called the neutrosophic associative ring which is a generated by 𝐼 

and R under operations + " addition "and  • " multiplications" respectively if satisfies the 

axiomatic conditions of ring:  

NR1: For all 𝑥 , 𝑦 and 𝑧 ∈ 𝑁(𝑅), 𝑁(𝑅)  = 〈𝑅[𝐼], +〉 is a neutrosophic an abelian group 

under addition; 

NR2:  For all 𝑥 , 𝑦 and 𝑧 ∈ 𝑁(𝑅∗), 𝑁(𝑅∗)  = 〈𝑅∗[ 𝐼],•〉   is a mathematical associative 

neutrosophic system under multiplications, that is,  𝑁(𝑅∗)  = 〈𝑅∗[ 𝐼],•〉  is neutrosophic 

semi group and 

NR3: 𝑥 • (𝑦 + z) = (𝑥 • 𝑦 ) + (𝑥 • 𝑧) and  (𝑦 + z) • 𝑥 = (𝑦 • 𝑥) + (𝑧 • 𝑥) " left and right 

distribution laws". 

Observations. 

• If  𝑁(𝑅∗)  = 〈𝑅∗[ 𝐼],•〉 has neutrosophic identity (or unit), then 𝑁(𝑅)  = 〈𝑅[𝐼], +,•〉 

is called a neutrosophic ring with a neutrosophic identity (or neutrosophic unit).  

• If  𝑁(𝑅∗)  = 〈𝑅∗[ 𝐼],•〉 has neutrosophic inverse, then 𝑁(𝑅)  = 〈𝑅[𝐼], +,•〉 is called a 

neutrosophic ring with a neutrosophic inverse and the neutrosophic structure 

𝑁(𝑅∗)  = 〈𝑅∗[ 𝐼],•〉 is called neutrosophic group.  

• If  𝑁(𝑅∗)  = 〈𝑅∗[ 𝐼],•〉 is a neutrosophic abelian, that is, all 𝑥 , 𝑦 ∈ 𝑁(𝑅), we have 
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𝑥. 𝑦 = 𝑦. 𝑥, in addition,𝑁(𝑅∗)  = 〈𝑅∗[ 𝐼],•〉 is called a neutrosophic abelian group, 

consequently, the  𝑁(𝑅)  = 〈𝑅[𝐼], +,•〉 is called a filed and denoted by 𝑁(𝐹)  =

〈𝐹[𝐼], +,•〉. 

Definition 2.3. Let  𝑅 be a finite set and the triple  (𝑅, +,•)  be a finite ring, then 

𝑁(𝑅)  = 〈𝑅[𝐼], +,•〉   is called a finite neutrosophic ring, otherwise, 𝑁(𝑅)  = 〈𝑅[𝐼], +,•〉  is 

called is an infinite neutrosophic ring. 

Definition 2.4. Let 𝑁(𝑅)  = 〈𝑅[𝐼], +,•〉be a neutrosophic ring. Define the neutrosophic set: 

𝑁(𝐶(𝑅) = {𝑥 ∈ 𝑁(𝑅): 𝑥𝑦 = 𝑦𝑥, ∀ 𝑦 ∈ 𝑁(𝑅)}  which is called the neutrosophic center of  

𝑁(𝑅). Also, 𝑁(𝑅) is abelian iff 𝑁(𝑅) = 𝑁(𝐶(𝑅). 

Definition 2.5.[19] Let ℤ  be a set of integer numbers and  ℤ[𝐼] = {𝑎 + 𝑏𝐼: 𝑎, 𝑏 ∈ ℤ} be a 

neutrosophic- integer set, where 𝑎 + 𝑏𝐼 is a neutrosophic integer number. 

Preposition 2.1. Let  (ℤ, +,•)  be a ring of integers under usual addition and multiplication, 

then the neutrosophic algebra structure (NAS): 𝑁(ℤ)  = 〈ℤ[𝐼], +,•〉  is called the 

neutrosophic integer ring which is generated by 𝐼 and ℤ. 

Proof.  Let  (ℤ, +,•)  be a ring of integers under usual addition and multiplication and  

〈ℤ ∪ 𝐼〉 = {𝑎 + 𝑏𝐼: 𝑎, 𝑏 ∈ ℤ} be a neutrosophic- integer set, where 𝑎 + 𝑏𝐼 is a neutrosophic 

integer number. Then by proposition 2.1 in [5] , 𝑁(ℤ) = 〈ℤ[𝐼], +〉 is a neutrosophic abelian 

group, so NR1 axioms is hold. Now Let , 𝑁(ℤ) = 〈ℤ[𝐼],•〉 such that all 𝑥 , 𝑦 ∈ 𝑁(ℤ), then: 

 𝑥 ∙ 𝑦 = ((𝑥1 + 𝑥2𝐼) + (𝑦1 + 𝑦2𝐼)) 

      = ((𝑥1. 𝑦1) + (((𝑥1. 𝑦2) + (𝑥2. 𝑦1)) + (𝑥2. 𝑦2)) 𝐼) ∈, 𝑁(ℤ) = 〈ℤ[𝐼],∙〉, it's a closure, 

moreover, 

(𝑥 ∙ 𝑦) ∙ 𝑧 = ((𝑥1 + 𝑥2𝐼) + (𝑦1 + 𝑦2𝐼)) ∙ (𝑧1 + 𝑧2𝐼) 

          = ((𝑥1. 𝑦1) + (((𝑥1. 𝑦2) + (𝑥2. 𝑦1)) + (𝑥2. 𝑦2)) 𝐼) ∙ (𝑧1 + 𝑧2𝐼) 

          =

(

(𝑥1. 𝑦1). 𝑧1

+

((𝑥1. 𝑦1). 𝑧2 + ((𝑥1. 𝑦2) + (𝑥2. 𝑦1) + (𝑥2. 𝑦2)). 𝑧1 + ((𝑥1. 𝑦2) + (𝑥2. 𝑦1) + (𝑥2. 𝑦2)). 𝑧2) 𝐼
) 
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        =

 (

𝑥1. (𝑦1 . 𝑧1)
+

((𝑥1. 𝑦1). 𝑧2 + ((𝑥1. 𝑦2) + (𝑥2. 𝑦1) + (𝑥2. 𝑦2)). 𝑧1 + ((𝑥1. 𝑦2) + (𝑥2. 𝑦1) + (𝑥2. 𝑦2)). 𝑧2) 𝐼
) 

= (

𝑥1. (𝑦1 . 𝑧1)
+

((𝑥1. 𝑦1). 𝑧2 + ((𝑥1. 𝑦2). 𝑧1 + (𝑥2. 𝑦1). 𝑧1 + (𝑥2. 𝑦2). 𝑧1) + ((𝑥1. 𝑦2). 𝑧2 + (𝑥2. 𝑦1). 𝑧2 + (𝑥2. 𝑦2). 𝑧2)) 𝐼
) 

= (

𝑥1. (𝑦1 . 𝑧1)
+

(𝑥1. (𝑦1. 𝑧2) + (𝑥1. (𝑦2. 𝑧1) + 𝑥2. (𝑦1. 𝑧1) + 𝑥2. (𝑦2. 𝑧1)) + (𝑥1. (𝑦2. 𝑧2) + 𝑥2. (𝑦1. 𝑧2) + 𝑥2. (𝑦2. 𝑧2))) 𝐼
) 

                  = (𝑥1 + 𝑥2𝐼) ((𝑦1. 𝑧1) + (((𝑦1. 𝑧2) + (𝑦2. 𝑧1)) + (𝑦2. 𝑧2)) 𝐼) = 𝑥. (𝑦. 𝑧). 

Hence the associative law is hold. 

Finally, 𝑥 . (𝑦 + z) = (𝑥1 + 𝑥2𝐼). ((𝑦1 + 𝑦2𝐼) + (𝑧1 + 𝑧2𝐼)) 

                  = (𝑥1 + 𝑥2𝐼). ((𝑦1 + 𝑧1) + (𝑦2 + 𝑧2)𝐼) 

                  = (𝑥1. (𝑦1 + 𝑧1) + (𝑥1. (𝑦2 + 𝑧2) + 𝑥2. (𝑦1 + 𝑧1) + 𝑥2. (𝑦2 + 𝑧2))𝐼) 

      = (((𝑥1. 𝑦1) + (𝑥1. +𝑧1)) + (((𝑥1. 𝑦2) + (𝑥1. 𝑧2)) + ((𝑥2. 𝑦1) + (𝑥2. 𝑧1)) + ((𝑥2. 𝑦2) +

(𝑥2. 𝑧2))) 𝐼) 

      = ((𝑥1. 𝑦1) + ((𝑥1. 𝑦2) + (𝑥2. 𝑦1) + (𝑥2. 𝑦2))𝐼) + ((𝑥1. +𝑧1) + ((𝑥1. 𝑧2) + (𝑥2. 𝑧1) +

(𝑥2. 𝑧2))𝐼) 

      = ((𝑥1 + 𝑥2𝐼). (𝑦1 + 𝑦2𝐼)) + ((𝑦1 + 𝑦2𝐼). (𝑧1 + 𝑧2𝐼)) = (𝑥. 𝑦) + (𝑥. 𝑧).  By similar 

procedure, we can deduce that: (𝑦 + z). 𝑥 = (𝑦. 𝑥) + (𝑧. 𝑥).  Moreover there exists 1 ∈

, 𝑁(ℤ) = 〈ℤ[𝐼],•〉such that 1. 𝑥 = 𝑥. 1 = 𝑥. Hence 𝑁(ℤ)  = 〈ℤ[𝐼], +,•〉 is neutrosophic integer 

ring with identity. The neutrosophic integer ring will plays an important role in the study 

of neutrosophic ring theory.  

Example 2.1. Let  (ℤ+ ∪ {0}, +,•)  be a unit  ring of positive  integers under neutrosophic 

addition and multiplication, then the neutrosophic algebra structure (NAS): 𝑁(ℤ+)  =

{〈ℤ+ ∪ {0} ∪ 𝐼〉, +,∙} is called the neutrosophic unit integer ring which is a generated by 𝐼 

and ℤ+ ∪ {0}. 

Defintione2.6. (Number theory) Let ℤ be the set of integers and 𝑥 ∈ ℤ, then 𝑥 is called 

even number if there exists 𝑘 ∈ ℤ  such that 𝑥 = 2𝑘.  If 𝑥 , 𝑦 ∈ ℤ  and both are even 
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numbers, then 𝑥 + 𝑦   and  𝑥. 𝑦  are even numbers. Because,𝑥 + 𝑦 = 2𝑘1 + 2𝑘2 = 2(𝑘1 +

𝑘2) = 2𝑘3, where, 

𝑘3 = (𝑘1 + 𝑘2) ∈ ℤ. Also,𝑥. 𝑦 = (2𝑘1). (2𝑘2) = 2(𝑘1. (2𝑘2)) = 2𝑘3, where, 𝑘3 = (𝑘1. (2𝑘2)) ∈

ℤ. 

Defintione2.7. (Neutrosophic Number Theory) Let ℤ[𝐼] = {𝑎 + 𝑏𝐼: 𝑎, 𝑏 ∈ ℤ} be the set of 

neutrosophic integers and 𝑥 ∈ ℤ[𝐼],  then 𝑥 = 𝑥1 + 𝑥2𝐼  is called the neutrosophic even 

number if,  𝑥1  and 𝑥2  are even number. So, 0,2𝐼, 4𝐼, … ,2 + 2𝐼, 2 + 4𝐼, …  etc, are 

neutrosophic even integers.    

Example 2.2. Let  (ℤ𝑒𝑣𝑒𝑛, +,•)  be a ring of even integers without unit under neutrosophic 

addition and multiplication, then the neutrosophic algebra structure (NAS): 𝑁(ℤ𝑒𝑣𝑒𝑛)  =

{〈ℤ𝑒𝑣𝑒𝑛 ∪ 𝐼〉, +,•} is called the neutrosophic integer ring which is a generated by 𝐼 and ℤ𝑒𝑣𝑒𝑛. 

This is a neutrosophic integer ring without neutrosophic unit elements.   

Definition 2.8.[19] Let ℝ  be a set of real numbers and  〈ℝ ∪ 𝐼〉 = {𝑎 + 𝑏𝐼: 𝑎, 𝑏 ∈ ℝ} be a 

neutrosophic- real set, where 𝑎 + 𝑏𝐼 is a neutrosophic real number. 

Preposition 2.2. Let  (ℝ, +,∙)  be a ring of real numbers under usual addition, then the 

neutrosophic algebra structure (NAS): 𝑁(ℝ)  = 〈ℝ[𝐼], +,∙〉 is called the neutrosophic real 

ring with identity which is a generated by 𝐼 and ℝ. In addition, 𝑁(ℝ)  = 〈ℝ[𝐼], +,∙〉 is a 

neutrosophic real field.  

Proof. By the same argument of preceding preposition 2.1. In addition, 𝑁(ℝ∗)  = 〈ℝ∗[𝐼],∙〉 is 

a commutative group. consider 𝑎 = 𝑎1 + 𝑎2𝐼 ∈ ℝ(𝐼). Suppose that 𝑥 = 𝑥1 + 𝑥2𝐼 ∈ ℝ(𝐼) is 

the neutrosophic inverse of 𝑎, that is, 

𝑎. 𝑥 = 1 ⟺ (𝑎1 + 𝑎2𝐼 ). (𝑥1 + 𝑥2𝐼) = 1 + 0𝐼 

        ⟺ ((𝑎1. 𝑥1) + ((𝑎1. 𝑥2) + (𝑎2. 𝑥1) + (𝑎2. 𝑥2))𝐼) = 1 + 0𝐼. 

        ⟹ 𝑎1. 𝑥1 = 1  and (𝑎1. 𝑥2) + (𝑎2. 𝑥1) + (𝑎2. 𝑥2) = 0. 

        ⟹ 𝑥1 =
1

𝑎1
  and (𝑎1 + 𝑎2)𝑥2 + 𝑎2.

1

𝑎1
= 0 ⟹ 𝑥1 =

1

𝑎1
  and 𝑥2 = −

𝑎2

𝑎1(𝑎1+𝑎2)
. To check 

the axiom of inverse, 𝑎. 𝑥 = (𝑎1 + 𝑎2𝐼 ). (
1

𝑎1
 −

𝑎2

𝑎1(𝑎1+𝑎2)
𝐼) 

               = ((𝑎1.
1

𝑎1
) + (−

𝑎1.𝑎2

𝑎1(𝑎1+𝑎2)
) + (𝑎2.

1

𝑎1
) − (

𝑎2
2

𝑎1(𝑎1+𝑎2)
) 𝐼) 
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               = 1 + (
−𝑎1.𝑎2+𝑎2.(𝑎1+𝑎2)−𝑎2

2

𝑎1(𝑎1+𝑎2)
) 𝐼. 

               = 1 + (
−𝑎1.𝑎2+𝑎2.𝑎1+𝑎2

2−𝑎2
2

𝑎1(𝑎1+𝑎2)
) 𝐼. 

               = 1 + 0𝐼 = 1.By similar way we have  𝑥. 𝑎 = 1. Also for all 𝑎, 𝑏 ∈ ℝ(𝐼),we 

have  

𝑎𝑏 = 𝑏𝑎. Hence 𝑁(ℝ)  = 〈ℝ[𝐼], +,∙〉 is the neutrosophic field of real .  

Definition 2.9.[19] Let ℂ  be a set of complex numbers and  ℂ[𝐼] = {𝑎 + 𝑏𝐼: 𝑎, 𝑏 ∈ ℂ} be a 

neutrosophic- complex set, where 𝑎 + 𝑏𝐼 is a neutrosophic complex number.  

Preposition 2.3. Let  (ℂ, +.∙) be a ring of complex numbers under usual addition, then the 

neutrosophic algebra structure (NAS): 𝑁(ℂ)  = 〈ℂ[𝐼], +,∙〉  is called the neutrosophic 

complex ring with identity which is a generated by 𝐼 and ℂ. Moreover, 𝑁(ℂ)  = 〈ℂ[𝐼], +,∙〉 

is the neutrosophic field of complex numbers. 

Proof. Let  𝑁(ℂ)  = 〈ℂ[𝐼], +,∙〉 be the neutrosophic algebra structure and let  

𝑎 = 𝑎1 + 𝑎2𝐼 ,  𝑏 = 𝑏1 + 𝑏2𝐼  and 𝑐 = 𝑐1 + 𝑐2𝐼  be three elements in  ℂ[𝐼]  Then 𝑁(ℂ)  =

〈ℂ[𝐼], +〉 is a neutrosophic complex abelian group by prop2.3 in [5]. Also, 𝑁(ℂ∗)  = 〈ℂ∗[𝐼],∙〉 

is a neutrosophic commutative complex group, 1 is the neutrosophic identity element, now 

if we consider 

𝑎 = 𝑎1 + 𝑎2𝐼 ∈ ℂ(𝐼), 𝑎1, 𝑎2 ∈ ℂ,  then suppose that 𝑎−1 =
1

𝑎1
− (

𝑎2

𝑎1(𝑎1+𝑎2)
) 𝐼  is the 

neutrosophic inverse element of 𝑎 by the same argument in pervious proposition 2.2.Hence 

𝑁(ℂ∗)  = 〈ℂ∗[𝐼],∙〉is a commutative neutrosophic complex group and consequently , 𝑁(ℂ)  =

〈ℂ[𝐼], +,∙〉 is neutrosophic field of complex.        

Theorem 2.2.Condiser  𝑁(ℤ𝑛) = {ℤ𝑛 ∪ 𝐼,⊕𝑛, ⨂𝑛}  is a finite neutrosophic ring under 

addition and multiplication with modulo 𝑛. Moreover  𝑁(ℤ𝑛) = {ℤ𝑛 ∪ 𝐼,⊕𝑛 , ⨂𝑛} is a finite 

neutrosophic ring under addition and multiplication with modulo 𝑛.In addition it is a field. 

Proof. See theorems 2.4 and 2.5. in [5].  

Example2.3.  𝑁(ℤ3) = 〈ℤ3 [𝐼],⊕3, ⨂3〉 is a finite neutrosophic ring under addition and 

multiplication with modulo 3. Moreover, it's a finite neutrosophic field. As we know, ℤ3 =

{0,1,2} and, 
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𝑍3[𝐼] = {𝑎 + 𝑏𝐼: 𝑎, 𝑏 ∈ 𝑍3} = {0,1,2, 𝐼, 2𝐼, 1 + 𝐼, 1 + 2𝐼, 2 + 𝐼, 2 + 2𝐼}, to construct then the 

neutrosophic algebra structure (NAS):𝑁(𝑍3)  = 〈𝑍3[𝐼],⊕3〉 by the visualizing table as 

shown in table.2.1. 

 

 

  

Table.2.1, of (NAS of 𝑁(𝑍3)  = 〈𝑍3[𝐼],⊕3〉.  

 

 

⊕3 0 1 2 𝐼 2𝐼   1 + 𝐼 1 + 2𝐼 2 + 𝐼 2 + 2𝐼 

0 0 1 2    𝐼  2𝐼  1 + 𝐼 1 + 2𝐼 2 + 𝐼 2 + 2𝐼 

1 1 2 0    1 + 𝐼  1 + 2𝐼 2 + 𝐼 2 + 2𝐼 𝐼  2𝐼 

2 2 0 1    2 + 𝐼  2 + 2𝐼    𝐼 2𝐼   1 + 𝐼   1 +

2𝐼 

𝐼 𝐼 1 + 𝐼 2 + 𝐼 2𝐼 0    1 +

2𝐼 

1   2 +

2𝐼 

2 

2𝐼 2𝐼 1

+ 2𝐼 

2 + 2𝐼     0    𝐼 1    2 +

𝐼 

2 2 + 𝐼 

1 + 𝐼  1 + 𝐼 2 + 𝐼 𝐼     1 +

2𝐼 

   1  2 + 2𝐼   2 2𝐼 0 

1

+ 2𝐼 

 1

+ 2𝐼 

2

+ 2𝐼 

2𝐼      1     1 +

𝐼 

2 2 + 𝐼 0 𝐼 

2 + 𝐼 2 + 𝐼  𝐼 1 + 𝐼 2 + 2𝐼     2     2𝐼 0 1 + 2𝐼  1 

2

+ 2𝐼 

2

+ 2𝐼 

2𝐼   1 +

2𝐼 

2 2 +I     0      𝐼       

1 

 1 + 𝐼 

 

The (NAS) is a closure under operation  ⊕3 modulo 3 and associative, there exists identity 

element is zero and for any elements in 𝑥  has inverse as shown in the table 2.2. 
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Table 2.2, of inverse element. 

𝑥 0 1 2 𝐼 2𝐼 1 + 𝐼 1 + 2𝐼 2 + 𝐼 2 + 2𝐼 

𝑥−1 0 2 1   2𝐼 𝐼 2 + 2𝐼 2 + 𝐼     1 + 2𝐼  1 + 𝐼 

 

The (NAS) 𝑁(𝑍3)  = 〈𝑍3[𝐼],⊕3〉  is represents a neutrosophic commutative group (NS). In 

addition, 

ℤ3 
∗ = {1,2}  andℤ3 

∗[I] = {𝑎 + 𝑏𝐼: 𝑎, 𝑏 ∈ 𝑍3} = {1 + 𝐼, 1 + 2𝐼, 2 + 𝐼, 2 + 2𝐼} , to construct the 

neutrosophic algebra structure (NAS):𝑁(ℤ3 
∗)  = 〈ℤ3 

∗[𝐼], ⨂3〉  by the visualizing table as 

shown in table.2.3.  

Table.2.3, of (NAS of 𝑁(ℤ3 
∗)  = 〈ℤ3 

∗[𝐼], ⨂3〉.  

⨂3 1 + 𝐼 1 + 2𝐼 2 + 𝐼 2 + 2𝐼 

1 + 𝐼 1 1 + 2𝐼 2 + 𝐼 2 

1 + 2𝐼 1 + 2𝐼 1 + 2𝐼 2 + 𝐼 2 

2 + 𝐼 2 + 𝐼 2 + 𝐼 1 + 2𝐼 1 + 2𝐼 

2 + 2𝐼 2 2 + 𝐼 1 + 2𝐼 1 

 

We see that 𝑁(ℤ3 
∗)  = 〈ℤ3 

∗[𝐼], ⨂3〉 is a neutrosophic semigroup, but in classical ring theory   

〈ℤ3 
∗, ⨂3〉 is a group. Also, this table is a correction of table 2.1 in [5]. Moreover, NR3 is hold, 

for instance, (1 + 𝐼). ((2 + 𝐼) + (2 + 2𝐼)) = (1 + 𝐼). (4 + 3𝐼) = 4 + 10𝐼and, 

(1 + 𝐼). (2 + 𝐼) + (1 + 𝐼). (2 + 2𝐼) = (2 + 4𝐼) + (2 + 6𝐼) = 4 + 10𝐼.  Hence 𝑁(ℤ3) =

〈ℤ3 [𝐼],⊕3, ⨂3〉 is a neutrosophic ring. 

Theorem2.3. [6] Let 𝐴, 𝐵, and 𝐶 be three neutrosophic matrices of the same capacity, and 

consider 𝑥 and 𝑦 are two neutrosophic scalars, then:  

i. 𝐴 + 𝐵 = 𝐵 + 𝐴; 

ii. (𝐴 + 𝐵) + 𝐶 = 𝐴 + (𝐵 + 𝐶)" " associative law"; 

iii. 𝐴 + 0 = 𝐴; 

iv. 𝑥(𝐴 + 𝐵) = 𝑥𝐴 + 𝑥𝐵; 
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v. (𝑥 + 𝑦)𝐴 = 𝑥𝐴 + 𝑦𝐴 ;  

vi. 𝑥(𝑦𝐴) = (𝑥𝑦)𝐴,and 

vii. 1. 𝐴 = 𝐴  

Theorem2.4.[6]. Let 𝐴, 𝐵, and 𝐶 be three neutrosophic matrices which are defined under 

multiplication, with 𝑥 is a neutrosophic scalars, then:  

i. (𝐴𝐵)𝐶 = 𝐴(𝐵𝐶) " associative law";  

ii. 𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶  " left distributive law";  

iii. (𝐵 + 𝐶)𝐴 = 𝐵𝐴 + 𝐶𝐴   "right distributive law" and  

iv. 𝑥(𝐴𝐵) = (𝑥𝐴)𝐵 = 𝐴(𝑥𝐵).  

v. 0𝐴. = 0,   𝐵. 0 = 0.  Where  0 is a neutrosophic zero matrix. 

Theorem 2.5. Consider the 𝑛 − 𝑠𝑞𝑢𝑎𝑟𝑒  neutrosophic matrix set 

 𝑀𝑛×𝑛 = {𝑎𝑖𝑗 + 𝑏𝑖𝑗𝐼: 𝑎𝑖𝑗  , 𝑏𝑖𝑗  ∈ ℝ , 0𝐼 = 0 & 𝐼2 = 𝐼}, such that 𝑀𝑛×𝑛  has inverse, that is 

𝑑𝑒𝑡 ([𝑎𝑖𝑗 + 𝑏𝑖𝑗𝐼]) ≠ 0,   then 𝑁(𝑀𝑛×𝑛) = {[𝑎𝑖𝑗 + 𝑏𝑖𝑗𝐼], +,×} ,where " + "  defined as 

definition 2.11 and " × " defined as definition 2.13 respectively in [4,6]. Then 𝑁(𝑀𝑛×𝑛) =

{[𝑎𝑖𝑗 + 𝑏𝑖𝑗𝐼], +,×} is non- commutative neutrosophic ring with unit. 

Proof.    

NR1: 𝑁(𝑀) = {[𝑎𝑖𝑗 + 𝑏𝑖𝑗𝐼], +}  is a commutative group under +.  By theorem2.2.[6]. 

From (i) to(iii) the neutrosophic inverse element: 

 𝐴 + (−𝐴) = [𝑎𝑖𝑗 + 𝑏𝑖𝑗𝐼] + [(−𝑎𝑖𝑗) + (−𝑏𝑖𝑗)𝐼] 

           = [𝑎𝑖𝑗 + (−𝑎𝑖𝑗) + (𝑏𝑖𝑗 + (−𝑏𝑖𝑗)) 𝐼], for 𝑖, 𝑗 = 1,2,3, … , 𝑛 

       = [0 + 0𝐼] = 0. By the same argument we have −𝐴 + 𝐴 = 0. Hence, 

    𝑁(𝑀𝑛×𝑛) = {[𝑎𝑖𝑗 + 𝑏𝑖𝑗𝐼], +} is a neutrosophic abelian group.  

   NR2: 𝑁(𝑀) = {[𝑎𝑖𝑗 + 𝑏𝑖𝑗𝐼],×} is monoid according to theorems 2.2.and 2.3.[6]. 

   NR3: From part (ii) and (iii) in theorem 2.4, the neutrosophic distributive law is hold. 

Hence 

   𝑁(𝑀𝑛×𝑛) = {[𝑎𝑖𝑗 + 𝑏𝑖𝑗𝐼], +,×} is non- commutative neutrosophic ring with unit.  
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Example 2.4. Consider the following two matrices:  𝐴 = [
1 + 0𝐼 1 + 0𝐼
0 + 0𝐼 1 + 0𝐼

] and 𝐵 =

[
1 + 0𝐼 0 + 0𝐼
1 + 0𝐼 1 + 0𝐼

]. 

Then:𝐴𝐵 = [
1 + 0𝐼 1 + 0𝐼
0 + 0𝐼 1 + 0𝐼

] [
1 + 0𝐼 0 + 0𝐼
1 + 0𝐼 1 + 0𝐼

] = [
2 + 0𝐼 1 + 0𝐼
1 + 0𝐼 1 + 0𝐼

], and, 

     𝐵𝐴 = [
1 + 0𝐼 0 + 0𝐼
1 + 0𝐼 1 + 0𝐼

] [
1 + 0𝐼 1 + 0𝐼
0 + 0𝐼 1 + 0𝐼

] = [
1 + 0𝐼 1 + 0𝐼
1 + 0𝐼 2 + 0𝐼

], we see that 𝐴𝐵 ≠ 𝐵𝐴. 

Definition 2.10. Let 𝑁(𝑅)  = 〈R[𝐼], , +,∙〉be a neutrosophic ring contains a neutrosophic unit 

element and 𝑥 = (𝑥1 + 𝑥2𝐼) ≠ 0 ∈ 𝑁(𝑅) ( not necessarily to be a commutative neutrosophic 

ring), then 𝑥 is called a neutrosophic unit  in 𝑁(R) if there exists a multiplication inverse 

𝑦 such that  

𝑥𝑦 = y𝑥 = 1 and y denoted by 𝑥−1. 

Theorem 2.6. Consider 𝑁(𝑅)  = 〈R[𝐼], , +,∙〉 is  a neutrosophic ring contains a neutrosophic 

unit Let 𝑈(𝑁(𝑅)) = {𝑥 ∈ 𝑁(𝑅): ∃ 𝑦 ∈ 𝑁(𝑅) ∋ 𝑥𝑦 = 𝑦𝑥 = 1 } be the set of all units. Then: 

〈𝑈(𝑁(𝑅)),∙〉 is a neutrosophic group under multiplication.  

Proof. Since 1 ∈ 𝑁(R) , then 1 ∈  𝑈(𝑁(𝑅)) and 𝑈(𝑁(𝑅)) ≠ ∅.  Suppose that 𝑥, 𝑦 ∈

 𝑈(𝑁(𝑅)) ,then there exists  𝑥−1, 𝑦−1 ∈ 𝑁(R)  such that  𝑥𝑥−1 = 𝑥−1𝑥 = 1  and 𝑦𝑦−1 =

𝑦−1𝑦 = 1. Now, 

(𝑦−1𝑥−1)(𝑥𝑦) = 1  and (𝑥𝑦)(𝑦−1𝑥−1) = 1  by theorem 3.2. part.2 in [5], hence 𝑥. 𝑦 ∈

 𝑈(𝑁(𝑅)). Also, if 𝑥 ∈  𝑈(𝑁(𝑅)), then 𝑥−1 ∈  𝑈(𝑁(𝑅)), therefore for all if 𝑥 ∈  𝑈(𝑁(𝑅)), 

there is a multiplication neutrosophic inverse 𝑥−1 ∈  𝑈(𝑁(𝑅)).  Moreover, 𝑁(𝑅)  =

〈R[𝐼], , +,∙〉 is a neutrosophic ring , then the multiplication is associative in particular of 

elements of  𝑈(𝑁(𝑅)) and consequently, 〈𝑈(𝑁(𝑅)),∙〉 is a neutrosophic group. 

Definition 2.9.[19]: Let 〈𝑅 ∪  𝐼〉 be a neutrosophic ring. A proper subset 𝑃 of 〈𝑅 ∪  𝐼〉 is 

said to be a neutrosophic subring if 𝑃 itself is a neutrosophic ring under the operations of 

〈𝑅 ∪  𝐼〉. It is essential that 𝑃 =  〈𝑆 ∪  𝑛𝐼〉, 𝑛 a positive integer where 𝑆 is a subring of 𝑅. 

i.e. {𝑃 is generated by the subring S together with 𝑛 𝐼. (𝑛 ∈  𝑍+ )}. Note: Even if 𝑃 is a ring 

and cannot be represented as 〈𝑆 ∪  𝑛𝐼〉 where 𝑆 is a subring of 𝑅 then we do not call 𝑃 a 

neutrosophic subring of 〈𝑅 ∪  𝐼〉. 
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Theorem 2.7. Consider 𝑁(𝑅)  = 〈𝑅[𝐼], +,•〉 is neutrosophic ring and 𝑁(𝑆) ≠ ∅ ⊆ 𝑁(𝑅), then 

𝑁(𝑆) is called a neutrosophic subring of 𝑁(𝑅) iff : 

1. ∀ 𝑎, 𝑏 ∈ 𝑁(𝑆) ⟹ 𝑎 − 𝑏 ∈ 𝑁(𝑆), and, 

2. ∀ 𝑎, 𝑏 ∈ 𝑁(𝑆) ⟹ 𝑎𝑏 ∈ 𝑁(𝑆). 

Note. If 𝑁(𝑆) is a neutrosophic subring of 𝑁(𝑅), then denoted by: 𝑁(𝑆) ≼ 𝑁(𝑅).  

Proof. Frist direction, consider 𝑁(𝑅) = 〈𝑅[𝐼], +,•〉  is neutrosophic ring and 𝑁(𝑆) ≠ ∅ ⊆

𝑁(𝑅). Assume that 𝑎, 𝑏 ∈ 𝑁(𝑆) = {𝑎 + 𝑏𝐼: 𝑎, 𝑏 ∈ 𝑆} 

⟹ 𝑎 − 𝑏 = ( 𝑎1 + 𝑎2𝐼) − ( 𝑏1 + 𝑏2𝐼) = ((𝑎1 −  𝑏1) + (𝑎2 − 𝑏2)𝐼) ∈ 𝑁(𝑆). Also,  

⟹ 𝑎. 𝑏 = ( 𝑎1 + 𝑎2𝐼). ( 𝑏1 + 𝑏2𝐼) = (𝑎1. 𝑏1) + ((𝑎1. 𝑏2) + (𝑎2. 𝑏1) + (𝑎2. 𝑏2))𝐼 ∈ 𝑁(𝑆). 

Conversely,  

Suppose that 𝑎 + 𝑏 and 𝑎𝑏 ∈ 𝑁(𝑆) for all 𝑎, 𝑏 ∈ 𝑁(𝑆),then 𝑁(𝑆) its closure under addition, 

since 𝑁(𝑅) = 〈𝑅[𝐼], +〉  is a commutative neutrosophic group,, then 𝑁(𝑆) = 〈𝑅[𝐼], +〉  in 

particular elements is  commutative neutrosophic group. Also, 𝑁(𝑅) = 〈𝑅[𝐼],•〉  is a 

neutrosophic semigroup, so 

𝑁(𝑆) = 〈𝑆[𝐼],•〉 is a neutrosophic semigroup in particular elements of 𝑁(𝑆). Finally, 

𝑁(𝑅)  = 〈𝑅[𝐼], +,•〉  has the property of NR3, so NR3 is hold in 𝑁(𝑆)  = 〈𝑆[𝐼], +,•〉 for 

particular elements, therefore 𝑁(𝑆)  = 〈𝑆[𝐼], +,•〉 is a neutrosophic ring. 

Example 2.5. Consider 𝑁(Z6) = 〈Z6 [𝐼],⊕6, ⨂6〉is a finite neutrosophic ring under addition 

and multiplication with modulo 6,where ℤ6 [𝐼] = {𝑎 + 𝑏𝐼: 𝑎, 𝑏 ∈ ℤ6 }, that is,  

ℤ6 [𝐼] = {0,1,2,3,4,5,1 + 𝐼, … ,1 + 5𝐼, 2 + 𝐼, … ,2 + 5𝐼, 3 + 𝐼, … ,3 + 5𝐼, 4 + 𝐼, … ,4 + 5𝐼, 5 +

𝐼, … ,5 + 5𝐼},and 

Take 𝑆[𝐼] = {0,2𝐼, 4𝐼} ⊆ ℤ6 [𝐼]. Then 𝑆[𝐼] ≼ ℤ6 [𝐼].  

Table.2.4, of (NAS of 𝑁(𝑆[𝐼])  = 〈𝑆[𝐼],⊕6〉.  

⊕6 0 2𝐼 4𝐼 

0 0 2𝐼 4𝐼 

 2𝐼 2𝐼 4𝐼 0 

  4𝐼 4𝐼 0 2𝐼 

We see that 𝑆[𝐼]is closed under addition modulo 6.  
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Table.2.5, of (NAS of 𝑁𝑆[𝐼]) = 〈𝑆[𝐼], ⨂6〉.  

⊕6 0 2𝐼 4𝐼 

0 0 0 0 

2𝐼 0 4𝐼 2I 

4𝐼 0 2I 4𝐼 

Since 𝑆[𝐼] is closed under multiplication modulo 6.  

If 𝑆[𝐼] = {0,2,4,2𝐼, 4𝐼, 2 + 2𝐼, 2 + 4𝐼, 4 + 2𝐼, 4 + 4𝐼}, then 𝑆[𝐼] ≼ ℤ6 [𝐼], because 𝑆[𝐼] is 

closed under addition and multiplication of modulo 6. 

Defintion2.11. Let 𝑁(𝑅)  = 〈𝑅[𝐼], +,•〉 is neutrosophic ring, then the center of 

neutrosophic ring is denoted by 𝐶(𝑁(𝑅)) and defined by: 𝐶(𝑁(𝑅)) = {𝑥 ∈ 𝑅[𝐼]: 𝑥𝑦 =

𝑦𝑥, ∀ 𝑦 ∈ 𝑅[𝐼]}.  

Proposition 2.5.  If 𝑁(𝑅)  = 〈𝑅[𝐼], +,•〉 is neutrosophic ring contains a neutrosophic unit 

element, then 𝐶(𝑁(𝑅)) ≼ 𝑅[𝐼]. 

Proof. Since 1 = 1 + 0𝐼 ∈ 𝐶(𝑁(𝑅)), then 𝐶(𝑁(𝑅)) ≠ ∅. Suppose that 𝑎, 𝑏 ∈ 𝐶(𝑁(𝑅)), now, 

since  

𝑎 ∈ 𝐶(𝑁(𝑅)) ⟹ 𝑎𝑥 = 𝑥𝑎, ∀ 𝑥 ∈ 𝑅[𝐼] 

 ⟺ (𝑎1 + 𝑎2𝐼)(𝑥1 + 𝑥2𝐼) = (𝑥1 + 𝑥2𝐼)(𝑎1 + 𝑎2𝐼), ∀ 𝑥 ∈ 𝑅[𝐼] 

 ⟺ (𝑎1. 𝑥1) + ((𝑎1. 𝑥2) + (𝑎2. 𝑥1) + (𝑎2. 𝑥2)𝐼) = ( 𝑥1. 𝑎1) + ((𝑥2. 𝑎1) + (𝑥1. 𝑎2) +

(𝑥2. 𝑎2)𝐼), ∀ 𝑥 ∈ 𝑅[𝐼]. 

Also, 𝑏 ∈ 𝐶(𝑁(𝑅)) ⟹ 𝑏𝑥 = 𝑥𝑏, ∀ 𝑥 ∈ 𝑅[𝐼] 

 ⟺ (𝑏1 + 𝑏2𝐼)(𝑥1 + 𝑥2𝐼) = (𝑥1 + 𝑥2𝐼)(𝑏1 + 𝑏2𝐼), ∀ 𝑥 ∈ 𝑅[𝐼] 

 ⟺ (𝑏1. 𝑥1) + ((𝑏1. 𝑥2) + (𝑏2. 𝑥1) + (𝑏2. 𝑥2)𝐼) = ( 𝑥1. 𝑏1) + ((𝑥2. 𝑏1) + (𝑥1. 𝑏2) +

(𝑥2. 𝑏2)𝐼), ∀ 𝑥 ∈ 𝑅[𝐼]. 

Hence (𝑎 − 𝑏)𝑥 = ((𝑎1 + 𝑎2𝐼) − (𝑏1 + 𝑏2𝐼)). (𝑥1 + 𝑥2𝐼) 

             = ((𝑎1 + 𝑎2𝐼). (𝑥1 + 𝑥2𝐼) − (𝑏1 + 𝑏2𝐼)). (𝑥1 + 𝑥2𝐼) 

             = (𝑎1. 𝑥1) + ((𝑎1. 𝑥2) + (𝑎2. 𝑥1) + (𝑎2. 𝑥2)𝐼) − ( 𝑥1. 𝑏1) + ((𝑥2. 𝑏1) + (𝑥1. 𝑏2) +

(𝑥2. 𝑏2)𝐼) 
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             = ( 𝑥1. 𝑎1) + ((𝑥2. 𝑎1) + (𝑥1. 𝑎2) + (𝑥2. 𝑎2)𝐼) − ( 𝑥1. 𝑏1) + ((𝑥2. 𝑏1) + (𝑥1. 𝑏2) +

(𝑥2. 𝑏2)𝐼) 

             = (𝑥1 + 𝑥2𝐼)(𝑎1 + 𝑎2𝐼) − (𝑥1 + 𝑥2𝐼)(𝑏1 + 𝑏2𝐼) 

             = (𝑥1 + 𝑥2𝐼)((𝑎1 + 𝑎2𝐼) − (𝑏1 + 𝑏2𝐼)) 

             = 𝑥(𝑎 − 𝑏). Hence (𝑎 − 𝑏) ∈ 𝐶(𝑁(𝑅)). Moreover,  

(𝑎𝑏)𝑥 = (𝑎1 + 𝑎2𝐼)((𝑏1 + 𝑏2𝐼). (𝑥1 + 𝑥2𝐼)). 

       = (𝑎1 + 𝑎2𝐼)((𝑥1 + 𝑥2𝐼). (𝑏1 + 𝑏2𝐼)). 

       = ((𝑎1 + 𝑎2𝐼) . (𝑥1 + 𝑥2𝐼)). (𝑏1 + 𝑏2𝐼). 

       = ((𝑥1 + 𝑥2𝐼). (𝑎1 + 𝑎2𝐼) ). (𝑏1 + 𝑏2𝐼). 

       =  (𝑥1 + 𝑥2𝐼). ((𝑎1 + 𝑎2𝐼). (𝑏1 + 𝑏2𝐼). ) 

       =  𝑥(𝑎𝑏). Therefore  𝑎𝑏 ∈ 𝐶(𝑁(𝑅)). By theorem 2.6. 𝐶(𝑁(𝑅)) ≼ 𝑅[𝐼]. 

Example 2.6. Consider 𝑁(Z3) = 〈Z3 [𝐼],⊕3, ⨂3〉is a finite neutrosophic ring under addition 

and multiplication with modulo 3, where Z3 [𝐼] = {𝑎 + 𝑏𝐼: 𝑎, 𝑏 ∈ Z3 } , then 𝐶(𝑁(Z3 ) =

Z3 [𝐼], because Z3 [𝐼] is a commutative neutrosophic ring. Also 𝑈(𝑁(Z3 )) = {1 + 𝐼, 2 + 2𝐼}.   

 

3.  Properties of Neutrosophic Elements in Neutrosophic Ring 

 

Definition3.1. Let 𝑁(R)  = 〈R[𝐼], +,•〉  be a neutrosophic commutative ring and 𝑥 ≠ 0 ∈

𝑁(R) , then 𝑥  is said to be a zero-divisor, if there exists  𝑦 ≠ 0 ∈ 𝑁(𝑅) such that 𝑥. 𝑦 = 0.   

Example 3.1. 𝑁(ℤ) = 〈ℤ[𝐼], +,•〉, 𝑁(ℚ) = 〈ℚ[𝐼], +,•〉, 𝑁(ℝ) = 〈ℝ[𝐼], +,•〉 and 𝑁(ℂ) =

〈ℂ[𝐼], +,•〉 has no zero divisor. Also  𝑁(Z4) = 〈Z4 [𝐼],⊕4, ⨂4〉 and 𝑁(Z6) = 〈Z6 [𝐼],⊕6, ⨂6〉 

has no zero divisor, but  

〈Z4 ,⊕4, ⨂4〉 and 〈Z6 ,⊕6, ⨂6〉 in classical ring theory has zero divisor. 

Definition3.2. Let 𝑁(R)  = 〈R[𝐼], +,•〉 be a neutrosophic commutative ring, then  𝑁(R) is 

called a neutrosophic integral domain, if 𝑁(R) it has no zero divisor.     

Example 3.2. All neutrosophic ring structure in pervious example are neutrosophic integral 

domain. 
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Theorem3.1. Consider 𝑁(Z𝑝) = 〈Z𝑝 [𝐼],⊕𝑝, ⨂p〉  is a neutrosophic ring, then 𝑁(Z𝑝) =

〈Z𝑝 [𝐼],⊕𝑝, ⨂p〉 

Is not a neutrosophic field. 

Proof. By pervious example 2.3. 

Example 3.3. Consider the 𝑁(𝑀𝑛×𝑛) = {[𝑎𝑖𝑗 + 𝑏𝑖𝑗𝐼], +,×} is non- commutative neutrosophic 

ring with unit. Take 𝐴 = [
0 2𝐼
0 4𝐼

] ≠ 0   and 𝐵 = [
0 2 + 2𝐼
0 0

] ≠ 0 , then: 𝐴𝐵 =

[
0 2𝐼
0 4𝐼

] [
0 2 + 2𝐼
0 0

] = [
0 0
0 0

],    

Hence 𝐴 and 𝐵 are zero dvisors. 

Definition3.3.[19] Let 𝑁(R)  = 〈R[𝐼], +,•〉 be a neutrosophic ring. A characteristic of 𝑁(R) 

is the smallest positive integer 𝑛  (if there is one) such that 𝑛𝑥 =  0, ∀ 𝑥 ∈ R[𝐼]. If there is 

no such integer, we say that neutrosophic ring R[𝐼] has characteristic zero, otherwise R[𝐼] 

has characteristic n and denoted by 𝑁(𝑐ℎ𝑅[𝐼]) = 𝑛.   

Example 3.4.  𝑁(ℤ) = 〈ℤ[𝐼], +,•〉, 𝑁(ℚ) = 〈ℚ[𝐼], +,•〉, 𝑁(ℝ) = 〈ℝ[𝐼], +,•〉 and 𝑁(ℂ) =

〈ℂ[𝐼], +,•〉 have characteristic zero. 

Proposition 3.1. Let 𝑁(Z𝑛)  = 〈Z𝑛[𝐼], ,⊕𝑛, ⨂n〉 be a neutrosophic ring. Then 𝑁(𝑐ℎ Z𝑛[𝐼]) =

𝑛. 

Proof. By Principle of Mathematical Induction.  

First, If 𝑛 = 1,  then Z1[𝐼] = {𝑎 + 𝑏𝐼: 𝑎, 𝑏 ∈ Z1} = {0 + 0𝐼}  and 1. (0 + 0𝐼) = 0, hence 

𝑁(𝑐ℎ Z1[𝐼]) = 1. Hence is true statement when 𝑛 = 1.If 𝑛 = 2, then Z2[𝐼] = {𝑎 + 𝑏𝐼: 𝑎, 𝑏 ∈

Z2} = {0,1, 𝐼 + 1 + 𝐼}  and 2.0 = 0, 2.1 = 0( 𝑚𝑜𝑑2), 2. 𝐼 = 2𝐼 = 0(𝑚𝑜𝑑2), 2. (1 + 𝐼) = 2 +

2𝐼 = 0 ( 𝑚𝑜𝑑 2).herefore 𝑁(𝑐ℎ Z2[𝐼]) = 2. Hence is true statement when 𝑛 = 2. 

Second. Suppose that, 𝑛 = 𝑘, then Z𝑘[𝐼] = {𝑎 + 𝑏𝐼: 𝑎, 𝑏 ∈ Z𝑘} 

Z𝑘[𝐼] = {0,1,2, … , 𝑘 − 1, 𝐼, 2𝐼, … , (𝑘 − 1)𝐼, 1 + 𝐼, 1 + 2𝐼, … ,1 + (𝑘 − 1)𝐼, 2 + 𝐼, 2 + 2𝐼, … ,2 +

(𝑘 − 1)𝐼, … , (𝑘 − 1) + 𝐼, (𝑘 − 1) + 2𝐼, … , (𝑘 − 1) + (𝑘 − 1)𝐼} . Such that 𝑘. 𝑥 = 0, ∀ 𝑥 ∈ Z𝑘[𝐼] 

is true stamen. 

Third, to show that the statement 𝑛 = 𝑘 + 1  is also true, that is (𝑘 + 1). 𝑥 = 0, ∀ 𝑥 ∈

Z𝑘+1[𝐼].Now  

(𝑘 + 1). 𝑥 = 𝑘. 𝑥 + 1. 𝑥 = 0 + 𝑥 = 𝑥 ( 𝑚𝑜𝑑 (𝑘 + 1)) ⟹ (𝑘 + 1). 𝑥 = 0 (𝑚𝑜𝑑 (𝑘 + 1). Hence, 
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 𝑁(𝑐ℎ Z𝑘+1[𝐼]) = 𝑘 + 1. Is also true, we deduced that 𝑁(𝑐ℎ Z𝑛[𝐼]) = 𝑛, ∀𝑛 ∈ ℕ. 

Theorem3.2. Let 𝑁(𝑅)  be a neutrosophic ring and 𝑥, 𝑦 and 𝑧 ∈ 𝑁(𝑅).Then: 

1. 𝑥. 0 = 0. 𝑥 = 0; 

2. 𝑥. (−𝑦) = (−𝑥). 𝑦 = −(𝑥𝑦);  

3. (−𝑥). (−𝑦) = 𝑥𝑦, and, 

Proof. 

1. 𝑥. 0 = (𝑥1 + 𝑥2𝐼). (0 + 0𝐼) = (𝑥1 + 𝑥2𝐼). (0 + 0𝐼) 

= (𝑥1. 0 + (𝑥1. 0 + 𝑥2. 0 + 𝑥2. 0)𝐼) 

                       = 0 + 0𝐼 = 0. By similar way 0. 𝑥 = 0. 

2. We have from (1) 0 = 𝑥. 0 =  (𝑥1 + 𝑥2𝐼)((−𝑦1 − 𝑦2𝐼) + (𝑦1 + 𝑦2𝐼)) 

                                     = (𝑥1 + 𝑥2𝐼). (−𝑦1 − 𝑦2𝐼) +  (𝑥1 + 𝑥2𝐼). (𝑦1 + 𝑦2𝐼)            

(1). 

          Also, 0 = −(𝑥𝑦) + (𝑥𝑦) = −((𝑥1 + 𝑥2𝐼). (𝑦1 + 𝑦2𝐼)) + ((𝑥1 + 𝑥2𝐼). (𝑦1 + 𝑦2𝐼))         

(2). 

          From (1) and (2), we get: 

         (𝑥1 + 𝑥2𝐼). (−𝑦1 − 𝑦2𝐼) +  (𝑥1 + 𝑥2𝐼). (𝑦1 + 𝑦2𝐼) 

         = −((𝑥1 + 𝑥2𝐼). (𝑦1 + 𝑦2𝐼)) + ((𝑥1 + 𝑥2𝐼). (𝑦1 + 𝑦2𝐼)). By theorem 3.2, part 3in [5], 

this is     

         implying that, (𝑥1 + 𝑥2𝐼). (−𝑦1 − 𝑦2𝐼) = −((𝑥1 + 𝑥2𝐼). (𝑦1 + 𝑦2𝐼)) ⟺ 𝑥. (−𝑦) =

−(𝑥𝑦). 

3. By the same procedure we can deduced that (−𝑥). 𝑦 = −(𝑥𝑦). From (2), we have  

(−𝑥). 𝑦 = −(𝑥𝑦) ⟹ (−𝑥). (−𝑦) = −(𝑥(−𝑦)) = −((−𝑥). 𝑦) = 𝑥𝑦. 
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Abstract: 

The objective of this paper is to study the basic concepts of real refined 

neutrosophic analysis by using the refined neutrosophic AH-isometry, where 

refined neutrosophic real famous functions such as polynomials, exponents, 

Gamma functions and logarithmic refined neutrosophic real functions will be 

presented and discussed in terms of formulas and theorems. Also, many related 

examples will be illustrated. 

Keywords: refined neutrosophic function, refined neutrosophic AH-isometry, 

refined neutrosophic Gamma function 

 

Introduction and Preliminaries 

The concept of refined neutrosophic algebraic structure was released in 2020 by 

neutrosophic rings, groups, spaces, modules and matrices [1-10]. 

The main idea behind the refined neutrosophic algebraic structures is that they are 

considered as a new generalization of classical and neutrosophic structures and 

other similar structures respectively [11-15]. Also, the refined neutrosophic 

functions were suggested and discussed. 

The Element 𝐼 can be split into 𝐼1, 𝐼2 satisfying the following: 
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𝐼1
2 = 𝐼1, 𝐼2

2 = 𝐼2, 𝐼1 ∙ 𝐼2 = 𝐼2 ∙ 𝐼1 = 𝐼1. 

The structure 𝑅(𝐼1, 𝐼2) = {𝑎 + 𝑏𝐼1 + 𝑐𝐼2 ; 𝑎, 𝑏, 𝑐 ∈ 𝑅}  is called the refined 

neutrosophic field of reals. Let 𝑓: 𝑅(𝐼1, 𝐼2) → 𝑅(𝐼1, 𝐼2)  be a function with one 

variable, i.e.,𝑓 = 𝑓(𝑋) ; 𝑋 ∈ 𝑅(𝐼1, 𝐼2) then 𝑓  is called a refined neutrosophic real 

function with one refined neutrosophic real variable. 

To study the analytical properties of this type of functions we must use the refined 

AH-Isometry defined in [7] as follows: 

𝑇: 𝑅(𝐼1, 𝐼2) → 𝑅 × 𝑅 × 𝑅 

𝑇(𝑎 + 𝑏𝐼1 + 𝑐𝐼2) = (𝑎, 𝑎 + 𝑏 + 𝑐, 𝑎 + 𝑐) 

And its inverse is defined as follows: 

𝑇−1: 𝑅 × 𝑅 × 𝑅 → 𝑅(𝐼1, 𝐼2) 

𝑇−1(𝑎, 𝑏, 𝑐) = 𝑎 + (𝑏 − 𝑐)𝐼1 + (𝑐 − 𝑎)𝐼2 

Example:  

Let 𝑓: 𝑅(𝐼1, 𝐼2) → 𝑅(𝐼1, 𝐼2) be a function defined as follows: 

𝑓(𝑋) = 𝑋2 + 𝐼1𝑋 − 𝐼2 ; 𝑋 = 𝑥0 + 𝑥1𝐼1 + 𝑥2𝐼2 ∈ 𝑅(𝐼1, 𝐼2) 

By using the refined AH-Isometry we can turn 𝑓 into three classical real functions: 

𝑇[𝑓(𝑋)] = 𝑇(𝑋2) + 𝑇(𝐼1)𝑇(𝑋) − 𝑇(𝐼2)

= (𝑥0
2, (𝑥0 + 𝑥1 + 𝑥2)2, (𝑥0 + 𝑥2)2) + (0,1,0)(𝑥0, 𝑥0 + 𝑥1 + 𝑥2, 𝑥0 + 𝑥2)

− (0,1,1) = (𝑥0
2, (𝑥0 + 𝑥1 + 𝑥2)2 + 𝑥0 + 𝑥1 + 𝑥2 − 1, (𝑥0 + 𝑥2)2 − 1) 

So that, the refined neutrosophic real function 𝑓 has been splat into three classical 

real functions: 

𝑔: 𝑅 → 𝑅 ; 𝑔(𝑥0) = 𝑥0
2 

ℎ: 𝑅 → 𝑅 ; ℎ(𝑥0 + 𝑥1 + 𝑥2) = (𝑥0 + 𝑥1 + 𝑥2)2 + 𝑥0 + 𝑥1 + 𝑥2 − 1 

𝑙: 𝑅 → 𝑅 ; 𝑙(𝑥0 + 𝑥2) = (𝑥0 + 𝑥2)2 − 1 

In this work, we use the previous algebraic AH-isometry to define and study the 

real refined neutrosophic real analysis and functions as a continuing of efforts 

released to study neutrosophic analysis [16-18].  

Main Discussion 
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Definition: 

The neutrosophic real function 𝑓: 𝑅(𝐼1, 𝐼2) → 𝑅(𝐼1, 𝐼2) is called: 

(a) Continuous if and only if corresponding functions 𝑔, ℎ, 𝑙 are continuous on 𝑅. 

(b) Differentiable if and only if 𝑔, ℎ, 𝑙 are differentiable. 

(c) Integrable if and only if 𝑔, ℎ, 𝑙 are integrable. 

Example: 

Take 𝑓: 𝑅(𝐼1, 𝐼2) → 𝑅(𝐼1, 𝐼2) ; 𝑓(𝑋) = 𝑋2 − 𝐼1 + 2𝐼2 

𝑇(𝐹(𝑋)) = (𝑥0
2, (𝑥0 + 𝑥1 + 𝑥2)2, (𝑥0 + 𝑥2)2) − (0,1,0) + 2(0,1,1)

= (𝑥0
2, (𝑥0 + 𝑥1 + 𝑥2)2 + 1, (𝑥0 + 𝑥2)2 + 2) 

We have: 

𝑔: 𝑅 → 𝑅 ; 𝑔(𝑥0) = 𝑥0
2 is continuous, differentiable and integrable on 𝑅. 

ℎ: 𝑅 → 𝑅 ; ℎ(𝑥0 + 𝑥1 + 𝑥2) = (𝑥0 + 𝑥1 + 𝑥2)2 + 1 is continuous, differentiable and 

integrable on 𝑅. 

𝑙: 𝑅 → 𝑅 ; 𝑙(𝑥0 + 𝑥2) = (𝑥0 + 𝑥2)2 + 2 is continuous, differentiable and integrable on 

𝑅. 

Thus 𝑓 is continuous, differentiable and integrable on 𝑅(𝐼1, 𝐼2). 

Now let’s compute the derived function of 𝑓 by using the refined AH-Isometry: 

𝑔′(𝑥0) = 2𝑥0, ℎ′(𝑥0 + 𝑥1 + 𝑥2) = 2(𝑥0 + 𝑥1 + 𝑥2), 𝑙′(𝑥0 + 𝑥2) = 2(𝑥0 + 𝑥2), thus: 

𝑓′(𝑋) = 𝑇−1(2𝑥0, 2(𝑥0 + 𝑥1 + 𝑥2), 2(𝑥0 + 𝑥2))

= 2𝑥0 + 𝐼1[2(𝑥0 + 𝑥1 + 𝑥2) − 2(𝑥0 + 𝑥2)] + 𝐼2[2(𝑥0 + 𝑥2) − 2𝑥0]

= 2𝑥0 + 2𝑥1𝐼1 + 2𝑥2𝐼2 = 2𝑋 

Same result can be found by direct computing where: 

𝑓′(𝑋) = 2𝑋. 

Now let’s integrate 𝑓 directly: 

∫ 𝑓(𝑋)𝑑𝑋 =
1

3
𝑋3 + (−𝐼1 + 2𝐼2)𝑋 

The second is to integrate 𝑓 by using refined AH-Isometry as follows: 
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∫ 𝑔(𝑥0)𝑑𝑥0 =
𝑥0

3

3
, ∫ ℎ(𝑥0 + 𝑥1 + 𝑥2)𝑑(𝑥0 + 𝑥1 + 𝑥2)

=
(𝑥0 + 𝑥1 + 𝑥2)3

3
+ (𝑥0 + 𝑥1 + 𝑥2), ∫ 𝑙(𝑥0 + 𝑥2)𝑑(𝑥0 + 𝑥2)

=
(𝑥0 + 𝑥2)3

3
+ 2(𝑥0 + 𝑥2) 

So: 

𝑇 (∫ 𝑓(𝑋)𝑑(𝑋)) = (
𝑥0

3

3
,
(𝑥0 + 𝑥1 + 𝑥2)3

3
+ (𝑥0 + 𝑥1 + 𝑥2),

(𝑥0 + 𝑥2)3

3
+ 2(𝑥0 + 𝑥2)) 

Thus: 

∫ 𝑓(𝑋)𝑑(𝑋) = 𝑇−1 (
𝑥0

3

3
,
(𝑥0 + 𝑥1 + 𝑥2)3

3
+ (𝑥0 + 𝑥1 + 𝑥2),

(𝑥0 + 𝑥2)3

3
+ 2(𝑥0 + 𝑥2))

=
𝑥0

3

3
+ 𝐼1 [

(𝑥0 + 𝑥1 + 𝑥2)3

3
+ (𝑥0 + 𝑥1 + 𝑥2) −

(𝑥0 + 𝑥2)3

3
− 2(𝑥0 + 𝑥2)]

+ 𝐼2 [
(𝑥0 + 𝑥2)3

3
+ 2(𝑥0 + 𝑥2) −

𝑥0
3

3
]. 

It is easy to catch that: 

𝑇 (∫ 𝑓) = 𝑇 (
𝑋3

3
− 𝐼1𝑋 + 𝐼2𝑋) = (∫ 𝑔 , ∫ ℎ , ∫ 𝑙) 

Definition: 

Let 𝑅(𝐼1, 𝐼2) = {𝑎 + 𝑏𝐼1 + 𝑐𝐼2 ; 𝑎, 𝑏, 𝑐 ∈ 𝑅} be the refined neutrosophic field of reals, 

we say that 𝑎0 + 𝑎1𝐼1 + 𝑎2𝐼2 ≤𝑁 𝑏0 + 𝑏1𝐼1 + 𝑏2𝐼2  if and only if 𝑎0 ≤ 𝑏0, 𝑎0 + 𝑎1 +

𝑎2 ≤ 𝑏0 + 𝑏1 + 𝑏2, 𝑎0 + 𝑎2 ≤ 𝑏0 + 𝑏2. 

Theorem 1: 

The previous relation is a partial order relation. 

Proof: 

Let 𝑥 = 𝑎0 + 𝑎1𝐼1 + 𝑎2𝐼2, 𝑦 = 𝑏0 + 𝑏1𝐼1 + 𝑏2𝐼2, 𝑧 = 𝑐0 + 𝑐1𝐼1 + 𝑐2𝐼2 ∈ 𝑅(𝐼1, 𝐼2) , we 

have: 

𝑥 ≤ 𝑥 because 𝑎0 ≤ 𝑎0, 𝑎0 + 𝑎1 + 𝑎2 ≤ 𝑎0 + 𝑎1 + 𝑎2, 𝑎0 + 𝑎2 ≤ 𝑎0 + 𝑎2 

Assume that 𝑥 ≤ 𝑦  and 𝑦 ≤ 𝑥 so: 𝑎0 ≤ 𝑏0, 𝑎0 + 𝑎1 + 𝑎2 ≤ 𝑏0 + 𝑏1 + 𝑏2, 𝑎0 + 𝑎2 ≤

𝑏0 + 𝑏2  and 𝑏0 ≤ 𝑎0, 𝑏0 + 𝑏1 + 𝑏2 ≤ 𝑎0 + 𝑎1 + 𝑎2, 𝑏0 + 𝑏2 ≤ 𝑎0 + 𝑎2  which means 
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that 𝑎0 = 𝑏0, 𝑎0 + 𝑎1 + 𝑎2 = 𝑏0 + 𝑏1 + 𝑏2, 𝑎0 + 𝑎2 = 𝑏0 + 𝑏2, we conclude that 𝑎0 =

𝑏0, 𝑎1 = 𝑏1, 𝑎2 = 𝑏2 so 𝑥 = 𝑦 

Suppose that 𝑥 ≤ 𝑦  and 𝑦 ≤ 𝑧  so: 𝑎0 ≤ 𝑏0, 𝑎0 + 𝑎1 + 𝑎2 ≤ 𝑏0 + 𝑏1 + 𝑏2, 𝑎0 + 𝑎2 ≤

𝑏0 + 𝑏2and 𝑏0 ≤ 𝑐0, 𝑏0 + 𝑏1 + 𝑏2 ≤ 𝑐0 + 𝑐1 + 𝑐2, 𝑏0 + 𝑏2 ≤ 𝑐0 + 𝑐2 which yields 𝑎0 ≤

𝑐0, 𝑎0 + 𝑎1 + 𝑎2 ≤ 𝑐0 + 𝑐1 + 𝑐2, 𝑎0 + 𝑎2 ≤ 𝑐0 + 𝑐2 which means that 𝑥 ≤ 𝑧 

Finally, we conclude that ≤𝑁 is a partial order relation. 

 

Computing Refined Neutrosophic Powers in 𝑹(𝑰𝟏, 𝑰𝟐) 

we call (𝑎0 + 𝑎1𝐼1 + 𝑎2𝐼2)𝑛0+𝑛1𝐼1+𝑛2𝐼2; 𝑎0, 𝑎1, 𝑎2, 𝑛0, 𝑛1, 𝑛2 ∈ 𝑅a refined neutrosophic 

power. Here will present a theorem helps in finding such powers: 

Theorem: 

(𝑎0 + 𝑎1𝐼1 + 𝑎2𝐼2)𝑛0+𝑛1𝐼1+𝑛2𝐼2

= 𝑎0
𝑛0 + [(𝑎0 + 𝑎1 + 𝑎2)𝑛0+𝑛1+𝑛2 − (𝑎0 + 𝑎2)𝑛0+𝑛2]𝐼1

+ [(𝑎0 + 𝑎2)𝑛0+𝑛2 − 𝑎0
𝑛0]𝐼2 

Proof: 

Taking refined AH-Isometry to the left side yields: 

𝑇[(𝑎0 + 𝑎1𝐼1 + 𝑎2𝐼2)𝑛0+𝑛1𝐼1+𝑛2𝐼2] = (𝑎0
𝑛0 , (𝑎0 + 𝑎1 + 𝑎2)𝑛0+𝑛1+𝑛2 , (𝑎0 + 𝑎2)𝑛0+𝑛2) 

Now taking inverse isometry 𝑇−1 we get: 

(𝑎0 + 𝑎1𝐼1 + 𝑎2𝐼2)𝑛0+𝑛1𝐼1+𝑛2𝐼2 = 𝑇−1(𝑎0
𝑛0 , (𝑎0 + 𝑎1 + 𝑎2)𝑛0+𝑛1+𝑛2 , (𝑎0 + 𝑎2)𝑛0+𝑛2)

= 𝑎0
𝑛0 + [(𝑎0 + 𝑎1 + 𝑎2)𝑛0+𝑛1+𝑛2 − (𝑎0 + 𝑎2)𝑛0+𝑛2]𝐼1

+ [(𝑎0 + 𝑎2)𝑛0+𝑛2 − 𝑎0
𝑛0]𝐼2 

Example: 

let 𝑥𝑁 = (3 + 2𝐼1 − 2𝐼2)1+𝐼1+2𝐼2 , we have: 𝑇(𝑥𝑁) = 𝑇[(3 + 2𝐼1 − 2𝐼2)1+𝐼1+2𝐼2] =

(3,3,1)(1,4,3) = (1,0,1), which yields that: 

𝑥𝑁 = 𝑇−1(3,81,1) = 3 + 80𝐼1 − 2𝐼2 

If our result is right, then (3 + 80𝐼1 − 2𝐼2)
1

1+𝐼1+2𝐼2 should be equal to 3 + 2𝐼1 − 2𝐼2. 

Let 𝑦𝑁 = (3 + 80𝐼1 − 2𝐼2)
1

1+𝐼1+2𝐼2  then 𝑇(𝑦𝑁) = 𝑇 [(3 + 80𝐼1 − 2𝐼2)
1

1+𝐼1+2𝐼2] =

(3,81,1)
(1,1,1)

(1,4,3) = (3,81,1)(1,
1

4
 ,

1

3
)

= (3,3,1) 
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So: 𝑦𝑁 = 𝑇−1(3,3,1) = 3 + 2𝐼1 − 2𝐼2 

Refined Neutrosophic Trigonometric Functions: 

Here we are going to present some definitions and theorems  related to refined 

neutrosophic trigonometric functions which are functions in 𝜃𝑁 = 𝜃0 + 𝜃1𝐼1 +

𝜃2𝐼2 ; 𝜃0, 𝜃1, 𝜃2 ∈ 𝑅 

Theorems: 

Let 𝑅(𝐼1, 𝐼2) be refined neutrosophic field of reals then: 

1. sin(𝜃0 + 𝜃1𝐼1 + 𝜃2𝐼2) = sin 𝜃0 + [sin(𝜃0 + 𝜃1 + 𝜃2) − sin(𝜃0 + 𝜃2)]𝐼1 + [sin(𝜃0 +

𝜃2) − sin 𝜃0]𝐼2 

2. cos(𝜃0 + 𝜃1𝐼1 + 𝜃2𝐼2) = cos 𝜃0 + [cos(𝜃0 + 𝜃1 + 𝜃2) − cos(𝜃0 + 𝜃2)]𝐼1 + [cos(𝜃0 +

𝜃2) − cos 𝜃0]𝐼2 

3. tan(𝜃0 + 𝜃1𝐼1 + 𝜃2𝐼2) = tan 𝜃0 + [tan(𝜃0 + 𝜃1 + 𝜃2) − tan(𝜃0 + 𝜃2)]𝐼1 + [tan(𝜃0 +

𝜃2) − tan 𝜃0]𝐼2 

4. sin2(𝜃0 + 𝜃1𝐼1 + 𝜃2𝐼2) + cos2(𝜃0 + 𝜃1𝐼1 + 𝜃2𝐼2) = 1 

5. −1 ≤ sin(𝜃0 + 𝜃1𝐼1 + 𝜃2𝐼2) ≤ 1 

6. −1 ≤ cos(𝜃0 + 𝜃1𝐼1 + 𝜃2𝐼2) ≤ 1 

Proof: 

1. sin(𝜃0 + 𝜃1𝐼1 + 𝜃2𝐼2) =
𝑒𝜃0+𝜃1𝐼1+𝜃2𝐼2−𝑒−(𝜃0+𝜃1𝐼1+𝜃2𝐼2)

2𝑖
 ; 𝑖2 = −1 

𝑇[sin(𝜃0 + 𝜃1𝐼1 + 𝜃2𝐼2)] = 𝑇 [
𝑒𝜃0+𝜃1𝐼1+𝜃2𝐼2 − 𝑒−(𝜃0+𝜃1𝐼1+𝜃2𝐼2)

2𝑖
]

=
1

2𝑖
(𝑒𝜃0 − 𝑒−𝜃0 , 𝑒𝜃0+𝜃1+𝜃2 − 𝑒−(𝜃0+𝜃1+𝜃2), 𝑒𝜃0+𝜃2 − 𝑒−(𝜃0+𝜃2)) 

So: 

sin(𝜃0 + 𝜃1𝐼1 + 𝜃2𝐼2) =
1

2𝑖
𝑇−1(𝑒𝜃0 − 𝑒−𝜃0 , 𝑒𝜃0+𝜃1+𝜃2 − 𝑒−(𝜃0+𝜃1+𝜃2), 𝑒𝜃0+𝜃2 − 𝑒−(𝜃0+𝜃2))

=
𝑒𝜃0 − 𝑒−𝜃0

2𝑖
+ [

𝑒𝜃0+𝜃1+𝜃2 − 𝑒−(𝜃0+𝜃1+𝜃2)

2𝑖
−

𝑒𝜃0+𝜃2 − 𝑒−(𝜃0+𝜃2)

2𝑖
] 𝐼1

+ [
𝑒𝜃0+𝜃2 − 𝑒−(𝜃0+𝜃2)

2𝑖
−

𝑒𝜃0 − 𝑒−𝜃0

2𝑖
] 𝐼2

= sin 𝜃0 + [sin(𝜃0 + 𝜃1 + 𝜃2) − sin(𝜃0 + 𝜃2)]𝐼1 + [sin(𝜃0 + 𝜃2) − sin 𝜃0]𝐼2 

2. cos(𝜃0 + 𝜃1𝐼1 + 𝜃2𝐼2) =
𝑒𝜃0+𝜃1𝐼1+𝜃2𝐼2+𝑒−(𝜃0+𝜃1𝐼1+𝜃2𝐼2)

2
 

𝑇[cos(𝜃0 + 𝜃1𝐼1 + 𝜃2𝐼2)] = 𝑇 [
𝑒𝜃0+𝜃1𝐼1+𝜃2𝐼2 + 𝑒−(𝜃0+𝜃1𝐼1+𝜃2𝐼2)

2
]

=
1

2
(𝑒𝜃0 + 𝑒−𝜃0 , 𝑒𝜃0+𝜃1+𝜃2 + 𝑒−(𝜃0+𝜃1+𝜃2), 𝑒𝜃0+𝜃2 + 𝑒−(𝜃0+𝜃2)) 



163 
 

 

Mohammad Bisher Zeina, Mohammad Abobala, On the Refined Neutrosophic Real Analysis Based on Refined 

Neutrosophic Algebraic AH-Isometry 

So: 

cos(𝜃0 + 𝜃1𝐼1 + 𝜃2𝐼2) =
1

2
𝑇−1(𝑒𝜃0 + 𝑒−𝜃0 , 𝑒𝜃0+𝜃1+𝜃2 + 𝑒−(𝜃0+𝜃1+𝜃2), 𝑒𝜃0+𝜃2 + 𝑒−(𝜃0+𝜃2))

=
𝑒𝜃0 + 𝑒−𝜃0

2
+ [

𝑒𝜃0+𝜃1+𝜃2 + 𝑒−(𝜃0+𝜃1+𝜃2)

2
−

𝑒𝜃0+𝜃2 + 𝑒−(𝜃0+𝜃2)

2
] 𝐼1

+ [
𝑒𝜃0+𝜃2 + 𝑒−(𝜃0+𝜃2)

2
−

𝑒𝜃0 + 𝑒−𝜃0

2
] 𝐼2

= cos 𝜃0 + [cos(𝜃0 + 𝜃1 + 𝜃2) − cos(𝜃0 + 𝜃2)]𝐼1

+ [cos(𝜃0 + 𝜃2) − cos 𝜃0]𝐼2 

3. Similar to 1 and 2. 

4. Using refined neutrosophic powers theorem we get: 

sin2(𝜃0 + 𝜃1𝐼1 + 𝜃2𝐼2) = sin2 𝜃0 + [sin2(𝜃0 + 𝜃1 + 𝜃2) − sin2(𝜃0 + 𝜃2)]𝐼1

+ [sin2(𝜃0 + 𝜃2) − sin2 𝜃0]𝐼2 

Also: 

cos2(𝜃0 + 𝜃1𝐼1 + 𝜃2𝐼2)

= cos2 𝜃0 + [cos2(𝜃0 + 𝜃1 + 𝜃2) − cos2(𝜃0 + 𝜃2)]𝐼1

+ [cos2(𝜃0 + 𝜃2) − cos2 𝜃0]𝐼2 

So: 

sin2(𝜃0 + 𝜃1𝐼1 + 𝜃2𝐼2) + cos2(𝜃0 + 𝜃1𝐼1 + 𝜃2𝐼2)

= sin2 𝜃0 + [sin2(𝜃0 + 𝜃1 + 𝜃2) − sin2(𝜃0 + 𝜃2)]𝐼1

+ [sin2(𝜃0 + 𝜃2) − sin2 𝜃0]𝐼2 + cos2 𝜃0

+ [cos2(𝜃0 + 𝜃1 + 𝜃2) − cos2(𝜃0 + 𝜃2)]𝐼1 + [cos2(𝜃0 + 𝜃2) − cos2 𝜃0]𝐼2

= sin2 𝜃0 + cos2 𝜃0 + [(sin2(𝜃0 + 𝜃1 + 𝜃2) + cos2(𝜃0 + 𝜃1 + 𝜃2)

− sin2(𝜃0 + 𝜃2) − cos2(𝜃0 + 𝜃2)]𝐼1 

+ [sin2(𝜃0 + 𝜃2) + cos2(𝜃0 + 𝜃2) − sin2 𝜃0 − cos2 𝜃0]𝐼2

= 1 + [1 − 1]𝐼1 + [1 − 1]𝐼2 = 1 

5. Since 𝑇[sin(𝜃0 + 𝜃1𝐼1 + 𝜃2𝐼2)] = (sin 𝜃0 , sin(𝜃0 + 𝜃1 + 𝜃2) , sin(𝜃0 + 𝜃2)) 

And it is known that(−1, −1, −1) ≤ (sin 𝜃0 , sin(𝜃0 + 𝜃1 + 𝜃2) , sin(𝜃0 + 𝜃2)) ≤ (1,1,1) 

Also 𝑇−1(−1, −1, −1) = −1 + (−1 + 1)𝐼1 + (−1 + 1)𝐼2 = −1 

𝑇−1(1,1,1) = 1 + (1 − 1)𝐼1 + (1 − 1)𝐼2 = 1 

So the theorem holds. 

6. Similar to 5. 

Refined Neutrosophic Exponential and Logarithmic Functions: 

Theorem: 
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The refined neutrosophic exponential function form is 

𝑒𝑥0+𝑥1𝐼1+𝑥2𝐼2 = 𝑒𝑥0 + (𝑒𝑥0+𝑥1+𝑥2 − 𝑒𝑥0+𝑥2)𝐼1 + (𝑒𝑥0+𝑥2 − 𝑒𝑥0)𝐼2 

Proof: 

𝑇[𝑒𝑥0+𝑥1𝐼1+𝑥2𝐼2] = 𝑒(𝑥0,𝑥0+𝑥1+𝑥2,𝑥0+𝑥2) = (𝑒𝑥0 , 𝑒𝑥0+𝑥1+𝑥2 , 𝑒𝑥0+𝑥2) 

Thus: 

𝑒𝑥0+𝑥1𝐼1+𝑥2𝐼2 = 𝑇−1(𝑒𝑥0 , 𝑒𝑥0+𝑥1+𝑥2 , 𝑒𝑥0+𝑥2) = 𝑒𝑥0 + (𝑒𝑥0+𝑥1+𝑥2 − 𝑒𝑥0+𝑥2)𝐼1 + (𝑒𝑥0+𝑥2 − 𝑒𝑥0)𝐼2 

Theorem: 

The refined neutrosophic logarithmic function form is 

ln(𝑥0 + 𝑥1𝐼1 + 𝑥2𝐼2) = ln 𝑥0 + (ln(𝑥0 + 𝑥1 + 𝑥2) − ln(𝑥0 + 𝑥2))𝐼1 + (ln(𝑥0 + 𝑥2) − ln 𝑥0)𝐼2 

Proof: 

We will search for 𝑎0, 𝑎1, 𝑎2 ∈ 𝑅 where: 

ln(𝑥0 + 𝑥1𝐼1 + 𝑥2𝐼2) = 𝑎0 + 𝑎1𝐼1 + 𝑎2𝐼2 

Taking inverse function, we have: 

𝑥0 + 𝑥1𝐼1 + 𝑥2𝐼2 = 𝑒𝑎0+𝑎1𝐼1+𝑎2𝐼2 = 𝑒𝑎0 + (𝑒𝑎0+𝑎1+𝑎2 − 𝑒𝑎0+𝑎2)𝐼1 + (𝑒𝑎0+𝑎2 − 𝑒𝑎0)𝐼2 

Corresponding to the last equality we get: 

𝑥0 = 𝑒𝑎0 ⟹ 𝑎0 = ln 𝑥0 

𝑥2 = 𝑒𝑎0+𝑎2 − 𝑒𝑎0 = 𝑥0𝑒𝑎2 − 𝑥0 ⟹ 𝑒𝑎2 =
𝑥2 + 𝑥0

𝑥0
⟹ 𝑎2 = ln(𝑥2 + 𝑥0) − ln 𝑥0 

𝑥1 = 𝑒𝑎0+𝑎1+𝑎2 − 𝑒𝑎0+𝑎2 = 𝑥0

𝑥2 + 𝑥0

𝑥0

(𝑒𝑎1 − 1) = (𝑥2 + 𝑥0)(𝑒𝑎1 − 1) ⟹ 𝑒𝑎1 =
𝑥0 + 𝑥1 + 𝑥2

𝑥0 + 𝑥2

⟹ 𝑎1 = ln(𝑥0 + 𝑥1 + 𝑥2) − ln(𝑥0 + 𝑥2) 

So: 

ln(𝑥0 + 𝑥1𝐼1 + 𝑥2𝐼2) = ln 𝑥0 + [ln(𝑥0 + 𝑥1 + 𝑥2) − ln(𝑥0 + 𝑥2)]𝐼1 + [ln(𝑥2 + 𝑥0) − ln 𝑥0]𝐼2 

Some Refined Neutrosophic Special Functions: 

Refined Neutrosophic Gamma Function: 

We can find the value of refined neutrosophic gamma function at refined 

neutrosophic point 𝑎𝑁 = 𝑎0 + 𝑎1𝐼1 + 𝑎2𝐼2 using the formula: 

Γ(𝑎𝑁) = Γ(𝑎0) + [Γ(𝑎0 + 𝑎1 + 𝑎2) − Γ(𝑎0 + 𝑎2)]𝐼1 + [Γ(𝑎0 + 𝑎2) − Γ(𝑎0)]𝐼2 

 

Where: 

Γ(𝑎) = ∫ 𝑥𝑎−1𝑒−𝑥𝑑𝑥

∞

0

 ; 𝑎 > 0 
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Proof: 

Let 𝑓(𝑥) = 𝑥𝑎𝑁−1𝑒−𝑥, so: 

𝑇(𝑓(𝑥)) = (𝑥𝑎0−1𝑒−𝑥, 𝑥𝑎0+𝑎1+𝑎2−1𝑒−𝑥, 𝑥𝑎0+𝑎2−1𝑒−𝑥) 

Then: 

𝑇 (∫ 𝑓(𝑥)𝑑𝑥

∞

0

) = (∫ 𝑥𝑎0−1𝑒−𝑥

∞

0

𝑑𝑥, ∫ 𝑥𝑎0+𝑎1+𝑎2−1𝑒−𝑥

∞

0

𝑑𝑥, ∫ 𝑥𝑎0+𝑎2−1𝑒−𝑥

∞

0

𝑑𝑥)

= (Γ(𝑎0), Γ(𝑎0 + 𝑎1 + 𝑎2), Γ(𝑎0 + 𝑎2)) 

Taking 𝑇−1 yields to: 

Γ(𝑎𝑁) = Γ(𝑎0) + [Γ(𝑎0 + 𝑎1 + 𝑎2) − Γ(𝑎0 + 𝑎2)]𝐼1 + [Γ(𝑎0 + 𝑎2) − Γ(𝑎0)]𝐼2 

Remark: 

Neutrosophic gamma function Γ(𝑎𝑁) is defined when 𝑎𝑁 >𝑁 0𝑁 i.e.,𝑎0 > 0, 𝑎0 +

𝑎1 + 𝑎2 > 0, 𝑎0 + 𝑎2 > 0. 

Examples: 

Γ(𝐼1 + 𝐼2) is undefined because 𝐼1 + 𝐼2 = 0 + 1 ∙ 𝐼1 + 1 ∙ 𝐼2 and 0 ≯ 0. 

Γ(𝑎𝑁) = Γ(𝑎0) + [Γ(𝑎0 + 𝑎1 + 𝑎2) − Γ(𝑎0 + 𝑎2)]𝐼1 + [Γ(𝑎0 + 𝑎2) − Γ(𝑎0)]𝐼2 

Γ(0.5 + 2𝐼1 + 𝐼2) = Γ(0.5) + [Γ(3.5) − Γ(1.5)]I1 + [Γ(1.5) − Γ(0.5)]I2

= √𝜋 + (2.5 ∗ 1.5 ∗ 0.5 ∗ √𝜋 − 0.5 ∗ √𝜋)𝐼1 + (0.5 ∗ √𝜋 − √𝜋)𝐼2 

Remark: 

Since: 

𝑇[Γ(𝑛0 + 𝑛1𝐼1 + n2I2 + 1)] = (Γ(𝑛0 + 1), Γ(𝑛0 + 𝑛1 + 𝑛2 + 1), Γ(𝑛0 + 𝑛2 + 1))

= (𝑛0!, (𝑛0 + 𝑛1 + 𝑛2)!, (𝑛0 + 𝑛2)!) ; 𝑛0, n1, n2 ∈ ℕ. 

So Γ(𝑛0 + 𝑛1𝐼1 + n2I2 + 1) = (𝑛0 + 𝑛1𝐼1 + n2I2)! = T−1(𝑛0!, (𝑛0 + 𝑛1 + 𝑛2)!, (𝑛0 +

𝑛2)!) = n0! + [(𝑛0 + 𝑛1 + 𝑛2)! − (𝑛0 + 𝑛2)!]I1 + [(𝑛0 + 𝑛2)! − 𝑛0!]I2 

And it’s the formal form of refined neutrosophic factorial function. 

Refined Neutrosophic Beta Function: 

We can find the value of refined neutrosophic beta function at refined neutrosophic 

points 𝑎𝑁 = 𝑎0 + 𝑎1𝐼1 + 𝑎2𝐼2 , 𝑏𝑁 = 𝑏0 + 𝑏1𝐼1 + 𝑏2𝐼2 using the formula: 



166 
 

 

Mohammad Bisher Zeina, Mohammad Abobala, On the Refined Neutrosophic Real Analysis Based on Refined 

Neutrosophic Algebraic AH-Isometry 

β(aN, 𝑏𝑁) = ∫ 𝑥𝑎𝑁−1(1 − 𝑥)𝑏𝑁−1𝑑𝑥

1

0

= 

Where: 

β(𝑎, 𝑏) = ∫ 𝑥𝑎−1(1 − 𝑥)𝑏−1𝑑𝑥

1

0

 ; 𝑎, 𝑏 > 0 

Proof: 

Let 𝑓(𝑥) = 𝑥𝑎𝑁−1(1 − 𝑥)𝑏𝑁−1, so: 

𝑇[𝑓(𝑥)] = (𝑥𝑎0−1(1 − 𝑥)𝑏0−1, 𝑥𝑎0+𝑎1+𝑎2−1(1 − 𝑥)𝑏0+𝑏1+𝑏2−1, 𝑥𝑎0+𝑎2−1(1 − 𝑥)𝑏0+𝑏2−1) 

Then: 

(∫ 𝑥𝑎0−1(1 − 𝑥)𝑏0−1𝑑𝑥

1

0

, ∫ 𝑥𝑎0+𝑎1+𝑎2−1(1 − 𝑥)𝑏0+𝑏1+𝑏2−1𝑑𝑥

1

0

, ∫ 𝑥𝑎0+𝑎2−1(1

1

0

− 𝑥)𝑏0+𝑏2−1𝑑𝑥)

= (𝛽(𝑎0, 𝑏0), 𝛽(𝑎0 + 𝑎1 + 𝑎2, 𝑏0 + 𝑏1 + 𝑏2), 𝛽(𝑎0 + 𝑎2, 𝑏0 + 𝑏2)) 

So: 

𝛽(𝑎𝑁, 𝑏𝑁) = 𝛽(𝑎0, 𝑏0) + [𝛽(𝑎0 + 𝑎1 + 𝑎2, 𝑏0 + 𝑏1 + 𝑏2) − 𝛽(𝑎0 + 𝑎2, 𝑏0 + 𝑏2)]𝐼1

+ [𝛽(𝑎0 + 𝑎2, 𝑏0 + 𝑏2) − 𝛽(𝑎0, 𝑏0)]𝐼2 

We let it an exercise to the reader to prove that: 

𝛽(𝑎𝑁, 𝑏𝑁) =
Γ(𝑎𝑁)Γ(𝑏𝑁)

Γ(𝑎𝑁+𝑏𝑁)
. 

Conclusion 

In this paper, we have used the refined neutrosophic algebraic AH-isometry to 

study the functions defined on the real refined neutrosophic field, where refined 

neutrosophic Beta functions, Gamma functions, Logarithmic functions, and 

trigonometric functions were presented and formulated. 

As a future research direction, we aim to study the refined neutrosophic probability 

continuous distributions based on this approach. 
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Abstract: In this article, the definition of literal neutrosophic stochastic processes is 

presented for the first time in the form 𝒩𝑡 = 𝜉𝑡 + 𝜂𝑡𝐼 ; 𝐼
2 = 𝐼 where both {𝜉(𝑡), 𝑡 ∈ 𝑇} and 

{𝜂(𝑡), 𝑡 ∈ 𝑇}  are classical real valued stochastic processes. Characteristics of the literal 

neutrosophic stochastic process are defined and its formulas are driven including 

neutrosophic ensemble mean, neutrosophic covariance function and neutrosophic 

autocorrelation function. Concept of literal neutrosophic stationary stochastic processes is 

well defined and many theorems are presented and proved using classical neutrosophic 

operations then using the one-dimensional AH-Isometry. Some solved examples are 

presented and solved successfully. We have proved that studying the literal neutrosophic 

stochastic process {𝒩(𝑡), 𝑡 ∈ 𝑇} is equivalent to studying two classical stochastic processes 

which are {𝜉(𝑡), 𝑡 ∈ 𝑇} and {𝜉
𝑡
+ 𝜂

𝑡
, 𝑡 ∈ 𝑇}.   

Keywords: AH-Isometry; Neutrosophic Field of Reals; Neutrosophic Random Variables; 

Stationary Stochastic Processes; Characteristics of Stochastic Processes; Ensemble Mean; 

Covariance Function; Autocorrelation Function.   

 

 

1. Introduction 

In probability theory, a family of random variables is called a stochastic process usually 

noted by {𝜉(𝑡) , 𝑡 ∈ 𝑇} . Stochastic processes have many applications in many fields of 

science like biology, physics, ecology, information theory, chemistry, telecommunications, 

finance, etc. [1] 
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Classical stochastic process depends on parameters which are determined and known with 

high precision and confidence, but sometimes those parameters may have some uncertainty 

and it may be imprecise which led to define what is known by fuzzy stochastic processes 

[2], [3], [4]. 

In the recent years Prof. Smarandache introduced an extension of fuzzy and intuitionistic 

fuzzy sets called neutrosophic sets where elements are described using three independent 

functions; membership, indeterminacy and non-membership. Also, Smarandache extended 

the field of reals adding the indeterminacy component 𝑰  which satisfies 𝑰𝟐 = 𝑰  and 

introduced the literal neutrosophic reals field 𝑹(𝑰) = 𝑹 ∪ {𝑰}. 

These extensions have been applied in many fields of sciences like probability theory, 

statistics, game theory, geometry, decision making, artificial intelligence, machine learning, 

abstract algebra, linear algebra, operations research, etc.[5-34] 

Zeina and Hatip defined literal neutrosophic random variable in the form 𝜉𝑁 = 𝜉 + 𝐼 and 

studied its properties including literal neutrosophic expected value, literal neutrosophic 

variance, literal neutrosophic moments, literal neutrosophic characteristic function, literal 

neutrosophic moments generating function, literal neutrosophic probability density 

function and literal neutrosophic cumulative distribution function, and this study has been 

extended by Carlos Granados et al in [5-8]. 

Abobala and Hatip defined an isometry mapping between 𝑅(𝐼) and 𝑅 × 𝑅 called One-

Dimensional AH-Isometry [9]. Based on this isometry, strong theorems and definitions of 

Euclidian geometry was written. This isometry is a powerful tool to build mathematical 

concepts strongly and with logical steps. 

In this paper we generalize the definition of literal neutrosophic random variables to literal 

neutrosophic stochastic processes which are families of literal neutrosophic random 

variables depending on the one-dimensional AH-isometry and depending on direct 

computation based on neutrosophic rules. 

This paper opens new research fields in probability theory like queueing theory, dynamic 

systems, reliability theory, stochastic differential equations, etc. 
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2. Preliminaries 

Definition 2.1 

Literal neutrosophic real number 𝑵 is defined by: 

𝑵 = 𝒏𝟏 + 𝒏𝟐𝑰 ; 𝑰
𝟐 = 𝑰 & 𝒏𝟏, 𝒏𝟐 ∈ 𝑹 

And we call 𝑹(𝑰) = {𝒏𝟏 + 𝒏𝟐𝑰 ; 𝒏𝟏, 𝒏𝟐 ∈ 𝑹 𝒂𝒏𝒅 𝑰𝟐 = 𝑰} the literal neutrosophic real set. 

Definition 2.2 

Let 𝑹(𝑰) be the literal neutrosophic real set, we say 𝒏𝟏 + 𝒏𝟐𝑰 ≤ 𝒏𝟑 + 𝒏𝟒𝑰 iff 𝒏𝟏 ≤ 𝒏𝟑  & 

𝒏𝟏 + 𝒏𝟐 ≤ 𝒏𝟑 + 𝒏𝟒. 

Definition 2.3 

AH-Isometry is an isomorphism preserves distances between 𝑹(𝑰) and 𝑹 × 𝑹 and defined 

as in the following equation: 

𝒈:𝑹(𝑰) → 𝑹 × 𝑹 ; 𝒈(𝒏𝟏 + 𝒏𝟐𝑰) = (𝒏𝟏, 𝒏𝟏 + 𝒏𝟐) (1) 

and its inverse is defined as follows: 

𝒈−𝟏: 𝑹 × 𝑹 → 𝑹(𝑰) ; 𝒈(𝒏𝟏, 𝒏𝟐) = 𝒏𝟏 + (𝒏𝟐 − 𝒏𝟏)𝑰 (2) 

Definition 2.4  

Let 𝒏⃗⃗ = (𝒏𝟏 + 𝒏𝟐𝑰, 𝒏𝟑 + 𝒏𝟒𝑰) be a vector, then its norm is defined as: 

‖𝒏⃗⃗ ‖ = √(𝒏𝟏 + 𝒏𝟐𝑰)
𝟐 + (𝒏𝟑 + 𝒏𝟒𝑰)

𝟐 

Remark 2.1 

Since the one-dimensional AH-Isometry is an algebraic isomorphism and preserves 

distances then it has the following properties: 

1. 𝑔(𝑛1 + 𝑛2𝐼 + n3 + 𝑛4𝐼) = 𝑔(𝑛1 + 𝑛2𝐼) + 𝑔(𝑛3 + 𝑛4𝐼) 

2. 𝑔[(𝑛1 + 𝑛2𝐼) ∙ (𝑛3 + 𝑛4𝐼 )] = 𝑔(𝑛1 + 𝑛2𝐼) ∙ 𝑔(𝑛3 + 𝑛4𝐼) 
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3. 𝑔 is correspondence one-to-one 

4. 𝑔(‖𝐴𝐵⃗⃗⃗⃗  ⃗‖) = ‖𝑔(𝐴𝐵⃗⃗⃗⃗  ⃗)‖ 

Definition 2.5 [11] 

Let 𝝃, 𝜼  be two classical random variables, then literal neutrosophic random variable 

(LNRV) is defined by: 

𝜉𝑁 = 𝜉 + 𝜂𝐼 ; 𝐼2 = 𝐼 

Remark 2.2 

Let 𝝃𝑵 be a LNRV then: 

1. 𝐸(𝜉𝑁) = 𝐸(𝜉) + 𝐼 𝐸(𝜂) 

2. 𝑉(𝜉𝑁) = 𝑉(𝜉) + 𝐼 [𝑉(𝜉 + 𝜂) − 𝑉(𝜉)] 

3. Literal Neutrosophic Stochastic Processes 

Definition 3.1 

Let {𝝃 (𝒕), 𝒕 ∈ 𝑻} and {𝝃(𝒕), 𝒕 ∈ 𝑻} be two crisp (classic) stochastic processes, we define the 

literal neutrosophic stochastic process {𝓝(𝒕), 𝒕 ∈ 𝑻}  as follows: 

𝓝: (𝛀 × 𝑻) → 𝑹(𝑰) ;  𝓝(𝒕) = 𝝃(𝒕) + 𝜼(𝒕)𝑰; 𝑰𝟐 = 𝑰 

We call 𝝃(𝒕) the determinant part of 𝓝(𝒕) and we call 𝜼(𝒕) the indeterminant part of 

𝓝(𝒕). 

Theorem 1 

Let {𝒩(𝑡), 𝑡 ∈ 𝑇} be a literal neutrosophic stochastic process then the ensemble average 

function of {𝒩(𝑡), 𝑡 ∈ 𝑇} is: 

𝝁𝓝(𝒕) = 𝝁𝝃(𝒕) + 𝑰𝝁𝜼(𝒕) (3) 

Proof 
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For a fixed 𝑡 ∈ 𝑇  both {𝜉(𝑡), 𝑡 ∈ 𝑇}  and {𝜂(𝑡), 𝑡 ∈ 𝑇}  become random variables (not 

stochastic processes), the {𝒩(𝑡), 𝑡 ∈ 𝑇} becomes a literal neutrosophic random variable, so 

based on properties of literal neutrosophic random variables we can write: 

𝝁𝓝(𝒕) = 𝑬[𝓝(𝒕)] = 𝑬[𝝃(𝒕) + 𝑰 𝜼(𝒕)] = 𝑬[𝝃(𝒕)] + 𝑰𝑬[𝜼(𝒕)] = 𝝁𝝃(𝒕) + 𝑰𝝁𝜼(𝒕) 

Theorem 2 

Let {𝒩(𝑡), 𝑡 ∈ 𝑇} be a literal neutrosophic stochastic process then autocorrelation function 

is: 

𝑅𝒩(𝑠, 𝑡) = 𝑅𝜉(𝑠, 𝑡) + 𝐼{𝑅𝜉𝜂(𝑠, 𝑡) + 𝑅𝜂𝜉(𝑠, 𝑡) + 𝑅𝜂(𝑠, 𝑡)} (4) 

Proof 

𝑅𝒩(𝑠, 𝑡) = 𝐸[𝒩(𝑠) ∙ 𝒩(𝑡)] = 𝐸{[𝜉(𝑠) + 𝐼 𝜂(𝑠)] ∙ [𝜉(𝑡) + 𝐼 𝜂(𝑡)]}

= 𝐸{𝜉(𝑠)𝜉(𝑡) + 𝐼𝜉(𝑠)𝜂(𝑡) + 𝐼𝜂(𝑠)𝜉(𝑡) + 𝐼2𝜂(𝑠)𝜂(𝑡)}

= 𝑅𝜉(𝑠, 𝑡) + 𝐼{𝑅𝜉𝜂(𝑠, 𝑡) + 𝑅𝜂𝜉(𝑠, 𝑡) + 𝑅𝜂(𝑠, 𝑡)} 

Remark 3.1 

Notice that 𝑅𝒩(𝑡, 𝑡) = 𝑅𝜉(𝑡, 𝑡) + 𝐼{2𝑅𝜉𝜂(𝑡, 𝑡) + 𝑅𝜂(𝑡, 𝑡)} = 𝐸[𝜉2(𝑡)] + 𝐼{2𝑅𝜉𝜂(𝑡, 𝑡) + 𝐸[𝜂2(𝑡)]} 

Theorem 3 

Let {𝒩(𝑡), 𝑡 ∈ 𝑇}  be a literal neutrosophic stochastic process then its autocovariance 

function is: 

𝐶𝒩(𝑠, 𝑡) = 𝑅𝒩(𝑠, 𝑡) − 𝜇𝒩(𝑠)𝜇𝒩(𝑡) (5) 

Proof 

𝐶𝒩(𝑠, 𝑡) = 𝑐𝑜𝑣[𝒩(𝑠),𝒩(𝑡)] = 𝐸{[𝒩(𝑠) − 𝜇𝒩(𝑠)][𝒩(𝑡) − 𝜇𝒩(𝑡)]}

= 𝐸{𝒩(𝑠)𝒩(𝑡) − 𝜇𝒩(𝑡)𝒩(𝑠) − 𝜇𝒩(𝑠)𝒩(𝑡) + 𝜇𝒩(𝑠)𝜇𝒩(𝑡)}

= 𝑅𝒩(𝑠, 𝑡) − 𝜇𝒩(𝑡)𝐸[𝒩(𝑠)] − 𝜇𝒩(𝑠)𝐸[𝒩(𝑡)] + 𝜇𝒩(𝑠)𝜇𝒩(𝑡)

= 𝑅𝒩(𝑠, 𝑡) − 𝜇𝒩(𝑡)𝜇𝒩(𝑠) − 𝜇𝒩(𝑠)𝜇𝒩(𝑡) + 𝜇𝒩(𝑠)𝜇𝒩(𝑡)

= 𝑅𝒩(𝑠, 𝑡) − 𝜇𝒩(𝑠)𝜇𝒩(𝑡) 

Remark 3.2 

If 𝑠 = 𝑡 then: 

𝐶𝒩(𝑠 , 𝑡) = 𝐶𝒩(𝑡 , 𝑡) = 𝐸{[𝒩(𝑡) − 𝜇𝒩(𝑡)][𝒩(𝑡) − 𝜇𝒩(𝑡)]} = 𝑉𝑎𝑟[𝒩(𝑡)] 

Definition 3.2 
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Let {𝒩(𝑡), 𝑡 ∈ 𝑇} be a literal neutrosophic stochastic process, we call 𝐹(𝑥𝑁 , 𝑡) = 𝑃{𝒩(𝑡) ≤

𝑥𝑁} the first order distribution of {𝒩(𝑡), 𝑡 ∈ 𝑇} where 𝑥𝑁 = 𝑥 + 𝐼𝑦 and 𝑥, 𝑦 ∈ 𝑅. 

Definition 3.3 

Let {𝒩(𝑡), 𝑡 ∈ 𝑇} be a literal neutrosophic stochastic process, we call 
𝜕

𝜕𝑥𝑁
𝐹(𝑥𝑁 , 𝑡) = 𝑓(𝑥𝑁 , 𝑡) 

the first order density of {𝒩(𝑡), 𝑡 ∈ 𝑇} where 𝑥𝑁 = 𝑥 + 𝐼𝑦 and 𝑥, 𝑦 ∈ 𝑅. 

Definition 3.4 

A literal neutrosophic stochastic process is called strongly stationary if its distribution is 

invariant under neutrosophic transition of time, i.e., 𝑓(𝑥𝑁 , 𝑡) = 𝑓(𝑥𝑁 , 𝑡 + ℎ𝑁); ℎ𝑁 = ℎ1 + 𝐼ℎ2 

Definition 3.5 

A literal neutrosophic stochastic process is called weakly stationary if it satisfies the 

following two conditions: 

1. 𝜇𝒩(𝑡) = 𝜇𝑁 = 𝜇1 + 𝐼𝜇2 

2. 𝐸[𝒩(𝑡) ∙ 𝒩(𝑡 − 𝜏𝑁)] = 𝑅(𝜏𝑁) 

4. Literal Neutrosophic Stochastic Processes Using AH-Isometry: 

Consider the literal neutrosophic stochastic process {𝒩(𝑡), 𝑡 ∈ 𝑇}  then applying AH-

isometry on it yields to: 

𝑔[𝒩(𝑡)] = 𝑔[𝜉(𝑡) + 𝜂(𝑡)𝐼] = (𝜉(𝑡), 𝜉(𝑡) + 𝜂(𝑡)) 

Notice that using the one-dimensional AH-Isometry we transfer the literal neutrosophic 

stochastic process {𝒩(𝑡), 𝑡 ∈ 𝑇}  into two classical stochastic processes {𝜉(𝑡), 𝑡 ∈ 𝑇}  and 

{𝜉(𝑡) + 𝜂(𝑡), 𝑡 ∈ 𝑇}. 

So, we can study the characteristics of {𝒩(𝑡), 𝑡 ∈ 𝑇} by studying the characteristics of both 

{𝜉(𝑡), 𝑡 ∈ 𝑇} and {𝜉(𝑡) + 𝜂(𝑡), 𝑡 ∈ 𝑇}. 

Example 4.1 

In theorem 1 we show that 𝜇𝒩(𝑡) = 𝜇𝜉(𝑡) + 𝜇𝜂(𝑡)𝐼, we can reach the same result by using 

the one-dimensional AH-Isometry as follows: 

We have:  

𝒩(𝑡) = 𝜉(𝑡) + 𝜂(𝑡)𝐼 

So: 
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𝐸[𝒩(𝑡)] = 𝐸[𝜉(𝑡) + 𝜂(𝑡)𝐼] 

𝑔(𝐸[𝒩(𝑡)]) = 𝑔(𝐸[𝜉(𝑡) + 𝐼 𝜂(𝑡)]) = 𝐸[𝑔(𝜉(𝑡) + 𝜂(𝑡)𝐼)] = 𝐸[𝜉(𝑡), 𝜉(𝑡) + 𝜂(𝑡)]

= (𝜇𝜉(𝑡), 𝜇𝜉(𝑡) + 𝜇𝜂(𝑡)) 

Taking the inverse isometry: 

𝑔−1𝑔(𝐸[𝒩(𝑡)]) = 𝐸[𝒩(𝑡)] = 𝜇𝜉(𝑡) + [𝜇𝜉(𝑡) + 𝜇𝜂 (𝑡) − 𝜇𝜉(𝑡)]𝐼 = 𝜇𝜉(𝑡) + 𝜇𝜂(𝑡)𝐼 

Which is the same result presented in theorem 1. 

Example 4.2 

Let’s calculate the autocorrelation function 𝑅𝒩(𝑠, 𝑡) using the AH-Isometry: 

𝑅𝒩(𝑠, 𝑡) = 𝐸[𝒩(𝑠) ∙ 𝒩(𝑡)] 

𝑔(𝑅𝒩(𝑠, 𝑡)) = 𝐸{𝑔[𝒩(𝑠) ∙ 𝒩(𝑡)]} = 𝐸{𝑔[𝜉(𝑠) + 𝜂(𝑠)𝐼][𝜉(𝑡) + 𝜂(𝑡)𝐼]}

= 𝐸{𝑔[𝜉(𝑠) + 𝜂(𝑠)𝐼]𝑔[𝜉(𝑡) + 𝜂(𝑡)𝐼]}

= 𝐸{(𝜉(𝑠), 𝜉(𝑠) + 𝜂(𝑠))(𝜉(𝑡), 𝜉(𝑡) + 𝜂(𝑡))}

= {𝐸(𝜉(𝑠)𝜉(𝑡)), 𝐸(𝜉(𝑠) + 𝜂(𝑠))(𝜉(𝑡) + 𝜂(𝑡))}

= (𝑅𝜉(𝑠, 𝑡), 𝑅𝜉(𝑠, 𝑡) + 𝑅𝜉𝜂(𝑠, 𝑡) + 𝑅𝜂𝜉(𝑠, 𝑡) + 𝑅𝜂(𝑠, 𝑡)) 

Now taking 𝑔−1 yields: 

𝑅𝒩(𝑠, 𝑡) = 𝑅𝜉(𝑠, 𝑡) + [𝑅𝜉(𝑠, 𝑡) + 𝑅𝜉𝜂(𝑠, 𝑡) + 𝑅𝜂𝜉(𝑠, 𝑡) + 𝑅𝜂(𝑠, 𝑡) − 𝑅𝜉(𝑠, 𝑡)]𝐼

= 𝑅𝜉(𝑠, 𝑡) + 𝐼{𝑅𝜉𝜂(𝑠, 𝑡) + 𝑅𝜂𝜉(𝑠, 𝑡) + 𝑅𝜂(𝑠, 𝑡)} 

Which is the same result in theorem 2. 

Theorem 4 

A literal neutrosophic stochastic process 𝒩(𝑡) = 𝜉(𝑡) +  𝜂(𝑡)𝐼 is weakly stationary if and 

only if {𝜉(𝑡), 𝑡 ∈ 𝑇} is weakly stationary and {𝜉(𝑡) + 𝜂(𝑡), 𝑡 ∈ 𝑇} is weakly stationary. 

Proof 

We will first suppose that {𝜉(𝑡), 𝑡 ∈ 𝑇} and {𝜉(𝑡) + 𝜂(𝑡), 𝑡 ∈ 𝑇} are weakly stationary and 

prove that 𝒩(𝑡) = 𝜉(𝑡) + 𝜂(𝑡)𝐼 is also stationary: 

Since {𝜉(𝑡), 𝑡 ∈ 𝑇}  is weakly stationary then 𝜇𝜉(𝑡) = 𝜇𝜉 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  and 𝐸[𝜉(𝑡) ∙ 𝜉(𝑡 −

𝜏)] = 𝑅𝜉(𝜏) 

We also supposed that {𝜉(𝑡) + 𝜂(𝑡), 𝑡 ∈ 𝑇}  is weakly stationary so 𝜇𝜉+𝜂(𝑡) = 𝐸[𝜉(𝑡) +

𝜂(𝑡)] = 𝜇𝜉+𝜂 = 𝑐𝑜𝑠𝑡𝑎𝑛𝑡, which means that 𝜇𝜂(𝑡) = 𝜇𝜂 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 
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and 𝑅𝜉+𝜂(𝑡, 𝑡 − 𝜏) = 𝐸[𝜉(𝑡) + 𝜂(𝑡)][𝜉(𝑡 − 𝜏) + 𝜂(𝑡 − 𝜏)] = 𝐸[𝜉(𝑡)𝜉(𝑡 − 𝜏) + 𝜉(𝑡)𝜂(𝑡 − 𝜏) +

𝜂(𝑡)𝜉(𝑡 − 𝜏) + 𝜂(𝑡)𝜂(𝑡 − 𝜏)] = 𝑅𝜉(𝑡, 𝑡 − 𝜏) + 𝑅𝜉𝜂(𝑡, 𝑡 − 𝜏) + 𝑅𝜂𝜉(𝑡, 𝑡 − 𝜏) + 𝑅𝜂(𝑡, 𝑡 − 𝜏) 

Since 𝜉(𝑡) + 𝜂(𝑡)  is weakly stationary then 𝑅𝜉+𝜂(𝑡, 𝑡 − 𝜏)  must depend only on the 

difference 𝜏, so the only possible form of it will be: 

𝑅𝜉+𝜂(𝑡, 𝑡 − 𝜏) = 𝑅𝜉(𝜏) + 𝑅𝜉𝜂(𝜏) + 𝑅𝜂𝜉(𝜏) + 𝑅𝜂(𝜏) = 𝑅𝜉+𝜂(𝜏) 

Which means that 𝑅𝜉𝜂(𝑡, 𝑡 − 𝜏) = 𝑅𝜉𝜂(𝜏), 𝑅𝜂𝜉(𝑡, 𝑡 − 𝜏) = 𝑅𝜂𝜉(𝜏), 𝑅𝜂(𝑡, 𝑡 − 𝜏) = 𝑅𝜂(𝜏) 

𝐸(𝒩(𝑡)) = 𝐸[𝜉(𝑡) + 𝜂(𝑡)𝐼] = 𝜇𝜉 (𝑡) + 𝜇𝜂(𝑡)𝐼 = 𝜇𝜉 + 𝜇𝜂𝐼 = 𝜇𝑁 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Using equation (4): 

𝑅𝒩(𝑡, 𝑡 − 𝜏) = 𝐸[𝒩(𝑡) ∙ 𝒩(𝑡 − 𝜏)]

= 𝑅𝜉(𝑡, 𝑡 − 𝜏) + 𝐼{𝑅𝜉𝜂(𝑡, 𝑡 − 𝜏) + 𝑅𝜂𝜉(𝑡, 𝑡 − 𝜏) + 𝑅𝜂(𝑡, 𝑡 − 𝜏)}

= 𝑅𝜉(𝜏) + 𝐼{𝑅𝜉𝜂(𝜏) + 𝑅𝜂𝜉(𝜏) + 𝑅𝜂(𝜏)} = 𝑅𝒩(𝜏) 

So, we conclude that {𝒩(𝑡), 𝑡 ∈ 𝑇} is weakly stationary. 

Now let’s assume that {𝒩(𝑡), 𝑡 ∈ 𝑇} is weakly stationary and prove that both {𝜉(𝑡), 𝑡 ∈ 𝑇} 

and {𝜉(𝑡) + 𝜂(𝑡), 𝑡 ∈ 𝑇}  are weakly stationary. 

Since {𝒩(𝑡), 𝑡 ∈ 𝑇} is weakly stationary then 𝐸(𝒩(𝑡)) = 𝜇𝑁(𝑡) = 𝜇𝑁 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

but 𝐸(𝒩(𝑡)) = 𝜇𝜉(𝑡) + 𝐼𝜇𝜂(𝑡) so both 𝜇𝜉(𝑡) and 𝜇𝜂(𝑡) must be dependent of time, then  

𝜇𝜉(𝑡) = 𝜇𝜉 (6) 

 𝜇𝜂(𝑡) = 𝜇𝜂 (7) 

which meant that: 

𝜇𝜉+𝜂(𝑡) = 𝜇𝜉 + 𝜇𝜂 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (8) 

Also, we have: 𝑅𝒩(𝑡, 𝑡 − 𝜏) = 𝑅𝜉(𝑡, 𝑡 − 𝜏) + 𝐼{𝑅𝜉𝜂(𝑡, 𝑡 − 𝜏) + 𝑅𝜂𝜉(𝑡, 𝑡 − 𝜏) + 𝑅𝜂(𝑡, 𝑡 − 𝜏)} and 

since {𝒩(𝑡), 𝑡 ∈ 𝑇}  is weakly stationary then 𝑅𝒩(𝑡, 𝑡 − 𝜏)  must depend only on the 

difference 𝜏 so the following equations must hold: 

𝑅𝜉(𝑡, 𝑡 − 𝜏) = 𝑅𝜉(𝜏) (9) 

𝑅𝜉𝜂(𝑡, 𝑡 − 𝜏) = 𝑅𝜉𝜂(𝜏) (10) 

𝑅𝜂𝜉(𝑡, 𝑡 − 𝜏) = 𝑅𝜂𝜉(𝜏) (11) 

𝑅𝜂(𝑡, 𝑡 − 𝜏) = 𝑅𝜂(𝜏) (12) 

From equations (6), (9) we conclude that {𝜉(𝑡), 𝑡 ∈ 𝑇} is weakly stationary. 
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And using equations (8), (9-12) we conclude that {𝜉(𝑡) + 𝜂(𝑡), 𝑡 ∈ 𝑇} is weakly stationary. 

Theorem 5 

Suppose that {𝒩(𝑡), 𝑡 ∈ 𝑇} is a weakly stationary literal neutrosophic stochastic process 

with autocorrelation function 𝑅𝒩(𝜏), then the following holds: 

1. 𝑅𝒩(𝜏) = 𝑅𝒩(−𝜏) 

2. |𝑅𝒩(𝜏)| ≤ 𝑅(0) 

Proof 

1. we have: 

𝑅𝒩(𝜏) = 𝑅𝜉(𝜏) + 𝐼{𝑅𝜉𝜂(𝜏) + 𝑅𝜂𝜉(𝜏) + 𝑅𝜂(𝜏)} 

So: 

𝑅𝒩(−𝜏) = 𝑅𝜉(−𝜏) + 𝐼{𝑅𝜉𝜂(−𝜏) + 𝑅𝜂𝜉(−𝜏) + 𝑅𝜂(−𝜏)} 

And using properties of cross-correlation function in classical stationary processes we get:  

𝑅𝒩(−𝜏) = 𝑅𝜉(𝜏) + 𝐼{𝑅𝜂𝜉(𝜏) + 𝑅𝜉𝜂(𝜏) + 𝑅𝜂(𝜏)} = 𝑅𝒩(𝜏) 

2. Taking AH-Isometry: 

𝑔(|𝑅𝒩(𝜏)|) = |𝐸{𝑔[𝒩(𝑡) ∙ 𝒩(𝑡 − 𝜏)]} = 𝐸{𝑔[𝜉(𝑡) + 𝐼𝜂(𝑡)][𝜉(𝑡 − 𝜏) + 𝐼𝜂(𝑡 − 𝜏)]}|

= |𝐸{𝑔[𝜉(𝑡) + 𝐼𝜂(𝑡)]𝑔[𝜉(𝑡 − 𝜏) + 𝐼𝜂(𝑡 − 𝜏)]}|

= |𝐸{(𝜉(𝑡), 𝜉(𝑡) + 𝜂(𝑡))(𝜉(𝑡 − 𝜏), 𝜉(𝑡 − 𝜏) + 𝜂(𝑡 − 𝜏))}|

= |𝐸{𝜉(𝑡)𝜉(𝑡 − 𝜏), [𝜉(𝑡) + 𝜂(𝑡)][𝜉(𝑡 − 𝜏) + 𝜂(𝑡 − 𝜏)]}|

= (|𝑅𝜉(𝜏)|, |𝑅𝜉+𝜂(𝜏)|) ≤ (0,0) 

Now taking 𝑔−1: 

|𝑅𝒩(𝜏)| = |𝑅𝜉(𝜏)| + (|𝑅𝜉+𝜂(𝜏)| − |𝑅𝜉(𝜏)|)𝐼 ≤ 0 

5. Some Applications: 

Example 5.1 

Let {𝒩(𝑡), 𝑡 ∈ 𝑇} be a literal neutrosophic stochastic process defined as follows: 

𝒩(𝑡) = 𝐴𝑁 cos(𝑡) + sin(𝑡)  𝐼 
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Where distribution of the literal neutrosophic random variable 𝐴𝑁 is: 

1  0 𝐴𝑁 

1 −
1

3
𝐼  1

3
𝐼 𝑃𝑟𝑜𝑏 

Let’s find 𝜇𝒩(𝑡), 𝑅𝒩(𝑠, 𝑡) and show whether {𝒩(𝑡), 𝑡 ∈ 𝑇} is stationary or not. 

Solution 

𝑬(𝑨𝑵) = 𝟎 ∙
𝟏

𝟑
𝑰 + 𝟏 ∙ (𝟏 −

𝟏

𝟑
𝑰) = 𝟏 −

𝟏

𝟑
𝑰 

𝑬(𝑨𝑵
𝟐 ) = 𝟎𝟐 ∙

𝟏

𝟑
𝑰 + 𝟏𝟐 ∙ (𝟏 −

𝟏

𝟑
𝑰) = 𝟏 −

𝟏

𝟑
𝑰 

𝝁𝓝(𝒕) = 𝑬(𝓝(𝒕)) = 𝑬(𝑨𝑵 𝐜𝐨𝐬(𝒕) + 𝐬𝐢𝐧(𝒕)  𝑰) = (𝟏 −
𝟏

𝟑
𝑰) ∙ 𝐜𝐨𝐬(𝒕) + 𝐬𝐢𝐧(𝒕) 𝑰 

Since 𝝁𝓝(𝒕) is a function of 𝒕 then {𝓝(𝒕), 𝒕 ∈ 𝑻} is not stationary stochastic process. 

𝑅𝒩(𝑠, 𝑡) = 𝐸[𝒩(𝑠) ∙ 𝒩(𝑡)] = 𝐸[(𝐴𝑁 cos(𝑡) + sin(𝑡)  𝐼)(𝐴𝑁 cos(𝑠) + sin(𝑠)  𝐼)]

= 𝐸[𝐴𝑁
2 cos(𝑡) cos(𝑠) + 𝐴𝑁 cos(𝑡) sin(𝑠) 𝐼 + sin(𝑡) 𝐼 𝐴𝑁 cos(𝑠)

+ sin(𝑡) sin(𝑠) 𝐼2]

= (1 −
1

3
𝐼) cos(𝑡) cos(𝑠) + (1 −

1

3
𝐼) cos(𝑡) sin(𝑠) 𝐼 + (1 −

1

3
𝐼) sin(𝑡) cos(𝑠) 𝐼

+ sin(𝑡) sin(𝑠) 𝐼 

Example 5.2 

let {𝒩(𝑡), 𝑡 ∈ 𝑇} be a neutrosophic stochastic process defined as follows: 

𝒩(𝑡) = 𝜉(𝑡) + 𝜉(𝑡) 𝐼 

Where {𝜉(𝑡), 𝑡 ∈ 𝑇} is a classical stochastic process defined by: 

𝜉(𝑡) = 𝐴 cos(𝑡) + 𝐵 sin(𝑡) 

Where 𝐴, 𝐵 are random variables both defined as by: 

1  −2  

2

3
  1

3
 𝑃𝑟𝑜𝑏 
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Let’s find 𝜇𝒩(𝑡), 𝑅𝒩(𝑠, 𝑡) and show whether {𝒩(𝑡), 𝑡 ∈ 𝑇} is stationary or not. 

solution 

𝐸(𝐴) = 𝐸(𝐵) =
2

3
−

2

3
= 0 

𝐸(𝐴2) = 𝐸(𝐵2) =
2

3
+

4

3
= 2 

𝜇𝜉(𝑡) = cos(𝑡)  𝐸(𝐴) + sin(𝑡)  𝐸(𝐵) = 0 

𝑅𝜉(𝑠, 𝑡) = 𝐸[𝜉(𝑠) 𝜉(𝑡)] = 𝐸[(𝐴 cos(𝑠) + 𝐵 sin(𝑠))(𝐴 cos(𝑡) + 𝐵 sin(𝑡))] 

= 𝐸(𝐴2 cos(𝑠) cos(𝑡) + 𝐴𝐵 cos(𝑠) sin(𝑡) + 𝐵𝐴 sin(𝑠) cos(𝑡) + 𝐵2 sin(𝑠) sin(𝑡))

= 2(cos(𝑠) cos(𝑡) + sin(𝑠) sin(𝑡)) = 2 cos(𝑡 − 𝑠) = 2 cos 𝜏 

So: 

𝜇𝒩(𝑡) = 𝐸[𝒩(𝑡)] = 𝐸[𝜉(𝑡) + 𝜉(𝑡) 𝐼] = 𝜇𝜉(𝑡) + 𝜇𝜉(𝑡)𝐼 = 0 = 𝑐𝑜𝑛𝑠𝑡 

𝑅𝒩(𝑠, 𝑡) = 𝐸[𝒩(𝑠) ∙ 𝒩(𝑡)] = 𝐸[(𝜉(𝑠) + 𝜉(𝑠)𝐼)(𝜉(𝑡) + 𝜉(𝑡)𝐼)]

= 𝐸[𝜉(𝑠)𝜉(𝑡) + 𝜉(𝑠)𝜉(𝑡)𝐼 + 𝜉(𝑠)𝑋(𝑡)𝐼 + 𝜉(𝑠)𝜉(𝑡)𝐼2]

= 𝑅𝜉(𝑠, 𝑡) + 𝑅𝜉(𝑠, 𝑡)𝐼 + 𝑅𝜉(𝑠, 𝑡)𝐼 + 𝑅𝜉(𝑠, 𝑡)𝐼 = 2 cos(𝜏) + 6 cos(𝜏) 𝐼 = 𝑅𝑁(𝜏) 

We conclude that {𝒩(𝑡), 𝑡 ∈ 𝑇} is weakly stationary process. 

In fact, it is clear that {𝒩(𝑡), 𝑡 ∈ 𝑇} is weakly stationary process since {𝜉(𝑡), 𝑡 ∈ 𝑇} and 

{2𝜉(𝑡), 𝑡 ∈ 𝑇}  are both weakly stationary processes. 

6. Conclusions and future research directions 

Concept of literal neutrosophic stochastic process is well defined by 𝓝(𝒕) = 𝝃(𝒕) + 𝜼(𝒕)𝑰. 

We proved that a literal neutrosophic stochastic process can be presented in 𝑹𝟐  as two 

classical stochastic processes, first is {𝝃(𝒕), 𝒕 ∈ 𝑻} and second is the convolution {𝝃(𝒕) +

𝜼(𝒕), 𝒕 ∈ 𝑻}. Many theorems were proved successfully especially the theorem of stationary 

stochastic process where we have seen that {𝓝(𝒕), 𝒕 ∈ 𝑻}  is stationary if and only if 

{𝝃(𝒕), 𝒕 ∈ 𝑻} is stationary and {𝝃(𝒕) + 𝜼(𝒕), 𝒕 ∈ 𝑻}  is stationary. This paper can be applied 

in many fields related to probability theory including game theory, polling, statistical 

analysis, financial mathematics, etc. In future researches we are looking forward to study 

cross neutrosophic stochastic processes and define its characteristics and the theorems 

related to it. Also, we are looking forward to study applications of literal neutrosophic 

stochastic processes in related fields.  



180 
 

 

Mohamed Bisher Zeina and Yasin Karmouta, Introduction to Neutrosophic Stochastic Processes 

References 

[1]  A. Amir, Thinking Probabilistically: Stochastic Processes, Disordered Systems, and 

Their Applications, United Kingdom: Cambridge University Press, 2021.  

[2]  T. Fukuda and Y. Sunahara, "Fuzzy Stochastic Processes and their Applications to 

Parameter Identification," IFAC Proceedings Volumes, vol. 24, no. 3, pp. 871-876, 1991.  

[3]  T. Fukuda, "Basic Statistical Properties of Fuzzy Stochastic Processes," Otemon 

Economic Studies, vol. 24, pp. 89-120, 1991.  

[4]  K. J. Heui, "On Fuzzy Stochastic Differential Equations," Journal of the Korean 

Mathematical Society, vol. 42, no. 1, pp. 153-169, 2005.  

[5]  C. Granados, A. K. Das and B. Das, "Some Continuous Neutrosophic Distributions 

with Neutrosophic Parameters Based on Neutrosophic Random Variables," Advances 

in the Theory of Nonlinear Analysis and its Application, vol. 6, no. 3, pp. 380-389, 2022.  

[6]  C. Granados, "Some Discrete Neutrosophic Distributions with Neutrosophic 

Parameters Based on Neutrosophic Random Variables," Hacettepe Journal of 

Mathematics and Statistics, vol. 51, no. 5, pp. 1442-1457, 2022.  

[7]  M. Abobala and A. Hatip, "An Algebraic Approach to Neutrosophic Euclidean 

Geometry," Neutrosophic Sets and Systems, vol. 43, pp. 114-123, 2021.  

[8]  F. Smarandache, Symbolic Neutrosophic Theory, Belgium: EuropaNova, 2015.  

[9]  M. B. Zeina and M. Abobala, "A Novel Approach of Neutrosophic Continuous 

Probability Distributions using AH-Isometry with Applications in Medicine" in 

Cognitive Intelligence with Neutrosophic Statistics in Bioinformatics, Elsevier, 2023.  

[10]  M. Abobala, "Semi Homomorphisms and Algebraic Relations Between Strong Refined 

Neutrosophic Modules and Strong Neutrosophic Modules," Neutrosophic Sets and 

Systems, vol. 39, 2021.  

[11]  W. B. V. Kandasamy and F. Smarandache, Neutrosophic Rings, (USA) : Hexis, 

Phoenix, Arizona, 2006.  

[12]  Z. Khan and M. Gulistan, "Neutrosophic Design of the Exponential Model with 

Applications," Neutrosophic Sets and Systems, vol. 48, 2022.  

[13]  W.-Q. Duan, Z. Khan, M. Gulistan and A. Khurshid, "Neutrosophic Exponential 

Distribution: Modeling and Applications for Complex Data Analysis," Hindawi, vol. 

2021, p. 8, 2021.  

[14]  M. F. Alaswad, "A Study of the Integration of Neutrosophic Thick Function," 

International Journal of Neutrosophic Science, vol. 6, 2020.  

[15]  M. F. Alaswad, "A Study of Neutrosophic Differential Equation by Using a 

Neutrosophic Thick Function," Neutrosophic Knowledge,, vol. 1, 2020.  

[16]  M. B. Zeina, "Neutrosophic Event-Based Queueing Model," International Journal of 

Neutrosophic Science, vol. 6, 2020.  



181 
 

 

Mohamed Bisher Zeina and Yasin Karmouta, Introduction to Neutrosophic Stochastic Processes 

[17]  M. B. Zeina , O. Zeitouny , F. Masri , F. Kadoura and S. Broumi, "Operations on Single-

Valued Trapezoidal Neutrosophic Numbers using (α,β,γ)-Cuts “Maple Package”," 

International Journal of Neutrosophic Science, vol. 15, no. 2, pp. 113-122, 2021.  

[18]  M. B. Zeina and A. Hatip, " Neutrosophic Random Variables," Neutrosophic Sets and 

Systems, vol. 39, pp. 44-52, 2021.  

[19]  M. B. Zeina, "Erlang Service Queueing Model with Neutrosophic Parameters," 

International Journal of Neutrosophic Science, vol. 6, no. 2, pp. 106-112, 2020.  

[20]  L. Zadeh, "Fuzzy Sets," Information and Control, vol. 8, no. 3, pp. 338-353, 1965.  

[21]  H. Wang, F. Smarandache, Y. Zhang and R. Sunderraman, "Single Valued 

Neutrosophic Sets," Multispace and Multistructure, vol. 4, pp. 410-413, 2005.  

[22]  F. Smarandache, "Plithogenic Probability & Statistics are generalizations of 

MultiVariate Probability & Statistics," Neutrosophic Sets and Systems, vol. 43, pp. 280-

289, 2021.  

[23]  F. Smarandache, Neutrosophy. Neutrosophic Probability, Set, and Logic, USA: Amer. 

Res. Press, 1998.  

[24]  F. Smarandache, "Indeterminacy in Neutrosophic Theories and their Applications," 

International Journal of Neutrosophic Science, vol. 15, no. 2, pp. 89-97, 2021.  

[25]  F. Smarandache, "Generalization of the Intuitionistic Fuzzy Set to the Neutrosophic 

Set," International Conference on Granular Computing, pp. 8-42, 2006.  

[26]  R. Sherwani, H. Shakeel, W. Awan, M. Faheem and M. Aslam , "Analysis of COVID-

19 data using neutrosophic Kruskal Wallis H test," BMC Medical Research Methodology, 

vol. 21, 2021.  

[27]  I. Shahzadi, M. Aslam and H. Aslam, "Neutrosophic Statistical Analysis of Income of 

YouTube Channels," Neutrosophic Sets and Systems, vol. 39, pp. 101-106, 2021.  

[28]  A. Salama, "Generalized Neutrosophic Set and Generalized Neutrosophic Topological 

Spaces," Computer Science and Engineering, vol. 2, no. 7, pp. 129-132, 2013.  

[29]  A. Salama, H. A. El-Ghareeb, A. M. Manie and F. Smarandache, "Introduction to 

Develop Some Software Programs for Dealing with Neutrosophic Sets," Neutrosophic 

Sets and Systems, vol. 3, pp. 51-52, 2014.  

[30]  H. Rashad and M. Mohamed, "Neutrosophic Theory and Its Application in Various 

Queueing Models: Case Studies," Neutrosophic Sets and Systems, vol. 42, pp. 117-135, 

2021.  

[31]  S. Priyadharshini and F. Nirmala Irudayam, "A New Approach of Multi-Dimensional 

Single Valued," Neutrosophic Sets and Systems, vol. 45, pp. 151-161, 2021.  

[32]  F. Karaaslan, K. Hayat and C. Jana, "The Determinant and Adjoint of an Interval-

Valued Neutrosophic Matrix," in Neutrosophic Operational Research, 2021.  



182 
 

 

Mohamed Bisher Zeina and Yasin Karmouta, Introduction to Neutrosophic Stochastic Processes 

[33]  S. Broumi, D. Nagarajan, A. Bakali, M. Talea, F. Smarandache, M. Lathamaheswari 

and J. Kavikumar, "Implementation of Neutrosophic Function Memberships Using 

MATLAB Program," Neutrosophic Sets and Systems, vol. 27, pp. 44-52, 2019.  

[34]  S. Broumi, "Generalized Neutrosophic Soft Set," International Journal of Computer 

Science, Engineering and Information Technology, vol. 3, no. 2, pp. 17-30, 2013.  

[35]  P. Biswas, S. Pramanik and B. C. Giri, "Value and ambiguity index based ranking 

method of single-valued trapezoidal neutrosophic numbers and its application to 

multi-attribute decision making," Neutrosophic Sets and Systems, vol. 12, pp. 127-138, 

2016.  

[36]  K. Atanassov, "Intuitionistic Fuzzy Sets," Fuzzy Sets and Systems, vol. 20, no. 1, pp. 87-

96, 1986.  

[37]  M. Aslam and M. Albassam, "Presenting post hoc multiple comparison tests under 

neutrosophic statistics," Journal of King Saud University, vol. 32, no. 6, pp. 2728-2732, 

2020.  

[38]  M. Aslam, "Neutrosophic analysis of variance: application to university students," 

Complex Intell. Syst, vol. 5, pp. 403-407, 2019.  

[39]  A. AL-Nafee, S. Broumi and F. Smarandache, "Neutrosophic Soft Bitopological 

Spaces," International Journal of Neutrosophic Science, vol. 14, no. 1, pp. 47-56, 2021.  

[40]  S. Alias and D. Mohamad, "A Review on Neutrosophic Set and Its Development," 

Menemui Matematik (Discovering Mathematics), vol. 39, no. 2, pp. 61-69, 2017.  

[41]  

 

 

[42] 

 

[43] 

 

 
[44] 

 

 

[45] 

R. Ali, "A Short Note On The Solution Of n-Refined Neutrosophic Linear Diophantine 

Equations," International Journal of Neutrosophic Science, vol. 15, no. 1, pp. 43-51, 2021. 

 

Khaldi, A., " Improving Karmarker Algorithm To Obtain The Optimal Solution ", 

Galoitica Journal Of Mathematical Structures and Applications, vol.3, 2023. 

 

Khaldi, A., and Rawashdeh, A., " A Study Of Shrinkage Estimators For Reliability 

Function and Variance Properties", Galoitica Journal Of Mathematical Structures and 

Applications, vol.4, 2023. 

 

 

Abobala, M., and Zeina, M.B., " A Study Of Neutrosophic Real Analysis By Using One 

Dimensional Geometric AH-Isometry", Galoitica Journal Of Mathematical Structures 

And Applications, Vol.3, 2023. 

 

Hatip, A., " On Intuitionistic Fuzzy Subgroups of (M-N) Type and Their Algebraic 

Properties", Galoitica Journal Of Mathematical Structures and Applications, Vol.4, 

2023. 



183 
 

 

Mohamed Bisher Zeina and Yasin Karmouta, Introduction to Neutrosophic Stochastic Processes 

[46]  K. Alhasan and F. Smarandache, "Neutrosophic Weibull distribution and 

Neutrosophic Family Weibull Distribution," Neutrosophic Sets and Systems, vol. 28, pp. 

191-199, 2019.  

[47]  K. Alhasan, A. Salama and F. Smarandache, "Introduction to Neutrosophic Reliability 

Theory," International Journal of Neutrosophic Science, vol. 15, no. 1, pp. 52-61, 2021.  

 

 
 

Received: September 16, 2022.  Accepted: December 03, 2022 

 



Neutrosophic Sets and Systems, Vol. 54, 2023 
University of New Mexico 

 

Hasan Sankari, Mohammad Abobala, On The Classification of the group of units of Rational and Real 2-cyclic refined 

neutrosophic rings 
 

 

 

  

Solutions of Some Kandasamy-Smarandache Open Problems About 

the Algebraic Structure of Neutrosophic Complex Finite Numbers 

Basheer Abd Al Rida Sadiq 

Imam Kadhum College For Islamic Science University, Iraq 

basheer.abdrida@alkadhum-col.edu.iq 

 

Abstract: The aim of this paper is to study the neutrosophic complex finite rings 

𝐶(𝑍𝑛) 𝑎𝑛𝑑 𝐶(< 𝑍𝑛 ∪ 𝐼 >), and to give a classification theorem of these rings. Also, this work 

introduces full solutions for 12 Kandasamy-Smarandache open problems concerning these 

structures of generalized rings modulo integers. Also, a necessary and sufficient condition 

of invertibility in 𝐶(𝑍𝑛) 𝑎𝑛𝑑 𝐶(< 𝑍𝑛 ∪ 𝐼 >) is presented as a partial solution of the famous 

group of units problem.  

Keywords: Neutrosophic complex number, neutrosophic finite complex number, 

maximal ideal, minimal ideal 

Introduction. 

Neutrosophy as a new kind of generalized logic deals with indeterminacy in nature, reality, 

and ideas found its way into algebraic studies. A lot of neutrosophic algebraic structures 

were defined and studied in a wide range. See [1-11]. 

In the literature, many generalizations appeared such as refined neutrosophic rings, 

n-refined neutrosophic rings, n-refined neutrosophic groups, and n-refined neutrosophic 

vector spaces and modules. Recently, algebraic equations and Diophantine linear equations 

were solved in neutrosophic rings and refined neutrosophic rings. See [5-18]. 

In [20], Smarandache and Kandasamy introduced the neutrosophic complex numbers 

modulo integers as an interesting generalized structure. Their work suggests a new 

mailto:basheer.abdrida@alkadhum-col.edu.iq
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approach to the concept of classical complex numbers, and they proposed 150 open 

problems concerning substructures and factorization properties in these complex 

neutrosophic structures modulo integers (some of these problems were solved in [17]). In 

this paper, we aim to continue their efforts and to suggest a classification of neutrosophic 

complex finite rings modulo integers. Also, we suggest solutions for 12 problems of 

Kandasamy-Smarandache problems introduced in [20]. 

Main results 

We start our discussion by some easy Kandasamy-Smarandache problems about finite 

neutrosophic complex rings. 

Problem (56): Does every 𝐶(𝑍𝑛) contain a zero divisor?. 

The answer is no. If n is a prime and there are 𝑎, 𝑏 ∈ 𝑍𝑛; 𝑎2 + 𝑏2 ≡ 0(𝑚𝑜𝑑 𝑛), then 𝐶(𝑍𝑛) is 

a field according to Theorem , and then it has no zero divisors. 

Problem (58): Is every element in C(𝑍7) invertible?. 

The answer is yes, since C(𝑍7) is a field, thus all elements different from zero are invertible. 

Problem (57): Can every C(𝑍𝑛) be a field?. 

The answer is no, since C(𝑍5) is just a ring but not a field. 

Problem (53): Find a subring S in C(𝑍𝑛)  so that S is not an ideal. 

We take 𝑆 = 𝑍𝑛 which is a subring of C(𝑍𝑛) , but it is not an ideal, that is because 1∈ 𝑍𝑛 

and 𝑖𝐹 ∈ C(𝑍𝑛) , where1. 𝑖𝐹 = 𝑖𝐹, which is not in S. Thus S is not an ideal. 

Problem (26): Can C(〈𝑍12 ∪ I〉) be a S-ring? Justify. 

The answer is yes. That is because the set 𝑀 = {0,9,3} is a field under multiplication with 9 

acts as the identity. 

Problem (25): Prove C(〈𝑍25 ∪ I〉) can only be a ring. 

It is sufficient to prove that C(〈𝑍25 ∪ I〉) has zero divisors. We take 5 + 5𝐼 ∈  C(〈𝑍25  ∪  I〉), 

and 

(5 + 5𝐼). (5 + 5𝐼) = 25(1 + 𝐼)(1 + 𝐼) = 0. 

Definition: 
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(a) Let R be any commutative ring, 𝑚 be any element (not from R) which is a root of a 

polynomial 𝑝(𝑥) ∈ 𝑅[𝑥]. Then if there is no root of 𝑝(𝑥) in R, we call R(m) an algebraic 

extension. For example the ring Z(i) is an algebraic extension of the ring Z, since i is a root 

of the polynomial 𝑝(𝑥) = 𝑥2 + 1 ∈ 𝑍[𝑥], and p(x) has no roots in Z. (The concept of classical 

algebraic extension). 

(b) Let R be any commutative ring, 𝑚 be any element (not from R) which is a root of a 

polynomial 𝑝(𝑥) ∈ 𝑅[𝑥]. Then if there is a root of 𝑝(𝑥)  in R, we call R(m) a logical 

extension. 

 For example the neutrosophic ring Z(I) is a logical extension of the ring Z, since I is a root 

of the polynomial 𝑝(𝑥) = 𝑥2 − 𝑥 ∈ 𝑍[𝑥], and p(x) has roots {0,1} in Z.  

The following theorem realizes the algebraic structure of 𝐶(𝑍𝑛). 

Theorem: 

Let 𝐶(𝑍𝑛) be the ring of complex numbers modulo n, we have the following: 

(a) If n=p is a prime and 𝑝(𝑥) = 𝑥2 + 1 is irreducible over 𝑍𝑝, then 𝐶(𝑍𝑝) is an algebraic 

extension field of the field 𝑍𝑝 with degree two. 

(b) If n=p is a prime and 𝑝(𝑥) = 𝑥2 + 1 is reducible over 𝑍𝑝, then 𝐶(𝑍𝑝) is just a ring 

(logical extension). 

(c) If n is not a prime and 𝑝(𝑥) = 𝑥2 + 1 is irreducible over 𝑍𝑛, then 𝐶(𝑍𝑛) is an algebraic 

extension ring of the ring 𝑍𝑛 with degree two. 

(d) If n is not a prime and 𝑝(𝑥) = 𝑥2 + 1 is reducible over 𝑍𝑛, then 𝐶(𝑍𝑛) is a logical 

extension of the ring 𝑍𝑛. 

 Proof: 

(a) Suppose that 𝑝(𝑥) = 𝑥2 + 1 is irreducible over 𝑍𝑝, then it has no roots in 𝑍𝑝, thus 𝑖𝐹 is 

an algebraic element over 𝑍𝑝, and by classical algebraic result, we get that C(𝑍𝑝) is an 

algebraic extension field of the field 𝑍𝑝 with degree equal to deg(p) which is two. 

(b) 𝑖𝐹 is a root of 𝑝(𝑥) = 𝑥2 + 1, but p(x) has a root in 𝑍𝑝, because it is reducible, hence 

𝐶(𝑍𝑝) is just a ring (logical extension). [𝐶(𝑍𝑝) is not a field because there are 𝑎, 𝑏 ∈ 𝑍𝑝 such 

that 𝑎2 + 𝑏2 ≡ 0(𝑚𝑜𝑑 𝑝), where 𝑏 = 1 𝑎𝑛𝑑 𝑎 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑜𝑜𝑡 𝑜𝑓 𝑝(𝑥)𝑖𝑛 𝑍𝑝]. 
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(c) It holds by a similar argument of section (a). 

(d) It holds by a similar argument of (b). 

The following theorem suggests a classification of the ring 𝐶(< 𝑍𝑛 ∪ 𝐼 >). 

Theorem: 

Let 𝐶(< 𝑍𝑛 ∪ 𝐼 >) be the neutrosophic complex modulo integers ring. Then 

𝐶(< 𝑍𝑛 ∪ 𝐼 >) ≅ C(Zn) × C(Zn). 

Proof: 

Firstly, we prove that 𝐶(< 𝑍𝑛 ∪ 𝐼 >) = [C(Zn)](I), where [C(Zn)](I) is the neutrosophic 

ring generated by I and C(Zn). 

Let 𝑥 = 𝑎 + 𝑏𝑖 + 𝑐𝐼 + 𝑑𝑖𝐼 ∈ 𝐶(< 𝑍𝑛 ∪ 𝐼 >), then 𝑥 = (𝑎 + 𝑏𝑖) + 𝐼(𝑐 + 𝑑𝑖) ∈ [C(Zn)](I), hence  

𝐶(< 𝑍𝑛 ∪ 𝐼 >) ≤ [C(Zn)](I). Conversely, let 𝑥 = (𝑎 + 𝑏𝑖) + (𝑐 + 𝑑𝑖)𝐼 ∈ [C(Zn)](I). It is clear 

that 

𝑥 ∈ 𝐶(< 𝑍𝑛 ∪ 𝐼 >). This implies that 𝐶(< 𝑍𝑛 ∪ 𝐼 >) = [C(Zn)](I). 

By the classification theorem of neutrosophic rings in [5], we find that  𝐶(< 𝑍𝑛 ∪ 𝐼 >) =

[C(Zn)](I) ≅ C(Zn) × C(Zn). 

Problem (24): Is 𝐶(< 𝑍19 ∪ 𝐼 >) a field?. 

The answer is no, since I is not invertible. 

The group of units problem and other open questions 

In this section, we determine the necessary and sufficient condition for the invertibility of 

neutrosophic complex numbers modulo integers. 

First of all, we characterize the algebraic structure of 𝐶(𝑍𝑛) as an isomorphic image of a 

matrices subring of size 2 × 2. 

Theorem: 

Let 𝐶(𝑍𝑛) be the ring of neutrosophic complex numbers modulo integers. Then 𝐶(𝑍𝑛) is 

isomorphic to a sub ring of 𝑀2×2(𝑍𝑛) = {(
𝑎 𝑏
𝑐 𝑑

) ; 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑍𝑛}. 

Proof: 
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Let 𝑆 = {(
𝑎 𝑏

−𝑏 𝑎
) ; 𝑎, 𝑏 ∈ 𝑍𝑛} be a subring of 𝑀2×2(𝑍𝑛), we define 

𝑓: 𝐶(𝑍𝑛) → 𝑆; 𝑓(𝑎 + 𝑏𝑖𝐹) = (
𝑎 𝑏

−𝑏 𝑎
), it is easy to see that 𝑓 is a well defined bijective map. 

Let 𝑥 = 𝑎 + 𝑏𝑖𝐹 , 𝑦 = 𝑐 + 𝑑𝑖𝐹 be two arbitrary elements in 𝐶(𝑍𝑛), we have 

𝑓(𝑥 + 𝑦) = (
𝑎 + 𝑐 𝑏 + 𝑑

−𝑏 − 𝑑 𝑎 + 𝑐
) = (

𝑎 𝑏
−𝑏 𝑏

) + (
𝑐 𝑑

−𝑑 𝑐
) = 𝑓(𝑥) + 𝑓(𝑦). 

𝑓(𝑥. 𝑦) = (
𝑎𝑐 − 𝑏𝑑 𝑎𝑑 + 𝑏𝑐

−𝑎𝑑 − 𝑏𝑐 𝑎𝑐 − 𝑏𝑑
) = (

𝑎 𝑏
−𝑏 𝑎

) . (
𝑐 𝑑

−𝑑 𝑐
) = 𝑓(𝑥). 𝑓(𝑦) . Thus 𝑓  is a ring 

isomorphism. 

Now, we can find the condition of invertibility, as an easy result from Theorem. 

Theorem: 

Let 𝐶(𝑍𝑛) be the ring of neutrosophic complex numbers modulo integers, 𝑥 = 𝑎 + 𝑏𝑖𝐹 be 

an arbitrary elements in 𝐶(𝑍𝑛). Then x is invertible if and only if 𝑎2 + 𝑏2 ≠ 0 𝑎𝑛𝑑 𝑎2 + 𝑏2 

is invertible in 𝑍𝑛. 

Proof: 

Since 𝐶(𝑍𝑛) ≅ 𝑆, then 𝑥 is invertible in 𝐶(𝑍𝑛) if and only if 𝑓(𝑥) = (
𝑎 𝑏

−𝑏 𝑎
) is invertible 

in S. 

It is well known that the matrix (
𝑎 𝑏

−𝑏 𝑎
) is invertible if and only if its inverse matrix is an 

element from S. Hence we have the following 

(a) det [(
𝑎 𝑏

−𝑏 𝑎
)] = 𝑎2 + 𝑏2 ≠ 0. 

(b) det [(
𝑎 𝑏

−𝑏 𝑎
)] = 𝑎2 + 𝑏2 is invertible in 𝑍𝑛, so the inverse matrix can be defined. 

Thus, our proof is complete. 
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The condition (b) is sufficient, that is because if 𝑎2 + 𝑏2 is invertible in 𝑍𝑛, then 𝑎2 + 𝑏2 ≠

0.  

Example: 

Consider the ring 𝐶(𝑍5) = {𝑎 + 𝑏𝑖𝐹; 𝑎, 𝑏 ∈ 𝑍5}. The group of units in 𝐶(𝑍5) is equal to 

𝑈 = {1,2,3,4, 𝑖𝐹 , 2𝑖𝐹 , 3𝑖𝐹 , 4𝑖𝐹 , 1 + 𝑖𝐹 , 1 + 4𝑖𝐹 , 2 + 2𝑖𝐹 , 2 + 3𝑖𝐹 , 3 + 2𝑖𝐹 , 3 + 3𝑖𝐹 , 4 + 𝑖𝐹 , 4 + 4𝑖𝐹}. 

Example : 

Consider the ring 𝐶(𝑍4) = {𝑎 + 𝑏𝑖𝐹; 𝑎, 𝑏 ∈ 𝑍4}. The group of units in 𝐶(𝑍4) is equal to 

𝑈 = {1,3, 𝑖𝐹 , 3𝑖𝐹 , 1 + 2𝑖𝐹 , 2 + 𝑖𝐹 , 2 + 3𝑖𝐹 , 3 + 2𝑖𝐹}. 

Example: 

Consider the ring 𝐶(𝑍6) = {𝑎 + 𝑏𝑖𝐹; 𝑎, 𝑏 ∈ 𝑍6}. The group of units in 𝐶(𝑍6) is equal to 

𝑈 = {1,5, 𝑖𝐹 , 5𝑖𝐹 , 1 + 2𝑖𝐹 , 1 + 4𝑖𝐹 , 2 + 𝑖𝐹 , 2 + 3𝑖𝐹 , 2 + 5𝑖𝐹 , 3 + 2𝑖𝐹 , 3 + 4𝑖𝐹 , 4 + 𝑖𝐹 , 4 + 3𝑖𝐹 , 4 +

5𝑖𝐹 , 5 + 2𝑖𝐹 , 5 + 4𝑖𝐹}. 

Now, we introduce the algebraic structure of the group of units in the ring 𝐶(< 𝑍𝑛 ∪ 𝐼 >). 

Theorem: 

The group of units in the ring 𝐶(< 𝑍𝑛 ∪ 𝐼 >), has the following property 

𝑈(𝐶(< 𝑍𝑛 ∪ 𝐼 >)) ≅ 𝑈(𝐶(𝑍𝑛)) × 𝑈(𝐶(𝑍𝑛)). 

The proof holds directly from the fact that 𝐶(< 𝑍𝑛 ∪ 𝐼 >) ≅ C(Zn) × C(Zn).  

Remark: 

A very interesting and hard problem is still open. This problem can be summarized as 

follows: 
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Describe the algebraic structure of the group of units in the ring 𝐶(𝑍𝑛).  

Although we have found the necessary and sufficient condition of any element in 𝐶(𝑍𝑛) to 

be a unit, but the classification of this group as a direct product of cyclic groups is still 

unknown. 

Remark: 

As a result of Theorem 4.2, we can find zero divisors in 𝐶(𝑍𝑛). Every element 𝑥 = 𝑎 +

𝑏𝑖𝐹 ∈ 𝐶(𝑍𝑛) is a zero divisor if and only if its isomorphic image 𝑓(𝑥) = (
𝑎 𝑏

−𝑏 𝑎
) is a zero 

divisor in the ring S. 

Any matrix with form (
𝑎 𝑏

−𝑏 𝑎
) is a zero divisor if and only if its determinant is a zero 

divisor in 𝑍𝑛, thus the necessary and sufficient condition for any element 𝑥 = 𝑎 + 𝑏𝑖𝐹 ∈

𝐶(𝑍𝑛) to be a zero divisor is 𝑎2 + 𝑏2is a zero divisor in 𝑍𝑛. Now, we are able to solve 

another open problem.  

Problem (50): Find Zero divisors and units in 𝐶(𝑍24). 

To solve the problem we shall determine the zero divisors in 𝑍24 firstly. 

We have 3,8,6,4,12,2 are zero divisors, that is because 3.8 = 6.4 = 12.2 = 0. And 

−3 = 21, −8 = 16, −6 = 18, −4 = 20, −2 = 22 are zero divisors clearly. Also, the product of 

any two zero divisors is a zero divisor. 

According to our discussion, zero divisors in 𝐶(𝑍24) are 

3,8,4,6,12,2,21,16,18,20,22, 15. The rest of zero divisors in 𝐶(𝑍24) are elements with form 

𝑎 + 𝑏𝑖𝐹, where 𝑎2 + 𝑏2 ∈ {3,8,4,6,12,2,21,16,18,20,22,15}. 

To determine the units in 𝐶(𝑍24), we shall determine units in 𝑍24. We have 

𝑈(𝑍24) = {1,5,7,11,13,17,19,23}. The other units in 𝐶(𝑍24) are the elements with form 

𝑥 = 𝑎 + 𝑏𝑖𝐹;  𝑎2 + 𝑏2 ∈ 𝑈(𝑍24). 

The following theorems helps us in finding ideals of the ring 𝐶(𝑍𝑛), and 𝐶(< 𝑍𝑛 ∪ 𝐼 >). 

Theorem:  
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Let 𝐶(𝑍𝑛) be a neutrosophic complex modulo integers ring, 𝑆 = {(
𝑎 𝑏

−𝑏 𝑎
) ; 𝑎, 𝑏 ∈ 𝑍𝑛} be 

its corresponding isomorphic subring. Let 𝐼𝐻𝑗
= {(

𝑎 𝑏
−𝑏 𝑎

) ; 𝑎, 𝑏 ∈ 𝐻𝑗}, where (𝐻𝑗, +) is a 

subgroup of 𝑍𝑛. We have  

(a) Ideals of 𝐶(𝑍𝑛) are exactly the isomorphic image of the sets 𝐼𝐻𝑗
. 

(b) If (𝐻𝑗, +, . ) is a maximal ideal in  (𝑍𝑛, +, . ), then 𝐼𝐻𝑗
 is a maximal ideal in  𝐶(𝑍𝑛). 

Proof: 

Firstly, we shall determine the structure of additive subgroups in S. Let A,B be two subsets 

of 𝑍𝑛, and 𝑀 = {(
𝑎 𝑏

−𝑏 𝑎
) ; 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}. Let 𝑥 = (

𝑎 𝑏
−𝑏 𝑎

) , 𝑦 = (
𝑐 𝑑

−𝑑 𝑐
) be two arbitrary 

elements in M. 

(M,+) is a subgroup of S if and only if 𝑥 − 𝑦 ∈ 𝑀, which is equivalent to 𝑎 − 𝑏 ∈ 𝐴, 𝑐 − 𝑑 ∈

𝐵, hence A,B are subgroups of 𝑍𝑛. 

Now, we prove that M is an ideal in S if and only if 𝐴 = 𝐵. 

Since A,B are subgroups of 𝑍𝑛 , we find that (𝐴. +, . ), (𝐵, +, . )  are ideals in the ring 

(𝑍𝑛, +, . ). 

Firstly, we assume that A=B. Let 𝑥 = (
𝑎 𝑏

−𝑏 𝑎
) ∈ 𝑀 𝑎𝑛𝑑 𝑟 = (

𝑐 𝑑
−𝑑 𝑐

) ∈ 𝑆, we have 

𝑥. 𝑟 = (
𝑎𝑐 − 𝑏𝑑 𝑎𝑑 + 𝑏𝑐

−𝑎𝑑 − 𝑏𝑐 𝑎𝑐 − 𝑏𝑑
). We have 

𝑎𝑐 − 𝑏𝑑 ∈ 𝐴 , that is because 𝑎𝑐 ∈ 𝐴 (𝐴 𝑖𝑠 𝑎𝑛 𝑖𝑑𝑒𝑎𝑙 𝑖𝑛 𝑍𝑛)  and 𝑏𝑑 ∈

𝐴 (𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑟𝑒𝑎𝑠𝑜𝑛). This implies that 𝑥. 𝑟 ∈ 𝑀 and M is an ideal in S. Conversely, we 

suppose that 𝑀 is an ideal in S, hence for any two elements Let 𝑥 = (
𝑎 𝑏

−𝑏 𝑎
) ∈ 𝑀 𝑎𝑛𝑑 𝑟 =

(
𝑐 𝑑

−𝑑 𝑐
) ∈ 𝑆, we have 

𝑥. 𝑟 = (
𝑎𝑐 − 𝑏𝑑 𝑎𝑑 + 𝑏𝑐

−𝑎𝑑 − 𝑏𝑐 𝑎𝑐 − 𝑏𝑑
) ∈ 𝑀, this implies that 𝑎𝑐 − 𝑏𝑑 ∈ 𝐴 and 𝑎𝑑 + 𝑏𝑐 ∈ 𝐵. 

We know that A,B are ideals in 𝑍𝑛 , hence 𝑎𝑐 ∈ 𝐴 (𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑎 ∈ 𝐴, 𝑐 ∈ 𝑍𝑛)  and 𝑏𝑐 ∈

𝐵(𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑏 ∈ 𝐵 𝑎𝑛𝑑 𝑐 ∈ 𝑍𝑛) . This means that  −𝑏𝑑 ∈ 𝐴  and 𝑎𝑑 ∈ 𝐵  for all 𝑏 ∈ 𝐵, 𝑎 ∈

𝐴, 𝑑 ∈ 𝑍𝑛, we put 𝑑 = 1 to find that 𝑎 ∈ 𝐵 𝑎𝑛𝑑 𝑏 ∈ 𝐴. Thus 𝐴 = 𝐵. 
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According to Theorem , we have 𝐶(𝑍𝑛) ≅ 𝑆, hence all ideals in 𝐶(𝑍𝑛) are exactly the 

isomorphic image of the ideals in S. hence the proof is complete. 

(b) Suppose that  𝐼𝐻𝑗
= {(

𝑎 𝑏
−𝑏 𝑎

) ; 𝑎, 𝑏 ∈ 𝐻𝑗} is a maximal ideal in S, hence it is easy to see 

that 𝐻𝑗 is a maximal ideal in 𝑍𝑛. 

Remark: 

Every ideal in 𝐶(𝑍𝑛) has the form 𝑓−1 (𝐼𝐻𝑗
) = {𝑎 + 𝑏𝑖𝐹; 𝑎, 𝑏 ∈ 𝐻𝑗}, where 𝐻𝑗 is a subgroup 

of 𝑍𝑛. 

Theorem: 

Ideals in 𝐶(< 𝑍𝑛 ∪ 𝐼 >) are equal to the isomorphic image of the set 𝐽 = {𝐼𝐻𝑗
× 𝐼𝐻𝑠

;  𝐻𝑗, 𝐻𝑠 ≤

𝑍𝑛}. Also, maximal ideals in 𝐶(< 𝑍𝑛 ∪ 𝐼 >) are equal to the isomorphic image of the set 

𝐽 = {𝐼𝐻𝑗
× 𝐼𝐻𝑠

;  𝐻𝑗, 𝐻𝑠 ≤ 𝑍𝑛 𝑎𝑛𝑑 𝐼𝐻𝑗
, 𝐼𝐻𝑠

 𝑎𝑟𝑒 𝑚𝑎𝑥𝑖𝑚𝑎𝑙}. 

Proof: 

According to Theorem , we have 𝐶(< 𝑍𝑛 ∪ 𝐼 >) ≅ C(Zn) × C(Zn). the isomorphism between 

them is defined in [5] as follows: 

𝑓: 𝐶(< 𝑍𝑛 ∪ 𝐼 >) → C(Zn) × C(Zn) ; 𝑓(𝑎 + 𝑏𝐼) = (𝑎, 𝑎 + 𝑏); 𝑎, 𝑏 ∈ 𝐶(𝑍𝑛) . The inverse 

isomorphism is 𝑓−1: 𝐶(𝑍𝑛) × 𝐶(𝑍𝑛) → 𝐶(< 𝑍𝑛 ∪ 𝐼 >); 𝑓−1(𝑎, 𝑏) = 𝑎 + (𝑏 − 𝑎)𝐼; 𝑎, 𝑏 ∈

𝐶(𝑍𝑛). 

According to Remark 4.11, ideals in 𝐶(𝑍𝑛) has the form {𝑎 + 𝑏𝑖𝐹; 𝑎, 𝑏 ∈ 𝐻𝑗}, where 𝐻𝑗 is a 

subgroup of 𝑍𝑛, hence ideals in C(Zn) × C(Zn) has the form 𝐼 = {(𝑎 + 𝑏𝑖𝐹 , 𝑐 + 𝑑𝑖𝐹); 𝑎, 𝑏 ∈

𝐻𝑗 𝑎𝑛𝑑 𝑐, 𝑑 ∈ 𝐻𝑠}, where 𝐻𝑗, 𝐻𝑠 are two subgroups of 𝑍𝑛. Thus ideals in 𝐶(< 𝑍𝑛 ∪ 𝐼 >) has 

the form 

𝑓−1(𝐼) = {(𝑎 + 𝑏𝑖𝐹) + [(𝑐 + 𝑑𝑖𝐹) − (𝑎 + 𝑏𝑖𝐹)]𝐼; 𝑎, 𝑏 ∈ 𝐻𝑗 𝑎𝑛𝑑 𝑐, 𝑑 ∈ 𝐻𝑠} = IHj
+ (IHs

−

IHj
) I, where 𝐻𝑗, 𝐻𝑠 are two subgroups of 𝑍𝑛. 

Also, maximal ideals in 𝐶(< 𝑍𝑛 ∪ 𝐼 >)  has the form 𝑓−1(𝐼) = {(𝑎 + 𝑏𝑖𝐹) + [(𝑐 + 𝑑𝑖𝐹) −

(𝑎 + 𝑏𝑖𝐹)]𝐼; 𝑎, 𝑏 ∈ 𝐻𝑗 𝑎𝑛𝑑 𝑐, 𝑑 ∈ 𝐻𝑠}, where 𝐻𝑗, 𝐻𝑠 are two maximal ideals of 𝑍𝑛 . 

Problem (28): Find ideals in C(〈𝑍6 ∪ I〉). 
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 Subgroups (Ideals) of 𝑍6 are 𝐴 = {0}, 𝐵 = {0,2,4}, 𝐶 = {0,3}, 𝐷 = {0,1,2,3,4,5}. 

Ideals of C(𝑍6) are 𝑋 = 𝐼𝐴 = {0}, 𝑌 = 𝐼𝐵 = {0,2,4,2𝑖𝐹 , 4𝑖𝐹 , 2 + 2𝑖𝐹 , 2 + 4𝑖𝐹 , 4 + 4𝑖𝐹 , 4 + 2𝑖𝐹}, 

𝑍 = 𝐼𝐶 = {0,3,3𝑖𝐹 , 3 + 3𝑖𝐹}, 𝑇 = 𝐼𝐷 = C(𝑍6). 

Ideals of C(〈𝑍6 ∪ I〉) are the sets with form 𝑀 + (𝑁 − 𝑀)𝐼; 𝑀, 𝑁 ∈ {𝑋, 𝑌, 𝑍, 𝑇}.  

Problem (29): Find maximum ideals of C(〈𝑍18 ∪ I〉).  

First of all, we shall find maximum ideals in 𝑍18. They are 𝐴 = {0,2,4,6,8,10,12,14,16}, 

𝐵 = {0,3,6,9,12,15}, 𝐶 = 𝑍18. 

Maximal ideals in 𝐶(𝑍18) are 𝐼𝐴 = {𝑎 + 𝑏𝑖𝐹; 𝑎, 𝑏 ∈ 𝐴}, 𝐼𝐵 = {𝑐 + 𝑑𝑖𝐹; 𝑐, 𝑑 ∈ 𝐵), 𝐼𝐶 = 𝐶(𝑍18). 

Hence, maximal ideals in C(〈𝑍18 ∪ I〉) are P= 𝐼𝐴 + (𝐼𝐵 − 𝐼𝐴)𝐼 = 𝐼𝐴 + 𝐼𝐶𝐼, 𝑄 = 𝐼𝐵 + (𝐼𝐴 − 𝐼𝐵)𝐼 =

𝐼𝐵 + 𝐼𝐶𝐼, 

𝑅 = 𝐼𝐶 + (𝐼𝐴 − 𝐼𝐶)𝐼 = 𝐼𝐶 + (𝐼𝐵 − 𝐼𝐶)𝐼 = 𝐼𝐶 + 𝐼𝐶𝐼 = C(〈𝑍18  ∪  I〉). 

Find an ideal I in C(𝑍128 ) so that C(𝑍128 )/I is a field..Problem (51): 

We have 𝐽 =< 2 > is a maximal ideal in 𝑍128. Hence 𝐼𝐽 = {𝑎 + 𝑏𝑖𝐹; 𝑎, 𝑏 ∈ 𝐽} is a maximal 

ideal in C(𝑍128 ), thus C(𝑍128 )/𝐼𝐽 is a field with order 4.    

Problem (52): Does there exist an ideal I in C(𝑍49) so that C(𝑍49)/I is a field?. 

It is sufficient to find a maximal ideal in 𝑍49. We have 𝐽 =< 7 > is maximal in 𝑍49, hence 

𝐼𝐽 = {𝑎 + 𝑏𝑖𝐹; 𝑎, 𝑏 ∈ 𝐽} is maximal in C(𝑍49), and C(𝑍49)/ 𝐼𝐽 is a field with order 49. 

Problem (55): Find a necessary and sufficient condition for a complex modulo integers ring 

𝑆 = 𝐶(𝑍𝑛) to have ideal I such that 
𝐶(𝑍𝑛)

𝐼⁄  is never a field. 

The answer is depending on finding a non maximal ideal in 𝐶(𝑍𝑛), since if I is a maximal 

ideal in 𝐶(𝑍𝑛), we get a field 
𝐶(𝑍𝑛)

𝐼⁄ . 

We have the following cases: 

(a) If n is a prime and 𝑃(𝑥) = 𝑥2 + 1 is irreducible over 𝑍𝑛, then  𝐶(𝑍𝑛) is a field and it 

has no proper ideals. (The only maximal ideal is I={0}). Thus the problem is not solvable in 

this case. 

(b) If n is a prime and 𝑃(𝑥) = 𝑥2 + 1 is reducible over 𝑍𝑛, then 𝐶(𝑍𝑛) is a finite ring with 

𝑛2 elements. Thus every proper ideal I in 𝐶(𝑍𝑛) has exactly n elements (because I is a 
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subgroup under addition and then its order divides the order of 𝐶(𝑍𝑛)  by classical 

Lagrange's theorem). 

Now, 
𝐶(𝑍𝑛)

𝐼
⁄  is a ring with n elements (n is a prime), thus it is a field. Hence the problem 

is not solvable in this case. 

(c) If n is  not a prime and there is an integer s with property 𝑠 ≠ 𝑔𝑐𝑑(𝑠, 𝑛) = 𝑎 ≥ 2 , we 

define the following principal ideal 𝐼 =< 𝑠 >, where s is an integer with property 𝑠 ≠

𝑔𝑐𝑑(𝑠, 𝑛) = 𝑎 ≥ 2 . It is clear that 𝐼 < 𝐽 =< 𝑎 >≠ 𝐶(𝑍𝑛) , hence I is not maximal and  

𝐶(𝑍𝑛)
𝐼

⁄  is never a field. 

(d) If n is not a prime, but a prime power 𝑛 = 𝑝𝑛. For 𝑛 = 2, there is < 𝑝 > as the unique 

proper ideal and it is a maximal ideal in 𝑍𝑛 , hence 𝐼<𝑝> = {𝑎 + 𝑏𝑖𝐹; 𝑎, 𝑏 ∈< 𝑝 >}  is 

maximal in 𝐶(𝑍𝑛), hence 
𝐶(𝑍𝑛)

𝐼⁄  is a field and the problem is not solvable in this case. 

For 𝑛 ≥ 3, there is a non maximal ideal < 𝑝2 > in 𝑍𝑛 , hence 𝐼<𝑝2> = {𝑎 + 𝑏𝑖𝐹; 𝑎, 𝑏 ∈<

𝑝2 >} is non maximal in 𝐶(𝑍𝑛), hence 
𝐶(𝑍𝑛)

𝐼⁄  is never a field. 

(e) If n is not a prime and not a prime power, and there is not any integer s with property 

𝑠 ≠ 𝑔𝑐𝑑(𝑠, 𝑛) = 𝑎 ≥ 2 , then < 𝑠 > is maximal in 𝑍𝑛, , hence 𝐼<𝑠> = {𝑎 + 𝑏𝑖𝐹; 𝑎, 𝑏 ∈< 𝑠 >} 

is maximal in 𝐶(𝑍𝑛), hence 
𝐶(𝑍𝑛)

𝐼⁄  is a field, and the problem is not solvable in this case. 

(All ideals are maximal in this case).  

Conclusion 

In this paper, we have classified the ring of finite neutrosophic complex numbers as irect 

product of two rings. On the other hand, we have presented solutions for 12 open problems 

suggested by Smarandache and Kandasamy in [20]. 

As a future research direction, we aim to solve all Smarandache-Kandasamy open 

problems.  
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Abstract: 

Roots of unity play a basic role in the theory of algebraic extensions of fields and rings. 

The aim of this paper is to obtain an algorithm to find all n-th roots of unity in five 

different kinds of neutrosophic complex rings, where many theorems and examples will 

be illustrated and suggested. 

Keywords: Neutrosophic root of unity, refined neutrosophic unity, n-cyclic refined 

neutrosophic root of unity, complex neutrosophic number 

1. Introduction and preliminaries 

Neutrosophic algebraic structures are considered as generalizations of classical algebraic 

structures. The first defined neutrosophic algebraic structure is the neutrosophic ring 

which was defined and studied on a wide range by Smarandache et.al [1-11]. 

Laterally, many other neutrosophic algebraic structures were defined such as n-cyclic 

refined neutrosophic rings, neutrosophic matrices, and vector spaces [12-22]. 

Neutrosophic complex numbers were defined as novel generalizations of classical complex 

numbers, in a similar way of split-complex or weak fuzzy complex numbers [23-24]. 
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One of the most classical interesting problems in classical algebra is the extending of fields 

and rings by complex roots of unity. From this point of view, we study for the first time the 

concept of neutrosophic roots of unity, where we obtain the classification of the roots of 

unity in five different neutrosophic rings. In addition, many examples will be discussed 

and presented. 

We recall some basic concepts in neutrosophic algebra. 

Definition: 

Let (R,+,×) be a ring and 𝐼𝑘; 1 ≤ 𝑘 ≤ 𝑛 be n sub-indeterminacies. We define 𝑅𝑛(I)={𝑎0 +

𝑎1𝐼 + ⋯ + 𝑎𝑛𝐼𝑛 ;  𝑎𝑖 ∈ 𝑅} to be n-cyclic refined neutrosophic ring. 

Operations on 𝑅𝑛(I) are defined as: 

∑ 𝑥𝑖𝐼𝑖 + ∑ 𝑦𝑖𝐼𝑖

𝑛

𝑖=0

𝑛

𝑖=0

= ∑(𝑥𝑖 + 𝑦𝑖)𝐼𝑖 ,

𝑛

𝑖=0

∑ 𝑥𝑖𝐼𝑖

𝑛

𝑖=0

× ∑ 𝑦𝑖𝐼𝑖 = ∑ (𝑥𝑖 × 𝑦𝑗)𝐼𝑖𝐼𝑗 =

𝑛

𝑖,𝑗=0

𝑛

𝑖=0

∑ (𝑥𝑖 × 𝑦𝑗)𝐼(𝑖+𝑗 𝑚𝑜𝑑𝑛)

𝑛

𝑖,𝑗=0

  

 × is the multiplication on the ring R. 

 Definition: 

Let (R,+,×) be a ring, 𝑅(𝐼) = {𝑎 + 𝑏𝐼 ∶  𝑎, 𝑏 ∈ 𝑅} is called the neutrosophic ring where I is a 

neutrosophic element with condition 𝐼2 = 𝐼. 

Definition: 

Let (R,+,×) be a ring, (R(𝐼1, 𝐼2) , + ,×) is called a refined neutrosophic ring generated by R 

,𝐼1, 𝐼2. 

Definition: 

Let (R,+,×) be a ring and 𝐼𝑘; 1 ≤ 𝑘 ≤ 𝑛 be n indeterminacies. We define 𝑅𝑛(I)={𝑎0 + 𝑎1𝐼 +

⋯ + 𝑎𝑛𝐼𝑛 ;  𝑎𝑖 ∈ 𝑅} to be n-refined neutrosophic ring. 

Main concepts 
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Neutrosophic roots of unity.  

Let 𝐶(𝐼) = {𝑋 + 𝐼𝑌; 𝐼2 = 𝐼 ; 𝑋, 𝑌 ∈ 𝐶}be the complex neutrosophic ring. According to [21], 

we have: 

(𝑋 + 𝐼𝑌)𝑛 = 𝑋𝑛 + 𝐼[(𝑋 + 𝑌)𝑛 − 𝑋𝑛] 

So that 𝑋 + 𝐼𝑌 is an n-th root of unity if and only if (𝑋 + 𝐼𝑌)𝑛 = 1, hence 𝑋𝑛 = 1, (𝑋 +

𝑌)𝑛 = 1 which is equivalent to 𝑋, 𝑋 + 𝑌 are two classical roots of unity. 

Theorem. 

n-th roots of unity in the complex neutrosophic ring 𝐶(𝐼) are: 

𝑈 = {𝛼𝑗 + (𝛼𝑡 − 𝛼𝑗)𝐼; 𝛼𝑗 = 𝑒
2𝜋𝑗

𝑛
𝑖, 𝛼𝑡 = 𝑒

2𝜋𝑡

𝑛
𝑖; 1 ≤ 𝑗 ≤ 𝑛, 1 ≤ 𝑡 ≤ 𝑛} 

Proof. 

According to the previous discussion 𝑋 + 𝐼𝑌 is a neutrosophic n-th root of unity if and 

only if 𝑋, 𝑋 + 𝑌  are two roots of unity, thus 𝑋 = 𝛼𝑗 = 𝑒
2𝜋𝑗

𝑛
𝑖;  1 ≤ 𝑗 ≤ 𝑛 , 𝑋 + 𝑌 = 𝛼𝑡 =

𝑒
2𝜋𝑡

𝑛
𝑖;  1 ≤ 𝑡 ≤ 𝑛. 

This implies that 𝑋 + 𝐼𝑌 = 𝛼𝑗 + (𝛼𝑡 − 𝛼𝑗)𝐼. 

Theorem. 

The set of n-th roots of unity in 𝐶(𝐼) is a group under multiplication. Also 𝑈 ≅ 𝑍𝑛 × 𝑍𝑛. 

Proof. 

∀ 𝑇1 = (𝛼𝑗) + (𝛼𝑡 − 𝛼𝑗)𝐼, 𝑇2 = (𝛼𝑘) + (𝛼𝑠 − 𝛼𝑘)𝐼;  1 ≤ 𝑘, 𝑠 ≤ 𝑛, 1 ≤ 𝑗, 𝑡 ≤ 𝑛 

Then: 

𝑇1. 𝑇2 = 𝛼𝑗𝛼𝑘 + (𝛼𝑗𝛼𝑠 − 𝛼𝑗𝛼𝑘)𝐼 + (𝛼𝑘𝛼𝑡 − 𝛼𝑗𝛼𝑘)𝐼 + (𝛼𝑡𝛼𝑠 − 𝛼𝑡𝛼𝑘 − 𝛼𝑗𝛼𝑠 + 𝛼𝑗𝛼𝑘)𝐼 

𝑇1. 𝑇2 = 𝛼𝑗𝛼𝑘 + (𝛼𝑡𝛼𝑠 − 𝛼𝑗𝛼𝑘)𝐼 = 𝛼𝑙 + (𝛼𝑚 − 𝛼𝑙)𝐼 ∈ 𝑈 

Where 𝛼𝑙 , 𝛼𝑚 are two roots of unity. 

On the other hand, we have 𝛼𝑗
−1, 𝛼𝑡

−1 are two roots of unity. 

So that we can put 𝑇3 = 𝛼𝑗
−1 + (𝛼𝑡

−1 − 𝛼𝑗
−1)𝐼 ∈ 𝑈. 

𝑇1. 𝑇3 = 𝛼𝑗𝛼𝑗
−1 + (𝛼𝑗𝛼𝑡

−1 − 𝛼𝑗𝛼𝑗
−1 + 𝛼𝑡𝛼𝑗

−1 − 𝛼𝑗𝛼𝑗
−1 + 𝛼𝑡𝛼𝑡

−1 − 𝛼𝑡𝛼𝑗
−1 − 𝛼𝑗𝛼𝑡

−1

+ 𝛼𝑗𝛼𝑗
−1)𝐼 

𝑇1. 𝑇3 = 1 + (0)𝐼 = 1 , thus 𝑇3 = 𝑇1
−1 ∈ 𝑈 . This implies that 𝑈  is a group under 

multiplication. 

We define 𝑓: 𝑈 → 𝑍𝑛 × 𝑍𝑛 such that: 
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𝑓(𝛼𝑗 + (𝛼𝑡 − 𝛼𝑗)𝐼) = (𝛼𝑗, 𝛼𝑡) 

𝑓 is well defined, that is because: 

If 𝑇1 = 𝛼𝑗 + (𝛼𝑡 − 𝛼𝑗)𝐼 =  𝑇2 = 𝛼𝑘 + (𝛼𝑠 − 𝛼𝑘)𝐼, then 𝛼𝑗 = 𝛼𝑘, 𝛼𝑡 = 𝛼𝑠, hence  

𝑓(𝑇1) = (𝛼𝑗, 𝛼𝑡) = (𝛼𝑘 , 𝛼𝑠) = 𝑓(𝑇2) 

𝑓 is a group homomorphism, that is because: 

𝑇1 × 𝑇2 = 𝛼𝑗𝛼𝑘 + (𝛼𝑡𝛼𝑠 − 𝛼𝑗𝛼𝑘)𝐼 

𝑓(𝑇1 × 𝑇2) = (𝛼𝑗𝛼𝑘 , 𝛼𝑡𝛼𝑠) = (𝛼𝑗 , 𝛼𝑡) × (𝛼𝑘 , 𝛼𝑠) = 𝑓(𝑇1) × 𝑓(𝑇2). 

It is clear that 𝑓 is surjective. Also, 𝑓 is injective that is because: 

𝑘𝑒𝑟(𝑓) = {𝛼𝑗 + (𝛼𝑡 − 𝛼𝑗)𝐼 ∈ 𝑈; (𝛼𝑗, 𝛼𝑡) = (1,1)} = {1} 

Thus 𝑓 is a group isomorphic, hence 𝑈 ≅ 𝑍𝑛 × 𝑍𝑛. 

Refined neutrosophic roots of unity. 

Let 𝐶(𝐼1, 𝐼2) = {𝑋 + 𝑌𝐼1 + 𝑍𝐼2;  𝐼1𝐼2 = 𝐼2𝐼1 = 𝐼1, 𝐼1
2 = 𝐼1, 𝐼2

2 = 𝐼2, 𝑋, 𝑌, 𝑍 ∈ 𝐶} be the complex 

ring of refined neutrosophic numbers. 

According to [  ], we have: 

(𝑋 + 𝑌𝐼1 + 𝑍𝐼2)𝑛 = 𝑋𝑛 + 𝐼1[(𝑋 + 𝑌 + 𝑍)𝑛 − (𝑋 + 𝑍)𝑛] + 𝐼2[(𝑋 + 𝑍)𝑛 − 𝑋𝑛] 

So that 𝑋 + 𝑌𝐼1 + 𝑍𝐼2 is a refined neutrosophic n-th root of unity if and only if (𝑋 + 𝑌𝐼1 +

𝑍𝐼2)𝑛 = 1 , thus 𝑋𝑛 = (𝑋 + 𝑌 + 𝑍)𝑛 = (𝑋 + 𝑍)𝑛 = 1 , i.e, 𝑋, 𝑋 + 𝑌 + 𝑍, 𝑋 + 𝑍  are three 

classical roots of unity. 

Theorem. 

n-th roots of unity in the complex refined neutrosophic ring 𝐶(𝐼1, 𝐼2) are: 

𝑈 = {𝛼𝑗 + (𝛼𝑡 − 𝛼𝑘)𝐼1 + (𝛼𝑘 − 𝛼𝑗)𝐼2;   𝛼𝑗 = 𝑒
2𝜋𝑗

𝑛
𝑖, 𝛼𝑡 = 𝑒

2𝜋𝑡

𝑛
𝑖, 𝛼𝑘 = 𝑒

2𝜋𝑘

𝑛
𝑖; 1 ≤ 𝑗, 𝑘, 𝑡 ≤ 𝑛} 

Proof. 

According to the previous discussion 𝑋 + 𝑌𝐼1 + 𝑍𝐼2 is a refined neutrosophic n-th root of 

unity if 𝑋, 𝑋 + 𝑌 + 𝑍, 𝑋 + 𝑍 are three roots of unity, thus: 

𝑋 = 𝛼𝑗, 𝑋 + 𝑍 = 𝛼𝑘 , 𝑋 + 𝑌 + 𝑍 = 𝛼𝑡  where 1 ≤ 𝑗, 𝑘, 𝑡 ≤ 𝑛  and 𝛼𝑗 = 𝑒
2𝜋𝑗

𝑛
𝑖, 𝛼𝑡 = 𝑒

2𝜋𝑡

𝑛
𝑖, 𝛼𝑘 =

𝑒
2𝜋𝑘

𝑛
𝑖, thus: 

{

𝑋 = 𝛼𝑗

𝑌 = 𝛼𝑡 − 𝛼𝑘

𝑍 = 𝛼𝑘 − 𝛼𝑗

, thus 𝑋 + 𝑌𝐼1 + 𝑍𝐼2 = 𝛼𝑗 + (𝛼𝑡 − 𝛼𝑘)𝐼1 + (𝛼𝑘 − 𝛼𝑗)𝐼2. 

Theorem. 
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Let 𝑈 be the set of refined neutrosophic n-th roots of unity, then 𝑈 is a group under 

multiplication with 𝑈 ≅ 𝑍𝑛 × 𝑍𝑛 × 𝑍𝑛 

Proof. 

Let 𝑇1 = 𝛼𝑗 + (𝛼𝑡 − 𝛼𝑘)𝐼1 + (𝛼𝑘 − 𝛼𝑗)𝐼2  , 𝑇2 = 𝛼́𝑗 + (𝛼́𝑡 − 𝛼́𝑘)𝐼1 + (𝛼́𝑘 − 𝛼́𝑗)𝐼2  be two 

element of 𝑈, then: 

𝑇1 × 𝑇2 = 𝛼𝑗𝛼́𝑗 + (𝛼𝑗𝛼́𝑡 − 𝛼𝑗𝛼́𝑘)𝐼1 + (𝛼𝑗𝛼́𝑘 − 𝛼𝑗𝛼́𝑗)𝐼2 + (𝛼́𝑗𝛼𝑡 − 𝛼́𝑗𝛼𝑘)𝐼1

+ (𝛼𝑡𝛼́𝑡 − 𝛼𝑡𝛼́𝑘 − 𝛼𝑘𝛼́𝑡 + 𝛼𝑘𝛼́𝑘)𝐼1 + (𝛼𝑡𝛼́𝑘 − 𝛼𝑡𝛼́𝑗 − 𝛼𝑘𝛼́𝑘 + 𝛼𝑘𝛼́𝑗)𝐼1

+ (𝛼́𝑗𝛼𝑘 − 𝛼́𝑗𝛼𝑗)𝐼2 + (𝛼́𝑡𝛼𝑘 − 𝛼́𝑡𝛼𝑗 − 𝛼́𝑘𝛼𝑘 + 𝛼́𝑘𝛼𝑗)𝐼1

+ (𝛼𝑘𝛼́𝑘 − 𝛼𝑘𝛼́𝑗 − 𝛼𝑗𝛼́𝑘 + 𝛼𝑗𝛼́𝑗)𝐼2 

𝑇1 × 𝑇2 = 𝛼𝑗𝛼́𝑗 + (𝛼𝑡𝛼́𝑡 − 𝛼𝑘𝛼́𝑘)𝐼1 + (𝛼𝑘𝛼́𝑘 − 𝛼𝑗𝛼́𝑗)𝐼2 ∈ 𝑈. 

Also, 𝑇1
−1 = 𝛼𝑗

−1 + (𝛼𝑡
−1 − 𝛼𝑗

−1)𝐼1 + (𝛼𝑘
−1 − 𝛼𝑗

−1)𝐼2 is inverse of 𝑇1, so that (𝑈,×) is a 

group. 

We define 𝑓: 𝑈 → 𝑍𝑛 × 𝑍𝑛 × 𝑍𝑛 such that: 

𝑓[𝛼𝑗 + (𝛼𝑡 − 𝛼𝑘)𝐼1 + (𝛼𝑘 − 𝛼𝑗)𝐼2] = (𝛼𝑗, 𝛼𝑡, 𝛼𝑘) 

𝑓 is a well define one to one mapping. 

𝑓 is a group homomorphism that is because: 

𝑓(𝑇1 × 𝑇2) = (𝛼𝑗𝛼́𝑗, 𝛼𝑡𝛼́𝑡 , 𝛼́𝑘𝛼𝑘) = (𝛼𝑗, 𝛼𝑡, 𝛼𝑘) × (𝛼́𝑗 , 𝛼́𝑡 , 𝛼́𝑘) = 𝑓(𝑇1) × 𝑓(𝑇2) 

So that 𝑈 ≅ 𝑍𝑛 × 𝑍𝑛 × 𝑍𝑛. 

2-cyclic refined neutrosophic ring. 

Let 𝐶2(𝐼) = {𝑋 + 𝑌𝐼1 + 𝑍𝐼2;  𝐼1𝐼2 = 𝐼2𝐼1 = 𝐼1, 𝐼1
2 = 𝐼2, 𝐼2

2 = 𝐼2, 𝑋, 𝑌, 𝑍 ∈ 𝐶}  be the 2-cyclic 

complex refined neutrosophic ring. 

𝑋 + 𝑌𝐼1 + 𝑍𝐼2 is an n-th root of unity in 𝐶2(𝐼) if and only if (𝑋 + 𝑌𝐼1 + 𝑍𝐼2)𝑛 = 1. 

Firstly, we present a formula to find the n-th power of 𝑋 + 𝑌𝐼1 + 𝑍𝐼2. 

Theorem. 

Let 𝑋 + 𝑌𝐼1 + 𝑍𝐼2 ∈ 𝐶2(𝐼), then,  

𝑇𝑛 = 𝑋𝑛 +
1

2
𝐼1[(𝑋 + 𝑌 + 𝑍)𝑛 − (𝑋 − 𝑌 + 𝑍)𝑛] +

1

2
𝐼2[(𝑋 + 𝑌 + 𝑍)𝑛 + (𝑋 − 𝑌 + 𝑍)𝑛 − 2𝑋𝑛] 

Proof. 

( known befor). 

Theorem. 

Let 𝑋 + 𝑌𝐼1 + 𝑍𝐼2 ∈ 𝐶2(𝐼), then 𝑇 is n-th root of unity if and only if 𝑋, 𝑋 + 𝑌 + 𝑍, 𝑋 − 𝑌 + 𝑍 

are three classical roots of unity. 
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Proof. 

𝑇𝑛 = 1 is equivalent to: 

𝑋𝑛 +
1

2
𝐼1[(𝑋 + 𝑌 + 𝑍)𝑛 − (𝑋 − 𝑌 + 𝑍)𝑛] +

1

2
𝐼2[(𝑋 + 𝑌 + 𝑍)𝑛 + (𝑋 − 𝑌 + 𝑍)𝑛 − 2𝑋𝑛] = 1 ,  

thus: 

{
𝑋𝑛 = 1

(𝑋 + 𝑌 + 𝑍)𝑛 − (𝑋 − 𝑌 + 𝑍)𝑛 = 0
(𝑋 + 𝑌 + 𝑍)𝑛 + (𝑋 − 𝑌 + 𝑍)𝑛 − 2𝑋𝑛 = 0

 

This implies that 𝑋𝑛 = (𝑋 + 𝑌 + 𝑍)𝑛 = (𝑋 − 𝑌 + 𝑍)𝑛 = 1, this complete proof. 

Theorem. 

Let 𝑈 be the set of all 2-cyclic n-th roots of unity, then: 

1. 𝑈 = {𝛼𝑗 +
1

2
𝐼1[𝛼𝑡 − 𝛼𝑘] +

1

2
𝐼2[𝛼𝑡 + 𝛼𝑘 − 2𝛼𝑗]; 𝛼𝑗 = 𝑒

2𝜋𝑗

𝑛
𝑖, 𝛼𝑡 = 𝑒

2𝜋𝑡

𝑛
𝑖 , 𝛼𝑘 = 𝑒

2𝜋𝑘

𝑛
𝑖; 1 ≤

𝑗, 𝑘, 𝑡 ≤ 𝑛}. 

2. (𝑈,×) is a group. 

3. 𝑈 ≅ 𝑍𝑛 × 𝑍𝑛 × 𝑍𝑛. 

Proof. 

1. Assume that 𝑇 = 𝑋 + 𝑌𝐼1 + 𝑍𝐼2 is an n-th root of unity, then 𝑋 = 𝛼𝑗, 𝑋 + 𝑌 + 𝑍 =

𝛼𝑡 , 𝑋 − 𝑌 + 𝑍 = 𝛼𝑘  with 1 ≤ 𝑗, 𝑘, 𝑡 ≤ 𝑛 so that 𝑌 =
1

2
[𝛼𝑡 − 𝛼𝑘], 𝑍 =

1

2
[𝛼𝑡 + 𝛼𝑘] − 𝛼𝑗 , 

hence: 

𝑇 = 𝛼𝑗 +
1

2
𝐼1[𝛼𝑡 − 𝛼𝑘] +

1

2
𝐼2[𝛼𝑡 + 𝛼𝑘 − 2𝛼𝑗] 

2. Let 𝑇1 = 𝛼𝑗 +
1

2
𝐼1[𝛼𝑡 − 𝛼𝑘] +

1

2
𝐼2[𝛼𝑡 + 𝛼𝑘 − 2𝛼𝑗], 𝑇2 = 𝛼́𝑗 +

1

2
𝐼1[𝛼́𝑡 − 𝛼́𝑘] +

1

2
𝐼2[𝛼́𝑡 + 𝛼́𝑘 − 2𝛼́𝑗] 

We have 𝑇1 × 𝑇2 = 𝛼𝑗𝛼́𝑗 +
1

2
𝐼1[𝛼𝑡𝛼́𝑡 − 𝛼𝑘𝛼́𝑘] +

1

2
𝐼2[𝛼𝑡𝛼́𝑡 + 𝛼𝑘𝛼́𝑘 − 2𝛼𝑗𝛼́𝑗] ∈ 𝑈 

The inverse of 𝑇1  is 𝑇−1
1 = 𝛼𝑗

−1 +
1

2
𝐼1[𝛼𝑡

−1 − 𝛼𝑘
−1] +

1

2
𝐼2[𝛼𝑡

−1 + 𝛼𝑘
−1 − 2𝛼𝑗

−1] ∈ 𝑈 , so 

that (𝑈,×) is a group. 

3. Define 𝑓: 𝑈 → 𝑍𝑛 × 𝑍𝑛 × 𝑍𝑛 such that: 

𝑓 [𝛼𝑗 +
1

2
𝐼1[𝛼𝑡 − 𝛼𝑘] +

1

2
𝐼2[𝛼𝑡 + 𝛼𝑘 − 2𝛼𝑗]] = (𝛼𝑗, 𝛼𝑡 , 𝛼𝑘) 

By a similar discussion of previous classification theorems, we get the proof. 

Examples. 

We find the 3-roots of unity in the neutrosophic complex ring 𝐶(𝐼). 
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In the classical case, we have three roots 𝛼1 = 1, 𝛼2 = 𝑒
2𝜋

3
𝑖, 𝛼3 = 𝑒

4𝜋

4
𝑖, thus the neutrosophic 

roots of unity are: 

{𝛼1, 𝛼2, 𝛼3, 𝛼1 + (𝛼2 − 𝛼1)𝐼, 𝛼1 + (𝛼3 − 𝛼1)𝐼, 𝛼2 + (𝛼1 − 𝛼2)𝐼, 𝛼2 + (𝛼3 − 𝛼2)𝐼, 𝛼3 +

(𝛼1 − 𝛼3)𝐼, 𝛼3 + (𝛼2 − 𝛼3)𝐼}. 

Example. 

The 2-nd roots of unity in 𝐶(𝐼1, 𝐼2) are: 

𝑈 = {𝛼1, 𝛼2, 𝛼1 + (𝛼2 − 𝛼1)𝐼1, 𝛼1 + (𝛼1 − 𝛼2)𝐼1 + (𝛼2 − 𝛼1)𝐼2, 𝛼2 + (𝛼1 − 𝛼2)𝐼2, 𝛼2

+ (𝛼2 − 𝛼1)𝐼1 + (𝛼1 − 𝛼2)𝐼2, 𝛼1 + (𝛼2 − 𝛼1)𝐼2, 𝛼2 + (𝛼1 − 𝛼2)𝐼1} ; 𝛼1 = 1, 𝛼2

= −1 

Thus  

𝑈 = {1, −1,1 − 2𝐼1, 1 + 2𝐼1 − 2𝐼2, −1 + 2𝐼2, −1 − 2𝐼1 + 2𝐼2, 1 − 2𝐼2, −1 + 2𝐼1}. 

3- Refined and 4-Refined Neutrosophic roots Of Unity 

Definition. 

Let 𝐶 be the complex field, the 3-refined neutrosophic complex ring is defined as follows: 

𝐶3(𝐼) = {𝑎 + 𝑏𝐼1 + 𝑐𝐼2 + 𝑑𝐼3 ; 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝐶}, with 𝐼𝑖. 𝐼𝑗 = 𝐼𝑚𝑖𝑛(𝑖,𝑗), 𝐼𝑖
2 = 𝐼𝑖; 1 ≤ 𝑖 ≤ 3. 

The 4-refined neutrosophic complex ring is defined: 

𝐶4(𝐼) = {𝑎 + 𝑏𝐼1 + 𝑐𝐼2 + 𝑑𝐼3 + 𝑒𝐼4 ; 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 ∈ 𝐶}, with 𝐼𝑖. 𝐼𝑗 = 𝐼𝑚𝑖𝑛(𝑖,𝑗), 𝐼𝑖
2 = 𝐼𝑖; 1 ≤ 𝑖 ≤ 4. 

Definition. 

Let 𝑋 = 𝑥0 + 𝑥1𝐼1 + 𝑥2𝐼2 + 𝑥3𝐼3 ∈ 𝐶3(𝐼), then 𝑋 is called the n-th root of unity if and only if 

𝑋𝑛 = 1. 

𝑋 is called the 3-refined neutrosophic root of unity. 

Definition. 

Let 𝑋 = 𝑥0 + 𝑥1𝐼1 + 𝑥2𝐼2 + 𝑥3𝐼3 + 𝑥4𝐼4 ∈ 𝐶4(𝐼), then 𝑋 is called the n-th root of unity if and 

only if 𝑋𝑛 = 1. 

𝑋 is called the 4-refined neutrosophic root of unity. 

Theorem.  

Let 𝑋 = 𝑥0 + 𝑥1𝐼1 + 𝑥2𝐼2 + 𝑥3𝐼3 ∈ 𝐶3(𝐼), 𝑛 ∈ 𝑁, then: 

𝑋𝑛 = 𝑥0
𝑛 + [(𝑥0 + 𝑥1 + 𝑥2 + 𝑥3)𝑛 − (𝑥0 + 𝑥2 + 𝑥3)𝑛]𝐼1 + [(𝑥0 + 𝑥2 + 𝑥3)𝑛 − (𝑥0 + 𝑥3)𝑛]𝐼2

+ [(𝑥0 + 𝑥3)𝑛 − 𝑥0
𝑛]𝐼3 

For the proof see [ ]. 

Theorem. 
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Let 𝑋 = 𝑥0 + 𝑥1𝐼1 + 𝑥2𝐼2 + 𝑥3𝐼3 ∈ 𝐶3(𝐼), then 𝑋 is a 3-refined neutrosophic root of unity if 

and only if 𝑥0, 𝑥0 + 𝑥3, 𝑥0 + 𝑥2 + 𝑥3𝑥0 + 𝑥1 + 𝑥2 + 𝑥3 are roots of unity. 

Proof. 

𝑋𝑛 = 1 ⟺ 𝑥0
𝑛 = 1, (𝑥0 + 𝑥3)𝑛 = 1, (𝑥0 + 𝑥2 + 𝑥3)𝑛 = 1, (𝑥0 + 𝑥1 + 𝑥2 + 𝑥3)𝑛 = 1 , thus the 

proof is complete. 

Now, we find the 3-refined neutrosophic roots of unity. 

Let 𝑈 = {𝛼1, 𝛼2, … , 𝛼𝑛} be the set of classical n-th roots of unity. 

If 𝑋  is 3-refined neutrosophic roots of unity, then 𝑥0 ∈ 𝑈, 𝑥0 + 𝑥3 ∈ 𝑈, 𝑥0 + 𝑥2 + 𝑥3 ∈

𝑈, 𝑥0 + 𝑥1 + 𝑥2 + 𝑥3 ∈ 𝑈. 

If 𝑥0 = 𝛼𝑖, 𝑥0 + 𝑥3 = 𝛼𝑗, 𝑥0 + 𝑥2 + 𝑥3 = 𝛼𝑡, 𝑥0 + 𝑥1 + 𝑥2 + 𝑥3 = 𝛼𝑠 , where 𝑖, 𝑗, 𝑡, 𝑠 ∈ {1, … , 𝑛}, 

thus 

𝑥0 = 𝛼𝑖, 𝑥3 = 𝛼𝑗 − 𝛼𝑖 , 𝑥2 = 𝛼𝑡 − 𝛼𝑗, 𝑥1 = 𝛼𝑠 − 𝛼𝑡. 

Remark. 

For 𝑛, there exists 𝑛4 root of unity in 𝐶3(𝐼). 

Example. 

For 𝑛 = 3 , we have 𝑈 = {1, 𝛼1, 𝛼2} , with 𝛼1 = 𝑒𝑖
2𝜋

3 , 𝛼2 = 𝑒𝑖
4𝜋

3 , hence the 3-refined 

neutrosophic cubic roots of unity are: 

𝑋 = 𝑡0 + (𝑡1 − 𝑡2)𝐼1 + (𝑡2 − 𝑡3)𝐼2 + (𝑡3 − 𝑡0)𝐼3, where 𝑡𝑖 ∈ 𝑈. 

We show some of them: 

𝑋 = 1 + (𝛼1 − 𝛼2)𝐼1 + (𝛼2 − 1)𝐼2 + (1 − 𝛼2)𝐼3, (𝑡0 = 1, 𝑡1 = 𝛼1, 𝑡2 = 𝛼2, 𝑡3 = 𝛼1). 

𝑌 = 𝛼2 + (𝛼2 − 𝛼1)𝐼1 + (𝛼2 − 1)𝐼2 + (1 − 𝛼2)𝐼3, (𝑡0 = 𝛼2, 𝑡1 = 𝛼1, 𝑡2 = 𝛼2, 𝑡3 = 1). 

And so on. 

Remark. 

Since (𝑈,×) is a group with order n(cyclic group), the corresponding set of 3-refined 

neutrosophic roots of unity is an abelian group with order 𝑛4. 

Also, it is isomorphic to 𝑈𝑛 × 𝑈𝑛 × 𝑈𝑛 × 𝑈𝑛. 

Theorem. 

Let 𝑋 = 𝑥0 + 𝑥1𝐼1 + 𝑥2𝐼2 + 𝑥3𝐼3 , 𝑌 = 𝑦0 + 𝑦1𝐼1 + 𝑦2𝐼2 + 𝑦3𝐼3 ∈ 𝐶3(𝐼), then: 

𝑋𝑌 = 𝑥0
𝑦0 + [(𝑥0 + 𝑥1 + 𝑥2 + 𝑥3)𝑦0+𝑦1+𝑦2+𝑦3 − (𝑥0 + 𝑥2 + 𝑥3)𝑦0+𝑦2+𝑦3]𝐼1 + [(𝑥0 + 𝑥2 +

𝑥3)𝑦0+𝑦2+𝑦3 − (𝑥0 + 𝑥3)𝑦0+𝑦3]𝐼2 + [(𝑥0 + 𝑥3)𝑦0+𝑦3 − 𝑥0
𝑦0]𝐼3. 

Check [  ]. 
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Definition. 

We define the unity duplet (𝑋, 𝑌) as follows: 

(𝑋, 𝑌) is a unity duplet if and only if 𝑋𝑌 = 1, where 𝑋 ∈ 𝐶3(𝐼), 𝑌 ∈ 𝐶3(𝐼). 

Theorem. 

Let (𝑋, 𝑌) be a unity duplet, this equivalents: 

𝑥0
𝑦0 = (𝑥0 + 𝑥3)𝑦0+𝑦3 = (𝑥0 + 𝑥2 + 𝑥3)𝑦0+𝑦2+𝑦3 = (𝑥0 + 𝑥1 + 𝑥2 + 𝑥3)𝑦0+𝑦1+𝑦2+𝑦3 = 1. 

The proof is clear. 

Example. 

Take 𝑋 = 1 + (𝑒𝑖
2𝜋

3 − 𝑖) 𝐼1 + (𝑖 − 𝑒𝑖
𝜋

4) 𝐼2 + (𝑒𝑖
𝜋

4 − 1) 𝐼3, 𝑌 = 2 − 𝐼1 − 4𝐼2 + 6𝐼3. 

We have 𝑋𝑌 = 1, hence (𝑋, 𝑌) is a unity duplet. 

Theorem. 

Let 𝑋 = 𝑥0 + 𝑥1𝐼1 + 𝑥2𝐼2 + 𝑥3𝐼3  + 𝑥4𝐼4 ∈ 𝐶4(𝐼), 𝑛 ∈ 𝑁, then: 

𝑋𝑛 = 𝑥0
𝑛 + [(𝑥0 + 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4)𝑛 − (𝑥0 + 𝑥2 + 𝑥3 + 𝑥4)𝑛]𝐼1

+ [(𝑥0 + 𝑥2 + 𝑥3 + 𝑥4)𝑛 − (𝑥0 + 𝑥3 + 𝑥4)𝑛]𝐼2

+ [(𝑥0 + 𝑥3 + 𝑥4)𝑛 − (𝑥0 + 𝑥4)𝑛]𝐼3 + [(𝑥0 + 𝑥4)𝑛 − 𝑥0
𝑛]𝐼4 

Proof. 

The proof can be checked easily by induction. 

Theorem. 

Let 𝑋 = 𝑥0 + 𝑥1𝐼1 + 𝑥2𝐼2 + 𝑥3𝐼3  + 𝑥4𝐼4 ∈ 𝐶4(𝐼), then 𝑋 is an n-th root of unity if and only if: 

𝑥0, 𝑥0 + 𝑥4, 𝑥0 + 𝑥3 + 𝑥4, 𝑥0 + 𝑥2 + 𝑥3 + 𝑥4, 𝑥0 + 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 are classical n-th roots of 

unity. 

The proof is clear. 

Remark. 

If 𝑈 = {𝛼1, 𝛼2, … , 𝛼𝑛}  is the set of n-th roots of unity, the corresponding 4-refined 

neutrosophic roots of unity are: 

{𝑡0 + 𝑡1𝐼1 + 𝑡2𝐼2 + 𝑡3𝐼3  + 𝑡4𝐼4; 𝑡0 = 𝛼𝑖 , 𝑡4 = 𝛼𝑗 − 𝛼𝑖, 𝑡3 = 𝛼𝑘 − 𝛼𝑗, 𝑡2 = 𝛼𝑠 − 𝛼𝑘 , 𝑡1 = 𝛼𝑙 − 𝛼𝑠} 

where 𝑘, 𝑗, 𝑖, 𝑠, 𝑙 ∈ {1, … , 𝑛}. 

Example. 

For 𝑛 = 4, we have 𝑈 = {1, −1, 𝑖, −𝑖}. 

The 4-refined neutrosophic roots of unity for 𝑛 = 4 are: 
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{𝑋 = 𝑡0 + 𝑡1𝐼1 + 𝑡2𝐼2 + 𝑡3𝐼3  + 𝑡4𝐼4} , with 𝑡0 ∈ 𝑈, 𝑡0 + 𝑡4 ∈ 𝑈, 𝑡0 + 𝑡3  + 𝑡4 ∈ 𝑈, 𝑡0 + 𝑡2 + 𝑡3  +

𝑡4 ∈ 𝑈, 𝑡0 + 𝑡1 + 𝑡2 + 𝑡3  + 𝑡4 ∈ 𝑈. 

For example 𝑋 = 𝑖 + (−2𝑖)𝐼2 + (−1 + 𝑖)𝐼3 + (1 − 𝑖)𝐼4. 

(𝑡0 = 𝑖, 𝑡4 = 1 − 𝑖, 𝑡3 = −1 + 𝑖, 𝑡2 = −2𝑖, 𝑡1 = 0). 

Conclusion 

In this paper, we have studied the roots of unity of five neutrosophic different kinds of 

rings, where the roots of unity in neutrosophic rings, refined neutrosophic rings, 3-refined, 

4-refined neutrosophic rings, and 2-cyclic refined neutrosophic rings are obtained and 

classified as direct products of well known classical finite groups. Many related examples 

were presented and discussed to clarify the validity of our work. 
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Abstract: The objective of this paper is to study and define some algebraic curves with 

neutrosophic variables in neutrosophic real field 𝑅(𝐼), where we study what are the 

relationships between classical algebraic curves and neutrosophic algebraic curves 

depending on the geometric isometry (AH-Isometry). 

Keywords: Neutrosophic real ring 𝑅(𝐼), AH-isometry, Neutrosophic algebraic curves. 

 

 

Introduction 

Algebraic Geometry is one of the branches of algebra that deals with the study of geometric 

shapes through familiar algebraic concepts and theories [1]. There were several approaches 

to geometry, all of which are usually classified as algebraic geometry, at the end of the 

nineteenth century. Lazare Carnot (1753-1823) attributed to algebraic geometry which is 

about algebraic curves and their intersection with the sides of a triangle [2], but this concept 

developed a lot in the second half of the nineteenth century. 

Neutrosophy is a new branch of philosophy concerns with the indeterminacy in all areas of 

life and science. It has become a useful tool in generalizing many classical systems such as 

equations [30], number theory [3], and linear spaces [4,5], and ring of matrices [19-31]. 
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Recently, Abobala, and Hatip have presented the concept of one-dimensional AH-isometry 

to study the correspondence between neutrosophic plane 𝑹(𝑰) and the classical module 

𝑹 × 𝑹 . 

In this work, we use the one-dimensional AH-isometry to turn the general case of algebraic 

curves in real ring 𝑹(𝑰) with one variable into two classical algebraic curves so we will go 

from 𝑹(𝑰) space into 𝑹 ×𝑹 space, we study the properties of our algebraic curves then we 

go back to 𝑹(𝑰) space using AH-isometry. 

Neutrosophic Functions on 𝑹(𝑰). 

Definition: 

Let 𝑅(𝐼) = {𝑎 + 𝑏𝐼 ; 𝑎, 𝑏 ∈ 𝑅}  where 𝐼2 = 𝐼  be the neutrosophic field of reals. The 

one-dimensional isometry (AH-Isometry) is defined as follows: [49] 

𝑇:𝑅(𝐼) → 𝑅 × 𝑅 

𝑇(𝑎 + 𝑏𝐼) = (𝑎, 𝑎 + 𝑏) 

Definition: 

Let 𝑓: 𝑅(𝐼) → 𝑅(𝐼); 𝑓 = 𝑓(𝑋)  and 𝑋 = 𝑥 + 𝑦𝐼 ∈ 𝑅(𝐼)  the f is called a neutrosophic real 

function with one neutrosophic variable. 

Example: 

Take 𝑓: 𝑅(𝐼) → 𝑅(𝐼); 𝑓(𝑋) = 𝑋2 + 𝐼𝑋 + 2𝐼 = (𝑥 + 𝑦𝐼)2 + 𝐼(𝑥 + 𝑦𝐼) + 2𝐼 

= 𝑥2 + 𝐼(𝑦2 + 2𝑥𝑦 + 𝑥 + 𝑦 + 2) 

Theorem: 

Let 𝑓: 𝑅(𝐼) → 𝑅(𝐼) be a neutrosophic real function with one variable,𝑋 = 𝑥 + 𝑦𝐼 ∈ 𝑅(𝐼) 

then 𝑓 can be turned into two classical real functions. 

 Computing Powers in 𝑹(𝑰). 

To compute such equation: (𝑎 + 𝑏𝐼)𝑐+𝑑𝐼 ; 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑅 we need the one-dimensional 

isometry again: 

𝑇[(𝑎 + 𝑏𝐼)𝑐+𝑑𝐼] = (𝑎, 𝑎 + 𝑏)(𝑐,𝑐+𝑑) = (𝑎𝑐 , (𝑎 + 𝑏)𝑐+𝑑), 

Which means 

(𝑎 + 𝑏𝐼)𝑐+𝑑𝐼 = 𝑇−1(𝑎𝑐 , (𝑎 + 𝑏)𝑐+𝑑), 

= 𝑎𝑐 + 𝐼[(𝑎 + 𝑏)𝑐+𝑑 − 𝑎𝑐]. 
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Theorem: 

Let 𝑅(𝐼) be the neutrosophic field of reals, we have: 

1. sin(𝑎 + 𝑏𝐼) = sin𝑎 + 𝐼[sin(𝑎 + 𝑏) − sin𝑎  ] 

2. cos(𝑎 + 𝑏𝐼) = cos𝑎 + 𝐼[cos(𝑎 + 𝑏) − cos 𝑎] 

3. 𝑒𝑥+𝐼𝑦 = 𝑒𝑥 + 𝐼(𝑒𝑥+𝑦 − 𝑒𝑥) 

Algebraic Curves In Neutrosophic Real Ring 𝑹(𝑰): 

Definition :  Neutrosophic Strophoide. 

Let 𝒀 = 𝒚𝟏 + 𝒚𝟐𝑰, 𝑿 = 𝒙𝟏 + 𝒙𝟐𝑰, 𝑨 = 𝒂𝟏 + 𝒂𝟐𝑰 ∈ 𝑹(𝑰), 𝒂𝟏, 𝒂𝟐, 𝒙𝟏, 𝒙𝟐, 𝒚𝟏, 𝒚𝟐 ∈ 𝑹, then we 

define a neutroophic strophoide as follows: 

𝒀𝟐 = 𝑿𝟐.
𝑨 + 𝑿

𝑨 − 𝑿
  ; 𝑨 > 𝟎 

This equation can be written as follows: 

(𝒚𝟏 + 𝒚𝟐𝑰)
𝟐 = (𝒙𝟏 + 𝒙𝟐𝑰)

𝟐.
(𝒂𝟏 + 𝒂𝟐𝑰) + (𝒙𝟏 + 𝒙𝟐𝑰)

(𝒂𝟏 + 𝒂𝟐𝑰) − (𝒙𝟏 + 𝒙𝟐𝑰)
  ; 𝒂𝟏 + 𝒂𝟐𝑰 > 𝟎 

Theorem : 

Let 𝑌 = 𝑦1 + 𝑦2𝐼, 𝑋 = 𝑥1 + 𝑥2𝐼, 𝐴 = 𝑎1 + 𝑎2𝐼 ∈ 𝑅(𝐼), then if 𝐴 = 𝑎1 + 𝑎2𝐼 is invertible, the 

neutrosophic strophoide (𝑦1 + 𝑦2𝐼)
2 = (𝑥1 + 𝑥2𝐼)

2.
(𝑎1+𝑎2𝐼)+(𝑥1+𝑥2𝐼)

(𝑎1+𝑎2𝐼)−(𝑥1+𝑥2𝐼)
 is equivalent to the 

direct product of two classical strophoide. 

Proof. Consider the equation (𝑦1 + 𝑦2𝐼)
2 = (𝑥1 + 𝑥2𝐼)

2.
(𝑎1+𝑎2𝐼)+(𝑥1+𝑥2𝐼)

(𝑎1+𝑎2𝐼)−(𝑥1+𝑥2𝐼)
  

Now, we have:  

𝑦1
2 + (𝑦2

2 + 2𝑦1𝑦2)𝐼 = [𝑥1
2 + (𝑥2

2 + 2𝑥1𝑥2)𝐼].
(𝑎1 + 𝑥1) + (𝑎2 + 𝑥2)𝐼

(𝑎1 − 𝑥1) + (𝑎2 − 𝑥2)𝐼
   

𝑦1
2 + (𝑦2

2 + 2𝑦1𝑦2)𝐼

= [𝑥1
2 + (𝑥2

2 + 2𝑥1𝑥2)𝐼]. [
(𝑎1 + 𝑥1)

(𝑎1 − 𝑥1)

+
(𝑎1 − 𝑥1)(𝑎2 + 𝑥2) − (𝑎1 + 𝑥1)(𝑎2 − 𝑥2)

(𝑎1 − 𝑥1)[(𝑎1 + 𝑎2) − (𝑥1 + 𝑥2)]
 𝐼]   
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by computing its direct image with AH-isometry, we get: 

𝑇(𝑦1
2 + (𝑦2

2 + 2𝑦1𝑦2)𝐼)

= 𝑇(𝑥1
2 + (𝑥2

2 + 2𝑥1𝑥2)𝐼)𝑇 (
(𝑎1 + 𝑥1)

(𝑎1 − 𝑥1)

+
(𝑎1 − 𝑥1)(𝑎2 + 𝑥2) − (𝑎1 + 𝑥1)(𝑎2 − 𝑥2)

(𝑎1 − 𝑥1)[(𝑎1 + 𝑎2) − (𝑥1 + 𝑥2)]
 𝐼)   

(𝑦1
2, 𝑦1

2 + 𝑦2
2 + 2𝑦1𝑦2)

= (𝑥1
2, 𝑥1

2 + 𝑥2
2 + 2𝑥1𝑥2). (

(𝑎1 + 𝑥1)

(𝑎1 − 𝑥1)
,
(𝑎1 + 𝑥1)

(𝑎1 − 𝑥1)

+
(𝑎1 − 𝑥1)(𝑎2 + 𝑥2) − (𝑎1 + 𝑥1)(𝑎2 − 𝑥2)

(𝑎1 − 𝑥1)[(𝑎1 + 𝑎2) − (𝑥1 + 𝑥2)]
) 

Then. 

(𝑦1
2, (𝑦1 + 𝑦2)

2) = (𝑥1
2, (𝑥1 + 𝑥2)

2) 

. (
(𝑎1 + 𝑥1)

(𝑎1 − 𝑥1)
,
(𝑎1 + 𝑥1)[(𝑎1 + 𝑎2) − (𝑥1 + 𝑥2)] + (𝑎1 − 𝑥1)(𝑎2 + 𝑥2) − (𝑎1 + 𝑥1)(𝑎2 − 𝑥2)

(𝑎1 − 𝑥1)[(𝑎1 + 𝑎2) − (𝑥1 + 𝑥2)]
) 

(𝑦1
2, (𝑦1 + 𝑦2)

2)

= (𝑥1
2, (𝑥1

+ 𝑥2)
2). (

(𝑎1 + 𝑥1)

(𝑎1 − 𝑥1)
,
(𝑎1 + 𝑥1)[(𝑎1 + 𝑎2) − (𝑥1 + 𝑥2) − (𝑎2 − 𝑥2)] + (𝑎1 − 𝑥1)(𝑎2 + 𝑥2)

(𝑎1 − 𝑥1)[(𝑎1 + 𝑎2) − (𝑥1 + 𝑥2)]
) 

(𝑦1
2, (𝑦1 + 𝑦2)

2) = (𝑥1
2, (𝑥1 + 𝑥2)

2). (
(𝑎1 + 𝑥1)

(𝑎1 − 𝑥1)
,
(𝑎1 + 𝑥1)[(𝑎1 − 𝑥1)] + (𝑎1 − 𝑥1)(𝑎2 + 𝑥2)

(𝑎1 − 𝑥1)[(𝑎1 + 𝑎2) − (𝑥1 + 𝑥2)]
) 

(𝑦1
2, (𝑦1 + 𝑦2)

2) = (𝑥1
2, (𝑥1 + 𝑥2)

2). (
(𝑎1 + 𝑥1)

(𝑎1 − 𝑥1)
,
(𝑎1 − 𝑥1)(𝑎1 + 𝑥1 + 𝑎2 + 𝑥2)

(𝑎1 + 𝑥1)[(𝑎1 + 𝑎2) − (𝑥1 + 𝑥2)]
) 

(𝑦1
2, (𝑦1 + 𝑦2)

2) = (𝑥1
2, (𝑥1 + 𝑥2)

2). (
(𝑎1 + 𝑥1)

(𝑎1 − 𝑥1)
,
(𝑎1 + 𝑎2) + (𝑥1 + 𝑥2)

(𝑎1 + 𝑎2) − (𝑥1 + 𝑥2)
) 

(𝑦1
2, (𝑦1 + 𝑦2)

2) = (𝑥1
2
(𝑎1 + 𝑥1)

(𝑎1 − 𝑥1)
, (𝑥1 + 𝑥2)

2
(𝑎1 + 𝑎2) + (𝑥1 + 𝑥2)

(𝑎1 + 𝑎2) − (𝑥1 + 𝑥2)
) 

So that we have: 
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{
 
 

 
 𝚪𝟏: 𝒚𝟏

𝟐 = 𝒙𝟏
𝟐
(𝒂𝟏 + 𝒙𝟏)

(𝒂𝟏 − 𝒙𝟏)
; 𝒂𝟏 > 𝟎

𝚪𝟐: (𝒚𝟏 + 𝒚𝟐)
𝟐 = (𝒙𝟏 + 𝒙𝟐)

𝟐
(𝒂𝟏 + 𝒂𝟐) + (𝒙𝟏 + 𝒙𝟐)

(𝒂𝟏 + 𝒂𝟐) − (𝒙𝟏 + 𝒙𝟐)
; (𝒂𝟏 + 𝒂𝟐) > 𝟎

 

Remark : 

If 𝑎1 + 𝑎2𝐼 is invertible, we can write the equation of neutrosophic strophoide as follows: 

(𝑦1 + 𝑦2𝐼)
2 = (𝑥1 + 𝑥2𝐼)

2.
(𝑎1+𝑎2𝐼)+(𝑥1+𝑥2𝐼)

(𝑎1+𝑎2𝐼)−(𝑥1+𝑥2𝐼)
. 

Now, we should discuss the cases of non-invertible of 𝑎1 + 𝑎2𝐼. 

𝑎1 + 𝑎2𝐼 is not invertible, then we have cases: 

1- 𝑎1 = 0, 𝑎1 + 𝑎2 ≠ 0, this means that the neutrosophic strophoide will be equivalent 

to direct product of classical strophoide (𝑦1 + 𝑦2)
2 = (𝑥1 +

𝑥2)
2 (𝑎1+𝑎2)+(𝑥1+𝑥2)

(𝑎1+𝑎2)−(𝑥1+𝑥2)
; (𝑎1 + 𝑎2) > 0 with classical image two line {

𝑦1 = 𝑖 𝑥1
𝑦1 = −𝑖 𝑥1

. 

2- 𝑎1 ≠ 0, 𝑎1 + 𝑎2 = 0, this implies that the neutrosophic strophoide will be 

equivalent to direct product of classical strophoide 𝑦1
2 = 𝑥1

2 (𝑎1+𝑥1)

(𝑎1−𝑥1)
; 𝑎1 > 0 with 

classical image two line {
𝑦1 = 𝑖 (𝑥1 + 𝑥2)

𝑦1 = −𝑖 (𝑥1 + 𝑥2)
. 

3- If 𝑎1 = 0, 𝑎1 + 𝑎2 = 0, this implies that the neutrosophic strophoide will be 

equivalent to direct product of classical image two line {
𝑦1 = 𝑖 𝑥1
𝑦1 = −𝑖 𝑥1

 with classical 

image two line {
𝑦1 = 𝑖 (𝑥1 + 𝑥2)

𝑦1 = −𝑖 (𝑥1 + 𝑥2)
. 

Theorem: 

Let Γ1,Γ2 are two classical strophoide, then the direct product of Γ1,Γ2 is equivalent to 

the neutrosophic strophoide Γ. 

Proof. 

Let Γ1,Γ2 are two classical strophoide, where: 

{
 
 

 
 Γ1: 𝑦1

2 = 𝑥1
2.
(𝑎1 + 𝑥1)

(𝑎1 − 𝑥1)
; 𝑎1 > 0

Γ2: 𝑦2
2 = 𝑥2

2.
(𝑎2 + 𝑥2)

(𝑎2 − 𝑥2)
; 𝑎2 > 0

 

Now, we take the inverse image of the AH-isometry, we have: 
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𝑇−1(𝑦1
2, 𝑦2

2) = 𝑇−1(𝑥1
2, 𝑥2

2). 𝑇−1 (
(𝑎1 + 𝑥1)

(𝑎1 − 𝑥1)
,
(𝑎2 + 𝑥2)

(𝑎2 − 𝑥2)
) 

𝑦1
2 + (𝑦2

2 − 𝑦1
2)𝐼 = [𝑥1

2 + (𝑥2
2 − 𝑥1

2)𝐼]. [
(𝑎1 + 𝑥1)

(𝑎1 − 𝑥1)
+ (

(𝑎2 + 𝑥2)

(𝑎2 − 𝑥2)
−
(𝑎1 + 𝑥1)

(𝑎1 − 𝑥1)
) 𝐼] 

𝑦1
2 + (𝑦2

2 − 𝑦1
2)𝐼

= [𝑥1
2 + (𝑥2

2 − 𝑥1
2)𝐼]. [

(𝑎1 + 𝑥1)

(𝑎1 − 𝑥1)

+ (
(𝑎2 + 𝑥2)(𝑎1 − 𝑥1) − (𝑎2 − 𝑥2)(𝑎1 + 𝑥1)

(𝑎1 − 𝑥1)(𝑎2 − 𝑥2)
) 𝐼] 

𝑦1
2 + (𝑦2

2 − 𝑦1
2)𝐼 = [𝑥1

2 + (𝑥2
2 − 𝑥1

2)𝐼]. [
(𝑎1 + 𝑥1)

(𝑎1 − 𝑥1)
+ (

(𝑎2 + 𝑥2)

(𝑎2 − 𝑥2)
−
(𝑎1 + 𝑥1)

(𝑎1 − 𝑥1)
) 𝐼] 

𝑦1
2 + (𝑦2

2 − 𝑦1
2)𝐼

= [𝑥1
2 + (𝑥2

2 − 𝑥1
2)𝐼]. [

(𝑎1 + 𝑥1)

(𝑎1 − 𝑥1)

+ (
(𝑎2 + 𝑥2)

(𝑎2 − 𝑥2)
−
(𝑎1 + 𝑥1)

(𝑎1 − 𝑥1)
+
(𝑎1 + 𝑥1)

(𝑎2 − 𝑥2)
−
(𝑎1 + 𝑥1)

(𝑎2 − 𝑥2)
) 𝐼] 

𝑦1
2 + (𝑦2

2 − 𝑦1
2)𝐼

= [𝑥1
2 + (𝑥2

2 − 𝑥1
2)𝐼]. [

(𝑎1 + 𝑥1)

(𝑎1 − 𝑥1)

+ ({
(𝑎2 + 𝑥2)

(𝑎2 − 𝑥2)
−
(𝑎1 + 𝑥1)

(𝑎2 − 𝑥2)
} + {−

(𝑎1 + 𝑥1)

(𝑎1 − 𝑥1)
+
(𝑎1 + 𝑥1)

(𝑎2 − 𝑥2)
}) 𝐼] 

𝑦1
2 + (𝑦2

2 − 𝑦1
2)𝐼

= [𝑥1
2 + (𝑥2

2 − 𝑥1
2)𝐼]. [

(𝑎1 + 𝑥1)

(𝑎1 − 𝑥1)

+ {
(𝑎2 + 𝑥2) − (𝑎1 + 𝑥1)

(𝑎2 − 𝑥2)
−
(𝑎1 + 𝑥1)(𝑎2 − 𝑥2) − (𝑎1 + 𝑥1)(𝑎1 − 𝑥1)

(𝑎1 − 𝑥1)(𝑎2 − 𝑥2)
} 𝐼] 
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𝑦1
2 + (𝑦2

2 − 𝑦1
2)𝐼

= [𝑥1
2 + (𝑥2

2 − 𝑥1
2)𝐼]. [

(𝑎1 + 𝑥1)

(𝑎1 − 𝑥1)

+
(𝑎1 − 𝑥1)[(𝑎2 + 𝑥2) − (𝑎1 + 𝑥1)] − (𝑎1 + 𝑥1)(𝑎2 − 𝑥2) − (𝑎1 + 𝑥1)(𝑎1 − 𝑥1)

(𝑎1 − 𝑥1)(𝑎2 − 𝑥2)
𝐼] 

𝑦1
2 + (𝑦2

2 − 𝑦1
2)𝐼 = [𝑥1

2 + (𝑥2
2 − 𝑥1

2)𝐼]. 

[
(𝑎1 + 𝑥1)

(𝑎1 − 𝑥1)
+
(𝑎1 − 𝑥1)[(𝑎2 + 𝑥2) − (𝑎1 + 𝑥1)] − (𝑎1 + 𝑥1)[(𝑎2 − 𝑥2) − (𝑎1 − 𝑥1)]

(𝑎1 − 𝑥1)(𝑎2 − 𝑥2)
𝐼]
(𝑎1 + 𝑥1)

(𝑎1 − 𝑥1)

+
(𝑎1 − 𝑥1)[(𝑎2 + 𝑥2) − (𝑎1 + 𝑥1)] − (𝑎1 + 𝑥1)[(𝑎2 − 𝑥2) − (𝑎1 − 𝑥1)]

(𝑎1 − 𝑥1)(𝑎2 − 𝑥2)
𝐼

=
(𝑎1 + 𝑥1) + [(𝑎2 + 𝑥2) − (𝑎1 + 𝑥1)]𝐼

(𝑎1 − 𝑥1) + [(𝑎2 − 𝑥2) − (𝑎1 − 𝑥1)]𝐼
 

𝑦1
2 + (𝑦2

2 − 𝑦1
2)𝐼 = [𝑥1

2 + (𝑥2
2 − 𝑥1

2)𝐼]. [
(𝑎1 + 𝑥1) + [(𝑎2 + 𝑥2) − (𝑎1 + 𝑥1)]𝐼

(𝑎1 − 𝑥1) + [(𝑎2 − 𝑥2) − (𝑎1 − 𝑥1)]𝐼
] 

𝑦1
2 + (𝑦2

2 − 𝑦1
2)𝐼 = [𝑥1

2 + (𝑥2
2 − 𝑥1

2)𝐼]. [
𝑎1 + (𝑎2 − 𝑎1)𝐼 + [𝑥1 + (𝑥2 − 𝑥1)𝐼]

𝑎1 + (𝑎2 − 𝑎1)𝐼 − [𝑥1 + (𝑥2 − 𝑥1)𝐼]
]… (∗) 

We let 𝑋 = 𝑥1 + (𝑥2 − 𝑥1)𝐼, 𝑌 = 𝑦1 + (𝑦2 − 𝑦1)𝐼, 𝐴 = 𝑎1 + (𝑎2 − 𝑎1), then we can prove that: 

𝑌2 = 𝑦1
2 + (𝑦2

2 − 𝑦1
2)𝐼, 𝑋2 = 𝑥1

2 + (𝑥2
2 − 𝑥1

2) 

Then the equation (∗) can be written as follows: 

Γ: 𝑌2 = 𝑋2.
𝐴 + 𝑋

𝐴 − 𝑋
  ; 𝐴 > 0 

This equation is a neutrosophic strophoide Γ. 

Example: 

Let the equation by a neutrosophic strophoide:  

Γ: (𝑦1 + 𝑦2𝐼)
2 = (𝑥1 + 𝑥2𝐼)

2.
(4 − 2𝐼) + (𝑥1 + 𝑥2𝐼)

(4 − 2𝐼) − (𝑥1 + 𝑥2𝐼)
   

Then, its equation be equivalent to direct product of two classical strophoide: 

{
 

 Γ1: 𝑦1
2 = 𝑥1

2 (
4 + 𝑥1
4 − 𝑥1

)

Γ2: (𝑦1 + 𝑦2)
2 = (𝑥1 + 𝑥2)

2 (
2 + 𝑥1
2 − 𝑥1

)
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Example:  

Let Γ1,Γ2 are two classical strophoide, where: 

{
 
 

 
 
Γ1: 𝑦1

2 = 𝑥1
2(

1

2
+ 𝑥1

1

2
− 𝑥1

)

Γ2: 𝑦2
2 = 𝑥2

2 (
2 + 𝑥2
2 − 𝑥2

)

 

Then by theorem 6.4 we have. 

Γ: 𝑌2 = 𝑋2.
(
1

2
+
3

2
𝐼) + 𝑋

(
1

2
+
3

2
𝐼) − 𝑋

 

.Definition:  Neutrosophic Cycloide. 

Let 𝒀 = 𝒚𝟏 + 𝒚𝟐𝑰, 𝑿 = 𝒙𝟏 + 𝒙𝟐𝑰, 𝑹 = 𝒓𝟏 + 𝒓𝟐𝑰 , 𝒕 = 𝒕𝟏 + 𝒕𝟐𝑰 ∈

𝑹(𝑰), 𝒓𝟏, 𝒓𝟐, 𝒕𝟏, 𝒕𝟐, 𝒙𝟏, 𝒙𝟐, 𝒚𝟏, 𝒚𝟐 ∈ 𝑹, then we define a neutroophic Cycloide as follows: 

𝑿 = 𝐑(𝟏 − 𝒔𝒊𝒏𝒕)  , 𝒀 = 𝐑(𝟏 − 𝒄𝒐𝒔𝒕) 

This equation can be written as follows: 

𝒙𝟏 + 𝒙𝟐𝑰 = (𝒓𝟏 + 𝒓𝟐𝑰)(𝟏 − 𝒔𝒊𝒏(𝒕𝟏 + 𝒕𝟐𝑰))  , 𝒚𝟏 + 𝒚𝟐𝑰 = (𝒓𝟏 + 𝒓𝟐𝑰)(𝟏 − 𝒄𝒐𝒔(𝒕𝟏 + 𝒕𝟐𝑰)) 

Theorem: 

Let 𝒀 = 𝒚𝟏 + 𝒚𝟐𝑰, 𝑿 = 𝒙𝟏 + 𝒙𝟐𝑰, 𝑅 = 𝑟1 + 𝑟2𝐼 , 𝑡 = 𝑡1 + 𝑡2𝐼 ∈ 𝑹(𝑰) , then if 𝑟1 + 𝑟2𝐼  is 

invertible, the neutrosophic Cycloide 𝑋 = R(1 − 𝑠𝑖𝑛𝑡)  , 𝑌 = R(1 − 𝑐𝑜𝑠𝑡) is equivalent to 

the direct product of two classical Cycloide. 

Proof. Consider the equation 𝑋 = R(1 − 𝑠𝑖𝑛𝑡)  , 𝑌 = R(1 − 𝑐𝑜𝑠𝑡)  

Now, we have:  

𝑥1 + 𝑥2𝐼 = (𝑟1 + 𝑟2𝐼) (1 − 𝑠𝑖𝑛(𝑡1) − 𝐼(𝑠𝑖𝑛(𝑡1 + 𝑡2) − 𝑠𝑖𝑛(𝑡1))) 

𝑦1 + 𝑦2𝐼 = (𝑟1 + 𝑟2𝐼) (1 − 𝑐𝑜𝑠(𝑡1) − 𝐼(𝑐𝑜𝑠(𝑡1 + 𝑡2) − 𝑐𝑜𝑠(𝑡1)))   

by computing its direct image with AH-isometry, we get: 

𝑇(𝑥1 + 𝑥2𝐼) = 𝑇(𝑟1 + 𝑟2𝐼). 𝑇(1 − 𝑠𝑖𝑛(𝑡1) − 𝐼[𝑠𝑖𝑛(𝑡1 + 𝑡2) − 𝑠𝑖𝑛(𝑡1)])   
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(𝑥1, 𝑥1 + 𝑥2) = (𝑟1, 𝑟1 + 𝑟2). (1 − 𝑠𝑖𝑛(𝑡1), 1 − 𝑠𝑖𝑛(𝑡1 + 𝑡2)) 

(𝑥1, 𝑥1 + 𝑥2) = (𝑟1(1 − 𝑠𝑖𝑛(𝑡1)), (𝑟1 + 𝑟2)(1 − 𝑠𝑖𝑛(𝑡1 + 𝑡2))) 

Then. 

{
𝑥1 = 𝑟1(1 − 𝑠𝑖𝑛(𝑡1))

𝑥1 + 𝑥2 = (𝑟1 + 𝑟2)(1 − 𝑠𝑖𝑛(𝑡1 + 𝑡2))
 

By a similar, we have. 

{
𝑦1 = 𝑟1(1 − 𝑐𝑜𝑠(𝑡1))

𝑦1 + 𝑦2 = (𝑟1 + 𝑟2)(1 − 𝑐𝑜𝑠(𝑡1 + 𝑡2))
  

So that we have: 

{
𝚪𝟏: 𝒙𝟏 = 𝒓𝟏(𝟏 − 𝒔𝒊𝒏(𝒕𝟏)) , 𝒚𝟏 = 𝒓𝟏(𝟏 − 𝒄𝒐𝒔(𝒕𝟏))

𝚪𝟐: 𝒙𝟏 + 𝒙𝟐 = (𝒓𝟏 + 𝒓𝟐)(𝟏 − 𝒔𝒊𝒏(𝒕𝟏 + 𝒕𝟐)) , 𝒚𝟏 + 𝒚𝟐 = (𝒓𝟏 + 𝒓𝟐)(𝟏 − 𝒄𝒐𝒔(𝒕𝟏 + 𝒕𝟐))
 

Remark: 

If 𝑟1 + 𝑟2𝐼 is invertible, we can write the equation of neutrosophic cycloide as follows: 

𝑋 = R(1 − 𝑠𝑖𝑛𝑡)  , 𝑌 = R(1 − 𝑐𝑜𝑠𝑡). 

Now, we should discuss the cases of non-invertible of 𝑟1 + 𝑟2𝐼. 

The 𝑟1 + 𝑟2𝐼 is not invertible, then we have two cases: 

1- 𝑟1 = 0, 𝑟1 + 𝑟2 ≠ 0, this means that the neutrosophic cycloide will be equivalent to 

direct product of classical cycloide 𝑥1 + 𝑥2 = (𝑟1 + 𝑟2)(1 − 𝑠𝑖𝑛(𝑡1 + 𝑡2)) , 𝑦1 + 𝑦2 =

(𝑟1 + 𝑟2)(1 − 𝑐𝑜𝑠(𝑡1 + 𝑡2)) with the origin point (0,0). 

2- 𝑟1 ≠ 0, 𝑟1 + 𝑟2 = 0, this means that the neutrosophic cycloide will be equivalent to 

direct product of classical cycloide 𝑥1 = 𝑟1(1 − 𝑠𝑖𝑛(𝑡1)) , 𝑦1 = 𝑟1(1 − 𝑐𝑜𝑠(𝑡1)) with 

the origin point (0,0). 

3- If 𝑟1 = 0, 𝑟1 + 𝑟2 = 0, this implies that the neutrosophic cycloide will be equivalent 

to the origin point (0,0). 

Theorem: 

Let Γ1,Γ2 are two classical cycloide, then the direct product of Γ1,Γ2 is equivalent to the 

neutrosophic cycloide Γ. 
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Proof. 

Let Γ1,Γ2 are two classical cycloide, where: 

{
Γ1: 𝑥1 = 𝑟1(1 − 𝑠𝑖𝑛𝑡1) , 𝑦1 = 𝑟1(1 − 𝑐𝑜𝑠𝑡1)

Γ2: 𝑥2 = 𝑟2(1 − 𝑠𝑖𝑛𝑡2) , 𝑦2 = 𝑟2(1 − 𝑐𝑜𝑠𝑡2)
 

Now, we take the inverse image of the AH-isometry, we have: 

𝑇−1(𝑥1, 𝑥2) = 𝑇
−1(𝑟1, 𝑟2). 𝑇

−1((1 − 𝑠𝑖𝑛𝑡1), (1 − 𝑠𝑖𝑛𝑡2)) 

𝑥1 + (𝑥2 − 𝑥1)𝐼 = [𝑟1 + (𝑟2 − 𝑟1)𝐼]. [1 − 𝑠𝑖𝑛𝑡1 + ((1 − 𝑠𝑖𝑛𝑡2) − (1 − 𝑠𝑖𝑛𝑡1))𝐼] 

𝑥1 + (𝑥2 − 𝑥1)𝐼 = [𝑟1 + (𝑟2 − 𝑟1)𝐼]. [1 − 𝑠𝑖𝑛𝑡1 + (1 − 𝑠𝑖𝑛𝑡2 − 1 + 𝑠𝑖𝑛𝑡1)𝐼] 

𝑥1 + (𝑥2 − 𝑥1)𝐼 = [𝑟1 + (𝑟2 − 𝑟1)𝐼]. [1 − 𝑠𝑖𝑛𝑡1 − (𝑠𝑖𝑛𝑡2 − 𝑠𝑖𝑛𝑡1)𝐼] 

𝑥1 + (𝑥2 − 𝑥1)𝐼 = [𝑟1 + (𝑟2 − 𝑟1)𝐼]. [1 − (𝑠𝑖𝑛𝑡1 + (𝑠𝑖𝑛𝑡2 − 𝑠𝑖𝑛𝑡1))𝐼] 

𝑥1 + (𝑥2 − 𝑥1)𝐼 = [𝑟1 + (𝑟2 − 𝑟1)𝐼]. [1 − (𝑠𝑖𝑛𝑡1 + (𝑠𝑖𝑛(𝑡2 − 𝑡1 + 𝑡1) − 𝑠𝑖𝑛𝑡1))𝐼] 

We let 𝑋 = 𝑥1 + (𝑥2 − 𝑥1)𝐼, 𝑅 = 𝑟1 + (𝑟2 − 𝑟1)𝐼, 𝑡 = 𝑡1 + (𝑡2 − 𝑡1)𝐼, then we can prove that: 

𝑠𝑖𝑛𝑡 = 𝑠𝑖𝑛[𝑡1 + (𝑡2 − 𝑡1)𝐼] = 𝑠𝑖𝑛𝑡1 + (𝑠𝑖𝑛(𝑡2 − 𝑡1 + 𝑡1) − 𝑠𝑖𝑛𝑡1)𝐼 

Then, we have. 

𝑋 = 𝑅. (1 − 𝑠𝑖𝑛𝑡) 

Now, by the same argument, we have. 

𝑌 = 𝑅. (1 − 𝑐𝑜𝑠𝑡) 

So. 

Γ: {
𝑋 = 𝑅. (1 − 𝑠𝑖𝑛𝑡)

𝑌 = 𝑅. (1 − 𝑐𝑜𝑠𝑡)
 

This equation is a neutrosophic cycloid Γ. 

Example: 

Let the equation by a neutrosophic cycloide:  

{
𝑥1 + 𝑥2𝐼 = (3 − 2𝐼). [1 − 𝑠𝑖𝑛(𝑡1 + 𝑡2𝐼)]

𝑦1 + 𝑦2𝐼 = (3 − 2𝐼). [1 − 𝑐𝑜𝑠(𝑡1 + 𝑡2𝐼)]
 

Then, its equation be equivalent to direct product of two classical cycloide: 
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{
𝚪𝟏: 𝒙𝟏 = 𝟑(𝟏 − 𝒔𝒊𝒏𝒕𝟏) , 𝒚𝟏 = 𝟑(𝟏 − 𝒄𝒐𝒔𝒕𝟏)

𝚪𝟐: 𝒙𝟏 + 𝒙𝟐 = 𝟏 − 𝒔𝒊𝒏(𝒕𝟏 + 𝒕𝟐) , 𝒚𝟏 + 𝒚𝟐 = 𝟏 − 𝒄𝒐𝒔(𝒕𝟏 + 𝒕𝟐)
 

Example: 

Let Γ1,Γ2 are two classical cycloide, where: 

{
Γ1: 𝑥1 = 2(1 − 𝑠𝑖𝑛𝑡1) , 𝑦1 = 2(1 − 𝑐𝑜𝑠𝑡1)

Γ2: 𝑥2 = 5(1 − 𝑠𝑖𝑛𝑡2) , 𝑦2 = 5(1 − 𝑐𝑜𝑠𝑡2)
 

Γ: {
𝑋 = (2 + 3𝐼)(1 − 𝑠𝑖𝑛𝑡)

𝑌 = (2 + 3𝐼)(1 − 𝑐𝑜𝑠𝑡)
} 

.Definition: Neutrosophic Cardioide. 

Let 𝛒 = 𝛒𝟏 + 𝛒𝟐𝑰, 𝜽 = 𝜽𝟏 + 𝜽𝟐𝑰 ∈ 𝑹(𝑰), 𝛒𝟏, 𝛒𝟐, 𝜽𝟏, 𝜽𝟐 ∈ 𝑹, then we define a neutroophic 

Cardoide as follows: 

𝛒 = (𝟏 + 𝒄𝒐𝒔𝜽) 

This equation can be written as follows: 

𝛒𝟏 + 𝛒𝟐𝑰 = (𝟏 + 𝒄𝒐𝒔𝜽𝟏) + [𝒄𝒐𝒔(𝜽𝟏 + 𝜽𝟐) − 𝒄𝒐𝒔𝜽𝟏]𝑰 

Theorem: 

Let = 𝛒𝟏 + 𝛒𝟐𝑰, 𝜽 = 𝜽𝟏 + 𝜽𝟐𝑰 ∈ 𝑹(𝑰) , then if 𝜽𝟏 + 𝜽𝟐𝑰  is invertible, the neutrosophic 

Cardioide 

𝛒 = (𝟏 + 𝒄𝒐𝒔𝜽) is equivalent to the direct product of two classical Cardioide. 

Proof. Consider the equation ρ = (1 + 𝑐𝑜𝑠𝜃)  

Now, we have:  

ρ1 + ρ2𝐼 = (1 + 𝑐𝑜𝑠𝜃1) + [𝑐𝑜𝑠(𝜃1 + 𝜃2) − 𝑐𝑜𝑠𝜃1]𝐼 

by computing its direct image with AH-isometry, we get: 

𝑇(ρ1 + ρ
2
𝐼) = 𝑇((1 + 𝑐𝑜𝑠𝜃1) + [𝑐𝑜𝑠(𝜃1 + 𝜃2) − 𝑐𝑜𝑠𝜃1]𝐼)   

(ρ1, ρ1 + ρ
2) = (1 + 𝑐𝑜𝑠𝜃1, 1 + 𝑐𝑜𝑠(𝜃1 + 𝜃2)) 

Then. 

{
ρ
1
= 1 + 𝑐𝑜𝑠𝜃1

 ρ
1
+ ρ

2
= 1 + 𝑐𝑜𝑠(𝜃1 + 𝜃2)
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So that we have: 

{
𝚪𝟏: 𝛒𝟏 = 𝟏 + 𝒄𝒐𝒔𝜽𝟏

𝚪𝟐: 𝛒𝟏 + 𝛒𝟐 = 𝟏 + 𝒄𝒐𝒔(𝜽𝟏 + 𝜽𝟐)
 

Remark: 

If 𝜃1 + 𝜃2𝐼 is invertible, we can write the equation of neutrosophic Cardioide as follows: 

ρ = (1 + 𝑐𝑜𝑠𝜃). 

Now, we should discuss the cases of non-invertible of 𝜃1 + 𝜃2𝐼. 

The 𝜃1 + 𝜃2𝐼 is not invertible, then we have two cases: 

1- 𝜃1 = 0, 𝜃1 + 𝜃2 ≠ 0, this means that the neutrosophic Cardioide will be equivalent 

to direct product of classical Cardioide (ρ1 + ρ
2) = 1 + 𝑐𝑜𝑠(𝜃1 + 𝜃2) with the 

classical circle ρ
1
= 2. 

2- 𝜃1 ≠ 0, 𝜃1 + 𝜃2 = 0, this means that the neutrosophic Cardioide will be equivalent 

to direct product of classical Cardioide ρ
1
= 1 + 𝑐𝑜𝑠(𝜃1) with the classical circle 

(ρ1 + ρ
2) = 2. 

3- If 𝜃1 = 0, 𝜃1 + 𝜃2 = 0 this means that the neutrosophic Cardioide will be 

equivalent to direct product of classical circle (ρ1 + ρ
2) = 2 with the classical circle 

ρ
1
= 2. 

Theorem: 

Let Γ1,Γ2 are two classical Cardioide, then the direct product of Γ1,Γ2 is equivalent to the 

neutrosophic Cardioide Γ. 

Proof. 

Let Γ1,Γ2 are two classical Cardioide, where: 

{
Γ1: ρ1 = 1 + 𝑐𝑜𝑠𝜃1
Γ2: ρ2 = 1 + 𝑐𝑜𝑠𝜃2 

 

Now, we take the inverse image of the AH-isometry, we have: 

𝑇−1(ρ1, ρ2) = 𝑇
−1(1 + 𝑐𝑜𝑠𝜃1, 1 + 𝑐𝑜𝑠𝜃2) 

ρ
1
+ (ρ2 − ρ

1)𝐼 = [1 + 𝑐𝑜𝑠𝜃1 + (1 + 𝑐𝑜𝑠𝜃2 − (1 + 𝑐𝑜𝑠𝜃1))𝐼] 
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ρ
1
+ (ρ2 − ρ

1)𝐼 = [1 + 𝑐𝑜𝑠𝜃1 + (𝑐𝑜𝑠𝜃2 − 𝑐𝑜𝑠𝜃1)𝐼] 

ρ
1
+ (ρ2 − ρ

1)𝐼 = 1 + [𝑐𝑜𝑠𝜃1 + (𝑐𝑜𝑠(𝜃1 + [𝜃2 − 𝜃1]) − 𝑐𝑜𝑠𝜃1)𝐼] 

We let ρ = ρ
1
+ (ρ2 − ρ

1)𝐼, 𝜃 = 𝜃1 + (𝜃2 − 𝜃1)𝐼, then we can prove that: 

𝑐𝑜𝑠𝜃 = 𝑐𝑜𝑠(𝜃1 + [𝜃2 − 𝜃1]𝐼) = 𝑐𝑜𝑠𝜃1 + (𝑐𝑜𝑠(𝜃1 + [𝜃2 − 𝜃1]) − 𝑐𝑜𝑠𝜃1)𝐼 

Then, we have. 

ρ
1
+ (ρ2 − ρ

1)𝐼 = 1 + 𝑐𝑜𝑠(𝜃1 + [𝜃2 − 𝜃1]𝐼) 

So. 

Γ: ρ = 1 + 𝑐𝑜𝑠𝜃 

This equation is a neutrosophic Cardioide Γ. 

Example:  

Let the equation by a neutrosophic Cardioide:  

ρ
1
+ ρ

2
𝐼 = 1 + 𝑐𝑜𝑠 (

𝜋

3
+
𝜋

4
𝐼) 

Then, its equation be equivalent to direct product of two classical Cardioide: 

{
𝚪𝟏: 𝛒𝟏 = 𝟏 + 𝒄𝒐𝒔 (

𝝅

𝟑
)

𝚪𝟐: 𝛒𝟏 + 𝛒𝟐 = 𝟏 + 𝒄𝒐𝒔 (
𝟕𝝅

𝟏𝟐
)
 

Example: 

Let Γ1,Γ2 are two classical Cardioide, where: 

{
Γ1:ρ1 = 1 + 𝑐𝑜𝑠 (

𝜋

4
)

Γ2: ρ2 = 1 + 𝑐𝑜𝑠 (
𝜋

2
) 

 

Γ: {ρ = 1 + 𝑐𝑜𝑠 (
𝜋

4
+
𝜋

4
𝐼) 

Conclusions 

In this paper we have studied some concepts of neutrosophic real analysis depending on 

the one-dimensional AH-isometry. We have provided a strict definition of some algebraic 

curves in neutrosophic real ring 𝑹(𝑰), and we study the properties of this curves, and we 
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proved some theorems for this curves, also, we find relationships between a classical 

algerbraic curves and neutrosophic algebraic curves.  
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Abstract. 

The objective of this paper is to introduce a new intuitionistic neutrosophic crisp points 

 in intuitionistic neutrosophic crisp topological space, where the intuitionistic 

neutrosophic crisp limit point was defined using intuitionistic neutrosophic crisp points 

with some of its properties. Also, a generalized form of intuitionistic neutrosophic crisp 

topological space as intuitionistic neutrosophic crisp supra topological space and 

intuitionistic neutrosophic crisp infra topological space were defined. Moreover, the 

separation axioms were constructed in these new spaces and the relationship between 

them will be examined in details.   

Keywords: 

Intuitionistic neutrosophic crisp topological space, intuitionistic neutrosophic crisp supra 

topological space, intuitionistic neutrosophic crisp infra topological space, intuitionistic 

neutrosophic crisp point, intuitionistic neutrosophic crisp separation axioms. 

Introduction 

For the first time in the world, F. Smarandache [1,2,3] introduced the notions of 

neutrosophic theory as a generalization of the fuzzy and intuitionistic fuzzy theories. Also, 

D. Cocer [4] introduced the concept of intuitionistic sets and studied its applications in 

algebraic and topological structures. 

As the generalization of classical sets, Salama et al. in 2014 proposed the concept of 

neutrosophic crisp sets [5]. Neutrosophic crisp sets is a special case of neutrosophic sets. 

mailto:riad-hamido1983@hotmail.com
mailto:riad-hamido1983@alfuratuniv.edu.sy
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Recently, J .Kim et al. [6] introduced the concept of intuitionistic neutrosophic crisp 

sets by combined intuitionistic set and neutrosophic crisp set. 

They applied it to topology by defined intuitionistic neutrosophic crisp topological 

space and studied some concepts related to intuitionistic neutrosophic crisp sets as 

intuitionistic neutrosophic crisp interior and closure. 

In 2015, Adel. M. AL-Odhari [7] have discussed the concept of infra-Topological spaces 

as an extension of topological space. 

Also, G.Jayaparthasarathy et al. presented a more general study, where he created the 

concept of neutrosophic supra topological spaces [8] in 2019. 

A. B.AL-Nafee et al. In 2015, have been discussed the concept of neutrosophic points 

and separation axioms in neutrosophic crisp topological spaces [9].  

In fact, the concept of neutrosophic sets represents an important idea to open the door 

in front of many researchers especially in pure and applied mathematics   [10].     

In this paper, we give some important spaces via intuitionistic neutrosophic crisp sets, 

where we define intuitionistic neutrosophic crisp supra topological space and intuitionistic 

neutrosophic crisp infra topological space, as well as new sets in these new spaces as 

intuitionistic neutrosophic crisp supra open (closed) sets and intuitionistic neutrosophic 

crisp infra open (closed) sets. On other hand we define, for the first time, the intuitionistic 

neutrosophic crisp points and we use these points to define separation axioms in all of this 

new spaces (intuitionistic neutrosophic crisp topological space , intuitionistic neutrosophic 

crisp supra topological space and intuitionistic neutrosophic crisp infra topological space). 

1. Basic Concepts" 

Definition:[4] 

Let X be a set. Then A is called an intuitionistic set (IS) of X, if it is an object having the 

form A = (A , A); such that A  A=, in this case A ( A) represents the set of 

memberships (non-memberships) of each element in X. 

- The intuitionistic empty set of X, is defined by ̅ = ( , 𝑋). 

- The intuitionistic whole set of X, is defined by X̅ = (X ,) 

- all ISs in X as IS(X). 

Definition :[6] 
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Let X be a set. Then the form  𝐴̃𝑇 , 𝐴̃𝐼 , 𝐴̃𝐹 ; 

( 𝐴̃𝑇 = (𝐴1,1 , 𝐴1,2) , 𝐴̃𝐼 = (𝐴2,1 , 𝐴2,2) , 𝐴̃𝐹 = (𝐴3,1 , 𝐴3,2)  IS(X) ).  

is called an intuitionistic neutrosophic crisp set in X ( INCS), if  𝐴1,1 𝐴3,1 = . 

-  𝐴̃𝑇 = (𝐴1,1 , 𝐴1,2) , 𝐴̃𝐼 = (𝐴2,1 , 𝐴2,2) , 𝐴̃𝐹 = (𝐴3,1 , 𝐴3,2) represent the IS of 

memberships, indeterminacies and non-memberships respectively of each element 

x  X to A. 

- We will denote the set of all INCS by INCS(X). 

    Definition: [6] 

" Types of INCS ̅
IN

 & X̅IN as follows: " 

 1. ̅
IN,i

" may be defined in many ways as a IN CS as follows: (i=1,2,3,4)"  

1.   ̅
IN,1

 =  > ̅, ̅, X̅ < 

2.  ̅
IN,2

 =  > ̅, X̅ , X̅ < 

3. ̅
IN,3

 =  > ̅, X̅ , ̅ < 

4. ̅
IN,4

 =  > ̅, ̅, ̅ <. 

2.   X̅IN,i" may be defined in many ways as a IN CS as follows:" (i=1,2,3,4) "  

1.   X̅IN,1 =   >X̅, ̅, ̅  < 

2.  X̅IN,2 =  >  X̅ , X̅, ̅ < 

3. X̅IN,3 =  > X̅, ̅ , X̅ < 

4. X̅IN,4 =  > X̅, X̅, X̅ <. 

Definition: [6] "  

A Intuitionistic neutrosophic crisp topology (INCT) on a non-empty set X is a family T of 

intuitionistic neutrosophic crisp subsets in X satisfying the following axioms:" 

1. "̅
IN,i

 & X̅IN,i  ∈  𝑇. (i=1,2,3,4) 

2. "C⋂D ∈ T , for any  C, D ∈  T. " 

3. " T is closed under arbitrary union." 

 

The pair (𝑋, 𝑇) is said to be a intuitionistic neutrosophic crisp topological space (INCTS)in 

X. Moreover,  The elements in 𝑇 are said to be intuitionistic neutrosophic crisp open sets 
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(INCOS), a intuitionistic neutrosophic crisp set F is intuitionistic neutrosophic crisp closed 

(INCCS) if and only if its complement is an intuitionistic neutrosophic crisp open set." 

2.  Intuitionistic Neutrosophic crisp point 

  " In this part, we will introduce the intuitionistic neutrosophic crisp point and 

intuitionistic neutrosophic crisp limit points with some of its properties. 

Definition 2.1.   

For all x, y, z belonging to a non-empty set X. Then the intuitionistic neutrosophic crisp 

points related to x, y, z are defined as follows:" 

• " xI1
<({x}, X − {x}),̅, ̅ > is called an

intuitionistic neutrosophic crisp point (INCPI1
) in X ." 

• " yI2
<̅,({y}, X − {y}),̅ > is called an intuitionistic neutrosophic crisp point (INCPI2

) in X. 

" 

• " zI3
<̅,̅, ({z}, X − {z}) > is called an intuitionistic neutrosophic crisp point (INCPN3

) in X 

." 

The set of all intuitionistic neutrosophic crisp points (INCPI1
, INCPI2

, INCPI3
) is denoted 

by INCPI" " 

Definition 2.2.   

 " Let X be a non-empty set and x ,y, z ∈X. Then the intuitionistic neutrosophic crisp 

point:" 

• " xI1
 is belonging to the intuitionistic neutrosophic crisp set B (B1,1 , B1,2), (B2,1 , B2,2), 

(B3,1 , B3,2)>, denoted by xI1
∈ B , if  x ∈ B1,1 ,wherein xI1

 not belongs to the 

intuitionistic neutrosophic crisp set B denoted by xI1
∉ B ,if x ∉ B1,1.  

• "yI2
 is belonging to the intuitionistic neutrosophic crisp set B (B1,1 , B1,2), (B2,1 , B2,2), 

(B3,1 , B3,2)>, denoted by yI2
∈ B , if  y ∈ B2,1 ,wherein yI2

 not belongs to the 

intuitionistic neutrosophic crisp set B denoted by yI2
∉ B ,if y ∉ B2,1. " 

• zI3
 is belonging to the intuitionistic neutrosophic crisp set B (B1,1 , B1,2), (B2,1 , B2,2), (B3,1 

, B3,2)>, denoted by zI3
∈ B, if  z ∈ B3,1,wherein zI3

 not belongs to the intuitionistic 

neutrosophic crisp set B denoted by zI3
∉ B ,if z ∉ B3,1. " 

Definition 2.3. "  

cF
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    Let (𝑋, 𝑇) be an INCTS , P ∈ INCPN in X , an intuitionistic neutrosophic crisp set 

B (B1,1 , B1,2), (B2,1 , B2,2), (B3,1 , B3,2)> ∈ 𝑇 is said to be intuitionistic neutrosophic crisp open 

nhd of P in (𝑋, 𝑇) if P ∈ B.  

Definition 2.4.   

  "Let (𝑋, 𝑇) be an INCTS , P ∈ INCPN in X  , an intuitionistic neutrosophic crisp set B (B1,1 

, B1,2), (B2,1 , B2,2), (B3,1 , B3,2)> is said to be  intuitionistic neutrosophic crisp nhd of P in 

(𝑋, 𝑇), if there is an intuitionistic neutrosophic crisp open set A (A1,1 , A1,2), (A2,1 , A2,2), (A3,1 

, A3,2)> containing P such that A ⊆ B. "  

Note 2.5.  

" Every intuitionistic neutrosophic crisp open nhd of any point P ∈ INCPN in X is  

intuitionistic neutrosophic crisp nhd of P.." 

3 .Separation Axioms In an intuitionistic neutrosophic Crisp Topological Space 

Definition 3.1.   

  "An intuitionistic neutrosophic. crisp topological space (𝑋, 𝑇) is called:" 

• I1-To-space if ∀ xI1
 yI1

X ∃ an intuitionistic neutrosophic crisp open set G in X 

.containing one of them but not the other. 

• I2-To-space if ∀ xI2
 yI2

X ∃ an intuitionistic neutrosophic crisp open set G in X 

.containing one of them but not the other .   

• I3-To-space if ∀ xI3
 yI3

X ∃ an intuitionistic neutrosophic crisp open set G in X 

.containing one of them but not the other. 

• I1-T1-space if ∀ xN1
  yN1

X ∃ an intuitionistic neutrosophic crisp open sets G1, G2 in 

X such that xI1
 G1, yI1

  G1 and xI1
  G2 , yI1

  G2. 

• I2-T1-space if ∀ xN2
  yN2

X ∃ an intuitionistic neutrosophic crisp open sets G1, G2 in 

X such that xI2
 G1, yI2

  G1 and xI2
  G2 , yI2

  G2. 

• I3-T1-space if ∀ xI3
  yI3

X ∃ an intuitionistic neutrosophic crisp open sets G1, G2 in 

X such that xI3
 G1, yI3

  G1 and xI3
  G2 , yI3

  G2.  

• I1-T2-space if ∀ xI1
  yI1

X ∃ an intuitionistic neutrosophic crisp open sets G1,G2 in X 

such that xI1
 G1, yI1

  G1 and xI1
  G2 , yI1

  G2 with G1∩G2= ̅
IN,i

.  
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• I2-T2-space if ∀ xI2
  yI2

X ∃ an intuitionistic neutrosophic crisp open sets G1,G2 in X 

such that xI2
 G1, yI2

  G1 and xI2
  G2 , yI2

  G2 with G1∩G2= ̅
IN,i

.  

• I3-T2-space if ∀ xI3
  yI3

X ∃ an intuitionistic neutrosophic crisp open sets G1,G2 in X 

such that xI3
 G1, yI3

  G1 and xI3
  G2, yI3

  G2  with G1∩G2 = ̅
IN,i

. 

Example 3.2.   

 If X = {x, y} , 𝑇1 = {̅
IN

 & X̅IN, A } ,𝑇2 = {̅IN
 & X̅IN, B }, 𝑇3 = {𝑋N, ∅N, G }, A ({x},{y}),∅̅,∅̅>, 

B <∅̅,({y},{x}),∅̅> , G <∅̅,∅̅,({x},{y})>,  Then (X,𝑇1) is I1-To-space,  (X,𝑇2) is I2-To-space, (X,𝑇3) 

is I3-To-space. 

Remark 3.3.  

,  

"  For an intuitionistic neutrosophic crisp topological space (𝑋, 𝑇) " 

• EveryIi-T1-space is Ii-T0-space (i=1,2,3). 

• Every Ii-T2-space is Ii-T1-space (i=1,2,3). 

Proof/: the proof holds directly.                                                                                                              

Remark 3.4. 

The inverse. of remark (3.3) is not true. as it is shown. in the following example.:"" 

Example 3.5. 

If = {x, y}, A <({x},{y}),∅̅,∅̅>, B <∅̅,({y},{x}),∅̅> , G ∅̅,∅̅,({x},{y})>, Then: 

• When 𝑇 = {̅
IN

 & X̅IN , A}, then (X,𝑇) is I1-To-space but not I1-T1-space. 

• When 𝑇 = {̅
IN

 & X̅IN , B}, then (X,𝑇) is I2-To-space but not I2-T1-space. 

• When 𝑇 = {̅
IN

 & X̅IN , G}, then (X,𝑇) is I3-To-space but not I3-T1-space. 

4. Intuitionistic neutrosophic Crisp Supra Topological Space 

 Definition 4.1.  

 " An intuitionistic neutrosophic crisp supra topology (INCST) on a non-empty set X is a 

family T of intuitionistic neutrosophic crisp subsets in X satisfying the following axioms:" 

1. "̅
IN,i

 , X̅IN,i ∈  𝑇. " 

2. T is closed under arbitrary union." 
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The pair (𝑋, 𝑇) is said to be a intuitionistic neutrosophic crisp supra topological space 

(INCSTS)in X. Moreover,  The elements in 𝑇 are said to be intuitionistic neutrosophic 

crisp supra open sets (INCSOS), a neutrosophic crisp supra set F is intuitionistic 

neutrosophic crisp supra closed set (INCSCS) if and only if its complement is an 

intuitionistic neutrosophic crisp supra open set." 

Remark 4.2. 

Every (INCTS) is (INCSTS), But the converse not true as it is shown in the following 

example. 

Example 4.3. 

Let X={a,b,c,d,e,f,g,i} and T = { ̅
IN

 , X̅IN, A1, A2, A3}; 

𝐴1 =< ({𝑎, 𝑏, 𝑐}, {𝑑, 𝑒}), ({𝑒, 𝑓}, {𝑔}), ({𝑔, ℎ}, {𝑏, 𝑖}) > 

𝐴2 =< ({𝑎, 𝑐, 𝑑}, {𝑒, 𝑖}), ({𝑒, 𝑔}, {ℎ}), ({ℎ, 𝑖}, {𝑎}) > 

𝐴3 =< ({𝑎, 𝑏, 𝑐, 𝑑}, {𝑒}), ({𝑒, 𝑓, 𝑔},), ({𝑔, ℎ, 𝑖}, ) > 

(X,T) is (INCSTS)  , but (X ,T) is not (INCTS). because 𝐴1, 𝐴2  T but 𝐴1𝐴2 =<

({𝑎, 𝑐}, {𝑑, 𝑖, 𝑒}), ({𝑒}, {𝑔, ℎ}), ({ℎ}, {𝑎, 𝑏, 𝑖}) >  T. 

Separation Axioms In an intuitionistic neutrosophic Crisp supra Topological Space 

Definition 4.5. 

  "An intuitionistic neutrosophic crisp supra topological space (𝑋, 𝑇) is called:" 

• I1NS-To-space if ∀ xI1
 yI1

X ∃ an intuitionistic neutrosophic crisp supra open set G 

in X .containing one of them but not the other. 

• I2NS-To-space if ∀ xI2
 yI2

X ∃ an intuitionistic neutrosophic crisp supra open set G 

in X .containing one of them but not the other.   

• I3NS-To-space if ∀ xI3
 yI3

X ∃ an intuitionistic neutrosophic crisp open set G in X 

.containing one of them but not the other. 

• I1NS-T1-space if ∀ xN1
  yN1

X ∃ an intuitionistic neutrosophic crisp supra open sets 

G1, G2 in X such that xI1
 G1, yI1

  G1 and xI1
  G2 , yI1

  G2. 

• I2NS-T1-space if ∀ xN2
  yN2

X ∃ an intuitionistic neutrosophic crisp supra open sets 

G1, G2 in X such that xI2
 G1, yI2

  G1 and xI2
  G2 , yI2

  G2. 

cF
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• I3NS-T1-space if ∀ xI3
  yI3

X ∃ an intuitionistic neutrosophic crisp supra open sets 

G1, G2 in X such that xI3
 G1, yI3

  G1 and xI3
  G2 , yI3

  G2  

• I1NS-T2-space if ∀ xI1
  yI1

X ∃ an intuitionistic neutrosophic crisp supra open sets 

G1,G2 in X such that xI1
 G1, yI1

  G1 and xI1
  G2 , yI1

  G2 with G1∩G2= ̅
IN,i

  

• I2NS-T2-space if ∀ xI2
  yI2

X ∃ an intuitionistic neutrosophic crisp open supra sets 

G1,G2 in X such that xI2
 G1, yI2

  G1 and xI2
  G2 , yI2

  G2 with G1∩G2= ̅
IN,i

.  

• I3NS-T2-space if ∀ xI3
  yI3

X ∃ an intuitionistic neutrosophic crisp open supra sets 

G1,G2 in X such that xI3
 G1, yI3

  G1 and xI3
  G2, yI3

  G2  with G1∩G2 = ̅
IN,i

. 

Example 4.6. 

 If X = {x, y}  , T = {̅
IN

 & X̅IN, A , 𝐵, 𝐶} , A <({x},{y}), ∅̅ , ∅̅ >, B M ∅̅ ,({y},{x}), ∅̅ >, C 

({x},∅),({y},∅) ,∅̅>, Then (X,T) is I1NS-To-space,  and I2NS-To-space. 

Example 4.7. 

 If X = {x, y}  , 𝑇 = {̅
IN

 & X̅IN, G , 𝐴, 𝐶}   , A <({x},{y}), ∅̅ , ∅̅ >, G ∅̅ , ∅̅ ,({x},{y})>,  C 

<({x},∅),∅̅,({y},{ x}) >, Then (X,𝑇) is I3NS-To-space. 

Remark 4.8.  

"  For an intuitionistic neutrosophic crisp supra topological space (𝑋, 𝑇) " 

• Every IiNS-T1-space is IiNS-T0-space (i=1,2,3). 

• Every IiNS-T2-space is IiNS-T1-space (i=1,2,3). 

Proof/: the proof holds directly.                                                                                                               

Remark 4.9.  

The inverse. of remark (4.8) is not true. as it is shown. in the following example.:"" 

Example 4.10.,                                                                                                                                                              

In example 4.6, (X,T) is IiNS-To-space, but not IiNS-T1-space(i=1,2). 

In example 4.7, (X,T) is IiNS-To-space, but not IiNS-T1-space(i=3). 

5. Intuitionistic neutrosophic Crisp Infra Topological Space 

Definition 5.1. 

 " An Intuitionistic neutrosophic crisp topology infra (INCIT) on a non-empty set X is a 

family T of intuitionistic neutrosophic crisp subsets in X, satisfying the following 
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axioms:" 

1. "̅
IN,i

 , X̅IN,i ∈  𝑇. " 

2. T is closed under finite intersection." 

 

The pair (𝑋, 𝑇) is said to be a intuitionistic neutrosophic crisp infra topological space 

(INCITS)in X. Moreover,  The elements in 𝑇 are said to be intuitionistic neutrosophic 

crisp infra open sets (INCIOS), a neutrosophic crisp infra set F is neutrosophic crisp infra 

closed (INCICS) if and only if its complement is an intuitionistic neutrosophic crisp 

infra open set." 

Remark 5.2. 

Every (INCTS) is (INCITS), But the converse not true as it is shown in the following 

example. 

Example 5.3. 

Let X={a,b,c,d,e,f,g,i} and T = { ̅
IN

 , X̅IN, A1, A2, A3}; 

𝐴1 =< ({𝑎, 𝑏, 𝑐}, {𝑑, 𝑒}), ({𝑒, 𝑓}, {𝑔}), ({𝑔, ℎ}, {𝑏, 𝑖}) > 

𝐴2 =< ({𝑎, 𝑐, 𝑑}, {𝑒, 𝑖}), ({𝑒, 𝑔}, {ℎ}), ({ℎ, 𝑖}, {𝑎}) > 

𝐴3 =< ({𝑎, 𝑐}, {𝑑, 𝑒, 𝑖}), ({𝑒}, {𝑔, ℎ}), ({ℎ}, {𝑎, 𝑏, 𝑖}) > 

(X,T) is (INCITS), but (X ,T) is not (INCTS). because 𝐴1, 𝐴2T.  

But 𝐴1 ∪ 𝐴2 =< ({𝑎, 𝑏, 𝑐, 𝑑}, {𝑒}), ({𝑒, 𝑓, 𝑔},), ({𝑔, ℎ, 𝑖},) > T. 

Remark 5.4. 

Let (X ,T) be a (INCITS), then : 

The union of two intuitionistic neutrosophic crisp infra open sets is not necessary 

intuitionistic neutrosophic crisp infra open set. 

Proof: 

In example 5.3, 𝐴1, 𝐴2 are intuitionistic neutrosophic crisp infra open sets but 𝐴1 ∪ 𝐴2 =<

({𝑎, 𝑏, 𝑐, 𝑑}, {𝑒}), ({𝑒, 𝑓, 𝑔},), ({𝑔, ℎ, 𝑖},) >  is not intuitionistic neutrosophic crisp infra open 

cF
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set. 

Remark 5.6. 

(INCITS) is not necessary  (INCSTS). 

Example 5.7. 

In example 5.3, (X ,T) is (INCITS)  , but (X ,T) is not (INCSTS). because 𝐴1, 𝐴2 T but 𝐴1 ∪

𝐴2 =< ({𝑎, 𝑏, 𝑐, 𝑑}, {𝑒}), ({𝑒, 𝑓, 𝑔},), ({𝑔, ℎ, 𝑖}, ) > T. 

Remark 5.8. 

(INCSTS) is not necessary (INCITS). 

Example 5.9. 

In example 4.3, (X ,T) is (INCSTS), but (X ,T) is not (INCITS). Because 𝐴1, 𝐴2  T but 

𝐴1 𝐴2 =< ({𝑎, 𝑐}, {𝑑, 𝑖, 𝑒}), ({𝑒}, {𝑔, ℎ}), ({ℎ}, {𝑎, 𝑏, 𝑖}) >T. 

Remark 5.10. 

The relations between (INCITS) , (INCSTS)  and (INCTS) in the following diagram : 

  

 

 

 

 

 

 

 

6 .Separation Axioms In an intuitionistic neutrosophic Crisp infra Topological Space 

Definition 6.1. 

, 

INCTS 

 

 

(INCITS)                                                                                 (INCSTS)   
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  "An intuitionistic neutrosophic crisp infra topological space (𝑋, 𝑇) is called:" 

• I1NI-To-space if ∀ xI1
 yI1

X ∃ an intuitionistic neutrosophic crisp infra open set G in 

X .containing one of them but not  the other. 

• I2NI-To-space if ∀ xI2
 yI2

X ∃ an intuitionistic neutrosophic crisp infra open set G in 

X .containing one of them but not  the other .   

• I3NI-To-space if ∀ xI3
 yI3

X ∃ an intuitionistic neutrosophic crisp open set G in X 

.containing one of them but not the other . 

• I1NI-T1-space if ∀ xN1
  yN1

X ∃ an intuitionistic neutrosophic crisp infra open sets 

G1, G2 in X such that xI1
 G1, yI1

  G1 and xI1
  G2 , yI1

  G2 

• I2NI-T1-space if ∀ xN2
  yN2

X ∃ an intuitionistic neutrosophic crisp infra open sets 

G1, G2 in X such that xI2
 G1, yI2

  G1 and xI2
  G2 , yI2

  G2 

• I3NI-T1-space if ∀ xI3
  yI3

X ∃ an intuitionistic neutrosophic crisp infra open sets 

G1, G2 in X such that xI3
 G1, yI3

  G1 and xI3
  G2 , yI3

  G2  

• I1NI-T2-space if ∀ xI1
  yI1

X ∃ an intuitionistic neutrosophic crisp infra open sets 

G1,G2 in X such that xI1
 G1, yI1

  G1 and xI1
  G2 , yI1

  G2 with G1∩G2= ̅
IN,i

.  

• I2NI-T2-space if ∀ xI2
  yI2

X ∃ an intuitionistic neutrosophic crisp open infra sets 

G1,G2 in X such that xI2
 G1, yI2

  G1 and xI2
  G2 , yI2

  G2 with G1∩G2= ̅
IN,𝑖

.  

• I3NI-T2-space if ∀ xI3
  yI3

X ∃ an intuitionistic neutrosophic crisp open infra sets 

G1,G2 in X such that xI3
 G1, yI3

  G1 and xI3
  G2, yI3

  G2  with G1∩G2 = ̅
IN.i

. 

Example 6.2. 

If X = {x, y} , 𝑇 = {̅
IN

 & X̅IN, A , 𝐵, 𝐶} , A ({x},{y}), ∅̅ , ∅̅ >, B ∅̅ ,({y},{x}), ∅̅ > , C 

(∅,{y}),(∅,{x}) ,∅̅>, Then (X,𝑇) is I1NI-To-space,  and I2NI-To-space. 

Example 6.3. 

If X = {x, y} , 𝑇 = {̅
IN

 & X̅IN, G , 𝐴, 𝐶} , A ({x},{y}), ∅̅ , ∅̅ >, G ∅̅ , ∅̅ ,({x},{y})>,  C 

(∅,{y}),∅̅,( ∅,{ y}) >, Then (X,𝑇) is I3NI-To-space. 

Example 6.4. 

 If X = {x, y} , 𝑇 = {̅
IN

 & X̅IN, A , 𝐵, 𝐶}, A ({x},{y}),∅̅,∅̅>, B ({y},{x}),∅̅,∅̅>, C (∅,{x,y}),∅̅ 

,∅̅>, Then (X,𝑇) is I1NI-T1-space,  but(X,𝑇) in not I1NI-T2-space. 

Example 6.5. 
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. 

 If X = {x, y} , 𝑇 = {̅
IN

 & X̅IN, G , 𝐴, 𝐶} , A <({x},{y}), ∅̅ , ∅̅ >, G ∅̅ , ∅̅ ,({x},{y})>,  C 

(∅,{y}),∅̅,( ∅,{ y}) >, Then (X,𝑇) is I3NI-To-space, but (X,𝑇) in not I3NI-T2-space. 

Remark 6.6. 

"  For an intuitionistic neutrosophic crisp infra topological space (𝑋, 𝑇) " 

• EveryIiNI-T1-space is IiNI-T0-space (i=1,2,3). 

• Every IiNI-T2-space is IiNI-T1-space (i=1,2,3). 

Proof/  " the proof holds directly.                                                                                                              

The inverse. of remark (3.8) is not true. as it is shown. in the following example.:"" 

Remark 6.7. 

• ,In example 6.2, (X,𝑇) is I1NI-To-space, but (X,𝑇) is I1NI-T1-space,  and (X,𝑇)  

I2NI-To-space, but (X,𝑇) is not I2NI-T1-space. 

• In example 6.4, (X,𝑇) is I1NI-T1-space, but (X,𝑇) is I1NI-T2-space. 

7. Conclusion   

  

In this paper, we have defined new topological spaces by using intuitionistic 

neutrosophic crisp sets. This new space is called intuitionistic neutrosophic crisp supra 

space and intuitionistic neutrosophic crisp infra space. Then we have introduced new 

intuitionistic neutrosophic crisp supra open (closed) sets and intuitionistic neutrosophic 

crisp infra open (closed) sets in this new spaces. Also we studied some of their basic 

properties and their relationship with each other. Also we defined intuitionistic 

neutrosophic crisp points, using these notions, various classes of separation axioms were 

defined. In the future, many researchers can study the intuitionistic neutrosophic crisp 

supra space and intuitionistic neutrosophic crisp infra space. 
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