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Abstract. The novel concept called neutrosophic set was launched to take care of indeterminate factors in

real-life data. The hybrid model of neutrosophic set and soft set has been widely studied in different areas of

algebra, especially in associative structures such as fields, groups, rings, and modules. In this current paper,

the novel concept is further introduce to a non-associative structure termed Q−neutrosophic soft quasigroup

(Q−NSG) and investigate its different algebraic properties of the quasigroups. We shown the conditions for

the sets of α−level cut of Q−NSG to be subquasigroups, the condition for each set of subquasigroups of a

quasigroup to be Q−level cut neutrosophic soft subquasigroup were established. It was shown that Q−NSG

obeys alternative property and flexible law. In addition, We defined Q−neutrosophic soft loop and investigate

some of its characteristics. In particular, it was shown that Q−neutrosophic soft loop obeys inverse, weak

inverse and cross inverse properties. We established the condition for a Q−neutrosophic soft loop to obey anti-

automorphic inverse, semi-automorphic inverse and super anti-automorphic inverse properties. The necessary

and sufficient condition for Q−neutrosophic soft set under a loop (G, ◦, /, \) to be a Q−neutrosophic soft loop

was also established.

Keywords: Q- set; Soft set; Neutrosophic set; Quasigroup; Loop.

—————————————————————————————————————————-

ˆ

ˆ ˆ

1. Introduction

Let Ĝ be a non-empty set and (◦) be an operation on Ĝ. If w ◦ t ∈ G for all w, t ∈ G, then

(G, ◦) is called a groupoid. A groupoid (G, ◦) is called quasigroup, if there exist a, b ∈ Ĝ such

that each of the equations:

a ◦ w = b and t ◦ a = b
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ˆ

ˆ

have unique solution w, t respectively. Furthermore, the quasigroup is called a loop if there is

a unique element e ∈ G called the identity element such that ∀ w ∈ G,

w ◦ e = e ◦ w = w

In what follows, wt is written instead of w ◦ t, which stipulates that ◦ has lower priority

than juxtaposition amongst factors to be multiplied. For example we write, p ◦ qr stands for

p(qr).

Suppose that w is a fixed element in the groupoid (G, ◦), a translation map of w ∈ Ĝ, called

the left(right) translation maps written as Lw and Rw respectively are defined as

tLw = w ◦ t and tRw = t ◦ w.

ˆ

Obviously, it implies that if the left and right translations maps are permutations, then a

groupoid (G, ◦) is a quasigroup. And if the left and right translation maps of a quasigroup are

bijections, it means that the inverse mappings L−1
w and R−1

w exist. Let

w\t = tL−1
w and w/t = wR−1

t

and note that

w\t = z ⇔ w ◦ z = t and

ˆ ˆ

w/t = z ⇔ z ◦ t = w.

Consequently, (G, \) and (G, /) are also quasigroups.

A consideration of Fuzzy set was first initiated by Zadeh in [2], and the notion was designed

to handle the challenges of uncertainty in real life data while the generalization of fuzzy

set was considered by Atanassov in [4, 6] which is called intuitionistic fuzzy set. In 1971,

Rosenfeld [5] for the time considered the concept of fuzzy set under the theoretical study of

a group structure and established different properties and conditions for a subset of fuzzy set

defined under a groups to be fuzzy subgroup. Since them, the concept has been extended to

different field in mathematics. As away of generalizing the work in [5], the fuzzification of

quasigroup was initiated by Dudek in 1998 [23] while 1999, Dudek and Jun [24] introduced

fuzzy subquasigroup under norms to further the results in [23]. In 2000, the consideration of

intuitionistic fuzzy set in a quasigroup was studied by Kyung et al. [27] as an extended method

of fuzzy subquasigroup. In [23], research on intuitionistic fuzzy subquasigroup was furthered

studied by Dudek [28] in 2005. It was revealed in [3] that each of these notions and their

hybrid methods has their respective limitations and difficulties, and to address some of those

difficulties, Molodtsov [3] launched the notion of soft set. It was reported that the notion of

soft set theory is a better method for handling problems involving uncertainty, incompatible

and incomplete data. Although, the study of soft set theory is not suitable for characterizing

the degree of membership values as in the case of intuitionistic fuzzy set. Also, the notion

is not capable for handling problems involving indeterminate data and as a result of that, a

BENARD Osoba1, OYEBO Tunde Yakub2 and ABDULKAREEM Abdulafeez Olalekan3,
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generalized concept called neutrosophic set was called out by Smarandache in 1998 [14,15], as

a mathematical notion for dealing with indeterminacy occurrence. Neutrosophic set is more

complex and the only generalized concept of the classical set theory found in the literature

for dealing with problems involving indeterminate. The character of the degree values of a

neutrosophic set are represented by the true membership T , indeterminate membership I and

falsity membership F .

The different methods of determining the indeterminate factors of neutrosophic set in real-

life data have been widely applied in different area in mathematics and its related field. For

example, the work of Jidid et al. in [8] applied neutrosophy concept to handle the product

quality control on inspection assignment form while Dey and Ray in 2023 [9] used the concept

to characterized the separation axioms of neutrosophic topological spaces. The concept were

used in the area of operation research in management in [10].

The hybrid model of neutrosophic sets, especially the neutrosophic consideration of soft set

structure has been widely and sporadically flagged by algebraist in the recent past, (see the

following articles [7,11,13,33]). However, it is important to mention the efforts of Muhammad

et al. [20] and Mumtaz et al. [19], where set components of neutrosophy study, was replicated

using groupoids, groups and bigroups. Furthermore, in 2020 Oyem et al. [29] conducted alge-

braic characterization of soft quasigroup while the generalization of his study was considered

in [30]. Most recently, a study pattern of Q−fuzzy groups and their hybrid methods was called

out by Solairaju et al. [16] and Thirunemi and Solairaju [17]. Then, was later escalated to

Q−neutrosophic soft group in 2020 [18] to handle indeterminate data. The extension of Q−NS

group to Q−NS quasigroup was recently announced by Oyebo et al. [25], which by tradition

a generalization of the former.

In this present research, results of fuzzy quasigroup and its generalizations studied in the

following articles [23, 24, 27, 28] are extended to neutrosophic soft quasigroup of two universal

sets. Since the definition of Q−neutrosophic soft quasigroup was flagged up by Oyebo et.

al [25], the question whether the concept obeys the following algebraic properties of quasigroup

such as left(right) alternative property LAP(RAP), and flexible law are not yet known for the

best of our searching. The result on characterization of supremum and infimum of fuzzy

quasigroup studied by Dudek were extended to Q−neutrosophic soft quasigroup by capturing

the behavior of an indeterminate factor of two universal sets that was lacking in structure

of fuzzy quasigroup and intuitionistic fuzzy quasigroup. In addition, this paper is for the

time introduced the concept of Q−neutrosophic soft loop which is a Q−neutrosophic soft

quasigroup with an identity element without associative property. Also, the work of Dudek

[23,24] and the generalized version in [25] did not shown results on the algebraic characteristics

of the following class of quasigroup called left inverse property (LIP), right inverse property

BENARD Osoba1, OYEBO Tunde Yakub2 and ABDULKAREEM Abdulafeez Olalekan3,
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(RIP), cross inverse property (CIP), weak inverse property (WIP), automorphic inverse prperty

(AIP), anti-automorphic inverse property (AAIP), semi-automorphic inverse property (SAIP)

and super anti- automorphic inverse property loop (SAAIP). In order to close up the gap,

we investigate whether Q−neutrosophic soft quasigroup obey the properties of quasigroup

mentioned above. In addition, we also pay attention to the necessary and sufficient condition

for Q−neutrosophic soft set under a loop (G, ◦) to be Q−neutrosophic soft loop.

The table below shown some set structures studied in the literature with their respective

characterizations and generalizations.

Table 1. Properties of some set theories

Set structures Membership func-

tion

uncertainty inconsistency indeterminacy sum of member-

ship ≤
independence (i)/

dependence(d)

Fuzzy ✓ ✓ ✓ × 1 d

intuitionistic

fuzzy

✓ ✓ ✓ × 1 d

Soft × ✓ ✓ × not applicable not applicable

Rough not applicable ✓ ✓ × not applicable not applicable

interval fuzzy ✓ ✓ × 1 d

vaque set ✓ ✓ ✓ × 1 d

Pythagorean

fuzzy

✓ ✓ ✓ × 1 d

Neutrosophy ✓ ✓ ✓ ✓ 3 i

Spherical fuzzy

set

✓ ✓ ✓ × 1 d

ˆ

2. Preliminaries

Definition 2.1. A quasigroup(loop) (G, ◦) is said to have

(1) LIP if ∃ a map Jλ : u 7→ uλ such that uλ ◦ uv = v for all u, v ∈ Ĝ

(2) RIP if ∃ a map Jρ : u 7→ uρ such that uv ◦ uρ = v for all u, v ∈ Ĝ,

(3) RAP if t ◦ ww = tw ◦ w for all w, t ∈ Ĝ,

(4) LAP if ww ◦ t = w ◦ wt for all w, t ∈ Ĝ,

(5) flexible if uv ◦ u = u ◦ vu for all u, v ∈ Ĝ,

(6) IPL if it satisfies wt ◦ w−1 = t or w−1 ◦ tw = t for all w, t ∈ Ĝ and

(7) WIPL if it satisfies the identity t ◦ (wt)−1 = w−1 for all w, t ∈ Ĝ

ˆDefinition 2.2. The following identities hold in a loop (G, ◦) it is called:

(1) AIPL if (wt)−1 = w−1t−1 ∀w, t ∈ Ĝ,

(2) an AAIPL if (wt)−1 = t−1w−1 for all w, t ∈ Ĝ, ∀w, t ∈ Ĝ

(3) a SAAIPL if (w ◦ tz)−1 = z−1 ◦
(
t−1w−1

)
, for all w, t, z ∈ Ĝ [see [26]]

(4) a SAIPL if (wt ◦ w)−1 = w−1t−1 ◦ w−1, for all w, t ∈ Ĝ
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ˆ

Theorem 2.3. [32] Let (G, ◦) be a quasigroup and Ĝ be a non empty subset of Ĝ. Then, Ĝ

is a subquasigroup of (G, ◦) if and only if (G, ◦), (G, /) and (G, \) are groupoids

Definition 2.4. [32] Let (G, ◦) be a quasigroup and ∅ ≠ H ⊆ ˆ

ˆ

ˆ ˆ ˆ

G. Then, H is called

subquasigroup of Ĝ if (H, ◦) is a quasigroup. Also, suppose that D and E are non empty

subsets of Ĝ, then D ◦ E = {d ◦ e | d ∈ D, e ∈ E}, D/E = {d/e | d ∈ D, e ∈ E} and

E\D = {e\d | d ∈ D, e ∈ E}

Definition 2.5. Let M = [0, 1] and S be a subset of M . Then: the supremum of S denoted

by supS is a number β0 ∈ [0, 1] satisfying the conditions

(1) β0 is an upper bound for S;

(2) for all ϵ > 0, the number β0 − ϵ is not an upper bound for S

the infimum of S denoted by inf S is a number α0 ∈ [0, 1] satisfying the conditions

(1) α0 is an upper bound for S;

(2) for all ϵ > 0, the number α0 + ϵ is not a lower bound for S

Definition 2.6. [3] Given a set M and a parameter set A of M . If F : A → P (M), where

P (M) is power set of M then the pair (F,A) is called a soft set .

Definition 2.7. [15] Given a set M . A neutrosophic set Φ (NS) on M is an object of the

form

Φ = {⟨m, (TΦ(m), IΦ(m), FΦ(m))⟩ : m ∈ M} and the membership degree is described by

TΦ, IΦ, FΦ : W →]−0, 1+[.

Definition 2.8. [7] Given a set M and A parameter sets. A neutrosophic soft set (Φ,A) is

described as (Φ,A) = {⟨w, (TΦ(m), IΦ(m), FΦ(m))⟩ : m ∈ M}

Definition 2.9. [1] Let W be a universe of discourse and Q be a non-empty set and A ⊂ E

be a set of parameters. Let ρlQNS(W ) be the set of all multi-Q-NSs on W with dimension

l = 1. A pair (ΦQ,A) is called a Q−neutrosophic soft set (Q −NSS) denoted by (ΦQ, A) =

{(a,ΦQ(a)) : a ∈ A,ΦQ(a) ∈ ρlQNS(W )} over W , where ΦQ : A → ρlQNS(W ) is a map such

that ΦQ(a) = ∅ if a /∈ A.

3. Results

Definition 3.1. Suppose that (G, ◦, \, /) is a quasigroup and (ΦQ,A) is a Q−neutrosophic soft

set over (G, ◦, \, /). Then, (ΦQ,A) is called a Q−NSG of Ĝ if for all a ∈ A, w1, w2 ∈ G, v ∈ Q

satisfies the following conditions

(1) TΦQ(a)(w1 ∗ w2, v) ≥ min{TΦQ(a)(w1, v), TΦQ(a)(w2, v)}
(2) IΦQ(a)(w1 ∗ w2, v) ≤ max{IΦQ(a)(w1, v), IΦQ(a)(w1, v)}
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ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

(3) FΦQ(a)(w1 ∗ w2, v) ≤ max{FΦQ(a)(w1, v), FΦQ(a)(w2, v)}

where ∗ ∈ {◦, /, \}

Definition 3.2. Let (ΛQ,A) be a Q−NSG over Ĝ such that there exist α, β, γ ∈ [0, 1] with

the restriction that αQ + βQ + γQ ≤ 3. Then, (ΛQ,A)(α,β,γ) is Q−level soft set defined as

(ΛQ,A)(α,β,γ) = {f1 ∈ G, v ∈ Q : TΛQ(a)(f1, v) ≥ α, IΛQ(a)(f1, v) ≤ β, FΛQ(a)(f1, v) ≤ γ}

for all a ∈ A

Suppose that α = β = γ for any α ∈ [0, 1] with α + α + α ≤ 3 such that (ΛQ,A)α = {f1 ∈
G, v ∈ Q : TΛQ(a)(f1, v) ≥ α, IΛQ(a)(f1, v) ≤ α, FΛQ(a)(f1, v) ≤ α}, then (ΛQ,A)α is called α

-level set of Λ.

In neutrosophic soft set, the set

T (ΛQ, α) = {f1 ∈ G, v ∈ Q : ΛQ(a)(f1, v) ≥ α},

F (ΛQ, α) = {f1 ∈ G, v ∈ Q : ΛQ(a)(f1, v) ≤ α} and

I(ΛQ, α) = {f1 ∈ G, v ∈ Q : ΛQ(a)(f1, v) ≤ α}

are respectively called the truth, falsity and indeterminacy α-levels cut of Λ

Theorem 3.3. Let (ΛQ,A) be a Q − NSG over Ĝ. Then, the sets U(ΛQ, α), I(ΛQ, α)

and L(ΛQ, α) are subquasigroups for all α ∈ Im(TΛQ(a)(f1, v)) ∩ Im(IΛQ(a)(f1, v)) ∩
Im(FΛQ(a)(f1, v)), where Im donate the image under the map of membership degree.

Proof: Let α ∈ Im(TΛQ(a)(f1, v))∩Im(IΛQ(a)(f1, v))∩Im(FΛQ(a)(f1, v)) ⊆ [0, 1]. Obviously,

the sets U(ΛQ, α), I(ΛQ, α) and L(ΛQ, α) are non-empty and let q ∈ Q and f1, h1 ∈ U(ΛQ, α).

Then, TΛQ(a)(f1, v) ≥ α and TΛQ(a)(h1, v) ≥ α for all a ∈ A. Using Definition 3.1, we have

TΛQ(a)(f1h1, v) ≥ min{TΛQ(a)(f1, v), TΛQ(a)(h1, v)} ≥ α so that f1 ◦ h1 ∈ U(ΛQ, α)

Suppose that f1, h1 ∈ I(ΛQ, α), then IΛQ(a)(f1, v) ≤ α and IΛQ(a)(h1, v) ≤ α, by definition, we

have

IΛQ(a)(f1h1, v) ≤ max{IΛQ(a)(f1, v), IΛQ(a)(h1, v)} ≤ α

Hence f1 ◦ h1 ∈ I(ΛQ, α).

Let f1, h1 ∈ F (ΛQ, α), then FΛQ(a)(f1, v) ≤ α and FΛQ(a)(h1, v) ≤ α. From definition, it

follows that

FΛQ(a)(f1h1, v) ≤ max{FΛQ(a)(f1, v), FΛQ(a)(h1, v)} ≤ α

Hence, f1 ◦ h1 ∈ F (ΛQ, α). Thus, U(ΛQ, α), I(ΛQ, α) and L(ΛQ, α) are subquasigroups of Ĝ
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ˆ

ˆ

Theorem 3.4. Let (ΛQ,A) be a Q−NSS over Ĝ such that a nonempty set (ΛQ, αK) is a

subquasigroup of Ĝ for all α ∈ [0, 1] . Then, (ΛQ,A) is a Q−neutrosophic soft subquasigroup

of Ĝ for all a ∈ A

Proof: We assume that the nonempty set (ΛQ, αK) is a subquasigroup of Ĝ for all α ∈ [0, 1].

We want to show that (ΛQ,A) is a Q−neutrosophic soft subquasigroup of Ĝ for all f1, h
′
1 ∈

G, v ∈ Q and a ∈ A. On the contrary, suppose that Definition 3.1 does not hold and there

exist f1, h
′
1 ∈ G, v ∈ Q, and a ∈ A such that

TΨQ(a)(f1 ◦ h′1, v) < min{TΨQ(a)(f1, v), TΨQ(a)(h
′
1, v)}

IΨQ(a)(f1 ◦ h′1, v) > max{IΨQ(a)(f1, v), IΨQ(a)(h
′
1, v)}

FΨQ(a)(f1 ◦ h′1, v) > max{FΨQ(a)(f1, v), FΨQ(a)(h
′
1, v)}

(1)

Let

TΨQ(a)(f1, v) = α1, TΨQ(a)(h
′, v) = β1 and TΨQ(a)(f1 ◦ h1′, v) = γ1

IΨQ(a)(f1, v) = α2, IΨQ(a)(h
′
1, v) = β2 and IΨQ(a)(f1 ◦ h1′, v) = γ2

FΨQ(a)(f1, v) = α3, FΨQ(a)(h
′
1, v) = β3 and FΨQ(a)(f1 ◦ h1′, ) = γ3

Then, its follows from equation 1

γ1 < min{α1, β1}, γ2 > max{α2, β2} and γ3 > max{α3, β3} (2)

Put



γ∗1 = 1
2

[
TΨQ(a)(f1 ◦ h′, v) + min{TΨQ(a)(f1, v), TΨQ(a)(h

′
1, v)}

]
γ∗2 = 1

2

[
IΨQ(a)(f1 ◦ h′1, v) + max{IΨQ(a)(f1, v), IΨQ(a)(h

′
1, v)}

]
γ∗3 = 1

2

[
FΨQ(a)(f1 ◦ h′1, v) + max{FΨQ(a)(f1, v), FΨQ(a)(h

′
1, v)}

] (3)

Therefore,

γ∗1 = 1
2

[
(γ1, v) + min{α1, v), (β1, v)}

]
γ∗2 = 1

2

[
(γ2, v) + max{α2, v), (β2, v)}

]
γ∗3 = 1

2

[
(γ3, v) + max{α3, v), (β3, v)}

]
Then,

α1 > γ∗1 = 1
2

[
(γ1, v) + min{α1, v), (β1, v)}

]
> γ1
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α2 < γ∗2 = 1
2

[
(γ2, v) + min{α2, v), (β2, v)}

]
< γ3

α3 < γ∗3 = 1
2

[
(γ3, v) + min{α3, v), (β3, v)}

]
< γ3

Thus,

TΨQ(a)(f1 ◦ h′1, v) < γ∗1 < min{TΨQ(a)(f1, v), TΨQ(a)(h
′
1, v)}

IΨQ(a)(f1 ◦ h′1, v) > γ∗1 > min{IΨQ(a)(f1, v), IΨQ(a)(h
′
1, v)}

FΨQ(a)(f1 ◦ h′1, v) > γ∗1 > min{FΨQ(a)(f1, v), FΨQ(a)(h
′
1, v)}

It follows that f1, h
′
1 ∈ (ΛQ, αK), but f1 ◦ h′1 /∈ (ΛQ, αK) a contradiction base on the fact

that

TΨQ(a)(f1, v) = α1 ≥ min{(α1, v), (β1, v)} > γ∗1

IΨQ(a)(f1, v) = α2 ≤ max{(α2, v), (β2, v)} < γ∗2

FΨQ(a)(f1, v) = α3 ≤ max{(α3, v), (β3, v)} < γ∗3

this implies that f1, h
′
1 ∈ (ΛQ, αK). Thus, condition 3.1 hold. The prof is complete

Theorem 3.5. Let (ΛQ,A) be a Q−NSS over Ĝ. Then, each subquasigroup H of Ĝ is a

Q−level neutrosophic soft subquasigroup for all α, β, γ ∈ [0, 1] and a ∈ A

Proof: Let (ΛQ,A) be defined by

TΦQ(a)
(f1, v) =

α, if f1 ∈ H

0, otherwise.

IΦQ(a)
(f1, v) =

β, if f1 ∈ H

0, otherwise.

FΦQ(a)
(f1, v) =

γ, if f1 ∈ H

ˆ

0, otherwise.

where α, β, γ ∈ [0, 1] such that α+ β + γ ≤ 3, for all f1 ∈ G, v ∈ Q and a ∈ A

We consider the following cases to show that (ΛQ,A) is a Q- neutrosophic soft quasigroup

over Ĝ.

Case 1: Suppose that f1, h1 ∈ H, then f1 ◦ h1 ∈ H. So,

TΨQ(a)(f1 ◦ h1, v) = α = min{α, α} = min{TΨQ(a)(f1, v), TΨQ(a)(h1, v)}

IΨQ(a)(f1 ◦ h1, v) = β = min{β, β} = max{IΨQ(a)(f1, v), IΨQ(a)(h1, v)}

FΨQ(a)(f1 ◦ h1, v) = β = min{β, β} = max{FΨQ(a)(f1, v), FΨQ(a)(h1, v)}
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Case 2: If f, h /∈ H, then

TΨQ(a)(f1, v) = 0 = TΨQ(a)(h, v), IΨQ(a)(f1, v) = 0 = IΨQ(a)(h, v) and FΨQ(a)(f1, v) = 0 =

FΨQ(a)(h, v). Therefore,

TΨQ(a)(f1 ◦ h1, v) ≥ 0 = min{0, 0} = min{TΨQ(a)(f1, v), TΨQ(a)(h1, v)}

IΨQ(a)(f1 ◦ h1, v) ≤ 0 = max{0, 0} = max{IΨQ(a)(f1, v), IΨQ(a)(h1, v)}

FΨQ(a)(f1 ◦ h1, v) ≤ 0 = max{0, 0} = max{FΨQ(a)(f1, v), FΨQ(a)(h1, v)}

Case 3: If f1 ∈ H and h1 /∈ H, then TΨQ(a)(f1, v) = α, IΨQ(a)(f1, v) = β and FΨQ(a)(f1, v) =

γ, FΨQ(a)(h1, v) = 0 = TΨQ(a)(h1, v) = IΨQ(a)(h1, v). So,

TΨQ(a)(f1 ◦ h1, v) ≥ 0 = min{TΨQ(a)(f1, v), TΨQ(a)(h1, v)}

IΨQ(a)(f1 ◦ h1, v) ≤ 0 = max{IΨQ(a)(f1, v), IΨQ(a)(h1, v)}

FΨQ(a)(f1 ◦ h1, v) ≤ 0 = max{FΨQ(a)(f1, v), FΨQ(a)(h1, v)}

Case 4: If h1 ∈ H and f1 /∈ H. It has a similar argument with case 3. This complete the

proof.

ˆ

ˆ

Theorem 3.6. If (ΛQ,A) is a Q−NSG over Ĝ. Then,

(1) TΨQ(a)(f1, v) = sup{α ∈ [0, 1] : f1 ∈ U(ΛQ, α)}
(2) IΨQ(a)(f1, v) = inf{β ∈ [0, 1] : f1 ∈ I(ΛQ, β)} and

(3) FΨQ(a)(f1, v) = inf{γ ∈ [0, 1] : f1 ∈ L(ΛQ, γ)}

for all f1 ∈ G and v ∈ Q

Proof:

(1) Given ϵ > 0, let δ = sup{α ∈ [0, 1] : f1 ∈ U(ΛQ, α)}. Then, δ − ϵ < α for some

α ∈ [0, 1]. This implies that δ − ϵ < TΨQ(a)(f1, v) so that δ ≤ TΨQ(a)(f1, v) for every

an arbitrary ϵ and for all v ∈ Q and f1 ∈ Ĝ.

Next, we show that TΨQ(a)(f1, v) ≤ δ. If TΨQ(a)(f1, v) = α1, then f1 ∈ U(ΛQ, α1)

and so

α1 ∈ {α ∈ [0, 1] : f1 ∈ U(ΛQ, α), v ∈ Q}

Hence,

TΨQ(a)(f1, v) = α1 ≤ sup{α ∈ [0, 1] : f1 ∈ U(ΛQ, α), v ∈ Q} = δ

Therefore,

TΨQ(a)(f1, v) = δ = sup{α ∈ [0, 1] : f1 ∈ U(ΛQ, α), v ∈ Q}
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ˆ ˆ

ˆ ˆ ˆ

(2) Let τ = inf{β ∈ [0, 1] : f1 ∈ I(ΛQ, β)}. Then, inf{β ∈ [0, 1] : f1 ∈ I(ΛQ, β)} < τ + ϵ.

For any ϵ > 0, we show that β < τ + ϵ for some β ∈ [0, 1] with f1 ∈ I(ΛQ, β). Since ϵ

is an arbitrary element, we have IΨQ(a)(f1, v) ≤ β for any v ∈ Q. This implies that

IΨQ(a)(f1, v) ≤ τ

.

To show that IΨQ(a)(f1, v) ≥ τ , let IΨQ(a)(f1, v) = β1.

Then, f1 ∈ I(ΛQ, β) and thus, β1 ∈ {β ∈ [0, 1] : f1 ∈ I(ΛQ, β)}.
Hence,

inf{β ∈ [0, 1] : f1 ∈ I(ΛQ, β)} ≤ τ

That is τ ≤ β1 = IΨQ(a)(f1, v) for any v ∈ Q. Consequently,

IΨQ(a)(f1, v) = τ = inf{β ∈ [0, 1] : f1 ∈ I(ΛQ, β) ∀ v ∈ Q}

(3) The argument is similar with 2 above.

Theorem 3.7. Let (ΨQ,A) be a Q−NSG over a (G, ◦). The following hold

(1) TΨQ(a)(f1h1 ◦ f1, v) = TΨQ(a)(f1 ◦ h1f1, v), IΨQ(a)(f1h1 ◦ f1, v) = IΨQ(a)(f1 ◦ h1f1, v)

and FΨQ(a)(f1h1 ◦ f1, v) = FΨQ(a)(f1 ◦ h1f1, v)
(2) TΨQ(a)(h1 ◦ f2

1 , v) = TΨQ(a)(h1f1 ◦ f1, v), IΨQ(a)(h1 ◦ f2
1 , v) = IΨQ(a)(h1f1 ◦ f1, v) and

FΨQ(a)(h1 ◦ f2
1 , v) = FΨQ(a)(hf1 ◦ f1, v)

(3) TΨQ(a)(f
2
1 ◦ h1, v) = TΨQ(a)(f1 ◦ f1h1, v), IΨQ(a)(f

2
1 ◦ h, v) = IΨQ(a)(f1 ◦ f1h1, v) and

FΨQ(a)(f
2
1 ◦ h1, v) = FΨQ(a)(f1 ◦ f1h1, v)

Proof: Let (ΦQ,A) be a Q −NSG over a quasigroup (G, ◦). For all f1, h1 ∈ G, v ∈ Q and

a ∈ A, we have

(1) Considering the LHS.

TΨQ(a)(f1h1 ◦ f1, v) ≥ min{TΨQ(a)(f1 ◦ h1, v), TΨQ(a)(f1, v)}

= min{TΨQ(a)(f1, v), TΨQ(a)(f1 ◦ h1, v)}

≥ min

{
TΨQ(a)(f1, v),min{TΨQ(a)(f1, v), TΨQ(a)(h1, v)}

}
= min

{
min{TΨQ(a)(f1, v), TΨQ(a)(f1, v)}, TΨQ(a)(h1, v)

}
= min

{
TΨQ(a)(f1, v), TΨQ(a)(h1, v)

}
(4)
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Considering the RHS.

TΨQ(a)(f1 ◦ h1f1, v) ≥ min{TΨQ(a)(f1, v), TΨQ(a)(h1f1, v)}

= min{TΨQ(a)(h1f1, v), TΨQ(a)(f1, v)}

≥ min

{
min{TΨQ(a)(h1, v), TΨQ(a)(f1, v)}, TΨQ(a)(f1, v)

}
= min

{
TΨQ(a)(h1, v),min{TΨQ(a)(f1, v), TΨQ(a)(f1, v)}

}
= min

{
TΨQ(a)(h1, v), TΨQ(a)(f1, v)

}
(5)

Therefore, min

{
TΨQ(a)(h, v), TΨQ(a)(f1, v)

}
= min

{
TΨQ(a)(f1, v), TΨQ(a)(h, v)

}
.

Thus, TΨQ(a)(f1h ◦ f1, v) = TΨQ(a)(f1 ◦ hf1, v)

IΨQ(a)(f1h1 ◦ f1, v) ≤ max{IΨQ(a)(f1 ◦ h1, v), IΨQ(a)(f1, v)}

= max{IΨQ(a)(f1, v), IΨQ(a)(f1 ◦ h1, v)}

≤ max

{
IΨQ(a)(f1, v),max{IΨQ(a)(f1, v), IΨQ(a)(h1, v)}

}
= max

{
max{IΨQ(a)(f1, v), IΨQ(a)(f1, v)}, IΨQ(a)(h1, v)

}
= max

{
IΨQ(a)(f1, v), IΨQ(a)(h1, v)

}
(6)

Considering the RHS.

IΨQ(a)(f1 ◦ h1f1, v) ≤ max{IΨQ(a)(f1, v), IΨQ(a)(h1f1, v)}

= max{IΨQ(a)(h1f1, v), IΨQ(a)(f1, v)}

≤ max

{
max{IΨQ(a)(h1, v), IΨQ(a)(f1, v)}, IΨQ(a)(f1, v)

}
= max

{
IΨQ(a)(h1, v),max{IΨQ(a)(f1, v), IΨQ(a)(f1, v)}

}
= max

{
IΨQ(a)(h1, v), IΨQ(a)(f1, v)

}
(7)

Therefore, max

{
TΨQ(a)(h1, v), TΨQ(a)(f1, v)

}
=

max

{
TΨQ(a)(f1, v), TΨQ(a)(h1, v)

}
ˆ

. Thus, IΨQ(a)(f1h1 ◦ f1, v) = IΨQ(a)(f1 ◦ h1f1, v).

The result for falsity membership is obtain in similar procedure.

(2) Let f1, h1 ∈ G, a ∈ A and v ∈ Q, we want show that TΨQ(a)(h1 ◦ f2
1 , v) = TΨQ(a)(h1f1 ◦

f1, v) for true membership.
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Considering the RHS,

TΨQ(a)(h1f1 ◦ f1, v) ≥ min{TΨQ(a)(h1f1, v), TΨQ(a)(f1, v)}

≥ min

{
min{TΨQ(a)(h1, v), TΨQ(a)(f1, v)}, TΨQ(a)(f1, v)

}
= min

{
TΨQ(a)(h1, v),min{TΨQ(a)(f1, v), TΨQ(a)(f1, v)}

}
= min

{
TΨQ(a)(h1, v), TΨQ(a)(f1, v)

}
(8)

Considering the LHS.

TΨQ(a)(h1 ◦ f2
1 , v) ≥ min{TΨQ(a)(h1, v), TΨQ(a)(f

2
1 , v)}

= min{TΨQ(a)(h1, v), TΨQ(a)(f1 ◦ f1, v)}

≥ min

{
TΨQ(a)(h1, v),min{TΨQ(a)(f1, v), TΨQ(a)(f1, v)}

}
= min

{
TΨQ(a)(h1, v), TΨQ(a)(f1, v)

}
(9)

That is, min

{
TΨQ(a)(h1, v), TΨQ(a)(f1, v)

}
= min

{
TΨQ(a)(h1, v), TΨQ(a)(f1, v)

}

ˆ

ˆ

(3) Follows in the similar result of 2.

Corollary 3.8. Let (ΦQ,A) be a Q−NSS over a quasigroup (G, ◦). Then, the following are

equivalent.

(1) (ΦQ,A) is a Q−NSG

(2) TΨQ(a)(f1h1 ◦ f1, v) = TΨQ(a)(f1 ◦ h1f1, v), IΨQ(a)(f1h1 ◦ f1, v) = IΨQ(a)(f1 ◦ h1f1, v)

and FΨQ(a)(f1h1 ◦ f1, v) = FΨQ(a)(f1 ◦ h1f1, v)
(3) TΨQ(a)(h1 ◦ f2

1 , v) = TΨQ(a)(h1f1 ◦ f1, v), IΨQ(a)(h1 ◦ f2
1 , v) = IΨQ(a)(h1f1 ◦ f1, v) and

FΨQ(a)(h1 ◦ f2
1 , v) = FΨQ(a)(h1f1 ◦ f1, v)

(4) TΨQ(a)(f
2
1 ◦ h1, v) = TΨQ(a)(f1 ◦ f1h1, v), IΨQ(a)(f

2
1 ◦ h1, v) = IΨQ(a)(f1 ◦ f1h1, v) and

FΨQ(a)(f
2
1 ◦ h1, v) = FΨQ(a)(f1 ◦ f1h1, v)

Proof: It following from Theorem 3.7.

Definition 3.9. Let (ΨQ,A) be a Q−NSS defined over a loop (L̂, ◦, /, \). Then (ΨQ,A) is

called a Q−neutrosphis soft loop (Q − NSL̂) over L̂ if for all a ∈ A, f1, h1 ∈ L̂, and v ∈ Q

satisfies the following conditions

(1) TΨQ(a)(f1 ∗ h1, v) ≥ min{TΨQ(a)(f1, v), TΨQ(a)(h1, v)},
IΨQ(a)((f1 ∗ h1), v) ≤ max{IΨQ(a)(f1, v), IΨQ(a)(h1, v)}
FΨQ(a)(f1 ∗ h1, v) ≤ max{FΨQ(a)(f1, v), FΨQ(a)(h1, v)}
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(2) TΨQ(a)(f
−1
1 , v) ≥ TΨQ(a)(f1, v),

IΨQ(a)(f
−1
1 , v) ≤ IΨQ(a)(f1, v),

FΨQ(a)(f
−1
1 , v) ≤ FΨQ(a)(f1, v)

(3) TΨQ(a)(
1−f1, q) ≥ TΨQ(a)(f1, v),

IΨQ(a)(
1−f1, v) ≤ IΨQ(a)(f1, v),

FΨQ(a)(
1−f1, v) ≤ FΨQ(a)(f1, v)

where f−1 and 1−f are right inverse and left inverse in L̂ and ∗ ∈ {◦, /, \}.

Theorem 3.10. Let (ΛQ,A) be a Q−NSS over a loop L̂. Then, (ΛQ,A) is a Q−neutrosophic

soft subloop of L̂ if and only if the nonempty Q−level soft set (ΛQ(α,β,γ),A) is a soft subloop

for all α, β, γ ∈ [0, 1] and a ∈ A

Proof: The proof is follow from Theorem 3.4 with definition 3.9.

Lemma 3.11. Let (ΨQ,A) be a Q−NSL̂ over a loop (L̂, ◦). Then, for all f1 ∈ L̂, v ∈ Q the

following hold

(1) TΨQ(a)((f
−1
1 )−1, v) = TΨQ(a)(f1, v), IΨQ(a)((f

−1
1 )−1, v) = IΨQ(a)(f1, v)

aFΨQ(a)((f
−1
1 )−1, v) = FΨQ(a)(f1, v)

Proof. Follows from Definition 3.9.

Theorem 3.12. Let (ΨQ,A) be a Q−NSL̂ over a loop (L̂, ◦, /, \). Then, for all a ∈ A, f ∈
L̂, v ∈ Q the following hold

(1) TΨQ(a)(f
−1
1 , v) ≥ TΨQ(a)(f1, v), IΨQ(a)(f

−1
1 , v) ≤ IΨQ(a)(f1, v), FΨQ(a)(f

−1
1 , v) ≤

FΨQ(a)(f1, v)

(2) TΨQ(a)(
1−f1, v) ≥ TΨQ(a)(f1, v), IΨQ(a)(

1−f1, v) ≤ IΨQ(a)(f1, v), FΨQ(a)(
1−f1, v) ≤

FΨQ(a)(f1, v)

(3) TΨQ(a)(e, q) ≥ TΨQ(a)(f1, v), IΨQ(a)(e, v) ≤ IΨQ(a)(f1, v), FΨQ(a)(e, v) ≤ FΨQ(a)(f1, v)

Proof:

(1) Let (ΨQ, ) be a Q − NSL̂ over loop (G, ◦, /, \), then for all a ∈ A, f1 ∈ L̂, v ∈ Q we

have

TΨQ(a)((f
−1
1 )−1, v) ≥ TΦQ(a)

(f1, v)

IΨQ(a)((f
−1
1 )−1, v) ≤ IΦQ(a)

(f1, v)

FΨQ(a)((f
−1
1 )−1, v) ≤ FΦQ(a)

(f1, v)

(2) it is similar with (1)
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(3) Let (ΨQ,A) be a Q−NSL̂ over loop (L̂, ◦) with an identith element e ∈ L̂. Then, for

all f1 ∈ L̂, v ∈ Q, we have

TΨQ(a)(e, v) = TΨQ(a)((f
−1
1 ◦ f1, v)

≥ min{TΦQ(a)
(f−1

1 , v), TΦQ(a)
(f1, v)}

≥ min{TΦQ(a)
(f1, v), TΦQ(a)

(f1, v)}

= TΦQ(a)
(f1, v)

IΨQ(a)(e, v) = IΨQ(a)((f
−1
1 ◦ f1, v)

≤ max{IΦQ(a)
(f1, v), IΦQ(a)

(f−1
1 , v)}

≤ max{IΦQ(a)
(f1, v), IΦQ(a)

(f1, v)}

= IΦQ(a)
(f1, v)

FΨQ(a)(e, v) = FΨQ(a)((f
−1
1 ◦ f1, v)

≤ max{FΦQ(a)
(f1, v), FΦQ(a)

(f−1
1 , v)}

≤ max{FΦQ(a)
(f1, v), FΦQ(a)

(f1, v)}

= FΦQ(a)
(f1, v)

TΨQ(a)(e, v) = TΨQ(a)((f1 ◦ f−1
1 , v)

≥ min{TΦQ(a)
(f1, v), TΦQ(a)

(f−1
1 , v)}

≥ min{TΦQ(a)
(f1, v), TΦQ(a)

(f1, v)}

= TΦQ(a)
(f1, v)

IΨQ(a)(e, v) = IΨQ(a)((f1 ◦ f−1
1 , v)

≤ max{IΦQ(a)
(f1, v), IΦQ(a)

(f−1
1 , v)}

≤ max{IΦQ(a)
(f1, v), IΦQ(a)

(f1, v)}

= IΦQ(a)
(f1, v)

FΨQ(a)(e, v) = FΨQ(a)((f1 ◦ f−1
1 , v)

≤ max{FΦQ(a)
(f1, v), FΦQ(a)

(f−1
1 , v)}

≤ max{FΦQ(a)
(f1, v), FΦQ(a)

(f1, v)}

= FΦQ(a)
(f1, v)
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TΨQ(a)(e, v) = TΨQ(a)((f1/f1, v)

≥ min{TΦQ(a)
(f1, v), TΦQ(a)

(f1, v)}

= TΦQ(a)
(f1, v)

IΨQ(a)(e, v) = IΨQ(a)((f1/f1, v)

≤ max{IΦQ(a)
(f1, v), IΦQ(a)

(f1, v)}

= IΦQ(a)
(f1, v)

FΨQ(a)(e, v) = FΨQ(a)((f1/f1, v)

≤ max{FΦQ(a)
(f1, v), FΦQ(a)

(f1, v)}

= FΦQ(a)
(f1, v)

TΨQ(a)(e, v) = TΨQ(a)((f1\f1, v)

≥ min{TΦQ(a)
(f1, v), TΦQ(a)

(f1, v)}

= TΦQ(a)
(f1, v)

IΨQ(a)(e, v) = IΨQ(a)((f1\f1, v)

≤ max{IΦQ(a)
(f1, v), IΦQ(a)

(f1, v)}

= IΦQ(a)
(f1, v)

FΨQ(a)(e, v) = FΨQ(a)((f1\f1, v)

≤ max{FΦQ(a)
(f1, v), FΦQ(a)

(f1, v)}

= FΦQ(a)
(f1, v)

The proof is compete.

Theorem 3.13. Let (ΨQ,A) be a Q−NSL̂ over a loop (L̂, ◦, /, \). Then, for all a ∈ A, f1 ∈
L̂, v ∈ Q the following hold

(1) TΨQ(a)(h1f1 ◦ f−1
1 , v) = TΨQ(a)(h1, v), IΨQ(a)(h1f1 ◦ f−1

1 , v) = IΨQ(a)(h1, v), and

FΨQ(a)(h1f1 ◦ f−1
1 , v) = FΨQ(a)(h1, v),

(2) TΨQ(a)(f
−1
1 ◦ f1h1, v) = TΨQ(a)(h1, v), IΨQ(a)(f

−1
1 ◦ f1h1, v) = IΨQ(a)(h1, v) and

FΨQ(a)(f
−1
1 ◦ f1h1, v) = FΨQ(a)(h1, v)

(3) TΨQ(a)(f
−1
1 ◦ h1f1, v) = TΨQ(a)(h1, v), IΨQ(a)(f

−1
1 ◦ h1f1, v) = IΨQ(a)(h1, v) and

FΨQ(a)(f
−1
1 ◦ h1f1, v) = FΨQ(a)(h1, v)

(4) TΨQ(a)(h1 ◦ (f1h1)−1, v) = TΨQ(a)(f
−1
1 , v), IΨQ(a)(h1 ◦ (f1h1)−1, v) = IΨQ(a)(f

−1
1 , v) and

FΨQ(a)(h1 ◦ (f1h1)−1, v) = FΨQ(a)(f
−1
1 , v)

Proof:
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(1) Let (ΨQ,A) be Q − NSL̂ over a loop (L̂, ◦, /, \). Then, we shall show that for all

a ∈ A, f1, h1 ∈ L̂, v ∈ Q

TΨQ(a)(h1f ◦ f−1, v) = TΨQ(a)(h1, v)

⇒ TΨQ(a)(h1f1 ◦ f−1, v) ≥ min{TΨQ(a)(h1 ◦ f1, v), TΨQ(a)(f
−1
1 , v)}

≥ min{TΨQ(a)(h1 ◦ f, v), TΨQ(a)(f1, v)}

≥ min

{
min{TΨQ(a)(h1, v), TΨQ(a)(f1, v)}, TΨQ(a)(f1, v)

}
= min

{
TΨQ(a)(h1, v),min{TΨQ(a)(f1, v), TΨQ(a)(f1, v)}

}
≥ min

{
TΨQ(a)(h1, v), TΨQ(a)(f1, v)

}
(10)

On the other hand,

TΨQ(a)(h1, v) = TΨQ(a)((h1/f1) ◦ f, v)

≥ min{TΨQ(a)((h1/f1), v), TΨQ(a)(f1, v)}

≥ min

{
min{TΨQ(a)(h1, v), TΨQ(a)(f1, v)}, TΨQ(a)(f1, v)

}
= min

{
TΨQ(a)(h1, v),min{TΨQ(a)(f1, v), TΨQ(a)(f1, v)}

}
≥ min

{
TΨQ(a)(h1, v), TΨQ(a)(f1, v)

}
(11)

And

IΨQ(a)(h1f1 ◦ f−1
1 , v) = IΨQ(a)(h1, v)

⇒ IΨQ(a)(h1f1 ◦ f−1, v) ≤ max{IΨQ(a)(h1 ◦ f1, v), IΨQ(a)(f
−1
1 , v)}

≤ max{IΨQ(a)(h1 ◦ f1, v), IΨQ(a)(f1, v)}

≤ max

{
max{IΨQ(a)(h1, v), IΨQ(a)(f1, v)}, IΨQ(a)(f1, v)

}
= max

{
IΨQ(a)(h1, v),max{IΨQ(a)(f1, v), IΨQ(a)(f1, v)}

}
≤ max

{
IΨQ(a)(h1, v), IΨQ(a)(f1, v)

}
(12)
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On the other hand,

IΨQ(a)(h1, v) = IΨQ(a)((h1/f1) ◦ f1, v)

≤ max{IΨQ(a)((h1/f1), v), IΨQ(a)(f1, v)}

≤ max

{
max{IΨQ(a)(h1, v), IΨQ(a)(f1, v)}, IΨQ(a)(f1, v)

}
= max

{
IΨQ(a)(h1, v),max{IΨQ(a)(f1, v), IΨQ(a)(f1, v)}

}
≤ max

{
IΨQ(a)(h1, v), IΨQ(a)(f1, v)

}
(13)

Similarly, we can use the identity TΨQ(a)(h1, v) = TΨQ(a)((f1 ◦ f1\h1), v). Result for
falsity is argued the same way.

(2) Use the same argument of 1

(3) Similar argument with 2

(4) We shall show that TΨQ(a)(h1 ◦ (f1h1)−1, v) = TΨQ(a)(f
−1, v).

Considering the LHS,

TΨQ(a)(h1 ◦ (fh1)−1, v) ≥ min{TΨQ(a)(h1, v), TΨQ(a)((fh1)
−1, v)

≥ min

{
TΨQ(a)(h1, v),min{TΨQ(a)(f

−1, v), TΨQ(a)(h
−1
1 , v)}︸ ︷︷ ︸

AIP

}

≥ min

{
TΨQ(a)(h1, v),min{TΨQ(a)(f1, v), TΨQ(a)(h1, v)}

}
= min

{
min{TΨQ(a)(f1, v), TΨQ(a)(h1, v)}, TΨQ(a)(h1, v)

}
= min

{
TΨQ(a)(f1, v),min{TΨQ(a)(h1, v), TΨQ(a)(h1, v)}

}
≥ min

{
TΨQ(a)(f1, v), TΨQ(a)(h1, v)

}
(14)

On the other hand,

TΨQ(a)(f
−1
1 , v) ≥ TΨQ(a)(f1, v) (15)
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Note that TΨQ(a)(f1, v) = TΨQ(a)((f1/h1)◦h1, v). Then, using the last equality in (18),

we get

TΨQ(a)(f1, v) ≥ min{TΨQ(a)((f1/h1), v), TΨQ(a)(h1, v)}

≥ min

{
min{TΨQ(a)(f1, v), TΨQ(a)(h1, v)}, TΨQ(a)(h1, v)

}
= min

{
TΨQ(a)(f1, v),min{TΨQ(a)(h1, v), TΨQ(a)(h1, v)}

}
≥ min

{
TΨQ(a)(f1, v), TΨQ(a)(h1, v)

}
(16)

Considering the LHS, for the indeterminate membership

IΨQ(a)(h1 ◦ (f1h1)−1, v) ≤ max{IΨQ(a)(h1, v), IΨQ(a)((f1h1)
−1, v)

≤ max

{
IΨQ(a)(h1, v),max{IΨQ(a)(f

−1
1 , v), IΨQ(a)(h

−1
1 , v)}︸ ︷︷ ︸

AIP

}

≤ max

{
IΨQ(a)(h1, v),max{IΨQ(a)(f1, v), IΨQ(a)(h1, v)}

}
= max

{
max{IΨQ(a)(f1, v), IΨQ(a)(h1, v)}, IΨQ(a)(h1, v)

}
= max

{
IΨQ(a)(f1, v),max{IΨQ(a)(h1, v), IΨQ(a)(h1, v)}

}
≤ max

{
IΨQ(a)(f1, v), IΨQ(a)(h1, v)

}
(17)

On the other hand,

IΨQ(a)(f
−1
1 , v) ≤ IΨQ(a)(f1, v) (18)

Note that IΨQ(a)(f1, v) = IΨQ(a)((f1/h1) ◦h1, v). Then, using the last equalith in (18),

we get

IΨQ(a)(f1, v) ≤ max{IΨQ(a)((f1/h1), v), IΨQ(a)(h1, v)}

≤ max

{
max{IΨQ(a)(f1, v), IΨQ(a)(h1, v)}, IΨQ(a)(h1, v)

}
= max

{
IΨQ(a)(f1, v),max{IΨQ(a)(h1, v), IΨQ(a)(h1, v)}

}
≤ max

{
IΨQ(a)(f1, v), IΨQ(a)(h1, v)

}
(19)

The result for falsity membership is similar with the result for indeterminate mem-

bership obtained.

Theorem 3.14. Let (ΨQ,A) be Q−NSL̂ over a loop (L̂, ◦). Then, for all a ∈ A, f1, h1, z1 ∈
L̂, v ∈ Q the following hold:
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(1) TΨQ(a)((f1 ◦ h1)
−1, v) = TΨQ(a)(h

−1
1 ◦ f−1

1 , v), IΨQ(a)((f1 ◦ h1)
−1, v) = IΨQ(a)(h

−1
1 ◦

f−1
1 , v), and FΨQ(a)((f1 ◦ h1)−1, v) = FΨQ(a)(h

−1
1 ◦ f−1

1 , v),

(2) TΨQ(a)((f1h1 ◦ f1)
−1, v) = TΨQ(a)(f

−1
1 h−1

1 ◦ f−1
1 , v), IΨQ(a)((f1h1 ◦ f1)

−1, v) =

IΨQ(a)(f
−1
1 h−1

1 ◦ f−1
1 , v) and FΨQ(a)((f1h1 ◦ f1)−1, v) = FΨQ(a)(f

−1
1 h−1

1 ◦ f−1
1 , v)

(3) TΨQ(a)((f1 ◦h1z)−1, v) = TΨQ(a)(z
−1 ◦h−1

1 f−1
1 , v), IΨQ(a)((f1 ◦h1z)−1, v) = IΨQ(a)(z

−1 ◦
h−1
1 f−1

1 , v) and FΨQ(a)((f1 ◦ h1z)−1, v) = FΨQ(a)(z
−1 ◦ h−1

1 f−1
1 , v)

Proof:

(1) Let (ΨQ,A) be Q−neutrosophic soft loop over a loop (L̂, ◦). Then, we shall show that

for all a ∈ A, f1, h1 ∈ L̂, v ∈ Q

TΨQ(a)(f1 ◦ h1)−1, v) = TΨQ(a)(f
−1
1 ◦ h−1

1 , v)

≥ min{TΨQ(a)(f
−1
1 , v), TΨQ(a)(h

−1
1 , v)}

≥ min

{
TΨQ(a)(f1, v)}, TΨQ(a)(h1, v)

}
(20)

On the other hand

TΨQ(a)(h
−1
1 ◦ f−1

1 , v) ≥ min{TΨQ(a)(h
−1
1 , v), TΨQ(a)(f

−1
1 , v)}

≥ min{TΨQ(a)(h1, v), TΨQ(a)(f1, v)} (21)

IΨQ(a)(f1 ◦ h1)−1, v) = IΨQ(a)(f
−1
1 ◦ h−1

1 , v)

≤ max{IΨQ(a)(f
−1
1 , v), IΨQ(a)(h

−1
1 , v)}

≤ max

{
IΨQ(a)(f1, v)}, IΨQ(a)(h1, v)

}
(22)

RHS

IΨQ(a)(h
−1
1 ◦ f−1

1 , v) ≥ max{IΨQ(a)(h
−1
1 , v), IΨQ(a)(f

−1
1 , v)}

≤ max{IΨQ(a)(h1, v), IΨQ(a)(f1, v)} (23)

The result for falsity membership is similar with the result of indeterminate member-

ship.

BENARD Osoba1, OYEBO Tunde Yakub2 and ABDULKAREEM Abdulafeez Olalekan3,
Algebraic Properties of Quasigroup Under Q−neutrosophic Soft Set



Neutrosophic Sets and Systems, Vol. 64, 2024 20

(2) For the true membership,

TΨQ(a)((f1h1 ◦ f1)−1, v) = TΨQ(a)((f1 ◦ h1)−1 ◦ f−1
1 ), v)︸ ︷︷ ︸

AIP

≥ min{TΨQ(a)((f1 ◦ h1)−1), v), TΨQ(a)(f
−1
1 , v)}

≥ min{min{TΨQ(a)(f1, v), TΨQ(a)(h1, v)}, TΨQ(a)(f1, v)}

= min{TΨQ(a)(f1, v),min{TΨQ(a)(f1, v), TΨQ(a)(h1, v)}}

= min{min{TΨQ(a)(f1, v), TΨQ(a)(f1, v)}, TΨQ(a)(h1, v)}

≥ min{TΨQ(a)(f1, v), TΨQ(a)(h1, v)} (24)

Similarly, we obtain

TΨQ(a)(f
−1
1 h−1

1 ◦ f−1
1 , v) ≥ min{TΨQ(a)(f1, v), TΨQ(a)(h1, v)} (25)

IΨQ(a)((f1h1 ◦ f1)−1, v) = IΨQ(a)((f1 ◦ h1)−1 ◦ f−1
1 ), v)︸ ︷︷ ︸

AIP

≤ max{IΨQ(a)((f1 ◦ h1)−1), v), IΨQ(a)(f
−1
1 , v)}

≤ max{max{IΨQ(a)(f1, v), IΨQ(a)(h1, v)}, IΨQ(a)(f1, v)}

= max{IΨQ(a)(f1, v),max{IΨQ(a)(f1, v), IΨQ(a)(h1, v)}}

= max{max{IΨQ(a)(f1, v), IΨQ(a)(f1, v)}, IΨQ(a)(h1, v)}

≤ max{IΨQ(a)(f1, v), IΨQ(a)(h1, v)} (26)

Also, we obtain the indeterminate membership for the RHS

IΨQ(a)(f
−1
1 h−1

1 ◦ f−1
1 , v) ≥ min{IΨQ(a)(f1, v), IΨQ(a)(h1, v)} (27)

Using similar approach to obtain result for indeterminate membership.

(3) The proof is similar with the result obtained for 2

Theorem 3.15. Let (ΨQ,A) be a Q−NSS over a loop (L̂, ◦, /, \). Then, (ΨQ,A) is Q−NSL̂

if and if only for all f1, h1 ∈ L̂, v ∈ Q

(1) TΨQ(a)(h1 ∗ f−1
1 , v) ≥ min{TΨQ(a)(h1, v), TΨQ(a)(f1, v)}

IΨQ(a)(h1 ∗ f−1
1 , v) ≤ max{IΨQ(a)(h1, v), IΨQ(a)(f1, v)},

FΨQ(a)(h1 ∗ f−1
1 , v) ≤ max{FΨQ(a)(h1, v), FΨQ(a)(f1, v)}

(2) TΨQ(a)(
1−f1 ∗ h1, v) ≥ min{TΨQ(a)(f1, v), TΨQ(a)(h1, v)},

IΨQ(a)(
1−f1 ∗ h1, v) ≤ max{IΨQ(a)(f1, v), IΨQ(a)(h1, v)}

FΨQ(a)(
1−f1 ∗ h1, v) ≤ max{FΨQ(a)(f1, v), FΨQ(a)(h1, v)}
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(1) Suppose that (ΨQ,A) is a Q − NSL̂ over (L̂, ◦, /, \). Let ∗ ∈ {◦, /, \} then we show

that (ΨQ,A) satisfies 3.9 for all f1, h1 ∈ L̂, and v ∈ Q, we have

TΨQ(a)(h1 ∗ f−1
1 , v) ≥ min{TΨQ(a)(h1, v), TΨQ(a)(f−1

1 , v)}

≥ min{TΨQ(a)(h1, v), TΨQ(a)(f1, v)}

IΨQ(a)(h1 ∗ f−1
1 , v) ≤ max{IΨQ(a)(h1, v), IΨQ(a)(f−1

1 , v)}

≤ max{IΨQ(a)(h1, v), IΨQ(a)(f1, v)}

FΨQ(a)(h1 ∗ f−1
1 , v) ≤ max{FΨQ(a)(h1, v), FΨQ(a)(f−1

1 , v)}

≤ max{FΨQ(a)(h1, v), FΨQ(a)(f1, v)}

Conversely, suppose equality (1) hold, then for all f1, h1,∈ G, v ∈ Q, and a ∈ A, we

show (ΨQ,A) is Q−neutrosophic soft subquasigroup over quasigroup (L̂, ◦, /, \). Thus,

TΨQ(a)(h1 ∗ f1, v) = TΨQ(a)(h1 ∗ (f−1
1 )−1, v)

≥ min{TΨQ(a)(h1, v), TΨQ(a)(f−1
1 , v)

≥ min{TΨQ(a)(h1, v), TΨQ(a)(f−1
1 , v)}

≥ min{TΨQ(a)(h1, v), TΨQ(a)(f1, v)}

Next:

IΨQ(a)(h1 ∗ f1, v) = IΨQ(a)(h1 ∗ (f−1
1 )−1, v)

≤ max{IΨQ(a)(h1, v), IΨQ(a)(f−1
1 , v)}

≤ max{IΨQ(a)(h1, v), IΨQ(a)(f1, v)}

Finally:

FΨQ(a)(h1 ∗ f1, v) = FΨQ(a)(h1 ∗ (f−1
1 )−1, v)

≤ max{FΨQ(a)(h1, v), FΨQ(a)(f−1
1 , v)}

≤ max{FΨQ(a)(h1, v), FΨQ(a)(f1, v)}

ˆ

ˆ

ˆ

(2) it is similar to (1)

4. Conclusion

In this study, it was found that Q−NSG obeys LIP, RIP, LAP, RAP and flexible law. With

the help AIP, it was shown that Q − NSG obey AAIP, SAIP, SAAIP. Q − NSL̂ were also

defined, and the definition was used to shown when is Q−NSS under loop said to be Q−NSG.

Furthermore, this research revealed that left and right inverse elements of Q−NSL̂ coincided.

In future research, Definitions 3.1 and 3.9 will be use to study the structure of isotopy theory

of quasigroup.
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Abstract: Objective: The objective of this study is to establish the results of secondary k- column 

symmetric (CS) Neutrosophic fuzzy matrices. Methods and Findings: We have applied CS 

condition in neutrosophic environment to find the relation between s-k CS, s- CS, k- CS and CS. 

Novelty: We establish the necessary and sufficient criteria for s-k CS Neutrosophic fuzzy matrices 

and various g-inverses of an  s − k CS Neutrosophic fuzzy matrices to be an  s − k CS. The 

generalized inverses of an s − k CS P corresponding to the sets P1, 2, P1, 2, 3 and P1, 2, 4 are 

characterized. 

Keywords: Neutrosophic fuzzy matrices (NFM), s-column symmetric, k-column symmetric, column 

symmetric. 

 

 

1. Introduction 

Zadeh [1] has studied fuzzy set (FS). Atanassov [2] introduced intuitionistic FSs. Smarandache [3] 

has discussed the concept of neutrosophic sets. Khan, Shyamal, and Pal [4] have studied 

intuitionistic fuzzy matrices (IFMs) for the first time. Atanassov [5,6 ] has discussed IFS and 

Operations over IV IFS. Hashimoto [7] has studied Canonical form of a transitive matrix. Kim and 

Roush [8] have studied generalized fuzzy matrices. Lee [9] has studied Secondary Skew Symmetric, 

Secondary Orthogonal Matrices.  Hill and Waters [10] have analyzed On k-Real and k-Hermitian 

matrices. Meenakshi [11] has studied Fuzzy Matrix: Theory and Applications.  

Anandhkumar [12,13] has studied Pseudo Similarity of NFM and On various Inverse of NFM. 

Punithavalli and Anandhkumar [14] have studied Reverse Sharp and Left-T And Right- T Partial 

Ordering on IFM. Pal and Susanta Kha [15] have studied IV Intuitionistic Fuzzy Matrices. Vidhya 

and Irene Hepzibah [16] have discussed on Interval Valued NFM. Anandhkumar et.al [17,18] has 

focused on Reverse Sharp and Left-T Right-T Partial Ordering on NFM and IFM. 

Anandhkumar,et.al have studied  [19] Partial orderings, Characterizations and Generalization of 

k-idempotent NFM. Here, we introduce the  Secondary k-CS NFM and introduce some basic 

operators on NFMs. 
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 1.1 Literature Review 

Meenakshi and Jaya Shree [20] have studied On k-kernel symmetric matrices. Meenakshi and 

Krishanmoorthy [21] have characterized On Secondary k-Hermitian matrices. Meenakshi and Jaya 

Shree [22] have studied On k -range symmetric matrices. Jaya shree [23] has studied Secondary 

κ-Kernel Symmetric Fuzzy Matrices. Shyamal and Pal [24] Interval valued Fuzzy matrices. 

Meenakshi and Kalliraja [25] have studied Regular Interval valued Fuzzy matrices. Anandhkumar 

[26] has studied Kernal and k-kernal Intuitionistic Fuzzy matrices.  Jaya Shree [27] has discussed 

Secondary κ-range symmetric fuzzy matrices. Anandhkumar et.al.,[28] have studied Generalized 

Symmetric NFM. Kaliraja and Bhavani [29] have studied  Interval Valued Secondary -Range Symmetric 

Fuzzy Matrices, 

Let P be any fuzzy matrix, P
†

occurs then this will coincides with the transpose of the matrix 

(PT). The fuzzy matrix P belongs to Fn is known to be kernel symmetric matrix, then this shows that 

N(P) = N(PT) which does not implies R[P] = R[PT].  But the converse is true. Symmetric matrices are 

established in the field of complex entries for the theory of k - hermitian matrices. This idea make use 

of  the development of  k - EP matrices in the generalization of k - hermitian matrices and also EP 

matrices. Hill and Waters [30] have initiated the study on κ - real and κ - Hermitian matrices. The 

concept of Theorems on products of EPr matrices introduced by Baskett and Katz [30]. It is 

commonly known that for complex matrices, the concepts of range and kernel symmetric are 

equivalent. But this is fails for Interval valued fuzzy matrices. 

 

 The concept of interval valued s - k Hermitian and interval valued kernel symmetric matrices 

for fuzzy matrices. We also expanded many basic conclusions on these two types of matrices. An 

Interval valued secondary s - k kernel symmetric fuzzy matrix can be described. Suitable standards 

for determining g - inverses of an Interval valued secondary s - k - kernel symmetric fuzzy matrices 

are interval valued secondary   s - k - kernel symmetric are found. We establish the necessary and 

sufficient canditions for an interval valued s - k kernel symmetric fuzzy matrices. Meenakshi, 

Krishnamoorthy and Ramesh [31] have studied on s - k - EP matrices. Meenakshi and 

Krishnamoorthy [32] have introduced the idea of s - k hermitian matrices.  

Shyamal and Pal [33] have studied Interval valued Fuzzy matrices. The definition of 

k-symmetric matrices was introduced by the following authors Ann Lec [34] has studied Secondary 

symmetric and skew symmetric secondary orthogonal matrices. . Anandhkumar et.al [35] have 

discussed Interval Valued Secondary k-Range Symmetric NFM. 

Table:1 Extension of Neutrosophic Fuzzy Matrices based on previous works 

References Extension of Neutrosophic Fuzzy Matrices from Fuzzy Matrices Year 

[20] On k-kernel symmetric matrices 2009 

[22]  On k -range symmetric matrices 2009 

[23]  Secondary k-Kernel Symmetric Fuzzy Matrices 2014 

[27] Secondary k-range symmetric FM 2018 

[29] Interval Valued Secondary -Range Symmetric Fuzzy Matrices 2022 

Proposed Secondary k-column symmetric Neutrosophic Fuzzy Matrices   2023 

https://www.researchgate.net/scientific-contributions/D-Jaya-Shree-2140064332?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
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From Table 1 and process flow, it is observed that the previous studies are on k-Kernel, K-range, 

Secondary k-Kernel and Secondary k- range using fuzzy matrices. It is evident that there is a 

research gap of these studies in Neutrosophic environment. So, based on the above observation, we 

have established the results of K-column and Secondary k- column in neutrosophic fuzzy matrices. 

Notations: 

PT   = Transpose of the matrix P 

P+   = Moore-penrose inverse of P 

CS  = Column symmetric 

C(P) = Column space of P 

2. Generalized Symmetric NFM 

Definition: 2.1 Let P be a NFM, if C[P] = C[PT] then P is said to be CS. 

Example:2.1 Let us consider 

0.3,0.5,0.4 0,0,1 0.7,0.2,0.5

0,0,1 0,0,1 0,0,1 ,

0.7,0.2,0.5 0,0,1 0.3,0.2,0.4

P

      
 

=      
 
         

The following NFM are not CS 

 

k -range symmetric matrices 

Secondary k-range symmetric 

FM 

Interval Valued Secondary 

-Range Symmetric FM 

Secondary k-column 

symmetric NFM 



Neutrosophic Sets and Systems, Vol. 64, 2024     27   

 

M.Anandhkumar1, G.Punithavalli2, E.Janaki3, Secondary k-column symmetric NFM 

1,1,0 1,1,0 0,0,1

0,0,1 1,1,0 1,1,0 ,

0,0,1 0,0,1 1,1,0

P

      
 

=      
 
       

1,1,0 0,0,1 0,0,1

1,1,0 1,1,0 0,0,1 ,

0,0,1 1,1,0 1,1,0

TP

      
 

=      
 
         

( ) ( )1,1,0 0,0,1 0,0,1 (P) , 1,1,0 0,0,1 0,0,1 (P )
T T TC C             

( ) ( )1,1,0 1,1,0 0,0,1 (P) , 1,1,0 1,1,0 0,0,1 (P )
T T TC C             

( ) ( )0,0,1 1,1,0 1,1,0 (P) , 0,0,1 1,1,0 1,1,0 (P )
T T TC C             

 

(P) (P )TC C  

Definition 2.2: A NFM P   Fn is s-symmetric NFM   P = VPTV. 

Example:2.2 Let us consider 

0.4,0.3,0.2 0,0,1 0.5,0.4,0.3

0,0,1 0,0,1 0,0,1 ,

0.5,0.4,0.3 0,0,1 0.3,0.2,0.4

P

      
 

=      
 
         

                         

0,0,0 0,0,0 1,1,0

0,0,0 1,1,0 0,0,0

1,1,0 0,0,0 0,0,0

V

      
 

=      
 
       

 

Definition 2.3: A NFM P   Fn is s-CS NFM   C(P) = C(VPTV). 

Example:2.3 Let us consider 

0.7,0.4,0.5 0,0,1 0.8,0.2,0.1

0,0,1 0,0,1 0,0,1 ,

0.8,0.2,0.1 0,0,1 0.5,0.7,0.3

P

      
 

=      
 
         

                         

0,0,0 0,0,0 1,1,0

0,0,0 1,1,0 0,0,0

1,1,0 0,0,0 0,0,0

V

      
 

=      
 
         

Definition 2.4: A NFM P   Fn is s-k-CS NFM   C(P) = C(KVPTVK). 

Example:2.4 Let us consider P
0.7,0.3,0.4 0.5,0.3,0.4

0.5,0.3,0.4 0.7,0.3,0.5

    
=  

    
 ,    

         K
1,1,0 0,0,0

,
0,0,0 1,1,0

    
=  

    

0,0,0 1,1,0
,

1,1,0 0,0,0
V

    
=  
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Preliminary: 2.1 Let V is a permutation NFM its satisfies the conditions   

(i) VVT =  VTV = In  

(ii) VT = V  

(iii) C(P) = C(VP) 

(iv)  C(P) = C(KP). 

Remark 2.1: We notice that P = KVPTVK implies that C(P) = C(KVPTVK)  

This is illustrating the following example  

Example 2.5. Consider a NFM

 

,

 

V
0,0,0 1,1,0

,
1,1,0 0,0,0

    
=  

    
 

 

P
0.7,0.3,0.4 0.5,0.3,0.4

0.5,0.3,0.4 0.7,0.3,0.5

    
=  

    
 , K

1,1,0 0,0,0
,

0,0,0 1,1,0

    
=  

    
 

1,1,0 0,0,0 0,0,0 1,1,0 0.7,0.3,0.4 0.5,0.3,0.4

0,0,0 1,1,0 1,1,0 0,0,0 0.5,0.3,0.4 0.7,0.3,0.5

0,0,0 1,1,0 1,1,0 0,0,0

1,1,0 0,0,0 0,0,0 1,1,0

TKVP VK
                

=      
                

          
  
          



0.7,0.3,0.4 0.5,0.3,0.4

0.5,0.3,0.4 0.7,0.3,0.5

TKVP VK P
    

= = 
      

Therefore, C(P) = C(KVPTVK)  

Example 2.6. Consider a NFM

  
0,0,0 1,1,0 0,0,0 0,0,0 0,0,0 1,1,0

1,1,0 0,0,0 0,0,0 , 0,0,0 1,1,0 0,0,0

0,0,0 0,0,0 1,1,0 1,1,0 0,0,0 0,0,0

K V

              
   

=       =      
   
                 

 

0,0,0 0,0,0 1,1,0

0.5,0.3,0.4 1,1,0 0,0,0

0.4,0.2,0.6 0.5,0.3,0.4 0,0,0

P

      
 

=      
 
       

 

0,0,0 1,1,0 0,0,0 0,0,0 0,0,0 1,1,0

1,1,0 0,0,0 0,0,0 0,0,0 1,1,0 0,0,0

0,0,0 0,0,0 1,1,0 1,1,0 0,0,0 0,0,0

KV

              
   

=            
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0,1,0 0,1,0 0,1,0

0,1,0 0,1,0 1,1,0

1,1,0 0,1,0 0,1,0

KV

      
 

=      
 
       

 

0,0,0 0,0,0 1,1,0 0,0,0 1,1,0 0,0,0

0,0,0 1,1,0 0,0,0 1,1,0 0,0,0 0,0,0

1,1,0 0,0,0 0,0,0 0,0,0 0,0,0 1,1,0

VK

              
   

=            
   
                 

 

0,1,0 0,1,0 1,1,0

1,1,0 0,1,0 0,1,0

0,1,0 1,1,0 0,1,0

VK

      
 

=      
 
         

TP VK =

0.5,0.8,0.4 0.4,0.8,0.6 0,0,0.4

0,0.7,0 0.5,0.7,0 0,0.7,0

0,0,0 0,0,0 1,0,0

      
 

     
 
       

 

0,1,0 0,1,0 0,1,0 0.5,0.8,0.4 0.4,0.8,0.6 0,0,0.4

0,1,0 0,1,0 1,1,0 0,0.7,0 0.5,0.7,0 0,0.7,0

1,1,0 0,1,0 0,1,0 0,0,0 0,0,0 1,0,0

TKVP VK

              
   

=            
   
                 

0,0,0 0,0.2,0 0,0,0

0,0,0 0,0,0 1,0,0

0.5,0,0 0.4,0,0 0,0,0

TKVP VK P

      
 

=       
 
         

TP KVP VK   is not s- κ –symmetric iff not s- κ-CS.

 
Theorem 2.1:For NFM P Fn , the subsequent are equivalent :  

(i) C(P) = C (PT). 

(ii) PT = PH= KP for several IFM H, K and  (P) = r. 

Lemma 2.1: For NFM P   Fn and a PM K, C(P) = C(Q) iff C(KPKT) = C(KQKT) 

Theorem 2.2 .For N F M  P Fn the subsequent are                   equivalent 

(i) C (P) = C(KVPTVK) 

(ii) C (KVP) = C((KVP)T) 

(iii) C(PKV) = C((PKV)T) 

(iv) C(VP) = C(K(VP)TK) 

(v) C(PK)= C(V(PK)TV) 
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(vi) C(PT)= C(KV (P)VK)  

(vii) C(P) = C(PTVK) 

(viii) C(PT) = C(PKV) 

(ix) P = VKPTVKH1 for H1Fn 

(x) P = H1KVPTVK for H 1Fn 

(xi) PT = KVPVKH for HFn 

(xii) PT = HKVPKV for HFn 

Proof: (i)   (ii)    (iv )  

 P is s- κ- Cs  

 C (P) = C(KVPTVK) 

 C(KVP) = C ((KVP)T                                            [ Preliminary 2.1]   

 KVP is Column symmetric 

 VP is κ- Column symmetric                                    

So , (i)  (ii)   (iv) hence. 

(i)   (iii)   (v) 

P is s- κ – CS  

 C(P) = C (KVPTVK)                                   [By Definition 2.4] 

 C(KVP) = C ((KVP)T)                                             [ Preliminary 2.1]     

 C(PKV) = C((PKV)T) 

 PKV is Column symmetric 

 PK is s- Column symmetric 

So , (i)   (iii)   (v) hence.   

 (ii)   (vii) 

KVP is Column symmetric  C (KVP) = C((KVP)T) 

 C(P) = C((KVP)T)                                          [ Preliminary 2.1]     

 C (P) = C(PTVK) 
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So , (ii)   (vii) hence. 

(iii)   (viii): 

PVK is Column symmetric C(PVK) = C((PVK)T) 

 C (PVK) = C(PT)                        [ Preliminary 2.1]    

So ,(iii)   (viii) hence. 

(i)   (vi) 

P is s- κ- Column symmetric  C (P) = C(KVPTVK) 

 C(KVP) = C ((KVP)T)                                       [ Preliminary 2.1]     

 (KVP)T is Column symmetric 

  PTVK is Column symmetric 

  P
T is s- κ - Column symmetric 

So , (i)   (vi) hence. 

(i)    (xi)    (x) 

P is s- κ- Column symmetric   C (P) = C (KVPTVK) 

 C (PT) = C(KVPVK) 

  PT = KVPVKH                   [By Theorem 2.1] 

 P = H1KV PTVK  for H1 Fn 

So , (i) (xi)    (x) hence. 

(ii) (xii)   (ix) 

KVP is Column symmetric   VP is κ- Column symmetric 

 C(VP) = C (K(VP)TK) 

  C(P) = C(PTVK)                    [ Preliminary 2.1]    

 C (PT) = C (KVP) 

  PT = HKVP for H  Fn                                               [By Theorem 2.1] 

  PT = HKVPKV 
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  P = VKPTVKH1 for H 1   Fn 

So , (ii)   (xii)   (ix) hence. 

Corollary 2.1: For NFM PFn the subsequent are equivalent: 

(i) C(P) = C(VPTV)  

(ii) C(VP) = C(VP)T  

(iii) C(PV) = C(PV)T  

(iv) P is s-CS 

(v) C(PT) = C(VPV) 

(vi) C(P) = C (PTV) 

(vii) C(PT) = C(PV) 

(viii) C(KVP) = C((VP)T) 

(ix) P  = VPTVH1 for H1   Fn 

(x) P = H1VPTV for H1   Fn 

(xi) PT = VPVH  for H   Fn 

(xii) PT = HVPV for H   F 

Theorem 2.3: For NFM PFn. Then any two of the subsequent imply the  other one: 

(i) C(P) = C(KPTK) 

(ii) C (P) = C(VKPTKV)  

(iii) C(PT) = C ((VKP)T) 

Proof: (i) & (ii)  (iii) 

P is s- κ – Cs  

C(P) = C (PTVK)                                  

C(KPK) = C(KPTK)                                     [By Lemma 2.1] 



Neutrosophic Sets and Systems, Vol. 64, 2024     33   

 

M.Anandhkumar1, G.Punithavalli2, E.Janaki3, Secondary k-column symmetric NFM 

Hence (i) & (ii)   C(PT) = C((VPK)T) 

So,(iii) hence. 

(i) & (iii)   (ii) 

P is κ- Column symmetric C (P) = C (KPTK) 

C(KPK) = C(PT)            [By Lemma 2.1] 

Hence (i) & (iii) 

   C(KPK)= C((VPK)T ) 

C(P) = C(PTVK) 

  C(P) = C( (KVP)T) 

 P is s- κ CS                           [By Theorem 2.2] 

So, (ii) hence. 

(iii) & (ii) implies (i) 

 P is s- κ – Cs  

  C(P)= C (PTVK) 

C (KPK) = C (KPTV)           [Preliminary 2.1]     

Hence (ii) & (iii)   C (KPK) = C(PT) 

C(P) = C(KPTK)          [By Lemma 2.1] 

 P  is κ – Column symmetric 

Therefore,(i) hold. Hence the Theorem 

3.s- κ-Column Symmetric Regular NFM 

In this section, it was discovered that there are various generalized inverses of matrices in 

NFM. The comparable standards for different g-inverses of  s-k CS NFM to be  s-k CS are 

also established. The generalized inverses of an  s −  CS P corresponding to the sets P1, 2, 

P1, 2, 3 and P1, 2, 4 are characterized. 

Theorem 3.1: Let   Fn , Z P {1,2} and PZ, ZP, are s- κ-CS NFM. Then P is s- κ - CS NFM ⇔ Z is 

s- κ – CS NFM.  

Proof: C(KVP) = C(KVPZP) ⊆ C(ZP)          [since P = PZP]   

= C(ZVVP) = N(ZVKKVP) ⊆ C(KVP)  
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       Hence, C(KVP) = C(ZP)  

               = C(KV(ZP)TVK)          

               = C(PT ZT VK)  

               = C(ZT VK)  

               = C((KVZ)T)  

   C ((KVP)T)  = C (PT VK)  

               = C (ZT PT VK)   

               = C((KVPZ)T)    

               = C(KVPZ)             

               = C(KVZ) 

 KVZ is column symmetric ⇔ C(KVP) = N((KVP)T)   

                         ⇔ C((KVZ)T) = N(KVZ) 

                         ⇔ KVZ is CS 

                         ⇔ Z is s- κ- CS 

Theorem 3.2: Let P Fn, Z ∈ P{1,2,3}, C(KVP) = C((KVZ)T).Then P is s-κ-CS NFM ⇔ Z is s- κ - CS 

NFM. 

Proof: Given Z ∈P {1,2,3}, we have PZP  = P,ZPZ =Z, (PZ)T=PZ 

             C ((KVP)T) = C(ZT PT VK)                   [By using PZP = P] 

                       = C(KV(PZ)T) 

                          = C((PZ)T)                           [ Preliminary 2.1]     

                       = C(PZ)                           [(PZ)T = PZ] 

                       = C(Z)                            [By using Z = ZPZ] 

                          = C(KVZ)                            [ Preliminary 2.1]     

KVP is column symmetric NFM ⇔ C (KVP) = C ((KVP)T) 

                             ⇔ C((KVZ)T) = C(KVZ) 

                             ⇔ KVZ is column symmetric 

                             ⇔ Z is s- κ - column symmetric. 

Theorem 3.3: Let P ∈ Fn, Z ∈P{1,2,4}, C((KVP)T) = C(KVZ) . Then P is s- κ- CS NFM ⇔ Z is s- κ- CS 

NFM. 
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Proof: Given Z ∈ P{1, 2, 4},  

 PZP  = P,ZPZ = Z, (ZP)T = ZP 

  C(KVP) = C(P)                                    [ Preliminary 2.1]    

         = C(ZP)                     [ZPZ = Z, PZP = P] = N((ZP)T) [(ZP)T = ZP] 

        = C(P TZT) 

         = C (ZT) 

          = C((KVZ)T).        [Preliminary 2.1]     

KVP is column symmetric NFM ⇔ C(KVP) = C((KVP)T 

⇔ C((KVZ) T) = C(KVZ) 

⇔ KVZ is CS NFM 

⇔ Z is s- κ – CS NFM.      

4.Conclusion: 

 Firstly, we present equivalent characterizations of an k- CS,  CS,  s- CS,  s-k CS NFM. Also,we 

give the example of s-k-symmetric NFM is s-k- CS Neutrosophic fuzzy matrix the opposite isn't 

always true. We discussed various generalized inverses of NFM and generalized inverses of an  s − 

k CS P corresponding to the sets P1, 2, P1, 2, 3 and P1, 2, 4 are characterized.Finally, to conclude 

we have introduced the concept of secondary k-CS neutrosophic fuzzy matrices. In future we will work on 

interval valued secondary k-CS neutrosophic fuzzy matrices.  
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Abstract: This paper presents the study of the effectiveness of horizontal transfer of local isolates of 

the pathogenic fungus Beauveria bassiana (Balsamo) on adults of olive fruit fly Bactrocera oleae 

(Rossi) at a concentration of 106 spores/ml in laboratory conditions (this work was carried out in 

specialized scientific laboratories). In addition, it is not possible to reach the desired results in such 

experiments effectively when the data and observations of the study are not clear and accurate. For 

this reason, in this paper, experimental data will be presented with inaccurate or uncertain 

observations using neutrosophic statistics. The purpose is to know the success of males 

contaminated with pathogenic isolates in the transmission of infection to females. In laboratory 

conditions through a neutrosophic reading of the study data. This proposed presentation provides 

greater accuracy, flexibility, and applicability than the classic experimental design in the case of 

uncertainty. 

Keywords: Beauveria bassiana, bactrocera oleae, horizontal transmission, neutrosophic logic. 

 

1. Introduction 

Entomopathogenic fungi are the most common and easiest to distinguish insect pathogens. It is 

characterized by its superiority in terms of species, the wide range of its terrestrial and aquatic hosts, 

and its ability to form spores with which to resist unsuitable environmental conditions. In addition, 

it would have been possible, through these characteristics, to reach the epidemiological level if it were 

not for its close association with environmental conditions such as humidity and heat [9,15,18]. 
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Early symptoms of infection begin with the host insect stopping feeding and losing balance with slow 

movement [13]. By penetrating the fungus' hyphal cells, we notice dark black spots resulting from 

the deposition of melanin at the hyphal penetration sites. The mycelium outside the insect is the most 

prominent manifestation of infection [18]. 

Infection of insects with fungal diseases goes through four successive steps: 

1. Contact between the host and the sites of germination. 

2. Adhesion and germination of the sporophyte tube. 

3. Penetration and invasion of the fungus into the tissues and organs of the host under 

anaerobic conditions. 

4. The death of the host Balsamo to the natural obstruction of the alimentary canal, bronchi, and 

circulatory systems, poisoning or physiological starvation) and the production of 

blastospores which are contagious, and the transition to the throwing state that ends with 

sporulation on the surface of the host’s body [21]. 

 

The time required for the pathogenic fungus to kill the insect varies according to several factors, 

including the stage of the insect, humidity, and the pathogenic fungus itself. Most pathogenic fungi 

need 3-12 days from infection until the insect dies [18]. The fungus secretes a group of secondary 

metabolites and mycotoxins that are chemically diverse and vary according to the genetic strain of 

the fungus. These toxins are Beauvericin, Bas-sianin, Beauverolides, Bassianolide and Tenellin, which 

kill the host by destroying its tissues and degrading its cells, in addition, the growth of the fungus 

impedes the path of the blood fluid. In addition, by feeding the fungus, it depletes the nutrients 

present in the host’s body, and thus the body organs of the insects infected with it die [11, 20]. 

These toxins can weaken and kill the insect before the mycelium fully developed inside the 

insect's body [20]. The pathogenic fungus can also kill the insect through its entry into the Gut of the 

larvae, killing them from starvation [12]. 

Many studies have proven the ability of pathogenic fungi to infect insects and cause death to 

them. Therefore, this research was conducted to study the possibility of transmission of infection 

from males treated with pathogenic fungi to females, from a neutrosophic point of view. This opens 

the way for dealing with issues surrounding study data that are not precisely defined. 

Neutrosophic means the study of ideas and concepts that are neither right nor wrong, but 

between that, and this means (neutrality, indeterminacy, ambiguity, contradiction, and others), and 

that every field of knowledge and experience has its neutrosophic part, that part that contains 
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indeterminacy. The first to lay the foundations of the neutrosophic was the American philosopher 

and mathematician, "Florentin Smarandache", who presented neutrosophic logic in 1995 as a 

generalization of fuzzy logic [1,2]. As an extension of this, Ahmed Salama presented the theory of 

classical neutrosophic sets as a generalization of the theory of classical sets [3,4]. The neutrosophic 

has grown significantly in recent years. Many researchers have worked in the neutrosophic field of 

science around the world such as Huda E. Khalid et al [16,17]. Because it formed a real revolution in 

science through its application in many disciplines and scientific and practical fields [5-8]. In this 

research, we highlight the application of neutrosophic logic to the study data so that we have three 

cases (dead, indefinite, injured) instead of two cases as in the classical logic that does not recognize 

the existence of uncertain cases. 

2. Research Materials and Methods: 

1-Obtaining olive fruit fly adults: olive fruit fly larvae and pupae collected from the dissection of 

infected fruits collected from olive trees Taken from [14]. 

2-Isolation of the pathogenic fungus: An isolation of the fungus Beauveria bassiana approved, which 

follows the scientific classification. According to [19]. 

Kingdom of fungi, Department of Ascetic Fungi, Row: Sordariomycetes 

Order: Hypocreales, Family: Clavicipitaceae, Genus: Beauveria 

Genre: (Balsmo.criv.) (vuill,1912) B. bassiana . 

3. Search Objective 

Studying the role of male olive fruit fly in transmitting infection with the fungus Beauveria 

bassiana to females. Under laboratory conditions through a neutrosophic viewpoint. (That allows us 

to obtain incomplete or unclear information about the transmission of infection or the emergence of 

symptoms). 

4. The Method of Work 

The concentrations of 106 spores/ml of the sporophyte suspension of the pathogenic fungus B. 

bassiana were tested at a rate of 5 replications. 4 males were sprayed with the sporophyte suspension 

at a rate of 1 ml of the tested concentration at the age of 0-24 hours, after placing them in a glass tube 

and in the refrigerator at a temperature of 4ºC for a period 2-5 minutes to reduce the movement of 
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flies. Then the contaminated males were added to 4 females aged 0-24 hours in plastic containers with 

a diameter of 10 cm, and a height of 20 cm. 5 replicates were approved for each concentration. Males 

and females were monitored, and the possibility of pathogenic fungi transmitting to females by 

mating or attempting to mate in laboratory conditions was recorded, while the control males were 

treated with distilled water. The plastic containers were placed in the incubator at a temperature of 

25±2ºC, a humidity of 60± 5%, and an illumination of 12:12 (dark: light). The death rates were recorded 

every 48 hours starting from the fourth day (when the insects had matured sexually and became able 

to mate) for 8 days after treatment. 

5.  Results and Discussion 

The males contaminated with the pathogenic fungus by spraying the sporophyte suspension in 

the laboratory achieved success in transmitting the infection to the females. The death of females 

started on the sixth day of treatment, while the males started on the fourth day of treatment. In 

addition, the following study shows us in days (4-6-8) the Corrected death rates and infection rates, 

as well as the unspecified percentages that range between the healthy and the injured who have not 

yet shown symptoms. 

On the fourth day. The death rate of males from the treatment was 45%, and 25% of the males 

had symptoms that ranged from simple to severe symptoms such as slow motion or even stopping 

movement and going up to the top of the breeding box. In addition, there are 30% (unspecified 

percentage) of Males did not show any symptoms. but this does not mean that these males are 

healthy, as they may be carriers of spores and are able to transmit them to females even if they are 

resistant to them. As for females, no death rate was recorded, and 20% of them showed some 

symptoms of the disease, such as slow movement and lack of nutrition. Therefore, 80% of females are 

not determined if they are healthy or infected, but they have not yet shown symptoms of the disease. 
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Table (1): Corrected Death Rates and Infestation of Adult Olive Fruit Fly (When Males were Treated with an 

Isolate of the Pathogenic Fungus B. Bassiana in Vitro) 

 On the sixth day of treatment. The death rate of males reached 77.8%, as the fungus spores on it, 

and its secretion of toxic toxins affected the males greatly. In addition, 15% of the infected males 

showed symptoms ranging from mild to severe, and therefore 7.2% of the males were not determined 

whether they were healthy or infected and did not show symptoms yet. 

  As for females, the death rate was 20%, and 15% of the females’ showed symptoms of infection 

ranging from mild to severe, and therefore 65% of females are not determined whether they are 

healthy or infected and have not shown symptoms yet. 

Table (2): Corrected Death Rates and Infestations for Adult Olive Fruit Flies (When Males were Treated with 

an Isolate of the Pathogenic Fungus B. Bassiana in the Laboratory). 

On the eighth day of treatment. the death rate of males reached 90%, and 7% of the males showed 

symptoms ranging from mild to severe, and therefore 3% of the males were unspecified (if they were 

completely healthy or infected, the symptoms did not appear yet). 
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The death rate of females reached 35%, 20% of infected people showed symptoms ranging from 

mild to severe, and 45% were unspecified (healthy or injured, no symptoms appeared yet). 

 

Table (3): Corrected Death Rates and Infestation for Adult Olive Fruit Fly (When Males were Treated with an 

Isolate of the Pathogenic Fungus B. Bassiana in the Laboratory). 

6. Conclusion and Results 

      This paper concludes that studying the role of male olive fruit fly in transmitting infection with 

the fungus Beauveria bassiana to females under laboratory conditions through a neutrosophic point 

of view provides a more general and clear view (In the transmission of infection between insects). 

One of the well-known classic methods ends with the insect being infected or healthy only and 

eliminating the idea and the state of the existence of uncertainty. That is, it is possible that there is an 

unspecified case that appears healthy (and did not show any symptoms of infection), yet it is a carrier 

of the disease and causes infection. The results of the research either indicate that males are carriers 

of the disease, clearly and explicitly, or infected with no symptoms yet, but they can transmit it to 

females in both cases. Where the males are carriers of spores and transmit them to the females 

through mating or attempting to mate, and this is the aim of the study. Thus, according to our study, 

the chance of transmitting the disease from males to females becomes higher. This provides a correct 

view of the shortest possible time to achieve the goal, which is the largest possible infection rate and 

therefore the highest death rates, and we get rid of this insect and its damage to olive fruits as soon 

as possible. We look forward soon to generalizing this study to other types of insects. 
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Abstract: This article aims to study the neutrosophic quaternion numbers, where we defined the 

neutrosophic quaternions numbers and the two equal neutrosophic quaternions numbers, also, the 

neutrosophic quaternions numbers algebra were introduced by studying addition, multiplication, 

division and conjugate of a neutrosophic quaternions number. In addition,  we have discussed how 

to calculate the absolute value of a neutrosophic quaternions number and its inverted. 

 

Keywords: neutrosophic; quaternion numbers; division; multiplication; the absolute value of a 

neutrosophic quaternions number. 

 

 

 

1. Introduction and Preliminaries 

    In an attempt to replace the current logics, Smarandache introduced the neutrosophic logic 

to illustrate a mathematical model of redundancy, uncertainty, contradiction, unknown, ambiguity, 

undefined, inconsistency, vagueness, imprecision, and incompleteness. Smarandache defined 

neutrosophic real number [2-4], probabilities according to neutrosophic logic [3-5-13], the 

neutrosophic statistics [4][6], he has also introduced the concept of integration and differentiation in 

neutrosophic [1-8]. Madeleine Al- Taha presented results on single valued neutrosophic (weak) 

polygroups [9]. Chakraborty utilized pentagonal neutrosophic number in networking problems, and 

Shortest Path Problems [11-12]. Yaser Alhasan probed the concepts of neutrosophic in the complex 

numbers [7-14-10].  

      

   Paper consists of 3 sections. In 1th section, provides an introduction, in which neutrosophic 

science  review has given. In 2th section, frames the neutrosophic quaternion numbers. In 3th section, 

a conclusion to the paper is given. 

2. Main Discussion  

The neutrosophic quaternions numbers 

Definition1 

mailto:i.abdulah@psau.edu.sa
mailto:y.alhasan@psau.edu.sa
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We call the numbers that take the form: 

 

 𝑞𝐼 = �́� + �́�𝐼 + 𝑣�́� = �́� + �́�𝐼 + (𝑐1́ + 𝑑1
́ 𝐼)𝑖̆ + (𝑐2́ + 𝑑2

́ 𝐼)𝑗̆ + (𝑐3́ + 𝑑3
́ 𝐼)�̆�  

 

the neutrosophic quaternions numbers, denoted by symbol 𝐻𝑁 ; where  �́�, �́�, 𝑐1́, �́�1, 𝑐2́, 𝑑2
́ ,  𝑐3́, 𝑑3

́  

are real numbers, while 𝐼 = indeterminacy and 𝑖,̆ 𝑗̆, �̆� are units such that: 

 

𝑖̆2 =  𝑗̆2 = 𝑘2 = 𝑖�̆�̆�̆� = −1 

𝑖̆𝑗̆ = �̆� = − 𝑗̆𝑖 ̆

𝑗̆�̆� = 𝑖̆ = −�̆�𝑗̆ 

�̆�𝑖̆ =  𝑗̆ = −𝑖̆�̆� 

 

We can noted that every neutrosophic quaternions number has two parts, a neutrosophic real 

(scalar) part and a neutrosophic vector part, where: 

 

�́� + �́�𝐼 is the neutrosophic real (scalar) part and (𝑐1́ + 𝑑1
́ 𝐼)𝑖̆ + (𝑐2́ + 𝑑2

́ 𝐼)𝑗̆ + (𝑐3́ + 𝑑3
́ 𝐼)�̆� is the 

neutrosophic vector part 

 

Example 1 

 

1) 𝑞𝐼 = 3 + 7𝐼 + (−4 + 8𝐼)𝑖̆ + (7 − 3𝐼)𝑗̆ − (5 + 9𝐼)�̆�   

2) 𝑞𝐼 = 4𝐼𝑖̆ + (5 + 𝐼)𝑗̆ + (−1 + 2𝐼)�̆�   

3) 𝑞𝐼 = 3𝐼 + (2 + 3𝐼)𝑖̆ + (−1 + 2𝐼)�̆�   

4) 𝑞𝐼 = 6 + 𝐼 + (9 − 4𝐼)𝑖̆ 

 

Note: 

 

✓ 0𝐻𝑁
= 0 + 0𝐼 + (0 + 0𝐼)𝑖̆ + (0 + 0𝐼)𝑗̆ + (0 + 0𝐼)�̆� 

 

✓ 0𝐻𝑁
= 1 + 0𝐼 + (0 + 0𝐼)𝑖̆ + (0 + 0𝐼)𝑗̆ + (0 + 0𝐼)�̆� 

 

Definition2 

Let  𝑞𝐼 , 𝑝𝐼  ∈ 𝐻𝑁 where:  

 

𝑞𝐼 = �́� + �́�𝐼 + 𝑣�́� = �́� + �́�𝐼 + (𝑐1́ + 𝑑1
́ 𝐼)𝑖̆ + (𝑐2́ + 𝑑2

́ 𝐼)𝑗̆ + (𝑐3́ + 𝑑3
́ 𝐼)�̆�  

 

𝑝𝐼 = �́� + �́�𝐼 + 𝑢𝐼́ = �́� + �́�𝐼 + (𝛼1́ + 𝑏1́𝐼)𝑖̆ + (𝛼2́ + 𝑏2́𝐼)𝑗̆ + (𝛼3́ + 𝑏3́𝐼)�̆�  

 

 then:  𝑞𝐼 = 𝑝𝐼  if and only if:  

�́� = �́�  𝑎𝑛𝑑 𝑣�́� = 𝑢𝐼́  

hence: 

𝑐1́ + 𝑑1
́ 𝐼 = 𝛼1́ + 𝑏1́𝐼    ⟹      𝑐1́ =  𝛼1́ 𝑎𝑛𝑑  𝑑1

́ = 𝑏1́ 

 

𝑐2́ + 𝑑2
́ 𝐼 = 𝛼2́ + 𝑏2́𝐼    ⟹      𝑐2́ =  𝛼2́ 𝑎𝑛𝑑  𝑑2

́ = 𝑏2́ 

 

𝑐3́ + 𝑑3
́ 𝐼 = 𝛼3́ + 𝑏3́𝐼    ⟹      𝑐3́ =  𝛼3́ 𝑎𝑛𝑑  𝑑3

́ = 𝑏3́ 

 

2.1 The neutrosophic quaternions numbers algebra 

2.1.1 Addition of the neutrosophic quaternions numbers 

Let  𝑞𝐼 , 𝑝𝐼  ∈ 𝐻𝑁 where:  



Neutrosophic Sets and Systems, Vol. 64, 2024    48   

 

Yaser Ahmad Alhasan, Basel Hamdo Alarnous and Iqbal Ahmed Musa, The neutrosophic quaternions numbers 

 

𝑞𝐼 = �́� + �́�𝐼 + 𝑣�́� = �́� + �́�𝐼 + (𝑐1́ + 𝑑1
́ 𝐼)𝑖̆ + (𝑐2́ + 𝑑2

́ 𝐼)𝑗̆ + (𝑐3́ + 𝑑3
́ 𝐼)�̆�  

𝑝𝐼 = �́� + �́�𝐼 + 𝑢𝐼́ = �́� + �́�𝐼 + (𝛼1́ + 𝑏1́𝐼)𝑖̆ + (𝛼2́ + 𝑏2́𝐼)𝑗̆ + (𝛼3́ + 𝑏3́𝐼)�̆�  

 then: 

            𝑞𝐼 + 𝑝𝐼 = (�́� + �́�𝐼 + 𝑣�́�) + (�́� + �́�𝐼 + 𝑢𝐼́ ) 

 

             = ((�́� + �́�) + (�́� + �́�)𝐼) + ((𝑐1́ + 𝛼1́) + (𝑏1́ + 𝑑1
́ )𝐼) 𝑖̆ + ((𝑐2́ + 𝛼2́) + (𝑏2́ + 𝑑2

́ )𝐼) 𝑗̆

+ ((𝑐3́ + 𝛼3́) + (𝑏3́ + 𝑑3
́ )𝐼) �̆� 

Example 2 

Let 𝑞𝐼 = 8 + 7𝐼 + (−5 + 8𝐼)𝑖̆ + (7 − 4𝐼)𝑗̆ − (5 + 9𝐼)�̆�  𝑎𝑛𝑑 𝑝𝐼 = 2𝐼 + (2 − 3𝐼)𝑖̆ + (3 − 𝐼)𝑗̆ + (−1 +

2𝐼)�̆� 

 

then: 

 

𝑞𝐼 + 𝑝𝐼 = (8 + 7𝐼 + (−5 + 8𝐼)𝑖̆ + (7 − 4𝐼)𝑗̆ − (5 + 9𝐼)�̆�) + (2𝐼 + (2 − 3𝐼)𝑖̆ + (3 − 𝐼)𝑗̆ + (−1 + 2𝐼)�̆�) 

= (8 + 9𝐼) + (−3 + 5𝐼)𝑖̆ + (10 − 5𝐼)𝑗̆ + (−6 − 7𝐼)�̆� 

 

Note: 

✓ Clearly, zero is neutral for addition. 

✓ For every number  𝑞𝐼 ∈ 𝐻𝑁, its additive counterpart is: 

 

−𝑞𝐼 = −�́� − �́�𝐼 − 𝑣�́� = −�́� − �́�𝐼 − (𝑐1́ + 𝑑1
́ 𝐼)𝑖̆ − (𝑐2́ + 𝑑2

́ 𝐼)𝑗̆ − (𝑐3́ + 𝑑3
́ 𝐼)�̆� 

 

2.1.2 Multiplication of the neutrosophic quaternions numbers 

Let  𝑞𝐼 , 𝑝𝐼  ∈ 𝐻𝑁 where: 

  

𝑞𝐼 = �́� + �́�𝐼 + 𝑣�́� = �́� + �́�𝐼 + (𝑐1́ + 𝑑1
́ 𝐼)𝑖̆ + (𝑐2́ + 𝑑2

́ 𝐼)𝑗̆ + (𝑐3́ + 𝑑3
́ 𝐼)�̆�  

𝑝𝐼 = �́� + �́�𝐼 + 𝑢𝐼́ = �́� + �́�𝐼 + (𝛼1́ + 𝑏1́𝐼)𝑖̆ + (𝛼2́ + 𝑏2́𝐼)𝑗̆ + (𝑐3́ + 𝑑3
́ 𝐼)�̆�  

  

then: 

  𝑞𝐼 . 𝑝𝐼 = (�́� + �́�𝐼 + 𝑣�́�)(�́� + �́�𝐼 + 𝑢𝐼́ ) 

 

          = [�́� + �́�𝐼 + (𝑐1́ + 𝑑1
́ 𝐼)𝑖̆ + (𝑐2́ + 𝑑2

́ 𝐼)𝑗̆ + (𝑐3́ + 𝑑3
́ 𝐼)�̆�][�́� + �́�𝐼 + (𝛼1́ + 𝑏1́𝐼)𝑖̆ + (𝛼2́ + 𝑏2́𝐼)𝑗̆

+ (𝛼3́ + 𝑏3́𝐼)�̆�] 

 

= (�́� + �́�𝐼)(�́� + �́�𝐼) + (�́� + �́�𝐼)(𝛼1́ + 𝑏1́𝐼)𝑖̆ + (�́� + �́�𝐼)(𝛼2́ + 𝑏2́𝐼)𝑗̆ + (�́� + �́�𝐼)(𝛼3́ + 𝑏3́𝐼)�̆�

+ (�́� + �́�𝐼)(𝑐1́ + 𝑑1
́ 𝐼)𝑖̆ + (𝑐1́ + 𝑑1

́ 𝐼)𝑖̆(𝛼1́ + 𝑏1́𝐼)𝑖̆ + (𝑐1́ + 𝑑1
́ 𝐼)𝑖̆(𝛼2́ + 𝑏2́𝐼)𝑗̆

+ (𝑐1́ + 𝑑1
́ 𝐼)𝑖̆ (𝛼3́ + 𝑏3́𝐼)�̆� + (�́� + �́�𝐼)(𝑐2́ + 𝑑2

́ 𝐼)𝑗̆ + (𝛼1́ + 𝑏1́𝐼)𝑖̆(𝑐2́ + 𝑑2
́ 𝐼)𝑗̆

+ (𝛼2́ + 𝑏2́𝐼)𝑗̆(𝑐2́ + 𝑑2
́ 𝐼)𝑗̆ + (𝛼3́ + 𝑏3́𝐼)�̆�(𝑐2́ + 𝑑2

́ 𝐼)𝑗̆ + (�́� + �́�𝐼)(𝑐3́ + 𝑑3
́ 𝐼)�̆�

+ (𝑐3́ + 𝑑3
́ 𝐼)�̆�(𝛼1́ + 𝑏1́𝐼)𝑖̆ + (𝑐3́ + 𝑑3

́ 𝐼)�̆�(𝛼2́ + 𝑏2́𝐼)𝑗̆ + (𝑐3́ + 𝑑3
́ 𝐼)�̆�(𝛼3́ + 𝑏3́𝐼)�̆� 

 

= (�́� + �́�𝐼)(�́� + �́�𝐼) + (�́� + �́�𝐼)(𝛼1́ + 𝑏1́𝐼)𝑖̆ + (�́� + �́�𝐼)(𝛼2́ + 𝑏2́𝐼)𝑗̆ + (�́� + �́�𝐼)(𝛼3́ + 𝑏3́𝐼)�̆�

+ (�́� + �́�𝐼)(𝑐1́ + 𝑑1
́ 𝐼)𝑖̆ − (𝑐1́ + 𝑑1

́ 𝐼)(𝛼1́ + 𝑏1́𝐼) + (𝑐1́ + 𝑑1
́ 𝐼)𝑖̆(𝛼2́ + 𝑏2́𝐼)𝑗̆

+ (𝑐1́ + 𝑑1
́ 𝐼)𝑖̆ (𝛼3́ + 𝑏3́𝐼)�̆� + (�́� + �́�𝐼)(𝑐2́ + 𝑑2

́ 𝐼)𝑗̆ + (𝛼1́ + 𝑏1́𝐼)𝑖(̆𝑐2́ + 𝑑2
́ 𝐼)𝑗̆

− (𝛼2́ + 𝑏2́𝐼)(𝑐2́ + 𝑑2
́ 𝐼) + (𝛼3́ + 𝑏3́𝐼)�̆�(𝑐2́ + 𝑑2

́ 𝐼)𝑗̆ + (�́� + �́�𝐼)(𝑐3́ + 𝑑3
́ 𝐼)�̆�

+ (𝑐3́ + 𝑑3
́ 𝐼)�̆�(𝛼1́ + 𝑏1́𝐼)𝑖̆ + (𝑐3́ + 𝑑3

́ 𝐼)�̆�(𝛼2́ + 𝑏2́𝐼)𝑗̆ − (𝑐3́ + 𝑑3
́ 𝐼)(𝛼3́ + 𝑏3́𝐼) 
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= (�́� + �́�𝐼)(�́� + �́�𝐼) − [(𝑐1́ + 𝑑1
́ 𝐼)(𝛼1́ + 𝑏1́𝐼) + (𝛼2́ + 𝑏2́𝐼)(𝑐2́ + 𝑑2

́ 𝐼) + (𝑐3́ + 𝑑3
́ 𝐼)(𝛼3́ + 𝑏3́𝐼)]

+ (�́� + �́�𝐼)[(𝛼1́ + 𝑏1́𝐼)𝑖̆ + (𝛼2́ + 𝑏2́𝐼)𝑗̆ + (𝛼3́ + 𝑏3́𝐼)�̆�]

+ (�́� + �́�𝐼)[(𝑐1́ + 𝑑1
́ 𝐼)𝑖̆ + (𝑐2́ + 𝑑2

́ 𝐼)𝑗̆ + (𝑐3́ + 𝑑3
́ 𝐼)�̆�] + (𝑐1́ + 𝑑1

́ 𝐼)(𝛼2́ + 𝑏2́𝐼)�̆�

− (𝑐1́ + 𝑑1
́ 𝐼)(𝛼3́ + 𝑏3́𝐼)𝑗̆ − (𝑐2́ + 𝑑2

́ 𝐼)(𝛼1́ + 𝑏1́𝐼)�̆� + (𝑐2́ + 𝑑2
́ 𝐼)(𝛼3́ + 𝑏3́𝐼)𝑖̆

+ (𝑐3́ + 𝑑3
́ 𝐼)(𝛼1́ + 𝑏1́𝐼)𝑗̆ − (𝑐3́ + 𝑑3

́ 𝐼)(𝛼2́ + 𝑏2́𝐼)𝑖̆ 

 

we can write it by the form: 

 

𝑞𝐼 . 𝑝𝐼 = (�́� + �́�𝐼)(�́� + �́�𝐼) − 𝑣�́� . 𝑢𝐼́ + (�́� + �́�𝐼)𝑢𝐼́ + (�́� + �́�𝐼)𝑣�́� + 𝑣�́� × 𝑢𝐼́  

where: 

𝑣�́� . 𝑢𝐼́ = (𝑐1́ + 𝑑1
́ 𝐼)(𝛼1́ + 𝑏1́𝐼) + (𝑐2́ + 𝑑2

́ 𝐼)(𝛼2́ + 𝑏2́𝐼) + (𝑐3́ + 𝑑3
́ 𝐼)(𝛼3́ + 𝑏3́𝐼) 

 

𝑣�́� × 𝑢𝐼́ = |

𝑖̆ 𝑗̆ �̆�

𝑐1́ + 𝑑1
́ 𝐼 𝑐2́ + 𝑑2

́ 𝐼 𝑐3́ + 𝑑3
́ 𝐼

𝛼1́ + 𝑏1́𝐼 𝛼2́ + 𝑏2́𝐼 𝛼3́ + 𝑏3́𝐼

| 

Result1: 

 

 Multiplication of the neutrosophic quaternions numbers is not commutative because: 

𝑣�́� × 𝑢𝐼́ ≠ 𝑢𝐼́ × 𝑣�́� 

Example 3 

 

Let 𝑞𝐼 = 2 + 𝐼 + (1 − 4𝐼)𝑖̆ + (8 − 3𝐼)𝑗̆ + (6 + 4𝐼)�̆�  𝑎𝑛𝑑 𝑝𝐼 = 7𝐼 + (3 − 3𝐼)𝑖̆ + (2 − 5𝐼)𝑗̆ + (−4 +

2𝐼)�̆� 

 

then: 

 

     𝑞𝐼 . 𝑝𝐼 = (2 + 𝐼 + (1 − 4𝐼)𝑖̆ + (8 − 3𝐼)𝑗̆ + (6 + 4𝐼)�̆�)(7𝐼 + (3 − 3𝐼)𝑖̆ + (2 − 5𝐼)𝑗̆ + (−4 +

2𝐼)�̆�) 

= 14𝐼 + 7𝐼 − [3 − 3𝐼 − 12𝐼 + 12𝐼 + 16 − 40𝐼 − 6𝐼 + 15𝐼 − 24 + 12𝐼 − 16𝐼 + 8𝐼]

+ [(6 − 6𝐼 + 3𝐼 − 3𝐼)𝑖̆ + (4 − 10𝐼 + 2𝐼 − 5𝐼)𝑗̆ + (−8 + 4𝐼 − 4𝐼 + 2𝐼)�̆�]

+ [(7𝐼 − 28𝐼)𝑖̆ + (56𝐼 − 2𝐼)𝑗̆ + (42𝐼 + 28𝐼)�̆�] + |
𝑖̆ 𝑗̆ �̆�

1 − 4𝐼 8 − 3𝐼 6 + 4𝐼
3 − 3𝐼 2 − 5𝐼 −4 + 2𝐼

| 

 

               = 21𝐼 − (−5 − 30𝐼) + (6 − 6𝐼)𝑖̆ + (4 − 13𝐼)𝑗̆ + (−8 + 2𝐼)�̆� + 21𝐼𝑖̆ + 54𝐼𝑗̆ +

70𝐼�̆� + (−45 + 64𝐼)𝑖̆ + (22 − 28𝐼)𝑗̆ + (22 + 34𝐼)�̆� 

 

               = 5 + 57𝐼 + (39 + 79𝐼)𝑖̆ + (26 − 13𝐼)𝑗̆ + (12 + 106𝐼)�̆� 

Result2: 

 

1) The neutrosophic quaternions numbers 𝐻𝑁 is closed in relation to the addition operation, as 

the product of adding two neutrosophic quaternions numbers is a neutrosophic quaternions 

numbers, its real part is(�́� + �́�) + (�́� + �́�)𝐼, and its vector part is: 

 

((𝑐1́ + 𝛼1́) + (𝑏1́ + 𝑑1
́ )𝐼) 𝑖̆ + ((𝑐2́ + 𝛼2́) + (𝑏2́ + 𝑑2

́ )𝐼) 𝑗̆ + ((𝑐3́ + 𝛼3́) + (𝑏3́ + 𝑑3
́ )𝐼) �̆�. 

2) The neutrosophic quaternions numbers 𝐻𝑁  is closed in relation to the multiplication 

operation, as the product of multipl two neutrosophic quaternions numbers is a neutrosophic 

quaternions numbers, its real part is (�́� + �́�𝐼)(�́� + �́�𝐼) − 𝑣�́� . 𝑢𝐼́ , and its vector part is(�́� +

�́�𝐼)𝑣�́� + (�́� + �́�𝐼)𝑢𝐼́ + 𝑣�́� × 𝑢𝐼́ . 

3) Multiplication accepts distribution on addition from the right and the left, so if we have three 

neutrosophic quaternions numbers 𝑞𝐼 , 𝑝𝐼 , 𝑟𝐼  ∈ 𝐻𝑁, then: 
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𝑞𝐼(𝑝𝐼 +  𝑟𝐼) = 𝑞𝐼 . 𝑝𝐼 + 𝑞𝐼 . 𝑟𝐼  

 

(𝑝𝐼 + 𝑟𝐼)𝑞𝐼 = 𝑝𝐼 . 𝑞𝐼 + 𝑟𝐼 . 𝑞𝐼 

 

4) The neutrality of multiplying numbers is  1 + 0𝐼 

 

2.2 The neutrosophic quaternions numbers conjugate 

Definition3 

Let 𝑞𝐼 ∈ 𝐻𝑁 , where 𝑞𝐼 = �́� + �́�𝐼 + 𝑣�́� = �́� + �́�𝐼 + (𝑐1́ + 𝑑1
́ 𝐼)𝑖̆ + (𝑐2́ + 𝑑2

́ 𝐼)𝑗̆ + (𝑐3́ + 𝑑3
́ 𝐼)�̆� . The 

neutrosophic quaternions number conjugate define by the following form: 

  

 𝑞�̅� = �́� + �́�𝐼 − 𝑣�́� = �́� + �́�𝐼 − (𝑐1́ + 𝑑1
́ 𝐼)𝑖̆ − (𝑐2́ + 𝑑2

́ 𝐼)𝑗̆ − (𝑐3́ + 𝑑3
́ 𝐼)�̆�. 

 

Example 4 

i. 𝑞𝐼 = 28 + 4𝐼 + (14 − 17𝐼)𝑖̆ + (17 − 3𝐼)𝑗̆ − (77 − 45𝐼)�̆�      

  ⟹   𝑞�̅� = 28 + 4𝐼 − (14 − 17𝐼)𝑖̆ − (17 − 3𝐼)𝑗̆ + (77 − 45𝐼)�̆� 

ii. 𝑞𝐼 = (1 − 13𝐼)𝑗̆ + (9 − 𝐼)�̆�       ⟹    𝑞�̅� = −(1 − 13𝐼)𝑗̆ − (9 − 𝐼)�̆�    

 

Result3: 

 

1. The neutrosophic quaternions number conjugate of 𝑞�̅�  is the same The neutrosophic 

quaternions number 𝑞𝐼.  

 

(𝑞�̅�)̅̅ ̅̅ ̅ = 𝑞𝐼 

Proof: 

 

Let 𝑞𝐼 ∈ 𝐻𝑁, where 𝑞𝐼 = �́� + �́�𝐼 + 𝑣�́�, then: 

 

𝑞�̅� = �́� + �́�𝐼 − 𝑣�́� 

 

(𝑞�̅�)̅̅ ̅̅ ̅ = (�́� + �́�𝐼 − 𝑣�́�)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = �́� + �́�𝐼 + 𝑣�́� = 𝑞𝐼 

 

2. If  𝑞𝐼 = �́� + �́�𝐼 + 𝑣�́� = �́� + �́�𝐼 + (𝑐1́ + 𝑑1
́ 𝐼)𝑖̆ + (𝑐2́ + 𝑑2

́ 𝐼)𝑗̆ + (𝑐3́ + 𝑑3
́ 𝐼)�̆� 

 

then: 

➢ 𝑞𝐼 + 𝑞�̅� = 2(�́� + �́�𝐼) = 𝑅𝑒(𝑞𝐼)   

 

➢ 𝑞𝐼 − 𝑞�̅� = 2𝑣�́� = 2(𝑐1́ + 𝑑1
́ 𝐼)𝑖̆ + 2(𝑐2́ + 𝑑2

́ 𝐼)𝑗̆ + 2(𝑐3́ + 𝑑3
́ 𝐼)�̆� =  𝑉(𝑞𝐼) 

    

where 𝑅𝑒(𝑞𝐼) is the neutrosophic real part (scalar) of the complex number and 𝑉(𝑞𝐼) is the 

neutrosophic vector part. 

3. The neutrosophic quaternions number is real (scalar)  if and only if 𝑞𝐼 = 𝑞�̅� , and it is vector 

if and only if 𝑞𝐼 = −𝑞�̅� . 

 

Remarks1: 
𝑞𝐼1

+ 𝑞𝐼2
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑞𝐼1

̅̅ ̅̅ + 𝑞𝐼2
̅̅ ̅̅  

Proof: 

 

Let 𝑞𝐼1
 , 𝑞𝐼2

∈ 𝐻𝑁, where 
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𝑞𝐼1
= �́� + �́�𝐼 + 𝑣�́� = �́� + �́�𝐼 + (𝑐1́ + 𝑑1

́ 𝐼)𝑖̆ + (𝑐2́ + 𝑑2
́ 𝐼)𝑗̆ + (𝑐3́ + 𝑑3

́ 𝐼)�̆�     

𝑞𝐼2
= �́́� + �́́�𝐼 + 𝑣�́�

́ = �́́� + �́́�𝐼 + (𝑐1́́ + 𝑑1
́́ 𝐼)𝑖̆ + (𝑐2́́ + 𝑑2

́́ 𝐼)𝑗̆ + (𝑐3́́ + 𝑑3
́́ 𝐼)�̆�   

 

then: 

  𝑞𝐼1
+ 𝑞𝐼2

= (�́� + �́�𝐼 + �́́� + �́́�𝐼) + (𝑐1́ + 𝑑1
́ 𝐼 + 𝑐1́́ + 𝑑1

́́ 𝐼) 𝑖̆ + (𝑐2́ + 𝑑2
́ 𝐼 + 𝑐2́́ + 𝑑2

́́ 𝐼) 𝑗̆ + (𝑐3́ + 𝑑3
́ 𝐼 +

𝑐3́́ + 𝑑3
́́ 𝐼) �̆�   

𝑞𝐼1
+ 𝑞𝐼2

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = (�́� + �́�𝐼 + �́́� + �́́�𝐼) − (𝑐1́ + 𝑑1
́ 𝐼 + 𝑐1́́ + 𝑑1

́́ 𝐼) 𝑖̆ − (𝑐2́ + 𝑑2
́ 𝐼 + 𝑐2́́ + 𝑑2

́́ 𝐼) 𝑗̆

− (𝑐3́ + 𝑑3
́ 𝐼 + 𝑐3́́ + 𝑑3

́́ 𝐼) �̆�   

 

         = �́� + �́�𝐼 − (𝑐1́ + 𝑑1
́ 𝐼)𝑖̆ − (𝑐2́ + 𝑑2

́ 𝐼)𝑗̆ − (𝑐3́ + 𝑑3
́ 𝐼)�̆� + �́́� + �́́�𝐼 + (𝑐1́́ + 𝑑1

́́ 𝐼)𝑖̆ + (𝑐2́́ + 𝑑2
́́ 𝐼)𝑗̆ +

(𝑐3́́ + 𝑑3
́́ 𝐼)�̆�   

 
          =  𝑞𝐼1

̅̅ ̅̅ + 𝑞𝐼2
̅̅ ̅̅   

Theorem1 

 

The conjugate of multiplication two neutrosophic quaternions numbers is equal to the 

multiplication of their two conjugates. 

𝑞𝐼 . 𝑝𝐼̅̅ ̅̅ ̅̅ = 𝑝�̅� . 𝑞�̅� 

where 𝑞𝐼 , 𝑝𝐼  ∈ 𝐻𝑁 

 

Proof: 

 

Let  𝑞𝐼 , 𝑝𝐼  ∈ 𝐻𝑁 where: 

  

𝑞𝐼 = �́� + �́�𝐼 + 𝑣�́� = �́� + �́�𝐼 + (𝑐1́ + 𝑑1
́ 𝐼)𝑖̆ + (𝑐2́ + 𝑑2

́ 𝐼)𝑗̆ + (𝑐3́ + 𝑑3
́ 𝐼)�̆�  

𝑝𝐼 = �́� + �́�𝐼 + 𝑢𝐼́ = �́� + �́�𝐼 + (𝛼1́ + 𝑏1́𝐼)𝑖̆ + (𝛼2́ + 𝑏2́𝐼)𝑗̆ + (𝑐3́ + 𝑑3
́ 𝐼)�̆�  

  

then: 

  𝑞𝐼 . 𝑝𝐼 = (�́� + �́�𝐼 + 𝑣�́�)(�́� + �́�𝐼 + 𝑢𝐼́ ) 

          = [�́� + �́�𝐼 + (𝑐1́ + 𝑑1
́ 𝐼)𝑖̆ + (𝑐2́ + 𝑑2

́ 𝐼)𝑗̆ + (𝑐3́ + 𝑑3
́ 𝐼)�̆�][�́� + �́�𝐼 + (𝛼1́ + 𝑏1́𝐼)𝑖̆ + (𝛼2́ + 𝑏2́𝐼)𝑗̆

+ (𝛼3́ + 𝑏3́𝐼)�̆�] 

 

= (�́� + �́�𝐼)(�́� + �́�𝐼) − [(𝑐1́ + 𝑑1
́ 𝐼)(𝛼1́ + 𝑏1́𝐼) + (𝛼2́ + 𝑏2́𝐼)(𝑐2́ + 𝑑2

́ 𝐼) + (𝑐3́ + 𝑑3
́ 𝐼)(𝛼3́ + 𝑏3́𝐼)]

+ (�́� + �́�𝐼)[(𝛼1́ + 𝑏1́𝐼)𝑖̆ + (𝛼2́ + 𝑏2́𝐼)𝑗̆ + (𝛼3́ + 𝑏3́𝐼)�̆�]

+ (�́� + �́�𝐼)[(𝑐1́ + 𝑑1
́ 𝐼)𝑖̆ + (𝑐2́ + 𝑑2

́ 𝐼)𝑗̆ + (𝑐3́ + 𝑑3
́ 𝐼)�̆�] + (𝑐1́ + 𝑑1

́ 𝐼)(𝛼2́ + 𝑏2́𝐼)�̆�

− (𝑐1́ + 𝑑1
́ 𝐼)(𝛼3́ + 𝑏3́𝐼)𝑗̆ − (𝑐2́ + 𝑑2

́ 𝐼)(𝛼1́ + 𝑏1́𝐼)�̆� + (𝑐2́ + 𝑑2
́ 𝐼)(𝛼3́ + 𝑏3́𝐼)𝑖̆

+ (𝑐3́ + 𝑑3
́ 𝐼)(𝛼1́ + 𝑏1́𝐼)𝑗̆ − (𝑐3́ + 𝑑3

́ 𝐼)(𝛼2́ + 𝑏2́𝐼)𝑖̆ 

 

we can write it by the form: 

 

𝑞𝐼 . 𝑝𝐼 = (�́� + �́�𝐼)(�́� + �́�𝐼) − 𝑣�́� . 𝑢𝐼́ + (�́� + �́�𝐼)𝑢𝐼́ + (�́� + �́�𝐼)𝑣�́� + 𝑣�́� × 𝑢𝐼́  

where: 

𝑣�́� . 𝑢𝐼́ = (𝑐1́ + 𝑑1
́ 𝐼)(𝛼1́ + 𝑏1́𝐼) + (𝑐2́ + 𝑑2

́ 𝐼)(𝛼2́ + 𝑏2́𝐼) + (𝑐3́ + 𝑑3
́ 𝐼)(𝛼3́ + 𝑏3́𝐼) 

𝑣�́� × 𝑢𝐼́ = |

𝑖̆ 𝑗̆ �̆�

𝑐1́ + 𝑑1
́ 𝐼 𝑐2́ + 𝑑2

́ 𝐼 𝑐3́ + 𝑑3
́ 𝐼

𝛼1́ + 𝑏1́𝐼 𝛼2́ + 𝑏2́𝐼 𝛼3́ + 𝑏3́𝐼

| 

then: 

 

𝑞𝐼 . 𝑝𝐼̅̅ ̅̅ ̅̅ = (�́� + �́�𝐼)(�́� + �́�𝐼) − 𝑣�́� . 𝑢𝐼́ − (�́� + �́�𝐼)𝑢𝐼́ − (�́� + �́�𝐼)𝑣�́� − 𝑣�́� × 𝑢𝐼́  

𝑝�̅� . 𝑞�̅� = (�́� + �́�𝐼 − 𝑢𝐼́ )(�́� + �́�𝐼 − 𝑣�́�) 
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           = [�́� + �́�𝐼 − (𝛼1́ + 𝑏1́𝐼)𝑖̆ − (𝛼2́ + 𝑏2́𝐼)𝑗̆ − (𝛼3́ + 𝑏3́𝐼)�̆�][�́� + �́�𝐼 − (𝑐1́ + 𝑑1
́ 𝐼)𝑖̆ − (𝑐2́ + 𝑑2

́ 𝐼)𝑗̆

− (𝑐3́ + 𝑑3
́ 𝐼)�̆�] 

 

        = (�́� + �́�𝐼)(�́� + �́�𝐼) − (�́� + �́�𝐼)(𝑐1́ + 𝑑1
́ 𝐼)𝑖̆ − (�́� + �́�𝐼)(𝑐2́ + 𝑑2

́ 𝐼)𝑗̆ − (�́� + �́�𝐼)(𝑐3́ + 𝑑3
́ 𝐼)�̆� −

(�́� + �́�𝐼)(𝛼1́ + 𝑏1́𝐼)𝑖̆ − (𝛼1́ + 𝑏1́𝐼)(𝑐1́ + 𝑑1
́ 𝐼) + (𝛼1́ + 𝑏1́𝐼)(𝑐2́ + 𝑑2

́ 𝐼)�̆� − (𝛼1́ + 𝑏1́𝐼)(𝑐3́ + 𝑑3
́ 𝐼)𝑗̆ − (�́� +

�́�𝐼)(𝛼2́ + 𝑏2́𝐼)𝑗̆ − (𝛼2́ + 𝑏2́𝐼)(𝑐1́ + 𝑑1
́ 𝐼)�̆� − (𝛼2́ + 𝑏2́𝐼)(𝑐2́ + 𝑑2

́ 𝐼) − (𝛼2́ + 𝑏2́𝐼)(𝑐3́ + 𝑑3
́ 𝐼)𝑖̆ − (�́� +

�́�𝐼)(𝛼3́ + 𝑏3́𝐼)�̆� + (𝛼3́ + 𝑏3́𝐼)(𝑐1́ + 𝑑1
́ 𝐼)𝑗̆ − (𝛼3́ + 𝑏3́𝐼)(𝑐2́ + 𝑑2

́ 𝐼)𝑖̆ − (𝛼3́ + 𝑏3́𝐼)(𝑐3́ + 𝑑3
́ 𝐼) 

 

         = (�́� + �́�𝐼)(�́� + �́�𝐼) − (𝛼1́ + 𝑏1́𝐼)(𝑐1́ + 𝑑1
́ 𝐼) − (𝛼2́ + 𝑏2́𝐼)(𝑐2́ + 𝑑2

́ 𝐼) − (𝛼3́ + 𝑏3́𝐼)(𝑐3́ + 𝑑3
́ 𝐼)

− (�́� + �́�𝐼)(𝛼1́ + 𝑏1́𝐼)𝑖̆ − (�́� + �́�𝐼)(𝛼2́ + 𝑏2́𝐼)𝑗̆ − (�́� + �́�𝐼)(𝛼3́ + 𝑏3́𝐼)�̆�

− (�́� + �́�𝐼)(𝑐1́ + 𝑑1
́ 𝐼)𝑖̆ − (�́� + �́�𝐼)(𝑐2́ + 𝑑2

́ 𝐼)𝑗̆ − (�́� + �́�𝐼)(𝑐3́ + 𝑑3
́ 𝐼)�̆�

+ (𝛼1́ + 𝑏1́𝐼)(𝑐2́ + 𝑑2
́ 𝐼)�̆� − (𝛼1́ + 𝑏1́𝐼)(𝑐3́ + 𝑑3

́ 𝐼)𝑗̆ − (𝛼2́ + 𝑏2́𝐼)(𝑐1́ + 𝑑1
́ 𝐼)�̆�

− (𝛼2́ + 𝑏2́𝐼)(𝑐3́ + 𝑑3
́ 𝐼)𝑖̆ + (𝛼3́ + 𝑏3́𝐼)(𝑐1́ + 𝑑1

́ 𝐼)𝑗̆ − (𝛼3́ + 𝑏3́𝐼)(𝑐2́ + 𝑑2
́ 𝐼)𝑖 ̆

 

         = (�́� + �́�𝐼)(�́� + �́�𝐼) − 𝑣�́� . 𝑢𝐼́ − (�́� + �́�𝐼)𝑢𝐼́ − (�́� + �́�𝐼)𝑣�́� − 𝑣�́� × 𝑢𝐼́  

 

⇒     𝑞𝐼 . 𝑝𝐼̅̅ ̅̅ ̅̅ = 𝑝�̅� . 𝑞�̅�  

 

2.3 The absolute value of a neutrosophic quaternions number 

Let   𝑞𝐼 ∈ 𝐻𝑁  where: 𝑞𝐼 = �́� + �́�𝐼 + 𝑣�́� = �́� + �́�𝐼 + (𝑐1́ + 𝑑1
́ 𝐼)𝑖̆ + (𝑐2́ + 𝑑2

́ 𝐼)𝑗̆ + (𝑐3́ + 𝑑3
́ 𝐼)�̆� , the 

absolute value of a neutrosophic quaternions numbers defined by the following form: 

 

|𝑞𝐼| = √(�́� + �́�𝐼)2 + (𝑐1́ + 𝑑1
́ 𝐼)2 + (𝑐2́ + 𝑑2

́ 𝐼)2 + (𝑐3́ + 𝑑3
́ 𝐼)2 

Example 5 

 

 Let  𝑞𝐼 = 1 − 4𝐼 + 𝐼𝑖̆ + 2𝐼𝑗̆ − 𝐼�̆�, then: 

|𝑞𝐼| = √(�́� + �́�𝐼)2 + (𝑐1́ + 𝑑1
́ 𝐼)2 + (𝑐2́ + 𝑑2

́ 𝐼)2 + (𝑐3́ + 𝑑3
́ 𝐼)2 

 

= √(1 − 4𝐼)2 + (𝐼)2 + (2𝐼)2 + (𝐼)2 

 

= √1 − 8𝐼 + 16𝐼 + 𝐼 + 4𝐼 + 𝐼 

 

= √1 + 14𝐼 

 

√1 + 14𝐼 ≡ 𝑥 + 𝑦𝐼 

 

1 + 14𝐼 ≡ 𝑥2 + 2𝑥𝑦𝐼 + 𝑦2 

by identifying we get: 

{
𝑥2 = 1 

𝑦2 + 2𝑥𝑦 = 14
 

 

 Since the absolute value is positive, we take:   𝑥 = 1 

then: 

𝑦2 + 2𝑦 = 14  ⟹    𝑦2 + 2𝑦 − 14 = 0   

  

𝑦 =
−2 + 2√15

2
= −1 + √15 ≈ 2.9 

Therefore, 
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|𝑞𝐼| = √(1 − 4𝐼)2 + (𝐼)2 + (2𝐼)2 + (𝐼)2 = 1 + 2.9𝐼 

Theorem2 

 

Let  𝑞𝐼 ∈ 𝐻𝑁  where: 𝑞𝐼 = �́� + �́�𝐼 + 𝑣�́� = �́� + �́�𝐼 + (𝑐1́ + 𝑑1
́ 𝐼)𝑖̆ + (𝑐2́ + 𝑑2

́ 𝐼)𝑗̆ + (𝑐3́ + 𝑑3
́ 𝐼)�̆� , 

multiplication the absolute value of 𝑞𝐼 by its conjugate equals to square of the absolute value of 𝑞𝐼 . 

𝑞𝐼 . 𝑞�̅� = |𝑞𝐼|2 

 Proof: 

𝑞𝐼 = �́� + �́�𝐼 + 𝑣�́� = �́� + �́�𝐼 + (𝑐1́ + 𝑑1
́ 𝐼)𝑖̆ + (𝑐2́ + 𝑑2

́ 𝐼)𝑗̆ + (𝑐3́ + 𝑑3
́ 𝐼)�̆�  

  ⟹   𝑞𝐼 = �́� + �́�𝐼 − 𝑣�́� = �́� + �́�𝐼 − (𝑐1́ + 𝑑1
́ 𝐼)𝑖̆ − (𝑐2́ + 𝑑2

́ 𝐼)𝑗̆ − (𝑐3́ + 𝑑3
́ 𝐼)�̆�   

                                       𝑞𝐼 . 𝑞�̅� = (�́� + �́�𝐼)2(�́� + �́�𝐼 − 𝑣�́� ) 

= (�́� + �́�𝐼)
2

− (�́� + �́�𝐼)𝑣�́� + (�́� + �́�𝐼)𝑣�́� − 𝑣�́� . 𝑣�́�  

= (�́� + �́�𝐼)
2

− 𝑣�́� . 𝑣�́� 

= (�́� + �́�𝐼)2 + (𝑐1́ + 𝑑1
́ 𝐼)2 + (𝑐2́ + 𝑑2

́ 𝐼)2 + (𝑐3́ + 𝑑3
́ 𝐼)2 = |𝑞𝐼|2 

 

⟹         𝑞𝐼 . 𝑞�̅� = |𝑞𝐼|2 

Example 6 

 

Let  𝑞𝐼 = 2 − 6I + 3𝐼𝑖̆ + (1 + 2𝐼)𝑗̆ − 5�̆�, then: 

 

𝑞𝐼 . 𝑞�̅� = |𝑞𝐼|2 

 

= (2 − 6I)2 + 9I + (1 + 2𝐼)2 

 

= 4 − 24𝐼 + 36𝐼 + 9𝐼 + 1 + 4𝐼 + 4𝐼 

 

= 5 + 29𝐼 

Remarks2: 

 

Let  𝑞𝐼 ∈ 𝐻𝑁, then: 

 

1) |𝑞𝐼| = |�̅�𝐼| = |−𝑞𝐼| 

2) |𝑞𝐼 . 𝑝𝐼| = |𝑞𝐼|. |𝑝𝐼| 

 

Proof (2): 

|𝑞𝐼 . 𝑝𝐼|2 = 𝑞𝐼 . 𝑝𝐼(𝑞𝐼 . 𝑝𝐼)̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑞𝐼 . 𝑝𝐼 . 𝑝�̅� . �̅�𝐼 = 𝑞𝐼 . |𝑝𝐼|2. �̅�𝐼 = 𝑞𝐼 . �̅�𝐼 . |𝑝𝐼|2 = |𝑞𝐼|2. |𝑝𝐼|2 

 

2.4 Division of neutrosophic quaternions numbers 

Let  𝑞𝐼 , 𝑝𝐼  ∈ 𝐻𝑁 where:  

 

𝑞𝐼 = �́� + �́�𝐼 + 𝑣�́� = �́� + �́�𝐼 + (𝑐1́ + 𝑑1
́ 𝐼)𝑖̆ + (𝑐2́ + 𝑑2

́ 𝐼)𝑗̆ + (𝑐3́ + 𝑑3
́ 𝐼)�̆�  

𝑝𝐼 = �́� + �́�𝐼 + 𝑢𝐼́ = �́� + �́�𝐼 + (𝛼1́ + 𝑏1́𝐼)𝑖̆ + (𝛼2́ + 𝑏2́𝐼)𝑗̆ + (𝑐3́ + 𝑑3
́ 𝐼)�̆�  

 

 then: 

𝑞𝐼

𝑝𝐼

=
�́� + �́�𝐼 + 𝑣�́�

�́� + �́�𝐼 + 𝑢𝐼́
 

 

 multiply the numerator and denominator by conjugate of 𝑝𝐼  we get: 

 

𝑞𝐼

𝑝𝐼

=
(�́� + �́�𝐼 + 𝑣�́�)(�́� + �́�𝐼 − 𝑢𝐼́ )

(�́� + �́�𝐼 + 𝑢𝐼́ )(�́� + �́�𝐼 − 𝑢𝐼́ )
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=
(�́� + �́�𝐼 + 𝑣�́�)(�́� + �́�𝐼 − 𝑢𝐼́ )

(�́� + �́�𝐼)
2

− (𝑢𝐼́ )2
 

 

=
(�́� + �́�𝐼)(�́� + �́�𝐼) − 𝑣�́� . 𝑢𝐼́ + (�́� + �́�𝐼)𝑣�́� + (�́� + �́�𝐼)𝑢𝐼́ + 𝑣�́� × 𝑢𝐼́

(�́� + �́�𝐼)
2

− (𝑢𝐼́ )2
 

 

where: 

𝑣�́� . 𝑢𝐼́ = (𝑐1́ + 𝑑1
́ 𝐼)(𝛼1́ + 𝑏1́𝐼) + (𝑐2́ + 𝑑2

́ 𝐼)(𝛼2́ + 𝑏2́𝐼) + (𝑐3́ + 𝑑3
́ 𝐼)(𝑐3́ + 𝑑3

́ 𝐼) 

𝑣�́� × 𝑢𝐼́ = |

𝑖̆ 𝑗̆ �̆�

𝑐1́ + 𝑑1
́ 𝐼 𝑐2́ + 𝑑2

́ 𝐼 𝑐3́ + 𝑑3
́ 𝐼

𝛼1́ + 𝑏1́𝐼 𝛼2́ + 𝑏2́𝐼 𝛼3́ + 𝑏3́𝐼

| 

 

and       (�́� + �́�𝐼)
2

− (𝑢𝐼́ )2 = (�́� + �́�𝐼)
2

+ (𝛼1́ + 𝑏1́𝐼)
2

+ (𝛼2́ + 𝑏2́𝐼)
2

+ (𝑐3́ + 𝑑3
́ 𝐼)

2
 

 

Example 7  

 

Let 𝑞𝐼 = 2 + (1 − 4𝐼)𝑖̆ − 3𝐼𝑗̆ + (6 + 4𝐼)�̆�  𝑎𝑛𝑑 𝑝𝐼 = 7𝐼 − 2𝐼𝑖̆ + (2 − 5𝐼)𝑗̆ + 4�̆� 

 

then: 

𝑞𝐼

𝑝𝐼

=
2 + (1 − 4𝐼)𝑖̆ − 3𝐼𝑗̆ + (6 + 4𝐼)�̆�

7𝐼 − 2𝐼𝑖̆ + (2 − 5𝐼)𝑗̆ + 4�̆�
 

 

=
(2 + (1 − 4𝐼)𝑖̆ − 3𝐼𝑗̆ + (6 + 4𝐼)�̆�)(7𝐼 + 2𝐼𝑖̆ − (2 − 5𝐼)𝑗̆ − 4�̆�)

(7𝐼 − 2𝐼𝑖̆ + (2 − 5𝐼)𝑗̆ + 4�̆�)(7𝐼 + 2𝐼𝑖̆ − (2 − 5𝐼)𝑗̆ − 4�̆�)
 

 

=
(2 + (1 − 4𝐼)𝑖̆ − 3𝐼𝑗̆ + (6 + 4𝐼)�̆�)(7𝐼 + 2𝐼𝑖̆ − (2 − 5𝐼)𝑗̆ − 4�̆�)

(7𝐼)2 − (−2𝐼𝑖̆ + (2 − 5𝐼)𝑗̆ + 4�̆�)
2  

 

=
24 + 45𝐼 − 18𝐼𝑖̆ + (−4 + 11𝐼)𝑗̆ + (8 + 28𝐼)�̆� + (12 − 30𝐼)𝑖̆ + (4 + 4𝐼)𝑗̆ + (−2 − 𝐼)�̆�

49𝐼 − (−4𝐼 − (2 − 5𝐼)2 − 16)
 

 

=
24 + 45𝐼 + (12 − 48𝐼)𝑖̆ + 15𝐼𝑗̆ + (6 + 27𝐼)�̆�

20 + 9𝐼
 

 

=
24 + 45𝐼

20 + 9𝐼
+

12 − 48𝐼 

20 + 9𝐼
𝑖̆ +

15𝐼

20 + 9𝐼
𝑗̆ +

6 + 27𝐼

20 + 9𝐼
�̆� 

 

=
6

5
+

171

145
𝐼 + (

3

5
+

267

145
𝐼) 𝑖̆ + (

15

29
𝐼) 𝑗̆ + (

3

10
+

243

290
𝐼) �̆� 

 

2.5 Inverted Neutrosophic quaternions numbers 

Definition4 

We define Inverted 𝑞𝐼 ∈ 𝐻𝑁 as 𝑞𝐼
−1 ∈ 𝐻𝑁, whereas: 

 
𝑞𝐼 . 𝑞𝐼

−1 = 𝑞𝐼
−1. 𝑞𝐼 = 1𝐻𝑁

 

whereas: 𝑞𝐼 ≠ 0𝐻𝑁
 

 

Remark3: 
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|𝑞𝐼|2 = 𝑞𝐼 . 𝑞�̅�       ⟹    𝑞𝐼 =
|𝑞𝐼|2

𝑞�̅�

    ⟹    𝑞𝐼
−1 =

𝑞�̅�

|𝑞𝐼|2
 

Proof: 

Let  𝑞𝐼 ∈ 𝐻𝑁 where: 𝑞𝐼 = �́� + �́�𝐼 + 𝑣�́� = �́� + �́�𝐼 + (𝑐1́ + 𝑑1
́ 𝐼)𝑖̆ + (𝑐2́ + 𝑑2

́ 𝐼)𝑗̆ + (𝑐3́ + 𝑑3
́ 𝐼)�̆�, then: 

𝑞𝐼
−1 =

1

𝑞𝐼

=
1

�́� + �́�𝐼 + (𝑐1́ + 𝑑1
́ 𝐼)𝑖̆ + (𝑐2́ + 𝑑2

́ 𝐼)𝑗̆ + (𝑐3́ + 𝑑3
́ 𝐼)�̆�

 

 

=
�́� + �́�𝐼

(�́� + �́�𝐼)
2

+ (𝛼1́ + 𝑏1́𝐼)
2

+ (𝛼2́ + 𝑏2́𝐼)
2

+ (𝑐3́ + 𝑑3
́ 𝐼)

2

−
(𝑐1́ + 𝑑1

́ 𝐼)

(�́� + �́�𝐼)
2

+ (𝛼1́ + 𝑏1́𝐼)
2

+ (𝛼2́ + 𝑏2́𝐼)
2

+ (𝑐3́ + 𝑑3
́ 𝐼)

2 𝑖̆

−
(𝑐2́ + 𝑑2

́ 𝐼)

(�́� + �́�𝐼)
2

+ (𝛼1́ + 𝑏1́𝐼)
2

+ (𝛼2́ + 𝑏2́𝐼)
2

+ (𝑐3́ + 𝑑3
́ 𝐼)

2 𝑗̆

−
(𝑐3́ + 𝑑3

́ 𝐼)

(�́� + �́�𝐼)
2

+ (𝛼1́ + 𝑏1́𝐼)
2

+ (𝛼2́ + 𝑏2́𝐼)
2

+ (𝑐3́ + 𝑑3
́ 𝐼)

2 �̆� 

Example 8 
1

2 + 𝐼 + (1 − 4𝐼)𝑖̆ + (8 − 3𝐼)𝑗̆ + (6 + 4𝐼)�̆�
=

2 + 𝐼

105 + 38𝐼
−

(1 − 4𝐼)

105 + 38𝐼
𝑖̆ −

(8 − 3𝐼)

105 + 38𝐼
𝑗̆ −

(6 + 4𝐼)

105 + 38𝐼
�̆� 

 

=
2

105
−

29

15015
𝐼 + (−

1

105
+

458

15015
𝐼) 𝑖̆ + (−

8

105
+

619

15015
𝐼) 𝑗̆ + (−

6

105
−

192

15015
𝐼) �̆� 

 

Remark4: 

               (𝑝𝐼𝑞𝐼)−1 = 𝑞𝐼
−1. 𝑝𝐼

−1       , whereas: 𝑝𝐼 . 𝑞𝐼 ≠ 0𝐻𝑁
 

 

Remark5: 

 

Since any neutrosophic complex number   𝑞𝐼 = �́� + �́�𝐼 + (𝑐1́ + 𝑑1
́ 𝐼)𝑖̆ can be written in the form: 

 

𝑞𝐼 = �́� + �́�𝐼 + (𝑐1́ + 𝑑1
́ 𝐼)𝑖̆ + 0𝑗̆ + 0�̆� 

then: 

𝑅𝑁 ⊆ 𝐶𝑁 ⊆ 𝐻𝑁 

5. Conclusions  

In this paper, we introduced the neutrosophic quaternions numbers, where all algebraic operations 

were studied on it. Also, we studied the absolute value of a neutrosophic quaternions number and 

its inverted. 
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Abstract  

 

The Neutrosophic Bonferroni operator is a novel operator that we provide in this paper. Then the arithmetic operations 

for Neutrosophic Bonferroni operator is developed which tells the existence of Neutrosophic Bonferroni operator. 

Then its properties were discussed with special cases. To group decision-making issues with several attributes, 

arithmetic ranking operations and the Neutrosophic approach are used. The result is compared with the existing 

methodology. The suggested approach will more accurately give the decision maker the ideal attribute than the existing 

system does. Neutrophic multicriteria is a method of decision-making that makes use of ambiguity to integrate various 

criteria or factors—often with imprecise or ambiguous data—to reach a result. The neutrosophic multicriteria analysis 

enables the assessment of subjective and qualitative factors, which can assist in resolving conflicting goals and 

preferences. In Neutrosophic Multi-Attribute Group Decision Making (NMAGDM) problems, all the data supplied 

by the decision makers (DMs) is expressed in single-value Neutrosophic triangular and trapezoidal numbers, which 

are studied in this work and can improve the flexibility and precision of capturing uncertainty and aggregating 

preferences. Studying this operator is crucial because it can be utilised to resolve multi-attribute 

Keywords: Group decision making in multi-attributes using Neutrosophic(NMAGDM),Neutrosophic Bonferroni 

operator, weighted Neutrosophic Bonferroni operator, Neutrosophic operator. 

1.Introduction  

 

[1] was first introduced the fuzzy set theory. This theory was used in many areas which is explained in [2]as the 

essential  ideas in fuzzy set theory are covered in Fundamentals of Fuzzy Sets. Its four-part structure makes it simple 

mailto:Kanchana.anbazhagan@gmail.com
mailto:broumisaid78@gmail.com
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to reference both more recent and earlier findings in the subject, In [3] the definitions of the axioms pertaining to the 

fundamental relationships between the entropy, distance, and similarity metrics of fuzzy collections are discussed, [4] 

as Using probabilistic data, we created a novel decision-making model and aggregated the data using the instantaneous 

probability idea. This kind of probability introduces the decision maker's attitude, which changes the objective 

probability and in [5] as the theory and procedure of decision making are provided by the grey relational degree-based 

decision making approach. The above all can deviate in various situation which was simplified by various fuzzy 

members like [6] used interval valued fuzzy members produced by fuzzy disjunctive and conjunctive normal forms, 

serve as a type II fuzzy set model to depict the second order semantic uncertainty achieved by the linguistic connectives 

that combine two or more fuzzy, ambiguous ideas, [7] used vague sets, [8] used intuitionistic fuzzy sets, [9] used 

interval type 2 fuzzy sets, [9] used fuzzy multisets. This application was clearly explained in [10] as a method for 

handling several qualities The suggested aggregation operators are used to make decisions in an intuitionistic fuzzy 

environment, and an illustration is given to show the practicality and accuracy of the recommended approach, [11] 

and [12]as generalization of a fuzzy set is a membership function and a non-membership function define an 

intuitionistic fuzzy set. In this study, we first present a technique based on the accuracy and score functions for 

comparing two intuitionistic fuzzy values.  In [13], Xia et al. recently presented an intuitionistic multiplicative 

preference relation to characterize the preference information provided by a decision maker over a set of objects. Next, 

we develop some aggregation operators for aggregating intuitionistic fuzzy values, such as the intuitionistic fuzzy 

ordered weighted averaging operator, intuitionistic fuzzy hybrid aggregation operator, and intuitionistic fuzzy 

weighted averaging operator, and establish various properties of these operators. The intuitionistic multiplicative 

preference relation is made up of all the 2-tuples, which can simultaneously express how much one thing is prior to 

another and how much it is not. Compared to the conventional multiplicative preference relation, the 2-tuples can 

more fully reflect the decision maker's preferences over objects because each component derives its value from the 

closed interval [1/9, 9]. Finding a way to extract the object's priority weights from an intuitionistic multiplicative 

preference relation is a key topic of research for decision making with such information. 

The intricacy of the problem has increased along with the introduction of various sorts of fuzzy members. 

Consequently, the Bonferroni operator was introduced as a new operator. [14] introduced the aggregation operator for 

mean for the first time. With the aid of the OWA operator, this was made more generic, and [20] provides the Choquet 

integral. The above-mentioned generalised approach is also provided by [21]. The Bonferroni mean(BM) operator of 

interval type-2 is defined in [15]. Additionally, [16] applies this Bonferroni mean as the Bonferroni geometric mean, 

which is a generalisation of the Bonferroni mean and geometric mean and can reflect the correlations of the combined 

arguments. To more correctly define the uncertainty and fuzziness, membership, non-membership, and uncertainty 

information could be taken into consideration using an intuitionistic fuzzy set. We go on building the intuitionistic 

fuzzy geometric Atanassov To collect the intuitionistic fuzzy information of Atanassov, define the interdependence 

between arguments using the Bonferroni mean. A few characteristics and unique circumstances of this mean are also 

looked at [17], since it is a desired feature if the BM can capture the correlations between the input arguments. It 
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seems, nevertheless, that the existing literature only discusses using the BM to aggregate crisp numbers—it does not 

handle other types of reasoning. In this work, we investigate the BM in intuitionistic fuzzy environments. We construct 

an intuitionistic fuzzy BM (IFBM) and discuss possible specific cases for it. Next, using fuzzy multi-attribute group 

decision making (FMAGDM) scenarios in which the decision makers' (DMs') input is represented as trapezoidal 

interval type-2 fuzzy sets (IT2 FS), the weighted IFBM is used to multicriteria decision making. This is done in [18]. 

We introduce the idea of interval possibility mean value and provide a new method for calculating the possibility 

degree of two trapezoidal IT2 FS. The type-2 fuzzy geometric Bonferroni mean operator for trapezoidal intervals and 

the type-2 fuzzy weighted geometric Bonferroni mean operator for trapezoidal intervals (TIT2FWGBM) are the two 

aggregation techniques that we then develop and  the Bonferroni mean (BM) is a crucial aggregation operator in 

decision-making, as stated in [19]. A useful aspect of the BM is its capacity to record the relationship between the 

individual attributes or the aggregation arguments. Proposed by Jin et al. in 2016, the extensions of the BM consist of 

the optimum weighted geometric Bonferroni mean (OWGBM) and the generalised optimised weighted geometric 

Bonferroni mean (GOWGBM). However, the OWGBM and GOWGBM lack both reducibility and boundedness, 

which may lead to unsuitable and irrational aggregation outputs as well as poor decision-making. To overcome these 

existing limitations, we propose two new measures: the generalised normalised weighted geometric Bonferroni mean 

(GNWGBM) and the normalised weighted geometric Bonferroni mean (NWGBM), which are based on the 

GOWGBM and the normalised weighted Bonferroni mean (NWBM). 

Now, this can be expanded upon in this paper. The aggregating operations of a suggested Neutrosophic Bonferroni 

operator are defined. [22] using Bonferroni power aggregation operator but the evaluation process is limited in 

satisfying sum squares of non-membership and membership value. By using the above operators there will be flaws 

in final calculation and that can be overcome by a proposed operator Neutrosophic Bonferroni operator which 

satisfying some required properties and theorems and it is extended to weighted Neutrosophic Bonferroni operator 

with its properties and theorems. Determining the concepts of neutrosophic possibility mean value and the degree of 

neutrosophic possibility of two and three trapezoidal and triangular neutrosophic sets is the aim of this work. The 

neutrosophic Bonferroni mean operator in triangular and trapezoidal arrangements [23].This essay attempted to give 

a summary of every method that may be used to address the traffic issue [24]. It also applies the given approach to a 

profit analysis decision-making problem in [25] 

Thus, the paper is formulated as follows in Section 2, the basic definitions and theorems with proof of Neutrosophic 

Bonferroni mean operator and theorem is given. In section 3, the properties of Neutrosophic Bonferroni operator will 

be explained. In section 4, the weighted Neutrosophic Bonferroni operator is given with properties and theorems are 

given. In section 5, the conclusion is given. 

2. Neutrosophic Bonferroni operators: 

Definition 2.1: 
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Let  

(𝑇𝑁𝑖 , 𝐼𝑁𝑖 , 𝐹𝑁𝑖) = ((𝑇𝑁𝑖
𝑈, 𝐼𝑁𝑖

𝑈, 𝐹𝑁𝑖
𝑈), (𝑇𝑁𝑖

𝐿 , 𝐼𝑁𝑖
𝐿 , 𝐹𝑁𝑖

𝐿))

= (((𝑇𝑎𝑖1
𝑈 , 𝐼𝑎𝑖1

𝑈 , 𝐹𝑎𝑖1
𝑈 ), (𝑇𝑎𝑖2

𝑈 , 𝐼𝑎𝑖2
𝑈 , 𝐹𝑎𝑖2

𝑈 ), (𝑇𝑎𝑖3
𝑈 , 𝐼𝑎𝑖3

𝑈 , 𝐹𝑎𝑖3
𝑈 ), (𝑇𝑎𝑖4

𝑈 , 𝐼𝑎𝑖4
𝑈 , 𝐹𝑎𝑖4

𝑈 ), (𝑇ℎ𝑖
𝑈 , 𝐼ℎ𝑖

𝑈 , 𝐹ℎ𝑖
𝑈)), 

((𝑇𝑎𝑖1
𝐿 , 𝐼𝑎𝑖1

𝐿 , 𝐹𝑎𝑖1
𝐿 ), (𝑇𝑎𝑖2

𝐿 , 𝐼𝑎𝑖2
𝐿 , 𝐹𝑎𝑖2

𝐿 ), (𝑇𝑎𝑖3
𝐿 , 𝐼𝑎𝑖3

𝐿 , 𝐹𝑎𝑖3
𝐿 ), (𝑇𝑎𝑖4

𝐿 , 𝐼𝑎𝑖4
𝐿 , 𝐹𝑎𝑖4

𝐿 ), (𝑇ℎ𝑖
𝐿 , 𝐼ℎ𝑖

𝐿 , 𝐹ℎ𝑖
𝐿)))(𝑖 = 1,2, … ,𝑚) 

represent the collection of Neutrosophic members, and we define the Neutrosophic Bonferroni mean for s,t≥0 as 

𝑁𝐵𝑀(𝑠,𝑡)((𝑇𝑁1, 𝐼𝑁1, 𝐹𝑁1), (𝑇𝑁2, 𝐼𝑁2, 𝐹𝑁2), … , (𝑇𝑁𝑚 , 𝐼𝑁𝑚, 𝐹𝑁𝑚)) =

(

 1

𝑠+𝑡
(⊗𝑖,𝑗=1

𝑖≠𝑗

𝑚 (𝑠𝑇𝑁𝑖⊕

𝑡𝑇𝑁𝑗))

1

𝑚(𝑚−1)

,
1

𝑠+𝑡
(⊗𝑖,𝑗=1

𝑖≠𝑗

𝑚 (𝑠𝐼𝑁𝑖⊕ 𝑡𝐼𝑁𝑗))

1

𝑚(𝑚−1)

,
1

𝑠+𝑡
(⊗𝑖,𝑗=1

𝑖≠𝑗

𝑚 (𝑠𝐹𝑁𝑖⊕ 𝑡𝐹𝑁𝑗))

1

𝑚(𝑚−1)

)

    (1) 

Theorem 2.1: 

Let  

(𝑇𝑁𝑖 , 𝐼𝑁𝑖 , 𝐹𝑁𝑖) = ((𝑇𝑁𝑖
𝑈, 𝐼𝑁𝑖

𝑈, 𝐹𝑁𝑖
𝑈), (𝑇𝑁𝑖

𝐿 , 𝐼𝑁𝑖
𝐿 , 𝐹𝑁𝑖

𝐿))

= (((𝑇𝑎𝑖1
𝑈 , 𝐼𝑎𝑖1

𝑈 , 𝐹𝑎𝑖1
𝑈 ), (𝑇𝑎𝑖2

𝑈 , 𝐼𝑎𝑖2
𝑈 , 𝐹𝑎𝑖2

𝑈 ), (𝑇𝑎𝑖3
𝑈 , 𝐼𝑎𝑖3

𝑈 , 𝐹𝑎𝑖3
𝑈 ), (𝑇𝑎𝑖4

𝑈 , 𝐼𝑎𝑖4
𝑈 , 𝐹𝑎𝑖4

𝑈 ), (𝑇ℎ𝑖
𝑈 , 𝐼ℎ𝑖

𝑈 , 𝐹ℎ𝑖
𝑈)), 

((𝑇𝑎𝑖1
𝐿 , 𝐼𝑎𝑖1

𝐿 , 𝐹𝑎𝑖1
𝐿 ), (𝑇𝑎𝑖2

𝐿 , 𝐼𝑎𝑖2
𝐿 , 𝐹𝑎𝑖2

𝐿 ), (𝑇𝑎𝑖3
𝐿 , 𝐼𝑎𝑖3

𝐿 , 𝐹𝑎𝑖3
𝐿 ), (𝑇𝑎𝑖4

𝐿 , 𝐼𝑎𝑖4
𝐿 , 𝐹𝑎𝑖4

𝐿 ), (𝑇ℎ𝑖
𝐿 , 𝐼ℎ𝑖

𝐿 , 𝐹ℎ𝑖
𝐿)))(𝑖 = 1,2, … ,𝑚) 

represent the set of Neutrosophic members, and in the case where s,t≥0, the aggregation operation on (1) is likewise a 

Neutrosophic member, as shown by 

𝑁𝐵𝑀(𝑠,𝑡)((𝑇𝑁1, 𝐼𝑁1, 𝐹𝑁1), (𝑇𝑁2, 𝐼𝑁2, 𝐹𝑁2), … , (𝑇𝑁𝑚 , 𝐼𝑁𝑚, 𝐹𝑁𝑚)) = (𝑇𝑁, 𝐼𝑁, 𝐹𝑁) =

((𝑇𝑁𝑈, 𝐼𝑁𝑈, 𝐹𝑁𝑈), (𝑇𝑁𝐿 , 𝐼𝑁𝐿 , 𝐹𝑁𝐿))where 
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(TNU, INU, FNU)

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
1

s + t
(⊗i,j=1

i≠j

m (sTNi1
U ⊕ tTNj1

U))

1

m(m−1)

,
1

s + t
(⊗i,j=1

i≠j

m (sINi1
U ⊕ tINj1

U))

1

m(m−1)

,
1

s + t
(⊗i,j=1

i≠j

m (sFNi1
U ⊕ tFNj1

U))

1

m(m−1)

)

 ,

(

 
1

s + t
(⊗i,j=1

i≠j

m (sTNi2
U ⊕ tTNj2

U))

1

m(m−1)

,
1

s + t
(⊗i,j=1

i≠j

m (sINi2
U ⊕ tINj2

U))

1

m(m−1)

,
1

s + t
(⊗i,j=1

i≠j

m (sFNi2
U ⊕ tFNj2

U))

1

m(m−1)

)

 ,

(

 
1

s + t
(⊗i,j=1

i≠j

m (sTNi3
U ⊕ tTNj3

U))

1

m(m−1)

,
1

s + t
(⊗i,j=1

i≠j

m (sINi3
U ⊕ tINj3

U))

1

m(m−1)

,
1

s + t
(⊗i,j=1

i≠j

m (sFNi3
U ⊕ tFNj3

U))

1

m(m−1)

)

 ,

(

 
1

s + t
(⊗i,j=1

i≠j

m (sTNi4
U ⊕ tTNj4

U ))

1

m(m−1)

,
1

s + t
(⊗i,j=1

i≠j

m (sINi4
U ⊕ tINj4

U))

1

m(m−1)

,
1

s + t
(⊗i,j=1

i≠j

m (sFNi4
U ⊕ tFNj4

U))

1

m(m−1)

)

 

mini=1,2,3,…,m(Thi
U,Ihi

U,Fhi
U) )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  (2) 

And 

(𝑇𝑁𝐿 , 𝐼𝑁𝐿 , 𝐹𝑁𝐿)

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
1

𝑠 + 𝑡
(⊗𝑖,𝑗=1

𝑖≠𝑗

𝑚 (𝑠𝑇𝑁𝑖1
𝐿 ⊕ 𝑡𝑇𝑁𝑗1

𝐿 ))

1

𝑚(𝑚−1)

,
1

𝑠 + 𝑡
(⊗𝑖,𝑗=1

𝑖≠𝑗

𝑛 (𝑠𝐼𝑁𝑖1
𝐿 ⊕ 𝑡𝐼𝑁𝑗1

𝐿 ))

1

𝑚(𝑚−1)

,
1

𝑠 + 𝑡
(⊗𝑖,𝑗=1

𝑖≠𝑗

𝑛 (𝑠𝐹𝑁𝑖1
𝐿 ⊕ 𝑡𝐹𝑁𝑗1

𝐿 ))

1

𝑚(𝑚−1)

)

 ,

(

 
1

𝑠 + 𝑡
(⊗𝑖,𝑗=1

𝑖≠𝑗

𝑚 (𝑠𝑇𝑁𝑖2
𝐿 ⊕ 𝑡𝑇𝑁𝑗2

𝐿 ))

1

𝑚(𝑚−1)

,
1

𝑠 + 𝑡
(⊗𝑖,𝑗=1

𝑖≠𝑗

𝑚 (𝑠𝐼𝑁𝑖2
𝐿 ⊕ 𝑡𝐼𝑁𝑗2

𝐿 ))

1

𝑚(𝑚−1)

,
1

𝑠 + 𝑡
(⊗𝑖,𝑗=1

𝑖≠𝑗

𝑚 (𝑠𝐹𝑁𝑖2
𝐿 ⊕ 𝑡𝐹𝑁𝑗2

𝐿 ))

1

𝑚(𝑚−1)

)

 ,

(

 
1

𝑠 + 𝑡
(⊗𝑖,𝑗=1

𝑖≠𝑗

𝑚 (𝑠𝑇𝑁𝑖3
𝐿 ⊕ 𝑡𝑇𝑁𝑗3

𝐿 ))

1

𝑚(𝑚−1)

,
1

𝑠 + 𝑡
(⊗𝑖,𝑗=1

𝑖≠𝑗

𝑚 (𝑠𝐼𝑁𝑖3
𝐿 ⊕ 𝑡𝐼𝑁𝑗3

𝐿 ))

1

𝑚(𝑚−1)

,
1

𝑠 + 𝑡
(⊗𝑖,𝑗=1

𝑖≠𝑗

𝑚 (𝑠𝐹𝑁𝑖3
𝐿 ⊕ 𝑡𝐹𝑁𝑗3

𝐿 ))

1

𝑚(𝑚−1)

)

 ,

(

 
1

𝑠 + 𝑡
(⊗𝑖,𝑗=1

𝑖≠𝑗

𝑚 (𝑠𝑇𝑁𝑖4
𝐿 ⊕ 𝑡𝑇𝑁𝑗4

𝐿 ))

1

𝑚(𝑚−1)

,
1

𝑠 + 𝑡
(⊗𝑖,𝑗=1

𝑖≠𝑗

𝑚 (𝑠𝐼𝑁𝑖4
𝐿 ⊕ 𝑡𝐼𝑁𝑗4

𝐿 ))

1

𝑚(𝑚−1)

,
1

𝑠 + 𝑡
(⊗𝑖,𝑗=1

𝑖≠𝑗

𝑚 (𝑠𝐹𝑁𝑖4
𝐿 ⊕ 𝑡𝐹𝑁𝑗4

𝐿 ))

1

𝑚(𝑚−1)

)

 

𝑚𝑖𝑛𝑖=1,2,3,…,𝑚(𝑇ℎ𝑖
𝐿 ,𝐼ℎ𝑖

𝐿,𝐹ℎ𝑖
𝐿) )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  (3) 

The proof of the above theorem is dome by mathematical induction, 

Proof: 
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We start the proof by proving 

(

 
 

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠𝑇𝑁𝑖⊕ 𝑡𝑇𝑁𝑗)

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠𝐼𝑁𝑖⊕ 𝑡𝐼𝑁𝑗)

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠𝐹𝑁𝑖⊕ 𝑡𝐹𝑁𝑗)

)

 

)

 
 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠𝑇𝑁𝑖1
𝑈⊕ 𝑡𝑇𝑁𝑗1

𝑈)

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠𝐼𝑁𝑖1
𝑈⊕ 𝑡𝐼𝑁𝑗1

𝑈)

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠𝐹𝑁𝑖1
𝑈⊕ 𝑡𝐹𝑁𝑗1

𝑈)

)

 

)

 
 
,

(

 
 

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠𝑇𝑁𝑖2
𝑈⊕ 𝑡𝑇𝑁𝑗2

𝑈)

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠𝐼𝑁𝑖2
𝑈⊕ 𝑡𝐼𝑁𝑗2

𝑈)

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠𝐹𝑁𝑖2
𝑈⊕ 𝑡𝐹𝑁𝑗2

𝑈)

)

 

)

 
 
,

(

 
 

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠𝑇𝑁𝑖3
𝑈⊕ 𝑡𝑇𝑁𝑗3

𝑈)

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠𝐼𝑁𝑖3
𝑈⊕ 𝑡𝐼𝑁𝑗3

𝑈)

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠𝐹𝑁𝑖3
𝑈⊕ 𝑡𝐹𝑁𝑗3

𝑈)

)

 

)

 
 
,

(

 
 

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠𝑇𝑁𝑖4
𝑈⊕ 𝑡𝑇𝑁𝑗4

𝑈)

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠𝐼𝑁𝑖4
𝑈⊕ 𝑡𝐼𝑁𝑗4

𝑈)

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠𝐹𝑁𝑖4
𝑈⊕ 𝑡𝐹𝑁𝑗4

𝑈)

)

 

)

 
 

𝑚𝑖𝑛𝑖=1,2,3,…,𝑚(𝑇ℎ𝑖
𝑈,𝐼ℎ𝑖

𝑈,𝐹ℎ𝑖
𝑈) )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠𝑇𝑁𝑖1
𝐿 ⊕ 𝑡𝑇𝑁𝑗1

𝐿 )

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠𝐼𝑁𝑖1
𝐿 ⊕ 𝑡𝐼𝑁𝑗1

𝐿 )

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠𝐹𝑁𝑖1
𝐿 ⊕ 𝑡𝐹𝑁𝑗1

𝐿 )

)

 

)

 
 
,

(

 
 

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠𝑇𝑁𝑖2
𝐿 ⊕ 𝑡𝑇𝑁𝑗2

𝐿 )

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠𝐼𝑁𝑖2
𝐿 ⊕ 𝑡𝐼𝑁𝑗2

𝐿 )

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠𝐹𝑁𝑖2
𝐿 ⊕ 𝑡𝐹𝑁𝑗2

𝐿 )

)

 

)

 
 
,

(

 
 

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠𝑇𝑁𝑖3
𝐿 ⊕ 𝑡𝑇𝑁𝑗3

𝐿 )

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠𝐼𝑁𝑖3
𝐿 ⊕ 𝑡𝐼𝑁𝑗3

𝐿 )

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠𝐹𝑁𝑖3
𝐿 ⊕ 𝑡𝐹𝑁𝑗3

𝐿 )

)

 

)

 
 
,

(

 
 

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠𝑇𝑁𝑖4
𝐿 ⊕ 𝑡𝑇𝑁𝑗4

𝐿 )

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠𝐼𝑁𝑖4
𝐿 ⊕ 𝑡𝐼𝑁𝑗4

𝐿 )

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠𝐹𝑁𝑖4
𝐿 ⊕ 𝑡𝐹𝑁𝑗4

𝐿 )

)

 

)

 
 

𝑚𝑖𝑛𝑖=1,2,3,…,𝑚(𝑇ℎ𝑖
𝐿 ,𝐼ℎ𝑖

𝐿,𝐹ℎ𝑖
𝐿) )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)
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  (4) 

Then by arithmetic operations on Neutrosophic we get the following equations 

(((𝑠𝑇𝑁𝑖⊕ 𝑡𝑇𝑁𝑗)) , ((𝑠𝐼𝑁𝑖⊕ 𝑡𝐼𝑁𝑗)) , ((𝑠𝐹𝑁𝑖⊕ 𝑡𝐹𝑁𝑗)))

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
(((𝑠𝑇𝑁𝑖1

𝑈⊕ 𝑡𝑇𝑁𝑗1
𝑈)) , ((𝑠𝐼𝑁𝑖1

𝑈⊕ 𝑡𝐼𝑁𝑗1
𝑈)) , ((𝑠𝐹𝑁𝑖1

𝑈⊕ 𝑡𝐹𝑁𝑗1
𝑈))) ,

(((𝑠𝑇𝑁𝑖2
𝑈⊕ 𝑡𝑇𝑁𝑗2

𝑈)) , ((𝑠𝐼𝑁𝑖2
𝑈⊕ 𝑡𝐼𝑁𝑗2

𝑈)) , ((𝑠𝐹𝑁𝑖2
𝑈⊕ 𝑡𝐹𝑁𝑗2

𝑈))) ,

(((𝑠𝑇𝑁𝑖3
𝑈⊕ 𝑡𝑇𝑁𝑗3

𝑈)) , ((𝑠𝐼𝑁𝑖3
𝑈⊕ 𝑡𝐼𝑁𝑗3

𝑈)) , ((𝑠𝐹𝑁𝑖3
𝑈⊕ 𝑡𝐹𝑁𝑗3

𝑈))) ,

(((𝑠𝑇𝑁𝑖4
𝑈⊕ 𝑡𝑇𝑁𝑗4

𝑈)) , ((𝑠𝐼𝑁𝑖4
𝑈⊕ 𝑡𝐼𝑁𝑗4

𝑈)) , ((𝑠𝐹𝑁𝑖4
𝑈⊕ 𝑡𝐹𝑁𝑗4

𝑈)))

𝑚𝑖𝑛𝑖=1,2,3,…,𝑚(𝑇ℎ𝑖
𝑈,𝐼ℎ𝑖

𝑈,𝐹ℎ𝑖
𝑈) )

 
 
 
 
 
 

,

(

 
 
 
 
 
 

(((𝑠𝑇𝑁𝑖1
𝐿 ⊕ 𝑡𝑇𝑁𝑗1

𝐿 )) , ((𝑠𝐼𝑁𝑖1
𝐿 ⊕ 𝑡𝐼𝑁𝑗1

𝐿 )) , ((𝑠𝐹𝑁𝑖1
𝐿 ⊕ 𝑡𝐹𝑁𝑗1

𝐿 ))) ,

(((𝑠𝑇𝑁𝑖2
𝐿 ⊕ 𝑡𝑇𝑁𝑗2

𝐿 )) , ((𝑠𝐼𝑁𝑖2
𝐿 ⊕ 𝑡𝐼𝑁𝑗2

𝐿 )) , ((𝑠𝐹𝑁𝑖2
𝐿 ⊕ 𝑡𝐹𝑁𝑗2

𝐿 ))) ,

(((𝑠𝑇𝑁𝑖3
𝐿 ⊕ 𝑡𝑇𝑁𝑗3

𝐿 )) , ((𝑠𝐼𝑁𝑖3
𝐿 ⊕ 𝑡𝐼𝑁𝑗3

𝐿 )) , ((𝑠𝐹𝑁𝑖3
𝐿 ⊕ 𝑡𝐹𝑁𝑗3

𝐿 ))) ,

(((𝑠𝑇𝑁𝑖4
𝐿 ⊕ 𝑡𝑇𝑁𝑗4

𝐿 )) , ((𝑠𝐼𝑁𝑖4
𝐿 ⊕ 𝑡𝐼𝑁𝑗4

𝐿 )) , ((𝑠𝐹𝑁𝑖4
𝐿 ⊕ 𝑡𝐹𝑁𝑗4

𝐿 )))

𝑚𝑖𝑛𝑖=1,2,3,…,𝑚(𝑇ℎ𝑖
𝐿 ,𝐼ℎ𝑖

𝐿,𝐹ℎ𝑖
𝐿) )

 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(a) for 𝑚 = 2,  

(

 
 

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

2 (𝑠𝑇𝑁𝑖⊕ 𝑡𝑇𝑁𝑗)

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

2 (𝑠𝐼𝑁𝑖⊕ 𝑡𝐼𝑁𝑗)

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

2 (𝑠𝐹𝑁𝑖⊕ 𝑡𝐹𝑁𝑗)

)

 

)

 
 
= 

(((𝑠𝑇𝑁1⊕ 𝑡𝑇𝑁2) ⊗ (𝑠𝑇𝑁2⊕ 𝑡𝑇𝑁1)), ((𝑠𝐼𝑁1⊕ 𝑡𝐼𝑁2)⨂(𝑠𝐼𝑁2⊕ 𝑡𝐼𝑁1)), ((𝑠𝐹𝑁1⊕ 𝑡𝐹𝑁2)

⊗ (𝑠𝐹𝑁2⊕ 𝑡𝐹𝑁1))) 
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=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

2 (𝑠𝑇𝑁𝑖1
𝑈⊕ 𝑡𝑇𝑁𝑗1

𝑈)

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

2 (𝑠𝐼𝑁𝑖1
𝑈⊕ 𝑡𝐼𝑁𝑗1

𝑈)

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

2 (𝑠𝐹𝑁𝑖1
𝑈⊕ 𝑡𝐹𝑁𝑗1

𝑈)

)

 

)

 
 
,

(

 
 

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

2 (𝑠𝑇𝑁𝑖2
𝑈⊕ 𝑡𝑇𝑁𝑗2

𝑈)

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

2 (𝑠𝐼𝑁𝑖2
𝑈⊕ 𝑡𝐼𝑁𝑗2

𝑈)

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

2 (𝑠𝐹𝑁𝑖2
𝑈⊕ 𝑡𝐹𝑁𝑗2

𝑈)

)

 

)

 
 
,

(

 
 

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

2 (𝑠𝑇𝑁𝑖3
𝑈⊕ 𝑡𝑇𝑁𝑗3

𝑈)

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

2 (𝑠𝐼𝑁𝑖3
𝑈⊕ 𝑡𝐼𝑁𝑗3

𝑈)

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

2 (𝑠𝐹𝑁𝑖3
𝑈⊕ 𝑡𝐹𝑁𝑗3

𝑈)

)

 

)

 
 
,

(

 
 

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

2 (𝑠𝑇𝑁𝑖4
𝑈⊕ 𝑡𝑇𝑁𝑗4

𝑈)

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

2 (𝑠𝐼𝑁𝑖4
𝑈⊕ 𝑡𝐼𝑁𝑗4

𝑈)

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

2 (𝑠𝐹𝑁𝑖4
𝑈⊕ 𝑡𝐹𝑁𝑗4

𝑈)

)

 

)

 
 

𝑚𝑖𝑛((𝑇ℎ1
𝑈 , 𝐼ℎ1

𝑈 , 𝐹ℎ1
𝑈), (𝑇ℎ2

𝑈 , 𝐼ℎ2
𝑈 , 𝐹ℎ2

𝑈)) )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

2 (𝑠𝑇𝑁𝑖1
𝐿 ⊕ 𝑡𝑇𝑁𝑗1

𝐿 )

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

2 (𝑠𝐼𝑁𝑖1
𝐿 ⊕ 𝑡𝐼𝑁𝑗1

𝐿 )

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

2 (𝑠𝐹𝑁𝑖1
𝐿 ⊕ 𝑡𝐹𝑁𝑗1

𝐿 )

)

 

)

 
 
,

(

 
 

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

2 (𝑠𝑇𝑁𝑖2
𝐿 ⊕ 𝑡𝑇𝑁𝑗2

𝐿 )

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

2 (𝑠𝐼𝑁𝑖2
𝐿 ⊕ 𝑡𝐼𝑁𝑗2

𝐿 )

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

2 (𝑠𝐹𝑁𝑖2
𝐿 ⊕ 𝑡𝐹𝑁𝑗2

𝐿 )

)

 

)

 
 
,

(

 
 

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

2 (𝑠𝑇𝑁𝑖3
𝐿 ⊕ 𝑡𝑇𝑁𝑗3

𝐿 )

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

2 (𝑠𝐼𝑁𝑖3
𝐿 ⊕ 𝑡𝐼𝑁𝑗3

𝐿 )

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

2 (𝑠𝐹𝑁𝑖3
𝐿 ⊕ 𝑡𝐹𝑁𝑗3

𝐿 )

)

 

)

 
 
,

(

 
 

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

2 (𝑠𝑇𝑁𝑖4
𝐿 ⊕ 𝑡𝑇𝑁𝑗4

𝐿 )

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

2 (𝑠𝐼𝑁𝑖4
𝐿 ⊕ 𝑡𝐼𝑁𝑗4

𝐿 )

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

2 (𝑠𝐹𝑁𝑖4
𝐿 ⊕ 𝑡𝐹𝑁𝑗4

𝐿 )

)

 

)

 
 

𝑚𝑖𝑛((𝑇ℎ1
𝐿 , 𝐼ℎ1

𝐿 , 𝐹ℎ1
𝐿), (𝑇ℎ2

𝐿 , 𝐼ℎ2
𝐿 , 𝐹ℎ2

𝐿)) )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Therefore, for 𝑚 = 2, (4) is right 

Suppose we assume that (4) is true for 𝑚 = 𝑘, which is given by the following equations 
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(

 
 

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑘 (𝑠𝑇𝑁𝑖⊕ 𝑡𝑇𝑁𝑗)

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑘 (𝑠𝐼𝑁𝑖⊕ 𝑡𝐼𝑁𝑗)

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑘 (𝑠𝐹𝑁𝑖⊕ 𝑡𝐹𝑁𝑗)

)

 

)

 
 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑘 (𝑠𝑇𝑁𝑖1
𝑈⊕ 𝑡𝑇𝑁𝑗1

𝑈)

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑘 (𝑠𝐼𝑁𝑖1
𝑈⊕ 𝑡𝐼𝑁𝑗1

𝑈)

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑘 (𝑠𝐹𝑁𝑖1
𝑈⊕ 𝑡𝐹𝑁𝑗1

𝑈)

)

 

)

 
 
,

(

 
 

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑘 (𝑠𝑇𝑁𝑖2
𝑈⊕ 𝑡𝑇𝑁𝑗2

𝑈)

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑘 (𝑠𝐼𝑁𝑖2
𝑈⊕ 𝑡𝐼𝑁𝑗2

𝑈)

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑘 (𝑠𝐹𝑁𝑖2
𝑈⊕ 𝑡𝐹𝑁𝑗2

𝑈)

)

 

)

 
 
,

(

 
 

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑘 (𝑠𝑇𝑁𝑖3
𝑈⊕ 𝑡𝑇𝑁𝑗3

𝑈)

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑘 (𝑠𝐼𝑁𝑖3
𝑈⊕ 𝑡𝐼𝑁𝑗3

𝑈)

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑘 (𝑠𝐹𝑁𝑖3
𝑈⊕ 𝑡𝐹𝑁𝑗3

𝑈)

)

 

)

 
 
,

(

 
 

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑘 (𝑠𝑇𝑁𝑖4
𝑈⊕ 𝑡𝑇𝑁𝑗4

𝑈)

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑘 (𝑠𝐼𝑁𝑖4
𝑈⊕ 𝑡𝐼𝑁𝑗4

𝑈)

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑘 (𝑠𝐹𝑁𝑖4
𝑈⊕ 𝑡𝐹𝑁𝑗4

𝑈)

)

 

)

 
 

𝑚𝑖𝑛𝑖=1,2,3,…,𝑘(𝑇ℎ𝑖
𝑈,𝐼ℎ𝑖

𝑈,𝐹ℎ𝑖
𝑈) )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑘 (𝑠𝑇𝑁𝑖1
𝐿 ⊕ 𝑡𝑇𝑁𝑗1

𝐿 )

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑘 (𝑠𝐼𝑁𝑖1
𝐿 ⊕ 𝑡𝐼𝑁𝑗1

𝐿 )

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑘 (𝑠𝐹𝑁𝑖1
𝐿 ⊕ 𝑡𝐹𝑁𝑗1

𝐿 )

)

 

)

 
 
,

(

 
 

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑘 (𝑠𝑇𝑁𝑖2
𝐿 ⊕ 𝑡𝑇𝑁𝑗2

𝐿 )

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑘 (𝑠𝐼𝑁𝑖2
𝐿 ⊕ 𝑡𝐼𝑁𝑗2

𝐿 )

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑘 (𝑠𝐹𝑁𝑖2
𝐿 ⊕ 𝑡𝐹𝑁𝑗2

𝐿 )

)

 

)

 
 
,

(

 
 

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑘 (𝑠𝑇𝑁𝑖3
𝐿 ⊕ 𝑡𝑇𝑁𝑗3

𝐿 )

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑘 (𝑠𝐼𝑁𝑖3
𝐿 ⊕ 𝑡𝐼𝑁𝑗3

𝐿 )

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑘 (𝑠𝐹𝑁𝑖3
𝐿 ⊕ 𝑡𝐹𝑁𝑗3

𝐿 )

)

 

)

 
 
,

(

 
 

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑘 (𝑠𝑇𝑁𝑖4
𝐿 ⊕ 𝑡𝑇𝑁𝑗4

𝐿 )

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑘 (𝑠𝐼𝑁𝑖4
𝐿 ⊕ 𝑡𝐼𝑁𝑗4

𝐿 )

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑘 (𝑠𝐹𝑁𝑖4
𝐿 ⊕ 𝑡𝐹𝑁𝑗4

𝐿 )

)

 

)

 
 

𝑚𝑖𝑛𝑖=1,2,3,…,𝑘(𝑇ℎ𝑖
𝐿 ,𝐼ℎ𝑖

𝐿,𝐹ℎ𝑖
𝐿) )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(5) 
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Now we have to prove for 𝑚 = 𝑘 + 1 

(

 
 

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑘+1 (𝑠𝑇𝑁𝑖⊕ 𝑡𝑇𝑁𝑗)

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑘+1 (𝑠𝐼𝑁𝑖⊕ 𝑡𝐼𝑁𝑗)

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑘+1 (𝑠𝐹𝑁𝑖⊕ 𝑡𝐹𝑁𝑗)

)

 

)

 
 

=

(

 
 

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑘 (𝑠𝑇𝑁𝑖⊕ 𝑡𝑇𝑁𝑗)

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑘 (𝑠𝐼𝑁𝑖⊕ 𝑡𝐼𝑁𝑗)

)

 ,

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑘 (𝑠𝐹𝑁𝑖 ⊕ 𝑡𝐹𝑁𝑗)

)

 

)

 
 

⊗ ((⊗𝑖=1
𝑘 (𝑠𝑇𝑁𝑖⊕ 𝑡𝑇𝑁𝑘+1)) , (⊗𝑖=1

𝑘 (𝑠𝐼𝑁𝑖⊕ 𝑡𝐼𝑁𝑘+1)) , (⊗𝑖=1
𝑘 (𝑠𝐹𝑁𝑖⊕ 𝑡𝐹𝑁𝑘+1)))

⊗ ((⊗𝑗=1
𝑘 (𝑠𝑇𝑁𝑘+1⊕ 𝑡𝑇𝑁𝑗)) , (⊗𝑗=1

𝑘 (𝑠𝐼𝑁𝑘+1⊕ 𝑡𝐼𝑁𝑗)) , (⊗𝑗=1
𝑘 (𝑠𝐹𝑁𝑘+1⊕ 𝑡𝐹𝑁𝑗))) 

(6) 

Using the arithmetic operations defined for Neutrosophic member, we get 

((⊗𝑖=1
𝑘 (𝑠𝑇𝑁𝑖⊕ 𝑡𝑇𝑁𝑘+1)) , (⊗𝑖=1

𝑘 (𝑠𝐼𝑁𝑖⊕ 𝑡𝐼𝑁𝑘+1)) , (⊗𝑖=1
𝑘 (𝑠𝐹𝑁𝑖⊕ 𝑡𝐹𝑁𝑘+1)))

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 

((⊗𝑖=1
𝑘 (𝑠𝑇𝑁𝑖1

𝑈⊕ 𝑡𝑇𝑁(𝑘+1)1
𝑈 )) , (⊗𝑖=1

𝑘 (𝑠𝐼𝑁𝑖1
𝑈⊕ 𝑡𝐼𝑁(𝑘+1)1

𝑈 )) , (⊗𝑖=1
𝑘 (𝑠𝐹𝑁𝑖1

𝑈⊕ 𝑡𝐹𝑁(𝑘+1)1
𝑈 ))) ,

((⊗𝑖=1
𝑘 (𝑠𝑇𝑁𝑖2

𝑈⊕ 𝑡𝑇𝑁(𝑘+1)2
𝑈 )) , (⊗𝑖=1

𝑘 (𝑠𝐼𝑁𝑖2
𝑈⊕ 𝑡𝐼𝑁(𝑘+1)2

𝑈 )) , (⊗𝑖=1
𝑘 (𝑠𝐹𝑁𝑖2

𝑈⊕ 𝑡𝐹𝑁(𝑘+1)2
𝑈 ))) ,

((⊗𝑖=1
𝑘 (𝑠𝑇𝑁𝑖3

𝑈⊕ 𝑡𝑇𝑁(𝑘+1)3
𝑈 )) , (⊗𝑖=1

𝑘 (𝑠𝐼𝑁𝑖3
𝑈⊕ 𝑡𝐼𝑁(𝑘+1)3

𝑈 )) , (⊗𝑖=1
𝑘 (𝑠𝐹𝑁𝑖3

𝑈⊕ 𝑡𝐹𝑁(𝑘+1)3
𝑈 ))) ,

((⊗𝑖=1
𝑘 (𝑠𝑇𝑁𝑖4

𝑈⊕ 𝑡𝑇𝑁(𝑘+1)4
𝑈 )) , (⊗𝑖=1

𝑘 (𝑠𝐼𝑁𝑖4
𝑈⊕ 𝑡𝐼𝑁(𝑘+1)4

𝑈 )) , (⊗𝑖=1
𝑘 (𝑠𝐹𝑁𝑖4

𝑈⊕ 𝑡𝐹𝑁(𝑘+1)4
𝑈 )))

min
𝑖=1,2,…,𝑘

((𝑇ℎ𝑖
𝑈 , 𝐼ℎ𝑖

𝑈 , 𝐹ℎ𝑖
𝑈), (𝑇ℎ𝑘+1

𝑈 , 𝐼ℎ𝑘+1
𝑈 , 𝐹ℎ𝑘+1

𝑈 )) )

 
 
 
 
 
 
 

,

(

 
 
 
 
 
 
 
((⊗𝑖=1

𝑘 (𝑠𝑇𝑁𝑖1
𝐿 ⊕ 𝑡𝑇𝑁(𝑘+1)1

𝐿 )) , (⊗𝑖=1
𝑘 (𝑠𝐼𝑁𝑖1

𝐿 ⊕ 𝑡𝐼𝑁(𝑘+1)1
𝐿 )) , (⊗𝑖=1

𝑘 (𝑠𝐹𝑁𝑖1
𝐿 ⊕ 𝑡𝐹𝑁(𝑘+1)1

𝐿 ))) ,

((⊗𝑖=1
𝑘 (𝑠𝑇𝑁𝑖2

𝐿 ⊕ 𝑡𝑇𝑁(𝑘+1)2
𝐿 )) , (⊗𝑖=1

𝑘 (𝑠𝐼𝑁𝑖2
𝐿 ⊕ 𝑡𝐼𝑁(𝑘+1)2

𝐿 )) , (⊗𝑖=1
𝑘 (𝑠𝐹𝑁𝑖2

𝐿 ⊕ 𝑡𝐹𝑁(𝑘+1)2
𝐿 ))) ,

((⊗𝑖=1
𝑘 (𝑠𝑇𝑁𝑖3

𝐿 ⊕ 𝑡𝑇𝑁(𝑘+1)3
𝐿 )) , (⊗𝑖=1

𝑘 (𝑠𝐼𝑁𝑖3
𝐿 ⊕ 𝑡𝐼𝑁(𝑘+1)3

𝐿 )) , (⊗𝑖=1
𝑘 (𝑠𝐹𝑁𝑖3

𝐿 ⊕ 𝑡𝐹𝑁(𝑘+1)3
𝐿 ))) ,

((⊗𝑖=1
𝑘 (𝑠𝑇𝑁𝑖4

𝐿 ⊕ 𝑡𝑇𝑁(𝑘+1)4
𝐿 )) , (⊗𝑖=1

𝑘 (𝑠𝐼𝑁𝑖4
𝐿 ⊕ 𝑡𝐼𝑁(𝑘+1)4

𝐿 )) , (⊗𝑖=1
𝑘 (𝑠𝐹𝑁𝑖4

𝐿 ⊕ 𝑡𝐹𝑁(𝑘+1)4
𝐿 )))

min
𝑖=1,2,…,𝑘

((𝑇ℎ𝑖
𝐿 , 𝐼ℎ𝑖

𝐿 , 𝐹ℎ𝑖
𝐿), (𝑇ℎ𝑘+1

𝐿 , 𝐼ℎ𝑘+1
𝐿 , 𝐹ℎ𝑘+1

𝐿 )) )

 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

And 

((⊗𝑗=1
𝑘 (𝑠𝑇𝑁𝑘+1⊕ 𝑡𝑇𝑁𝑗)) , (⊗𝑗=1

𝑘 (𝑠𝐼𝑁𝑘+1⊕ 𝑡𝐼𝑁𝑗)) , (⊗𝑗=1
𝑘 (𝑠𝐹𝑁𝑘+1⊕ 𝑡𝐹𝑁𝑗))) 
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=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
((⊗𝑗=1

𝑘 (𝑠𝑇𝑁(𝑘+1)1
𝑈 ⊕ 𝑡𝑇𝑁𝑗1

𝑈)) , (⊗𝑗=1
𝑘 (𝑠𝐼𝑁(𝑘+1)1

𝑈 ⊕ 𝑡𝐼𝑁𝑗1
𝑈)) , (⊗𝑗=1

𝑘 (𝑠𝐹𝑁(𝑘+1)1
𝑈 ⊕ 𝑡𝐹𝑁𝑗1

𝑈))) ,

((⊗𝑗=1
𝑘 (𝑠𝑇𝑁(𝑘+1)2

𝑈 ⊕ 𝑡𝑇𝑁𝑗2
𝑈)) , (⊗𝑗=1

𝑘 (𝑠𝐼𝑁(𝑘+1)2
𝑈 ⊕ 𝑡𝐼𝑁𝑗2

𝑈)) , (⊗𝑗=1
𝑘 (𝑠𝐹𝑁(𝑘+1)2

𝑈 ⊕ 𝑡𝐹𝑁𝑗2
𝑈))) ,

((⊗𝑗=1
𝑘 (𝑠𝑇𝑁(𝑘+1)3

𝑈 ⊕ 𝑡𝑇𝑁𝑗3
𝑈)) , (⊗𝑗=1

𝑘 (𝑠𝐼𝑁(𝑘+1)3
𝑈 ⊕ 𝑡𝐼𝑁𝑗3

𝑈)) , (⊗𝑗=1
𝑘 (𝑠𝐹𝑁(𝑘+1)3

𝑈 ⊕ 𝑡𝐹𝑁𝑗3
𝑈))) ,

((⊗𝑗=1
𝑘 (𝑠𝑇𝑁(𝑘+1)4

𝑈 ⊕ 𝑡𝑇𝑁𝑗4
𝑈)) , (⊗𝑗=1

𝑘 (𝑠𝐼𝑁(𝑘+1)4
𝑈 ⊕ 𝑡𝐼𝑁𝑗4

𝑈)) , (⊗𝑗=1
𝑘 (𝑠𝐹𝑁(𝑘+1)4

𝑈 ⊕ 𝑡𝐹𝑁𝑗4
𝑈)))

min
𝑗=1,2,…,𝑘

((𝑇ℎ(𝑘+1)
𝑈 , 𝐼ℎ(𝑘+1)

𝑈 , 𝐹ℎ(𝑘+1)
𝑈 ), (𝑇ℎ𝑗

𝑈 , 𝐼ℎ𝑗
𝑈 , 𝐹ℎ𝑗

𝑈))
)

 
 
 
 
 
 
 

,

(

 
 
 
 
 
 
 
((⊗𝑗=1

𝑘 (𝑠𝑇𝑁(𝑘+1)1
𝐿 ⊕ 𝑡𝑇𝑁𝑗1

𝐿 )) , (⊗𝑗=1
𝑘 (𝑠𝐼𝑁(𝑘+1)1

𝐿 ⊕ 𝑡𝐼𝑁𝑗1
𝐿 )) , (⊗𝑗=1

𝑘 (𝑠𝐹𝑁(𝑘+1)1
𝐿 ⊕ 𝑡𝐹𝑁𝑗1

𝐿 ))) ,

((⊗𝑗=1
𝑘 (𝑠𝑇𝑁(𝑘+1)2

𝐿 ⊕ 𝑡𝑇𝑁𝑗2
𝐿 )) , (⊗𝑗=1

𝑘 (𝑠𝐼𝑁(𝑘+1)2
𝐿 ⊕ 𝑡𝐼𝑁𝑗2

𝐿 )) , (⊗𝑗=1
𝑘 (𝑠𝐹𝑁(𝑘+1)2

𝐿 ⊕ 𝑡𝐹𝑁𝑗2
𝐿 ))) ,

((⊗𝑗=1
𝑘 (𝑠𝑇𝑁(𝑘+1)3

𝐿 ⊕ 𝑡𝑇𝑁𝑗3
𝐿 )) , (⊗𝑗=1

𝑘 (𝑠𝐼𝑁(𝑘+1)3
𝐿 ⊕ 𝑡𝐼𝑁𝑗3

𝐿 )) , (⊗𝑗=1
𝑘 (𝑠𝐹𝑁(𝑘+1)3

𝐿 ⊕ 𝑡𝐹𝑁𝑗3
𝐿 ))) ,

((⊗𝑗=1
𝑘 (𝑠𝑇𝑁(𝑘+1)4

𝐿 ⊕ 𝑡𝑇𝑁𝑗4
𝐿 )) , (⊗𝑗=1

𝑘 (𝑠𝐼𝑁(𝑘+1)4
𝐿 ⊕ 𝑡𝐼𝑁𝑗4

𝐿 )) , (⊗𝑗=1
𝑘 (𝑠𝐹𝑁(𝑘+1)4

𝐿 ⊕ 𝑡𝐹𝑁𝑗4
𝐿 )))

min
𝑗=1,2,…,𝑘

((𝑇ℎ(𝑘+1)
𝐿 , 𝐼ℎ(𝑘+1)

𝐿 , 𝐹ℎ(𝑘+1)
𝐿 ), (𝑇ℎ𝑗

𝐿 , 𝐼ℎ𝑗
𝐿 , 𝐹ℎ𝑗

𝐿))
)

 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The above two equations and equation (5) will applied in (6). The resulting equation will gives 

((⊗𝑖,𝑗=1
𝑖≠𝑗

𝑘+1 (𝑠𝑇𝑁𝑖⊕ 𝑡𝑇𝑁𝑗)) , (⊗𝑖,𝑗=1
𝑖≠𝑗

𝑘+1 (𝑠𝐼𝑁𝑖⊕ 𝑡𝐼𝑁𝑗)) , (⊗𝑖,𝑗=1
𝑖≠𝑗

𝑘+1 (𝑠𝐹𝑁𝑖⊕ 𝑡𝐹𝑁𝑗)))

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
((⊗𝑖=1

𝑘+1 (𝑠𝑇𝑁𝑖1
𝑈⊕ 𝑡𝑇𝑁𝑗1

𝑈)) , (⊗𝑖=1
𝑘+1 (𝑠𝐼𝑁𝑖1

𝑈⊕ 𝑡𝐼𝑁𝑗1
𝑈)) , (⊗𝑖=1

𝑘+1 (𝑠𝐹𝑁𝑖1
𝑈⊕ 𝑡𝐹𝑁𝑗1

𝑈))) ,

((⊗𝑖=1
𝑘+1 (𝑠𝑇𝑁𝑖2

𝑈⊕ 𝑡𝑇𝑁𝑗2
𝑈)) , (⊗𝑖=1

𝑘+1 (𝑠𝐼𝑁𝑖2
𝑈⊕ 𝑡𝐼𝑁𝑗2

𝑈)) , (⊗𝑖=1
𝑘+1 (𝑠𝐹𝑁𝑖2

𝑈⊕ 𝑡𝐹𝑁𝑗2
𝑈))) ,

((⊗𝑖=1
𝑘+1 (𝑠𝑇𝑁𝑖3

𝑈⊕ 𝑡𝑇𝑁𝑗3
𝑈)) , (⊗𝑖=1

𝑘+1 (𝑠𝐼𝑁𝑖3
𝑈⊕ 𝑡𝐼𝑁𝑗3

𝑈)) , (⊗𝑖=1
𝑘+1 (𝑠𝐹𝑁𝑖3

𝑈⊕ 𝑡𝐹𝑁𝑗3
𝑈))) ,

((⊗𝑖=1
𝑘+1 (𝑠𝑇𝑁𝑖4

𝑈⊕ 𝑡𝑇𝑁𝑗4
𝑈)) , (⊗𝑖=1

𝑘+1 (𝑠𝐼𝑁𝑖4
𝑈⊕ 𝑡𝐼𝑁𝑗4

𝑈)) , (⊗𝑖=1
𝑘+1 (𝑠𝐹𝑁𝑖4

𝑈⊕ 𝑡𝐹𝑁𝑗4
𝑈)))

𝑚𝑖𝑛𝑖=1,2,3,…,𝑘+1(𝑇ℎ𝑖
𝑈,𝐼ℎ𝑖

𝑈,𝐹ℎ𝑖
𝑈) )

 
 
 
 
 
 

,

(

 
 
 
 
 
 

((⊗𝑖=1
𝑘+1 (𝑠𝑇𝑁𝑖1

𝐿 ⊕ 𝑡𝑇𝑁𝑗1
𝐿 )) , (⊗𝑖=1

𝑘+1 (𝑠𝐼𝑁𝑖1
𝐿 ⊕ 𝑡𝐼𝑁𝑗1

𝐿 )) , (⊗𝑖=1
𝑘+1 (𝑠𝐹𝑁𝑖1

𝐿 ⊕ 𝑡𝐹𝑁𝑗1
𝐿 ))) ,

((⊗𝑖=1
𝑘+1 (𝑠𝑇𝑁𝑖2

𝐿 ⊕ 𝑡𝑇𝑁𝑗2
𝐿 )) , (⊗𝑖=1

𝑘+1 (𝑠𝐼𝑁𝑖2
𝐿 ⊕ 𝑡𝐼𝑁𝑗2

𝐿 )) , (⊗𝑖=1
𝑘+1 (𝑠𝐹𝑁𝑖2

𝐿 ⊕ 𝑡𝐹𝑁𝑗2
𝐿 ))) ,

((⊗𝑖=1
𝑘+1 (𝑠𝑇𝑁𝑖3

𝐿 ⊕ 𝑡𝑇𝑁𝑗3
𝐿 )) , (⊗𝑖=1

𝑘+1 (𝑠𝐼𝑁𝑖3
𝐿 ⊕ 𝑡𝐼𝑁𝑗3

𝐿 )) , (⊗𝑖=1
𝑘+1 (𝑠𝐹𝑁𝑖3

𝐿 ⊕ 𝑡𝐹𝑁𝑗3
𝐿 ))) ,

((⊗𝑖=1
𝑘+1 (𝑠𝑇𝑁𝑖4

𝐿 ⊕ 𝑡𝑇𝑁𝑗4
𝐿 )) , (⊗𝑖=1

𝑘+1 (𝑠𝐼𝑁𝑖4
𝐿 ⊕ 𝑡𝐼𝑁𝑗4

𝐿 )) , (⊗𝑖=1
𝑘+1 (𝑠𝐹𝑁𝑖4

𝐿 ⊕ 𝑡𝐹𝑁𝑗4
𝐿 )))

𝑚𝑖𝑛𝑖=1,2,3,…,𝑘+1(𝑇ℎ𝑖
𝐿 ,𝐼ℎ𝑖

𝐿,𝐹ℎ𝑖
𝐿) )

 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Next we prove (1) is true, 

By the arithmetic operations defined for Neutrosophic member and equation), 

It is verified that the below equation (1) is true for any 𝑛. 
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𝑁𝐵𝑀(𝑠,𝑡)((𝑇𝑁1, 𝐼𝑁1, 𝐹𝑁1), (𝑇𝑁2, 𝐼𝑁2, 𝐹𝑁2), … , (𝑇𝑁𝑛, 𝐼𝑁𝑛, 𝐹𝑁𝑛))

=

(

 
 1

𝑠 + 𝑡

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠𝑇𝑁𝑖⊕ 𝑡𝑇𝑁𝑗)

)

 

1

𝑚(𝑚−1)

,
1

𝑠 + 𝑡

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠𝐼𝑁𝑖

⊕ 𝑡𝐼𝑁𝑗)

)

 

1

𝑚(𝑚−1)

,
1

𝑠 + 𝑡

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠𝐹𝑁𝑖⊕ 𝑡𝐹𝑁𝑗)

)

 

1

𝑚(𝑚−1)

)

 
 

 

Now we prove some important property for Neutrosophic Bonferroni mean(NBM) 

3.Neutrosophic Bonferroni properties: 

Property 3. 1: 

This property is also called as idempotency on NBM. 

Let  

(𝑇𝑁𝑖 , 𝐼𝑁𝑖 , 𝐹𝑁𝑖) = ((𝑇𝑁𝑖
𝑈, 𝐼𝑁𝑖

𝑈, 𝐹𝑁𝑖
𝑈), (𝑇𝑁𝑖

𝐿 , 𝐼𝑁𝑖
𝐿 , 𝐹𝑁𝑖

𝐿))

= (((𝑇𝑎𝑖1
𝑈 , 𝐼𝑎𝑖1

𝑈 , 𝐹𝑎𝑖1
𝑈 ), (𝑇𝑎𝑖2

𝑈 , 𝐼𝑎𝑖2
𝑈 , 𝐹𝑎𝑖2

𝑈 ), (𝑇𝑎𝑖3
𝑈 , 𝐼𝑎𝑖3

𝑈 , 𝐹𝑎𝑖3
𝑈 ), (𝑇𝑎𝑖4

𝑈 , 𝐼𝑎𝑖4
𝑈 , 𝐹𝑎𝑖4

𝑈 ), (𝑇ℎ𝑖
𝑈 , 𝐼ℎ𝑖

𝑈 , 𝐹ℎ𝑖
𝑈)), 

((𝑇𝑎𝑖1
𝐿 , 𝐼𝑎𝑖1

𝐿 , 𝐹𝑎𝑖1
𝐿 ), (𝑇𝑎𝑖2

𝐿 , 𝐼𝑎𝑖2
𝐿 , 𝐹𝑎𝑖2

𝐿 ), (𝑇𝑎𝑖3
𝐿 , 𝐼𝑎𝑖3

𝐿 , 𝐹𝑎𝑖3
𝐿 ), (𝑇𝑎𝑖4

𝐿 , 𝐼𝑎𝑖4
𝐿 , 𝐹𝑎𝑖4

𝐿 ), (𝑇ℎ𝑖
𝐿 , 𝐼ℎ𝑖

𝐿 , 𝐹ℎ𝑖
𝐿)))(𝑖 = 1,2, … ,𝑚) be the 

and  𝑠, 𝑡 ≥ 0. If every (𝑇𝑁𝑖 , 𝐼𝑁𝑖 , 𝐹𝑁𝑖) = ((𝑇𝑁𝑖
𝑈, 𝐼𝑁𝑖

𝑈, 𝐹𝑁𝑖
𝑈), (𝑇𝑁𝑖

𝐿 , 𝐼𝑁𝑖
𝐿 , 𝐹𝑁𝑖

𝐿)) are equal for all 𝑖. 

(i.e) (𝑇𝑁𝑖 , 𝐼𝑁𝑖 , 𝐹𝑁𝑖) = ((𝑇𝑁𝑖
𝑈, 𝐼𝑁𝑖

𝑈, 𝐹𝑁𝑖
𝑈), (𝑇𝑁𝑖

𝐿 , 𝐼𝑁𝑖
𝐿 , 𝐹𝑁𝑖

𝐿)) = (𝑇𝑁0, 𝐼𝑁0, 𝐹𝑁0); 

((𝑇𝑁0, 𝐼𝑁0, 𝐹𝑁0) = ((𝑇𝑁0
𝑈, 𝐼𝑁0

𝑈, 𝐹𝑁0
𝑈), (𝑇𝑁0

𝐿 , 𝐼𝑁0
𝐿 , 𝐹𝑁0

𝐿)) then 

𝑁𝐵𝑀(𝑠,𝑡)((𝑇𝑁1, 𝐼𝑁1, 𝐹𝑁1), (𝑇𝑁2, 𝐼𝑁2, 𝐹𝑁2), … , (𝑇𝑁𝑛 , 𝐼𝑁𝑛 , 𝐹𝑁𝑛)) = ((𝑇𝑁0, 𝐼𝑁0, 𝐹𝑁0) =

((𝑇𝑁0
𝑈, 𝐼𝑁0

𝑈, 𝐹𝑁0
𝑈), (𝑇𝑁0

𝐿 , 𝐼𝑁0
𝐿 , 𝐹𝑁0

𝐿))                                                                            (7) 

Property 3.2: 

This property is also called as boundedness on NBM. 

(𝑇𝑁𝑖 , 𝐼𝑁𝑖 , 𝐹𝑁𝑖) = ((𝑇𝑁𝑖
𝑈, 𝐼𝑁𝑖

𝑈, 𝐹𝑁𝑖
𝑈), (𝑇𝑁𝑖

𝐿 , 𝐼𝑁𝑖
𝐿 , 𝐹𝑁𝑖

𝐿))

= (((𝑇𝑎𝑖1
𝑈 , 𝐼𝑎𝑖1

𝑈 , 𝐹𝑎𝑖1
𝑈 ), (𝑇𝑎𝑖2

𝑈 , 𝐼𝑎𝑖2
𝑈 , 𝐹𝑎𝑖2

𝑈 ), (𝑇𝑎𝑖3
𝑈 , 𝐼𝑎𝑖3

𝑈 , 𝐹𝑎𝑖3
𝑈 ), (𝑇𝑎𝑖4

𝑈 , 𝐼𝑎𝑖4
𝑈 , 𝐹𝑎𝑖4

𝑈 ), (𝑇ℎ𝑖
𝑈 , 𝐼ℎ𝑖

𝑈 , 𝐹ℎ𝑖
𝑈)), 
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((𝑇𝑎𝑖1
𝐿 , 𝐼𝑎𝑖1

𝐿 , 𝐹𝑎𝑖1
𝐿 ), (𝑇𝑎𝑖2

𝐿 , 𝐼𝑎𝑖2
𝐿 , 𝐹𝑎𝑖2

𝐿 ), (𝑇𝑎𝑖3
𝐿 , 𝐼𝑎𝑖3

𝐿 , 𝐹𝑎𝑖3
𝐿 ), (𝑇𝑎𝑖4

𝐿 , 𝐼𝑎𝑖4
𝐿 , 𝐹𝑎𝑖4

𝐿 ), (𝑇ℎ𝑖
𝐿 , 𝐼ℎ𝑖

𝐿 , 𝐹ℎ𝑖
𝐿)))(𝑖 = 1,2, … ,𝑚) be the 

set of members of the Neutrosophic and for 𝑠, 𝑡 ≥ 0 and also we have ((𝑇𝑁−
𝑈, 𝐼𝑁−

𝑈, 𝐹𝑁−
𝑈), (𝑇𝑁−

𝐿 , 𝐼𝑁−
𝐿 , 𝐹𝑁−

𝐿)) =

(

 
 
 
 (
(min

𝑖
𝑇𝑎𝑖1

𝑈 , min
𝑖
𝐼𝑎𝑖1
𝑈 , min

𝑖
𝐹𝑎𝑖1

𝑈 ) , (min
𝑖
𝑇𝑎𝑖2

𝑈 , min
𝑖
𝐼𝑎𝑖2
𝑈 , min

𝑖
𝐹𝑎𝑖2

𝑈 ) , (min
𝑖
𝑇𝑎𝑖3

𝑈 , min
𝑖
𝐼𝑎𝑖3
𝑈 , min

𝑖
𝐹𝑎𝑖3

𝑈 ) ,

(min
𝑖
𝑇𝑎𝑖4

𝑈 , min
𝑖
𝐼𝑎𝑖4
𝑈 , min

𝑖
𝐹𝑎𝑖4

𝑈 ) , (min
𝑖
𝑇ℎ𝑖

𝑈 , min
𝑖
𝐼ℎ𝑖
𝑈 , min

𝑖
𝐹ℎ𝑖

𝑈)
) ,

(
(min

𝑖
𝑇𝑎𝑖1

𝐿 , min
𝑖
𝐼𝑎𝑖1
𝐿 , min

𝑖
𝐹𝑎𝑖1

𝐿 ) , (min
𝑖
𝑇𝑎𝑖2

𝐿 , min
𝑖
𝐼𝑎𝑖2
𝐿 , min

𝑖
𝐹𝑎𝑖2

𝐿 ) , (min
𝑖
𝑇𝑎𝑖3

𝐿 , min
𝑖
𝐼𝑎𝑖3
𝐿 , min

𝑖
𝐹𝑎𝑖3

𝐿 ) ,

(min
𝑖
𝑇𝑎𝑖4

𝐿 , min
𝑖
𝐼𝑎𝑖4
𝐿 , min

𝑖
𝐹𝑎𝑖4

𝐿 ) , (min
𝑖
𝑇ℎ𝑖

𝐿 , min
𝑖
𝐼ℎ𝑖
𝐿 , min

𝑖
𝐹ℎ𝑖

𝐿)
)

)

 
 
 
 

 

And((𝑇𝑁+
𝑈, 𝐼𝑁+

𝑈, 𝐹𝑁+
𝑈), (𝑇𝑁+

𝐿 , 𝐼𝑁+
𝐿 , 𝐹𝑁+

𝐿)) = 

(

 
 
 
 (
(max

𝑖
𝑇𝑎𝑖1

𝑈 , max
𝑖
𝐼𝑎𝑖1
𝑈 , max

𝑖
𝐹𝑎𝑖1

𝑈 ) , (max
𝑖
𝑇𝑎𝑖2

𝑈 , max
𝑖
𝐼𝑎𝑖2
𝑈 , max

𝑖
𝐹𝑎𝑖2

𝑈 ) , (max
𝑖
𝑇𝑎𝑖3

𝑈 , max
𝑖
𝐼𝑎𝑖3
𝑈 , max

𝑖
𝐹𝑎𝑖3

𝑈 ) ,

(max
𝑖
𝑇𝑎𝑖4

𝑈 , max
𝑖
𝐼𝑎𝑖4
𝑈 , max

𝑖
𝐹𝑎𝑖4

𝑈 ) , (max
𝑖
𝑇ℎ𝑖

𝑈 , max
𝑖
𝐼ℎ𝑖
𝑈 , max

𝑖
𝐹ℎ𝑖

𝑈)
) ,

(
(max

𝑖
𝑇𝑎𝑖1

𝐿 , max
𝑖
𝐼𝑎𝑖1
𝐿 , max

𝑖
𝐹𝑎𝑖1

𝐿 ) , (max
𝑖
𝑇𝑎𝑖2

𝐿 , max
𝑖
𝐼𝑎𝑖2
𝐿 , max

𝑖
𝐹𝑎𝑖2

𝐿 ) , (max
𝑖
𝑇𝑎𝑖3

𝐿 , max
𝑖
𝐼𝑎𝑖3
𝐿 , max

𝑖
𝐹𝑎𝑖3

𝐿 ) ,

(max
𝑖
𝑇𝑎𝑖4

𝐿 , max
𝑖
𝐼𝑎𝑖4
𝐿 , max

𝑖
𝐹𝑎𝑖4

𝐿 ) , (max
𝑖
𝑇ℎ𝑖

𝐿 , max
𝑖
𝐼ℎ𝑖
𝐿 , max

𝑖
𝐹ℎ𝑖

𝐿)
)

)

 
 
 
 

 

Then we have, 

(𝑇𝑁−, 𝐼𝑁−, 𝐹𝑁−) ≤ 𝑁𝐵𝑀
(𝑠,𝑡)((𝑇𝑁1, 𝐼𝑁1, 𝐹𝑁1), (𝑇𝑁2, 𝐼𝑁2, 𝐹𝑁2), … , (𝑇𝑁𝑚, 𝐼𝑁𝑚 , 𝐹𝑁𝑚)) ≤ (𝑇𝑁+, 𝐼𝑁+, 𝐹𝑁+)                                                                                                                    

(8) 

Property 3.3: 

This property is also called as monotonicity on NBM. 

(𝑇𝑁𝑖 , 𝐼𝑁𝑖 , 𝐹𝑁𝑖) = ((𝑇𝑁𝑖
𝑈, 𝐼𝑁𝑖

𝑈, 𝐹𝑁𝑖
𝑈), (𝑇𝑁𝑖

𝐿 , 𝐼𝑁𝑖
𝐿 , 𝐹𝑁𝑖

𝐿))

= (((𝑇𝑎𝑖1
𝑈 , 𝐼𝑎𝑖1

𝑈 , 𝐹𝑎𝑖1
𝑈 ), (𝑇𝑎𝑖2

𝑈 , 𝐼𝑎𝑖2
𝑈 , 𝐹𝑎𝑖2

𝑈 ), (𝑇𝑎𝑖3
𝑈 , 𝐼𝑎𝑖3

𝑈 , 𝐹𝑎𝑖3
𝑈 ), (𝑇𝑎𝑖4

𝑈 , 𝐼𝑎𝑖4
𝑈 , 𝐹𝑎𝑖4

𝑈 ), (𝑇ℎ𝑖
𝑈 , 𝐼ℎ𝑖

𝑈 , 𝐹ℎ𝑖
𝑈)), 

((𝑇𝑎𝑖1
𝐿 , 𝐼𝑎𝑖1

𝐿 , 𝐹𝑎𝑖1
𝐿 ), (𝑇𝑎𝑖2

𝐿 , 𝐼𝑎𝑖2
𝐿 , 𝐹𝑎𝑖2

𝐿 ), (𝑇𝑎𝑖3
𝐿 , 𝐼𝑎𝑖3

𝐿 , 𝐹𝑎𝑖3
𝐿 ), (𝑇𝑎𝑖4

𝐿 , 𝐼𝑎𝑖4
𝐿 , 𝐹𝑎𝑖4

𝐿 ), (𝑇ℎ𝑖
𝐿 , 𝐼ℎ𝑖

𝐿 , 𝐹ℎ𝑖
𝐿)))(𝑖 = 1,2, … ,𝑚) and for 

𝑠, 𝑡 ≥ 0 and  

(𝑇𝑀𝑖, 𝐼𝑀𝑖 , 𝐹𝑀𝑖) = ((𝑇𝑀𝑖
𝑈, 𝐼𝑀𝑖

𝑈 , 𝐹𝑀𝑖
𝑈), (𝑇𝑀𝑖

𝐿 , 𝐼𝑀𝑖
𝐿 , 𝐹𝑀𝑖

𝐿))

= (((𝑇𝑏𝑖1
𝑈 , 𝐼𝑏𝑖1

𝑈 , 𝐹𝑏𝑖1
𝑈), (𝑇𝑏𝑖2

𝑈 , 𝐼𝑏𝑖2
𝑈 , 𝐹𝑏𝑖2

𝑈), (𝑇𝑏𝑖3
𝑈 , 𝐼𝑏𝑖3

𝑈 , 𝐹𝑏𝑖3
𝑈), (𝑇𝑏𝑖4

𝑈 , 𝐼𝑏𝑖4
𝑈 , 𝐹𝑏𝑖4

𝑈), (𝑇ℎ𝑖
𝑈 , 𝐼ℎ𝑖

𝑈 , 𝐹ℎ𝑖
𝑈)), 

((𝑇𝑏𝑖1
𝐿 , 𝐼𝑏𝑖1

𝐿 , 𝐹𝑏𝑖1
𝐿 ), (𝑇𝑏𝑖2

𝐿 , 𝐼𝑏𝑖2
𝐿 , 𝐹𝑏𝑖2

𝐿 ), (𝑇𝑏𝑖3
𝐿 , 𝐼𝑏𝑖3

𝐿 , 𝐹𝑏𝑖3
𝐿 ), (𝑇𝑏𝑖4

𝐿 , 𝐼𝑏𝑖4
𝐿 , 𝐹𝑏𝑖4

𝐿 ), (𝑇ℎ𝑖
𝐿 , 𝐼ℎ𝑖

𝐿 , 𝐹ℎ𝑖
𝐿)))(𝑖 = 1,2, … ,𝑚) and for 

𝑠, 𝑡 ≥ 0 and also ((𝑇𝑎𝑖𝑘
𝑈 ≤ 𝑇𝑏𝑖𝑘

𝑈 ), (𝐼𝑎𝑖𝑘
𝑈 ≤ 𝐼𝑏𝑖𝑘

𝑈 ), (𝐹𝑎𝑖𝑘
𝑈 ≤ 𝐹𝑏𝑖𝑘

𝑈 )) and ((𝑇𝑎𝑖𝑘
𝐿 ≤ 𝑇𝑏𝑖𝑘

𝐿 ), (𝐼𝑎𝑖𝑘
𝐿 ≤ 𝐼𝑏𝑖𝑘

𝐿 ), (𝐹𝑎𝑖𝑘
𝐿 ≤ 𝐹𝑏𝑖𝑘

𝐿 )) 

                                               (9) 
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Property 4: 

This property is also called as commutivity on NBM. 

(𝑇𝑁𝑖 , 𝐼𝑁𝑖 , 𝐹𝑁𝑖) = ((𝑇𝑁𝑖
𝑈, 𝐼𝑁𝑖

𝑈, 𝐹𝑁𝑖
𝑈), (𝑇𝑁𝑖

𝐿 , 𝐼𝑁𝑖
𝐿 , 𝐹𝑁𝑖

𝐿))

= (((𝑇𝑎𝑖1
𝑈 , 𝐼𝑎𝑖1

𝑈 , 𝐹𝑎𝑖1
𝑈 ), (𝑇𝑎𝑖2

𝑈 , 𝐼𝑎𝑖2
𝑈 , 𝐹𝑎𝑖2

𝑈 ), (𝑇𝑎𝑖3
𝑈 , 𝐼𝑎𝑖3

𝑈 , 𝐹𝑎𝑖3
𝑈 ), (𝑇𝑎𝑖4

𝑈 , 𝐼𝑎𝑖4
𝑈 , 𝐹𝑎𝑖4

𝑈 ), (𝑇ℎ𝑖
𝑈 , 𝐼ℎ𝑖

𝑈 , 𝐹ℎ𝑖
𝑈)), 

((𝑇𝑎𝑖1
𝐿 , 𝐼𝑎𝑖1

𝐿 , 𝐹𝑎𝑖1
𝐿 ), (𝑇𝑎𝑖2

𝐿 , 𝐼𝑎𝑖2
𝐿 , 𝐹𝑎𝑖2

𝐿 ), (𝑇𝑎𝑖3
𝐿 , 𝐼𝑎𝑖3

𝐿 , 𝐹𝑎𝑖3
𝐿 ), (𝑇𝑎𝑖4

𝐿 , 𝐼𝑎𝑖4
𝐿 , 𝐹𝑎𝑖4

𝐿 ), (𝑇ℎ𝑖
𝐿 , 𝐼ℎ𝑖

𝐿 , 𝐹ℎ𝑖
𝐿)))(𝑖 = 1,2, … ,𝑚) and 

for 𝑠, 𝑡 ≥ 0 and  

(𝑇𝑁′𝑖 , 𝐼𝑁′𝑖 , 𝐹𝑁′𝑖) = ((𝑇𝑁𝑖
′𝑈, 𝐼𝑁𝑖

′𝑈, 𝐹𝑁𝑖
′𝑈), (𝑇𝑁𝑖

′𝐿 , 𝐼𝑁𝑖
′𝐿 , 𝐹𝑁𝑖

′𝐿))

= (((𝑇𝑎𝑖1
′𝑈, 𝐼𝑎𝑖1

′𝑈, 𝐹𝑎𝑖1
′𝑈), (𝑇𝑎𝑖2

′𝑈, 𝐼𝑎𝑖2
′𝑈 , 𝐹𝑎𝑖2

′𝑈), (𝑇𝑎𝑖3
′𝑈, 𝐼𝑎𝑖3

′𝑈 , 𝐹𝑎𝑖3
′𝑈), (𝑇𝑎𝑖4

′𝑈, 𝐼𝑎𝑖4
′𝑈 , 𝐹𝑎𝑖4

′𝑈), (𝑇ℎ𝑖
′𝑈, 𝐼ℎ𝑖

′𝑈, 𝐹ℎ𝑖
′𝑈)), 

((𝑇𝑎𝑖1
′𝐿 , 𝐼𝑎𝑖1

′𝐿 , 𝐹𝑎𝑖1
′𝐿), (𝑇𝑎𝑖2

′𝐿 , 𝐼𝑎𝑖2
′𝐿 , 𝐹𝑎𝑖2

′𝐿), (𝑇𝑎𝑖3
′𝐿 , 𝐼𝑎𝑖3

′𝐿 , 𝐹𝑎𝑖3
′𝐿), (𝑇𝑎𝑖4

′𝐿 , 𝐼𝑎𝑖4
′𝐿 , 𝐹𝑎𝑖4

′𝐿), (𝑇ℎ𝑖
′𝐿 , 𝐼ℎ𝑖

′𝐿 , 𝐹ℎ𝑖
′𝐿)))(𝑖 = 1,2, … ,𝑚) be 

the permutation number of above Neutrosophic member and for 𝑠, 𝑡 ≥ 0. Then, 

𝑁𝐵𝑀(𝑠,𝑡)((𝑇𝑁1, 𝐼𝑁1, 𝐹𝑁1), (𝑇𝑁2, 𝐼𝑁2, 𝐹𝑁2), … , (𝑇𝑁𝑚 , 𝐼𝑁𝑚, 𝐹𝑁𝑚)) =

𝑁𝐵𝑀(𝑠,𝑡)((𝑇𝑁′1, 𝐼𝑁′1, 𝐹𝑁′1), (𝑇𝑁′2, 𝐼𝑁′2, 𝐹𝑁′2), … , (𝑇𝑁′𝑚 , 𝐼𝑁′𝑚, 𝐹𝑁′𝑚))                                                   (10) 

By giving parameters  𝑠, 𝑡 different values, we will get different values. 

4.Neutrosophic weighted Bonferroni operator: 

Definition 4.1: 

Let  

(𝑇𝑁𝑖 , 𝐼𝑁𝑖 , 𝐹𝑁𝑖) = ((𝑇𝑁𝑖
𝑈, 𝐼𝑁𝑖

𝑈, 𝐹𝑁𝑖
𝑈), (𝑇𝑁𝑖

𝐿 , 𝐼𝑁𝑖
𝐿 , 𝐹𝑁𝑖

𝐿))

= (((𝑇𝑎𝑖1
𝑈 , 𝐼𝑎𝑖1

𝑈 , 𝐹𝑎𝑖1
𝑈 ), (𝑇𝑎𝑖2

𝑈 , 𝐼𝑎𝑖2
𝑈 , 𝐹𝑎𝑖2

𝑈 ), (𝑇𝑎𝑖3
𝑈 , 𝐼𝑎𝑖3

𝑈 , 𝐹𝑎𝑖3
𝑈 ), (𝑇𝑎𝑖4

𝑈 , 𝐼𝑎𝑖4
𝑈 , 𝐹𝑎𝑖4

𝑈 ), (𝑇ℎ𝑖
𝑈 , 𝐼ℎ𝑖

𝑈 , 𝐹ℎ𝑖
𝑈)), 

((𝑇𝑎𝑖1
𝐿 , 𝐼𝑎𝑖1

𝐿 , 𝐹𝑎𝑖1
𝐿 ), (𝑇𝑎𝑖2

𝐿 , 𝐼𝑎𝑖2
𝐿 , 𝐹𝑎𝑖2

𝐿 ), (𝑇𝑎𝑖3
𝐿 , 𝐼𝑎𝑖3

𝐿 , 𝐹𝑎𝑖3
𝐿 ), (𝑇𝑎𝑖4

𝐿 , 𝐼𝑎𝑖4
𝐿 , 𝐹𝑎𝑖4

𝐿 ), (𝑇ℎ𝑖
𝐿 , 𝐼ℎ𝑖

𝐿 , 𝐹ℎ𝑖
𝐿)))(𝑖 = 1,2, … ,𝑚) and for 

𝑠, 𝑡 ≥ 0 and (𝑇𝑤, 𝐼𝑤, 𝐹𝑤) = ((𝑇𝑤1, 𝐼𝑤1, 𝐹𝑤1), (𝑇𝑤2, 𝐼𝑤2, 𝐹𝑤2)… (𝑇𝑤𝑚, 𝐼𝑤𝑚 , 𝐹𝑤𝑚)) be the weight vector for 

(𝑇𝑁𝑖 , 𝐼𝑁𝑖 , 𝐹𝑁𝑖) = ((𝑇𝑁𝑖
𝑈, 𝐼𝑁𝑖

𝑈, 𝐹𝑁𝑖
𝑈), (𝑇𝑁𝑖

𝐿 , 𝐼𝑁𝑖
𝐿 , 𝐹𝑁𝑖

𝐿)), where (𝑇𝑤𝑖 ≥ 0, 𝐼𝑤𝑖 ≥ 0, 𝐹𝑤𝑖 ≥ 0) and ∑ 𝑇𝑤𝑖
𝑛
𝑖=0 +

∑ 𝐼𝑤𝑖
𝑚
𝑖=0 + ∑ 𝐹𝑤𝑖

𝑚
𝑖=0 = 1, then the Neutrosophic weighted Bonferroni operator is defined as 
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𝑁𝑊𝐵𝑀(𝑠,𝑡)((𝑇𝑁1, 𝐼𝑁1, 𝐹𝑁1), (𝑇𝑁2, 𝐼𝑁2, 𝐹𝑁2), … , (𝑇𝑁𝑚, 𝐼𝑁𝑚, 𝐹𝑁𝑚)) =

(

 
 1

𝑠+𝑡

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠(𝑇𝑁𝑖)
𝑤𝑖 ⊕

𝑡(𝑇𝑁𝑗)
𝑤𝑗)

)

 

1

𝑚(𝑚−1)

,
1

𝑠+𝑡

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠(𝐼𝑁𝑖)
𝑤𝑖 ⊕ 𝑡(𝐼𝑁𝑗)

𝑤𝑗)

)

 

1

𝑚(𝑚−1)

,
1

𝑠+𝑡

(

 ⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠(𝐹𝑁𝑖)
𝑤𝑖 ⊕

𝑡(𝐹𝑁𝑗)
𝑤𝑗)

)

 

1

𝑚(𝑚−1)

)

 
 

                                                         (14) 

Theorem 4.1: 

Let  

(𝑇𝑁𝑖 , 𝐼𝑁𝑖 , 𝐹𝑁𝑖) = ((𝑇𝑁𝑖
𝑈, 𝐼𝑁𝑖

𝑈, 𝐹𝑁𝑖
𝑈), (𝑇𝑁𝑖

𝐿 , 𝐼𝑁𝑖
𝐿 , 𝐹𝑁𝑖

𝐿))

= (
((𝑇𝑎𝑖1

𝑈 , 𝐼𝑎𝑖1
𝑈 , 𝐹𝑎𝑖1

𝑈 ), (𝑇𝑎𝑖2
𝑈 , 𝐼𝑎𝑖2

𝑈 , 𝐹𝑎𝑖2
𝑈 ), (𝑇𝑎𝑖3

𝑈 , 𝐼𝑎𝑖3
𝑈 , 𝐹𝑎𝑖3

𝑈 ), (𝑇𝑎𝑖4
𝑈 , 𝐼𝑎𝑖4

𝑈 , 𝐹𝑎𝑖4
𝑈 ), (𝑇ℎ𝑖

𝑈 , 𝐼ℎ𝑖
𝑈 , 𝐹ℎ𝑖

𝑈)) ,

((𝑇𝑎𝑖1
𝐿 , 𝐼𝑎𝑖1

𝐿 , 𝐹𝑎𝑖1
𝐿 ), (𝑇𝑎𝑖2

𝐿 , 𝐼𝑎𝑖2
𝐿 , 𝐹𝑎𝑖2

𝐿 ), (𝑇𝑎𝑖3
𝐿 , 𝐼𝑎𝑖3

𝐿 , 𝐹𝑎𝑖3
𝐿 ), (𝑇𝑎𝑖4

𝐿 , 𝐼𝑎𝑖4
𝐿 , 𝐹𝑎𝑖4

𝐿 ), (𝑇ℎ𝑖
𝐿 , 𝐼ℎ𝑖

𝐿 , 𝐹ℎ𝑖
𝐿))

) 

(𝑖 = 1,2, … , 𝑛) and for s,t≥0 are (𝑇𝑤, 𝐼𝑤, 𝐹𝑤) = ((𝑇𝑤1, 𝐼𝑤1, 𝐹𝑤1), (𝑇𝑤2, 𝐼𝑤2, 𝐹𝑤2) … (𝑇𝑤𝑚, 𝐼𝑤𝑚, 𝐹𝑤𝑚)) be the 

weight vector for (𝑇𝑁𝑖 , 𝐼𝑁𝑖 , 𝐹𝑁𝑖) = ((𝑇𝑁𝑖
𝑈, 𝐼𝑁𝑖

𝑈, 𝐹𝑁𝑖
𝑈), (𝑇𝑁𝑖

𝐿 , 𝐼𝑁𝑖
𝐿 , 𝐹𝑁𝑖

𝐿)), where (𝑇𝑤𝑖 ≥ 0, 𝐼𝑤𝑖 ≥ 0, 𝐹𝑤𝑖 ≥ 0) 

and ∑ 𝑇𝑤𝑖
𝑚
𝑖=0 + ∑ 𝐼𝑤𝑖

𝑚
𝑖=0 + ∑ 𝐹𝑤𝑖

𝑚
𝑖=0 = 1. Additionally, a Neutrosophic member, so we have 

𝑁𝑊𝐵𝑀(𝑠,𝑡)((𝑇𝑁1, 𝐼𝑁1, 𝐹𝑁1), (𝑇𝑁2, 𝐼𝑁2, 𝐹𝑁2), … , (𝑇𝑁𝑛, 𝐼𝑁𝑛 , 𝐹𝑁𝑛)) = (𝑇𝑁𝑤 , 𝐼𝑁𝑤 , 𝐹𝑁𝑤) =

((𝑇𝑁𝑤
𝑈, 𝐼𝑁𝑤

𝑈, 𝐹𝑁𝑤
𝑈), (𝑇𝑁𝑤

𝐿 , 𝐼𝑁𝑤
𝐿 , 𝐹𝑁𝑤

𝐿))                                                                                (15) 

Where 
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(𝑇𝑁𝑤
𝑈 , 𝐼𝑁𝑤

𝑈 , 𝐹𝑁𝑤
𝑈)

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 1

𝑠 + 𝑡

(

 
 
⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠(𝑇𝑁𝑖1
𝑈)
𝑤𝑖
⊕ 𝑡(𝑇𝑁𝑗1

𝑈)
𝑤𝑗
)

)

 
 

1

𝑚(𝑚−1)

,
1

𝑠 + 𝑡

(

 
 
⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠(𝐼𝑁𝑖1
𝑈)
𝑤𝑖
⊕ 𝑡(𝐼𝑁𝑗1

𝑈)
𝑤𝑗
)

)

 
 

1

𝑚(𝑚−1)

,
1

𝑠 + 𝑡

(

 
 
⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠(𝐹𝑁𝑖1
𝑈)
𝑤𝑖
⊕ 𝑡(𝐹𝑁𝑗1

𝑈)
𝑤𝑗
)

)

 
 

1

𝑚(𝑚−1)

)

 
 
 
,

(

 
 
 

1

𝑠 + 𝑡

(

 
 
⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠(𝑇𝑁𝑖2
𝑈)
𝑤𝑖
⊕ 𝑡(𝑇𝑁𝑗2

𝑈)
𝑤𝑗
)

)

 
 

1
𝑚(𝑚−1)

,
1

𝑠 + 𝑡

(

 
 
⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠(𝐼𝑁𝑖2
𝑈)
𝑤𝑖
⊕ 𝑡(𝐼𝑁𝑗2

𝑈)
𝑤𝑗
)

)

 
 

1
𝑚(𝑚−1)

,
1

𝑠 + 𝑡

(

 
 
⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠(𝐹𝑁𝑖2
𝑈)
𝑤𝑖
⊕ 𝑡(𝐹𝑁𝑗2

𝑈)
𝑤𝑗
)

)

 
 

1
𝑚(𝑚−1)

)

 
 
 

,

(

 
 
 

1

𝑠 + 𝑡

(

 
 
⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠(𝑇𝑁𝑖3
𝑈)
𝑤𝑖
⊕ 𝑡(𝑇𝑁𝑗3

𝑈)
𝑤𝑗
)

)

 
 

1
𝑚(𝑚−1)

,
1

𝑠 + 𝑡

(

 
 
⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠(𝐼𝑁𝑖3
𝑈)
𝑤𝑖
⊕ 𝑡(𝐼𝑁𝑗3

𝑈)
𝑤𝑗
)

)

 
 

1
𝑚(𝑚−1)

,
1

𝑠 + 𝑡

(

 
 
⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠(𝐹𝑁𝑖3
𝑈)
𝑤𝑖
⊕ 𝑡(𝐹𝑁𝑗3

𝑈)
𝑤𝑗
)

)

 
 

1
𝑚(𝑚−1)

)

 
 
 

,

(

 
 
 

1

𝑠 + 𝑡

(

 
 
⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠(𝑇𝑁𝑖4
𝑈)
𝑤𝑖
⊕ 𝑡(𝑇𝑁𝑗4

𝑈)
𝑤𝑗
)

)

 
 

1
𝑚(𝑚−1)

,
1

𝑠 + 𝑡

(

 
 
⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠(𝐼𝑁𝑖4
𝑈)
𝑤𝑖
⊕ 𝑡(𝐼𝑁𝑗4

𝑈)
𝑤𝑗
)

)

 
 

1
𝑚(𝑚−1)

,
1

𝑠 + 𝑡

(

 
 
⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠(𝐹𝑁𝑖4
𝑈)
𝑤𝑖
⊕ 𝑡(𝐹𝑁𝑗4

𝑈)
𝑤𝑗
)

)

 
 

1
𝑚(𝑚−1)

)

 
 
 

𝑚𝑖𝑛𝑖=1,2,3,…,𝑚(𝑇ℎ𝑖
𝑈,𝐼ℎ𝑖

𝑈,𝐹ℎ𝑖
𝑈) )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  (16) 

And 

(𝑇𝑁𝑤
𝐿 , 𝐼𝑁𝑤

𝐿 , 𝐹𝑁𝑤
𝐿)

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 

1

𝑠 + 𝑡

(

 
 
⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠(𝑇𝑁𝑖1
𝐿 )
𝑤𝑖
⊕ 𝑡(𝑇𝑁𝑗1

𝐿 )
𝑤𝑗
)

)

 
 

1
𝑚(𝑚−1)

,
1

𝑠 + 𝑡

(

 
 
⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠(𝐼𝑁𝑖1
𝐿 )
𝑤𝑖
⊕ 𝑡(𝐼𝑁𝑗1

𝐿 )
𝑤𝑗
)

)

 
 

1
𝑚(𝑚−1)

,
1

𝑠 + 𝑡

(

 
 
⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠(𝐹𝑁𝑖1
𝐿 )
𝑤𝑖
⊕ 𝑡(𝐹𝑁𝑗1

𝐿 )
𝑤𝑗
)

)

 
 

1
𝑚(𝑚−1)

)

 
 
 

,

(

 
 
 

1

𝑠 + 𝑡

(

 
 
⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠(𝑇𝑁𝑖2
𝐿 )
𝑤𝑖
⊕ 𝑡(𝑇𝑁𝑗2

𝐿 )
𝑤𝑗
)

)

 
 

1
𝑚(𝑚−1)

,
1

𝑠 + 𝑡

(

 
 
⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠(𝐼𝑁𝑖2
𝐿 )
𝑤𝑖
⊕ 𝑡(𝐼𝑁𝑗2

𝐿 )
𝑤𝑗
)

)

 
 

1
𝑚(𝑚−1)

,
1

𝑠 + 𝑡

(

 
 
⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠(𝐹𝑁𝑖2
𝐿 )
𝑤𝑖
⊕ 𝑡(𝐹𝑁𝑗2

𝐿 )
𝑤𝑗
)

)

 
 

1
𝑚(𝑚−1)

)

 
 
 

,

(

 
 
 

1

𝑠 + 𝑡

(

 
 
⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠(𝑇𝑁𝑖3
𝐿 )
𝑤𝑖
⊕ 𝑡(𝑇𝑁𝑗3

𝐿 )
𝑤𝑗
)

)

 
 

1
𝑚(𝑚−1)

,
1

𝑠 + 𝑡

(

 
 
⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠(𝐼𝑁𝑖3
𝐿 )
𝑤𝑖
⊕ 𝑡(𝐼𝑁𝑗3

𝐿 )
𝑤𝑗
)

)

 
 

1
𝑚(𝑚−1)

,
1

𝑠 + 𝑡

(

 
 
⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠(𝐹𝑁𝑖3
𝐿 )
𝑤𝑖
⊕ 𝑡(𝐹𝑁𝑗3

𝐿 )
𝑤𝑗
)

)

 
 

1
𝑚(𝑚−1)

)

 
 
 

,

(

 
 
 

1

𝑠 + 𝑡

(

 
 
⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠(𝑇𝑁𝑖4
𝐿 )
𝑤𝑖
⊕ 𝑡(𝑇𝑁𝑗4

𝐿 )
𝑤𝑗
)

)

 
 

1
𝑚(𝑚−1)

,
1

𝑠 + 𝑡

(

 
 
⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠(𝐼𝑁𝑖4
𝐿 )
𝑤𝑖
⊕ 𝑡(𝐼𝑁𝑗4

𝐿 )
𝑤𝑗
)

)

 
 

1
𝑚(𝑚−1)

,
1

𝑠 + 𝑡

(

 
 
⊗ 𝑖,𝑗=1
𝑖,𝑗 𝑖𝑠 𝑛𝑜𝑡
𝑠𝑎𝑚𝑒

𝑚 (𝑠(𝐹𝑁𝑖4
𝐿 )
𝑤𝑖
⊕ 𝑡(𝐹𝑁𝑗4

𝐿 )
𝑤𝑗
)

)

 
 

1
𝑚(𝑚−1)

)

 
 
 

𝑚𝑖𝑛𝑖=1,2,3,…,𝑛(𝑇ℎ𝑖
𝐿,𝐼ℎ𝑖

𝐿,𝐹ℎ𝑖
𝐿) )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  (17) 

Now we define the property for Neutrosophic weighted Bonferroni operator  

Property 4.1: 
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This property is also called as idempotency on NBWM. 

Let  

(𝑇𝑁𝑤 , 𝐼𝑁𝑤, 𝐹𝑁𝑤) = ((𝑇𝑁𝑤
𝑈 , 𝐼𝑁𝑤

𝑈, 𝐹𝑁𝑤
𝑈), (𝑇𝑁𝑤

𝐿 , 𝐼𝑁𝑤
𝐿 , 𝐹𝑁𝑤

𝐿 ))

= (
(((𝑇𝑎𝑖1

𝑈 )
𝑤
, (𝐼𝑎𝑖1

𝑈 )
𝑤
, (𝐹𝑎𝑖1

𝑈 )
𝑤
), ((𝑇𝑎𝑖2

𝑈 )
𝑤
, (𝐼𝑎𝑖2

𝑈 )
𝑤
, (𝐹𝑎𝑖2

𝑈 )
𝑤
), ((𝑇𝑎𝑖3

𝑈 )
𝑤
, (𝐼𝑎𝑖3

𝑈 )
𝑤
, (𝐹𝑎𝑖3

𝑈 )
𝑤
), ((𝑇𝑎𝑖4

𝑈 )
𝑤
, (𝐼𝑎𝑖4

𝑈 )
𝑤
, (𝐹𝑎𝑖4

𝑈 )
𝑤
), (𝑇ℎ𝑖

𝑈 , 𝐼ℎ𝑖
𝑈, 𝐹ℎ𝑖

𝑈)) ,

(((𝑇𝑎𝑖1
𝐿 )

𝑤
, (𝐼𝑎𝑖1

𝐿 )
𝑤
, (𝐹𝑎𝑖1

𝐿 )
𝑤
), ((𝑇𝑎𝑖2

𝐿 )
𝑤
, (𝐼𝑎𝑖2

𝐿 )
𝑤
, (𝐹𝑎𝑖2

𝐿 )
𝑤
), ((𝑇𝑎𝑖3

𝐿 )
𝑤
, (𝐼𝑎𝑖3

𝐿 )
𝑤
, (𝐹𝑎𝑖3

𝐿 )
𝑤
), ((𝑇𝑎𝑖4

𝐿 )
𝑤
, (𝐼𝑎𝑖4

𝐿 )
𝑤
, (𝐹𝑎𝑖4

𝐿 )
𝑤
), (𝑇ℎ𝑖

𝐿 , 𝐼ℎ𝑖
𝐿, 𝐹ℎ𝑖

𝐿))
), 

(𝑖 = 1,2, … ,𝑚) and if every (𝑇𝑁𝑤, 𝐼𝑁𝑤, 𝐹𝑁𝑤) = ((𝑇𝑁𝑤
𝑈, 𝐼𝑁𝑤

𝑈, 𝐹𝑁𝑤
𝑈), (𝑇𝑁𝑤

𝐿 , 𝐼𝑁𝑤
𝐿 , 𝐹𝑁𝑤

𝐿)) are equal for all. 

(i.e) (𝑇𝑁𝑤 , 𝐼𝑁𝑤 , 𝐹𝑁𝑤) = ((𝑇𝑁𝑤
𝑈, 𝐼𝑁𝑤

𝑈, 𝐹𝑁𝑤
𝑈), (𝑇𝑁𝑤

𝐿 , 𝐼𝑁𝑤
𝐿 , 𝐹𝑁𝑤

𝐿)) = (𝑇𝑁0, 𝐼𝑁0, 𝐹𝑁0); 

((𝑇𝑁0, 𝐼𝑁0, 𝐹𝑁0) = ((𝑇𝑁0
𝑈, 𝐼𝑁0

𝑈, 𝐹𝑁0
𝑈), (𝑇𝑁0

𝐿 , 𝐼𝑁0
𝐿 , 𝐹𝑁0

𝐿)) then 

𝑁𝐵𝑊𝑀(𝑠,𝑡)((𝑇𝑁1, 𝐼𝑁1, 𝐹𝑁1), (𝑇𝑁2, 𝐼𝑁2, 𝐹𝑁2), … , (𝑇𝑁𝑚, 𝐼𝑁𝑚, 𝐹𝑁𝑚)) = ((𝑇𝑁0, 𝐼𝑁0, 𝐹𝑁0)

= ((𝑇𝑁0
𝑈, 𝐼𝑁0

𝑈, 𝐹𝑁0
𝑈), (𝑇𝑁0

𝐿 , 𝐼𝑁0
𝐿 , 𝐹𝑁0

𝐿)) 

Property4.2: 

This property is also called as boundedness on NBWM. 

(𝑇𝑁𝑤 , 𝐼𝑁𝑤 , 𝐹𝑁𝑤) = ((𝑇𝑁𝑤
𝑈 , 𝐼𝑁𝑤

𝑈 , 𝐹𝑁𝑤
𝑈), (𝑇𝑁𝑤

𝐿 , 𝐼𝑁𝑤
𝐿 , 𝐹𝑁𝑤

𝐿)) =

(
(((𝑇𝑎𝑖1

𝑈 )
𝑤
, (𝐼𝑎𝑖1

𝑈 )
𝑤
, (𝐹𝑎𝑖1

𝑈 )
𝑤
), ((𝑇𝑎𝑖2

𝑈 )
𝑤
, (𝐼𝑎𝑖2

𝑈 )
𝑤
, (𝐹𝑎𝑖2

𝑈 )
𝑤
), ((𝑇𝑎𝑖3

𝑈 )
𝑤
, (𝐼𝑎𝑖3

𝑈 )
𝑤
, (𝐹𝑎𝑖3

𝑈 )
𝑤
), ((𝑇𝑎𝑖4

𝑈 )
𝑤
, (𝐼𝑎𝑖4

𝑈 )
𝑤
, (𝐹𝑎𝑖4

𝑈 )
𝑤
), (𝑇ℎ𝑖

𝑈 , 𝐼ℎ𝑖
𝑈 , 𝐹ℎ𝑖

𝑈)) ,

(((𝑇𝑎𝑖1
𝐿 )

𝑤
, (𝐼𝑎𝑖1

𝐿 )
𝑤
, (𝐹𝑎𝑖1

𝐿 )
𝑤
), ((𝑇𝑎𝑖2

𝐿 )
𝑤
, (𝐼𝑎𝑖2

𝐿 )
𝑤
, (𝐹𝑎𝑖2

𝐿 )
𝑤
), ((𝑇𝑎𝑖3

𝐿 )
𝑤
, (𝐼𝑎𝑖3

𝐿 )
𝑤
, (𝐹𝑎𝑖3

𝐿 )
𝑤
), ((𝑇𝑎𝑖4

𝐿 )
𝑤
, (𝐼𝑎𝑖4

𝐿 )
𝑤
, (𝐹𝑎𝑖4

𝐿 )
𝑤
), (𝑇ℎ𝑖

𝐿 , 𝐼ℎ𝑖
𝐿 , 𝐹ℎ𝑖

𝐿))
) (𝑖 = 1,2,… ,𝑚) and 

for 𝑠, 𝑡 ≥ 0 and also we have (𝑇𝑁−, 𝐼𝑁−, 𝐹𝑁−) = ((𝑇𝑁−
𝑈 , 𝐼𝑁−

𝑈 , 𝐹𝑁−
𝑈), (𝑇𝑁−

𝐿 , 𝐼𝑁−
𝐿, 𝐹𝑁−

𝐿)) =

(

 
 
 
 (
(min

𝑖
(𝑇𝑎𝑖1

𝑈 )
𝑤𝑖
, min
𝑖
(𝐼𝑎𝑖1

𝑈 )
𝑤𝑖
, min
𝑖
(𝐹𝑎𝑖1

𝑈 )
𝑤𝑖
) , (min

𝑖
(𝑇𝑎𝑖2

𝑈 )
𝑤𝑖
, min
𝑖
(𝐼𝑎𝑖2

𝑈 )
𝑤𝑖
, min
𝑖
(𝐹𝑎𝑖2

𝑈 )
𝑤𝑖
) , (min

𝑖
(𝑇𝑎𝑖3

𝑈 )
𝑤𝑖
, min
𝑖
(𝐼𝑎𝑖3

𝑈 )
𝑤𝑖
, min
𝑖
(𝐹𝑎𝑖3

𝑈 )
𝑤𝑖
) ,

(min
𝑖
(𝑇𝑎𝑖4

𝑈 )
𝑤𝑖
, min
𝑖
(𝐼𝑎𝑖4

𝑈 )
𝑤𝑖
, min
𝑖
(𝐹𝑎𝑖4

𝑈 )
𝑤𝑖
) , (min

𝑖
(𝑇ℎ𝑖

𝑈)
𝑤𝑖
, min
𝑖
(𝐼ℎ𝑖

𝑈)
𝑤𝑖
, min
𝑖
(𝐹ℎ𝑖

𝑈)
𝑤𝑖
)

) ,

(
(min

𝑖
(𝑇𝑎𝑖1

𝐿 )
𝑤𝑖
, min
𝑖
(𝐼𝑎𝑖1

𝐿 )
𝑤𝑖
, min
𝑖
(𝐹𝑎𝑖1

𝐿 )
𝑤𝑖
) , (min

𝑖
(𝑇𝑎𝑖2

𝐿 )
𝑤𝑖
,min
𝑖
(𝐼𝑎𝑖2

𝐿 )
𝑤𝑖
, min
𝑖
(𝐹𝑎𝑖2

𝐿 )
𝑤𝑖
) , (min

𝑖
(𝑇𝑎𝑖3

𝐿 )
𝑤𝑖
, min
𝑖
(𝐼𝑎𝑖3

𝐿 )
𝑤𝑖
, min
𝑖
(𝐹𝑎𝑖3

𝐿 )
𝑤𝑖
) ,

(min
𝑖
(𝑇𝑎𝑖4

𝐿 )
𝑤𝑖
, min
𝑖
(𝐼𝑎𝑖4

𝐿 )
𝑤𝑖
, min
𝑖
(𝐹𝑎𝑖4

𝐿 )
𝑤𝑖
) , (min

𝑖
𝑇ℎ𝑖

𝐿, min
𝑖
𝐼ℎ𝑖
𝐿, min

𝑖
𝐹ℎ𝑖

𝐿)
)

)

 
 
 
 

 

And 

(𝑇𝑁+, 𝐼𝑁+, 𝐹𝑁+) = ((𝑇𝑁+
𝑈, 𝐼𝑁+

𝑈, 𝐹𝑁+
𝑈), (𝑇𝑁+

𝐿 , 𝐼𝑁+
𝐿 , 𝐹𝑁+

𝐿)) = 

(

 
 
 
 (
(max

𝑖
(𝑇𝑎𝑖1

𝑈 )
𝑤𝑖
, max

𝑖
(𝐼𝑎𝑖1

𝑈 )
𝑤𝑖
, max

𝑖
(𝐹𝑎𝑖1

𝑈 )
𝑤𝑖
) , (max

𝑖
(𝑇𝑎𝑖2

𝑈 )
𝑤𝑖
,max

𝑖
(𝐼𝑎𝑖2

𝑈 )
𝑤𝑖
, max

𝑖
(𝐹𝑎𝑖2

𝑈 )
𝑤𝑖
) , (max

𝑖
(𝑇𝑎𝑖3

𝑈 )
𝑤𝑖
, max

𝑖
(𝐼𝑎𝑖3

𝑈 )
𝑤𝑖
, max

𝑖
(𝐹𝑎𝑖3

𝑈 )
𝑤𝑖
) ,

(max
𝑖
(𝑇𝑎𝑖4

𝑈 )
𝑤𝑖
, max

𝑖
(𝐼𝑎𝑖4

𝑈 )
𝑤𝑖
, max

𝑖
(𝐹𝑎𝑖4

𝑈 )
𝑤𝑖
) , (max

𝑖
(𝑇ℎ𝑖

𝑈)
𝑤𝑖
, max

𝑖
(𝐼ℎ𝑖

𝑈)
𝑤𝑖
, max

𝑖
(𝐹ℎ𝑖

𝑈)
𝑤𝑖
)

) ,

(
(max

𝑖
(𝑇𝑎𝑖1

𝐿 )
𝑤𝑖
, max

𝑖
(𝐼𝑎𝑖1

𝐿 )
𝑤𝑖
, max

𝑖
(𝐹𝑎𝑖1

𝐿 )
𝑤𝑖
) , (max

𝑖
(𝑇𝑎𝑖2

𝐿 )
𝑤𝑖
, max

𝑖
(𝐼𝑎𝑖2

𝐿 )
𝑤𝑖
, max

𝑖
(𝐹𝑎𝑖2

𝐿 )
𝑤𝑖
) , (max

𝑖
(𝑇𝑎𝑖3

𝐿 )
𝑤𝑖
, max

𝑖
(𝐼𝑎𝑖3

𝐿 )
𝑤𝑖
, max

𝑖
(𝐹𝑎𝑖3

𝐿 )
𝑤𝑖
) ,

(max
𝑖
(𝑇𝑎𝑖4

𝐿 )
𝑤𝑖
, max

𝑖
(𝐼𝑎𝑖4

𝐿 )
𝑤𝑖
, max

𝑖
(𝐹𝑎𝑖4

𝐿 )
𝑤𝑖
) , (max

𝑖
𝑇ℎ𝑖

𝐿, max
𝑖
𝐼ℎ𝑖
𝐿, max

𝑖
𝐹ℎ𝑖

𝐿)
)

)

 
 
 
 

 

Then we have, 
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(𝑇𝑁−, 𝐼𝑁−, 𝐹𝑁−) ≤ 𝑁𝐵𝑊𝑀
(𝑠,𝑡)((𝑇𝑁1, 𝐼𝑁1, 𝐹𝑁1), (𝑇𝑁2, 𝐼𝑁2, 𝐹𝑁2), … , (𝑇𝑁𝑛, 𝐼𝑁𝑛, 𝐹𝑁𝑛)) ≤ (𝑇𝑁+, 𝐼𝑁+, 𝐹𝑁+) 

Property 4.3: 

This property is also called as monotonicity on NBWM. 

(𝑇𝑁𝑤 , 𝐼𝑁𝑤 , 𝐹𝑁𝑤) = ((𝑇𝑁𝑤
𝑈, 𝐼𝑁𝑤

𝑈, 𝐹𝑁𝑤
𝑈), (𝑇𝑁𝑤

𝐿 , 𝐼𝑁𝑤
𝐿 , 𝐹𝑁𝑤

𝐿)) =

(
(((𝑇𝑎𝑖1

𝑈 )𝑤, (𝐼𝑎𝑖1
𝑈 )𝑤 , (𝐹𝑎𝑖1

𝑈 )𝑤), ((𝑇𝑎𝑖2
𝑈 )𝑤 , (𝐼𝑎𝑖2

𝑈 )𝑤 , (𝐹𝑎𝑖2
𝑈 )𝑤), ((𝑇𝑎𝑖3

𝑈 )𝑤 , (𝐼𝑎𝑖3
𝑈 )𝑤, (𝐹𝑎𝑖3

𝑈 )𝑤), ((𝑇𝑎𝑖4
𝑈 )𝑤, (𝐼𝑎𝑖4

𝑈 )𝑤 , (𝐹𝑎𝑖4
𝑈 )𝑤), (𝑇ℎ𝑖

𝑈 , 𝐼ℎ𝑖
𝑈, 𝐹ℎ𝑖

𝑈)),

(((𝑇𝑎𝑖1
𝐿 )𝑤, (𝐼𝑎𝑖1

𝐿 )𝑤 , (𝐹𝑎𝑖1
𝐿 )𝑤), ((𝑇𝑎𝑖2

𝐿 )𝑤, (𝐼𝑎𝑖2
𝐿 )𝑤 , (𝐹𝑎𝑖2

𝐿 )𝑤), ((𝑇𝑎𝑖3
𝐿 )𝑤 , (𝐼𝑎𝑖3

𝐿 )𝑤, (𝐹𝑎𝑖3
𝐿 )𝑤), ((𝑇𝑎𝑖4

𝐿 )𝑤, (𝐼𝑎𝑖4
𝐿 )𝑤 , (𝐹𝑎𝑖4

𝐿 )𝑤), (𝑇ℎ𝑖
𝐿, 𝐼ℎ𝑖

𝐿, 𝐹ℎ𝑖
𝐿))

) (𝑖 =

1,2,… ,𝑚) and for 𝑠, 𝑡 ≥ 0  

and  

(𝑇𝑀𝑤 , 𝐼𝑀𝑤 , 𝐹𝑀𝑤) = ((𝑇𝑀𝑤
𝑈 , 𝐼𝑀𝑤

𝑈 , 𝐹𝑀𝑤
𝑈), (𝑇𝑀𝑤

𝐿 , 𝐼𝑀𝑤
𝐿 , 𝐹𝑀𝑤

𝐿 )) =

(
(((𝑇𝑏𝑖1

𝑈)
𝑤
, (𝐼𝑏𝑖1

𝑈)
𝑤
, (𝐹𝑏𝑖1

𝑈)
𝑤
), ((𝑇𝑏𝑖2

𝑈)
𝑤
, (𝐼𝑏𝑖2

𝑈)
𝑤
, (𝐹𝑏𝑖2

𝑈)
𝑤
), ((𝑇𝑏𝑖3

𝑈)
𝑤
, (𝐼𝑏𝑖3

𝑈)
𝑤
, (𝐹𝑏𝑖3

𝑈)
𝑤
), ((𝑇𝑏𝑖4

𝑈)
𝑤
, (𝐼𝑏𝑖4

𝑈)
𝑤
, (𝐹𝑏𝑖4

𝑈)
𝑤
), (𝑇ℎ𝑖

𝑈, 𝐼ℎ𝑖
𝑈, 𝐹ℎ𝑖

𝑈)) ,

(((𝑇𝑏𝑖1
𝐿 )

𝑤
, (𝐼𝑏𝑖1

𝐿 )
𝑤
, (𝐹𝑏𝑖1

𝐿 )
𝑤
), ((𝑇𝑏𝑖2

𝐿 )
𝑤
, (𝐼𝑏𝑖2

𝐿 )
𝑤
, (𝐹𝑏𝑖2

𝐿 )
𝑤
), ((𝑇𝑏𝑖3

𝐿 )
𝑤
, (𝐼𝑏𝑖3

𝐿 )
𝑤
, (𝐹𝑏𝑖3

𝐿 )
𝑤
), ((𝑇𝑏𝑖4

𝐿 )
𝑤
, (𝐼𝑏𝑖4

𝐿 )
𝑤
, (𝐹𝑏𝑖4

𝐿 )
𝑤
), (𝑇ℎ𝑖

𝐿, 𝐼ℎ𝑖
𝐿 , 𝐹ℎ𝑖

𝐿))
) (𝑖 =

1,2,… ,𝑚) and for 𝑠, 𝑡 ≥ 0 and also (((𝑇𝑎𝑖𝑘
𝑈 )𝑤 ≤ (𝑇𝑏𝑖𝑘

𝑈 )𝑤), ((𝐼𝑎𝑖𝑘
𝑈 )𝑤 ≤ (𝐼𝑏𝑖𝑘

𝑈 )𝑤), ((𝐹𝑎𝑖𝑘
𝑈 )𝑤 ≤ (𝐹𝑏𝑖𝑘

𝑈 )𝑤)) and 

(((𝑇𝑎𝑖𝑘
𝐿 )𝑤 ≤ (𝑇𝑏𝑖𝑘

𝐿 )𝑤), ((𝐼𝑎𝑖𝑘
𝐿 )𝑤 ≤ (𝐼𝑏𝑖𝑘

𝐿 )𝑤), ((𝐹𝑎𝑖𝑘
𝐿 )𝑤 ≤ (𝐹𝑏𝑖𝑘

𝐿 )𝑤)) 

Then we have 

𝑁𝐵𝑊𝑀(𝑠,𝑡)((𝑇𝑁1, 𝐼𝑁1, 𝐹𝑁1), (𝑇𝑁2, 𝐼𝑁2, 𝐹𝑁2), … , (𝑇𝑁𝑚, 𝐼𝑁𝑚, 𝐹𝑁𝑚))

≤ 𝑁𝐵𝑊𝑀(𝑠,𝑡)((𝑇𝑀1, 𝐼𝑀1, 𝐹𝑀1), (𝑇𝑀2, 𝐼𝑀2, 𝐹𝑀2), … , (𝑇𝑀𝑚, 𝐼𝑀𝑚, 𝐹𝑀𝑚)) 

Property 4.4: 

This property is also called as commutivity on NBWM. 

(𝑇𝑁𝑤 , 𝐼𝑁𝑤 , 𝐹𝑁𝑤) = ((𝑇𝑁𝑤
𝑈, 𝐼𝑁𝑤

𝑈, 𝐹𝑁𝑤
𝑈), (𝑇𝑁𝑤

𝐿 , 𝐼𝑁𝑤
𝐿 , 𝐹𝑁𝑤

𝐿)) =

(
(((𝑇𝑎𝑖1

𝑈 )𝑤, (𝐼𝑎𝑖1
𝑈 )𝑤 , (𝐹𝑎𝑖1

𝑈 )𝑤), ((𝑇𝑎𝑖2
𝑈 )𝑤 , (𝐼𝑎𝑖2

𝑈 )𝑤 , (𝐹𝑎𝑖2
𝑈 )𝑤), ((𝑇𝑎𝑖3

𝑈 )𝑤 , (𝐼𝑎𝑖3
𝑈 )𝑤, (𝐹𝑎𝑖3

𝑈 )𝑤), ((𝑇𝑎𝑖4
𝑈 )𝑤, (𝐼𝑎𝑖4

𝑈 )𝑤 , (𝐹𝑎𝑖4
𝑈 )𝑤), (𝑇ℎ𝑖

𝑈 , 𝐼ℎ𝑖
𝑈, 𝐹ℎ𝑖

𝑈)),

(((𝑇𝑎𝑖1
𝐿 )𝑤, (𝐼𝑎𝑖1

𝐿 )𝑤 , (𝐹𝑎𝑖1
𝐿 )𝑤), ((𝑇𝑎𝑖2

𝐿 )𝑤, (𝐼𝑎𝑖2
𝐿 )𝑤 , (𝐹𝑎𝑖2

𝐿 )𝑤), ((𝑇𝑎𝑖3
𝐿 )𝑤 , (𝐼𝑎𝑖3

𝐿 )𝑤, (𝐹𝑎𝑖3
𝐿 )𝑤), ((𝑇𝑎𝑖4

𝐿 )𝑤, (𝐼𝑎𝑖4
𝐿 )𝑤 , (𝐹𝑎𝑖4

𝐿 )𝑤), (𝑇ℎ𝑖
𝐿, 𝐼ℎ𝑖

𝐿, 𝐹ℎ𝑖
𝐿))

) (𝑖 =

1,2,… , 𝑛) and for 𝑠, 𝑡 ≥ 0  

By giving parameters  𝑠, 𝑡 different values, we have some different result. 

5. Conclusion: 

The classical Bonferroni mean operator and possibility degree have been extended in the trapezoidal and triangular 

neutrosophic environment to better organise and model the uncertainties and indeterminacy inside multi-attribute 

decision analysis. In FMAGDM, the neutrosophic Bonferroni operator can combine several decisions or evaluations 

from multiple decision-makers. Neutropphic surroundings, as opposed to trapezoidal and triangular contexts, are able 
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to convey the decision-makers' ambiguity, indecision, and uncertainty. Based on the neutrosophic possibility degree 

and the TITRNWBM operator, we have introduced a novel approach for NMAGDM. Numerous difficult multiple-

attribute decision-making issues can be resolved with the help of the suggested Neutrosophic Bonferroni operator and 

weighted Neutrosophic Bonferroni operator, both of which meet the necessary criteria and theorems. Therefore, we 

see this as a starting point for future research using this operator for solving multiple attributes decision making 

problems. 
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Abstract. The main purpose of this paper is to determine cardiovascular exercise strategies that improve functional responses in 

patients with diabetic peripheral neuropathy. The methodology used is the 6-minute walk test (6MWT) which is recognized in 

the field of treatment of health problems associated with diabetes. The sample included 34 patients of different ages. One of the 

difficulties we encounter in the study of these diseases is the indeterminacy and uncertainty of the diagnosis of the disease and 

the treatment. They are complex diseases that require family, institutional, and medical support, in addition to the patient's total 

cooperation. The processed data corresponds to laboratory tests that must be evaluated with an interpretation of normal or non-

normal depending on values given in an interval form instead of a crisp value. That is why the authors of the article decided to 

process the data using Neutrosophic Statistics, where traditional methods are extended to the framework of intervals instead of 

crisp numbers. Finally, we obtained a linear equation in interval form to link the measurement of “dyspnea” with the “distance 

of meters traveled.” 

 

Keywords: neuropathy peripheral diabetic, diabetes mellitus, neutrosophic numbers, neutrosophic statistics, t-test, neutrosophic 

least square method. 

 

1 Introduction 

Today there are approximately 382 million people who have diabetes mellitus (DM) worldwide and the pro-
jection towards 2030 is not encouraging at all, since the WHO considers that this disease will become in the leading 

cause of death worldwide, which indicates a complex health panorama shortly, furthermore that at least 10% of 
diabetic patients present diabetic peripheral neuropathy, a figure that reaches up to 50% in patients who have had 

the disease for at least 10 years, and at least 75% develops a very high risk of amputations. 

In Ecuador the prevalence is very high since it is estimated that at ages between 20-79 years old, it reaches up 
to 8.5% of the population; It is even shortly proposed that diabetes and associated neuropathies would be the 

second cause of deaths in general. 
Diabetic peripheral neuropathy is a very common complication of type II diabetes mellitus. It is usually char-

acterized by significant deficits in tactile sensitivity, the sense of vibration, and proprioception of the lower ex-

tremities. Performing cardiovascular exercises is one of the most effective and beneficial strategies to reduce the 
symptoms of diabetic peripheral neuropathy. 

mailto:lj.reales@uta.edu.ec
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So, the main objective of this research is to develop cardiovascular exercise strategies that allow improving 

functional responses in patients with diabetic peripheral neuropathy; to verify its effectiveness. The procedure 

begins with a 6-minute walk test called 6MWT, to answer the question posed in this work: whether the develop-
ment of strategies based on cardiovascular exercises can improve functional responses in patients with diabetic 

peripheral neuropathy. 
For the study, we decided to use neutrosophic models since the clinical problems and treatment of diseases 

such as diabetes and its complications can only be studied if the uncertainty and indeterminacy of both the diag-
nosis and the treatment are taken into account. In this type of disease converge a series of biological, as well as 

sociological and psychological factors. The patient must be educated to live with his (or her) illness and avoid 

complications. In addition, health parameters do not correspond to a single value, but to a range of values. 
Due to the aforementioned, Neutrosophic Statistics is the tool that we proposed to apply in the study of the 

strategies to follow in the improvement of patients who suffer from diabetic peripheral neuropathy, since Neutro-
sophic Statistics is the generalization of classical statistics to situations where data or parameters exist in the form 

of intervals, also where the size of the population cannot be precisely defined [1-3]. In our case, due to the nature 

of the problem that we set out to study, where an exact normal value of heart rate or laboratory test results cannot 
be determined, it is, therefore, necessary to use values in the form of interval or neutrosophic numbers. In this way, 

a greater number of measurement situations for each individual are taken into account, beyond the specific situa-
tion in which the study is carried out, which increases the reliability of the experiment. In addition, we obtained 

an equation to determine the number of meters that the patient can travel concerning their state of dyspnea. For 
this end, we use the neutrosophic least square method ([4]). In this way, the patient can determine his (her) physical 

condition for walking by measuring the state of his dyspnea. This can be extended to other variables. 

This paper is divided into a preliminary section, where we present the main concepts of neutrosophic numbers 
and Neutrosophic Statistics. Section 3 contains the results of the study carried out. The last section is to give the 

conclusions. 

2 Preliminaries 

This section contains the fundamental concepts about neutrosophic numbers and neutrosophic statistics. 

Neutrosophic statistics refers to a set of data, such that the data or a part of it is indeterminate to some degree, 
and to the methods used to analyze these data ([1]). 

In classical statistics all data are determined, this is the distinction between neutrosophic statistics and classical 
statistics. In many cases, when the indeterminacy is zero, the neutrosophic statistics coincide with the classical 

statistics. The neutrosophic measurement can be used to measure indeterminate data. Neutrosophic statistical meth-
ods will allow us to interpret and organize neutrosophic data (data that may have some indeterminacies) to reveal 

underlying patterns. Many approaches can be used in neutrosophic statistics. 

In neutrosophic probability, indeterminacy is different from randomness. While classical statistics refers only 
to randomness, neutrosophic statistics refers to both randomness and especially indeterminacy. 

Neutrosophic descriptive statistics is composed of all techniques for summarizing and describing the charac-
teristics of neutrosophic numerical data. Since neutrosophic numerical data contain indeterminacies, neutrosophic 

line graphs and neutrosophic histograms are represented in 3D spaces, rather than 2D spaces as in classical statis-

tics. The third dimension, in addition to the Cartesian system XOY, is that of indeterminacy (I). From unclear 
graphic data, we can extract neutrosophic (unclear) information. 

Neutrosophic inferential statistics consist of methods that allow the generalization of neutrosophic sampling 
to a population from which the sample was selected. 

Neutrosophic data are data that contain some indeterminacy. In a similar way to classical statistics, it can be 
classified as: 

- Discrete neutrosophic data, if the values are isolated points; for example: 7 + i1, where i1  ∈  [0,1], 2, 38 +
i2, where i2 ∈  [10,12]; 

- and Continuous neutrosophic data, if the values form one or more intervals, for example [0.05, 0.1] or [0.9, 

1.0] (i.e., not sure which one). 
Other classification: 

- Quantitative (numerical) neutrosophic data; 

For example: a number in the interval [3, 8] (we do not know exactly), or; 50, 53, 58, or 61 (we do not know 
exactly); 

- and Qualitative (categorical) neutrosophic data; for example: blue or red (we do not know exactly), white, 
black or green or yellow (we do not know exactly). Additionally, we can have: 

- Neutrosophic data univariate, i.e. neutrosophic data consisting of observations on a single neutrosophic at-
tribute; 

- and Multivariate neutrosophic data, that is neutrosophic data consisting of observations on two or more 
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attributes. In particular cases, we mention the bivariate neutrosophic data and the trivariate neutrosophic data. 

A neutrosophic statistical number N has the following form: 
N =  a + bI, where a is the determinate (known) part of N, and bI is the indeterminate (unknown) part of N 

([1]). 
The arithmetic operations between these numbers are summarized below ([5-8]): 

Given N1 = a1 + b1I and N2 = a2 + b2I two neutrosophic numbers, some operations between them are de-

fined as follows: 

• 𝑁1 + 𝑁2 = 𝑎1 + 𝑎2 + (𝑏1 + 𝑏2)𝐼 (Addition); 

• 𝑁1 − 𝑁2 = 𝑎1 − 𝑎2 + (𝑏1 − 𝑏2)𝐼 (Difference), 

• 𝑁1 × 𝑁2 = 𝑎1𝑎2 + (𝑎1𝑏2 + 𝑏1𝑎2 + 𝑏1𝑏2)𝐼 (Product), 

• 
𝑁1

𝑁2
=

𝑎1+𝑏1𝐼

𝑎2+𝑏2𝐼
=

𝑎1

𝑎2
+

𝑎2𝑏1−𝑎1𝑏2

𝑎2(𝑎2+𝑏2)
𝐼 (Division). 

For example, a =  4 + I, where 𝐼 ∈  [0, 0.5], is equivalent to a ∈  [4, 4.5], so for sure a ≥  4 (meaning that 

the determinate part of 𝑎 is 4), while the indeterminate part i ∈  [0, 0.5] means the possibility that the number 𝑎 is 
a little greater than 4. For example, if we have the following neutrosophic data: 3 + I1 with I1 ∈  (0, 0.1); 5 + I2 

with I2 ∈  [4, 6]; 5 + I3, with I3 ∈  [0,1]; 10 + I4, with I4 ∈  [1.1, 1.5); 9 + I1. 
A neutrosophic sample is a selected subset of a population, a subset that contains some indeterminacy: either 

concerning several of its individuals (who may not belong to the population we study or may only partially belong 

to it) or concerning the subset as a whole. 
While classical samples provide precise information, neutrosophic samples provide vague or incomplete in-

formation. By abuse of language, it can be said that any sample is a neutrosophic sample since its determination 
can be considered equal to zero. 

The results of the neutrosophic survey are survey results that contain some indeterminacy. A neutrosophic 
population is a population that is not well determined at the level of membership (i.e., it is not certain whether 

some individuals belong or do not belong to the population). For example, as in the neutrosophic set, a generic 

x(t, i, f)  ∈ M element i% the belonging of x to M is indeterminate (unknown, unclear, neutral: neither in the pop-
ulation nor outside). 

A simple random neutrosophic sample of size N from a classical or neutrosophic population is a sample of N 
individuals such that at least one of them has some indeterminacy. 

A neutrosophic normal distribution of a continuous variable σ2, for example, μ, or σ, or both can be set with 

two or more elements. The most common distributions are when μ, σ, or both are intervals. 
The formula for the neutrosophic frequency function is the same, except replaced μN by µ and σN by σ: 

XN~NN(μN, σN
2 )  =  

1

σN√2π
exp(− 

(x −μN)2

2σN
2  ), where XN means NN(∙,∙) that instead of one bell-shaped curve 

for X, we can have two or more bell-shaped curves that have common and uncommon regions between them and 

are above the x-axis. Each of them is symmetrical concerning the vertical line passing through the mean (𝑥 =
 𝜇). 

Let us illustrate this with a neutrosophic example for the normal distribution, let us consider a normal distri-
bution with 𝜇 =  0 and 𝜎 =  [1, 2]. Therefore, the standard deviation is indeterminate. 

"Within one standard deviation of the mean" is translated in this example by μ ± σ =  10 ± [2, 3]  =  [10 −
3,10 + 3]  =  [7, 13], or approximately 68% of the values are in x ∈  [7, 13]. 

"Within two times the standard deviations of the mean" translates to μ ± 2σ =  10 ± 2 ∙ [2, 3]  =  10 ±
[4, 6]  =  [10 − 6, 10 + 6]  =  [4, 16], or approximately 95.4% of the values are in x ∈  [4,16]. We could also 
calculate the last interval as: [7, 13] ± σ =  [7, 13] ± [2, 3]  =  [7 − 3, 13 + 3]  =  [4, 16]. 

Similar to classical statistics, a neutrosophic null hypothesis, denoted by NH0, is the statement that is initially 
assumed to be true. The alternative neutrosophic hypothesis, denoted by NHa, is the other hypothesis. 

When carrying out a test of NH0 versus NHa there are two possible conclusions: to reject NH0 (if the sample 

evidence strongly suggests that NH0 is false) or do not reject NH0 (if the sample does not support evidence against 
NH0). 

Examples: 
NH0 : μ ∈  [90,100] NHa : μ< 90, 

NHa: μ >  100, NHa: μ ∉  [90, 100], where μ represents the classical average Intelligence Quotient of all chil-

dren born since January 1, 2001. 
For reading applications of Neutrosophic Statistics, see [9-14]. 

3 Results 

The study was carried out in the province of Tungurahua, Canton of Ambato–Cevallos, Ecuador. With a group 

of patients suffering from diabetic peripheral neuropathy. Table 1 contains a summary of the distribution in terms 
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of gender, age, and obesity, among other characteristics of the subjects studied. 

 
 % of the Total number of board 

Age Elderly 70.6% 

Adults 29.4% 

Sex Male 32.4% 

Female 67.6% 

Index of mass   bodily Low weight 2.9% 

Normal 32.4% 

Overweight 26.5 

Obesity 29.4 

Table 1. Distribution of the patients under study according to their age, gender, and body mass index. 

 

For a patient to be included in the study, the following inclusion criteria were used: 
• Patients from Atahualpa and Cevallos who present diabetic peripheral neuropathy, to whom fractional 

exercises will be applied, during the period from April to September 2022. 
• Patients with ages ranging from 30 to 80 years old who present diabetic peripheral neuropathy. 

• Patients who freely express their participation in the study by signing the informed consent. 

The exclusion criteria used were the following: 
• Patients who present pathologies other than diabetic peripheral neuropathy. 

• Patients with recent surgeries. 
• Patients who, due to associated comorbidities, cannot comply with the protocol in its entirety. 

• Patients with severe cardiovascular disease. 
To determine the sample, probabilistic sampling was selected, a method that is characterized by seeking with 

great dedication to obtain qualitatively representative samples, through the inclusion of apparently typical groups, 

that is, they meet characteristics of interest to the researcher with patients who are located in Atahualpa and Ce-
vallos, who present diabetic peripheral neuropathy, to whom intense cardiovascular exercises 70% to 80% will be 

applied, during the period October 2022-January 2023, after evaluation and from whom the data and information 
required to the development of the study. 

In the study, an initial and final evaluation was developed with the implementation of an accessible cardiovas-

cular exercise protocol for patients with diabetic peripheral neuropathy, 15-minute cardiovascular exercises were 
selected. A form was used to record the information on the 6-minute walk test data for each patient who applied 

the test and completed it in its entirety. 
The 6-minute walk test is a variety of the Cooper test, which aims to measure the maximum distance that a 

person can walk for 6 minutes. The speed at which the patient walks will determine the distance in meters, that is, 
a test that evaluates, in an integrated manner, the response of the respiratory, cardiovascular, metabolic, skeletal 

muscle, and neurosensory systems that the individual develops during exercise. 

The 6-minute test is a valid and reliable method to evaluate functional capacity in a population with cardio-
vascular problems in phase II/III. This test is very valuable for smaller healthcare facilities that wish to document 

functional improvements but do not have access to conventional treadmill testing. 
Table 2 shows a summary of the other diseases associated with the patients under study. 

 

Background Pathological Personal 

Disease Frequency Percentage 

None 6 35.3 

Hypertension 2 11.8 

Hypothyroidism 6 35.3 

Respiratory 3 17.6 

Table 2. Percentage of person pathological history with diseases not directly related to diabetes and its complications. 

 

To perform numerical calculations we use neutrosophic numbers to represent the collected data. For each 
aspect to be measured, the symbolic value 𝐼 represents the normal range of what is measured, and in numerical 

calculations it is replaced by the equivalent range. For example, for oxygen saturation the normal range is between 

95-100% resting, which is why we take 𝐼 = [95, 100], this guarantees that if a patient has a resting saturation 
equal to 96 before the study and after the study he (she) has 98%, then the difference is 0. In this case, a reference 

is obtained from what is normal to what is not normal. Although this means loss of precision, in reality, it is quite 



Neutrosophic Sets and Systems, Vol. 64, 2024        81 

Lisbeth Reales Chacón1, Angela Campos Moposita2, Diana Marquina Amó3, Victor Garcia Camacho4, Josselyn 

Bonilla Ayala5, Javier Caiza Lema6, Yadira Aguilar Zapata7, Paul Cantuña Vallejo8, Study of the impact of cardio-

vascular exercises and their functional responses on diabetic peripheral neuropathy using neutrosophic statistics 

the opposite, since at the time of the study the patient may have a certain saturation that may vary at another time, 

for example, upon awakening and when the interval 𝐼 is considered instead of a specific value is taking into ac-
count, then more situations are studied than the only one in which the experiment is carried out, and in this way 

the dynamic behavior of these indicators is more accurately reflected. 
Before performing the statistical t Test, we checked that the data satisfied the normality condition; in this case, 

it was a non-parametric test of normality with the help of the Kolmogorov-Smirnov test adapted to data in the form 

of intervals. Although the test resulted in the data not being distributed normally, as the sample is large enough 
𝑛 =  34 ≥ 30, it is well known that the t-test is robust enough to give reliable results in the case of large samples, 

greater than 30 [15,16]. 
Table 3 shows the results obtained for heart rate, it reflects the average of the initial evaluation and the final 

evaluation, after having the training with the exercises. 
 

 

 Average initial evaluation Average final evalua-

tion 

Difference aver-

age 

p 

Frequency cardiac resting −5.1 + 𝐼  −4.6 + 𝐼  0.76 0.683 

Frequency           cardiac 3min −0.34 + 𝐼  2.41 + 𝐼  2.75 0.561 

Frequency cardiac 6 min −0.12 + 𝐼  1.41 + 𝐼  1.53 0.644 

Table 3. Results regarding average heart rate. 

 

The following table (Table 4) shows the results regarding the saturation levels during the initial and final 
evaluation process regarding the execution of the exercises. 

 

 Average initial eval-

uation 

Average final evalu-

ation 

Difference aver-

age 

p 

Saturation resting −1.81 + 𝐼  −1.53 + 𝐼  0.28 0.988 

Saturation 3 min −2.59 + 𝐼  −1.24 + 𝐼  1.35 0.921 

Saturation 6 min −0.76 +Yo 0.41 +Yo 1.17 0.371 

Table 4. Levels of average saturation. 

 
Table 5 shows the difference in the degree of fatigue between the execution of exercises between the initial 

evaluation and the final evaluation. 
 

 Average initial evalua-

tion 

Average final evalua-

tion 

Difference 

average 

p 

Fatigue resting 0.02 + 𝐼  −0.1 + 𝐼  -0.12 0.253 

Fatigue 3 min 2.78 + 𝐼  2.25 + 𝐼  -0.53 0.253 

Fatigue 6 min 5.66 + 𝐼  4.78 + 𝐼  -0.88 0.121 

Table 5. Fatigue average. 

 

Table 6 below shows the results regarding dyspnea between the initial and final evaluation regarding the exe-

cution of the exercise. 
 

 Average initial 

evaluation 

Average final 

evaluation 

Difference av-

erage 

p 

Dyspnea resting 0.02 + 𝐼  −0.1 + 𝐼  -0.12 0.09 

Dyspnea 3 min 0.31 + 𝐼  −0.1 + 𝐼  -0.41 0.14 

Dyspnea 6 min 0.84 + 𝐼  0.66 + 𝐼  -0.18 0.34  

Table 6. Dyspnea average. 

 

Table 7 summarizes the results regarding blood pressure. 
 

 Average initial 

evaluation 

Average final 

evaluation 

Difference 

average 

p 

Pressure arterial systolic resting 
7.35 + 𝐼 10.12 + 𝐼 2.77 0.002 
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Pressure arterial diastolic resting 
−0.24 + 𝐼 0.12 + 𝐼 2.36 0.013 

Pressure arterial systolic 6 min 
16.18 + 𝐼 16.41 + 𝐼 0.23 0.010 

Pressure arterial diastolic 6 min 
2.88 + 𝐼 2.76 + 𝐼 -0.12 0.501 

Table 7. Arterial Pressure average. 

 
Table 8 shows the final results regarding the distance traveled in meters and the volume of oxygen used. In the 

results of the table, we do not consider neutrosophic numbers, since the measured parameters have no limits of 
what is a normal parameter. 

 

 
 

 Average initial evaluation Average final evaluation Difference aver-

age 

p 

Meters traveled 325.71 336.18 10.47 0.00 

VO2 max 22.89 23.55 0.66 0.00 

Table 8. Distance traveled and average VO2. 

 

Finally, in the following, we consider the neutrosophic method least squares that appear in ([4]). This is an 
extension of the well-known statistical method. The objective is to link the variable dyspnea as a dependent vari-

able with the variable meters traveled as an independent variable. To do this, we carry out a statistical approxima-
tion using a linear function. The Equations are the following represented by intervals. 

First, we wish to obtain the coefficients of the following linear equation: 
�̂�𝑁 = 𝑎𝑁 + 𝑏𝑁𝑥𝑁                  (1) 

Where �̂�𝑁 is the approximation in interval form (or its equivalent in neutrosophic number) of the dependent 

variable, 𝑎𝑁 , 𝑎𝑛𝑑 𝑏𝑁 are the coefficients in numbers within intervals of the linear equation, while 𝑥𝑁 is the data of 
the independent variable given in the form of intervals/neutrosophic numbers. 

The approximation of the first coefficient is obtained from Equation 2. 
�̅�𝑁 = �̅�𝑁 − 𝑏𝑁�̅�𝑁                             (2) 

Where �̅�𝑁 ∈ [�̅�𝐿 , �̅�𝑈] and for the approximation of 𝑏𝑁 Equation 3 is used. 

�̅�𝑁 =
𝑛𝑁(∑ 𝑥𝑁𝑦𝑁)−(∑ 𝑥𝑁)(∑ 𝑦𝑁)

𝑛𝑁(∑ 𝑥𝑁
2 )(∑ 𝑥𝑁)2              (3) 

�̅�𝑁 ∈ [�̅�𝐿 ,  �̅�𝑈] and 𝑛𝑁 is the number of elements in the sample. 

In this way, we obtained the equation 𝐼𝑑𝑖𝑠𝑡 = 338.601 − 77.0𝐼𝑑𝑦𝑠. 

Conclusion 

In this article, we carry out a study of the effectiveness of applying the 6-minute walk test (6MWT) in pa-

tients suffering from diabetic peripheral neuropathy in Ecuador. The study was carried out with 34 patients who 

suffer from this complication due to diabetes. Measurements were made of the results of different medical indi-

cators applied before and after the training of the patients with the 6MWT, they are namely, "heart rate", "oxy-

gen saturation", "fatigue", "dyspnea", "blood pressure", "distance traveled" and "condition physical cardiorespir-

atory (VO2max)". Within the study, we realized that the data collected are crisp and respond to the patient's state 

at a precise moment of measurement, although these parameters change over time and moment, it is for this rea-

son that we converted the data from crisp to neutrosophic numbers and we apply neutrosophic statistics methods. 

Additionally, we found a statistical relationship between dyspnea and the number of meters traveled by patients 

with diabetic peripheral neuropathy, based on the neutrosophic least square method. 

Specifically, about the results of the method, we conclude the following: 

• It is concluded that from the state of health and physical condition of diabetic patients, the vast majority 

suffer from high blood pressure that affects their health condition and is a critical factor in diabetic pa-

tients if it is not adequately controlled. 

• At the end of the application of the accessible cardiovascular exercise protocol for patients with diabetic 

peripheral neuropathy, which was designed with information from the initial diagnosis of the patient's 

clinical histories that allowed us to know the patient's pathologies, it was determined that the test of the 

6 minutes is effective to evaluate the maximum travel distance and VO2 level in the effort between 



Neutrosophic Sets and Systems, Vol. 64, 2024  83 

 

Lisbeth Reales Chacón1, Angela Campos Moposita2, Diana Marquina Amó3, Victor Garcia Camacho4, Josselyn 

Bonilla Ayala5, Javier Caiza Lema6, Yadira Aguilar Zapata7, Paul Cantuña Vallejo8, Study of the impact of cardio-

vascular exercises and their functional responses on diabetic peripheral neuropathy using neutrosophic statistics 

distance and walking, to apply 15-minute cardiovascular exercises working at an intense intensity of 

70% to 80% that were carried out in 8 weeks. 

• At the end of the intervention, the results in older adults with diabetic peripheral neuropathy after having 

trained in cardiovascular exercises established that the development of the intervention favors systolic 

blood pressure resting and during the 6-minute exercise because it adapts the need and physical activity 

favors the health of patients when it is developed in a planned manner and based on their needs, regular 

exercise can contribute to diabetic patients by improving their quality of life. 
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Abstract. Activity Cost and Financial Management are two variables of vital importance in livestock production. This paper 

aims to measure the relationship existing between these two variables within the production of beef cattle in the Coto-Coto Chilca 

Livestock Fair in Peru. To do this, we selected 141 ranchers from the area to give their opinions regarding the behavior of these 

two variables. The data were represented with the help of an Indeterminate Likert Scale, to capture the uncertainty and indeter-

minacy of the respondents' opinion. Survey results were compared for the two variables using a measure of neutrosophic simi-

larities. Neutrosophic similarities are used to measure the degree of similarity between two neutrosophic sets measured in certain 

aspects. 

 

Keywords: Activity costs, financial management, profitability, resource optimization, Indeterminate Likert Scale, neutrosophic 

similarity measure, triple refined indeterminate neutrosophic set, refined neutrosophic set. 

 

1 Introduction 

The cost due to economic activities refers to the identification and analysis of the different activities for the 
allocation of the corresponding costs. Likewise, the cost by activities has the purpose of optimizing resources by 

identifying unnecessary activities and the efficient use of time, which makes it a great tool for making timely 
decisions and proposing policies that improve financial indicators to generate a competitive advantage, [1]. So, the 

cost by activities has the purpose of identifying highly relevant activities to assign a good cost to those that are 

generating a good performance for the organization. 
Financial management consists of a process that seeks to plan, organize, direct, and control the economic 

activities and cash flows of organizations, to be able to make decisions regarding investment and financing issues 
in addition to stabilizing the relationship between risk and profitability, [2]. Financial management refers to the 

way of planning, organizing, directing, and controlling the economic movements of an organization to make fi-

nancial decisions that benefit its profitability. 
At an international level, in terms of production, livestock systems have evolved towards mixed agricultural-

livestock and dairy production systems, among other changes. The rapid increase in per capita consumption of 
meat and milk has been accompanied by a change in dietary patterns. However, the benefits of expanding this 

activity must be carefully weighed against growing concerns about unintended consequences (particularly envi-
ronmental damage and disease outbreaks). 

At the national level in Peru, livestock farming has been a primary activity for the consumption and marketing 

of meat and milk, to provide income to livestock farmers through production. Therefore, farmers must know about 
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breeding, feeding, and caring for animals, as well as the use of medications, supplements, and modifications to 

increase production. 

Due to the volatile nature of the business world, reliable cost data is essential to make well-informed strategic 
decisions. Since accurate information is the cornerstone of any good choice, a flawed pricing system is a serious 

failure. Therefore, companies want reliable data to make important decisions. The expenses incurred by the com-
pany provide most of the data necessary for decision-making. 

This article is focused on studying the variables Activity cost and Financial management, they are concepts of 
vital importance in the study of business sciences, the topic deals with the measurement of their behaviors and 

focusing them on our problem, for benefiting the beef cattle producers that gather at the Coto-Coto Sunday fair, 

our purpose is to determine the relationship between the Activities cost and Financial management in Beef Cattle 
Producers at this Livestock Fair. 

The research design is included from a non-experimental level, the sample of study was made up of 141 beef 
cattle producers participating in the fair, to whom a questionnaire was applied under the Indeterminate Likert Scale 

as the measurement scale, [3-5]. 

To measure opinion, which is subjective, it is necessary to measure the uncertainty and at the same time the 
indeterminacy of the criteria given by the interviewee. That is why an indeterminate Likert scale is used to quantify 

the degree of agreement-disagreement of the interviewee with the item on which they are asked to give their opin-
ion; in this case, how the two variables Activities cost and Financial management are appropriate. The Indetermi-

nate Likert Scale is based on the triple refined indeterminate neutrosophic sets (TRINS) [6], which are part of the 
refined neutrosophic sets, where the component of indeterminacy is split into three other subcomponents, to obtain 

greater accuracy, [7-9]. 

To determine the degree of relationship that exists between the two variables, we apply a measure of neutro-
sophic similarity. Neutrosophic similarity is an extension of the concept of fuzzy similarity, where the degree of 

similarity between two elements belonging to different fuzzy sets is measured using the degree of uncertainty 
about a certain aspect [10-11]. In the case of neutrosophic sets, specifically Single-Valued Neutrosophic Sets, we 

have two additional components that are indeterminacy and falsity, which increase accuracy compared to fuzzy 

sets and similarities. In this case, we adapt the similarity formulas to the TRINS, which contains two additional 
components, five in total. 

In this article, we divide the presentation into a Materials and Methods section, where we present the funda-
mental concepts of the Indeterminate Likert Scale and Neutrosophic Similarity. This is followed by a Results 

section where the details of the study carried out are presented. We finish with the Conclusions. 

2 Materials and Methods 

This section summarizes the main theoretical contents that we used in the study. First, we offer the basic 

notions about the Indeterminate Likert Scale. The second subsection is dedicated to remembering the basic con-
cepts of Neutrosophic Similarity. 

2.1. Indeterminate Likert Scale 

Definition 1 ([6]). The Single-Valued Neutrosophic Set (SVNS) N over U is A =  {< x; TA(x), IA(x), FA(x) >
: xU}, where TA: U→[0, 1], IA: U→[0, 1], and FA: U→[0, 1], 0 TA(x)  + IA(x)  + FA(x)  3. 

Definition 2 ([7]). The refined neutrosophic logic is defined such that: a truth T is divided into several types 

of truths: T1, T2, . . . , Tp, I into various indeterminacies: I1, I2, . . . , Ir and F into various falsities: F1, F2, . . . , Fs, 

where all p, r, s ≥ 1 are integers, and  p + r + s = n. 

Definition 3 ([6]). A triple refined indeterminate neutrosophic set (TRINS) A in X is characterized by posi-

tive PA(x), indeterminacy IA(x), negative NA(x), positive indeterminacy IPA
(x) and negative indeterminacy 

INA
(x) membership functions. Each of them has a weight wm ∈ [ 0, 1] associated with it. For each x ∈  X, there 

are PA(x), IPA
(x), IA(x), INA

(x), NA(x) ∈ [ 0,1], 

wP
m (PA(x)), wIP

m (IPA
(x)), wI

m (IA(x)), wIN

m (INA
(x)), wN

m(NA(x))  ∈ [ 0, 1] and 0 ≤  PA(x) + IPA
(x) + IA(x) +

INA
(x)(x) +  NA(x)  ≤ 5. Therefore, a TRINS A can be represented by A = { 〈x;  PA(x), IPA

(x), IA(x),

INA
(x), NA(x)〉|x ∈  X}. 

Let A and B be two TRINS in a finite universe of discourse, X =  {x1, x2, . . . , xn}, which are denoted by: 

A = { 〈x;  PA(x), IPA
(x), IA(x), INA

(x), NA(x)〉|x ∈  X} and B = { 〈x;  PB(x), IPB
(x), IB(x),

INB
(x), NB(x)〉|x ∈  X}, 
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Where PA(xi), IPA
(xi), IA(xi), INA

(xi), NA(xi), PB(xi), IPB
(xi), IB(xi), INB

(xi), NB(xi) ∈ [ 0, 1], for every 

xi ∈ X. Let wi(i = 1,2,...,n) be the weight of an element xi (i = 1,2,...,n), with wi  ≥  0 (i = 1,2,...,n) and ∑ wi
n
i=1 =

1. 

The generalized TRINS weighted distance is ([6, 12]): 

𝑑𝜆(𝐴, 𝐵) = {
1

5
∑ 𝑤𝑖 [|PA(xi) − PB(xi)|𝜆 + |IPA

(xi) − IPB
(xi)|

𝜆
+ |IA(xi) − IB(xi)|𝜆 +𝑛

𝑖=1

|INA
(xi) − INB

(xi)|
𝜆

+ |NA(xi) − NB(xi)|𝜆]}
1

𝜆⁄

                                                                       (1)  

Where λ > 0. 
The Indeterminate Likert Scale is formed by the following five elements: 

– Negative membership, 

– Indeterminacy leaning towards negative membership, 
– Indeterminate membership, 

– Indeterminacy leaning towards positive membership, 
– Positive membership. 

These values substitute the classical Likert scale with values: 

–Strongly disagree, 
– Disagree, 

–Neither agree or disagree, 
– Agree, 

–Strongly agree. 
Respondents are asked to give their opinion on a scale of 0-5 about their agreement in each of the possible 

degrees, which are “Strongly disagree”, “Disagree”, “Neutral”, “Agree”, “Strongly agree”, for this end, they were 

provided with a visual scale like the one shown in Figure 1. 
 

 

 

 

 

 

 

 

Figure 1. Graphic representation of the proposed Indeterminate Likert Scale. 

2.2. Some Notions on Neutrosophic Similarity 

Definition 4: ([10-11, 13-16]) The degree of similarity between two single-valued neutrosophic sets 𝐴 and 𝐵 
is a mapping 𝑆: 𝒩(𝑋) × 𝒩(𝑋) → [0, 1]3, where 𝒩(𝑋) is the set of all single-valued neutrosophic sets in 𝑋 =
{𝑥1, 𝑥2, ⋯ , 𝑥𝑛}, such that 𝑆(𝐴, 𝐵) = (𝑆𝑇(𝐴, 𝐵), 𝑆𝐼(𝐴, 𝐵), 𝑆𝐹(𝐴, 𝐵)) satisfies conditions (S1)-(S4). 

(S1) 𝑆(𝐴, 𝐵) = 𝑆(𝐵, 𝐴), ∀𝐴, 𝐵 ∈ 𝒩(𝑋), 
(S2) 𝑆(𝐴, 𝐵) = 1 = (1,0,0) if and only if 𝐴 = 𝐵, 

(S3) 𝑆𝑇(𝐴, 𝐵) ≥ 0, 𝑆𝐼(𝐴, 𝐵) ≥ 0, 𝑆𝐹(𝐴, 𝐵) ≥ 0, ∀𝐴, 𝐵 ∈ 𝒩(𝑋), 
(S4) If 𝐴 ⊆ 𝐵 ⊆ 𝐶, then 𝑆(𝐴, 𝐵) ≥ 𝑆(𝐴, 𝐶) and it satisfies 𝑆(𝐵, 𝐶) ≥ 𝑆(𝐴, 𝐶). 

Definition 5: ([10-11]) Let 𝐴, 𝐵 ∈ 𝒩(𝑋) in 𝑋 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛}, then a measure of similarity between 𝐴 and 
𝐵 is calculated by 𝑆(𝐴, 𝐵) = (𝑆𝑇(𝐴, 𝐵), 𝑆𝐼(𝐴, 𝐵), 𝑆𝐹(𝐴, 𝐵)), where 𝑆𝑇(𝐴, 𝐵) is the degree of similarity of truthful-

ness, 𝑆𝐼(𝐴, 𝐵) is the degree of similarity of indeterminacy, and 𝑆𝐹(𝐴, 𝐵) is the degree of similarity of falsity. The 

formulas for similarity are the following: 

𝑆𝑇(𝐴, 𝐵) = (∑ [
𝑚𝑖𝑛 (𝑇𝐴(𝑥𝑖),𝑇𝐵(𝑥𝑖))

𝑚𝑎𝑥 (𝑇𝐴(𝑥𝑖),𝑇𝐵(𝑥𝑖))
]𝑛

𝑖=1 ) 𝑛⁄                      (2a) 

𝑆𝐼(𝐴, 𝐵) = 1 − (∑ [
𝑚𝑖𝑛 (𝐼𝐴(𝑥𝑖),𝐼𝐵(𝑥𝑖))

𝑚𝑎𝑥 (𝐼𝐴(𝑥𝑖),𝐼𝐵(𝑥𝑖))
]𝑛

𝑖=1 ) 𝑛⁄                 (2b) 

𝑆𝐹(𝐴, 𝐵) = 1 − (∑ [
𝑚𝑖𝑛 (𝐹𝐴(𝑥𝑖),𝐹𝐵(𝑥𝑖))

𝑚𝑎𝑥 (𝐹𝐴(𝑥𝑖),𝐹𝐵(𝑥𝑖))
]𝑛

𝑖=1 ) 𝑛⁄               (2C) 

∀𝑥𝑖 ∈ 𝑋. 

Definition 6: ([10-11])  Suppose that for each 𝑥𝑖 ∈ 𝑋 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛} a weight 𝑤𝑖 ∈ [0, 1] is associated such 

that ∑ 𝑤𝑖 = 1𝑛
𝑖=1 . Let 𝐴, 𝐵 ∈ 𝒩(𝑋), then a weighted similarity measure between 𝐴 and 𝐵 is calculated by 
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𝑆𝑤(𝐴, 𝐵) = (𝑆𝑤
𝑇 (𝐴, 𝐵), 𝑆𝑤

𝐼 (𝐴, 𝐵), 𝑆𝑤
𝐹(𝐴, 𝐵)), where 𝑆𝑤

𝑇 (𝐴, 𝐵) is the degree of similarity of truthfulness, 𝑆𝑤
𝐼 (𝐴, 𝐵) 

is the degree of similarity of indeterminacy, and 𝑆𝑤
𝐹(𝐴, 𝐵)is the degree of similarity of the falsehood. The formulas 

for similarity are the following: 

𝑆𝑤
𝑇 (𝐴, 𝐵) = ∑ 𝑤𝑖 [

𝑚𝑖𝑛 (𝑇𝐴(𝑥𝑖),𝑇𝐵(𝑥𝑖))

𝑚𝑎𝑥 (𝑇𝐴(𝑥𝑖),𝑇𝐵(𝑥𝑖))
]𝑛

𝑖=1                          (3a) 

𝑆𝑤
𝐼 (𝐴, 𝐵) = 1 − ∑ 𝑤𝑖 [

𝑚𝑖𝑛 (𝐼𝐴(𝑥𝑖),𝐼𝐵(𝑥𝑖))

𝑚𝑎𝑥 (𝐼𝐴(𝑥𝑖),𝐼𝐵(𝑥𝑖))
]𝑛

𝑖=1                    (3b) 

𝑆𝑤
𝐹(𝐴, 𝐵) = 1 − ∑ 𝑤𝑖 [

𝑚𝑖𝑛 (𝐹𝐴(𝑥𝑖),𝐹𝐵(𝑥𝑖))

𝑚𝑎𝑥 (𝐹𝐴(𝑥𝑖),𝐹𝐵(𝑥𝑖))
]𝑛

𝑖=1                   (3c) 

∀𝑥𝑖 ∈ 𝑋. 

Definition 7: ([10-11]) Let 𝐴, 𝐵 ∈ 𝒩(𝑋) in 𝑋 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛}, then a measure of similarity between 𝐴 and 

𝐵 is calculated by 𝐿(𝐴, 𝐵) = (𝐿𝑇(𝐴, 𝐵), 𝐿𝐼(𝐴, 𝐵), 𝐿𝐹(𝐴, 𝐵)), where 𝐿𝑇(𝐴, 𝐵) is the degree of similarity of truth-
fulness, 𝐿𝐼(𝐴, 𝐵) is the degree of similarity of indeterminacy, and 𝐿𝐹(𝐴, 𝐵) is the degree of similarity of falsity. 

The formulas for similarity are the following: 

𝐿𝑇(𝐴, 𝐵) = 1 −
∑ |𝑇𝐴(𝑥𝑖)−𝑇𝐵(𝑥𝑖)|𝑛

𝑖=1

∑ |𝑇𝐴(𝑥𝑖)+𝑇𝐵(𝑥𝑖)|𝑛
𝑖=1

               (4a) 

𝐿𝐼(𝐴, 𝐵) =
∑ |𝐼𝐴(𝑥𝑖)−𝐼𝐵(𝑥𝑖)|𝑛

𝑖=1

∑ |𝐼𝐴(𝑥𝑖)+𝐼𝐵(𝑥𝑖)|𝑛
𝑖=1

                       (4b) 

𝐿𝐹(𝐴, 𝐵) =
∑ |𝐹𝐴(𝑥𝑖)−𝐹𝐵(𝑥𝑖)|𝑛

𝑖=1

∑ |𝐹𝐴(𝑥𝑖)+𝐹𝐵(𝑥𝑖)|𝑛
𝑖=1

                     (4c) 

∀𝑥𝑖 ∈ 𝑋. 

Definition 8: ([10-11]) Let 𝐴, 𝐵 ∈ 𝒩(𝑋) in 𝑋 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛}, then a measure of similarity between 𝐴 and 

𝐵 is calculated by 𝑀(𝐴, 𝐵) = (𝑀𝑇(𝐴, 𝐵), 𝑀𝐼(𝐴, 𝐵), 𝑀𝐹(𝐴, 𝐵)), where 𝑀𝑇(𝐴, 𝐵) is the degree of similarity of truth-
fulness, 𝑀𝐼(𝐴, 𝐵) is the degree of similarity of indeterminacy, and 𝑀𝐹(𝐴, 𝐵) is the degree of similarity of falsity. 

The formulas for similarity are the following: 

𝑀𝑇(𝐴, 𝐵) =
1

𝑛
∑ (1 −

|𝑇𝐴(𝑥𝑖)−𝑇𝐵(𝑥𝑖)|

2
)𝑛

𝑖=1                  (5a) 

𝑀𝐼(𝐴, 𝐵) =
1

𝑛
∑ (

|𝐼𝐴(𝑥𝑖)−𝐼𝐵(𝑥𝑖)|

2
)𝑛

𝑖=1                           (5b) 

𝑀𝐹(𝐴, 𝐵) =
1

𝑛
∑ (

|𝐹𝐴(𝑥𝑖)−𝐹𝐵(𝑥𝑖)|

2
)𝑛

𝑖=1                         (5c) 

∀𝑥𝑖 ∈ 𝑋. 

Definition 9: ([10-11]) Let 𝐴, 𝐵 ∈ 𝒩(𝑋) where 𝑋 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛}, then a measure of similarity based on 

the distance between 𝐴 and 𝐵 is calculated by: 

𝑆1(𝐴, 𝐵) =
1

1+𝑑(𝐴,𝐵)
                       (6) 

Such that 𝑑(𝐴, 𝐵) is a distance function between the two single-valued neutrosophic sets. 

Let us recall that the distance function satisfies the following axioms ∀𝐴, 𝐵, 𝐶 ∈ 𝒩(𝑋): 

(1) 𝑑(𝐴, 𝐵) ≥ 0 and 𝑑(𝐴, 𝐵) = 0 if and only if 𝐴 = 𝐵, 

(2) 𝑑(𝐴, 𝐵) = 𝑑(𝐵, 𝐴), 

(3) 𝑑(𝐴, 𝐶) ≤ 𝑑(𝐴, 𝐵) + 𝑑(𝐵, 𝐶). 

3 Results 

First of all, we establish the similarity formula that we use in data processing. We start with the generalized 
Triple Refined Indeterminate Neutrosophic weighted distance with the help of Equation 1. 𝜆 = 1,2 are the two 

values that define the Hamming and Euclidean distances, respectively. 

We define the neutrosophic similarity on the TRINS using formula 6 combined with the distance in (1). 

To collect the data, 141 cattle farmers participating in the Coto-Coto Livestock Fair in Peru were asked to 

give their opinions on Activity costs per and Financial management. 
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The survey must be evaluated for each question for each of the possible evaluations on a scale of 0-5 as 

shown in Figure 1. 0 indicates that the given evaluation grade is not accepted and 5 means the maximum grade 

for such evaluation, this step must be done on every possible evaluation. Figure 2 shows an example to rely on. 

 
 

 

 

 

 

Figure 2. Example of the graphic use of the proposed Indeterminate Likert Scale. 

In the example in Figure 2, it can be seen that the respondent expressed grade 0 of “strongly disagree”, grade 

1 of “disagree”, grade 3 of “neutral”, grade 4 of “agree”, and grade 0 of “strongly agree”. This allows us for ob-

taining greater precision in capturing the opinion and feelings of the respondent since there is not always a single 

possibility of agreement-disagreement with what is asked, rather in general there is a mixture. 

The steps to follow are those: 

1. Evaluate at all levels of opinion the degree of agreement-disagreement that an appropriate “Activity 

cost” is being applied in local livestock farming. 

2. Evaluate at all levels of the opinion of the degree of agreement-disagreement that adequate “Financial 

management” is being applied in local livestock farming. 

3. Each grade selected for each agreement-disagreement is associated with a value of 0.2. In the example in 

Figure 2, it is true that “Strongly disagree” has a value of 0(0.2)  =  0, “Disagree” has a value of 

1(0.2)  =  0.2, “Neutral” is 3(0.2)  =  0.6, and so on. Finally, in the example, we have a TRINS equal 

to (0,0.2,0.6,0.8,0). 

4. Each of the 141 ranchers is consulted about their opinion. The data is collected and converted into the 

form of TRINS. Let 𝐶(𝑋) be the TRINS on “Activity cost” and 𝑀(𝑋) denotes the TRINS on “Financial 

management”, for each of the respondents 𝑋 = {𝑥1, 𝑥2, … , 𝑥141}. 

5. It is calculated 𝑑2(𝐶, 𝑀) (Equation 1) with 𝜔𝑖 =
1

141
 ∀𝑥𝑖 ∈ 𝑋, and then the degree of similarity (Equa-

tion 6). This last index is the one required to determine the relationship between one variable and an-

other. 

Figures 3 and 4 contain the bar graphs with the degree of satisfaction-dissatisfaction for each of the two vari-

ables. 

 

 

Figure 3. Bar chart on the degree of agreement-disagreement regarding “Adequate cost for activities” in percentage. 
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Figure 4. Bar chart on the degree of agreement-disagreement regarding “Appropriate financial management” in percentage. 

The graphs in Figures 3 and 4 do not add up to 100% of the respondents. This is because the percentage of 

each of the opinions is calculated in terms of what each respondent thinks, who may have contradictory opinions 

when 𝑇𝐴(𝑥𝑖) + 𝐼𝑇𝐴
(𝑥𝑖) + 𝐼𝐴(𝑥𝑖) + 𝐼𝐹𝐴

(𝑥𝑖) + 𝐹𝐴(𝑥𝑖) > 1. 

Specifically, the degree of “Strongly agree” was calculated by ∑ 𝑇𝐴(𝑥𝑖)
141
𝑖=1 , the degree of “Agree” by 

∑ 𝐼𝑇𝐴
(𝑥𝑖)141

𝑖=1 , the degree of “Neutral” by ∑ 𝐼𝐴(𝑥𝑖)
141
𝑖=1 , the degree of “Disagree” by ∑ 𝐼𝐹𝐴

(𝑥𝑖)141
𝑖=1 , and the degree of 

“Strongly disagree” by ∑ 𝐹𝐴(𝑥𝑖)
141
𝑖=1 . 

Each of these values was divided by 141 and multiplied by 100 and this is how the percentages shown in 

both figures were obtained. 

We have gotten the distance 𝑑2(𝐶, 𝑀) = 0.433504, and therefore the degree of similarity is equal to 

𝑆1(𝐶, 𝑀) =
1

1+0.433504
= 0.69759. 

This is interpreted as there is a degree of similarity over the average. Thus, there is a relationship between 

both measured variables. 

Conclusion 

Livestock activity has great cultural, nutritional, economic, and social importance in the rural populations of 

all or almost all countries. It is a source of food in terms of meat and milk, it is also a source of employment, and 

it maintains a traditional trade. That is why in modern times, with such high population growth, it is essential to 

correctly measure and manage the economic variables that are part of the production of beef and milk. Two of 

them are Activity cost and Financial management. In this work, we set out to study the behavior of these two 

variables in the town of Coto-Coto, Chilca, Peru, surveying 141 ranchers who participate in the local livestock 

fair. We are determined to have the greatest possible accuracy with the objective of obtaining the result that most 

closely resembles reality. We also accept that opinions have biases that are based on vagueness, uncertainty, and 

indeterminacy. The tool chosen was an Indeterminate Likert Scale that satisfies all these requirements. Addition-

ally, we compare the individual results of each rancher's opinion on each of the variables using a measure of neu-

trosophic similarity, in this case, adapted to the TRINS. The results show a tendency towards neutrality regard-

ing whether or not there is adequate behavior in both variables. Moreover, “Activity cost" shows a neutral behav-

ior toward the positive, and "Financial management" has a neutral behavior toward the negative. The similarity 



Neutrosophic Sets and Systems, Vol. 64, 2024  

 

Michael Raiser Vásquez-Ramírez 1 , Ketty Marilú Moscoso-Paucarchuco 2 ,  

Manuel Michael Beraún-Espíritu 3  , Humberto Rafael Yupanqui-Villanueva 4 , Omar Arturo Vivanco-Nuñez 5 , 

Wilfredo Fernando Yupanqui-Villanueva 6 , Rafael Jesús Fernández-Jaime 7  and Edgar Gutiérrez-Gómez 8 , De-

termination of the degree of relationship between Activity Cost and Financial Management in beef cattle produc-

tion in a region of Peru, based on Indeterminate Likert Scale and Neutrosophic Similarity  

89 

between both was approximately 0.7, which is interpreted as that there is a positive relationship between both 

variables, therefore the improvement of one of them will imply the improvement in the other. It is recommended 

as a strategy to improve these variables, one and the other to produce better conjoint results. These are only pre-

vious results; in a future work we revisit this problem with more detail. 
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Abstract: Physics thrives on precision, but paradoxes in set theory reveal limitations in our 

understanding of well-defined boundaries. Neutrosophic logic, challenging the excluded middle 

principle, introduces the concept of "betweenness" and partial belonging. This article explores 

among other things several possible avenues to resolve set theory paradoxism, including potential 

applications of neutrosophic logic in cosmology and particles, from set boundary, to the 

hypothetical "cosmosphere" boundary, to mixed fermion-boson condensate hypothesis. 

Embracing indeterminacy and fuzzy boundaries paves the way for a more holistic understanding 

of the universe's complexity. 

Keywords: set theory paradoxism; boundaries of set; Neutrosophic Logic; betweenness; partial 

belonging; Lakoff & Nunez 

 

 

1. Introduction 

The concept of infinity has captivated mathematicians and philosophers for centuries, leading 

to groundbreaking discoveries and perplexing paradoxes. One such paradox stands tall: Russell's 

Paradox, a logical contradiction within set theory that threatened the very foundations of 

mathematics.[1] But what if the solution lay not in more complex axioms, but in a shift in our 

approach, moving from abstract symbol manipulation to an "evidence-based" framework grounded 

in human cognition? 

Traditionally, attempts to resolve set theory paradoxism focused on constructing intricate 

axiom systems, like Zermelo-Fraenkel with Choice (ZFC). While successful in formalizing 

mathematics, these systems often feel removed from our intuitive understanding of infinity. Enter 

George Lakoff and Rafael Núñez, pioneers in cognitive science who propose a new perspective. 

They argue that mathematics, including set theory, is not an abstract, disembodied language, but 

rather a product of our embodied experience and conceptual knowledge. So, how can this cognitive 

lens help us tackle Russell's Paradox? Let's revisit the crux of the paradox: it arises when we 

consider the set of all sets that do not contain themselves. Does this set contain itself? If it does, it 

violates its own defining property. If it doesn't, then it contains all sets that don't contain 

themselves, including itself, leading to a contradiction. 

From a cognitive perspective, the issue resides in our attempt to apply a single, uniform 

definition of "set" to all possible collections. In reality, our brains categorize and reason about 

different types of collections differently. Lakoff and Núñez propose that instead of a single "set" 

concept, we consider diverse conceptual categories like collections of physical objects, abstract 
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ideas, or potential actions. Each category comes with its own inherent constraints and logic, shaping 

how we reason about its members. 

Applying this framework, we might recognize that the problematic "set of all sets that do not 

contain themselves" belongs to a category that is fundamentally self-referential and unbounded. 

Such a category may not be amenable to the same logical rules as collections of physical objects or 

finite sets. Recognizing this cognitive limitation, we can avoid the paradoxism by simply excluding 

such self-referential categories from our formal set theory, focusing instead on well-defined, 

grounded collections. 

This "evidence-based" approach does not negate the value of formal systems like ZFC. Instead, it 

complements them by acknowledging the cognitive underpinnings of mathematics and 

emphasizing the importance of aligning formal structures with our intuitive understanding of the 

world. This can lead to a more "healthy" and accessible mathematics, less prone to paradoxes and 

closer to how humans naturally reason about quantity and infinity.[3] 

Furthermore, this shift can open doors to exploring alternative set theories that better reflect 

different cognitive perspectives. Imagine set theories inspired by spatial reasoning, probability 

judgments, or even social interactions. Such explorations could not only enrich our understanding 

of infinity but also provide valuable insights into the cognitive diversity of mathematical thinking. 

While Lakoff and Núñez's approach is in its early stages, it offers a promising avenue for 

addressing long-standing mathematical challenges. By embracing the evidence of our embodied 

cognition, we can move beyond abstract symbol manipulation and develop a more natural, 

"evidence-based" approach to mathematics, paving the way for a more inclusive and vibrant 

understanding of infinity. 

2. Materials and Methods 

The method used here is analysis and analogy with well-defined problems such as cell biology, 

diffusion and osmosis etc. toward rethinking of set theory paradoxism [6], especially in light of 

evidence-based physics and evidence-based mathematics. Recent literature which are relevant to 

the theme of this article have been cited.  

 

3. Results  

3.1. Approach #1: Cell model as boundary to any set, diffusion-osmosis interpretation to set 

paradox 

The shadow of Russell's Paradox(-ism) looms large over set theory, its logical contradiction 

threatening the very foundations of mathematics. Traditional solutions focus on complex axiom 

systems, but what if the answer resides not in abstract symbols, but in the concrete world of living 

cells? This article proposes a novel "cell model" inspired by Lakoff and Núñez's cognitive science 

approach, utilizing the concepts of diffusion and osmosis to shed light on the paradox. 

Imagine a set as a living cell, bounded by a semipermeable membrane. This membrane 

regulates what enters and exits the set, just as a cell membrane controls the flow of molecules. 

Elements within the set are like nutrients inside the cell, while the surrounding "soup" represents 

potential members waiting to join.[1][2] 

Now consider Russell's problematic set – the set of all sets that do not contain themselves. 

According to the cell model, this set's defining characteristic acts as a selective membrane. It allows 

sets that don't contain themselves to "diffuse" in (like nutrients), but it should also allow itself in, as 

it doesn't contain itself, leading to contradiction. 

Here's where the concept of osmosis comes in. Osmosis describes the spontaneous movement 

of molecules across a semipermeable membrane to equalize concentrations. Applied to our cell 
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model, osmosis represents the inherent tendency of sets to be consistent and avoid paradoxes. 

When the problematic set tries to "diffuse" in, due to its self-referential nature, it triggers an "osmotic 

pressure" within the set. This pressure, analogous to the corrective force in osmosis, prevents the 

paradox by pushing the problematic set back out. Essentially, the set's defining characteristic itself 

acts as a barrier, preventing its own inclusion and maintaining consistency. 

This model aligns with cognitive principles. Our minds naturally categorize and reason about 

collections differently, understanding physical objects differently from abstract ideas. The cell 

model reflects this, treating different types of sets as distinct "cells" with unique membranes and 

osmotic pressures. 

This approach offers several advantages. It provides a more intuitive understanding of set 

boundaries and avoids complex formal machinery. It emphasizes the inherent limitations of self-

referential sets, aligning with our cognitive constraints. Furthermore, it suggests alternative ways to 

think about set theory, inspired by biological processes like osmosis and cellular dynamics. While 

the cell model is a first step, further development is needed. Refining the analogy, exploring 

implications for different set types, and formalizing the osmotic pressure concept are crucial next 

steps. 

In conclusion, the cell model and its osmosis interpretation offer a promising evidence-based 

approach to the set theory paradoxism. By grounding abstract concepts in the familiar world of 

living cells, we gain a new perspective, highlighting the importance of cognitive limitations and 

inherent dynamics within sets. This approach opens doors to a more intuitive and inclusive 

understanding of infinity, enriching both mathematics and our understanding of human thought. 

3.2. Approach #2: Exploring Cognitive Constraints: A Categorical Approach to Set Theory Paradox 

This section explores how our cognitive limitations influence our understanding of infinity and 

contribute to paradoxes like Russell's paradox(-ism); cf. [3]. Drawing on the work of Lakoff and 

Núñez, you could: 

- Analyze the cognitive categories we use to reason about collections, highlighting differences 

between physical objects, abstract ideas, and potentially unbounded sets. 

- Explore how these categories shape our intuition and logic, leading to potential 

contradictions when applied to specific set definitions like "the set of all sets not containing 

themselves." 

- Propose alternative set theories that respect these cognitive constraints, potentially by 

limiting self-referential definitions or introducing category-specific rules. 

- Connect this approach to existing research in cognitive science and philosophy of 

mathematics, showcasing its evidence-based foundation. 

This approach offers several advantages: 

- Grounds the solution in evidence: It builds upon established research in cognitive science 

and avoids relying on unproven concepts like morphic fields. 

- Addresses the root cause: It focuses on how our cognitive limitations contribute to the 

paradoxism, offering a deeper understanding of the issue. 

- Connects to broader discussions: It aligns with ongoing research on embodied cognition and 

its impact on mathematics. 



Neutrosophic Sets and Systems, Vol. 64, 2024     94 

 

 

 

Victor Christianto, Florentin Smarandache, An Evidence-Based Approach to Set Theory Paradoxism: From Set 

Boundary to Mixed-Fermion-Boson Condensate Hypothesis 

- Offers concrete solutions: It suggests alternative set theories grounded in cognitive 

constraints, contributing to the overall development of set theory.  

It shall be kept in mind that, the goal of an evidence-based approach is to provide solutions 

supported by robust evidence and aligned with established scientific principles. By exploring well-

researched areas like cognitive science and applying their insights to mathematical problems, we 

can contribute to a more robust and inclusive understanding of infinity and mathematics as a 

whole.[3] 

 

3.3. Approach #3: Beyond the Excluded Middle: Exploring Neutrosophic Frontiers in Fermion-Boson systems 

Traditional physics excels in clear-cut definitions, but what if nature itself defies rigidity? This 

article explores the potential of neutrosophic logic, which goes beyond the "in" or "out" paradigm, 

to describe fuzzy boundaries and indeterminate states in the cosmos. We delve into intriguing 

possibilities like a partially defined border for the universe and hybrid particles exhibiting 

characteristics of both fermions and bosons. Accepting such "betweenness" challenges established 

paradigms and offers exciting avenues for future discoveries, leading us closer to a more nuanced 

picture of reality.  

It is known, that aidst the elegance of its equations, paradoxes lurk, whispering of hidden 

complexities. One such riddle is the question of set theory paradoxism, where seemingly logical 

axioms lead to contradictory results. Traditionally, these paradoxes are resolved by upholding the 

"excluded middle" principle - every element either belongs to a set or doesn't. However, what if 

reality itself defies such crisp classifications? 

This is where the intriguing idea of Neutrosophic logic emerges. It dares to challenge the 

rigidity of the excluded middle, introducing the notion of partial belongingness and 

indeterminacy. Instead of a traditional "in" or "out," elements can reside in a fuzzy "betweenness," 

exhibiting characteristics of both sets simultaneously. This opens a fascinating gateway to explore 

realms where traditional physics might reach its limits. 

One intriguing application lies in the vast unknown beyond our familiar solar system. We 

know of the heliosphere, a thick "wall" of charged particles marking the boundary of our Sun's 

influence, as observed for instance by Voyager. Ref. [4] Could there be an analogous "cosmosphere," 

a boundary to the observable Universe? If future observations reveal such a barrier, Neutrosophic 

logic could elegantly describe its nature. Objects within this boundary might exhibit degrees of both 

"inside-ness" and "outside-ness," existing in a state of partial belongingness. 

Another promising avenue resides in the subatomic realm. The fundamental distinction 

between fermions and bosons, particles with differing statistics, forms a cornerstone of quantum 

mechanics. But what if, as hinted by mixed fermion-boson statistics, there also exist particles 

exhibiting both fermionic and bosonic characteristics? The prospect of observing a condensate 

corresponding to such a hybrid entity, transcending the traditional Bose-Einstein condensate, 

would challenge and even transform our very understanding of particle classification. That 

particular condensate may be called  mixed fermion-boson condensate (MFBC). Ref. [5] 

Exploring these Neutrosophic frontiers necessitates that we must embrace the possibility of 

fuzzy boundaries, indeterminate states, and partial memberships. This doesn't negate the value of 

traditional physics, but rather acknowledges its limitations in the face of the universe's inherent 

complexity. 

The road ahead may be riddled with conceptual and experimental challenges. Yet, venturing 

into the uncharted territory of Neutrosophic physics holds immense potential. It could reshape our 

understanding of the cosmos, from its grandest boundaries to its quantum enigmas, leading us 

closer to a truly holistic picture of reality. So, let us cast aside the shackles of the excluded middle 
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and embrace the vibrant "betweenness" whispered by Neutrosophic logic. The Universe, in all its 

enigmatic splendor, awaits.  

 

 

 

4. Applications and Concluding  Remark 

These authors have outlined several possible approaches to solve the set theory paradoxism, 

for instance by defining certain real boundary system to a given set, let say cell system. Such an 

evidence-based physics approach will allow us to figure out what can happen actually when certain 

entity goes in or goes out of any given cell through the boundary layer. Alternatively, we can figure 

out how Voyager space vehicle which goes through the boundary or thick wall of in the outer side 

of the Solar System, or it is often termed heliosphere, faces the edge or boundary of outer Solar 

System.[4] Similarly, we can hypothesize there is good likelihood that there is certain thick 

boundary in the foremost edge of the Universe, which may be termed Cosmosphere. Therefore in 

such a way, the meaning of set which contains all sets, i.e. the outer layer of the Universe that 

contains everything else inside the Universe can be figured out in astrophysics term. 

We hope that more discussions of evidence-based physics approach to set theory paradoxism 

can be expected. 
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Abstract: In various fuzzy multiple attribute decision making (MADM) applications, different 

information descriptions and aggregation operators (AOs) play a crucial role. However, both the 

Einstein sum and product can include their typical algebraic operation features, but they lack the 

characteristics of periodicity operations. To fill the research gap of Einstein AOs for single-valued 

neutrosophic values (SvNVs), this article aims to propose Einstein AOs of sine SvNVs and their 

MADM model as their new extension. In this study, we first define a new sine SvNV, which 

integrates sine functions into the membership functions of indeterminacy, falsehood, and truth, and 

the Einstein operation laws of sine SvNVs. Then, we present the sine SvNV Einstein weighted 

average and geometric AOs and their properties. Furthermore, we develop a MADM model based 

on the proposed Einstein AOs in a SvNV circumstance. Lastly, we apply the developed MADM 

model to a site selection example of a hydrogen power plant as the verification of its application in 

a SvNV circumstance. The decision results reveal the rationality and validity of the developed 

model with respect to the comparison of the related models. 

Keywords: decision making problem; sine single-valued neutrosophic value; einstein operation law; 

sine single-valued neutrosophic value Einstein aggregation operator  

 

 

1. Introduction 

Recently, various fuzzy multiple attribute/criteria decision making (MADM/MCDM) theories 

and approaches have become research hotspots in uncertain decision applications. In MADM 

applications, various fuzzy information descriptions and operations/aggregations imply their 

importance and necessity. Fuzzy sets (FSs) [1] contain only membership degrees, but lack non-

membership degrees. Then, intuitionistic or interval-valued FSs (IFSs/IvFSs) [2, 3] can contain both 

membership and non-membership degrees and the dependent relationship of both, but cannot reflect 

the independent relationship of indeterminate, false, and true membership degrees in inconsistent 

and uncertain situations. As a general framework of different FSs, a neutrosophic set (NS) [4] can 

reflect them. Regarding the subsets of NS, some scholars presented single-valued or interval-valued 

or simplified neutrosophic values (SvNVs/IvNVs/SNVs) [5-7] and their operation laws and 

aggregation operators (AOs) to effectively meet scientific and engineering applications. Zhang et al. 

proposed the improved AOs of IvNVs for MADM [8]. Then, Yang and Li [9] introduced the power 

AOs of SvNVs for MADM. Liu et al. [10] presented the power Muirhead mean AOs of SvNVs for 

group decision making (GDM). Liu [11] also introduced the Archimedean AOs of SvNVs for MADM. 

Garg [12] proposed the Frank norm AOs of SvNVs for MADM. Deli and Subas [13] introduced a 
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SvNV sorting method for MADM. Liu and Liu [14] put forward a generalized weighted power 

averaging operator of SvNVs for GDM. Karaaslan and Hayat [15] presented some operations of 

interval-valued neutrosophic matrices and applied them to GDM. Garg [16] used the multiplicative 

preference relation of SvNVs for MADM. Giri and Roy [17] introduced a neutrosophic programming 

approach to solve the transportation problem of green four-dimensional fixed charges. Therefore, the 

SNVs (SvNVs and/or IvNVs) have also revealed their merits in inconsistent and uncertain MADM 

applications [18]. Consequently, many scholars have further developed SNV (SvNV and/or IvNV) 

AOs, such as ordinary weighted arithmetic and geometric AOs, Einstein AOs, generalized AOs [19], 

Bonferroni mean AOs [20], Hamacher AOs [21], exponential AOs [22], subtraction and division AOs 

[23], Frank AOs [24], prioritized interactive AOs [25], and fairly AOs [26] for SNVs (SvNVs and/or 

IvNVs). 

Recently, some scholars [27, 28] have proposed logarithmic SvNV operation laws and 

logarithmic SvNV Einstein AOs for GDM in view of t-conorm and t-norm. However, they reflect 

some limitations, for example, logx(y) cannot be defined when x = 1 or y = 0. Due to the periodicity 

feature of the sine function, it implies some merit that satisfies the multiple periodicity MADM needs 

in real problems. Therefore, the operation laws and AOs of sine SvNVs (S-SvNVs) [29, 30] have been 

introduced in MADM applications. Then, there are the defects of some membership functions that 

belong to the range of [0, 0.46) instead of the whole range of [0, 1] in S-SvNV [29, 30]. To overcome 

this deficiency, AOs of tangent SvNVs (T-SvNVs), where the three membership functions belong to 

the whole range of [0, 1], were presented for MADM [31]. Based on cosine, sine, arccosine, and arcsine 

operations, Ye et al. [32] first proposed the single-valued neutrosophic credibility value trigonometric 

AOs for MADM. However, the Einstein sum and product can include their typical algebraic 

operation merits [19], but lack periodicity operation features. Furthermore, no Einstein operation 

laws and AOs of S-SvNVs are presented in the existing literature. Therefore, it is necessary to develop 

them for MADM issues with S-SvNV information to fill this gap. Motivated by the new ideas, this 

article will propose the Einstein AOs of S-SvNVs and their MADM model as a new extension to 

address the defects and research gaps in the existing S-SvNV operation laws and AOs [29, 30]. In this 

study, the objectives of this paper are to: (1) define a suitable S-SvNV including three membership 

degrees belonging to the whole range of [0, 1] and Einstein operation laws (EOLs) of S-SvNVs, (2) 

establish the S-SvNV Einstein weighted average (S-SvNVEWA) and geometric (S-SvNVEWG) AOs, 

(3) develop a MADM model using the S-SvNVEWA and S-SvNVEWG AOs, and (4) apply the 

proposed MADM model to a site selection example of a hydrogen power plant (HPP) in a SvNV 

circumstance. However, the comparison results with the existing related models indicate the 

rationality and validity of the proposed model. 

The remainder of this article is composed of these parts. Section 2 simply reviews the 

preliminaries of single-valued NSs (SvNSs), including the operation laws and AOs of SvNVs and S-

SvNVs. In view of the integration of sine functions into indeterminate, false, and true membership 

functions, Section 3 defines a new S-SvNV and the EOLs of S-SvNVs, and then presents the S-

SvNVEWA and S-SvNVEWG AOs and their properties. In Section 4, a MADM model is developed 

in terms of the S-SvNVEWA and S-SvNVEWG AOs. Section 5 applies the developed MADM model 

to a site selection example of HPP in a SvNV circumstance. The comparative results of the existing 

related models reveal the validity of the developed model. Conclusions and future research are 

summarized in Section 6. 

2. Preliminaries of SvNSs 

2.1. Operation laws and AOs of SvNVs 

Set XC as a fixed universe set. Then, the SvNS N in XC is represented as N = {<xc, Nt(xc), Nu(xc), 

Nv(xc)>|xc  XC} [6], where Nv(xc), Nu(xc), Nt(xc)  [0, 1] are the membership functions of falsehood, 

indeterminacy, and truth subject to 0  Nt(xc) + Nu(xc) + Nv(xc)  3 for any xc  XC. Then, <xc, Nt(xc), 

Nu(xc), Nv(xc)> in N is represented as the SvNV N = <Nt, Nu, Nv> for simplicity. 
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Set two SvNVs as Ns = <Nt(s), Nu(s), Nv(s)> (s = 1, 2) with w > 0. Then, their operation relationships 

are presented below [7, 19]: 

(1) N1  N2  Nt(1)  Nt(2), Nu(1)  Nu(2), and Nv(1)  Nv(2); 

(2) N1 = N2  N1  N2 and N1  N2; 

(3) 
1 2 (1) (2) (1) (2) (1) (2), ,N N Nt Nt Nu Nu Nv Nv        =    ; 

(4) 
1 2 (1) (2) (1) (2) (1) (2), ,N N Nt Nt Nu Nu Nv Nv        =    ; 

(5) 
1 (1) (1) (1)( ) ,1 ,c

N Nv Nu Nt   = −  (Complement of N1); 

(6) 
1 2 (1) (2) (1) (2) (1) (2) (1) (2), ,N N Nt Nt Nt Nt Nu Nu Nv Nv          = + − ; 

(7) 
1 2 (1) (2) (1) (2) (1) (2) (1) (2) (1) (2), ,N N Nt Nt Nu Nu Nu Nu Nv Nv Nv Nv            = + − + − ; 

(8) 
1 (1) (1) (1)1 (1 ) , ,w w w

w N Nt Nu Nv

       = − − ; 

(9) 
1 (1) (1) (1),1 (1 ) ,1 (1 )w w w w

N Nt Nu Nv

      = − − − − . 

Set Ns = <Nt(s), Nu(s), Nv(s)> (s = 1, 2, …, q) as a collection of SvNVs with their weight vector W = 

(w1, w2, …, wq) subject to 0  ws  1 and 
1

1
q

wss


=
= . Then, SvNVWA and SvNVWG are denoted 

as the SvNV weighted average and geometric AOs and expressed by the two formulae [19]: 

( ) ( ) ( )1 2 ( ) ( ) ( )

1 1 1 1

( , ,..., ) 1 1 , ,
ws ws ws

q q qq

N N Nq ws Ns Nt s Nu s Nv s

s s s s

SvNVWA
  

       
= = = =

= = − −    , (1) 

( ) ( ) ( ) ( )1 2 ( ) ( ) ( )

1 1 1 1

( , ,..., ) ,1 1 ,1 1
ws ws wsws

q q q q

N N Nq Ns Nt s Nu s Nv s

s s s s

SvNVWG
  

      
= = = =

= = − − − −    . (2) 

Set two SvNVs as Ns = <Nt(s), Nu(s), Nv(s)> (s = 1, 2) with w > 0. Then, their EOLs are presented 

as follows [19]: 

(1) (1) (2) (1) (2) (1) (2)

1 2

(1) (2) (1) (2) (1) (2)

, ,
1 1 (1 )(1 ) 1 (1 )(1 )

Nt Nt Nu Nu Nv Nv

N E N

Nt Nt Nu Nu Nv Nv

     
 

     

+
 =

+ + − − + − −
; 

(2) (1) (2) (1) (2) (1) (2)

1 2

(1) (2) (1) (2) (1) (2)

, ,
1 (1 )(1 ) 1 1

Nt Nt Nu Nu Nv Nv

N E N

Nt Nt Nu Nu Nv Nv

     
 

     

+ +
 =

+ − − + +
; 

(3) (1) (1) (1) (1)

1

(1) (1) (1) (1) (1) (1)

(1 ) (1 ) 2 2
, ,

(1 ) (1 ) (2 ) (2 )

w w w w

w w w w w w

Nt Nt Nu Nv

w N

Nt Nt Nu Nu Nv Nv

   

     

   
 

     

+ − −
 =

+ + − − + − +
; 

(4) 
(1) (1) (1) (1) (1)

1

(1) (1) (1) (1) (1) (1)

2 (1 ) (1 ) (1 ) (1 )
, ,

(2 ) (1 ) (1 ) (1 ) (1 )

w w w w w

w

w w w w w w

Nt Nu Nu Nv Nv

N

Nt Nt Nu Nu Nv Nv

    



     

    


     

+ − − + − −
=

− + + + − + + −
. 

For a collection of SvNVs Ns = <Nt(s), Nu(s), Nv(s)> (s = 1, 2, …, q) with their weight vector W = 

(w1, w2, …, wq) subject to 0  ws  1 and 
1

1
q

wss


=
= , SvNVEWA and SvNVEWG are denoted as 

the SvNV Einstein weighted average and geometric AOs and introduced by the two formulae [19]: 

( ) ( )

( ) ( )

( )

( ) ( )

( )

( ) ( )

( ) ( )

1 1

( ) ( )

1 1

1 2

1

( ) ( )

1 1

( ) ( ) ( ) ( )

1 1 1 1

1 1

,

1 1

( , ,..., )

2 2

,

2 2

ws ws

ws ws

ws ws

ws ws ws ws

q q

Nt s Nt s

s s

q q

Nt s Nt sq
s s

N N Nq E ws Ns q q
s

Nu s Nv s

s s

q q q q

Nu s Nu s Nv s Nv s

s s s s

SvNVEWA

 

 

 

   

 

 

    

 

   

= =

= =

=

= =

= = = =


+ − −

+ + −

= =

− + − +


 

 


 

   


 
 
 
 
 
 
 
 
 
 



, (3) 
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( )

( )

1

( ) ( )

1 1

( ) ( )

1 1
1 2

1

( ) ( )

1 1

( ) ( )

1

2 ( )

,

(2 ) ( )

(1 ) (1 )

( , ,..., ) ,

(1 ) (1 )

(1 ) (1 )

ws

ws ws

ws ws

ws

ws ws

ws ws

q

Nt s

s

q q

Nt s Nt s

s s

q q

Nu s Nu sq

s s
N N Nq E Ns q q

s

Nu s Nu s

s s

q

Nv s Nv s

s s

SvNVEWG



 

 



 

 



 

 

   

 

 

=

= =

= =

=

= =

= =

− +

+ − −

= =

+ + −

+ − −



 

 


 


1

( ) ( )

1 1

(1 ) (1 )ws ws

q

q q

Nv s Nv s

s s

  
= =

+ + −



 

.  (4) 

 

To sort SvNVs Ns = <Nt(s), Nu(s), Nv(s)> (s = 1, 2), the score and accuracy equations of SvNVs [19] 

are presented below: 

( ) ( ) ( )( ) (2 ) / 3Ns Nt s Nu s Nv sU    = + − −  for ( ) [0,1]NsU   ,                   (5) 

( ) ( )( )Ns Nt s Nv sV   = −  for ( ) [ 1,1]NsV   − .                         (6) 

In terms of the score and accuracy equations, a sorting order of two SvNVs is defined by the 

following rules: 

(1) N1 > N2 for U(N1) > U(N2); 

(2) N1 > N2 for U(N1) = U(N2) and V(N1) > V(N2); 

(3) N1  N2 for U(N1) = U(N2) and V(N1) = V(N2). 

2.2 Operation laws and AOs of S-SvNVs 

Set SvNV as N = <Nt, Nu, Nv>. Then, S-SvNV is presented by 

sin( ) sin(0.5 ),1 sin(0.5 ),1 sin(0.5 )N Nt Nu Nv      = − − − −  [29, 30], where the membership 

degrees of the indeterminacy, falsehood, and truth are 1 sin(0.5 ) [0,0.46)Nu − −  , 

1 sin(0.5 ) [0,0.46)Nv − −  , and sin(0.5 ) [0,1]Nt   , respectively. 

Let ( ) ( ) ( )sin( ) sin(0.5 ),1 sin(0.5 ),1 sin(0.5 )Ns Nt s Nu s Nv s      = − − − −  for s = 1, 2 be 

two S-SvNVs with w > 0. Then, their operation laws are introduced below [29, 30]: 

(1) 

(1) (2)

1 2 (1) (2)

(1) (2)

1 (1 sin(0.5 ))(1 sin(0.5 )),

sin( ) sin( ) (1 sin(0.5 ))(1 sin(0.5 )),

(1 sin(0.5 ))(1 sin(0.5 ))

Nt Nt

N N Nu Nu

Nv Nv

   

     

   

− − −

 = − − − −

− − − −

; 

(2) 

(1) (2)

1 2 (1) (2)

(1) (2)

sin(0.5 )sin(0.5 ),

sin( ) sin( ) 1 sin(0.5 )sin(0.5 ),

1 sin(0.5 )sin(0.5 )

Nt Nt

N N Nu Nu

Nv Nv

   

     

   

 = − − −

− − −

; 

(3) 

(1)

1 (1)

(1)

1 (1 sin(0.5 )) ,

sin( ) (1 sin(0.5 )) ,

(1 sin(0.5 ))

w

w

w

Nt

w N Nu

Nv







 

   

 

− −

 = − −

− −

; 

(4) 1 (1) (1) (1)(sin( )) (sin(0.5 )) ,1 (sin(0.5 )) ,1 (sin(0.5 ))w w w w

N Nt Nu Nv

         = − − − − .  
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For a group of SvNVs Ns = <Nt(s), Nu(s), Nv(s)> (s = 1, 2, …, q) with their weight vector W = (w1, 

w2, …, wq) subject to 0  ws  1 and 
1

1
q

wss


=
= , S-SvNVWA and S-SvNVWG are denoted as the 

S-SvNV weighted average and geometric AOs and introduced by the two equations [29, 30]: 

( )( ) ( )( ) ( )( )

1 2

1

( ) ( ) ( )

1 1 1

( , ,..., ) sin( )

1 1 sin 0.5 , 1 sin 0.5 , 1 sin 0.5
ws ws ws

q

N N Nq ws Ns

s

q q q

Nt s Nu s Nv s

s s s

S SvNVWA

  

    

     

=

= = =

− =

 
= − − − − − − 
 



  

, (7) 

( )

( ) ( ) ( )

1 2

1

( ) ( ) ( )

1 1 1

( , ,..., ) sin( )

sin(0.5 ) ,1 sin(0.5 ) ,1 sin(0.5 )

ws

ws ws ws

q

N N Nq Ns

s

q q q

Nt s Nu s Nv s

s s s

S SvNVWG


  

   

     

=

= = =

− =

 
= − − − − 
 



  

. (8) 

2.3 Operation laws and AOs of T-SvNVs 

Set SvNV as N = <Nt, Nu, Nv>. Then, T-SvNV is presented by 

tan( ) tan(0.25 ),1 tan(0.25 (1 )),1 tan(0.25 (1 ))N Nt Nu Nv      = − − − −  [31], where the 

membership degrees of the indeterminacy, falsehood, and truth are 1 tan(0.25 (1 )) [0,1]Nu − −  , 

1 tan(0.25 (1 )) [0,1]Nv − −  , and tan(0.25 ) [0,1]Nt   , respectively. 

Let ( ) ( ) ( )tan( ) tan(0.25 ),1 tan(0.25 (1 )),1 tan(0.25 (1 ))Ns Nt s Nu s Nv s      = − − − −  for s 

= 1, 2 be two T-SvNVs with w > 0. Then, their operation laws are introduced below [31]: 

(1) 

(1) (2)

1 2 (1) (2)

(1) (2)

1 (1 tan(0.25 ))(1 tan(0.25 )),

tan( ) tan( ) (1 tan(0.25 (1 )))(1 tan(0.25 (1 ))),

(1 tan(0.25 (1 )))(1 tan(0.25 (1 )))

Nt Nt

N N Nu Nu

Nv Nv

   

     

   

− − −

 = − − − −

− − − −

; 

(2) 

(1) (2)

1 2 (1) (2)

(1) (2)

tan(0.25 ) tan(0.25 ),

tan( ) tan( ) 1 tan(0.25 (1 )) tan(0.25 (1 )),

1 tan(0.25 (1 )) tan(0.25 (1 ))

Nt Nt

N N Nu Nu

Nv Nv

   

     

   

 = − − −

− − −

; 

(3)

(1)

1 (1)

(1)

1 (1 tan(0.25 )) ,

tan( ) (1 tan(0.25 (1 ))) ,

(1 tan(0.25 (1 )))

w

w

w

Nt

w N Nu

Nv







 

   

 

− −

= − −

− −

; 

(4)

(1)

1 (1)

(1)

(tan(0.25 )) ,

(tan( )) 1 (tan(0.25 (1 ))) ,

1 (tan(0.25 (1 )))

w

w w

w

Nt

N Nu

Nv



 



 

  

 

= − −

− −

. 

For a group of SvNVs Ns = <Nt(s), Nu(s), Nv(s)> (s = 1, 2, …, q) with their weight vector W = (w1, 

w2, …, wq) subject to 0  ws  1 and 
1

1
q

wss


=
= , T-SvNVWA and T-SvNVWG are denoted as the 

T-SvNV weighted average and geometric AOs and introduced by the two equations [31]: 

( )( ) ( )( ) ( )( )

1 2

1

( ) ( ) ( )

1 1 1

( , ,..., ) tan( )

1 1 tan 0.25 , 1 tan 0.25 (1 ) , 1 sin 0.25 (1 )
ws ws ws

q

N N Nq ws Ns

s

q q q

Nt s Nu s Nv s

s s s

T SvNVWA

  

    

     

=

= = =

− =

 
= − − − − − − 
 



  

, (9) 
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( )

( ) ( ) ( )

1 2

1

( ) ( ) ( )

1 1 1

( , ,..., ) tan( )

tan(0.25 ) ,1 tan(0.25 (1 )) ,1 tan(0.25 (1 ))

ws

ws ws ws

q

N N Nq Ns

s

q q q

Nt s Nu s Nv s

s s s

T SvNVWG


  

   

     

=

= = =

− =

 
= − − − − 
 



  

. (10) 

3. EOLs and Einstein AOs of S-SvNVs 

This part presents several EOLs and Einstain AOs of S-SvNVs and their properties. 

First, we give a new S-SvNV definition below.  

Definition 1. If N = <Nt, Nu, Nv> is SvNV, then S-SvNV is defined by 

sin( ) sin(0.5 ),1 sin(0.5(1 ) ),1 sin(0.5(1 ) )N Nt Nu Nv      = − − − − , where the membership 

degrees of indeterminacy, falsehood, and truth are 1 sin(0.5(1 ) ) [0,1]Nu − −  , 

1 sin(0.5(1 ) ) [0,1]Nv − −  , and sin(0.5 ) [0,1]Nt   , respectively. 

Definition 2. Let Ns = <Nt(s), Nu(s), Nv(s)> (s = 1, 2) be two SvNVs and w > 0. Then, the EOLs of S-

SvNVs are defined below: 

(1) 

(1) (2)

(1) (2)

(1) (2)

1 2

(1) (2)

(1)

sin(0.5 ) sin(0.5 )
,

1 sin(0.5 )sin(0.5 )

(1 sin(0.5(1 ) ))(1 sin(0.5(1 ) ))
sin( ) sin( ) ,

1 sin(0.5(1 ) )sin(0.5(1 ) )

(1 sin(0.5(1 ) ))(1 sin(

Nt Nt

Nt Nt

Nu Nu

N E N

Nu Nu

Nv

   

   

   
 

   

 

+

+

− − − −
 =

+ − −

− − − (2)

(1) (2)

0.5(1 ) ))

1 sin(0.5(1 ) )sin(0.5(1 ) )

Nv

Nv Nv

 

   

 
 
 
 
 
 
 

− 
 + − − 

; 

(2) 

(1) (2)

(1) (2)

(1) (2)

1 2

(1) (2)

(1)

sin(0.5 )sin(0.5 )
,

1 (1 sin(0.5 ))(1 sin(0.5 ))

1 sin(0.5(1 ) ) 1 sin(0.5(1 ) )
sin( ) sin( ) ,

1 (1 sin(0.5(1 ) ))(1 sin(0.5(1 ) ))

1 sin(0.5(1

Nt Nt

Nt Nt

Nu Nu

N E N

Nu Nu

Nv

   

   

   
 

   



+ − −

− − + − −
 =

+ − − − −

− − (2)

(1) (2)

) ) 1 sin(0.5(1 ) )

1 (1 sin(0.5(1 ) ))(1 sin(0.5(1 ) ))

Nv

Nv Nv

  

   

 
 
 
 
 
 
 

+ − − 
 + − − − − 

; 

(3) 

(1)

(1) (1)

(1) (1)

1

(1) (1)

(1)

2(sin(0.5 ))
,

(2 sin(0.5 )) (sin(0.5 ))

(2 sin(0.5(1 ) )) (sin(0.5(1 ) ))
(sin( )) ,

(2 sin(0.5(1 ) )) (sin(0.5(1 ) ))

(2 sin(0.5(1 ) ))

w

w w

w w

w

w w

w

Nt

Nt Nt

Nu Nu

N

Nu Nu

Nv



 

 



 



 

   

   


   

 

− +

− − − −
=

− + + −

− − − (1)

(1) (1)

(sin(0.5(1 ) ))

(2 sin(0.5(1 ) )) (sin(0.5(1 ) ))

w

w w

Nv

Nv Nv



 

 

   

 
 
 
 
 
 
 
 −
  − − + − 

; 
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(4) 

(1) (1)

(1) (1)

(1)

1

(1) (1)

(1)

(1 sin(0.5 )) (1 sin(0.5 ))
,

(1 sin(0.5 )) (1 sin(0.5 ))

2(1 sin(0.5(1 ) ))
sin( ) ,

(1 sin(0.5(1 ) )) (1 sin(0.5(1 ) ))

2(1 sin(0.5(1 ) )

w w

w w

w

w w

Nt Nt

Nt Nt

Nu

w N

Nu Nu

Nv

 

 



 

   

   

 
 

   

 

+ − −

+ + −

− −
 =

+ − + − −

− −

(1) (1)

)

(1 sin(0.5(1 ) )) (1 sin(0.5(1 ) ))

w

w w

Nv Nv



    

 
 
 
 
 
 
 
 
  + − + − − 

. 

In view of EOLs of S-SvNVs, we define the S-SvNVEWA and S-SvNVEWG AOs. 

Definition 3. If Ns = <Nt(s), Nu(s), Nv(s)> (s = 1, 2, …, q) are a collection of SvNVs with their weight 

vector W = (w1, w2, …, wq) for 0  ws  1 and 
1

1
q

wss


=
= , the S-SvNVEWA and S-SvNVEWG 

AOs can be defined as follows: 

1 2 1 1 2 2

1

( , ,..., ) sin( ) sin( ) ... sin( ) sin( )
q

N N Nq w N E w N E E wq Nq E ws Ns

s

S SvNVEWA           
=

− =    = , (11) 

( ) ( ) ( ) ( )1 2

1 2 1 2

1

( , ,..., ) sin( ) sin( ) ... sin( ) sin( )
wqw w ws

q

N N Nq N E N E E Nq E Ns

s

S SvNVWG
  

      
=

− =    = . (12) 

Theorem 1. If Ns = <Nt(s), Nu(s), Nv(s)> (s = 1, 2, …, q) are a collection of SvNVs with their weight vector 

W = (w1, w2, …, wq) for 0  ws  1 and 
1

1
q

wss


=
= , the aggregated result of the S-SvNVEWA AO 

is still S-SvNV, which is yielded by the equation: 

( )( ) ( )( )

( )( ) ( )( )

( )( )

( )( )

1 2

1

( ) ( )

1 1

( ) ( )

1 1

( )

1

( )

( , ,..., ) sin( )

1 sin 0.5 1 sin 0.5

,

1 sin 0.5 1 sin 0.5

2 1 sin 0.5(1 )

1 sin 0.5(1 ) 1 sin 0.5(

ws ws

ws ws

ws

ws

q

N N Nq E ws Ns

s

q q

Nt s Nt s

s s

q q

Nt s Nt s

s s

q

Nu s

s

Nu s

S SvNVEWA

 

 





    

   

   

 

 

=

= =

= =

=

− =

+ − −

+ + −

− −

=

+ − + −



 

 



( )( )

( )( )

( )( ) ( )( )

( )

1 1

( )

1

( ) ( )

1 1

,

1 )

2 1 sin 0.5(1 )

1 sin 0.5(1 ) 1 sin 0.5(1 )

ws

ws

ws ws

q q

Nu s

s s

q

Nv s

s

q q

Nv s Nv s

s s





 

 

 

   

= =

=

= =

 
 
 
 
 
 
 
 
 
 

− 
 
 

− − 
 
 

+ − + − − 
 

 



 

.    (13) 

Proof. In terms of mathematical induction and Definition 2, we can give the proof of Theorem 1. 

For q = 2, the operational results are given below: 

1 1

1 1

1

1 1

(1) (1)

(1) (1)

(1)

1 1

(1) (1)

(1 sin(0.5 )) (1 sin(0.5 ))
,

(1 sin(0.5 )) (1 sin(0.5 ))

2(1 sin(0.5(1 ) ))
sin( ) ,

(1 sin(0.5(1 ) )) (1 sin(0.5(1 ) ))

2(1 sin(0.5(1

w w

w w

w

w w

Nt Nt

Nt Nt

Nu

w N

Nu Nu

 

 



 

   

   

 
 

   



+ − −

+ + −

− −
 =

+ − + − −

− − 1

1 1

(1)

(1) (1)

) ))

(1 sin(0.5(1 ) )) (1 sin(0.5(1 ) ))

Nv

Nv Nv



 



   

 
 
 
 
 
 
 
 
  + − + − − 

, 
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2 2

2 2

2

2 2

(2) (2)

(2) (2)

(2)

2 2

(2) (2)

(1 sin(0.5 )) (1 sin(0.5 ))
,

(1 sin(0.5 )) (1 sin(0.5 ))

2(1 sin(0.5(1 ) ))
sin( ) ,

(1 sin(0.5(1 ) )) (1 sin(0.5(1 ) ))

2(1 sin(0.5(1

w w

w w

w

w w

Nt Nt

Nt Nt

Nu

w N

Nu Nu

 

 



 

   

   

 
 

   



+ − −

+ + −

− −
 =

+ − + − −

− − 2

2 2

(2)

(2) (2)

) ))

(1 sin(0.5(1 ) )) (1 sin(0.5(1 ) ))

w

w w

Nv

Nv Nv



 



   

 
 
 
 
 
 
 
 
  + − + − − 

. 

Then, there is the following result： 

( )( ) ( )( )

( )( ) ( )( )

( )( )

( )( )

2

1 2

1

2 2

( ) ( )

1 1

2 2

( ) ( )

1 1

2

( )

1

( ) ( )

( , ) sin( )

1 sin 0.5 1 sin 0.5

,

1 sin 0.5 1 sin 0.5

2 1 sin 0.5(1 )

1 sin 0.5(1 ) 1 sin 0.5(1 )

ws ws

ws ws

ws

ws

N N E ws Ns

s

t s Nt s

s s

Nt s Nt s

s s

Nu s

s

Nu s Nu s

S SvNVEWA

 

 





   

   

   

 

  

=

= =

= =

=

− =

+ − −

+ + −

− −

=

+ − + − −



 

 



( )( )

( )( )

( )( ) ( )( )

2 2

1 1

2

( )

1

2 2

( ) ( )

1 1

,

2 1 sin 0.5(1 )

1 sin 0.5(1 ) 1 sin 0.5(1 )

ws

ws

ws ws

s s

Nv s

s

Nv s Nv s

s s





 



 

   

= =

=

= =

 
 
 
 
 
 
 
 
 
 
 
 
 − −
 
 
 + − + − − 
 

 



 

.      (14) 

Suppose that Eq. (13) holds for q = p. Then, there is the equation: 

( )( ) ( )( )

( )( ) ( )( )

( )( )

( )( )

1 2

1

( ) ( )

1 1

( ) ( )

1 1

( )

1

( )

( , ,..., ) sin( )

1 sin 0.5 1 sin 0.5

,

1 sin 0.5 1 sin 0.5

2 1 sin 0.5(1 )

1 sin 0.5(1 ) 1 sin 0.5(

ws ws

ws ws

ws

ws

p

N N Np E ws Ns

s

p p

Nt s Nt s

s s

p p

Nt s Nt s

s s

p

Nu s

s

Nu s

S SvNVEWA

 

 





    

   

   

 

 

=

= =

= =

=

− =

+ − −

+ + −

− −

=

+ − + −



 

 



( )( )

( )( )

( )( ) ( )( )

( )

1 1

( )

1

( ) ( )

1 1

,

1 )

2 1 sin 0.5(1 )

1 sin 0.5(1 ) 1 sin 0.5(1 )

ws

ws

ws ws

p p

Nu s

s s

p

Nv s

s

p p

Nv s Nv s

s s





 

 

 

   

= =

=

= =

 
 
 
 
 
 
 
 
 
 

− 
 
 

− − 
 
 

+ − + − − 
 

 



 

.      (15) 

 

Based on Eqs. (14) and (15) for q = p+1, we have 
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Since Eq. (13) can hold for q = p+1, it can exist for all q. 

Then, this S-SvNVEWA AO reveals the features below. 

Theorem 2. The S-SvNVEWA AO reveals some features in view of the sine function below. 

(1) Idempotency: If Ns = <Nt(s), Nu(s), Nv(s)> = <Nt, Nu, Nv> = N (s = 1, 2, …, q), then there is

1 2( , ,..., ) sin( )N N Nq NS SvNVEWA    − = . 

(2) Boundedness: Set 
( ) ( ) ( )min( ),max( ),max( )N Nt s Nu s Nv s

s s s
   − =  and 

( ) ( ) ( )max( ),min( ),min( )N Nt s Nu s Nv s
s ss

   + =  as the minimum and maximum SvNVs. Then, there exists 

1 2sin( ) ( , ,..., ) sin( )N N N Nq NS SvNVEWA    − + −  . 
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(3) Monotonicity: Let Ns = <Nt(s), Nu(s), Nv(s)> and * * * *

( ) ( ) ( ), ,Ns Nt s Nu s Nv s   =  (s = 1, 2, …, q) be two 

collections of SvNVs. Then
 

* * *

1 2 1 2( , , , ) ( , , , )N N Nq N N NqS SvNVEWA S SvNVEWA     −  −  

exists if 
*

Ns Ns  . 

Proof. (1) Applying Eq. (13) for Ns = N, we obtain 
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(2) For N Ns N  − +  , sin( ) sin( ) sin( )N Ns N  − +   exists since sin(z) for 0  z  /2 is an 

increasing function. Then, 
1 1 1

sin( ) sin( ) sin( )
q q q

E ws N E ws Ns ws N

s s s

     − +

= = =

     is held. In view 

of the feature (1), 
1 2sin( ) ( , ,..., ) sin( )N N N Nq NS SvNVEWA    − + −   can be also held. 

(3) For 
*

Ns Ns  , 
*sin( ) sin( )Ns Ns   is held since sin(z) for 0  z  /2 is an increasing 

function. 
*

1 1

sin( ) sin( )
q q

ws Ns ws Ns

s s

   
= =

   can be held in view of the feature (2). Thus, 

* * *

1 2 1 2( , , , ) ( , , , )N N Nq N N NqS SvNVEWA S SvNVEWA     −  −  can also hold. 
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Example 1. Suppose that three SvNVs are N1 = <0.6, 0.2, 0.3>, N2 = <0.8, 0.1, 0.1>, and N3 = <0.7, 0.3, 

0.3> with their weight vector W = (0.4, 0.3, 0.3). Using Eq. (13), we give the following aggregation 

result of the S-SvNVEWA AO: 
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0.8918, 0.0414, 0.0573 .



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  
  
  

=   

Theorem 3. Set Ns = <Nt(s), Nu(s), Nv(s)> (s = 1, 2, …, q) as a collection of SvNVs with their weight vector 

W = (w1, w2, …, wq) for 0  ws  1 and 
1

1
q

wss


=
= . Then, the aggregated result of the S-SvNVEWG 

AO is still S-SvNV, which is yielded by the equation: 
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.     (16) 

However, the proof of Theorem 3 can be given based on a similar proof of Theorem 1, which is 

omitted. 

Similarly, the S-SvNVEWG AO also indicates some features by the following theorem. 

Theorem 4. The S-SvNVEWG AO reveals some features in view of the sine function below: 
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(1) Idempotency: If Ns = <Nt(s), Nu(s), Nv(s)> = <Nt, Nu, Nv> = N (s = 1, 2, …, q), then there is

1 2( , ,..., ) sin( )N N Nq NS SvNVEWG    − = .  

(2) Boundedness: Set 
( ) ( ) ( )min( ),max( ),max( )N Nt s Nu s Nv s

s s s
   − =  and 

( ) ( ) ( )max( ),min( ),min( )N Nt s Nu s Nv s
s ss

   + =  as the minimum and maximum SvNVs. Then, there exists 

1 2sin( ) ( , ,..., ) sin( )N N N Nq NS SvNVEWG    − + −  . 

(3) Monotonicity: Let Ns = <Nt(s), Nu(s), Nv(s)> and * * * *

( ) ( ) ( ), ,Ns Nt s Nu s Nv s   =  (s = 1, 2, …, q) be two 

collections of SvNVs. Then,
 

* * *

1 2 1 2( , , , ) ( , , , )N N Nq N N NqS SvNVEWG S SvNVEWG     −  −  

exists if 
*

Ns Ns  . 

However, the proof of Theorem 4 can also be given in terms of a similar proof of Theorem 2, 

which is omitted. 

Example 2. Suppose that three SvNVs are N1 = <0.8, 0.3, 0.1>, N2 = <0.7, 0.2, 0.2>, and N3 = <0.9, 0.4, 

0.4> with their weight vector W = (0.5, 0.3, 0.2). Using Eq. (16), we give the following aggregation 

result of the S-SvNVEWG AO: 

( )
3

1 2 3

1

0.5 0.3 0.2

0.5 0.3 0.2

0.5 0.3

( , , ) sin( )

2 (sin(0.5 0.8 )) (sin(0.5 0.7 )) (sin(0.5 0.9 ))

(2 sin(0.5 0.8 )) (2 sin(0.5 0.7 )) (2 sin(0.5 0.9 ))

(sin(0.5 0.8 )) (sin(0.5 0.7 )) (sin(0

ws

N N N E Ns

s

S SvNVEWG


   

  

  

 

=

− =

   

−  −  − 

+  

=



0.2

0.5 0.3 0.2

0.5 0.3 0.2

0.5

,

.5 0.9 ))

(2 sin(0.5(1 0.3) )) (2 sin(0.5(1 0.2) )) (2 sin(0.5(1 0.4) ))

(sin(0.5(1 0.3) )) (sin(0.5(1 0.2) )) (sin(0.5(1 0.4) ))

(2 sin(0.5(1 0.3) )) (2 sin(0.5(1 0.



  

  



 
   

 − − − − − −
  − − − − 

− − − − 0.3 0.2

0.5 0.3 0.2

0.5 0.3 0.2

0.5

,
2) )) (2 sin(0.5(1 0.4) ))

(sin(0.5(1 0.3) )) (sin(0.5(1 0.2) )) (sin(0.5(1 0.4) ))

(2 sin(0.5(1 0.1) )) (2 sin(0.5(1 0.2) )) (2 sin(0.5(1 0.4) ))

(sin(0.5(1 0.1) )) (sin(

 

  

  



 − −
  + − − − 

− − − − − −

− − 0.3 0.2

0.5 0.3 0.2

0.5 0.3 0.2

0.5(1 0.2) )) (sin(0.5(1 0.4) ))

(2 sin(0.5(1 0.1) )) (2 sin(0.5(1 0.2) )) (2 sin(0.5(1 0.4) ))

(sin(0.5(1 0.1) )) (sin(0.5(1 0.2) )) (sin(0.5(1 0.4) ))

0.9403, 0.10

 

  

  

 
  − − 

 − − − − − −
  + − − − 

= 77, 0.0595 .  

4. MADM model 

This part develops a MADM model in view of the S-SvNVEWA and S-SvNVEWG AOs in the 

circumstance of SvNVs. 

A MADM issue commonly includes a set of several alternatives YH = {YH1, YH2, …, YHp} and a set 

of several attributes XC = {xc1, xc2, …, xcq}. In the MADM process, the alternatives must meet the 

requirements of the attributes, and then their SvNV assessment results are represented as their 

decision matrix QN = (Nrs)pq, where Nrs (r = 1, 2, …, p; s = 1, 2, …, q) are SvNVs provided by decision 

makers (DMs) according to the satisfactory assessment of an alternative YHr over attributes xcs. The 

weight vector of the attributes is specified by W = (w1, w2, …, wq) for 0  ws  1 and 
1

1
q

wss


=
= . 

Thus, the algorithm of the MADM model in the circumstance of SvNVs is described in detail below. 

Step 1: The aggregated values of Nr for YHr (r = 1, 2, …, p) are yielded by one of the S-SvNVEWA 

and S-SvNVEWG AOs: 
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Step 2: The score (accuracy) values of U(Nr) (V(Nr)) (r = 1, 2, …, p) are yielded by Eq. (5) (Eq. 

(6)). 

Step 3: Alternatives are sorted in the descending order of the score values (the accuracy values), 

and then the best alternative is decided. 

Step 4: End. 

5. MADM application 

5.1 Site selection example of HPP 

Since hydrogen is one of the most efficient and clean energy sources, its share of world energy 

has increased significantly. Then, it is important to choose the most suitable location for a HPP project, 

which is influenced by many factors, such as social, environmental, and economic factors. Hence, the 

site selection problem of HPP is a MADM problem. To apply the proposed MADM model to the 

actual MADM problem, this section adopts a site selection example of HPP in [30] for convenient 

comparison. 

In this site selection example of HPP, experts and DMs preliminarily provide five potential 

locations, which are represented as a set of the five alternatives YH = {YH1, YH2, YH3, YH4, YH5}. Then they 

must satisfy the five main factors/attributes: the economic factor (xc1), the technical factor (xc2), the 
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social factor (xc3), the location factor (xc4), and the environmental factor (xc5). The weight vector of the 

five factors is given by W = (0.22, 0.2, 0.15, 0.15, 0.28). In terms of the satisfactory degrees of each 

location corresponding to the five main factors, experts/DMs provide the SvNVs, which are 

composed of the indeterminate, false, and true degrees due to incompleteness, inconsistency, and 

uncertainty, including the judgements/opinions of the experts/DMs, and then their decision matrix 

of SvNVs QN = (Nrs)55 is presented as follows [30]: 

0.3,0.2,0.4 0.2,0.2,0.6 0.5,0.3,0.4 0.3,0.3,0.4 0.5,0.2,0.3

0.6,0.4,0.2 0.6,0.3,0.2 0.7,0.1,0.3 0.7,0.1,0.2 0.7,0.2,0.3

0.5,0.1,0.3 0.6,0.1,0.2 0.5,0.3,0.4 0.6,0.4,0.3 0.6,0.2,0.4

0

NQ

         

         

=          

 .5,0.2,0.2 0.4,0.5,0.2 0.7,0.3,0.2 0.4,0.5, 0.4 0.7,0.2,0.2

0.4,0.3,0.6 0.4,0.1,0.5 0.4,0.1,0.3 0.3,0.2,0.4 0.5,0.1,0.2

 
 
 
 
 

         
           

. 

In this site selection problem of HPP, we give its MADM algorithm below. 

Step 1: Applying Eq. (17) or Eq. (18), the aggregated results of the S-SvNVEWA or S-SvNVEWG 

AO are given below: 

N1 = <0.5540, 0.0624, 0.1928>, N2 = <0.8616, 0.0520, 0.0693>, N3 = <0.7756, 0.0384, 0.1191>, N4 = 

<0.7792, 0.1055, 0.0604>, and N5 = <0.6073, 0.0247, 0.1594>. 

Or N1 = <0.5174, 0.0670, 0.2154>, N2 = <0.8563, 0.0817, 0.0748>, N3 = <0.7707, 0.0642, 0.1326>, N4 

= <0.7393, 0.1455, 0.0705>, and N5 = <0.5979, 0.0392, 0.2126>. 

Step 2: By Eq. (5), the score values of U(Nr) are yielded below: 

U(N1) = 0.7663, U(N2) = 0.9134, U(N3) = 0.8727, U(N4) = 0.8711, and U(N5) = 0.8077. 

Or U(N1) = 0.7450, U(N2) = 0.8999, U(N3) = 0.8579, U(N4) = 0.8411, and U(N5) = 0.7820. 

Step 4: The sorting order of the five selection locations is YH2 > YH3 > YH4 > YH5 > YH1 and then the 

best one is YH2. 

It is obvious that the sorting orders corresponding to the S-SvNVEWA and S-SvNVEWG AOs 

are the same. 

5.2 Comparative analysis 

In view of the above example, this part conducts a comparative investigation with existing 

related MADM models in the circumstances of SvNVs. 

Based on the decision making methods of the existing MADM models [19, 30, 31], we can obtain 

all the decision results by different AOs of Eqs. (1)–(4) and Eqs. (7)–(10) and the score function of Eq. 

(5), which are tubulated in Table 1. For easy comparison, the decision results of the proposed MADM 

model are also shown in Table 1. 

Table 1. Decision results corresponding to different AOs 

AO Sorting result Optimal location 

SvNVEWA [19] YH2 > YH3 > YH4 > YH5 > YH1 YH2 

SvNVEWG [19] YH2 > YH3 > YH4 > YH5 > YH1 YH2 

S-SvNVWA [30] YH2 > YH4 > YH3 > YH5 > YH1 YH2 

S-SvNVWG [30] YH2 > YH3 > YH4 > YH5 > YH1 YH2 

T-SvNVWA [31] YH2 > YH3 > YH4 > YH5 > YH1 YH2 

T-SvNVWG [31] YH2 > YH3 > YH4 > YH5 > YH1 YH2 

Proposed S-SvNVEWA YH2 > YH3 > YH4 > YH5 > YH1 YH2 

Proposed S-SvNVEWG YH2 > YH3 > YH4 > YH5 > YH1 YH2 

In the decision results of Table 1, we see that the sorting results based on the proposed S-

SvNVEWA and S-SvNVEWG AOs are the same as those based on the SvNVEWA and SvNVEWG 

AOs [19], the T-SvNVWA and T-SvNVWG AOs [31], and the S-SvNVWG AO [30], but different from 
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the ranking order based on the S-SvNVWA AO [30]. Then, the optimal site selection is always YH2 

among the five alternatives. In addition, in the representation of decision information, the newly 

defined S-SvNVs can overcome the flaws of the existing S-SvNVs [30], which include the [0, 0.46) 

range of membership degrees. In the aggregation operations of decision information, the proposed 

S-SvNVEWA and S-SvNVEWG AOs can overcome the defects of the existing SvNVEWA and 

SvNVEWG AOs without including periodicity features [19]. In terms of algebraic operation 

performance, the proposed S-SvNVEWA and S-SvNVEWG AOs are superior to the existing T-

SvNVWA and T-SvNVWG AOs. Hence, the proposed model can satisfy the real needs of DMs in the 

multi-stage decision process. In general, the proposed model reveals obvious superiority over the 

existing models [19, 30, 31]. The decision results reveal the validity and rationality of the proposed 

MADM model and can help us to find the best solution in the practical decision application. 

The obvious advantages of this study are presented below: 

The defined S-SvNV concept contains the superiority of the membership functions belonging to 

[0, 1], which can overcome the defects in the existing S-SvNV concept with the membership functions 

belonging to [0, 0.46) [29, 30]. 

The proposed EOLs and Einstein AOs of S-SvNVs can reflect their typical algebraic operations 

and compensate for the insufficiencies of the existing AOs [19, 30, 31]. 

(c) The developed MADM model using the proposed S-SvNVEWA and S-SvNVEWG AOs 

reveals its superiority over the existing MADM models using the SvNVEWA and SvNVEWG AOs 

[19], the S-SvNVWA and S-SvNVWG AOs [30], and the T-SvNVWA and T-SvNVWG AOs [31].  

6. Conclusions 

In this study, the defined S-SvNV EOLs and the proposed S-SvNVEWA and S-SvNVEWG AOs 

based on the monotonic membership functions of indeterminacy, falsehood, and truth can overcome 

the insufficiencies of the existing S-SvNV representation, operation laws, and AOs. In view of the 

presented S-SvNVEWA and S-SvNVEWG AOs, the developed MADM model can effectively improve 

the MADM models based on the existing SvNVEWA, SvNVEWG, S-SvNVWA, S-SvNVWG, and T-

SvNVWA, and T-SvNVWG AOs in the SvNV circumstance. Then, the validity of the developed model 

was investigated by the actual site selection example of HPP and examined by comparative analysis 

with the existing related MADM models in the setting of SvNVs. 

In this paper, the presented S-SvNVEWA and S-SvNVEWG AOs and their MADM model were 

used only for single-valued neutrosophic aggregations and MADM problems, which shows their 

limitations. Furthermore, the presented S-SvNVEWA and S-SvNVEWG AOs are only based on EOLs 

of S-SvNVs, but cannot imply the trigonometric EOLs of SvNVs based on trigonometric Einstein t-norm 

and t-conorm, which show their disadvantages. Therefore, in the future work, we need to develop the 

trigonometric EOLs and AOs of SNVs (SvNVs and IvNVs) and their MADM models. Then, the 

developed models will be used for decision making problems in the fields of engineering management, 

economic management, and medical management. 
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Abstract 

The shortest path problem is a classic optimization problem in graph theory and 

computer technology. It involves identifying the shortest path between two nodes 

in a graph, where each edge has a numerical weight. In this paper, we put our effort 

into examining the use of the dynamic programming method to evaluate the 

shortest path (SP) between the two specified nodes in a multistage network where 

the parameter is a multi-value neutrosophic number (MVNN). Firstly, we propose 

an algorithm based on the forward and backward approach in an uncertain 

environment and also implement our approach in the Python-3 programming 

language. Furthermore, a numerical illustration has been provided to showcase the 

effectiveness and robustness of the novel model. 

Keyword: dynamic programming approach; multistage graph; neutrosophic 

multi-value number; shortest path problem 
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1. Introduction: 

The shortest path problem represents one of the primary network issues in graph 

theory, with numerous applications in computer science and several real-life 

applications such as transportation networks, communication networks, and 

pipeline distribution systems. In this paper, we propose a new idea for evaluating 

the shortest path of a multistage graph using fuzzy multivalued neutrosophic 

numbers as arc length. 

A fuzzy set (FS) is used to identify and solve a wide range of real-world issues that 

involve uncertainty and improbability. Lotfi Aliasker Zadeh first suggested the 

fuzzy set [1], and then Atanassov (1988) [2] proposed intuitionistic fuzzy sets (IFs), 

which are the extended concept of fuzzy sets. Then Smarandache (1995) [3] first 

established the theme of the new idea of neutrosophic sets (NS). The NS is a 

collection of three parameters, namely fuzzy membership degree, fuzzy 

indeterminate degree, and fuzzy non-membership degree, with the addition of their 

weights being less than or equal to 3. The field of neutrosophic numbers extends 

beyond crisp numbers. Numerous research papers have addressed the computation 

of the fuzzy shortest path (FSP) in a single-stage network. For example, Wang 

proposed the idea of IVNS (2018) by generalizing SVN (2010) [4]. The IVNS [5] is 

a database that generalizes the idea of various types of sets in terms of intervals to 

denote the truth T, falsity F, and indeterminacy I of membership degrees. Many 

researchers have proposed various papers on neutrosophic environments (Basset 

(2018), Abdel-Basset (2018), and Dey (2019)) [6–14]. 

Many researchers have proposed new approaches for finding SPP in uncertain 

environments. Das and De (2015) [15] solved FSP using Bellman's dynamic 

programming method with intuitionistic fuzzy trapezoidal numbers as parameters. 

Bhincher and De (2011) [16] investigated the FSP in a connected network in which 

they used triangular and trapezoidal fuzzy numbers as parameters in two distinct 

approaches, namely the influential programming approach and the multi-objective 

linear programming approach. Kumar (2015) [17] developed a technique for 

determining the SP of a connected network using an interval intuitionistic 

trapezoidal number. Kaliraja and Meenakshi (2012) [18] used interval-based 

parameters and proposed a method to identify the SPP and model an 

interval-valued FSPP. 
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Said Broumi (2016) [19] proposed a new idea of evaluating the shortest path using 

the parameters SV-triangular and SV-trapezoidal fuzzy neutrosophic numbers. 

Then again, Said Broumi (2017) [20] suggested a new idea to evaluate the FSPP of 

a given connected network with neutrosophic trapezoidal numbers. Said Broumi 

(2017) [21] suggested an innovative method for formulating the SPP in which they 

use the parameters, which are bipolar neutrosophic numbers. Deivanayagam Pillai, 

N (2020) [22], solved the NSPP by using the score function, where the parameters 

are interval-valued neutrosophic trapezoidal and neutrosophic triangular numbers. 

Said Broumi (2019) [23] solved the SPP in a neutrosophic environment (NS) using 

the Bellman-Ford approach, where the parameter is interval-valued neutrosophic 

numbers(IVNNs). 

The primary aim of this study is to determine the shortest path between the source 

node and the destination node using multi-value neutrosophic numbers, along with 

identifying the minimum cost between the source and destination nodes. The 

contents of the next parts of the paper are arranged in the following manner: 

Section-2, highlights the motivation and contribution of this paper. Section-3 

highlights some definitions of some of the existing terminologies. Section-4 

highlights the algorithm, i.e., the multistage network, for multi-valued neutrosophic 

numbers (MVNNs). Section-5 highlights a numerical example. Section-6 gives an 

implementation of our algorithm with the Python programming language. 

Section-7 provides a summary of the conclusions drawn from the study and offers 

recommendations for further research endeavors. 

2. Motivation: 

There are various algorithms and various parameters that are used to evaluate the 

SPP in uncertain circumstances. The key points are as follows: 

 There are many methods used to solve the single-stage network, but our 

method is used to solve the multistage network in NSP. 

 In this paper, a dynamic programming method is used to evaluate the shortest 

path (SP) between the two specified nodes in a multistage network, where the 

parameter is a multi-value neutrosophic number (MVNN). Firstly, we propose an 

algorithm based on the forward and backward approach in an uncertain 

environment and also implement our approach in the Python-3 programming 

language. 
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 In this paper, we are finding the minimum cost between the source node and 

the destination node. 

 Moreover, here we illustrate one algorithm with the help of a numerical 

example. 

3. Preliminaries  

 

This section encompasses the review of literature concerning the fundamental 

concepts and definitions of fuzzy sets (FSs), neutrosophic sets (NSs), and MVNSs. 

3.1 Fuzzy set (FS): 

If  is a generalised form of crisp set and  is a member of  , then fuzzy set  on 

  is defined by a membership value  which identifies the function that 

maps from every element to the interval [0, 1] and can be defined as  

 

and    

3.2 Neutrosophic set (NS): 

 

If  is a set and is one of its elements in ; then neutrosophic set   has the form 

 

Where   denotes the truth degree,  denotes the indeterminacy degree and  

denotes the falsity membership degree of the element    

 
Now  are denotes subsets of the interval  . 

3.3 Multi-valued neutrosophic set (MVNs): 

 

If  is a set and  is one of its elements in . Then the multi-valued neutrosophic 

(MVN) set is represented as. 
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Then  are the membership function differentiate  in .  

Where  and the condition is 

 

 
The multi-valued neutrosophic (MVN) are called as single valued neutrosophic 

(SVN) sets if   has just one value. 

3.4 Operations of Neutrosophic number: 

Assume that  and    are 

represent two sets of neutrosophic numbers with multiple values. Subsequently, the 

functions for SVNNs are defined as follows: 

(a)  (  

(b)

 

(c)   

(d)   

With  

3.5 Fuzzy Graded mean Integration: 

If the fuzzy triangular number  .Then the Fuzzy graded mean 

integration   is expressed as: 
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If   ,  ,   and  ,  ,     is two fuzzy triangular numbers. 

Then the graded mean integration representation is defined as  

 

 
If  and  are two fuzzy triangular numbers then its addition is expressed as:  

 
If  and  are two fuzzy triangular numbers then its multiplication is expressed 

as:  

 

4. Algorithm: Multistage Network Utilizing Multi-Valued 

Neutrosophic Numbers (MVNNs) 

 Step 1: Select a source and destination vertex within the provided multistage 

network. 

 Step 2: Convert the arc length values from multi-valued neutrosophic numbers 

to single-value neutrosophic numbers using the fuzzy simplicity method 

(equation-2). 

 Step 3: Convert it from single-value neutrosophic numbers to a real number 

using graded mean integration (definition-3). 

 Step 4: Then, using a dynamic approach, i.e., a forward and backward 

computation approach. 
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Backward Approach Algorithm: 

      

Forward Approach Algorithm: 
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 Step-5: After applying the dynamic approach, i.e., forward and backward 

approach if both techniques produce the equal minimum values and the shortest 

path, then the path yielded in the process is called the optimal path or shortest path 

of a network. 

 

5. Numerical Example: 

                                 Fig- 1: Network 

 

Arc  Multi-membership value 

S→A <[0.2,0.4,0.5],[0.3,0.5,0.6],[0.6,0.8,0.9]> 

 

S→B <[0.1,0.3,0.4],[0.3,0.4,0.7],[0.5,0.7,0.9]> 

 

S→C <[0.1,0.3,0.5],[0.3,0.5,0.7],[0.4,0.5,0.8]> 

 

A→D <[0.3,0.4,0.5],[0.4,0.5,0.6],[0.5,0.7,0.9]> 
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A→E <[0.2,0.3,0.6],[0.3,0.4,0.8],[0.4,0.5,0.9]> 

 

B→D <[0.1,0.2,0.4],[0.3,0.4,0.6],[0.4,0.5,0.6]> 

 

B→E <[0.3,0.4,0.6],[0.3,0.4,0.7],[0.4,0.7,0.9]> 

 

B→F <[0.1,0.2,0.5],[0.2,0.4,0.5],[0.5,0.6,0.9]> 

 

C→E <[0.4,0.2,0.5],[0.6,0.5,0.8],[0.5,0.6,0.8]> 

 

C→F <[0.1,0.2,0.3],[0.2,0.5,0.6],[0.5,0.7,0.9]> 

 

D→G <[0.4,0.5,0.9],[0.6,0.7,0.8],[0.5,0.6,0.9]> 

 

E→G <[0.1,0.2,0.5],[0.2,0.4,0.5],[0.5,0.7,0.9]> 

 

F→G <[0.2,0.6,0.7],[0.2,0.5,0.8],[0.6,0.8,0.9]> 

 

 

Table- 1: Arc weight in Multi-membership value 

 

Implementation of Algorithm 

Step-1: 

From fig-1 assume that source node is S and destination node is G 
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Step-2: 

Arc   Single Membership value 

S→A <[0.5, 0.6, 0.9]> 

 

S→B <[0.4,0.7,0.9]> 

 

S→C <[0.5,0.7,0.8]> 

 

A→D <[0.5,0.6, 0.9]> 

 

A→E <[0.6,0.8,0.9]> 

 

B→D <[0.4,0.6,0.6]> 

 

B→E <[0.6,0.7,0.9]> 

 

B→F <[0.5,0.5,0.9]> 

 

C→E <[0.5,0.8,0.8]> 

 

C→F <[0.3,0.6,0.9]> 
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D→G <[0.9,0.8,0.9]> 

 

E→G <[0.5,0.5,0.9]> 

 

F→G <[0.7,0.8,0.9]> 

 

 

Table- 2: Single Membership value 

 

Step-3: 

Converting the Single membership value into a real value by using Graded mean 

integration (definition-3.5) 

Here  

 

 

 

Similarly to find all the edge’s value in Crisp number 

Arc  Single Membership value 

S→A 0.63 

S→B 0.68 

S→C 0.68 

A→D 0.63 

Prasanta Kumar Raut, Siva Prasad Behera, Said Broumi, Amarendra Baral, Evaluation of Shortest path on multi stage
graph problem using Dynamic approach under neutrosophic environment

 

Neutrosophic Sets and Systems, Vol. 64, 2024                                                                                         123



 

 

 

A→E 0.78 

B→D 0.56 

B→E 0.71 

B→F 0.56 

C→E 0.75 

C→F 0.60 

D→G 0.83 

E→G 0.56 

F→G 0.80 

 

Table- 3: Membership value in crisp number 

 

Step 4: 

Backward Approach 

In backward approach we start from source vertex, so the distance from source (𝑆) to 

destination vertex (𝑇) is (𝑆, 𝑇) is given by 

 

Now to calculate the distance (𝐴 to G), distance (𝐵 to G) and distance (𝐶 to G). 
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Now Putting all this values in equation 2.0  
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Forward approach 

Here  
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Implementation of Our algorithm with Python Programming 

Language 

 

Output Code: 

 

Step-5: 

In the dynamic approach, i.e., both forward and backward approaches have an equal 

minimum path value 1.95 and an equal path S-B-E-G, so this is the SP connecting 

the source vertex to destination vertex of this given Network. 

 

 

Prasanta Kumar Raut, Siva Prasad Behera, Said Broumi, Amarendra Baral, Evaluation of Shortest path on multi stage
graph problem using Dynamic approach under neutrosophic environment

 

Neutrosophic Sets and Systems, Vol. 64, 2024                                                                                         128



 

 

7. Conclusion 

In this paper, we find the shortest path (SP) on the multistage network by using the 

dynamic approach, i.e., the forward and backward approach, and then we implement 

our result in the Python programming language, and finally, we get the shortest path. 

The minimum cost between the source vertex and the destination vertex is 1.95. The 

most important objective of this research is to determine a new algorithm for solving 

multistage graphs. Right here, we propose a mathematical instance to show our new 

suggested method. I’m hoping that this paper will help new researchers find the SPP 

in multistage graphs. 
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Abstract: 

Simulation is a numerical technique used to perform tests on a numerical computer, and 

involves logical and mathematical relationships interacting with each other to describe the 

behavior and structure of a complex system in the real world over a period of time. Analysis 

using simulation is a "natural" and logical extension of the mathematical analytical models 

inherent in operations research, because most operations research methods depend on 

building mathematical models that closely approximate the real-world environment and we 

obtain the optimal solution for them using algorithms appropriate to the type of these models. 

The importance of the simulation process comes In all branches of science, there are many 

systems that cannot be studied directly, due to the great difficulty that we may encounter 

when studying, and the high cost, in addition to the fact that some systems cannot be studied 

directly. The simulation process depends on generating a series of numbers. Randomness 

subject to a uniform probability distribution over the domain [0,1] , then converting these 

numbers into random variables subject to the law of probability distribution by which the 

system to be simulated works, using known transformation methods. In previous research, 

we presented a neutrosophical vision of the reverse transformation method and the method 

of rejection and acceptance. Which are used to transform random numbers into random 

variables that follow probability distributions such as: uniform distribution, exponential 

distribution, beta distribution..., In this research, we present a neutrosophical vision of the 

Composition method )the mixed method of inverse transformation method and rejection 

method), used to generate random variables that follow... To some Poisson distribution, the 

aim is to obtain neutrosophic random variables that we use when simulating systems that 

operate according to this distribution in order to obtain more accurate simulation results. 

key words: 

Simulation; neutrosophic logic; generating neutrosophic random numbers; converting 

neutrosophic random numbers into neutrosophic random variables; synthesis method (mixed 

method). 

 Introduction: 

To keep pace with the great scientific development that our contemporary world is 

witnessing, it was necessary to reformulate operations research methods according to the 

mailto:maissam.jdid66@damascusuniversity.edu.sy
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basic concepts of neutrosophic logic, because the margin of freedom enjoyed by neutrosophic 

values gives more accurate results, which has prompted many researchers to prepare many 

researches in various fields of science. Especially in the field of mathematics and its 

applications [1-19], when performing the simulation process for any system according to 

classical logic, we begin by generating random numbers that follow a regular probability 

distribution over the domain [0,1] using one of the known methods, and then we convert 

these random numbers into variables. Randomness follows the probability distribution in 

which the system to be simulated operates. The simulation process we conduct produces 

specific results that do not take into account changes that may occur in the system’s operating 

environment. To obtain more accurate results, we have presented, in previous research, a 

neutrosophical vision of the following topics: 

In the paper [20] we generated neutrosophic random numbers that follow a uniform 

neutrosophic distribution over the domain [0,1].In research [21] we used the inverse 

transformation method to convert neutrosophic random numbers into neutrosophic random 

variables that follow a uniform distribution over the domain [0,1].In research [22], we used 

the inverse transformation method to convert random numbers into random variables that 

follow the neutrosophic exponential distribution. In research [23] we used the rejection 

method to transform random numbers into random variables that follow the probability 

distribution according to which the system to be simulated operates. In the research [24] using 

the rejection method to generate random numbers that follow the beta distribution. 

In this research, we present a neutrosophical study of transforming random numbers into 

random variables that follow the Poisson distribution using the composition method )The 

mixed method of inverse transformation method and rejection method), a distribution that 

has many uses in practical life. Such as inventory control, queueing theory, quality control, 

traffic flow, and many other fields of management science. 

Discussion: 

Classic Composition method: [25-26] 

The Composition method is based on the inverse transformation method and the rejection 

and acceptance method is special for generating random variables that follow complex 

probability distributions.  

Using the conditional distribution of the variable 𝑥, we assume that 𝑓(𝑥) is the law of the 

probability distribution to be simulated, and that 𝑔(𝑥|𝑦) is the conditional distribution of If 

𝑦 belongs to the cumulative distribution 𝐻(𝑦) and 𝑃(𝑥, 𝑦) is the joint distribution of (𝑥, 𝑦), 

then: 

𝑃(𝑥, 𝑦) = ℎ(𝑦)𝑔(𝑥|𝑦) 

Thus, we find: 

𝑓(𝑥) = ∫ 𝑃(𝑥, 𝑦)𝑑𝑦 = ∫ ℎ(𝑦)𝑔(𝑥|𝑦)𝑑𝑦
+∞

−∞

+∞

−∞
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When the time periods between possible events are distributed exponentially, the number of 

events that occur in one period of time has a Poisson distribution given by the following 

probability density function: 

𝑓(𝑥) =
𝜆𝑥𝑒−𝜆

𝑥!
   ; 𝑥 = 0,1,2, … , ∞ 

Where 𝜆 is the number of expected occurrences in one time, this indicates that the time period 

between events is exponentially distributed with an average of  
1

𝜆
  . Using the relationship 

between the exponential distribution and the Poisson distribution, we can generate random 

variables that follow the Poisson distribution. 

The neutrosophic vision of the method of installation: 

The mixed method is based on the neutrosophic countertransference method [21-22] and the 

neutrosophic rejection and acceptance method [23]. 

Using the conditional distribution of the variable x, we assume that 𝑓𝑁(𝑥) is the law of the 

probability distribution to be simulated, and that 𝑔𝑁(𝑥|𝑦) is the conditional distribution of If 

𝑦 belongs to the cumulative distribution 𝐻𝑁(𝑦) and 𝑃𝑁(𝑥, 𝑦) is the joint distribution of 

(𝑥, 𝑦), then: 

𝑃𝑁(𝑥, 𝑦) = ℎ𝑁(𝑦)𝑔𝑁(𝑥|𝑦) 

Thus, we find: 

𝑓𝑁(𝑥) = ∫ 𝑃𝑁(𝑥, 𝑦)𝑑𝑦 = ∫ ℎ𝑁(𝑦)𝑔𝑁(𝑥|𝑦)𝑑𝑦
+∞

−∞

+∞

−∞

 

When the time periods between possible events are distributed exponentially, the number of 

events that occur in one period of time has a neutrosophic Poisson distribution given by the 

following probability density function:  

Where 𝜆𝑁 is a neutrosophic value from reference [27]. We find that what is meant by 

neutrosophic data are completely indeterminate values written in the following standard 

formula 𝑁 = 𝑎 + 𝑏𝐼 where 𝑎 𝑎𝑛𝑑 𝑏 are real or complex coefficients, 𝑎 represents the 

specified part and 𝑏𝐼 the indeterminate part (indeterminacy). For the number 𝑁, it could be 

[𝜆1  ,   𝜆2 ] or {𝜆1 ,   𝜆1  } or...otherwise it is any set close to the real value 𝑎, expressing the 

number of expected occurrences in One time, this indicates that the time period between 

events is exponentially distributed with an average of 
1

𝜆𝑁
   . Using the relationship between 

the neutrosophic exponential distribution and the neutrosophic Poisson distribution, we can 

generate neutrosophic random variables that follow the Poisson distribution. 

Here we distinguish three cases: 

 First case: the random numbers are neutrosophic and the probability distribution is classical. 
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Second case: classical random numbers and neutrosophic probability distribution. 

 Third case: neutrosophic random numbers and neutrosophic probability distribution. 

We start with the first case; the random numbers are neutrosophic and the probability 

distribution is classical: 

In this case the probability density function of the Poisson distribution takes the following 

form: 

𝑓(𝑥) =
𝜆𝑥𝑒−𝜆

𝑥!
   ; 𝑥 = 0,1,2, … , ∞ 

Where 𝜆 is the number of expected occurrences in one time, this indicates that the time period 

between events is exponentially distributed with an average of  
1

𝜆
   , since the random numbers 

must be neutrosophic to obtain them, we follow the following steps: 

a. Using the mean square method given by the following relation: 

𝑅𝑖+1 = 𝑀𝑖𝑑[𝑅𝑖
2] ; 𝑖 = 0,1,2,3, − −         (1) 

Where Mid symbolizes the middle four ranks of 𝑅𝑖
2, and 𝑅𝑖 is chosen, any fractional random 

number composed of four places (called a seed) and does not contain a zero in any of its four 

places, [25-26], we generate a series of random numbers that follow the distribution regular 

over the domain [0,1], we get the following series: 

𝑅1, 𝑅2, 𝑅3 … 𝑅𝑚 , …     (2) 

b. Using the study given in reference [20] we convert these random numbers into 

neutrosophic random numbers and here we distinguish three forms of the field [0,1] 

with margin of indeterminacy, in the three forms we have 𝜀 ∈ [0, 𝑛] and 0 < 𝑛 < 1 

The first form: [𝟎 + 𝜺, 𝟏] indeterminacy at the minimum of the field we find: 

𝑅𝑁𝑖 ∈ [𝑅𝑖,
𝑅𝑖 − 𝑛

1 − 𝑛
]  ;      0 < 𝑛 < 1 

It is calculated from the following relation: 

𝑅𝑁𝑖 =
𝑅𝑖 − 𝜀

1 − 𝜀
     ;    𝜀 ∈ [0, 𝑛] 

The second form: [𝟎, 𝟏 + 𝜺] indeterminacy at the upper limit of the field we find: 

𝑅𝑁𝑖 ∈ [𝑅𝑖 ,
𝑅𝑖

1 + 𝑛
]  ;      0 < 𝑛 < 1 

It is calculated from the following relation: 

𝑅𝑁𝑖 =
𝑅𝑖

1 + 𝜀
     ;    𝜀 ∈ [0, 𝑛] 

The third form: [𝟎 + 𝜺, 𝟏 + 𝜺] Indeterminacy at the upper and lower limits of the field 

we find: 

𝑅𝑁𝑖 ∈ [𝑅𝑖 , 𝑅𝑖 − 𝑛]    ;      0 < 𝑛 < 1 

It is calculated from the following relation: 
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𝑅𝑁𝑖 = 𝑅𝑖 − 𝜀  ;    𝜀 ∈ [0, 𝑛] 

From each of the previous forms we get the following series of neutrosophic random 

numbers: 

𝑅𝑁1, 𝑅N2, 𝑅N3 … 𝑅𝑁𝑚 , …     (3) 

c. Using the study mentioned in References [21-22], we convert these neutrosophic 

random numbers into neutrosophic random numbers that follow the exponential 

distribution defined by the following relation: 

ℎ(𝑦) = 𝜆. 𝑒−𝜆𝑦  

Using the relation: 

𝑦𝑁𝑖 = −
1

𝜆
𝑙𝑛𝑅𝑁𝑖  

We obtain the series of neutrosophic random numbers that follow the following exponential 

distribution: 

𝑦𝑁1, 𝑦𝑁2 , 𝑦𝑁3 … 𝑦𝑁𝑚 , …    (4) 

We apply the accept-reject method given in reference [23]: 

We take the cumulative sum of these numbers if the following inequality: 

∑ 𝑦𝑁𝑖

𝑥

𝑖=1

≤ 1 ± ε ≤ ∑ 𝑦𝑁𝑖+1

𝑥+1

𝑖=1

 

Then we consider the number 𝑥 to be subject to the Poisson distribution, where 𝑥 is the 

number of random numbers 𝑦𝑁𝑖 that are subject to the exponential distribution.  

   ℎ(𝑦) = 𝜆. 𝑒−𝜆𝑦 , the sum of which we took and the number did not exceed 1 ± ε, but if we 

added another number 𝑦𝑁i+1 the sum became greater than 1 ± ε. However, if the inequality 

is not met, we return to Step (a), we repeat the work until we obtain the required number of 

random numbers that follow the Poisson distribution.  

The second case: classical random numbers and Poisson-Neutrosophic distribution. 

The probability density function of the neutrosophic Poisson distribution is defined by the 

following relationship: [28] 

𝑓𝑁(𝑥) =
𝜆𝑁

𝑥 𝑒−𝜆𝑁

𝑥!
   ; 𝑥 = 0,1,2, … , ∞ 

Where 𝜆𝑁 is a neutrosophic value that expresses the number of expected occurrences in one 

time, this indicates that the time period between events is exponentially distributed with an 

average of 
1

𝜆𝑁
   .  

a. Since classical random numbers follow a uniform distribution over the interval [0,1], 

we take the sequence of random numbers from relation (2). 
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b. Using the inverse transformation method, we convert these random numbers into 

neutrosophic random numbers that follow the neutrosophic exponential distribution 

defined by the following relation: 

ℎ𝑁(𝑦) = 𝜆𝑁 . 𝑒−𝜆𝑁 𝑦 

c. Using the conversion relation: 

𝑦𝑁𝑖
′ = −

ln 𝑅𝑖

𝜆𝑁
 

We obtain the series of neutrosophic random numbers that follow the following exponential 

distribution: 

𝑦𝑁1
′ , 𝑦𝑁2

′ , 𝑦𝑁3
′ , … , 𝑦𝑁𝑚

′ , …      (4) 

We take the cumulative sum of these numbers if the following inequality: 

∑ 𝑦𝑁𝑖
′

𝑥

𝑖=1

≤ 1 ± ε ≤ ∑ 𝑦𝑁𝑖+1
′

𝑥+1

𝑖=1

 

Then we consider the number 𝑥 to be subject to the Poisson distribution, where 𝑥 is the 

number of random numbers 𝑦𝑁𝑖
′  which is subject to the exponential distribution.  

   ℎ(𝑦) = 𝜆. 𝑒−𝜆𝑦  whose sum we took and the number did not exceed 1 ± ε, but if we added 

another number 𝑦𝑁𝑖+1
′  the sum became greater than 1 ± ε, but if the inequality is not satisfied 

we return to step (a), repeating the work until we obtain the required number of random 

numbers that follow the Poisson distribution. 

The third case: neutrosophic random numbers and neutrosophic probability 

distribution. 

From the study in the first case, we obtain the series of neutrosophic random numbers as in 

(3). 

Poisson Neutrosophic distribution, i.e., the probability density function is defined as it is in 

the second case. To convert neutrosophic random numbers 𝑅𝑁1, 𝑅N2, 𝑅N3 … 𝑅𝑁𝑚 , …, into 

random numbers that follow the exponential distribution, we use the following relation: 

𝑦𝑁𝑖
" = −

ln 𝑅𝑁𝑖

𝜆𝑁
 

We obtain the series of neutrosophic random numbers that follow the following exponential 

distribution: 

𝑦𝑁1
" , 𝑦𝑁2

" , 𝑦𝑁3
" , … , 𝑦𝑁𝑚

" , …      (5) 

We take the cumulative sum of these numbers if the following inequality: 

∑ 𝑦𝑁𝑖
"

𝑥

𝑖=1

≤ 1 ± ε ≤ ∑ 𝑦𝑁𝑖+1
"

𝑥+1

𝑖=1
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achieved, then we consider the number x to be subject to the Poisson distribution, where 𝑥 is 

the number of random numbers 𝑦𝑁𝑖
"  that obey the neutrosophic exponential distribution  

ℎ𝑁(𝑦) = 𝜆𝑁. 𝑒−𝜆𝑁  𝑦 . The sum of which we took and the number did not exceed 1 ± ε, but if 

we added another number 𝑦𝑁𝑖+1
" , the sum became greater than 1 ± ε. However, if the 

inequality is not met, we return to step (a), and we repeat the work until we obtain the number 

the required random numbers follow a Poisson distribution. 

Conclusion and results: 

In this research, we presented a neutrosophic vision of the composition method used to 

generate random numbers that follow complex probability distributions from simple 

distributions. Random numbers that follow them can be generated using the neutrosophic 

inverse transformation or the neutrosophic rejection and acceptance method, using the 

relations provided by students and researchers in the field of mathematical statistics that link 

the probability distributions. Complex with simple probability distributions, such as the 

following relation between the Poisson distribution and the exponential distribution: When 

the time periods between possible events are exponentially distributed, the number of events 

that occur in one period of time has a Poisson distribution, which is relied upon to generate 

neutrosophic random numbers that follow the distribution Poisson, which has many uses in 

practical life, Such as inventory control, queueing theory, quality control, traffic flow, and 

many other fields of management science. 

References: 

1- Florentin Smarandache, Maissam Jdid, On Overview of Neutrosophic and Plithogenic 

Theories and Applications, Doi :https://doi.org/10.54216/PAMDA.020102. 

2- Florentin Smarandache, Maissam Jdid, Research on the topics of neutrosophic 

operations research, Volume (1), 

https://fs.unm.edu/NeutrosophicOperationsResearch.pdf, Biblio Publishing, 2023. 

3- Abdulrahman Astambli, Mohamed Bisher Zeina and Yasin Karmouta, On Some 

Estimation Methods of Neutrosophic Continuous Probability Distributions Using One-

Dimensional AH-Isometry, Neutrosophic Sets and Systems, Vol. 53, 2023, pp. 641-652. 

DOI: 10.5281/zenodo.7536101 

4- Yaser Ahmad Alhasan and Raja Abdullah Abdulfatah, Division of refined neutrosophic 

numbers Neutrosophic Sets and Systems, Vol. 60, 2023, pp. 1-

5. DOI: 10.5281/zenodo.10224078 

5- Maissam Jdid, NEUTROSOPHIC TRANSPORT AND ASSIGNMENT ISSUES, 

Publisher: Global Knowledge’s, ISBN, 978_1 _59973_770_6, (Arabic version). 

USA,2023. 

6- Marwah Yahya Mustafa , Zakariya Yahya Algamal, Neutrosophic inverse power 

Lindley distribution: A modeling and application for bladder cancer patients, 

Doi :https://doi.org/10.54216/IJNS.210218 

https://www.americaspg.com/articleinfo/34/show/1837
https://www.americaspg.com/articleinfo/34/show/1837
https://doi.org/10.54216/PAMDA.020102
http://fs.unm.edu/NSS/NeutrosophicContinuousProbability38.pdf
http://fs.unm.edu/NSS/NeutrosophicContinuousProbability38.pdf
http://fs.unm.edu/NSS/NeutrosophicContinuousProbability38.pdf
https://fs.unm.edu/NSS/RefinedNeutrosophicNumbers1.pdf
https://fs.unm.edu/NSS/RefinedNeutrosophicNumbers1.pdf
https://www.americaspg.com/articleinfo/21/show/1973
https://www.americaspg.com/articleinfo/21/show/1973
https://doi.org/10.54216/IJNS.210218


Neutrosophic Sets and Systems, Vol. 64, 2024                                                                                                                   139   
 

 
 

Maissam Jdid, Florentin Smarandache, Generating Neutrosophic Random Variables Following the Poisson Distribution 
Using the Composition Method (The Mixed Method of Inverse Transformation Method and Rejection Method) 

7- Renee Miriam M., Nivetha Martin , Aleeswari A. , Said Broumi, Rework Warehouse 

Inventory Model for Product Distribution with Quality Conservation in 

Neutrosophic Environment, Doi :https://doi.org/10.54216/IJNS.210215 

8- Maissam Jdid, Neutrosophic linear models and algorithms to find their optimal 

solution, Biblio Publishing, ISBN, 978_1 _59973_778_2, (Arabic version). USA,2023. 

9- Maissam Jdid, Florentin Smarandache, A Study of Systems of Neutrosophic Linear 

Equations, https://doi.org/10.54216/IJNS.230202. 

10- Maissam Jdid, Florentin Smarandache, Neutrosophic Treatment of the Modified 

Simplex Algorithm to find the Optimal Solution for Linear Models 

https://doi.org/10.54216/IJNS.230110. 

11- Maissam Jdid, Basel Shahin , Fatima Al Suleiman ,Important Neutrosophic Rules for 

Decision-Making in the Case of Uncertain Data , 

https://doi.org/10.54216/IJNS.1803014 

12- Maissam Jdid, Hla Hasan, The State of Risk and Optimum Decision According to 

Neutrosophic Rules ,https://doi.org/10.54216/IJNS.200107 

13- Zahraa A. Khalaf, Fatimah M. Mohammed, Weakly Generalized M-Closed and 

Strongly M-Generalized Closed Sets in Fuzzy Neutrosophic Topological Spaces, Doi 

:https://doi.org/10.54216/IJNS.210201 

14- Hamiyet Merkepci , Ahmed Hatip, Algorithms for Computing Pythagoras Triples and 

4-Tiples in Some Neutrosophic Commutative Rings, Doi 

:https://doi.org/10.54216/IJNS.200310 

15- Najla M. Alnaqbi, Samira A. Alnuaimi , M. Elhoseny, A Neutrosophic AHP Analysis 

for Using Video Conferences in Smart Learning: A Systematic Review, Doi 

:https://doi.org/10.54216/IJNS.200307 

16- Noura Metawa , Rhada Boujlil , Maha Metawea, Multi-Valued Neutrosophic Sets for 

Forecasting Cryptocurrency Volatility, Doi:https://doi.org/10.54216/IJNS.200306 

17- Faisal Al-Sharqi , Abd Ghafur Ahmad , Ashraf Al-Quran, Mapping on Interval 

Complex Neutrosophic Soft Sets, Doi :https://doi.org/10.54216/IJNS.190406 

18- Nahia Mourad, Assessment of Structural Cracks in Aircraft Using a Decision-Making 

Approach Based on Enhanced Entropy and Single-Valued Neutrosophic Sets, Doi 

:https://doi.org/10.54216/IJNS.190404 

19- Maissam Jdid, Studying Transport Models with the Shortest Time According to the 

Neutrosophic Logic, Neutrosophic Sets and Systems, Vol. 58, 2023, pp. 631-

638. DOI: 10.5281/zenodo.8404545 

20- Maissam Jdid, Rafif Alhabib and A. A. Salama, Fundamentals of Neutrosophical 

Simulation for Generating Random Numbers Associated with Uniform Probability 

Distribution, Neutrosophic Sets and Systems, Vol. 49, 2022, pp. 92-

102. DOI: 10.5281/zenodo.6426375 

21- Maissam Jdid, A. Salama, Using the Inverse Transformation Method to Generate 

Random Variables that follow the Neutrosophic Uniform Probability Distribution, Doi 

:https://doi.org/10.54216/JNFS.060202 

https://www.americaspg.com/articleinfo/21/show/1917
https://www.americaspg.com/articleinfo/21/show/1917
https://www.americaspg.com/articleinfo/21/show/1917
https://doi.org/10.54216/IJNS.210215
https://www.americaspg.com/articleinfo/21/show/2350
https://www.americaspg.com/articleinfo/21/show/2350
https://doi.org/10.54216/IJNS.230202
https://www.americaspg.com/articleinfo/21/show/2244
https://www.americaspg.com/articleinfo/21/show/2244
https://doi.org/10.54216/IJNS.230110
https://www.americaspg.com/articleinfo/21/show/1075
https://www.americaspg.com/articleinfo/21/show/1075
https://doi.org/10.54216/IJNS.1803014
https://www.americaspg.com/articleinfo/21/show/1433
https://www.americaspg.com/articleinfo/21/show/1433
https://doi.org/10.54216/IJNS.200107
https://www.americaspg.com/articleinfo/21/show/1819
https://www.americaspg.com/articleinfo/21/show/1819
https://doi.org/10.54216/IJNS.210201
https://www.americaspg.com/articleinfo/21/show/1633
https://www.americaspg.com/articleinfo/21/show/1633
https://doi.org/10.54216/IJNS.200310
https://www.americaspg.com/articleinfo/21/show/1611
https://www.americaspg.com/articleinfo/21/show/1611
https://doi.org/10.54216/IJNS.200307
https://www.americaspg.com/articleinfo/21/show/1610
https://www.americaspg.com/articleinfo/21/show/1610
https://doi.org/10.54216/IJNS.200306
https://www.americaspg.com/articleinfo/21/show/1397
https://www.americaspg.com/articleinfo/21/show/1397
https://doi.org/10.54216/IJNS.190406
https://www.americaspg.com/articleinfo/21/show/1395
https://www.americaspg.com/articleinfo/21/show/1395
https://doi.org/10.54216/IJNS.190404
https://fs.unm.edu/NSS/TransportModelsNeutrosophic39.pdf
https://fs.unm.edu/NSS/TransportModelsNeutrosophic39.pdf
http://fs.unm.edu/NSS/FundamentalsNeutrosophicalSimulation6.pdf
http://fs.unm.edu/NSS/FundamentalsNeutrosophicalSimulation6.pdf
http://fs.unm.edu/NSS/FundamentalsNeutrosophicalSimulation6.pdf
https://www.americaspg.com/articleinfo/24/show/1812
https://www.americaspg.com/articleinfo/24/show/1812
https://doi.org/10.54216/JNFS.060202


Neutrosophic Sets and Systems, Vol. 64, 2024                                                                                                                   140   
 

 
 

Maissam Jdid, Florentin Smarandache, Generating Neutrosophic Random Variables Following the Poisson Distribution 
Using the Composition Method (The Mixed Method of Inverse Transformation Method and Rejection Method) 

22- Maissam Jdid, Rafif Alhabib and A. A. Salama, The Basics of Neutrosophic Simulation 

for Converting Random Numbers Associated with a Uniform Probability Distribution 

into Random Variables Follow an Exponential Distribution, Neutrosophic Sets and 

Systems, Vol. 53, 2023, pp. 358-366. DOI: 10.5281/zenodo.7536049 

23- Maissam Jdid, Said Broumi, Neutrosophical Rejection and Acceptance Method for the 

Generation of Random Variables, Neutrosophic Sets and Systems, Vol. 56, 2023, pp. 

153-166. DOI: 10.5281/zenodo.8194749 

24- Maissam Jdid and Nada A. Nabeeh, Generating Random Variables that follow the Beta 

Distribution Using the Neutrosophic Acceptance-Rejection Method, Neutrosophic Sets 

and Systems, Vol. 58, 2023, pp. 139-148. DOI: 10.5281/zenodo.8404445 

25- Bugaha J.S, Mualla.W, and others -Operations Research Translator into Arabic, The 

Arab Center for Arabization, Translation, Authoring and Publishing, Damascus,1998. 

(Arabic version). 

26- Alali. Ibrahim Muhammad, Operations Research. Tishreen University Publications, 

2004. (Arabic version).  

27- Smarandache, F, Neutrosophy and Neutrosophic Logic, First International Conference 
on Neutrosophy, Neutrosophic Logic, Set, Probability, and Statistics University of New 

Mexico, Gallup, NM 87301, USA,2002. 

 

 

 

Received: 16 Dec ,2023 Accepted: 20 Feb,2024 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

http://fs.unm.edu/NSS/NeutrosophicSimulation22.pdf
http://fs.unm.edu/NSS/NeutrosophicSimulation22.pdf
http://fs.unm.edu/NSS/NeutrosophicSimulation22.pdf
http://fs.unm.edu/NSS/NeutrosophicSimulation22.pdf
https://fs.unm.edu/NSS/NeutrosophicalRejectionAcceptance11.pdf
https://fs.unm.edu/NSS/NeutrosophicalRejectionAcceptance11.pdf
https://fs.unm.edu/NSS/BetaDistributionNeutrosophic9.pdf
https://fs.unm.edu/NSS/BetaDistributionNeutrosophic9.pdf


University of New Mexico

Edge Regular Complex Neutrosophic Graph Structure and it is

Application

S.Angelin Kavitha Raj1, S.N.Suber Bathusha2, S. Satham Hussain 3 and R. Jahir Hussain4

1Department of Mathematics, Sadakathullah Appa College, Affiliated to Manonmaniam Sundaranar

University, Abishekapatti, Tirunelveli-627012, Tamil Nadu, India; 1angelinkavitha.s@gmail.com
2Research Scholar, Reg. No:20211192091007, Department of Mathematics, Sadakathullah Appa College,

Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamil Nadu, India;
2mohamed.suber.96@gmail.com
3School of Advanced Science, Division of Mathematics, Vellore Institute of Technology, Chennai-600127
3sathamhussain5592@gmail.com
4P.G. and Research Department of Mathematics, Jamal Mohamed College, Trichy-620020,

Tamil Nadu, India; 4hssn jhr@yahoo.com
∗Correspondence: mohamed.suber.96@gmail.com

Abstract. A modified version of a Neutrosophic Set (NS), a Complex Neutrosophic Set (CNS) offers a more

accurate description of ambiguous situations than established fuzzy sets (FSs). It is widely applied in uncertain

control. This study offers the idea of Single-Valued Complex Neutrophilic Graph Structure (SVCNGS). Further

research is done into the relationship between an ηJ − edge regular SVCNGS degree and the ηJ -degree of a

vertex. Also, we introduce the notions of totally ηJ − edge regular and regular ηJ − edge SVCNGS. There is

an explanation of the conditions in which ηJ − edge regular SVCNGS and totally ηJ − edge regular SVCNGS

are same. Moreover, this study several ηJ − edge regular and totally ηJ − edge regular SVCNGS properties

using an example, and we have discussed their application in SVCNGS. Finally, we develop an algorithm that

explains the fundamental workings of our application.

Keywords: SVCNGS, ηJ − edge regular, totally ηJ − edge regular, application

—————————————————————————————————————————-

1. Introduction

The phrase FSs it initially used by L.A. Zadeh [48] in 1965 to describe a way to show

the ambiguity of FSs. The business sector is vital to our daily lives because it helps us see

ambiguities and identify them in most fields of science and medicine. T. Atanassov [4] sug-

gested that Intuitionistic FSs (IFSs) may be created by deriving a new component, degree of

membership and non-membership, based on the features of the FS. As a result, it can explain

more accurately and completely than a FS. However, it can only handle partial and ambiguous

S.Angelin Kavitha Raj, S.N.Suber Bathusha, R. Jahir Hussain, S. Satham Hussain, Edge Regular Complex

Neutrosophic Graph Structure and it is Application

Neutrosophic Sets and Systems, Vol. 64, 2024



information; it cannot manage the ambiguous and contradictory informationthat frequently

occurs in real-life situations. It can only handle partial and ambiguous information, not the

ambiguous and indeterminate information that often occurs in real-life situations. Therefore,

the terms NS, a unifying field in logics and a generalization of the IFSs are introduced by

F. Smarandache [ [27], [28], [29], [30], [31]] and is used in many different fields to deal with

ambiguous and contradictory data. If the total of these values in the NS is between 0 and

3, the terms of truth membership, indeterminacy membership, and false membership are all

done separately, and the indeterminacy value is directly quantified. Neutrosophy: Neutral

Probability, Neutral Set, and Neutral Logic Introduce the idea of NS, N probability, and

logic in more detail. Due to the broad range of description situations it covers, the NS has

quickly drawn the attention of many scholars. This new set also helps to manage the vague-

ness brought on by the N scope. Furthermore, a thorough evaluation of Xindong Peng and

Jingguo Dai [40] citation is provided. A bibliometric analysis of the neutrosophic collection is

presented, covering the period from 1998 to 2017. Ramot [18] created the idea of a Complex

FS (CFS) in 2012 by changing the range of the membership function for the amount disc for

complex and real integers. A helpful generalisation of FS is the membership grade of this

concept, which is expressed as reiθ, where r stands for the amplitude term and θ for the phase

term. Only values from the complex plane’s unit circle are permitted. The phase term of CFS

matters because it can handle cyclical problems or persistently troubling circumstances more

successful. Given that this term is a part of CFS, there will undoubtedly be circumstances

in which another dimension is required. In contrast to every other type of information that

is currently available, CFS is described in this phrase. A detailed investigation of CFS’s [43]

was performed by Yazdanbakhsh and Dick. Alkouri and Salleh [2] first introduced the ideas of

CIFSs in 2012. It is important to familiarize out with the novel forms, such as CIFSs, which

significantly expand upon CFSs; useful details regarding these kinds of structures can be dis-

covered in [ [19], [20]]. Recently, Prem Kumar Singh developed the equation of complex vague

set idea lattice and its features in his paper [16]. K. Ullah and T. Mahmood [39] presented the

concept of CPFSs in 2019 in addition to expanding the range of existing distance measures to

take into consideration CPF values. Mumtaz Ali and Florentin Smarandache developed the

concept of a CNS in 2016 [32]. A complex-valued NS is one whose real-valued amplitude terms

for truth, indeterminacy, and falsehood, along with the phase terms that go along with them,

are combined to form its complex-valued membership functions. The NS is expanded upon by

the CNS. Further, the establishment of Hypersoft Set Hybrids with CFS, CIFS, and CNS are

introduced in 2020 by Atiqe U. R., Muhammad.S, Florentin Smarandache, and Muhammad

R. A [6]. In 1975, Rosenfeld [21] developed fuzzy graph theory. Examined the Fuzzy Graphs

(FG) for which Kauffmann created the fundamental concept in 1973. He explored a number of
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basic concepts in graph theory and developed some of their characteristics. In his remarks on

FGs, Bhattacharya [7] demonstrated that the conclusions drawn from (crisp) graph theory are

not necessarily applicable to FGs. In 1994, Shannon and Atanassov proposed the ideas of IF

relations and IFGs. Rashmanlou [15] studied FGs with irregular interval values. Additionally,

they defined FGs [17], various features of very irregular interval-valued FGs [17]. The Edge

Regular IFG was first proposed by M.G. Karunambigai and K. Palanivel [10] in 2015. CFGs

were developed by Thirunavukarasu et al. [38] to manage ambiguous and uncertain relation-

ships with periodic nature. CIFGs were defined by Yaqoob et al. [44]. They looked into the

homomorphisms of CIFG and demonstrated a CIFG usage among cellular network supplier

companies to test their proposed approach. CNGs were introduced by Yaqoob and Akram to

expand the idea of NGs and CIFGs [45]. They addressed various fundamental CNG operations

and described them using specific instances. They also demonstrated CNGs’ energy. Anam

Luqman, Muhammad Akram, and Florentin Smarandache [1] further elaborate on the idea of

CN Hypergraphs: New Social Network Models in 2019. Two voting processes are the best in-

stances and source of inspiration for CNS and the example is provided in their introduction to

prove the applicability of their suggested model. The research papers Applications of graph’s

total degree with bipolar fuzzy information and Estimation of most effected cycles and busiest

network route based on complexity function of graph in fuzzy environment in 2022 by Soumi-

tra Poulik and Ganesh Ghorai [ [33], [34], [35]] is worth being referred to for more information.

Also, in 2021 proposed the idea of Determining the order of journeys based on a graph’s Wiener

absolute index using bipolar fuzzy information. Sampathkumar [23] introduced Graph Struc-

tures (GSs) in 2006 to be a generalization of signed graphs and graphs with colored or labeled

edges. The idea of a FGS was first presented by Dinesh [8], and also discussed some relevant

properties. Recently, the notions of Operations on IFGSs were introduced by Muhammad

Akram [ [12], [13], [14]]. Also, introduce the ideas of simplified Interval-Valued PFGs with

applications and a novel decision-making approach under CPF environments further. Later,

the idea of complex Pythagorean fuzzy planar graphs was created.

1.1. Framework of this research

This concept can be restated in an abstract form then applied in SVCNGS. The organization

of this work is as follows:

• This study introduces the idea of SVCNGS. In regular SVCNGS, the relationship

between vertex degree and edge degree is further investigated.

• We also define total ηJ − edge regular SVCNGS and ηJ − edge regular SVCNGS. It

is described under which conditions ηJ − edge regular SVCNGS and total ηJ − edge

regular SVCNGS are comparable.
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• Furthermore, Applications and algorithm explaining for SVCNGS were also covered.

Finally, an explanation of all these studies is provided in Conclusion and future works.

2. Preliminaries

The construction of the research studies will be aided by the discussion of some fundamental

definitions and properties in this section.

Definition 2.1. [32] An object with the form of a SVCNS Q on a non-void set X

Q = {j, TQ(j)e
iαQ(j), IQ(j)e

iβQ(j), FQ(j)e
iγQ(j) : j ∈ X}

where i =
√
−1, amplitude terms TQ(j), IQ(j), FQ(j) ∈ [0, 1] and phase terms

αQ(j), βQ(j), γQ(j) ∈ [0, 2π].

Definition 2.2. [39] Let χ = {j, Tχ(j)e
iαχ(j), Iχ(j)e

iβχ(j), Fχ(j)e
iγχ(j) : j ∈ X}, η =

{j, Tη(j)e
iαη(j), Iη(j)e

iβη(j), Fη(j)e
iγη(j) : j ∈ X} be the two SVCNS in X, then

• χ ⊆ η if and only if Tχ(j) ≤ Tη(j), Iχ(j) ≤ Iη(j) and Fχ(j) ≤ Fη(j) for amplitude

terms and αχ(j) ≤ αη(j), βχ(j) ≤ βη(j) and γχ(j) ≤ γη(j) for phase terms, for all

j ∈ X;

• χ = η if and only if Tχ(j) = Tη(j), Iχ(j) = Iη(j) and Fχ(j) = Fη(j) for amplitude

terms and αχ(j) = αη(j), βχ(j) = βη(j) and γχ(j) = γη(j) for phase terms, for all

j ∈ X;

For simplicity, the (j, T (j)eiα(j), I(j)eiβ(j), F (j)eiγ(j) : j ∈ X) is called the SVCN Number

(SVCNN), where T (j), I(j), F (j) ∈ [0, 1] such that 0 ≤ T (j) + I(j) + F (j) ≤ 3 and α, β, γ ∈
[0, 2π].

Definition 2.3. [13] On a non-empty set X, a SVCNG is a pair G = (χ, η), where χ and η

are SVCNSs on X and a SVCN relation on X, respectively, such that:

Tη(rs)e
iαη(rs) ≤ min{Tχ(r), Tχ(s)}eimin{αχ(r),αχ(s)}

Iη(rs)e
iβη(rs) ≤ max{Iχ(r), Iχ(s)}eimax{βχ(r),βχ(s)}

Fη(rs)e
iγη(rs) ≤ max{Fχ(r), Fχ(s)}eimax{γχ(r),γχ(s)}

0 ≤ Tη(rs) + Iη(rs) + Fη(rs) ≤ 3 for all r, s ∈ X. We call χ and η the SVCN vertex set and

the SVCN edge set of G, respectively.

3. Some Result on SVCNGS

The concept of SVCNGS is introduced in this section, along with definitions that are useful

in understanding the main findings. With examples, we further analyse several SVCNGS

characteristics.
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Definition 3.1. Let τ = (γ, η1, η2, ..., ηk) is referred to as an SVCNGS of GS τ∗ =

(M,W1,W2, ...,Wk) if γ = {r, γ1(r)eiα1(r), γ2(r)e
iα2(r), γ3(r)e

iα3(r)} is an SVCN set on Q and

ηJ = {rs, η1J(rs)eiβ1J (rs), η2J(rs)e
iβ2J (rs), η3J(rs)e

iβ3J (rs)} are SVCN sets on M and WJ such

that

η1J(r, s)e
iβ1J (rs) ≤ min{γ1(r), γ1(s)}eimin{α1(r),α1(s)},

η2J(r, s)e
iβ2J (rs) ≤ max{γ2(r), γ2(s)}eimax{α2(r),α2(s)},

η3J(r, s)e
iβ3J (rs) ≤ max{γ3(r), γ3(s)}eimax{α3(r),α3(s)}

such that 0 ≤ η1J(r, s) + η2J(r, s) + η3J(r, s) ≤ 3 and β1J(rs), β2J(rs), β3J(rs) ∈ [0, 2π] for

all (r, s) ∈ RJ , J = 1, 2, ..., k.

Example 3.2. An SVCNGS τ = (γ, η1, η2) of a GS τ∗ = (M,W1,W2) given figure-1 is a

SVCNGS τ = (γ, η1, η2) such that γ = {u1(.4ei1.6π, .6ei1.2π, .3ei1.4π),
u2(.5e

i1.0π, .6ei.8π, .4ei1.6π), u3(.5e
i.8π, .4ei1.0π, .6ei1.4π), u4(.3e

i.6π, .5ei1.8π, .4ei1.6π)}.

η1(.4e
i1.0π, .6ei1.2π, .4ei1.6π) u2

u3u4

u1

η1
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e
i.6
π , .6

e
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e
i1
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π )

η 2
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5e
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π
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i1
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π
)

η1(.3e
i.6π, .5ei1.8π, .6ei1.6π)
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,.
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Figure 1. τ = (γ, η1, η2) is SVCNGS of τ∗
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Definition 3.3. Let τ = (γ, η1, η2, ..., ηk) be an SVCNGS of GS τ∗ = {M,W1,W2, ...,Wk}.
Then the vertex ηJ − degree is defined as

dηJ (f) = (dη1J (f), dη2J (f), dη3J (f)),

dη1J (f) =
∑

(f,v)∈WJ

η1J(f, v)e
i
∑

(f,v)∈RJ
β1J (f,v),

dη2J (f) =
∑

(f,v)∈WJ

η2J(f, v)e
i
∑

(f,v)∈RJ
β2J (f,v),

dη3J (f) =
∑

(f,v)∈WJ

η3J(f, v)e
i
∑

(f,v)∈WJ
β3J (f,v),

∀J = 1, 2, ..., k.

Definition 3.4. A SVCNGS τ = (γ, η1, η2, ..., ηk) is ηJ − strong if

η1J(r, s)e
iβ1J (rs) = min{γ1(r), γ1(s)}eimin{α1(r),α1(s)},

η2J(r, s)e
iβ2J (rs) = max{γ2(r), γ2(s)}eimax{α2(r),α2(s)},

η3J(r, s)e
iβ3J (rs) = max{γ3(r), γ3(s)}eimax{α3(r),α3(s)} for all (r, s) ∈ WJ , J = 1, 2, ..., k.

Example 3.5. Let τ = (γ, η1, η2, ..., ηk) be an SVCNGS. Next, for every J = 1, 2, the degree

of a ηJ − strong vertex is shown in figure-1. The η1 − strong degree of vertex ui, i=1,2,3,4 is

dη1(u1) = (dη11(u1), dη21(u1), dη31(u1))

dη1(u1) = (.4ei1.0π, .6ei1.2π, .4ei1.6π),

dη1(u2) = (.7ei1.6π, 1.2ei3.0π, .8ei3.2π),

dη1(u3) = (.3ei.6π, .5ei1.8π, .6ei1.6π),

dη1(u4) = (.6ei1.2π, 1.1ei3.6π, 1.0ei3.2π)

The η2 − strong degree of vertex ui, i=1,2,3,4 is

dη2(u1) = (dη12(u1), dη22(u1), dη32(u1))

dη2(u1) = (.3ei.6π, .6ei1.8π, .4ei1.6π),

dη2(u2) = (.5ei.8π, .6ei1.0π, .6ei1.6π),

dη2(u3) = (.5ei.8π, .6ei1.0π, .6ei1.6π),

dη2(u4) = (.3ei.6π, .6ei1.8π, .4ei1.6π)

Theorem 3.6. Let τ = (γ, η1, η2, ..., ηk) be an SVCNGS of GS τ∗ = {M,W1,W2, ...,Wk}.
Then

∑n
i=1 dηJ (ui) = (2

∑
(ui,v)∈WJ

η1J(ui, v)e
i2

∑
(ui,v)∈WJ

β1J (ui,v), 2
∑

(ui,v)∈WJ
η2J(ui, v)

e
i2

∑
(ui,v)∈WJ

β2J (ui,v), 2
∑

(ui,v)∈WJ
η3J(ui, v)e

i2
∑

(ui,v)∈WJ
β3J (ui,v)) is ηJ − strong SVCNGS for

all J = 1, 2, ..., k.
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Example 3.7. Next, we demonstrate the above theorem’s example - 3.6. Let us Consider a

SVCNGS τ = (γ, η1, η2) as shown in figure-1. Then
∑4

i=1 dηJ (ui) =

(2
∑

(ui,v)∈WJ
η1J(ui, v)e

i2
∑

(ui,v)∈WJ
β1J (ui,v), 2

∑
(ui,v)∈WJ

η2J(ui, v)e
i2

∑
(ui,v)∈WJ

β2J (ui,v),

2
∑

(ui,v)∈WJ
η3J(ui, v)e

i2
∑

(ui,v)∈WJ
β3J (ui,v)) is ηJ − strong SVCNGS for all J = 1, 2.

Twice the degree of sum of η1 − edges in τ is

2
∑

(ui,v)∈W1

η11(ui, v)e
i2

∑
(ui,v)∈W1

β11(ui,v) = 2(η11(u1, u2) + η11(u2, u4) + η11(u3, u4))

ei2(β11(u1,u2)+β11(u2,u4)+β11(u3,u4))

= 2(.4 + .3 + .3)ei2(1.0π+.6π+.6π)

= 2.0ei4.4π

2
∑

(ui,v)∈W1

η21(ui, v)e
i2

∑
(ui,v)∈W1

β21(ui,v) = 2(η21(u1, u2) + η21(u2, u4) + η21(u3, u4))

ei2(β21(u1,u2)+β21(u2,u4)+β21(u3,u4))

= 2(.6 + .6 + .5)ei2(1.2π+1.8π+1.8π)

= 3.4ei9.6π

2
∑

(ui,v)∈W1

η31(ui, v)e
i2

∑
(ui,v)∈W1

β31(ui,v) = 2(η31(u1, u2) + η31(u2, u4) + η31(u3, u4))

ei2(β31(u1,u2)+β31(u2,u4)+β31(u3,u4))

= 2(.4 + .4 + .6)ei2(1.6π+1.6π+1.6π)

= 2.8ei9.6π

Degree of η1 − strong vertices in SVCNGS is given by Example-3.5.

4∑

i=1

dη1(ui) = (
4∑

i=1

dη1J (ui),
4∑

i=1

dη2J (ui),
4∑

i=1

dη3J (ui))

= (2.0ei4.4π, 3.4ei9.6π, 2.8ei9.6π)

4∑

i=1

dη1(ui) = (2
∑

(ui,v)∈W1

η11(ui, v)e
i2

∑
(ui,v)∈W1

β11(ui,v), 2
∑

(ui,v)∈W1

η21(ui, v)

e
i2

∑
(ui,v)∈W1

β21(ui,v), 2
∑

(ui,v)∈W1

λ31(ui, v)e
i2

∑
(ui,v)∈W1

β31(ui,v))
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Similarly, we calculate

4∑

i=1

dη2(ui) = (2
∑

(ui,v)∈W2

η12(ui, v)e
i2

∑
(ui,v)∈W2

β12(ui,v), 2
∑

(ui,v)∈W2

η22(ui, v)

e
i2

∑
(ui,v)∈W2

β22(ui,v), 2
∑

(ui,v)∈W2

η32(ui, v)e
i2

∑
(ui,v)∈W2

β32(ui,v))

= (1.6ei2.8π, 2.4ei5.6π, 2.0ei6.4π)

Definition 3.8. Let τ = (γ, η1, η2, ..., ηk) be an SVCNGS of GS τ∗ = {M,W1,W2, ...,Wk}. If
dηJ (ui) = (a, b, c) for all ui ∈ Q, then for every vertex with a degree of η1J − degree, there

is an equal degree of a; similarly, for every vertex with a degree of η2J − degree, there is an

equal degree of b; and for every vertex with a degree of η3J − degree, there is an equal degree

of c. For all J = 1, 2, ..., k, τ is then considered to be ηJ regular SVCNGS.

Definition 3.9. Let τ = (γ, η1, η2, ..., ηk) be an SVCNGS of GS τ∗ = {M,W1,W2, ...,Wk}.
The total degree of ηJ vertex is defined as

tdηJ (f) = (tdη1J (f), tdη2J (f), tdη3J (f))

tdη1J (f) = (
∑

(f,v)∈WJ

η1J(f, v) + γ1(f))e
i
∑

(f,v)∈WJ
β1J (f,v)+α1(f),

tdη2J (f) = (
∑

(f,v)∈WJ

η2J(f, v) + γ2(f))e
i
∑

(f,v)∈WJ
β2J (f,v)+α2(f),

tdη3J (f) = (
∑

(f,v)∈WJ

η3J(f, v) + γ3(f))e
i
∑

(f,v)∈WJ
β3J (f,v)+α3(f)

The total degree of every vertex in η1J has the same degree. n1 and the total degree of each

vertex in η2J has the same degree. n2, and the total degree of each vertex in η3J has the same

degree n3. For all J = 1, 2, ..., k, τ is then considered to be totally ηJ regular SVCNGS.

4. Edge Regular in SVCNGS

This section introduces the idea of ηJ − edge regular SVCNGS. Moreover, some properties

of the ηJ − edge regular SVCNGS are explained with examples.

Definition 4.1. Let τ = (γ, η1, η2, ..., ηk) be an SVCNGS of GS τ∗ = {M,W1,W2, ...,Wk}
and let eij ∈ WJ be an edge in τ . Then the degree of an ηJ − edge eij ∈ WJ is defined as

dηJ (eij) = (dη1J (eij), dη2J (eij), dη3J (eij))
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dη1J (eij) = dη1J (ui) + dη1J (uj)− 2η1J(ui, uj)e
i2β1J (ui,uj) (or)

dη1J (eij) = (
∑

ℓr

η1J(ui, uk) +
∑

ℓs

η1J(uk, uj))

ei
∑

ℓr β1J (ui,uk)+
∑

ℓs β1J (uk,uj)

dη2J (eij) = (dη2J (ui) + dη2J (uj)− 2η2J(ui, uj)e
i2β2J (ui,uj) (or)

dη2J (eij) =
∑

ℓr

η2J(ui, uk) +
∑

ℓs

η2J(uk, uj))

ei
∑

ℓr β2J (ui,uk)+
∑

ℓs β2J (uk,uj)

dη3J (eij) = (dη3J (ui) + dη3J (uj)− 2η3J(ui, uj)e
i2β3J (ui,uj) (or)

dη3J (eij) = (
∑

ℓr

η3J(ui, uk) +
∑

ℓs

η3J(uk, uj))

ei
∑

ℓr β3J (ui,uk)+
∑

ℓs β3J (uk,uj),

∀ ℓr = (ui, uk) ∈ WJ , k 6= j, ℓs = (uk, uj) ∈ WJ , k 6= iand J = 1, 2, ..., k.

Notation: An ηJ − edge of an SVCNGS is denoted by eij ∈ WJ or uiuj ∈ WJ .

Note:

dηlJ (eij) = (
∑

(ui,uj)∈WJ

η1J(ui, uj) +
∑

(uj ,uk)∈WJ

η1J(uj , uk)− 2η1J(ui, uj))

e
i
∑

(ui,uj)∈WJ
βlJ (ui,uj)+

∑
(uj,uk)∈WJ

β1J (uj ,uk)−2β1J (ui,uj)
, l = 1, 2, 3. and J = 1, 2, ..., k.

Definition 4.2. Let τ = (γ, η1, η2, ..., ηk) be an SVCNGS of GS τ∗ = {M,W1,W2, ...,Wk}.
The minimum ηJ − edge degree of τ is δηJ (G) = (δη1J (G), δη2J (G), δη3J (G)), where

δη1J (G) = ∧{dη1J (eij)/eij ∈ WJ}

δη2J (G) = ∧{dη2J (eij)/eij ∈ WJ}

δη3J (G) = ∧{dη3J (eij)/eij ∈ WJ}, ∀ J = 1, 2, ...k.

The maximum ηJ − edge degree of τ is ∆ηJ (G) = (∆η1J (G),∆η2J (G),∆η3J (G)), where

∆η1J (G) = ∨{dη1J (eij)/eij ∈ WJ}

∆η2J (G) = ∨{dη2J (eij)/eij ∈ WJ}

∆η3J (G) = ∨{dη3J (eij)/eij ∈ WJ}, ∀ J = 1, 2, ...k.

Definition 4.3. Let τ = (γ, η1, η2, ..., ηk) be an SVCNGS of GS G∗ = {M,W1,W2, ...,Wk}
and let eij ∈ WJ be an edge in τ . Then the total degree of an ηJ − edge eij ∈ WJ is defined as

tdηJ (eij) = (tdη1J (eij), tdη2J (eij), tdη3J (eij)),
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tdη1J (eij) =
∑

ℓr

η1J(ui, uk) +
∑

ℓs

η1J(uk, uj) + η1J(eij)

ei
∑

ℓr β1J (ui,uk)+
∑

ℓs β1J (uk,uj)+β1J (eij),

tdη2J (eij) =
∑

ℓr

η2J(ui, uk) +
∑

ℓs

η2J(uk, uj) + η2J(eij)

ei
∑

ℓr β2J (ui,uk)+
∑

ℓs β2J (uk,uj)+β2J (eij),

tdη3J (eij) =
∑

ℓr

η3J(ui, uk) +
∑

ℓs

η3J(uk, uj) + η3J(eij)

ei
∑

ℓr β3J (ui,uk)+
∑

ℓs β3J (uk,uj)+β3J (eij),

∀ ℓr = (ui, uk) ∈ WJ , k 6= j, ℓs = (uk, uj) ∈ WJ , k 6= iand J = 1, 2, ..., k.

Definition 4.4. Let τ = (γ, η1, η2, ..., ηk) be an SVCNGS of GS τ∗ = {M,W1,W2, ...,Wk}. If
dηJ (eij) = (p, q, r) for all eij ∈ WJ for each edge of η1J has the same degree p and for each

edge of η2J has the same degree q and for each edge of η3J has the same degree r. Then τ is

said to be ηJ − edge regular SVCNGS for all J = 1, 2, ..., k.

Example 4.5. Consider an SVCNGS

tau = (γ, η1, η2) of GS τ∗ = (M,W1,W2) given Figure-2 is ηJ − edge regular SVCNGS such

that γ = {u1(.4ei.5π, .3ei.4π, .5ei.6π),
u2(.4e

i.5π, .4ei.5π, .6ei.6π), u3(.5e
i.5π, .3ei.4π, .5ei.6π), u4(.4e

i.5π, .4ei.5π, .6ei.6π)}. The degree of

η1(.4e
i.5π, .4ei.5π, .6ei.6π) u2

u3u4

u1

η 1
(0
.4
ei
0
.5
π
,0
.4
ei
0
.5
π
,0
.6
ei
0
.6
π
)

η2(.4e
i.5π, .4ei.5π, .6ei.6π)

η 2
(.
4e

i.
5
π
,.
4e

i.
5
π
,.
6e

i.
6
π
)

Figure 2. τ = (γ, η1, η2) is regular SVCNGS of τ∗
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an η1 − edge.

dη1(e12) = (dη11(e12), dη21(e12), dη31(e12))

dη11(e12) = dη11(u1) + dη11(u2)− 2η11(u1, u2)e
i2β11(u1,u2) (or)

dη11(e12) = (
∑

(u2,u4)∈W1,u4 6=u1

η11(u2, u4))e
i
∑

(u2,u4)∈W1,u4 6=u1
β11(u2,u4)

= (.4 + .8− 2(.4))ei(.5π+1.0π−2(.5π))

= .4ei.5

dη21(e12) = dη21(u1) + dη21(u2)− 2η21(u1, u2)e
i2β21(u1,u2)

= (.4 + .8− 2(0.4))ei(.5π+1.0π−2(.5π))

= .4ei.5

dη31(e12) = dη31(u1) + dη31(u2)− 2η31(u1, u2)e
i2β31(u1,u2)

= (.6 + 1.2− 2(.6))ei(.6π+1.2π−2(.6π))

= .6ei.6π

dη1(e12) = (.4ei.5π, .4ei.5π, .6ei.6π)

Similarly, we calculate

dη1(e12) = dη1(e23) = dη1(e34) = dη1(e14) = (.4ei.5π, .4ei.5π, .6ei.6π)

The degree of an η2 − edge.

dη2(e12) = dη2(e23) = dη2(e34) = dη2(e14) = (.4ei.5π, .4ei.5π, .6ei.6π)

In the above example-4.5 is ηJ − edge regular SVCNGS for all J = 1, 2.

Definition 4.6. Let τ = (γ, η1, η2, ..., ηk) be an SVCNGS of GS τ∗ = {M,W1,W2, ...,Wk}.
If tdηJ (eij) = (x, y, z) for all eij ∈ WJ for each edge of η1J has the same total degree x and

for each edge of η2J has the same total degree y and for each edge of η3J has the same total

degree z. Then τ is said to be totally ηJ − edge regular SVCNGS for all J = 1, 2, ..., k.

Example 4.7. Consider an SVCNGS τ = (γ, η1, η2) of GS τ∗ = (M,W1,W2) is given Figure-2

in example-4.5 is totally ηJ − edge regular SVCNGS for all J = 1, 2. The total degree of an

η1 − edge is

tdη1(e12) = tdη1(e23) = tdη1(e34) = tdη1(e14) = (.8ei1.0π, .8ei1.0π, 1.2ei1.2π)

The total degree of an η2 − edge is

tdη2(e12) = tdη2(e23) = tdη2(e34) = tdη2(e14) = (.8ei1.0π, .8ei1.0π, 1.2ei1.2π)

Hence, τ is totally ηJ − edge regular SVCNGS for all J = 1, 2.
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Theorem 4.8. Let τ = (γ, η1, η2, ..., ηk) be an SVCNGS of GS τ∗ = {M,W1,W2, ...,Wk} and

τ∗ is a cycle. Then
∑n

i=1 dηJ (ui) =
∑n

i=1 dηJ (eij) for all J = 1, 2, ..., k and j = i+ 1.

Proof. Given that τ = (γ, η1, η2, ..., ηk) be an SVCNGS of GS τ∗ = {M,W1,W2, ...,Wk} and

τ∗ is a cycle u1u2u3...un. Then

n∑

i=1

dηJ (eij) = (
n∑

i=1

dη1J (eij),
n∑

i=1

dη2J (eij),
n∑

i=1

dη3J (eij))

∀ J = 1, 2, ..., k and j = i+ 1.

Consider
∑n

i=1 dη1J (eij)

= dη1J (e12) + dη1J (e23) + ...+ dη1J (en1), where un+1 = u1

= dη1J (u1) + dη1J (u2)− 2η1J(u1, u2)e
i2β1J (u1,u2) + dη1J (u2) + dη1J (u3)

−2η1J(u2, u3)e
i2β1J (u2,u3) + ...+ dη1J (un) + dη1J (u1)− 2η1J(un, u1)e

i2β1J (un,u1)

= 2dη1J (u1) + 2dη1J (u2) + ...+ 2dη1J (un)

−2(η1J(u1, u2)e
i2β1J (u1,u2) + η1J(u2, u3)e

i2β1J (u2,u3) + ...+ η1J(un, u1)e
i2β1J (un,u1))

= 2
∑

ui∈M

dη1J (ui)− 2
n∑

i=1

η1J(ui, ui+1)e
i2

∑n
i=1 β1J (ui,ui+1)

=
∑

ui∈M

dη1J (ui) +
∑

ui∈M

dη1J (ui)− 2
n∑

i=1

η1J(ui, ui+1)e
i2

∑n
i=1 β1J (ui,ui+1)

=
∑

ui∈M

dη1J (ui) + 2
n∑

i=1

η1J(ui, ui+1)e
i2

∑n
i=1 β1J (ui,ui+1) − 2

n∑

i=1

η1J(ui, ui+1)e
i2

∑n
i=1 β1J (ui,ui+1)

=
∑

ui∈M

dη1J (ui)

Similarly, we derive the equation
∑n

i=1 dη2J (eij) =
∑

ui∈M
dη2J (ui),∑n

i=1 dη3J (eij) =
∑

ui∈M
dη3J (ui).

Hence,
∑n

i=1 dηJ (ui) =
∑n

i=1 dηJ (eij) for all J = 1, 2, ..., k and j = i+ 1.

Theorem 4.9. Let τ = (γ, η1, η2, ..., ηk) be an SVCNGS on a crisp graph τS of GS τ∗ =

{M,W1,W2, ...,Wk}. Then
∑

eij∈WJ
dηJ (eij) = (

∑
eij∈WJ

d∗ηJ (eij)η1J(uiuj)e
iβ1J (uiuj),

∑
eij∈WJ

d∗ηJ (eij)η2J(uiuj)e
iβ2J (uiuj),

∑
eij∈WJ

d∗ηJ (eij)η3J(uiuj)e
iβ3J (uiuj)) where d∗ηJ (eij) =

d∗ηJ (ui) + d∗ηJ (uj)− 2 for all eij ∈ WJ and J = 1, 2, ..., k.

Proof. Let τ = (γ, η1, η2, ..., ηk) be an SVCNGS on a crisp graph τS of GS τ∗ =

{M,W1,W2, ...,Wk}. We know that dηJ (eij) = (dη1J (eij), dη2J (eij), dη3J (eij)).
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Therefore, in
∑

eij∈WJ
dη1J (eij), every η1Je

iβ1J −edge contributes it’s truth membership values

exactly number of η1Je
iβ1J − edges adjacent to that η1Je

iβ1J − edge times.

Thus, in
∑

eij∈WJ
dη1J (eij), each η1J(uiuj)e

iβ1J (uiuj) appears d∗η1J (eij) times.

Hence,
∑

eij∈WJ

dη1J (eij) =
∑

eij∈WJ

d∗η1J (eij)η1J(uiuj)e
iβ1J (uiuj)

Similarly, we solve the equation

∑

eij∈WJ

dη2J (eij) =
∑

eij∈WJ

d∗η2J (eij)η2J(uiuj)e
iβ2J (uiuj)

∑

eij∈WJ

dη3J (eij) =
∑

eij∈WJ

d∗η3J (eij)η3J(uiuj)e
iβ3J (uiuj)

Hence,
∑

eij∈WJ
dηJ (eij) = (

∑
eij∈WJ

d∗ηJ (eij)η1J(uiuj)e
iβ1J (uiuj),

∑
eij∈WJ

d∗ηJ (eij)η2J(uiuj)e
iβ2J (uiuj),

∑
eij∈WJ

d∗ηJ (eij)η3J(uiuj)e
iβ3J (uiuj))

Theorem 4.10. Let τ = (γ, η1, η2, ..., ηk) be an SVCNGS on a ηJ regular crisp graph τS

of GS τ∗ = {M,W1,W2, ...,Wk}. Then
∑

eij∈WJ
dηJ (eij) = ((k − 1)

∑
ui∈M

dη1J (ui), (k −
1)

∑
ui∈M

dη2J (ui), (k − 1)
∑

ui∈M
dη3J (ui))

Proof. By Theorem-4.9,

∑

eij∈WJ

dηJ (eij) = (
∑

eij∈WJ

d∗η1(eij)η1J(uiuj),
∑

eij∈WJ

d∗ηJ (eij)η2J(uiuj),

∑

eij∈WJ

d∗ηJ (eij)η3J(uiuj))

= (
∑

ui,uj∈WJ

(d∗ηJ (ui) + d∗ηJ (uj)− 2)η1J(ui, uj)e
iβ1J (ui,uj),

∑

ui,uj∈WJ

(d∗ηJ (ui) + d∗ηJ (uj)− 2)η2J(ui, uj)e
iβ2J (ui,uj),

∑

ui,uj∈WJ

(d∗ηJ (ui) + d∗ηJ (uj)− 2)η3J(ui, uj)e
iβ3J (ui,uj))
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Since, τS is a ηJ regular crisp graph of GS, d∗ηJ (ui) = k for all ui ∈ M .

∑

eij∈WJ

dηJ (eij) = ((k + k − 2)
∑

ui,uj∈WJ

λ1J(ui, uj)e
i
∑

ui,uj∈WJ
λ1J (ui,uj)

,

(k + k − 2)
∑

ui,uj∈WJ

η2J(ui, uj)e
i
∑

ui,uj∈WJ
η2J (ui,uj)

,

(k + k − 2)
∑

ui,uj∈WJ

η3J(ui, uj)e
i
∑

ui,uj∈WJ
η3J (ui,uj)

)

= (2(k − 1)
∑

ui,uj∈WJ

η1J(ui, uj)e
i
∑

ui,uj∈WJ
η1J (ui,uj)

,

2(k − 1)
∑

ui,uj∈WJ

η2J(ui, uj)e
i
∑

ui,uj∈WJ
η2J (ui,uj)

,

2(k − 1)
∑

ui,uj∈WJ

η3J(ui, uj)e
i
∑

ui,uj∈WJ
η3J (ui,uj)

)

= ((k − 1)
∑

ui∈M

dη1J (ui), (k − 1)
∑

ui∈M

dη2J (ui),

(k − 1)
∑

ui∈Q

dη3J (ui))

Theorem 4.11. Let τ = (γ, η1, η2, ..., ηk) be an SVCNGS on a crisp graph τS of GS τ∗ =

{Q,R1, R2, ..., Rk}. Then
∑

eij∈WJ
tdηJ (eij) = (

∑
eij∈WJ

d∗ηJ (eij)η1J(uiuj)e
iβ1J (uiuj) +

∑
uiuj∈WJ

η1J(uiuj)e
i
∑

uiuj∈WJ
β1J (uiuj)

,
∑

eij∈WJ
d∗ηJ (eij)η2J(uiuj)e

iβ2J (uiuj) +
∑

uiuj∈RJ
η2J(uiuj)e

i
∑

uiuj∈WJ
β2J (uiuj)

,
∑

eij∈WJ
d∗ηJ (eij)η3J(uiuj)e

iβ3J (uiuj) +
∑

uiuj∈RJ
η3J(uiuj)e

i
∑

uiuj∈WJ
β3J (uiuj)

)

Proof. By Definition-4.3 of total degree of ηJ − edge of G̃.

tdηJ (eij) = (tdη1J (eij), tdη2J (eij), tdη3J (eij))
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∑

eij∈WJ

tdηJ (eij) = (
∑

uiuj∈WJ

tdη1J (eij),
∑

uiuj∈WJ

tdη2J (eij),
∑

uiuj∈WJ

tdη3J (eij))

= (
∑

eij∈WJ

(dη1J (eij) + η1J(uiuj)e
iβ1J (uiuj)),

∑

eij∈WJ

(dη2J (eij) + η2J(uiuj)e
iβ2J (uiuj)),

∑

eij∈WJ

(dη3J (eij) + η3J(uiuj)e
iβ3J (uiuj)))

= (
∑

eij∈WJ

dη1J (eij) +
∑

uiuj∈WJ

η1J(uiuj)e
i
∑

uiuj∈WJ
β1J (uiuj)

,

∑

eij∈WJ

dη2J (eij) +
∑

uiuj∈WJ

η2J(uiuj)e
i
∑

uiuj∈WJ
β2J (uiuj)

,

∑

eij∈WJ

dη3J (eij) +
∑

uiuj∈WJ

η3J(uiuj)e
i
∑

uiuj∈WJ
β3J (uiuj)

)

By Theorem-4.9, we get

∑

eij∈WJ

tdηJ (eij) = (
∑

eij∈WJ

d∗ηJ (eij)η1J(uiuj)e
iβ1J (uiuj) +

∑

uiuj∈WJ

η1J(uiuj)e
i
∑

uiuj∈WJ
β1J (uiuj)

,

∑

eij∈WJ

d∗ηJ (eij)η2J(uiuj)e
iβ2J (uiuj) +

∑

uiuj∈WJ

η2J(uiuj)e
i
∑

uiuj∈WJ
β2J (uiuj)

,

∑

eij∈WJ

d∗ηJ (eij)η3J(uiuj)e
iβ3J (uiuj) +

∑

uiuj∈WJ

η3J(uiuj)e
i
∑

uiuj∈WJ
β3J (uiuj)

)

Theorem 4.12. Let τ = (γ, η1, η2, ..., ηk) be an SVCNGS of GS τ∗ = {M,W1,W2, ...,Wk}. If

and only if the subsequent statements are equivalent, then ηJ is a constant functional.

(i) τ is an ηJ − edge regular SVCNGS.

(ii) τ is a totally ηJ − edge regular SVCNGS.

Proof. Let us assume that ηJ is a function that is constant. Then η1J(uiuj)e
iβ1J (uiuj) = c1,

η2J(uiuj)e
iβ2J (uiuj) = c2 and η3J(uiuj)e

iβ3J (uiuj) = c3 for every uiuj ∈ WJ , where c1, c2, c3 are

constants. (1)

Assume that τ is ηJ − edge regular SVCNGS. Then dηJ (eij) = (p, q, r) for all eij ∈ WJ . (2)

Consider

tdηJ (eij) = (dη1J (eij) + η1J(uiuj)e
iβ1J (uiuj),

dη2J (eij) + η2J(uiuj)e
iβ2J (uiuj),

dη3J (eij) + η3J(uiuj)e
iβ3J (uiuj))

= (p+ c1, q + c2, r + c3) for all uiuj ∈ WJ by (1) and (2)
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which implies τ is totally ηJ − edge regular SVCNGS.

Therefore, (i) ⇒ (ii).

Let τ be totally ηJ − edge regular SVCNGS. Then tdηJ (eij) = (x, y, z) for all eij ∈ WJ .

tdηJ (eij) = (dη1J (eij) + η1J(uiuj)e
iβ1J (uiuj), dη2J (eij) + η2J(uiuj)e

iβ2J (uiuj),

dη3J (eij) + η3J(uiuj)e
iβ3J (uiuj)).

Now,

dηJ (eij) = (dη1J (eij), dη2J (eij), dη3J (eij))

= (x− η1J(uiuj)e
iβ1J (uiuj), y − η2J(uiuj)e

iβ2J (uiuj), z − η3J(uiuj)e
iβ3J (uiuj))

= (x− c1, y − c2, z − c3) by(1)

Hence, τ is ηJ − edge regular SVCNGS.

Thus, (ii) ⇒ (i).

Conversely, suppose that (i) and (ii) are equivalent.

As a resultτ is ηJ−edge regular SVCNGS if and only if τ is totally ηJ−edge regular SVCNGS.

We have to prove that ηJ is a constant function.

Let us assume that ηJ is not a constant function. (3)

Then

η1J(ui, uj)e
iβ1J (ui,uj) = η1J(ur, us)e

iη1J (ur,us), η2J(ui, uj)e
iβ2J (ui,uj) = λ2J(ur, us)e

iλ2J (ur,us)

and λ3J(ui, uj)e
iβ3J (ui,uj) = η3J(ur, us)e

iη3J (ur,us) for at least one pair of uiuj , urus ∈ RJ .

Let τ is ηJ − edge regular SVCNGS. Then dηJ (eij) = dηJ (ers) = (p, q, r) (4)

⇒ tdηJ (eij) = (dη1J (eij) + η1J(ui, uj)e
iβ1J (ui,uj), dη2J (eij) + η2J(ui, uj)e

iβ2J (ui,uj),

dη3J (eij) + η3Je
iβ1J (ui,uj))

= (p+ η1J(ui, uj)e
iβ1J (ui,uj), q + η2J(ui, uj)e

iβ2J (ui,uj),

r + η3J(ui, uj)e
iβ3J (ui,uj)) ∀ uiuj ∈ WJ .

and

tdηJ (ers) = (dη1J (ers) + η1J(urus)e
iβ1J (urus), dη2J (ers) + η2J(urus)e

iβ2J (urus),

dη3J (ers) + η3J(urus)e
iβ3J (urus))

= (p+ η1J(urus)e
iβ1J (urus), q + η2J(urus)e

iβ2J (urus),

r + η3J(urus)e
iβ3J (urus)), ∀ urus ∈ WJ .

Since,

η1J(ui, uj)e
iβ1J (ui,uj) 6= η1J(ur, us)e

iβ1J (ur,us), η2J(ui, uj)e
iβ2J (ui,uj) 6= η2J(ur, us)e

iβ2J (ur,us)

and η3J(ui, uj)e
iβ3J (ui,uj) 6= η3J(ur, us)e

iβ3J (ur,us)

⇒ tdηJ (eij) 6= tdηJ (ers)
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⇒ Not all of τ is a totally ηJ − edge regular SVCNGS

⇒ it is a contradiction.

Hence, ηJ is a constant function.

Theorem 4.13. Let τ = (γ, η1, η2, ..., ηk) be an SVCNGS is both ηJ − edge regular and totally

ηJ − edge regular of GS τ∗ = {M,W1,W2, ...,Wk}. Then ηJ is a constant function.

Proof. The result is trivial according to Theorem-4.12.

Note: The above theorem-4.12 does not hold in its converse.

Theorem 4.14. Let ηJ be constant functions in an SVCNGS τ = (γ, η1, η2, ..., ηk) of GS

τ∗ = {M,W1,W2, ...,Wk} and if τ is ηJ regular, Then totally ηJ − edge regular.

Proof. Let τ = (γ, η1, η2, ..., ηk) be a ηJ regular SVCNGS. Then dηJ (ui) = (a, b, c) for all

ui ∈ M . Given that ηJ are constants. That is, ηJ(ui, uj) = (c1, c2, c3) for all uiuj ∈ WJ where

c1, c2, c3 are constant

We have to prove that τ is totally ηJ − edge regular SVCNGS.

By Definition-4.3 of totally ηJ − edge degree, we have

tdηJ (eij) = (tdη1J (eij), tdη2J (eij), tdη3J (eij))

where

tdη1J (eij) = dη1J (ui) + dη1J (uj)− η1J(ui, uj)e
iβ1J (ui,uj), ∀ uiuj ∈ WJ

= a+ a− c1, ∀ uiuj ∈ WJ (∴ τ is regular)

= 2a+ c1 = constant, ∀ uiuj ∈ WJ .

Similarly, we solve the equation

tdη2J (eij) = dη2J (ui) + dη2J (uj)− η2J(ui, uj)e
iβ2J (ui,uj), ∀ uiuj ∈ WJ

= b+ b− c2, ∀ uiuj ∈ WJ (∴ τ is regular)

= 2b+ c2 = constant, ∀ uiuj ∈ WJ .

tdη3J (eij) = dη3J (ui) + dη3J (uj)− η3J(ui, uj)e
iβ3J (ui,uj), ∀ uiuj ∈ WJ

= c+ c− c3, ∀ uiuj ∈ WJ (∴ τ is regular)

= 2c+ c2 = constant, ∀ uiuj ∈ WJ .

(ie) tdηJ (eij) = (2a+ c1, 2b+ c2, 2c+ c3)

⇒ τ is a totally ηJ − edge regular SVCNGS.
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Theorem 4.15. Let τ = (γ, η1, η2, ..., ηk) be an SVCNGS on a regular crisp graph τS of GS

τ∗ = {Q,R1, R2, ..., Rk}. Then ηJ is a constant if and only if τ is both ηJ regular and ηJ−edge

regular SVCNGS.

Proof. Let τ = (γ, η1, η2, ..., ηk) be an SVCNGS on a regular crisp GS τ∗ =

{M,W1,W2, ...,Wk}.
Assume that ηJ are constant functions, that is ηJ(ui, uj) = (c1, c2, c3) for all uiuj ∈ WJ where

c1, c2, c3 are constant

To prove: τ is both ηJ regular and totally ηJ − edge regular SVCNGS. By Definition-3.4 of

ηJ − degree of a vertex,

dηJ (ui) = (dη1J (ui), dη2J (ui), dη3J (ui))

= (
∑

(ui,vj)∈WJ

η1J(ui, vj)e
i
∑

(ui,vj)∈WJ
β1J (ui,vj)

,
∑

(ui,vj)∈WJ

η2J(ui, vj)e
i
∑

(ui,vj)∈WJ
β2J (ui,vj)

,

∑

(ui,vj)∈WJ

η3J(ui, vj)e
i
∑

(ui,vj)∈WJ
β3J (ui,vj)

), ∀ ui ∈ M

= (
∑

(ui,vj)∈WJ

c1,
∑

(ui,vj)∈WJ

c2,
∑

(ui,vj)∈WJ

c3)

= (xc1, yc2, zc3)

Hence, τ is ηJ regular SVCNGS.

Now,

tdηJ (eij) = (tdη1J (eij), tdη2J (eij), tdη3J (eij)),where

tdη1J (eij) =
∑

uiuk∈WJ ,k 6=j

η1J(ui, uk)e
i
∑

uiuk∈WJ,k 6=j β1J (ui,uk) +

∑

ukuj∈WJ ,k 6=i

η1J(uk, uj)e
i
∑

ukuj∈WJ,k 6=i β1J (uk,uj)
+ η1J(ui, uj)e

iβ1J (ui,uj)

=
∑

uiuk∈WJ ,k 6=j

c1 +
∑

ukuj∈WJ ,k 6=i

c1 + c1

= c1(x− 1) + c1(x− 1) + c1, ∀ uiuj ∈ WJ

= c1(2x− 1), ∀ uiuj ∈ WJ .

Similarly, we solve the equation

tdλ2J
(eij) = c2(2y − 1), ∀ uiuj ∈ WJ

tdλ3J
(eij) = c3(2z − 1), ∀ uiuj ∈ WJ

Hence, τ is also totally ηJ regular SVCNGS.

Conversely, assume that τ is both ηJ regular and ηJ − edge regular SVCNGS.

To prove: ηJ is a constant function.

S.Angelin Kavitha Raj, S.N.Suber Bathusha, S. Satham Hussain, R. Jahir Hussain, Edge
Regular Complex Neutrosophic Graph Structure and it is Application

Neutrosophic Sets and Systems, Vol. 64, 2024                                                                              158



Since, τ is ηJ regular, dηJ (ui) = (a, b, c), ∀ ui ∈ M.

Also, τ is totally ηJ − edge regular.

Then tdηJ (eij) = (x, y, z, ), ∀ uiuj ∈ WJ .

By Definition-4.3 of totally ηJ − edge degree,

tdηJ (eij) = (tdη1J (eij), tdη2J (eij), tdη3J (eij)),where

tdηJ (eij) = dη1J (ui) + dη1J (uj)− η1J(ui, uj)e
iβ1J (ui,uj), ∀ uiuj ∈ WJ

x = a+ a− η1J(ui, uj)e
iβ1J (ui,uj), ∀ uiuj ∈ WJ

η1J(ui, uj)e
iβ1J (ui,uj) = 2a− x, ∀ uiuj ∈ WJ .

Similarly, we solve the equation

η2J(ui, uj)e
iβ2J (ui,uj) = 2b− y, ∀ uiuj ∈ WJ .

η3J(ui, uj)e
iβ3J (ui,uj) = 2c− z, ∀ uiuj ∈ WJ .

Hence, ηJ is a constant function.

Theorem 4.16. Let τ = (γ, η1, η2, ..., ηk) be an SVCNGS on a crisp graph τS of GS τ∗ =

{M,W1,W2, ...,Wk}. If ηJ is constant functions, then τ is an ηJ − edge regular SVCNGS if

and only if τS is an ηJ − edge regular.

Proof. Given that ηJ is constant functions. That is, ηJ(ui, uj)e
iβJ (ui,uj) = (c1, c2, c3) for all

uiuj ∈ WJ where c1, c2, c3 are constants.

Assume that τ is an ηJ − edge regular.

To Prove: τS is an ηJ − edge regular.

Suppose that τS is not an ηJ − edge regular. Then dηJ (eij) 6= dηJ (ers) for at least one pair of

eij , ers ∈ WJ .

By Definition-4.1 of an ηJ − edge degree of an SVCNGS,

dηJ (eij) = (dη1J (eij), dη2J (eij), dη3J (eij)),
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where

dη1J (eij) =
∑

uiuk∈WJ ,k 6=j

η1J(ui, uk)e
i
∑

uiuk∈WJ,k 6=j β1J (ui,uk) +

∑

ukuj∈WJ ,k 6=i

η1J(uk, uj)e
i
∑

ukuj∈WJ,k 6=i β1J (uk,uj)

=
∑

uiuk∈WJ ,k 6=j

c1 +
∑

ukuj∈WJ ,k 6=i

c1

= c1(d
∗
ηJ
(ui)− 1) + c1(d

∗
ηJ
(uj)− 1),

= c1(d
∗
ηJ
(ui) + d∗η1J (uj)− 2)

= c1(d
∗
ηJ
(eij))

Similarly, we solve the equation

dη2J (eij) = c2(d
∗
ηJ
(eij))

dη3J (eij) = c3(d
∗
ηJ
(eij))

∴ dηJ (eij) = (c1(d
∗
ηJ
(eij)), c2(d

∗
ηJ
(eij)), c3(d

∗
ηJ
(eij))),

dηJ (ejk) = (c1(d
∗
ηJ
(ejk)), c2(d

∗
ηJ
(ejk)), c3(d

∗
ηJ
(ejk)))

Since, d∗ηJ (eij) 6= d∗ηJ (ejk) ⇒ dηJ (eij) 6= dηJ (ejk). Thus, τ is not an ηJ − edge regular. Our

assumption is contradicted by this.

Hence, τS is an ηJ − edge regular.

Conversely, assume that ηJ are constant functions and τS is an ηJ − edge regular.

To prove that: τ is an ηJ − edge regular SVCNGS.

Suppose that τ is not an ηJ − edge regular SVCNGS. Then dηJ (eij) 6= dηJ (ers) for at least one

pair of uiuj , urus ∈ RJ

(dη1J (eij), dη2J (eij), dη3J (eij)) 6= (dη1J (ers), dη2J (ers), dη3J (ers))

Now,

dη1J (eij) 6= dη1J (ers),

∑

uiuk∈WJ ,k 6=j

η1J(ui, uk)e
i
∑

uiuk∈WJ,k 6=j β1J (ui,uk) +
∑

ukuj∈WJ ,k 6=i

η1J(uk, uj)e
i
∑

ukuj∈WJ,k 6=i β1J (uk,uj) 6=

∑

urut∈WJ ,t 6=s

η1J(ur, ut)e
i
∑

urut∈WJ,t 6=s η1J (ur,ut) +
∑

utus∈WJ ,t 6=r

η1J(ut, us)e
i
∑

utus∈WJ,t 6=r β1J (ut,us),
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c1(dη1J (ui)− 1) + c1(dη1J (uj)− 1) 6= c1(dη1J (ur)− 1) + c1(dη1J (us)− 1),

c1(dη1J (ui) + dη1J (uj)− 2) 6= c1(dη1J (ur) + dη1J (us)− 2),

c1dη1J (eij) 6= c1dη1J (ers)

dη1J (eij) 6= dη1J (ers).

Similarly, we solve the equation.

dη2J (eij) 6= dη2J (ers),

dη3J (eij) 6= dη3J (ers)

∴ (dη1J (eij), dη2J (eij), dη3J (eij)) 6= (dη1J (ers), dη2J (ers), dη3J (ers))

Our assumption is contradicted by this. τS is an ηJ − edge regular.

Hence, τ is an ηJ − edge regular SVCNGS.

Theorem 4.17. Let τ = (γ, η1, η2, ..., ηk) be a ηJ regular SVCNGS of GS τ∗ =

{M,W1,W2, ...,Wk}. Then τ is an ηJ − edge regular SVCNGS if and only if ηJ is constant

functions.

Proof. Let

tau = (γ, η1, η2, ..., ηk) be a ηJ regular SVCNGS of GS τ∗ = {M,W1,W2, ...,Wk}. Then

dηJ (ui) = (a, b, c) for all ui ∈ M . Assume that ηJ is constant functions, that is ηJ(ui, uj) =

(c1, c2, c3), ∀ uiuj ∈ WJ where c1, c2, c3 are constants.

By Definition-4.1 of an ηJ − edge degree,

dηJ (eij) = (dη1J (eij), dη2J (eij), dη3J (eij)),

dη1J (eij) = dη1J (ui) + dη1J (uj)− 2η1J(ui, uj)e
i2β1J (ui,uj)

= a+ a− 2c1

= 2(a− c1)

Similarly, we solve the equation

dη2J (eij) = 2(b− c2)

dη3J (eij) = 2(c− c3)

∴ dηJ (eij) = (2(a− c1), 2(b− c2), 2(c− c3)).

Hence, τ is an ηJ − edge regular SVCNGS.

Conversely, we assume that τ is an ηJ − edge regular SVCNGS.

To prove that ηJ is constant functions.
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dηJ (eij) = (p, q, r) for all eij ∈ WJ

Now,

dη1J (eij) = dη1J (ui) + dη1J (uj)− 2η1J(ui, uj)e
i2β1J (ui,uj)

p = a+ a− 2η1J(ui, uj)e
i2β1J (ui,uj)

η1J(ui, uj)e
i2β1J (ui,uj) =

(2a− p)

2

Similarly, we solve the equation

η2J(ui, uj)e
iβ2J (ui,uj) =

(2b− q)

2

η3J(ui, uj)e
iβ3J (ui,uj) =

(2c− p)

2

∴ λJ is constant functions.

5. Application

Applications are used in this article to find ambiguities in all facets of human existence.

This article discusses the developments in all countries around the world, as well as the rea-

sons for their growth. We will compute the growth and value of fundamental needs across the

nations of the world. We will determine the value of a country based on how much education

its citizens have access to and how much the government helps the country’s poor residents.

The medical facilities provided by the government for its citizens as well as the contribution

it provides to global health, are also taken into account. Through the contribution of military

security in that country, we can ascertain the level of security that the people get. We can also

find out how much both the government and the inhabitants of that country contribute to the

development of its economy. A country’s government measures its progress based on how well

it upholds the country’s laws and works in the best interests of the people. We can determine a

country’s progress and strength using all the aforementioned variables. We regard a country’s

strength and development to be calculated as γ1e
iα1 , its weakness and underdevelopment to

be calculated as γ3e
iα3 , and we consider a country’s strength and weakness that we cannot

predict, ie., indeterminacy to be calculated as γ2e
iα2 . We’re going to use an ambiguous value

to quantify it. A set M is considered to show nations with the highest rates of strength and

development. M={United States, China, Russia, Germany, United Kingdom, Japan, France,

South Korea}. We can determine the development correlation between the United States and

other countries using our definition-3.1 (see Table-2). We can determine the development cor-

relation between Japan and other countries (see Table-3). We can determine the development

correlation between China and other countries (see Table-4). We can determine the devel-

opment correlation between Russia and other countries (see Table-5). We can determine the
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Table 1

Country γ1e
iα1 γ2e

iα2 γ3e
iα3

United States (US) .8ei.7π .4ei.6 .6ei0.71π

Japan (J) .7ei.6π .60ei.7π .51ei.6π

China (C) .8ei.8π .52ei.4π .4ei.5π

Russia (R) .62ei.5π .5ei.4π .5ei.6π

Germany (G) .5ei.6π .6ei.7π .6ei.7π

United Kingdom (U) .7ei.5π .5ei.6π .4ei.7π

France (F) .6ei.4π .7ei.5π .5ei.7π

South Korea (S) .7ei.6π .4ei.7π .6ei.5π

Table 2. United States and other countries

(US, C) (US,G) (US,S)

(.8ei.7π, .4ei.5π, .4ei.5π) (.5ei.6π, .6ei.7π, .6ei.7π) (.7ei.5π, .4ei.7π, .6ei.7π)

(.7ei.6π, .4ei.6π, .6ei.7π) (.5ei.6π, .4ei.5π, .5ei.6π) (.6ei.5π, .4ei.6π, .5ei.5π)

(.5ei.4π, .5ei.6π, .5ei.5π) (.5ei.6π, .5ei.6π, .4ei.5π) (.7ei.6π, .3ei.5π, .3ei.5π)

(.7ei.7π, .5ei.5π, .5ei.6π) (.4ei.5π, .5ei.6π, .4ei.5π) (.6ei.4π, .5ei.6π, .4ei.5π)

(.7ei.7π, .5ei.6π, .6ei.5π) (.5ei.5π, .5ei.6π, .4ei.5π) (.7ei.6π, .4ei.6π, .5ei.6π)

Table 3. Japan and other countries

(J, R) (J,U) (J,F)

(.6ei.3π, .6ei.7π, .5ei.6π) (.7ei.5π, .5ei.5π, .4ei.5π) (.6ei.4π, .7ei.7π, .5ei.7π)

(.5ei.4π, .5ei.6π, .5ei.3π) (.6ei.4π, .5ei.5π, .5ei.7π) (.6ei.3π, .6ei.6π, .5ei.3π)

(.5ei.4π, .4ei.6π, .4ei.5π) (.6ei.5π, .5ei.6π, .5ei.4π) (.5ei.3π, .6ei.5π, .5ei.2π)

(.5ei.4π, .5ei.5π, .6ei.5π) (.4ei.5π, .5ei.6π, .4ei.7π) (.6ei.4π, .4ei.3π, .4ei.5π)

(.6ei.5π, .4ei.5π, .4ei.3π) (.5ei.5π, .5ei.6π, .5ei.5π) (.6ei.4π, .7ei.6π, .5ei.4π)

Table 4. China and other countries

(C, G) (C, U) (C, S)

(.5ei.5π, .6ei.7π, .6ei.7π) (.6ei.5π, .5ei.6π, .4ei.7π) (.7ei.6π, .4ei.5π, .4ei.7π)

(.5ei.4π, .5ei.6π, .5ei.5π) (.7ei.5π, .4ei.5π, .3ei.7π) (.6ei.4π, .5ei.6π, .6ei.5π)

(.4ei.4π, .5ei.6π, .4ei.7π) (.6ei.5π, .5ei.5π, .4ei.5π) (.6ei.3π, .5ei.5π, .5ei.4π)

(.5ei.4π, .5ei.5π, .6ei.5π) (.4ei.5π, .5ei.6π, .4ei.7π) (.6ei.4π, .5ei.6π, .5ei.7π)

(.5ei.6π, .3ei.4π, .3ei.7π) (.5ei.5π, .5ei.6π, .4ei.4π) (.6ei.4π, .5ei.6π, .5ei.7π)
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Table 5. Russia and other countries

(R, G) (R, F) (R, S)

(.5ei.5π, .6ei.7π, .6ei.7π) (.6ei.4π, .7ei.5π, .5ei.7π) (.6ei.3π, .5ei.7π, .6ei.5π)

(.5ei.4π, .5ei.6π, .5ei.7π) (.5ei.4π, .5ei.5π, .5ei.5π) (.6ei.5π, .4ei.5π, .4ei.7π)

(.4ei.4π, .5ei.6π, .6ei.5π) (.6ei.4π, .4ei.3π, .4ei.5π) (.6ei.3π, .5ei.5π, .5ei.7π)

(.5ei.4π, .5ei.5π, .6ei.5π) (.4ei.4π, .5ei.5π, .5ei.4π) (.6ei.4π, .5ei.6π, .5ei.5π)

(.5ei.4π, .5ei.6π, .5ei.7π) (.5ei.4π, .5ei.4π, .5ei.7π) (.6ei.4π, .5ei.6π, .6ei.4π)

development correlation between United Kingdom and other countries (see Table-5).

Using these SVCNGS, we illustrate the severity of the development between each pair of

Table 6. United Kingdom and other countries

(U, G) (U, F) (U, S)

(.5ei.5π, .6ei.7π, .6ei.7π) (.6ei.4π, .7ei.6π, .5ei.7π) (.7ei.5π, .4ei.5π, .4ei.7π)

(.5ei.4π, .5ei.6π, .6ei.5π) (.6ei.2π, .6ei.5π, .5ei.5π) (.6ei.4π, .5ei.7π, .6ei.7π)

(.4ei.4π, .5ei.6π, .5ei.7π) (.5ei.3π, .6ei.5π, .5ei.5π) (.6ei.3π, .5ei.5π, .5ei.7π)

(.5ei.4π, .5ei.5π, .6ei.7π) (.6ei.4π, .4ei.5π, .4ei.3π) (.6ei.4π, .5ei.6π, .5ei.5π)

(.5ei.4π, .5ei.6π, .5ei.6π) (.5ei.4π, .5ei.4π, .5ei.7π) (.6ei.4π, .5ei.6π, .6ei.7π)

nations. On set M , numerous relations can be defined. Let’s explain the relationships on

M as follows: W1=education, W2=medical science, R3= military, W4= economic growth,

W5 = effected government, such that τ∗ = (Q,R1, R2, R3, R4, R5) is a GS. Each element of

the relationship exemplifies a certain stage of growth between those two countries. Due to

the fact that the GS is τ∗ = (M,W1,W2,W3,W4,W5), only one relationship can exist be-

tween two countries. Thus, it would be considered a part of that relationship, whose false

membership amount is relatively low in comparison to various other relationships, and whose

truth-membership amount is relatively high in comparison to other connections. When mea-

sured against other relationships, its truth-membership the amount is relatively high, while its

indeterminacy-membership amount is relatively low. Using the previously provided data, the

SVCNGS on W1,W2,W3,W4,W5 are formed by matching items in relations with the truth-

membership, indeterminacy, and false-membership. They are η1, η2, η3, η4, η5, respectively, of

these SVCNGS.

W1={(US, C), (J, U),(C, S),(U, S)}, W2={(C, U),(R, S)}, W3= {(US, S),(R, F)},
W4={(J, F),(U, F)}, W5={(J, R),(C, G)}.
The Corresponding SVCNGS are follows:

η1 = {(US,C)(.8ei.7π, .4ei.5π, .4ei.5π), (J, U)(.7ei.5π, .5ei.5π, .4ei.5π),

(C, S)(.7ei.6π, .4ei.5π, .4ei.7π), (U, S)(.7ei.5π, .4ei.5π, .4ei.7π)},
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types of a country’s development

education

medical science

military

economic growth

effected government

Figure 3. SVCNGS

η2 = {(C,U)(.7ei.5π, .4ei.5π, .3ei.7π), (R,S)(.6ei.5π, .4ei.5π, .4ei.7π)},
η3 = {(US, S)(.7ei.6π, .3ei.5π, .3ei.5π), (R,F )(.6ei.4π, .4ei.3π, .4ei.5π)},
η4 = {(J, F )(.6ei.4π, .4ei.3π, .4ei.5π), (U,F )(.6ei.4π, .4ei.5π, .4ei.3π)},
η5 = {(J,R)(.6ei.5π, .4ei.5π, .4ei.3π), (C,G)(.5ei.6π, .3ei.4π, .3ei.7pi)}.
Therefore, the SVCNGS are represented in Figure-3 is (γ, η1, η2, η3, η4, η5). The country with

the greatest level of development is represented by each edge of the SVCNGS in Figure-3. As

an illustration, the expansion of education, with values for truth-membership, indeterminacy-

membership, and false-membership of .8ei.7π, .4ei.5π and .4ei.5π, respectively, is what con-

tributes to the most powerful and developing relationship between the United States and

China. It should be noted that the United States has the lowest vertex degree of indeterminacy-

membership, false-membership, and the highest vertex degree of truth-membership for the

relation proliferation of education. This shows that the United States has a proliferation of

education and is developing alongside other countries. The purpose of this is article is to

identify the most developed nations in the world by examining the growth and development of

every nation in the world. This opens the way for the growth of all the nations in the world.

5.1. Algorithm

We now present the stepwise for calculation of our method which is used in this application

in the following algorithm.

Algorithm
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step 1: Input the set Q = {q1, q2, ..., qn} of countries (vertices) and put the membership val-

ues γ = (γ1e
iα1 , γ2e

iα2 , γ3e
iα3) of the nodes q′is, i = 1, 2, ..., n, γ1, γ2, γ3 ∈ [0, 1] and

α1, α2, α3 ∈ [0, 2π].

step 2: Input the mem-

bership values ηJ = (η1J(qiqj)e
iβ1J (qiqj), η2J(qiqj)e

iβ2J (qiqj), η3J(qiqj)e
iβ3J (qiqj)) of the

edges qiqj ∈ WJ such that

η1J(qiqj)e
iβ1J (qiqj) ≤ min{γ1(qi), γ1(qj)}eimin{α1(qi),α1(qj)},

η2J(qiqj)e
iβ2J (qiqj) ≤ max{γ2(qi), γ2(qj)}eimax{α2(qi),α2(qj)},

η3J(qiqj)e
iβ3J (qiqj) ≤ max{γ3(qi), γ3(qj)}eimax{α3(qi),α3(qj)}

such that 0 ≤ η1J(qiqj) + η2J(qiqj) + η3J(qiqj) ≤ 3 and β1J(qiqj), β2J(qiqj), β3J(qiqj) ∈
[0, 2π] for all (qiqj) ∈ WJ , J = 1, 2, ..., k.

step 3: Develop mutually disjoint, irreflexive and symmetric relations W1,W2, ...,Wk on the

set of countries M and give the name each relation as exemplifies a certain stage of

growth between those two countries.

step 4: Select a countries as greatest level of development from one countries to other, whose

membership value is superior to that of other nations.

step 5: Construct a graph structure on set of countries with relations, select those pairs of

countries having same kind of the highest level of development as elements of same

relation.

step 6: Write all elements of resulting relations η1, η2, ..., ηk are CNSs on W1,W2, ...,Wk, re-

spectively and (γ, η1, η2, ..., ηk) is a SVCNGS.

step 7: Draw the SVCNGS, each of whose edges indicates the best level of development for

the related Countries.

6. Conclusion and future works

The idea of an SVCNGS has been developed in this study article by the authors. In

comparison to traditional fuzzy sets, the Set SVCNS, an extension of the NS, provides a more

realistic description of uncertainty. Through fuzzy control, it can be used in a variety of

ways. In this research study, the idea of SVCNGS is introduced. Further research is done

on the relationship between the degree of a vertex and the degree of an ηJ − edge in regular

SVCNGS. We also define totally ηJ − edge regular SVCNGS and ηJ − edge regular SVCNGS.

It is described under what conditions ηJ −edge regular SVCNGS and totally ηJ −edge regular

SVCNGS are comparable. We also investigated various ηJ −edge regular and totally ηJ −edge

regular SVCNGS properties using an example. Furthermore, we have presented an application

of SVCNGS in decision-making, that is, identification of best level of development Countries.
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There are several potential areas for future research in this area, if it is possible to use the

adjacency matrix SVCNGS. Further, for developing future solutions, analyze the isomorphic

adjacency matrix, edge regular adjacency matrix, totally edge regular adjacency matrix, etc.

Future research areas include Complex Pythagorean fuzzy graph structures, Complex bipolar

fuzzy graph structures, and Complex bipolar neutrosophic graph structures, all of which are

based on the various properties of the nodes and edges in GS. The following are some of this

work’s limitations:

• This research and related network systems were mostly focused on SVCNGS.

• This approach can only be used when there are symmetric, irreflexive, and mutually

disjoint relations on the CNS.

• The SVCNGS idea is not relevant if the membership values of the characters are

provided in distinct environments.

• Sometimes it may not be possible to get real data.
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Abstract  The introduction of Industry 4.0 has brought about a significant shift in the manufacturing and 

supply chain management sectors, requiring supplier selection procedures to be adjusted to this rapidly 

changing technical environment. This study aims to improve supplier selection in Industry 4.0. This 

selection contains various criteria, so multi-criteria decision-making (MCDM) is used to deal with these 

criteria. The interval-valued neutrosophic sets (IVNSs) are used to deal with uncertainty in the evaluation 

process. The IVNSs are integrated with the TreeSoft Set. The TOPSIS method is an MCDM method used to 

rank the alternatives. The results show that the economic criterion is the most important, and supplier 7 is 

the best. 

Keywords: TreeSoft Set; Interval Valued Neutrosophic Set; Industry 4.0; Supplier Selection; Multi-Criteria 

Decision Making. 

_____________________________________________________________________________________________ 

1. Introduction  

Known as the fourth industrial revolution, or industry 4.0, supply networks have been significantly and 

extensively impacted. This change has profoundly impacted how companies plan, run, and maximize their 

supply chain processes. Fundamentally, Industry 4.0 denotes a paradigm change in how businesses use 

digital technology to improve supply chain responsiveness, productivity, and visibility. Integrating 

cutting-edge technology is one of Industry 4.0's most significant effects on supply chains. They include 

automation, big data analytics, machine learning, artificial intelligence (AI), and the Internet of Things 

(IoT)[1]. 

These advances make it possible to monitor supply chain operations in real-time, which makes data-driven 

decision-making easier. Massive volumes of data are gathered by Internet of Things (IoT) sensors installed 

on assets like machinery, vehicles, and products. These sensors provide essential insights into the 

whereabouts and condition of items at every stage of the supply chain. AI and machine learning algorithms 

may process this data to estimate demand, optimize routes, and even carry out anticipatory equipment 

repairs, lowering expenses and downtime[2], [3]. 
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The idea of a "smart" and networked supply chain ecosystem is another critical component of Industry 4.0's 

effects on supply chains. Businesses may use digital twins to build virtual versions of their supply chains, 

enabling detailed modeling and simulation. This helps companies to find bottlenecks, test different 

scenarios, and create more effective plans. These digital twins may also be utilized for real-time process 

monitoring and control, allowing quick modifications to minimize interruptions or take advantage of 

opportunities. An essential component of supply chains enabled by Industry 4.0 is automation and robots. 

The physical transportation of items is more accurate and efficient when autonomous robots, drones, and 

automated material handling systems are used[4], [5]. 

Warehouses and distribution centers increasingly use automated solutions to expedite order fulfillment 

and lower mistake rates. Furthermore, localized and on-demand production made possible by 3D printing 

in manufacturing might substantially change the supply chain by lowering the need for large stocks and 

long-distance shipping[6], [7]. 

Industry 4.0 encourages openness and cooperation through the supply chain. Blockchain technology builds 

secure, unchangeable ledgers of goods movements and transactions. This improves transparency and 

confidence, especially in sectors like food and pharmaceuticals with intricate, multi-tiered supply chains. 

By providing a common source of truth, stakeholders can guarantee the safety and legitimacy of the 

product. Moreover, Industry 4.0 makes it possible to transition from a linear supply chain model to a more 

sustainable and circular one. Businesses may minimize waste, maximize resource utilization, and lessen 

their environmental impact using data-driven insights[8], [9]. Supply chain strategies are starting to place 

a greater emphasis on sustainability and corporate social responsibility, and Industry 4.0 technologies 

facilitate the achievement of these goals. 

This study used the concept of multi-criteria decision-making[10]–[12] for supplier selection in Industry 4.0 

under an interval-valued neutrosophic set, and TreeSoft set. The MCDM has various applications[13]–[16]. 

It may be inferred from the literature that most studies have focused on quantitative, quantifiable attributes 

when examining supplier selection in Industry 4.0. Although fuzzy set theories (FSs) are useful for handling 

uncertain issues, they are only suitable for handling inconsistent or ambiguous data. As a result, in the 

context of supplier selection in Industry 4.0, sophisticated computational methods like Neutrosophic Sets 

(NSs) [17], a generalization of FSs, and Intuitionistic Fuzzy Sets (IFSs) have gained significance[18], [19]. 

Up to this point, no research has yet addressed the Industry 4.0 challenge of supplier selection utilizing the 

IVNS subset of NSs[20]–[22]. One key feature of Zhang et al.'s IVNS theory is that the membership, non-

membership, and indeterminacy functions are considered as intervals rather than a single precise value. 

Furthermore, resolving intricate scientific and technical issues in IVNS takes into account the viewpoints 

of several experts with varying degrees of training, expertise, and interest. As a result, to evaluate 

performance in a group MCDM issue[23]–[26], the views of many experts must be combined. 

2. Materials and Methods  

This section introduces two parts: the interval-valued neutrosophic sets (IVNSs)[27] and the TreeSoft (TS) 

with IVNSs (TSIVNS).  
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Definition 1. 

The neutrosophic set 𝑘 can be defined with three membership functions as truth, indeterminacy, and falsity 

membership degrees 𝑇𝑘(𝑢𝑖), 𝐼𝑘(𝑢𝑖), 𝑎𝑛𝑑 𝐹𝑘(𝑢𝑖), 

𝑘 = {(𝑇𝑘(𝑢𝑖), 𝐼𝑘(𝑢𝑖), 𝐹𝑘(𝑢𝑖))| 𝑢𝑖 ∈ 𝑈}                                                                                                                                       (1) 

Where 𝑈 refers to the universal numbers including components 𝑢𝑖. 

0− ≤ sup 𝑇𝑘(𝑢𝑖) + sup 𝐼𝑘(𝑢𝑖) + sup 𝐹𝑘(𝑢𝑖) ≤ 3+                                                                                                                 (2) 

Definition 2. 

We can define an IVNS as: 

𝑇𝑘(𝑢𝑖) = [inf 𝑇𝑘(𝑢 ), sup 𝑇𝑘(𝑢 )]                                                                                                                                                 (3) 

𝐼𝑘(𝑢𝑖) = [inf 𝐼𝑘(𝑢 ), sup 𝐼𝑘(𝑢 )]                                                                                                                                                   (4) 

𝐹𝑘(𝑢𝑖) = [inf 𝐹𝑘(𝑢 ), sup 𝐹𝑘(𝑢 )]                                                                                                                                                 (5) 

𝑘 = {[inf 𝑇𝑘(𝑢 ), sup 𝑇𝑘(𝑢 ) ], [inf 𝐼𝑘(𝑢 ), sup 𝐼𝑘(𝑢 ) ], [inf 𝐹𝑘(𝑢 ), sup 𝐹𝑘(𝑢 ) ]| 𝑢 ∈ 𝑈}                                               (6) 

Definition 3. 

We can present some IVNS operations as: 

Let interval-valued neutrosophic numbers as: 𝑘1 =

 [inf 𝑇𝑘1
(𝑢 ), sup 𝑇𝑘1

(𝑢 ) ], [inf 𝐼𝑘1
(𝑢 ), sup 𝐼𝑘1

(𝑢 ) ], [inf 𝐹𝑘1
(𝑢 ), sup 𝐹𝑘1

(𝑢 ) ] and 𝑘2 =

 [inf 𝑇𝑘2
(𝑢 ), sup 𝑇𝑘2

(𝑢 ) ], [inf 𝐼𝑘2
(𝑢 ), sup 𝐼𝑘2

(𝑢 ) ], [inf 𝐹𝑘2
(𝑢 ), sup 𝐹𝑘2

(𝑢 ) ] 

𝑘1 + 𝑘2 =

[
 
 
 
 [

inf 𝑇𝑘1
(𝑢) + inf 𝑇𝑘2

(𝑢) − inf 𝑇𝑘1
(𝑢) ∙ inf 𝑇𝑘2

(𝑢) ,

sup 𝑇𝑘1
(𝑢 ) + sup𝑇𝑘2

(𝑢 ) − sup𝑇𝑘1
(𝑢 ) ∙ sup 𝑇𝑘2

(𝑢 )
] ,

[inf 𝐼𝑘1
(𝑢 ) ∙ inf 𝐼𝑘2

(𝑢 ), sup 𝐼𝑘1
(𝑢 ) ∙ sup 𝐼𝑘2

(𝑢 ) ],

[inf 𝐹𝑘1
(𝑢 ) ∙ inf 𝐹𝑘2

(𝑢 ), sup 𝐹𝑘1
(𝑢 ) ∙ sup 𝐹𝑘2

(𝑢 ) ] ]
 
 
 
 

                                                                             (7) 

𝑘1 ∙ 𝑘2 =

[
 
 
 
 
 

[inf 𝑇𝑘1
(𝑢) ∙ inf 𝑇𝑘2

(𝑢), sup 𝑇𝑘1
(𝑢 ) ∙ sup 𝑇𝑘2

(𝑢 )]

[
inf 𝐼𝑘1

(𝑢) + inf 𝐼𝑘2
(𝑢) − inf 𝐼𝑘1

(𝑢) ∙ inf 𝐼𝑘2
(𝑢) ,

sup 𝐼𝑘1
(𝑢 ) + sup 𝐼𝑘2

(𝑢 ) − sup 𝐼𝑘1
(𝑢 ) ∙ sup 𝐼𝑘2

(𝑢 )
] ,

[
inf 𝐹𝑘1

(𝑢) + inf 𝐹𝑘2
(𝑢) − inf 𝐹𝑘1

(𝑢) ∙ inf 𝐹𝑘2
(𝑢) ,

sup 𝐹𝑘1
(𝑢 ) + sup𝐹𝑘2

(𝑢 ) − sup𝐹𝑘1
(𝑢 ) ∙ sup 𝐹𝑘2

(𝑢 )
]
]
 
 
 
 
 

                                                                                (8) 

𝑠 ∙ 𝑘1 =

[
 
 
 [1 − (1 − inf 𝑇𝑘1

(𝑢))
𝑠
, 1 − (1 − sup𝑇𝑘1

(𝑢))
𝑠
 ],

[(inf 𝐼𝑘1
(𝑢))

𝑠
, (sup 𝐼𝑘1

(𝑢))
𝑠
  ],

[(inf 𝐹𝑘1
(𝑢))

𝑠
, (sup 𝐹𝑘1

(𝑢))
𝑠
] ]

 
 
 
                                                                                                 (9) 

𝑘1
𝑠 =

[
 
 
 [(inf 𝑇𝑘1

(𝑢))
𝑠
, (sup 𝑇𝑘1

(𝑢))
𝑠
],

[1 − (1 − inf 𝐼𝑘1
(𝑢))

𝑠
, 1 − (1 − sup 𝐼𝑘1

(𝑢))
𝑠
 ],

[1 − (1 − inf 𝐹𝑘1
(𝑢))

𝑠
, 1 − (1 − sup𝐹𝑘1

(𝑢))
𝑠
 ]]
 
 
 
                                                                                                    (10) 
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2.1 TreeSoft [28] 

Let U be a universe disclosure and H a non-empty subset of U, with 𝑃(𝐻) 𝑏𝑒 𝑎 𝑝𝑜𝑤𝑒𝑟𝑠𝑒𝑡 𝑜𝑓 𝐻. 

Let 𝑇𝑆𝑅 be a set of attributes of the problem (criteria), 

𝑇𝑆𝑅 = {𝑇𝑆𝑅1, 𝑇𝑆𝑅2, … , 𝑇𝑆𝑅n}, 𝑛 ≥ 1                                                                                                                                     (11) 

Where 𝑇𝑆𝑅1, 𝑇𝑆𝑅2, … , 𝑇𝑆𝑅n are criteria of the first level of the tree. 

Each attribute 𝑇𝑆𝑅1, 1 ≤ 𝑖 ≤ 𝑛, 𝑖𝑠 𝑓𝑜𝑟𝑚𝑒𝑑 𝑏𝑦 𝑠𝑢𝑏 − 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠: 

𝑇𝑆𝑅1 = {𝑇𝑆𝑅1,1, 𝑇𝑆𝑅1,2. … , }  

𝑇𝑆𝑅2 = {𝑇𝑆𝑅2,1, 𝑇𝑆𝑅2,2. … , }  

. 

. 

𝑇𝑆𝑅n = {𝑇𝑆𝑅n,1, 𝑇𝑆𝑅n,2. … , }  

Where 𝑇𝑆𝑅i,j are sub-attributes. 

 The TreeSoft set can be formed by: 

𝐹: 𝑃(𝑇𝑟𝑒𝑒(𝑇𝑆𝑅)) → 𝑃(𝐻)                                                                                                                                                        (12) 

𝑇𝑟𝑒𝑒(𝑇𝑆𝑅) is the set of all nodes and leaves from level 1 to level m and 𝑃(𝑇𝑟𝑒𝑒(𝑇𝑆𝑅)) is the power set of 

the 𝑇𝑟𝑒𝑒(𝑇𝑆𝑅). 

𝑇𝑟𝑒𝑒(𝑇𝑆𝑅) = {𝑇𝑆𝑅𝑖| 𝑖1 = 1,2,3, … } ∪ {𝑇𝑆𝑅𝑖| 𝑖1, 𝑖2 = 1,2,3, … } ∪ {𝑇𝑆𝑅𝑖| 𝑖1, 𝑖2, 𝑖3 = 1,2,3, … } ∪ …

∪ {𝑇𝑆𝑅𝑖|𝑖1, 𝑖2, … 𝑖𝑚 = 1,2,3, … }                                                                                                           (13) 
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Figure 1. The steps of the TSIVNS TOPSIS method. 

2.2 TSIVNS TOPSIS Method 

This part introduces the TOPSIS method[29]–[31] with the TSIVNS. Figure 1 shows the research framework: 

Step 1. Build a tree and define the nodes. 

The tree has more than one level, in the first level, the main criteria and introduced as 𝑇𝑆𝑅1, 𝑇𝑆𝑅2 … , 𝑇𝑆𝑅𝑛 

In the second level, the sub-criteria are introduced as 𝑇𝑆𝑅1,1, 𝑇𝑆𝑅1,2, …. And 𝑇𝑆𝑅2,1, 𝑇𝑆𝑅2,2, …. 

Step 2. Define the problem with a set of criteria. 

The main, and sub-criteria are defined in this step by problem definition. 

Step 3. Build the decision matrix[27]. 

The decision matrix is built based on the IVNSs 

Build a tree and define the nodes 

Define the problem with a set of criteria 

Build the decision matrix 

Convert the IVNNs to the crisp values 

Aggregate the decision matrices 

Compute the criteria weights 

Normalize the decision matrix 

Compute the weighted normalized decision matrix 

Compute the positive ideal solution and negative ideal 
solution

Compute the distance from the positive and negative 
ideal solutions

Compute the closeness value 

Rank the alternatives 
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𝐴 =  

(

 
 
 
 
 
 
 

[
 
 
 
 
[inf 𝑇𝑘11

(𝑢) , sup 𝑇𝑘11
(𝑢)],

[[inf 𝐼𝑘11
(𝑢) , sup 𝐼𝑘11

(𝑢)]] ,

[[inf 𝐹𝑘11
(𝑢) , sup 𝐹𝑘11

(𝑢)]]]
 
 
 
 

⋯

[
 
 
 
 
[inf 𝑇𝑘1𝑛

(𝑢) , sup 𝑇𝑘1𝑛
(𝑢)],

[[inf 𝐼𝑘1𝑛
(𝑢) , sup 𝐼𝑘1𝑛

(𝑢)]] ,

[[inf 𝐹𝑘1𝑛
(𝑢) , sup 𝐹𝑘1𝑛

(𝑢)]]]
 
 
 
 

⋮ ⋱ ⋮

[
 
 
 
 
[inf 𝑇𝑘𝑚1

(𝑢) , sup 𝑇𝑘𝑚1
(𝑢)],

[[inf 𝐼𝑘𝑚1
(𝑢) , sup 𝐼𝑘𝑚1

(𝑢)]] ,

[[inf 𝐹𝑘𝑚1
(𝑢) , sup 𝐹𝑘𝑚1

(𝑢)]]]
 
 
 
 

⋯

[
 
 
 
 
[inf 𝑇𝑘𝑚𝑛

(𝑢) , sup 𝑇𝑘𝑚𝑛
(𝑢)],

[[inf 𝐼𝑘𝑚𝑛
(𝑢) , sup 𝐼𝑘𝑚𝑛

(𝑢)]] ,

[[inf 𝐹𝑘𝑚𝑛
(𝑢) , sup 𝐹𝑘𝑚𝑛

(𝑢)]]]
 
 
 
 

)

 
 
 
 
 
 
 

                                                           (13) 

Step 4. Convert the IVNNs to the crisp values[27]. 

The IVNNs are converted by the score function to crisp values, then the decision matrix as: 

𝐴 =  (

𝑎11 ⋯ 𝑎1𝑛

⋮ ⋱ ⋮
𝑎𝑚1 ⋯ 𝑎𝑚𝑛

)                                                                                                                                                               (14) 

 Step 5. Aggregate the decision matrices 

The decision matrices are combined using the average method. 

Step 6. Compute the criteria weights. 

The criteria weights are computed by the average method. 

Step 7. Normalize the decision matrix. 

𝑇𝑖𝑗 =
𝑎𝑖𝑗

√∑ 𝑎𝑖𝑗
2𝑛

𝑖=1

                                                                                                                                                                             (15) 

Step 8. Compute the weighted normalized decision matrix 

𝑅𝑖𝑗 = 𝑇𝑖𝑗 ∙ 𝑤𝑗                                                                                                                                                                                    (16) 

Step 9. Compute the positive ideal solution and negative ideal solution. 

𝑃𝑗
+ = {

max
𝑖=1,…,𝑛

𝑟𝑖𝑗  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

min
𝑖=1,…,𝑛

𝑟𝑖𝑗  𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎
.

}                                                                                                                                    (17) 

𝑃𝑗
− = {

min
𝑖=1,…,𝑛

𝑟𝑖𝑗  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

max
𝑖=1,…,𝑛

𝑟𝑖𝑗  𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎
.

}                                                                                                                                    (18) 

Step 10. Compute the distance between the positive and negative ideal solutions. 

𝑑+(𝑎𝑖) =  √∑(𝑟𝑖𝑘 − 𝑝𝑗
+)

𝑚

𝑗=1

2

                                                                                                                                                       (19) 
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𝑑−(𝑎𝑖) =  √∑(𝑟𝑖𝑘 − 𝑝𝑗
−)

𝑚

𝑗=1

2

                                                                                                                                                      (20) 

Step 11. Compute the closeness value. 

𝑆𝑖 =
𝑑−(𝑎𝑖)

𝑑−(𝑎𝑖) + 𝑑+(𝑎𝑖)
                                                                                                                                                                  (21) 

Step 12. Rank the alternatives. 

3. Application  

This section introduces the results of TRIVNS with the TOPSIS method to select the best supplier in 

industry 4.0. There are three experts are invited to evaluate the criteria and alternatives in this study. 

Step 1. Build a tree and define the nodes. 

We built the tree nodes with one level with ten nodes. The ten nodes present the main criteria in this study 

as shown in Figure 2. 

 

Figure 2. Level 1 of nodes. 

Step 2. Define the problem with a set of criteria. 

There are ten criteria used in this study. 

Step 3. Build the decision matrix. 

We built three decision matrices by the opinions of experts in Eq. (13) as shown in Table 1. 

Table 1. Three decision matrices by IVNNs. 
 TRS1 TRS2 TRS3 TRS4 TRS5 TRS6 TRS7 TRS8 TRS9 TRS10 

TRA1 ([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.7,0.9], 

[0.2,0.3], 

[0.1,0.2]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

TRA2 ([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.4,0.6], 

[0.4,0.5], 

[0.3,0.4]) 

([0.7,0.9], 

[0.2,0.3], 

[0.1,0.2]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 
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TRA3 ([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.7,0.9], 

[0.2,0.3], 

[0.1,0.2]) 

([0.7,0.9], 

[0.2,0.3], 

[0.1,0.2]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.4,0.6], 

[0.4,0.5], 

[0.3,0.4]) 

([0.4,0.6], 

[0.4,0.5], 

[0.3,0.4]) 

([0.4,0.6], 

[0.4,0.5], 

[0.3,0.4]) 

TRA4 ([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.7,0.9], 

[0.2,0.3], 

[0.1,0.2]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.7,0.9], 

[0.2,0.3], 

[0.1,0.2]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

TRA5 ([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.7,0.9], 

[0.2,0.3], 

[0.1,0.2]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.7,0.9], 

[0.2,0.3], 

[0.1,0.2]) 

([0.7,0.9], 

[0.2,0.3], 

[0.1,0.2]) 

TRA6 ([0.7,0.9], 

[0.2,0.3], 

[0.1,0.2]) 

([0.7,0.9], 

[0.2,0.3], 

[0.1,0.2]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.7,0.9], 

[0.2,0.3], 

[0.1,0.2]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.4,0.6], 

[0.4,0.5], 

[0.3,0.4]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

TRA7 ([0.4,0.6], 

[0.4,0.5], 

[0.3,0.4]) 

([0.7,0.9], 

[0.2,0.3], 

[0.1,0.2]) 

([0.7,0.9], 

[0.2,0.3], 

[0.1,0.2]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.4,0.6], 

[0.4,0.5], 

[0.3,0.4]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.4,0.6], 

[0.4,0.5], 

[0.3,0.4]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

TRA8 ([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.7,0.9], 

[0.2,0.3], 

[0.1,0.2]) 

([0.7,0.9], 

[0.2,0.3], 

[0.1,0.2]) 

([0.7,0.9], 

[0.2,0.3], 

[0.1,0.2]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

TRA9 ([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.4,0.6], 

[0.4,0.5], 

[0.3,0.4]) 

([0.4,0.6], 

[0.4,0.5], 

[0.3,0.4]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.4,0.6], 

[0.4,0.5], 

[0.3,0.4]) 

TRA10 ([0.7,0.9], 

[0.2,0.3], 

[0.1,0.2]) 

([0.7,0.9], 

[0.2,0.3], 

[0.1,0.2]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.4,0.6], 

[0.4,0.5], 

[0.3,0.4]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.7,0.9], 

[0.2,0.3], 

[0.1,0.2]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

 TRS1 TRS2 TRS3 TRS4 TRS5 TRS6 TRS7 TRS8 TRS9 TRS10 

TRA1 ([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.7,0.9], 

[0.2,0.3], 

[0.1,0.2]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

TRA2 ([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.4,0.6], 

[0.4,0.5], 

[0.3,0.4]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

TRA3 ([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.7,0.9], 

[0.2,0.3], 

[0.1,0.2]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.4,0.6], 

[0.4,0.5], 

[0.3,0.4]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 
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TRA4 ([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

TRA5 ([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.7,0.9], 

[0.2,0.3], 

[0.1,0.2]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

TRA6 ([0.7,0.9], 

[0.2,0.3], 

[0.1,0.2]) 

([0.7,0.9], 

[0.2,0.3], 

[0.1,0.2]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

TRA7 ([0.4,0.6], 

[0.4,0.5], 

[0.3,0.4]) 

([0.7,0.9], 

[0.2,0.3], 

[0.1,0.2]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

TRA8 ([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.7,0.9], 

[0.2,0.3], 

[0.1,0.2]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

TRA9 ([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.4,0.6], 

[0.4,0.5], 

[0.3,0.4]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

TRA10 ([0.7,0.9], 

[0.2,0.3], 

[0.1,0.2]) 

([0.7,0.9], 

[0.2,0.3], 

[0.1,0.2]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.4,0.6], 

[0.4,0.5], 

[0.3,0.4]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.7,0.9], 

[0.2,0.3], 

[0.1,0.2]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

 TRS1 TRS2 TRS3 TRS4 TRS5 TRS6 TRS7 TRS8 TRS9 TRS10 

TRA1 ([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

TRA2 ([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.4,0.6], 

[0.4,0.5], 

[0.3,0.4]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

TRA3 ([0.4,0.6], 

[0.4,0.5], 

[0.3,0.4]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.4,0.6], 

[0.4,0.5], 

[0.3,0.4]) 

([0.7,0.9], 

[0.2,0.3], 

[0.1,0.2]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.4,0.6], 

[0.4,0.5], 

[0.3,0.4]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.4,0.6], 

[0.4,0.5], 

[0.3,0.4]) 

TRA4 ([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.7,0.9], 

[0.2,0.3], 

[0.1,0.2]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.4,0.6], 

[0.4,0.5], 

[0.3,0.4]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.4,0.6], 

[0.4,0.5], 

[0.3,0.4]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 
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TRA5 ([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.4,0.6], 

[0.4,0.5], 

[0.3,0.4]) 

([0.4,0.6], 

[0.4,0.5], 

[0.3,0.4]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.4,0.6], 

[0.4,0.5], 

[0.3,0.4]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.7,0.9], 

[0.2,0.3], 

[0.1,0.2]) 

TRA6 ([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.7,0.9], 

[0.2,0.3], 

[0.1,0.2]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

TRA7 ([0.4,0.6], 

[0.4,0.5], 

[0.3,0.4]) 

([0.7,0.9], 

[0.2,0.3], 

[0.1,0.2]) 

([0.7,0.9], 

[0.2,0.3], 

[0.1,0.2]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.4,0.6], 

[0.4,0.5], 

[0.3,0.4]) 

([0.4,0.6], 

[0.4,0.5], 

[0.3,0.4]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.4,0.6], 

[0.4,0.5], 

[0.3,0.4]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

TRA8 ([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.7,0.9], 

[0.2,0.3], 

[0.1,0.2]) 

([0.7,0.9], 

[0.2,0.3], 

[0.1,0.2]) 

([0.7,0.9], 

[0.2,0.3], 

[0.1,0.2]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

TRA9 ([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.4,0.6], 

[0.4,0.5], 

[0.3,0.4]) 

([0.4,0.6], 

[0.4,0.5], 

[0.3,0.4]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.4,0.6], 

[0.4,0.5], 

[0.3,0.4]) 

TRA10 ([0.7,0.9], 

[0.2,0.3], 

[0.1,0.2]) 

([0.7,0.9], 

[0.2,0.3], 

[0.1,0.2]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.1,0.2], 

[0.5,0.6], 

[0.7,0.8]) 

([0.2,0.4], 

[0.5,0.6], 

[0.5,0.6]) 

([0.4,0.6], 

[0.4,0.5], 

[0.3,0.4]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

([0.7,0.9], 

[0.2,0.3], 

[0.1,0.2]) 

([0.6,0.8], 

[0.3,0.4], 

[0.2,0.4]) 

Step 4. Convert the IVNNs to the crisp values. 

The IVNNs are converted by the score function to crisp values, then the decision matrix as: 

Step 5. Aggregate the decision matrices 

Step 6. Compute the criteria weights as shown in Figure 3. The economy has the highest importance and 

society has the lowest importance. 

 
Figure 3. The criteria weights. 
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The criteria weights are computed by the average method. 

Step 7. Normalize the decision matrix by using Eq. (15) as shown in Table 2. 

Table 2. Normalization decision matrix. 

 TRS1 TRS2 TRS3 TRS4 TRS5 TRS6 TRS7 TRS8 TRS9 TRS10 

TRA1 0.165528 0.185954 0.444651 0.16747 0.182788 0.378925 0.382012 0.357618 0.143203 0.207747 

TRA2 0.340355 0.143451 0.199523 0.182524 0.141008 0.274478 0.248961 0.218545 0.185633 0.160262 

TRA3 0.205515 0.262107 0.199523 0.446902 0.450877 0.309294 0.298753 0.316227 0.247511 0.276996 

TRA4 0.435208 0.143451 0.16912 0.440316 0.362095 0.296339 0.284061 0.23179 0.375687 0.46298 

TRA5 0.195286 0.376336 0.322087 0.182524 0.3325 0.281765 0.311814 0.245035 0.457896 0.411538 

TRA6 0.386852 0.458688 0.266031 0.487358 0.318574 0.34411 0.171416 0.302982 0.323532 0.261168 

TRA7 0.315247 0.480825 0.492157 0.344349 0.220216 0.226707 0.382012 0.38742 0.337676 0.160262 

TRA8 0.245502 0.143451 0.444651 0.27849 0.407356 0.419409 0.443232 0.344373 0.17149 0.292825 

TRA9 0.150649 0.143451 0.199523 0.197578 0.407356 0.378925 0.276714 0.316227 0.233368 0.276996 

TRA10 0.504953 0.480825 0.199523 0.197578 0.141008 0.170031 0.276714 0.38742 0.479995 0.46298 

Step 8. Compute the weighted normalized decision matrix by using Eq. (16) as shown in Table 3. 

Table 3. Weighted normalized decision matrix. 

 TRS1 TRS2 TRS3 TRS4 TRS5 TRS6 TRS7 TRS8 TRS9 TRS10 

TRA1 0.013631 0.011252 0.041053 0.015932 0.017389 0.050232 0.058744 0.050196 0.010586 0.015357 

TRA2 0.028027 0.00868 0.018421 0.017364 0.013415 0.036386 0.038284 0.030675 0.013723 0.011847 

TRA3 0.016923 0.015861 0.018421 0.042516 0.042894 0.041001 0.045941 0.044386 0.018297 0.020477 

TRA4 0.035837 0.00868 0.015614 0.041889 0.034448 0.039284 0.043681 0.032534 0.027772 0.034225 

TRA5 0.016081 0.022773 0.029737 0.017364 0.031632 0.037352 0.047949 0.034394 0.033849 0.030422 

TRA6 0.031856 0.027756 0.024562 0.046364 0.030307 0.045617 0.026359 0.042527 0.023917 0.019307 

TRA7 0.025959 0.029095 0.045439 0.032759 0.02095 0.030053 0.058744 0.054379 0.024962 0.011847 

TRA8 0.020216 0.00868 0.041053 0.026494 0.038753 0.055598 0.068158 0.048337 0.012677 0.021647 

TRA9 0.012405 0.00868 0.018421 0.018796 0.038753 0.050232 0.042551 0.044386 0.017251 0.020477 

TRA10 0.041581 0.029095 0.018421 0.018796 0.013415 0.02254 0.042551 0.054379 0.035483 0.034225 

 

Step 9. Compute the positive ideal solution and negative ideal solution by using Eqs. (17 and 18). 

Step 10. Compute the distance from the positive and negative ideal solutions by using Eqs. (19 and 20). 
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Step 11. Compute the closeness value by using Eq. (21) as shown in Figure 4. 

Step 12. Rank the alternatives. Alternative 7 is the best and alternative 2 is the worst. 

 
Figure 4. The closeness values. 

4. Conclusions  

This paper used the MCDM methodology for the supplier section in Industry 4.0. This study used the 

TOPSIS method as an MCDM method for ranking alternatives and used the best one. The TOPSIS method 

is integrated with the IVNSs and TreeSoft Set. Three experts are invited to evaluate the criteria and options 

in this study. This study used ten criteria and ten suppliers. The decision matrices are built by the opinions 

of experts. Then, we use the IVNNs to evaluate the requirements and alternatives. The IVNNs are 

converted to the crisp values. The results show that the economic criterion has the highest weight, and the 

social criterion has the lowest. Alternative 7 is the best, and alternative 2 is the worst. 
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Abstract: In the present script, we explain the neutrosophic  -continuous function in the 

neutrosophic topological spaces. We analyze their behaviour; study the various relations and 

properties existing among them.  

Further we like to extend the study to neutrosophic  -open function,  -closed function, 

neutrosophic  - irresolute functions and neutrosophic  - homeomorphism in the 

neutrosophic topological spaces. The relationship among them can be studied in detail. The 

neutrosophic -continuous function, neutrosophic -open(closed) function, 

neutrosophic -limit point, neutrosophic -derived set and neutrosophic -neighbourhood 

point are explained and utilized to obtain various remarkable properties. They are explored through 

the specified examples. 

Key Words: neutrosophic  -open set (closed set), neutrosophic -open set (closed set), 

neutrosophic  -continuous function, neutrosophic  -open(closed) function, neutrosophic 

 -homeomorphism. 
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The following notations have been used throught this paper: neut- neutrosophic, neut topo spa- 

neutrosophic topological space, neutro- neutrosophy, topo spa- topological space, se-set, 

topol-topology, ses-sets, spa-space, spas-spaces, fuz-fuzzy 

              Many philosophies have been raised for vagueness counting the argument of 

probability, the approach of fuz ses, the ideology of intuitionistic fuz ses, the idea of rough ses, and 

so on. Even though numerous novel approaches have been extended as a development of these 

concepts there are still various problems, main complications arise due to the insufficiency of 

parameters. 

 

               Lugojan [11] studied the generalized topology during the year 1982.The concept of 

fuz topo spas was dealt by Chang [5]. Neut se is a generalization of a classic se, a fuz se and a 

Intuitionstic fuzzy se. The word Neutro means skill on neutrals. Neut method is derived from Fuzzy 

logic or Intuitionstic fuz logic. In 1965, Zadeh [21] familiarized the fuz se and in 1983 Atanassov [2-4] 

presented the Intuitionstic fuz se. A novel division of the idea named Neutro was introduced by 

Smarandache [15-18] in 1999 by totaling a self-governing indeterminacy-affiliation function.  

                In a neut set, the indeterminacy is calibrated obviously. The certainty-affiliation 

function, indeterminacy- affiliation function, and erroneous- affiliation function   is ultimately 

self-regulating. Wang [19] described the lone valued neut set and then offered the se-formularized 

process and a variety of resources of lone valued neu ses. 

               Salama [12-14], initiated neut topo spas which was a generality of Intuitionistic fuz 

topo spa exposed by Coker [6] also a neut se as well the degree of membership, the degree of 

indeterminacy then the degree of non- membership of respective element. 

   N. Kalaivani and G. Sai Sundara Krishnan [9] introduced the -open sets, - Ti 

spaces with the help of α-open sets and -open sets. Their properties were studied. They also 

introduced -continuous functions, -irresolute functions, [8] -open(closed) functions 

[7] and studied them in detail. 

   To fill up the gap existing in the neu theory, now we want to introduce -open ses, 

neu -open ses, Ti spas, - Ti spas, -continuous functions and -open (closed) 

functions in neutrosophic Topological Spaces. 

In our earlier article [10] the insight of neu -open ses, neu -open ses, that are created through neu 

-open ses are deliberated besides few of their fundamental properties were discovered. The 
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connection among these neu Ti spas in addition neu - Ti spas were incarnated over drawings 

besides evaluated their behaviour. 

              In third chapter we investigate neut -continuous functions and analyze their 

properties. The neut -open functions, neut -closed functions and neut 

-homeomorphism are introduced and analyzed in the fourth, fifth and sixth chapters 

respectively. The rapport amongst them is examined in the sixth chapter. 

            All over this study, consider that designate the neut topo spa and 

be an operation on . 

 

2.Preliminaries 

The theory of neut ses which is a tool for dealing with uncertainties was exposed by Smarandache 

[15-18]. Salama [12-14], Alblowi [1] familiarized the thought of neut topo spas. 

The neut se, its complement, inclusion relation, union, intersection, neut topology, neut open set, 

neut closed se were introduced by Salama et al [12-14]. The neut functions was revealed by Turnali 

and Coker [20]. 

Definition 2.1.[10] Let be a neut topo spa. A maneuver  on the topo  is a charting 

from into the power set  of  such that  for each  .  designates the 

charge of  at   . It is symbolized by :       

Definition 2.2. [10] A neut subse of a neut topo spac is supposed to remain a neut γ-open se 

contingent upon for individual , there prevails a neut open se ,aforesaid that   along 

with   designates the set of all neut  -open ses.  
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Definition 2.3. [10] A neut subse of a neut topo spa is thought to remain a neut γ-closed se in 

  in case that   is a neut   -open se   in  . 

Definition 2.4. [10] An operation  is thought to be neut open if, for every single neut open 

neighbourhood  of , there occurs a neut -open se   akin that  besides . 

Definition 2.5.[10] Agree   be a neut topo spa in addition  be a neut   subse 

of  . Formerly neut  -interior of  is the congregation of entire neut  -open ses 

encompassed in  in addition it is indicated through -int ( ). 

-int ( ) = :  is a neut   -open se then . 

Definition 2.6. [10] Agree   be a neut topo spa also  be a neut subse of  . 

Formerly neut  -closure of  is the intersection of entire neut  -closed ses contained in  in 

addition it is symbolized by means of -int ( ). 

-cl ( ) = :  is a neut  -closed se besides . 

Definition 2.7. [10] A spa  is termed a neut spa if for each distinct point  

there lies a neut  -open se  alike that    and    or    besides   . 

Definition 2.8. [10] A spa  is labeled a neut spa if for each distinct point  

there endures neut  -open ses containing  respectively aforesaid that    and  

 . 

Definition 2.9. [10] A spa is termed a neut spa if for each distinct point  there 

occurs a neut  -open ses  like that   ,   and    
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Definition 2.10. [10] Let be a neut top spa. Formerly a neut subse member  of is 

aforesaid to be a neut  generalized closed se (ne -closed set) if   -cl ( )     

whensoever besides  is a neut  -open se in  . 

Remark 2.1. [10] After the definition 4.4, Each one neut  -closed se in  is a neut  

generalized closed se. Yet, the conflicting statement need not be exact. 

Definition 2.11. [10] A neut top spa  is labeled as a neut  spa in case that each single 

neut  generalized -closed se belonging to the  is a neut   -closed se. 

Definition 2.12. [10] A neut conventional se  in a neut top spa  is concluded as a neut 

 -open se contingent upon   -int(  -cl  -int ( ))). 

Theorem 2.1. [10] Let  be a neut top spa and  be the group of neut  - open 

ses in .Formerly is also a neut  - open se. 

Definition 2.13. [10] Agree  be a neut top spa in addition  be a subse of . At that 

time  is supposed to be neut - closed se on condition that  −  is a neut - open se. 

Definition 2.14. [10] A subse member  of  is noted to be a neut  - closed se  in the event 

that  −  is a neut   -open se, which is unvaryingly, Agree be a neut top spa then 

 - an activity on  in addition  be a subse member of . Formerly  is a neut    - closed 

se subject to -  ( - - )). 

Definition 2.15. [10] Endorse as a top spa along with  as a neut subse of  . 

Then neut -interior of  is the unification of all neut  -open ses accommodated within  

and it is symbolized by - . 

-int(  = ∪ {  :  is a neut  - open se and  ⊆  }. 

Definition 2.16. [10] Confer to be a top spa along with be a neut subse of  . At 

that time,  -closure of  is the intersection of all neut   -closed ses consisting of and it is 

indicated by - . 

-  =  { :  is a neut  -closed se and   }. 

Remark 2.2. [10] (i) If  is a neut subse of . Then -  is a neutrosophic - 

closed se containing . 

 (ii)  is a neut -closed se in the event - ( ) =  . 

Definition 2.17. [10] A top spa  is entitled a neut T0 spa if for each different points ,  

  nearby exists a   - open set,  like that p   and  or q   besides p  . 

Definition 2.18. [10]A top spa is termed a neut  T1 spa if for each dissimilar points p , 

q   nearby exists neut  -open ses, ,  enclosing p and q  commonly alike that    
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and   . 

Definition 2.19. [10] A top spa is described a neut  T2 spa if for each distinctive points , 

   nearby exists neut  -open ses,  ,  akin that   ,    and   = . 

Definition 2.20. [10] Agree be a top spa. Then a neut subse member  of   is 

forenamed to be neut g- closed se if  -cl (   whenever   and  is a neut  - 

closed se in . 

Remark 2.3. [10] After the definition 4.4 explanation, Individual neut  -closed conventional se of 

 is a neut g-closed se. Nevertheless, the antipode need not be appropriate. 

Definition 2.21. [10] A top spa is termed as a neut  T ½ spa supposing that individual 

neut  g- closed se of is a neut - closed se. 

Theorem 2.2. [10] The top spa is a neut  T ½ spa on condition that for every single  ∈ 

,  is a neut - closed se or a neut - open se in . 

Theorem 2.3. [10] Agree  be a top spa also   . At that time the succeeding 

statements hold: 

(i) -  (  − ) =  − -   

(ii) - (  − ) =  − -int(  

Theorem 2.4. [10] Accredit be a top spa. Supposing that a neut subse member  of  is 

assumed to be a neut  g- closed se, thereupon -
 

 −  does not enclose a non-void 

neut - closed se. 

Theorem 2.5. [10] The top spa is a neut  T ½ spa on condition that for every single  ∈ 

,  is a neut - closed se or a neut - open se in . 

3.Neutrosophic -continuous functions  

In this chapter we investigate neutrosophic -continuous functions as well analyze their 

properties. 

3.1.(i) Definition A function  is aforesaid to be a neut   -continuous 

function given for respective - open set  of , the contrary image   is a neut  - 

open se in .  

(ii) Definition A function is supposed to be a neut -continuous 

function with the condition that the converse appearance of apiece neut -open se in  
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abides to be a neut -open se of . 

(iii) Definition A function is aforesaid to be a neut -continuous 

function in case that the reverse icon of every single neut -open se of  continues to be a 

neut -open se of  

3.2. Example Given ,  

,  were  

, 

, 

 

 
, 

, 

 

 

Define an operation  on  such that  

Then  . 

Define an operation  on  such that  

Then  

 Define as ( ) = , (  ) =  and ( ) =  Formerly the overturned 

copy of restricted neut -open se acts as a neut - open se beneath .Thence  endures to be a 

neut - continuous function. 

The subsequent 3.3. Remark and 3.4. Remark display that the thought of neut -continuous 

functions and neut  -irresolute functions are self-governing nevertheless after  is a 

neutrosophic  -regular spa and is a neut -regular spa together the thoughts concur. 

3.3. Remark The insights of neut -continuous functions besides neut  -irresolute 

functions are self-regulating. 

Given ,  , and  
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 were  

, 

, 

, 

 

 
, 

, 

 

 

Define an operation  on  such that  

Then  . 

Define an operation  on  such that  

Define as ( ) = , (  ) =  and ( ) =  

Formerly is a neut irresolute function. But , is not a neut -open 

se under . Henceforth   is not a neut -continuous function. 

3.4. Remark If is a neut -regular spa and  is a neut - regular spa, at that moment the 

conception of neut - irresoluteness in addition neut -continuity concur. 

3.5. Definition A neut member   of  is supposed to be a neut -neighbourhood of a point 

 if there befalls a neut - open se like that . 

3.6. Theorem A function  is a neut -continuous function designed 

for each r of , the opposing statement of each neut -neighbourhood of (r) is a neut 

-neighbourhood of r. 
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Proof.  Assume r in addition  be a neut -neighbourhood of (r). By the assertion of the 

3.5. Definition there ensues a  such that (r) . This deduces that r 

( ) . Since is a neut -continuous function, ( ) . Henceforward 

( ) is a neut -neighbourhood of r.  

Conversely, let , = ( ) and r . Later by the announcement of the 3.5. Definition, 

there arises a set similar that r . This supposes that .  Through the 

assertion of the 2.1. Theorem,  is a neut -open se of ,. Accordingly,  is a 

neut -continuous function. 

3.7. Theorem  A function is a neut -continuous function provided 

that for separate point m of  besides respective neutrosophic -neighbourhood of 

(m),there is a neutrosophic -neighbourhood  of m alike that ( ) . 

Proof.  Let n  also  acts as a neut - neighbourhood of (n). Later in there lies a 

set such that (n) . It follows that m ( ) ( ). By 

hypothesis, ( ) . Let  = ( ). Then it trails that  is a neut -neighbourhood 

of n and ( ) = ( ( )) .  

Conversely, let  . Let  = ( ). Let n . Formerly (n) . Thus  is a 

neut - neighbourhood of (n) and hence there exists a neut - neighbourhood of n akin that 

( ) .Accordingly it trails that n (  ( )) ( ) = . Since is a 

neut -neighbourhood of n, which implies that there exists a like that n . 
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This implies that   =  . Through 2.1. Theorem Statement,  is a neut -open se of  . 

Consequently  is a neut - continuous function. 

3.8. Theorem Accredit  remain a function. Formerly the ensuing 

assertions are comparable: 

(i) is a neut - continuous function; 

(ii) ( -cl ( )) -cl ( (  )) holds for every member belonging to ; 

(iii) For respective single neut -closed se  of , is a neut -closed se belonging to . 

Validation.  (i)  (ii) Given s (  -cl ( )) besides be a neut -open se comprising s. By 

dint of the 3.7. Theorem, at this juncture ensues a point y  along with a neut -open se 

comparable that y with  (y) = s and ( ) . Subsequently y -cl ( ),  

besides henceforth ( ) ( ) ( ) ( ). This implies that s -cl 

( ( )). Therefore ( -cl ( ))  -cl ( ( )). 

(ii)   (iii) Given  be a neut - closed se in . Then -cl ( ) = . Through (ii), 

( - cl ( ( ))) -cl ( ( ( ))) -cl ( ) = holds. Consequently -cl 

( ( )) ( ) and ( ) = -cl ( ( )). Henceforth ( ) is a neut -closed se in . 

(iii)  (i) Contemplate as a neut -open se in . Deliberate  =  – . Thereupon  is a 

neut - closed se in  . Through (iii) ( ) is a neut -closed se in . Later (  ) = –  

(  – ) =  – ( ) is a neut -open se of . Hereafter  is a neut - continuous 

function. 
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3.9. Theorem Agree  be a neut - continuous also injective function. 

Assuming that is a neut   spa (respectively neut spa), formerly  is a neut  

spa (respectively neut spa). 

Proof.  Suppose  a neut spa. Given i and j be two distinct points of  . Formerly, there 

presents dual neut -open ses  ,  akin that (i) , (j)  in addition = . 

Meanwhile   is a neut - continuous function, for  along with  , in view there occurs two 

neut - open ses and  such that i  and j , ( )  and ( ) , infers that  

=  . Henceforth is a neutrosophic  spa. In the similar technique it can be evinced that  is 

a neut  spa whenever  is a neut  spa. 

3.10. Theorem Accredit and be two 

functions.  Supposing that is a neut -continuous function further  is a neut 

-continuous function, previously is a neut -continuous 

function. 

Proof.   Manifestation trails from the 3.1. Definition. 

3.11. Definition Approve be a neut subse of  then z be any point in . At that time z is 

called a neut -limit point of  suppose that  (  )  , for any neut -open set  

encompassing z. The collection of all neut -limit points of  is commanded as a neut -derived 

set of  as well it is indicated as  . 

3.12. Remark Agree  , be some subsets of . At that time, 
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(i)  if , then . 

(ii) r  if and only if r -cl ( ). 

Proof. Confirmation tracks after the declaration of 3.11. Definition. 

3.13. Theorem Accept and are any two neutrosophic subses of . At that moment the 

ensuing information hold good. 

(i)  -cl ; 

(ii)  = ; 

(iii)  ( ) =  

(iv) ( ) ; 

(v)  -cl ( ) =  

Proof. (i) In case  ( ), then to establish that -cl ( ). If  formerly  

-cl ( ). If  , at that time to indicate that -cl ( ). Or else, at that time there is a 

neut - closed se  comprising  but not encompassing . Then  – , which is a 

neut -open se furthermore  = . This suggests that   . This strangeness displays 

that x -cl . Henceforth  ( ) - cl .  

(ii)  Let  ( ). Through the 3.11.Definition,  ( ( )  ) = [( )  

(  )] =  [  ( )]  [  (  )] and hence either  ( ) or  
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( ).Therefore  ( )  ( )  ( ). The outcome  ( )  ( ) 

 ( ), tracks by the 3.12. (i) Remark outcome. 

(iii) Validation trails on or after the 3.12. Remark and (ii) outcome. 

(iv) Assuming that  ( ). Then  -cl ( ). At this moment, there ensues a 

neut - open set like that  and (  ) = . To attest that  (  ( )). 

Supposing on the conflict that  (  ( )). Then -cl (  ( ) ). Since 

,  (  ( )  )  .Subsequently there is a q  so that q  (  ( )). This 

suggests that q  (  )  (  ( )  ). Later ((  )  (  ( )  ) )  , an 

illogicality to the datum that  (  ( )  ) = . This hints that  (  ( )) and 

after this  (  (  ))  ( ). 

(v) This trails after the 3.11. Definition. 

3.14. Theorem A function is a neut -continuous function contingent 

upon (  -cl , for entire . 

Proof. Given is a neut - continuous function.  Agree that , 

and z ( ). Assume that (z) ( ) and let denote a neut - neighbourhood of (z). 

Meanwhile  is a neutrosophic -continuous function, by means of 3.6. Theorem, there arises a 

neut - neighbourhood  of z like that ( ) . From z ( ), it trails that . 

There arises at least a factor c , suggests that (c) ( ) and (c) . Meanwhile 

z) ( ) and (c) (z). Therefore, each neut - neighbourhood of (z) encompasses a 
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component (c) ( ) unalike from (z). Henceforward, (z) ( (  )). By dint of the 

assertion of 3.13. (i) Theorem ( ( )) - cl ( ( )). 

On the contrary, assume that   is not a neut -continuous function. Then via 3.7. 

Theorem, there occurs z   and a neut - neighbourhood  of (z) so that every single neut 

-neighbourhood of z covers at least one member c , for which (c) . Let = {c    

: (c) }. Since (z) , therefore z  and hence (z) ( ). Since ( )  (  – 

(z)) =  , therefore (z) (( ( )). It surveys that (z) ( (( )) – 

( ( ) (( ( )))  , which is a flaw to the given condition. Henceforth is a 

neut -continuous function. 

3.15. Theorem   Let be a neut one-to-one function. Then  is a 

neut - continuous function on condition that (  ( )) ( ( )), for all 

that . 

Proof. Given , z ( ) and is a neut -neighbourhood of . By the reason 

of is a neut -continuous function by the announcement of 3.7. Theorem, at this juncture 

befalls a neut - neighbourhood of z similar that ( ) . Nevertheless z ( ) stretches 

there happens a component c corresponding that c z, (c) ( ) then by the cause 

of  is one-to-one, . Consequently, every neut -neighbourhood  of (z) 

comprises a component  of ( ) dissimilar from (z). Accordingly, (z) ( ( )). 
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Thus  ( ( ))  ( ( )), for altogether . Contrary portion trails from the 3.14. 

Theorem. 

4. Neutrosophic -open functions 

4.1. Definition A function is said to be a neut -open function akin 

that for entire -open se , the image .  

4.2. Example Given 

, ,  were  

, 

, 

 

 
, 

 
Construe an operation  on  analogous that  

Delineate an operation  on  alike that  

Define as ( ) = , (  ) =  and ( ) = .Then the image of each one 

neut -open se is a neut -open se under  

 Later   is a neut -open function. 

4.3. Theorem Suppose that is a neut -open function in addition 

supposes that   is a neut  -open function, at that juncture the 

composition is a neut - open function.  

Proof.  Validation trails after the 4.1. Definition statement. 
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4.4. Theorem A function is a neut -open function in situation that 

for entire , and for every akin that , there ensues a  such 

that  and   

Proof. Consider  as a neut - open se and  . At that juncture ( ) . 

Then is a neut -neighbourhood of in  Formerly by the declaration of 3.7. 

Theorem there present a neut -open neighbourhood akin that . 

In reverse let alike that . At that moment by belief, there is a alike that 

 . So is a neut - neighbourhood of ( ) in  and this infers 

that = . Formerly through 2.1. Theorem is a neut -open se in . 

Henceforward  is a neut -open function. 

4.5. Theorem A function is a neut  -open function in the event  that 

for entire  , in addition for every single neut - neighbourhood  of  ,there  present 

a neut  -neighbourhood  of ( ) alike that ( ). 

Proof. Given  be a neut - neighbourhood of . At that time via the statement of 3.1. 

Definition there occurs a neut -open se such that  . This mentions that 

( )  ( ). Then is a neut -open function, ( ) is a neut - open se. 

Henceforward = ( ) is a neut -neighbourhood of  ( ) and ( ). 
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Conversely, let and x . Then  is a neut -neighbourhood of  also thence, there 

prevails a neut - neighbourhood  of akin that  ( ). That is, ( ) is a 

neut -neighbourhood of ( ). Thus ( ) is a neut  -neighbourhood to each of its points. 

Accordingly, ( ) is a neut -open se. Thence is a neut - open function. 

4.6. Theorem A function is a neut -open function in case that if 

( -int ( )) -int ( ( )), for each . 

Proof.  Let  -int ( ). Then there occurs a alike that . So  ( ) 

( ) . Meanwhile is a neut  - open function, ( ) is a neut -open set 

in . Later ( ) -int ( ( )). Thus ( -int ( )) -int ( ( )). 

Contrariwise, let  and hereafter ( ) =  ( -int (  )) -int 

( ( ) ) ( ) -int ( ( )) . This implies that ( ) is a neut -open se. 

Thusly  is a neut  -open function. 

4.7. Theorem A function is a neut -open function on the supposition 

that -int (  ( )) ( -int ( )), for each . 

Proof.  Given  be a neut subse of . Apparently -int ( (  )) is a neut -open se 

belonging to Also ( -int (  ( )) ( ( )) . Subsequently  is a 

neut -open function besides by 4.6. Theorem ( -int ( ( )) -int ( ). 
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Hence -int (  ( )) (  ( -int ( ( )))). This implies that -int (  ( )) 

( -int ( )) for all . 

Contrarywise, accredit that  ,at that time -int ( ) -int (  ( ( ))  

( -int ( (  ) )). This implies that ( -int (  ) )  ( int (  (  (  ) )))  

( (  -int ( (  ) ))) -int ( (  )). Consequently  ( -int (  ) ) -int 

( (  ) ), for all . By 4.6. Theorem,  is a neut - open function. 

4.8. Theorem A function is a neut -open function on the 

supposition that  ( -cl ( )) -cl ( ( )), for all . 

 Proof.  Agree be a neut subse of . Through 4.7. Theorem,  -int ( ( –  ) 

) ( -int ( –  ) ). Then -int (  –  (  ) )  ( -int (  –  ) ). As 

-int (  ) =  – - cl ( –  ) ), therefore  – -cl ( ( ) )  (  – 

-cl ( ) ) or  – - cl (  ( ) )  –  ( -cl ( ) ). Hence ( -cl ( )) 

-cl ( ( )). 

Conversely, let and hence, ( - cl (  – )) -cl ( (  – )). 

Then  – -cl ( ( –  ) )  –  ( - cl (  – )). Hence – -cl (  

– ( ))  ( – - cl – )). This gives that -int ( ( )) ( -int ( )). 

Using 4.5. Theorem, it follows that  is a neut -open function. 
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4.9. Theorem Let and  be two functions such 

that is a neut - continuous function. Formerly 

(i) Assuming that  is a neut  -open injection at that time  is a neut -continuous 

function. 

(ii) Supposing that is a neut  -open surjection at that time  is a neut - continuous 

function. 

Proof.  (i) Approve .Meanwhile  is a neut -open function, at that time 

. Subsequently  is injective besides  is a neut -continuous function, 

 (  ( )) = ( ( )) = ( (  (  )) = is a neut - open 

function of . This demonstrates that is a neut - continuous function. 

(ii) Accredit  . Meanwhile is a neut - continuous function, at that 

time  . As well  is a neut - open function, accordingly  

( ) is a neut - open set prevailing in . By reason of is surjective, we 

obtain   = = = . It 

trails that . This evidences that  is a neut -continuous function. 

 

5.Neutrosophic -Closed Functions 

5.1.(i) Definition A function is supposed to be a neut - closed 

function provided that the image se ( ) is a neut -closed se for entire neutrosophic - closed 

subse  of . 
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(ii) Definition A function is supposed to be a neut -open(closed) 

function supposing that the icon of each neut -open(closed) se prevailing in  is a 

neut -open(closed) se prevailing in . 

(iii) Definition A function is thought to be a neut -irresolute 

function in case that   is a neut -open se be present in  for each -open set  

survives in . 

5.2. Example Given ,  

,  were  

, 

, 

 

 
, 

, 

 

 

Characterize an operation  on  alike that  

Specify an operation  on  aforesaid that  

Define as ( ) = , (  ) =  and ( ) = . 

Then the appearance of each one neut -closed se is a neut -closed se under  

Henceforth   is a neut -closed function. 

5.3. Theorem Accredit be a neut -closed function, previously the 

succeeding declarations hold good. 
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(i) Assume is a neut -closed function, 

then   is a neut - closed function; 

(ii) -cl ( ( )) ( -cl ( )), for each subset  of ; 

(iii) -cl ( -int (  -cl ( (  ) ))) ( -cl ( )), for all neut subset  of ; 

(iv) for all neut subset  of  and to each neut - open set  of encompassing ( ), 

there occurs a neut -open set  in comprising alike that ( ) . 

Proof. Confirmations are alike to the proofs of the 4.3.,4.4.,4.5 and 4.6. Theorems. 

5.4. Theorem Let be a neut bijective function. Previously the ensuing 

assertions are analogous: 

(i)  is a neut - closed function; 

(ii)  is a neut - open function; 

(iii)   is a neut -continuous function. 

Proof. (i)  (ii) Substantiation trails after the declarations of 4.1. Definition and 5.1. Definition. 

(ii)  (iii) Specify that is a neut -closed se in . Formerly -cl ( ) = . By the effect of 

(ii) and  4.8.Theorem,  ( -cl ( ( ) )) -cl ( ( ( ) )) infers that -cl (  

( ) ) ( -cl (  )). Consequently -cl ( ( )) , aimed at each single 

subse  of , it trails that  is a neut - continuous function. 

(iii)  (i) Specify that  is a neut -closed se of  . Formerly  –  is a neut - open se lying 

in . By reason of is an -continuous function,   ( – ) is a neut - open se in 
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. Nevertheless ( – ) = (  – ) =  – ( ). Consequently ( ) is a neut 

-closed se lying in  . This one demonstrates that the function  is a neut - closed 

function. 

5.5. Definition Let remain as the identity maneuver. A function 

 is held to be a neut  - closed func if designed at any neut -closed 

se  of , is a neut -closed se in  .  

5.6. Theorem Supposing that  is a bijective function 

also is a neut -continuous function, formerly  is a 

neut -closed function. 

Proof. Authentication tracks next to the descriptions of 5.1. Definition besides 5.5. Definition. 

5.7. Theorem Supposing that  is a neut -continuous function. Formerly  

(i)  Suppose that is a neut -closed se in  , later the image  is a neut 

-closed se. 

(ii) Given be a neut - closed se of , later the set ( ) is a neut -closed se. 

Proof. (i) Contemplate as a neut -open se prevailing in alike that ( ) . By means of 

3.8. Theorem statement, ( ) is a neut -open se encompassing . By postulation - cl 

( )  ( ), so   ( -cl ( ))) . Since  is a neut - closed function,  ( - cl 
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( )) is a neut -closed se comprising entails that  -cl ( ( ) ) -cl ( ( - cl 

( ) ) ) = ( - cl ( ) ) . Hence ( ) is a neut -closed se. 

(ii) Assume  be a neut - open se of akin that ( )  for any subse  in . Put  = 

-cl ( ( )) ( – ). It trails from the 2.2.(ii) Remark and 2.3. Theorem, that is a neut 

-closed se in  . Meanwhile is a neut - closed function, is a neut - closed se 

in  . By the 2.4 Theorem declaration then by the 3.8.(ii) Theorem declaration in addition the 

subsequent insertion ( ) -cl ( ) – , it is gained that ( ) =  , and henceforth  =  . 

This infers that -cl ( . Therefore is a neut -closed se. 

5.8. Theorem Given is a neut -continuous and neut - closed 

function. Then  

(i) With the condition that  is a neut injective function moreover  is a neut at that 

juncture is a neut  space. 

(ii) Conceding that  is a surjective function besides  is a neut formerly is a neut 

 space. 

Proof.  (i) Accept  be a neut -closed se of . Formerly via 5.7. Theorem statement (i), ( ) 

is a neutrosophic - closed se. Accordingly, by postulation  is a neut  -closed se in   . 

So   is a neut  space. 

(ii) Contemplate  as a neut -closed se lying in . At that moment it surveys after the 

5.7.(ii) Proposition and the supposition that  ( ) is a neut -closed se. Hence  is a neut 
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-closed function, implies that (  ( )) =  is a neut -closed se in  . Therefore  is 

a neut  space.  

5.9. Remark Each neut -irresolute function is a neut -continuous function. 

Nonetheless, the conflicting statement need not be factual. 

6.Neutrosophic - Homeomorphism 

6.1. Definition A function is a neut -homeomorphism, if  is a 

bijective, neut -continuous function and  is a neut -continuous function. 

6.2. Remark Each bijective, neut -continuous and neut - closed function is a neut 

-homeomorphism. 

6.3. Theorem Let be a neut -homeomorphism. If is a neut 

space then is a neut  space. 

Proof.   Assume  as a singleton se of  . Then there befalls a point  of  alike that  = 

.Via 2.5. Theorem Announcement, it trails that the singleton se  is furthermore a neut 

-open se or else a neut -closed se. Accordingly is a neut  spa. 

6.4. Remark Each neut -open (closed) function is a neut -open (closed) function. 

Nonetheless, the opposing statement must not be exact. Then the succeeding comment shows the 

connotation amongst the neut -open (closed) functions, neut -open (closed) functions 

and - open (closed) functions. 
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6.5. Remark From the 6.1.(i), (ii), (iii) Definitions 6.3. and 6.4.  Remarks the subsequent illustrative 

inferences 2. Figure is attained:  

                                                   neutrosophic -continuous functions 

 

neutrosophic -continuous functions 

 

                                                  neutrosophic  - irresolute functions  

   represents infer B,  represents   does not infer . 

2. Figure:  Relationship between neutrosophic continuous functions 

6.6. Remark As of the 4.1.,5.1. (i), (ii), (iii) Definitions and 5.9. Remark the ensuing pictorial 

inferences 3. Figure is gained: 

                                                                                        

neutrosophic -open(closed) functions 

 

neutrosophic -open (closed) functions 

 

                                              neutrosophic - open (closed) functions  

 symbolizes indicates at B,  signifies   does not indicate at . 
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3. Figure: Association between neutrosophic open (closed) functions 

Conclusion and Future study 

               In this article the observation of neut -continuous functions that are created 

over neut -open ses are considered and many of their basic properties are detailed. Also, the neut 

-open (closed) functions are declared besides inspected their rudimentary properties. Neut 

-derived se, neut -frontier besides neut -kernel are described also experienced to create the 

ideas of several neut continuous functions and neut open(closed) functions. The connection amongst 

these neut -continuous functions, neut -open functions, neut -closed functions are 

illustrated. Further the concept of the neut -open(closed) function, neut -irresolute 

function neut -continuous function and  neut -continuous function, 

neut -neighbourhood of a point, neut -limit point, Composition of functions, neut -derived 

set and neut - continuous, injective function are detailed and utilized for deriving numerous 

highly significant results. Contra neut -continuous functions, contra neut -continuous 

function and contra neut -continuous function can be studied as a future work.   
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Abstract: The assignment problem (AP) is a well-researched combinatorial optimization problem in 

which the overall assignment cost or time is minimized by assigning multiple items (tasks) to several 

entities (workers). Today's optimization challenges cannot be adequately addressed by a 

single-objective AP, hence the bi-objective AP (BOAP) is taken into consideration. This problem 

frequently occurs in practical applications with ambiguous parameters in real life. Henceforth, in 

this article the uncertain parameters are presented as interval valued neutrosophic numbers. In the 

present study, we formulate bi-objectives assignment problem (BOAP) having cost and time 

parameters as an interval valued neutrosophic numbers. We proposed interactive left-width method 

to solve the interval valued neutrosophic BOAP (IVNBOAP). In this method interval valued 

neutrosophic numbers is reduced to interval numbers using score function.  Then, the bi-objective 

interval assignment problem (BOIAP) is reduced to a deterministic BOAP using the left-width 

attributes on each objective function. The reduced deterministic objective function is separated and 

constructed as a multi-objective AP. In the solution procedure, the global weighted sum method is 

adopted to convert the multi-objective AP into a single objective problem (SOP) and solved using 

Lingo 18.0 software. Finally, numerical examples are illustrated to clarify the steps involved in the 

proposed method and results are compared with the other existing methods. 

Keywords: Interval Assignment Problem, Interval-valued Neutrosophic Numbers, Interactive 

Left-Width Method, Optimal Compromise Solution, Global Weighted Sum Method.  

 

 

1. Introduction 

In the AP, the objective is to distribute several tasks to an equal number of machines, people or 

facilities with optimal decision parameters. From the existing literature, it can be seen that 

several researchers have come up with different methods to resolve AP[1–3]. In all these 

studies, it is noted that actual deterministic numbers are used for effectual matrices of the 

relevant AP.  In real-life situations, the elements of the effectual matrices of AP are an 

imprecise number than deterministic, due to the limited knowledge of personnel on problem 

domain, lack of data, inaccurate estimates, etc. This inexact information on decision parameters 

is expressed by interval numbers or fuzzy numbers or intuitionistic numbers or neutrosophic 

numbers. In recent years, numerous experts [4–7] have conducted thorough studies on the interval 

AP. When the boundary of this interval is ambiguous, that interval is a fuzzy set. In 1965, Lotfi 

Zadeh introduced fuzzy set theory, which was developed to provide formalized techniques for 

addressing imprecision through varying degrees of membership and to mathematically 
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describe uncertainty.  Various researchers such as Gupta et al.[8] , Thorani and Shankar [9], 

Baidya and Bera [10] , Buvaneshwari and Anuradha [11] have utilized the various methods for 

solving fuzzy TP/AP to determine the optimal/ optimal compromise solution.  

The fuzzy set (FS) deals with uncertainty, but hesitation is also taken into consideration in a 

real-life problem. Atanassov [12] has extended FS to intuitionistic FS (IFS) by including 

hesitation as a non-membership degree. An IFS can be a realistic and relevant tool in dealing 

with problems having both uncertainty and hesitation. An accuracy function was applied by 

Ebrahimnejad and Verdegay [13] and Mahmoodirad et al. [14] to solve the intuitionistic fuzzy 

transportation problem (IFTP).  Roy et al. [15] proposed the intuitionistic fuzzy programming 

approach (IFPA) and goal programming approach (GPA) to solve the intuitionistic fuzzy 

multi-objective transportation problem (IFMOTP). Bharati [16] has discussed TP with 

interval-valued IFS influence of a new ranking. Mahajan and Gupta [29] utilized a variety of 

membership functions (MFs) to solve fully IFMOTP. Ahmadini and Ahmad [17] proposed the 

different MFs for solving the intuitionistic fuzzy multi-objective linear programming problem. 

IFS contemplate both the degree of MF and non-MF, but it cannot deal with reality's inherent 

indeterminacy. To tackle these problems, Smarandache [18] introduced a theory of the neutrosophic 

set (NS), which is the degree of indeterminacy as well as the degree of truth MF and falsity MF while 

making decisions. Das and Roy [19] developed novel method named computational algorithm for 

handling the multi-objective non-linear minimization programming problem in the neutrosophic 

environment.  Risk Allah et al.[20] proposed the neutrosophic compromise programming approach 

to solve the MO transportation problem under neutrosophic environment and it is verified by 

applying the TOPSIS technique to measure the ranking degree. Broumi and Smarandaache [21] 

presented innovative approaches for harmonic, geometrical, and arithmetic means for interval 

neutrosophic sets. Khalifa et al.[22] proposed the approach for optimality conditions to the interval 

valued neutrosophic TP and it is solved by Weighting Tchebycheff method.  Saini et.al [23] 

introduced a novel approach namely minimum row column method for interval-valued trapezoidal 

neutrosophic transportation problem. Khalil et al. [24] discussed on the aspirations levels for 

interval-valued true, interval-valued falsity, and interval-valued indeterminacy, which are 

dependent only on the algebra of interval neutrosophic sets and confluence criteria. 

 

The contributions of this paper are as follows: 

 

We proposed interactive left-width method to solve the interval valued neutrosophic BOAP 

(IVNBOAP). The IVNBOAP is first reduced to a BOIAP using the score function and it is reduced to 

deterministic bi-objective assignment problem using the left-width attributes on each objective 

function. Then, construct the multi-objective problem by splitting each objective function. The 

reduced multi-objective problem cannot be solved explicitly. Also, the managers are always keen on 

minimizing the cost and time of AP. The global weighted sum method (GWSM) is used to transform 

the deterministic multi-objective AP into the single-objective AP. Using the Lingo 18.0 software, the 

reduced problem is solved to obtain the optimal compromise solution of the IVNBOIAP. 

  

     The construction of this paper is as follows: In Section 2, basic concepts and preliminaries are 

presented. Section 3 describes the problem formulation of IVNBOAP and Section 4 briefly proposed 
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the interactive left-width method. Section 5 illustrates the proposed method implementation using 

the numerical examples and its computational results. In Section 6, the results and discussion part 

have been included and Section 7 discusses sensitivity analysis and finally the conclusion and future 

scope of this paper. 

 

2. Preliminaries 

The fundamental concepts of arithmetic operations, partial ordering of closed bounded intervals, 

interval optimal solutions, and optimal compromise solutions are found in [25].  

 

Definition 2.1[26]  An interval number is a number whose precise value is unknown, but the range 

in which it lies is known. An interval number with lower and upper boundaries as A =[aL, aU], where 

aL ≤ aU. The mid and width of the interval are similarly shown as 

( )
, { : , }, ( )

L U
m w L U L U m w U La a

A a a a a a a a a a R a a a a
+

= = −   +  = = −where and
2

 respectively. 

Definition 2.2 [26]   The order relation ≤LU  between A =[aL, aU] and B =[bL, bU]. 

,

.

and

and
LU L L U U

LU LU

A B iff a b a b

A B iff A B A B

  

  
 

This order relation ≤LU   represents the decision maker’s (DMs) preference for the alternative with 

lower minimum and maximum cost, that is, if A  ≤LU  B, then A is preferred to B. 

 

Definition 2.3  [26]  The order relation ≤LU  between A =[am, aw] and B =[bm, bw]. 

and ,

and .

mw m m w w

mw mw

A B iff a b a b

A B iff A B A B

  

  
 

This order relation ≤mw represents the DMs preference for the alternative with lower minimum and 

maximum cost, that is, if A≤mw B, then A is preferred to B. To compare interval numbers, the total of 

each element in the interval number is utilised as a scale. The total of all the components of the 

interval number that equals zero is the zero interval. 

Definition 2.4 (Neutrosophic set [27]) Let X be a universe. A neutrosophic set F over X is defined by 

( ) ( ) ( ) , , , :N N N Nx P x Q x R x x X=  where , , : 0 ,3N N NP Q R X − + →    are called the truth, 

indeterminacy and falsity MF of the element x X to the set 
ND with 

( ) ( ) ( )0 3N N NP x Q x R x− + + +  . 

Definition 2.6 (Interval-valued neutrosophic set [21] ). Let 𝑋 be a nonempty set. Then an interval 

valued neutrosophic (IVN) set of 𝑋 is defined as: 

( ) ( ) ( ) ( ) ( ) ( ) ,[ , ],[ , ],[ , ] :IVN IVN IVN IVN IVN IVN IVN

L U L U L Ux P x P x Q x Q x R x R x x X=  , where 

( ) ( ) ( ) ( ) ( ) ( )( )[ , ],[ , ],[ , ] [0,1]N N N N N N

L U L U L UP x P x Q x Q x R x R x  . 

The neutrosophic numbers, trapezoidal neutrosophic numbers and its arithmetic operation are 

referred in [28]. 
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Definition 2.7 Let 
IVNf  be the TrNNs and it can be evaluated using the score function and 

accuracy function as follows: 

i. Score function  ( )  
1

* (1 ) (1 )
16

IVN IVN IVN IVNSC f r s t u P Q R
 

 = + + + + − + −   
 

 

ii. Accuracy function ( )  
1

* (1 ) (1 )
16

N
N Np p

IVN

p
AC f r s t u   

   = + + + + − + +     
 

3. Description and Problem formulation 

 

This section defines the model assumption, indices, formulation of interval valued neutrosophic 

bi-objective assignment problem. 

 

3.1 Mathematical Model of Interval valued Neutrosophic Bi-Objective Assignment Problem  

We consider n skilled workers in agencies and the n companies want the workers to process their 

jobs. Each worker has to be associated with one and only one company. A penalty 

( )1 2 3 4, , , ;[ , ],[ , ],[ , ]IVN IVN IVN IVN IVN IVN IVN

ij ij ij ij ij L U L U L Uc c c c c P P Q Q R R=  is the cost of transport and 

( )1 2 3 4, , , ;[ , ],[ , ],[ , ]N IVN IVN IVN IVN IVN IVN

ij ij ij ij ij L U L U L Ut t t t t P P Q Q R R=  is the total time to reach the companies, which is 

incurred when companies j ( j =1,2,...,n) is processed by the workers i (i =1,2,...,n) respectively. Let 

( )1 2 3 4, , , ;[ , ],[ , ],[ , ]N IVN IVN IVN IVN IVN IVN

ij ij ij ij ij L U L U L Ux x x x x P P Q Q R R= denote the assignment of jth company to ith 

worker. Our aim is to determine the worker-to-company assignment at a minimum assignment cost 

and time to the companies.  

 

  Now, the mathematical model of the above IVNBOAP is given as detailed below. 

     (A)  ( )1

1 1

,
n n

IVN IVN IVN

ij ij

i j

Minimize Z x c x
= =

=          (1) 

        ( )2

1 1

,
n n

IVN IVN IVN

ij ij

i j

Minimize Z x t x
= =

=               (2) 

           subject to the constraints 

           
1

1 , 1,2,..., ,
n

IVN IVN

ij

j

x i n
=

= =              (3) 

           
1

1 , 1,2,..., ,
n

IVN IVN

ij

i

x j n
=

= =             (4) 

           0 1 for all iand j.IVN IVN IVN

ijx or=            (5) 

Using score function (Definition 2.7) the problem (A) is reduced to bi-objective interval AP (B).  

Now, the mathematical model of the BOIAP is given as detailed below. 

 

(B)  1 1

1 1

[ , ] ,
n n

L U L U

ij ij ij

i j

Minimize Z Z c c x
= =

 =              (6) 
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     2 2

1 1

[ , ] ,L U

ij

n n
L U

ij

i

i

j

jMinimize Z Z tt x
= =

 =              (7) 

      subject to the constraints 

      
1

1,2,        1 for
n

ij

j

x i n
=

= =              (8) 

      
1

for 1 1,2,
n

ij

i

x j n
=

==                (9) 

        xij = 0 or 1 for all i and j.             (10) 

Ishibuchi and Tanaka[26] state that the expected value and interval uncertainty can be attributed to 

an interval's midpoint and width. Since the objective function (6) and (7) of Problem (B) is the cost 

and time function which is to be minimized simultaneously and our aim is to obtain optimal 

compromise solution with minimum ambiguity. We can express the problem (B) in terms of 

expected cost and time using definition (2.1). Since any two of the four characteristics of an 

interval—left limit, right limit, mid-value, and width—can be used to represent it. Finally, the 

objective function of BOIAP (6) and (7) can be reduced to a left and width objective value problem 

(M) by employing left and width attributes.  

(M) 1 1

1 1

, ,L w

ij ij

n n
L w

ij

i j

Mini c cmize Z Z x
= =

  =             (11) 

     2 2

1 1

, ,L w

ij ij

n n
L w

ij

i j

Minimize Z Z t t x
= =

  =             (12) 

      subject to the constraints (8) to (10). 

Construct the multi objective problem (N) by splitting the left and width of each objective function 

(11) and (12). 

 (N) 1

1 1 1 1

n n n n
L m w

ij ij ij ij

i j i j

Minimize Z c x c x
= = = =

= −             (13) 

       1

1 1

n n
w w

ij ij

i j

Minimize Z c x
= =

=              (14) 

      2

1 1 1 1

n n n n
L m w

ij ij ij ij

i j i j

Minimize Z t x t x
= = = =

= −             (15) 

      2

1 1

n n
w w

ij ij

i j

Minimize Z t x
= =

=              (16) 

     subject to the constraints (8) to (10). 

The width of the cost coefficient of Z1, 
2

U L

ij ijw

ij

c c
c

 −
=  
 
 

, 

The mid-point of the cost coefficient of Z1, 
2

U L

ij ijm

ij

c c
c

 
=  
 
 

+
, 

The width of the cost coefficient of Z2, 
2

U L

ij ijw

ij

tt
t

 −
=  
 
 

, 
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The mid-point of the cost coefficient of Z2, 
2

U L

ij ijm

ij

t t
t

 
=  
 
 

+
. 

4. Interactive Left-Width Method (ILWM) 

 

Step 1: Construct the problem (B) from the problem (A) using the Score function. 

Step 2:  Using left and width attributes, the objective function of (B) can be reduced into a left and 

width value problem (M). 

Step 3: Construct the multi objective problem (N) by splitting the left and width objective value 

problem (M). 

Step 4: Reduce the problem (N) into single objective problem (G) using global weighted sum 

method [29]. 

Step 5: Using step 4, the optimal compromise solution for (G) is obtained. Also, the optimal 

compromise solution for the problem (A) is obtained from each xij through proposed method. 

 

4.1 Working Methodology 

 
Figure 1: Working methodology of BOIAP 

 

5. Application Example 

In this section, two application examples are provided to illustrate our proposed method. 

Example 5.1 A labour agency must arrange the distribution of three distinct skilled workers to three 

distinct companies in three different locations. Consider that there are two objectives to be 

considered: (i) Determine the distribution that reduces the overall cost of transferring workers to 

companies. (ii) Reduce the overall travel time (in hours) to the companies. We typically can't get 

this information precisely because the allocation schedule has been prepared in advance. The 

typical method for obtaining interval data for this condition is to rate the experience. Consider the 

following IVNBOAP, which is shown in the Table 1. 

Table 1: The bi- objective interval valued neutrosophic AP. 
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cij/ tij 

 D1 D2 D3 

S1 
[ 11]IVN 

            [ 11]IVN 

[ 12]IVN 

         [ 12]IVN 

[ 13]IVN 

           [ 13]IVN 

S2 
[ 21]IVN 

            [ 21]IVN 

[ 22]IVN 

         [ 22]IVN 

[ 23]IVN 

          [ 23]IVN 

S3 
[ 31]IVN 

            [ 31]IVN 

[ 33]IVN 

         [ 32]IVN 

[ 33]IVN 

          [ 33]IVN 

 

[ 11]IVN= ((10, 11, 12, 13);[0.1,0.7],[0.8,0.8],[0.8,0.9] ); [ 11] IVN = ((18, 27, 29, 30);[0.1,0.5],[0.8,0.8],[0.9,0.9] ) 

[ 12]IVN = ((28,29, 31, 38);[0.1,0.6],[0.7,0.7],[0.8,0.8]); [ 12]IVN = ((10, 12, 25, 26);[0.1,0.6],[0.8,0.9],[0.9,0.9]) 

[ 13]IVN = ((23, 25, 31, 38); [0.1,0.6], [0.7,0.7],[0.8,0.8]); [ 13] IVN= ((10, 11, 12, 13);[0.1,0.9], [0.7,0.7],[0.9,0.6]) 

[ 21] IVN =((14, 17, 21, 28);[0.2,0.9], [0.2,0.3],[0.6,0.6]); [ 21] IVN= ((23, 25, 31, 38);[0.1,0.5], [0.7,0.8],[0.8,0.9]) 

[ 22] IVN =((18, 19, 21, 22);[0.1,0.9], [0.8,0.8],[0.9,0.9]); [ 22] IVN= ((14, 17, 21, 28);[0.2,0.8], [0.2,0.2],[0.6,0.6]) 

[ 23] IVN =((18,27, 29, 30);[0.1,0.5], [0.8,0.8],[0.9,0.9]); [ 23] IVN= ((15, 17, 21, 28);[0.2,0.9], [0.1,0.2],[0.4,0.6]) 

[ 31] IVN =((14, 17, 21, 28);[0.2,0.9], [0.2,0.2],[0.6,0.6]); [ 31] IVN =((23, 25, 31, 38);[0.1,0.6], [0.7,0.7],[0.8,0.8]) 

[ 32] IVN =((18, 27, 29, 30);[0.1,0.5], [0.8,0.8],[0.9,0.9]); [ 32] IVN= ((23, 25, 31, 38);[0.1,0.5], [0.8,0.8],[0.9,0.9]) 

[ 33] IVN =((28, 29, 31, 38);[0.1,0.6], [0.7,0.8],[0.8,0.9]); [ 33] IVN= ((10, 11, 12, 13);[0.1,0.5], [0.8,0.9],[0.8,0.9]) 

Using Step 1, the problem (A) is reduced to problem (B) using the score function (definition 2.7) as 

shown in Table 2. 

Table 2: The bi- objective interval assignment problem. 

 
Labour Agencies 

L1 L2 L3 

W
o

rk
er

s 

W1 
[1,3] 

            [3,5] 

[5,9] 

           [2,4] 

[4,8]  

           [1,5] 

W2 
[7,10] 

            [4,6] 

[2,6] 

         [7,10] 

[3,5] 

        [9,11] 

W3 
[7,11] 

             [4,8] 

[3,5] 

           [3,6] 

[5,7] 

          [1,2] 
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Using Step 2, construct the problem (M) from the problem (B) by using the definition (2.1) as shown 

in Table 3. 

Table 3: The bi- objective left-width assignment problem(M). 

 
Labour Agencies 

L1 L2 L3 

W
o

rk
er

s 

W1 
<1,1>  

           <3,1> 

<5,2>  

           <2,1> 

<4,2>  

           <1,2> 

W2 
<7,1.5>  

           <4,1> 

<2,2>  

          <7,1.5> 

<3,1>  

           <9,1> 

W3 
<7,2>  

           <4,2> 

<3,1>  

          <3,1.5> 

<5,1>  

         <1,0.5> 

By Step 3, split the problem (M) into four objectives ( , , , ) by left and width objective 

function, which is shown in below Table 4. 

Table 4: Multi- objective assignment problem(N). 

 

Labour Agencies 

Problem ( ) Problem ( ) Problem( ) Problem ( ) 

L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 

W
o

rk
er

s 

W1 1 5 4 1 2 2 3 2 1 1 1 2 

W2 7 2 3 1.5 2 1 4 7 9 1 1.5 1 

W3 7 3 5 2 1 1 4 3 1 2 1.5 0.5 

 

By Step 4, the problem (M) is reduced into single objective problem (SOP) using global weighted 

sum method as follows. In problem (M), solve each objective function individually with the 

constraints (8-10) using the Hungarian algorithm. Optimal solution for ( ) = 7, x11=x23=x32=1, ( )=3, 

x11=x23=x32=1, ( ) =7, x12=x21=x33=1, and ( )=2.5, x11=x23=x32=1. Then, create the pay-off matrix is as 

shown in Table 5. 

Table 5: Pay-off matrix 

     

x1 7 3 15 3.5 

x2 7 3 15 3.5 

x3 17 4.5 7 2.5 

x4 17 4.5 7 2.5 
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We find the lower and upper bound of each objective function that is L1=7, L2=3, L3=7, L4=2.5, 

U1=17, U2=4.5, U3=15, U4=3.5. Formulate the deterministic model with the weights 0.25 to each 

objective, 

(G)Minimize   ; 

             subject to the constraints (9) to (11), 0  ;. 

 

1
22 2 2

1 1 2

2

27 3 7 2.5

17 7 4.5
0.25 0.25 0

3 15 7 3.5 2.5
.25 0.25 ;=

L w L wZ Z Z Z


 − − − −
 

− − −

        
+ + +        

    −     
 

Then, using Step 5, Lingo 18.0 software is employed to solve the problem (G) to obtain optimal 

allocation is x11=x22=x33=1. Replace the optimal allocation of the problem (G) to the problem (B) is 

Z=([8,16],[11,17]) and for problem (A) is 
IVNZ ={((56,59,64,73);[0.7,0.9],[0.7,0.8],[0.8,0.9]), 

((42,55,62,71);[0.8,0.9], [0.2,0.2],[0.6,0.6] )}. 

 

Example 5.2 The bi- objective interval- valued Neutrosophic AP model is considered in order to 

confirm the method's efficacy: Three separate skilled workers must be allocated among three various 

branches of businesses in four different locations, according to an automobile manufacturing 

corporation. Consider that there are two goals to consider: (i) Identify the distribution that 

minimizes the overall cost of hiring new personnel. (ii) Shorten the distance travelled (in hours) 

between the companies. Typically, the allocation plan has been created in advance, thus we are 

unable to obtain this information precisely. The standard method is to rate the experience to gather 

interval data for this circumstance. Consider the following bi-objective interval valued neutrosophic 

assignment problem is shown in Table 6. 

 

Table 6: The bi- objective interval valued neutrosophic AP. 

 

cij/ tij 

 D1 D2 D3 D4 

S1 
[ 11]IVN 

          [ 11]IVN 

[ 12]IVN 

         [ 12]IVN 

[ 13]IVN 

           [ 13]IVN 

[ 14]IVN 

           [ 14]IVN 

S2 
[ 21]IVN 

          [ 21]IVN 

[ 22]IVN 

         [ 22]IVN 

[ 23]IVN 

          [ 23]IVN 

[ 24]IVN 

          [ 24]IVN 

S3 
[ 31]IVN 

          [ 31]IVN 

[ 33]IVN 

         [ 32]IVN 

[ 33]IVN 

          [ 33]IVN 

[ 34]IVN 

          [ 34]IVN 

 

[ 11]= ((14, 17, 23, 28);[0.3,0.8], [0.2,0.3],[0.1,0.2]); [ 11]= ((14, 17, 21, 28);[0.4,0.9], [0.1,0.3],[0.5,0.5]) 

[ 12]= ((26,27, 30, 33);[0.4,0.9], [0.2,0.3],[0.2,0.4]); [ 12]= ((26, 27, 30, 33);[0.6,0.9], [0.2,0.3],[0.2,0.3]) 

[ 13]= ((49, 50, 55, 57);[0.5,0.9], [0.4,0.5],[0.5,0.6]); [ 13]= ((49, 50, 55, 57);[0.5,0.9], [0.4,0.5],[0.5,0.6]) 

[ 14]=((49, 52, 55, 57);[0.4,0.9], [0.4,0.5],[0.4,0.5]); [ 14]= ((26, 27, 30, 33);[0.6,0.9], [0.2,0.2],[0.2,0.2]) 
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[ 21]=((48, 49, 50, 51);[0.1,0.9], [0.5,0.5],[0.4,0.4]); [ 21]= ((17, 19, 23, 28);[0.2,0.8], [0.3,0.3],[0.2,0.2]) 

[ 22]=((53, 56, 57, 58);[0.1,0.9], [0.5,0.6],[0.9,0.9]); [ 22]= ((51, 56, 57, 58);[0.1,0.9], [0.5,0.6],[0.6,0.9]) 

[ 23]=((14,17, 21, 28);[0.4,0.9], [0.1,0.3],[0.5,0.5]); [ 23]= ((26, 27, 30, 33);[0.6,0.9], [0.2,0.2],[0.2,0.2]) 

[ 24]=((60, 61, 65, 69);[0.3,0.7], [0.5,0.7],[0.7,0.8]); [ 24]= ((60, 61, 65, 69);[0.4,0.6], [0.5,0.7],[0.6,0.7]) 

[ 31]=((49, 52, 56, 58);[0.4,0.9], [0.4,0.5],[0.5,0.5]); [ 31]= ((30, 34, 38, 45);[0.1,0.9], [0.6,0.6],[0.5,0.5]) 

[ 32]=((28, 31, 35, 38);[0.1,0.9], [0.6,0.6],[0.3,0.3]); [ 32]= ((49, 50, 52, 53);[0.5,0.9], [0.5,0.5],[0.4,0.4]) 

[ 33]=((48, 49, 50, 51);[0.5,0.9], [0.5,0.5],[0.4,0.4]); [ 33]= ((59, 65, 80, 83);[0.5,0.6], [0.7,0.7],[0.4,0.4]) 

[ 34]=((49, 52, 56, 58);[0.2,0.6], [0.6,0.6],[0.5,0.5]); 

 

[ 34]= ((72, 82, 83, 84);[0.4,0.6], [0.6,0.7],[0.4,0.5]) 

By Step 1, using the score function (definition 2.7) the problem (A) is reduced to problem (B) as 

shown in Table 7. 

 

Table 7: The bi- objective interval unbalanced assignment problem. 

 

 

 

cij/ tij 

 D1 D2 D3 D4 

S1 
[10,12] 

         [9,11] 

[15,16] 

        [16,17] 

[21,24] 

       [21,24] 

[21,25] 

         [16,18] 

S2 
[15,25] 

         [9,13] 

[10,20] 

        [14,19] 

[9,11] 

       [16,18] 

[18,19] 

         [19,20] 

S3 
[20,26] 

         [9,17] 

[10,17] 

        [20,26] 

[20,25] 

       [25,27] 

[15,20] 

         [28,29] 

 

Using Step 2, construct the problem (N) by using the equations (6-17) which is shown in Table 8. 

 

Table 8: The bi- objective left-width unbalanced assignment problem. 

 

cij/ tij 

 D1 D2 D3 D4 

S1 
<10,1> 

         <9,1> 

<15,0.5> 

      <16,0.5> 

<21,1.5> 

     <21,1.5> 

<21,2> 

         <16,1> 

S2 
<15,5> 

         <9,2> 

<10,5> 

       <14,2.5> 

<9,1> 

       <16,1> 

<18,0.5> 

        <19,0.5> 

S3 
<20,3> 

         <9,4> 

<10,3.5> 

        <20,3> 

<20,2.5> 

       <25,1> 

<15,2.5> 

        <28,0.5> 
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By Step 3, split the problem (N) into four objective using left and width values of the function. Table 

9 and Table 10 shows that the multi- objective unbalanced assignment problem (MOUBAP) for cost 

and time. 

 

Table 9: The multi- objective unbalanced assignment problem for cost. 

 

Labour Agencies  

( )  

Labour Agencies 

( ) 

D1 D2 D3 D4 D1 D2 D3 D4 

W
o

rk
er

s S1 10 15 21 21 1 0.5 1.5 2 

S2 15 10 9 18 5 5 1 0.5 

S3 20 10 20 15 3 3.5 2.5 2.5 

 

Table 10: The multi- objective unbalanced assignment problem for time. 

 

Labour Agencies  

( )  

Labour Agencies 

( ) 

D1 D2 D3 D4 D1 D2 D3 D4 

W
o

rk
er

s S1 9 16 21 16 1 0.5 1.5 1 

S2 9 14 16 19 2 2.5 1 0.5 

S3 9 20 25 28 4 3 1 0.5 

 

Now, using Step 4, reduce the MOUBAP into SOP using global weighted sum method. Then, 

formulate the deterministic model with the weights 0.25 to each objective function. Using Step 5, 

obtain the optimal compromise solution for the problem (B) is x11=x23=x34=x42=1, Z=([34,43],[53,58]) 

and for the problem (A) is 
IVNZ = {((77, 86, 100, 114);[0.4,0.9], [0.1,0.3],[0.1,0.2] ), ((112, 126, 134, 

143);[0.6,0.9], [0.1,0.2],[0.2,0.2] )}. 

 

6. Result and Discussion 

The numerical examples are used to investigate the efficacy of the proposed interactive left-width 

method to obtain the optimal compromise solution. Table 11 and Table 12 displays the comparison 

between the optimal compromise solution for the problem (B) with different existing solution 

methods. Table 11 demonstrates that optimal compromise solution for example 1, which is obtained 

by our proposed method is same to Global criteria method (GCM) [30] and obtain minimum value to 

the Fuzzy programming approach [31], Weighted sum method [32]. Table 12 demonstrates that 

optimal compromise solution for example 2, which is obtained by our proposed method is same to 

Global criteria method and obtain minimum value to the Fuzzy programming approach, Weighted 

sum method. To show the effectiveness, the same is plotted in the Figure 2 and Figure 3. The optimal 

compromise solution for our proposed approach is minimum by taking average to the interval. 

Overall, the proposed strategy is better suited to problems involving multi-criteria in structures.  
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Table 11 Optimal compromise solution for different approaches-Example 1 

 

Approaches Allocations Optimal compromise solution 

Fuzzy programming 

approach[31] 
x11=x23=x32=1 Z=([7,13],[15,22]) 

Weighted sum 

method[32] 
x11=x23=x32=1 Z=([7,13],[15,22]) 

Global criteria 

method[30] 
x11=x22=x33=1 Z=([8,16],[11,17]) 

Proposed interactive 

left-width method 
x11=x22=x33=1 Z=([8,16],[11,17]) 

 

Table 12 Optimal compromise solution for different approaches-Example 2 

 

Approaches Allocations Optimal compromise solution 

Fuzzy programming 

approach 
x14=x23=x32=x41=1 

Z=[(40,53);(52,62)] 

 

Weighted sum method x14=x23=x32=x41=1 
Z=[(40,53);(52,62)] 

 

Global criteria method x11=x23=x34=x42=1 Z=([34,43],[53,58]) 

Proposed interactive 

left-width method 
x11=x23=x34=x42=1 Z=([34,43],[53,58]) 

 

 

 

 

Figure 2: Comparison for Example 1 

 

Figure 3: Comparison for Example 2 
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7. Sensitivity analysis 

 

In this section, sensitivity analysis (SA) is performed for the optimality in terms of cost coefficients 

for the problem (B). First, we perform the SA of first objective problem having the interval cost 

,L U

ij ijc c   and then for the second objective having the interval time , .L U

ij ijt t   We split interval cost 

,L U

ij ijc c    and time ,L U

ij ijt t     as lower bound IAP 
L

ijc  , 
L

ijt   and upper bound IAP 
U

ijc  , 
U

ijt  . 

Analyse the sensitivity of (i,j)th cost of upper and the lower bound of interval for the problem (B). 

Using GWSM the optimal compromise solution obtained for problem (B) is x11=x22=x33=1. Therefore, 

the basic cells of the given problem (B) are (1,1), (2,2) and (3,3). Now, analyse the sensitivity range 

of (i,j)th cost for the 
L

ijc  to the problem (B). Replace the (i,j)th cost value 
L

ijc  by 
L

ijc + λ  in which 

the parameter λ  may vary. We find the modi indices ui and vj to calculate (
L

ijc + λ) − (ui +vj ) ≥ 0 for 

all i and j. Then, we compute the minimum and maximum range of λ (i.e) [λ*, λ**], so that the 

optimal basis to the problem 
L

ijc  is not changed. Hence, the sensitivity ranges is [
L

ijc +λ*, 
L

ijc +λ**]. 

Similarly, we can calculate for 
U

ijc , 
L

ijt  and .U

ijt  

Now, we preform the SA for each cell in the 
L

ijc  which is a basic/ non-basic variable cell. 

Case (Ia): Now, we consider the SA of the 
L

ijc  in the basic cell (1, 1) and compute the ranges of 

non-basic variables, (
L

ijc + λ) − (ui +vj ) ≥ 0 for all i and j. 

Table 13 

ui / vj v1 =1+ λ v2 =5 v3 =4 

u1 =0 1 +λ             5 4 

u2=0 7 2         3 

u3=0 7 3 5 

 

Compute the ranges of non-basic variables, 7 − (0 +1 +λ) ≥ 0. Then, λ varies from -∞ to 6. Therefore, 

sensitivity range of 
L

ijc  varies from -∞ to 7.. 

 Case (Ib): We consider the SA of the 11

Uc in the basic cell (1, 1). 

Table 14 

ui / vj v1 =3 v2 =6 v3 =5 

u1 =0 3+λ             9 8 

u2=0 10 6 5 
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u3=0 11 5 7 

 

Compute the ranges of non-basic variables (i.e) 10 − (0 +3+λ) ≥ 0 and 11 − (0 +3+λ) ≥ 0. Then, choose 

the minimum range of λ that varies from -∞ to 7. Therefore, 11

Uc  varies from -∞ to 10. Thus, the cell 

(1,1) interval cost, 11 11,L Uc c     varies from (-∞, -∞) to [7, 10]. 

Similarly, we can do for the second objective function. Then, the lower δ varies from -∞ to 1 and 11

Lt  

varies from -∞ to 4. Then, upper δ varies from -∞ to 1 and 11

Ut  varies from -∞ to 6. Therefore, 

,L U

ij ijt t    varies from [-∞, -∞] to [4, 6]. 

Next, we consider the SA of the 
L

ijc in the cell (1, 2) which is a non-basic cell. 

Case (IIa): We consider the SA of the lower bound TP in the cell (1, 2). 

 

Table 15 

ui / vj v1 =1 v2 =2 v3 =5 

u1 =0 1 5+λ 4 

u2=0 7 2 3 

u3=0 7 3 5 

 

Then, λ12 varies from -3 to ∞. Thus, c12 varies from 2 to ∞.  

 

Case (IIb): We consider the SA of the upper bound TP in the cell (1, 2). 

Table 16 

ui / vj v1 =3 v2 =6 v3 =5 

u1 =0 
3  9+λ             8 

u2=0 10 6 5 

u3=0 11 5 7 

 

Then, λ varies from -∞ to -3. Thus, c12 varies from -∞ to 6. Similarly, we can do for the second 

objective function. Then, lower δ varies from 5 to ∞ and t12 varies from 10 to ∞. Then, upper δ varies 

from 6 to ∞ and t12 varies from 10 to ∞.  Therefore, ,L U

ij ijt t    varies from [7,10] to [∞, ∞]. Similarly, 

we can find the sensitivity ranges of costs in the problem (B) which is shown in Table 17 and Table 

18. 
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Table 17 SA for First objective problem(B) 

Limit for 
L

ijc  Limit for 
U

ijc  Limit for ,L U

ij ijc c    

11 7c−    11 10c−    11[ , ] [7,10]c− −    

122 c    126 c    12[2,6] [ , ]c     

135 c    137 c    13[5,7] [ , ]c     

211 c    213 c    21[1,3] [ , ]c     

22 3c−    22 3c−    22[ , ] [3,3]c− −    

235 c    237 c    23[5,7] [ , ]c     

311 c    313 c    31[1,3] [ , ]c     

322 c    326 c    32[2,6] [ , ]c     

33 3c−    33 5c−    11[ , ] [3,5]c− −    

 

Table 18 SA for Second objective problem(B) 

Limit for 
L

ijt  Limit for 
U

ijt  Limit for ,L U

ij ijt t    

11 4t−    11 6t−    11[ , ] [4,6]t− −    

127 t    1210 t    12[7,10] [ , ]t     

131 t    132 t    13[1,2] [ , ]t     

213 t    215 t    21[3,5] [ , ]t     

22 2t−    22 4t−    22[ , ] [2,4]t− −    

231 t    232 t    23[1,2] [ , ]t     

313 t    315 t    31[3,5] [ , ]t     

327 t    3210 t    32[7,10] [ , ]t     

33 1t−    33 5t−    33[ , ] [1,5]t− −    

 

Table 17 and Table 18, show that the sensitivity of the interval cost parameter is used to examine 

how uncertainties in a parameter affect the overall uncertainty of the problem (B).  This helps the 

DM to change the variables within models, based on information specific to a certain scenario to 

understand the outcome of a real-life situation. 

 

8. Concluding remarks and future research directions 

 

This study proposed a novel solution methodology interactive left-width technique for the interval 

valued neutrosophic BOAP. In this methodology the problem is first reduced to BOIAP using score 

function and it is reduced to a deterministic bi-objective AP using the left-width technique on each 

objective function. Then, each objective function of left-width problem is separated along with the 

constraints and multi-objective AP is constructed. Global weighted sum method is adopted to 

convert the multi-objective AP into SOP and then reduced problem is solved using Lingo 18.0 

software to obtain the optimal compromise solution. This article demonstrates the effectiveness of 
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the proposed interactive left-width method in problem and obtains the following improved results 

for the same case study: (i) illustrate the reliability and transparency of our proposed method and (ii) 

less assignment costs and shorter total allocation time. Applying nonlinear membership functions 

requires a significant amount of computational effort, which is the primary limitation of the 

proposed method.  In future research, evolutionary computation may be used to effectively address 

multi-objective interval nonlinear problems in uncertain parameters. Further future research 

endeavors could potentially employ the solution method to address other supply chain planning 

problems such as inventory management, vendor selection, production distribution planning, and 

procurement-production-distribution planning. 
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