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Abstract: Let <A> be an item, concept, idea, proposition, school of thought, current, theory, etc. and 

<antiA> be the opposite of <A>. Analogously for <B> and its opposite <antiB>.  

Neutrosophy means to find:  

(i) common parts to uncommon things (that is, <A> and <antiA> have something in common, 

or their intersection <A>∩<antiA> is not empty), and vice versa:  

(ii) (ii) uncommon parts to common things (the two equal items <A>=<B> have also uncommon 

parts, either <A>∩<antiB> is not empty, or <antiA>∩<B> is not empty).  

Both, the Common Parts to Uncommon Things, and the Uncommon Parts to Common Things, end up 

being parts of indeterminacy / neutrality situated between the opposites: denoted by <neutA>, 

which means neither <A> nor <antiA>, but in between them; and respectively by <neutB>, which 

similarly means neither <B> nor <antiB>, but in between them. 

Keywords: Neutrosophy, Paradoxism, Dialectics, Yin Yang, Soft Sciences, Capitalism, Socialism, 

Psychoanalysis, Analytical Psychology, Democracy, Representative Democracy, Alchemy, Science, 

Dialectics, Structuralism, Post-Structuralism, Social Systems Theory, Paradoxical Intention, Pro-

choice, Pro-life, Cognitive-Behavioral Therapy, Psychodynamic Therapy. 

 

 

1. Introduction 

Neutrosophy, a philosophical framework that I developed more than two decades ago 

[Smarandache 1998], explores the relationships and interactions between opposites and their 

neutralities/indeterminacies, seeking to find commonalities between them and identifying 

uncommon elements within similar entities, emphasizing the complexity and interconnectedness of 

concepts. Neutrosophy transcends traditional binary thinking by examining the interplay between 

opposites and the neutralities/indeterminacies between them.  

Neutrosophy is an extension of the movement called Paradoxism [Smarandache 1980], in 

literature/arts/science/philosophy, Dialectics [Hegel], [Marx], and Yin Yang Ancient Chinese 

Philosophy 1  – because the last three schools took into consideration the dynamics between the 

opposites only, while omitting their neutralities/indeterminacies that play an important role in the 

balance between opposites.  

                                                
1  Britannica, The Editors of Encyclopaedia. "yinyang". Encyclopedia Britannica, 12 Feb. 2024, 

https://www.britannica.com/topic/yinyang. Accessed 30 May 2024. 
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By identifying and studying common parts in uncommon things and uncommon parts in 

common things, neutrosophy reveals the complexity and interconnectedness inherent in various 

ideas and phenomena.  

This article shortly presents the two core principles of neutrosophic research in soft sciences, 

then exemplifies these neutrosophic principles, and suggests applications, illustrating how 

neutrosophy provides a nuanced understanding of the world. 

2. Two Neutrosophic Core Principles  

2.1. Searching for Common Parts in Uncommon Things 

This principle posits the study of opposing concepts that share (some) common elements. For 

example: 

 Political Ideologies: Capitalism2 [Hickel] and Socialism3 [Cole] both pretend their aim to 

be the improvement of societal welfare and economic prosperity, though their proposed 

methods differ. 

 Psychological Theories: Freud’s Psychoanalysis4 [Freud] and Jung’s Analytical Psych-

ology 5  [Jung] both focus on the unconscious mind but having distinct theoretical 

foundations and methodologies. 

2.2. Searching for Uncommon Parts in Common Things 

This principle propounds the research of similar or equivalent concepts containing elements that 

are distinct or oppositional. 

 Forms of Governance: Democracy 6 and Representative Democracy 7 both emphasize the 

role of the people, yet representative democracy involves elected officials, while direct 

democracy involves direct citizen participation. [Landemore] 

 Forms of Thinking: Empiricism [Gupta] vs. Alchemy [Ferguson]: Both seek 

understanding of the world, but alchemy 8 lacks the methodology and empirical support 

of science 9. 

3. Investigation in Soft Sciences  

3.1. Hegelian Dialectics 

                                                
2 Britannica, The Editors of Encyclopaedia. "What is capitalism?". Encyclopedia Britannica, 24 Feb. 2023, 

https://www.britannica.com/question/What-is-capitalism. Accessed 27 May 2024. 
3 Britannica, The Editors of Encyclopaedia. "What is socialism?". Encyclopedia Britannica, 11 Apr. 2022, 

https://www.britannica.com/question/What-is-socialism. Accessed 27 May 2024. 
4  Jay, Martin Evan. "Sigmund Freud". Encyclopedia Britannica, 20 May. 2024, 

https://www.britannica.com/biography/Sigmund-Freud. Accessed 28 May 2024. 
5  Fordham, Frieda. "Carl Jung". Encyclopedia Britannica, 18 Mar. 2024, 

https://www.britannica.com/biography/Carl-Jung. Accessed 28 May 2024. 
6 Shapiro, Ian , Dahl, Robert A. and Froomkin, David. "democracy". Encyclopedia Britannica, 6 May. 2024, 

https://www.britannica.com/topic/democracy. Accessed 29 May 2024. 
7  Raikar, Sanat Pai. "representative democracy". Encyclopedia Britannica, 29 Feb. 2024, 

https://www.britannica.com/topic/representative-democracy. Accessed 29 May 2024. 
8 Britannica, The Editors of Encyclopaedia. "alchemy (pseudoscience)". Encyclopedia Britannica, 29 Mar. 

2024, https://www.britannica.com/topic/alchemy. Accessed 29 May 2024.  
9  Britannica, The Editors of Encyclopaedia. "science". Encyclopedia Britannica, 25 May. 2024, 

https://www.britannica.com/science/science. Accessed 29 May 2024. 

https://www.britannica.com/question/What-is-capitalism
https://www.britannica.com/question/What-is-socialism
https://www.britannica.com/biography/Sigmund-Freud
https://www.britannica.com/biography/Carl-Jung
https://www.britannica.com/topic/democracy
https://www.britannica.com/topic/representative-democracy
https://www.britannica.com/topic/alchemy
https://www.britannica.com/science/science
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In Hegelian Dialectics 10, ideas and reality develop through the interaction of opposites. An initial 

idea (thesis) is countered by an opposing idea (antithesis), leading to a resolution (synthesis) that 

integrates elements of both. [Hegel] 

3.2. Structuralism and Post-Structuralism 

These theories explore the so-called construction and de-construction of meaning. 

 Structuralism: Lévi-Strauss examines how elements within a culture or system are 

interrelated. [Lévi-Strauss] 

 Post-Structuralism: Derrida focuses on the instability of these structures, emphasizing 

the gaps or the contradiction in meaning and interpretation. [Derrida] 

3.3. Social Systems Theory 

Systems Theory in Sociology looks at how different parts of a system interact and form a whole. 

For example, Luhmann views society as a complex set of communications and interactions, where 

even opposing elements are part of the system's overall functioning. [Luhmann] 

3.4. Paradoxical Intention 

In Psychology, the Paradoxical Thinking [Frankl] involves recognizing and integrating 

contradictory thoughts or behaviors. The method encourages patients to actively engage in the very 

behaviors they fear, in order to reduce the anxiety associated with those. 

4. Applications in Contemporary Contexts   

4.1. Migrations: Acculturation 

In today's Western multicultural societies [Vani, Mangan], shared values of locals coexist with 

the unique and different cultural practices of migrants, leading to various individual outcomes. 

[Berry] Acculturation,11 which results from intercultural contact, offers four different outcomes in 

varying degrees: integration, assimilation, separation, and marginalization.  

Let us apply a neutrosophic framework. Integration (two-way exchange process) involves 

engaging with and identifying with both cultures. Assimilation (one-way exchange process) entails 

adopting the host country’s culture while rejecting one's heritage culture. Separation (zero-way 

exchange process) involves identifying with one’s heritage culture and interacting solely with one’s 

own group. Marginalization (minus-way exchange process) represents a (quasi)total lack of 

identification with both cultures.  

Considering the growing significance of global migrations, and the pivotal role workplace 

integration plays in adaptation, there's a pressing need for focus on the socialization process12 of 

migrants within organizations, not only in culture.13  

One could expand upon Benson's approach [Benson], which is rooted in a dynamic 

understanding that an organization is shaped by historical processes of social construction, which is 

                                                
10  Knox, T. Malcolm. "Georg Wilhelm Friedrich Hegel". Encyclopedia Britannica, 23 Apr. 2024, 

https://www.britannica.com/biography/Georg-Wilhelm-Friedrich-Hegel. Accessed 29 May 2024. 
11  Berry J. W. (1990). “Psychology of acculturation.” In J. Berman (Ed.), “Cross-cultural perspectives: 

Nebraska Symposium on Motivation”, Vol. 37, 201–234. Lincoln: University of Nebraska Press. 
12 McGahan A. M. (2020). “Immigration and impassioned management scholarship.” Journal of Management 

Inquiry 29(1), 111-114. https://doi.org/10.1177/1056492619877617  
13 Omanović, V., & Langley, A. (2023). “Assimilation, Integration or Inclusion? A Dialectical Perspective on 

the Organizational Socialization of Migrants.” Journal of Management Inquiry 32(1), 76-97. 

https://doi.org/10.1177/10564926211063777  

https://www.britannica.com/biography/Georg-Wilhelm-Friedrich-Hegel
https://doi.org/10.1177/1056492619877617
https://doi.org/10.1177/10564926211063777
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in constant move. Benson formalized14 four key principles of analysis (social construction, context, 

contradiction, and praxis), which - with neutrosophy as tool - can each be further subdivided into 

various facets. 

In any cross-cultural process, a meta-analysis of adjustment processes is necessary,15 and an 

insightful instrument is provided by a neutrosophic standpoint that could uncover various factors, 

in the given case - factors that could alleviate the inequalities migrants encounter in socialization. 

4.2. Ethics: Pro-choice vs. Pro-life   

The Pro-choice and the Pro-life options are two contradictory viewpoints, mostly reduced to a 

total opposition. A neutrosophic view over their shared goals might suggest a possible foundation 

for constructive dialogue and collaborative efforts.  

4.2.1. Pro-choice movement 

The Pro-choice movement can be traced back to the early 20th century, with activists like 

Margaret Sanger advocating for women's access to contraception, and founding the American Birth 

Control League16 in 1921. Around 1970, significant legal challenges and efforts emerged to reform 

restrictive abortion laws in the United States. Organizations such as the National Association for the 

Repeal of Abortion Laws [NARAL], founded in 1969, were instrumental in advocating for women's 

right to choose. The pivotal moment for the Pro-choice movement came with the Supreme Court case 

Roe v. Wade17, which extended the constitutional right to privacy to a woman's decision to have an 

abortion, decision that galvanized Pro-choice and Pro-life activists. Today, the Pro-choice movement 

often intersects with other social movements, including LGBTQ+ rights. 

4.2.2. Pro-life movement 

The Pro-life movement originated in Catholic opposition to Pro-choice movement in the 1950s 

[Munson]. In response to the growing feminist movement and efforts to liberalize abortion laws, Pro-

life groups formed structured organizations, e.g. National Right to Life Committee in 1968 [NRLC]. 

In the years following Roe v. Wade trial, the Pro-life movement expanded its strategies to include 

lobbying for restrictive abortion laws, dismantled for a moment by a new Supreme Court decision in 

the case Planned Parenthood v. Casey18. The Pro-life movement gained lately significant political 

influence. While primarily focused on abortion, the Pro-life movement often intersects with other 

conservative causes, including opposition to euthanasia. 

4.2.3. In search of a common ground 

Finding common ground between the Pro-choice and Pro-life positions19 can be challenging due 

to their fundamentally opposing views on abortion. However, both sides can agree on the following 

statements: [Spitzer et al.] 

                                                
14 Benson J. K. (1983). “A dialectical method for the study of organizations.” In Morgan G. (Ed.), “Beyond 

method: Strategies for social research”, Sage Publications, 331-346. 
15 Nguyen, A.-M. T.D., Benet-Martínez, V. (2013). “Biculturalism and adjustment: A meta-analysis.” Journal 

of Cross-Cultural Psychology 44(1), 122–159. DOI: 10.1177/0022022111435097. 
16  Moses, Theodora R. "American Birth Control League". Encyclopedia Britannica, 20 Mar. 2023, 

https://www.britannica.com/topic/American-Birth-Control-League. Accessed 29 May 2024. 
17 Roe v. Wade, 410 U.S. 113 (1973). https://supreme.justia.com/cases/federal/us/410/113/.  
18  Planned Parenthood of Southeastern Pa. v. Casey, 505 U.S. 833 (1992), 

https://supreme.justia.com/cases/federal/us/505/833/. Also, https://www.oyez.org/cases/1991/91-744.  
19 Britannica, The Editors of Encyclopaedia. "Pro and Con: Abortion". Encyclopedia Britannica, 27 Dec. 

2021, https://www.britannica.com/story/pro-and-con-abortion. Accessed 29 May 2024. 

https://www.britannica.com/topic/American-Birth-Control-League
https://supreme.justia.com/cases/federal/us/410/113/
https://supreme.justia.com/cases/federal/us/505/833/
https://www.oyez.org/cases/1991/91-744
https://www.britannica.com/story/pro-and-con-abortion
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 Both can support measures to reduce unintended pregnancies, such as comprehensive 

sex education and increased access to contraception.  

 Both can encourage adoption as a viable option for women who do not wish to or cannot 

raise a child,  

 Bot can approve making the adoption process easier, affordable, less stigmatized. 

 Both can agree on the importance of supporting women and families, meaning: better 

access to healthcare, longer parental leave, more affordable childcare.  

 Both can agree on the importance of protecting women’s safety.  

 Both can work towards improving educational and economic opportunities for women, 

to empower choices about their reproductive lives. 

4.3. Psychology: Cognitive-Behavioral Therapy vs. Psychodynamic Therapy 

Cognitive-Behavioral Therapy 20  (CBT) focuses on present thoughts and behaviors, while 

Psychodynamic Therapy 21  (PDT) explores unconscious processes and past experiences — both 

approaches aiming to alleviate psychological distress.  

Although both therapies appear effective in addressing mental health concerns, they diverge in 

their theoretical orientations, goals, techniques, and duration. However, they can also complement 

each other when used together.  

Let us engage in a quick comparison: 

4.3.1. Basics 

 Rooted in the cognitive model, CBT focuses on the relationship between thoughts, 

feelings, and behaviors. It emphasizes identifying and challenging negative or 

maladaptive thought patterns and replacing them with more adaptive ones. CBT is 

present-focused and goal-oriented. 

 Based on psychoanalytic principles, psychodynamic therapy explores how unconscious 

conflicts and early life experiences influence current thoughts, feelings, and behaviors. 

It aims to bring unconscious material into conscious awareness to promote insight and 

healing. Psychodynamic therapy tends to be exploratory and insight-oriented. 

4.3.2. Therapeutic Techniques 

 Techniques in CBT include cognitive restructuring22, behavioral experiments, exposure 

therapy 23 , and skill-building exercises such as relaxation and problem-solving 

techniques. 

 PDT techniques include free association24, dream analysis, interpretation of transference 

and countertransference, and exploring childhood experiences and relationships with 

significant others. 

4.3.3. Therapeutic Relationship 

                                                
20 Moulds, M., Grisham, J., & Graham, B.  (2022). “Cognitive Behavioral Therapy for Anxiety.” Oxford 

Research Encyclopedia of Psychology. Retrieved 29 May. 2024, from 

https://oxfordre.com/psychology/view/10.1093/acrefore/9780190236557.001.0001/acrefore-9780190236557-

e-331.  
21 Crits-Christoph, P. (1992). “The efficacy of brief dynamic psychotherapy: A meta-analysis.” American 

Journal of Psychiatry 149(2):151–158. 
22 Identifying and challenging negative thoughts. 
23 Gradual exposure to feared stimuli. 
24 Encouraging clients to speak freely without censorship. 

https://oxfordre.com/psychology/view/10.1093/acrefore/9780190236557.001.0001/acrefore-9780190236557-e-331
https://oxfordre.com/psychology/view/10.1093/acrefore/9780190236557.001.0001/acrefore-9780190236557-e-331
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 The therapist and patient work together to set specific goals, and actively engage in 

homework assignments between sessions in CBT. 

 In PDT, the therapist serves as a neutral interpreter and guide, facilitating exploration 

of deeper emotions and conflicts. 

4.3.4. Duration and Focus 

 CBT is typically short-term (from a few weeks to several months) and focused on 

addressing specific symptoms or problems. 

 PDT is usually longer-term (lasting several months to years) and focuses on exploring 

underlying emotional issues and patterns. 

 

5. Conclusion 

Neutrosophy offers a framework for understanding the wide interactions and the inébranlable 

connections of some concepts traditionally seen as opposites and their neutralities/indeterminacies. 

By applying this framework to the soft sciences, one gain deeper insights into the nuanced 

relationships between ideas, theories, and practices. This approach can lead to an integrative 

understanding of human knowledge and experience.  

Neutrosophy transcends the limits and finds, in any field of knowledge, common ideas to 

uncommon schools of thought, and reciprocally: uncommon ideas to common schools of thoughts. 
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Introduction 

The concept of fuzzy algebraic structure is considered a direct application of fuzzy 

sets and fuzzy mappings [1-2, 4, 6-8], where a fuzzy mapping with truth and falsity 

values is used to build many algebraic structures. 

Also, the concept of neutrosophic set was used by many different authors to 

generalize classical algebraic structures by using logical conditions instead of 

algebraic elements [13], where we can see neutrosophic rings, neutrosophic 

matrices, and neutrosophic mappings [5, 9-12]. The concept of n-refined 

neutrosophic rings was defined in [18], and then it was studied by many authors in 

[19], where ideals, Diophantine equations and other related structures were 

classified and provided [20-21]. 

Recently, Smarandache in [14] has defined two-fold neutrosophic algebras as novel 

algebraic structures, and this new concept has been used in [16] to define two-fold 

fuzzy algebra by combining the standard fuzzy number theoretical system defined 

in [15], with the concept of two-fold algebraic structure, and many interesting 

theorems and examples were illustrated about this topic. 

On the other hand, Hatip et.al [17], have combined real vector spaces, complex 

vector spaces, and algebraic modules with a fuzzy well-defined mapping to define 

and study two-fold fuzzy vector spaces and two-fold fuzzy modules, where they 

studied many elementary properties of these new structures. 

Main Discussion 

Definition: 

Let 𝑓: ℝ → [0,1] with: {
𝑓(0) = 0

𝑓(1) = 1
, then f is called a fuzzy mapping. 

We use this definition of fuzzy mappings, that is because the property 
𝑓(0) = 0

𝑓(1) = 1
 is 

very useful in algebraic structures and operations. 

Example: 
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To understand the concept of fuzzy mapping, we will illustrate two different fuzzy 

mappings defined on the real field R. 

Define: 𝑓, 𝑔, ℎ: ℝ → [0,1] such that: 

𝑓(𝑥) = {
min (𝑥2,

1

𝑥2) 𝑖𝑓 𝑥 ≠ 0, 𝑥 ≠ −1

0 𝑖𝑓 𝑥 = 0
0.9 𝑖𝑓 𝑥 = −1

, 𝑔(𝑥) = {

|𝑥3| 𝑖𝑓 − 1 < 𝑥 ≤ 1
1

|𝑥3|
 𝑖𝑓 𝑥 > 1 𝑜𝑟 𝑥 < −1

0.1 𝑖𝑓 𝑥 = −1

 

We can see that f and g lie in the closed interval [0,1], with f(0) = 𝑔(0) = 0, 𝑓(1) =

𝑔(1) = 1. 

Definition: 

Let 𝑅2(𝐼) = {𝑎0 + ∑ 𝑎𝑖𝐼𝑖    ; 𝑎𝑖 ∈ ℝ . 𝐼𝑖𝐼𝑗 = 𝐼min (𝑖.𝑗) 2
𝑖=1 } 

be 2-refined commutative neutrosophic ring with unity, let 𝑓: ℝ → [0,1] be any 

fuzzy mapping such that  {
𝑓(0) = 0

𝑓(1) = 1
 , we define: 

𝑓2 : 𝑅2(𝐼) → [0,1]   ;  𝑓2 (𝑎0 + ∑ 𝑎𝑖𝐼𝑖  2
𝑖=1 ) = max (𝑓(𝑎𝑖)), and 

[𝑅2(𝐼)]𝑓2 
= {(𝑎0 + ∑ 𝑎𝑖𝐼𝑖 

2
𝑖=1 )𝑓𝑛 (𝑎0+∑ 𝑎𝑖𝐼𝑖 2

𝑖=1 )    ; 𝑎𝑖 ∈ ℝ}, is called the two-fold 

fuzzy 2-Refined neutrosophic ring. 

Definition: 

Operations on [𝑅2(𝐼)]𝑓2 
are define as follows: 

*: [𝑅2(𝐼)]𝑓2 
× [𝑅2(𝐼)]𝑓2 

→ [𝑅2(𝐼)]𝑓2 
 

○:[𝑅2(𝐼)]𝑓2 
× [𝑅2(𝐼)]𝑓2 

→ [𝑅2(𝐼)]𝑓2 
 

Such that:{
𝑋𝑓2(𝑋) ∗ 𝑌𝑓2(𝑌) = (𝑋 + 𝑌)𝑓2(𝑋+𝑌)

𝑋𝑓2(𝑋) ○ 𝑌𝑓2(𝑌) = (𝑋 ∙ 𝑌)𝑓2(𝑋𝑌)
 

Definition: 

Let P an ideal of 𝑅2(𝐼), we define the corresponding two-fold fuzzy 2-refined 

neutrosophic ideal as follows: 

𝑃𝑓2
= {𝑋𝑓2(𝑋)   ; 𝑋 ∈ 𝑃} 

Definition: 
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Let 𝑃𝑓2
 be a two-fold fuzzy 2-refined neutrosophic ideal, we define the two-fold 

fuzzy 2-refined factor as: 

[𝑅2(𝐼)]𝑓2 
𝑃𝑓2

= 𝑋𝑃𝑓2
   ;  𝑋 ∈ [𝑅2(𝐼)]𝑓2 

⁄ . 

Definition: 

Let ℎ ∶ 𝑅2(𝐼) → 𝑅2(𝐼) be a ring homomorphism, we define: 

𝐻𝑛: [𝑅2(𝐼)]𝑓2 
→ [𝑅2(𝐼)]𝑓2 

such that: 

𝐻2(𝑋𝑓2(𝑋)) = (ℎ(𝑋))𝑓2(ℎ(𝑋)). 

The mapping (𝐻2) is called two-fold fuzzy 2-refined neutrosophic homomorphism. 

The kernel 𝑘𝑒𝑟(𝐻2)is: 

  𝑘𝑒𝑟(𝐻𝑛) = {𝑋 ∈ [𝑅2(𝐼)]𝑓2 
   ; 𝐻2(𝑋𝑓2(𝑋)) = 00} =  (𝑘𝑒𝑟(ℎ))𝑓2 

. 

The direct image  𝐼𝑚(𝐻2) is: 

 𝐼𝑚(𝐻2) =  (𝐼𝑚(ℎ))𝑓2 
. 

Definition: 

Let 𝐻2 . 𝐺2  ∶  [𝑅2(𝐼)]𝑓2 
→ [𝑅2(𝐼)]𝑓2 

 be two homomorphisms, then:  𝐻2 × 𝐺2  ∶

 [𝑅2(𝐼)]𝑓2 
→ [𝑅2(𝐼)]𝑓2 

with: 

(𝐻2 × 𝐺2)(𝑋𝑓2(𝑋)) = 𝐻2(𝐺2(𝑋𝑓2(𝑋))). 

Theorem (1): 

1] *, ○ are commutative. 

2] *, ○ are associative. 

3] (○) is distributive on (*). 

4] *, ○ has identities. 

5] (*) is invertible, i.e any element𝑋𝑓2(𝑋) ∈ [𝑅2(𝐼)]𝑓2 
 has an iverse with respect to (*). 

Theorem (2): 

Let 𝑃𝑓2
 be a two-fold ideal of[𝑅2(𝐼)]𝑓2 

, then: 
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{
𝑋𝑓2(𝑋) ∗ 𝑌𝑓2(𝑌)  ∈ 𝑃𝑓2

𝑟𝑓2(𝑟) ∙ 𝑋𝑓2(𝑋) ∈ 𝑃𝑓2

     ;  𝑋. 𝑌 ∈ 𝑃 . 𝑟 ∈ 𝑅2(𝐼) 

Theorem (3): 

[𝑅2(𝐼)]𝑓2 
𝑃𝑓2

⁄  is a commutative ring with unity. 

Theorem (4): 

Let 𝐻2: [𝑅2(𝐼)]𝑓2 
→ [𝑅2(𝐼)]𝑓2 

be a homomorphism, then: 

1] 𝐻2(𝑋𝑓𝑛(𝑋) ∗ 𝑌𝑓𝑛(𝑌)) =  𝐻2(𝑋𝑓2(𝑋)) ∗ 𝐻2(𝑌𝑓2(𝑌)) 

2] 𝐻2(𝑋𝑓2(𝑋) ○ 𝑌𝑓2(𝑌)) =  𝐻2(𝑋𝑓2(𝑋)) ○ 𝐻2(𝑌𝑓2(𝑌)) 

3]  𝑘𝑒𝑟(𝐻2) is an ideal of [𝑅2(𝐼)]𝑓2 
. 

4]  𝐼𝑚(𝐻2) is a subring of  [𝑅2(𝐼)]𝑓2 
. 

5]  [𝑅2(𝐼)]𝑓2 
 𝑘𝑒𝑟(𝐻2)   ≅   𝐼𝑚(𝐻2)⁄ . 

6] If 𝑃𝑓2
 is an ideal of  [𝑅2(𝐼)]𝑓2 

, then 𝐻2(𝑃𝑓2
) is an ideal. 

7] 𝐻2(00) = 00  . 𝐻2(11) = 11 

Theorem (5): 

Let 𝐻2 . 𝐺2  ∶  [𝑅2(𝐼)]𝑓2 
→  [𝑅2(𝐼)]𝑓2 

be two homomorphisms, then: 

1] 𝐻2(−𝑋𝑓2(𝑋)) = −𝐻2(𝑋𝑓2(𝑋)). 

2] 𝐻2 (𝑋𝑓2(𝑋−1)
−1 ) = [𝐻2(𝑋𝑓2(𝑋))]−1, if 𝑋 is invertible. 

3] 𝐻2  × 𝐺2 is a homomorphism. 

Definition: 

Let 𝑋𝑓2(𝑋) ∈  [𝑅2(𝐼)]𝑓2 
, then: 

1] 𝑋𝑓2(𝑋)  is idempotent if 𝑋𝑓2(𝑋) ○ 𝑋𝑓2(𝑋) = 𝑋𝑓2(𝑋). 

2] 𝑋𝑓2(𝑋)  is a nilpotent if there exists  𝑚 ∈ ℕ  such that: 𝑋𝑓2(𝑋) ○ 𝑋𝑓2(𝑋) ○ … ○

𝑋𝑓2(𝑋) (𝑚 − 𝑡𝑖𝑚𝑒𝑠) = 00 
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3] 𝑋𝑓2(𝑋) is a zero divisor if there exists 𝑌𝑓2(𝑌) such that: 𝑋𝑓2(𝑋) ○ 𝑌𝑓2(𝑌) = 00 

Theorem (6): 

Let 𝑋𝑓2(𝑋) ∈  [𝑅2(𝐼)]𝑓2 
, then we have: 

1] 𝑋𝑓2(𝑋) is idempotent if and only if 𝑋 is idempotent in 𝑅2(𝐼). 

2] 𝑋𝑓2(𝑋) is nilpotent if and only if 𝑋 is nilpotent in 𝑅2(𝐼). 

3] 𝑋𝑓2(𝑋) is a zero divisor if and only if 𝑋 is a zero diviso in 𝑅2(𝐼). 

Theorem (7): 

Let 𝐻2: [𝑅2(𝐼)]𝑓2 
→  [𝑅2(𝐼)]𝑓2 

, then: 

1] If 𝑋𝑓2(𝑋) ∈  [𝑅2(𝐼)]𝑓2 
is idempotent, then 𝐻2(𝑋𝑓2(𝑋)) is idempotent. 

2] If 𝑋𝑓2(𝑋)is nilpotent, then 𝐻2(𝑋𝑓2(𝑋)) is nilpotent. 

3] If 𝑋𝑓2(𝑋)is a zero divisor, then 𝐻2(𝑋𝑓2(𝑋)) is a zero divisor. 

4] If 𝑋𝑓2(𝑋)is a unit, then 𝐻2(𝑋𝑓2(𝑋)) is a unit. 

Proof of theorem (1): 

1] 𝑋𝑓2(𝑋) ∗ 𝑌𝑓2(𝑌) = (𝑋 + 𝑌)𝑓2(𝑋+𝑦) = (𝑌 + 𝑋)𝑓2(𝑌+𝑋) = 𝑌𝑓2(𝑌) ∗ 𝑋𝑓2(𝑋). 

  𝑋𝑓2(𝑋) ○ 𝑌𝑓2(𝑌) = (𝑋𝑌)𝑓2(𝑋𝑦) = (𝑌𝑋)𝑓2(𝑌𝑋) = 𝑌𝑓2(𝑌) ○ 𝑋𝑓2(𝑋).  

2] 𝑋𝑓2(𝑋) ∗ 𝑌𝑓2(𝑌) ∗ 𝑍𝑓2𝑛(𝑍)) = 𝑋𝑓2(𝑋) ∗ (𝑌 + 𝑍)𝑓2(𝑌+𝑍) = (𝑋 + 𝑌 + 𝑍)𝑓2(𝑋+𝑌+𝑍) =

(𝑋 + 𝑌)𝑓𝑛(𝑋+𝑌) ∗ 𝑍𝑓2(𝑍) = (𝑋𝑓2(𝑋) ∗ 𝑌𝑓2(𝑌)) ∗ 𝑍𝑓2(𝑍). 

      𝑋𝑓2(𝑋) ○ 𝑌𝑓2(𝑌) ○ 𝑍𝑓2(𝑍)) = (𝑋𝑌𝑍)𝑓2(𝑋𝑌𝑍) = (𝑋𝑌)𝑓2(𝑋𝑌) ○ 𝑍𝑓2(𝑍) = (𝑋𝑓2(𝑋) ○

𝑌𝑓𝑛(𝑌)) ○ 𝑍𝑓2(𝑍). 

3] 𝑋𝑓2(𝑋) ○ (𝑌𝑓2(𝑌) ∗ 𝑍𝑓2(𝑍)) = (𝑋𝑌 + 𝑋𝑍)𝑓2(𝑋𝑌+𝑋𝑍) = (𝑋𝑌)𝑓2(𝑋𝑦) ∗ (𝑋𝑍)𝑓2(𝑋𝑍) = (𝑋𝑓2(𝑋) ○

𝑌𝑓2(𝑌)) ∗ (𝑋𝑓2(𝑋) ○ 𝑍𝑓2(𝑍)) 
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4] 𝑋𝑓2(𝑋) ∗ 00 = (𝑋 + 0)𝑓2(𝑋+0) = 𝑋𝑓2(𝑋). 

𝑋𝑓2(𝑋) ○ 11 = (𝑋 ∙ 1)𝑓2(𝑋∙1) = 𝑋𝑓2(𝑋). 

5] For 𝑋𝑓𝑛(𝑋), we have (−𝑋)𝑓2(−𝑋) such that: 

      𝑋𝑓2(𝑋) ∗ (−𝑋)𝑓2(−𝑋) = (X − 𝑋)𝑓2(𝑋−𝑋) = 00. 

Proof of theorem (2): 

𝑋𝑓2(𝑋) ∗ 𝑌𝑓2(𝑌) = (𝑋 + 𝑌)𝑓2(𝑋+𝑦)  ∈ 𝑃𝑓2
, that is because 𝑋 + 𝑌 ∈ 𝑃. 

𝑟𝑓2(𝑟) ○ 𝑋𝑓2(𝑋) = (𝑟𝑋)𝑓2(𝑟𝑋) ∈ 𝑃𝑓2
, that is because 𝑟𝑋 ∈ 𝑃. 

Proof of theorem (3): 

Define: ∗′: ( [𝑅2(𝐼)]𝑓2
𝑃𝑓2

⁄ ) × ( [𝑅2(𝐼)]𝑓𝑛 
𝑃𝑓2

⁄ ) →  [𝑅2(𝐼)]𝑓2
𝑃𝑓2

⁄  

               ○′: ( [𝑅2(𝐼)]𝑓2
𝑃𝑓2

⁄ ) × ( [𝑅2(𝐼)]𝑓𝑛 
𝑃𝑓2

⁄ ) →  [𝑅2(𝐼)]𝑓2
𝑃𝑓2

⁄  

Such that: 

(𝑋𝑓2(𝑋)𝑃𝑓2
) ∗′ (𝑌𝑓2(𝑌)𝑃𝑓2

) = (𝑋𝑓2(𝑋) ∗ 𝑌𝑓2(𝑌)) 𝑃𝑓2
 

(𝑋𝑓2(𝑋)𝑃𝑓2
) ○′ (𝑌𝑓2(𝑌)𝑃𝑓2

) = (𝑋𝑓2(𝑋) ○ 𝑌𝑓2(𝑌))𝑃𝑓2
 

We have: 

(𝑋𝑓2(𝑋)𝑃𝑓2
) ∗′ (00𝑃𝑓𝑛

) = 𝑋𝑓2 (𝑋) 𝑃𝑓2
, 

(𝑋𝑓2(𝑋)𝑃𝑓2
) ○′ (11𝑃𝑓2

) = 𝑋𝑓2(𝑋) 𝑃𝑓2
, 

(𝑋𝑓2(𝑋)𝑃𝑓2
) ∗′ ((−𝑋)𝑓2(−𝑋)𝑃𝑓2

) = 00 𝑃𝑓2
, 

(𝑋𝑓2(𝑋)𝑃𝑓2
) ∗′ [(𝑌𝑓2(𝑌)𝑃𝑓2

) ∗′ (𝑍𝑓2(𝑍)𝑃𝑓2
)] = ((𝑋𝑓2(𝑋)𝑃𝑓2

) ∗′ [(𝑌 ∗ 𝑍) 𝑃𝑓2
] = [𝑋 ∗ 𝑌 ∗ 𝑍] 𝑃𝑓𝑛

=

[(𝑋𝑓2(𝑋)𝑃𝑓2
) ∗′ (𝑌𝑓2(𝑌)𝑃𝑓2

)] ∗′ (𝑍𝑓2(𝑍)𝑃𝑓2
), 

(𝑋𝑓𝑛(𝑋)𝑃𝑓𝑛
) ○′ [(𝑌𝑓2(𝑌)𝑃𝑓2

) ○′ (𝑍𝑓2(𝑍)𝑃𝑓2
)] = (𝑋 𝑃𝑓2

) ○′ [(𝑌 ○ 𝑍) 𝑃𝑓2
] = [𝑋 ○ 𝑌 ○ 𝑍] 𝑃𝑓𝑛

=

[(𝑋𝑓𝑛(𝑋)𝑃𝑓2
) ○′ (𝑌𝑓2(𝑌)𝑃𝑓2

)] ○′ (𝑍𝑓2(𝑍)𝑃𝑓2
). 
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((𝑋𝑓2(𝑋)𝑃𝑓2
) ○′ [(𝑌𝑓2(𝑌)𝑃𝑓2

) ∗′ (𝑍𝑓2(𝑍)𝑃𝑓2
)] = [𝑋 ○ (𝑌 ∗ 𝑍)] 𝑃𝑓2

= [(𝑋 ○ 𝑌) ∗ (𝑋 ○ 𝑍)] 𝑃𝑓2

= (𝑋𝑓2(𝑋)𝑃𝑓2
) ○′ (𝑌𝑓2(𝑌)𝑃𝑓2

)] ∗′ [(𝑋𝑓2(𝑋)𝑃𝑓2
) ○′ (𝑍𝑓2(𝑍)𝑃𝑓2

)] 

Thus, our proof is complete. 

Proof of theorem (4): 

1]  𝐻2(𝑋 ∗ 𝑌) = (ℎ(𝑋 + 𝑌))𝑓2(ℎ(𝑋+𝑌)) = (ℎ(𝑋) + ℎ(𝑌))𝑓2((ℎ(𝑋)+ℎ(𝑌))) = 𝐻2(𝑋𝑓2(𝑋)) ∗

𝐻2(𝑌𝑓2(𝑌)). 

2] 𝐻2(𝑋 ○ 𝑌) = (ℎ(𝑋𝑌))𝑓2(ℎ(𝑋𝑌)) = (ℎ(𝑋)ℎ(𝑌))𝑓2((ℎ(𝑋)ℎ(𝑌))) = 𝐻2(𝑋𝑓2(𝑋)) ○ 𝐻2(𝑌𝑓2(𝑌)). 

3] since  𝑘𝑒𝑟(𝐻2) = [𝑘𝑒𝑟(ℎ)]𝑓2
, and 𝑘𝑒𝑟(ℎ) is an ideal of 𝑅2(𝐼), we get:  𝑘𝑒𝑟(𝐻2) is an 

ideal of [𝑅2(𝐼)]𝑓2
. 

4] It can be proved by the same. 

5] We have that: 

𝑅2(𝐼) 𝑘𝑒𝑟(ℎ)   ≅   𝐼𝑚(ℎ)⁄ , thus: 

 [𝑅2(𝐼)]𝑓2
 [𝑘𝑒𝑟(ℎ)]𝑓2

  ≅   [𝐼𝑚(ℎ)]𝑓2
⁄ , therefor: 

 [𝑅2(𝐼)]𝑓2
 𝑘𝑒𝑟(𝐻𝑛)   ≅   𝐼𝑚(𝐻𝑛)⁄ . 

6] 𝐻𝑛(𝑃𝑓2
) = { [ℎ(𝑃)]𝑓2

}, and ℎ(𝑃) is an ideal of 𝑅2(𝐼) , thus 𝐻2(𝑃𝑓2
) is an ideal of 

 [𝑅2(𝐼)]𝑓2
. 

7] {
𝐻𝑛(00) = (ℎ(0))𝑓2(ℎ(0)) = 00

𝐻𝑛(11) = (ℎ(1))𝑓2(ℎ(1)) = 11
. 

Proof of theorem (5): 

1] 𝐻2(−𝑋𝑓2(𝑋)) = (ℎ(−𝑋))𝑓2(ℎ(−𝑋)) = [−ℎ(𝑋)]𝑓2(−ℎ(𝑋)) = −𝐻2(𝑋𝑓2(𝑋)). 

2] 𝐻2 (𝑋𝑓2(𝑋−1)
−1 ) = (ℎ(𝑋−1))

𝑓2(ℎ(𝑋−1))
= [(ℎ(𝑋))−1]

𝑓2[(ℎ(𝑋))
−1

]
= [𝐻2(𝑋𝑓2(𝑋))]−1. 

3]( 𝐻2  × 𝐺2)[𝑋𝑓2(𝑋) ∗ 𝑌𝑓2(𝑌)] = ( 𝐻2  × 𝐺2)[𝑋 + 𝑌]𝑓2(𝑋+𝑌) = [(ℎ ○ 𝑔)(𝑋 + 𝑌)]𝑓2[(ℎ○𝑔)(𝑋+𝑌)] 
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= [(ℎ ○ 𝑔)(𝑋) + (ℎ ○ 𝑔)(𝑌)]𝑓2[(ℎ○𝑔)(𝑋)+(ℎ○𝑔)(𝑌)]  = ( 𝐻2  × 𝐺2)(𝑋𝑓2(𝑋)) ∗ ( 𝐻2  ×

𝐺2)(𝑌𝑓2(𝑌)). 

. ( 𝐻2  × 𝐺2)[𝑋𝑓2(𝑋) ○ 𝑌𝑓2(𝑌)] = [(ℎ ○ 𝑔)(𝑋𝑌)]𝑓2[(ℎ○𝑔)(𝑋𝑌)] = [(ℎ ○ 𝑔(𝑋))(ℎ ○

𝑔(𝑌))]
𝑓2[(ℎ○𝑔(𝑋))(ℎ○𝑔(𝑌))]

  

= ( 𝐻2  × 𝐺2)(𝑋𝑓2(𝑋)) ○ ( 𝐻2  × 𝐺2)(𝑌𝑓2(𝑌)). 

Proof of theorem (6): 

1]  𝑋𝑓2(𝑋) ○ 𝑋𝑓2(𝑋) = 𝑋𝑓2(𝑋) ⟺ (𝑋2)𝑓2(𝑋2) = 𝑋𝑓𝑛(𝑋) ⟺  𝑋2 = 𝑋  , and   𝑋  is 

idempotent in 𝑅2(𝐼). 

2]   𝑋𝑓2(𝑋) ○ … ○  𝑋𝑓2(𝑋) (𝑚 − 𝑡𝑖𝑚𝑒𝑠) = 00 ⟺  (𝑋𝑚)𝑓2 (𝑋𝑚) = 00 , thus  𝑋𝑚 = 0 , 

and 𝑋 is nilpotent in 𝑅2(𝐼). 

3] Its proof is similar to 1 and 2. 

Proof of theorem (7): 

1] 𝐻2(𝑋𝑓2(𝑋)) ○ 𝐻2(𝑋𝑓2(𝑋)) = [(ℎ(𝑋))2]𝑓2((ℎ(𝑋))2) = (ℎ(𝑋2))𝑓2(ℎ(𝑋2)) = (ℎ(𝑋))𝑓2(ℎ(𝑋)) =

𝐻2(𝑋𝑓2(𝑋)). 

2] 𝐻2(𝑋𝑓2(𝑋))
𝑚

= (ℎ(𝑋𝑚))𝑓2(ℎ(𝑋𝑚)) = [ℎ(0)]𝑓2(0) = 00. 

3] If 𝑋𝑓2(𝑋) ○ 𝑌𝑓2(𝑌) = 00, then: 

𝐻2(𝑋𝑓2(𝑋)) ○ 𝐻2(𝑌𝑓2(𝑌)) = (ℎ(𝑋𝑌))𝑓2(ℎ(𝑋𝑌)) = 00. 

4] If 𝑋𝑓2(𝑋) ○ 𝑌𝑓2(𝑌) = 11, then: 

𝐻2(𝑋𝑓2(𝑋)) ○ 𝐻2(𝑌𝑓2(𝑌)) = (ℎ(𝑋𝑌))𝑓2(ℎ(𝑋𝑌)) = (ℎ(1))𝑓2(ℎ(1)) = 11. 

Definition: 

Let 𝑅3(𝐼) = {𝑎0 + ∑ 𝑎𝑖𝐼𝑖    ; 𝑎𝑖 ∈ ℝ . 𝐼𝑖𝐼𝑗 = 𝐼min (𝑖.𝑗) 3
𝑖=1 } 

be 3-refined commutative neutrosophic ring with unity, let 𝑓: ℝ → [0.1] 
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Such that  {
𝑓(0) = 0

𝑓(1) = 1
 , we define: 

𝑓3 : 𝑅3(𝐼) → [0.1]   ;  𝑓3 (𝑎0 + ∑ 𝑎𝑖𝐼𝑖  3
𝑖=1 ) = max (𝑓(𝑎𝑖)), and 

[𝑅3(𝐼)]𝑓3 
= {(𝑎0 + ∑ 𝑎𝑖𝐼𝑖 

3
𝑖=1 )𝑓𝑛 (𝑎0+∑ 𝑎𝑖𝐼𝑖 3

𝑖=1 )    ; 𝑎𝑖 ∈ ℝ}, is called the two-fold 

fuzzy 3-Refined neutrosophic ring. 

Definition: 

Operations on [𝑅3(𝐼)]𝑓3 
are define as follows: 

*: [𝑅3(𝐼)]𝑓3 
× [𝑅3(𝐼)]𝑓3 

→ [𝑅3(𝐼)]𝑓3 
 

○:[𝑅3(𝐼)]𝑓3 
× [𝑅3(𝐼)]𝑓3 

→ [𝑅3(𝐼)]𝑓3 
 

Such that:{
𝑋𝑓3 (𝑋) ∗ 𝑌𝑓3 (𝑌) = (𝑋 + 𝑌)𝑓3 (𝑋+𝑌)

𝑋𝑓3 (𝑋) ○ 𝑌𝑓3 (𝑌) = (𝑋 ∙ 𝑌)𝑓3 (𝑋𝑌)
 

Definition: 

Let P an ideal of 𝑅3(𝐼), we define the corresponding two-fold fuzzy 3-refined 

neutrosophic ideal as follows: 

𝑃𝑓3 
= {𝑋𝑓3 (𝑋)   ; 𝑋 ∈ 𝑃} 

Definition: 

Let 𝑃𝑓3 
 be a two-fold fuzzy 3-refined neutrosophic ideal, we define the two-fold 

fuzzy 3-refined factor as: 

[𝑅3(𝐼)]𝑓3 
𝑃𝑓3 

= 𝑋𝑃𝑓3 
   ;  𝑋 ∈ [𝑅3(𝐼)]𝑓3 

⁄ . 

Definition: 

Let ℎ ∶ 𝑅3(𝐼) → 𝑅3(𝐼) be a ring homomorphism, we define: 

𝐻𝑛: [𝑅3(𝐼)]𝑓3 
→ [𝑅3(𝐼)]𝑓3 

such that: 

𝐻2(𝑋𝑓3 (𝑋)) = (ℎ(𝑋))𝑓3 (ℎ(𝑋)). 

The mapping (𝐻3) is called two-fold fuzzy 3-refined neutrosophic homomorphism. 

The kernel 𝑘𝑒𝑟(𝐻3)is: 
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  𝑘𝑒𝑟(𝐻𝑛) = {𝑋 ∈ [𝑅3(𝐼)]𝑓3 
   ; 𝐻3(𝑋𝑓3 (𝑋)) = 00} =  (𝑘𝑒𝑟(ℎ))𝑓3 

. 

The direct image  𝐼𝑚(𝐻3) is: 

 𝐼𝑚(𝐻3) =  (𝐼𝑚(ℎ))𝑓3 
. 

Definition: 

Let 𝐻3 . 𝐺3  ∶  [𝑅3(𝐼)]𝑓3 
→ [𝑅3(𝐼)]𝑓3 

 be two homomorphisms, then:  𝐻3 . 𝐺3  ∶

 [𝑅3(𝐼)]𝑓3 
→ [𝑅3(𝐼)]𝑓3 

with: 

(𝐻3 × 𝐺3)(𝑋𝑓3(𝑋)) = 𝐻3(𝐺3(𝑋𝑓3(𝑋))). 

Theorem (8): 

1] *, ○ are commutative. 

2] *, ○ are associative. 

3] (○) is distributive on (*). 

4] *, ○ has identities. 

5] (*) is invertible, i.e any element𝑋𝑓2(𝑋) ∈ [𝑅2(𝐼)]𝑓2 
 has an iverse with respect to (*). 

Theorem (9): 

Let 𝑃𝑓3
 be a two-fold ideal of[𝑅3(𝐼)]𝑓3 

, then: 

{
𝑋𝑓3(𝑋) ∗ 𝑌𝑓3(𝑌)  ∈ 𝑃𝑓3

𝑟𝑓3(𝑟) ∙ 𝑋𝑓3(𝑋) ∈ 𝑃𝑓3

     ;  𝑋. 𝑌 ∈ 𝑃 . 𝑟 ∈ 𝑅3(𝐼) 

Theorem (10): 

[𝑅3(𝐼)]𝑓3
𝑃𝑓3

⁄  is a commutative ring with unity. 

Theorem (11): 

Let 𝐻3: [𝑅3(𝐼)]𝑓3
→ [𝑅2(𝐼)]𝑓3

be a homomorphism, then: 

1] 𝐻2(𝑋𝑓3(𝑋) ∗ 𝑌𝑓3(𝑌)) =  𝐻2(𝑋𝑓3(𝑋)) ∗ 𝐻2 (𝑌𝑓32(𝑌)) 

2] 𝐻2(𝑋𝑓3(𝑋) ○ 𝑌𝑓3(𝑌)) =  𝐻2(𝑋𝑓3(𝑋)) ○ 𝐻2(𝑌𝑓3(𝑌)) 

3]  𝑘𝑒𝑟(𝐻3) is an ideal of [𝑅3(𝐼)]𝑓3
. 
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4]  𝐼𝑚(𝐻3) is a subring of  [𝑅3(𝐼)]𝑓3
. 

5]  [𝑅3(𝐼)]𝑓3
 𝑘𝑒𝑟(𝐻3)   ≅   𝐼𝑚(𝐻3)⁄ . 

6] If 𝑃𝑓3
 is an ideal of  [𝑅3(𝐼)]𝑓3

, then 𝐻3(𝑃𝑓3
) is an ideal. 

7] 𝐻3(00) = 00  . 𝐻3(11) = 11 

Theorem (12): 

Let 𝐻3 , 𝐺3  ∶  [𝑅3(𝐼)]𝑓3
→  [𝑅3(𝐼)]𝑓3

be two homomorphisms, then: 

1] 𝐻3(−𝑋𝑓3(𝑋)) = −𝐻3(𝑋𝑓3(𝑋)). 

2] 𝐻3 (𝑋𝑓3(𝑋−1)
−1 ) = [𝐻3(𝑋𝑓3(𝑋))]−1, if 𝑋 is invertible. 

3] 𝐻3  × 𝐺3 is a homomorphism. 

Definition: 

Let 𝑋𝑓3(𝑋) ∈  [𝑅2(𝐼)]𝑓2 
, then: 

1] 𝑋𝑓3(𝑋)  is idempotent if 𝑋𝑓3(𝑋) ○ 𝑋𝑓3(𝑋) = 𝑋𝑓3(𝑋). 

2] 𝑋𝑓3(𝑋)  is a nilpotent if there exists  𝑚 ∈ ℕ  such that: 𝑋𝑓3(𝑋) ○ 𝑋𝑓3(𝑋) ○ … ○

𝑋𝑓3(𝑋) (𝑚 − 𝑡𝑖𝑚𝑒𝑠) = 00 

3] 𝑋𝑓3(𝑋) is a zero divisor if there exists 𝑌𝑓3(𝑌) such that: 𝑋𝑓3(𝑋) ○ 𝑌𝑓3(𝑌) = 00 

Theorem (13): 

Let 𝑋𝑓3(𝑋) ∈  [𝑅3(𝐼)]𝑓3
, then we have: 

1] 𝑋𝑓3(𝑋) is idempotent if and only if 𝑋 is idempotent in 𝑅3(𝐼). 

2] 𝑋𝑓3(𝑋) is nilpotent if and only if 𝑋 is nilpotent in 𝑅3(𝐼). 

3] 𝑋𝑓3(𝑋) is a zero divisor if and only if 𝑋 is a zero diviso in 𝑅3(𝐼). 

Theorem (14): 

Let 𝐻3: [𝑅3(𝐼)]𝑓3
→  [𝑅3(𝐼)]𝑓3

, then: 
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1] If 𝑋𝑓3(𝑋) ∈  [𝑅3(𝐼)]𝑓2 
is idempotent, then 𝐻3(𝑋𝑓3(𝑋)) is idempotent. 

2] If 𝑋𝑓3(𝑋)is nilpotent, then 𝐻3(𝑋𝑓3(𝑋)) is nilpotent. 

3] If 𝑋𝑓3(𝑋)is a zero divisor, then 𝐻3(𝑋𝑓3(𝑋)) is a zero divisor. 

4] If 𝑋𝑓3(𝑋)is a unit, then 𝐻3(𝑋𝑓3(𝑋)) is a unit. 

Proof of theorem (8): 

1] 𝑋𝑓3(𝑋) ∗ 𝑌𝑓3(𝑌) = (𝑋 + 𝑌)𝑓3(𝑋+𝑦) = (𝑌 + 𝑋)𝑓3(𝑌+𝑋) = 𝑌𝑓3(𝑌) ∗ 𝑋𝑓3(𝑋). 

  𝑋𝑓3(𝑋) ○ 𝑌𝑓3(𝑌) = (𝑋𝑌)𝑓3(𝑋𝑦) = (𝑌𝑋)𝑓3(𝑌𝑋) = 𝑌𝑓3(𝑌) ○ 𝑋𝑓3(𝑋).  

2] 𝑋𝑓3(𝑋) ∗ 𝑌𝑓3(𝑌) ∗ 𝑍𝑓3(𝑍)) = 𝑋𝑓3(𝑋) ∗ (𝑌 + 𝑍)𝑓3(𝑌+𝑍) = (𝑋 + 𝑌 + 𝑍)𝑓3(𝑋+𝑌+𝑍) =

(𝑋 + 𝑌)𝑓3(𝑋+𝑌) ∗ 𝑍𝑓3(𝑍) = (𝑋𝑓3(𝑋) ∗ 𝑌𝑓3(𝑌)) ∗ 𝑍𝑓3(𝑍). 

      𝑋𝑓3(𝑋) ○ 𝑌𝑓2(𝑌) ○ 𝑍𝑓2(𝑍)) = (𝑋𝑌𝑍)𝑓3(𝑋𝑌𝑍) = (𝑋𝑌)𝑓3(𝑋𝑌) ○ 𝑍𝑓3(𝑍) = (𝑋𝑓3(𝑋) ○

𝑌𝑓3(𝑌)) ○ 𝑍𝑓3(𝑍). 

3] 𝑋𝑓3(𝑋) ○ (𝑌𝑓3(𝑌) ∗ 𝑍𝑓3(𝑍)) = (𝑋𝑌 + 𝑋𝑍)𝑓3(𝑋𝑌+𝑋𝑍) = (𝑋𝑌)𝑓2(𝑋𝑦) ∗ (𝑋𝑍)𝑓2(𝑋𝑍) = (𝑋𝑓2(𝑋) ○

𝑌𝑓2(𝑌)) ∗ (𝑋𝑓2(𝑋) ○ 𝑍𝑓2(𝑍)) 

4] 𝑋𝑓3(𝑋) ∗ 00 = (𝑋 + 0)𝑓3(𝑋+0) = 𝑋𝑓3(𝑋). 

𝑋𝑓3(𝑋) ○ 11 = (𝑋 ∙ 1)𝑓3(𝑋∙1) = 𝑋𝑓3(𝑋). 

5] For 𝑋𝑓3(𝑋), we have (−𝑋)𝑓3(−𝑋) such that: 

      𝑋𝑓3(𝑋) ∗ (−𝑋)𝑓3(−𝑋) = (X − 𝑋)𝑓3(𝑋−𝑋) = 00. 

Proof of theorem (9): 

𝑋𝑓3(𝑋) ∗ 𝑌𝑓3(𝑌) = (𝑋 + 𝑌)𝑓3(𝑋+𝑦)  ∈ 𝑃𝑓3
, that is because 𝑋 + 𝑌 ∈ 𝑃. 

𝑟𝑓3(𝑟) ○ 𝑋𝑓3(𝑋) = (𝑟𝑋)𝑓3(𝑟𝑋) ∈ 𝑃𝑓3
, that is because 𝑟𝑋 ∈ 𝑃. 

Proof of theorem (10): 



Neutrosophic Sets and Systems, Vol. 68, 2024 21  

 

 

Abdallah Shihadeh, Khaled Ahmad Mohammad Matarneh, Raed Hatamleh, Mowafaq Omar Al-Qadri, Abdallah Al-Husban, On 
The Two-Fold Fuzzy n-Refined Neutrosophic Rings For 2≤n≤3 

Define: ∗′: ( [𝑅3(𝐼)]𝑓3
𝑃𝑓3

⁄ ) × ( [𝑅3(𝐼)]𝑓3
𝑃𝑓3

⁄ ) →  [𝑅3(𝐼)]𝑓3
𝑃𝑓32

⁄  

               ○′: ( [𝑅3(𝐼)]𝑓3
𝑃𝑓3

⁄ ) × ( [𝑅3(𝐼)]𝑓3
𝑃𝑓3

⁄ ) →  [𝑅3(𝐼)]𝑓3
𝑃𝑓3

⁄  

Such that: 

(𝑋𝑓3(𝑋)𝑃𝑓3
) ∗′ (𝑌𝑓3(𝑌)𝑃𝑓3

) = (𝑋𝑓2(𝑋) ∗ 𝑌𝑓3(𝑌)) 𝑃𝑓3
 

(𝑋𝑓3(𝑋)𝑃𝑓3
) ○′ (𝑌𝑓3(𝑌)𝑃𝑓3

) = (𝑋𝑓3(𝑋) ○ 𝑌𝑓3(𝑌))𝑃𝑓3
 

We have: 

(𝑋𝑓3(𝑋)𝑃𝑓3
) ∗′ (00𝑃𝑓𝑛

) = 𝑋𝑓2 (𝑋) 𝑃𝑓2
, 

(𝑋𝑓3(𝑋)𝑃𝑓3
) ○′ (11𝑃𝑓2

) = 𝑋𝑓2(𝑋) 𝑃𝑓2
, 

(𝑋𝑓3(𝑋)𝑃𝑓3
) ∗′ ((−𝑋)𝑓2(−𝑋)𝑃𝑓2

) = 00 𝑃𝑓2
, 

(𝑋𝑓3(𝑋)𝑃𝑓3
) ∗′ [(𝑌𝑓3(𝑌)𝑃𝑓3

) ∗′ (𝑍𝑓3(𝑍)𝑃𝑓3
)] = ((𝑋𝑓3(𝑋)𝑃𝑓3

) ∗′ [(𝑌 ∗ 𝑍) 𝑃𝑓3
] = [𝑋 ∗ 𝑌 ∗ 𝑍] 𝑃𝑓3

=

(𝑋𝑓3(𝑋)𝑃𝑓3
) ∗′ (𝑌𝑓3(𝑌)𝑃𝑓3

)] ∗′ (𝑍𝑓3(𝑍)𝑃𝑓3
), 

(𝑋𝑓3(𝑋)𝑃𝑓3
) ○′ [(𝑌𝑓3(𝑌)𝑃𝑓3

) ○′ (𝑍𝑓3(𝑍)𝑃𝑓3
)] = (𝑋 𝑃𝑓3

) ○′ [(𝑌 ○ 𝑍) 𝑃𝑓3
] = [𝑋 ○ 𝑌 ○ 𝑍] 𝑃𝑓3

=

(𝑋𝑓3(𝑋)𝑃𝑓3
) ○′ (𝑌𝑓3(𝑌)𝑃𝑓3

)] ○′ (𝑍𝑓3(𝑍)𝑃𝑓3
). 

((𝑋𝑓3(𝑋)𝑃𝑓3
) ○′ [(𝑌𝑓3(𝑌)𝑃𝑓3

) ∗′ (𝑍𝑓3(𝑍)𝑃𝑓3
)] = [𝑋 ○ (𝑌 ∗ 𝑍)] 𝑃𝑓3

= [(𝑋 ○ 𝑌) ∗ (𝑋 ○ 𝑍)] 𝑃𝑓3

= (𝑋𝑓3(𝑋)𝑃𝑓3
) ○′ (𝑌𝑓3(𝑌)𝑃𝑓3

)] ∗′ [(𝑋𝑓3(𝑋)𝑃𝑓3
) ○′ (𝑍𝑓3(𝑍)𝑃𝑓3

)] 

Thus, our proof is complete. 

Proof of theorem (11): 

1]  𝐻3(𝑋 ∗ 𝑌) = (ℎ(𝑋 + 𝑌))𝑓3(ℎ(𝑋+𝑌)) = (ℎ(𝑋) + ℎ(𝑌))𝑓3((ℎ(𝑋)+ℎ(𝑌))) = 𝐻3(𝑋𝑓3(𝑋)) ∗

𝐻3 (𝑌𝑓32(𝑌)). 

2] 𝐻3(𝑋 ○ 𝑌) = (ℎ(𝑋𝑌))𝑓3(ℎ(𝑋𝑌)) = (ℎ(𝑋)ℎ(𝑌))𝑓3((ℎ(𝑋)ℎ(𝑌))) = 𝐻3(𝑋𝑓3(𝑋)) ○ 𝐻3(𝑌𝑓3(𝑌)). 
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3] since  𝑘𝑒𝑟(𝐻3) = [𝑘𝑒𝑟(ℎ)]𝑓2
, and 𝑘𝑒𝑟(ℎ) is an ideal of 𝑅3(𝐼), we get:  𝑘𝑒𝑟(𝐻3) is an 

ideal of [𝑅3(𝐼)]𝑓2
. 

4] It can be proved by the same. 

5] We have that: 

𝑅3(𝐼) 𝑘𝑒𝑟(ℎ)   ≅   𝐼𝑚(ℎ)⁄ , thus: 

 [𝑅3(𝐼)]𝑓3
 [𝑘𝑒𝑟(ℎ)]𝑓2

  ≅   [𝐼𝑚(ℎ)]𝑓2
⁄ , therefor: 

 [𝑅3(𝐼)]𝑓3
 𝑘𝑒𝑟(𝐻𝑛)   ≅   𝐼𝑚(𝐻𝑛)⁄ . 

6] 𝐻3(𝑃𝑓3
) = { [ℎ(𝑃)]𝑓3

}, and ℎ(𝑃) is an ideal of 𝑅3(𝐼) , thus 𝐻3(𝑃𝑓3
) is an ideal of 

 [𝑅3(𝐼)]𝑓3
. 

7] {
𝐻3(00) = (ℎ(0))𝑓3(ℎ(0)) = 00

𝐻3(11) = (ℎ(1))𝑓3(ℎ(1)) = 11
. 

Proof of theorem (12): 

It is similar to that of theorem 5. 

Proof of theorem (13): 

It holds by a similar argument of theorem 6. 

Proof of theorem (14): 

It is similar to that of theorem 7. 

Conclusion 

In this paper we studied the two-fold fuzzy algebra based on n-refined 

neutrosophic rings for some different special values of n, where we studied some of 

special elements in the case of two-fold 2-refined neutrosophic ring and 3-refined 

neutrosophic ring such as units, idempotenets and nilpotent elements. Also, we 

presented the concept of two-fold ring homomorphism with its elementary 

properties. 
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Abstract: 

The concept of special functions plays an important role in mathematical analysis 

and physics as well. In this paper, we study some different types of the special 

Gamma function defined on the two-fold fuzzy complex field, where we combine 

the classical Gamma function with the two-fold fuzzy algebra defined on complex 

numbers. On the other hand, many elementary properties of this new special 

function will be determined in terms of theorems and proofs.  

Keywords: Gamma function, two-fold fuzzy algebra, complex field, special 

function. 

Introduction 

The theory of special functions is considered one of the most comprehensive and 

important theories in mathematics due to its wide applications in various fields of 

knowledge and physics [1-3]. The gamma function is one of the most famous 

functions in mathematics that plays a central role in number theory, probability, 

and the calculation of random processes [6-7]. 

Neutrosophic logic as a good generalization of fuzzy logic plays a central role in 

modern studies that are related to algebra and analysis [4-5], with very wide 

applications in decision-making and geometry [8-9]. 

mailto:nsalman@uoalfarahidi.edu.iq


Neutrosophic Sets and Systems, Vol. 68, 2024 27  

 

 

Nabil Khuder Salman, On The Special Gamma Function Over The Complex Two-Fold Algebras 

In [10], Smarandache proposed the concept of two-fold algebras, and then these 

idea was used in the study of fuzzy number theoretical relations [11], and in 

module theory [12]. 

In this work, we are motivated to use the two-fold fuzzy complex algebra with 

Gamma functions to generate a new analytical structure and to study its properties. 

This study may be very helpful in the future because it opens a wide door to use of 

two-fold algebra in defining and presenting some new types of special functions 

that can be applied in other fields of knowledge. 

Main Discussion 

Definition: 

Let ℂ be the complex field, 𝜇:ℝ ×ℝ → [0.1], we define the complex twofold fuzzy 

algebra as follows. 

ℂ𝑓 = {(𝑎 + 𝑏𝑖)𝜇(𝑥)  ; 𝑎. 𝑏. 𝑥 ∈ ℝ .  𝑖
2 = −1}, 

Binary operation: 

(∗): 𝐶𝑓 × 𝐶𝑓 → 𝐶𝑓  such that: 

(𝑎 + 𝑏𝑖)𝜇(𝑥) ∗ (𝑐 + 𝑑𝑖)𝜇(𝑦) = [(𝑎 + 𝑐) + (𝑏 + 𝑑)𝑖]max(𝜇(𝑥).𝜇(𝑦)) 

Theorem1: 

Let (𝐶𝑓.∗) be the two fold complex fuzzy algebra defined previously, then: 

1] (∗) is well defined. 

2] (∗) is commutative. 

3] (∗) is associative. 

4] For each (𝑎 + 𝑏𝑖)𝜇(𝑥) ∈ 𝐶𝑓 , there exists 𝑜𝜇(𝑥)  ∈ 𝐶𝑓 such that: 

 (𝑎 + 𝑏𝑖)𝜇(𝑥) ∗ 𝑜𝜇(𝑥) =  (𝑎 + 𝑏𝑖)𝜇(𝑥). 

Example: 

For : ℝ × ℝ → [0.1]  ;  𝜇(𝑥) = {
𝑒𝑥    ; 𝑥 ≤ 0

𝑒
1

𝑥   ; 𝑥 ≥ 0
 , we have: 

𝐴 =  (3 + 2𝑖)𝜇(3)  . 𝐵 =  (2 − 5𝑖)𝜇(−2), then: 
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𝐴 ∗ 𝐵 =  (5 − 3𝑖)
max(

1

𝑒3
.
1

𝑒2
)
=  (5 − 3𝑖) 1

𝑒2
. 

Definition: 

Let  𝐴 = (𝑎 + 𝑏𝑖)𝜇(𝑥) ∈ 𝐶𝑓, we define: 

1]  �̅� = (𝑎 − 𝑏𝑖)𝜇(𝑥)  

2]  |𝐴| = (√𝑎2 + 𝑏2)𝜇(𝑥) 

Theorem 2: 

For  𝐴 = (𝑎 + 𝑏𝑖)𝜇(𝑥) ∈ 𝐶𝑓  .  𝐵 = (𝑐 + 𝑑𝑖)𝜇(𝑦) ∈ 𝐶𝑓, we have: 

1] 𝐴 ∗ �̅� = (2𝑎)𝜇(𝑥) 

2] 𝐴 ∗ 𝐵̅̅ ̅̅ ̅̅ ̅ = �̅� ∗ �̅� 

Example: 

Take 𝐴 =  (1 + 2𝑖)𝜇(5)  . 𝐵 =  (3 − 𝑖)𝜇(−10)   ;     𝜇(𝑥) = {
𝑒𝑥    ; 𝑥 ≤ 0

𝑒
1

𝑥   ; 𝑥 > 0
 

�̅� =  (1 − 2𝑖)𝜇(5) =  (1 − 2𝑖)𝑒−5   . �̅� =  (3 + 𝑖)𝜇(−10) =  (3 + 𝑖)𝑒−10 

𝐴 ∗ 𝐵 =  (4 + 𝑖)𝑒−5  .  𝐴̅̅ ̅̅ ∗ �̅� =  (4 − 𝑖)𝑒−5  . 𝐴 ∗ 𝐵̅̅ ̅̅ ̅̅ ̅ =  (4 − 𝑖)𝑒−5. 

 |𝐴| = √5𝑒−5  .  |𝐴| = √10𝑒−10   

Definition: 

We define the following binary operation on 𝐶𝑓: 

○: 𝐶𝑓 × 𝐶𝑓 → 𝐶𝑓 ∶          (𝑎 + 𝑏𝑖)𝜇(𝑥) ○  (𝑐 + 𝑑𝑖)𝜇(𝑦)

= [𝑎𝑐 − 𝑏𝑑 + (𝑎𝑑 + 𝑏𝑐)𝑖]min(𝜇(𝑥).𝜇(𝑦)) 

Theorem 3: 

1] (○) is well defined. 

2] (○) is commutative. 

3] (○) is associative. 

4] (○) is distributive on (∗). 

5] For each (𝑎 + 𝑏𝑖)𝜇(𝑥) ∈ 𝐶𝑓 , there exists 1𝜇(𝑥)  ∈ 𝐶𝑓 such that: 

 (𝑎 + 𝑏𝑖)𝜇(𝑥) ○ 1𝜇(𝑥) =  (𝑎 + 𝑏𝑖)𝜇(𝑥). 
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Theorem 4: 

Let  𝐴 = (𝑎 + 𝑏𝑖)𝜇(𝑥)  .  𝐵 = (𝑐 + 𝑑𝑖)𝜇(𝑦) ∈ 𝐶𝑓, then: 

1] |𝐴 ○ 𝐵| = |𝐴| ○ |𝐵| 

2] |�̅�| = |𝐴| 

3]𝐴 ○ �̅� = |𝐴2| 

Definition: 

Let  𝐴 = (𝑎 + 𝑏𝑖)𝜇(𝑥) ∈ 𝐶𝑓, we define the first special function Gamma on 𝐶𝑓 as 

follows: 

𝛤1(𝐴𝜇(𝑥)) = (𝛤(𝐴))𝜇(𝛤(𝑥))        ; 𝑎. 𝑥 > 0. 

The second Gamma function on 𝐶𝑓 is defined as follows: 

𝛤2(𝐴𝜇(𝑥)) = (𝛤(𝐴))𝜇(𝛤(𝑥))       ; 𝑎 > 0  . 𝑥 ∈ ℝ. 

The third Gamma function on  𝐶𝑓 is defined as follows: 

𝛤3(𝐴𝜇(𝑥)) = (𝐴)𝜇(𝛤(𝑥))     ; 𝑥 > 0  . 𝐴 ∈  𝐶𝑓 

 

Theorem5: 

Consider 𝛤1. 𝛤2. 𝛤3 the three types of special Gamma functions defined over 𝐶𝑓 , 

then: 

1] 𝐴𝜇(𝑥) ○ 𝛤2(𝐴𝜇(𝑥)) = 𝛤2[(𝐴 + 1)𝜇(𝑥)] 

2] 𝐴𝜇(𝑥) ○ 𝛤1(𝐴𝜇(𝑥)) = 𝛤1[(𝐴 + 1)𝜇(𝑥)] 

3] for 𝐴 = (𝑎)𝜇(𝑥)  ∈  𝐶𝑓   ; 𝑎 ∈ ℝ
+, we have: 

{
lim
𝑎→0+

𝐴𝜇(𝑥) ○ 𝛤2(𝐴𝜇(𝑥)) = 1𝜇(𝑥)

lim
𝑎→0+

𝐴𝜇(𝑥) ○ 𝛤1(𝐴𝜇(𝑥)) = 1𝜇(𝑥)
 

4] for 𝐴 = 𝑎𝜇(𝑥)  ∈  𝐶𝑓   ;    𝑎. 𝑥 ∈ ℝ
+, we have: 
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{
 
 
 

 
 
 𝛤1(𝐴𝜇(𝑥)) = (2∫ 𝑒−𝑡

2
∙ 𝑡2𝑎−1 𝑑𝑡

∞

0

)
𝜇(2 ∫ 𝑒−𝑡

2
∙𝑡2𝑥−1 𝑑𝑡

∞
0

)

𝛤2(𝐴𝜇(𝑥)) = (2∫ 𝑒−𝑡
2
∙ 𝑡2𝑎−1 𝑑𝑡

∞

0

)𝜇(𝑥)                        

𝛤3(𝐴𝜇(𝑥)) = (𝑎)
𝜇(2 ∫ 𝑒−𝑡

2
∙𝑡2𝑥−1 𝑑𝑡

∞
0

)
                              

 

Definition: 

The two fold neutrosophic complex algebra is defined as follows: 

 𝐶𝑁 = { (𝑎 + 𝑏𝑖)(𝑡.𝑗.𝑓)   ;   𝑎. 𝑏 ∈ ℝ  .  𝑡. 𝑗. 𝑓 ∈ [0.1] .  𝑖
2 = −1 } 

We define the following binary operations: 

∗: 𝐶𝑁 × 𝐶𝑁 → 𝐶𝑁   ;      (𝑎 + 𝑏𝑖)(𝑡1.𝑗1.𝑓1) ∗  (𝑐 + 𝑑𝑖)(𝑡2.𝑗2.𝑓2)

= [𝑎 + 𝑐 + (𝑑 + 𝑏)𝑖](𝑡.𝑗.𝑓) 

Where: {
𝑡 = max (𝑡1. 𝑡2)
𝑓 = min (𝑓1. 𝑓2)
𝑗 = min (𝑗1. 𝑗2)

 

○: 𝐶𝑁 × 𝐶𝑁 → 𝐶𝑁   ;      (𝑎 + 𝑏𝑖)(𝑡1.𝑗1.𝑓1) ○  (𝑐 + 𝑑𝑖)(𝑡2.𝑗2.𝑓2)

= [𝑎𝑐 − 𝑏𝑑 + (𝑎𝑑 + 𝑏𝑐)𝑖](𝑡.𝑗.𝑓) 

Where: {
𝑡 = min (𝑡1. 𝑡2)
𝑗 = max (𝑗1. 𝑗2)
𝑓 = max (𝑓1. 𝑓2)

 

Example: 

Let  𝐴 =  (2 + 5𝑖)
(
1

2
.
1

3
.
1

5
)
  . 𝐵 =  (1 − 𝑖)

(0.
1

2
.
1

3
)
, we have: 

𝐴 ∗ 𝐵 =  (3 + 4𝑖)
(
1

2
.
1

3
.
1

5
)
     . 𝐴 ○ 𝐵 =  (7 + 3𝑖)

(0.
1

2
.
1

3
)
  

Definition: 

Let 𝐴 =  (𝑎 + 𝑏𝑖)(𝑡.𝑗.𝑓) ∈ 𝐶𝑁, we define: 

1] �̅� =  (𝑎 − 𝑏𝑖)(𝑡.𝑗.𝑓) 

2] |𝐴| =  (√𝑎2 + 𝑏2)(𝑡.𝑗.𝑓) 

Theorem 6: 

Let (𝐶𝑁.○ .∗) be the two fold neutrosophic complex algebra, then: 

1] (∗) is well defined. 
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2] (○) is well defined. 

3] (∗). (○) are commutative. 

4] (∗). (○) are associative. 

5] (○) is distributive on (∗). 

6] for each 𝐴 =  (𝑎 + 𝑏𝑖)(𝑡.𝑗.𝑓) ∈ 𝐶𝑁, there exists: 0(𝑡.𝑗.𝑓). 1(𝑡.𝑗.𝑓) 

Such that {
𝐴 ∗ 0 = 𝐴
𝐴 ○ 1 = 𝐴

 

Theorem 7: 

Let (𝐶𝑁.○ .∗) be the neutrosophic two fold algebra, then: 

For 𝐴 . 𝐵 ∈ 𝐶𝑁, we have: 

1] 𝐴 ∗ 𝐵̅̅ ̅̅ ̅̅ ̅ = �̅� ∗ �̅� 

2] 𝐴 ○ 𝐵̅̅ ̅̅ ̅̅ ̅ = �̅� ○ �̅� 

3] 𝐴 ○ �̅� = |𝐴2| 

4] |𝐴 ○ 𝐵| = |𝐴| ○ |𝐵|   

Definition: 

Let (𝐶𝑁.○ .∗) be the neutrosophic two fold algebra, we define the following types 

of Gamma special function: 

𝛤1(𝐴(𝑡.𝑗.𝑓)) = (𝛤(𝐴))(𝛤(𝑡).𝛤(𝑗).𝛤(𝑓))          ; 𝑎 > 0. 

𝛤2(𝐴(𝑡.𝑗.𝑓)) = (𝛤(𝐴))(𝑡.𝑗.𝑓)       ; 𝑎 > 0. 

𝛤3(𝐴(𝑡.𝑗.𝑓)) = (𝐴)(𝛤(𝑡).𝛤(𝑗).𝛤(𝑓))  

Theorem 8: 

Consider 𝛤1. 𝛤2. 𝛤3 the three types of Gamma functions over (𝐶𝑁.○ .∗)  , we have: 

1] 𝐴(𝑡.𝑗.𝑓) 𝛤2(𝐴(𝑡.𝑗.𝑓)) =  𝛤2(𝐴 + 1)(𝑡.𝑗.𝑓)   

2]  𝛤1(𝐴(𝑡.𝑗.𝑓)) = (𝐿)(𝑎1.𝑏1.𝑐1)  ; 𝑤ℎ𝑒𝑟𝑒:

{
 
 

 
 𝐿 = 2∫ 𝑒−𝑡

2
∙ 𝑡2𝑎−1 𝑑𝑡

∞

0

𝑎1 = 2∫ 𝑒−𝑡
2
∙ 𝑡2(𝑡)−1 𝑑𝑡

∞

0

𝑏1 = 2∫ 𝑒−𝑡
2
∙ 𝑡2𝑗−1 𝑑𝑡

∞

0

𝑐1 = 2∫ 𝑒−𝑡
2
∙ 𝑡2𝑓−1 𝑑𝑡

∞

0

 

3] For 𝐴 = 𝑎 ∈ ℝ+   ;  𝛤2(𝐴(𝑡.𝑗.𝑓)) = (𝐿)(𝑡.𝑗.𝑓)  . 𝑤ℎ𝑒𝑟𝑒 𝐿 = 2∫ 𝑒−𝑡
2
∙ 𝑡2𝑎−1 𝑑𝑡

∞

0
. 
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4] For any 𝐴 ∈ 𝐶𝑁 .  𝛤3(𝐴(𝑡.𝑗.𝑓)) =

(𝐴)(𝑎1.𝑏1.𝑐1)    ;  𝑤ℎ𝑒𝑟𝑒 

{
 

 𝑎1 = 2∫ 𝑒−𝑡
2
∙ 𝑡2(𝑡)−1 𝑑𝑡

∞

0

𝑏1 = 2∫ 𝑒−𝑡
2
∙ 𝑡2𝑗−1 𝑑𝑡

∞

0

𝑐1 = 2∫ 𝑒−𝑡
2
∙ 𝑡2𝑓−1 𝑑𝑡

∞

0

 

Proof of theorem (1): 

1] assume that: {
 (𝑎 + 𝑏𝑖)𝜇(𝑥) =  (𝑎

′ + 𝑏′𝑖)𝜇(𝑥′)
 (𝑐 + 𝑑𝑖)𝜇(𝑦) =  (𝑐

′ + 𝑑′𝑖)𝜇(𝑦′)
 

Then: {
𝑎 = 𝑎′ . 𝑏 = 𝑏′  
𝑐 = 𝑐′  . 𝑑 = 𝑑′ 

𝜇(𝑦) = 𝜇(𝑦′) . 𝜇(𝑥) = 𝜇(𝑥′) 
 

Hence:  (𝑎 + 𝑏𝑖)𝜇(𝑥) ∗  (𝑐 + 𝑑𝑖)𝜇(𝑦) = [𝑎 + 𝑐 + (𝑑 + 𝑏)𝑖]max(𝜇(𝑥).𝜇(𝑦)) 

= [𝑎′ + 𝑐′ + (𝑑′ + 𝑏′)𝑖]
max(𝜇(𝑥′).𝜇(𝑦′))

=  (𝑎′ + 𝑏′𝑖)𝜇(𝑥′) ∗  (𝑐
′ + 𝑑′𝑖)𝜇(𝑦′). 

2]   (𝑎 + 𝑏𝑖)𝜇(𝑥) ∗  (𝑐 + 𝑑𝑖)𝜇(𝑦) = [𝑎 + 𝑐 + (𝑏 + 𝑑)𝑖]max(𝜇(𝑥).𝜇(𝑦)) =  (𝑐 + 𝑑𝑖)𝜇(𝑦) ∗

 (𝑎 + 𝑏𝑖)𝜇(𝑥).  

3] Let  𝑋 = (𝑎 + 𝑏𝑖)𝜇(𝑥)   . 𝑌 =  (𝑐 + 𝑑𝑖)𝜇(𝑦) . 𝑍 =   (𝑚 + 𝑛𝑖)𝜇(𝑧), then: 

𝑋 ∗ (𝑌 ∗ 𝑍) = 𝑋 ∗ [𝑐 + 𝑚 + 𝑖(𝑑 + 𝑛)]max(𝜇(𝑦).𝜇(𝑧))

= [𝑎 + 𝑐 + 𝑚 + 𝑖(𝑏 + 𝑑 + 𝑛)]max(𝜇(𝑥).𝜇(𝑦).𝜇(𝑧)) 

= (𝑎 + 𝑐 + 𝑖(𝑏 + 𝑑))max(𝜇(𝑥).𝜇(𝑦)) ∗  (𝑚 + 𝑛𝑖)𝜇(𝑧) = (𝑋 ∗ 𝑌) ∗ 𝑍. 

4] It is clear that:  

 (𝑎 + 𝑏𝑖)𝜇(𝑥) ∗ 𝑜𝜇(𝑥) = (𝑎 + 0 + 𝑖𝑏)max(𝜇(𝑥).𝜇(𝑥)) = (𝑎 + 𝑏𝑖)𝜇(𝑥). 

Proof of theorem (2): 

1] 𝐴 ∗ �̅� =  (𝑎 + 𝑏𝑖)𝜇(𝑥) ∗  (𝑎 − 𝑏𝑖)𝜇(𝑥) = (2𝑎)𝜇(𝑥). 

2] 𝐴 ∗ 𝐵̅̅ ̅̅ ̅̅ ̅ = (𝑎 + 𝑐 + 𝑖(𝑑 + 𝑏))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
max(𝜇(𝑥).𝜇(𝑦)) = (𝑎 + 𝑐 − 𝑖(𝑑 + 𝑏))max(𝜇(𝑥).𝜇(𝑦)) =

 (𝑎 − 𝑖𝑏)𝜇(𝑥) ∗  (𝑐 − 𝑖𝑑)𝜇(𝑦) = �̅� ∗ �̅�. 

Proof of theorem (3): 
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1] assume that: {
 (𝑎 + 𝑏𝑖)𝜇(𝑥) =  (𝑎

′ + 𝑏′𝑖)𝜇(𝑥′)
 (𝑐 + 𝑑𝑖)𝜇(𝑦) =  (𝑐

′ + 𝑑′𝑖)𝜇(𝑦′)
 

Then: {
𝑎 = 𝑎′ . 𝑏 = 𝑏′  
𝑐 = 𝑐′  . 𝑑 = 𝑑′ 

𝜇(𝑥) = 𝜇(𝑥′) . 𝜇(𝑦) = 𝜇(𝑦′) 
 

So that:  (𝑎 + 𝑏𝑖)𝜇(𝑥) ○  (𝑐 + 𝑑𝑖)𝜇(𝑦) = [𝑎𝑐 − 𝑏𝑑 + 𝑖(𝑎𝑑 + 𝑏𝑐)]min(𝜇(𝑥).𝜇(𝑦)) 

                = [𝑎′𝑐′  − 𝑏′𝑑′ + 𝑖(𝑎′𝑑′ + 𝑏′𝑐′)]
min(𝜇(𝑥′).𝜇(𝑦′))

=  (𝑎′ + 𝑏′𝑖)𝜇(𝑥′) ○

 (𝑐′ + 𝑑′𝑖)𝜇(𝑦′). 

2] (𝑎 + 𝑏𝑖)𝜇(𝑥) ○ (𝑐 + 𝑑𝑖)𝜇(𝑦) = [𝑎𝑐 − 𝑏𝑑 + 𝑖(𝑎𝑑 + 𝑏𝑐)]min(𝜇(𝑥).𝜇(𝑦)) = [𝑐𝑎 − 𝑑𝑏 +

𝑖(𝑑𝑎 + 𝑐𝑏)]min(𝜇(𝑥).𝜇(𝑦)) = (𝑐 + 𝑑𝑖)𝜇(𝑦) ○ (𝑎 + 𝑏𝑖)𝜇(𝑥). 

3] Let 𝑋 = (𝑎 + 𝑏𝑖)𝜇(𝑥)  .  𝑌 = (𝑐 + 𝑑𝑖)𝜇(𝑦) . 𝑍 =   (𝑚 + 𝑛𝑖)𝜇(𝑧), then: 

 𝑋 ○ (𝑌 ○ 𝑍) = 𝑋 ○ [(𝑐 + 𝑑𝑖)(𝑚 + 𝑛𝑖)]min(𝜇(𝑦).𝜇(𝑧)) = [(𝑎 + 𝑏𝑖)(𝑐 + 𝑑𝑖)(𝑚 +

𝑛𝑖)]min(𝜇(𝑥).𝜇(𝑦).𝜇(𝑧)) 

= [(𝑎 + 𝑏𝑖)(𝑐 + 𝑑𝑖)]min(𝜇(𝑥).𝜇(𝑦)) ○  (𝑚 + 𝑛𝑖)𝜇(𝑧) = (𝑋 ○ 𝑌) ○ 𝑍. 

4] 𝑋 ○ (𝑌 ∗ 𝑍) = (𝑎 + 𝑏𝑖)𝜇(𝑥) ○ [(𝑐 +𝑚) + 𝑖(𝑑 + 𝑛)]max(𝜇(𝑦).𝜇(𝑧)) = [(𝑎 + 𝑏𝑖)(𝑐 +

𝑑𝑖) + (𝑎 + 𝑏𝑖)(𝑚 + 𝑛𝑖)]min(𝜇(𝑥).max(𝜇(𝑦).𝜇(𝑧))) 

Also (𝑋 ○ 𝑌) ∗ (𝑋 ○ 𝑍) = [(𝑎 + 𝑏𝑖)(𝑐 + 𝑑𝑖)]min(𝜇(𝑥).𝜇(𝑦)) ∗ [(𝑎 + 𝑏𝑖)(𝑚 +

𝑛𝑖)]min(𝜇(𝑥).𝜇(𝑧)) 

= [(𝑎 + 𝑏𝑖)(𝑐 + 𝑑𝑖) + (𝑎 + 𝑏𝑖)(𝑚 + 𝑛𝑖)]max (min(𝜇(𝑥).𝜇(𝑦)).min (𝜇(𝑥).𝜇(𝑧))) = 𝑋 ○ (𝑌 ∗ 𝑍)  

5] it holds directly from the definition. 

Proof of theorem (4): 

1] |𝐴 ○ 𝐵| = [|(𝑎 + 𝑏𝑖)(𝑐 + 𝑑𝑖)|]min (𝜇(𝑥).𝜇(𝑦)) = [√𝑎2 + 𝑏2 ∙ √𝑐2 + 𝑑2]min(𝜇(𝑥).𝜇(𝑦)) =

[√𝑎2 + 𝑏2]𝜇(𝑥) ○ [√𝑐2 + 𝑑2]𝜇(𝑦) = |𝐴| ○ |𝐵| 

2] |�̅�| = (√𝑎2 + 𝑏2)𝜇(𝑥) = |𝐴|. 
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3]𝐴 ○ �̅� = [(𝑎 + 𝑏𝑖)(𝑎 − 𝑏𝑖)]min(𝜇(𝑥).𝜇(𝑥)) = (𝑎2 + 𝑏2)𝜇(𝑥) = |𝐴2|. 

Proof of theorem (5): 

Before the proof get started, it will be useful to write the formulas of Gamma 

function: 

1] 𝛤(𝑍) = 2∫ 𝑒−𝑡 ∙ 𝑡𝑧−1 𝑑𝑡   ; ℝ𝑒(𝑍) > 0 . 𝑧 ∈
∞

0
ℂ 

2] 𝛤(𝑍 + 1) = 𝑍 𝛤(𝑍) 

3] lim
𝑥→0+

𝑥𝛤(𝑥) = 1    ;  𝑥 ∈ ℝ+ 

4] 𝛤(𝑥) = 2∫ 𝑒−𝑡
2
∙ 𝑡2𝑥−1 𝑑𝑥        ; 0 < 𝑥 < ∞

∞

0
  

Now we prove the first part: 

1  𝐴𝜇(𝑥) ○ 𝛤2(𝐴𝜇(𝑥)) = (𝐴𝛤(𝐴))𝜇(𝑥) = (𝛤(𝐴 + 1))𝜇(𝑥) = 𝛤2[(𝐴 + 1)𝜇(𝑥)] 

2  𝐴𝜇(𝑥) ○ 𝛤1(𝐴𝜇(𝑥)) = (𝐴𝛤(𝐴))𝜇(𝛤(𝑥)) = (𝛤(𝐴 + 1))𝜇(𝛤(𝑥)) = 𝛤1[(𝐴 + 1)𝜇(𝑥)] 

3  lim
𝑎→0+

𝐴𝜇(𝑥) ○ 𝛤2(𝐴𝜇(𝑥)) = lim
𝑎→0+

[𝑎𝛤(𝑎)]𝜇(𝑥) =1𝜇(𝑥) 

lim
𝑎→0+

𝐴𝜇(𝑥) ○ 𝛤1(𝐴𝜇(𝑥)) = lim
𝑎→0+

[𝐴𝛤(𝐴)]𝜇(⌈(𝑥)) = lim
𝑎→0+

[𝑎𝛤(𝑎)]𝜇(⌈(𝑥)) =1𝜇(𝑥) 

4  𝑠𝑖𝑛𝑐𝑒 

{
 
 

 
 
𝛤(𝐴) = 2∫ 𝑒−𝑡 ∙ 𝑡2𝑎−1 𝑑𝑡

∞

0

𝛤(𝑥) = 2∫ 𝑒−𝑡
2
∙ 𝑡2𝑥−1 𝑑𝑡

∞

0

 

We get: 

{
 
 

 
 𝛤1(𝐴𝜇(𝑥)) = (2∫ 𝑒−𝑡

2
∙ 𝑡2𝑎−1 𝑑𝑡

∞

0
)
𝜇(2 ∫ 𝑒−𝑡

2
∙𝑡2𝑥−1 𝑑𝑡

∞
0

)

𝛤2(𝐴𝜇(𝑥)) = (2∫ 𝑒−𝑡
2
∙ 𝑡2𝑎−1 𝑑𝑡

∞

0
)𝜇(𝑥)                        

𝛤3(𝐴𝜇(𝑥)) = (𝑎)𝜇(2 ∫ 𝑒−𝑡
2
∙𝑡2𝑥−1 𝑑𝑡

∞
0

)
                              

 

Proof of theorem (6): 

1] Assume that:  (𝑎 + 𝑏𝑖)(𝑡1.𝑗1.𝑓1) = (𝑎
′ + 𝑏′𝑖)(𝑡1′ .𝑗1′ .𝑓1′)  .  (𝑐 + 𝑑𝑖)(𝑡2.𝑗2.𝑓2) =

(𝑐′ + 𝑑′𝑖)(𝑡2′ .𝑗2′ .𝑓2′). 
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Then:  {

𝑎 = 𝑎′ . 𝑏 = 𝑏′ . 𝑐 = 𝑐′  . 𝑑 = 𝑑′ 
𝑡1 = 𝑡1 

′ . 𝑡2 = 𝑡2
′  

𝑗1 = 𝑗1
′  . 𝑗2 = 𝑗2

′  

𝑓1 = 𝑓1
′  .  𝑓2 = 𝑓2

′

 

 (𝑎 + 𝑏𝑖)(𝑡1.𝑗1.𝑓1) ∗  (𝑐 + 𝑑𝑖)(𝑡2.𝑗2.𝑓2) = [𝑎 + 𝑐 + (𝑏 + 𝑑)𝑖](𝑡3.𝑗3.𝑓3)

= [𝑎′ + 𝑐′ + (𝑏′ + 𝑑′)𝑖](𝑡4.𝑗4.𝑓4)  

Where  {

𝑡3 = max(𝑡1. 𝑡2) = 𝑡4 = max(𝑡1 
′ . 𝑡2

′)

𝑓3 = min(𝑓1. 𝑓2) = 𝑓4 = min(𝑓1 
′ . 𝑓2

′)

𝑗3 = min(𝑗1. 𝑗2) = 𝑗4 = min(𝑗1 
′ . 𝑗2

′ )

 

2] Assume that: {
 (𝑎 + 𝑏𝑖)(𝑡1.𝑗1.𝑓1) = (𝑎

′ + 𝑏′𝑖)(𝑡1′ .𝑗1′ .𝑓1′)
 (𝑐 + 𝑑𝑖)(𝑡2.𝑗2.𝑓2) = (𝑐′ + 𝑑′𝑖)(𝑡2′ .𝑗2′ .𝑓2′)

 

We get: {

𝑎 = 𝑎′ . 𝑏 = 𝑏′ . 𝑐 = 𝑐′  . 𝑑 = 𝑑′ 
𝑡1 = 𝑡1 

′ . 𝑡2 = 𝑡2
′  

𝑗1 = 𝑗1
′  . 𝑗2 = 𝑗2

′  

𝑓1 = 𝑓1
′ .  𝑓2 = 𝑓2

′

 

Hence:  (𝑎 + 𝑏𝑖)(𝑡1.𝑗1.𝑓1) ○  (𝑐 + 𝑑𝑖)(𝑡2.𝑗2.𝑓2) = [𝑎𝑐 − 𝑏𝑑 + 𝑖(𝑎𝑑 + 𝑏𝑐)](𝑡3.𝑗3.𝑓3) 

.= [𝑎′𝑐′  − 𝑏′𝑑′ + 𝑖(𝑎′𝑑′ + 𝑏′𝑐′)](𝑡3.𝑗3.𝑓3) = (𝑎
′ + 𝑏′𝑖)(𝑡1′ .𝑗1′ .𝑓1′) ○ (𝑐

′ + 𝑑′𝑖)(𝑡2′ .𝑗2′ .𝑓2′) 

Where {

𝑡3 = min(𝑡1. 𝑡2) = min(𝑡1 
′ . 𝑡2

′ )

𝑗3 = max(𝑗1. 𝑗2) = max(𝑗1 
′ . 𝑗2

′ )

𝑓3 = max(𝑓1. 𝑓2) = max(𝑓1 
′ . 𝑓2

′)

  

3](𝑎 + 𝑏𝑖)(𝑡1.𝑗1.𝑓1) ○  (𝑐 + 𝑑𝑖)(𝑡2.𝑗2.𝑓2) = [𝑎𝑐 − 𝑏𝑑 + 𝑖(𝑎𝑑 + 𝑏𝑐)](𝑡3.𝑗3.𝑓3) 

.= [𝑐𝑎 − 𝑑𝑏 + 𝑖(𝑑𝑎 + 𝑐𝑏)](𝑡3.𝑗3.𝑓3) =  (𝑐 + 𝑑𝑖)(𝑡2.𝑗2.𝑓2) ○ (𝑎 + 𝑏𝑖)(𝑡1.𝑗1.𝑓1) 

, Where  {

𝑡3 = min(𝑡1. 𝑡2) = min(𝑡2. 𝑡1)

𝑗3 = max(𝑗1. 𝑗2) = max(𝑗2. 𝑗1)

𝑓3 = max(𝑓1. 𝑓2) = max(𝑓2. 𝑓1)

 

 (𝑎 + 𝑏𝑖)(𝑡1.𝑗1.𝑓1) ∗  (𝑐 + 𝑑𝑖)(𝑡2.𝑗2.𝑓2) =  (𝑐 + 𝑑𝑖)(𝑡2.𝑗2.𝑓2) ∗  (𝑎 + 𝑏𝑖)(𝑡1.𝑗1.𝑓1)  by a 

similar argument. 

4] (𝑎 + 𝑏𝑖)(𝑡1.𝑗1.𝑓1) ○ [ (𝑐 + 𝑑𝑖)(𝑡2.𝑗2.𝑓2) ○  (𝑚 + 𝑛𝑖)(𝑡3.𝑗3.𝑓3)] = [(𝑎 + 𝑏𝑖)(𝑐 + 𝑑𝑖)(𝑚 +

𝑛𝑖)](𝑡.𝑗.𝑓) = 𝐿 

Where {

𝑡 = min(𝑡1. 𝑡2. 𝑡3)

𝑗 = max(𝑗1. 𝑗2. 𝑗3)

𝑓 = max(𝑓1. 𝑓2 . 𝑓3)
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So that: 𝐿 = [(𝑎 + 𝑏𝑖)(𝑡1.𝑗1.𝑓1) ○  (𝑐 + 𝑑𝑖)(𝑡2.𝑗2.𝑓2)] ○  (𝑚 + 𝑛𝑖)(𝑡3.𝑗3.𝑓3) , hence (○) is 

associative. 

The associativity of (*) can be proved by the same. 

5] (𝑎 + 𝑏𝑖)(𝑡1.𝑗1.𝑓1) ○ [ (𝑐 + 𝑑𝑖)(𝑡2.𝑗2.𝑓2) ∗  (𝑚 + 𝑛𝑖)(𝑡3.𝑗3.𝑓3)] = [(𝑎 + 𝑏𝑖)[(𝑐 + 𝑑𝑖) +

(𝑚 + 𝑛𝑖)]](𝑡.𝑗.𝑓) = 𝐿. 

Where {

𝑡 = min(𝑡1. max (𝑡2. 𝑡3))

𝑗 = max(𝑗1. min (𝑗2. 𝑗3))

𝑓 = max(𝑓1. min (𝑓2. 𝑓3))
  

Thus:  𝐿 = [(𝑎 + 𝑏𝑖)(𝑡1.𝑗1.𝑓1) ○  (𝑐 + 𝑑𝑖)(𝑡2.𝑗2.𝑓2)] ∗  [(𝑎 + 𝑏𝑖)(𝑡1.𝑗1.𝑓1) ○ (𝑚 +

𝑛𝑖)(𝑡3.𝑗3.𝑓3)]. 

6] {
𝐴 ∗ 0 = (𝐴 + 0)(𝑡.𝑗.𝑓) = 𝐴(𝑡.𝑗.𝑓)
𝐴 ○ 1 = (𝐴 ∙ 1)(𝑡.𝑗.𝑓) = 𝐴(𝑡.𝑗.𝑓)

 

Proof of theorem (7): 

1] 𝐴 ∗ 𝐵̅̅ ̅̅ ̅̅ ̅ = (𝐴 + 𝐵)̅̅ ̅̅ ̅̅ ̅̅ ̅̅
(𝑡.𝑗.𝑓) = (�̅� + �̅�)(𝑡.𝑗.𝑓) = �̅�(𝑡.𝑗.𝑓) ∗ �̅�(𝑡.𝑗.𝑓). 

2] 𝐴 ○ 𝐵̅̅ ̅̅ ̅̅ ̅ = (𝐴 ∙ 𝐵)̅̅ ̅̅ ̅̅ ̅̅ ̅
(𝑡.𝑗.𝑓) = (�̅� ∙ �̅�)(𝑡.𝑗.𝑓) = �̅�(𝑡.𝑗.𝑓) ○ �̅�(𝑡.𝑗.𝑓). 

3  . 4  hold directly from the definition. 

Proof of theorem (8): 

It can be proved by a similar argument to that of theorem 5. 

Conclusion 

In this paper, we defined some different types of the special Gamma function on the 

two-fold fuzzy complex field, where we combined the classical Gamma function 

with the two-fold fuzzy algebra defined on complex numbers. On the other hand, 

many elementary properties of this new special function are determined and 

presented.  
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Abstract: this paper aims to present the limits of 2- refined neutrosophic, where we studied the of 

the neutrosophic factorization method and the neutrosophic rationalization method of the limits of 

2- refined neutrosophic, we verified the results of these methods using the L'Hôpital's rule. Also We 

introduced some special limits and 2- refined neutrosophic trigonometric limits. In addition to 

clarifying this by solving appropriate numerical examples. 
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1. Introduction and Preliminaries 

       To describe a mathematical model of uncertainty, vagueness, ambiguity, imprecision, 

undefined, unknown, incompleteness, inconsistency, redundancy, and contradiction, Smarandache 

suggested the neutrosophic Logic as an alternative to the current logics. Smarandache made refined 

neutrosophic numbers available in the following form: (𝑎, 𝑏1𝐼1, 𝑏2𝐼2, . . . , 𝑏𝑛𝐼𝑛) where 𝑎, 𝑏1, 𝑏2, . . . , 𝑏𝑛 ∈

𝑅 𝑜𝑟 𝐶 [1] 

Agboola introduced the concept of refined neutrosophic algebraic structures [2]. Also, the refined 

neutrosophic rings 𝐼  was studied in paper [3], where it assumed that 𝐼 splits into two 

indeterminacies 𝐼1 [contradiction (true (T) and false (F))] and 𝐼2 [ignorance (true (T) or false (F))].  

In addition, there are many papers presenting studies on refined neutrosophic numbers [4-5-6-7-8-9-

10]. 

Alhasan and Abdulfatah also presented the division of refined neutrosophic numbers [11], where: 

  

𝑎1 + 𝑏1𝐼1 + 𝑐1𝐼2  

𝑎2 + 𝑏2𝐼1 + 𝑐2𝐼2

≡
𝑎1

𝑎2

+ [
𝑎2

2𝑏1 + 𝑎2𝑏1𝑐2 − 𝑎1𝑎2𝑏2 − 𝑎2𝑏2𝑐1

𝑎2(𝑎2 + 𝑐2)(𝑎2 + 𝑏2 + 𝑐2)
] 𝐼1 + [

𝑎2𝑐1 − 𝑎1𝑐2

𝑎2(𝑎2 + 𝑐2)
] 𝐼2   

where: 𝑎2 ≠ 0  , 𝑎2 ≠ −𝑐2  and 𝑎2 ≠ −𝑏2 − 𝑐2 

 

      This paper addressed many topics, following the introduction and preliminary material 

presented in the first part, the limits of 2-refined neutrosophic were discussed in the main discussion 

section. The final section contained the conclusion. 

mailto:y.alhasan@psau.edu.sa
mailto:mo.mohammed@psau.edu.sa
mailto:r.abdulfatah@psau.edu.sa
mailto:y.alhasan@psau.edu.sa
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2. Main Discussion  

2.1 The neutrosophic factorization method of the limits of 2- refined neutrosophic 

Let 
𝑓(𝑥,𝐼1 ,𝐼2)

𝑔(𝑥,𝐼1 ,𝐼2)
 is rational 2- refined neutrosophic function, if 𝑓(𝑥, 𝐼1, 𝐼2), 𝑔(𝑥, 𝐼1, 𝐼2)  contains some 

common factors, then we can eliminate out the common factors from the numerator and denominator 

and after that we calculate the limit. 

 

Example 1 

Evaluate:  

𝑙𝑖𝑚
𝑥→3+𝐼1+𝐼2

𝑥 − 3 − 𝐼1 − 𝐼2

𝑥2 − 9 + 9𝐼1 + 7𝐼2

 

 

Solution: 

𝑙𝑖𝑚
𝑥→3+𝐼1+𝐼2

𝑥 − 3 − 𝐼1 − 𝐼2

𝑥2 − 9 + 9𝐼1 + 7𝐼2

=
0

0
 

Method1: 

 

𝑥2 − 9 + 9𝐼1 + 7𝐼2 = (𝑥 + 3 + 𝐼1 + 𝐼2)(𝑥 − 3 − 𝐼1 − 𝐼2) 

 

 

𝑙𝑖𝑚
𝑥→3+𝐼1+𝐼2

𝑥 − 3 − 𝐼1 − 𝐼2

𝑥2 − 9 + 9𝐼1 + 7𝐼2

= 𝑙𝑖𝑚
𝑥→3+𝐼1+𝐼2

𝑥 − 3 − 𝐼1 − 𝐼2

(𝑥 + 3 + 𝐼1 + 𝐼2)(𝑥 − 3 − 𝐼1 − 𝐼2)
 

 

= 𝑙𝑖𝑚
𝑥→3+𝐼1+𝐼2

1

𝑥 + 3 + 𝐼1 + 𝐼2

=
1

6 + 2𝐼1 + 2𝐼2

=
1

6
−

1

40
𝐼1 −

1

24
𝐼2 

 

Method2: 

 

by using L'Hôpital's rule 

 

    ⟹     𝑙𝑖𝑚
𝑥→3+𝐼1+𝐼2

𝑥 − 3 − 𝐼1 − 𝐼2

𝑥2 − 9 + 9𝐼1 + 7𝐼2

= 𝑙𝑖𝑚
𝑥→3+𝐼1+𝐼2

1

2𝑥
 

 

=
1

2(3 + 𝐼1 + 𝐼2)
=

1

6 + 2𝐼1 + 2𝐼2

=
1

6
−

1

40
𝐼1 −

1

24
𝐼2 

2.2 The neutrosophic rationalization method of the limits of 2- refined neutrosophic  

 

Example 2 

Evaluate:  

𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

√1 − (1 + 𝐼1 + 2𝐼2)𝑥 − √1 + (1 + 𝐼1 + 2𝐼2)𝑥

(2 + 3𝐼1 − 𝐼2)𝑥
 

 

Solution: 

 

𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

√1 − (1 + 𝐼1 + 2𝐼2)𝑥 − √1 + (1 + 𝐼1 + 2𝐼2)𝑥

(2 + 3𝐼1 − 𝐼2)𝑥
=

0

0
 

 

Method1: 
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    ⟹     𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

√1 − (1 + 𝐼1 + 2𝐼2)𝑥 − √1 + (1 + 𝐼1 + 2𝐼2)𝑥

(2 + 3𝐼1 − 𝐼2)𝑥
 

 

= 𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

(√1 − (1 + 𝐼1 + 2𝐼2)𝑥 − √1 + (1 + 𝐼1 + 2𝐼2)𝑥)(√1 − (1 + 𝐼1 + 2𝐼2)𝑥 + √1 + (1 + 𝐼1 + 2𝐼2)𝑥)

(2 + 3𝐼1 − 𝐼2)𝑥(√1 − (1 + 𝐼1 + 2𝐼2)𝑥 + √1 + (1 + 𝐼1 + 2𝐼2)𝑥)
 

 

= 𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

1 − (1 + 𝐼1 + 2𝐼2)𝑥 − [1 + (1 + 𝐼1 + 2𝐼2)𝑥]

(2 + 3𝐼1 − 𝐼2)𝑥(√1 − (1 + 𝐼1 + 2𝐼2)𝑥 + √1 + (1 + 𝐼1 + 2𝐼2)𝑥)
 

 

 

= 𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

−(2 + 2𝐼1 + 4𝐼2)𝑥

(2 + 3𝐼1 − 𝐼2)𝑥(√1 − (1 + 𝐼1 + 2𝐼2)𝑥 + √1 + (1 + 𝐼1 + 2𝐼2)𝑥)
 

 

= 𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

−(2 + 2𝐼1 + 4𝐼2)

(2 + 3𝐼1 − 𝐼2)(√1 − (1 + 𝐼1 + 2𝐼2)𝑥 + √1 + (1 + 𝐼1 + 2𝐼2)𝑥)
 

 

=
−1 − 𝐼1 − 2𝐼2

2 + 3𝐼1 − 𝐼2

= −
1

2
+ 2𝐼1 −

5

2
𝐼2 

 

Method2: 

 

by using L'Hôpital's rule 

 

    ⟹     𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

√1 − (1 + 𝐼1 + 2𝐼2)𝑥 − √1 + (1 + 𝐼1 + 2𝐼2)𝑥

(2 + 3𝐼1 − 𝐼2)𝑥
 

 

= 𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

−(1 + 𝐼1 + 2𝐼2)

2√1 − (1 + 𝐼1 + 2𝐼2)𝑥
−

(1 + 𝐼1 + 2𝐼2)

2√1 + (1 + 𝐼1 + 2𝐼2)𝑥

2 + 3𝐼1 − 𝐼2

 

 

 

=

−(1 + 𝐼1 + 2𝐼2)

2√1 − 0
−

(1 + 𝐼1 + 2𝐼2)

2√1 + 0
2 + 3𝐼1 − 𝐼2

 

 

=
−1 − 𝐼1 − 2𝐼2

2 + 3𝐼1 − 𝐼2

= −
1

2
+ 2𝐼1 −

5

2
𝐼2 

 

Example 3 

Evaluate:  

𝑙𝑖𝑚
𝑥→6+2𝐼1−3𝐼2

1 − √𝑥 − 5 − 2𝐼1 + 3𝐼2

𝑥 − 5 − 2𝐼1 + 3𝐼2

 

 

Solution: 

 

𝑙𝑖𝑚
𝑥→6+2𝐼1−3𝐼2

1 − √𝑥 − 5 − 2𝐼1 + 3𝐼2

𝑥 − 5 − 2𝐼1 + 3𝐼2

=
0

0
 

 

Method1: 
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    ⟹    𝑙𝑖𝑚
𝑥→6+2𝐼1−3𝐼2

(1 − √𝑥 − 5 − 2𝐼1 + 3𝐼2)(1 + √𝑥 − 5 − 2𝐼1 + 3𝐼2)

(𝑥 − 5 − 2𝐼1 + 3𝐼2)(1 + √𝑥 − 5 − 2𝐼1 + 3𝐼2)
 

 

= 𝑙𝑖𝑚
𝑥→6+2𝐼1−3𝐼2

1 − (𝑥 − 5 − 2𝐼1 + 3𝐼2)

(𝑥 − 5 − 2𝐼1 + 3𝐼2)(1 + √𝑥 − 5 − 2𝐼1 + 3𝐼2)
 

 

= 𝑙𝑖𝑚
𝑥→6+2𝐼1−3𝐼2

−𝑥 + 5 + 2𝐼1 − 3𝐼2

(𝑥 − 5 + 𝐼)(1 + √𝑥 − 5 − 2𝐼1 + 3𝐼2)
  

 

= 𝑙𝑖𝑚
𝑥→6+2𝐼1−3𝐼2

−(𝑥 − 5 − 2𝐼1 + 3𝐼2)

(𝑥 − 5 − 2𝐼1 + 3𝐼2)(1 + √𝑥 − 5 − 2𝐼1 + 3𝐼2)
 

 

= 𝑙𝑖𝑚
𝑥→6+2𝐼1−3𝐼2

−1

(1 + √𝑥 − 5 − 2𝐼1 + 3𝐼2)
=

−1

2
 

 

Method2: 

 

by using L'Hôpital's rule 

 

    ⟹    𝑙𝑖𝑚
𝑥→6+2𝐼1−3𝐼2

1 − √𝑥 − 5 − 2𝐼1 + 3𝐼2

𝑥 − 5 − 2𝐼1 + 3𝐼2

 

 

                         = 𝑙𝑖𝑚
𝑥→6+2𝐼1−3𝐼2

−1

2√𝑥 − 5 − 2𝐼1 + 3𝐼2

1
 

 

                         = 𝑙𝑖𝑚
𝑥→6+2𝐼1−3𝐼2

−1

2√𝑥 − 5 − 2𝐼1 + 3𝐼2

=
−1

2
 

 

 

Example 4 

 

Evaluate:  

𝑙𝑖𝑚
𝑥→𝑎+𝑏𝐼1+𝑐𝐼2

√𝑎 + 𝑏𝐼1 + 𝑐𝐼2 + 2𝑥 − √3𝑥

 √15𝑎 + 15𝑏𝐼1 + 15𝑐𝐼2 + 𝑥 − 4√𝑥
 

 
Solution: 

 

𝑙𝑖𝑚
𝑥→𝑎+𝑏𝐼1+𝑐𝐼2

√𝑎 + 𝑏𝐼1 + 𝑐𝐼2 + 2𝑥 − √3𝑥

 √15𝑎 + 15𝑏𝐼1 + 15𝑐𝐼2 + 𝑥 − 4√𝑥
=

0

0
 

 

  ⟹      𝑙𝑖𝑚
𝑥→𝑎+𝑏𝐼1+𝑐𝐼2

√𝑎 + 𝑏𝐼1 + 𝑐𝐼2 + 2𝑥 − √3𝑥

 √15𝑎 + 15𝑏𝐼1 + 15𝑐𝐼2 + 𝑥 − 4√𝑥
 

 

= 𝑙𝑖𝑚
𝑥→𝑎+𝑏𝐼1+𝑐𝐼2

(√𝑎 + 𝑏𝐼1 + 𝑐𝐼2 + 2𝑥 − √3𝑥)(√𝑎 + 𝑏𝐼1 + 𝑐𝐼2 + 2𝑥 + √3𝑥)

 (√15𝑎 + 15𝑏𝐼1 + 15𝑐𝐼2 + 𝑥 − 4√𝑥)(√𝑎 + 𝑏𝐼1 + 𝑐𝐼2 + 2𝑥 + √3𝑥)
 

 

= 𝑙𝑖𝑚
𝑥→𝑎+𝑏𝐼1+𝑐𝐼2

𝑎 + 𝑏𝐼1 + 𝑐𝐼2 + 2𝑥 − 3𝑥

(√15𝑎 + 15𝑏𝐼1 + 15𝑐𝐼2 + 𝑥 − 4√𝑥)(√𝑎 + 𝑏𝐼1 + 𝑐𝐼2 + 2𝑥 + √3𝑥)
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= 𝑙𝑖𝑚
𝑥→𝑎+𝑏𝐼1+𝑐𝐼2

𝑎 + 𝑏𝐼1 + 𝑐𝐼2 − 𝑥

(√15𝑎 + 15𝑏𝐼1 + 15𝑐𝐼2 + 𝑥 − 4√𝑥)(√𝑎 + 𝑏𝐼1 + 𝑐𝐼2 + 2𝑥 + √3𝑥)
=

0

0
 

 

then: 

  𝑙𝑖𝑚
𝑥→𝑎+𝑏𝐼1+𝑐𝐼2

𝑎 + 𝑏𝐼1 + 𝑐𝐼2 − 𝑥

(√15𝑎 + 15𝑏𝐼1 + 15𝑐𝐼2 + 𝑥 − 4√𝑥)(√𝑎 + 𝑏𝐼1 + 𝑐𝐼2 + 2𝑥 + √3𝑥)
 

√15𝑎 + 15𝑏𝐼1 + 15𝑐𝐼2 + 𝑥 + 4√𝑥

√15𝑎 + 15𝑏𝐼1 + 15𝑐𝐼2 + 𝑥 + 4√𝑥
 

 

 

= 𝑙𝑖𝑚
𝑥→𝑎+𝑏𝐼1+𝑐𝐼2

(𝑎 + 𝑏𝐼1 + 𝑐𝐼2 − 𝑥)(√15𝑎 + 15𝑏𝐼1 + 15𝑐𝐼2 + 𝑥 + 4√𝑥)

(15𝑎 + 15𝑏𝐼1 + 15𝑐𝐼2 + 𝑥 − 16𝑥)(√𝑎 + 𝑏𝐼1 + 𝑐𝐼2 + 2𝑥 + √3𝑥)
  

 

= 𝑙𝑖𝑚
𝑥→𝑎+𝑏𝐼1+𝑐𝐼2

(𝑎 + 𝑏𝐼1 + 𝑐𝐼2 − 𝑥)(√15𝑎 + 15𝑏𝐼1 + 15𝑐𝐼2 + 𝑥 + 4√𝑥)

15(𝑎 + 𝑏𝐼1 + 𝑐𝐼2 − 𝑥)(√𝑎 + 𝑏𝐼1 + 𝑐𝐼2 + 2𝑥 + √3𝑥)
 

 

= 𝑙𝑖𝑚
𝑥→𝑎+𝑏𝐼1+𝑐𝐼2

(√15𝑎 + 15𝑏𝐼1 + 15𝑐𝐼2 + 𝑥 + 4√𝑥)

15(√𝑎 + 𝑏𝐼 + 2𝑥 + √3𝑥)
 

 

=
(√15𝑎 + 15𝑏𝐼1 + 15𝑐𝐼2 + 𝑎 + 𝑏𝐼1 + 𝑐𝐼2 + 4√𝑎 + 𝑏𝐼1 + 𝑐𝐼2)

15(√𝑎 + 𝑏𝐼1 + 𝑐𝐼2 + 2(𝑎 + 𝑏𝐼1 + 𝑐𝐼2) + √3(𝑎 + 𝑏𝐼1 + 𝑐𝐼2))
 

 

=
√16(𝑎 + 𝑏𝐼1 + 𝑐𝐼2) + 2√𝑎 + 𝑏𝐼1 + 𝑐𝐼2

15(√3(𝑎 + 𝑏𝐼1 + 𝑐𝐼2) + √3(𝑎 + 𝑏𝐼1 + 𝑐𝐼2))
=

4√𝑎 + 𝑏𝐼1 + 𝑐𝐼2

30√3(𝑎 + 𝑏𝐼1 + 𝑐𝐼2)
 

 

=
2√𝑎 + 𝑏𝐼1 + 𝑐𝐼2

15√3(𝑎 + 𝑏𝐼1 + 𝑐𝐼2)
=

2

15√3
 

2.3 2- Refined neutrosophic trigonometric limits 

1) 𝑙𝑖𝑚
𝑥→0

𝑠𝑖𝑛 (𝑎 + 𝑏𝐼1 + 𝑐𝐼2) 𝑥 = 0 

 
2) 𝑙𝑖𝑚

𝑥→0
𝑐𝑜𝑠(𝑎 + 𝑏𝐼1 + 𝑐𝐼2) 𝑥 = 1 

 

3) 𝑙𝑖𝑚
𝑥→0

𝑠𝑖𝑛(𝑎 + 𝑏𝐼1 + 𝑐𝐼2)𝑥

𝑥
= 𝑎 + 𝑏𝐼1 + 𝑐𝐼2 

 

Proof (3): 

 

Put (𝑎 + 𝑏𝐼1 + 𝑐𝐼2)𝑥 = 𝑦       ⟹   𝑥 =
1

𝑎+𝑏𝐼1+𝑐𝐼2
𝑦 

 

When 𝑥 ⟶ 0   then: 𝑦 ⟶ 0   

 

⟹    𝑙𝑖𝑚
𝑥→0

𝑠𝑖𝑛(𝑎 + 𝑏𝐼1 + 𝑐𝐼2) 𝑥

𝑥
= 𝑙𝑖𝑚

𝑦→0

𝑠𝑖𝑛𝑦

1
𝑎 + 𝑏𝐼1 + 𝑐𝐼2

𝑦
 

 

                                                        

= (𝑎 + 𝑏𝐼1 + 𝑐𝐼2) 𝑙𝑖𝑚
𝑦→0

𝑠𝑖𝑛𝑦

𝑦
= 𝑎 + 𝑏𝐼1 + 𝑐𝐼2 
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4) 𝑙𝑖𝑚
𝑥→0

𝑥

sin(𝑎 + 𝑏𝐼1 + 𝑐𝐼2) 𝑥
=

1

𝑎 + 𝑏𝐼1 + 𝑐𝐼2

 

 

                                                         

=
1

𝑎
+ [

−𝑏

(𝑎 + 𝑐)(𝑎 + 𝑏 + 𝑐)
] 𝐼1 − [

𝑐

𝑎(𝑎 + 𝑐)
] 𝐼2 

 

Where 𝑎 , 𝑏, 𝑐 are real coefficients, 𝑎 ≠ 0  , 𝑎 ≠ −𝑐 and 𝑎 ≠ −𝑏 − 𝑐 
 

Proof (4): 

 

Put (𝑎 + 𝑏𝐼1 + 𝑐𝐼2)𝑥 = 𝑦       ⟹   𝑥 =
1

𝑎+𝑏𝐼1+𝑐𝐼2
𝑦 

 

When 𝑥 ⟶ 0   then: 𝑦 ⟶ 0    

 

⟹    𝑙𝑖𝑚
𝑥→0

𝑥

𝑠𝑖𝑛(𝑎 + 𝑏𝐼1 + 𝑐𝐼2) 𝑥
= 𝑙𝑖𝑚

𝑦→0

1
𝑎 + 𝑏𝐼1 + 𝑐𝐼2

𝑦

𝑠𝑖𝑛𝑦
 

 

                =
1

𝑎 + 𝑏𝐼1 + 𝑐𝐼2

𝑙𝑖𝑚
𝑦→0

𝑦

𝑠𝑖𝑛𝑦
 

 

                =
1

𝑎 + 𝑏𝐼1 + 𝑐𝐼2

 

 

                =
1

𝑎
+ [

−𝑏

(𝑎 + 𝑐)(𝑎 + 𝑏 + 𝑐)
] 𝐼1 − [

𝑐

𝑎(𝑎 + 𝑐)
] 𝐼2 

 

5) 𝑙𝑖𝑚
𝑥→0

𝑡𝑎𝑛(𝑎 + 𝑏𝐼1 + 𝑐𝐼2)𝑥

𝑥
= 𝑎 + 𝑏𝐼1 + 𝑐𝐼2 

 

6) 𝑙𝑖𝑚
𝑥→0

𝑥

𝑡𝑎𝑛(𝑎 + 𝑏𝐼1 + 𝑐𝐼2)𝑥
=

1

𝑎 + 𝑏𝐼1 + 𝑐𝐼2

=
1

𝑎
+ [

−𝑏

(𝑎 + 𝑐)(𝑎 + 𝑏 + 𝑐)
] 𝐼1 − [

𝑐

𝑎(𝑎 + 𝑐)
] 𝐼2 

 

where 𝑎 , 𝑏, 𝑐 are real coefficients, 𝑎 ≠ 0 , 𝑎 ≠ −𝑐 and 𝑎 ≠ −𝑏 − 𝑐. We can prove 5 and 6 by the 

same method in 3, 4 

 

Example 5 

 

1) 𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

𝑠𝑖𝑛(2 + 𝐼1 + 3𝐼2) 𝑥

(1 − 4𝐼1 + 𝐼2)𝑥
=

2 + 𝐼1 + 3𝐼2

1 − 4𝐼1 + 𝐼2

 𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

𝑠𝑖𝑛(2 + 𝐼1 + 3𝐼2) 𝑥

(2 + 𝐼1 + 3𝐼2)𝑥
 

 

                         =
2 + 𝐼1 + 3𝐼2

1 − 4𝐼1 + 𝐼2

= 2 −
11

2
𝐼1 +

1

2
𝐼2 

 

2) 𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

𝑥

𝑠𝑖𝑛(1 + 5𝐼1 − 4𝐼2) 𝑥
=

1

1 + 5𝐼1 − 4𝐼2

𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

(1 + 5𝐼1 − 4𝐼2)𝑥

𝑠𝑖𝑛 (1 + 5𝐼1 − 4𝐼2𝑥
 

 

                            =
1

1 + 5𝐼1 − 4𝐼2

= 1 +
5

6
𝐼1 −

4

3
𝐼2 
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3) 𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

sin(3 + 4𝐼1 − 4𝐼2) 𝑥

tan(2 − 8𝐼1 − 4𝐼2) 𝑥
= 𝑙𝑖𝑚

𝑥→0+0𝐼

sin(3 + 4𝐼1 − 4𝐼2) 𝑥
𝑥

tan(2 − 8𝐼1 − 4𝐼2) 𝑥
𝑥

 

 

                              =
𝑙𝑖𝑚

𝑥→0+0𝐼1+0𝐼2

sin(3 + 4𝐼1 − 4𝐼2) 𝑥
𝑥

𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

tan(2 − 8𝐼1 − 4𝐼2) 𝑥
𝑥

 

 

                              =
3 + 4𝐼1 − 4𝐼2

2 − 8𝐼1 − 4𝐼2

=
3

2
+ 4𝐼1 − 𝐼2 

 

4) 𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

1 − cos(1 + 4𝐼1 − 𝐼2) 𝑥

𝑥2
= 𝑙𝑖𝑚

𝑥→0+0𝐼1+0𝐼2

2𝑠𝑖𝑛2(1 + 4𝐼1 − 𝐼2)𝑥

𝑥2
 

 

                                 = 2 𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

(
𝑠𝑖𝑛(1 + 4𝐼1 − 𝐼2)𝑥

𝑥
)

2

 

 

                                = 2(1 + 4𝐼1 − 𝐼2)2 = 2 + 32𝐼1 − 2𝐼2 
 
 

5) 𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

(2 + 𝐼1 + 𝐼2)𝑥 − 𝑠𝑖𝑛(1 + 𝐼1 + 𝐼2) 𝑥

(2 + 𝐼1 + 2𝐼2)𝑥
= 𝑙𝑖𝑚

𝑥→0+0𝐼1+0𝐼2

(
(2 + 𝐼1 + 𝐼2)𝑥

(2 + 𝐼1 + 2𝐼2)𝑥
−

𝑠𝑖𝑛(1 + 𝐼1 + 𝐼2) 𝑥

(2 + 𝐼1 + 2𝐼2)𝑥
) 

 

               = 𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

(
2 + 𝐼1 + 𝐼2

2 + 𝐼1 + 2𝐼2

−
𝑠𝑖𝑛(1 + 𝐼1 + 𝐼2)𝑥

(2 + 𝐼1 + 2𝐼2)𝑥
) 

 

              =
2 + 𝐼1 + 𝐼2

2 + 𝐼1 + 2𝐼2

− (
1 + 𝐼1 + 𝐼2

2 + 𝐼1 + 2𝐼2

) 

 

              = 1 +
1

20
𝐼1 −

1

4
𝐼2 − (

1

2
+

1

10
𝐼1 + 0𝐼2) 

 

              =
1

2
+

3

20
𝐼1 −

1

4
𝐼2 

 

2.4 Some special limits 

 
1) 𝑙𝑖𝑚

𝑥→0+0𝐼1+0𝐼2
𝑒(𝑎+𝑏𝐼1+𝑐𝐼2)𝑥  = 1 

 

2) 𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

𝑒(𝑎+𝑏𝐼1+𝑐𝐼2)𝑥 − 1

𝑥
 = 𝑎 + 𝑏𝐼1 + 𝑐𝐼2 

 

Proof (2): 

 

put (𝑎 + 𝑏𝐼1 + 𝑐𝐼2)𝑥 = 𝑦       ⟹   𝑥 =
1

𝑎+𝑏𝐼1+𝑐𝐼2
𝑦 

 

when 𝑥 ⟶ 0 + 0𝐼1 + 0𝐼2   then: 𝑦 ⟶ 0 + 0𝐼1 + 0𝐼2    

 

⟹    𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

𝑒(𝑎+𝑏𝐼1+𝑐𝐼2)𝑥 − 1

𝑥
 = 𝑙𝑖𝑚

𝑥→0+0𝐼1+0𝐼2

𝑒𝑦 − 1

1
𝑎 + 𝑏𝐼1 + 𝑐𝐼2

𝑦
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                   = (𝑎 + 𝑏𝐼1 + 𝑐𝐼2) 𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

𝑒𝑦 − 1

𝑦
= (𝑎 + 𝑏𝐼1 + 𝑐𝐼2)(1) = 𝑎 + 𝑏𝐼1 + 𝑐𝐼2 

 

 

3) 𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

𝑙𝑛(1 + (𝑎 + 𝑏𝐼1 + 𝑐𝐼2)𝑥)

𝑥
= 𝑎 + 𝑏𝐼1 + 𝑐𝐼2 

 

Proof (3): 

 

Put (𝑎 + 𝑏𝐼1 + 𝑐𝐼2)𝑥 = 𝑦       ⟹   𝑥 =
1

𝑎+𝑏𝐼1+𝑐𝐼2
𝑦 

 

When 𝑥 ⟶ 0 + 0𝐼1 + 0𝐼2   then: 𝑦 ⟶ 0 + 0𝐼1 + 0𝐼2    

 

⟹    𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

𝑙𝑛(1 + (𝑎 + 𝑏𝐼1 + 𝑐𝐼2)𝑥)

𝑥
= 𝑙𝑖𝑚

𝑥→0+0𝐼1+0𝐼2
𝑙𝑖𝑚

𝑦→0+0𝐼

𝑙𝑛(1 + 𝑦) 

1
𝑎 + 𝑏𝐼1 + 𝑐𝐼2

𝑦
 

 

                     = (𝑎 + 𝑏𝐼1 + 𝑐𝐼2) 𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

𝑙𝑛(1 + 𝑦)

𝑦
= (𝑎 + 𝑏𝐼1 + 𝑐𝐼2)(1)

= 𝑎 + 𝑏𝐼1 + 𝑐𝐼2 

 

4) 𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

(𝑎 + 𝑏𝐼1 + 𝑐𝐼2)𝑥 − 1

𝑥
= 𝑙𝑛(𝑎 + 𝑏𝐼1 + 𝑐𝐼2) 

 

                      = 𝑙𝑛 𝑎 + [𝑙𝑛(𝑎 + 𝑏 + 𝑐) − 𝑙𝑛(𝑎 + 𝑐)]𝐼1 + [𝑙𝑛(𝑎 + 𝑐) − 𝑙𝑛 𝑎]𝐼2 

 

where: 𝑎 > 0 , 𝑎 + 𝑏 > 0 , 𝑎 + 𝑏 + 𝑐 > 0  

 

Proof (4): 

 

Put (𝑎 + 𝑏𝐼1 + 𝑐𝐼2)𝑥 − 1 = 𝑦       ⟹   (𝑎 + 𝑏𝐼1 + 𝑐𝐼2)𝑥 = 𝑦 + 1 

 
𝑙𝑛(𝑎 + 𝑏𝐼1 + 𝑐𝐼2)𝑥 = 𝑙𝑛(1 + 𝑦) 

 
𝑥 𝑙𝑛(𝑎 + 𝑏𝐼1 + 𝑐𝐼2) = 𝑙𝑛(1 + 𝑦) 

 

𝑥 =
1

𝑙𝑛(𝑎 + 𝑏𝐼1 + 𝑐𝐼2)
𝑙𝑛(1 + 𝑦) 

 

When 𝑥 ⟶ 0 + 0𝐼1 + 0𝐼2   then: 𝑦 ⟶ 0 + 0𝐼1 + 0𝐼2   

 

⟹        𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

(𝑎 + 𝑏𝐼1 + 𝑐𝐼2)𝑥 − 1

𝑥
 =  𝑙𝑖𝑚

𝑥→0+0𝐼1+0𝐼2

𝑦

1
𝑙𝑛(𝑎 + 𝑏𝐼1 + 𝑐𝐼2) 𝑙𝑛(1 + 𝑦)

 

 

= 𝑙𝑛(𝑎 + 𝑏𝐼1 + 𝑐𝐼2) 𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

𝑦

𝑙𝑛(1 + 𝑦)
= 𝑙𝑛(𝑎 + 𝑏𝐼1 + 𝑐𝐼2) (1) = 𝑙𝑛(𝑎 + 𝑏𝐼1 + 𝑐𝐼2) 

 

= 𝑙𝑛 𝑎 + [𝑙𝑛(𝑎 + 𝑏 + 𝑐) − 𝑙𝑛(𝑎 + 𝑐)]𝐼1 + [𝑙𝑛(𝑎 + 𝑐) − 𝑙𝑛 𝑎]𝐼2 
Corollary 1 

 



Neutrosophic Sets and Systems, Vol. 68, 2024     47  

 

 

Yaser Ahmad Alhasan, Mohamed Elghazali Ali Mohieldin Mohamed and Raja Abdullah Abdulfatah. The limits of 2- refined 

neutrosophic  

𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

(𝑎 + 𝑏𝐼1 + 𝑐𝐼2)𝑥 − 1

(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥 − 1
=

𝑙𝑛(𝑎 + 𝑏𝐼1 + 𝑐𝐼2)

𝑙𝑛(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)
 

 

                            =
𝑙𝑛 𝑎 + [𝑙𝑛(𝑎 + 𝑏 + 𝑐) − 𝑙𝑛(𝑎 + 𝑐)]𝐼1 + [𝑙𝑛(𝑎 + 𝑐) − 𝑙𝑛 𝑎]𝐼2

𝑙𝑛 𝑟 + [𝑙𝑛(𝑟 + 𝑠 + 𝑡) − 𝑙𝑛(𝑟 + 𝑡)]𝐼1 + [𝑙𝑛(𝑟 + 𝑡) − 𝑙𝑛 𝑟]𝐼2

  

 

where: 𝑎 > 0 , 𝑎 + 𝑏 > 0 , 𝑎 + 𝑏 + 𝑐 > 0  𝑎𝑛𝑑  𝑟 > 0 , 𝑟 + 𝑠 > 0 , 𝑟 + 𝑠 + 𝑡 > 0 

 

Proof: 

 

𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

(𝑎 + 𝑏𝐼1 + 𝑐𝐼2)𝑥 − 1
𝑥

(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥 − 1
𝑥

=
𝑙𝑖𝑚

𝑥→0+0𝐼1+0𝐼2

(𝑎 + 𝑏𝐼1 + 𝑐𝐼2)𝑥 − 1
𝑥

𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥 − 1
𝑥

 

 

                  =
𝑙𝑛(𝑎 + 𝑏𝐼1 + 𝑐𝐼2)

𝑙𝑛(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)

=
𝑙𝑛 𝑎 + [𝑙𝑛(𝑎 + 𝑏 + 𝑐) − 𝑙𝑛(𝑎 + 𝑐)]𝐼1 + [𝑙𝑛(𝑎 + 𝑐) − 𝑙𝑛 𝑎]𝐼2

𝑙𝑛 𝑟 + [𝑙𝑛(𝑟 + 𝑠 + 𝑡) − 𝑙𝑛(𝑟 + 𝑡)]𝐼1 + [𝑙𝑛(𝑟 + 𝑡) − 𝑙𝑛 𝑟]𝐼2

 

Example 6 

 

1) 𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

𝑒(9+12𝐼1−15𝐼2)𝑥  = 1 

 

2) 𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

𝑒(−5+13𝐼1−𝐼2)𝑥 − 1

𝑥
 = −5 + 13𝐼1 − 𝐼2 

 

3) 𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

(2 + 4𝐼1 + 7𝐼2)𝑥 − 1

𝑥
= 𝑙𝑛(2 + 4𝐼1 + 7𝐼2) 

 

                                = 𝑙𝑛 2 + [𝑙𝑛 13 − 𝑙𝑛 6]𝐼1 + [𝑙𝑛 9 − 𝑙𝑛 2]𝐼2 

 

                                = 𝑙𝑛 2 + [𝑙𝑛 13 − 𝑙𝑛 6]𝐼1 + [2 𝑙𝑛 3 − 𝑙𝑛 2]𝐼2 
 

4) 𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

(1 + 𝐼1 + 𝐼2)𝑥 − 1

𝑒(1+2𝐼1+3𝐼2)𝑥 − 1
 = 𝑙𝑖𝑚

𝑥→0+0𝐼1+0𝐼2

(1 + 𝐼1 + 𝐼2)𝑥 − 1
𝑥

𝑒(1+2𝐼1+3𝐼2)𝑥 − 1
𝑥

     

 

                           =
𝑙𝑖𝑚

𝑥→0+0𝐼1+0𝐼2

(1 + 𝐼1 + 𝐼2)𝑥 − 1
𝑥

𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

𝑒(1+2𝐼1+3𝐼2)𝑥 − 1
𝑥

=
𝑙𝑛(1 + 𝐼1 + 𝐼2)

1 + 2𝐼1 + 3𝐼2

 

 

                          = (1 −
1

12
𝐼1 −

3

4
𝐼2) ([𝑙𝑛 3 − 𝑙𝑛 2]𝐼1 + [𝑙𝑛 2]𝐼2) 

 

5) 𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

(2 + 3𝐼1 + 4𝐼2)𝑥 − 1

(2 + 𝐼1 + 𝐼2)𝑥 − 1
=

𝑙𝑛(2 + 3𝐼1 + 4𝐼2)

𝑙𝑛(2 + 𝐼1 + 𝐼2)
=

𝑙𝑛 2 + [𝑙𝑛 9 − 𝑙𝑛 6]𝐼1 + [𝑙𝑛 6 − 𝑙𝑛 2]𝐼2

𝑙𝑛 2 + [𝑙𝑛 4 − 𝑙𝑛 3]𝐼1 + [𝑙𝑛 3 − 𝑙𝑛 2]𝐼2

 

 
                               

                               =
𝑙𝑛 2 + [𝑙𝑛

3
2

] 𝐼1 + [𝑙𝑛 3]𝐼2

𝑙𝑛 2 + [𝑙𝑛
4
3

] 𝐼1 + [𝑙𝑛
3
2

] 𝐼2
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                              = 1 + [
𝑙𝑛 3 + 𝑙𝑛

9
4 − 𝑙𝑛

2
3 − 𝑙𝑛 4

𝑙𝑛 3 . 𝑙𝑛 4
] 𝐼1 + [

𝑙𝑛 6 − 𝑙𝑛 3

𝑙𝑛 2 . 𝑙𝑛 3
] 𝐼2 

 

                              = 1 + [
𝑙𝑛

81
32

𝑙𝑛 3 . 𝑙𝑛 4
] 𝐼1 + [

1

𝑙𝑛 3
] 𝐼2  

 
 

6) 𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

(6 + 5𝐼1 − 2𝐼2)𝑥 − 1

𝑥
= 𝑙𝑛(6 + 5𝐼1 − 2𝐼2) 

 

                               = 𝑙𝑛 6 + [𝑙𝑛 9 − 𝑙𝑛 4]𝐼1 + [𝑙𝑛 4 − 𝑙𝑛 6]𝐼2 
 

                               = 𝑙𝑛 6 + [3 𝑙𝑛 2 − 2 𝑙𝑛 2]𝐼1 + [2 𝑙𝑛 2 − 𝑙𝑛 6]𝐼2 

 

7) 𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

𝑙𝑛(1 + (6 + 6𝐼1 − 6𝐼2)𝑥)

𝑥
= 6 + 6𝐼1 − 6𝐼2 

 

8) 𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

𝑒(3+𝐼1−𝐼2)𝑥 − 1

𝑠𝑖𝑛(3 + 2𝐼1 + 𝐼2) 𝑥
= 𝑙𝑖𝑚

𝑥→0+0𝐼1+0𝐼2

𝑒(3+𝐼1−𝐼2)𝑥 − 1
𝑥

𝑠𝑖𝑛(3 + 2𝐼1 + 𝐼2) 𝑥
𝑥

 

 

          = 𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

𝑒(3+𝐼1−𝐼2)𝑥 − 1
𝑥

𝑠𝑖𝑛(3 + 2𝐼1 + 𝐼2) 𝑥
𝑥

=
𝑙𝑖𝑚

𝑥→0+0𝐼1+0𝐼2

𝑒(3+𝐼1−𝐼2)𝑥 − 1
𝑥

𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

𝑠𝑖𝑛(3 + 2𝐼1 + 𝐼2) 𝑥
𝑥

 

          =
3 + 𝐼1 − 𝐼2

3 + 2𝐼1 + 𝐼2

= 1 + 0𝐼1 −
1

2
𝐼2 

 

9) 𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

(7 + 𝐼1 + 4𝐼2)𝑥 − (6 + 3𝐼1 + 𝐼2)𝑥

𝑥
= 𝑙𝑖𝑚

𝑥→0+0𝐼1+0𝐼2

(7 + 𝐼1 + 4𝐼2)𝑥 − (6 + 3𝐼1 + 𝐼2)𝑥 − 1 + 1

𝑥
  

 
  

          = 𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

(7 + 𝐼1 + 4𝐼2)𝑥 − 1 − ((6 + 3𝐼1 + 𝐼2)𝑥 − 1) 

𝑥
 

 

 

      = 𝑙𝑖𝑚
𝑥→0+0𝐼1+0𝐼2

(7 + 𝐼1 + 4𝐼2)𝑥 − 1 

𝑥
− 𝑙𝑖𝑚

𝑥→0+0𝐼1+0𝐼2

(6 + 3𝐼1 + 𝐼2)𝑥 − 1 

𝑥
 

 

  

= 𝑙𝑛(7 + 𝐼1 + 4𝐼2) − 𝑙𝑛(6 + 3𝐼1 + 𝐼2) = 𝑙𝑛 (
7 + 𝐼1 + 4𝐼2

6 + 3𝐼1 + 𝐼2

) 

 

= 𝑙𝑛 (
7

6
−

13

35
𝐼1 +

17

42
𝐼2) = 𝑙𝑛

7

6
+ [𝑙𝑛

6

5
− 𝑙𝑛

11

7
] 𝐼1 + [𝑙𝑛

11

7
− 𝑙𝑛

7

6
] 𝐼2 

 

3. Conclusions  
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Yaser Ahmad Alhasan, Mohamed Elghazali Ali Mohieldin Mohamed and Raja Abdullah Abdulfatah. The limits of 2- refined 

neutrosophic  

One of the key concepts in calculus is limits. Its focus is on the study of derivation by studying the 

fundamental ideas of infinitesimal quantities. This was the goal of putting forward the idea of The 

limits of 2- refined neutrosophic in this paper. Several methods for solving The limits of 2- refined 

neutrosophic were discussed, in addition to presenting special rules to facilitate finding these limits. 

Also, We obtained the same results by solving the examples in different ways, such as L'Hôpital's 

rule. 
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Abstract: According to survey data released by the National Bureau of Statistics, from 2011 to 

2022, the total output value of China's construction industry showed an increasing trend year 

by year. From 2018 to 2021, infrastructure investment has always maintained a positive 

growth, indicating that the current construction industry is in a rapid development stage. In 

order to improve the development quality of the construction industry as much as possible, it 

is of great significance to develop the whole Process engineering consulting service model. 

The quality evaluation of whole process engineering consulting service modes is MAGDM. 

The single-valued neutrosophic sets (SVNSs) is useful tool to cope with uncertain information 

during the quality evaluation of whole process engineering consulting service modes. In this 

paper, the single-valued neutrosophic number combined TOPSIS (SVNN-CTOPSIS) model 

based on single-valued neutrosophic number Hamming distances (SVNNHD) and 

single-valued neutrosophic number Euclidean distance (SVNNED) is formed to cope with the 

MAGDM. The CRITIC model is utilized to obtain the weight numbers in light with the 

SVNNHD and SVNNED under SVNSs. Finally, numerical example and comparative analysis 

for quality evaluation of whole process engineering consulting service modes is utilized to 

verify SVNN-CTOPSIS model. The main contributions of this study are formed: (1) the 

CRITIC model is formed to obtain the weight numbers in light with SVNNHD and SVNNED; 
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(2) the SVNN-CTOPSIS model is formed in light with SVNNHD and SVNNED under SVNNs; 

(3) Finally, numerical example and comparative analysis for quality evaluation of whole 

process engineering consulting service modes is employed to verify SVNN-CTOPSIS model.  

Keywords: MAGDM; SVNSs; TOPSIS; CRITIC model; performance evaluation  

 

1. Introduction 

Against the backdrop of rapid development in the construction industry, the investment entities of 

engineering projects are developing in a diversified direction[1, 2]. Traditional "fragmented" 

consulting services are no longer able to effectively meet the investment needs of investors. In the 

face of such situations, the Opinions on Promoting the Sustainable and Healthy Development of the 

Construction Industry (Guo Ban Fa [2017] No. 19) put forward for the first time the idea of 

cultivating the whole process engineering consulting, which has promoted the transformation of 

China's engineering consulting work from the past professional division of labor model to the whole 

process, cross stage integration model[3-5]. In the practical application of the consortium consulting 

service model[6, 7], a project will be handed over to two or more consulting units to jointly carry out 

the whole process engineering consulting services of engineering projects, and the lead party will be 

responsible for the coordination of the consulting business during the service development process. 

In the current process engineering consulting service development process, there are relatively 

many factors to apply the consortium consulting service model. Common factors include large 

project scale, complex work content, and lack of professional service qualifications of some 

consulting units. Considering that the consortium consulting service model needs to unite multiple 

consulting units in the application process, in order to improve the reliability of consulting services 

and the quality of the division of responsibilities, the management relationship and responsibilities 

of each consulting unit need to be noted in the contract before the application of the consortium 

consulting service model, so as to lay a good foundation for the orderly development of the whole 

process engineering consulting services. The integrated whole process consulting service model is a 

work mode in which a consulting unit is responsible for coordinating the entire process consulting 

work of engineering projects[8-10]. Due to the comprehensive range of consulting services covered 

by the service model, only a few consulting units in the current consulting service industry have the 

qualifications and experience to apply the consulting service model. Therefore, compared to other 

consulting service techniques, The application experience of the integrated whole process 

consulting service model is relatively limited. However, due to the fact that the consulting service 

model is mainly managed by one unit, the difficulty of consulting service management is relatively 

low, which can effectively improve the integration level of consulting services[11-13]. The "1+N" 

part of the combined consulting service mode in the whole Process engineering consulting service 

work is mainly composed of one consulting unit, which distributes a number of consulting 

businesses to different consulting units in the form of contracting or combination to complete the 

consulting services. In this process, the consulting unit is responsible for coordinating the whole 

Process engineering consulting business. In the current work process of consulting companies, the 
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"1+N" combined consulting service model is mainly applied to project research and 

decision-making, bidding agency, survey and design, engineering supervision, cost 

decision-making, and other work[14-16]. The business combination techniques mainly include the 

combination of design units and cost analysis units, design units and supervision units, supervision 

units and bidding agency units Combining design units with survey and supervision units, etc. For 

the current construction activities of engineering projects, the "1+N" part combination consulting 

service model is highly similar to the traditional single consulting contract business[14-18]. 

Therefore, this work model has been widely used in the early stage of the whole process engineering 

consulting service. In a word, in the process of gradually advancing the supply side structural 

reform, the construction industry is carrying out the organizational model reform represented by the 

whole Process engineering consulting. In order to make the whole Process engineering consulting 

service model better meet the needs of the current development of the construction industry, based 

on clarifying the shortcomings of the traditional professional engineering consulting service model, 

the actual situation of the project is analyzed, the development of a more complete and reliable 

process engineering consulting service model can provide strong support for the smooth 

implementation of project management[19-21]. 

With rapid development of GDM issues, MAGDM techniques have greatly attracted academic 

attention [22-30]. In order to put forward the objective things through employing precise numbers. 

Zadeh [31] creatively put forward the fuzzy sets (FSs) theory. Atanassov [32] creatively put forward 

intuitionistic fuzzy sets (IFSs). However, IFSs didn’t put forward uncertain membership. In order to 

manage a more efficient technique, Smarandache [33] creatively put forward the neutrosophic 

sets(NSs). Zenat, Mahmoud and Amal [34] put forward the TOPSIS model for green supply chain 

practices under SVNSs.  Ahmed, Nehal and Ibrahim [35] put forward the CRITIC model for 

coping with the product design in virtual reality under SVNSs. Abduallah et al. [36] put forward the 

AHP-VIKOR model for coping with the Supply chain (SC) networks with neutrosophic theory. 

Karam et al. [37] put forward the TOPSIS for assessment quality of suppliers under SVNSs. M. 

Sabry [38] put forward the CRITIC-EDAS model for urban energy internet assessment by type 2 

neutrosophic numbers (T2NNs). Abduallah et al. [39] put forward the MEREC-CoCoSo for coping 

with the autonomous vehicles and distributed resources using type-2 neutrosophic numbers (T2NN). 

The quality evaluation of whole process engineering consulting service modes is the real-life 

MAGDM [40-44]. The SVNSs [45] is useful technique to cope with uncertain information during 

the quality evaluation of whole process engineering consulting service modes. Furthermore, many 

techniques employed the TOPSIS model [46-49] and CRITIC model [50-54] separately to solve the 

MAGDM. Unfortunately, few valuable existing works were managed the combined TOPSIS based 

on SVNNHD and SVNNED under SVNSs. The main objective of this study is to cope with 

MAGDM through employing the SVNN-CTOPSIS model with SVNNHD and SVNNED model. 

Finally, numerical example and comparative analysis for quality evaluation of whole process 

engineering consulting service modes is utilized to verify SVNN-CTOPSIS model. The main 

research goals and motivation of this study are formed: (1) the CRITIC model is formed to obtain 
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the weight numbers in light with SVNNHD and SVNNED; (2) the SVNN-CTOPSIS model is 

formed in light with SVNNHD and SVNNED under SVNNs; (3) Finally, numerical example and 

comparative analysis for quality evaluation of whole process engineering consulting service modes 

is employed to verify SVNN-CTOPSIS model. 

The remaining sections is formed. The SVNSs is formed in Sect 2. The SVNN-CTOPSIS model 

is formed for MAGDM in Sect. 3. The quality evaluation of whole process engineering consulting 

service modes and some comparative analyses is formed to verify the SVNN-CTOPSIS model in 

Sect. 4. The conclusion is formed in Sect. 5. 

 

2. Preliminaries 

Wang et al. [45] formed the SVNSs. 

Definition 1 [45]. The SVNSs is formed: 

       , , ,A A ADA DT DI DF                     (1) 

where      , ,A A ADT DI DF    depicts truth membership, indeterminacy membership and 

falsity membership,        , , 0,1A A ADT DI DF    , 

     0 3A A ADT DI DF      .  

Definition 2 [55]. The score value information (SVI) of  , ,A A ADA DT DI DF  and 

 , ,B B BDB DT DI DF is formed: 

 
 

   
2

, 0,1 .
3

A A ADT DI DF
SVI DA SVI DA

  
              (2) 

 
 

   
2

, 0,1 .
3

B B BDT DI DF
SVI DB SVI DB

  
              (3) 

Definition 3 [55]. The accuracy value information (AVI) of  , ,A A ADA DT DI DF  and 

 , ,B B BDB DT DI DF is formed: 

 
1

2

A ADT DF
AVI DA

 
 ,    0,1AVI DA   .            (4) 

 
1

2

B BDT DF
AVI DB

 
 ,    0,1AVI DB   .            (5) 

Peng et al. [55] formed the order between two SVNNs. 
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Definition 4[55]. Let  , ,A A ADA DT DI DF and  , ,B B BDB DT DI DF , let 

 
 2

3

A A ADT DI DF
SVI DA

  
  and  

 2

3

B B BDT DI DF
SVI DB

  
 , and 

let  
1

2

A ADT DF
AVI DA

 
  and  

1

2

B BDT DF
AVI DB

 
 , if 

   SVI DA SVI DB , then: DA DB ; if    SVI DA SVI DB ,  then: 

(1)if    AVI DA AVI DB , then DA DB ; (2) if    AVI DA AVI DB , then: 

DA DB . 

Definition 5[45]. Let  , ,A A ADA DT DI DF  and  , ,B B BDB DT DI DF   be 

SVNNs, the following operations are formed: 

 

 

      
        

(1) , , ;

(2) , , ;

(3) 1 1 , , , 0;

(4) , ,1 1 , 0.

A B A B A B A B

A B A B A B A B A B

A A A

A A A

DA DB DT DT DT DT DI DI DF DF

DA DB DT DT DI DI DI DI DF DF DF DF

DA DT DI DF

DA DT DI DF

  

   

 



   

     

   

   

 

Definition 6 [56]. Let  , ,A A ADA DT DI DF  and  , ,B B BDB DT DI DF , then SVNN 

Hamming distance (SVNNHD) and SVNN Euclidean distance (SVNNED) between 

 , ,A A ADA DT DI DF  and  , ,B B BDB DT DI DF is formed: 

   
1

,
3

A B A B A BSVNNHD DA DB DT DT DI DI DF DF             (6) 

   2 2 21
,

3
A B A B A BSVNNED DA DB DT DT DI DI DF DF        (7) 

The SVNNWA & SVNNWG model are formed. 

Definition 8 [55]. If  , ,j j j jDA DT DI DF , the SVNNWA operator is formed: 

   

     

1

1 1 1

1 2

= 1 1 , ,

SVNNWA , , ,

j j j

n

j j
j

n n n
dw dw dw

j j j

j j j

ndw dw DA

DT DI DF

DA DA DA


  

 

 
  

 
  

                (8) 
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with weight  1 2= , ,...,
T

ndw dw dw dw , 
1

1.
n

j

j

dw




  
Definition 9 [55]. If  , ,j j j jDA DT DI DF , the SVNNWG model is formed:: 

 

   

     

1

1 1 1

1 2SVNNWG

= ,1 1 ,1 1

, , ,
j

j j j

n dw

j
j

n n n
dw dw dw

j j j

j j j

ndw DA

DT DI DF

DA DA DA


  

 

 
    

 
  

        (9) 

3. 

with weight  1 2= , ,...,
T

ndw dw dw dw , 
1

1.
n

j

j

dw




  

4. SVNN-CTOPSIS FOR MAGDM IN LIGHT WITH SVNNHD AND SVNNED 

      Then, the SVNN-CTOPSIS model is formed for MAGDM. Let 

 1 2= , , , mDY DY DY DY be alternatives. Let  1 2, , , nDZ DZ DZ DZ be attributes, 

 1 2= , , , ndw dw dw dw be weight for  1 2, , , nDZ DZ DZ DZ , where 

 
1

0,1 , 1
n

j jj
dw dw


  . Assume DMs  1 2= , , , lDX DX DX DX  with weight 

 1 2= , , , ld d d d    ,  0,1 ,kd   
1

1
l

kk
d


 . And  

           = , ,
k k k k k

ij ij ij ij
m n m n

DR DR DT DI DF
 

 is called as group SVNN-matrix. The 

calculating procedures are formed (See Figure 1). 
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The steps of SVNN-CTOPSIS for MAGDM in light with 
SVNNHD and SVNNED based on CRITIC technique

Step 1. Form the SVNN group matrix and overall matrix

Step 2. Normalize the SVNN decision matrix

 Step 3. Form the attribute weight through utilizing the CRITIC technique

Step 4. Form the SVNNNPIVS (SVNN positive ideal value solution) and 

SVNNNNIVS (SVNN negative ideal value solution)

Step 5. Form the SVNN combined distance measure (SVNNCDM) From 

the SVNNPIVS in line with SVNNHD and SVNNED

Step 6. Form the SVNN combined distance measure (SVNNCDM) From 

the SVNNNIVS in line with SVNNHD and SVNNED

Step 7. Form the SVNN weighted combined distance measure 

(SVNNWCDM) from SVNNPIVS and SVNNNIVS

Step 8. Form the SVNN combined closeness coefficient (SVNNCCC)

Step 9. Form the optimal choice in line with the largest SVNNCCC

 

Figure 1. SVNN-CTOPSIS for MAGDM in light with SVNNHD and SVNNED based on 

CRITIC technique 

Step 1. Form group SVNN-matrix 
           = , ,
k k k k k

ij ij ij ij
m n m n

DR DR DT DI DF
 

  and single 

SVNN-matrix  ij m n
DR DR


 through SVNNWG technique. 

  
   

     

     

     

11 12 1

21 22 2

1 2

k k k

n

k k k
k k n

ij
m n

k k k

m m mn

DR DR DR

DR DR DR
DR DR

DR DR DR



 
 
      
 
 
 

                 (10) 
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11 12 1

21 22 2

1 2

n

n

ij m n

m m mn

DR DR DR

DR DR DR
DR DR

DR DR DR



 
 
      
 
 

                      (11) 

 

        
1 1 1

,

11

,

k k k
l

ij ij ij ij

k k k
l ld

j

d

k

ij i

d

k k

ij

DR DT DI DF

DT DI DF
  

  

 
 








  , ，
           (12) 

 

Step 2. Form normalized 
N N

ij m n
DR DR


     in line with 

ij m n
DR DR


     

   

 

 

 

, ,

, ,   the  

, ,   the cost 

N N N N

ij ij ij ij

ij ij ij j

ij ij ij j

DR DT DI DF

DT DI DF DZ is benefit attribute

DF DI DT DZ is attribute






 


，

，

               (13) 

 

Step 3. Form the weight information through utilizing the CRITIC technique. 

The CRITIC [57] is utilized to put forward the weights information.  

 (1) The SVNN correlation decision coefficient (SVNNCDC) is formed. 

         

         

1

2 2

1 1

,

m

ij j it t

i
jt

m m

ij j it t

i i

DSVNN DSVNN DSVNN DSVNN

SVNNCDC

DSVNN DSVNN DSVNN DSVNN

   

   



 

 



 



 

    , 1, 2, ,j t n , (14) 

where  

      
1

1

2

m
N N

j ij ij

i

DSVNN SVI DR AVI DR
m




  ,  

      
1

1

2

m
N N

t it it

i

DSVNN SVI DR AVI DR
m




  , 

      
1

2

N N

ij ij ijDSVNN SVI DR AVI DR   ,  

      
1

2

N N

it it itDSVNN SVI DR AVI DR   . 
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(2) Form the SVNN standard deviation numbers (SVNNSDN). 

    
2

1

1

1

m

j ij j

i

SVNNSDN DSVNN DSVNN
m

 


 



             

(15) 

(3) Form the attribute weight information. 

 

 

1

1 1

1

1

n

j jt

t
j n n

j jt

j t

SVNNSDN SVNNCDC

dw

SVNNSDN SVNNCDC



 




 

 
 



 

                  (16) 

Step 4. Form the SVNNNPIVS (SVNN positive ideal value solution) and SVNNNNIVS (SVNN 

negative ideal value solution): 

 1 2, , , nSVNNPIVS SVNNPIVS SVNNPIVS SVNNPIVS         (17) 

 1 2, , , nSVNNNIVS SVNNNIVS SVNNNIVS SVNNNIVS         (18) 

 , ,N N N

j j j jSVNNPIVS DT DI DF                                (19) 

 , ,N N N

j j j jSVNNNIVS DT DI DF                                (20) 

     max max , ,N N N N

j ij ij ij ij
i i

SVI SVNNPIVS SVI DR SVI DT DI DF   (21) 

     min min , ,N N N N

j ij ij ij ij
i i

SVI SVNNNIVS SVI DR SVI DT DI DF   (22) 

Step 5. Construct the SVNN combined distance measure (SVNNCDM) between 

 , ,N N N N

ij ij ij ijDR DT DI DF  and  , ,N N N

j j j jSVNNPIVS DT DI DF   in line with 

SVNNHD and SVNNED. 

 

 

 2 2 2
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1

31

2 1

3

N

ij j

N N N N N N

ij j ij j ij j

N N N N N N

ij j ij j ij j

D

S DR SVNNPIVS

DT DT DI DI DF F

DT DT DI

MC

DI D

V

F

N

D

N D

F

  

  

 
     

 
 
      
 

    (23) 

Step 6. Construct the SVNN combined distance measure (SVNNCDM) between 

 , ,N N N N

ij ij ij ijDR DT DI DF  and  , ,N N N

j j j jSVNNNIVS DT DI DF   in line with 

SVNNHD and SVNNED. 
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DT DT DI

MC
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V
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D
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    (24) 

Step 7. Construct the SVNN weighted combined distance measure (SVNNWCDM) between 

 , ,N N N N

ij ij ij ijDR DT DI DF  and  , ,N N N

j j j jSVNNPIVS DT DI DF   in line with 

SVNNHD and SVNNED and SVNN weighted combined distance measure (SVNNWCDM) 

between  , ,N N N N

ij ij ij ijDR DT DI DF  and  , ,N N N

j j j jSVNNNIVS DT DI DF   in line 

with SVNNHD and SVNNED. 
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    (26) 

Step 8. Form the SVNN combined closeness coefficient (SVNNCCC): 
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Step 9. Form the optimal choice in line with the largest SVNNCCC. 
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4. Illustrative example and comparative analysis 

4.1 Illustrative example  

Considering that the promotion time of the whole process consulting service model in the 

consulting service industry in China is relatively short, some consulting service units have 

insufficient understanding of this work model. In actual work, the whole process consulting service 

model cannot achieve satisfactory work results for owners. In order to improve the application 

effect of the whole Process engineering consulting service model, in the current development 

process of the consulting service industry, consulting service units can improve their own working 

ability by optimizing their own ideas, implementing corresponding rules and policies, building 

talent teams, carrying out resource integration work, etc., and provide impetus for the 

implementation of the whole process consulting service projects. Although the National 

Development and Reform Commission and the Ministry of Housing and Urban Rural Development 

jointly issued the Guiding Opinions on Promoting the Development of Process engineering 

consulting Services, the housing construction management departments in most regions have 

insufficient awareness of the policies and the degree of implementation is not deep enough, so that 

some government public resource service platforms have not opened businesses related to bidding 

transactions, In the process of engineering project promotion, only the segmented engineering 

consulting service transaction module has been established, which has hindered the development of 

the whole process engineering consulting service. At this stage, in order to effectively solve the 

above problems and achieve the smooth implementation of relevant policies, the competent 

construction departments, construction owners and consulting service enterprises in various regions 

need to fully recognize the advantages of the whole Process engineering consulting service model in 

the application process for engineering project survey, design, supervision, management and cost 

services, and the way to open the whole Process engineering consulting service module by the local 

government's public resource service platform, Ensure the smooth implementation of the whole 

process engineering consulting project. Then, in the process of carrying out subsequent consulting 

services, the coherence of engineering consulting services is improved by constructing the entire 

industry chain, providing support for the improvement of the quality of subsequent engineering 

construction activities. Although the consulting service enterprises, owners and regulators can carry 

out their work based on the Guiding Opinions on Promoting the Development of process 

engineering consulting Services in the actual work process, due to the relatively short application 

time of the whole process engineering consulting service model in China, each entity may lack a 

mature contract model in the process of carrying out the whole process engineering consulting 

services, and disputes arise. In order to effectively solve the above problems, in the current process 

of engineering consulting services, consulting service units can strengthen communication and 

negotiation between various entities based on the actual needs of the engineering project and 

traditional engineering consulting contracts, and clarify the rights and responsibilities of different 

participating units. Specifically, in order to minimize the probability of conflicts and disputes, 
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during the contract signing process, each participating entity needs to refine the issues of defining 

the rights and responsibilities of each entity, the requirements for clause performance, and dispute 

resolution clauses, in order to achieve effective division of the rights and responsibilities of each 

participating entity. At the same time, when negotiating related business, consulting service units 

can, on the basis of clarifying relevant systems and policies, complete consulting fee negotiation 

activities that can meet the requirements of the owner based on factors such as the scale and 

complexity of the project and the scope of the engineering consultation. Then, by recording the 

negotiation results in the contract, economic disputes can be avoided. The quality evaluation of 

whole process engineering consulting service modes is MAGDM. In this work, the quality 

evaluation of whole process engineering consulting service modes is formed through 

SVNN-CTOPSIS technique. There are five whole process engineering consulting service 

modes  1,2,3,4,5iDY i  which are evaluated through three experts  1 2 3= , ,DX DX DX DX  

with equal weight values in light with four attributes: ① 1DZ  is the resource integration for whole 

process engineering consulting service; ② 2DZ  is the talent team construction for whole process 

engineering consulting service; ③ 3DZ  is the work ability for whole process engineering 

consulting service; ④ 4DZ  is the management cost for whole process engineering consulting 

service. The 4DZ is cost type. Then, the SVNN-CTOPSIS model is formed to achieve the optimal 

whole process engineering consulting service mode. 

Step 1. Form group SVNN-matrix       
5 4

1,2,3
k k

ijDR DR k


 
 
 in light with linguistic 

scales (See Table 1) as in Table 2-4. The single SVNN-matrix is achieved in Table 5. 

Table 1. Linguistic scale and SVNNs 

 

Table 2. SVNN-matrix from 1DX  
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 DZ1 DZ2 DZ3 DZ4 

DY1 DT DVW DVT DM 

DY2 DVW DW DM DVT 

DY3 DW DM DT DVW 

DY4 DM DW DVW DVT 

DY5 DVT DVT DVW DM 

 

Table 3. SVNN-matrix from 2DX  

 DZ1 DZ2 DZ3 DZ4 

DY1 DVW DW DVT DM 

DY2 DM DW DVT DVW 

DY3 DM DT DVW DW 

DY4 DVT DM DVW DT 

DY5 DT DW DM DVW 

 

Table 4. SVNN-matrix from 3DX  

 DZ1 DZ2 DZ3 DZ4 

DY1 DVW DVT DT DW 

DY2 DW DT DM DM 

DY3 DVW DT DM DW 

DY4 DVT DM DW DVT 

DY5 DT DVW DW DM 

 

Table 5. 
5 4ijDR DR


     

 DZ1 DZ2 DZ3 DZ4 

DY1 (0.45, 0.49, 0.41) (0.47, 0.36, 0.48) (0.43, 0.28, 0.32) (0.48, 0.36, 0.39) 

DY2 (0.40, 0.28, 0.34) (0.69, 0.31, 0.38) (0.39, 0.34, 0.46) (0.56, 0.48, 0.45) 

DY3 (0.58, 0.46, 0.37) (0.56, 0.39, 0.46) (0.48, 0.35, 0.39) (0.25, 0.34, 0.43) 
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DY4 (0.43, 0.19, 0.31) (0.49, 0.43, 0.52) (0.56, 0.49, 0.47) (0.53, 0.37, 0.49) 

DY5 (0.51, 0.28, 0.16) (0.54, 0.29, 0.34) (0.63, 0.26, 0.35) (0.67, 0.43, 0.36) 

 

Step 2. Form the
5 4ijDR DR


    into standardized
5 4

N N

ijDR DR


    (See Table 6). 

Table 6. The
5 4

N N

ijDR DR


     

 DZ1 DZ2 DZ3 DZ4 

DY1 (0.45, 0.49, 0.41) (0.47, 0.36, 0.48) (0.43, 0.28, 0.32) (0.39, 0.36, 0.48) 

DY2 (0.40, 0.28, 0.34) (0.69, 0.31, 0.38) (0.39, 0.34, 0.46) (0.45, 0.48, 0.56) 

DY3 (0.58, 0.46, 0.37) (0.56, 0.39, 0.46) (0.48, 0.35, 0.39) (0.43, 0.34, 0.25) 

DY4 (0.43, 0.19, 0.31) (0.49, 0.43, 0.52) (0.56, 0.49, 0.47) (0.49, 0.37, 0.53) 

DY5 (0.51, 0.28, 0.16) (0.54, 0.29, 0.34) (0.63, 0.26, 0.35) (0.36, 0.43, 0.67) 

 

Step 3. Form the weight numbers in light with CRITIC (Table 7). 

Table 7. The achieved weight 

Attributes DZ1 DZ2 DZ3 DZ4 

weight 

numbers 
0.2803 0.3002 0.2573 0.1622 

Step 4. Form the SVNNNPIVS and SVNNNNIVS (Table 8): 

Table 8. The SVNNNPIVS and SVNNNNIVS 

 DZ1 DZ2 

SVNNNPIVS (0.58, 0.46, 0.37) (0.69, 0.31, 0.38) 

SVNNNNIVS (0.40, 0.28, 0.34) (0.47, 0.36, 0.48) 

 DZ3 DZ4 

SVNNNPIVS (0.63, 0.26, 0.35) (0.49, 0.37, 0.53) 

SVNNNNIVS (0.39, 0.34, 0.46) (0.36, 0.43, 0.67) 
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Step 5. Calculate the  ,N

ij jS DR SD VNC NPNN M IVSV  between 

 , ,N N N N

ij ij ij ijDR DT DI DF  and  , ,N N N

j j j jSVNNPIVS DT DI DF   in line with 

SVNNHD and SVNNED (Table 9). 

Table 9.  ,N

ij jS DR SD VNC NPNN M IVSV . 

Alternatives DZ1 DZ2 DZ3 DZ4 

DY1 0.4601 0.2837 0.3718 0.5046 

DY2 
0.5183 0.0000 0.4138 0.3371 

DY3 
0.0000 0.3168 0.4446 0.3653 

DY4 
0.4857 0.3760 0.6098 0.0000 

DY5 
0.4208 0.4284 0.0000 0.4551 

 

Step 6. Calculate the  ,N

ij jS DR SD VNC NNNN M IVSV  between 

 , ,N N N N

ij ij ij ijDR DT DI DF  and  , ,N N N

j j j jSVNNPIVS DT DI DF   in line with 

SVNNHD and SVNNED (Table 10). 

Table 10.  ,N

ij jS DR SD VNC NNNN M IVSV . 

Alternatives DZ1 DZ2 DZ3 DZ4 

DY1 0.4514 0.0000 0.3647 0.4950 

DY2 
0.0000 0.3689 0.0000 0.3307 

DY3 
0.4128 0.3108 0.4059 0.4465 

DY4 
0.4765 0.2783 0.5982 0.3583 

DY5 
0.5085 0.4202 0.4361 0.0000 

 

Step 7. Construct the SVNNWCDM from the SVNNPIVS and SVNNNIVS (Table 11). 

Table 11. The SVNNWCDM from the SVNNPIVS and SVNNNIVS 

  ,N
iDR SVNNPIVSSVNNWCDM   ,N

iDR SVNNNIVSSVNNWCDM  
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DY1 0.3916 0.3006 

DY2 0.3064 0.1644 

DY3 0.2687 0.3858 

DY4 0.4059 0.4291 

DY5 0.3204 0.3809 



Neutrosophic Sets and Systems, Vol. 68, 2024                                                              67 

 

 

Xia Wang, Yingxia Hou, Jing Peng, Jiekun Hu, Yue Li, Qiang Cai, Guiwu Wei, Combined TOPSIS Technique for MAGDM 

Based on the Distance Measures and CRITIC under Single-Valued Neutrosophic Sets and Applications to Quality 

Evaluation of Whole Process Engineering Consulting Service Modes 

 

Step 8. Form the SVNNCCC (Table 12). 

Table 12. The SVNNCCC 

 SVNNCCC Order 

DY1 0.4343 4 

DY2 0.3491 5 

DY3 0.5895 1 

DY4 0.5139 3 

DY5 0.5432 2 

Step 9. In light with SVNNCCC, the obtained order is: 3 5 4 1 2DY DY DY DY DY     and 3DY is 

the optimal whole process engineering consulting service mode.  

4.2. Comparative analysis 

The formed SVNN-CTOPSIS model is compared with SVNNWA model [55], SVNNWG model [55], 

SVNWBPM operator [58], SVNWGBPM operator[58], SVNN-WASPAS technique [59] and 

SVNN-TODIM technique [60], SVNN-GRA method[61], SVNN-VIKOR technique[62] and 

SVNN-CODAS technique [63]. The sufficient comparative results are verified in Table 17 and 

Figure 2. 

Table 17. Order for different models 

 Order 

SVNNWA model [55] 3 5 4 1 2DY DY DY DY DY     

SVNNWG model [55] 3 5 1 4 2DY DY DY DY DY     

SVNWBPM operator [58] 3 5 4 1 2DY DY DY DY DY     

SVNWGBPM operator[58] 3 5 1 4 2DY DY DY DY DY     

SVNN-WASPAS technique [59] 3 5 4 1 2DY DY DY DY DY     

SVNN-TODIM technique [60] 3 5 1 4 2DY DY DY DY DY     

SVNN-GRA method [61] 3 5 4 1 2DY DY DY DY DY     
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SVNN-VIKOR technique [62] 3 5 4 1 2DY DY DY DY DY     

SVNN-CODAS technique [63] 3 5 4 1 2DY DY DY DY DY     

SVNN-CTOPSIS model 3 5 4 1 2DY DY DY DY DY     

 

 

Figure 2. Order for different models 

Through the above analysis, it could be seen that the order of these models is slightly different, 

however, these models have the same optimal whole process engineering consulting service mode and 

worst whole process engineering consulting service mode. This verifies the SVNN-CTOPSIS model is 

effective. Thus, the main advantages of the conducted SVNN-CTOPSIS model are formed: (1) the formed 

SVNN-CTOPSIS not only formed the uncertainty in MAGDM, but also portrays the combined distance 

measures from the SVNNNPIVS and SVNNNNIVS during the quality evaluation of whole process 

engineering consulting service modes. (2) the formed SVNN-CTOPSIS conducted the different behavior 

of the SVNNHD and SVNNED model as MAGDM techniques when they are combined. 

5. Conclusion 

The whole Process engineering consulting is a mode of providing all-round and full life cycle 

engineering consulting services for engineering construction projects from the perspective of the overall 

value appreciation of the project in order to effectively achieve the value objectives of engineering 

construction projects, which is also an international practice. With the rapid development of China's 

engineering construction industry, the scale of engineering projects continues to expand, and the 

complexity of engineering continues to increase. This poses serious challenges to China's engineering 

consulting industry. The previous fragmented engineering consulting model is no longer suitable for the 

new national conditions, nor can it cope with the international development of China's engineering 

http://www.youdao.com/w/optimal/#keyfrom=E2Ctranslation
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consulting industry both domestically and internationally. Seamless integration with the international 

engineering consulting industry, large-scale implementation of the whole Process engineering consulting 

model is imperative. The quality evaluation of whole process engineering consulting service modes is 

MAGDM. In this paper, the SVNN-CTOPSIS model based on SVNNHD and SVNNED is formed to cope 

with the MAGDM. The CRITIC model is utilized to obtain the weight numbers in light with the SVNNHD 

and SVNNED under SVNSs. Finally, numerical example and comparative analysis for quality evaluation 

of whole process engineering consulting service modes is employed to verify SVNN-CTOPSIS model. 

The main contributions of this study are formed: (1) the CRITIC model is formed to obtain the weight 

numbers in light with SVNNHD and SVNNED; (2) the SVNN-CTOPSIS model is formed in light with 

SVNNHD and SVNNED under SVNNs; (3) Finally, numerical example and comparative analysis for 

quality evaluation of whole process engineering consulting service modes is utilized to verify 

SVNN-CTOPSIS model.  

There may be some possible research limitations for quality evaluation of whole process engineering 

consulting service modes, which could be further conducted in our future research contents: (1) It is a 

worthwhile research contents to conduct prospect theory[64-70] for quality evaluation of whole process 

engineering consulting service modes under SVNSs; (2) It is also worthwhile research contents to conduct 

regret theory[71-77] for quality evaluation of whole process engineering consulting service modes under 

SVNSs environment; (3) In subsequent research contents, the application of SVNSs needs to be formed 

with consensus issues [78-83] for quality evaluation of whole process engineering consulting service 

modes.  
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Abstract 

Right now, Contemporary technologies have become imperative in many domains to achieve societal 

safety. As is practiced in transportation systems through merging information and communication 

technologies (ICTs) in transportation to be an intelligent sector. As well Internet of Vehicles (IoVs) for 

facilitating communication between vehicles for safe driving. Similarly, fog computing in Vehicular Ad 

Hoc Networking (VANET) contributes significantly to addressing timing and latency issues by enabling 

cloud services for nearby vehicles. Nonetheless, there are hazards of cyber-attacks on vehicles in VFN, 

which makes it uneasy to disclose personal information to unidentified fog devices. Consequently, an 

online criminal might target vehicles with counterfeit attacks. Herein, blockchain technology (BCT) is 

another technology of ICTs and is provided in this study as a handler for the problem of cyber-attacks. Due 

to BCT’s characteristics of permanent, or immutable, peer-to-peer, decentralized, and distributed ledger 

technology. Thereby, this study contributes to constructing an appraiser model for appraising BCT as the 

secured methodology in VFN. Multi-criteria decision-making (MCDM) techniques such as entropy and 

weighted sum method (WSM) have been harnessed in the appraising process motivated by the uncertainty 

theory of Type-2 neutrosophic sets (T2NSs). The appraiser model’s findings indicated that BCT 5(A5) was 

the optimal candidate based on its ranking. In contrast, BCT 4 (A4) is the worst one. 

 

Keywords: Vehicular Ad-hoc Networks (VANET); Internet of Vehicles (IoVs); Vehicular fog network 

(VFN); Blockchain Technology (BCT); Multi-Criteria Decision Making; Type-2 Neutrosophic 

 

1. Introduction 

       There are more accidents and problems with traffic congestion these days due to the massive growth 

in the number of vehicles on the road. This highlights the necessity for significant planning to guarantee 

traffic efficiency and road safety. Various technologies have been implemented to promote safer and more 

efficient driving on roads. One such technology is the Vehicular Ad-hoc Network (VANET), which allows 

vehicles to exchange information about their location, speed, and other road-related parameters. This 

increases the vehicles' awareness of the conditions of the surrounding roads and facilitates the making of 

more informed and timely decisions [1]. Up until recently, VANET's primary goal was to gather and share 
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data with other drivers to improve comfort and safety for drivers in a moving vehicle environment [2]. But 

VANET is quickly evolving into a transportation network where intelligent cars with integrated sensors, 

adapters, and control units may effectively communicate with nearby cars in addition to monitoring their 

environment [3]. The main issues with connected Vehicles in VANET are privacy and security. Vehicle data 

security can be easily breached by anyone with a connection to a vehicle, such as an owner, mechanic, or 

member of the governmental staff. Data validation, access control, device and network security, and driver 

and vehicle privacy are among the potential security risks that attackers may exploit [4]. As such, creating 

privacy and security solutions for connected Vehicles in VANET is a more difficult task. But as today's 

technologies—such as cloud computing platforms, wireless technologies, sensor devices, and smart cars—

develop more quickly, the demand for stronger vehicular networks has grown. Thus, the Internet of 

Vehicles (IoVs) emerged, able to take advantage of and integrate all these cutting-edge technologies to offer 

drivers and passengers of automobiles more rewarding real-time services [1]. IoVs are a next-generation 

wireless roadside system that is rapidly expanding [1].  A variety of vehicle interactions are now possible 

thanks to recent developments in sensor and communication technologies such as vehicle-to-vehicle (V2V), 

vehicle-to-infrastructure (V2I), vehicle-to-roadside units, vehicle-to-mobile-infrastructure, vehicle-to-

sensors, and vehicle-to-personal devices [5].  IoVs idea seeks to establish a networked infrastructure for the 

exchange of resources and information among smart vehicles, hence enabling the advancement of the 

Intelligent Transportation System (ITS). IoV will enable continuous connectivity between vehicles, roadside 

infrastructure, and pedestrians, and will increase the number of intelligent and linked automobiles in IT 

[6]. IoV is developing more quickly because of ongoing advancements in intelligent vehicle technology. 

Data exchange and interaction in the IoV is currently a popular area of study. Road data, car-generated 

data, data supplied by other nodes, etc. are all included in the vehicle interaction data [7]. By supplying 

connected Vehicles with services like storage, infrastructure, and increased processing capacity, cloud 

computing enables them to be charged by their needs [5].  Numerous dangers, including identity theft, 

denial of service, access control, data breaches, and data loss, affect cloud computing. By employing devices 

that can provide cloud computing's characteristics to the necessary vehicle, fog computing extends the 

functionality of cloud computing to the network's edge [6]. Consequently, vehicular fog network (VFN) 

refers to the network that has been integrated with IoVs and fog devices. The fact that VFN stores all its 

data on a single, centralized cloud server creates serious security risks since if one of the entities is 

compromised, the entire system is at risk. The disadvantage of one entity being hacked is eliminated by 

Blockchain (BC) technology, which is dispersed and decentralized. To write and validate transactional data 

and transport all verified transactions in a block, it works with numerous connected vehicles [7]. 

 

2. Comprehensive Review of Earlier Insights 

    In recent years, numerous technical methods have been presented by numerous researchers to improve 

IoT performance.  Because of its distinct qualities, IoVs is one of the main subjects of literature studies 

among them [8]. Vehicles in IoV process a lot of data. Additionally, they use a mesh network to directly 

perform V2V connection and ensure reliable data flow. The data could be about simple text messages, 

multimedia, or proximity to a location. Ensuring network security becomes imperative to uphold user trust 

[9]. According to Song et al.[10], a group of vehicles with similar average speeds and directions of travel 

can be formed based on navigation, and intergroup communication will keep the positions of the 
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individual vehicles and those of other vehicles hidden. However, because of the vehicle's speed and the 

unpredictability of the surrounding environment, there is still a serious problem with communication 

between geographically independent groups of vehicles. This problem manifests itself in the form of 

difficult information exchange and the need to repeat the intermediate authentication process whenever a 

vehicle rejoins another group of vehicles [8]. To address the security concerns around the Internet of 

Vehicles, a novel form of BC framework has been investigated to facilitate the safe transfer of information 

[11]. The reliability of a node and a message were recorded in a ledger on a local public BC that the 

researchers built for this purpose. Authors in [12] have identified problems with passing alert messages 

without disclosing the sender's identity as well as a lack of imagination in cars to do so. Their proposal was 

for an effective incentive announcement network built on BC technology that protects anonymity, enables 

vehicles to operate in the network anonymously, and provides incentives for their efforts. The researchers 

in [13] used consortium BC and smart contract technologies in order to enable the safe exchange and storage 

of data within in-vehicle edge networks. These technologies work to prevent information from being 

shared illegally. The researchers also developed a reputation-based data-sharing strategy to guarantee that 

the vehicles continuously provided high-quality data. The authors in [14] built software-defined fault 

tolerance and quality-of-service-aware IoT-based vehicular networks using edge computing made possible 

by BC. This resulted in a reduction in overall communication time, message failure fault tolerance, and safe 

service delivery for VANET. The ability for vehicles to exchange messages is what VANET is there for. The 

difficulty here is that such messages must be stored and forwarded by a reliable party. An additional 

obstacle is that the vehicle can refuse to take part in the creation and dissemination of announcement 

messages unless doing so benefits it. Authors have proposed a BC-enabled safe data-sharing system for the 

Internet of Vehicles (IoVs) that uses a parent and auxiliary BC to store the messages by various 

organizations from various places in order to address this issue and provide secure communication [15]. In 

order to address timeliness and latency difficulties, vehicular fog networking integrates fog computing and 

vehicular ad hoc networking to offer cloud services to neighboring automobiles [16]. Security and privacy 

concerns plague vehicular fog computing [17]. Another issue is that, even though the cloud and fog service 

providers are reliable organizations, automobiles in VFN frequently feel uneasy disclosing private 

information to unidentified fog devices [18]. The internet connection of vehicles in VFN is another major 

factor contributing to cyberattacks. BC, a distributed, decentralized, immutable, consensus-based network, 

may be a useful way to address VFN's issues with cyberattacks, latency, and timeliness [19]. Despite all its 

benefits, BC technology is still in its infancy and many firms still have reservations. According to a PWC 

(PricewaterhouseCoopers) poll, the main obstacles to BC adoption include regulatory ambiguity (48%), a 

lack of confidence (45%), and the question of whether the BC network can be connected (44%) [20]. 

Therefore, are all BC services appropriate for every firm at this point? Perhaps not the answer. Each type 

of BCT—private, public, and community—has pros and cons of its own. Therefore, by considering both 

economics and other pertinent criteria, enterprises should use a scientific decision-making tool to 

determine which BC service provider is more appropriate [21]. 

 

2.1 Blockchain (BCT) 

BC is a viable method to address challenges. BC consists of a group of interconnected blocks that are 

connected by certain cryptographic procedures to form a chain. The blocks store information such as 
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records, queries, and transactions. The digital ledger, which is updated by every network member, 

records every new block that is created and added to the chain. For this reason, another name for BC 

technology is distributed ledger technology (DLT) [22].  A BC can be classified as either public 

(completely dispersed and permissionless), private (permissioned, belonging to a particular 

organization), or consortium (federated, resembling a private BC) [23]. 

 Public BC: This BC is entirely decentralized, distributed, and permissionless, allowing any connected 

autonomous vehicles (CAVs) to connect to the network and view its contents. Take cryptocurrency 

networks like Ethereum and Bitcoin, for instance. It costs a lot of computer power to publish a new 

block. A processing charge is required to store a transaction on the BC. 

 Private BC: This is a single organization-created, fully permissioned BC. The authority organization is 

aware of every member of the organization and does not impose any fees for transaction processing. 

 Consortium BC: This kind of BC is comparable to a private BC, but it spans several organizations 

(several authorities) as opposed to just one. 

BC technology eliminates the need for a central authority by enabling everyone to create and approve 

transactions in a peer-to-peer network, greatly lowering the time and money associated with the 

middleman [1]. 

 

2.2 Vehicular Fog Networking (VFN) 

Cisco was coining the phrase "fog computing." The fog offers decentralized distributed computing 

capabilities at the edge of the network, in contrast to the cloud, which is a centralized server. Fog provides 

a more effective way around the restrictions of cloud computing by utilizing this feature [24]. Any device 

that can share resources on rent and is referred to as a fog device can provide fog functionality. Applications 

that need a quick reaction and are time-sensitive are the greatest candidates for fog computing [25]. One of 

the major uses of fog computing is the Internet IoVs; this integration is called a Vehicular Fog Network 

(VFN)[15]. Because vehicles do not need to send data to the cloud, a VFN has the advantages of low latency, 

reduced network bandwidth requirements, security, and increased reliability.  Any dynamic node, such as 

a vehicle, or any static node, such as a router, switch, base station, or RSU, could function as a fog device 

in a VFN. A fog device can be hired out to the necessary cars for computation and storage because it has an 

underutilized infrastructure. In addition, data segregation, forwarding, and real-time decision-making for 

vehicular communication are all impacted by fog [26]. Even while the fog sends all the data it needs for 

analysis later, it communicates only the data that is needed. 

The BC idea is used with VFN to increase security by storing reward point values and vehicle reliability 

in a traffic scenario. Furthermore, the combination of fog computing with the BC idea may be able to 

address the main security issues in an IoVs environments [5]. 

 

2.3 BCT in Vehicular Fog Network 

Vehicular fog computing, a novel vehicular network architecture, is introduced with the BC security 

framework. BC security transactions are accelerated by vehicle network design and fog computing, which 

together offer cloud computing capabilities at the network's edge. VFN is the name of this system. Applying 

the BC concept to VFN increases its security by storing reward point values and vehicle trustworthiness in 

a traffic scenario. Additionally, fog computing and the BC idea have the potential to address the main 
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security issues in an IoVs environments [25]. In complex road traffic scenarios where vehicles lack 

confidence, BCT is well suited for decentralized application environments with distributed consensus 

features. Data is secure against easy manipulation by adversaries because of BC technology. Multiple 

service providers may be able to collaboratively manage the user's account information with the help of 

this encryption feature [8]. To accomplish the full identity authentication process across several servers, a 

user simply needs to keep track of their account details on the ledger, potentially increasing efficiency. 

Nevertheless, in contrast to other Internet of Things, IoVs based on BC technology allows for energy 

consumption to be met directly by the vehicle, avoiding the drawback of high energy consumption of the 

BC network [8]. 

BC technology is also having a significant impact on businesses that we never would have predicted would 

become unstable. It makes sense to research this kind of topic since the service provider selection problem 

in a BC system might undergo significant changes in the future. Furthermore, an enterprise's performance 

and success are directly correlated with the choice of suitable BC service providers. Enterprises seeking 

growth and development will collaborate with capable firms to create BC technology, viewing these firms 

as their own BC service providers [21]. 

 

3 Methodology: Appraising of Blockchain  

In this study, the advantage of Entropy technique to determine the weights of criteria in MCDM problems 

is combined with WSM to evaluate and rank a set of BCT as security methodology. these techniques under 

the authority of T2NSs. 

Phase 1: Problem Formulation 

Step 1.1: Set of BCTs is determined as alternatives that contribute to the appraiser model. will where the 

alternatives are represented as BCTs = {BCT1, BCT 2, . . . , BCT m}.The determined alternatives are appraised 

based on a set of criteria as C = {C1, C2, . . . , Cn} which is mentioned in Table 1 . 

Step 1.2: the panel of DMs is formed for appraising the alternatives of BCTs. 

 

Table1: Determined criteria based on blockchain technology [1] 

 

Criteria Description 

Decentralization: C1 

 

BC technology demonstrates a decentralized nature in which data records are 

held and managed by all participating entities, in contrast to centralized storage 

platforms where both data storage and maintenance are handled by a trusted 

single node. This helps VFN settings by avoiding the single point of failure 

problem, reducing maintenance costs related to centralized server configurations, 

and reducing resource constraints. 

Immutability: C2 

 

The BC is nearly impossible to tamper with or alter since the creation and 

validation of new blocks of transactions must be approved by all or most of the 

peers using various consensus procedures before being added to the BC. 

Security and privacy: C3 

 

The adoption of digital signatures and cryptographic hash functions in BC 

technology can guarantee the security of transaction data as well as the privacy of 

users taking part on the Internet of Vehicles. 

Transparency: C4 

 

All participants have access to all timestamped BC transactions since they each 

maintain a copy of the public ledger. As a result, peers can transparently manage, 

search for, and validate transactions at any moment without the need for a 
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middleman. By handling their transactions, peers are relieved, and the 

intermediary party's time and financial expenses are also reduced because of its 

self-auditability and transparency. 

Automation: C5 

 

Smart contracts, which are software programs that can be launched automatically 

by a triggering event or upon fulfilling a predetermined set of rules, are made 

possible by BC technology. This BC's automation feature can allow many VFN 

applications operate more efficiently and provide a range of services on their own 

without requiring a trusted third party. 

Traceability: C6 

 

Every transaction record, along with a timestamp indicating when it occurred and 

was added to the public ledger, is stored in the BC. The fact that the recordings 

are timestamped makes it easier to identify the events in a chronological order, 

improving traceability and supporting VFN non-repudiation requirement. 

 

Phase2: Generating criteria weights 

Step 2.1: Construct neutrosophic decision matrices. DMs utilized the linguistic terms presented in Table2 

to assess the opinions of DMs about each criterion [27] 

 

Step 2.2: Use the de-neutrosophic Eq. (1) for transforming neutrosophic decision matrices to the crisp 

matrices [27]. 

𝑆(𝑈1
~) =  

1

12
+ (8 + (𝑇𝑇𝑈1

(𝑧) + 2 (𝑇𝐼𝑈1
(𝑧)) +  𝑇𝐹𝑈1

(𝑧)) −  (𝐼𝑇𝑈1
(𝑧) + 2 (𝐼𝐼𝑈1

(𝑧)) + 𝐼𝐹𝑈1
(𝑧)) −  (𝐹𝑇𝑈1

(𝑧) +

2 (𝐹𝐼𝑈1
(𝑧)) +  𝐹𝐹𝑈1

(𝑧))                                                                                                 (1)                                           

 

Table2: Linguistic Scale 

Linguistic Terms T2N scale for 
                   < (𝑇𝑇  , 𝑇𝐼 , 𝑇𝐹), (𝐼𝑇  , 𝐼𝐼 , 𝐼𝐹), (𝐹𝑇  , 𝐹𝐼 , 𝐹𝐹) > 

 

Very Bad (VB) 

Bad (B) 

Medium Bad (MB) 

Medium (M) 

Medium Good (mg) 

Good (G) 

Very Good (VG) 

⟨(0.20, 0.20, 0.10),(0.65, 0.80, 0.85),(0.45, 0.80, 0.70)⟩  

⟨(0.35, 0.35, 0.10),(0.50, 0.75, 0.80),(0.50, 0.75, 0.65)⟩  

⟨(0.50, 0.30, 0.50),(0.50, 0.35, 0.45),(0.45, 0.30, 0.60)⟩  

⟨(0.40, 0.45, 0.50),(0.40, 0.45, 0.50),(0.35, 0.40, 0.45)⟩  

⟨(0.60, 0.45, 0.50),(0.20, 0.15, 0.25),(0.10, 0.25, 0.15)⟩ 

 ⟨(0.70, 0.75, 0.80),(0.15, 0.20, 0.25),(0.10, 0.15, 0.20)⟩  

⟨(0.95, 0.90, 0.95),(0.10, 0.10, 0.05),(0.05, 0.05, 0.05)⟩ 

 

 

Step 2.3. Eq. (2) is employed in crisp matrices to aggregate it into a single decision matrix.  

 𝑥𝑡𝑖𝑗
=

∑ 𝑆(𝑈𝑖
~) 

𝑁
𝑗=1

𝑁
                                                                                                         (2)   

                                                                                                                 

 Where: S(𝑈𝑖
~) refers to value of criterion in matrix, N refers to number of decision makers 

 

Step 2.4: Normalizing the aggregated decision matrix 𝑟𝑖𝑗   based on Eq.(3) 

𝑟𝑖𝑗 =
𝑥𝑖𝑗   

∑ 𝑥𝑖𝑗
𝑛
𝑖=1

                                                                                                                        (3) 

Where: ∑ 𝑥𝑖𝑗
𝑛
𝑖=1  represents sum of each criterion in aggregated matrix per column. 

Step 2.5: Compute Entropy 𝑒𝑖 for normalized matrix by Eq.(4) 
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𝑒𝑗 =  (−ℎ) ∑ 𝑟𝑖𝑗  𝑙𝑛
𝑛
𝑖=1 (𝑟𝑖𝑗 )                                                                                      (4) 

 𝑤ℎ𝑒𝑟𝑒 (ℎ) =
1

ln (𝑛)
  ; n refers to number of alternatives 

Step 2.6: Calculation of variation coefficient  

𝑑𝑗 = = |1 − 𝑒𝑗|                                                                                                           (5) 

 

Step 2.7: Calculation of weights  

𝑤𝑗 =
𝑑𝑖

∑ 𝑑𝑗 𝑛
𝑖=1

                                                                                                            (6) 

 

Phase 3: Recommending the most secure BCT amongst BCTs 

Step 3.1: Eq.s(3,8) are employed for normalizing the aggregated matrix from previous phase 2. 

 

N =
1

𝑥𝑖𝑗
                                                                                                                                                            (7) 

NorAggj =
N

sum(N)
   , For Non − Benficial criteria                                                                   (8) 

Step 3.2: weighted decision matrix is generated based on Eq.(9)  

𝛿ij = 𝑤𝑗 ∗ NorAgg                                                                                                                              (9) 

Step 3.3: Obtaining global score based on Eq.(10).  

     V(𝛿ij) = ∑ 𝛿ijij

n
j=1                                                                                                   (10)    

    Where 𝑉(𝛿ij) is global score values. 

 

4 Implementation of Appraiser Model in Realism:Case Study 

 

To ensure the accuracy of the constructed appraiser model, we applied it to a smart city aiming for 

sustainable development. We are volunteering five BCTs to be candidates in this study which appraising 

based on six criteria have been determined in Table 1. 

 

4.1 Weighting criteria based on entropy- T2NSs. 

 

- Five Neutrosophic decision matrices are constructed and converted to crisp values using score 

function of Eq.(1). 

- The de-neutrosophic matrices are combined based on Eq.(2) into a single matrix called an aggregated 

matrix as listed in Table 3. 

- The aggregated matrix normalized according to Eq.(3) and generate normalized matrix as listed in 

Table 4. 

- The normalized matrix is harnessed in Eq.(4) for computing entropy as in Table 5. 

- Finally, Eq.(6) is applied for generating criteria weights which resulted in Table 6. Fig 1 showcases the 

weights of criteria where C1 has the highest value otherwise C6 has the lowest value  . 

 

Table 3: Aggregated decision matrix 

 

 C1 C2 C3 C4 C5 C6 

BCT1 0.7092 0.5617 0.5017 0.5617 0.5300 0.4725 
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BCT 2 0.4492 0.6008 0.6350 0.5600 0.5525 0.5067 

BCT 3 0.5342 0.5175 0.6725 0.6025 0.6792 0.5967 

BCT 4 0.5058 0.7208 0.5317 0.4358 0.4725 0.5400 

BCT 5 0.5567 0.4617 0.5067 0.7092 0.7008 0.6183 

       

sum 2.7550 2.8625 2.8475 2.8692 2.9350 2.7342 

 

Table 4: Normalizing the aggregated decision matrix 

 C1 C2 C3 C4 C5 C6 

BCT1 0.2574 0.1962 0.1762 0.1958 0.1806 0.1728 

BCT 2 0.1630 0.2099 0.2230 0.1952 0.1882 0.1853 

BCT 3 0.1939 0.1808 0.2362 0.2100 0.2314 0.2182 

BCT 4 0.1836 0.2518 0.1867 0.1519 0.1610 0.1975 

BCT 5 0.2021 0.1613 0.1779 0.2472 0.2388 0.2262 

 

Table 5: Compute Entropy ej for normalize 

 C1 C2 C3 C4 C5 C6 

BCT1 -0.3493 -0.3195 -0.3059 -0.3193 -0.3091 -0.3034 

BCT 2 -0.2957 -0.3277 -0.3346 -0.3189 -0.3144 -0.3124 

BCT 3 -0.3181 -0.3092 -0.3408 -0.3277 -0.3387 -0.3322 

BCT 4 -0.3112 -0.3473 -0.3133 -0.2863 -0.2940 -0.3203 

BCT 5 -0.3231 -0.2943 -0.3072 -0.3455 -0.3420 -0.3362 

Table 6: Compute Weight Vector 

 

 C1 C2 C3 C4 C5 C6 

 

 
 

-1.5974 -1.5980 -1.6019 -1.5976 -1.5981 -1.6045 

       

ej 0.9925 0.9929 0.9953 0.9926 0.9930 0.9969 

dj 0.0075 0.0071 0.0047 0.0074 0.0070 0.0031 

Wi 0.2030 0.1938 0.1280 0.2003 0.1911 0.0838 

 

∑ 𝑟𝑖𝑗 𝑙𝑛𝑟𝑖𝑗

𝑛

𝑖=1
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Fig 1. Final weights of criteria 

4.2 Obtaining optimal secure BCT using WSM and T2NSs 

- In our case, all criteria are beneficial. hence, we utilized the normalized matrix from entropy based on 

T2NSs for generating a weighted decision matrix by utilizing Eq(9) as in Table 7. 

- Finally, the candidates of BCTs are ranked based on values of global score. The findings of BCTs 

ranking are represented in Fig where BCT3 is the optimal alternative whilst BCT4 is the worst 

alternative. 

 

Table 7: Weighted decision matrix 

 

 

 

 

 

 

 

  

 C1 C2 C3 C4 C5 C6 

BCT1 0.0523 0.0380 0.0225 0.0392 0.0345 0.0145 

BCT 2 0.0331 0.0407 0.0285 0.0391 0.0360 0.0155 

BCT 3 0.0394 0.0350 0.0302 0.0421 0.0442 0.0183 

BCT 4 0.0373 0.0488 0.0239 0.0304 0.0308 0.0166 

BCT 5 0.0410 0.0312 0.0228 0.0495 0.0456 0.0190 

C1, 0.2030

C2, 0.1938

C3, 0.1280

C4, 0.2003

C5, 0.1911

C6, 0.0838
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Fig 2. Final rank for alternative based on WSM-T2NSs 

 

5 Comparative Analysis 

We applied another method besides implementing our appraiser model in the real case study; we 

performed various scenarios for changing the criteria’s weights by implementing sensitivity analysis. The 

objective of the sensitivity analysis process is to verify the stability of model’s decision by determining how 

decisions are affected based on changes in the values of criteria weights. 

Fig 3 illustrates the seven cases for changing the values of criteria weights besides criteria weights obtained 

from entropy based on T2NSs. The findings of the changed values of criteria weights are formed in Fig 4. 

According to this Fig the decision of the worst BCT for all cases is like the appraiser model’s decision where 

BCT 4 is the worst. Nevertheless, the difference in the optimal BCT where the constructed appraiser model 

and six cases agree that BCT3 is the optimal followed by BCT5. Otherwise, case five where BCT5 is the 

optimal followed by BCT3. 
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Fig 3. Changing values of criteria weights  

 

 

Fig 4. The decision of ranking BCTs based on various cases  

 

 

6 Conclusions 

This survey for prior studies demonstrated the security for both the earlier Vehicular Ad Hoc Networking 

(VANET) and other technologies as IoVs in intelligent transportation systems is a critical issue. Hence, 

Vehicular Fog Network (VFN) is constructed through integrating fog computing and VANET to provide 

cloud services to nearby vehicles to deal with timeliness and latency issues. There was also a focus on the 

capabilities of the recently developed BC technology in VFN. Making use of BCT to enable secure and 

efficient data trading for IoVs is becoming increasingly useful. BC technology is also having a significant 
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impact on businesses that we never would have predicted would become unstable. It makes sense to 

research this kind of topic since the service provider selection problem in a BC system might undergo 

significant changes in the future. Furthermore, an enterprise's performance and success are directly 

correlated with the choice of suitable BC service providers. Enterprises seeking growth and development 

will collaborate with capable firms to create BC technology, viewing these firms as their own BC service 

providers. The problem of selecting optimal BC is represented in selection according to set of attributes. 

MCDM techniques are employed in BCs selection to analyze attributes and recommend the optimal BCs 

among set of Decision makers. Herein, the entropy technique implemented in BCTs selection to obtain 

attributes’ weights through the preferences of experts who related to our scope. The rating is performed by 

applying T2NSs. The results of the implementation of entropy indicated that Decentralization (C1) is 

optimal attribute otherwise Traceability (C6) is the least based on the final values of its weights.  After that 

WSM leverages the generated weights of attributes to rank BCTs candidates and recommend the best and 

worst BCT. In our study, there is an agreement on recommending BCT3 as the optimal candidate based on 

its ranking. In contrast BCT4 is the worst one. But in case five BCT5 is recommended as optimal securing 

methodology in VFN. 
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Abstract: This paper aims to define the concepts of Semi-group and Pentapartitioned Neutrosophic 

Subtraction Algebra. We also examine a few of their fundamental characteristics. Additionally, we 

provide a few appropriate instances on Pentapartitioned Neutrosophic Subtraction Algebra. 
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________________________________________________________________________________________ 

1. Introduction: 

Schein [30] developed the basic principles of Subtraction Algebra in 1992. Afterwards, Zelinka 

[37] presented the idea of subtraction semi-group. In the year 2004, Kyung et al. [26] presented some 

notes on subtraction semi-group. Later on, Jun and Kim [23] grounded the notions of ideal in 

subtraction algebra. In the year 2008, Jun and Kim [24] also studied the concept of prime and 

irreducible ideals in subtraction algebra. The concepts of Weak Subtraction Algebras were then 

grounded by Lee et al. [27], who also looked at a technique for creating Weak Subtraction Algebra 

from a quasi-ordered set. Zadeh [36] proposed the concept of fuzzy sets for the first time in 1963. 

Later, in 2007, Kim et al. [25] addressed the concept of fuzzy ideals in subtraction algebras. In 1986, 

Atanassov [3] constructed a new idea of Intuitionistic Fuzzy Set by broadening the idea of Fuzzy Set. 

Ezhilarasi and Sriram [18] grounded the notion of intuitionistic fuzzy ideals of subtraction algebra. 

In 1998, Smarandache [31, 32] laid out the concept of Neutrosophic Set (NS) to aid in dealing with 

unpredictable occurrences with indeterminacy. In 2006, Vasantha Kandasamy and Smarandache 

[35] came up with neutrosophic algebraic structures in the context of neutrosophic set. In the year 

2020, Ibrahim et al. [21] introduced the notions of Neutrosophic Subtraction Algebra and 

Neutrosophic Subtraction Semi-Group. Mallick and Pramanik [28] recently presented the principles 

of a Pentapartitioned Neutrosophic Set by broadening the theories of NS, in which any component 

has a total of five independent components such as: truth, contradiction, ignorance, unknown, and 

false membership. 

In this article, we introduce the notion of Pentapartitioned Neutrosophic Subtraction Algebra and 

Semi-Group. 
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This article's remaining portion is structured as follows: 

We review some pertinent definitions and findings on semi group and subtraction algebra in 

section-2. By extending the theory of neutrosophic subtraction algebra, we present the concepts of 

pentapartitioned neutrosophic subtraction algebra in section-3. We also develop some findings 

regarding pentapartitioned neutrosophic subtraction algebra. In section-4, we conclude this article. 

2. Relevant Definitions and Results: 

This section includes a few definitions and results that are fundamental to understanding the 

drafting of this article's primary outcomes. 

Definition 2.1. [26] Let us consider a binary operation ‘−‘  on a fixed set Ẫ. Then, the structure (Ẫ, −) 

is referred to as a subtraction algebra if the following holds: 

(i) ῥ − (ự − ῥ) = ῥ;  

(ii) ῥ − (ῥ − ự) = ự − (ự − ῥ);  

(iii) (ῥ − ự) − ẽ = (ῥ − ẽ) – ự; for all ῥ, ự, ẽ ∈ Ẫ.  

Remark 2.1. [26] Let us consider a subtraction algebra (Ẫ, −). Then, 

(i) ῥ − 0 = ῥ and 0 − ῥ = 0  

(ii) ῥ − (ῥ − ự) ≤ ự. 

(iii) ῥ ≤ ự  ῥ = ự − w for some w ∈ Ẫ. 

(iv) ῥ ≤ ự  ῥ − ẽ ≤ ự − ẽ and ẽ − ự ≤ ẽ − ῥ for all ẽ ∈ Ẫ. 

(v) ῥ − (ῥ − (ῥ − ự)) = ῥ − ự. 

Definition 2.2. [28] Let us consider that Ẫ be a fixed set. A pentapartitioned neutrosophic set (P-NS) 

Ñ over Ẫ is defined by: 

Ñ = {(ῥ, TÑ(ῥ), CÑ(ῥ), GÑ(ῥ), UÑ(ῥ), FÑ(ῥ)): ῥ Ẫ}, 

where TÑ(ῥ), CÑ(ῥ), GÑ(ῥ), UÑ(ῥ), FÑ(ῥ) (∈ ]0,1[) are the truth, contradiction, ignorance, unknown, 

falsity membership values of each ῥẪ. So 0 TÑ(ῥ)+CÑ(ῥ)+GÑ(ῥ)+UÑ(ῥ)+FÑ(ῥ)  5. 

The null P-NS (0PN) and the absolute P-NS (1PN) over Ẫ are defined as follows: 

(i) 0PN= {(ῥ, 0, 0, 1, 1, 1): ῥẪ}; 

(ii) 1PN= {(ῥ, 1, 1, 0, 0, 0): ῥẪ}. 

Clearly, 0PNÑ  1PN, where Ñ is a P-NS over Ẫ. 

Assume that Ñ = {(ῥ, TÑ(ῥ), CÑ(ῥ), GÑ(ῥ), UÑ(ῥ), FÑ(ῥ)): ῥW} and Ħ = {(ῥ, TĦ(ῥ), CĦ(ῥ), GĦ(ῥ), UĦ(ῥ), 

FĦ(ῥ)): ῥW} be two P-NSs over W. Then,  

(i) Ñ  Ħ  TÑ(ῥ)  TĦ(ῥ), CÑ(ῥ)  CĦ(ῥ), GÑ(ῥ) GĦ(ῥ), UÑ(ῥ) UĦ(ῥ), FÑ(ῥ) FĦ(ῥ), for all ῥW. 

(ii) ÑĦ = {(ῥ, min {TÑ(ῥ), TĦ(ῥ)},min {CÑ(ῥ), CĦ(ῥ)},max {GÑ(ῥ), GĦ(ῥ)}, max{UÑ(ῥ), UĦ(ῥ)}, 

max{FÑ(ῥ), FĦ(ῥ)}): ῥW}. 

(iii) ÑĦ = {(ῥ, max{TÑ(ῥ), TĦ(ῥ)},max {CÑ(ῥ), CĦ(ῥ)},min {GÑ(ῥ), GĦ(ῥ)}, min {UÑ(ῥ), UĦ(ῥ)}, min 

{FÑ(ῥ), FĦ(ῥ)}): ῥW}. 

(iv) Ñc= {(ῥ, FÑ(ῥ), UÑ(ῥ),1-GÑ(ῥ), CÑ(ῥ), TÑ(ῥ)): ῥW} and Ħc= {(ῥ, FĦ(ῥ), UĦ(ῥ),1-GĦ(ῥ), CĦ(ῥ), TĦ(ῥ)): 

ῥW}. 

Definition 2.3. [21] Assume that Ẫ be a fixed set. A set Ẫ(I) = < Ẫ ∪ I > generated by Ẫ and I is referred 

to as an neutrosophic set. The members of Ẫ(I) are of the form (ῥ, yI), where ῥ and y are elements of 

Ẫ. I is referred to as an indeterminate and it has the property In = I for all positive integer n. 
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Definition 2.4. [21] Let us consider a classical subtraction algebra (Ẫ, −), and let Ẫ(I) = <Ẫ ∪ I> be a set 

generated by Ẫ and I. Consider the neutrosophic algebraic structure (Ẫ(I), −N ) where for all (â, ẽI),    

(ẅ, ῥI) ∈ (Ẫ(I), −N) is defined by (â, ẽI) −N (ẅ, ῥI) = (â − ẅ, (ẽ − ῥ)I) ∀â, ẽ, ẅ, ῥ ∈ Ẫ.  

We denote (Ẫ(I), −N ) as a neutrosophic subtraction algebra.  

An element ῥ ∈ Ẫ is represented by (ῥ, 0)∈Ẫ(I) and (0, 0) represents the constant element in Ẫ(I).  

Definition 2.5. [21] Assume that (Ẫ(I), −N ) be a neutrosophic subtraction algebra. Then, a non-empty 

subset Ħ(I) is referred to as a neutrosophic subtraction sub-algebra of Ẫ(I) if the following conditions 

hold:  

(i) If Ħ(I) ≠∅  

(ii) (â, ẽI) −N (ẅ, ῥI) ∈ Ħ(I) for all (â, ẽI),(ẅ, ῥI) ∈ Ħ(I).  

(iii) Ħ(I) contains a proper subset which is a subtraction algebra.  

If Ħ(I) does not contain a proper subset which is a subtraction algebra, then Ħ(I) is referred to as a 

pseudo neutrosophic subtraction sub-algebra of Ẫ(I). 

3. Pentapartitioned Neutrosophic Subtraction Algebra:  

 In this section we established the concept of pentapartitioned neutrosophic subtraction 

algebra on P-N-Ss, and established several results on it in the form of theorems, propositions, etc. 

Definition 3.1. Assume that Ẫ be a fixed set. Then, a set Ẫ(PN) = <Ẫ ∪C ∪ G ∪ U> which is generated by 

Ẫ and PN is referred to as a pentapartitioned neutrosophic set. The members of Ẫ(PN) are of the form 

(â, ẽC, ẅG, ựU), where â, ẽ, ẅ, and ự are the elements of Ẫ. Here, C, G, U are called contradiction, 

ignorance, unknown and it has the property Cn= C, Gn= G and Un = U for all positive integer n. 

Definition 3.2. Assume that (Ẫ, −) be any classical subtraction algebra. Suppose that Ẫ(PN) = <Ẫ ∪ C ∪ 

G ∪ U> be a set generated by Ẫ and PN. Consider the pentapartitioned neutrosophic algebraic 

structure (Ẫ(PN), −N ) where for all (â, ẽC, ẅG, ựU), (â1, ẽ1C, ẅ1G, ự1U) ∈ (Ẫ(I), −N) is defined as follows: 

(â, ẽC, ẅG, ựU)−N (â1, ẽ1C, ẅ1G, ự1U) = (â –â1, (ẽ –ẽ1)C, (ẅ – ẅ1)G, (ự – ự1)U), ∀ â, ẽ, ẅ, ự, â1, ẽ1, ẅ1, ự1∈ Ẫ. 

We call (Ẫ(PN), −N ) a pentapartitioned neutrosophic subtraction algebra.  

An element ά ∈ Ẫ is represented by (ά, 0, 0, 0) ∈Ẫ(PN) and (0, 0, 0, 0) represents the constant element 

in Ẫ(PN). 

Theorem 3.1. Every pentapartitioned neutrosophic subtraction algebra (Ẫ(PN), −N ) is a subtraction 

algebra. 

Proof. Assume that (Ẫ(PN), −N ) is a subtraction algebra. Assume that ά = (â, ẽC, ẅG, ựU), y = (â1, ẽ1C, 

ẅ1G, ự1U), z = (â2, ẽ2C, ẅ2G, ự2U) ∈Ẫ(PN), where â, ẽ, ẅ, ự, â1, ẽ1, ẅ1, ự1, â2, ẽ2, ẅ2, ự2∈ Ẫ.  

(i) We have, 

 ά −N (y −N ά)  

= (â, ẽC, ẅG, ựU)−N ((â1, ẽ1C, ẅ1G, ự1U) −N (â, ẽC, ẅG, ựU))  

= (â, ẽC, ẅG, ựU) −N ((â1-â), (ẽ1-ẽ)C, (ẅ1-ẅ)G, (ự1-ự)U)  

= (â − (â1 − â),(ẽ − (ẽ1 − ẽ))C, (ẅ − (ẅ1 − ẅ))G, (ự − (ự1 − ự))U)  

= (â, ẽC, ẅG, ựU) Since â,ẽ,ẅ,ự∈ Ẫ  

= ά 

(ii) We have,  

ά −N (ά −N y)  
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= (â, ẽC, ẅG, ựU)−N (â, ẽC, ẅG, ựU)−N (â1, ẽ1C, ẅ1G, ự1U))  

= (â, ẽC, ẅG, ựU) −N (((â1-â), (ẽ1-ẽ)C, (ẅ1-ẅ)G, (ự1-ự)U)) 

= ((â − (â – â1)), (ẽ − (ẽ – ẽ1))C, (ẅ − (ẅ – ẅ1))G, (ự − (ự – ự1))U) 

= ((â1 − (â1 – â)), (ẽ1 − (ẽ1 – ẽ))C, (ẅ1 − (ẅ1 – ẅ))G, (ự1 − (ự1 – ự))U) Since â, ẽ, ẅ, ự, â1, ẽ1, ẅ1, ự1∈ Ẫ. 

= (â1, ẽ1C, ẅ1G, ự1U)−N ((â1-â), (ẽ1-ẽ)C, (ẅ1-ẅ)G, (ự1-ự)U) 

= (â1, ẽ1C, ẅ1G, ự1U)−N ((â1, ẽ1C, ẅ1G, ự1U)−N (â, ẽC, ẅG, ựU))  

= y −N (y −N ά) 

(iii) We have,  

(ά −N y) −N z  

= ((â, ẽC, ẅG, ựU)−N (â1, ẽ1C, ẅ1G, ự1U)) −N (â2, ẽ2C, ẅ2G, ự2U) 

= ((â- â1), (ẽ- ẽ1)C, (ẅ- ẅ1)G, (ự- ự1)U)−N (â2, ẽ2C, ẅ2G, ự2U) 

= (((â – â1)-â2), ((ẽ – ẽ1) -ẽ2)C, ((ẅ – ẅ1) -ẅ2)G, ((ự – ự1) -ự2)U) 

= (((â – â2)-â1), ((ẽ – ẽ2) –ẽ1)C, ((ẅ – ẅ2) –ẅ1)G, ((ự – ự2) –ự1)U) Since â, ẽ, ẅ, ự, â1, ẽ1, ẅ1, ự1, â2, ẽ2, ẅ2, ự2∈ Ẫ.  

= ((â- â2), (ẽ- ẽ2)C, (ẅ- ẅ2)G, (ự- ự2)U)−N (â1, ẽ1C, ẅ1G, ự1U) 

= ((â, ẽC, ẅG, ựU) −N (â1, ẽ1C, ẅ1G, ự1U)) −N (â2, ẽ2C, ẅ2G, ự2U) 

= (ά −N z) −N y 

From Vasantha and Smarandache [30] and Ibrahim et al. [18], we note that, if ά ≤ y then we cannot in 

general say άC ≤ yC, άG ≤ yG, and άU ≤ yU it may so happen that άC ≤ yC, άG ≤ yG, and άU ≤ yU. 

Thus, the pentapartitioned neutrosophic order in general needs not to preserve the order. If a set Ẫ is 

ordered under “≤” then the pentapartitioned neutrosophic part of <Ẫ ∪ C ∪ G ∪ U> may or may not 

have the preservations of order under ≤; i.e., if ά ≤ y, ά, y ∈ Ẫ then άC ≤ yC, άG ≤ yG, andάU ≤ yU may 

occur or may not occur. For the work of the partial ordering we consider suppose άC ≤ yC, άG ≤ yG, 

and άU ≤ yU occur.  

Theorem 3.2. For a pentapartitioned neutrosophic subtraction algebra (Ẫ(PN), −N ), the relation “≤” is 

a partial order relation on Ẫ(PN). 

Proof. Assume that ά = (â, ẽC, ẅG, ựU), μ = (â1, ẽ1C, ẅ1G, ự1U), θ = (â2, ẽ2C, ẅ2G, ự2U) ∈Ẫ(PN) with â, ẽ, ẅ, 

ự, â1, ẽ1, ẅ1, ự1, â2, ẽ2, ẅ2, ự2∈ Ẫ. 

(i) Since ά-ά = (â, ẽC, ẅG, ựU) –N(â, ẽC, ẅG, ựU) = (â − â,(ẽ − ẽ)C, (ẅ − ẅ)G, (ự − ự)U) = (0, 0C, 0G, 0U) 

then ά≤ ά. 

(ii) Suppose that ά≤ μ and μ≤ ά.  

Then, (â, ẽC, ẅG, ựU)−N (â1, ẽ1C, ẅ1G, ự1U) = (0, 0C, 0G, 0U) implies (â – â1, (ẽ – ẽ1)C, (ẅ – ẅ1)G, (ự – ự1)U) 

= (0, 0C, 0G, 0U)  

and (â1, ẽ1C, ẅ1G, ự1U) −N (â, ẽC, ẅG, ựU) = (0, 0C, 0G, 0U) implies ((â1-â), (ẽ1-ẽ)C, (ẅ1-ẅ)G, (ự1-ự)U) = (0, 

0C, 0G, 0U).  

Now, we have 

(â, ẽC, ẅG, ựU) = (â, ẽC, ẅG, ựU) −N (0, 0C, 0G, 0U) 

= (â – 0, (ẽ – 0)C, (ẅ – 0)G, (ự – 0)U) 

= ((â − (â – â1)), (ẽ − (ẽ – ẽ1))C, (ẅ − (ẅ – ẅ1))G, (ự − (ự – ự1))U) Since, â – â1 =0, ẽ – ẽ1 = 0, ẅ – ẅ1 = 0  and ự 

– ự1 = 0. 

= ((â1 − (â1 – â)), (ẽ1 − (ẽ1 – ẽ))C, (ẅ1 − (ẅ1 – ẅ))G, (ự1 − (ự1 – ự))U) Since Ẫ is a subtraction algebra  

= ((â1 − 0), (ẽ1 − 0)C, (ẅ1 − 0)G, (ự1 − 0)U) Since, â – â1 = 0, ẽ – ẽ1 = 0, ẅ – ẅ1 = 0  and ự – ự1 = 0. 

= (â1, ẽ1C, ẅ1G, ự1U) −N (0, 0C, 0G, 0U) 
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= (â1, ẽ1C, ẅ1G, ự1U). 

(iii) Let ά≤μ and μ≤θ. Therefore, (â, ẽC, ẅG, ựU) ≤ (â1, ẽ1C, ẅ1G, ự1U) and (â1, ẽ1C, ẅ1G, ự1U) ≤ (â2, ẽ2C, 

ẅ2G, ự2U). 

Then, (â, ẽC, ẅG, ựU)−N (â1, ẽ1C, ẅ1G, ự1U) = (0, 0C, 0G, 0U) implies (â – â1, (ẽ – ẽ1)C, (ẅ – ẅ1)G, (ự – ự1)U) 

= (0, 0C, 0G, 0U)  

and (â1, ẽ1C, ẅ1G, ự1U)  −N (â2, ẽ2C, ẅ2G, ự2U) = (0, 0C, 0G, 0U) implies (â1-â2), (ẽ1-ẽ2)C, (ẅ1-ẅ2)G, 

(ự1-ự2)U)= (0, 0C, 0G, 0U). 

Now, we have 

(â, ẽC, ẅG, ựU) −N (â2, ẽ2C, ẅ2G, ự2U)  

= (â – â2, (ẽ – ẽ2)C, (ẅ – ẅ2)G, (ự – ự2)U)  

= (â – â2, (ẽ – ẽ2)C, (ẅ – ẅ2)G, (ự – ự2)U) 

= ((â – â2)-0, ((ẽ – ẽ2)-0)C, ((ẅ – ẅ2)-0)G, ((ự – ự2)-0)U) 

= ((â – â2)-(â – â1), ((ẽ – ẽ2)-(ẽ – ẽ1))C, ((ẅ – ẅ2)- (ẅ – ẅ1))G, ((ự – ự2)-(ự – ự1))U) 

= ((â -(â – â1))– â2), (((ẽ -(ẽ – ẽ1))– ẽ2))C, (((ẅ - (ẅ – ẅ1))– ẅ2))G, (((ự -(ự – ự1))– ự2))U) 

= ((â1-(â1 – â))– â2), (((ẽ1-(ẽ1 – ẽ))– ẽ2))C, (((ẅ1- (ẅ1 – ẅ))– ẅ2))G, (((ự1-(ự1 – ự))– ự2))U) 

= ((â1– â2)-(â1 – â), ((ẽ1 – ẽ2)- (ẽ1 – ẽ))C, ((ẅ1– ẅ2)- (ẅ1 – ẅ))G, ((ự1 – ự2)-(ự1 – ự))U) 

= (0-(â1 – â), (0- (ẽ1 – ẽ))C, (0- (ẅ1 – ẅ))G, (0-(ự1 – ự))U) 

= (0, 0C, 0G, 0U) 

Hence, (â, ẽC, ẅG, ựU) ≤ (â2, ẽ2C, ẅ2G, ự2U). Consequently, “≤” is a partial order relation.  

Proposition 3.1. Assume that (Ẫ(PN), −N ) be a pentapartitioned neutrosophic subtraction algebra . If 

(â, ẽC, ẅG, ựU), (â1, ẽ1C, ẅ1G, ự1U) ∈Ẫ(PN), with â, ẽ, ẅ, ự ∈ Ẫ, then the following are true: 

(i) (â, ẽC, ẅG, ựU) −N (0, 0C, 0G, 0U) = (â, ẽC, ẅG, ựU); 

(ii) (0, 0C, 0G, 0U) −N (â, ẽC, ẅG, ựU) = (0, 0C, 0G, 0U); 

(iii) ((â, ẽC, ẅG, ựU) −N (â1, ẽ1C, ẅ1G, ự1U)) −N (â, ẽC, ẅG, ựU) = (0, 0C, 0G, 0U); 

(iv) ((â, ẽC, ẅG, ựU) −N (â1, ẽ1C, ẅ1G, ự1U)) –N (â1, ẽ1C, ẅ1G, ự1U) = (â, ẽI) −N (â1, ẽ1C, ẅ1G, ự1U); 

(v) ((â, ẽC, ẅG, ựU) −N (â1, ẽ1C, ẅ1G, ự1U)) −N ((â1, ẽ1C, ẅ1G, ự1U) −N (â, ẽC, ẅG, ựU)) = (â, ẽC, ẅG, ựU) −N 

(â1, ẽ1C, ẅ1G, ự1U); 

(vi) (â, ẽC, ẅG, ựU) −N ((â, ẽC, ẅG, ựU) −N ((â, ẽC, ẅG, ựU) −N (â1, ẽ1C, ẅ1G, ự1U))) = (â, ẽC, ẅG, ựU) −N (â1, 

ẽ1C, ẅ1G, ự1U); 

(vii) (â, ẽC, ẅG, ựU) −N ((â, ẽC, ẅG, ựU) −N (â1, ẽ1C, ẅ1G, ự1U)) ≤ (â1, ẽ1C, ẅ1G, ự1U); 

(viii) (â, ẽC, ẅG, ựU) = (â1, ẽ1C, ẅ1G, ự1U)  (â, ẽC, ẅG, ựU) −N (â1, ẽ1C, ẅ1G, ự1U) = (0, 0C, 0G, 0U) and (â1, 

ẽ1C, ẅ1G, ự1U) = (â, ẽC, ẅG, ựU). 

Proof. (i) We have, (â, ẽC, ẅG, ựU) −N (0, 0C, 0G, 0U)  

= (â − 0, (ẽ − 0)C, (ẽ − 0)G, (ẽ − 0)U) = (â − (â − â), (ẽ − (ẽ − ẽ))C, (ẽ − (ẽ − ẽ))G, (ẽ − (ẽ − ẽ))U) = (â, ẽC, ẅG, ựU).  

 

(ii) (0, 0C, 0G, 0U) −N (â, ẽC, ẅG, ựU) = (0-â, (0-ẽ)C, (0-ẅ)G, (0-ự)U) = (0−(â−0), (0−(ẽ−0))C, (0−(ẽ−0))G, 

(0−(ẽ−0))U) = (0, 0C, 0G, 0U).  

 

(iii) We have, ((â, ẽC, ẅG, ựU) −N (â1, ẽ1C, ẅ1G, ự1U)) −N (â, ẽC, ẅG, ựU)  

= (â-â1, (ẽ-ẽ1)C, (ẅ-ẅ1)G, (ự-ự1)U)−N (â, ẽC, ẅG, ựU) 

= ((â − â1) − â,((ẽ − ẽ1) − ẽ)C, ((ẅ − ẅ1) − ẅ)G, ((ự − ự1) − ự)U)  

= ((â − â) – â1,((ẽ − ẽ) – ẽ1)C, ((ẅ − ẅ) – ẅ1)G, ((ự − ự) – ự1)U)  
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= (0-â1, (0-ẽ1)C, (0-ẅ1)G, (0-ự1)U) 

= (0, 0C, 0G, 0U). 

 

(iv) ((â, ẽC, ẅG, ựU) −N (â1, ẽ1C, ẅ1G, ự1U)) −N (â1, ẽ1C, ẅ1G, ự1U)= (â – â1, (ẽ – ẽ1)C, (ẅ – ẅ1)G, (ự – ự1)U)−N 

(â1, ẽ1C, ẅ1G, ự1U). 

= (((â – â1)-â1), ((ẽ – ẽ1) –ẽ1)C, ((ẅ – ẅ1) –ẅ1)G, ((ự – ự1) –ự1)U) 

= ((â – â1) − (â1 − (â – â1)),((ẽ – ẽ1) − (ẽ1 − (ẽ − ẽ1))C, ((ẅ – ẅ1) − (ẅ1 − (ẅ − ẅ1))G, ((ự – ự1) − (ự1 − (ự − ự1))U 

= (â-â1, (ẽ-ẽ1)C, (ẅ-ẅ1)G, (ự-ự1)U) 

= (â, ẽC, ẅG, ựU) −N (â1, ẽ1C, ẅ1G, ự1U). 

 

(v) ((â, ẽC, ẅG, ựU) −N (â1, ẽ1C, ẅ1G, ự1U)) −N ((â1, ẽ1C, ẅ1G, ự1U) −N (â, ẽC, ẅG, ựU)) =(â-â1, (ẽ-ẽ1)C, 

(ẅ-ẅ1)G, (ự-ự1)U) −N ((â1-â), (ẽ1-ẽ)C, (ẅ1-ẅ)G, (ự1-ự)U) = ((â-â1)- (â1-â), ((ẽ-ẽ1)- (ẽ1-ẽ))C, (ẅ-ẅ1)- (ẅ1-ẅ))G, 

(ự-ự1)- (ự1-ự))U)= ((â − (â1 − â)) – â1,((ẽ − (ẽ1 − ẽ)) – ẽ1)C, ((ẅ − (ẅ1 − ẅ)) – ẅ1)G, ((ự − (ự1 − ự)) – ự1)I)  

= (â – â1, (ẽ – ẽ1)C, (ẅ – ẅ1)G, (ự – ự1)U) 

= (â, ẽC, ẅG, ựU) −N (â1, ẽ1C, ẅ1G, ự1U).  

 

(vi) (â, ẽC, ẅG, ựU)−N ((â, ẽC, ẅG, ựU) −N ((â, ẽC, ẅG, ựU) −N (â1, ẽ1C, ẅ1G, ự1U))) = (â, ẽC, ẅG, ựU)−N ((â, 

ẽC, ẅG, ựU) −N (â − ẅ,(ẽ − ự)I)) = (â, ẽC, ẅG, ựU)−N (â – â1, (ẽ – ẽ1)C, (ẅ – ẅ1)G, (ự – ự1)U). 

= (â − (â − (â – â1)), (ẽ − (ẽ − (ẽ – ẽ1)))C, (ẅ − (ẅ − (ẅ – ẅ1)))G, (ự − (ự − (ự – ự1)))U)  

= ((â – â1) − ((â – â1) − â),((ẽ – ẽ1) − ((ẽ – ẽ1) − ẽ))C, ((ẅ – ẅ1) − ((ẅ – ẅ1) − ẅ))G, ((ự – ự1) − ((ự – ự1) − ự))U) 

Since from the properties of Ẫ, if â, â1 ∈ Ẫ then (â – â1) − â = 0 then we have  

((â – â1) − ((â – â1) − â),((ẽ – ẽ1) − ((ẽ – ẽ1) − ẽ))C, ((ẅ – ẅ1) − ((ẅ – ẅ1) − ẅ))G, ((ự – ự1) − ((ự – ự1) − ự))U) 

= ((â – â1) − 0,((ẽ – ẽ1) − 0)C, ((ẅ – ẅ1) − 0)G, ((ự – ự1) − 0)U) 

= (â – â1, (ẽ – ẽ1)C, (ẅ – ẅ1)G, (ự – ự1)U) 

 = (â, ẽC, ẅG, ựU)−N (â1, ẽ1C, ẅ1G, ự1U). 

 

(vi) ((â, ẽC, ẅG, ựU) −N ((â, ẽC, ẅG, ựU) −N (â1, ẽ1C, ẅ1G, ự1U))) −N (â1, ẽ1C, ẅ1G, ự1U)= ((â, ẽC, ẅG, ựU) −N 

(â1, ẽ1C, ẅ1G, ự1U)) −N ((â, ẽC, ẅG, ựU) −N (â1, ẽ1C, ẅ1G, ự1U)) = (0, 0C, 0G, 0U) ⇒(â, ẽC, ẅG, ựU) −N ((â, ẽC, 

ẅG, ựU) −N (â1, ẽ1C, ẅ1G, ự1U)) ≤ (â1, ẽ1C, ẅ1G, ự1U). 

 

(vii) Suppose that (â, ẽC, ẅG, ựU)−N (â1, ẽ1C, ẅ1G, ự1U)= (0, 0C, 0G, 0U) and (â1, ẽ1C, ẅ1G, ự1U) −N (â, ẽC, 

ẅG, ựU) = (0, 0C, 0G, 0U). Then (â, ẽC, ẅG, ựU) = (â, ẽC, ẅG, ựU)−N (0, 0C, 0G, 0U). 

= (â, ẽC, ẅG, ựU)−N ((â, ẽC, ẅG, ựU) −N (â1, ẽ1C, ẅ1G, ự1U))  

= (â1, ẽ1C, ẅ1G, ự1U) −N ((â1, ẽ1C, ẅ1G, ự1U) −N (â, ẽC, ẅG, ựU))  

= (â1, ẽ1C, ẅ1G, ự1U) −N (0, 0C, 0G, 0U). 

= (â1, ẽ1C, ẅ1G, ự1U).  

⇒ (â, ẽC, ẅG, ựU) = (â1, ẽ1C, ẅ1G, ự1U).  

Conversely, suppose that (â, ẽC, ẅG, ựU) = (â1, ẽ1C, ẅ1G, ự1U) 

Then, (â, ẽC, ẅG, ựU) −N (â1, ẽ1C, ẅ1G, ự1U)= (â, ẽC, ẅG, ựU) −N (â, ẽC, ẅG, ựU)= (0, 0C, 0G, 0U) and (â1, 

ẽ1C, ẅ1G, ự1U) −N (â, ẽC, ẅG, ựU) = (â1, ẽ1C, ẅ1G, ự1U)−N(â1, ẽ1C, ẅ1G, ự1U) = (0, 0C, 0G, 0U) ⇒(â, ẽC, ẅG, 

ựU) −N (â1, ẽ1C, ẅ1G, ự1U) = (0, 0C, 0G, 0U) and (â1, ẽ1C, ẅ1G, ự1U) −N (â, ẽC, ẅG, ựU)= (0, 0C, 0G, 0U). 
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Definition 3.3. Assume that Ẫ1(PN) and Ẫ2(PN) be two pentapartitioned neutrosophic subtraction 

algebra. Then, the direct product of Ẫ1(PN) and Ẫ2(PN) is denoted by Ẫ1(PN) × Ẫ2(PN) and defined as 

follows:  

Ẫ1(PN) × Ẫ2(PN) = {((â, ẽC, ẅG, ựU), (â1, ẽ1C, ẅ1G, ự1U)) : (â, ẽC, ẅG, ựU) ∈ Ẫ1(PN), (â1, ẽ1C, ẅ1G, ự1U) 

∈Ẫ2(PN)}.  

Proposition 3.2. Assume that (Ẫ1(PN), −N) and (Ẫ2(PN), −N) be two pentapartitioned neutrosophic 

subtraction algebra. Then, (Ẫ1(PN) × Ẫ2(PN), −N ) is also a pentapartitioned neutrosophic subtraction 

algebra. 

Proof. Suppose that ά = ((â0, ẽ0C, ẅ0G, ự0U), (â1, ẽ1C, ẅ1G, ự1U)), μ = ((â2, ẽ2C, ẅ2G, ự2U), (â3, ẽ3C, ẅ3G, 

ự3U)), θ =((â4, ẽ4C, ẅ4G, ự4U), (â5, ẽ5C, ẅ5G, ự5U)) ∈ Ẫ1(PN) × Ẫ2(PN), for all â0, ẽ0, ẅ0, ự0 , â2, ẽ2, ẅ2, ự2, â4, ẽ4, 

ẅ4, ự4 ∈ Ẫ1 and â1, ẽ1, ẅ1, ự1 , â3, ẽ3, ẅ3, ự3, â5, ẽ5, ẅ5, ự5 ∈ Ẫ2. Therefore,  

(i) We have,  

ά −N (μ −N ά)  

= ((â0, ẽ0C, ẅ0G, ự0U), (â1, ẽ1C, ẅ1G, ự1U))−N [((â2, ẽ2C, ẅ2G, ự2U), (â3, ẽ3C, ẅ3G, ự3U)) −N ((â0, ẽ0C, ẅ0G, ự0U), 

(â1, ẽ1C, ẅ1G, ự1U))]  

= ((â0, ẽ0C, ẅ0G, ự0U), (â1, ẽ1C, ẅ1G, ự1U)) −N [(â2, ẽ2C, ẅ2G, ự2U) −N(â0, ẽ0C, ẅ0G, ự0U), (â3, ẽ3C, ẅ3G, ự3U) 

−N(â1, ẽ1C, ẅ1G, ự1U)]  

= (â0, ẽ0C, ẅ0G, ự0U)−N((â2, ẽ2C, ẅ2G, ự2U) −N(â0, ẽ0C, ẅ0G, ự0U)), (â1, ẽ1C, ẅ1G, ự1U) −N((â3, ẽ3C, ẅ3G, ự3U) 

−N(â1, ẽ1C, ẅ1G, ự1U)) = ((â0, ẽ0C, ẅ0G, ự0U), (â1, ẽ1C, ẅ1G, ự1U)) 

= ά. 

(ii) We have,  

ά −N (ά −N μ)  

= ((â0, ẽ0C, ẅ0G, ự0U), (â1, ẽ1C, ẅ1G, ự1U))−N [((â0, ẽ0C, ẅ0G, ự0U), (â1, ẽ1C, ẅ1G, ự1U)) −N ((â2, ẽ2C, ẅ2G, ự2U), 

(â3, ẽ3C, ẅ3G, ự3U))]  

= ((â0, ẽ0C, ẅ0G, ự0U), (â1, ẽ1C, ẅ1G, ự1U)) −N [((â0, ẽ0C, ẅ0G, ự0U) −N (â2, ẽ2C, ẅ2G, ự2U)),( (â1, ẽ1C, ẅ1G, 

ự1U)−N (â3, ẽ3C, ẅ3G, ự3U))]  

= (â0, ẽ0C, ẅ0G, ự0U) −N((â0, ẽ0C, ẅ0G, ự0U) −N(â2, ẽ2C, ẅ2G, ự2U)), (â1, ẽ1C, ẅ1G, ự1U)−N((â1, ẽ1C, ẅ1G, ự1U) 

−N (â3, ẽ3C, ẅ3G, ự3U)) 

= (â2, ẽ2C, ẅ2G, ự2U)−N((â2, ẽ2C, ẅ2G, ự2U) −N(â0, ẽ0C, ẅ0G, ự0U)), (â3, ẽ3C, ẅ3G, ự3U) −N((â3, ẽ3C, ẅ3G, ự3U) 

−N(â1, ẽ1C, ẅ1G, ự1U))  

= ((â2, ẽ2C, ẅ2G, ự2U), (â3, ẽ3C, ẅ3G, ự3U))−N [((â2, ẽ2C, ẅ2G, ự2U), (â3, ẽ3C, ẅ3G, ự3U)) −N ((â0, ẽ0C, ẅ0G, ự0U), 

(â1, ẽ1C, ẅ1G, ự1U))]  

= μ −N (μ −N ά).  

(iii) We have, 

(ά −N μ) −N θ  

= [((â0, ẽ0C, ẅ0G, ự0U), (â1, ẽ1C, ẅ1G, ự1U)) −N ((â2, ẽ2C, ẅ2G, ự2U), (â3, ẽ3C, ẅ3G, ự3U))] −N ((â4, ẽ4C, ẅ4G, 

ự4U), (â5, ẽ5C, ẅ5G, ự5U)) 

= [((â0, ẽ0C, ẅ0G, ự0U) −N (â2, ẽ2C, ẅ2G, ự2U)),( (â1, ẽ1C, ẅ1G, ự1U)−N(â3, ẽ3C, ẅ3G, ự3U))] −N ((â4, ẽ4C, ẅ4G, 

ự4U), (â5, ẽ5C, ẅ5G, ự5U)) 

= (((â0, ẽ0C, ẅ0G, ự0U) −N (â2, ẽ2C, ẅ2G, ự2U)) −N (â4, ẽ4C, ẅ4G, ự4U), ((â1, ẽ1C, ẅ1G, ự1U)−N(â3, ẽ3C, ẅ3G, ự3U)) 

−N (â5, ẽ5C, ẅ5G, ự5U))  
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= (((â0, ẽ0C, ẅ0G, ự0U) −N (â4, ẽ4C, ẅ4G, ự4U))−N (â2, ẽ2C, ẅ2G, ự2U), ((â1, ẽ1C, ẅ1G, ự1U) −N (â5, ẽ5C, ẅ5G, 

ự5U))−N(â3, ẽ3C, ẅ3G, ự3U)) 

= [((â0, ẽ0C, ẅ0G, ự0U) −N (â4, ẽ4C, ẅ4G, ự4U)),( (â1, ẽ1C, ẅ1G, ự1U)−N(â5, ẽ5C, ẅ5G, ự5U))] −N ((â2, ẽ2C, ẅ2G, 

ự2U), (â3, ẽ3C, ẅ3G, ự3U)) 

=[((â0, ẽ0C, ẅ0G, ự0U), (â1, ẽ1C, ẅ1G, ự1U)) −N ((â4, ẽ4C, ẅ4G, ự4U), (â5, ẽ5C, ẅ5G, ự5U))] 

 −N ((â2, ẽ2C, ẅ2G, ự2U), (â3, ẽ3C, ẅ3G, ự3U)) 

= (ά −N θ) −N μ. 

Proposition 3.3. Assume that Ẫ1(PN) be a pentapartitioned neutrosophic subtraction algebra. 

Suppose that A be a classical subtraction algebra. Then, the structure (Ẫ1(PN)×A,−N) is a 

pentapartitioned neutrosophic subtraction algebra. 

Definition 3.4. Assume that (Ẫ(PN), −N ) be a pentapartitioned neutrosophic subtraction algebra. 

Then, if the following criteria are met, a non-empty subset A(PN) is referred to as a neutrosophic 

subtraction sub-algebra of Ẫ(PN):  

(i) A(PN) ≠∅; 

(ii) (â, ẽC, ẅG, ựU) −N (â1, ẽ1C, ẅ1G, ự1U) ∈ A(PN), for all (â, ẽC, ẅG, ựU), (â1, ẽ1C, ẅ1G, ự1U)∈ A(PN);  

(iii) A(PN) contains a proper subset which is a subtraction algebra. 

A(PN) is referred to as a pseudo pentapartitioned neutrosophic subtraction sub-algebra of 

Ẫ(PN) if it does not contain a proper subset that is a subtraction algebra. 

Definition 3.5. Suppose that (Ẫ, −, *) be any subtraction semi-group, and assume that Ẫ(PN) = <Ẫ ∪ C 

∪ G ∪ U> be a set generated by Ẫ and PN. Then, (Ẫ(PN), −N , *) is referred to as a pentapartitioned 

neutrosophic subtraction semi-group. Let (â, ẽC, ẅG, ựU) and (â1, ẽ1C, ẅ1G, ự1U) be any two elements 

of Ẫ(PN) with â, ẽ, ẅ, ự, â1, ẽ1, ẅ1, ự1 ∈ Ẫ. Then we define the following: 

(â, ẽC, ẅG, ựU) –N  (â1, ẽ1C, ẅ1G, ự1U) = (â – â1, (ẽ – ẽ1)C, (ẅ – ẅ1)G, (ự – ự1)U), 

and (â, ẽC, ẅG, ựU) * (â1, ẽ1C, ẅ1G, ự1U) = (ââ1, (ẽâ1+âẽ1+ ẽẽ1)C, (ẅâ1+âẅ1+ ẅẅ1)G, (ựâ1+âự1+ ựự1)U). 

Definition 3.6. The direct product of two pentapartitioned neutrosophic subtraction semi-groups 

Ẫ1(PN) and Ẫ2(PN) is denoted by Ẫ1(PN) × Ẫ2(PN) and defined as follows:  

Ẫ1(PN) × Ẫ2(PN) = {((â, ẽC, ẅG, ựU), (â1, ẽ1C, ẅ1G, ự1U)) : (â, ẽC, ẅG, ựU) ∈ Ẫ1(PN), (â1, ẽ1C, ẅ1G, ự1U) ∈ 

Ẫ2(PN)}.  

Proposition 3.5. Assume that (Ẫ1(PN), −N, *) and (Ẫ2(PN), −N, *) be two pentapartitioned neutrosophic 

subtraction semi-group. Then, (Ẫ1(PN) × Ẫ2(PN), −N , *) is also a pentapartitioned neutrosophic 

subtraction semi-group. 

Proposition 3.6. Assume that (Ẫ(PN), −N , *) be a pentapartitioned neutrosophic subtraction 

semi-group, and suppose that (A, −, *) be a classical subtraction semi-group. Then, (Ẫ(PN) × A, −N , *) 

is a pentapartitioned neutrosophic subtraction semi-group. 

4. Conclusions:  

The basic ideas of pentapartitioned neutrosophic subtraction semi-group and 

pentapartitioned neutrosophic subtraction algebra have been examined in this paper. Further, the 

basic properties of subtraction algebra and subtraction semi-group have been analyzed and 

established. We believe that numerous fresh investigations can be executed in the years to come by 
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utilizing the concepts of pentapartitioned neutrosophic subtraction semi-group and 

pentapartitioned neutrosophic subtraction algebra. 
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Abstract: We introduce a new class of neutrosophic crisp set, and then it presented some 

operations via this sets like, 𝑁𝐶𝑇 −intersection, 𝑁𝐶𝑇 −union and algebraic 𝑁𝐶𝑇 −difference to 

arrive at the algebraic ring construction. Also, we introduce the 𝑁𝐶𝑇 − points, which showed that 

a 𝑁𝐶𝑇 –set is 𝑁𝐶𝑇 −union of its 𝑁𝐶𝑇 −points, and so did we introduced the concept of the 

function on this sets, called 𝑁𝐶𝑇 – function and some of their important properties. Finally, we 

introduced the concept of the topology and some of the concepts entrusted to it, as an introduction 

to those spaces that can be studied in detail in the future. 

Keywords: 𝑁𝐶𝑇 – sets; 𝑁𝐶𝑇 −points; 𝑁𝐶𝑇 −function and 𝑁𝐶𝑇 −topological spaces. 

 

 

1. Introduction 

     The main focus of this research is the construction of a new type of neutrosophic crisp sets, and 

the first to know these sets neutrosophic and neutrosophic crisp sets is the scientist Florentin 

between the years 1999-2005 [1-3], when we looking at these sets, we notice that they are determined 

within spaces 𝑿 × [𝟎, 𝟏]𝟑 and 𝑷(𝑿) × 𝑷(𝑿) × 𝑷(𝑿), respectively when Zadeh [4] defined the fuzzy 

sets in 1965 , which were identified in space 𝑿 × [𝟎, 𝟏], and through this, Salama and Florentin 

generalized these sets , which he called neutrosophic sets [5-7]. The researcher Almohammed [8] 

invested in the fuzzy sets by finding a new definition of the local function in 2020. Imran et al. [9-11] 

provided the view of new types of weakly neutrosophic crisp continuity, new concepts of weakly 

neutrosophic crisp separation axioms, and new concepts of neutrosophic crisp open sets. Molodtsov 

[12] found a new type of sets at the 𝑬 × 𝑷(𝑿) (where 𝑿 is universal set and 𝑬 the parameters of 

elements of 𝑿) spaces and named them soft sets, where Al-Swidi and others [13-16] invested these 

sets by linking them with the fuzzy sets as well as defining new points, which in turn obtained 

equivalents for the separation axioms. Tomma et al. [17-19] gave the view of stable neutrosophic 

crisp topological space, necessary and sufficient conditions for a stability of the concepts of stable 

interior and stable exterior via neutrosophic crisp sets, and confused crisp set stable neutrosophic 

topological spaces. Al-Tamimi et al. [20] provided partner sets for generalizations of multi 

neutrosophic sets. Sfook et al. [21] introduced neutrosophic crisp grill topological spaces. Abdulsada 

et al. [22,23] provided the view of separation axioms of center topological space, and Center set 

theory of proximity space. Finally, the senses of new types of weakly neutrosophic crisp open 

mappings and new types of weakly neutrosophic crisp closed functions were informed by Al-Obaidi 

et al. [24,25]. In this research, we introduce a new concept of neutrosophic crisp set, and then it 

presented some operations via this sets like, 𝑵𝑪𝑻 − intersection, 𝑵𝑪𝑻 − union and algebraic 

mailto:d.ali@uos.edu.iq
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𝑵𝑪𝑻 −difference to arrive at the algebraic ring construction. Also, we introduce the 𝑵𝑪𝑻 − points, 

which showed that a 𝑵𝑪𝑻 –set is 𝑵𝑪𝑻 −union of its 𝑵𝑪𝑻 −points, and so did we introduced the 

class of the function on this sets, called 𝑵𝑪𝑻 – function and some of their important properties. 

 

2. NCT- Sets  

We presented a new class of neutrosophic crisp sets, complete with a neutrosophic crisp point, 

all operations are binary, a ring-building qualification, and boolean algebra. 

 

Definition 2.1. Let 𝑋 ≠ ∅. A neutrosophic crisp triple set 𝑁𝐶𝑇𝐴  is an object having the form 

 𝑁𝐶𝑇𝐴 = 〈𝐴1, 𝐴2, 𝐴3〉 . Where 𝐴1, 𝐴2, 𝐴3 ⊆ 𝑋  satisfying 𝐴1 ⊆ 𝐴2  and 𝐴2 ∩ 𝐴3 = ∅ . And 𝑁𝐶𝑇(𝑋) =

{𝑁𝐶𝑇𝐴 = 〈𝐴1, 𝐴2, 𝐴3〉 ∶ 𝐴1 ⊆ 𝐴2 and 𝐴2 ∩ 𝐴3 = ∅} is the collection of all 𝑁𝐶𝑇 − sets on 𝑋.  

From this definition we see that if 𝐴3 = 𝑋 , then 𝐴1 = 𝐴 2 =  ∅ and if  𝐴2 = 𝑋 , then 𝐴3 = ∅, 

finally if 𝐴1 = 𝑋, then 𝐴2 = 𝑋 and 𝐴3 = ∅.  

 

Definition 2.2. Let 𝑁𝐶𝑇𝐴 = 〈𝐴1, 𝐴2, 𝐴3〉 and 𝑁𝐶𝑇𝐵 = 〈𝐵1 , 𝐵2, 𝐵3〉 are 𝑁𝐶𝑇 −a non-empty set 𝑋 over 

sets. Therefore: 

1. 𝑁𝐶𝑇𝐴 is a 𝑁𝐶𝑇 −  subset of 𝑁𝐶𝑇𝐵  if 𝐴3 ⊇ 𝐵3  and 𝐴1 ⊆ 𝐵1 , 𝐴2 ⊆ 𝐵2 . We write 𝑁𝐶𝑇𝐴 ⊑

𝑁𝐶𝑇𝐵 . 

2. 𝑁𝐶𝑇𝐴 = 𝑁𝐶𝑇𝐵  iff 𝑁𝐶𝑇𝐴 ⊑ 𝑁𝐶𝑇𝐵 and 𝑁𝐶𝑇𝐵 ⊑ 𝑁𝐶𝑇𝐴. 

3. The 𝑁𝐶𝑇 −complement of 𝑁𝐶𝑇 − set 𝑁𝐶𝑇𝐴 is 𝐶𝑁𝐶𝑇𝐴 = 〈𝐴3, 𝐴2
𝑐 , 𝐴1〉. 

4. 𝑁𝐶𝑇𝐴 ⊔ 𝑁𝐶𝑇𝐵 = 〈𝐴1 ∪ 𝐵1 , 𝐴2 ∪ 𝐵2, 𝐴3 ∩ 𝐵3〉 is a crisp triple set that is neutrosophic in union 

(𝑁𝐶𝑇 −union set). 

5. 𝑁𝐶𝑇𝐴 ⊓ 𝑁𝐶𝑇𝐵 = 〈𝐴1 ∩ 𝐵1 , 𝐴2 ∩ 𝐵2, 𝐴3 ∪ 𝐵3〉 is the intersection a crisp triple set that is 

neutrosophic (𝑁𝐶𝑇 −intersection sets). 

6. 𝑁𝐶𝑇𝐴 − 𝑁𝐶𝑇𝐵 = 𝑁𝐶𝑇𝐴 ⊓ 𝐶𝑁𝐶𝑇𝐵 . 

7. 𝑁𝐶𝑇𝐴 ⊿ 𝑁𝐶𝑇𝐵 = (𝑁𝐶𝑇𝐴 ⊓ 𝐶𝑁𝐶𝑇𝐵) ⊔ (𝐶𝑁𝐶𝑇𝐴 ⊓ 𝑁𝐶𝑇𝐵). 

 

Now we will explain the concepts 𝑁𝐶𝑇 −universel and 𝑁𝐶𝑇 −null set which are among the 

basic concepts in our work. 

Definition 2.3. Let 𝑋 ≠ ∅. Then: 

1. 𝑁𝐶𝑇𝑋 = 〈𝑋, 𝑋, ∅〉 is 𝑁𝐶𝑇 −universel set. 

2. 𝑁𝐶𝑇𝜑 = 〈∅, ∅, 𝑋〉 is 𝑁𝐶𝑇 −null set. Clearly 𝐶𝑁𝐶𝑇𝑋 = 𝑁𝐶𝑇𝜑 and 𝐶𝑁𝐶𝑇𝜑 = 𝑁𝐶𝑇𝑋. 

The three most significant relationships 𝑁𝐶𝑇 −union, 𝑁𝐶𝑇 −intersection and 𝑁𝐶𝑇 −complement 

listed in the following properties. 

 

Proposition 2.4. Let 𝑁𝐶𝑇𝑆 = 〈𝑆1, 𝑆2, 𝑆3〉 and 𝑁𝐶𝑇𝐽 = 〈𝐽1, 𝐽2, 𝐽3〉 are 𝑁𝐶𝑇 − a nonempty set 𝑋  over 

sets. Then: 

1. 𝑁𝐶𝑇𝑆 ⊓ 𝑁𝐶𝑇𝑆 = 𝑁𝐶𝑇𝑆. 

2. 𝑁𝐶𝑇𝑆 ⊔ 𝑁𝐶𝑇𝜑 = 𝑁𝐶𝑇𝑆. 

3. 𝑁𝐶𝑇𝑆 ⊔ 𝑁𝐶𝑇𝑋 = 𝑁𝐶𝑇𝑋. 

4. 𝑁𝐶𝑇𝑆 ⊓ 𝑁𝐶𝑇𝜑 = 𝑁𝐶𝑇𝜑. 

5. 𝐶(𝑁𝐶𝑇𝑆 ⊔ 𝑁𝐶𝑇𝐽) = 𝐶𝑁𝐶𝑇𝑆 ⊓ 𝐶𝑁𝐶𝑇𝐽. 

6. 𝐶(𝑁𝐶𝑇𝑆 ⊓ 𝑁𝐶𝑇𝐽) = 𝐶𝑁𝐶𝑇𝑆 ⊔ 𝐶𝑁𝐶𝑇𝐽. 

7. 𝑁𝐶𝑇𝑆 ⊔ 𝑁𝐶𝑇𝑆 = 𝑁𝐶𝑇𝑆. 

 

Proving the above proposition directly by applying Definitions 2.1, 2.2 and 2.3.  

For any  𝑁𝐶𝑇𝐴 = 〈𝐴1, 𝐴2, 𝐴3〉, we get the following two properties , but the opposite is not necessarily 

true   𝑁𝐶𝑇𝜑 ⊑ 𝑁𝐶𝑇𝐴 ⊓ 𝐶𝑁𝐶𝑇𝐴 and 𝑁𝐶𝑇𝐴 ⊔ 𝐶𝑁𝐶𝑇𝐴 ⊑ 𝑁𝐶𝑇𝑋 if 𝑋 = {𝑞1, 𝑞2, 𝑞3}  and 𝑁𝐶𝑇𝐴 =
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〈{𝑞1}, {𝑞1, 𝑞2}, {𝑞3}〉 ,then  𝑁𝐶𝑇𝐴 ⊓ 𝐶𝑁𝐶𝑇𝐴 = 〈∅, ∅, {𝑞1, 𝑞3}〉 ⋢ 𝑁𝐶𝑇𝜑 = 〈∅, ∅, 𝑋〉 . And, if 𝑋 = {𝑞1, 𝑞2, 𝑞3} 

and 𝑁𝐶𝑇𝐴 = 〈{𝑞1}, {𝑞1, 𝑞2}, {𝑞3}〉, then  𝑁𝐶𝑇𝑋 = 〈𝑋, 𝑋, ∅〉 ⋢ (𝑁𝐶𝑇𝐴 ⊔ 𝐶𝑁𝐶𝑇𝐴) = 〈{𝑞1, 𝑞3}, 𝑋, ∅〉. 

 

The following proposition shows the algebraic properties (associative and distributive laws) of these 

𝑁𝐶𝑇 − sets via 𝑁𝐶𝑇 − union and 𝑁𝐶𝑇 −intersection relations. 

 

Proposition 2.5. Let 𝑁𝐶𝑇𝑂 = 〈𝑂1 , 𝑂2, 𝑂3〉, 𝑁𝐶𝑇𝑄 = 〈𝑄1, 𝑄2, 𝑄3〉 and 𝑁𝐶𝑇𝐽 = 〈𝐽1, 𝐽2, 𝐽3〉 over a nonempty 

set 𝑋, be three 𝑁𝐶𝑇 −sets. Then: 

1. 𝑁𝐶𝑇𝑂 ⊓ (𝑁𝐶𝑇𝑄 ⊔ 𝑁𝐶𝑇𝐽 ) = (𝑁𝐶𝑇𝑂 ⊓ 𝑁𝐶𝑇𝑄) ⊔ (𝑁𝐶𝑇𝑂 ⊓ 𝑁𝐶𝑇𝐽). 

2. 𝑁𝐶𝑇𝑂 ⊓ (𝑁𝐶𝑇𝑄 ⊓ 𝑁𝐶𝑇𝐽 ) = (𝑁𝐶𝑇𝑂 ⊓ 𝑁𝐶𝑇𝑄) ⊓ 𝑁𝐶𝑇𝐽. 

3. 𝑁𝐶𝑇𝑂 ⊔ (𝑁𝐶𝑇𝑄 ⊔ 𝑁𝐶𝑇𝐽 ) = (𝑁𝐶𝑇𝑂 ⊔ 𝑁𝐶𝑇𝑄) ⊔ 𝑁𝐶𝑇𝐽. 

4. 𝑁𝐶𝑇𝑂 ⊔ (𝑁𝐶𝑇𝑄 ⊓ 𝑁𝐶𝑇𝐽 ) = (𝑁𝐶𝑇𝑂 ⊔ 𝑁𝐶𝑇𝑄) ⊓ (𝑁𝐶𝑇𝑂 ⊔ 𝑁𝐶𝑇𝐽). 

 

New we defined the 𝑁𝐶𝑇 −union and 𝑁𝐶𝑇 −intersection relations on any collection of 𝑁𝐶𝑇 −sets. 

 

Definition 2.6. Let {𝑁𝐶𝑇𝐴𝑖
∶ 𝑖 ∈ 𝐼} be a 𝑁𝐶𝑇 −sets in 𝑋, and 𝑁𝐶𝑇𝐴𝑖

= 〈𝐴𝑖1, 𝐴𝑖2, 𝐴𝑖3〉. Then 

1. ⊔𝑖∈𝐼 𝑁𝐶𝑇𝐴𝑖
= 〈∪𝑖∈𝐼 𝐴𝑖1,∪𝑖∈𝐼 𝐴𝑖2,∩𝑖∈𝐼 𝐴𝑖3〉. 

2. ⊓𝑖∈𝐼 𝑁𝐶𝑇𝐴𝑖
= 〈∩𝑖∈𝐼 𝐴𝑖1,∩𝑖∈𝐼 𝐴𝑖2,∪𝑖∈𝐼 𝐴𝑖3〉. 

 

Proposition 2.7. Let 𝑁𝐶𝑇𝐴, 𝑁𝐶𝑇𝐵 , 𝑁𝐶𝑇𝐶 and {𝑁𝐶𝑇𝐴𝑖
∶ 𝑖 ∈ 𝐼} in 𝑋.Then 

1. 𝑁𝐶𝑇𝐴 ⊑ 𝑁𝐶𝑇𝐵  and 𝑁𝐶𝑇𝐵 ⊑ 𝑁𝐶𝑇𝐶 , implies 𝑁𝐶𝑇𝐴 ⊑ 𝑁𝐶𝑇𝐶 . 

2. 𝑁𝐶𝑇𝐴𝑖
⊑ 𝑁𝐶𝑇𝐵  ∀𝑖 ∈ 𝐼, then ⊔𝑖∈𝐼 𝑁𝐶𝑇𝐴𝑖

⊑ 𝑁𝐶𝑇𝐵 . 

3. 𝑁𝐶𝑇𝐵 ⊑ 𝑁𝐶𝑇𝐴𝑖
 ∀𝑖 ∈ 𝐼, then 𝑁𝐶𝑇𝐵 ⊑⊓𝑖∈𝐼 𝑁𝐶𝑇𝐴𝑖

. 

4. 𝑁𝐶𝑇𝐴 ⊑ 𝑁𝐶𝑇𝐵  iff 𝐶𝑁𝐶𝑇𝐵 ⊑ 𝐶𝑁𝐶𝑇𝐴. 

Proof: Obvious. 

 

Now we present the definition of points 𝑁𝐶𝑇 −points. 

Definition 2.8. Let 𝑋 ≠ ∅ and 𝑝 ∈ 𝑋. So 𝑁𝐶𝑇 −points (𝑁𝐶𝑇𝑃) are structure: 

1. 𝑁𝐶𝑇�̃� = 〈{𝑝}, {𝑝}, {𝑝}𝑐〉. 

2. 𝑁𝐶𝑇�̃̃� = 〈∅, {𝑝}, {𝑝}𝑐〉. 

3. 𝑁𝐶𝑇
�̃̃�
̃ = 〈∅, ∅, {𝑝}𝑐〉. 

It's simple to see that 𝑁𝐶𝑇 −points are 𝑁𝐶𝑇 −sets. Also, the cardinal number of all 𝑁𝐶𝑇 −points is 

3𝑛, where n is the cardinal number of universal sets 𝑋. 

 

Definition 2.9. Let 𝑋 ≠ ∅ and 𝑝 ∈ 𝑋 and 𝑁𝐶𝑇𝐴 = 〈𝐴1, 𝐴2, 𝐴3〉. Then the 𝑁𝐶𝑇 −belong as follows: 

1. 𝑁𝐶𝑇�̃�  € 𝑁𝐶𝑇𝐴 iff  𝑝 ∈ 𝐴1 and 𝑁𝐶𝑇�̃�€̌ 𝑁𝐶𝑇 iff 𝑝 ∉ 𝐴1. 

2. 𝑁𝐶𝑇�̃̃� € 𝑁𝐶𝑇𝐴 iff 𝑝 ∈ 𝐴2 and  𝑁𝐶𝑇�̃̃�€̌ 𝑁𝐶𝑇 iff 𝑝 ∉ 𝐴2. 

3. 𝑁𝐶𝑇
�̃̃�
̃  € 𝑁𝐶𝑇𝐴 iff 𝑝 ∉ 𝐴3 and  𝑁𝐶𝑇

�̃̃�
̃€̌ 𝑁𝐶𝑇 iff 𝑝 ∉ 𝐴3.  

 

We now take the properties of belonging to the three points.  

Proposition 2.10. Let {𝑁𝐶𝑇𝐴𝑖
∶ 𝑖 ∈ 𝐼} is 𝑁𝐶𝑇 −set in 𝑋. Then 

1.  𝑁𝐶𝑇�̃�  € ⊓𝑖∈𝐼 𝑁𝐶𝑇𝐴𝑖
 iff 𝑁𝐶𝑇�̃�  €  𝑁𝐶𝑇𝐴𝑖

 for each 𝑖 ∈ 𝐼. 

2. 𝑁𝐶𝑇�̃̃� € ⊓𝑖∈𝐼 𝑁𝐶𝑇𝐴𝑖
 iff 𝑁𝐶𝑇�̃̃� €   𝑁𝐶𝑇𝐴𝑖

 for each 𝑖 ∈ 𝐼. 

3. 𝑁𝐶𝑇
�̃̃�
̃  € ⊓𝑖∈𝐼 𝑁𝐶𝑇𝐴𝑖

 iff 𝑁𝐶𝑇
�̃̃�
̃  €   𝑁𝐶𝑇𝐴𝑖

 for each 𝑖 ∈ 𝐼. 

4. 𝑁𝐶𝑇�̃�  € ⊔𝑖∈𝐼 𝑁𝐶𝑇𝐴𝑖
 iff ∃𝑖 ∈ 𝐼 such that  𝑁𝐶𝑇�̃�  € 𝑁𝐶𝑇𝐴𝑖

. 

5. 𝑁𝐶𝑇�̃̃� € ⊔𝑖∈𝐼 𝑁𝐶𝑇𝐴𝑖
 iff ∃𝑖 ∈ 𝐼 such that 𝑁𝐶𝑇�̃̃�  € 𝑁𝐶𝑇𝐴𝑖

. 

6. 𝑁𝐶𝑇
�̃̃�
̃  € ⊔𝑖∈𝐼 𝑁𝐶𝑇𝐴𝑖

 iff ∃𝑖 ∈ 𝐼 ∋ 𝑁𝐶𝑇
�̃̃�
̃  € 𝑁𝐶𝑇𝐴𝑖

. 

 

Proposition 2.11. Let 𝑁𝐶𝑇𝐴  and 𝑁𝐶𝑇𝐵  is 𝑁𝐶𝑇 −set in 𝑋. Then: 
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i. 𝑁𝐶𝑇𝐴 ⊑ 𝑁𝐶𝑇𝐵  iff ∀𝑁𝐶𝑇�̃�   with  𝑁𝐶𝑇�̃�  € 𝑁𝐶𝑇𝐴 ⟹ 𝑁𝐶𝑇�̃�  € 𝑁𝐶𝑇𝐵  , for each 𝑁𝐶𝑇�̃̃�   

with𝑁𝐶𝑇�̃̃� €  𝑁𝐶𝑇𝐴 ⟹ 𝑁𝐶𝑇�̃̃� €  𝑁𝐶𝑇𝐵  and for each 𝑁𝐶𝑇
�̃̃�
̃ we have𝑁𝐶𝑇

�̃̃�
̃  €  𝑁𝐶𝑇𝐴 ⟹

𝑁𝐶𝑇
�̃̃�
̃  €  𝑁𝐶𝑇𝐵 . 

ii. 𝑁𝐶𝑇𝐴 = 𝑁𝐶𝑇𝐵  iff for each 𝑁𝐶𝑇�̃�   we have 𝑁𝐶𝑇�̃�  € 𝑁𝐶𝑇𝐴 ⟺ 𝑁𝐶𝑇�̃�  € 𝑁𝐶𝑇𝐵  and for each 

𝑁𝐶𝑇�̃̃�  we have 𝑁𝐶𝑇�̃̃� € 𝑁𝐶𝑇𝐴 ⟺ 𝑁𝐶𝑇�̃̃�  € 𝑁𝐶𝑇𝐵 and for each 𝑁𝐶𝑇
�̃̃�
̃   we have 

𝑁𝐶𝑇
�̃̃�
̃  €  𝑁𝐶𝑇𝐴 ⟺ 𝑁𝐶𝑇

�̃̃�
̃  €  𝑁𝐶𝑇𝐵 . 

 

Proposition 2.12. Let 𝑁𝐶𝑇𝐴 = 〈𝐴1, 𝐴2, 𝐴3〉  be triple in 𝑋 . Then 𝑁𝐶𝑇𝐴 = ({𝑁𝐶𝑇�̃�  ∶

 𝑁𝐶𝑇�̃�  € 𝑁𝐶𝑇𝐴}) ⊔ ({𝑁𝐶𝑇�̃̃�  ∶  𝑁𝐶𝑇�̃̃� € 𝑁𝐶𝑇𝐴}) ⊔ ({𝑁𝐶𝑇
�̃̃�
̃  ∶  𝑁𝐶𝑇

�̃̃�
̃  € 𝑁𝐶𝑇𝐴}). 

 

Proposition 2.13. Let 𝑁𝐶𝑇𝑆 = 〈𝑆1, 𝑆2, 𝑆3〉 , 𝑁𝐶𝑇𝐽 = 〈𝐽1, 𝐽2, 𝐽3〉 and 𝑁𝐶𝑇𝑅 = 〈𝑅1, 𝑅2, 𝑅3〉 be 𝑁𝐶𝑇 −sets. 

Then: 

 

1. 𝑁𝐶𝑇𝑆 ⊔ 𝑁𝐶𝑇𝐽 ⊇ (𝑁𝐶𝑇𝑆 ⊓ 𝑁𝐶𝑇𝐽) ⊔ (𝑁𝐶𝑇𝐽 − 𝑁𝐶𝑇𝑆) ⊔ (𝑁𝐶𝑇𝑆 − 𝑁𝐶𝑇𝐽 ). 

2. (𝑁𝐶𝑇𝑆 − 𝑁𝐶𝑇𝐽) ⊔ (𝑁𝐶𝑇𝑆 − 𝑁𝐶𝑇𝑅 ) = 𝑁𝐶𝑇𝑆 − (𝑁𝐶𝑇𝐽 ⊓ 𝑁𝐶𝑇𝑅 ). 

3. (𝑁𝐶𝑇𝑆 ⊔ 𝑁𝐶𝑇𝐽) − (𝑁𝐶𝑇𝑅 − 𝑁𝐶𝑇𝑆) = 𝑁𝐶𝑇𝑆 ⊔ (𝑁𝐶𝑇𝐽 − 𝑁𝐶𝑇𝑅 ). 

4. (𝑁𝐶𝑇𝑆 ⊓ 𝑁𝐶𝑇𝐽) − (𝐶𝑁𝐶𝑇𝑆 ⊔ 𝑁𝐶𝑇𝑅) = 𝑁𝐶𝑇𝑆 ⊓ (𝑁𝐶𝑇𝐽 − 𝑁𝐶𝑇𝑅). 

5. Not necessary if 𝑁𝐶𝑇𝑆 ⊑ 𝑁𝐶𝑇𝐽 and 𝑁𝐶𝑇𝑆 ⊑ 𝐶𝑁𝐶𝑇𝐽, then 𝑁𝐶𝑇𝑆 = 𝑁𝐶𝑇𝜑. 

6. Not necessary if 𝑁𝐶𝑇𝑆 ⊑ 𝑁𝐶𝑇𝐽 and 𝐶𝑁𝐶𝑇𝑆 ⊑ 𝑁𝐶𝑇𝐽then 𝑁𝐶𝑇𝑆 = 𝑁𝐶𝑇𝑋 . 

7. (𝑁𝐶𝑇𝑆 ⊔ 𝑁𝐶𝑇𝐽) − 𝑁𝐶𝑇𝐽 ⊇ 𝑁𝐶𝑇𝑆 − 𝑁𝐶𝑇𝐽. 

8. 𝑁𝐶𝑇𝑆 − 𝑁𝐶𝑇𝐽 ⊑ 𝑁𝐶𝑇𝑆 − (𝑁𝐶𝑇𝑆 ⊓ 𝑁𝐶𝑇𝐽). 

9. ⊓ {𝑁𝐶𝑇𝐽 ∈ 𝑁𝐶𝑇𝑆(𝑋)} = 𝑁𝐶𝑇𝜑. 

10. 𝑁𝐶𝑇𝑆 ⊓ 𝐶𝑁𝐶𝑇𝐽 ⊑ (𝑁𝐶𝑇𝑆 ⊔ 𝑁𝐶𝑇𝐽)  ⊓  𝐶𝑁𝐶𝑇𝐽. 

11. (𝑁𝐶𝑇𝑆 ⊔ 𝑁𝐶𝑇𝐽) − (𝑁𝐶𝑇𝐽 ⊓ 𝑁𝐶𝑇𝑆) ⊇ (𝑁𝐶𝑇𝑆 − 𝑁𝐶𝑇𝐽) ⊔ (𝑁𝐶𝑇𝐽 − 𝑁𝐶𝑇𝑆). 

12. 𝑁𝐶𝑇𝑆 − (𝑁𝐶𝑇𝐽 ⊔ 𝑁𝐶𝑇𝑅) = (𝑁𝐶𝑇𝑆 − 𝑁𝐶𝑇𝐽) − 𝑁𝐶𝑇𝑅 . 

13. 𝑁𝐶𝑇𝑆   ⊿𝑁𝐶𝑇𝜑 = 𝑁𝐶𝑇𝑆. 

14. 𝑁𝐶𝑇𝜑 = 𝑁𝐶𝑇𝑆   ⊿𝑁𝐶𝑇𝑆 if and only if 𝑆1 ∪ 𝑆3 = 𝑋. 

15. 𝑁𝐶𝑇𝑆  ⊿ 𝑁𝐶𝑇𝐽 = 𝑁𝐶𝑇𝐽  ⊿ 𝑁𝐶𝑇𝑆. 

Proof. 

The converse of part (1) is not true in general for example, if 𝑋 = {𝑜1, 𝑜2, 𝑜3} , 𝑁𝐶𝑇𝐴 =

〈{𝑜1}, {𝑜1, 𝑜2}, {𝑜3}〉  and 𝑁𝐶𝑇𝐵 = 〈{𝑜2}, {𝑜2, 𝑜3}, {𝑜1}〉 , then:  𝑁𝐶𝑇𝐴 − (𝑁𝐶𝑇𝐴 ⊓ 𝑁𝐶𝑇𝐵) =

〈{𝑜1}, {𝑜1}, {𝑜3}〉 ⋢ 𝑁𝐶𝑇𝐴 − 𝑁𝐶𝑇𝐵 = 〈{𝑜1}, {𝑜1}, {𝑜2, 𝑜3}〉. 
The converse of part 2 is not true generally, for instance, if 𝑋 = {𝑒1, 𝑒2, 𝑒3}, 𝑁𝐶𝑇𝐴 = 〈{𝑒1}, {𝑒1, 𝑒2}, {𝑒3}〉 

and 𝑁𝐶𝑇𝐵 = 〈{𝑜2}, {𝑜2, 𝑜3}, {𝑜1}〉 ,then: 𝑁𝐶𝑇𝐴 ⊔ 𝑁𝐶𝑇𝐵 = 〈{𝑜1, 𝑜2}, 𝑋, ∅〉 ⋢ (𝑁𝐶𝑇𝐴 ⊓ 𝑁𝐶𝑇𝐵) ⊔ (𝑁𝐶𝑇𝐵 −

𝑁𝐶𝑇𝐴) ⊔ (𝑁𝐶𝑇𝐴 − 𝑁𝐶𝑇𝐵) = 〈{𝑜1}, {𝑜1, 𝑜3}, ∅〉. 
 Part 7 , Let 𝑋 = {𝑜1, 𝑜2, 𝑜3} , 𝑁𝐶𝑇𝐴 = 〈∅, ∅, {𝑜1, 𝑜2}〉  and 𝑁𝐶𝑇𝐵 = 〈∅, ∅, {𝑜1}〉 , then 𝑁𝐶𝑇𝐴 ⊑

𝑁𝐶𝑇𝐵 ,𝑁𝐶𝑇𝐴 ⊑ 𝐶𝑁𝐶𝑇𝐵and 𝑁𝐶𝑇𝐴 ≠ 𝑁𝐶𝑇𝜑 . 

Part 8 , Let 𝑋 = {𝑜1, 𝑜2, 𝑜3} , 𝑁𝐶𝑇𝐴 = 〈𝑋, 𝑋, {𝑜1, 𝑜2}〉  and 𝑁𝐶𝑇𝐵 = 〈𝑋, 𝑋, {𝑜1}〉 , then 𝑁𝐶𝑇𝐴 ⊑ 𝑁𝐶𝑇𝐵 , 

𝐶𝑁𝐶𝑇𝐴 ⊑ 𝑁𝐶𝑇𝐵  and 𝑁𝐶𝑇𝐴 ≠ 𝑁𝐶𝑇𝑋 . 

 

Since Proposition 2.13, part 12 assures that the 𝑁𝐶𝑇 −null set serves as an identification element for 

Proposition 13.2, part 13 ensures that every member of 𝑁𝐶∗(𝑋) = {𝑁𝐶𝑇𝐴 = 〈𝐴1, 𝐴2, 𝐴3〉 ∶

𝑁𝐶𝑇𝐴 𝑖𝑠 𝑁𝐶𝑇 − 𝑠𝑒𝑡 𝑎𝑛𝑑 𝐴1 ∪ 𝐴3 = 𝑋}.  

Finally, the fact that part 14 has its own inverse demonstrates that the symbol is commutative. All of 

this lends credence to the contention that (𝑁𝐶∗(𝑋) , ⊿) is a commutative group. 

 

Theorem 2.14. Let 𝑋 is non-null and 𝑁𝐶∗(𝑋) = {𝑁𝐶𝑇𝑆 = 〈𝑆1, 𝑆2, 𝑆3〉 ∶ 𝑁𝐶𝑇𝐴 𝑖𝑠 𝑁𝐶𝑇 − 𝑠𝑒𝑡 𝑎𝑛𝑑 𝑆1 ∪

𝑆3 = 𝑋} on 𝑋. So (𝑁𝐶∗(𝑋), ⊿,⊓) form a ring. 

 

 



Neutrosophic Sets and Systems, Vol. 68, 2024     103  

 

 

Dheargham Ali Abdulsada, L. A. A. Al-Swidi and Mustafa H. Hadi, On NCT- Set Theory 
 

Proof. 

According to propositions 2.4 and propositions 2.5, the groups (𝑁𝐶∗(𝑋),⊓)  and (𝑁𝐶∗(𝑋) , ⊿) are 

semigroups and commutative groups. Only the distribution on the left must be examined ⊓

 operation on ⊿.  

(𝑁𝐶𝑇𝑆 ⊓ 𝑁𝐶𝑇𝑊)⊿(𝑁𝐶𝑇𝑆 ⊓ 𝑁𝐶𝑇𝑃) = {(𝑁𝐶𝑇𝑆 ⊓ 𝑁𝐶𝑇𝑊) ⊓ (𝐶𝑁𝐶𝑇𝑆 ⊔ 𝐶𝑁𝐶𝑇𝑃  )} ⊔ {(𝑁𝐶𝑇𝑆 ⊓ 𝑁𝐶𝑇𝑃  ) ⊓
(𝐶𝑁𝐶𝑇𝑆 ⊔ 𝐶𝑁𝐶𝑇𝑊)} = {[(𝑁𝐶𝑇𝑆 ⊓ 𝑁𝐶𝑇𝑊) ⊓ 𝐶𝑁𝐶𝑇𝑆] ⊔ [(𝑁𝐶𝑇𝑆 ⊓ 𝑁𝐶𝑇𝑊) ⊓ 𝐶𝑁𝐶𝑇𝑃  ]} ⊔ {[(𝑁𝐶𝑇𝑆 ⊓

𝑁𝐶𝑇𝑃) ⊓ 𝐶𝑁𝐶𝑇𝑆] ⊔ [(𝑁𝐶𝑇𝑆 ⊓ 𝑁𝐶𝑇𝑃) ⊓ 𝐶𝑁𝐶𝑇𝑊]} = {(𝑁𝐶𝑇𝑆 ⊓ 𝑁𝐶𝑇𝑊) ⊓ 𝐶𝑁𝐶𝑇𝑃  } ⊔ {(𝑁𝐶𝑇𝑆 ⊓ 𝑁𝐶𝑇𝑃) ⊓

𝐶𝑁𝐶𝑇𝑊} = 𝑁𝐶𝑇𝑆 ⊓ (𝑁𝐶𝑇𝑊⊿𝑁𝐶𝑇𝑃). Therefore (𝑁𝐶∗(𝑋),⊓ , ⊿) is a ring. 

 

Now we introduce the concept of 𝑁𝐶𝑇-function. 

Definition 2.15. Let 𝑓 ∶ 𝑋 → 𝑌 be a function. Define 𝑁𝐶𝑇 −function 𝑓𝑁𝐶𝑇 ∶ 𝑁𝐶𝑇(𝑋) → 𝑁𝐶𝑇(𝑌) by: 

1. If 𝑁𝐶𝑇𝐴 = 〈𝐴1, 𝐴2, 𝐴3〉 ∈  𝑁𝐶𝑇𝐴(𝑋) ,then 𝑓𝑁𝐶𝑇(𝑁𝐶𝑇𝐴) = 〈𝑓(𝐴1), 𝑓(𝐴2), 𝑓 − (𝐴3)〉 , where 𝑓 −

(𝐴3) = 𝑌 − (𝑓(𝑋 − 𝐴3)). 

2. If 𝑁𝐶𝑇𝐵 = 〈𝑅1, 𝑅2, 𝑅3〉 ∈ 𝑁𝐶𝑇𝐵(𝑌), then 𝑓𝑁𝐶𝑇
−1(𝑁𝐶𝑇𝐵) = 〈𝑓−1(𝑅1), 𝑓−1(𝑅2), 𝑓−1(𝑅3)〉. 

 

We now take the most important properties of the 𝑁𝐶𝑇-function that we will adopt in our research. 

Proposition 2.16. Let 𝑓𝑁𝐶𝑇 ∶ 𝑁𝐶𝑇(𝑋) → 𝑁𝐶𝑇(𝑌)  be a 𝑁𝐶𝑇 − function and 𝑁𝐶𝑇𝐴, 𝑁𝐶𝑇𝐴𝑖
(𝑖 ∈ 𝐼) ∈

𝑁𝐶𝑇(𝑋), 𝑁𝐶𝑇𝐵  , 𝑁𝐶𝑇𝐵𝑗
(𝑗 ∈ 𝐽) ∈ 𝑁𝐶𝑇(𝑌). Then: 

1. 𝑁𝐶𝑇𝐴1
⊑ 𝑁𝐶𝑇𝐴2

⟹ 𝑓𝑁𝐶𝑇(𝑁𝐶𝑇𝐴1
) ⊑ 𝑓𝑁𝐶𝑇(𝑁𝐶𝑇𝐴2

). 

2. 𝑁𝐶𝑇𝐵1
⊑ 𝑁𝐶𝑇𝐵 2

⟹ 𝑓𝑁𝐶𝑇
−1(𝑁𝐶𝑇𝐵1

) ⊑ 𝑓𝑁𝐶𝑇
−1(𝑁𝐶𝑇𝐵 2

). 

3. If 𝑁𝐶𝑇𝐴 ⊑ 𝑓𝑁𝐶𝑇
−1(𝑓𝑁𝐶𝑇(𝑁𝐶𝑇𝐴)) and 𝑓 is 1-1, then 𝑁𝐶𝑇𝐴 = 𝑓𝑁𝐶𝑇

−1(𝑓𝑁𝐶𝑇(𝑁𝐶𝑇𝐴)). 

4. If 𝑓𝑁𝐶𝑇 (𝑓𝑁𝐶𝑇
−1(𝑁𝐶𝑇𝐵)) ⊑ 𝑁𝐶𝑇𝐵  and 𝑓 is onto, then 𝑓𝑁𝐶𝑇 (𝑓𝑁𝐶𝑇

−1(𝑁𝐶𝑇𝐵)) = 𝑁𝐶𝑇𝐵  

5. 𝑓𝑁𝐶𝑇
−1 (⊔ 𝑁𝐶𝑇𝐵𝑗

) =⊔ 𝑓𝑁𝐶𝑇
−1(𝑁𝐶𝑇𝐵𝑗

). 

6. 𝑓𝑁𝐶𝑇
−1 (⊓ 𝑁𝐶𝑇𝐵𝑗

) =⊓ 𝑓𝑁𝐶𝑇
−1(𝑁𝐶𝑇𝐵𝑗

). 

7. 𝑓𝑁𝐶𝑇(⊔ 𝑁𝐶𝑇𝐴𝑖
) =⊔ 𝑓𝑁𝐶𝑇(𝑁𝐶𝑇𝐴𝑖

). 

8. 𝑓𝑁𝐶𝑇(⊓ 𝑁𝐶𝑇𝐴𝑖
)  ⊑ (⊓ 𝑓𝑁𝐶𝑇(𝑁𝐶𝑇𝐴𝑖

)) and if 𝑓  is 1-1, then 𝑓𝑁𝐶𝑇(⊓ 𝑁𝐶𝑇𝐴𝑖
) = ⊓

𝑓𝑁𝐶𝑇(𝑁𝐶𝑇𝐴𝑖
). 

9. 𝑓𝑁𝐶𝑇
−1(𝑁𝐶𝑇𝑌) = 𝑁𝐶𝑇𝑋. 

10. 𝑓𝑁𝐶𝑇
−1(𝑁𝐶𝑇𝜑) = 𝑁𝐶𝑇𝜑. 

11. 𝑓𝑁𝐶𝑇(𝑁𝐶𝑇𝑋) = 𝑁𝐶𝑇𝑌 , if 𝑓 is onto. 

12. 𝑓𝑁𝐶𝑇(𝑁𝐶𝑇𝜑) = 𝑁𝐶𝑇𝜑. 

 

Proof. 

Let 𝑁𝐶𝑇𝐴𝑖
= 〈𝐴𝑖1, 𝐴𝑖2, 𝐴𝑖3〉, 𝑁𝐶𝑇𝐵𝑗

= 〈𝐵𝑗1, 𝐵𝑗2, 𝐵𝑗3〉, (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽) , 𝑁𝐶𝑇𝐴 = 〈𝐴1, 𝐴2, 𝐴3〉 and 𝑁𝐶𝑇𝐵 =

〈𝐵1, 𝐵2 , 𝐵3〉. 

1. Let 𝑁𝐶𝑇𝐴1
⊑ 𝑁𝐶𝑇𝐴2

. Since 𝐴11 ⊆ 𝐴21, 𝐴12 ⊆ 𝐴22  and 𝐴23 ⊆ 𝐴13 ,then 𝑓(𝐴11) ⊆

𝑓(𝐴21), 𝑓(𝐴12) ⊆ 𝑓(𝐴22)  and  𝑋 − 𝐴13 ⊆ 𝑋 − 𝐴23 ⟹ 𝑓(𝑋 − 𝐴13) ⊆ 𝑓(𝑋 − 𝐴23) ⟹  𝑌 −

𝑓(𝑋 − 𝐴23) ⊆ 𝑌 − 𝑓(𝑋 − 𝐴13) ⟹ 𝑓 − (𝐴23) ⊆ 𝑓 − (𝐴13) . Hence 𝑓𝑁𝐶𝑇(𝑁𝐶𝑇𝐴1
) ⊑

𝑓𝑁𝐶𝑇(𝑁𝐶𝑇𝐴2
). 

2. It is similar to (1.). 

3. 𝑓𝑁𝐶𝑇
−1(𝑓𝑁𝐶𝑇(𝑁𝐶𝑇𝐴)) = 𝑓𝑁𝐶𝑇

−1(𝑓𝑁𝐶𝑇(〈𝐴1, 𝐴2, 𝐴3〉)) = 𝑓𝑁𝐶𝑇
−1(〈𝑓(𝐴1), 𝑓(𝐴2), 𝑓 − (𝐴3)〉) =

〈𝑓−1(𝑓(𝐴1)), 𝑓−1(𝑓(𝐴2)), 𝑓−1(𝑓 − (𝐴3))〉 ⊒ 〈𝐴1, 𝐴2, 𝐴3〉 = 𝑁𝐶𝑇𝐴. 

4.  It is similar to (3.). 

5. 𝑓𝑁𝐶𝑇
−1 (⊔ 𝑁𝐶𝑇𝐵𝑗

) = 𝑓𝑁𝐶𝑇
−1(〈∪ 𝐵𝑗1,∪ 𝐵𝑗2,∩ 𝐵𝑗3〉) = 〈𝑓−1(∪ 𝐵𝑗1), 𝑓−1(∪ 𝐵𝑗2), 𝑓−1(∩ 𝐵𝑗3)〉 =

〈∪ 𝑓−1(𝐵𝑗1),∪ 𝑓−1(𝐵𝑗2),∩ 𝑓−1(𝐵𝑗3)〉 =⊔ 𝑓𝑁𝐶𝑇
−1(𝑁𝐶𝑇𝐵𝑗

). 

6. It is similar to (5.). 
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7. 𝑓𝑁𝐶𝑇(⊔ 𝑁𝐶𝑇𝐴𝑖
) = 𝑓𝑁𝐶𝑇(〈∪ 𝐴𝑖1,∪ 𝐴𝑖2,∩ 𝐴𝑖3〉) = 〈𝑓(∪ 𝐴𝑖1), 𝑓(∪ 𝐴𝑖2), 𝑓 − (∩ 𝐴𝑖3)〉 = 〈∪

𝑓(𝐴𝑖1),∪ 𝑓(𝐴𝑖2),∩ 𝑓 − (𝐴𝑖3)〉 =⊔ 𝐹(𝑁𝐶𝑇𝐴𝑖
) . Noties that 𝑓 − (∩ 𝐴𝑖3) = 𝑌 − 𝑓(𝑋 −∩ 𝐴𝑖3) =

𝑌 − 𝑓(∪ (𝑋 − 𝐴𝑖3) = 𝑌 −∪ 𝑓(𝑋 − 𝐴𝑖3) =∩ (𝑌 − 𝑓(𝑋 − 𝐴𝑖3)) =∩ 𝑓 − (𝐴𝑖3). 

8. 𝑓𝑁𝐶𝑇(⊓ 𝑁𝐶𝑇𝐴𝑖
) = 𝑓𝑁𝐶𝑇(〈∩ 𝐴𝑖1,∩ 𝐴𝑖2,∪ 𝐴𝑖3〉) = 〈𝑓(∩ 𝐴𝑖1), 𝑓(∩ 𝐴𝑖2), 𝑓 − (∪ 𝐴𝑖3)〉 ⊑ 〈∩

𝑓(𝐴𝑖1),∩ 𝑓(𝐴𝑖2),∪ 𝑓 − (𝐴𝑖3)〉 =⊓ 𝐹(𝑁𝐶𝑇𝐴𝑖
) . Noties that 𝑓 − (∪ 𝐴𝑖3) = 𝑌 − 𝑓(𝑋 −∪ 𝐴𝑖3) =

𝑌 − 𝑓(∩ (𝑋 − 𝐴𝑖3) ⊇ 𝑌 −∩ 𝑓(𝑋 − 𝐴𝑖3) =∪ (𝑌 − 𝑓(𝑋 − 𝐴𝑖3)) =∪ 𝑓 − (𝐴𝑖3). 

9. 𝑓𝑁𝐶𝑇
−1(𝑁𝐶𝑇𝑌) = 𝑓𝑁𝐶𝑇

−1(〈𝑌, 𝑌, ∅〉) = 〈𝑓−1(𝑌), 𝑓−1(𝑌), 𝑓−1(∅)〉 = 〈𝑋, 𝑋, ∅〉 = 𝑁𝐶𝑇𝑋. 

(10.), (11.), (12.) are like (9.). 

 

3. Neutrosophic Crisp Triple Topological Space 

  

     In this section, we investigate some of the properties generated by 𝑁𝐶𝑇 −sets, such as interior, 

exterior and boundary 𝑁𝐶𝑇 − points, which are the structure for all topological concepts, as well as 

closures. 

 

Definition 3.1. The pair (𝑁𝐶𝑇𝑋 , 𝜏𝑁𝐶𝑇
𝑋   ) is called neutrosophic crisp triple topological space (𝑁𝐶𝑇𝑇) 

over 𝑁𝐶𝑇 (𝑋) , if you achieve the following:  

1. 𝑁𝐶𝑇𝑋 , 𝑁𝐶𝑇𝜑 ∈ 𝜏𝑁𝐶𝑇
𝑋  (∈ is the classical belonging). 

2. 𝜏𝑁𝐶𝑇
𝑋   is closed under the finite 𝑁𝐶𝑇 −intersection. 

3. 𝜏𝑁𝐶𝑇
𝑋  is closed under the 𝑁𝐶𝑇 −union of every subfamily of 𝜏𝑁𝐶𝑇 .  

Any member of 𝜏𝑁𝐶𝑇  is called 𝑁𝐶𝑇 −open and the complement is called 𝑁𝐶𝑇 −closed. 

i- For any NCT- set 𝑁𝐶𝑇𝐴 the 𝑁𝐶𝑇 – interior of 𝑁𝐶𝑇𝐴 is of the form 𝑁𝐶𝑇 −int (𝑁𝐶𝑇𝐴) =

⊔ { 𝑁𝐶𝑇𝑃  ;  ∃𝑁𝐶𝑇𝐻  ∈ 𝜏𝑁𝐶𝑇  ∋ 𝑁𝐶𝑇𝑃  € 𝑁𝐶𝑇𝐻 ⊑  𝑁𝐶𝑇𝐴  } . From this definition we 

can show that 𝑁𝐶𝑇 −int (𝑁𝐶𝑇𝐴) =⊔ { 𝑁𝐶𝑇𝐻  ∈ 𝜏𝑁𝐶𝑇
𝑋  ;  𝑁𝐶𝑇𝐻 ⊑  𝑁𝐶𝑇𝐴  }. 

- 𝑁𝐶𝑇𝐴 ∈ 𝜏𝑁𝐶𝑇   iff   𝑁𝐶𝑇 −int (𝑁𝐶𝑇𝐴) = 𝑁𝐶𝑇𝐴. 

ii- For any 𝑁𝐶𝑇-set 𝑁𝐶𝑇𝐴 the 𝑁𝐶𝑇 −closure of 𝑁𝐶𝑇𝐴 is of the form 𝑁𝐶𝑇 − 𝑐𝑙(𝑁𝐶𝑇𝐴) =⊔

{ 𝑁𝐶𝑇𝑃; ∀ 𝑁𝐶𝑇𝐻  ∈ 𝜏𝑁𝐶𝑇
𝑋  ∋ 𝑁𝐶𝑇𝑃  € 𝑁𝐶𝑇𝐻 ∋ 𝑁𝐶𝑇𝐴 ⊓ 𝑁𝐶𝑇𝐻  ≠ 𝑁𝐶𝑇𝜑  }. 

- From above we can show that 𝑁𝐶𝑇 − 𝑐𝑙 (𝑁𝐶𝑇𝐴) =⊓ { 𝑁𝐶𝑇𝐹  ; 𝐶𝑁𝐶𝑇𝐹 ∈ 𝜏𝑁𝐶𝑇 ∋ 𝑁𝐶𝑇𝐴 ⊑

 𝑁𝐶𝑇𝐹  }. 

- 𝑁𝐶𝑇𝐹   is 𝑁𝐶𝑇 −closed iff  𝑁𝐶𝑇 − 𝑐𝑙(𝑁𝐶𝑇𝐹) =  𝑁𝐶𝑇𝐹 . 

iii- For any 𝑁𝐶𝑇 −set 𝑁𝐶𝑇𝐴 the 𝑁𝐶𝑇 −exterior of 𝑁𝐶𝑇𝐴 is of the form 

   𝑁𝐶𝑇 −ext (𝑁𝐶𝑇𝐴) =  𝑁𝐶𝑇 −int (𝐶𝑁𝐶𝑇𝐴). 

iv- For any 𝑁𝐶𝑇 −set 𝑁𝐶𝑇𝐴 the 𝑁𝐶𝑇 − boundary of 𝑁𝐶𝑇𝐴 is of the form 𝑁𝐶𝑇 −fr (𝑁𝐶𝑇𝐴) = 

⊔ { 𝑁𝐶𝑇𝑃  ;  𝑁𝐶𝑇𝑃  not NCT −interior and  NCT −exterior point of 𝑁𝐶𝑇-A}. 

  

So, from definition and properties above we can concluded. 

 1-  𝑁𝐶𝑇𝑋 = 𝑁𝐶𝑇 − int ( 𝑁𝐶𝑇𝐴) ⊔    NCT − ext(𝑁𝐶𝑇𝐴) ⊔   NCT − fr (𝑁𝐶𝑇𝐴), for any 𝑁𝐶𝑇 − set 

𝑁𝐶𝑇𝐴. 

 2- 𝑁𝐶𝑇 −int (𝑁𝐶𝑇𝐴) =  𝐶( 𝑁𝐶𝑇-cl (C𝑁𝐶𝑇𝐴))  and  𝑁𝐶𝑇 − 𝑐𝑙( 𝑁𝐶𝑇𝐴 ) = 𝐶( 𝑁𝐶𝑇 −int( 𝐶𝑁𝐶𝑇𝐴)). 

 

Lemma 3.2. If 𝑁𝐶𝑇𝐻  is 𝑁𝐶𝑇 − open set and any  𝑁𝐶𝑇 − set 𝑁𝐶𝑇𝐴  , then 𝑁𝐶𝑇𝐻  ⊓  NCT −

cl( 𝑁𝐶𝑇𝐴 )  ⊑ NCT − cl( 𝑁𝐶𝑇𝐴  ⊓   𝑁𝐶𝑇𝐻). 
Proof. 

Let 𝑁𝐶𝑇𝑃  € 𝑁𝐶𝑇𝐻  ⊓  NCT − cl( 𝑁𝐶𝑇𝐴 )  , if possible, that 𝑁𝐶𝑇𝑃  €̌ NCT − cl( 𝑁𝐶𝑇𝐴  ⊓

  𝑁𝐶𝑇𝐻) .Then there is some 𝑁𝐶𝑇 − open set 𝑁𝐶𝑇𝐾  containing 𝑁𝐶𝑇𝑃  and 𝑁𝐶𝑇𝐾 ⊓ 𝑁𝐶𝑇𝐴  ⊓

  𝑁𝐶𝑇𝐻 = 𝑁𝐶𝑇𝜑 , but 𝑁𝐶𝑇𝐾 ⊓ 𝑁𝐶𝑇𝐻   ∈ 𝜏𝑁𝐶𝑇  and 𝑁𝐶𝑇𝑃€ 𝑁𝐶𝑇𝐾 ⊓  𝑁𝐶𝑇𝐻  , this shows that 

𝑁𝐶𝑇𝑃  €̌ NCT − cl( 𝑁𝐶𝑇𝐴 ) , which contradiction . This obligates us to 𝑁𝐶𝑇𝑃€ NCT − cl( 𝑁𝐶𝑇𝐴  ⊓

  𝑁𝐶𝑇𝐻). 
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Proposition 3.3. Let (𝑁𝐶𝑇𝑋  , 𝜏𝑁𝐶𝑇
𝑋  )be any 𝑁𝐶𝑇𝑇 over 𝑁𝐶𝑇(𝑋) ,then the following properties are 

hold: 

1- If  𝑁𝐶𝑇𝐻 ∈ 𝜏𝑁𝐶𝑇
𝑋  or 𝑁𝐶𝑇𝐾   ∈ 𝜏𝑁𝐶𝑇

𝑋  , then 𝑁𝐶𝑇 − int (𝑁𝐶𝑇 − 𝑐𝑙(𝑁𝐶𝑇𝐾 ⊓  𝑁𝐶𝑇𝐻  ))  = 

𝑁𝐶𝑇 − 𝑖𝑛𝑡(𝑁𝐶𝑇 − 𝑐𝑙 (𝑁𝐶𝑇𝐾)) ⊓   NCT − int(NCT − cl(𝑁𝐶𝑇𝐻))). 

2- 𝑁𝐶𝑇 − 𝑖𝑛𝑡 ( 𝑁𝐶𝑇 − 𝑐𝑙 ( 𝑁𝐶𝑇 − 𝑖𝑛𝑡 (𝑁𝐶𝑇 − 𝑐 l ( 𝑁𝐶𝑇𝐴 )))) =  𝑁𝐶𝑇 − 𝑖𝑛𝑡 (𝑁𝐶𝑇 − 𝑐𝑙 

(𝑁𝐶𝑇𝐴)). 

3- 𝑁𝐶𝑇 − 𝑐𝑙 ( 𝑁𝐶𝑇 − 𝑖𝑛𝑡 ( 𝑁𝐶𝑇 − 𝑐𝑙  (𝑁𝐶𝑇 − 𝑖𝑛𝑡 (𝑁𝐶𝑇𝐴 )))) =  𝑁𝐶𝑇 − 𝑐𝑙 (𝑁𝐶𝑇 

𝑖𝑛𝑡 (𝑁𝐶𝑇𝐴)). 

4- 𝑁𝐶𝑇 − 𝑖𝑛𝑡 ( 𝑁𝐶𝑇 − 𝑐𝑙 ( 𝑁𝐶𝑇 − 𝑖𝑛𝑡  (𝑁𝐶𝑇𝐴 ⊓ 𝑁𝐶𝑇𝐵 ))) =  𝑁𝐶𝑇 − 𝑖𝑛𝑡 (𝑁𝐶𝑇 − 𝑐𝑙 (𝑁𝐶𝑇 −

𝑖𝑛𝑡 (𝑁𝐶𝑇𝐴))) ⊓ NCT − int ( NCT − cl(NCT − int (𝑁𝐶𝑇𝐵)) . 

5- 𝑁𝐶𝑇 − 𝑐𝑙 (𝑁𝐶𝑇 − 𝑖𝑛𝑡 (𝑁𝐶𝑇 − 𝑐𝑙 (𝑁𝐶𝑇𝐴  ⊔ 𝑁𝐶𝑇𝐵 ))) =  𝑁𝐶𝑇 − 𝑐𝑙 (𝑁𝐶𝑇 − 𝑖𝑛𝑡 (𝑁𝐶𝑇 −

𝑐𝑙 (𝑁𝐶𝑇𝐴))) ⊔ 𝑁𝐶𝑇 − 𝑐𝑙(NCT − int ( NCT − cl (𝑁𝐶𝑇𝐵))) . 

Proof. 

(1) Since 𝑁𝐶𝑇𝐻 ⊑ 𝑁𝐶𝑇 − 𝑐𝑙(𝑁𝐶𝑇𝐻)  and 𝑁𝐶𝑇𝐾 ⊑ 𝑁𝐶𝑇 − 𝑐𝑙(𝑁𝐶𝑇𝐾) . So, 𝑁𝐶𝑇 − 𝑖𝑛𝑡 (𝑁𝐶𝑇 −

𝑐𝑙 (𝑁𝐶𝑇𝐾 ⊓  𝑁𝐶𝑇𝐻)  ⊑ 𝑁𝐶𝑇 − 𝑖𝑛𝑡(𝑁𝐶𝑇 − 𝑐𝑙 (𝑁𝐶𝑇𝐾 ) ⊓  NCT − cl( 𝑁𝐶𝑇𝐻)) =  𝑁𝐶𝑇 − 𝑖𝑛𝑡 (𝑁𝐶𝑇 −

𝑐𝑙 (𝑁𝐶𝑇𝐾)) ⊓   NCT − int(NCT − cl(𝑁𝐶𝑇𝐻)). Conversely, If  𝑁𝐶𝑇𝐻 ∈ 𝜏𝑁𝐶𝑇
𝑋  or 𝑁𝐶𝑇𝐾  ∈ 𝜏𝑁𝐶𝑇

𝑋  , then by 

Lemma 3.2. For if  𝑁𝐶𝑇𝐻 ∈ 𝜏𝑁𝐶𝑇  , 𝑁𝐶𝑇𝐻 ⊓ 𝑁𝐶𝑇 − 𝑖𝑛𝑡( NCT − cl( 𝑁𝐶𝑇𝐾)) ⊑ 𝑁𝐶𝑇 − 𝑖𝑛𝑡(𝑁𝐶𝑇 − 𝑐𝑙 

(𝑁𝐶𝑇𝐻 ⊓   𝑁𝐶𝑇𝐾)).  (1) 

Imply that 𝑁𝐶𝑇 − 𝑖𝑛𝑡 (𝑁𝐶𝑇 − 𝑐𝑙 (𝑁𝐶𝑇𝐻 ⊓ 𝑁𝐶𝑇 − 𝑖𝑛𝑡( NCT − cl( 𝑁𝐶𝑇𝐾 )))) ⊑ 𝑁𝐶𝑇 − 𝑖𝑛𝑡(𝑁𝐶𝑇 −

𝑐𝑙(𝑁𝐶𝑇 − 𝑖𝑛𝑡(𝑁𝐶𝑇 − 𝑐𝑙 (𝑁𝐶𝑇𝐻 ⊓   𝑁𝐶𝑇𝐾)))).  (2) 

But 𝑁𝐶𝑇 − 𝑖𝑛𝑡(𝑁𝐶𝑇 − 𝑐𝑙(𝑁𝐶𝑇𝐾   )) ∈ 𝜏𝑁𝐶𝑇
𝑋  , again, by Lemma 3.2, we get that 𝑁𝐶𝑇 − 𝑖𝑛𝑡(𝑁𝐶𝑇 −

𝑐𝑙(𝑁𝐶𝑇𝐻)) ⊓   NCT − int(NCT − int(NCT − cl(𝑁𝐶𝑇𝐾))) = 𝑁𝐶𝑇 − 𝑖𝑛𝑡(𝑁𝐶𝑇 − 𝑐𝑙(𝑁𝐶𝑇𝐻)) ⊓   NCT −

int(NCT − cl(𝑁𝐶𝑇𝐾 )) ⊑ 𝑁𝐶𝑇 − 𝑖𝑛𝑡( 𝑁𝐶𝑇 − 𝑐𝑙[𝑁𝐶𝑇𝐻 ⊓  NCT − int(NCT − cl( 𝑁𝐶𝑇𝐾 ))]).  (3) 

From eq. (2) and (3), we get the following inequality 𝑁𝐶𝑇 − 𝑖𝑛𝑡(𝑁𝐶𝑇 − 𝑐𝑙(𝑁𝐶𝑇𝐻)) ⊓   NCT −

int(NCT − cl(𝑁𝐶𝑇𝐾 )) ⊑ 𝑁𝐶𝑇 − 𝑖𝑛𝑡( 𝑁𝐶𝑇 − 𝑐𝑙(𝑁𝐶𝑇 − 𝑖𝑛𝑡(𝑁𝐶𝑇 − 𝑐𝑙(𝑁𝐶𝑇𝐻 ⊓  𝑁𝐶𝑇𝐾  )))).  (4) 

But 𝑁𝐶𝑇 − 𝑖𝑛𝑡 (𝑁𝐶𝑇 − 𝑐𝑙(𝑁𝐶𝑇 − 𝑖𝑛𝑡 (𝑁𝐶𝑇 − 𝑐𝑙(𝑁𝐶𝑇𝐻  ⊓  𝑁𝐶𝑇𝐾))))  ⊑ 𝑁𝐶𝑇 − 𝑖𝑛𝑡( 𝑁𝐶𝑇 −

𝑐𝑙( 𝑁𝐶𝑇𝐻 ⊓ 𝑁𝐶𝑇𝐾  )).  (5) 

From eq. (3) and (4) we get the result. 

 

(2) Let 𝑁𝐶𝑇𝐻 = 𝑁𝐶𝑇 − 𝑖𝑛𝑡(𝑁𝐶𝑇 − 𝑐𝑙(𝑁𝐶𝑇𝐴)) ,to show that   𝑁𝐶𝑇𝐻 = 𝑁𝐶𝑇 − 𝑖𝑛𝑡(𝑁𝐶𝑇 − 𝑐𝑙(𝑁𝐶𝑇𝐻 )) 

.Since 𝑁𝐶𝑇 − 𝑖𝑛𝑡(𝑁𝐶𝑇 − 𝑐𝑙(𝑁𝐶𝑇𝐻)) = 𝑁𝐶𝑇 − 𝑖𝑛𝑡(𝑁𝐶𝑇 − 𝑐𝑙( 𝑁𝐶𝑇 − 𝑖𝑛𝑡(𝑁𝐶𝑇 − 𝑐𝑙(𝑁𝐶𝑇𝐴)))) ⊑ 𝑁𝐶𝑇 −

𝑖𝑛𝑡(𝑁𝐶𝑇 − 𝑐𝑙(𝑁𝐶𝑇 − 𝑐𝑙(𝑁𝐶𝑇𝐴)))) = 𝑁𝐶𝑇 − 𝑖𝑛𝑡(𝑁𝐶𝑇 − 𝑐𝑙(𝑁𝐶𝑇𝐴)) =  𝑁𝐶𝑇𝐻 .  (6) 

But 𝑁𝐶𝑇 − 𝑖𝑛𝑡(𝑁𝐶𝑇𝐻) = 𝑁𝐶𝑇 − 𝑖𝑛𝑡(𝑁𝐶𝑇 − 𝑖𝑛𝑡(𝑁𝐶𝑇 − 𝑐𝑙(𝑁𝐶𝑇𝐴))) = 𝑁𝐶𝑇 − 𝑖𝑛𝑡(𝑁𝐶𝑇 − 𝑐𝑙(𝑁𝐶𝑇𝐴)) =

 𝑁𝐶𝑇𝐻 ⊑ 𝑁𝐶𝑇 − 𝑖𝑛𝑡(𝑁𝐶𝑇 − 𝑐𝑙(𝑁𝐶𝑇𝐻)).  (7) 

From eq. (6) and (7) we get the result. Similarly, we can prove part (3). To proof 4 and 5, direct from 

part (1). 

 

Definition 3.4. 𝑁𝐶𝑇 − function  𝑓𝑁𝐶𝑇: ( 𝑁𝐶𝑇𝑋  , 𝜏𝑁𝐶𝑇
𝑋  ) ⟶ ( 𝑁𝐶𝑇𝑌  , 𝜏𝑁𝐶𝑇

𝑌  ) is 𝑁𝐶𝑇 − open 

(𝑁𝐶𝑇 −closed) map, if the image of each set 𝑁𝐶𝑇 −open (𝑁𝐶𝑇 −closed) in  𝑁𝐶𝑇𝑋  is 𝑁𝐶𝑇 −open 

(𝑁𝐶𝑇 −closed) in  𝑁𝐶𝑇𝑌.  

Example 3.5. let 𝑋 =  {1, 2, 3}, 𝑌 =  {𝑎, 𝑏, 𝑐} and 𝑓 ∶ 𝑋 ⟶ 𝑌   s.t. 𝑓 (1)  =  𝑎, 𝑓 (2)  = 𝑐  and 

𝑓 (3)  = 𝑏 . For 𝜏𝑁𝐶𝑇
𝑋 =  {𝑁𝐶𝑇𝑋 , 𝑁𝐶𝑇𝜑, < {1}, {1,2}, {3} > } , 𝜏𝑁𝐶𝑇

𝑌 =  { 𝑁𝐶𝑇𝑌 , 𝑁𝐶𝑇𝜑 , < {𝑏}, {𝑎, 𝑏}, 𝜑 >

 } ,then 𝑓𝑁𝐶𝑇: ( 𝑁𝐶𝑇𝑋  , 𝜏𝑁𝐶𝑇
𝑋  ) ⟶ ( 𝑁𝐶𝑇𝑌  , 𝜏𝑁𝐶𝑇

𝑌  )  is not 𝑁𝐶𝑇 − open and not 𝑁𝐶𝑇 − closed. For 

𝜏𝑁𝐶𝑇
𝑋 =  {  𝑁𝐶𝑇𝑋 , 𝑁𝐶𝑇𝜑 , < {1}, {1,2}, {3} > } , 𝜏𝑁𝐶𝑇

𝑌 = { 𝑁𝐶𝑇𝑌 , 𝑁𝐶𝑇𝜑 , < {𝑏}, {𝑎, 𝑐}, {𝑏} > } ,then 

𝑓𝑁𝐶𝑇 : ( 𝑁𝐶𝑇𝑋  , 𝜏𝑁𝐶𝑇
𝑋  ) ⟶ ( 𝑁𝐶𝑇𝑌  , 𝜏𝑁𝐶𝑇

𝑌  ) is 𝑁𝐶𝑇 −open and 𝑁𝐶𝑇 −closed. 

 

Theorem 3.6. let 𝑓𝑁𝐶𝑇: ( 𝑁𝐶𝑇𝑋  , 𝜏𝑁𝐶𝑇
𝑋  ) ⟶ ( 𝑁𝐶𝑇𝑌  , 𝜏𝑁𝐶𝑇

𝑌  ) is 𝑁𝐶𝑇 −closed (𝑁𝐶𝑇 −open) map, for 

any 𝑁𝐶𝑇𝑆  ⊑ 𝑁𝐶𝑇𝑌  and any 𝑁𝐶𝑇 − open ( 𝑁𝐶𝑇 − closed) 𝑁𝐶𝑇𝑈  containing 

𝑓𝑁𝐶𝑇
−1 (𝑁𝐶𝑇𝑆  ), ∃𝑁𝐶𝑇 −open (𝑁𝐶𝑇 −closed) 𝑁𝐶𝑇𝑉  containing 𝑁𝐶𝑇𝑆 s.t. 𝑓𝑁𝐶𝑇

−1 (𝑁𝐶𝑇𝑉  ) ⊑ 𝑁𝐶𝑇𝑈. 

Proof. 
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Let 𝑁𝐶𝑇𝑉 = 𝑁𝐶𝑇𝑌 − 𝑓𝑁𝐶𝑇( 𝑁𝐶𝑇𝑋 −  𝑁𝐶𝑇𝑈 ) , since 𝑓𝑁𝐶𝑇
−1 (𝑁𝐶𝑇𝑆  ) ⊑ 𝑁𝐶𝑇𝑈 , it follows that 𝑁𝐶𝑇𝑆  ⊑

𝑁𝐶𝑇𝑉  , and because 𝑓𝑁𝐶𝑇  is 𝑁𝐶𝑇 − closed map, 𝑁𝐶𝑇𝑉  𝑁𝐶𝑇 − open in 𝑁𝐶𝑇𝑌 . Observing that 

𝑓𝑁𝐶𝑇
−1 (𝑁𝐶𝑇𝑉  ) = 𝑁𝐶𝑇𝑋 − 𝑓𝑁𝐶𝑇

−1 (𝑓𝑁𝐶𝑇( 𝑁𝐶𝑇𝑋 −  𝑁𝐶𝑇𝑈 )) ⊑ 𝑁𝐶𝑇𝑋 − (𝑁𝐶𝑇𝑋 − 𝑁𝐶𝑇𝑈)) =𝑁𝐶𝑇𝑈. 

 

Theorem 3.7. The following four properties of 𝑁𝐶𝑇 − function 𝑓𝑁𝐶𝑇: ( 𝑁𝐶𝑇𝑋  , 𝜏𝑁𝐶𝑇
𝑋  ) ⟶

( 𝑁𝐶𝑇𝑌  , 𝜏𝑁𝐶𝑇
𝑌  )are equivalent: 

i- 𝑓𝑁𝐶𝑇  is an 𝑁𝐶𝑇 −open map.  

ii- 𝑓𝑁𝐶𝑇( 𝑁𝐶𝑇 − 𝑖𝑛𝑡(𝑁𝐶𝑇𝐴)) ⊑ 𝑁𝐶𝑇 − 𝑖𝑛𝑡(𝑓𝑁𝐶𝑇(𝑁𝐶𝑇𝐴)) for each 𝑁𝐶𝑇𝐴 in 𝑁𝐶𝑇𝑋. 

iii- For each 𝑁𝐶𝑇 −point 𝑁𝐶𝑇𝑃  and 𝑁𝐶𝑇 −open 𝑁𝐶𝑇𝑈 containing it, there exist 𝑁𝐶𝑇𝑉 

𝑁𝐶𝑇 −open in 𝑁𝐶𝑇𝑌 containing  𝑓𝑁𝐶𝑇(𝑁𝐶𝑇𝑃  ) s.t.  𝑁𝐶𝑇𝑉 ⊑  𝑓𝑁𝐶𝑇(𝑁𝐶𝑇𝑈) . 

 

Proof. 

Since 𝑁𝐶𝑇 − 𝑖𝑛𝑡(𝑁𝐶𝑇𝐴)  ⊑  𝑁𝐶𝑇𝐴  , by Proposition 2.16 (1), we have 𝑓𝑁𝐶𝑇(𝑁𝐶𝑇 − 𝑖𝑛𝑡(𝑁𝐶𝑇𝐴))  ⊑ 

𝑓𝑁𝐶𝑇(𝑁𝐶𝑇𝐴) , by (i) 𝑓𝑁𝐶𝑇(𝑁𝐶𝑇 − 𝑖𝑛𝑡(𝑁𝐶𝑇𝐴)) is 𝑁𝐶𝑇 − open in 𝑁𝐶𝑇𝑌  and because 𝑁𝐶𝑇 −

𝑖𝑛𝑡(𝑓𝑁𝐶𝑇(𝑁𝐶𝑇𝐴)) is the 𝑁𝐶𝑇 −union of 𝑁𝐶𝑇 −open sets contained in 𝑓𝑁𝐶𝑇(𝑁𝐶𝑇𝐴). We must have 

𝑓𝑁𝐶𝑇(𝑁𝐶𝑇 − 𝑖𝑛𝑡(𝑁𝐶𝑇𝐴)) ⊑ 𝑁𝐶𝑇 − 𝑖𝑛𝑡(𝑓𝑁𝐶𝑇(𝑁𝐶𝑇𝐴)). 

𝐢𝐢 ⟶ 𝒊  , let 𝑁𝐶𝑇𝑈  is 𝑁𝐶𝑇 − open in 𝑁𝐶𝑇𝑋  ,  𝑁𝐶𝑇𝑈 = 𝑁𝐶𝑇 − 𝑖𝑛𝑡(𝑁𝐶𝑇𝑈  ) and so 𝑓𝑁𝐶𝑇(𝑁𝐶𝑇𝑈) =

𝑓𝑁𝐶𝑇(𝑁𝐶𝑇 − 𝑖𝑛𝑡(𝑁𝐶𝑇𝑈)) ⊑  𝑁𝐶𝑇 − 𝑖𝑛𝑡  ( 𝑓𝑁𝐶𝑇(𝑁𝐶𝑇𝑈 )) )) ⊑  𝑓𝑁𝐶𝑇(𝑁𝐶𝑇𝑈)  , thus 𝑓𝑁𝐶𝑇(𝑁𝐶𝑇𝑈) = 𝑁𝐶𝑇 −

𝑖𝑛𝑡(𝑓𝑁𝐶𝑇(𝑁𝐶𝑇𝑈))  and therefore 𝑓𝑁𝐶𝑇(𝑁𝐶𝑇𝑈)  is 𝑁𝐶𝑇 − open in 𝑁𝐶𝑇𝑌  , that is   𝑓𝑁𝐶𝑇  is an 

𝑁𝐶𝑇 −open map. 

𝒊 ⟶ 𝒊𝒊𝒊 , let 𝑁𝐶𝑇𝑃
𝑋 € 𝑁𝐶𝑇𝑈  ∈ 𝜏𝑁𝐶𝑇

𝑋 , but 𝑓𝑁𝐶𝑇( 𝑁𝐶𝑇𝑃
𝑋 € 𝑓𝑁𝐶𝑇(𝑁𝐶𝑇𝑈)  ∈ 𝜏𝑁𝐶𝑇

𝑌 . 

𝒊𝒊𝒊 ⟶ 𝒊 , let 𝑁𝐶𝑇𝑈  ∈ 𝜏𝑁𝐶𝑇
𝑋  , by iii, each 𝑁𝐶𝑇𝑃

𝑌 €𝑓𝑁𝐶𝑇( 𝑁𝐶𝑇𝑈) has 𝑁𝐶𝑇 −open 𝑁𝐶𝑇𝑉  in 𝑁𝐶𝑇𝑌  s.t. 

𝑁𝐶𝑇𝑉 ⊑  𝑓𝑁𝐶𝑇(𝑁𝐶𝑇𝑈) =⊔ {𝑁𝐶𝑇𝑉; 𝑁𝐶𝑇𝑃
𝑌 € 𝑓𝑁𝐶𝑇(𝑁𝐶𝑇𝑈)}is 𝑁𝐶𝑇 −open in  𝑁𝐶𝑇𝑌.  

 

Proposition 3.8. 𝑓𝑁𝐶𝑇: ( 𝑁𝐶𝑇𝑋  , 𝜏𝑁𝐶𝑇
𝑋  ) ⟶ ( 𝑁𝐶𝑇𝑌  , 𝜏𝑁𝐶𝑇

𝑌  )  is 𝑁𝐶𝑇 − closed map iff 𝑁𝐶𝑇 −

𝑐𝑙 (𝑓𝑁𝐶𝑇(𝑁𝐶𝑇𝐴)) ⊑ 𝑓𝑁𝐶𝑇(𝑁𝐶𝑇 − 𝑐𝑙(𝑁𝐶𝑇𝐴)), for each 𝑁𝐶𝑇𝐴 in 𝑁𝐶𝑇𝑋. 

Proof.  

Since 𝑁𝐶𝑇 − 𝑐𝑙(𝑁𝐶𝑇𝐴) is 𝑁𝐶𝑇 −closed in 𝑁𝐶𝑇𝑋 , and so 𝑓𝑁𝐶𝑇(𝑁𝐶𝑇 − 𝑐𝑙(𝑁𝐶𝑇𝐴)), is 𝑁𝐶𝑇 − closed in 

𝑁𝐶𝑇𝑌 , since 𝑓𝑁𝐶𝑇(𝑁𝐶𝑇𝐴)  ⊑  𝑓𝑁𝐶𝑇(𝑁𝐶𝑇 − 𝑐𝑙(𝑁𝐶𝑇𝐴)) , obtain 𝑁𝐶𝑇 − 𝑐𝑙 (𝑓𝑁𝐶𝑇(𝑁𝐶𝑇𝐴))  ⊑  𝑁𝐶𝑇 −

𝑐𝑙(𝑓𝑁𝐶𝑇(𝑁𝐶𝑇 − 𝑐𝑙(𝑁𝐶𝑇𝐴)))= 𝑓𝑁𝐶𝑇(𝑁𝐶𝑇 − 𝑐𝑙(𝑁𝐶𝑇𝐴). Conversely, if the condition hold and 𝑁𝐶𝑇𝐴  is 

𝑁𝐶𝑇 −  closed in 𝑁𝐶𝑇𝑋 , then 𝑓𝑁𝐶𝑇(𝑁𝐶𝑇𝐴) ⊑ 𝑁𝐶𝑇 − 𝑐𝑙(𝑓𝑁𝐶𝑇(𝑁𝐶𝑇𝐴)) ⊑ 𝑓𝑁𝐶𝑇(𝑁𝐶𝑇 − 𝑐𝑙(𝑁𝐶𝑇𝐴)) 

=𝑓𝑁𝐶𝑇(𝑁𝐶𝑇𝐴), so that 𝑓𝑁𝐶𝑇(𝑁𝐶𝑇𝐴) is 𝑁𝐶𝑇 −closed in 𝑁𝐶𝑇𝑌. 

 

4. Conclusions  

First, Salama and Florentin have established several types of neutrosophic crisp points, but they do 

not cover spaces, the reason for this is the type of neutrosophic crisp space structure with its unique 

characteristics to be used for life's problems and scientific problems, and then we proposed four new 

types of neutrosophic crisp points to enhance these spaces as follows: 

1-  New conceptual from the 𝑁𝐶𝑃 points as 𝑃𝑁1
= 〈𝑃1  , 𝑃2  , 𝑃3〉 ∋ 𝑃𝑖 ≠ ∅ for 𝑖 = 1 or 

𝑖 = 2 or 𝑖 = 3 moreover, there are different focus points empty. 

2-  𝑃𝑁2
= 〈𝑃1 , 𝑃2  , 𝑃3〉  ∋ 𝑃𝑖 ≠ ∅  for 𝑖 = 1  or 𝑖 = 2  or 𝑖 = 3  and other points are 

individual, and 𝑝𝑖 ⊆ 𝐴𝑖 , ∀ 𝑖 = 1,2,3 iff 𝑃𝑁𝑖
∈ 𝐴. 

3-  𝑃𝑁3 = <  𝐴1, 𝐴2, 𝐴3 > is called neutrosophic crisp point, if exactly only one 

subset 𝐴𝑖 ≠ ∅ , for 𝑖 = 1, 2, 3. 

4- 𝐴𝑖 = ∅   for 𝑖 = 1 or 𝑖 = 2 or 𝑖 = 3 and as for the remaining two sets, the first set 

is any mono set and the second is its complement. 

Second, we can modify most of the important mathematical concepts on 𝑁𝐶𝑇 − sets to be inputs for 

future research studies, and here we define the concept of ideal and filter as follows. 

 I- The sub collection 𝐼𝑁𝐶𝑇 of 𝑇(𝑋) is neutrosophic crisp triple ideal (𝑁𝐶𝑇 −ideal) if fulfill that: 
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1. If 𝑁𝐶𝑇𝐴 ∈ 𝐼𝑁𝐶𝑇 and 𝑁𝐶𝑇𝐵 ⊑ 𝑁𝐶𝑇𝐴, so 𝑁𝐶𝑇𝐵 ∈ 𝐼𝑁𝐶𝑇 .  

2. In general, 𝐼𝑁𝐶𝑇is closed beneath the finite 𝑁𝐶𝑇 − union. In general, 2 using this 

definition, we are able to alter all notions, namely the results and then in the 

publications. 

II- The sub collection 𝐹𝑁𝐶𝑇of 𝑇(𝑋) is neutrosophic crisp triple filter (𝑁𝐶𝑇 −filter) if: 

1. If 𝑁𝐶𝑇𝐴 ∈ 𝐹𝑁𝐶𝑇 and 𝑁𝐶𝑇𝐴 ⊑ 𝑁𝐶𝑇𝐵, so 𝑁𝐶𝑇𝐵 ∈ 𝐹𝑁𝐶𝑇. 

2. 𝐹𝑁𝐶𝑇is closed under finite 𝑁𝐶𝑇 −intersection, additionally characterize the vicinity 

connection on 𝑁𝐶𝑇𝐴(𝑋), The idea of a neutrosophic crisp triple set can also be 

generalized to the ideas, theories and concepts. 
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Abstract 

With the increasing strain on the health system, there is a growing need for automatic medical 

image diagnosis. Emerging technologies for medical diagnosis can help to achieve the goals of 

sustainable development. However, analyzing medical images can be challenging due to 

uncertain data, ambiguity, and impreciseness. To address this issue, we have developed a novel 

BoneNet-NS technique to classify fractures in X-ray bone images. The proposed approach is 

based on the power of deep learning (DL) and neutrosophic set (NS) to deal with aleatoric 

uncertainty. Moreover, we present two frameworks for integrating NS with DL models: 

BoneNet-NS1 and BoneNet-NS2. We employ various DL models, including Xception, 

ResNet52V2, DenseNet121, and customized CNN to evaluate both frameworks. Furthermore, 

4924 X-ray bone images are utilized to distinguish between fractured and non-fractured classes. 

The statistical analyses demonstrate that BoneNet-NS2 performs better than BoneNet-NS1 for 

most DL models. Specifically, using the ResNet52V2 model, our proposed BoneNet-NS2 

achieved the highest accuracy, log loss, precision, recall, F1-score, and AUC with values of 

99.7%, 0.006, 99.7%, 99.7%, 99.7%, and 99.7%, respectively. 

Keywords: Deep Learning; Neutrosophic Set; Bone Fracture Detection; Artificial Intelligence 

_____________________________________________________________________________________________ 

1. Introduction 

Bone fractures and cracks usually result from exposure to falling, direct blows to the body, 

collisions, such as traffic accidents or bullet wounds, and injuries resulting from playing sports. 

These fractures are diagnosed through X-rays, which are considered one of the cheapest types of 

medical imaging modalities. Furthermore, X-rays can be used in mobile or wsearable devices for 

quick and accurate fracture detection, utilizing DL algorithms for diagnosis and detection [1]. X-

ray images suffer some noise, fuzziness, vagueness, impreciseness, and uncertainty. These 

aleatoric uncertainties result in low-quality images, bad image contrast, and edge representation. 

mailto:doaazidan@zu.edu.eg
mailto:a.tolba24@fci.zu.edu.eg
mailto:doaazidan@zu.edu.eg
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DL models performance can be affected by aleatoric uncertainty or data uncertainty. This sort of 

uncertainty is caused by intrinsic noise in the data, such as measurement error or imprecise 

annotation, which cannot be decreased by gathering more data [2].  

Aleatoric uncertainty must be quantified and identified [3] to be eliminated using different 

techniques, including wavelet thresholding, Gaussian smoothing, and anisotropic filtering. 

However, these methods often result in losing some image details or creating unrealistic contrast, 

making it harder to identify diseases. There are numerous deblurring techniques, such as the 

Richardson-Lucy algorithm, Wiener filter, regularized filter, and inverse filter. These methods 

can lead to noise amplification, boundary artifacts, and high computational requirements. 

Similarly, contrast enhancement methods like normalization, histogram equalization, low and 

high pass, and contrast stretching, can result in abnormal brightness, unnatural appearance, and 

noise amplification  [4]. 

Soft computing techniques address the widespread imprecision and ambiguity of real-world 

problems. Fuzzy set (FS) has been presented by Zadeh [5] to handle data uncertainty using 

membership degree. Many bone fracture classification studies used FS to deal with uncertainty. 

Vasilakakis et al. [6] introduced wavelet fuzzy phrases (WFP) for feature extraction and bone 

fracture diagnosis. It extracts textural information from 2D discrete wavelet transform (DWT) 

images using FS. The words create sentences that represent the image's contents. The approach 

obtains a classification accuracy of 84%, outperforming other cutting-edge methods. 

Intuitionistic Fuzzy Set (IFS) was introduced in 1986 to handle uncertainty by associating 

each element to membership degree and non-membership degree. In this context, singh et al. [7] 

proposed a segmentation paradigm for brain MR images that takes into account noise, intensity 

inhomogeneity (IH), uncertainty, and structural complexity. The framework uses local spatial 

and gray level information as a local parameter-free fuzzy factor to maintain the quantity of 

structural features. It incorporates a novel method to IH and employs IFS theory to eliminate 

uncertainty in assigning membership to pixels near tissue borders. A process is devised to 

generate artifact-free pictures that may be compared to the original image for expert 

interpretation. 

Soft computing approaches such as FS and IFS aim to handle the uncertainties within data, 

but they suffer from certain issues, such as [8]: 

 In IFS, the sum of membership values is 1. 

 IFS and FS can’t differentiate between relative truth (truth in at least one world) and 

absolute truth (truth in all possible worlds). 

 Elements in IFS can’t be non-standard. 

 IFS and FS can’t deal with some contradiction paradoxes. 



Neutrosophic Sets and Systems, Vol. 68, 2024                                                                                                                                 111 
_______________________________________________________________________________________________________ 
 

______________________________________________________________________________________________________ 
Doaa El-Shahat, Ahmed Tolba, Assessment of deep learning techniques for Bone Fracture Detection under neutrosophic domain 

In 1998, Smarandache [8] introduced a neutrosophic set (NS) to deal with higher dimensions of 

uncertainty. NS can associate each element in the universe with three independent degrees of 

membership: true, indeterminacy, and false. The values of membership range from ] 0− , 1+[ in a 

non-standard unit interval. NS can deal with some contradictory paradoxes. But in image 

analysis and processing, many studies deal with interval [0,1] because deal with image 

intensities in range ] 0− , 1+[ is difficult [9]. 

DL methods show great results and performance in medical image classification. Can et al. 

[10] introduced an alternative pooling layer, named the common vector approach pooling 

approach, to solve the restrictions associated with average pooling in DL algorithms. The trials 

are carried out on a huge dataset containing twenty distinct dental diseases classified into seven 

groups. Our suggested technique achieved a high accuracy rate of 86.4% for recognizing dental 

issues across the seven oral categories. Wang et al. [11] proposed a novel intelligent defect 

diagnosis method based on hybrid DL for chip X-ray images. The system has four stages: image 

segmentation, normalization, reconstruction, defect identification, contour matching, and 

qualification diagnostics. The system's efficacy and resilience are tested on real-world inspection 

lines, with an evaluation accuracy of 92.5%. 

In this study, we introduce an integrated framework between DL and NS to handle 

uncertainty in three degrees of membership for bone fracture classification. The two frameworks 

employ four different DL models, such as Xception, ResNet152V2, DenseNet121, and 

customized CNN in terms of accuracy, binary cross entropy loss/log loss, precision, recall, F1-

score, and area under curve (AUC). Hence, the main contribution of this paper can be stated as 

follows: 

 We apply the uncertainty handling feature to power DL models. The uncertainty was 

handled using three degrees of membership: true, indeterminacy, and falsity. 

 Two different frameworks were proposed to combine DL with NS, and a comparison was 

made between them using four different DL models. 

 The first framework (BoneNet-NS1) integrates an NS image (true image, indeterminacy 

image, false image) as input to the DL model. 

 In the second framework (BoneNet-NS2), some enhancement on the NS image has been 

done, and then the NS image is converted to gray-scale images as input to the DL model. 

 The proposed work was evaluated on a bone fracture dataset with 4924 images, classified 

into fractured and non-fractured images. 

 The second framework (BoneNet-NS2) shows superior results compared to the first 

framework (BoneNet-NS1) for most DL models.  

 ResNet52V2 shows the highest results using (BoneNet-NS2) in terms of accuracy, log 

loss, precision, recall, F1-score, and AUC with 99.7 %, 0.006, 99.7%, 99.7%, 99.7%, and 

99.7, respectively. 
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The remainder of the paper is divided as follows. Section 2 provides the related work for this 

study. Section 3 presents the methodology for the NS and DL algorithms. Moreover, section 4 

introduces the steps of the proposed approach. Section 5 presents experimental results. Section 6 

provides the managerial Implications and section 7 illustrates the conclusions and future 

directions of our work. 

2. Related work 

In this section, we summarize some recent studies that integrate the DL with NS in the 

medical field. Khalifa et al. [12] investigated the influence of NS on DL models utilizing 

restricted COVID-19 x-ray datasets. The work used Alexnet, Googlenet, and Restnet18 DL 

models to transform medical images from grayscale to the NS domain, which includes True (T), 

Indeterminacy (I), and Falsity (F) images. Over 36 trials were completed, and the Indeterminacy 

(I) NS domain achieved the highest testing accuracy and performance metrics of 87.1%. Hu et al. 

[13] introduced the NeutSS-PLP technique for extracting polyp regions from colonoscopy 

images, which employs a short-connected saliency detection network with NS enhancement. The 

approach improves specular reflection identification in colonoscopy images by establishing local 

and global thresholds and defining T, I, and F functions. The approach also incorporates two-

level short connections to make use of multi-level and multi-scale capabilities.  

Cai et al. [14] proposed an automatic detection method for MCCs that employs NS domain 

transformation, similar to a standard CAD system. A DCNN1 classifier was developed to 

distinguish individual MCs while reducing FP MCs. A novel adaptive NRSL technique was used 

to accelerate the learning process. For cluster-based evaluation, the MCC detection technique 

achieved 92.5% sensitivity at 0.50 frames per second per image. A strong DCNN2 classifier was 

developed for diagnosis using automatic detection, with AUCs of 0.908 and 0.872, respectively. 

The results indicate that the suggested approach considerably enhances the automatic detection 

and classification of MCCs on FFDMs. 

Yasser et al. [15, 16] introduced a reliable and intuitive diagnostic technique for 

automatically identifying COVID-19 using digital chest X-rays. The tool employs a hybrid 

architecture that combines NS approaches and ML. Classification characteristics are retrieved 

from X-ray images utilizing morphological features and PCA. The ML networks divide chest X-

rays into positive COVID-19 patients and normal people. Guo and Ashour [17] presented a 

classification model consisting of two stages: multiple deep convolution neural networks 

(MDCNN) and NSS approach. The NMDCNN determines reinforced training numbers for each 

epoch using NSS and then classifies dermoscopic images as malignant or benign using 

incremental learning and maximum voting. The model's competence was evaluated using the 

International Skin Imaging Collaboration dataset. 

Özyurt et al. [18] introduced the NS-EMFSE technique to classify tumor areas in brain 

imaging as benign or malignant. CNN characteristics were utilized to classify data, along with 

https://link.springer.com/article/10.1007/s12559-020-09802-9#auth-Nour_Eldeen_M_-Khalifa-Aff1
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support vector machine (SVM) and KNN classifiers. An experimental study of 80 benign and 80 

malignant tumors revealed outstanding classification performance with several classifiers, with 

CNN features outperforming SVM with an average success rate of 95.62%. Another contribution 

by Talouki et al. [19] presented a novel image completion approach that uses NS-based 

segmentation to fill in image holes. This strategy decreases spatial and intensity ambiguity, 

maintains boundaries and homogeneity, and minimizes discontinuity. The method favors outside 

pixels and employs extended similarity criteria to identify patches with the best match. 

Guo et al. [20] presented a deep neural network (DNN) for WBC extraction from blood 

images, with an emphasis on object indeterminacy in the NS domain. The network uses WBC 

indeterminacy as a fusion component to enable segmentation into discrete areas. The model 

surpasses three original encoder-decoder networks, reaching high precision rates and the greatest 

mean segmentation accuracy (0.95301). 

Table 1 summarizes all the aforementioned related works in terms of year, task, disease, 

modality, dataset, number of images, number of classes, model, and the obtained accuracy. From 

these studies, it was concluded that NS studies using DL are still growing. Also, there are no 

studies on bone fracture classification based on NS and DL. So, in our study, we proposed a 

novel approach that integrates the environment of NS and DL on X-ray images for bone fracture 

classification.  

3. Preliminaries 

Definition 1: Neutrosophic set (NS) 

Table 1 Summary of previous works using NS and DL for medical image analysis 
Ref. Year Task Disease Modality Dataset No. images No.classes Model Accuracy 

[12] 2021 Classification COVID-
19 

X-ray COVID-19 
x-ray 

dataset 

306 4 Alexnet, 
Googlenet, 
Restnet1 

87.1% for 
I domain 

[13] 2022 Segmentation Colorectal 
polyp 

- EndoScene
, Kvasir-

SEG 

EndoScene=91
2 

Kvasir-
SEG=1000 

EndoScen
e =8 

Kvasir-
SEG =4 

saliency 
detection 
network 

EndoScen
e =0.971, 

[14] 2019 Cluster, 
classification 

Breast 
cancer 

Mammogram
s 

NFH 
dataset 

676 2 DCNN 0.813 

[15, 16] 2020
,202

2 

Classification Covid-19 X-ray COVID-19 
Dataset, 
healthy 
dataset 

570 2 (MFs), 
(PCA) 

98.46% 

[17] 2019 classification Skin 

cancer 

dermoscopic 

images 

c ISIC2016 1279 2 MDCNN 85.22% 

[18] 2019 Segmentation
, 

Classification 

Brain 
tumor 

MRI TCIA 500 2 CNN 95.62%. 

[19] 2024 image 
completion 

- - - - - - - 

[20] 2024 Segmentation - pathological 
imaging 

three 
datasets 

Varies 5 Encoder-
Decoder 

95.3% 
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In NS, The element X in the universe can be associated with three membership function 

{𝑇𝑟𝑢𝑒_𝑀𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝, 𝐼𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑐𝑦_𝑀𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝, 𝐹𝑎𝑙𝑠𝑒_𝑀𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝} as {T, I, F} [21]. 

This independent membership values are ranging from zero and one, where 0 ≤ 𝑇 + 𝐼 + 𝐹 ≤ 3. 

The Standard and non-standard NS has interval] 0− , 1+[. Many real studies utilize interval of 

[0,1] instead of ] 0− , 1+[ as it is hard to use in some problems with exact values. The NS can 

handle indeterminacy value by introducing a 3-D of membership, as in Figure 1, in contrast of 

IFS that introduce only 2-D membership degrees. For each element X in NS, where X is 

continuous, the NS can be denoted as follows [22, 23]:  

𝑁𝑆 = ∫ < 𝑇(x), 𝐼(x), 𝐹(x)/x, x ∈ X >
X

 (1) 

Since X is discrete, the NS can be denoted as follows: 

𝑁𝑆 = ∑ < 𝑇(x𝑖), 𝐼(x𝑖), 𝐹(x𝑖)/x𝑖, x𝑖 ∈ X >

𝑛

𝑖=1

 (2) 

 

 
Figure 1 NS True, Indeterminacy, False membership functions [24]. 

 

Definition2: Image in NS domain  

The pixel is denoted as (True, Indeterminacy, False) memberships, which can be represented as: 

𝑃𝑁𝑆(𝑎, 𝑏) = {𝑇𝑟𝑢𝑒(𝑎, 𝑏), 𝐼𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑐𝑦(𝑎, 𝑏), 𝐹𝑎𝑙𝑠𝑒(𝑎, 𝑏)} 
 (3) 

The True, Indeterminacy, and False can be represented as follows: 

                                𝑇𝑟𝑢𝑒(𝑥, y) =
�̅�(𝑥,y)−�̅�𝑚𝑖𝑛

�̅�𝑚𝑎𝑥−�̅�𝑚𝑖𝑛
 (4) 

T-
ax

is
 

0 

X 

X 

X 

I-axis 

𝑻(𝒙) + 𝑰(𝒙) + 𝑭(𝒙) = 𝟏 

𝑻(𝒙) + 𝑰(𝒙) + 𝑭(𝒙) > 𝟏 

𝑻(𝒙) + 𝑰(𝒙) + 𝑭(𝒙) < 𝟏 
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�̅�(𝑥, y) = (
1

𝑤𝑖𝑛𝑑𝑜𝑤 × 𝑤𝑖𝑛𝑑𝑜𝑤
) ∑ ∑ 𝑔(𝑚, 𝑛)

𝑗+𝑤𝑖𝑛𝑑𝑜𝑤/2

𝑛=𝑗−𝑤𝑖𝑛𝑑𝑜𝑤/2

𝑖+𝑤𝑖𝑛𝑑𝑜𝑤/2

𝑚=𝑖−𝑤𝑖𝑛𝑑𝑜𝑤/2

     (5) 

                                𝐹𝑎𝑙𝑠𝑒(𝑥, y) = 1 − 𝑇𝑟𝑢𝑒(𝑥, y) (6) 

                              𝛿(𝑥, y) = 𝑎𝑏𝑠(𝑔(𝑥, y) − �̅�(𝑥, y)) (7) 

                            𝐼𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑐𝑦(𝑥, y) =
𝛿(𝑥,y)−𝛿𝑚𝑖𝑛

𝛿𝑚𝑎𝑥−𝛿𝑚𝑖𝑛
 (8) 

where �̅�(𝑥, y) is the local mean-value (LV) of the image, 𝛿(𝑥, y) is the absolute value (AV) 

define by the difference between intensity and LV [25]. 

Definition 3: NS Entropy 

The entropy of an image reveals how the intensity is distributed. The high entropy value 

suggests that the pixel probability and uniform distribution are identical. In contrast, the minimal 

entropy value implies an inequality in pixel probability and a non-uniform distribution. The NS 

entropy is expressed as follows: 

𝐸𝑁𝑆 = 𝐸𝑇𝑟𝑢𝑒 + 𝐸𝐼𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑐𝑦 + 𝐸𝐹𝑎𝑙𝑠𝑒  (9) 

𝐸𝑇𝑟𝑢𝑒 = − ∑ 𝑝𝑇𝑟𝑢𝑒(𝑖)𝑙𝑛𝑃𝑇𝑟𝑢𝑒(𝑖)

𝑚𝑎𝑥{𝑇𝑟𝑢𝑒}

𝑖=𝑚𝑖𝑛{𝑇𝑟𝑢𝑒}

 (10) 

𝐸𝐼𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑐𝑦 = − ∑ 𝑝𝐼𝐼𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑐𝑦(𝑖)𝑙𝑛𝑃𝐼𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑐𝑦(𝑖)

𝑚𝑎𝑥{𝐼𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑐𝑦}

𝑖=𝑚𝑖𝑛{𝐼𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑐𝑦}

 (11) 

𝐸𝐹𝑎𝑙𝑠𝑒 = − ∑ 𝑝𝐹𝑎𝑙𝑠𝑒 (𝑖)𝑙𝑛𝑃𝐹𝑎𝑙𝑠𝑒(𝑖)

𝑚𝑎𝑥{𝐹𝑎𝑙𝑠𝑒}

𝑖=𝑚𝑖𝑛{𝐹𝑎𝑙𝑠𝑒}

 (12) 

Since 𝐸𝑇𝑟𝑢𝑒 , 𝐸𝐼𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑐𝑦  , and 𝐸𝐹𝑎𝑙𝑠𝑒  are entropies for True, Indeterminacy, and False,  

respectively. 

  

Definition 4. 𝜶-mean operation 

This operation aims to minimize the IM by computing the mean value between the neighbors 

in NS image: 

�̅�(𝛼) = 𝑃𝑖𝑥𝑒𝑙(𝑇𝑟𝑢𝑒̅̅ ̅̅ ̅̅ ̅(𝛼), 𝐼𝐼𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑐𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝛼), 𝐹𝑎𝑙𝑠𝑒̅̅ ̅̅ ̅̅ ̅̅ (𝛼)) (13) 

𝑇𝑟𝑢𝑒̅̅ ̅̅ ̅̅ ̅(𝛼) = {
𝑇𝑟𝑢𝑒, 𝐼𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑐𝑦 < 𝛼

𝑇𝑟𝑢𝑒𝛼
̅̅ ̅̅ ̅̅ ̅̅ , 𝐼𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑐𝑦 ≥ 𝛼

 (14) 

𝑇𝑟𝑢𝑒̅̅ ̅̅ ̅̅ ̅
𝛼(𝑥, y) = (

1

𝑤𝑖𝑛𝑑𝑜𝑤 × 𝑤𝑖𝑛𝑑𝑜𝑤
) ∑ ∑ 𝑇𝑟𝑢𝑒(𝑚, 𝑛)

𝑗+𝑤𝑖𝑛𝑑𝑜𝑤/2

𝑛=𝑗−𝑤𝑖𝑛𝑑𝑜𝑤/2

𝑖+𝑤𝑖𝑛𝑑𝑜𝑤/2

𝑚=𝑖−𝑤𝑖𝑛𝑑𝑜𝑤/2

 (15) 
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�̅�𝑎𝑙𝑠𝑒(𝛼) = {
𝐹𝑎𝑙𝑠𝑒, 𝐼𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑐𝑦 < 𝛼

𝐹𝑎𝑙𝑠𝑒̅̅ ̅̅ ̅̅ ̅̅ , 𝐼𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑐𝑦 ≥ 𝛼
 (16) 

�̅�𝑎𝑙𝑠𝑒𝛼(𝑥, y) = (
1

𝑤𝑖𝑛𝑑𝑜𝑤 × 𝑤𝑖𝑛𝑑𝑜𝑤
) ∑ ∑ 𝐹𝑎𝑙𝑠𝑒(𝑚, 𝑛)

𝑗+𝑤𝑖𝑛𝑑𝑜𝑤/2

𝑛=𝑗−𝑤𝑖𝑛𝑑𝑜𝑤/2

𝑖+𝑤𝑖𝑛𝑑𝑜𝑤/2

𝑚=𝑖−𝑤𝑖𝑛𝑑𝑜𝑤/2

 (17) 

𝐼𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑐𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝛼(𝑥, y) =

𝛿̅
𝑇𝑟𝑢𝑒(𝑥, y) − 𝛿𝑇𝑟𝑢𝑒𝑚𝑖𝑛

𝛿𝑇𝑟𝑢𝑒𝑚𝑎𝑥
− 𝛿𝑇𝑟𝑢𝑒𝑚𝑖𝑛

 (18) 

𝛿̅
𝑇(𝑥, y) = 𝑎𝑏𝑠(�̅�𝑟𝑢𝑒(𝑥, y) − 𝑇𝑟𝑢𝑒̅̅ ̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅ ̅(𝑥, y)) (19) 

�̿�𝑟𝑢𝑒(𝑥, 𝑦) = (
1

𝑤𝑖𝑛𝑑𝑜𝑤 × 𝑤𝑖𝑛𝑑𝑜𝑤
) ∑ ∑ 𝑇𝑟𝑢𝑒̅̅ ̅̅ ̅̅ ̅(𝑚, 𝑛)

𝑗+𝑤𝑖𝑛𝑑𝑜𝑤/2

𝑛=𝑗−𝑤𝑖𝑛𝑑𝑜𝑤/2

𝑖+𝑤𝑖𝑛𝑑𝑜𝑤/2

𝑚=𝑖−𝑤𝑖𝑛𝑑𝑜𝑤/2

 (20) 

where 𝛿̅
𝑇𝑟𝑢𝑒 is the AV between mean intensity and mean value.  

Definition 5. Contrast intensification operator 

In FS, the contrast intensification operator decreases the fuzziness of an FS A by increasing 

membership degree that is greater than 0.5, and reducing membership degree that is less than it 

[26]. In NS, the intensification is defined as part of 𝛽-enhancement operation by [27] that 

depending on the computed 𝜶 -mean operator. The intensification operator aims to enhance the 

truth and false degree based on the following rules: 

�̀�𝑟𝑢𝑒𝑖𝑛𝑡𝑒𝑛𝑠(𝛼) = {
2𝑇𝑟𝑢𝑒2, �̅�𝑟𝑢𝑒(𝛼) ≤ 0.5

1 − 2(1 − 𝑇𝑟𝑢𝑒(𝑥, 𝑧))2, 𝑇𝑟𝑢𝑒̅̅ ̅̅ ̅̅ ̅(𝛼) > 0.5
 

(21) 

𝐹𝑎𝑙𝑠𝑒̀
𝑖𝑛𝑡𝑒𝑛𝑠(𝛼) = {

2𝐹𝑎𝑙𝑠𝑒2, 𝐹𝑎𝑙𝑠𝑒̅̅ ̅̅ ̅̅ ̅̅ (𝛼) ≤ 0.5

1 − 2(1 − 𝐹𝑎𝑙𝑠𝑒(𝑥, 𝑧))2, 𝐹𝑎𝑙𝑠𝑒̅̅ ̅̅ ̅̅ ̅̅ (𝛼) > 0.5
 

(22) 

Definition 6. 𝜷-enhancement operation 

�̀�(𝛽) = 𝑃(𝑇𝑟𝑢𝑒̀ (𝛽), 𝐼𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑐𝑦̀ (𝛽), 𝐹𝑎𝑙𝑠𝑒̀ (𝛽)) (23) 

𝑇𝑟𝑢𝑒̀ (𝛽) = {
�̅�𝑟𝑢𝑒(𝛼), 𝐼𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑐𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝛼(𝑥, 𝑦) < 𝛽

�̀�𝑟𝑢𝑒𝑖𝑛𝑡𝑒𝑛𝑠(𝛼), 𝐼𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑐𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝛼(𝑥, 𝑦) ≥ 𝛽

 (24) 

�̀�(𝛽) = {
�̅�𝑎𝑙𝑠𝑒(𝛼), 𝐼𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑐𝑦𝛼(𝑥, 𝑦) < 𝛽

�̀�𝑖𝑛𝑡𝑒𝑛𝑠(𝛼), 𝐼𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑐𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝛼(𝑥, 𝑦) ≥ 𝛽

 (25) 

𝐼𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑐𝑦̀
𝛽(𝑥, 𝑦) =

�̀�𝑇𝑟𝑢𝑒(𝑥, 𝑦) − �̀�𝑇𝑟𝑢𝑒𝑚𝑖𝑛

�̀�𝑇𝑟𝑢𝑒𝑚𝑎𝑥
− �̀�𝑇𝑟𝑢𝑒𝑚𝑖𝑛

 (26) 

�̀�𝑇𝑟𝑢𝑒(𝑥, 𝑦) = 𝑎𝑏𝑠(𝑇𝑟𝑢𝑒̀ (𝛽) − 𝑇𝑟𝑢𝑒̀̅̅ ̅̅ ̅̅ ̅(𝑥, 𝑦)) (27) 

�̅̀�𝑟𝑢𝑒(𝑥, 𝑦) = (
1

𝑤𝑖𝑛𝑑𝑜𝑤 × 𝑤𝑖𝑛𝑑𝑜𝑤
) ∑ ∑ �̀�𝑟𝑢𝑒(𝑚, 𝑛)

𝑗+𝑤𝑖𝑛𝑑𝑜𝑤/2

𝑛=𝑗−𝑤𝑖𝑛𝑑𝑜𝑤/2

𝑖+𝑤𝑖𝑛𝑑𝑜𝑤/2

𝑚=𝑖−𝑤𝑖𝑛𝑑𝑜𝑤/2

 (28) 

Since 𝑇𝑟𝑢𝑒̀̅̅ ̅̅ ̅̅ ̅(𝑥, 𝑦) is the AV between intensity and its LV after 𝛽-enhancement operation. 

Definition 7. NS complement  
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The complement of 𝑁𝑆 is 𝑁𝑆
𝑐
, where 𝑇𝑟𝑢𝑒𝑐(x, y) = 𝐹𝑎𝑙𝑠𝑒(x, y), 𝐹𝑎𝑙𝑠𝑒𝑐(x, y) =

𝑇𝑟𝑢𝑒(x, y), 𝐼𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑐𝑦𝑐(x, y) = 1 − 𝐼𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑐𝑦(x, y), x, y ∈ 𝒩.  

Definition 8. Convert from NS domain 

This process aims to transform form NS to crisp set [28]. The following equation is used to 

transform from NS domain to spatial domain 

𝑇𝑟𝑢�̂̂�(𝓃) = �̅�𝑚𝑖𝑛 + (�̅�𝑚𝑎𝑥 + �̅�𝑚𝑖𝑛 . 𝑇𝑟𝑢�̂�(𝓃)) (29) 

where 𝑇𝑟𝑢�̂�(𝓃) is the truth domain after enhancement. 

4. Proposed method 

In this section, we discuss two proposed frameworks BoneNet-NS1 and BoneNet-NS2 based 

on NS and different DL models. 

4.1. BoneNet-NS1 framework 

In this part, we describe the proposed BoneNet-NS1 framework which is based on NS input 

images to different DL models. The proposed BoneNet-NS1 framework is shown in Figure 2 and 

Algorithm 1. The main steps of the first proposed BoneNet-Ns1 framework can be summarized 

as: 

Step 1: Convert RGB X-ray images to gray scale images 

Each pixel in color image 24-bit is converted to gray scale 8-bit image in interval (0-255) where 

image size equals 𝑊 ∗ 𝐻. 

Step 2: Compute LV of 8-bit image  

The LV of a pixel in a 𝑊 ∗ 𝐻 gray picture may be determined by running a window across the 

image pixels. The window calculates the average value of nearby pixels for each pixel. In our 

study use a window measure 5 by 5.   

Step 3: Compute the maximum and minimum values of LV.  

Step 4: Compute True, Indeterminacy, and False in NS. 

We calculate True, Indeterminacy, and False by Eqs. (4-8). Hence, every pixel within image will 

be denoted as: P(a,b) = P(True(a,b),Indeterminancy(a,b),False(a,b)) .  

Step 5: Apply classification model 

The NS image is an input to the DL model such as Xception, ResNet152V2, DenseNet121, and 

customized CNN to evaluate their performance using the NS image. The DL learning model 
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classified the bone X-ray images as fractured or not fractured.  The customized CNN is 

implemented as demonstrated in Table 2. 

 

 

Table 2 Customized CNN architecture 

Layer name Filters Kernel size Activation Pool size Output size 

Conv2d 32 (3,3) Relu - 222 x 222 

BatchNormalization - - - - 222 x 222 

Max pooling 2d - - - (2,2) 111 x 111 

Conv2d 64 (3,3) Relu - 109 x 109 

BatchNormalization - - - - 109 x 109 

Max pooling 2d - - - (2,2) 54 x 54 

Dropout Dropout percentage is 0.3 54 x 54 

Conv2d 128 (3,3) Relu - 52 x 52 

BatchNormalization - - - - 52 x 52 

Max pooling 2d - - - (2,2) 26 x 26 

Dropout Dropout percentage is 0.3 54 x 54 

Flatten - 86528 

Dense Dense (256) Relu - 256 

Dropout Dropout percentage is 0.3 256 

Dense Dense (128) Relu - 128 

Dropout Dropout percentage is 0.3 128 

Dense Desne (1) sigmoid - 1 
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Algorithm 1 BoneNet-NS1 for bone fracture classification approach  

Input: Gray image with intensities in interval from 0 to 255. 

For each pixels in image do 

A 5 × 5 filter, to obtain the LV.  

Obtain the min and max of LV. 

Represent each pixel into NS image using Eqs. 4-8. 

Classify the NS images using DL model. 

End 

Output: return class  

 

4.2. BoneNet-NS2 framework 

In this part, we describe the proposed BoneNet-NS2 framework which is based on NS 

enhancement operations on X-ray bone images and DL models. The steps from 1 to 4 in 

BoneNet-NS1 framework are similar in BoneNet-NS2 framework first four steps. The DL model 

Figure 2 The BoneNet-NS1 general framework 
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input in the second framework is gray scale image that previously enhanced under NS domain. 

The proposed BoneNet-NS2 framework is shown in Figure 3 and Algorithm 2. The main steps of 

BoneNet-NS2 framework can be summarized as: 

Step 1: Convert RGB X-ray images to gray scale images 

Each pixel in color image 24-bit is converted to gray scale 8-bit image in interval (0-255) where 

image size equals 𝑊 ∗ 𝐻. 

Step 2: Compute LV of 8-bit image  

The LV of a pixel in a 𝑊 ∗ 𝐻 gray picture may be determined by running a window across the 

image pixels. The window calculates the average value of nearby pixels for each pixel. In our 

study we use window measure 5 by 5.   

Step 3: Compute the maximum and minimum values of LV.  

Step 4: Compute True, Indeterminacy, and False in NS. 

 We calculate True, Indeterminacy, and False by Eqs. (4-8). Hence, every pixel within image will 

be denoted as:       P(a, b)= P(True(a, b), Indeterminancy(a, b), False(a, b)) . 

Step 5: Perform enhancement operation 

The enhancement operation aims to minimize the indeterminacy data and enhances the truth 

data. This operation is obtained by α-mean, intensification, and 𝛽-enhancement operators. The 𝛼-

mean operation and 𝛽-enhancement operation, are used to minimize the indeterminacy image.  

The mean value between neighbors can be defined by α-mean operation. The 𝛼 and 𝛽 parameters 

can represented as follows [29] 

               𝛼 = 𝛼𝑚𝑖𝑛 +
(𝛼𝑚𝑎𝑥−𝛼𝑚𝑖𝑛)(𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐼−𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑚𝑖𝑛)

(𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑚𝑎𝑥−𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑚𝑖𝑛)
 (39) 

                𝛽 = 1 − 𝛼 (40) 

               𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐼 = ∑ ∑ 𝑝𝑖𝑥𝑒𝑙(𝑥, 𝑦) log2 𝑝𝑖𝑥𝑒𝑙(𝑥, 𝑦)𝐻
𝑗=1

𝑊
𝑖=1    (41) 

               𝐸𝑁𝑚𝑎𝑥 = − log2
1

ℎ𝑤
 (42) 

Since the W and H are the width and height of image. Our study uses a modified approach to 

compute α and β parameters, enhancing the results under the NS domain using Equations (39) to 

(42). Then, 𝛼 − 𝑚𝑒𝑎𝑛, intensification operation, and 𝛽 − 𝑒𝑛ℎ𝑎𝑛𝑐𝑚𝑒𝑛𝑡 operation is calculated 

on the truth image based on Eqs. (13-28). The Entropy in Eqs. (9-12) calculates the alteration of 

the local pixels. The α-mean operation provides high entropy of indeterminacy image and 

uniform distribution, while the β-enhancement operation enhances the true image. This 

procedure improves the sensitivity of the indeterminacy image to local pixels. The NS 

enhancement operation is demonstrated in Figure 4. 
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Figure 3 The BoneNet-NS2 general framework. 
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Figure 4 NS enhancement operations 

Algorithm 2 BoneNet-NS2 for bone fracture classification approach  

Input: Gray image with intensities in interval from 0 to 255. 

For each pixels in image do 

A 5 × 5 filter, to obtain the LV.  

Obtain the min and max of LV. 

Represent each pixel into NS image using Eqs. (4-8). 

Calculate 𝛼, 𝛽 parameters  using Eqs. (39-42). 

Obtain 𝛼-mean operation using Eqs. (13-20). 

Obtain intensification operation using Eqs. (21-22). 

Obtain 𝛽-enhancement operation Eqs. (23-28). 

Calculate entropy to enhance True image Eqs. (9-12).  

Convert NS image to gray image Eq. (29) 

Classify the enhanced images using DL model. 

End 

Output: return class.  

 

5. Experimental results 

This section includes: the bone X-ray image dataset settings, evaluation metrics, 

implementation settings, visualization of proposed approach, statistical analysis related to bone 

X-ray image classification are illustrated. 

5.1. Dataset settings 

Convert from gray image 

to NS image 
Enhancement 

Convert NS 

image to 

gray image 

Calculate LV  

Calculate LV maximum 

and minimum 

Calculate true, 

indeterminacy and false 

images 

Calculate operators in 

Eqs. (39- 42) 

Enhance the image using 

α-mean, intensification, 

and 𝛽-enhancement 

Calculate Entropy 
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Our proposed is evaluated using 4924 bone X-ray images from Kaggle dataset [30]. The 

bone fractured dataset was adjusted to a resolution of 224 x 244 pixels divided into training, 

validation, and testing data. The data is classified into two classes (fracture and non-fractured). 

The bone X-ray dataset description is summarized in Table 3 and Figure 5. 

Table 3 Bone X-ray dataset description. 

 Fractured Non-fractured Total Classes 

Train 2097 2020 4117 

Test 200 201 401 

Validation 169 237 406 

Total 2466 2458 4924 

 

5.2. Evaluation metrics 

Our proposed work was evaluated using binary cross entropy/log loss, accuracy, precision, 

recall, F1-score, and AUC. 

 Binary cross entropy/log loss is a loss function used to evaluate the change between 

predicted binary outcomes and actual binary labels which can be denoted as follows [31]: 

−
1

𝑁
∑  

𝑁

𝑖=1

y𝑖 ⋅ log (𝑝(y𝑖)) + (1 − y𝑖) ⋅ log (1 − 𝑝(y𝑖)) 

(43) 

 To displaying a confusion matrix of proposed work, the following metrics can be 

computed: 

      𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)
 

(44) 

0

1000

2000

3000

Training Testing Validation

Bone X-ray dataset Visualization

Fractured Non-fractured

Figure 5 Bone X-ray dataset visualization. 
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   𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
) (45) 

   𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

(46) 

   𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙)
 

(47) 

Where TP, FN, TN, and FP represent the number of true positive, the number of false negative, 

the number of true negative, and the number false positive, respectively 

 Area under the curve (AUC) is a single measure that expresses how well a binary 

classification model performs overall in differentiating between positive and negative 

examples [32]. 

𝑅𝑂𝐶 −𝐴𝑈𝐶 = ∫  
1

0

𝑇𝑃𝑅(𝐹𝑃𝑅)d𝐹𝑃𝑅

= ∫  
1

0

𝑇𝑃𝑅(𝐹𝑃𝑅−1(𝑥))d𝑥

 

(48) 

Where TPR , FPR represent True Positive Rate and False Negative Rate 

5.3. Implementation settings 

Table 4 describes a complete detail of our implementations in consideration of parameters 

used training DL models. 

Table 4 Implementation settings 

Frameworks Python using the Kaggle platform and keras API 

Optimizer Adam 

Epochs for customized CNN 20 

Epochs for other DL models  10 

Batch size 32 

 

5.4. Visualization analysis 

In this section, we introduce the visual analysis for our approach. We support our 

experiments on radiological bone images for NS algorithm Figures 6. Figure 6 shows the two 

different inputs for two proposed frameworks. Figures 6 (b), (c), and (D) show the NS image, 

which is the input to the BoneNet-NS1. Figure 6 (e) shows the final converted gray image, which 

is the input to BoneNet-NS2 after performing some enhancement operations under the NS 

environment. 
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5.5. Statistical analysis 

In this section, we discuss the efficiency of our approach to bone X-ray fracture classification 

using the NS and DL models. We introduce two frameworks for NS and DL integration. The first 

framework (BoneNet-NS1) uses an NS image as an input to the DL model. The second 

framework (BoneNet-NS2) uses a gray image that was previously enhanced under NS domain 

using 𝛼 − 𝑚𝑒𝑎𝑛 and 𝛽 − 𝑒𝑛ℎ𝑎𝑛𝑐𝑚𝑒𝑛𝑡 operations. Our approach was evaluated using four 

different DL models such as Xception, ResNet152V2, DenseNet121, and customized CNN. 

Table 5 and Table 8 show results of accuracy, log loss, precision, recall, F1-score, and AUC. The 

table shows superior results in terms of accuracy for the Xception model. 

The first framework (BoneNet-NS1) was applied to Xception, ResNet152V2, DenseNet, and 

customized CNN models, and their results are summarized in Table 6 and Table 9. The results 

show superior results in True and indeterminacy domains for ResNet152V2, DenseNet121, and 

customized CNN. But in the false domain, the Xception and customized CNN show lower results 

than the results in Table 5. 

The second framework (BoneNet-NS2) was applied to Xception, ResNet152V2, DenseNet, 

and customized CNN models, and their results are summarized in Table 7 and Table 10. The 

Bone-Net-NS2 shows superior results for all models than Table 5 and Table 6. ResNet52V2 

shows the highest results using (BoneNet-NS2) in terms of accuracy, log loss, precision, recall, 

F1-score, and AUC with 99.7 %, 0.006, 99.7%, 99.7%, 99.7%, and 99.7, respectively. 

 

Figure 6 bone dataset under NS domain (a) original images, (b) True image, (c) 

Indeterminacy image, (d) Falsity image, and (e) Enhanced grayscale image.  
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Table 5 Evaluation of DL model on bone X-ray dataset before using NS 

Model Accuracy log loss Precision Recall F1-score AUC 

Xception 0.994 0.014 0.995 0.995 0.994 0.995 

ResNet152V2 0.989 0.034 0.990 0.989 0.989 0.989 

DenseNet121 0.962 0.089 0.962 0.962 0.962 0.962 

Customized CNN 0.939 0.324 0.942 0.939 0.939 0.939 

 

Table 6 Evaluation of DL model on bone X-ray dataset using BoneNet-NS1 

True domain 

Model Accuracy log loss Precision Recall F1- 

score 

AUC 

Xception 0.994 0.014 0.995 0.995 0.994 0.995 

ResNet152V2 0.994 0.013 0.995 0.995 0.994 0.995 

DenseNet121 0.992 0.024 0.992 0.992 0.992 0.992 

Customized CNN 0.944 0.243 0.946 0.944 0.944 0.944 

Indeterminacy domain 

Xception 0.974 0.052 0.975 0.974 0.974 0.974 

ResNet152V2 0.992 0.018 0.992 0.992 0.992 0.992 

DenseNet121 0.984 0.050 0.985 0.984 0.984 0.984 

Customized CNN 0.969 1.325 0.971 0.970 0.969 0.97 

False domain 

Xception 0.994 0.016 0.995 0.995 0.994 0.995 

ResNet152V2 0.997 0.005 0.997 0.997 0.997 0.997 

DenseNet121 0.987 0.033 0.987 0.987 0.987 0.987 

Customized CNN 0.796 1.579 0.827 0.797 0.792 0.797 

 

 Table 7 Evaluation of DL model on bone X-ray dataset using BoneNet-NS2 

Model Accuracy log loss Precision Recall F1-score AUC 

Xception 0.997 0.014 0.997 0.997 0.997 0.997 

ResNet52V2 0.997 0.006 0.997 0.997 0.997 0.997 

DenseNet121 0.972 0.098 0.972 0.972 0.972 0.972 

Customized CNN 0.962 0.260 0.962 0.962 0.962 0.962 
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Table 8 Confusion matrix and ROC of DL model on bone X-ray dataset before using NS 

Model Confusion Matrix Roc Curve 

Xception 

  

ResNet52V2 

  

DenseNet121 
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Customized 

CNN 

 
 

 

Table 9 Confusion matrix and ROC of DL model on bone X-ray dataset After using BoneNet-NS1 

T Dataset 

Model Confusion Matrix Roc Curve 

Xception 

 
 

ResNet52V2 
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DenseNet121 

 

 

Custom CNN 

 

 

I Dataset 

Xception 
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ResNet52V2 

 

 

DenseNet121 

 

 

Custom CNN 

 

 

F Dataset 
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Xception 

 

 

ResNet52V2 
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DenseNet121 

 

 

Custom CNN 
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Table 10 Confusion matrix and ROC of DL model on bone X-ray dataset After using BoneNet-NS2 

Model Confusion Matrix Roc Curve 

Xception 

 
 

ResNet52V2 

  

DenseNet12

1 
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Custom 

CNN 

 
 

 

6. Managerial implementation 

Sustainable development indicators contribute to assessing the progress of countries and 

institutions in achieving sustainable development goals. These indicators revolve around the 

recommendations of the Twenty-First Century Agenda set by the United Nations, which include 

appropriate health care for all members of society, especially remote and rural areas, to control 

endemic and epidemic diseases resulting from environmental pollution. We introduce an 

automatic approach for bone fracture identification using X-ray images based on DL and NS 

techniques. The proposed approach can reduce the increasing pressure on healthcare 

infrastructure. 

7. Conclusion 

The NS environment classification approach depends on only three degrees of membership. 

Using NS and DL for classification tasks can provide more ability to deal with uncertainty and 

increase the performance and accuracy of classification tasks. The main challenge of this study is 

that bone radiological image contains aleatoric uncertainty which leads to bad contrast and 

inconsistent boundaries. This affects the performance of bone fractured classification and 

identification. In our study, we introduce two frameworks: BoneNet-NS1 and BoneNet-NS2 for 

bone fractured classification using X-ray images. The proposed framework is based on different 

DL models and NS to handle uncertainty data in images. The second framework shows superior 

results during using -mean and enhancement operations under the NS domain and input this 

enhanced gray image to DL models. The proposed framework was evaluated on bone fracture X-

ray dataset on 4924 images. The second framework shows superior results with most DL models. 

The higher results were shown in the proposed (BoneNet-NS2) on ResNet52V2 in terms of 

accuracy, log loss, precision, recall, F1-score, and AUC with 99.7 %, 0.006, 99.7%, 99.7%, 

99.7%, and 99.7, respectively.    
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Abstract:  

Decision-making plays a crucial role in achieving success across various scenarios, especially when 

confronted with complex issues inundated with abundant facts and information. Employing multi-

criteria decision-making (MCDM) methods and techniques becomes particularly indispensable in 

tackling such formidable challenges. This study introduces novel neutrosophic SWGM and SWAM 

accuracy functions, which enhance traditional aggregation operators. Furthermore, it introduces the 

CODAS technique tailored for addressing Multiple Attribute Group Decision Making problems 

utilizing the newly defined operators. To exemplify the proposed methodology, a supplier selection 

problem is examined. 

Keywords: Neutrosophic Spherical Set (NSS); Decision Matrix (D-Mx); Negative Ideal Solution 

(NIS); Positive Ideal Solution (PIS); Spherical Weighted Arithmetic Mean (SWAM); Spherical 

Weighted Geometric Mean (SWGM); Score function (SF); Accuracy Function (AF). 

 

 

1. Introduction 

Multi-Criteria Decision-Making (MCDM) is a structured approach that considers multiple 

criteria and attributes to assess and pinpoint the best option or resolution among a set of competing 

alternatives. Decision-makers are often tasked with navigating conflicting objectives or standards 

when selecting from available options in diverse real-life contexts. MCDM serves as a tool to assist 

decision-makers in achieving the most advantageous decision by carefully weighing and addressing 

these considerations. 

 The MCDM consists of criteria, a set of alternatives, and expert evaluations of the 

alternatives for each criterion. These sections evaluate the specialized knowledge and score the 

options based on suitability. These days, a vast array of MCDM approaches have been developed 

and applied in many different kinds of industries [1], the transportation industry [2], economics [3], 

health [4], energy planning [5], manufacturing [6], construction [7], supplier selection [8], and more.  

A recent development in MCDM is the distance-based methodology known as Combinative 

Distance-based Assessment (CODAS). This methodology compares the Euclidean distance (ED) with 

the Taxicab distance (TD) to determine which alternatives are preferred.  
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Uncertainty stands as one of the pivotal factors impacting the decision-making process. 

Employing a Fuzzy Set (FS) offers a means to surmount this uncertainty. As a development of 

classical set theory, Lotfi A. Zadeh invented FSs [9] in 1965. The idea behind FSs is to represent and 

manipulate uncertainty more flexibly and realistically, especially in situations where traditional 

binary logic may not be suitable. Fuzzy MCDM techniques aim to resolve the uncertainty associated 

with decision-making problems [10]. 

Atanassov presented a broader version of fuzzy sets called intuitionistic fuzzy sets, which 

provide a more comprehensive treatment of ambiguity and uncertainty [11], and are formally known 

as Intuitionistic Fuzzy Sets (IFS). IFSs extend the capabilities of traditional fuzzy sets by 

encompassing notions of non-membership and hesitancy. Employing an intuitionistic fuzzy Multi-

Criteria Decision-Making (MCDM) approach, Karagoz S, Deveci M, Simic V, Aydin N, and Bolukbas 

[12] evaluated various choices for the selection of a designated dismantling center location. 

An approach utilizing CODAS technique, grounded on intuitionistic fuzzy [13] Multiple 

Criteria Decision Making (MCDM), is proposed to aid in waste management. The method involves 

employing the intuitionistic fuzzy weighted averaging operator to amalgamate the diverse 

viewpoints of decision-makers into a unified consensus. 

Expanding on the notion of Intuitionistic Fuzzy Sets (IFS), a mathematical concept called 

Interval-Valued Intuitionistic Fuzzy Sets (IVIFS) incorporates intervals to represent degrees of 

membership and non-membership. Roy, Das, Kar, and Pamuèar (2019) extended the CODAS 

approach with IVIFS, offering a framework for assessing Multiple Criteria Decision Making (MCDM) 

challenges where only partial weight information is available. Additionally, Peng and Garg [15] 

introduced methodologies for addressing emergency decision-making using similarity measures, 

CODAS, and weighted distance-based approximation within interval-valued fuzzy soft sets.  

The Pythagorean Fuzzy Set (PFS) is the foundation of a recently introduced novel structure 

intended to handle uncertainty in practical decision-making situations. When awarding membership, 

nonstandard FSs, IFSs, and IVFSs permit a degree of commitment smaller than one. A class of 

nonstandard Pythagorean fuzzy subsets is introduced in [16], where the membership grades are pairs 

(a, b) that meet the condition that a2 + b2 ≤ 1. PFS is far more effective at modeling such uncertainty 

than an IFS. 

Peng, Xindong, and Ma, Xueling investigated an algorithm for resolving MCDM problems 

based on CODAS and created a novel approach for handling MCDM difficulties in a Pythagorean 

fuzzy environment [17]. Zhang, X., Xu, Z outline some new Pythagorean Fuzzy Set (PFS) operating 

regulations and discuss their beneficial characteristics [18]. To successfully address the MCDM 

difficulties involving PFSs, it is also suggested that an enhanced strategy for order preference be 

similar to the optimum solution method. 

The Neutrosophic Set (NS) theory extends classical sets, FSs, and IFSs that aim to manage 

unclear, incomplete, and contrasting facts. This approach, which resolved indeterminacy using a new 

type of set and allowed for a more refined representation of uncertain particulars, was given by 

Florentin Smarandache [19-20]. 

Smarandache illustrates in [21-22] that offsets and off-uninorms have applicability within 

digital image processing, particularly for tasks like image segmentation and edge detection. 

Furthermore, the paper offers algorithms and examples to elucidate these concepts. 
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One specific type of NS is a single-valued set which has been proposed to manage with 

incomplete information. [23] offers a novel method for solving multi-attribute group decision-making 

issues by applying the order choose by similarity technique to a single-valued neutrosophic 

environment. Additionally, create the TOPSIS technique for MADM in a streamlined neutrosophic 

setting. 

Broumi, Je, and Smarandache are set to enhance the TOPSIS method [24] to accommodate 

interval neutrosophic uncertain linguistic information. They will introduce an extended version of 

the TOPSIS method tailored for resolving multiple attribute decision-making dilemmas where 

attribute values are expressed as interval neutrosophic uncertain linguistic variables and attribute 

weights remain unspecified. Broumi introduced the innovative concept of the Neutrosophic Inverse 

Soft Expert Set (NISES) in [25], which finds application within the Failure Mode and Effect Analysis 

(FMEA) framework.  

H. Garg presents novel applications for combining Single-Valued Neutrosophic (SVN) data, 

which are applied to solve problems related to MCDM [26]. Gundogdu, F. Kutlu, and Kahraman, C. 

presented the idea of generalized three-dimensional Spherical Fuzzy Fets (SFSs) with a few critical 

distinctions from previous FSs [27]. The spherical vague distances, established with examples, 

provide the basis of the new kind of FS. An illustrated example of spherical SF TOPSIS, a MCDM 

approach, is shown. 

To evaluate the obstacles to the growth of clean energy, a proposed technique based on 

MCDM approaches in a SFS has been mentioned in [28]. Additionally, CODAS outperformed the 

other approaches when the outcomes of the MOORA, COPRAS, and CODAS procedures were 

compared. Biswas, Chatterjee, and Majumder [29] apply a SFS to rank the statements. After 

calculating scores, they utilize an MCDA based on the SFS to determine the statements' relative 

ranking according to the judgments of a selection panel. The LOPCOW (modified SF LOgarithmic 

Percentage Change-driven Objective Weighting) approach is employed. 

Smarandache introduced the concepts of Neutrosophic Two-Fold Algebra [30-31] along with 

its corresponding Neutrosophic Two-Fold Law, and explored their extensions into Fuzzy Two-Fold 

Algebras and Laws. Additionally, they discovered nine novel topologies while enhancing and 

revisiting seven previously established ones [32]. Smarandache demonstrated that the Super Hyper 

Function [33] serves as a broader framework encompassing classical Function, Super Function, and 

Hyper Function. They also pioneered the Super Hyper Soft Set and its variations, including the Fuzzy 

and Fuzzy Extension Super Hyper Soft Set, [34] while establishing that the Super Hyper Soft Set 

comprises multiple Hyper Soft Sets.  

In this study, we create a novel notion, the Neutrosophic Spherical Set (NSS), by fusing the 

ideas of spherical measure and neutrosophic logic. The spherical fuzzy distances established in the 

literature are the foundation for the new class of Neutrosophic sets. The presentation includes the 

proofs for addition, subtraction, and multiplication arithmetic operations. Accuracy functions, 

scoring, and aggregation operations are constructed. An exemplary example of Spherical 

Neutrosophic CODAS, a MCDM process, is shown. 

2. Preliminaries  

Definition 2.1 [19]  
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Consider M  be the universe. A NS K  in M  is characterized by a truth 
K

T , indeterminacy 

K
I and a falsity

K
F  membership functions 

         , , , : , , , ] 0,1 [K K KK K K
K k T k I k F k k M T I F      

then  

        0 3
K K K

T k I k F k      

Definition 2.2 [27] 

A SFS S  of the universe of discourse Z  is given by { , ( ( ), ( ), ( )) | }
S S S

S s T s I s F s s Z     

Where ( ) : [0,1], ( ) : [0,1], ( ) : [0,1]
S S S

T s Z I s Z F s Z    and 

2 2 20 ( ) ( ) ( ) 1
S S S

T s I s F s s Z       

For each s , the numbers ( ), ( )
S S

T s I s and ( )
S

F s are membership, non-membership and hesitancy 

of s  to A , respectively.  

3. Neutrosophic spherical set  

The squared sum of the parameters in NSSs can range 0 and 3 , it is possible to define each of 

them individually between 0 and 1 independently. In this section, the explanation of NSS and 

overview of spherical distance measurement, arithmetic operation and aggregation and de-

neutrosophication processes are provided. 

Definition 3.1. NSS S  of the universe of discourse Z  is given by  

 { , ( ( ), ( ), ( )) | } 1
S S S

S s T s I s F s s Z   

Where, 

( ) : [0,1], ( ) : [0,1], ( ) : [0,1]
S S S

T s Z I s Z F s Z    

and 

2 2 20 ( ) ( ) ( ) 3 (2)
S S S

T s I s F s s Z     

For each s , the numbers ( ), ( ) ( )
S S S

T s I s and F s are the degree of Membership, Non-

Membership, and Hesitant Membership of s  to S , respectivelyError! Reference source not found.. 

Definition 3.2. Basic Operators 
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1 1 1

2 2 2 2 2 2 2 2 2 2 2 22 2 2, , (3)
B B B B B BA A A A A A

A B T T T T I I I I F F F F
 

        
 

      , , (4)
B B BA A A

A B T T I I F F 

        
1 1 1

2 2 22 2 21 1 , 1 1 , 1 1 (5)
A A A

A T I F
  


  

        
  

 , , 0 (6)
A A A

A T I F       

Definition 3.3. For these NSS  , ,
M M M

M T I F and  , ,
N N N

N T I F , the following applies to 

1 2, , 0    . 

1. (7)M N N M    

2. (8)M N M N    

3.   (9)M N M N      

4.  1 2 1 2 (10)M M M       

5.   (11)M N M N


     

6. 1 2 1 2 (12)M M M      

Proof: 

According to Definition 3.2, we will prove equations (7-9 and 11) since equation (10 and 12) are 

comparable to the corresponding proofs of equations (9 and 11),  

1.  M N N M    

     
1 1 1

2 2 2 2 2 2 2 2 2 2 2 22 2 2, ,
M N M N M N M N M N M N

M N T T T T I I I I F F F F
 

        
 

     
1 1 1

2 2 2 2 2 2 2 2 2 2 2 22 2 2, ,
N M N M N M N M N M N M

N M T T T T I I I I F F F F
 

        
 

 

Hence 1 is proved. 

2. M N M N    

      , ,
M N M N M N

M N T T I I F F   

      , ,
N M N M N M

N M T T I I F F   
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Hence 2 is proved. 

3.  M N M N    

       

     

  

11 1
2 2 2 2 2 2 2 2 2 2 2 222 2

1 1

2 22 2 2 2 2 2 2 2

1

22 2 2 2

, ,

1 1 , 1 1 ,

1 1

M N M N M N M N M N M N

M N M N M N M N

M N M N

M N T T T T I I I I F F F F

T T T T I I I I

F F F F

 



 
  

        
  

 
              
    

 
       
  

        

        

1 1 1

2 2 22 2 2

1 1 1

2 2 22 2 2

1 1 , 1 1 , 1 1

1 1 , 1 1 , 1 1

M M M

N N N

M N T I F

T I F

  

  

 
  

        
  

  
       
  

 

          

          

          

1

22 2 2 2

1

22 2 2 2

1

22 2 2 2

1 1 1 1 1 1 1 1 ,

1 1 1 1 1 1 1 1 ,

1 1 1 1 1 1 1 1

M N M N

M N M N

M N M N

T T T T

I I I I

F F F F

   

   

   

 
          
 
 
 

           
 
 
          
 
 

 

              
1 1 1

2 2 22 2 2 2 2 21 1 1 , 1 1 1 , 1 1 1
M N M N M N

T T I I F F
       

          
  

 

     

  

1 1

2 22 2 2 2 2 2 2 2

1

22 2 2 2

1 1 , 1 1 ,

1 1

M N M N M N M N

M N M N

T T T T I I I I

F F F F

 



 
              
    

  
       
  

 

Hence 3 is proved. 

Since 

4.  1 2 1 2M M M       

5.  M N M N
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, ,

, ,

M N M N M N

M N M N M N

M N T T I I F F

T T I I F F

 

     

 



 

   

 

, , , ,

, ,

M M M N N N

M N M N M N

M N T I F T I F

T T I I F F

       

     

  


 

Hence 5 is proved. 

Definition 3.4. SWAM as,  1 2 3, , ,.... ;nz z z z z   
1

0,1 ; 3
n

j j

j

z z


   SWAM is defined as; 

 1 2 1 1 2 2 3 3, ,... ....z n n nSWAM A A A z A z A z A z A      

     

1 1 1

2 2 2
2 2 2

1 1 1

1 1 , 1 1 , 1 1 (13)
j j j

n n n
z z z

A A A
j j j

T I F
  

 
      
           

      
 

    

Definition 3.5. SWGM as,  1 2 3, , ,.... ;nz z z z z   
1

0,1 ; 3
n

j j

j

z z


   

SWGM is defined as;   31 2

1 2 1 2 3, ,... .... nz zz z

z n nSWGM A A A A A A A      

1 1 1

, , (14)j j j

n n n
z z z

A A A
j j j

T I F
  

  
 
  
    

Definition 3.6. The SF and AF for NSS classification are defined by; 

     
2 2

(15)ijw ijw ijw ijwScore S T F I F   

  2 2 2 (16)
S S S

Accuracy S T I F  

Note that: S T iff 

1.    Score S Score T or  

2.          17Score S Score T and Accuracy S Accuracy T   

4. Neutrosophic Spherical CODAS  

A D-Mx with entries that represent the assessment scores of every choice in relation to every 

criterion in a neutrosophic environment can be used to represent an MCDM problem. Suppose that 

  1 2 3, , ,.... 2mS s s s s m   represents distinct collection of m  possible options and 
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 1 2 3, , ,.... nK K K K K  be the weight vector derived from every requirement that meet 

0 1jz   and 
1

3
n

j

j

z


 . 

Step 1. Let DMs use the linguistic terms (LT) listed in Table 1 to complete the assessment matrices 

for decisions and criteria. 

 

Table 1. Terms used in linguistics and their associated Spherical Neutrosophic Number  

 

Step 2. Aggregate the outcomes reached by DM. 

Aggregate the outcomes reached by DM using SWAM.  Aggregate the DMs’ Neutrosophic 

Spherical linguistic judgements of the selection criteria. Assemble and neutrosophic D-Mx based on 

DMs' views. Indicate the Alternative's evaluation value.  

 1,2,...iS i m  with respect to criterion  1,2...jK j n   by    , ,j i ij ij ijK S T I F  

and   j i
m n

D K S


  is a Neutrosophic Spherical Decision Matrix (NS D-Mx). D-Mx for MCDM 

problem using NSS,   j i
m n

D K S


  must be put together as shown in equation (18). 

  

     

     

     

11 11 11 12 12 12 1 1 1

21 21 21 22 22 22 2 2 2

1 1 1 2 2 2

, , , , ... , ,

, , , , ... , ,
(18)

...

, , , , ... , ,

n n n

n n n

j i
m n

m m m m m m mn mn mn

T I F T I F T I F

T I F T I F T I F
D K S

T I F T I F T I F



 
 
 
  
 
 
 
 

 

Step 3. Build the weighted aggregated NS D-Mx. Following the determination of the alternative 

ratings and the weights assigned to the criteria, the aggregated weighted NS D-Mx is built using 

multiplication equation and then the aggregated weighted NS D-Mx can be defined as follows: 

LT (T, I, F) 

Probably More Significant PMS (.9, .6, .2) 

Extremely Significant ES (.8, .7, .2) 

High Priority HP (.7, .6, .5) 

Relatively Greater Significance RGS (.6, .7, .4) 

Equally Important EI (.5, .8, .4) 

Very Minimal Significance VMS (.4, .6, .7) 

Low Priority LP (.5, .7, .6) 

extremely low significant ELS (.5, .6 .6) 

Definitely Not Important DNI (.2, .9, .6) 
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11 11 11 12 12 12 1 1 1

21 21 21 22 22 22 2 2 2

1 1 1 2 2 2

, , , , ... , ,

, , , , ... , ,
(19)

...

, , , , ... , ,

z z z z z z nz nz nz

z z z z z z nz nz nz

j iz
m n

m z m z m z m z m z m z mnz mnz mnz

T I F T I F T I F

T I F T I F T I F
D K S

T I F T I F T I F



 
 
  
 
  
 

 

Step 4. Utilising Eq. (20), deneutroscope the aggregated weighted D-Mx. 

      
2 2

(20)j iz ijz ijz ijz ijzScore K S T F I F     

Step 5. Find the NSPIS and NSNIS according to the SF acquired in Step 4. 

Regarding the NS-PIS: 

   * ,max | 1,2,... (21)j j iz
i

S K Score K S j n 

      * * * * * * * * * *

1 1 1 1 2 2 2 2, , , , , , , ,... , , ,n n n nS K T I F K T I F K T I F  

Regarding the NS -NIS: 

   ,min | 1,2,... (22)j j iz
i

S K Score K S j n  

      1 1 1 1 2 2 2 2, , , , , , , ,... , , ,n n n nS K T I F K T I F K T I F           

Step 6. The distances between alternative iS , NS-PIS, and NS-NIS should be calculated, accordingly. 

For the NS-NIS:  

        
2 2 2

1

1
, (23)

2 i i i

n

i S S SS S S
i

D S S T T I I F F  





       

For the NS-NIS: 

        * * *

2 2 2
*

1

1
, (24)

2 i i i

n

i S S SS S S
i

D S S T T I I F F


       

Step 7 Calculate the minimum and maximum distances to the NS-NIS and NS-PIS, respectively. 

   max , max , (25)i i
i i m

D S S S S 

 


   * *

min , min , (26)i i
i i m

D S S S S
 

  

Step 8 Compute the revised proximity ratio in Equation (27). 

 
 
 

 
 

*

*

max min

, ,
(27)

, ,

i i

i

i i

D S S D S S
S

D S S D S S





   

Equation (27) because the subtraction's second element is at least equal to its first element, the result 

is zero or negative. We altered this equality from Equation (28) so that we might get zero or a result.

  



Neutrosophic Sets and Systems, Vol. 68, 2024     145  

 

 

S. Bhuvaneshwari and C. Antony Crispin Sweety, Neutrosophic Spherical Sets in MCDM 

 
 
 

 
 

*

*

min max

, ,
(28)

, ,

i i

i

i i

D S S D S S
S

D S S D S S





   

Step 9. Determine the best solution by rating the alternatives in the best possible order. We organize 

the alternatives according to the rising closeness ratio values since we wish to use Equation (28). 

5.Illustrative Example  

 A supplier selection issue is devised and solved by employing our recommended technique. 

Four vendors of air conditioners were considered count  1 2 3 4, , ,S S S S and evaluated for their 

efficacy. The number of qualitative and quantitative aspects considered will determine how many 

different criteria are used to pick suppliers. In accordance with on the number of qualitative and 

quantitative factors are considered, the decision-making criteria for supplier selection may change. 

Several criteria and sub-criteria have been established using a comprehensive literature assessment. 

Four of these criteria are used in this exemplary example: price  1K , quality  2K , delivery  3K  

and performance  4K . Three decision makers with experience in supply chain and logistics 

management (ÐϺ1, ÐϺ2, and ÐϺ3) take part in the procedure for evaluation. The weights of these 

DMs, which are, respectively, 0.4, 0.5 and 0.3, represent their various levels of experience. 

First, the judgements made by the decision-makers are compiled using the language phrases 

listed in Table 1 with regard to the objective. A decision is rendered in Tables 2-4. 

 

Table 2. Decisions of DM1 

 

ÐϺ1 
 1K   2K   3K   4K  

1S  
ES HP EI RGS 

2S  
PMS EI HP EI 

3S  
LP RGS ES ELS 

4S  
ELS ES LP HP 

 

Table 3. Decisions of DM2 

 

ÐϺ2 
 1K   2K   3K   4K  

1S  
PMS HP ES PMS 
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2S  
VMS ES HP EI 

3S  
HP RGS RGS RGS 

4S  
ELS EI LP LP 

 

Table 4. Decisions of DM3 

 

ÐϺ3 
 1K   2K   3K   4K  

1S  
HP ES PMS RGS 

2S  
VMS PMS ES VMS 

3S  
VMS ELS HP HP 

4S  
LP EI ES RGS 

 

The significance levels of the DMs are considered when combining these judgements 

utilizing the SWAM and SWGM operators. The decision matrices shown in Tables 5 and 6 are 

obtained. 

Table 5. NS D-Mx by using SWAM operator 

 

Alternatives 
 1K   2K   3K   4K  

1S  
(0.873,0.682,0.340) (0.773,0.673,0.487) (0.821,0.764,0.311) (0.825,0.707,0.364) 

2S  
(0.743, 0.643,0.652) (0.821,0.764,0.311) (0.773,0.673,0.487) (0.517,0.806,0.549) 

3S  
(0.629,0.682,0.638) (0.621,0.723,0.502) (0.752,0.723,0.415) (0.646,0.690,0.544) 

4S  
(0.540,0.673,0.643) (0.687,0.814,0.379) (0.657,0.744,0.582) (0.649,0.715,0.568) 

 

Table 6. NS D-Mx by using SWGM operator 

 

Alternatives 
 1K   2K   3K   4K  

1S  
(0.779,0.576,0.190) (0.678,0.567,0.330) (0.656,0.656,0.191) (0.66,0.603,0.235) 
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2S  
(0.460,0.541,0.394) (0.656,0.656,0.191) (0.678,0.567,0.330) (0.407,0.701,0.393) 

3S  
(0.481,0.576,0.517) (0.512,0.622,0.376) (0.636,0.622,0.269) (0.527,0.585,0.418) 

4S  
(0.435,0.567,0.541) (0.525,0.725,0.252) (0.501,0.651,0.389) (0.525,0.612,0.445) 

 

Table 7 displays the important weights of the language phrases used to express the criteria 

determined by DMs. 

 

Table 7. The weights assigned to each criterion 

 

Criteria DM1 DM2 DM3 

 1K  
LP VMS HP 

 2K  
RGS EI RGS 

 3K  
PMS RGS ES 

 4K  
HP HP VMS 

 

The weight of each criterion is determined by the decision-makers' strategies for the criteria 

aggregated by the SWAM operator provided in Equation (13), which are shown in Table 8. 

 

Table 8. Aggregation of Criteria weights according to SWAM operator 

 

Criteria Weights of each criterion 

 1K  
(0.576,0.682,0.672) 

 2K  
(0.605,0.791,0.434) 

 3K  
(0.834,0.715,0.330) 

 4K  
(0.751,0.691,0.535) 

 

The aggregated weighted neutrosophic spherical choice matrices are constructed using Equation 

(4) once the weights assigned to the criteria and evaluations of the substitutions have been 

determined, as illustrated in Tables 9 and 10. 
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Table 9. Weighted NS D-Mx according to SWAM operator 

 

Table 10. Weighted NS D-Mx according to SWGM operator 

 

Alternatives 
 1K   2K   3K   4K  

1S  
(0.449,0.393,0.128) (0.410,0.448,0.143) (0.548,0.469,0.063) (0.498,0.416,0.126) 

2S  
(0.265,0.369,0.265) (0.397,0.519,0.083) (0.566,0.405,0.109) (0.306,0.484,0.210) 

3S  
(0.277,0.393,0.348) (0.310,0.492,0.163) (0.531,0.445,0.089) (0.396,0.404,0.224) 

4S  
(0.251,0.387,0.364) (0.317,0.573,0.109) (0.418,0.466,0.128) (0.395,0.423,0.238) 

 

SF are calculated using Equation (19) and Tables 11 and 12, which are based on Tables 9 and 10. 

PIS are represented by blue values, while NIS values are represented by yellow values. 

 

Table 11. SF according to SWAM operator 

 

Alternatives 
 1K   2K   3K   4K  

1S  
0.0196191 -0.0370441 0.1424804 0.0945117 

2S  
0.0001038 -0.0893889 0.1322302 -0.0605558 

3S  
0.0031443 -0.1001252 0.0961946 0.0030986 

4S  
0.0140321 -0.1663112 0.0111351 -0.0024082 

 

 

Alternatives 
 1K   2K   3K   4K  

1S  
(0.503,0.465,0.228) (0.468,0.532,0.211) (0.685,0.547,0.103) (0.620,0.488,0.195) 

2S  
(0.428,0.439,0.438) (0.497,0.604,0.135) (0.645,0.481,0.161) (0.388,0.557,0.293) 

3S  
(0.362,0.465,0.429) (0.376,0.571,0.218) (0.627,0.517,0.137) (0.485,0.477,0.291) 

4S  
(0.311,0.459,0.432) (0.415,0.643,0.165) (0.548,0.532,0.192) (0.487,0.494,0.304) 
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Table 12. SF according to SWGM operator 

 

Alternatives 
 1K   2K   3K   4K  

1S  
0.033096 -0.0217872 0.0700743 0.0542487 

2S  
-0.0108362 -0.0913385 0.1209456 -0.0660912 

3S  
0.0029492 -0.0864905 0.0687862 -0.002763 

4S  
0.0122932 -0.1718773 -0.0300535 -0.0095923 

 

The NS-PIS and NS-NIS corresponding to the highest and worst scores are shown in Tables 13 

and 14. 

Table 13. NS-PIS and NS-NIS according to SWAM operator 

 

Alternatives 
 1K   2K   3K   4K  

*S  (Best) (0.503,0.465,0.228) (0.468,0.532,0.211) (0.685,0.547,0.103) (0.620,0.488,0.195) 

S   (Worst) (0.428,0.439,0.438) (0.415,0.643,0.165) (0.548,0.532,0.192) (0.388,0.557,0.293) 

 

Table 14. NS-PIS and NS-NIS according to SWGM operator 

 

Alternatives 
 1K   2K   3K   4K  

*S  (Great) (0.449,0.393,0.128) (0.410,0.448,0.143) (0.566,0.405,0.109) (0.498,0.416,0.126) 

S   (Poor) (0.265,0.369,0.265) (0.317,0.573,0.109) (0.418,0.466,0.128) (0.306,0.484,0.210) 

Based on Equations (23 and 24), the next step we can figure out how far apart option iS  is from both 

the NS-PIS and NS-NIS, respectively. Tables 15 and 16 provide their information. 

Table 15. Distance to PIS and NIS according to SWAM operator 

 

Alternatives 
 *,iD S S   ,iD S S 

 

1S  
1.06252 0.142724324 

2S  
0.132168332 0.052504021 

3S  
0.113622049 0.070743093 
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4S  
0.138092728 0.059237447 

 

Table 16. Distance to PIS and NIS according to SWGM operator 

 

Alternatives 
 *,iD S S   ,iD S S 

 

1S  
0.028542681 0.136333827 

2S  
0.117780274 0.067011546 

3S  
0.119173652 0.07645776 

4S  
0.145694319 0.053394324 

 

We calculate the maximum and minimum distances to the NS-NIS and NS-PIS, respectively, from 

Tables 15 and 16. The closeness ratios are computed using Equation (28), and they are shown in Tables 

17 and 18. 

Table 17. Every alternative's closeness ratio according to the SWAM operator 

 

Alternatives Closeness Ratio Rank 

1S  
0 1 

2S  
12438.77 3 

3S  
10693.143 2 

4S  
12996.303 4 

 

Table 18. Closeness ratio of each alternative according to SWGM operator 

 

Alternatives Closeness Ratio Rank 

1S  
0 1 

2S  
3.634936 3 

3S  
3.614466 2 

4S  
4.7127931 4 
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According to the SWAM operator, the closeness ratio for each alternative show that the best option 

is 1S , and over all ranking is 1 3 2 4S S S S   . The closest alternative, according to the proximity 

ratios based on the SWGM operator, is 1S , and overall ranking is 1 3 2 4S S S S   .The aggregation 

operators determine how the ranks differ. However, in both strategies, the best and worst options are 

the same. 

 

 

6. Conclusions  

This study introduces two novel accuracy functions, neutrosophic SWGM and SWAM, which 

represent significant advancements over conventional aggregation operators by integrating 

neutrosophic spherical sets. Through the development and application of an algorithm for the 

CODAS technique, we have effectively addressed the supplier selection problem. Our approach 

prioritizes alternatives based on distance measurements, utilizing the neutrosophic spherical CODAS 

approach to compute closeness ratios between criteria. Significantly, our comparison between SWAM 

and SWGM operators demonstrates comparable rankings and their efficacy in assessing alternatives. 

This research contributes to the advancement of decision-making methodologies, particularly in 

complex scenarios where traditional methods may fall short. 
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Abstract: this article's goal is to present the indefinite refined neutrosophic integrals by parts. All 

situations where integration by parts can be used are covered, including the use of rotating integrals 

to solve recurring and non-terminating functions like the product of trigonometric and exponential 

functions. Furthermore, the Tabular method has been implemented in the computation of the 

indefinite refined neutrosophic integrals.  
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1. Introduction and Preliminaries 

           To describe a mathematical model of uncertainty, vagueness, ambiguity, 

imprecision, undefined, unknown, incompleteness, inconsistency, redundancy, and contradiction, 

Smarandache suggested the neutrosophic Logic as an alternative to the current logics. Smarandache 

made refined neutrosophic numbers available in the following form: (𝑎, 𝑏1𝐼1, 𝑏2𝐼2, . . . , 𝑏𝑛𝐼𝑛) where 

𝑎, 𝑏1, 𝑏2, . . . , 𝑏𝑛  ∈  𝑅 𝑜𝑟 𝐶 [1] 

Agboola introduced the concept of refined neutrosophic algebraic structures [2]. Also, the refined 

neutrosophic rings 𝐼  was studied in paper [3], where it assumed that 𝐼 splits into two 

indeterminacies 𝐼1 [contradiction (true (T) and false (F))] and 𝐼2 [ignorance (true (T) or false (F))]. It 

then follows logically that: [3] 

𝐼1𝐼1 = 𝐼1
2 = 𝐼1         (1) 

𝐼2𝐼2 = 𝐼2
2 = 𝐼2        (2) 

𝐼1𝐼2 = 𝐼2𝐼1 = 𝐼1       (3) 

In addition, there are many papers presenting studies on refined neutrosophic numbers [4-5-6-7-8]. 

Smarandache discussed neutrosophic indefinite integral (Refined Indeterminacy) [11]  

Let 𝑔: ℝ → ℝ ∪ {𝐼1} ∪ {𝐼2} ∪ {𝐼3}, where 𝐼1, 𝐼2, and 𝐼3 are types of sub indeterminacies,  

 

𝑔(𝑥) = 7𝑥 − 2𝐼1 + 𝑥2𝐼2 + 4𝑥3𝐼3 

then: 

                     𝐹(𝑥) = ∫[7𝑥 − 2𝐼1 + 𝑥2𝐼2 + 4𝑥3𝐼3]𝑑𝑥 

mailto:y.alhasan@psau.edu.sa
mailto:mo.mohammed@psau.edu.sa
mailto:r.abdulfatah@psau.edu.sa
mailto:y.alhasan@psau.edu.sa
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=
7𝑥2

2
− 2𝑥𝐼1 +

𝑥3

3
𝐼2 + 𝑥4𝐼3 + 𝑎0 + 𝑎1𝐼1 + 𝑎2𝐼2 + 𝑎3𝐼3 

where 𝑎0, 𝑎1, 𝑎2 and 𝑎3 are real constants. 

Additionally, Alhasan gave multiple calculus presentations in which he covered neutrosophic 

definite and indefinite integrals. Also, he introduced the most significant uses of definite integrals 

in neutrosophic logic [9-10]. Several studies were also presented in the field of neutro logic in 

statistics and others [12-13]. 

2. Main Discussion  

2.1 The indefinite refined neutrosophic integration by parts  

Let:  𝑓: 𝐷𝑓 ⊆ 𝑅(𝐼1, 𝐼2) → 𝑅(𝐼1, 𝐼2) and 𝑔: 𝐷𝑔 ⊆ 𝑅(𝐼1, 𝐼2) → 𝑅(𝐼1, 𝐼2) 

 

then, for the product rule: 
𝑑

𝑑𝑥
[𝑓(𝑥, 𝐼1, 𝐼2). 𝑔(𝑥, 𝐼1, 𝐼2)] = �́�(𝑥, 𝐼1, 𝐼2)𝑔(𝑥, 𝐼1, 𝐼2) + 𝑓(𝑥, 𝐼1, 𝐼2)�́�(𝑥, 𝐼1, 𝐼2) 

integrating both sides of this equation gives us: 

∫
𝑑

𝑑𝑥
[𝑓(𝑥, 𝐼1, 𝐼2). 𝑔(𝑥, 𝐼1, 𝐼2)] 𝑑𝑥 = ∫ �́�(𝑥, 𝐼1, 𝐼2)𝑔(𝑥, 𝐼1, 𝐼2)  𝑑𝑥 + ∫ 𝑓(𝑥, 𝐼1, 𝐼2)�́�(𝑥, 𝐼1, 𝐼2) 𝑑𝑥 

 

∫ 𝑓(𝑥, 𝐼1, 𝐼2)�́�(𝑥, 𝐼1, 𝐼2) 𝑑𝑥 = 𝑓(𝑥, 𝐼1, 𝐼2). 𝑔(𝑥, 𝐼1, 𝐼2) − ∫ �́�(𝑥, 𝐼1, 𝐼2)𝑔(𝑥, 𝐼1, 𝐼2)  𝑑𝑥 

 

it is usually convenient to write this using the notation: 

 

 𝑢𝑁 = 𝑓(𝑥, 𝐼1, 𝐼2)    ⟹      𝑑𝑢𝑁 = �́�(𝑥, 𝐼1, 𝐼2) 𝑑𝑥 

 

   𝑑𝑣𝑁 = �́�(𝑥, 𝐼1, 𝐼2) 𝑑𝑥  ⟹   𝑣𝑁 = 𝑔(𝑥, 𝐼1, 𝐼2) 

 

so the neutrosophic integration by parts algorithm becomes 

 

∫ 𝑢𝑁  𝑑𝑣𝑁 = 𝑢𝑁 . 𝑣𝑁 − ∫ 𝑣𝑁  𝑑𝑢𝑁 

 

There are four cases of the neutrosophic integration by parts: 

 

 state1:  

 

∫(𝑎 + 𝑏𝐼1 + 𝑐𝐼2)𝑥𝑛  𝑒(𝑟+𝑠𝐼1+𝑡𝐼2)𝑥  𝑑𝑥  

where 𝑎, 𝑏, 𝑐, 𝑟, 𝑠, 𝑡 are real numbers, while 𝐼1, 𝐼2 = indeterminacy), 𝑟 ≠ 0 , 𝑟 ≠ −𝑡  

and 𝑟 ≠ −𝑠 − 𝑡. 

 

 𝑢𝑁 = (𝑎 + 𝑏𝐼1 + 𝑐𝐼2)𝑥𝑛    ⟹      𝑑𝑢𝑁 = 𝑛(𝑎 + 𝑏𝐼1 + 𝑐𝐼2)𝑥𝑛−1 𝑑𝑥 
 

   𝑑𝑣𝑁 = 𝑒(𝑟+𝑠𝐼1+𝑡𝐼2)𝑥  𝑑𝑥  ⟹      𝑣𝑁 =
1

𝑟+𝑠𝐼1+𝑡𝐼2
𝑒(𝑟+𝑠𝐼1+𝑡𝐼2)𝑥 

                

∫ 𝑢𝑁  𝑑𝑣𝑁 = 𝑢𝑁 . 𝑣𝑁 − ∫ 𝑣𝑁  𝑑𝑢𝑁 
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∫(𝑎 + 𝑏𝐼1 + 𝑐𝐼2)𝑥𝑛  𝑒(𝑟+𝑠𝐼1+𝑡𝐼2)𝑥  𝑑𝑥

= (
𝑎 + 𝑏𝐼1 + 𝑐𝐼2

𝑟 + 𝑠𝐼1 + 𝑡𝐼2

) (𝑥𝑛𝑒(𝑟+𝑠𝐼1+𝑡𝐼2)𝑥 − ∫ 𝑛𝑥𝑛−1 𝑒(𝑟+𝑠𝐼1+𝑡𝐼2)𝑥𝑑𝑥) + 𝐶 

 

= (
𝑎

𝑟
+ [

𝑟𝑏 + 𝑏𝑡 − 𝑎𝑠 − 𝑠𝑐

(𝑟 + 𝑡)(𝑟 + 𝑠 + 𝑡)
] 𝐼1 + [

𝑟𝑐 − 𝑎𝑡

𝑟(𝑟 + 𝑡)
] 𝐼2) (𝑥𝑛𝑒(𝑟+𝑠𝐼1+𝑡𝐼2)𝑥 − ∫ 𝑛𝑥𝑛−1 𝑒(𝑟+𝑠𝐼1+𝑡𝐼2)𝑥𝑑𝑥) + 𝐶 

 

by repeated the integration, then we can find the required integral 

where 𝐶  is an indeterminate real constant (i.e. constant of the form  𝑎0 + 𝑎1𝐼1 + 𝑎2𝐼2,  where 

𝑎0, 𝑎1 𝑎𝑛𝑑 𝑎2 are real numbers, while 𝐼1, 𝐼2 = indeterminacy). 

 

Example 1 

Find:  

∫(2 + 2𝐼1 + 𝐼2)𝑥 𝑒(3+3𝐼1+2𝐼2)𝑥  𝑑𝑥 

Solution: 

 

 𝑢𝑁 = (2 + 2𝐼1 + 𝐼2)𝑥   ⟹      𝑑𝑢𝑁 = (2 + 2𝐼1 + 𝐼2) 𝑑𝑥 

 

   𝑑𝑣𝑁 = 𝑒(3+3𝐼1+2𝐼2)𝑥  𝑑𝑥  ⟹       𝑣𝑁 =
1

3+3𝐼1+2𝐼2
𝑒(3+3𝐼1+2𝐼2)𝑥 

                

∫ 𝑢𝑁  𝑑𝑣𝑁 = 𝑢𝑁 . 𝑣𝑁 − ∫ 𝑣𝑁  𝑑𝑢𝑁 

 

∫(2 + 2𝐼1 + 𝐼2)𝑥 𝑒(3+3𝐼1+2𝐼2)𝑥  𝑑𝑥 = (
2 + 2𝐼1 + 𝐼2

3 + 3𝐼1 + 2𝐼2

) (𝑥𝑒(3+3𝐼1+2𝐼2)𝑥 − ∫ 𝑒(3+3𝐼1+2𝐼2)𝑥 𝑑𝑥) 

 

= (
2

3
+

18 + 12 − 12 − 9

3(5)(8)
𝐼1 +

3 − 4

3(5)
𝐼2) (𝑥𝑒(3+3𝐼1+2𝐼2)𝑥 −

1

3 + 3𝐼1 + 2𝐼2

𝑒(3+3𝐼1+2𝐼2)𝑥) 

 

= (
2

3
−

9

40
𝐼1 −

1

15
𝐼2) (𝑥 −

1

3
+

3

40
𝐼1 +

2

15
𝐼2) 𝑒(3+3𝐼1+2𝐼2)𝑥 + 𝐶 

 

 state2:  

 

∫(𝑎 + 𝑏𝐼1 + 𝑐𝐼2)𝑥𝑛  𝑠𝑖𝑛(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥 𝑑𝑥   𝑜𝑟 ∫(𝑎 + 𝑏𝐼1 + 𝑐𝐼2)𝑥𝑛  𝑐𝑜𝑠(𝑟 + 𝑠𝐼1

+ 𝑡𝐼2)𝑥 𝑑𝑥  

 

𝑢𝑁 = (𝑎 + 𝑏𝐼1 + 𝑐𝐼2)𝑥𝑛    ⟹      𝑑𝑢𝑁 = 𝑛(𝑎 + 𝑏𝐼1 + 𝑐𝐼2)𝑥𝑛−1 𝑑𝑥 
 

𝑑𝑣𝑁 = 𝑠𝑖𝑛(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥 𝑑𝑥  ⟹       𝑣𝑁 =
−1

𝑟 + 𝑠𝐼1 + 𝑡𝐼2

𝑐𝑜𝑠(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥 

                

∫ 𝑢𝑁  𝑑𝑣𝑁 = 𝑢𝑁 . 𝑣𝑁 − ∫ 𝑣𝑁  𝑑𝑢𝑁 

 

∫(𝑎 + 𝑏𝐼1 + 𝑐𝐼2)𝑥𝑛  𝑠𝑖𝑛(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥 𝑑𝑥

= (
𝑎 + 𝑏𝐼1 + 𝑐𝐼2

𝑟 + 𝑠𝐼1 + 𝑡𝐼2

) ((𝑎 + 𝑏𝐼1 + 𝑐𝐼2)𝑥𝑛 𝑠𝑖𝑛(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥

+ ∫ 𝑛𝑥𝑛−1 𝑐𝑜𝑠(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥 𝑑𝑥) + 𝐶 
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= (
𝑎

𝑟
+ [

𝑟𝑏 + 𝑏𝑡 − 𝑎𝑠 − 𝑠𝑐

(𝑟 + 𝑡)(𝑟 + 𝑠 + 𝑡)
] 𝐼1 + [

𝑟𝑐 − 𝑎𝑡

𝑟(𝑟 + 𝑡)
] 𝐼2) ((𝑎 + 𝑏𝐼1 + 𝑐𝐼2)𝑥𝑛  𝑠𝑖𝑛(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥

+ ∫ 𝑛𝑥𝑛−1 𝑐𝑜𝑠(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥 𝑑𝑥) + 𝐶 

 

   By repeating the integration, we are able to find the required integral. 

We calculate the second integral using the same method: 

∫(𝑎 + 𝑏𝐼1 + 𝑐𝐼2)𝑥𝑛  𝑐𝑜𝑠(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥 𝑑𝑥 

Example 2 

Find:  

 

∫(3 + 𝐼1 + 6𝐼2)𝑥 𝑠𝑖𝑛(1 + 2𝐼1 + 3𝐼2)𝑥 𝑑𝑥 

Solution: 

𝑢𝑁 = (3 + 𝐼1 + 6𝐼2)𝑥   ⟹      𝑑𝑢𝑁 = (3 + 𝐼1 + 6𝐼2) 𝑑𝑥 
 

𝑑𝑣𝑁 = 𝑠𝑖𝑛(1 + 2𝐼1 + 3𝐼2)𝑥 𝑑𝑥  ⟹       𝑣𝑁 =
−1

1 + 2𝐼1 + 3𝐼2

𝑐𝑜𝑠(1 + 2𝐼1 + 3𝐼2)𝑥 

 

∫ 𝑢𝑁  𝑑𝑣𝑁 = 𝑢𝑁 . 𝑣𝑁 − ∫ 𝑣𝑁  𝑑𝑢𝑁 

     

∫(3 + 𝐼1 + 6𝐼2)𝑥 𝑠𝑖𝑛(1 + 2𝐼1 + 3𝐼2)𝑥 𝑑𝑥 

 

= (
3 + 𝐼1 + 6𝐼2

1 + 2𝐼1 + 3𝐼2

) (−𝑥 𝑐𝑜𝑠(1 + 2𝐼1 + 3𝐼2)𝑥 + ∫ 𝑐𝑜𝑠(1 + 2𝐼1 + 3𝐼2)𝑥 𝑑𝑥) 

 

= (3 −
7

12
𝐼1 −

3

4
𝐼2) (−𝑥 𝑐𝑜𝑠(1 + 2𝐼1 + 3𝐼2)𝑥 +

1

1 + 2𝐼1 + 3𝐼2

 𝑠𝑖𝑛(1 + 2𝐼1 + 3𝐼2)𝑥) 

 

= (3 −
7

12
𝐼1 −

3

4
𝐼2) (−𝑥 𝑐𝑜𝑠(1 + 2𝐼1 + 3𝐼2)𝑥 + (1 −

1

12
𝐼1 −

3

4
𝐼2) 𝑠𝑖𝑛(1 + 2𝐼1 + 3𝐼2)𝑥) + 𝐶 

 

 state3:  

 

∫ 𝑒(𝑎+𝑏𝐼1+𝑐𝐼2)𝑥  𝑠𝑖𝑛(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥 𝑑𝑥     𝑜𝑟  ∫ 𝑒(𝑎+𝑏𝐼1+𝑐𝐼2)𝑥  𝑐𝑜𝑠(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥 𝑑𝑥  

       

𝑢𝑁 = 𝑒(𝑎+𝑏𝐼1+𝑐𝐼2)𝑥    ⟹      𝑑𝑢𝑁 = (𝑎 + 𝑏𝐼1 + 𝑐𝐼2)𝑒(𝑎+𝑏𝐼1+𝑐𝐼2)𝑥  𝑑𝑥 

 

𝑑𝑣𝑁 = 𝑠𝑖𝑛(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥 𝑑𝑥  ⟹       𝑣𝑁 =
−1

𝑟 + 𝑠𝐼1 + 𝑡𝐼2

𝑐𝑜𝑠(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥 

                

∫ 𝑢𝑁  𝑑𝑣𝑁 = 𝑢𝑁 . 𝑣𝑁 − ∫ 𝑣𝑁  𝑑𝑢𝑁 

  

∫ 𝑒(𝑎+𝑏𝐼1+𝑐𝐼2)𝑥  𝑠𝑖𝑛(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥 𝑑𝑥 
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= (
−1

𝑟 + 𝑠𝐼1 + 𝑡𝐼2

) 𝑒(𝑎+𝑏𝐼1+𝑐𝐼2)𝑥  𝑐𝑜𝑠(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥

+ (
𝑎 + 𝑏𝐼1 + 𝑐𝐼2

𝑟 + 𝑠𝐼1 + 𝑡𝐼2

) ∫ 𝑒(𝑎+𝑏𝐼1+𝑐𝐼2)𝑥  𝑐𝑜𝑠(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥 𝑑𝑥    (∗) 

 

 by using integration by parts again to evaluate:  

 

∫ 𝑒(𝑎+𝑏𝐼1+𝑐𝐼2)𝑥  𝑐𝑜𝑠(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥 𝑑𝑥 

 

𝑢𝑁 = 𝑒(𝑎+𝑏𝐼1+𝑐𝐼2)𝑥    ⟹      𝑑𝑢𝑁 = (𝑎 + 𝑏𝐼1 + 𝑐𝐼2)𝑒(𝑎+𝑏𝐼1+𝑐𝐼2)𝑥  𝑑𝑥 
 

𝑑𝑣𝑁 = 𝑐𝑜𝑠(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥 𝑑𝑥  ⟹       𝑣𝑁 =
1

𝑟 + 𝑠𝐼1 + 𝑡𝐼2

𝑠𝑖𝑛(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥 

                

∫ 𝑢𝑁  𝑑𝑣𝑁 = 𝑢𝑁 . 𝑣𝑁 − ∫ 𝑣𝑁  𝑑𝑢𝑁 

      

∫ 𝑒(𝑎+𝑏𝐼1+𝑐𝐼2)𝑥  𝑐𝑜𝑠(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥 𝑑𝑥 

 

      = (
1

𝑟 + 𝑠𝐼1 + 𝑡𝐼2

) 𝑠𝑖𝑛(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥

+ (
𝑎 + 𝑏𝐼1 + 𝑐𝐼2

𝑟 + 𝑠𝐼1 + 𝑡𝐼2

) ∫ 𝑒(𝑎+𝑏𝐼1+𝑐𝐼2)𝑥  𝑠𝑖𝑛(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥 𝑑𝑥 

 

by substitution in (∗): 

 

∫ 𝑒(𝑎+𝑏𝐼1+𝑐𝐼2)𝑥  𝑠𝑖𝑛(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥 𝑑𝑥 

 

= (
−1

𝑟 + 𝑠𝐼1 + 𝑡𝐼2

) 𝑒(𝑎+𝑏𝐼1+𝑐𝐼2)𝑥  𝑐𝑜𝑠(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥

+ (
𝑎 + 𝑏𝐼1 + 𝑐𝐼2

𝑟 + 𝑠𝐼1 + 𝑡𝐼2

) [(
1

𝑟 + 𝑠𝐼1 + 𝑡𝐼2

) 𝑠𝑖𝑛(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥

+ (
𝑎 + 𝑏𝐼1 + 𝑐𝐼2

𝑟 + 𝑠𝐼1 + 𝑡𝐼2

) ∫ 𝑒(𝑎+𝑏𝐼1+𝑐𝐼2)𝑥  𝑠𝑖𝑛(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥 𝑑𝑥] 

 

= (
−1

𝑟 + 𝑠𝐼1 + 𝑡𝐼2

) 𝑒(𝑎+𝑏𝐼1+𝑐𝐼2)𝑥  𝑐𝑜𝑠(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥 + (
𝑎 + 𝑏𝐼1 + 𝑐𝐼2

(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)2
) 𝑠𝑖𝑛(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥

+ (
𝑎 + 𝑏𝐼1 + 𝑐𝐼2

𝑟 + 𝑠𝐼1 + 𝑡𝐼2

)
2

∫ 𝑒(𝑎+𝑏𝐼1+𝑐𝐼2)𝑥  𝑠𝑖𝑛(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥 𝑑𝑥 

 

⟹  (1 − (
𝑎 + 𝑏𝐼1 + 𝑐𝐼2

𝑟 + 𝑠𝐼1 + 𝑡𝐼2

)
2

) ∫ 𝑒(𝑎+𝑏𝐼1+𝑐𝐼2)𝑥  𝑠𝑖𝑛(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥 𝑑𝑥 

 

= (
−1

𝑟 + 𝑠𝐼1 + 𝑡𝐼2

) 𝑒(𝑎+𝑏𝐼1+𝑐𝐼2)𝑥  𝑐𝑜𝑠(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥 + (
𝑎 + 𝑏𝐼1 + 𝑐𝐼2

(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)2
) 𝑠𝑖𝑛(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥 

 

⟹  ∫ 𝑒(𝑎+𝑏𝐼1+𝑐𝐼2)𝑥  𝑠𝑖𝑛(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥 𝑑𝑥 
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= (
(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)2

(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)2 − (𝑎 + 𝑏𝐼1 + 𝑐𝐼2)2
) [(

−1

𝑟 + 𝑠𝐼1 + 𝑡𝐼2

) 𝑒(𝑎+𝑏𝐼1+𝑐𝐼2)𝑥  𝑐𝑜𝑠(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥

+ (
𝑎 + 𝑏𝐼1 + 𝑐𝐼2

(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)2
) 𝑠𝑖𝑛(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥 + 𝐶] 

 

We calculate the second integral by using the same method: 

 

∫ 𝑒(𝑎+𝑏𝐼1+𝑐𝐼2)𝑥  𝑐𝑜𝑠(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥 𝑑𝑥 

 

Example 3 

Find:  

∫ 𝑒(1−𝐼1+𝐼2)𝑥  𝑐𝑜𝑠(1 + 𝐼1 + 𝐼2)𝑥 𝑑𝑥 

Solution: 

 

𝑢𝑁 = 𝑒(1−𝐼1+𝐼2)𝑥    ⟹      𝑑𝑢𝑁 = (1 − 𝐼1 + 𝐼2)𝑒(1−𝐼1+𝐼2)𝑥  𝑑𝑥 
 

𝑑𝑣𝑁 = 𝑐𝑜𝑠(1 + 𝐼1 + 𝐼2)𝑥 𝑑𝑥  ⟹       𝑣𝑁 =
1

1 + 𝐼1 + 𝐼2

𝑠𝑖𝑛(1 + 𝐼1 + 𝐼2)𝑥 

                

∫ 𝑢𝑁  𝑑𝑣𝑁 = 𝑢𝑁 . 𝑣𝑁 − ∫ 𝑣𝑁  𝑑𝑢𝑁 

           

∫ 𝑒(1−𝐼1+𝐼2)𝑥  𝑐𝑜𝑠(1 + 𝐼1 + 𝐼2)𝑥 𝑑𝑥 

 

=
1

1 + 𝐼1 + 𝐼2

𝑒(1−𝐼1+𝐼2)𝑥𝑠𝑖𝑛(1 + 𝐼1 + 𝐼2)𝑥 − (
1 − 𝐼1 + 𝐼2

1 + 𝐼1 + 𝐼2

) ∫ 𝑒(1−𝐼1+𝐼2)𝑥  𝑠𝑖𝑛(1 + 𝐼1 + 𝐼2)𝑥  𝑑𝑥 (

∗) 

 

 By using integration by parts again to evaluate:  

 

∫ 𝑒(1−𝐼1+𝐼2)𝑥  𝑠𝑖𝑛(1 + 𝐼1 + 𝐼2)𝑥  𝑑𝑥  

 

       

𝑢𝑁 = 𝑒(1−𝐼1+𝐼2)𝑥    ⟹      𝑑𝑢𝑁 = (1 − 𝐼1 + 𝐼2)𝑒(1−𝐼1+𝐼2)𝑥  𝑑𝑥 
 

𝑑𝑣𝑁 = 𝑠𝑖𝑛(1 + 𝐼1 + 𝐼2)𝑥 𝑑𝑥  ⟹       𝑣𝑁 =
−1

1 + 𝐼1 + 𝐼2

𝑐𝑜𝑠(1 + 𝐼1 + 𝐼2)𝑥 

           

∫ 𝑒(1−𝐼1+𝐼2)𝑥  𝑠𝑖𝑛(1 + 𝐼1 + 𝐼2)𝑥  𝑑𝑥 

 

=
−1

1 + 𝐼1 + 𝐼2

𝑒(1−𝐼1+𝐼2)𝑥𝑐𝑜𝑠(1 + 𝐼1 + 𝐼2)𝑥 + (
1 − 𝐼1 + 𝐼2

1 + 𝐼1 + 𝐼2

) ∫ 𝑒(1−𝐼1+𝐼2)𝑥  𝑐𝑜𝑠(1 + 𝐼1 + 𝐼2)𝑥 𝑑𝑥  

 

by substitution in (∗): 

 

∫ 𝑒(1−𝐼1+𝐼2)𝑥  𝑐𝑜𝑠(1 + 𝐼1 + 𝐼2)𝑥 𝑑𝑥 
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=
1

1 + 𝐼1 + 𝐼2

𝑒(1−𝐼1+𝐼2)𝑥𝑠𝑖𝑛(1 + 𝐼1 + 𝐼2)𝑥

− (
1 − 𝐼1 + 𝐼2

1 + 𝐼1 + 𝐼2

) [
−1

1 + 𝐼1 + 𝐼2

𝑒(1−𝐼1+𝐼2)𝑥𝑐𝑜𝑠(1 + 𝐼1 + 𝐼2)𝑥

+ (
1 − 𝐼1 + 𝐼2

1 + 𝐼1 + 𝐼2

) ∫ 𝑒(1−𝐼1+𝐼2)𝑥  𝑐𝑜𝑠(1 + 𝐼1 + 𝐼2)𝑥 𝑑𝑥 ] 

 

=
1

1 + 𝐼1 + 𝐼2

𝑒(1−𝐼1+𝐼2)𝑥𝑠𝑖𝑛(1 + 𝐼1 − 2𝐼2)𝑥 +
1 − 𝐼1 + 𝐼2

(1 + 𝐼1 + 𝐼2)2
𝑒(1−𝐼1+𝐼2)𝑥  𝑐𝑜𝑠(1 + 𝐼1 + 𝐼2)𝑥

− (
1 − 𝐼1 + 𝐼2

1 + 𝐼1 + 𝐼2

)
2

∫ 𝑒(1−𝐼1+𝐼2)𝑥  𝑐𝑜𝑠(1 + 𝐼1 + 𝐼2)𝑥 𝑑𝑥 

 

⟹ (1 + (
1 − 𝐼1 + 𝐼2

1 + 𝐼1 + 𝐼2

)
2

) ∫ 𝑒(1−𝐼1+𝐼2)𝑥  𝑐𝑜𝑠(1 + 𝐼1 + 𝐼2)𝑥 𝑑𝑥  

 

=
1

1 + 𝐼1 + 𝐼2

𝑒(1−𝐼1+𝐼2)𝑥𝑠𝑖𝑛(1 + 𝐼1 + 𝐼2)𝑥 +
1 − 𝐼1 + 𝐼2

(1 + 𝐼1 + 𝐼2)2
𝑒(1−𝐼1+𝐼2)𝑥  𝑐𝑜𝑠(1 + 𝐼1 + 𝐼2)𝑥 

 

 

⟹ (1 + (1 −
2

3
𝐼1)

2

) ∫ 𝑒(1−𝐼1+𝐼2)𝑥  𝑐𝑜𝑠(1 + 𝐼1 + 𝐼2)𝑥 𝑑𝑥  

 

=
1

1 + 𝐼1 + 𝐼2

𝑒(1−𝐼1+𝐼2)𝑥𝑠𝑖𝑛(1 + 𝐼1 + 𝐼2)𝑥 +
1 − 𝐼1 + 𝐼2

1 + 5𝐼1 + 3𝐼2

𝑒(1−𝐼1+𝐼2)𝑥  𝑐𝑜𝑠(1 + 𝐼1 + 𝐼2)𝑥 

 

⟹ (1 −
8

9
𝐼1) ∫ 𝑒(1−𝐼1+𝐼2)𝑥  𝑐𝑜𝑠(1 + 𝐼1 + 𝐼2)𝑥 𝑑𝑥  

 

=
1

1 + 𝐼1 + 𝐼2

𝑒(1−𝐼1+𝐼2)𝑥𝑠𝑖𝑛(1 + 𝐼1 + 𝐼2)𝑥 +
1 − 𝐼1 + 𝐼2

1 + 5𝐼1 + 3𝐼2

𝑒(1−𝐼1+𝐼2)𝑥  𝑐𝑜𝑠(1 + 𝐼1 + 𝐼2)𝑥 

 

 

=
1

1 −
8
9

𝐼1

[(1 −
1

6
𝐼1 −

1

2
𝐼2) 𝑒(1−𝐼1+𝐼2)𝑥𝑠𝑖𝑛(1 + 𝐼1 + 𝐼2)𝑥

+ (1 −
7

18
𝐼1 −

1

2
𝐼2) 𝑒(1−𝐼1+𝐼2)𝑥  𝑐𝑜𝑠(1 + 𝐼1 + 𝐼2)𝑥] + 𝐶 

 

 

= (1 + 8𝐼1) [(1 −
1

6
𝐼1 −

1

2
𝐼2) 𝑒(1−𝐼1+𝐼2)𝑥𝑠𝑖𝑛(1 + 𝐼1 + 𝐼2)𝑥 + (1 −

7

18
𝐼1 −

1

2
𝐼2) 𝑒(1−𝐼1+𝐼2)𝑥  𝑐𝑜𝑠(1 +

𝐼1 + 𝐼2)𝑥] + 𝐶  

 

 state4:  

 

∫(𝑎 + 𝑏𝐼1 + 𝑐𝐼2)𝑥𝑛  𝑙𝑛 (𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥 𝑑𝑥  

 

𝑢𝑁 = 𝑙𝑛 (𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥   ⟹   𝑑𝑢𝑁 =
1

𝑥
 𝑑𝑥 

 

𝑑𝑣𝑁 = (𝑎 + 𝑏𝐼1 + 𝑐𝐼2)𝑥𝑛  𝑑𝑥    ⟹       𝑣𝑁 =
𝑎 + 𝑏𝐼1 + 𝑐𝐼2

𝑛 + 1
𝑥𝑛+1 
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∫ 𝑢𝑁  𝑑𝑣𝑁 = 𝑢𝑁 . 𝑣𝑁 − ∫ 𝑣𝑁  𝑑𝑢𝑁 

  

           

∫(𝑎 + 𝑏𝐼1 + 𝑐𝐼2)𝑥𝑛  𝑙𝑛 (𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥 𝑑𝑥

= (
𝑎 + 𝑏𝐼1 + 𝑐𝐼2

𝑛 + 1
) 𝑥𝑛+1. 𝑙 𝑛(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥 −

𝑎 + 𝑏𝐼1 + 𝑐𝐼2

𝑛 + 1
∫

1

𝑥
𝑥𝑛+1 𝑑𝑥 

 

= (
𝑎 + 𝑏𝐼1 + 𝑐𝐼2

𝑛 + 1
) 𝑥𝑛+1. 𝑙 𝑛(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥 −

𝑎 + 𝑏𝐼1 + 𝑐𝐼2

(𝑛 + 1)2
𝑥𝑛+1 + 𝐶 

 

= (
𝑎 + 𝑏𝐼1 + 𝑐𝐼2

𝑛 + 1
) [𝑥𝑛+1. 𝑙 𝑛(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥 −

1

𝑛 + 1
𝑥𝑛+1] + 𝐶 

 

 

Example 4 

Find:  

∫(1 + 3𝐼1 − 2𝐼2)𝑥 𝑙𝑛(2 + 𝐼1 + 𝐼2)𝑥 𝑑𝑥 

Solution: 

 

𝑢𝑁 = 𝑙𝑛(2 + 𝐼1 + 𝐼2)𝑥 ⟹   𝑑𝑢𝑁 =
1

𝑥
 𝑑𝑥 

 

𝑑𝑣𝑁 = (1 + 3𝐼1 − 2𝐼2)𝑥 𝑑𝑥    ⟹      𝑣𝑁 =
1

2
(1 + 3𝐼1 − 2𝐼2)𝑥2 

      

∫ 𝑢𝑁  𝑑𝑣𝑁 = 𝑢𝑁 . 𝑣𝑁 − ∫ 𝑣𝑁  𝑑𝑢𝑁 

 

           

∫(1 + 3𝐼1 − 2𝐼2)𝑥 𝑙𝑛(2 + 𝐼1 + 𝐼2)𝑥 𝑑𝑥

=
1

2
(1 + 3𝐼1 − 2𝐼2)𝑥2. 𝑙𝑛(2 + 𝐼1 + 𝐼2)𝑥 −

1

2
(1 + 3𝐼1 − 2𝐼2) ∫ 𝑥𝑑𝑥 

 

=
1

2
(1 + 3𝐼1 − 2𝐼2)𝑥2𝑙𝑛(2 + 𝐼1 + 𝐼2)𝑥 −

1

2
(1 + 3𝐼1 − 2𝐼2).

𝑥2

2
 

 

= (
1

2
+

3

2
𝐼1 − 𝐼2) [𝑥2𝑙𝑛(2 + 𝐼1 + 𝐼2)𝑥 −

1

2
𝑥2] + 𝐶 

 

Remark: 

 

To find the following integrals: 

 

1) ∫(𝑎 + 𝑏𝐼1 + 𝑐𝐼2)𝑥𝑛  𝑠𝑖𝑛−1(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥 𝑑𝑥 

 

2) ∫(𝑎 + 𝑏𝐼1 + 𝑐𝐼2)𝑥𝑛 𝑐𝑜𝑠−1 (𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥 𝑑𝑥 

 

3) ∫(𝑎 + 𝑏𝐼1 + 𝑐𝐼2)𝑥𝑛  𝑡𝑎𝑛−1(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥 𝑑𝑥  
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we are following the same state 4, whereas: 

 

 

𝑢 =  𝑠𝑖𝑛−1(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥    𝑂𝑟   𝑐𝑜𝑠−1(𝑟 + 𝑠𝐼1 + 𝑡𝐼2)𝑥   𝑂𝑟   𝑡𝑎𝑛−1(𝑟 + 𝑠𝐼1

+ 𝑡𝐼2)𝑥  
 

  𝑎𝑛𝑑  𝑑𝑣 = (𝑎 + 𝑏𝐼1 + 𝑐𝐼2)𝑥𝑛  𝑑𝑥        
 

Example 5 

 

Find:  

∫(2 − 2𝐼1 − 𝐼2)𝑥 𝑡𝑎𝑛−1(1 − 𝐼1 + 2𝐼2)𝑥 𝑑𝑥 

Solution: 

 

𝑢𝑁 = 𝑡𝑎𝑛−1(1 − 𝐼1 + 2𝐼2)𝑥 ⟹   𝑑𝑢𝑁 =
1 − 𝐼1 + 2𝐼2

1 + (1 − 5𝐼1 + 8𝐼2)𝑥2
 𝑑𝑥 

 

𝑑𝑣𝑁 = (2 − 2𝐼1 − 𝐼2)𝑥 𝑑𝑥    ⟹      𝑣𝑁 =
1

2
(2 − 2𝐼1 − 𝐼2)𝑥2 

      

∫ 𝑢𝑁  𝑑𝑣𝑁 = 𝑢𝑁 . 𝑣𝑁 − ∫ 𝑣𝑁  𝑑𝑢𝑁 

           

∫(2 − 2𝐼1 − 𝐼2)𝑥 𝑡𝑎𝑛−1(1 − 𝐼1 + 2𝐼2)𝑥 𝑑𝑥 

 

=
1

2
(2 − 2𝐼1 − 𝐼2)𝑥2 𝑡𝑎𝑛−1(1 − 𝐼1 + 2𝐼2)𝑥

−
1

2
(2 − 2𝐼1 − 𝐼2)(1 − 𝐼1 + 2𝐼2) ∫

𝑥2

1 + (1 − 5𝐼1 + 8𝐼2)𝑥2
 𝑑𝑥 

 

=
1

2
(2 − 2𝐼1 − 𝐼2)𝑥2 𝑡𝑎𝑛−1(1 − 𝐼1 + 2𝐼2)𝑥

−
2 − 5𝐼1 + 𝐼2

2
∫ (

1

1 − 5𝐼1 + 8𝐼2

−
1

1 − 5𝐼1 + 8𝐼2

 
1

1 + (1 − 5𝐼1 + 8𝐼2)𝑥2
)  𝑑𝑥 

 

=
1

2
(2 − 2𝐼1 − 𝐼2)𝑥2 𝑡𝑎𝑛−1(1 − 𝐼1 + 2𝐼2)𝑥

−
2 − 5𝐼1 + 𝐼2

2
(

1

1 − 5𝐼1 + 8𝐼2

𝑥 −
1 − 𝐼1 + 2𝐼2

1 − 5𝐼1 + 8𝐼2

  𝑡𝑎𝑛−1(1 − 𝐼1 + 2𝐼2)𝑥) + 𝐶 

 

= (1 − 𝐼1 −
1

2
𝐼2) 𝑥2 𝑡𝑎𝑛−1(1 − 𝐼1 + 2𝐼2)𝑥

− (1 −
5

2
𝐼1 +

1

2
𝐼2) [(1 −

5

36
𝐼1 +

8

9
𝐼2) 𝑥

− (1 −
1

6
𝐼1 −

2

3
𝐼2) 𝑡𝑎𝑛−1(1 − 𝐼1 + 2𝐼2)𝑥] + 𝐶 

2.2 Tabular method 

We use this method to find the integrals by parts in the states 1 and 2, as following:  

 Differentiate the polynomial function, and we repeat that until we get to zero. 



Neutrosophic Sets and Systems, Vol. 68, 2024     163  

 

 

Yaser Ahmad Alhasan, Ahmad Abdullah Almekhlef, Mohamed Elghazali Ali Mohieldin Mohamed, and Raja Abdullah 
Abdulfatah, The indefinite refined neutrosophic integrals by parts 

 Integrate the second function, repeat that, and stop once we reach the zero that 

resulted from the differentiation. 

 Put the derivative products in one column and the integral products in the column 

that corresponds to it. 

 Draw an arrow from each first-column entry to the second-column entry one row 

below it. 

 Beginning with a +, label the arrows with alternating + and − signs.  

 Compute the product of the expressions at the tip and tail of each arrow, and then 

multiply the result by + or −, depending on the arrow's sign. 

 

Example 6 

         We can find the following integral by using tabular method: 

 

∫(1 + 3𝐼1 − 2𝐼2)𝑥2 𝑒(2+𝐼1+𝐼2)𝑥  𝑑𝑥 

 

Derivation Integration 

(+) (1 + 3𝐼1 − 2𝐼2)𝑥2 

 

𝑒(2+𝐼1+𝐼2)𝑥 

(−)  2(1 + 3𝐼1 − 2𝐼2)𝑥 
 

1

2 + 𝐼1 + 𝐼2

𝑒(2+𝐼1+𝐼2)𝑥 

(+) 2(1 + 3𝐼1 − 2𝐼2) 
 

1

4 + 7𝐼1 + 5𝐼2

𝑒(2+𝐼1+𝐼2)𝑥 

0 
 

1

16 + 175𝐼1 + 65𝐼2

𝑒(2+𝐼1+𝐼2)𝑥 

 

hence: 

 

∫(1 + 3𝐼1 − 2𝐼2)𝑥2 𝑒(2+𝐼1+𝐼2)𝑥  𝑑𝑥 

 

= (
1 + 3𝐼1 − 2𝐼2

2 + 𝐼1 + 𝐼2

) 𝑥2𝑒(2+𝐼1+𝐼2)𝑥 − (
4 + 6𝐼1 − 4𝐼2

4 + 7𝐼1 + 5𝐼2

) 𝑥𝑒(2+𝐼1+𝐼2)𝑥 + (
4 + 6𝐼1 − 4𝐼2

16 + 175𝐼1 + 65𝐼2

) 𝑒(2+𝐼1+𝐼2)𝑥 

 

= (
1

4
+

5

12
𝐼1 −

5

12
𝐼2) 𝑥2𝑒(2+𝐼1+𝐼2)𝑥 − (1 +

3

8
𝐼1 − 𝐼2) 𝑥𝑒(2+𝐼1+𝐼2)𝑥 + (

1

4
+

3

128
𝐼1 −

1

4
𝐼2) 𝑒(2+𝐼1+𝐼2)𝑥 + 𝐶 

 

Example 7 

We can find the following integral by using tabular method: 

 

∫(𝐼1 + 𝐼2)𝑥 𝑐𝑜𝑠(1 + 𝐼1 + 𝐼2)𝑥  𝑑𝑥 

 

derivation integration 

(+) (𝐼1 + 𝐼2)𝑥 
 

𝑐𝑜𝑠(1 + 𝐼1 + 𝐼2)𝑥 

(−)  (𝐼1 + 𝐼2) 
 

1

1 + 𝐼1 + 𝐼2

𝑠𝑖𝑛(1 + 𝐼1 + 𝐼2)𝑥 

(+)     0 

 

−1

1 + 5𝐼1 + 3𝐼2

𝑐𝑜𝑠(1 + 𝐼1 + 𝐼2)𝑥 
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hence: 

∫(𝐼1 + 𝐼2)𝑥 𝑐𝑜𝑠(1 + 𝐼1 + 𝐼2)𝑥  𝑑𝑥 =
𝐼1 + 𝐼2

1 + 𝐼1 + 𝐼2

𝑥. 𝑠𝑖𝑛(1 + 𝐼1 + 𝐼2)𝑥 +
𝐼1 + 𝐼2

1 + 5𝐼1 + 3𝐼2

𝑐𝑜𝑠(1 + 𝐼1 + 𝐼2)𝑥 

 

= (
1

6
𝐼1 +

1

2
𝐼2) 𝑥. 𝑠𝑖𝑛(1 + 𝐼1 + 𝐼2)𝑥 + (−

1

36
𝐼1 +

1

4
𝐼2) 𝑐𝑜𝑠(1 + 𝐼1 + 𝐼2)𝑥 

3. Conclusions  

This paper is an extension of the papers that were presented on the indefinite refined 

neutrosophic integrals. The importance of this paper lies in that it presented the indefinite refined 

neutrosophic integrals by parts and the Tobler method, as we found that applying the Tobler method 

is easier to calculate the indefinite refined neutrosophic integrals than the indefinite refined 

neutrosophic integrals by parts for some cases.      
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Abstract: The best way to deal with complicated life scenarios that accompany the decision-making 

process is to update previous concepts constantly. Therefore, researchers must constantly discover 

powerful mathematical tools that suit the accompanying circumstances. In this regard, we combine both 

soft set, neutrosophic set, and interval setting under Q-two-dimensional universal information to introduce 

a new hybrid innovative model called interval valued-Q-neutrosophic soft sets. The core goal of this model 

is to keep the features of previous models like soft sets, neutrosophic sets, and Q-Fuzzy sets in dealing with 

the lack of uncertainty and neutrality associated with real-life issues. This new approach allows decision-

makers to employ interval-valued form with Q-two-dimensional universal information, which provides 

them with more stability and feasibility in describing uncertain information more completely and 

accurately. Under the our propose model, we discuss effectively set-theory operations such as subset, 

union, intersection, complement, AND operation, and OR operation for interval valued-Q-neutrosophic 

soft sets, as well as some special operations like the necessity and possibility operations of an interval 

valued-Q-neutrosophic soft sets. In addition, we presented many properties supported by numerical 

examples that explain how they work. Finally, this new model has been successfully tested in dealing with 

one of the medical diagnostic problems based on hypothetical data for a respiratory disease. Building an 

algorithm based on the aggregation operator for interval valued-Q-neutrosophic soft set data solved this 

issue (i.e., selecting the optimal alternative). 

 

Keywords: fuzzy set; neutrosophic set; soft set; Q- neutrosophic set, Q- neutrosophic soft set 

 

 

1. Introduction 

In our daily lives, numerous complicated issues contain diverse uncertainties and vagueness in 

human thinking. The decision-making process associated with human thinking is affected by these 

issues, which can have a significant impact on the effectiveness of the decision-making process, 

leading to suboptimal or even incorrect decisions. To address these provocations, Zadeh [1] first 

initiated a mathematical instrument called fuzzy set (FS) as a mathematical structure consisting of 

one function called the membership function (MF) or truth- MF that works on universal discourse U 

as a domain and close intervals [0, 1] as a codomain. But from a logical standpoint, it indicates that 

for every degree of judgment with a degree of truthfulness, there is another degree called the degree 

mailto:somar@tu.edu.iq
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of falsehood or the degree of diss truthfulness. Accordingly, Atanassov [2] introduced another 

concept called intuitionistic fuzzy sets (IFS) by adding a second function called the nonmembership 

function (NMF), or falsehood-MF. It works in parallel with the truth-MF of correctness through the 

manifestations of falsehood-MF. Both FS and IFS show better accuracy levels in dealing with different 

issues in real-life applications. Later, researchers realized that the membership and non-membership 

values of an FS and IFS are insufficient for dealing with ambiguous indefinite, and inconsistent 

information in a real-world situation. Based on this need, Smarandache [3] developed another 

mathematical idea called the neutrosophic set (NS) as a generalization of FS and IFS. This concept is 

related to three functions MF, NMF and indeterminacy-membership function (IMF), each of which 

starts from 𝑈 and rests in the closed interval [0,1]. This idea attracted the curiosity of many scholars 

around the world and pushed them to applied in many areas, including decision-making, machine 

learning, pattern recognition, medical diagnosis, market prediction, and image processing. From a 

scientific point of view, the degree of truth, falsity, and indeterminacy that exist in all the models 

mentioned above are organized into one single value. Still, sometimes in real situations, these 

memberships are uncertain, and it is hard for an expert 

to express their certainty with a single value. To clarify this issue, consider this example: when 

you ask someone about the expected temperature for tomorrow, it is challenging to organize this 

degree immediately with a single value, but when he or she puts this expected degree in the form of 

an interval value, this person will find it easy to guess the desired degree. As a result, many 

researchers have reorganized the above models into interval form to make them more flexible and 

adaptable for addressing real-life problems that include uncertain, unpredictable, and incomplete 

information. For instance, the notion of an interval neutrosophic set (INS) has been proposed by 

Wang et al. [4] as an extension of an interval fuzzy set (IVFS) [5] and interval intuitionistic fuzzy set 

(IVIFS) [6] and they also give the set-theoretic operators of INS. The INS can independently represent 

the truth-membership degree, indeterminacy-membership degree, and falsity-membership degree, 

all of them in interval form. So, many investigators have studied it in depth and used it in many areas, 

such as making decisions, recognizing patterns, data mining, predicting the market, machine 

learning, and image processing. Molodtsov, on the other hand, pointed out that none of the above-

mentioned models have good parameterization of the alternatives. This makes it hard to describe the 

alternatives to a problem because these parameters cannot be specified well enough. To address these 

difficulties, Molodtsov [7] came up with a soft set (SS) as a powerful parameter tool to deal with these 

problems.  

 

This concept (SS), along with the concepts above (FS, IFS, NS), created a storm of important 

research work, for instance: Cagman et al. [8] introduced the fuzzy soft set (FSS) concept and 

provided its operations and properties. Following them, Maji [9] introduced neutrosophic soft set 

and its operations and properties. Deli [10] generalises the notions of SS and NS to interval-NSs under 

interval form.  Saber et al. [11] started the research on the topological-NS information of soft sets by 

introducing a new approach called single-valued neutrosophic soft topological space. In complex 

spaces, a lot of research has been introduced [12-20]. 

1.1. Research gap: the fuzzy set environment and its extension lack the ability to handle two-

dimensional information that is available in universal discourse 𝑈. For example, if we consider 

that 𝑈  contains three patients, 𝑢1 , 𝑢2 , and 𝑢3 , who are suspected of being infected with a 

disease, it is difficult to describe their condition through a single object (one dimension). This 

motivates Adam and Hassan [21] to propose new strategies when they build a new model of Q-

fuzzy sets (Q-FSs) to serve uncertainty and two-dimensionality simultaneously. After that, 

Broumi [22] extended to a Q-intuitionistic fuzzy soft set by combining IFSs and SSs by adding a 

two-dimensional non-membership function. These models are an extension of FSs and IFSs, so it 

is not feasible to deal with uncertain information that is saturated with positions of neutrality 

and ambiguity. To address this aspect, recently Abu Qamar and Hassan [23] established the 

notion of Q-neutrosophic soft sets (Q-NSSs) as a generalisation of NSSs and Q-FSs by upgrading 
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the membership functions of NSSs to two dimensions. This approach has good capabilities 

compared to the works mentioned in this literature, but the outputs of this model are single 

values. As we mentioned previously, these values constitute an obstacle for the decision-maker 

and do not give him sufficient freedom to build numerical data that describes the information of 

the trouble to be clear up. 

Moreover, in interactions process with the concepts described above and as a powerful tool, 

many researchers have used a technical known as Aggregation Operators (AO) to deal with various 

fields. This powerful tool allows us to summarize the data and data exploration emerging from the 

analysis of the problem using the above concepts, condense it, and extract the values with a clear 

meaning, thus facilitating the task of the user (decision maker) in the process of making clearly 

informed decisions. Xu [24] developed a new algorithm to solve the DM problem using AO for IFS 

environments. Chen and Ye [25] extend the Dombi Weighted AO (DWAO) for single-valued 

neutrosophic numbers (SVNNs) using the operations of both the Dombi T-norm and T-conorm and 

employ it in solving some real-life applications. Liu and Tang [26] generalised AO in interval-valued 

neutrosophic seting, and they showed their application to solve decision-making. Zulqarnain et al. 

[27] proposed the generalised aggregate operators on soft computing in a neutrosophic setting. Al-

Sharqi et al. used this tool with many concepts within the fuzzy environment, such as fuzzy hypersoft 

[28], q-rung orthopair fuzzy neutrosophic valued [29], neutrosophic soft matrix [30], and bipolar 

neutrosophic hypersoft setting [31], and they employed all these concepts with AO in solving 

different real-life applications [32-35]. 

1.2. Novelity and Contributions: This manuscript aimed to suggest techniques a new idea called IV-

Q-NSSs, which stands for interval-valued Q-neutrosophic soft sets. These are a more developed 

form of Q-NSSs, and each membership function is unique to Q-NSSs given in interval form. This 

format gives the user more freedom and efficiency when dealing with everyday scenarios, 

especially those saturated with neutral, two-dimensional uncertainty information. 

 

The main contributions shown in this work that were made to achieve these objectives are: 

i. A new technique (IV-Q-NSSs) is proposed to contain the effects of uncertainty information in 

two-dimensional. 

ii. To demonstrate the theoretical side of this model, we presented the basic operations, supported 

by an illustrative numerical example. In addition to presenting the basic properties and theories 

of IV-Q-NSSs. 

iii. On the applied side, these techniques have been added to solve one of the decision-making 

problems in the medical field by proposing a multi-step algorithm that works on IV-Q-NSS 

data. 

1.3. The following diagram presents the stand down of the paper: 
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2. Preliminaries 

In this part, we recollect some critical consepts related to our proposed approach like FS, Q-FS, 

SS, and NS. 

Definition 2.1. [1] Assume that 𝔘 = {𝔲1, 𝔲2, 𝔲3,… , 𝔲𝓃} be the initial points space(non-empty  

universal set). Then an FS ℱ on 𝔘 is defined by following form:  

ℱ = {𝔲𝑗 , �̂�
𝑡(𝔲𝑗)|𝔲𝑗 ∈ 𝔘} 

Where ℱ  is a mapping defined as ℱ:𝔘 → [0,1]  such that �̂�𝑡 ∈ [0,1]  and called truth 

membership function (TMF). 

Definition 2.2. [21] Assume that 𝔘 = {𝔲1, 𝔲2, 𝔲3,… , 𝔲𝓃} be the initial points space(non-empty  

universal set) and 𝔔 = {𝔮1, 𝔮2, 𝔮3, … , 𝔮𝓃}  be nonempty set. Then an Q-FS ℱ𝔔  on the order pair 

(𝔘,𝔔)is defined by following form:  

ℱ𝔔 = {(𝑢, 𝔮), �̂�
𝑡(�̂�, �̆�)|(�̂�, �̆�) ∈ 𝔘 ×𝔔} 

Where ℱ is a mapping defined as ℱ𝔔: 𝔘 × 𝔔 → [0,1] such that �̂�𝔔
𝑡 ∈ [0,1] and called Q-truth 

membership function (TMF). 

Definition 2.3. [3] Assume that 𝔘 = {𝔲1, 𝔲2, 𝔲3,… , 𝔲𝓃} be the initial points space(non-empty  

universal set). Then an NS 𝑁 on 𝔘 is defined by following form:  

N = {𝔲𝑗 , �̂�
𝑡(𝔲𝑗), �̂�

𝑖(𝔲𝑗), �̂�
𝑓(𝔲𝑗)|𝔲𝑗 ∈ 𝔘} 

Where N is a mapping defined as N:𝔘 → [0,1]  such that �̂�𝑡(𝔲𝑗), �̂�
𝑖(𝔲𝑗), �̂�

𝑓(𝔲𝑗) ∈ [0,1]  and 

named truth membership function (TMF), neutrality membership function (NMF), and falsity 

membership function (FMF) with stander condition 0 ≤ �̂�𝑡(𝔲𝑗) + �̂�
𝑖(𝔲𝑗) + �̂�

𝑓(𝔲𝑗) ≤ 1. 

Definition 2.4. [24] Assume that 𝔘 = {𝔲1, 𝔲2, 𝔲3,… , 𝔲𝓃} be the initial points space(non-empty  

universal set). Then an Q-NS 𝑁 on (𝔘 ×𝔔)is defined by following form:  

N𝔔 = {𝔲𝑗 , �̂�𝔔
𝑡 (𝑢, 𝔮), �̂�𝔔

𝔦 (𝑢, 𝔮), �̂�𝔔
𝔣 (𝑢, 𝔮)|(𝑢, 𝔮) ∈ 𝔘 ×𝔔} 

Where N𝔔  is a mapping defined as N𝔔:𝔘 × 𝔔 → [0,1] such that �̂�𝔔
𝑡 (𝑢, 𝔮), �̂�𝔔

𝔦 (𝑢, 𝔮), �̂�𝔔
𝔣 (𝑢, 𝔮) ∈

[0,1] and called truth membership function (TMF), neutrality membership function (NMF), and 

falsity membership function (FMF) with stander condition 0 ≤ �̂�𝔔
𝑡 (𝑢, 𝔮) + �̂�𝔔

𝔦 (𝑢, 𝔮) + �̂�𝔔
𝔣 (𝑢, 𝔮) ≤ 1. 

  

Definition 2.5. [10] Assume that 𝔘 = {𝔲1, 𝔲2, 𝔲3,… , 𝔲𝓃} be the initial points space(non-empty  

universal set). Then an IVNS 𝑁 on 𝔘 is defined by following form:  

N = {𝔲𝑗 , �̂�
𝑡(𝔲𝑗), �̂�

𝑖(𝔲𝑗), �̂�
𝑓(𝔲𝑗)|𝔲𝑗 ∈ 𝔘} 

Where �̂�𝑡(𝔲𝑗) = [�̂�
𝑡,𝑙(𝔲𝑗), �̂�

𝑡,𝑢(𝔲𝑗)], �̂�
𝑖(𝔲𝑗) = [�̂�

𝑖,𝑙(𝔲𝑗), �̂�
𝑖,𝑢(𝔲𝑗)] and �̂�𝑓(𝔲𝑗) = [�̂�

𝑓,𝑙(𝔲𝑗), �̂�
𝑓,𝑢(𝔲𝑗)] 

Such that the domen of these terms is 𝔘 and the co-domen is [0,1] and �̂�𝑡,𝑙(𝔲𝑗), �̂�
𝑡,𝑢(𝔲𝑗) are lower 

and upper of TMF, �̂�𝑖,𝑙(𝔲𝑗), �̂�
𝑖,𝑢(𝔲𝑗) are lower and upper of IMF and �̂�𝑓,𝑙(𝔲𝑗), �̂�

𝑓,𝑢(𝔲𝑗) are lower and 

upper of FMF, with two stander conditions  0 ≤ �̂�𝑡,𝑙(𝔲𝑗) + �̂�
𝑖,𝑙(𝔲𝑗) + �̂�

𝑓,𝑙(𝔲𝑗) ≤ 1 and 0 ≤ �̂�𝑡.𝑢(𝔲𝑗) +

�̂�𝑖,𝑢(𝔲𝑗) + �̂�
𝑓,𝑢(𝔲𝑗) ≤ 1. 

 

Definition 2.6. [10] Assume that 

𝑁1 = {𝔲𝑗 , �̂�1
𝑡(𝔲𝑗), �̂�1

𝑖(𝔲𝑗), �̂�1
𝑓(𝔲𝑗)|𝔲𝑗 ∈ 𝔘}, 𝑁2 = {𝔲𝑗 , �̂�2

𝑡(𝔲𝑗), �̂�2
𝑖(𝔲𝑗), �̂�2

𝑓(𝔲𝑗)|𝔲𝑗 ∈ 𝔘} be two INS on initial 

points space(non-empty  universal set) 𝔘  

where �̂�1
𝑡(𝔲𝑗) = [�̂�1

𝑡,𝑙(𝔲𝑗), �̂�1
𝑡,𝑢(𝔲𝑗)], �̂�1

𝑖(𝔲𝑗) = [�̂�1
𝑖,𝑙(𝔲𝑗), �̂�1

𝑖,𝑢(𝔲𝑗)] and �̂�1
𝑓
(𝔲𝑗) = [�̂�1

𝑓,𝑙
(𝔲𝑗), �̂�1

𝑓,𝑢
(𝔲𝑗)] and 

 �̂�2
𝑡(𝔲𝑗) = [�̂�2

𝑡,𝑙(𝔲𝑗), �̂�2
𝑡,𝑢(𝔲𝑗)], �̂�2

𝑖(𝔲𝑗) = [�̂�2
𝑖,𝑙(𝔲𝑗), �̂�2

𝑖,𝑢(𝔲𝑗)] and �̂�2
𝑓(𝔲𝑗) = [�̂�2

𝑓,𝑙(𝔲𝑗), �̂�2
𝑓,𝑢(𝔲𝑗)] Then,  

i. Complement  𝑁1
𝐶 = {𝔲𝑗 , �̂�1

𝑓(𝔲𝑗), 1 − �̂�1
𝑖(𝔲𝑗), �̂�1

𝑡(𝔲𝑗)|𝔲𝑗 ∈ 𝔘} 

ii. Union: 𝑁1 ∪ 𝑁2 = {𝔲𝑗 ,𝑚𝑎𝑥[�̂�1
𝑡(𝔲𝑗), �̂�2

𝑡(𝔲𝑗)],min[�̂�1
𝑖(𝔲𝑗), �̂�2

𝑖(𝔲𝑗)],min[�̂�1
𝑓(𝔲𝑗), �̂�2

𝑓(𝔲𝑗)]|𝔲𝑗 ∈ 𝔘}. 

iii. Intersection: 𝑁1 ∩𝑁2 = {𝔲𝑗 ,𝑚𝑖𝑛[�̂�1
𝑡(𝔲𝑗), �̂�2

𝑡(𝔲𝑗)],max[�̂�1
𝑖(𝔲𝑗), �̂�2

𝑖(𝔲𝑗)],max[�̂�1
𝑓(𝔲𝑗), �̂�2

𝑓(𝔲𝑗)]|𝔲𝑗 ∈ 𝔘}. 

iv. Subset 𝑁1 ⊆ 𝑁2 if �̂�1
𝑡(𝔲𝑗) ≤ �̂�2

𝑡(𝔲𝑗), �̂�1
𝑖(𝔲𝑗) ≥ �̂�2

𝑖(𝔲𝑗), �̂�1
𝑓
(𝔲𝑗) ≥ �̂�2

𝑓
(𝔲𝑗). 
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Definition 2.7. [7] A pair (ℱ, Α̅ ⊆ ℰ ) is named SSs over a non-empty universe of discourse 𝔘 if 

ℱ: Α̅ ⊆ ℰ ⟶ 𝑃(𝔘), such that the term 𝑃(𝔘) indicate the power set of 𝔘. 

 

3. The Mathematical Structure of Interval Valued-Q-neutrosophic Soft Sets (IV-Q-NSSs) 

 

This section proposes the general framework definition of our concept IV-Q-NSS with 

fundamental operations like empty IV-Q-NSS, absolute IV-Q-NSS, subset IV-Q-NSS, and equality 

between two IV-Q-NSS. Also, to clarify our model more, we will give some numerical examples. 

 

Definition 3.1. Assume that 𝔘 = {𝔲1, 𝔲2, 𝔲3, … , 𝔲𝓃} be the initial points space(non-empty  

universal set), 𝔔 ≠ ∅, 𝑖𝑒  𝔔 = {𝔮1, 𝔮1, 𝔮1,… , 𝔮𝓃}  and ℰ = {ℯ1, ℯ2, ℯ3, … , ℯ𝓃}  be a set of attribute 

(parameters set). Let  Α̅ ⊆ ℰ be sub set of attribute set , then a duet (�̂�𝔔, Α̅) is called a interval-valued 

𝔔-neutrosophic soft set over the initial points space (non-empty universal set) 𝔘, where �̂�𝔔  given 

as following mapping  

�̂�𝔔: Α̅ → 𝔔− 𝐼𝑉𝑁𝑆(𝔘) 

Then ,the 𝐼𝑉 −𝔔− 𝑁𝑆𝑆𝔘) can be characterized by the following get form  

 (�̂�𝔔, Α̅) = �̂�𝔔Α̅ = {ℯ ∈ Α̅ , < �̂�𝔔
𝑡 (𝑢, 𝔮)(ℯ), �̂�𝔔

𝔦 (𝑢, 𝔮)(ℯ), �̂�𝔔
𝔣 (𝑢, 𝔮)(ℯ) > |(𝑢, 𝔮) ∈𝔘 ×𝔔} 

Where  

�̂�𝔔
𝑡 (𝑢, 𝔮)(𝔢) = [�̂�𝔔

𝑡,𝑙(𝑢, 𝔮)(ℯ), �̂�𝔔
𝑡,𝑢(𝑢, 𝔮)(𝔢)] 

�̂�𝔔
𝑖 (𝑢, 𝔮)(𝔢) = [�̂�𝔔

𝑖,𝑙(𝑢, 𝔮)(ℯ), �̂�𝔔
𝑖,𝑢(𝑢, 𝔮)(𝔢)] 

�̂�𝔔
𝑓(𝑢, 𝔮)(𝔢) = [�̂�𝔔

𝑓,𝑙(𝑢, 𝔮)(𝔢), �̂�𝔔
𝑓,𝑢(𝑢, 𝔮)(𝔢)] 

Such that , the terms here �̂�𝔔
𝑡,𝑙(𝑢, 𝔮)(𝔢), �̂�𝔔

𝑡,𝑢(𝑢, 𝔮)(𝔢), �̂�𝔔
𝑖,𝑙(𝑢, 𝔮)(𝔢), �̂�𝔔

𝑖,𝑢(𝑢, 𝔮)(𝔢) and 

�̂�𝔔
𝑓,𝑙(𝑢, 𝔮)(𝔢), �̂�𝔔

𝑓,𝑢(𝑢, 𝔮)(𝔢) refer to true interval membership, indeterminacy interval membership, and 

falsehood interval membership of objects (𝑢, 𝔮) ∈  𝔘 ×𝔔 , with two stander conditions  0 ≤

�̂�𝔔
𝑡,𝑙(𝑢, 𝔮)(ℯ) + �̂�𝔔

𝑖,𝑙(𝑢, 𝔮)(ℯ) + �̂�𝔔
𝑖,𝑙(𝑢, 𝔮)(ℯ) ≤ 1 and 0 ≤ �̂�𝔔

𝑡,𝑢(𝑢, 𝔮)(𝔢) + �̂�𝔔
𝑖,𝑢(𝑢, 𝔮)(𝔢) + �̂�𝔔

𝑖,𝑢(𝑢, 𝔮)(𝔢) ≤ 1. 

 

Now, to shed more light on the above definition, we present below the following numerical example, 

which describes the mechanism of action of our approach presented in this work. 

 

Example 3.2. Assume that we are interested in analyzing the attractiveness of three houses that one 

person is thinking of buying one of them. Now, let us analyze this attractiveness according to our 

model (IV-Q-NSS), therefore we assume that the three houses present as following universal set 𝔘 =

{𝔲1, 𝔲2, 𝔲3} and 𝔔 = {𝔮1, 𝔮2} be a set constituting two cities under consideration and ℰ = {ℯ1, ℯ2, 𝑒3} 

be a collection of 

�̂�𝔔Α̅ = 

{(𝔢1,
〈[0.2,0.8], [0.1,0.7], [0.4,0.8]〉

(𝔲1, 𝔮1)
,
〈[0.1,0.4], [0.5,0.8], [0.7,0.8]〉

(𝔲1, 𝔮2)
 

〈[0.3,0.6], [0.2,0.7], [0.5,0.8]〉

(𝔲2, 𝔮1)
,
〈[0.4,0.6], [0.2,0.9], [0.5,0.7]〉

(𝔲2, 𝔮2)
 

〈[0.1,0.5], [0.3,0.7], [0.2,0.8]〉

(𝔲3, 𝔮1)
,
〈[0.4,0.8], [0.4,0.6], [0.2,0.8]〉

(𝔲3, 𝔮2)
) 
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(𝔢2,
〈[0.1,0.8], [0.5,0.7], [0.3,0.4]〉

(𝔲1, 𝔮1)
,
〈[0.1,0.8], [0.4,0.7], [0.2,0.6]〉

(𝔲1, 𝔮2)
 

〈[0.5,0.8], [0.4,0.9], [0.2,0.7]〉

(𝔲2, 𝔮1)
,
〈[0.1,0.2], [0.2,0.5], [0.4,0.7]〉

(𝔲2, 𝔮2)
 

〈[0.1,0.4], [0.2,0.5], [0.3,0.7]〉

(𝔲3, 𝔮1)
,
〈[0.1,0.6], [0.4,0.5], [0.5,0.7]〉

(𝔲3, 𝔮2)
) 

(𝔢3,
〈[0.7,0.9], [0.2,0.8], [0.3,0.6]〉

(𝔲1, 𝔮1)
,
〈[0.4,0.7], [0.2,0.5], [0.1,0.7]〉

(𝔲1, 𝔮2)
 

〈[0.1,0.8], [0.1,0.4], [0.3,0.6]〉

(𝔲2, 𝔮1)
,
〈[0.5,0.6], [0.3,0.6], [0.2,0.7]〉

(𝔲2, 𝔮2)
 

〈[0.4,0.6], [0.2,0.7], [0.3,0.6]〉

(𝔲3, 𝔮1)
,
〈[0.4,0.8], [0.8,0.9], [0.3,0.7]〉

(𝔲3, 𝔮2)
)} 

 

Definition 3.3 Let �̂�𝔔Α̅ = {ℯ ∈ Α̅ , < �̂�𝔔
𝑡 (𝑢, 𝔮)(ℯ), �̂�𝔔

𝔦 (𝑢, 𝔮)(ℯ), �̂�𝔔
𝔣 (𝑢, 𝔮)(ℯ) > |(𝑢, 𝔮) ∈𝔘 ×𝔔} be a 𝐼𝑉 −

𝑄 −𝑁𝑆𝑆  on initial point space (universal set). Then �̂�𝑄�̅� knowing as 𝐼𝑉 − 𝑄 −𝑁𝑆 −

𝑛𝑢𝑙𝑙𝑠𝑒𝑡 𝑎𝑛𝑑 𝑟𝑒𝑓𝑒𝑟 𝑎𝑠�̂�∅(0)𝑖𝑓  �̂�∅(0)(𝑢, 𝔮) = {([0,0], [1,1], [1,1])}. 

Example 2.4. The term �̂�∅(0)(𝔲3,𝔮2)
(𝔢1) = (𝔢1,

([0,0],[1,1],[1,1])

(𝔲3,𝔮2)
) is consider 𝐼𝑉 − 𝑄 −𝑁𝑆 − 𝑛𝑢𝑙𝑙𝑠𝑒𝑡 on 𝔘.  

Definition 3.5 Let �̂�𝔔Α̅ = {ℯ ∈ Α̅ , < �̂�𝔔
𝑡 (𝑢, 𝔮)(ℯ), �̂�𝔔

𝔦 (𝑢, 𝔮)(ℯ), �̂�𝔔
𝔣 (𝑢, 𝔮)(ℯ) > |(𝑢, 𝔮) ∈𝔘 ×𝔔} be a 𝐼𝑉 −

𝑄 −𝑁𝑆𝑆  on initial point space (universal set). Then �̂�𝑄�̅� knowing as 𝐼𝑉 − 𝑄 −𝑁𝑆 −

absolute 𝑠𝑒𝑡 𝑎𝑛𝑑 𝑟𝑒𝑓𝑒𝑟 𝑎𝑠 �̂�∅(1)𝑖𝑓  �̂�∅(1)(𝑢, 𝔮) = {([1,1], [0,0], [0,0])}. 

Example 3.6. The term �̂�∅(1)(𝔲3,𝔮2)(𝔢1) = (𝔢1,
([1,1],[0,0],[0,0])

(𝔲3,𝔮2)
) is consider 𝐼𝑉 − 𝑄 −𝑁𝑆 − absolute 𝑠𝑒𝑡 

on 𝔘. 

Definition 3.7 Let �̂�𝑄�̅�𝑎𝑛𝑑�̂�𝑄�̅�be two 𝐼𝑉 − 𝑄 −𝑁𝑆𝑆𝑠 on non empty universal set (initial points space 

) 𝔘 with 𝔔  .Then we say that �̂�𝑄�̅�is  𝐼𝑉 − 𝑄 −𝑁𝑆𝑆 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 �̂�𝑄�̅� and refer  to this relation as 

�̂�𝑄�̅� ⊆ �̂�𝑄�̅�if fulifed the following conditions  

For Α ⊆ 𝛣 and �̂�𝑄�̅� ⊆ �̂�𝑄�̅�for all 𝑒 ∈ 𝐴 𝑎𝑛𝑑 𝐵 , (𝓊, 𝓆) ∈ 𝒰 × 𝒬 

Then  

�̂�𝔔�̅�
𝑡,𝑙 (𝑢, 𝔮) ≤ �̂�𝔔�̅�

𝑡,𝑙 (𝑢, 𝔮), �̂�𝔔�̅�
𝑡,𝑢(𝑢, 𝔮) ≤ �̂�𝔔�̅�

𝑡,𝑢(𝑢, 𝔮), 

�̂�𝔔�̅�
𝑖,𝑙 (𝑢, 𝔮) ≥ �̂�𝔔�̅�

𝑖,𝑙 (𝑢, 𝔮), �̂�𝔔�̅�
𝑖,𝑢(𝑢, 𝔮) ≥ �̂�𝔔�̅�

𝑖,𝑢(𝑢, 𝔮), 

�̂�𝔔�̅�
𝑓,𝑙(𝑢, 𝔮) ≥ �̂�𝔔�̅�

𝑓,𝑙(𝑢, 𝔮), �̂�𝔔�̅�
𝑓,𝑢(𝑢, 𝔮) ≥ �̂�𝔔�̅�

𝑓,𝑢(𝑢, 𝔮). 

Example 3.8. Assume that the two terms in example 3.2, where 𝐵 = {𝔢1},such that  

�̂�𝑄�̅�(𝔲1,𝔮2)(𝔢1) = (𝔢1,
〈[0.1,0.4],[0.5,0.8],[0.7,0.8]〉

(𝔲1,𝔮2)
) 

�̂�𝑄�̅�(𝔲1,𝔮2)
(𝔢1) = (𝔢1,

〈[0.2,0.5],[0.3,0.4],[0.2,0.8]〉

(𝔲1,𝔮2)
) 

Then, it’s clear �̂�𝑄�̅� ⊆ �̂�𝑄�̅� . 

 

Definition 3.9. Let �̂�𝔔Α̅ = {ℯ ∈ Α̅ ,< �̂�𝔔
𝑡 (�̂�, �̆�)(ℯ), �̂�𝔔

𝔦 (�̂�, �̆�)(ℯ), �̂�𝔔
𝔣 (�̂�, �̆�)(ℯ) > |(�̂�, �̆�) ∈𝔘 ×𝔔} 
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∈ IV− Q− NSS(𝔘).Then, its complement given as �̂�𝔔�̅�
𝑐 𝑜𝑟 𝑐�̂�𝔔�̅�  and its defined as following:.  

 �̂�𝔔�̅�
𝑐 = {ℯ ∈ Α̅ ,< 𝑃𝔔

𝑡 𝑐(�̂�, �̆�)(ℯ), 𝑃𝔔
𝑖 𝑐(�̂�, �̆�)(ℯ), 𝑃𝔔

𝑓𝑐(�̂�, �̆�)(ℯ) > |(�̂�, �̆�) ∈𝔘 ×𝔔} 

Or 𝑐�̂�𝔔Α̅ = {ℯ ∈ Α̅ , < 𝑐�̂�𝔔
𝑡 (�̂�, �̆�)(ℯ), 𝑐�̂�𝔔

𝔦 (�̂�, �̆�)(ℯ), 𝑐�̂�𝔔
𝔣 (�̂�, �̆�)(ℯ) > |(�̂�, �̆�) ∈𝔘 × 𝔔} 

Where 

𝑃𝔔
𝑡 𝑐(�̂�, �̆�)(ℯ) = [𝑃𝔔�̅�

𝑡,𝑙 𝑐(�̂�, �̆�)(ℯ), 𝑃𝔔�̅�
𝑡,𝑢𝑐(�̂�, �̆�)(ℯ)] = [�̂�𝔔�̅�

𝑓,𝑙(�̂�, �̆�)(ℯ), �̂�𝔔�̅�
𝑓,𝑢(�̂�, �̆�)(ℯ)], 

𝑃𝔔
𝑖 𝑐(�̂�, �̆�)(ℯ) = [𝑃𝔔�̅�

𝑖,𝑙 𝑐(�̂�, �̆�)(ℯ), 𝑃𝔔�̅�
𝑖,𝑢𝑐(�̂�, �̆�)(ℯ)] = [1 − �̂�𝔔�̅�

𝑖,𝑢(�̂�, �̆�)(ℯ), 1 − �̂�𝔔�̅�
𝑖,𝑙 (�̂�, �̆�)(ℯ)], 

𝑃𝔔
𝑓𝑐(�̂�, �̆�)(ℯ) = [𝑃𝔔�̅�

𝑓,𝑙𝑐(�̂�, �̆�)(ℯ), 𝑃𝔔�̅�
𝑓,𝑢𝑐(�̂�, �̆�)(ℯ)] = [�̂�𝔔�̅�

𝑡,𝑙 (�̂�, �̆�)(ℯ), �̂�𝔔�̅�
𝑡,𝑢(�̂�, �̆�)(ℯ)], 

Or 

𝑐�̂�𝔔
𝑡 (�̂�, �̆�)(ℯ) = [𝑐�̂�𝔔

𝑡,𝑙(�̂�, �̆�)(ℯ), 𝑐�̂�𝔔
𝑡,𝑢(�̂�, �̆�)(ℯ)] = [�̂�𝔔

𝑓,𝑙(�̂�, �̆�)(ℯ), �̂�𝔔
𝑓,𝑢(�̂�, �̆�)(ℯ)], 

𝑐�̂�𝔔
𝑖 (�̂�, �̆�)(ℯ) = [𝑐�̂�𝔔

𝑖,𝑙(�̂�, �̆�)(ℯ), 𝑐�̂�𝔔
𝑖,𝑢(�̂�, �̆�)(ℯ)] = [1 − �̂�𝔔

𝑖,𝑢(�̂�, �̆�)(ℯ), 1 − �̂�𝔔
𝑓,𝑙(�̂�, �̆�)(ℯ)], 

𝑐�̂�𝔔
𝑓(�̂�, �̆�)(ℯ) = [𝑐�̂�𝔔

𝑓,𝑙(�̂�, �̆�)(ℯ), 𝑐�̂�𝔔
𝑓,𝑢(�̂�, �̆�)(ℯ)] = [�̂�𝔔

𝑡,𝑙(�̂�, �̆�)(ℯ), �̂�𝔔
𝑡,𝑢(�̂�, �̆�)(ℯ)]. 

Based on a above definition we sat that this �̂�𝔔�̅�
𝑐 𝑜𝑟 𝑐�̂�𝔔�̅�  is the complement of IV − Q− NSS(𝔘). 

 

Example3.10. Assume that 𝔘 = {𝔲1, 𝔲2}  be initial point (universal set ) , 𝔔 = {𝓆1, 𝓆2}  and �̅� =

{ℯ1, ℯ2}. Then 

�̂�𝔔Α̅ = 

{(𝔢1,
〈[0.2,0.8], [0.1,0.7], [0.4,0.8]〉

(𝔲1, 𝔮1)
,
〈[0.1,0.4], [0.5,0.8], [0.7,0.8]〉

(𝔲1, 𝔮2)
 

〈[0.1,0.5], [0.3,0.7], [0.2,0.8]〉

(𝔲2, 𝔮1)
,
〈[0.4,0.8], [0.4,0.6], [0.2,0.8]〉

(𝔲2, 𝔮2)
) 

(𝔢2,
〈[0.1,0.8], [0.5,0.7], [0.3,0.4]〉

(𝔲1, 𝔮1)
,
〈[0.1,0.8], [0.4,0.7], [0.2,0.6]〉

(𝔲1, 𝔮2)
 

〈[0.1,0.4], [0.2,0.5], [0.3,0.7]〉

(𝔲2, 𝔮1)
,
〈[0.1,0.6], [0.4,0.5], [0.5,0.7]〉

(𝔲2, 𝔮2)
)} 

Then the complement operation defining �̂�𝔔Α̅  𝑎𝑠 𝑃𝔔�̅�
𝑐  𝑜𝑟 𝑐𝑃𝔔�̅� basedon definition as following  

�̂�𝔔�̅�
𝑐 = 𝑐�̂�𝔔�̅� = 

{(𝔢1,
〈[0.4,0.8], [0.3,0.9], [0.2,0.8]〉

(𝔲1, 𝔮1)
,
〈[0.7,0.8], [0.2,0.5], [0.1,0.4]〉

(𝔲1, 𝔮2)
 

〈[0.2,0.8], [0.3,0.7], [0.1,0.5]〉

(𝔲2, 𝔮1)
,
〈[0.2,0.8], [0.4,0.6], [0.4,0.8]〉

(𝔲2, 𝔮2)
) 

(𝔢2,
〈[0.3,0.4], [0.3,0.5], [0.1,0.8]〉

(𝔲1, 𝔮1)
,
〈[0.2,0.6], [0.3,0.6], [0.1,0.8]〉

(𝔲1, 𝔮2)
 

〈[0.3,0.7], [0.5,0.8], [0.1,0.4]〉

(𝔲2, 𝔮1)
,
〈[0.5,0.7], [0.5,0.6], [0.1,0.6]〉

(𝔲2, 𝔮2)
)} 
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Proposition 3.11 If �̂�𝔔Α̅ ∈ IV − Q− NSS(𝒳). Then 𝑐(𝑐�̂�𝔔Α̅) = (�̂�𝔔�̅�
𝑐 )𝑜𝑟 (�̂�𝔔�̅�

𝑐 )
𝑐

= �̂�𝔔Α̅ 

Proof: From above definition, we have  

�̂�𝔔Α̅ = {ℯ ∈ Α̅ ,< �̂�𝔔
𝑡 (�̂�, �̆�)(ℯ), �̂�𝔔

𝔦 (�̂�, �̆�)(ℯ), �̂�𝔔
𝔣 (�̂�, �̆�)(ℯ) > |(�̂�, �̆�) ∈𝔘 ×𝔔}  

Then,  

�̂�𝔔�̅�
𝑐 = {ℯ ∈ Α̅ , < 𝑃𝔔

𝑡 𝑐(�̂�, �̆�)(ℯ), 𝑃𝔔
𝑖 𝑐(�̂�, �̆�)(ℯ), 𝑃𝔔

𝑓𝑐(�̂�, �̆�)(ℯ) > |(�̂�, �̆�) ∈𝔘 ×𝔔} 

= {ℯ ∈ Α̅ , ⟨[𝑃𝔔�̅�
𝑡,𝑙 𝑐(�̂�, �̆�)(ℯ), 𝑃𝔔�̅�

𝑡,𝑢𝑐(�̂�, �̆�)(ℯ)] , [𝑃𝔔�̅�
𝑖,𝑙 𝑐(�̂�, �̆�)(ℯ), 𝑃𝔔�̅�

𝑖,𝑢𝑐(�̂�, �̆�)(ℯ)], 

[𝑃𝔔�̅�
𝑓,𝑙𝑐(�̂�, �̆�)(ℯ), 𝑃𝔔�̅�

𝑓,𝑢𝑐(�̂�, �̆�)(ℯ)]⟩ : |(�̂�, �̆�) ∈𝔘 ×𝔔}  

(�̂�𝔔�̅�
𝑐 )

𝑐

= {ℯ ∈ Α̅ , ⟨[(�̂�𝔔�̅�
𝑓,𝑙(�̂�, �̆�)(ℯ))

𝑐

, (�̂�𝔔�̅�
𝑓,𝑢(�̂�, �̆�)(ℯ))

𝑐

] , [(1 − �̂�𝔔�̅�
𝑖,𝑢(�̂�, �̆�)(ℯ))

𝑐

, (1 − �̂�𝔔�̅�
𝑖,𝑙 (�̂�, �̆�)(ℯ))

𝑐

], 

[(�̂�𝔔�̅�
𝑡,𝑙 (�̂�, �̆�)(ℯ))

𝑐

, (�̂�𝔔�̅�
𝑡,𝑢(�̂�, �̆�)(ℯ))

𝑐

]⟩ : |(𝑢, 𝔮) ∈𝔘 ×𝔔}  

= {ℯ ∈ Α̅ , ⟨[(�̂�𝔔�̅�
𝑓,𝑙(�̂�, �̆�)(ℯ))

𝑐

, (�̂�𝔔�̅�
𝑓,𝑢(�̂�, �̆�)(ℯ))

𝑐

] , [(1 − �̂�𝔔�̅�
𝑖,𝑢(�̂�, �̆�)(ℯ))

𝑐

, (1 − �̂�𝔔�̅�
𝑖,𝑙 (�̂�, �̆�)(ℯ))

𝑐

], 

[(�̂�𝔔�̅�
𝑡,𝑙 (�̂�, �̆�)(ℯ))

𝑐

, (�̂�𝔔�̅�
𝑡,𝑢(�̂�, �̆�)(ℯ))

𝑐

]⟩ : |(�̂�, �̆�) ∈𝔘 ×𝔔} 

= {ℯ ∈ Α̅ , ⟨[�̂�𝔔�̅�
𝑡,𝑙 (�̂�, �̆�)(ℯ), �̂�𝔔�̅�

𝑡,𝑢(�̂�, �̆�)(ℯ)] , [(1 − (1 − �̂�𝔔�̅�
𝑖,𝑢(�̂�, �̆�)(ℯ))) , (1 − (1 − �̂�𝔔�̅�

𝑖,𝑙 (�̂�, �̆�)(ℯ)))], 

[�̂�𝔔�̅�
𝑓,𝑙(�̂�, �̆�)(ℯ), �̂�𝔔�̅�

𝑓,𝑢(�̂�, �̆�)(ℯ)]⟩ : |(�̂�, �̆�) ∈𝔘 ×𝔔} 

= {ℯ ∈ Α̅ , ⟨[�̂�𝔔�̅�
𝑡,𝑙 (�̂�, �̆�)(ℯ), �̂�𝔔�̅�

𝑡,𝑢(�̂�, �̆�)(ℯ)] , [�̂�𝔔�̅�
𝑖,𝑙 (�̂�, �̆�)(ℯ), �̂�𝔔�̅�

𝑖,𝑢(�̂�, �̆�)(ℯ)], 

[�̂�𝔔�̅�
𝑓,𝑙(�̂�, �̆�)(ℯ), �̂�𝔔�̅�

𝑓,𝑢(�̂�, �̆�)(ℯ)]⟩ : |(�̂�, �̆�) ∈𝔘 ×𝔔} 

= �̂�𝔔Α̅ = {ℯ ∈ Α̅ , < �̂�𝔔
𝑡 (�̂�, �̆�)(ℯ), �̂�𝔔

𝔦 (�̂�, �̆�)(ℯ), �̂�𝔔
𝔣 (�̂�, �̆�)(ℯ) > |(�̂�, �̆�) ∈𝔘 ×𝔔} 

Hence we get 𝑐(𝑐�̂�𝔔Α̅) = �̂�𝔔Α̅. 

 

Definition 3.12 The union of two I𝑉 − 𝑄𝑁𝑆𝑆  �̂�𝔔c̅ and written as �̂�𝔔Α̅ ∪ �̂�𝔔B̅ = �̂�𝔔c̅ , where �̅� = �̅� ∪

�̅�  and for all 𝑐 ∈ �̅� , (𝔲, 𝓆) ∈  𝔘 ×𝔔 ,the three I𝑉 − 𝑄 −𝑁𝑆𝑆   member ships function given as 

follows :.  

�̂�𝔔�̅�
𝑡 (𝑢, 𝔮)

{
 
 

 
 𝑃𝔔�̅�

𝑡 (𝔲,𝓆) = [�̂�𝔔�̅�
𝑡,𝑙 (𝑢, 𝔮)(ℯ), �̂�𝔔�̅�

𝑡,𝑢(𝑢, 𝔮)(ℯ)]       𝑖𝑓 𝑐 ∈ �̅� − �̅�                         

𝑃𝔔�̅�
𝑡 (𝔲, 𝓆) = [�̂�𝔔�̅�

𝑡,𝑙 (𝑢, 𝔮)(ℯ), �̂�𝔔�̅�
𝑖,𝑢(𝑢, 𝔮)(ℯ)]       𝑖𝑓 𝑐 ∈ �̅� − �̅�                          

𝑃𝔔
�̅̅�

𝑡 (𝔲,𝓆) = max [�̂�𝔔�̅�
𝑡,𝑙(𝑢, 𝔮)(ℯ), �̂�𝔔�̅�

𝑡,𝑢(𝑢, 𝔮)(ℯ)]       𝑖𝑓 𝑐 ∈ �̅� ∩ �̅�                       

  

�̂�𝔔�̅�
𝑖 (𝑢, 𝔮)

{
 
 

 
 𝑃𝔔�̅�

𝑓 (𝔲,𝓆) = [�̂�𝔔�̅�
𝑖,𝑙 (𝑢, 𝔮)(ℯ), �̂�𝔔�̅�

𝑖,𝑢(𝑢, 𝔮)(ℯ)]       𝑖𝑓 𝑐 ∈ �̅� − �̅�                          

𝑃𝔔�̅�
𝑓 (𝔲,𝓆) = [�̂�𝔔�̅�

𝑖,𝑙 (𝑢, 𝔮)(ℯ), �̂�𝔔�̅�
𝑖,𝑢(𝑢, 𝔮)(ℯ)]       𝑖𝑓 𝑐 ∈ �̅� − �̅�                          

𝑃𝔔
�̅̅�

𝑓 (𝔲,𝓆) = min [�̂�𝔔�̅�
𝑡,𝑙 (𝑢, 𝔮)(ℯ), �̂�𝔔�̅�

𝑡,𝑢(𝑢, 𝔮)(ℯ)]       𝑖𝑓 𝑐 ∈ �̅� ∩ �̅�                       
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�̂�𝔔�̅�
𝑓 (𝑢, 𝔮)

{
 
 

 
 𝑃𝔔�̅�

𝑓 (𝔲,𝓆) = [�̂�𝔔�̅�
𝑓,𝑙(𝑢, 𝔮)(ℯ), �̂�𝔔�̅�

𝑓,𝑢(𝑢, 𝔮)(ℯ)]       𝑖𝑓 𝑐 ∈ �̅� − �̅�                          

𝑃𝔔�̅�
𝑓 (𝔲,𝓆) = [�̂�𝔔�̅�

𝑓,𝑙(𝑢, 𝔮)(ℯ), �̂�𝔔�̅�
𝑓,𝑢(𝑢, 𝔮)(ℯ)]        𝑖𝑓 𝑐 ∈ �̅� − �̅�                          

𝑃𝔔
�̅̅�

𝑓 (𝔲, 𝓆) = min [�̂�𝔔�̅�
𝑡,𝑙(𝑢, 𝔮)(ℯ), �̂�𝔔�̅�

𝑡,𝑢(𝑢, 𝔮)(ℯ)]       𝑖𝑓 𝑐 ∈ �̅� ∩ �̅�                       

 

 

Where  

�̂�𝔔�̅�
𝑡,𝑙 (𝑢, 𝔮)(ℯ) = max [�̂�𝔔�̅�

𝑡,𝑙 (𝑢, 𝔮)(ℯ), �̂�𝔔�̅�
𝑡,𝑙 (𝑢, 𝔮)(ℯ)], 

�̂�𝔔�̅�
𝑡,𝑢(𝑢, 𝔮)(ℯ) = max [�̂�𝔔�̅�

𝑡,𝑢(𝑢, 𝔮)(ℯ), �̂�𝔔�̅�
𝑡,𝑢(𝑢, 𝔮)(ℯ)], 

�̂�𝔔�̅�
𝑖,𝑙 (𝑢, 𝔮)(ℯ) = min [�̂�𝔔�̅�

𝑖,𝑙 (𝑢, 𝔮)(ℯ), �̂�𝔔�̅�
𝑖,𝑙 (𝑢, 𝔮)(ℯ)], 

�̂�𝔔�̅�
𝑖,𝑢(𝑢, 𝔮)(ℯ) = min [�̂�𝔔�̅�

𝑖,𝑢(𝑢, 𝔮)(ℯ), �̂�𝔔�̅�
𝑖,𝑢(𝑢, 𝔮)(ℯ)], 

�̂�𝔔�̅�
𝑓,𝑙(𝑢, 𝔮)(ℯ) = min [�̂�𝔔�̅�

𝑓,𝑙(𝑢, 𝔮)(ℯ), �̂�𝔔�̅�
𝑓,𝑙(𝑢, 𝔮)(ℯ)], 

�̂�𝔔�̅�
𝑓,𝑢(𝑢, 𝔮)(ℯ) = min [�̂�𝔔�̅�

𝑓,𝑢(𝑢, 𝔮)(ℯ), �̂�𝔔�̅�
𝑓,𝑢(𝑢, 𝔮)(ℯ)]. 

Here. The max represents the largest value of I𝑉 − 𝑄𝑁𝑆𝑆  and min represents the smallest value of 

I𝑉 − 𝑄𝑁𝑆𝑆. 

 

Definition 3.13 The intersection of two I𝑉 − 𝑄𝑁𝑆𝑆  �̂�𝔔c̅ and written as �̂�𝔔Α̅ ∪ �̂�𝔔B̅ = �̂�𝔔c̅  , where 

�̅� = �̅� ∩ �̅�  and for all 𝑐 ∈ �̅� , (𝔲, 𝓆) ∈  𝔘 ×𝔔 ,the three I𝑉 − 𝑄 − 𝑁𝑆𝑆   member ships function 

given as follows :.  

�̂�𝔔�̅�
𝑡 (𝑢, 𝔮)

{
 
 

 
 𝑃𝔔�̅�

𝑡 (𝔲,𝓆) = [�̂�𝔔�̅�
𝑡,𝑙 (𝑢, 𝔮)(ℯ), �̂�𝔔�̅�

𝑡,𝑢(𝑢, 𝔮)(ℯ)]       𝑖𝑓 𝑐 ∈ �̅� − �̅�                         

𝑃𝔔�̅�
𝑡 (𝔲, 𝓆) = [�̂�𝔔�̅�

𝑡,𝑙 (𝑢, 𝔮)(ℯ), �̂�𝔔�̅�
𝑖,𝑢(𝑢, 𝔮)(ℯ)]       𝑖𝑓 𝑐 ∈ �̅� − �̅�                          

𝑃𝔔
�̅̅�

𝑡 (𝔲,𝓆) = min[�̂�𝔔�̅�
𝑡,𝑙(𝑢, 𝔮)(ℯ), �̂�𝔔�̅�

𝑡,𝑢(𝑢, 𝔮)(ℯ)]       𝑖𝑓 𝑐 ∈ �̅� ∩ �̅�                       

  

�̂�𝔔�̅�
𝑖 (𝑢, 𝔮)

{
 
 

 
 𝑃𝔔�̅�

𝑓 (𝔲,𝓆) = [�̂�𝔔�̅�
𝑖,𝑙 (𝑢, 𝔮)(ℯ), �̂�𝔔�̅�

𝑖,𝑢(𝑢, 𝔮)(ℯ)]       𝑖𝑓 𝑐 ∈ �̅� − �̅�                          

𝑃𝔔�̅�
𝑓 (𝔲,𝓆) = [�̂�𝔔�̅�

𝑖,𝑙 (𝑢, 𝔮)(ℯ), �̂�𝔔�̅�
𝑖,𝑢(𝑢, 𝔮)(ℯ)]       𝑖𝑓 𝑐 ∈ �̅� − �̅�                          

𝑃𝔔
�̅̅�

𝑓 (𝔲, 𝓆) = max [�̂�𝔔�̅�
𝑡,𝑙 (𝑢, 𝔮)(ℯ), �̂�𝔔�̅�

𝑡,𝑢(𝑢, 𝔮)(ℯ)]       𝑖𝑓 𝑐 ∈ �̅� ∩ �̅�                       

 

�̂�𝔔�̅�
𝑓 (𝑢, 𝔮)

{
 
 

 
 𝑃𝔔�̅�

𝑓 (𝔲,𝓆) = [�̂�𝔔�̅�
𝑓,𝑙(𝑢, 𝔮)(ℯ), �̂�𝔔�̅�

𝑓,𝑢(𝑢, 𝔮)(ℯ)]       𝑖𝑓 𝑐 ∈ �̅� − �̅�                          

𝑃𝔔�̅�
𝑓 (𝔲,𝓆) = [�̂�𝔔�̅�

𝑓,𝑙(𝑢, 𝔮)(ℯ), �̂�𝔔�̅�
𝑓,𝑢(𝑢, 𝔮)(ℯ)]        𝑖𝑓 𝑐 ∈ �̅� − �̅�                          

𝑃𝔔
�̅̅�

𝑓 (𝔲,𝓆) = mix [�̂�𝔔�̅�
𝑡,𝑙(𝑢, 𝔮)(ℯ), �̂�𝔔�̅�

𝑡,𝑢(𝑢, 𝔮)(ℯ)]       𝑖𝑓 𝑐 ∈ �̅� ∩ �̅�                       

 

 

Where  

�̂�𝔔�̅�
𝑡,𝑙 (𝑢, 𝔮)(ℯ) = min [�̂�𝔔�̅�

𝑡,𝑙 (𝑢, 𝔮)(ℯ), �̂�𝔔�̅�
𝑡,𝑙 (𝑢, 𝔮)(ℯ)], 

�̂�𝔔�̅�
𝑡,𝑢(𝑢, 𝔮)(ℯ) = min [�̂�𝔔�̅�

𝑡,𝑢(𝑢, 𝔮)(ℯ), �̂�𝔔�̅�
𝑡,𝑢(𝑢, 𝔮)(ℯ)], 
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�̂�𝔔�̅�
𝑖,𝑙 (𝑢, 𝔮)(ℯ) = max [�̂�𝔔�̅�

𝑖,𝑙 (𝑢, 𝔮)(ℯ), �̂�𝔔�̅�
𝑖,𝑙 (𝑢, 𝔮)(ℯ)], 

�̂�𝔔�̅�
𝑖,𝑢(𝑢, 𝔮)(ℯ) = max [�̂�𝔔�̅�

𝑖,𝑢(𝑢, 𝔮)(ℯ), �̂�𝔔�̅�
𝑖,𝑢(𝑢, 𝔮)(ℯ)], 

�̂�𝔔�̅�
𝑓,𝑙(𝑢, 𝔮)(ℯ) = max [�̂�𝔔�̅�

𝑓,𝑙(𝑢, 𝔮)(ℯ), �̂�𝔔�̅�
𝑓,𝑙(𝑢, 𝔮)(ℯ)], 

�̂�𝔔�̅�
𝑓,𝑢(𝑢, 𝔮)(ℯ) = max [�̂�𝔔�̅�

𝑓,𝑢(𝑢, 𝔮)(ℯ), �̂�𝔔�̅�
𝑓,𝑢(𝑢, 𝔮)(ℯ)]. 

Here. The max represents the largest value of I𝑉 − 𝑄𝑁𝑆𝑆  and min represents the smallest value of 

I𝑉 − 𝑄𝑁𝑆𝑆. 

 

Example 3.14. Let 𝒳 = {𝑢1, 𝑢2}  be non-empty initial universal set, 𝔏 = {𝑒1, 𝑒2}𝑎𝑛𝑑 𝒬 =

{𝔮1}. 𝑡ℎ𝑒𝑛 , 𝑖𝑓 �̅� = {𝑒1} ⊆ 𝔏 ,  

�̅� = {𝑒1, 𝑒2} ⊆ 𝔏 , 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑡𝑤𝑜 𝐼𝑉 − 𝑄 − 𝑁𝑆𝑆𝑠 (�̂�𝑄 , �̅�), (�̂�𝑄 , �̅�) 

Will be analyze as following  

 

(�̂�𝑄 , �̅�) = 

{(𝔢1,
〈[0.2,0.8], [0.1,0.7], [0.4,0.8]〉

(𝔲1, 𝔮1)
,
〈[0.1,0.6], [0.4,0.5], [0.5,0.7]〉

(𝔲2, 𝔮1)
)} 

(�̂�𝑄 , �̅�) = 

{(𝔢1,
〈[0.3,0.5], [0.2,0.4], [0.6,0.7]〉

(𝔲1, 𝔮1)
,
〈[0.6,0.9], [0.5,0.8], [0.4,0.6]〉

(𝔲2, 𝔮1)
) 

(𝔢2
〈[0.6,1], [0.7,0.9], [0.6,0.8]〉

(𝔲1, 𝔮1)
,
〈[0.3,0.5], [0.8,0.8], [0.6,0.7]〉

(𝔲2, 𝔮1)
)} 

Then, (�̂�𝔔, �̂�)  ∪ (�̂�𝔔, �̂�) = 

{(𝔢1,
〈[0.3,0.8], [0.1,0.7], [0.4,0.7]〉

(𝔲1, 𝔮1)
,
〈[0.6,0.9], [0.4,0.5], [0.4,0.6]〉

(𝔲1, 𝔮2)
) 

(𝔢2,
〈[0.6,1], [0.7,0.9], [0.6,0.8]〉

(𝔲1, 𝔮1)
,
〈[0.3,0.5], [0.8,0.8], [0.6,0.7]〉

(𝔲2, 𝔮1)
)} 

(�̂�𝔔, �̂�)  ∩ (�̂�𝔔, �̂�) = 

{(𝔢1,
〈[0.2,0.5], [0.2,0.7], [0.6,0.8]〉

(𝔲1, 𝔮1)
,
〈[0.1,0.6], [0.5,0.8], [0.5,0.7]〉

(𝔲1, 𝔮2)
) 

(𝔢2,
〈[0.6,1], [0.7,0.9], [0.6,0.8]〉

(𝔲1, 𝔮1)
,
〈[0.3,0.5], [0.8,0.8], [0.6,0.7]〉

(𝔲2, 𝔮1)
)} 

 

 

Proposition 3. 15. Let (�̂�𝔔, �̂�), (�̂�𝔔, �̂�)𝑎𝑛𝑑(�̂�𝔔, 𝐶)  be three 𝐼𝑉 − 𝑄 −𝑁𝑆𝑆𝑠 𝑜𝑛 𝑛𝑜𝑛 − 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙 𝑠𝑒𝑡 𝑈 . 

The, the following points are satisfied: 

1. (�̂�𝔔, �̂�) ∪ (�̂�𝔔, �̂�)=(�̂�𝔔, �̂�) ∪ (�̂�𝔔, �̂�) 

2. (�̂�𝔔, �̂�) ∩ (�̂�𝔔, �̂�)=(�̂�𝔔, �̂�) ∩ (�̂�𝔔, �̂�) 
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3. (�̂�𝔔, �̂�) ∪ ((�̂�𝔔, �̂�) ∪ (�̂�𝔔, 𝐶)) = ((�̂�𝔔, �̂�), (�̂�𝔔, �̂�)) ∪ (�̂�𝔔, 𝐶) 

4. (�̂�𝔔, �̂�) ∪ ((�̂�𝔔, �̂�) ∪ (�̂�𝔔, 𝐶)) = ((�̂�𝔔, �̂�), (�̂�𝔔, �̂�)) ∪ (�̂�𝔔, 𝐶) 

5.  (�̂�𝔔, �̂�) ∪ 𝜙 = 𝜙 ∪ (�̂�𝔔, �̂�) = (�̂�𝔔, �̂�) 

6. (�̂�𝔔, �̂�) ∩ 𝜙 = 𝜙 ∩ (�̂�𝔔, �̂�) = 𝜙 

7. (�̂�𝔔, �̂�) ∪ 𝑈 = 𝑈 ∪ (�̂�𝔔, �̂�) = 𝑈 

8. (�̂�𝔔, �̂�) ∩ 𝑈 = 𝑈 ∩ (�̂�𝔔, �̂�) = (�̂�𝔔, �̂�) 

Proof (1). Now we will show that (�̂�𝔔, �̂�) ∪ (�̂�𝔔, �̂�)=(�̂�𝔔, �̂�) ∪ (�̂�𝔔, �̂�)based on Definition 3.12  Also, in 

this case we will consider the case 𝑐 ∈ �̅� ∩ �̅� and other case are trivial . 

Now, take the left side  (�̂�𝔔, �̂�) ∪ (�̂�𝔔, �̂�), 𝑡ℎ𝑒𝑛 

(�̂�𝔔, �̂�) ∪ (�̂�𝔔, �̂�) = {< 𝑐 (max{�̂�𝔔�̅�
𝑡 (𝑢, 𝑡), �̂�𝔔�̅�

𝑡 (𝑢, 𝑡), 

min{�̂�𝔔�̅�
𝑖 (𝑢, 𝑡), �̂�𝔔�̅�

𝑖 (𝑢, 𝑞)} ,min {�̂�𝔔�̅�
𝑓 (𝑢, 𝑡), �̂�𝔔�̅�

𝑓 (𝑢, 𝑞)} : (𝑢, 𝑞) ∈ 𝑈 × 𝑄 > 

={< 𝑐(max [max𝑃𝑄�̅�
𝑡,𝑖(𝑢, 𝑞), 𝑃𝑄�̅�

𝑡,𝑙(𝑢, 𝑞)] , [max  [𝑃𝑄�̅�
𝑡,𝑢(𝑢, 𝑞), 𝑃𝑄�̅�

𝑡,𝑢(𝑢, 𝑞)]} 

,min { min [𝑃𝑄�̅�
𝑖,𝑙 (𝑢, 𝑞), 𝑃𝑄�̅�

𝑖,𝑙 (𝑢, 𝑞)] , min [𝑃𝑄�̅�
𝑖,𝑢(𝑢, 𝑞), 𝑃𝑄�̅�

𝑖,𝑢(𝑢, 𝑞)]}, 

min{min [𝑃𝑄�̅�
𝑓,𝑢(𝑢, 𝑞), 𝑃𝑄�̅�

𝑓,𝑢(𝑢, 𝑞)] , min [𝑃𝑄�̅�
𝑓,𝑢(𝑢, 𝑞), 𝑃𝑄�̅�

𝑓,𝑢(𝑢, 𝑞)] > (𝑢, 𝑞) ∈ 𝑈 × 𝑄} 

= {< 𝑐 (max{�̂�𝔔�̅�
𝑡 (𝑢, 𝑡), �̂�𝔔�̅�

𝑡 (𝑢, 𝑡), 

min{�̂�𝔔�̅�
𝑖 (𝑢, 𝑡), �̂�𝔔�̅�

𝑖 (𝑢, 𝑞)} ,min {�̂�𝔔�̅�
𝑓 (𝑢, 𝑡), �̂�𝔔�̅�

𝑓 (𝑢, 𝑞)} : (𝑢, 𝑞) ∈ 𝑈 × 𝑄 >} 

= (�̂�𝔔, �̂�) ∪ (�̂�𝔔, �̂�) 

 

Definition 3.16. Assume that (�̂�𝔔, �̂�) 𝑎𝑛𝑑 (�̂�𝔔, �̂�) 𝑎𝑟𝑒 𝑡𝑤𝑜 𝐼𝑉 − 𝑄 − 𝑁𝑆𝑆𝑠 on initial point space (non-

empty universal set) 𝑈 ,then (�̂�𝔔, �̂�) 𝐴𝑁𝐷(�̂�𝔔, �̂�) 𝑖𝑠 𝑎𝑛 𝐼𝑉 − 𝑄 −𝑁𝑆𝑆𝑠  and denoted by 

(�̂�𝔔, �̂�)⋀(�̂�𝔔, �̂�) and it defined by the following formalh (�̂�𝔔, �̂�) 𝐴𝑁𝐷(�̂�𝔔, �̂�) = (�̂�𝔔, �̅� × �̂�),𝑤ℎ𝑒𝑟𝑒 

�̂�𝔔(�̅�, �̅�)
(𝑢,𝑞)

= �̂�𝔔(�̅�)
(𝑢,𝑞)

∩ �̂�𝔔(�̅�)
(𝑢,𝑞)

 

For all (�̅�, �̅�) ∈ �̅� × �̅� , where ∩ 𝑖𝑠 𝑡ℎ𝑎 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 operation of two 𝐼𝑉 − 𝑄 − 𝑁𝑆𝑆𝑠 on initial points 

pace (non-empty universal set )   

Now , based on the intersection definition the three 𝐼𝑉 − 𝑄 − 𝑁𝑆𝑆𝑠  membership function defined as 

following  

𝑃𝑄(�̅�,�̅�)
𝑡 (𝑢, 𝑞) = min{ 𝑃𝑄(�̅�)

𝑡 (𝑢, 𝑞), 𝑃𝑄(�̅�)
𝑡 (𝑢, 𝑞)} = min{min [𝑃𝑄(�̅�)

𝑡,𝑙 (𝑢, 𝑞), 𝑃𝑄(�̅�)
𝑡,𝑙 (𝑢, 𝑞)] , min [𝑃𝑄(�̅�)

𝑡,𝑢 (𝑢, 𝑞), 𝑃𝑄(�̅�)
𝑡,𝑢 (𝑢, 𝑞)]}, 

𝑃𝑄(�̅�,�̅�)
𝑖 (𝑢, 𝑞) = mix{ 𝑃𝑄(�̅�)

𝑖 (𝑢, 𝑞), 𝑃𝑄(�̅�)
𝑖 (𝑢, 𝑞)} = mix {mix [𝑃𝑄(�̅�)

𝑖,𝑙 (𝑢, 𝑞), 𝑃𝑄(�̅�)
𝑖,𝑙 (𝑢, 𝑞)] ,mix [𝑃𝑄(�̅�)

𝑖,𝑢 (𝑢, 𝑞), 𝑃𝑄(�̅�)
𝑖,𝑢 (𝑢, 𝑞)]} ,   

𝑃𝑄(�̅�,�̅�)
𝑓 (𝑢, 𝑞) = mix{ 𝑃𝑄(�̅�)

𝑓 (𝑢, 𝑞), 𝑃𝑄(�̅�)
𝑓 (𝑢, 𝑞)} = mix {mix [𝑃𝑄(�̅�)

𝑓,𝑙 (𝑢, 𝑞), 𝑃𝑄(�̅�)
𝑓,𝑙 (𝑢, 𝑞)] ,mix [𝑃𝑄(�̅�)

𝑓,𝑢 (𝑢, 𝑞), 𝑃𝑄(�̅�)
𝑓,𝑢 (𝑢, 𝑞)]} . 
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Definition 3.17. Assume that (�̂�𝔔, �̂�) 𝑎𝑛𝑑 (�̂�𝔔, �̂�) 𝑎𝑟𝑒 𝑡𝑤𝑜 𝐼𝑉 − 𝑄 − 𝑁𝑆𝑆𝑠 on initial point space (non-

empty universal set) 𝑈 ,then (�̂�𝔔, �̂�) 𝑂𝑅(�̂�𝔔, �̂�) 𝑖𝑠 𝑎𝑛 𝐼𝑉 − 𝑄 −𝑁𝑆𝑆𝑠  and denoted by 

(�̂�𝔔, �̂�)⋁(�̂�𝔔, �̂�) and it defined by the following formalh (�̂�𝔔, �̂�)𝑂𝑅(�̂�𝔔, �̂�) = (�̂�𝔔, �̅� × �̂�),𝑤ℎ𝑒𝑟𝑒 

�̂�𝔔(�̅�, �̅�)
(𝑢,𝑞)

= �̂�𝔔(�̅�)
(𝑢,𝑞)

∪ �̂�𝔔(�̅�)
(𝑢,𝑞)

 

For all (�̅�, �̅�) ∈ �̅� × �̅� , where ∪ 𝑖𝑠 𝑡ℎ𝑎 𝑢𝑛𝑖𝑜𝑛operation of two 𝐼𝑉 − 𝑄 −𝑁𝑆𝑆𝑠 on initial points pace (non-

empty universal set ) 𝑈.  

Now , based on the 𝑢𝑛𝑖𝑜𝑛 definition the three 𝐼𝑉 − 𝑄 − 𝑁𝑆𝑆𝑠 membership function defined as following  

𝑃𝑄(�̅�,�̅�)
𝑡 (𝑢, 𝑞) = mix{ 𝑃𝑄(�̅�)

𝑡 (𝑢, 𝑞), 𝑃𝑄(�̅�)
𝑡 (𝑢, 𝑞)} = mix {mix [𝑃𝑄(�̅�)

𝑡,𝑙 (𝑢, 𝑞), 𝑃𝑄(�̅�)
𝑡,𝑙 (𝑢, 𝑞)] ,mix [𝑃𝑄(�̅�)

𝑡,𝑢 (𝑢, 𝑞), 𝑃𝑄(�̅�)
𝑡,𝑢 (𝑢, 𝑞)]}, 

𝑃𝑄(�̅�,�̅�)
𝑖 (𝑢, 𝑞) = min{ 𝑃𝑄(�̅�)

𝑖 (𝑢, 𝑞), 𝑃𝑄(�̅�)
𝑖 (𝑢, 𝑞)} = min{min [𝑃𝑄(�̅�)

𝑖,𝑙 (𝑢, 𝑞), 𝑃𝑄(�̅�)
𝑖,𝑙 (𝑢, 𝑞)] , min [𝑃𝑄(�̅�)

𝑖,𝑢 (𝑢, 𝑞), 𝑃𝑄(�̅�)
𝑖,𝑢 (𝑢, 𝑞)]} ,   

𝑃𝑄(�̅�,�̅�)
𝑓 (𝑢, 𝑞) = min{ 𝑃𝑄(�̅�)

𝑓 (𝑢, 𝑞), 𝑃𝑄(�̅�)
𝑓 (𝑢, 𝑞)} = min{min [𝑃𝑄(�̅�)

𝑓,𝑙 (𝑢, 𝑞), 𝑃𝑄(�̅�)
𝑓,𝑙 (𝑢, 𝑞)] , min [𝑃𝑄(�̅�)

𝑓,𝑢 (𝑢, 𝑞), 𝑃𝑄(�̅�)
𝑓,𝑢 (𝑢, 𝑞)]} . 

 

Example 3.18. Let 𝒳 = {𝑢1, 𝑢2}  be non-empty initial universal set, 𝔏 = {𝑒1, 𝑒2, 𝑒3}𝑎𝑛𝑑 𝒬 =

{𝔮1}. 𝑡ℎ𝑒𝑛 , 𝑖𝑓 �̅� = {𝑒1} ⊆ 𝔏 ,  

�̅� = {𝑒2, 𝑒3} ⊆ 𝔏 , 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑡𝑤𝑜 𝐼𝑉 − 𝑄 −𝑁𝑆𝑆𝑠 (�̂�𝑄 , �̅�), (�̂�𝑄 , �̅�) 

Will be analyze as following  

 

(�̂�𝑄 , �̅�) = 

{(𝔢1,
〈[0.2,0.8], [0.1,0.7], [0.4,0.8]〉

(𝔲1, 𝔮1)
,
〈[0.1,0.6], [0.4,0.5], [0.5,0.7]〉

(𝔲2, 𝔮1)
)} 

(�̂�𝑄 , �̅�) = 

{(𝔢2,
〈[0.3,0.5], [0.2,0.4], [0.6,0.7]〉

(𝔲1, 𝔮1)
,
〈[0.6,0.9], [0.5,0.8], [0.4,0.6]〉

(𝔲2, 𝔮1)
) 

(𝔢3
〈[0.6,1], [0.7,0.9], [0.6,0.8]〉

(𝔲1, 𝔮1)
,
〈[0.3,0.5], [0.8,0.8], [0.6,0.7]〉

(𝔲2, 𝔮1)
)} 

Then,  

 

(�̂�𝔔, �̂�) 𝐴𝑁𝐷(�̂�𝔔, �̂�) = (�̂�𝔔, �̅� × �̂�) = 

{((𝔢1, 𝔢2),
〈[0.2,0.5], [0.2,0.7], [0.6,0.8]〉

(𝔲1, 𝔮1)
,
〈[0.1,0.3], [0.5,0.8], [0.7,0.8]〉

(𝔲1, 𝔮2)
) 

((𝔢1, 𝔢3),
〈[0.3,0.5], [0.7,0.9], [0.6,0.8]〉

(𝔲2, 𝔮1)
,
〈[0.3,0.5], [0.8,0.8], [0.6,0.7]〉

(𝔲2, 𝔮2)
)} 

 

And (�̂�𝔔, �̂�) 𝑂𝑅(�̂�𝔔, �̂�) = (�̂�𝔔, �̅� × �̂�) = 

{((𝔢1, 𝔢2),
〈[0.3,0.8], [0.1,0.4], [0.4,0.7]〉

(𝔲1, 𝔮1)
,
〈[0.6,0.9], [0.4,0.5], [0.4,0.6]〉

(𝔲1, 𝔮2)
) 
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((𝔢1, 𝔢3),
〈[0.6,1], [0.1,0.7], [0.4,0.8]〉

(𝔲2, 𝔮1)
,
〈[0.3,0.6], [0.4,0.5], [0.5,0.7]〉

(𝔲2, 𝔮2)
)} 

 

 

Proposition 3.19 Assume that (�̂�𝑄 , �̅�), (�̂�𝑄 , �̅�)𝑎𝑛𝑑 (�̂�𝑄 , �̅�) be three 𝐼𝑉 − 𝑄 − 𝑁𝑆𝑆𝑠 no non-empty initial 

universal set 𝑈. Then following point (properties) will be satisfied: 

1. (�̂�𝑄 , �̅�)⋀(�̂�𝑄 , �̅�)⋀(�̂�𝑄 , �̅�) = ((�̂�𝑄 , �̅�)⋀(�̂�𝑄 , �̅�))⋀(�̂�𝑄 , �̅�) 

2. (�̂�𝑄 , �̅�)⋁(�̂�𝑄 , �̅�)⋁(�̂�𝑄 , �̅�) = ((�̂�𝑄 , �̅�)⋁(�̂�𝑄 , �̅�))⋁(�̂�𝑄 , �̅�) 

Proof.1. Assume that �̅� ∈ �̅�, �̅� ∈ �̅� and the thired one 𝑐̅ ∈ �̅� and (�̂�𝑄 , �̅�)⋀(�̂�𝑄 , �̅�) = (�̂�𝑄 , �̅� × �̅�), 𝑠𝑎𝑐ℎ 𝑡ℎ𝑎𝑡  

�̂�𝑄(�̅�, 𝑐̅) = �̂�𝑄(�̅�) ∩ �̂�𝑄(𝑐̅) 

Now , we have (�̂�𝑄 , �̅�) ⋀((�̂�𝑄 , �̅�) ∧ (�̂�𝑄 , �̅�)) =  (�̂�𝑄 , �̅�)⋀(�̂�𝑄 , �̅� × �̅�) = (�̂�𝑄 , �̅� × �̅� × �̅�),  

Such that  

(�̂�𝑄 , �̅� × �̅� × 𝑐̅) = �̂�𝑄(𝑎) ∩ �̂�𝑄(𝑏, 𝑐) = �̂�𝑄(𝑎) ∩ �̂�𝑄(𝑏) ∩ �̂�𝑄(𝑐) 

Also we have (�̂�𝑄 , �̅�)⋀(�̂�𝑄 , �̅�) = (�̂�𝑄 , �̅� × �̅�) such that  

�̂�𝑄(�̅�, �̅�) = �̂�𝑄(�̅�) ∩ �̂�𝑄(�̅�) 

Therefor ((�̂�𝑄 , �̅�) ∧ (�̂�𝑄 , �̅�)) ∧ (�̂�𝑄 , �̅�) =  (�̂�𝑄 , �̅�  × �̅�)⋀(�̂�𝑄 , 𝐶̅) 

= (�̂�𝑄 , �̅� × �̅� × �̅�) 𝑤ℎ𝑒𝑟𝑒 (�̂�𝑄 , �̅� × �̅� × 𝑐̅) = �̂�𝑄(�̅�, �̅�) ∩ �̂�𝑄(𝑐̅) = �̂�𝑄(�̅�) ∩ �̂�𝑄(�̅�) ∩ �̂�𝑄(𝑐̅). 

Hence (�̂�𝑄 , �̅�)⋀(�̂�𝑄 , �̅�)⋀(�̂�𝑄 , �̅�) = ((�̂�𝑄 , �̅�)⋀(�̂�𝑄 , �̅�))⋀(�̂�𝑄 , �̅�) 

Proof 2. Same proof (1) 

 

Definition 3.20. (Necessity operation (NO)). The NO define on IV − Q − NSS (�̂�𝑄 , �̅�) on non-empty 

initial universal set 𝑈 and denoted ass following, for all �̅� ∈ �̅� 

⊡̂ (�̂�𝑄 , �̅�) = {< �̅�[(𝑢, 𝑞), �̂�𝑄(�̅�)
𝑡 (𝑢, 𝑞), �̂�𝑄(�̅�)

𝑖 (𝑢, 𝑞), 1 − �̂�𝑄(�̅�)
𝑡 (𝑢, 𝑞)] ∶ (𝑎, 𝑞) ∈ 𝑈 × 𝑄 >} 

= {< �̅� [(𝑢, 𝑞)[�̂�𝑄(�̅�)
𝑡,𝑙 (𝑢, 𝑞), �̂�𝑄(�̅�)

𝑡,𝑢 (𝑢, 𝑞)], [�̂�𝑄(�̅�)
𝑖,𝑙 (𝑢, 𝑞), �̂�𝑄(�̅�)

𝑖,𝑢 (𝑢, 𝑞)], [1 − �̂�𝑄(�̅�)
𝑡,𝑢 (𝑢, 𝑞), 1 − �̂�𝑄(�̅�)

𝑡,𝑙 (𝑢, 𝑞)]; (𝑢, 𝑞)

∈ 𝑈 × 𝑄} 

 

Proposition 3.21 Assume that (�̂�𝑄 , �̅�) and (�̂�𝑄 , �̅�) be two 𝐼𝑉 − 𝑄 −𝑁𝑆𝑆𝑠 𝑜𝑛 𝑈. Then  

1.⊡̂ ((�̂�𝑄 , �̅�) ∪ ⊡̂ (�̂�𝑄 , �̅�)) = ⊡̂ (�̂�𝑄 , �̅�) ∪ ⊡̂ (�̂�𝑄 , �̅�) 

2.⊡̂ ((�̂�𝑄 , �̅�) ∩ ⊡̂ (�̂�𝑄 , �̅�)) = ⊡̂ (�̂�𝑄 , �̅�)  ∩ ⊡̂ (�̂�𝑄 , �̅�) 

3.⊡̂ (⊡̂ (�̂�𝑄 , �̅�)) = (�̂�𝑄 , �̅�) 

Proof. The proof of these facts is directly based on the definitions above. 
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Example 3.22 Reconsider the term in example 3.2, then  

⊡̂ �̂�𝑄(𝔲1,𝔮2)(𝔢1) = ⊡̂ (𝔢1,
〈[0.1,0.4],[0.5,0.8],[0.7,0.8]〉

(𝔲1,𝔮2)
)=(𝔢1,

〈[0.1,0.4],[0.5,0.8],[0.6,0.9]〉

(𝔲1,𝔮2)
) 

Definition 3.23 (Possibility operation (PO)). The PO on an IV − Q− NSS(�̂�𝑄 , �̅�) on non empty universal 

set U is indicated by △̂ (�̂�𝑄 , �̅�) and given by , for all �̅� ∈ �̅� 

△̂ (�̂�𝑄 , �̅�) = {< �̅�[(𝑢, 𝑞), 1 − �̂�𝑄(�̅�)
𝑓 (𝑢, 𝑞), �̂�𝑄(�̅�)

𝑖 (𝑢, 𝑞), �̂�𝑄(�̅�)
𝑓 (𝑢, 𝑞)] ∶ (𝑎, 𝑞) ∈ 𝑈 × 𝑄 >} 

= {< �̅� [(𝑢, 𝑞)[1 − �̂�𝑄(�̅�)
𝑡,𝑢 (𝑢, 𝑞), 1 − �̂�𝑄(�̅�)

𝑓,𝑙 (𝑢, 𝑞)], [�̂�𝑄(�̅�)
𝑖,𝑙 (𝑢, 𝑞), �̂�𝑄(�̅�)

𝑖,𝑢 (𝑢, 𝑞)], [�̂�𝑄(�̅�)
𝑡,𝑢 (𝑢, 𝑞), �̂�𝑄(�̅�)

𝑡,𝑙 (𝑢, 𝑞)]; (𝑢, 𝑞)

∈ 𝑈 × 𝑄} 

Example 3.24 Reconsider the term in example 3.2, then  

⊡̂ �̂�𝑄(𝔲1,𝔮2)(𝔢1) = ⊡̂ (𝔢1,
〈[0.1,0.4],[0.5,0.8],[0.7,0.8]〉

(𝔲1,𝔮2)
)=(𝔢1,

〈[0.2,0.3],[0.5,0.8],[0.7,0.8]〉

(𝔲1,𝔮2)
). 

Proposition 3.25 Assume that (�̂�𝑄 , �̅�) and (�̂�𝑄 , �̅�) be two 𝐼𝑉 − 𝑄 −𝑁𝑆𝑆𝑠 𝑜𝑛 𝑈.  

Then:  

1.△̂ ((�̂�𝑄 , �̅�) ∪ △̂ (�̂�𝑄 , �̅�)) = △̂ (�̂�𝑄 , �̅�) ∪△̂ (�̂�𝑄 , �̅�). 

2.△̂ ((�̂�𝑄 , �̅�) ∩ △̂ (�̂�𝑄 , �̅�)) =△̂ (�̂�𝑄 , �̅�)  ∩△̂ (�̂�𝑄 , �̅�). 

3.△̂ (△̂ (�̂�𝑄 , �̅�)) = (�̂�𝑄 , �̅�). 

Proof. The proof of these facts is directly based on the definitions above. 

 

Proposition 3.26 Let (�̂�𝑄 , �̅�) be an IV − Q − NSS over U, then we have the following point (proportion) 

1.△̂⊡̂ (�̂�𝑄 , �̅�) =⊡̂ (�̂�𝑄 , �̅�) 

2.⊡̂△̂ (�̂�𝑄 , �̅�) =△̂ (�̂�𝑄 , �̅�) 

Proof. The proof of these facts is directly based on the definitions above. 

4. An Application of IV-Q-NSs in Medical Field Under Uncertainty 

In this section, we will show the apparatus for appealing to our put-forward model in dealing with daily 

life situations. By narrating an issue in the medical field and showing the mechanism for representing its 

data proposed by our proposed model. After that, we will work on creating an algorithm consisting of a 

number of sequential steps that analyze the algebraic structure of our proposed model and the data it 

represents. Now we will provide some definitions that will be useful to us in building the above algorithm. 

 

Definition 4.1 Let (�̂�𝑄 , �̅�)  be IV-QNSS on non-empty initial universal set 𝑈.  Then, an IV-QNS 

aggregation operator of (�̂�𝑄 , �̅�) and denoted by Π̌𝑄
𝑎𝑔𝑔

 is defined by  

 Π̌𝑄
𝑎𝑔𝑔

= {< �̅�[(𝑢, 𝑞), �̂�𝑄(�̅�)
𝑡,𝑎𝑔𝑔(𝑢, 𝑞), �̂�𝑄(�̅�)

𝑖,𝑎𝑔𝑔(𝑢, 𝑞), �̂�𝑄(�̅�)
𝑓,𝑎𝑔𝑔(𝑢, 𝑞)] ∶ (𝑢, 𝑞) ∈ 𝑈 × 𝑄 >} 

Where �̂�𝑄
𝑡,𝑎𝑔𝑔

, �̂�𝑄
𝑖,𝑎𝑔𝑔

, �̂�𝑄
𝑓,𝑎𝑔𝑔

:𝑈 × 𝑄 → [0,1], such that  
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�̂�𝑄
𝑡,𝑙,𝑎𝑔𝑔

=
1

|�̅�|
. ∑ �̂�

𝑄((𝑢,𝑞))
𝑡,𝑙 ,

(𝑢,𝑞)∈𝑈×𝑄

�̂�𝑄
𝑡,𝑢,𝑎𝑔𝑔

=
1

|�̅�|
. ∑ �̂�𝑄(𝑢,𝑞)

𝑡,𝑢 ,
(𝑢,𝑞)∈𝑈×𝑄

 

�̂�𝑄
𝑖,𝑙,𝑎𝑔𝑔

=
1

|�̅�|
. ∑ �̂�𝑄(𝑢,𝑞)

𝑖,𝑙 ,
(𝑢,𝑞)∈𝑈×𝑄

�̂�𝑄
𝑖,𝑢,𝑎𝑔𝑔

=
1

|�̅�|
. ∑ �̂�𝑄(𝑢,𝑞)

𝑖,𝑢 ,
(𝑢,𝑞)∈𝑈×𝑄

 

�̂�𝑄
𝑓,𝑙,𝑎𝑔𝑔

=
1

|�̅�|
. ∑ �̂�𝑄(𝑢,𝑞)

𝑓,𝑙
,

(𝑢,𝑞)∈𝑈×𝑄

�̂�𝑄
𝑓,𝑢,𝑎𝑔𝑔

=
1

|�̅�|
. ∑ �̂�𝑄(𝑢,𝑞)

𝑓,𝑢
,

(𝑢,𝑞)∈𝑈×𝑄

 

 

Remark: The value of (�̂�𝑄 , �̅�)can be reduce to  IV-QFS  using the following definition . 

Definition 4.2. The IV-QNS can be reduced to Interval-Valued-Q-fuzzy set (IV-QFS)  

(�̂�𝑄 , �̅�) = {< 𝑎,̅ [(𝑢, 𝑞), �̂�𝑄(�̅�)
𝑡 (𝑢, 𝑞)] ∶ (𝑢, 𝑞) ∈ 𝑈 × 𝑄 >} 

Where �̂�𝑄
𝑡 : 𝑈 × 𝑄 → [0,1] such that  

�̂�𝑄
𝑡,𝑙 =

1

3
[�̂�𝑄

𝑡,𝑙 +�̂�𝑄
𝑖.𝑙 + �̂�𝑄

𝑓.𝑙], �̂�𝑄
𝑡,𝑢 =

1

3
[�̂�𝑄

𝑡,𝑢 +�̂�𝑄
𝑖.𝑢 + �̂�𝑄

𝑓.𝑢] 

Now, using the above definitions, we lever up the following algorithm for a decision medical field method: 

 

 

Algorithm 

Step 1. Put up an IV-Q-NSSs on U. 

Step 2. Calculate IV-Q-NS aggregation operator 

Step 3. Calculate the reduced value of the IV-Q-NS aggregation operator to IV-QFS aggregation operator. 

Step 4. Convert IV-QFS aggregation operator (�̂�𝑄
𝑡,𝑙 , �̂�𝑄

𝑡,𝑢) to  SV-QFS aggregation operator (�̂�𝑄
𝑡 ),i.e. �̂�𝑄

𝑡 =

�̂�𝑄
𝑡,𝑙,+𝑄

𝑡,𝑢

2
 . 

Step 5. The optimal decision is the element available in M, such that 𝑀 = 𝑚𝑎𝑥(𝑢,𝑞)∈𝑈×𝑄{�̂�𝑄
𝑡}. 
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Figure 2: a representation of algorithm in an abbreviated way. 

 

Now, we provide a case study related to the medical field for IV-Q-NSS strategic decision-making method. 

 

On a cold winter day, many patients visited the office of a respiratory doctor to diagnose their health 

condition (COVID-positive or not) based on the symptoms they were experiencing. To help the doctor 

organize and analyze patient data based on our proposed model, we asked him to select a value between 

0 and 1 that describes the severity of symptoms and their association with the disease (Covid), where the 

closer the ratio is to 1, the more serious the symptoms are (impact of symptoms). Therefore: 

Suppose that 𝔘 = {𝔲1, 𝔲2, 𝔲3, 𝔲4} be a patient set contains four patients, 𝔔 = {𝔮1, 𝔮2} where 𝔮1 =infected 

and 𝔮2 =uninfected,while �̅� ⊆ ℰ = {�̅�1, �̅�2, �̅�3, �̅�4} be a set of symptoms contains four symptoms such that 

�̅�1 =Headache, �̅�2 =Sore throat, �̅�3 =Muscle pain, �̅�4 =Chest pain.  

 

Now, after the doctor has examined each patient and set a numerical value between 0 and 1 for each of the 

symptoms above, our proposed model can be built in a way that is consistent with the examining doctor’s 

report. 

 

�̂�𝔔Α̅ = 

{(�̅�1,
〈[0.2,0.8], [0.1,0.7], [0.4,0.8]〉

(𝔲1, 𝔮1)
,
〈[0.1,0.4], [0.5,0.8], [0.7,0.8]〉

(𝔲1, 𝔮2)
 

〈[0.3,0.6], [0.2,0.7], [0.5,0.8]〉

(𝔲2, 𝔮1)
,
〈[0.4,0.6], [0.2,0.9], [0.5,0.7]〉

(𝔲2, 𝔮2)
 

〈[0.6,0.8], [0.4,0.5], [0.3,0.5]〉

(𝔲3, 𝔮1)
,
〈[0.3,0.7], [0.2,0.4], [0.1,0.8]〉

(𝔲3, 𝔮2)
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〈[0.1,0.5], [0.3,0.7], [0.2,0.8]〉

(𝔲4, 𝔮1)
,
〈[0.4,0.8], [0.4,0.6], [0.2,0.8]〉

(𝔲4, 𝔮2)
) 

(𝔢2,
〈[0.1,0.8], [0.5,0.7], [0.3,0.4]〉

(𝔲1, 𝔮1)
,
〈[0.1,0.8], [0.4,0.7], [0.2,0.6]〉

(𝔲1, 𝔮2)
 

〈[0.5,0.8], [0.4,0.9], [0.2,0.7]〉

(𝔲2, 𝔮1)
,
〈[0.1,0.2], [0.2,0.5], [0.4,0.7]〉

(𝔲2, 𝔮2)
 

〈[0.6,0.8], [0.4,0.5], [0.3,0.5]〉

(𝔲3, 𝔮1)
,
〈[0.3,0.7], [0.2,0.4], [0.1,0.8]〉

(𝔲3, 𝔮2)
 

〈[0.1,0.4], [0.2,0.5], [0.3,0.7]〉

(𝔲4, 𝔮1)
,
〈[0.1,0.6], [0.4,0.5], [0.5,0.7]〉

(𝔲4, 𝔮2)
) 

(𝔢3,
〈[0.1,0.8], [0.5,0.7], [0.3,0.4]〉

(𝔲1, 𝔮1)
,
〈[0.1,0.8], [0.4,0.7], [0.2,0.6]〉

(𝔲1, 𝔮2)
 

〈[0.5,0.8], [0.4,0.9], [0.2,0.7]〉

(𝔲2, 𝔮1)
,
〈[0.1,0.2], [0.2,0.5], [0.4,0.7]〉

(𝔲2, 𝔮2)
 

〈[0.6,0.8], [0.4,0.5], [0.3,0.5]〉

(𝔲3, 𝔮1)
,
〈[0.3,0.7], [0.2,0.4], [0.1,0.8]〉

(𝔲3, 𝔮2)
 

〈[0.1,0.4], [0.2,0.5], [0.3,0.7]〉

(𝔲4, 𝔮1)
,
〈[0.1,0.6], [0.4,0.5], [0.5,0.7]〉

(𝔲4, 𝔮2)
) 

(𝔢4,
〈[0.7,0.9], [0.2,0.8], [0.3,0.6]〉

(𝔲1, 𝔮1)
,
〈[0.4,0.7], [0.2,0.5], [0.1,0.7]〉

(𝔲1, 𝔮2)
 

〈[0.1,0.8], [0.1,0.4], [0.3,0.6]〉

(𝔲2, 𝔮1)
,
〈[0.5,0.6], [0.3,0.6], [0.2,0.7]〉

(𝔲2, 𝔮2)
 

〈[0.6,0.8], [0.4,0.5], [0.3,0.5]〉

(𝔲3, 𝔮1)
,
〈[0.3,0.7], [0.2,0.4], [0.1,0.8]〉

(𝔲3, 𝔮2)
 

〈[0.4,0.6], [0.2,0.7], [0.3,0.6]〉

(𝔲4, 𝔮1)
,
〈[0.4,0.8], [0.8,0.9], [0.3,0.7]〉

(𝔲4, 𝔮2)
)} 

Step 2. The IV-Q-NS aggregation operator is given as 

 

Π̌𝑖𝑣𝑄−𝑁𝑆
𝑎𝑔𝑔

= 

{((𝔲1, 𝔮1), 〈[0.275,0.825], [0.325,0.725], [0.327,0.550]〉) ,

 ((𝔲1, 𝔮2), 〈[0.124,0.342], [0.451,0.537], [0.463,0.643]〉), 

((𝔲2, 𝔮1), 〈〈[0.335,0.673], [0.326,0.673], [0.421,0.568]〉〉),  

((𝔲2, 𝔮2), 〈〈[0.453,0.765], [0.321,0.547], [0.322,0.629]〉〉), 

((𝔲3, 𝔮1), 〈〈[0.237,0.763], [0.327,0.743], [0.382,0.639]〉〉), 

 ((𝔲3, 𝔮2), 〈〈[0.287,0.325], [0.210,0.482], [0.238,0.734]〉〉), 

((𝔲4, 𝔮1), 〈〈[0.128,0.342], [0.438,0.983], [0.364,0.754]〉〉), 

 ((𝔲4, 𝔮2), 〈〈[0.234,0.432], [0.543,0.578], [0.334,0.749]〉〉)} 

 

Step 3. Calculate the reduced value of the IV-Q-NS aggregation operator to IV-QFS aggregation operator. 

Π̌𝑖𝑣𝑄−𝐹𝑆
𝑎𝑔𝑔

= 
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{((𝔲1, 𝔮1), 〈[0.309,0.700]〉), ((𝔲1, 𝔮2), 〈[0.346,0.507]〉), 

((𝔲2, 𝔮1), 〈[0.346,0.638]〉), ((𝔲2, 𝔮2), 〈[0.365,0.647]〉), 

((𝔲3, 𝔮1), 〈[0.285,0.715]〉), ((𝔲3, 𝔮2), 〈[0.245,0.513]〉), 

((𝔲4, 𝔮1), 〈[0.310,0.693]〉), ((𝔲4, 𝔮2), 〈[0.370,0.586]〉)} 

Step 4. Convert IV-Q-FS aggregation operator (�̂�𝑄
𝑡,𝑙 , �̂�𝑄

𝑡,𝑢) to  SV-QFS aggregation operator (�̂�𝑄
𝑡 ). 

Π̌𝑖𝑣𝑄−𝐹𝑆
𝑎𝑔𝑔

= 

{((𝔲1, 𝔮1), 〈0.515〉), ((𝔲1, 𝔮2), 〈0.426〉), 

((𝔲2, 𝔮1), 〈0.492〉), ((𝔲2, 𝔮2), 〈0.506〉), 

((𝔲3, 𝔮1), 〈0.500〉), ((𝔲3, 𝔮2), 〈0.379〉), 

((𝔲4, 𝔮1), 〈0.501〉), ((𝔲4, 𝔮2), 〈0.478〉)} 

Step 5. The optimal decision is the element available in𝑀𝑖, such that  

𝑀1 = 𝑚𝑎𝑥(𝔲1,𝔮1,2)∈𝑈×𝑄{0.515,0.426} = 0.515. 

𝑀2 = 𝑚𝑎𝑥(𝔲2,𝔮1,2)∈𝑈×𝑄{0.492,0.506} = 0.506. 

𝑀3 = 𝑚𝑎𝑥(𝔲3,𝔮1,2)∈𝑈×𝑄{0.500,0.379} = 0.500. 

𝑀4 = 𝑚𝑎𝑥(𝔲4,𝔮1,2)∈𝑈×𝑄{0.501,0. .478} = 0.501. 

By looking at Table 1. below, which contains a comparison between the results obtained, it is clear that all 

patients 𝖚𝟏, 𝖚𝟑, 𝖚𝟒 are infected except the patient 𝖚𝟐. 

 

Table 1: Comparison of the results obtained from the above algorithm 

Patients     Degree of (𝖚, 𝖖𝟏)   Degree of (𝖚, 𝖖𝟐)      Comparison         Result 

   𝖚𝟏             0.𝟓𝟏𝟓                0.𝟒𝟐𝟔              𝖖𝟏 > 𝖖𝟐            Yes      

   𝖚𝟐             0.𝟒𝟗𝟐                0.𝟓𝟎𝟔              𝖖𝟏 < 𝖖𝟐            NO   

   𝖚𝟑             0.𝟓𝟎𝟎                0.𝟑𝟕𝟗              𝖖𝟏 > 𝖖𝟐            Yes      

   𝖚𝟒             0.𝟓𝟎𝟏                0.𝟒𝟕𝟖              𝖖𝟏 > 𝖖𝟐            Yes          

 

 

 

5. Comparison with existing works 

Now in this part, the proposed model is compared with some prevailing works like Adam and 

Hassan [21], Abu Qamar and Hassan [23], and Zhang et al. [36]. This comparison will focus on the 

structural structure of these methods compared to our method presented in this work, where the 

similarities and differences between these concepts were analyzed. Firstly, Abu Qamar and Hassan 

developed the notion of Q-NSSs as an extension of Adam and Hassan's notion, and this notion depicts 

decision-making data that has two diminutions in a single value, which causes some constraint for 

the decision maker when analysing data for the problem.  Secondly, Zhang et al. defined INSs as a 

generalisation of FSs and IFSs and NSs to address real situations with a set of numbers in the real 



Neutrosophic Sets and Systems, Vol. 68, 2024    183  

 

 

Enad Ghazi and Sinan O. Al-Salihi, A robust framework for medical diagnostics based on interval-valued Q-neutrosophic soft 
sets with aggregation operators 

unit interval. This model has the ability to represent decision-making information that is 

characterised by uncertainty, indeterminacy, and inconsistency in one dimension (one universal set). 

On the other hand, our model addresses all the complexities that appeared in the concepts referred 

to above, as its structural structure provides it with all the advantages that the currently prevailing 

methods lack. Moreover, Table 2 provides a further comparison between our proposed method and 

other prevailing methods based on some of the criteria fixed in the table. 

 

Propose Methoed    TM    IM    FM    SS    TD    IV       

FS                  √     ×     ×      ×     ×      ×    

Q-FS                √     ×     ×      ×     √      × 

IFS                 √      ×    √       ×    ×      × 

NS                  √      √    √      ×    √      ×  

Q-NSS              √      √    √       √    √      × 

Our model IV-Q-NSS √     √    √      √    √     √ 

Table 2: Comparison between our proposed method and other prevailing methods 

In this table, each of (TM, IM, FM, SS, TD and IV) point out to True, Indeterminacy, Falsity, 

Matching with Soft set, Tow dimension, and Interval- Valued. 

6. Conclusion 

IV-Q-NSS is a useful tool for dealing with Q-two-dimensional universal information in interval form. 

It is made up of three NS membership degrees in interval form. Also, this tool was created to deal 

with the relationship between parameters in the SS environment when these parameters play a key 

role in the deep description of two-dimensional universal information. So, in this paper, we 

suggested an interval-valued Q-neutrosophic soft set (IV-Q-NSS) mean set theory. This theory 

includes special operations like the necessity and possibility operations of an IV-Q-NSS, as well as 

operations like the complement of an IV-Q-NSS, the union of two IV-Q-NSSs, the intersection of two 

IV-Q-NSSs, and the AND and OR operation of two IV-Q-NSSs.  In addition, we presented many 

properties supported by numerical examples that explain how they work. Future, this new model 

has been successfully tested in dealing with one of the medical diagnostic problems based on 

hypothetical data for a respiratory disease when a new algorithm based on the aggregation operator 

for IV-Q-NSS data was built to solve this issue. Finally, directions will likely focus on improving some 

of the gaps in this work in the soft computing environment, as it is preferable to expand the work in 

this environment by integrating these tools with the hypersoft set (HSS) [37], where this environment 

will enable us to give a more accurate description of the parameters related to the SS environment. 

In addition to applying some mathematical tools, such as the similarity measure, the distance 

measure, or other measures on IV-Q-NSSs. In addition, this environment can be combined with other 

environments such as the algebraic environment [38-42] and the soft topological environment [43-46] 

and the use of other techniques such as techniques for measuring similarity and distance [47-49] 

between two objects.  
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Abstract: In The traveling salesman problem (TSP) is an essential and the most popular conventional 

combinatorial optimization network problem in operations research, in which the TSP evaluates the 

shortest route or path in a network. In TSP, every node has been visited only once, excluding the 

starting node. In TSP, edge lengths are usually expressed to indicate journey time and expenses 

instead of distance from a location. The exact arc length can't be predicted because journey times 

and expenses vary depending on the amount of payload, climate, highway conditions, and so on. 

As a result, the Neutrosophic numbers introduce a new tool for dealing with unpredictability in 

TSP. The present article addresses TSP on a neutrosophic network where the edge weight is a 

neutrosophic number rather than a real number. For solving the Neutrosophic TSP, an algorithmic 

technique based on the genetic algorithm (GA) is proposed. We created a new mutation and 

crossover for our suggested GA. We used mathematical examples to show the usefulness of the 

algorithm that we suggested. The results of experiments suggest that the proposed GA can find the 

shortest path in a TSP within a neutrosophic framework. This provides valuable insights for 

decision-makers dealing with real-world situations characterized by imprecise and incomplete data. 

Keywords: Connected network; Neutrosophic number; Shortest path problem; Traveling Salesman 

problem 

 

1. Introduction 

The traveling salesman problem (TSP) is one of the most essential and extensively researched 

systems. TSP was primarily introduced in 1930 and became extremely popular after 1950 [1–3]. Even 

in the past few years, optimization problems have appeared in the field of engineering research, and 

many papers have been published related to optimization [4-11]. The selection maker in the TSP 

discovers the shortest possible route or path for the salesman who visits every single node (city) 

exactly once (except the initial city) and returns to the initial node (city). It's a well-known 

optimization problem [12]. In practice, the edge cost in a traffic network path [13–16] may have 
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various parameters that are difficult to determine precisely (e.g., travel cost, travel time, road 

capacity, traffic frequency, and so on). 

The decision-maker has to consider the uncertainty in travel costs and time because, depending on 

the climate, road conditions, expense, and time at which travel may vary, As a result, in such real-life 

scenarios, decision-makers cannot precisely determine the parameters (traveling time, traveling 

speed, and traveling cost) between two separate cities but appropriately determine the TSP. As a 

result, fuzzy sets can be used to deal with this type of uncertainty [17-19], allowing the decision-

maker to make decisions based on uncertain data. The cost and duration of travel between two cities 

are primarily determined by the mode of transportation used. It generally changes daily, and experts 

can regard the travel costs and time of this problem as ambiguous [20- 22]. Several efforts have been 

made to solve the fuzzy traveling salesman problem [23–27]. 

The TSP [3] belongs to the complete NP problem. But it will be simple to understand but extremely 

difficult to solve. The computation duration for the TSP grows steadily whenever the total number 

of places increases. The TSP is commonly used as an example of an optimization problem to show 

the efficiency of a newly developed approach. Numerous heuristic and metaheuristic approaches are 

available to solve the TSP, including the genetic algorithm (GA), the harmony searching algorithm, 

and the artificial bee colony algorithms. A genetic algorithm is a type of heuristic optimization 

algorithm in which a chromosome describes a possible solution to a given optimization problem. The 

population is built from a variety of chromosomes. Chromosomes are reassembled in this algorithm 

to create new chromosomes. This recombination method is carried out primarily through three 

biological operations, i.e., selection, mutation, and crossover. The GA is used in this method to find 

the best solutions. The GA can solve many optimization problems [28, 29]. It is also employed in the 

solution of the TSP [30–35]. 

In this research paper, we have proposed a modified genetic algorithm for finding the shortest path 

using TSP in a neutrosophic environment. Initially, the GA generated by Darwin's law, primarily 

used for traditional TSPs when arc lengths are crisp numbers and the environment is certain, does 

not particularly apply to an uncertain environment. As a result, in this paper, we enhance the GA 

using an aspect of neutrosophic set theory. Here, the neutrosophic number represents the TSP's arc 

length. A mathematical model is introduced for a TSP with neutrosophic numbers as arc lengths. We 

present the utility of neutrosophic sets as arc lengths for TSP. We have updated our suggested GA 

with a new crossover as well as a mutation. We have demonstrated the effectiveness of our suggested 

algorithm with a numerical example. The other parts of this research paper are prepared in the 

following ways: Section-2 covers the fundamentals of neutrosophic sets (NSs). Section-3 proposes a 

GA for finding the shortest path using TSP in a neutrosophic environment. In Section-4, we present 

an improved pseudo-code of a GA for determining the shortest path (SP) of a connected network 

with respect to TSP.  In Section-5 we presented a numerical example. In Section-6, we find the best 

route using TSP in the neutrosophic environment. In Section-7, we compare our method with other 

existing methods. Section-8 contains the conclusions and recommendations for additional research. 

2. Preliminaries 

Definition-2.1 
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Assume set �̈� is the universal set. An intuitionistic fuzzy set �̈� in �̈�is written in the form: �̈� =

 {�̈�, 𝜇�̈�(𝑥), 𝜈�̈�(�̈�) 

With μ
Ä

: Ẍ → [0,1] and νÄ: Ẍ → [0,1] are the functions that define the degrees of membership non-

membership of x ϵ Ẍ to Äϵ Ẍ, respectively, and for everyx ϵ Ẍ, μ
Ä

(x), νÄ(ẍ) ≤ 1. 

 Definition-2.2 

Assume Ẍ is a set of space points (objects), and x̃ represents the associated generic elements in Ẍ; 

then the element in neutrosophic set Ã  has the form 

Ã = {< ẍ: T̈Ä(ẍ), ÏÄ(ẍ), F̈Ä(ẍ) > ẍϵẌ} 

Where three membership degree T̈Ä, ÏÄ, F̈Ä :Ẍ → [0−, 1+]  where T̈, Ï, and F̈ represent the truth 

function, the indeterminacy function, and the falsity function, respectively. 

0− ≤ {T̈Ä(ẍ) + ÏÄ(ẍ) + F̈Ä(ẍ)} ≤ 3+ 

Now  T̈Ä(�̈�), ÏÄ(�̈�), F̈Ä(�̈�)  are representing subsets of the interval [0−, 1+] hence it's challenging 

to implement NSs to real-world situations. 

Definition-2.3 

Euclidean Distance: This is the most commonly used distance measure for neutrosophic numbers. 

It is a generalization of the Euclidean distance between two points in a multi-dimensional space. 

For neutrosophic numbers, you can calculate the Euclidean distance by treating each component 

(T̈, Ï, F̈) as a separate coordinate and using the standard Euclidean distance formula: 

Euclidean Distance = √(T̈1  − T̈2)2  +  (Ï1  −  Ï2)2  +  (F̈1  −  F̈2)2 

The representation of cities as (T̈, Ï, F̈) in the framework of the TSP with a GA in a neutrosophic 

environment may have particular significance that corresponds with neutrosophic principles: 

T̈ (truth): In a neutrosophic environment, T may represent a city's truth value. Neutrosophic is a 

philosophy that deals with indeterminacy and has three principles: truth (T̈), indeterminacy (Ï), 

and falsity (F̈). A city's "truth" value may indicate how precisely its location or characteristics have 

been identified. 

Ï (indeterminacy): The degree of indeterminacy or uncertainty associated with a city is represented 

by Ï. It reflects the degree of ambiguity or imprecision in the city's available information. Ï denote 

the level of unknown or partially known information in a neutrosophic context. 

F̈ (falsity): The degree of falsity or incorrectness associated with a city is represented by F̈. This 

value indicates how much of the available information about the city is deceptive, in error, or 

incorrect. 

When calculating distances and making decisions in the genetic algorithm, using (T̈, Ï, F̈) For city 

representation in a TSP within a neutrosophic environment, it allows for the consideration of 

uncertainties and ambiguities. It recognizes that information about each city may not be entirely 
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true or false, but may contain varying degrees of truth, indeterminacy, and falsity, making the TSP 

solution more adaptable to such uncertainties. 

3. Proposed GA for finding the shortest path using TSP 

A genetic algorithm [36, 27] is an optimization algorithm inspired by natural selection. They are 

used to solve difficult optimization and search problems. The following are the typical steps in a 

GA: 

Initialization: 

Begin the NTSP's population of potential solutions with neutrosophic number representations. 

Selection: 

Evaluate the fitness of every member of the population. The fitness function assesses how well each 

person eliminates the problem.Choose people from the population to be the next generation's 

parents. Individuals with higher fitness values are more likely to be chosen, but some diversity 

should also be preserved. 

Crossover (Recombination): 

Take two carefully chosen parents and combine their genetic information to produce one or more 

offspring. Crossover occurs when parts of the parent chromosomes are exchanged or combined to 

create new individuals. Crossover methods, such as single-point, two-point, or uniform crossover, 

can vary. 

Mutation (Mutate (child)): 

Change some of the genetic information of the offspring at random. Mutation adds diversity to the 

population and keeps it from becoming stuck in local optima. 

Replacement (Replace Weakest (child1, child2)): 

In order to create a new population, combine the parent individuals and their progeny. You can 

also decide to use selection mechanisms (elitism, for example) to determine which members of the 

previous generation are retained in the new population, ensuring that the best solutions are not 

lost. 

Termination: 

Verify the termination terms, which other factors may determine, the number of generations, or 

the highest level of fitness attained. The algorithm terminates if the termination condition is 

satisfied; if not, return to the selection stage. 

Result: 

Once the algorithm terminates, the best solution found in the final population is the output of the 

genetic algorithm. 

4. Pseudo code of genetic algorithm 

Initialize Population ( )  

best solution = null 

best fitness = +infinity 

generation = 0 
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while generation < max generations: 

    fitness values = Evaluate Population() 

     

    For i from 1 to population size by 2: 

        parent1 = Select Parent() 

        parent2 = Select Parent() 

        child1, child2 = Crossover(parent1, parent2) 

        child1 = Mutate(child1) 

        child2 = Mutate(child2) 

        Replace Weakest(child1, child2) 

     

    best individual, best individual fitness = Get Best Individual() 

     

    If best individual fitness < best fitness: 

        best solution = best individual 

        best fitness = best individual fitness 

     

    generation = generation + 1 

return the best solution 

5. Numerical example: 

In this example, we'll consider a small TSP with 7 cities, and we'll represent the cities using 

neutrosophic numbers in a simplified format, where each city is represented as (T̈, Ï, F̈) The values 

for T̈ (truth-membership), Ï (indeterminacy), and F̈ (falsity-membership) range from 0 to 1. 
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Initialization: 

In this step, we generate an initial population shown in Table-1 and we create an initial population 

of 5 routes in a 7-node network. Where each route represents a permutation of the 7 cities in Table 

2. Each city is represented as a neutrosophic number (T̈, Ï, F̈). 

  

Table-1. Here’s a set of 7 cities with their neutrosophic number 

City Neutrosophic number 

1 (0.7,0.2,0.1) 

2 (0.6, 0.3, 0.1) 

3 (0.5, 0.3, 0.2) 

4 (0.2, 0.5, 0.3) 

5 (0.4, 0.4, 0.2) 

6 (0.3, 0.4, 0.3) 

7 (0.6, 0.3, 0.1) 

 

Table 2. All possible routes 

Route 

no 

Possible route 

1 [1, 2, 3, 4, 5, 6, 7] 
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Step 2: Evaluation (Fitness): 

We calculate the fitness of each route in the population using a fitness function. In this example, 

the fitness function takes into account the neutrosophic numbers and aims to minimize the total 

distance while considering indeterminacy: 

 Fitness = ∑
 (𝑇 𝑖∗ (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖)  )

(𝐼 𝑖+ 1)
 

Where: 

𝑇 𝑖 is the truth-membership of the node's highest neutrosophic number. 

𝐼 𝑖  is the indeterminacy of the node's minimum neutrosophic number. 

(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖)   is the distance between two consecutive nodes in the route. 

Fitness for Route 1 :( using definition-2.3) 

Distance between node  Crisp value 

1-2 0.14 

2-3 0.14 

3-4 0.37 

4-5 0.24 

5-6 0.14 

6-7 0.37 

 

Total Distance =0.14+0.14+0.37+0.24+0.14+0.37=1.4 

Fitness = ∑
 (0.7 ∗  1.4)  )

(0.1 +  1)
 

Fitness = ∑
 (0.7 ∗  1.4)  )

(0.1 +  1)
= 0.89 

 

Similarly find the fitness for Route 2, Route 3, Route 4, and Route 5 

Fitness function of Route Minimize distance 

Route 1: 

 

0.89 

Route 2: 

 

0.96 

2 [2, 3, 4, 5, 6, 1, 7] 

3 [4, 5, 6, 1, 7, 3, 2] 

4 [3, 1, 2, 4, 5, 6, 7] 

5 [1, 7, 5, 2, 4, 6, 3] 
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Route 3: 

 

0.88 

Route 4: 

 

0.86 

Route 5: 

 

0.94 

 

Step 3: Selection (Choose Two Routes):  

Use a selection mechanism (e.g., roulette wheel selection or tournament selection) to choose routes 

to become parents for the next generation. Routes with lower fitness values have a higher chance 

of being selected. 

Select the two routes with the lowest fitness values: 

Route 4 (Fitness: 0.86) 

Route 3 (Fitness: 0.88) 

Step 4: Crossover (Order Crossover):  

Apply crossover (recombination) to pairs of selected routes to create new routes (offspring). The 

crossover should respect the neutrosophic number representation. 

Combine genetic information from Route 4 and Route 3: 

Parent Route 3: [4, 5, 6, 1, 7, 3, 2] 

Parent Route 4: [3, 1, 2, 4, 5, 6, 7] 

Crossover Point (e.g., after Node 1):  

Offspring Route: [4, 5, 6, 1| 2, 7, 3] 

Complete the offspring by adding the missing nodes while avoiding duplicates: 

Offspring Route: [4, 5, 6, 1, 2, 7, 3] 

 

Step 5: Mutation (Swap Two Random Nodes): 

 Apply mutation operators to introduce small random changes in the routes. The mutation should 

also respect the neutrosophic numbers. 

Let's swap nodes 1 and 7:  

Mutated Offspring Route: [4, 5, 6, 7, 2, 1, 3] 

Step 6: Replacement (Replace One of the Parents): 

 Replace some of the old routes with the newly created offspring to form the next generation. 

Replace one of the parents (Route 3) with the mutated offspring: 

Updated Population: 

Route 1: [4, 5, 6, 3, 2, 1, 7] 

Route 2: [1, 2, 3, 4, 5, 7, 6] 

Route 3: [4, 5, 6, 1, 7, 3, 2] 

Route 4: [4, 5, 6, 7, 2, 1, 3] 

Route 5: [1, 7, 5, 2, 4, 6, 3] 
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Step 7: Termination (End of One Generation): 

Choose a termination condition, such as reaching a certain number of generations or achieving a 

satisfactory fitness value. These steps would be repeated for several generations, with each 

generation improving the routes. Termination can be based on reaching a certain number of 

generations or a satisfactory fitness value. This example shows one generation of a GA for the TSP 

in a 7-node network with neutrosophic numbers. More sophisticated fitness functions and genetic 

operators would be used in practice. 

6. Result: The best route found in the final population is the solution to the TSP with 

neutrosophic numbers. 

 

Table 3. The Optimal result of shortest path 

Solution using Linear programming 

In lingo software 

Solution using Proposed Genetic algorithm for 

finding shortest path using TSP 

Minz=0.86 The cost of NTSP=0.86 

And shortest route=3 →1→ 2→ 4→ 5→ 6→7 

 

Our suggested GAs are implemented to identify the shortest path of a neutrosophic graph's 

traveling salesman problem.  In example 1 we take 7 nodes (Figure 1) and 5 possible paths (Table 

2). We have arbitrarily chosen a possible path. Table 1 contains a description of the neutrosophic 

number as edge weights. This is the new concept we apply for neutrosophic numbers in the 

Travelling salesman problem using a genetic algorithm determining the shortest network path. In 

example 1, we find the optimal result of the shortest path in lingo software and our proposed 

method. In both cases, we got the same cost and the same shortest path in Table 3. 

7. Comparison of our methodology with other methodology  

In this section, we compare our methodology with some other existing methodologies and finally 

analyze our methodology for evaluating the shortest path based on the Traveling Salesman 

problem with a GA in a neutrosophic environment, which gives the optimal result. We discuss this 

in Table-4. 

Table 4. Comparison of shortest path with the shortest path cost in crisp number 

Methodology Shortest path shortest path cost in 

crisp number 

Traveling Salesman problem in 

Neutrosophic environment [38] 

3 →1→ 2→ 4→ 5→ 6→7 The cost of NMST= 

1.02 

Travelling salesman problem 

using fuzzy environment[39] 

3 →1→2→4→5→ 6→7 1.86 

Our proposed method in 

Neutrosophic environment 

3 →1→2→4→5→ 6→7 0.86 

 

8. Conclusion: 
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The results of our experiments suggest that the proposed GA can find the shortest path in a TSP 

within a neutrosophic framework. This provides valuable insights for decision-makers dealing with 

real-world situations characterized by imprecise and incomplete data. Furthermore, this research 

opens up avenues for future exploration, such as refining the GA parameters and techniques for 

handling larger and more complex instances of the TSP in neutrosophic environments. Additionally, 

evaluating the algorithm's performance on different types of neutrosophic data and its potential 

integration into decision support systems could be areas for further investigation. This research 

serves as a valuable contribution to the field of operations research and optimization, with the 

potential to enhance decision-making in practical, real-world applications 

Conflicts of Interest: The authors declare no conflict of interest.  
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Abstract: Information theory provides suitable tools for solving practical problems, particularly 

multi-criteria decision-making (MCDM) problems under neutrosophic environments. Generally, a 

wide range of MCDM solution methods are constructed based on distance measures category. The 

defined distance measures for continuous neutrosophic numbers, especially its trapezoidal type, is 

very limited rather than discrete type. The main goals of this study is to come up with a way to add 

two new types of weighted distance measures based on meaningful surfaces: Euclidean and 

Hamming. To define these measures, all three components of the neutrosophic trapezoidal fuzzy 

number (truth, indeterminacy, and falsity membership functions) have been used simultaneously. 

The proof of some theorems and properties for the weighted distance measures demonstrates their 

validity. The CODAS algorithm is known as one of the distance-based methods for solving MCDM 

problems. The following represents the CODAS algorithm based on two novel distance measures. In 

addition, an explanatory example from the research literature is given to check the performance of 

the proposed hybrid algorithm. The results of this study indicate that the algorithm based on the 

proposed measures obtains a reasonable and appropriate ranking order between the options. 

Furthermore, the sensitivity parameter analysis and comparative analysis show the flexibility and 

accuracy of the suggested measures in the combined algorithm. The acceptable efficiency of proposed 

distance measures formed on the surfaces can shed light on research related to distance measures in 

the methodology and implicated aspects. 

Keywords: Neutrosophic Set; Neutrosophic Trapezoidal Fuzzy Number; Distance Measure; Multi-

Criteria Decision Making 
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Information measure as an efficient tool for extracting the final result in the competitive environment 

and complex conditions of today's organizations, it is inevitable to encounter multi-criteria decision-

making problems under uncertainty. Fuzzy sets (Zadeh (1965) [1]) and their innovative extensions 

have introduced acceptable covers to match the expression of data with the human mind. Among 

them, Neutrosophic Sets (NS) (Smarandache, (1999) [2]), which are considered as a multi-

dimensional generalization of fuzzy sets to adequately describe the uncertainty involving the truth, 

indeterminacy, and falsity of decision makers' attitudes, have attracted the attention of many 

researchers. In general, many methods have been introduced to solve multi-criteria decision-making 

problems in conditions caused by uncertainty. Essential operators such as aggregating operators [3-

7], preference relations [8], distance measures [9,10], similarity measures [11-17], correlation 

coefficient [18, 19], etc. [20-22]  have a practical effect in solving MCDM problems. 

Recently, Chen and Pan (2021) [23] presented a complete classification of MCDM problem-solving 

methods based on the overall structure of the solution techniques. This category includes numerical, 

distance-based, pairwise comparison, outranking methods, and so on, which can be considered for 

solution approaches. Most MCDM solution methods are in the group of distance-based methods such 

as COmplex Proportional Assessment (COPRAS) [24], Data Envelopment Analysis (DEA) [25, 26], 

Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) [27-31], and Compromise 

Programming (CP) [32], VlseKriterijumska Optimizacija I KOmpromisno Resenje (VIKOR) [33-35]. 

  The CODAS method (Combinative Distance-based Assessment), which is known as one of the 

new distance-based methods to solve the MCDM problem, is proposed by Keshavarz Ghorabaee 

et al. (2016)  [36] for the first time. In this sense, Euclidean and Taxicab distances are applied to 

calculate the   assessment results of alternatives. In this idea, degrees are stated by a threshold 

parameter (Keshavarz Ghorabaee et al., 2016) [36]. Since its introduction, this method has had 

significant expansions from a theoretical perspective, combined with other existing methods and 

practical models.  

From the theoretical point of view, we can mention the extension of the method from deterministic 

data to the fuzzy CODAS method proposed by Keshavarz Ghorabaee et al. [37] to cover uncertainty 

in MCDM which is employed for a selection problem (market segment evaluation) under fuzzy data. 

Bolturk (2018) [38] developed the CODAS method into Pythagorean fuzzy sets (PFSs) to handle more 

flexible data, and then the proposed method is used to explain the supplier selection problems. Yeni 

and Özçelik (2019) [39], after using interval-valued Atanassov intuitionistic fuzzy weighted 

aggregation, investigated extending the traditional fuzzy CODAS for interval-valued Atanassov 

intuitionistic fuzzy data in personnel selection problems. Later, the novel extension of fuzzy CODAS 

under the Interval-Valued Intuitionistic Trapezoidal Fuzzy Set (IVITrFS) was presented by Seker 

(2020) [40]. Subsequently, Wang et al. (2020) [41] established the CODAS method under the 2-tuple 

linguistic neutrosophic information, and expressed the computing steps for multiple attribute group 

decision-making (MAGDM). The idea of the CODAS method was extended by Deveci et al. (2022) 

[42] to support the evaluation of activities in mining sites under q-rung orthopter fuzzy sets (q-

ROFSs). Menekse et al. (2022) [43] talk about an interval-valued spherical fuzzy CODAS process that 

can help clear up problems that aren't very clear. 
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From the combined point of view, more and more detailed research has been done so far. For instance, 

two alternatives to MCDM methods, named fuzzy AHP (Fuzzy Analytical Hierarchy Process) and 

CODAS, are integrated by Panchal et al. (2017) [44] for the evaluation process of a selection problem 

in a factory. Seker and Aydin (2020) [45] combined Interval-Valued Intuitionistic Fuzzy Analytical 

Hierarchy Process (IVIF-AHP) and IVIF-CODAS to depict an integrated MCDM framework, then 

they obtained the ranking of the alternatives in public transportation service quality. A multi-criteria 

group decision-making (MAGDM) framework process based on a combination of the full consistency 

method (FUCOM) and CODAS method has appeared in Biswas (2021) [46] for the first time in the 

literature. An integrated SWARA (Stepwise Weight Assessment Ratio Analysis) and CODAS 

methods are stated for the e-scooter charging station location selection problem in Pythagorean fuzzy 

information by Ayyildiz (2022) [47]. Recently, Mohamed and El-Saber (2023) [48] constructed the 

multi-stage intelligent decision-making model (MsIDMM) based on the CODAS method with 

interval-valued neutrosophic sets to evaluate the renewable energy sources. 

Jafarzadeh et al. (2023) [49] combined the SWARA and the CODAS algorithm is applied to evaluate 

the clean energy barriers under a spherical fuzzy environment as a decision-making process. Garg et 

al. (2023) [50] constructed a theme of the (CODAS) method and the Dombi sine weighted arithmetic 

aggregation operator with complex intuitionistic fuzzy data for multi-criteria group decision-making 

problems. Sahmutoglu et al. (2023) [51] presented an integrated AHP-CODAS under Interval-Valued 

neutrosophic for risk assessment methodology in the district of Turkey, which is repeatedly exposed 

to floods. Dorfeshan et al. (2023) [52] presented the MABACODAS method, which includes MABAC 

and CODAS processes for MCDM under interval type-2 fuzzy information. 

From a practical point of view, the use of CODAS and its combinations can be mentioned, such as 

Location selection problem [53, 54], Technological system evaluation problem [55], Material selection 

problem [56], Personnel selection problem [39], Service quality evaluation problem [45, 57], Cloud 

computing technology selection problem [58], Flexible Manufacturing System (FMS) selection [59], 

and so on [49, 60-62]. 

Distance measures (DMs) are substantial research topics for describing the distinctions and 

differences between various kinds of objects.  The application of distance measures does not only 

include the procedure of decision-making problems based on distance measures, it can play a broad 

role in clustering algorithms, pattern recognition problems, medical diagnosis and image processing 

under uncertainty [63-67]. It is clear that acquaintance with distance measures that examine the 

nature of neutrosophic trapezoidal numbers from different perspectives can play an essential role in 

researchers' knowledge of MCDM problems and improvement of solution methods. Therefore, our 

primary focus in this research is introducing two new weighted measures based on surface distance 

under neutrosophic trapezoidal fuzzy information. These measures are used for presentation and 

productivity in the CODAS algorithm. In the proposed distances, the influences of all neutrosophic 

trapezoidal fuzzy numbers of the components are investigated. In addition, the choice of weights 

based on the decision maker's preferences determines the overall impact of each component on the 

final result. The meaningful structure of the proposed measures, along with their logical properties 

and characteristics, guarantees their proper performance in combination with other algorithms. 

https://www.sciencedirect.com/topics/engineering/clustering-algorithm
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The rest of the study is constructed as follows: in Sect. 2, the required conceptions and operations of 

neutrosophic sets and numbers are explained. In Sect. 3, the conceptual structure of the main idea is 

given, along with two suggested distance measures for neutrosophic numbers. Then, in Sect. 4, 

theorems and properties are proven to ensure consistent and reasonable formulations of proposed 

distance measures. While in Sect. 5. The CODAS algorithm based on two novel distance measures for 

MCDM problems presented based on two new distance measures for MCDM problems. In Sect. 6, an 

illustrative example is solved in comparison to other existing methods. Furthermore, a sensitive 

analysis of parameters for the suggested hybrid approach is given to examine the effectiveness and 

robustness of the results. Lastly, in Sect. 6, some conclusions and future studies are stated. 

2. Preliminaries  

In this section, we consider a brief required definition of neutrosophic sets and neutrosophic 

trapezoidal fuzzy numbers (NTraFNs), along with some essential operators which are related to the 

subsequent sections of our study. 

Definition 1 [2]. Assume that 𝑈  is a universe of discourse, then a neutrosophic set 𝑁  in 𝑈  is 

defined by the following representation [2]: 

𝑁  = {⟨𝑢, 𝜁𝑁(𝑢), 𝜂𝑁(𝑢), 𝜃�̃�(𝑢)⟩| 0 ≤ 𝜁𝑁(𝑢), 𝜂𝑁(𝑢), 𝜃�̃�(𝑢) ≤ 1, 𝑢

∈ 𝑈},                                  (1) 

Where 𝜁𝑁:𝑈 → [0,1]  is truth-membership function, 𝜂𝑁:𝑈 → [0,1]  is falsity-membership function, 

and 𝜂𝑁:𝑈 → [0,1]  is an indeterminacy-membership function. Furthermore 0 ≤ 𝜁�̃�(𝑢) + 𝜂𝑁(𝑢) +

𝜃�̃�(𝑢) ≤ 3. 

Definition 2 [11]. Assume �̃� = ⟨𝜁�̃�(𝑢), 𝜂�̃�(𝑢), 𝜃�̃�(𝑢)⟩ is a neutrosophic fuzzy number in the set of real 

numbers. Then, its truth membership function is  

𝜁�̃�(𝑢)  =

{
 

 
ζ�̃�
𝑙 (𝑢), 𝛼1 ≤ 𝑢 ≤ 𝛼2
1, 𝛼2 ≤ 𝑢 ≤ 𝛼3

ζ�̃�
𝑟 (𝑢), 𝛼3 ≤ 𝑢 ≤ 𝛼4
0, 𝑜.𝑤

         (2)                                                       

   

Its falsity membership function is  

  𝜂�̃�(𝑢) =

{
 

 
η�̃�
𝑙 (𝑢), 𝛽1 ≤ 𝑢 ≤ 𝛽2
1, 𝛽2 ≤ 𝑢 ≤ 𝛽3

η�̃�
𝑟 (𝑢), 𝛽3 ≤ 𝑢 ≤ 𝛽4
0, 𝑜.𝑤

           (3)                                                                                                              

And its indeterminacy membership function is  

 𝜃�̃�(𝑢) =

{
 

 
𝜃�̃�
𝑙 (𝑢), 𝛾1 ≤ 𝑢 ≤ 𝛾2
1, 𝛾2 ≤ 𝑢 ≤ 𝛾3

𝜃�̃�
𝑟(𝑢), 𝛾3 ≤ 𝑢 ≤ 𝛾4
0, 𝑜. 𝑤

            (4)                                                               

Where 0 ≤ 𝜁�̃�(𝑢), 𝜂�̃�(𝑢), 𝜃�̃�(𝑢) ≤ 1 and  0 ≤ 𝜁�̃�(𝑢) + 𝜂�̃�(𝑢) + 𝜃�̃�(𝑢) ≤ 3 . 

Definition 3 [2]. Let two neutrosophic fuzzy numbers be �̃�1 = ⟨𝜁�̃�1(𝑢), 𝜂�̃�1(𝑢), 𝜃�̃�1(𝑢)⟩  and �̃�2 =

⟨𝜁�̃�2(𝑢), 𝜂�̃�2(𝑢), 𝜃�̃�2(𝑢)⟩. Then, 
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�̃�1 ⊆ �̃�2 ⟺ 𝜁�̃�1(𝑢) ≤ 𝜁�̃�2(𝑢),   𝜂�̃�1(𝑢) ≥ 𝜂�̃�2(𝑢), 𝜃�̃�1(𝑢) ≥ 𝜃�̃�2(𝑢)   , 𝑓𝑜𝑟 ∀ 𝑢 ∈ U     

Definition 4 [11]. Assume 𝑈  be a universe of discourse,  �̃� =

⟨(𝛼1, 𝛼2, 𝛼3, 𝛼4), (𝛽1 , 𝛽2, 𝛽3, 𝛽4), (𝛾1, 𝛾2 , 𝛾3 , 𝛾4)⟩ is a neutrosophic trapezoidal fuzzy number in 𝑈 that its 

truth-membership function is defined as 

𝜁�̃�(𝑢)  =

{
  
 

  
 
(𝑢 − 𝛼1)

𝛼2 − 𝛼1
, 𝛼1 ≤ 𝑢 ≤ 𝛼2

1, 𝛼2 ≤ 𝑢 ≤ 𝛼3
(𝛼4 − 𝑢)

𝛼4 − 𝛼3
, , 𝛼3 ≤ 𝑢 ≤ 𝛼4

0, 𝑜.𝑤

         (5) 

Its falsity-membership function is defined as 

  𝜂�̃�(𝑢) =

{
 
 

 
 
(𝛽2−𝑢)

𝛽2−𝛽1
, 𝛽1 ≤ 𝑢 ≤ 𝛽2

1, 𝛽2 ≤ 𝑢 ≤ 𝛽3
(𝑢−𝛽3)

𝛽4−𝛽3
, 𝛽3 ≤ 𝑢 ≤ 𝛽4

0, 𝑜. 𝑤

              (6)                                                                                                   

and its indeterminacy-membership function is defined as 

  𝜃�̃�(𝑢) =

{
 
 

 
 
(𝛾2−𝑢)

𝛾2−𝛾1
, 𝛾1 ≤ 𝑢 ≤ 𝛾2

1, 𝛾2 ≤ 𝑢 ≤ 𝛾3
(𝑢−𝛾3)

𝛾4−𝛾3
, 𝛾3 ≤ 𝑢 ≤ 𝛾4

0, 𝑜. 𝑤

              (7)                                                                                                      

Where 0 ≤ 𝜁�̃�(𝑢), 𝜂�̃�(𝑢), 𝜃�̃�(𝑢) ≤ 1 and  0 ≤ 𝜁�̃�(𝑢) + 𝜂�̃�(𝑢) + 𝜃�̃�(𝑢) ≤ 3 . 

Figure 1 depicts the general representation of a neutrosophic trapezoidal fuzzy number. 

Figure 1. Trapezoidal neutrosophic fuzzy number. 

Definition 5 [11]. Assume 𝜆 is a positive actual number, and consider two neutrosophic trapezoidal 

fuzzy numbers 

 �̃�1 = ⟨(𝛼1�̃�1 , 𝛼2�̃�1 , 𝛼3�̃�1 , 𝛼4�̃�1), (𝛽1�̃�1 , 𝛽2�̃�1 , 𝛽3�̃�1 , 𝛽4�̃�1), (𝛾1�̃�1 , 𝛾2�̃�1 , 𝛾3�̃�1 , 𝛾4�̃�1)⟩  

 �̃�2 = ⟨(𝛼1�̃�2 , 𝛼2�̃�2 , 𝛼3�̃�2 , 𝛼4�̃�2), (𝛽1�̃�2 , 𝛽2�̃�2 , 𝛽3�̃�2 , 𝛽4�̃�2), (𝛾1�̃�2 , 𝛾2�̃�2 , 𝛾3�̃�2 , 𝛾4�̃�2)⟩  

Then, the following operations are valid. 

1) �̃�1⨁�̃�2 = 〈(𝛼1�̃�1 + 𝛼1�̃�2 − 𝛼1�̃�1𝛼1�̃�2 , 𝛼2�̃�1 + 𝛼2�̃�2 − 𝛼2�̃�1𝛼2�̃�2 , 𝛼3�̃�1 + 𝛼3�̃�2 − 𝛼3�̃�1𝛼3�̃�2 , 𝛼4�̃�1 + 𝛼4�̃�2 −

𝛼4�̃�1𝛼4�̃�2), (𝛽1�̃�1𝛽1�̃�2 , 𝛽2�̃�1𝛽2�̃�2 , 𝛽3�̃�1𝛽3�̃�2 , 𝛽4�̃�1𝛽4�̃�2), (𝛾1�̃�1𝛾1�̃�2 , 𝛾2�̃�1𝛾2�̃�2 , 𝛾3�̃�1𝛾3�̃�2 , 𝛾4�̃�1𝛾4�̃�2) 〉, 

2) �̃�1⊗ �̃�2 = 〈(𝛼1�̃�1𝛼1�̃�2 , 𝛼2�̃�1𝛼2�̃�2 , 𝛼3�̃�1𝛼3�̃�2 , 𝛼4�̃�1𝛼4�̃�2), (𝛽1�̃�1 + 𝛽1�̃�2 − 𝛽1�̃�1𝛽1�̃�2 , 𝛽2�̃�1+𝛽2�̃�2 −

𝛽2�̃�1𝛽2�̃�2 , 𝛽3�̃�1 + 𝛽3�̃�2 − 𝛽3�̃�1𝛽3�̃�2 , 𝛽4�̃�1 + 𝛽4�̃�2 − 𝛽4�̃�1𝛽4�̃�2), (𝛾1�̃�1 + 𝛾1�̃�2 − 𝛾1�̃�1𝛾1�̃�2, 𝛾2�̃�1+𝛾2�̃�2 −

𝛾2�̃�1𝛾2�̃�2, 𝛾3�̃�1 + 𝛾3�̃�2 − 𝛾3�̃�1𝛾3�̃�2 , 𝛾4�̃�1 + 𝛾4�̃�2 − 𝛾4�̃�1𝛾4�̃�2) 〉, 
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3) 𝜆�̃�1 = 〈
((1 − (1 − 𝛼1�̃�1)

𝜆
) , (1 − (1 − 𝛼2�̃�1)

𝜆
) , (1 − (1 − 𝛼3�̃�1)

𝜆
) , (1− (1 − 𝛼4�̃�1)

𝜆
))

, (𝛽1�̃�1
𝜆 , 𝛽2�̃�1

𝜆 , 𝛽3�̃�1
𝜆 , 𝛽4�̃�1

𝜆 ), (𝛾1�̃�1
𝜆 , 𝛾2�̃�1

𝜆 , 𝛾3�̃�1
𝜆 , 𝛾4�̃�1

𝜆 )
〉, 

4) �̃�1
𝜆 = 〈(𝛼1�̃�1

𝜆 , 𝛼2�̃�1
𝜆 , 𝛼3�̃�1

𝜆 , 𝛼4�̃�1
𝜆 ), ((1− (1 − 𝛽1�̃�1)

𝜆
) , (1 − (1 − 𝛽2�̃�1)

𝜆
) , (1 − (1 − 𝛽3�̃�1)

𝜆
) , (1 − (1 −

𝛽4�̃�1)
𝜆
)) , ((1− (1 − 𝛾1�̃�1)

𝜆
) , (1 − (1 − 𝛾2�̃�1)

𝜆
) , (1− (1 − 𝛾3�̃�1)

𝜆
) , (1 − (1 − 𝛾4�̃�1)

𝜆
))〉 

Example 1: Assume 𝜆 = 2, and consider two neutrosophic trapezoidal fuzzy numbers 

�̃�1 = ⟨(0.10,0.15,0.20,0.25), (0.05,0.10,0.30,0.35), (0.05,0.20,0.30,0.45)⟩  

�̃�2 = ⟨(0.15,0.20,0.30,0.35), (0.20,0.30,0.40,0.50), (0.35,0.40,0.50,0.55)⟩ 

Then, according to Definition 5, we have 

1) �̃�1⨁�̃�2 = ⟨(0.23,0.32,0.44,0.51), (0.01,0.03,0.12,0.18), (0.02,0.08,0.15,0.25)⟩, 

2) �̃�1⊗ �̃�2 = ⟨(0.02,0.03,0.06,0.09), (0.24,0.37,0.58,0.67), (0.38,0.52,0.65,0.75)⟩, 

3) 2�̃�1 = ⟨(0.19,0.28,0.36,0.44), (0.002,0.01,0.09,0.12), (0.002,0.04,0.09,0.20)⟩, 

  4)  �̃�1
2 = ⟨(0.01,0.02,0.04,0.06), (0.10,0.19,0.51,0.58), (0.10,0.36,0.51,0.70)⟩. 

 

3. Suggested weighted distance measures for neutrosophic trapezoidal fuzzy numbers 

The distance measure concept is one of the most important theoretical and practical tools in 

information theorem that can be applied to evaluate the difference and distance of objects. 

Here, we propose the conceptual scheme to model the distance measure between two neutrosophic 

trapezoidal fuzzy numbers (see Figure 2).  

 

 

 

Figure 2. The main factors to determine the distance measure between NTraFNs. 

 

Suppose �̃�𝑖 = ⟨(𝛼1�̃�𝑖 , 𝛼2�̃�𝑖 , 𝛼3�̃�𝑖 , 𝛼4�̃�𝑖), (𝛽1�̃�𝑖 , 𝛽2�̃�𝑖 , 𝛽3�̃�𝑖 , 𝛽4�̃�𝑖), (𝛾1�̃�𝑖 , 𝛾2�̃�𝑖 , 𝛾3�̃�𝑖 , 𝛾4�̃�𝑖)⟩  and �̃�𝑗 =

⟨(𝛼1�̃�𝑗 , 𝛼2�̃�𝑗 , 𝛼3�̃�𝑗 , 𝛼4�̃�𝑗) , (𝛽1�̃�𝑗 , 𝛽2�̃�𝑗 , 𝛽3�̃�𝑗 , 𝛽4�̃�𝑗) , (𝛾1�̃�𝑗 , 𝛾2�̃�𝑗 , 𝛾3�̃�𝑗 , 𝛾4�̃�𝑗)⟩ are two neutrosophic trapezoidal 

fuzzy numbers. 

Step 1. Obtain the left and right line formulas corresponding to the truth-membership 

function;[𝑓𝑙�̃�𝑖(𝑧), 𝑓𝑟�̃�𝑖(𝑧)], the complement of the falsity-membership function; [𝑔𝑙�̃�𝑖(𝑧), 𝑔𝑟�̃�𝑖(𝑧)] and 

the complement of the indeterminacy-membership function; [ℎ𝑙�̃�𝑖(𝑧), ℎ𝑟�̃�𝑖(𝑧)] for each trapezoidal 

neutrosophic fuzzy numbers with respect to the vertical lines 𝑧 =0 and 𝑧 = 1 respectively. In this 

sense, we can write:  

[𝑓
𝑙�̃�𝑖(𝑧), 𝑓

𝑟�̃�𝑖(𝑧)] = [(𝛼1�̃�𝑖) + 𝑧(𝛼2�̃�𝑖 − 𝛼1�̃�𝑖), (1 − 𝛼4�̃�𝑖) + 𝑧(𝛼4�̃�𝑖

− 𝛼3�̃�𝑖)]                        (8) 
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[𝑔
𝑙�̃�𝑖(𝑧), 𝑔

𝑟�̃�𝑖(𝑧)] = [(𝛽1�̃�𝑖) + z(𝛽2�̃�𝑖 − 𝛽1�̃�𝑖), (1 − 𝛽4�̃�𝑖) + z(𝛽4�̃�𝑖

− 𝛽3�̃�𝑖)]                          (9) 

[ℎ𝑙�̃�𝑖(𝑧), ℎ𝑟�̃�𝑖(𝑧)] = [(𝛾1�̃�𝑖) + z(𝛾2�̃�𝑖 − 𝛾1�̃�𝑖), (1 − 𝛾4�̃�𝑖) + z(𝛾4�̃�𝑖

− 𝛾3�̃�𝑖)]                          (10) 

Step 2.a. Calculate the area of the left half of each interval function respective to the vertical axis. So, 

we can express   

𝑄𝑙𝜁(�̃�𝑖) = ∫ ((𝛼1�̃�𝑖) + 𝑧(𝛼2�̃�𝑖 − 𝛼1�̃�𝑖))𝑑𝑧 
1

0
= (𝛼1�̃�𝑖) +

(𝛼2�̃�𝑖
−𝛼1�̃�𝑖

)

2
                                     (11)  

𝑄𝑙𝜂(�̃�𝑖) = ∫ ((𝛽1�̃�𝑖) + 𝑧(𝛽2�̃�𝑖 − 𝛽1�̃�𝑖))𝑑𝑧 
1

0
= (𝛽1�̃�𝑖) +

(𝛽2�̃�𝑖
−𝛽1�̃�𝑖

)

2
                                     (12)  

𝑄𝑟𝜃(�̃�𝑖) = ∫ ((𝛾1�̃�𝑖) + 𝑧(𝛾2�̃�𝑖 − 𝛾1�̃�𝑖))𝑑𝑧 
1

0

= (𝛾1�̃�𝑖) +
(𝛾2�̃�𝑖 − 𝛾1�̃�𝑖)

2
                                 (13) 

b. Calculate the area of the right half of each interval function respective to the vertical axis. So, we 

can express   

𝑄𝑟𝜁(�̃�𝑖) = ∫ ((1 − 𝛼4�̃�𝑖) + 𝑧(𝛼4�̃�𝑖 − 𝛼3�̃�𝑖))𝑑𝑧 
1

0

= (1 − 𝛼4�̃�𝑖) +
(𝛼4�̃�𝑖 − 𝛼3�̃�𝑖)

2
             (14) 

𝑄𝑟𝜂(�̃�𝑖) = ∫ ((1 − 𝛽4�̃�𝑖) + 𝑧(𝛽4�̃�𝑖 − 𝛽3�̃�𝑖))𝑑𝑧 
1

0

= (1 − 𝛽4�̃�𝑖) +
(𝛽4�̃�𝑖 − 𝛽3�̃�𝑖)

2
               (15) 

𝑄𝑟𝜃(�̃�𝑖) = ∫ ((1 − 𝛾4�̃�𝑖) + 𝑧(𝛾4�̃�𝑖 − 𝛾3�̃�𝑖))𝑑𝑧 
1

0

= (1 − 𝛾4�̃�𝑖) +
(𝛾4�̃�𝑖 − 𝛾3�̃�𝑖)

2
                (16) 

Step 3.a. The suggested surface-based weighted hamming distance measure is introduced as 

         D𝐻𝑆(�̃�𝑖 , �̃�𝑗) = { ω
𝑙𝜁(|𝑄𝑙𝜁(�̃�𝑖) − 𝑄

𝑙𝜁(�̃�𝑗)| + ω
𝑟𝜁|𝑄𝑟𝜁(�̃�𝑖) − 𝑄

𝑟𝜁(�̃�𝑗)|) + ω
𝑙𝜂(|𝑄𝑙𝜂(�̃�𝑖) − 𝑄

𝑙𝜂(�̃�𝑗)| +

ω𝑟𝜂|𝑄𝑟𝜂(�̃�𝑖) − 𝑄
𝑟𝜂(�̃�𝑗)|) + ω

𝑙𝜃(|𝑄𝑙𝜃(�̃�𝑖) − 𝑄
𝑙𝜃(�̃�𝑗)| + ω

𝑟𝜃|𝑄𝑟𝜃(�̃�𝑖) −

𝑄𝑟𝜃(�̃�𝑗)|)}                (17) 

Where ω𝑙𝜁 , ω𝑟𝜁 , ω𝑙𝜂 , ω𝑟𝜂 , ω𝑙𝜃 , ω𝑟𝜃 ∈ [0,1] and satisfies ω𝑙𝜁 +ω𝑟𝜁 +ω𝑙𝜂 + ω𝑟𝜂 + ω𝑙𝜃 +ω𝑟𝜃 = 1. 

If ω𝑙𝜁 = ω𝑟𝜁 = ω𝑙𝜂 = ω𝑟𝜂 = ω𝑙𝜃 = ω𝑟𝜃, then 

  D𝐻𝑆(�̃�𝑖 , �̃�𝑗) =
1

6
{(|𝑄𝑙𝜁(�̃�𝑖) − 𝑄

𝑙𝜁(�̃�𝑗)| + |𝑄
𝑟𝜁(�̃�𝑖) − 𝑄

𝑟𝜁(�̃�𝑗)|) + (|𝑄
𝑙𝜂(�̃�𝑖) − 𝑄

𝑙𝜂(�̃�𝑗)| + |𝑄
𝑟𝜂(�̃�𝑖) −

𝑄𝑟𝜂(�̃�𝑗)|) + (|𝑄
𝑙𝜃(�̃�𝑖) − 𝑄

𝑙𝜃(�̃�𝑗)| + |𝑄
𝑟𝜃(�̃�𝑖) − 𝑄

𝑟𝜃(�̃�𝑗)|)}                                  (18) 

b. Similarly, the suggested surface-based weighted Euclidean distance measure introduced as 

  D𝐸𝑆(�̃�𝑖 , �̃�𝑗) = { ω
𝑙𝜁 (𝑄𝑙𝜁(�̃�𝑖) − 𝑄

𝑙𝜁(�̃�𝑗))
2

+ω𝑟𝜁 (𝑄𝑟𝜁(�̃�𝑖) − 𝑄
𝑟𝜁(�̃�𝑗))

2

+ω𝑙𝜂 (𝑄𝑙𝜂(�̃�𝑖) − 𝑄
𝑙𝜂(�̃�𝑗))

2

+

ω𝑟𝜂 (𝑄𝑟𝜂(�̃�𝑖) − 𝑄
𝑟𝜂(�̃�𝑗))

2

+ ω𝑙𝜃 (𝑄𝑙𝜃(�̃�𝑖) − 𝑄
𝑙𝜃(�̃�𝑗))

2

+ ω𝑟𝜃 (𝑄𝑟𝜃(�̃�𝑖) −

𝑄𝑟𝜃(�̃�𝑗))
2

 }

1
2⁄

          (19) 
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Where ω𝑙𝜁 , ω𝑟𝜁 , ω𝑙𝜂 , ω𝑟𝜂 , ω𝑙𝜃 , ω𝑟𝜃 ∈ [0,1] and satisfies ω𝑙𝜁 +ω𝑟𝜁 +ω𝑙𝜂 + ω𝑟𝜂 + ω𝑙𝜃 +ω𝑟𝜃 = 1. 

If ω𝑙𝜁 = ω𝑟𝜁 = ω𝑙𝜂 = ω𝑟𝜂 = ω𝑙𝜃 = ω𝑟𝜃, then 

          D𝐸𝑆(�̃�𝑖 , �̃�𝑗) =
1

√6
{ (𝑄𝑙𝜁(�̃�𝑖) − 𝑄

𝑙𝜁(�̃�𝑗))
2

+ (𝑄𝑟𝜁(�̃�𝑖) − 𝑄
𝑟𝜁(�̃�𝑗))

2

+ (𝑄𝑙𝜂(�̃�𝑖) − 𝑄
𝑙𝜂(�̃�𝑗))

2

+

(𝑄𝑟𝜂(�̃�𝑖) − 𝑄
𝑟𝜂(�̃�𝑗))

2

+ (𝑄𝑙𝜃(�̃�𝑖) − 𝑄
𝑙𝜃(�̃�𝑗))

2

+ (𝑄𝑟𝜃(�̃�𝑖) − 𝑄
𝑟𝜃(�̃�𝑗))

2

 }

1
2⁄

                (20) 

 

Example 2: Suppose �̃�1 = ⟨(0.10,0.15,0.20,0.25), (0.05,0.10,0.30,0.35), (0.05,0.20,0.30,0.45)⟩  and 

�̃�2 = ⟨(0.15,0.20,0.30,0.35), (0.20,0.30,0.40,0.50), (0.35,0.40,0.50,0.55)⟩  are two neutrosophic 

trapezoidal fuzzy numbers. Then, according to Eqs 19 and 20, we have 

D𝐻𝑆(�̃�1, �̃�2) =
1

6
{(0.05 + 0.10) + (0.10 + 0.125) + (0.275 + 0.15)} = 0.13 

D𝐸𝑆(�̃�1, �̃�2) =
1

√6
{ 0.0025 + 0.01 + 0.01 + 0.016 + 0.076 + 0.0225 }

1
2⁄ = 0.15 

 

4.  Theorems and properties  

In this part, we focus on noteworthy features of suggested surface-based weighted hamming and 

Euclidean distance measures. 

Theorem 1: let �̃�1, �̃�2, and �̃�3 are three neutrosophic trapezoidal fuzzy numbers on U. We represent 

the distance measure between the two numbers �̃�1 and �̃�2 is denoted as 𝐷(�̃�1, �̃�2). Demonstrate 

that equation (18) satisfies the following distance measure principles.  

A 1) 0 ≤ 𝐷(�̃�1, �̃�2) ≤ 1 

A 2) 𝐷(�̃�1, �̃�2) = 0⟺ �̃�1 ~�̃�2 

A 3) 𝐷(�̃�1, �̃�2) = 𝐷(�̃�2, �̃�1) 

A 4) If  �̃�1 ⊆ �̃�2 ⊆ �̃�3 ⟹𝐷(�̃�1, �̃�2) ≤ 𝐷(�̃�1, �̃�3) and 𝐷(�̃�1, �̃�2) ≤ 𝐷(�̃�1, �̃�3) 

Proof: 

1) In every term of (18) the result of each absolute value is positive and smaller than 1, the structure 

of the relation and the fact that the sum of the weights is one, thematic principle 1 is valid. 

Therefore: 

0 ≤ D𝐻𝑆(�̃�1, �̃�2) ≤ 1 

2) If D𝐻𝑆(�̃�1, �̃�2) = 0, then: 

𝑄𝑙𝜁(�̃�1) = 𝑄
𝑙𝜁(�̃�2) , 𝑄𝑟𝜁(�̃�1) = 𝑄

𝑟𝜁(�̃�2), 𝑄𝑙𝜂(�̃�1) = 𝑄
𝑙𝜂(�̃�2), 𝑄𝑟𝜂(�̃�1) = 𝑄

𝑟𝜂(�̃�2) 

𝑄𝑙𝜃(�̃�1) = 𝑄
𝑙𝜃(�̃�2), 𝑄𝑟𝜃(�̃�1) = 𝑄

𝑟𝜃(�̃�2)   

Therefore 

�̃�1 ∼ �̃�2 

The converse of principle 2 is also can be proven in a similar way. 

3) Since each of the expressions is in absolute value. Therefore: 

D𝐻𝑆(�̃�1, �̃�2) = D
𝐻𝑆(�̃�2, �̃�1) 

4) If �̃�1 ⊆ �̃�2 ⊆ �̃�3, then: 
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|𝑄𝑙𝜁(�̃�1) − 𝑄
𝑙𝜁(�̃�2)| ≤ |𝑄𝑙𝜁(�̃�1) − 𝑄

𝑙𝜁(�̃�3)|, |𝑄𝑟𝜁(�̃�1) − 𝑄
𝑟𝜁(�̃�2)| ≤ |𝑄𝑟𝜁(�̃�1) − 𝑄

𝑟𝜁(�̃�3)| 

|𝑄𝑙𝜂(�̃�1) − 𝑄
𝑙𝜂(�̃�2)| ≤ |𝑄𝑙𝜂(�̃�1) − 𝑄

𝑙𝜂(�̃�3)|, |𝑄𝑟𝜂(�̃�1) − 𝑄
𝑟𝜂(�̃�2)| ≤ |𝑄𝑟𝜂(�̃�1) − 𝑄

𝑟𝜂(�̃�3)| 

|𝑄𝑙𝜃(�̃�1) − 𝑄
𝑙𝜃(�̃�2)| ≤ |𝑄𝑙𝜃(�̃�1) − 𝑄

𝑙𝜃(�̃�3)|, |𝑄𝑟𝜃(�̃�1) − 𝑄
𝑟𝜃(�̃�2)| ≤ |𝑄𝑟𝜃(�̃�1) − 𝑄

𝑟𝜃(�̃�3)| 

Hence 

D𝐻𝑆(�̃�1, �̃�2) =
1

6
{(|𝑄𝑙𝜁(�̃�1) − 𝑄

𝑙𝜁(�̃�2)| + |𝑄
𝑟𝜁(�̃�1) − 𝑄

𝑟𝜁(�̃�2)|)

+ (|𝑄𝑙𝜂(�̃�1) − 𝑄
𝑙𝜂(�̃�2)| + |𝑄

𝑟𝜂(�̃�1) − 𝑄
𝑟𝜂(�̃�2)|)

+ (|𝑄𝑙𝜃(�̃�1) − 𝑄
𝑙𝜃(�̃�2)| + |𝑄

𝑟𝜃(�̃�1) − 𝑄
𝑟𝜃(�̃�2)|)} 

   ≤
1

6
{(|𝑄𝑙𝜁(�̃�1) − 𝑄

𝑙𝜁(�̃�3)| + |𝑄
𝑟𝜁(�̃�1) − 𝑄

𝑟𝜁(�̃�3)|) + (|𝑄
𝑙𝜂(�̃�1) − 𝑄

𝑙𝜂(�̃�3)| + |𝑄
𝑟𝜂(�̃�1) − 𝑄

𝑟𝜂(�̃�3)|) +

(|𝑄𝑙𝜃(�̃�1) − 𝑄
𝑙𝜃(�̃�3)| + |𝑄

𝑟𝜃(�̃�1) − 𝑄
𝑟𝜃(�̃�3)|)} = D

𝐻𝑆(�̃�1, �̃�3) 

As a result 

D𝐻𝑆(�̃�1, �̃�2) ≤ D
𝐻𝑆(�̃�1, �̃�3) 

It can be shown in a similar way 

D𝐻𝑆(�̃�2, �̃�3) ≤ D
𝐻𝑆(�̃�1, �̃�3) 

Therefore, relation (20) satisfies all measure properties. 

Theorem 2. let �̃�1 ⊆ �̃�2 ⊆ �̃�3 then, demonstrate 

D𝐻𝑆(�̃�1, �̃�3) ≤ D
𝐻𝑆(�̃�1, �̃�2) + D

𝐻𝑆(�̃�2, �̃�3)                 (21) 

Proof: Starting from the left side of (18), we can write: 

D𝐻𝑆(�̃�1, �̃�3) =
1

6
{(|𝑄𝑙𝜁(�̃�1) − 𝑄

𝑙𝜁(�̃�2) + 𝑄
𝑙𝜁(�̃�2) − 𝑄

𝑙𝜁(�̃�3)| + |𝑄
𝑟𝜁(�̃�1) − 𝑄

𝑟𝜁(�̃�2) + 𝑄
𝑟𝜁(�̃�2)−𝑄

𝑟𝜁(�̃�3)|)

+ (|𝑄𝑙𝜂(�̃�1) − 𝑄
𝑙𝜂(�̃�2) + 𝑄

𝑙𝜂(�̃�2) − 𝑄
𝑙𝜂(�̃�3)|

+ |𝑄𝑟𝜂(�̃�1) − 𝑄
𝑟𝜂(�̃�2) + 𝑄

𝑟𝜂(�̃�2) − 𝑄
𝑟𝜂(�̃�3)|)

+ (|𝑄𝑙𝜃(�̃�1) − 𝑄
𝑙𝜃(�̃�2) + 𝑄

𝑙𝜃(�̃�2) − 𝑄
𝑙𝜃(�̃�3)|

+ |𝑄𝑟𝜃(�̃�1) − 𝑄
𝑟𝜃(�̃�2) + 𝑄

𝑟𝜃(�̃�2) − 𝑄
𝑟𝜃(�̃�3)|)} 

According to the Triangular inequality property of absolute value, we can say 

D𝐻𝑆(�̃�1, �̃�3) ≤
1

6
{(|𝑄𝑙𝜁(�̃�1) − 𝑄

𝑙𝜁(�̃�2)| + |𝑄
𝑟𝜁(�̃�1) − 𝑄

𝑟𝜁(�̃�2)|)

+ (|𝑄𝑙𝜂(�̃�1) − 𝑄
𝑙𝜂(�̃�2)| + |𝑄

𝑟𝜂(�̃�1) − 𝑄
𝑟𝜂(�̃�2)|)

+ (|𝑄𝑙𝜃(�̃�1) − 𝑄
𝑙𝜃(�̃�2)| + |𝑄

𝑟𝜃(�̃�1) − 𝑄
𝑟𝜃(�̃�2)|)} 

+
1

6
{(|𝑄𝑙𝜁(�̃�2) − 𝑄

𝑙𝜁(�̃�3)| + |𝑄
𝑟𝜁(�̃�2) − 𝑄

𝑟𝜁(�̃�3)|) + (|𝑄
𝑙𝜂(�̃�2) − 𝑄

𝑙𝜂(�̃�3)| + |𝑄
𝑟𝜂(�̃�2) − 𝑄

𝑟𝜂(�̃�3)|)

+ (|𝑄𝑙𝜃(�̃�2) − 𝑄
𝑙𝜃(�̃�3)| + |𝑄

𝑟𝜃(�̃�2) − 𝑄
𝑟𝜃(�̃�3)|)} 

= D𝐻𝑆(�̃�1, �̃�3) + D
𝐻𝑆(�̃�2, �̃�3). 

Now, let us demonstrate some meaningful properties of the proposed measures. For this aim, 

consider the following NTraFNs: 

�̃�1 = ⟨(𝑎, 𝑎, 𝑎, 𝑎), (𝑎, 𝑎, 𝑎, 𝑎), (0,0,0,0)⟩, �̃�2 = ⟨(𝑏, 𝑏, 𝑏, 𝑏), (0,0,0,0), (0,0,0,0)⟩,   

�̃�3 = ⟨(0,0,0,0), (0,0,0,0), (0,0,0,0)⟩, �̃�4 = ⟨(1,1,1,1), (0,0,0,0), (0,0,0,0)⟩. 

Property 1: If ω𝑙𝜁 = ω𝑟𝜁 = 0.5,ω𝑙𝜂 = ω𝑟𝜂 = ω𝑙𝜃 = ω𝑟𝜃 = 0, 𝑡ℎ𝑒𝑛   

D𝐻𝑆(�̃�1, �̃�2) = D
𝐸𝑆(�̃�1, �̃�2) = |𝑎 − 𝑏|. 
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Property 2:  If ω𝑙𝜁 = ω𝑟𝜁 = 0.5,ω𝑙𝜂 = ω𝑟𝜂 = ω𝑙𝜃 = ω𝑟𝜃 = 0, 𝑡ℎ𝑒𝑛   

D𝐻𝑆(�̃�3, �̃�4) = D
𝐸𝑆(�̃�3, �̃�4) = 1. 

Property 3: If ω𝑙𝜁 = ω𝑟𝜁 = 0.5,ω𝑙𝜂 = ω𝑟𝜂 = ω𝑙𝜃 = ω𝑟𝜃 = 0, 𝑡ℎ𝑒𝑛 

D𝐻𝑆(�̃�1, �̃�3) = D
𝐸𝑆(�̃�1, �̃�3) = 𝑎. 

Property 4: If ω𝑙𝜁 = ω𝑟𝜁 = 0.5,ω𝑙𝜂 = ω𝑟𝜂 = ω𝑙𝜃 = ω𝑟𝜃 = 0, 𝑡ℎ𝑒𝑛  

D𝐻𝑆(�̃�1, �̃�4) = D
𝐸𝑆(�̃�1, �̃�4) = 1 − 𝑎. 

 

Example 3: Find D𝐻𝑆 and D𝐸𝑆 between the following numbers 

�̃�1 = ⟨(0.5,0.5,0.5,0.5), (0,0,0,0), (0,0,0,0)⟩, �̃�2 = ⟨(0.7,0.7,0.7,0.7), (0,0,0,0), (0,0,0,0)⟩,   

�̃�3 = ⟨(0,0,0,0), (0,0,0,0), (0,0,0,0)⟩, �̃�4 = ⟨(1,1,1,1), (0,0,0,0), (0,0,0,0)⟩. 

Regard to three following cases for weights as 

Case1: ω𝑙𝜁 = ω𝑟𝜁 = 0.5,ω𝑙𝜂 = ω𝑟𝜂 = ω𝑙𝜃 = ω𝑟𝜃 = 0 

Case2: ω𝑙𝜁 = ω𝑟𝜁 = ω𝑙𝜂 = ω𝑟𝜂 = ω𝑙𝜃 = ω𝑟𝜃 = 1/6 

Case3: ω𝑙𝜁 = ω𝑟𝜁 = 0.3,ω𝑙𝜂 = ω𝑟𝜂 = ω𝑙𝜃 = ω𝑟𝜃 = 0.1 

Since the mentioned numbers in example 1 are all deterministic, we expect the proposed distance 

measures to verify an acceptable performance with changes in the weighting coefficients. We 

consider three modes for weight variation according to what was mentioned earlier. The weighted 

Euclidean and Hamming distance between the numbers �̃�1, �̃�2, �̃�3, and �̃�4 under states 1, 2, and 3 

are given in tables 1 to 6. 

 

�̃�4 �̃�3 �̃�2 �̃�1 Case1 

0.5000 0.5000 0.2000 0 �̃�1 

0.3000 0.7000 0 0.2000 �̃�2 

1.0000 0 0.7000 0.5000 �̃�3 

0 1.0000 0.3000 0.5000 �̃�4 
 

 

�̃�4 �̃�3 �̃�2 �̃�1 Case1 

0.5000 0.5000 0.2000 0 �̃�1 

0.3000 0.7000 0 0.2000 �̃�2 

1.0000 0 0.7000 0.5000 �̃�3 

0 1.0000 0.3000 0.5000 �̃�4 
 

Table 1. Hamming distance measure for case 1 

of Ex 1. 

Table 2. Euclidean distance measure for case 1 of 

Ex 1. 

 

�̃�4 �̃�3 �̃�2 �̃�1 Case2 

0.1667 0.1667 0.0667 0 �̃�1 

0.1000 0.2333 0 0.0667 �̃�2 

0.3333 0 0.2333 0.1667 �̃�3 

0 0.3333 0.3333 0.1667 �̃�4 
 

 

�̃�4 �̃�3 �̃�2 �̃�1 Case2 

0.2877 0.2877 0.1155 0 �̃�1 

0.1732 0.4041 0 0.1155 �̃�2 

0.5774 0 0.4041 0.2877 �̃�3 

0 0.5774 0.1732 0.2877 �̃�4 
 

Table 3. Hamming distance measure for case 2 

of Ex 1. 

Table 4. Euclidean distance measure for case 2 of 

Ex 1. 

 

�̃�4 �̃�3 �̃�2 �̃�1 Case3 

0.3000 0.3000 0.1200 0 �̃�1 

0.1800 0.4200 0 0.1200 �̃�2 

0.6000 0 0.4200 0.3000 �̃�3 

 

�̃�4 �̃�3 �̃�2 �̃�1 Case3 

0.3873 0.3873 0.1549 0 �̃�1 

0.2324 0.5422 0 0.1549 �̃�2 

0.7746 0 0.5422 0.3873 �̃�3 
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0 0.6000 0.1800 0.3000 �̃�4 
 

0 0.7746 0.2324 0.3873 �̃�4 
 

Table 5. Hamming distance measure for case 3 

of Ex 1. 

Table 6. Euclidean distance measure for case 3 of 

Ex 1. 

As expected, the results of Tables 1 and 2 in case 1 reflect the logical and uniform performance of the 

proposed distance measures. In addition, by increasing the weighting coefficients related to the 

indeterminacy and falsity-membership functions for cases 2 and 3 (Tables 3, 4, 5, and 6), smaller 

values for Euclidean and Hamming distances are obtained compared to case 1. 

5.   NTraFNs-CODAS method based on novel weighted distance measures 

Keshavarz Ghorabaee et al. (2016) [36] introduced the CODAS method as one of the distance-based 

methods in 2016 to solve the multi-criteria decision-making problem. In this attitude, the Euclidean 

and Hamming distances of each option are used to determine the most desirable option from the 

negative ideal. Based on our current studies and knowledge from the research literature, no extension 

of this method has been done on neutrosophic trapezoidal fuzzy data for selection problems. 

Therefore, in this part, we want to present the CODAS algorithm under neutrosophic trapezoidal 

fuzzy information and using two surface-based weighted distance measures. Figure 3 shows the 

general structure of the NTraFNs-CODAS algorithm. 

More precisely, the steps of the CODAS method are expressed as follows:  

Step 1: Record the alternative sets 𝑂 = {𝑜1, 𝑜2, … , 𝑜s}, attribute sets 𝐸 = {𝑒1, 𝑒2, … , 𝑒t} and relevant 

weight sets Ξ = {𝜉1, 𝜉2, … , 𝜉t}. Then construct the NTraFNs decision matrix, which is denoted as �̃� =

[�̃�𝑖𝑗]𝑠∗𝑡
 such that each array is given by 

�̃�𝑖𝑗 = ⟨(𝛼1�̃�𝑖𝑗 , 𝛼2𝑢𝑖𝑗 , 𝛼3𝑢𝑖𝑗 , 𝛼4𝑢𝑖𝑗) , (𝛽1𝑢𝑖𝑗 , 𝛽2𝑢𝑖𝑗 , 𝛽3𝑢𝑖𝑗 , 𝛽4𝑢𝑖𝑗) , (𝛾1�̃�𝑖𝑗 , 𝛾2𝑢𝑖𝑗 , 𝛾3�̃�𝑖𝑗 , 𝛾4𝑢𝑖𝑗)⟩          (22) 

Where 𝑖𝜖{1,2,… , 𝑠} and 𝑖𝜖{1,2,… , 𝑡}. 

Step 2: Obtain the normalized and then the weighted normalized NTraFNs decision matrix, which 

can denote as �̃�𝑛 = [�̃�𝑖𝑗
𝑛 ]

𝑠∗𝑡
 and �̃�𝑤𝑛 = [�̃�𝑖𝑗

𝑤𝑛]
𝑠∗𝑡

 where  

�̃�𝑖𝑗
𝑤𝑛 = �̃�𝑖𝑗

𝑛 ∗ 𝜉𝑗             (23) 

�̃�𝑖𝑗
𝑤𝑛 = �̃�𝑖𝑗

= ⟨(𝛼1𝑢𝑖𝑗
𝑤𝑛  , 𝛼2𝑢𝑖𝑗

𝑤𝑛 , 𝛼3𝑢𝑖𝑗
𝑤𝑛 , 𝛼4𝑢𝑖𝑗

𝑤𝑛 ) , (𝛽1𝑢𝑖𝑗
𝑤𝑛  , 𝛽2𝑢𝑖𝑗

𝑤𝑛 , 𝛽3𝑢𝑖𝑗
𝑤𝑛 , 𝛼4𝑢𝑖𝑗

𝑤𝑛 ) , (𝛾1�̃�𝑖𝑗
𝑤𝑛  , 𝛾2�̃�𝑖𝑗

𝑤𝑛 , 𝛾3𝑢𝑖𝑗
𝑤𝑛 , 𝛾4𝑢𝑖𝑗

𝑤𝑛 )⟩  (24) 
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Figure 3. NTraFNs-CODAS Method structure. 

 

Step 3: Recognize the negative ideal solution. This matrix defines by  𝑁�̃� = [𝑛�̃�𝑖𝑗]1∗𝑡
 such that: 

𝑛�̃�𝑖𝑗 = min
𝑖
�̃�𝑖𝑗
𝑤𝑛                      (25) 

In such a way as 

min
𝑖
�̃�𝑖𝑗
𝑤𝑛 = ⟨

(min
𝑖
(𝛼1𝑢𝑖𝑗

𝑤𝑛 ) ,min
𝑖
(𝛼2𝑢𝑖𝑗

𝑤𝑛 ),min
𝑖
(𝛼3𝑢𝑖𝑗

𝑤𝑛 ),min
𝑖
(𝛼4𝑢𝑖𝑗

𝑤𝑛 )) ,

(m𝑎𝑥
𝑖
(𝛽1𝑢𝑖𝑗

𝑤𝑛  ), m𝑎𝑥
𝑖
(𝛽2𝑢𝑖𝑗

𝑤𝑛 ),m𝑎𝑥
𝑖
(𝛽3𝑢𝑖𝑗

𝑤𝑛 ), m𝑎𝑥
𝑖
(𝛼4𝑢𝑖𝑗

𝑤𝑛 )) ,

(m𝑎𝑥
𝑖
(𝛾1𝑢𝑖𝑗

𝑤𝑛 ) , m𝑎𝑥
𝑖
(𝛾2𝑢𝑖𝑗

𝑤𝑛 ), m𝑎𝑥
𝑖
(𝛾3𝑢𝑖𝑗

𝑤𝑛 ),𝑚𝑎𝑥
𝑖
(𝛾4𝑢𝑖𝑗

𝑤𝑛 ))

⟩            (26) 

Step 4: Calculate the surface-based weighted Hamming and Euclidean distances between 

alternatives and 𝑁�̃� according to Eqs (17, 19). Then 𝐷𝑖
𝐻𝑆 and 𝐷𝑖

𝐸𝑆 are computed as aggregated 

distances in Eqs (27, 28) 

𝐷𝑖
𝐻𝑆 =∑D𝐻𝑆

𝑡

𝑗=1

(�̃�𝑖𝑗
𝑤𝑛 , 𝑛�̃�𝑖𝑗)           (27) 

𝐷𝑖
𝐸𝑆 =∑D𝐸𝑆

𝑡

𝑗=1

(�̃�𝑖𝑗
𝑤𝑛, 𝑛�̃�𝑖𝑗)         (28) 

Step 5: Organize the relative assessment matrix as follows 

𝑅𝐴 = [𝑝𝑖𝑘]𝑠∗𝑠                    (29) 

Where each array of 𝑅𝐴 is obtained by applying Eqs 30 and 31 

𝑝𝑖𝑘 = {(𝐷𝑖
𝐸𝑆 −𝐷𝑘

𝐸𝑆) + (𝛾(𝐷𝑖
𝐸𝑆 −𝐷𝑘

𝐸𝑆) ∗ (𝐷𝑖
𝐻𝑆 −𝐷𝑘

𝐻𝑆))},              (30) 

                                   Φ(𝑢)

= {
1       |𝑢| ≥ 𝜑,

0      |𝑢| ≤ 𝜑,
                                                  (31) 

preprations

establish criteria, 
alternatives and weights

construct the NTraFNs
decision matrix

construct the weighted 
normalized NTraFNs 

decision matrix

computations

determine the negatine 
ideal

compute surface-based 
weighted hamming and 

euclidean distances

determine the relative 
assessment matrix

calculate  the assessment 
score

results

Rank the alternatives

select the most appropriate 
alternatives

sensitive analysis

NTraFNs-CODAS Method structure 
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as a threshold value chosen by the decision-maker's opinion for the function Φ(𝑢). In this paper, 

𝜑 = 0.02 is assumed for computations. 

Step 6: The assessment value for each alternative is determined as the following equation 

𝐴𝑆𝑖 =∑𝑝𝑖𝑘 .                                  (32)

𝑠

𝑘=1

 

Step 7: The highest Assessment value of step 6 indicates the most desirable choice. 

5 -1 Illustrative example  

In order to show the efficiency of the proposed hybrid method, we adopted the illustrative example 

of the material selection problem discussed by Jana and Karaaslan [68]. The customer desires to buy 

a tablet from the list of primarily selected five alternatives 𝑂 = {𝑜1, 𝑜2, 𝑜3, 𝑜4 , 𝑜5}. The following four 

attributes are considered by the customer (Figure 4): 

(1) Options (e1); 

(2) Hardware (e2); 

(3) Affordable price (e3); and 

(4) Customer support (e4). 

 

 

Figure 4. Criteria of material selection problem. 

Assume that the weight vectors are provided by experts for the four attributes under the TrNFNs as 

follows: 

𝜉1 = 〈(0.3,0.5,0.8,0.9), (0.1,0.3,0.6,0.7), (0.2,0.3,0.6,0.6)〉 

𝜉2 = 〈(0.5,0.6,0.7,0.9), (0.3,0.5,0.6,0.8), (0.2,0.4,0.7,0.8)〉 

𝜉3 = 〈(0.6,0.7,0.8,0.9), (0.0,0.1,0.2,0.3), (0.1,0.1,0.2,0.3)〉 

𝜉4 = 〈(0.4,0.6,0.7,0.7), (0.2,0.3,0.4,0.5), (0.2,0.3,0.6,0.6)〉 
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Table 7 provides information (neutrosophic trapezoidal fuzzy numbers) on the experts' opinions of 

the five alternatives on the relevant criteria for the decision-making process. 

Table 7. NTraFNs decision matrix. 

𝑒4 𝑒3 𝑒2 𝑒1  

〈
(0/5,0/5,0/6,0/6),
(0/2,0/7,0/7,0/7),
(0/2,0/3,0/3,0/3)

〉 〈
(0/2,0/2,0/3,0/4),
(0/5,0/6,0/6,0/8),
(0/0,0/2,0/2,0/5)

〉 〈
(0/4,0/5,0/6,0/6),
(0/1,0/1,0/4,0/6),
(0/2,0/5,0/6,0/7)

〉 〈
(0/1,0/2,0/3,0/3),
(0/0,0/3,0/4,0/4),
(0/2,0/5,0/6,0/7)

〉 

𝑜1 

〈
(0/1,0/1,0/2,0/8),
(0/6,0/6,0/7,0/8),
(0/0,0/1,0/2,0/4)

〉 〈
(0/4,0/5,0/5,0/7),
(0/3,0/3,0/4,0/6),
(0/2,0/3,0/4,0/5)

〉 〈
(0/3,0/5,0/6,0/7),
(0/2,0/2,0/3,0/4),
(0/4,0/5,0/8,0/9)

〉 〈
(0/2,0/2,0/4,0/4),
(0/3,0/3,0/5,0/6),
(0/1,0/2,0/2,0/5)

〉 

𝑜2 

〈
(0/0,0/2,0/3,0/9),
(0/1,0/7,0/7,0/8),
(0/6,0/7,0/7,0/8)

〉 〈
(0/3,0/3,0/4,0/5),
(0/1,0/4,0/4,0/6),
(0/2,0/2,0/3,0/7)

〉 〈
(0/1,0/2,0/2,0/3),
(0/2,0/5,0/6,0/6),
(0/1,0/2,0/3,0/4)

〉 〈
(0/5,0/7,0/8,0/9),
(0/2,0/4,0/5,0/8),
(0/3,0/3,0/5,0/5)

〉 

𝑜3 

〈
(0/5,0/7,0/8,0/9),
(0/5,0/6,0/6,0/6),
(0/2,0/3,0/3,0/3)

〉 〈
(0/5,0/6,0/6,0/9),
(0/3,0/5,0/5,0/6),
(0/1,0/5,0/5,0/6)

〉 〈
(0/5,0/5,0/7,0/8),
(0/4,0/5,0/6,0/6),
(0/5,0/6,0/7,0/8)

〉 〈
(0/0,0/2,0/3,0/7),
(0/4,0/5,0/6,0/8),
(0/4,0/5,0/5,0/9)

〉 

𝑜4 

〈
(0/0,0/1,0/2,0/3),
(0/2,0/2,0/4,0/5),
(0/1,0/1,0/3,0/4)

〉 〈
(0/4,0/4,0/7,0/7),
(0/1,0/4,0/4,0/7),
(0/2,0/4,0/4,0/6)

〉 〈
(0/1,0/5,0/7,0/9),
(0/2,0/3,0/3,0/6),
(0/6,0/7,0/7,0/9)

〉 〈
(0/2,0/4,0/4,0/5),
(0/3,0/6,0/6,0/9),
(0/0,0/2,0/3,0/5)

〉 

𝑜5 

 

From step 2, the weighted normalized NTraFNs decision matrix is shown in Table 8. 

Table 8. Weighted normalized NTraFNs decision matrix. 

𝑒4 𝑒3 𝑒2 𝑒1  

〈
(0/2,0/3,0/42,0/42),
(0/36,0/79,0/82,0/85),
(0/28,0/44,0/51,0/58)

〉 〈
(0/12,0/14,0/24,0/36),
(0/5,0/64,0/68,0/86),
(0/1,0/28,0/36,0/65)

〉 〈
(0/2,0/3,0/42,0/54),
(0/37,0/55,0/76,0/92),
(0/44,0/64,0/82,0/9)

〉 〈
(0/03,0/1,0/24,0/27),
(0/1,0/51,0/76,0/82),
(0/36,0/65,0/84,0/88)

〉 

𝑜1 

〈
(0/04,0/06,0/14,0/56),
(0/68,0/72,0/82,0/9),
(0/1,0/28,0/44,0/64)

〉 〈
(0/24,0/35,0/4,0/63),
(0/3,0/37,0/52,0/72),
(0/28,0/37,0/52,0/65)

〉 〈
(0/15,0/3,0/42,0/63),
(0/44,0/6,0/72,0/88),
(0/52,0/7,0/94,0/98)

〉 〈
(0/06,0/1,0/32,0/36),
(0/37,0/51,0/8,0/88),
(0/28,0/44,0/68,0/8)

〉 

𝑜2 

〈
(0/0,0/12,0/21,0/63),
(0/28,0/79,0/82,0/9),
(0/64,0/76,0/79,0/88)

〉 〈
(0/18,0/21,0/32,0/45),
(0/1,0/46,0/52,0/72),
(0/28,0/28,0/44,0/79)

〉 〈
(0/05,0/12,0/14,0/27),
(0/44,0/75,0/84,0/92),
(0/28,0/52,0/79,0/88)

〉 〈
(0/15,0/35,0/64,0/81),
(0/28,0/58,0/8,0/94),
(0/44,0/51,0/8,0/8)

〉 

𝑜3 

〈
(0/2,0/42,0/56,0/63),
(0/6,0/72,0/76,0/8),
(0/28,0/44,0/51,0/58)

〉 〈
(0/3,0/42,0/48,0/81),
(0/3,0/55,0/6,0/72),
(0/19,0/55,0/6,0/72)

〉 〈
(0/25,0/3,0/49,0/72),
(0/58,0/75,0/84,0/92),
(0/6,0/76,0/91,0/96)

〉 〈
(0/0,0/1,0/24,0/63),
(0/46,0/65,0/84,0/94),
(0/52,0/65,0/8,0/96)

〉 

𝑜4 

〈
(0/0,0/06,0/14,0/21),
(0/36,0/44,0/64,0/75),
(0/19,0/28,0/51,0/64)

〉 〈
(0/24,0/28,0/56,0/63),
(0/1,0/46,0/52,0/79),
(0/28,0/46,0/52,0/72)

〉 〈
(0/05,0/3,0/49,0/81),
(0/44,0/65,0/72,0/92),
(0/68,0/82,0/91,0/98)

〉 〈
(0/06,0/2,0/32,0/45),
(0/37,0/72,0/84,0/97),
(0/2,0/44,0/72,0/8)

〉 

𝑜5 

 

Due to Eqs. 25 and 26 of step 3, the 𝑁�̃� matrix obtained as: 
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  𝑁�̃� = [

〈(0.00,0.10,0.24,0.27), (0.46,0.72,0.84,0.97), (0.52,0.65,0.84,0.96)〉 
〈(0.05,0.12,0.14,0.27), (0.58,0.75,0.84,0.92), (0.68,0.82,0.94,0.98)〉

 〈(0.12,0.14,0.24,0.36), (0.50,0.64,0.68,0.86), (0.28,0.55,0.60,0.79)〉
〈(0.00,06,0.14,0.21), (0.68,0.70,0.82,0.90), (0.64,0.76,0.79,0.88)〉

]

′

 

Then, the calculations of  𝐷𝑖
𝐻𝑆 and 𝐷𝑖

𝐸𝑆 with regard to Eqs. 17, 19, 27, and 28 are summarized in Table 

9.  

 

Table 9. Surface-based weighted Hamming and Euclidean distances of alternatives. 

𝑜5 𝑜4 𝑜3 𝑜2 𝑜1 Alts 

0.5980 0.7470     0.5430 0.5585     0.5180 𝐷𝑖
𝐻𝑆 

0.7950 0.8942     0.7504     0.6829     0.6448     𝐷𝑖
𝐸𝑆 

 

Now, following steps 5 and 6, once the arrays of the relative assessment matrix have been found, 

Eq. 32 is used to find the assessment value of each option. 

Table 10. Ranking alternatives based on RA matrix. 

 

 

 

Finally, the highest 

assessment value of step 

6 shows the most 

desirable material. 

The ranking order of all 

candidates is available in table 10. 

 

5 -2 Sensitive analysis  

As mentioned in the previous part, the evaluation scores and the ranking order corresponding to 

each alternative in the multi-criteria decision-making problem were obtained using the NTraFNs-

CODAS method for 𝜑 = 0.02 (in step 5) and the specified weights (ω𝑙𝜁 = ω𝑟𝜁 = 0.3,ω𝑙𝜂 = ω𝑟𝜂 =

ω𝑙𝜃 = ω𝑟𝜃 = 0.1) as parameters of the problem (Table 10). In this part, we want to investigate the 

effect of the sensitive analysis of 𝜑 and weights on the evaluation values and ranking of options for 

the material selection problem in the environment with neutrosophic trapezoidal fuzzy data. 

 

A. Change of the parameter 𝝋 

 The results of evaluating and ranking the options for different values are obtained in Table 11. As 

can be seen, although these changes have had a slight effect on the evaluation values, they have not 

had any effect on the final ranking of the options. 

  Relative assessment matrix  

Rank AS 𝑜5 𝑜4 𝑜3 𝑜2 𝑜1 Alts 

5 -0.5421 -0.1500 -0.2483    -0.1056    -0.0382    0 𝑜1 

4 -0.3517 0.1120    -0.2105    -0.0675    0 0.0382    𝑜2 

3 -0.0145 -0.0445 -0.1432    0 0.0675    0.1057    𝑜3 

1 0.7065 0.0995 0 0.1444    0.2121   0.2506    𝑜4 

2 0.2084 0 -0.0989 0.0446    0.1122    0.1505 𝑜5 
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Table 11. Ranking alternatives based on sensitive analysis of 𝜑 values. 

 

 

 

Figure 5. Ranking results based on sensitive analysis of 𝜑.               

Figure 5, clearly emphasizes the sameness of ranking results for sensitive analysis of 𝜑. 

Now, we desire to discuss on the admissible increase of 𝜑, which does not any effect on the ranking 

result. 

By increasing the value of  𝜑 to 6.67, the results of the evaluation options are obtained as follows: 

AS1 = −0.0544, AS2 = −0.0541, AS3 = 0.2074, AS4 = 1.6446, AS5 = 0.4324 

And for 𝜑 = 6.69, we have 

AS1 = −0.0530, AS2 = −0.0533, AS3 = 0.2081, AS4 = 1.6474, AS5 = 0.4330 

So, based on the analyses above, the stability and efficiency of the proposed NTraFNs-CODAS 

algorithm to changing of 𝜑 on [0.01,6.67] are observed. 

 

B. Changes of the weights in proposed measures 

The weights in Eqs 17 and 19 are the other parameters of the proposed NTraFNs-CODAS method, 

which can show the flexibility of the results. In the NTraFNs-CODAS method, the results are 

calculated according to the weights in the weighted Hamming and Euclidean distances. It is clear 

that by changing the weight coefficients related to the proposed measures Eqs (17, 19), the 

effectiveness of each term will be different in calculating the final assessment scores. As a result, 

various categories of solution are available for the decision maker. In Table 12, six cases are 

considered for weight variation; hence the values of evaluation and ranking of the options are 

obtained based on each case.  

Table 12. Ranking alternatives based on sensitive analysis of different weights. 

0

1

2

3

4

5

6

ᵩ=0.01ᵩ=0.02ᵩ=0.03ᵩ=0.04ᵩ=0.05ᵩ=6.67ᵩ=6.69

Sensitive Analysis of  𝜑

O1 O2 O3 O4 O5

 AS related to sensitive analysis of 𝜑 values  

Rank 0.05 0.04 0.03 0.02 0.01 Alts 

5 -0.5399 -0.5406 -0.5414 -0.5421 -0.5428 𝑜1 

4 -0.3504 -0.3506 -0.3513 -0.3517 -0.3522 𝑜2 

3 -0.0135 -0.0139 -0.0142 -0.0145 -0.0149 𝑜3 

1 0.7108 0.7093 0.7079 0.7065 0.7051 𝑜4 

2 0.2094 0.2091 0.2087 0.2084 0.2080 𝑜5 
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alternatives  

𝑜5 𝑜4 𝑜3 𝑜2 𝑜1 cases 

0/4766 −1/2390 0/3452 0/0609 

0/3690 

𝐶𝑎𝑠𝑒 1:ω𝑙𝜁 = ω𝑟𝜁 = 0, 

 ω𝑙𝜂 = ω𝑟𝜂 = ω𝑙𝜃 = ω𝑟𝜃

= 0.25 

1 5 3 4 2 Ranking result 

0/3841 −0/4172 0/2252 −0/1507 
−0/0392 

𝐶𝑎𝑠𝑒 2:ω𝑙𝜁 = ω𝑟𝜁 = 0.1, 

 ω𝑙𝜂 = ω𝑟𝜂 = ω𝑙𝜃 = ω𝑟𝜃 = 0.2 

1 5 2 4 3 Ranking result 

0/2987 0/1667 0/1107 −0/2646 

−0/3104 

𝐶𝑎𝑠𝑒 3:ω𝑙𝜁 = ω𝑟𝜁 = 0.2, 

 ω𝑙𝜂 = ω𝑟𝜂 = ω𝑙𝜃 = ω𝑟𝜃

= 0.15 

1 2 3 4 5 Ranking result 

0/2084 0/7065 −0/0145 −0/3517 
−0/5421 

𝐶𝑎𝑠𝑒 4:ω𝑙𝜁 = ω𝑟𝜁 = 0.3, 

 ω𝑙𝜂 = ω𝑟𝜂 = ω𝑙𝜃 = ω𝑟𝜃 = 0.1 

2 1 3 4 5 Ranking result 

0/1030 1/2569 −0/1599 −0/4169 

−0/7646 

𝐶𝑎𝑠𝑒 5:ω𝑙𝜁 = ω𝑟𝜁 = 0.4, 

 ω𝑙𝜂 = ω𝑟𝜂 = ω𝑙𝜃 = ω𝑟𝜃

= 0.05 

2 1 3 4 5 Ranking result 

−0/1670 2/0162 −0/3942 −0/3169 
−1/0968 

𝐶𝑎𝑠𝑒 6:ω𝑙𝜁 = ω𝑟𝜁 = 0.5, 

 ω𝑙𝜂 = ω𝑟𝜂 = ω𝑙𝜃 = ω𝑟𝜃 = 0 

2 1 4 3 5 Ranking result 

 

In addition, Figure 6 depicts the changes in the rank of the options concerning the variant in different 

modes (weights). In the suggested modes, the lowest fluctuation in the ranks has been observed for 

𝑜2 and 𝑜5. 

 

Figure 6. Ranking results based on different cases of weights. 
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5 -3 Comparative discussions  

The performance of the proposed NTraFNs-CODAS Method is compared with some of the existing 

approaches (Biswas et al. [69], Pramanik et al. [70], Jana and Karaasslan [68], Suresh [71]) in this 

section. Researchers usually have investigated similarity measures and ranking methods to evaluate 

the alternatives in multi-criteria decision-making with NTraFNs. For example, Biswas et al. [69] 

extended the concepts of the Cosine similarity measure and weighted Cosine similarity measure 

according to an expected interval (EI) and expected value (EV) definitions with NtraFNs. Also, they 

find the desirable candidate for the MCDM problem based on this similarity measure. Later, 

Pramanik et al. [70] developed the TOPSIS method for MADM, where the weight information of 

attributes is incompletely known or completely unknown, under trapezoidal neutrosophic 

information for the first time. In another research, Jana and Karaasslan [68] introduced Dice and 

Jaccard similarity measures and weighted Dice and Jaccard similarity measures between NTraFNs 

for solving the MCDM method. Recently, Suresh [71] proposed a ranking strategy for MCDM under 

neutrosophic trapezoidal fuzzy numbers according to the Euclidean Distance measure and the 

centroid concept.  

Differing from these studies, the proposed NTraFNs-CODAS Method is established based on two 

novel distance measures for the material selection problems. The results of applying these methods 

are summarized to the Table 13 and Figure 7. 

 Table 13. Ranking alternatives based on different methods. 

alternatives  

𝑜5 𝑜4 𝑜3 𝑜2 𝑜1 Approaches 

0/844 0/884 0/823 0/852 0/846 𝑆𝐶 Biswas et al.[69]  

4 1 5 2 3 Ranking result 

0/857 0/896 0/828 0/863 0/837 𝑆𝑊𝐶 

3 1 5 2 4 Ranking result 

0/417 0/784 0/407 0/433 0/349 𝑅𝐶𝑊 Pramanik et al. [70] 

3 1 4 2 5 Ranking result 

0/873 0/927 0/881 0/904 0/876 𝑆𝑊𝐷  Jana and Karaasslan[68] 

5 1 4 2 3 Ranking result 

0/722 0/803 0/719 0/762 0/728 𝑆𝑊𝐽 

4 1 5 2 3 Ranking result 

0/230 0/191 0/258 0/199 0/228 𝑅 Suresh [71] 

4 1 5 2 3 Ranking result 

0/208 0/707 −0/015 −0/352 −0/542 NTraFNs-CODAS Proposed method 

2 1 3 4 5 Ranking result 

 

As can be seen, although the methods do not have the same performance in ranking all the options, 

they all choose option 2 as the best option. According to Figure 7, it can be said that the proposed 

method has the most similarity in the ranking results with the method presented by Pramanik et al. 

[70].  
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Figure 7. Ranking alternatives based on different methods.                             

6. Conclusions  

The distance measures that can investigate the discriminationn between two neutrosophic 

trapezoidal fuzzy numbers do not gain indispensable comprehensiveness in the literature from the 

various perspectives. There is much less research in this field compared to the discrete neutersophic 

numbers. However, due to the greater flexibility in continuous neutrosophic numbers, examining 

issues under this type of numbers can be more preferred by decision-makers. Therefore, in this 

research, two surface-based distances were presented. The proposed weighted distance measures not 

only establish the basic principles of the measure but also apply to some logical properties of the 

measure, as shown in Example 1. Therefore, it can be properly used in distance-based decision-

making algorithms. In the following, the CODAS algorithm was considered under neutrosophic 

trapezoidal fuzzy data for the first time in this manuscript. The effectiveness of the proposed 

NTraFNs-CODAS algorithm was shown for solving MCDM. According to Table 10, the ranking of 

the options is as follows: 𝑜4 ≻ 𝑜5 ≻ 𝑜3 ≻ 𝑜2 ≻ 𝑜1 . The sensitivity analysis of the threshold parameter 

(φ) showed that the ranking of alternatives remains constant until the value of φ is selected from 

the [0.01,6.65]. However, it cannot be expected that the ranking of the options will remain constant 

with the changes in the weighting coefficients (cases 1 to 6). Table 12 and the Figure 4 interpret the 

results of the impact of weight changes in the ranking of options. In addition, a comparative analysis 

of the NTraFNs-CODAS method with some existing methods demonstrates that the performance of 

our method is most similar to Pramanik et al. [70]. As suggestions for future research, the following 

can be considered: 

1-Explore more features and properties for surface-based distance measures. 

2- The conceptual structure of the method should be developed to other fuzzy extensions from a 

theoretical and practical point of view.  

3- The suggested distance measures should be used in other decision-making methods based on 

distance, and its results should be compared with the method.  
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4- Weighted distance measures based on the area of surfaces can be used in other fields related to 

optimization, such as clustering, classification, medical diagnosis, and location problems. 
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Abstract. Plenty of topologists are exploring and discovering multiple forms of topological spaces. The chief

objective of the current enquiry is to establish and evaluate an original hybrid topological space named Neutro-

sophic Micro Vague Topological Space. When contrasted with distinctive fuzzy sets, Neutrosophic Micro Vague

sets give more adaptive framework for dealing with uncertainties and obscurity because they allow more nuanced

portrayal of the multitude of the elements of inconsistencies. Some of the basic definitions and operations on

Neutrosophic Micro Vague Sets are defined and examined with numerical examples. Furthermore,some of the

basic algebraic properties of Neutrosophic Micro Vague Sets are described and investigated with appropriate

examples.

Keywords: Neutrosophic Micro Vague set; Neutrosophic Micro Vague Topology; Neutrosophic Micro Vague

Topological Space; Absolute Neutrosophic Micro Vague set; Null Neutrosophic Micro Vague Set.

—————————————————————————————————————————-

1. Introduction

Fuzzy sets (FS) which were first coined by L.A. Zadeh [1] in 1965 are the most required

perspectives in modern mathematics. C.L. Chang [2] pioneered a version of fuzzy topology in

1967. Atanassov [3] recommended the Intuitionistic Fuzzy Set (IFS) in 1986, which has been

widely utilised in various fields of mathematics. Around 1993, Gau and Buehrer [4] identified

Vague sets (VS) as a further development of FS research and they are considered as a unique

instance of context-aware FS. Bustince. H along with Burillo. P [15] demonstrated that VSs

are IFSs in 1996. Florentin Smarandache [5], [6] an eminent mathematician and analyst, pre-

miered neutrosophy as a broadening of fuzzy set theory. The referrals ”neutrosophy” speaks

to the scrutiny of not just truth and falsehood as essential components but also indeterminacy
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which deals with uncertainty or unpredictability in precisely the same way as fuzzy systems

operate. Mathematically a Neutrosophic set (NS) has been assigned over the universal set X

and contains three subsets. 1. Truth component: this subset reflects the components that are

unquestionably part of the set. 2. Indeterminacy component: this subset represents elements

that are unsure whether or not they belong to the set. 3. Falsity component: this subset

indicates the elements which are unambiguously not in the set. The Neutrosophic Two Fold

Algebra was first presented by F. Smarandache [17] in 2024.

Implementing the concept of neutrosophic frequency and neutrosophic relative frequency

distribution, Adebisi S. A. and Broumi S. [16] have examined the educational progress of a

group of students in their primary disciplines. Shawkat Alkhazaleh [7] formed the Neutro-

sophic Vague set (NVS) idea during 2015 as an amalgamation of NS and VS. He defined the

basic operations for NVSs such as Union, Intersection, complement and inclusion. These op-

erations are intended to manage the triple membership degrees while retaining the traits of

unpredictability and indeterminate nature. NVSs have specific features that set them apart

from other set enhancements. In 2024, Smarandache et.al [18] conducted an evaluation of

Blockchain Cybersecurity Based on Tree Soft and Opinion Weight Criteria Method under Un-

certainty Climate.

M. Lellis Thivagar [9], [13] coined the Nano topology (NT) and Neutrosophic Nano Topology

(NNT) in the year 2013 and 2018 respectively. NT is centred on the concepts of lower ap-

proximation, higher approximation and boundary region which was brought by Z. Pawlak [8].

S. Chandrasekar [10] constructed Micro Topology (MT) later in 2019 by employing the basic

extension idea on NT. MT affords a lens that enables mathematicians and scientists to study

and comprehend the multifaceted intricacies of spaces, structures and networks particularly

where smaller factors are important. Emergent features at tiny sizes can be shown by MT.

MT entails scale relying analysis in which the features of a space are explored at different

degrees of detail or resolution. MT is also attributed to more technical topics like sheaf theory

and homotopy theory which deal with local patterns and continual deviations respectively. In

an environment of metric spaces, MT may entail investigating neighbourhood qualities con-

vergence at a point and other local aspects. In 2023, Vargees Vahini T and Trinita Pricilla

M [11] established the novel topological space named Micro Vague Topological Space. Mary

Margaret A et.al [12] in 2021 pioneered Neutrosophic Vague Nano Topological Space and have

studies some of the basic characteristics.

In this paper, we suggested an innovative topology called the Neutrosophic Micro Vague

Topology. Some novel sets in Neutrosophic Micro Vague Topological Space are introduced

and discussed. Additionally, using numerical examples certain fundamental definitions, oper-

ations and some of the basic algebraic characteristics on Neutrosophic Micro Vague Sets are
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addressed and explained. Learning about and employing these qualities enables academics

and practitioners to capitalise on Neutrosophic Micro Vague sets in several types of domains

contributing to more robust and flexible modelling of highly complex and volatile data. It can

be useful in an assortment of domains including pure mathematics, mathematical physics and

some areas of computer science where fine-grained spatial relationships are noteworthy. The

particular application and methodologies used may differ depending on the situation in which

Neutrosophic Micro Vague topology is used.

2. Preliminaries

Definition 2.1. [4] A VS F in the universe of discourse Λ is characterized by a truth mem-

bership function ϑF and a falsity membership function λF as follows: ϑF : Λ → [0, 1] ; λF :

Λ → [0, 1] and ϑF + λF ≤ 1 where ϑF (m̀) is a lower bound on the grade of membership of

m̀ derived from the evidence for m̀ and λF (m̀) is a lower bound on the grade of membership

of the negation of m̀ derived from the evidence against m̀. The Vague set F is written as

A = {⟨m̀, ϑF (m̀) , 1− λF (m̀)⟩ |m̀ ∈ Λ}.

Definition 2.2. [6] Let Λ be a non-empty set and I be the unit interval [0, 1]. A

Neut.Set is an object of the form D = {⟨m̀, πD (m̀) , ϕD (m̀) , φD (m̀) ; m̀ ∈ Λ⟩} where

πD (m̀) , ϕD (m̀) , φD (m̀) ∈ [0, 1] with 0 ≤ πD (m̀) + ϕD (m̀) + φD (m̀) ≤ 3 ∀ m̀ ∈ Λ. Here,

πD (m̀) , ϕD (m̀) and φD (m̀) are respectively denote the Degree of truth membership, Degree

of indeterminacy membership and Degree of falsity membership.

Definition 2.3. [7] A Neut. Vag. Set Z on the universe of discourse Λ is written as Z ={〈
m̀; π̂Z (m̀) , ϕ̂Z (m̀) , φ̂Z (m̀)

〉
|m̀ ∈ Λ

}
whose truth membership, indeterminacy membership

and false membership function are defined as follows:

π̂Z (m̀) =
[
π−, π+

]
, ϕ̂Z (m̀) =

[
ϕ−, ϕ+

]
, φ̂Z (m̀) =

[
φ−, φ+

]
Where,

(1) π+ = 1− φ−

(2) φ+ = 1− π− and

(3) −0≤ (π−)
2
+ (ϕ−)

2
+ (φ−)

2 ≤ 2+.

Definition 2.4. [11] Assume (S, σY (Z)) a Nano.Vag. topological space. Let θY (Z) = {H ∪
(H

′∩θ): H,H′ ∈ σY (Z)} . Then ηY (Z) is termed as Mic.Vag. topology (Shortly MV Topology)

of σY (Z) by θ where θ /∈ σY (X); Then, θY (X) fulfills the criteria listed here:

(1) 0MV , 1MV ∈ θY (Z)

(2) Arbitrary union of any sub collection of θY (Z) is in θY (Z)

(3) Finite intersection of sub collection of θY (Z) is in θY (Z) .
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The triplet (S, σY (Z) , θY (Z)) is called the Micro Vague Topological Space. The elements of

θY (Z) are called Micro Vague open sets and the complement of a Micro Vague Open set is

called a Micro Vague Closed set.

Definition 2.5. [12] Let Ĺ be a non-empty set and R be an equivalence relation on Ĺ. Let

S be a Neut.Vag. set in Ĺ. If the collection ϑR (S)={0NV , 1NV ,NV (S) ,NV (S) ,BNV (S)}
satisfies the following axioms:

(1) 0nv, 1nv ∈ ϑR (S) .

(2) Arbitrary union of any sub collection of ϑR (S) is in ϑR (S) .

(3) Finite intersection of sub collection of ϑR (S) is in ϑR (S) .

then, ϑR (S)is called the NVNT and (Ĺ, ϑR (S)) is called the NVNTS. The elements of ϑR (S)

are called NVNOS and the complement of it is called NVNCS.

3. Proposed Neutrosophic Micro Vague Topological Space

Definition 3.1. Let (Ĺ,ΨY(S)) be a NVNT S. Let ΩY(S) = {Φ ∪ (Φ
′ ∩ Ω) : Ω /∈ ΨY(S)}.

Then ΩY(S) is called the Neutrosophic Micro Vague Topology (shortly NMVT ) of ϑR(S)

by η if it satisfies the following axioms:

(1) 0NMV , 1NMV ∈ ΩY(S).

(2) The union of the elements of any sub collection of ΩY(S) is in ΩY (S) .

(3) The intersection of the elements of any finite sub collection of ΩY(S) is in ΩY (S) .

The triplet (Ĺ,ΨY (S) ,ΩY(S)) is called the Neutrosophic Micro V ague Topological Space

(denoted by NMVT S). The elements of ΩY(S) are called NMVOS and the complement

is called as NMVCS.

Example 3.2. Let Ĺ = {α, β, γ, δ} be the Universe. Let Ĺ/Y = {{α, δ} , {β, γ}} be an

equivalence relation on Ĺ. Let S =

{< α, [0.3, 0.5], [0.2, 0.6], [0.8, 0.9] >,< β, [0.6, 0.7], [0.5, 0.7], [0.2, 0.5] >,< γ, [0.2, 0.5], [0.9, 0.9],

[0.3, 0.4] >,<δ, [0.6, 0.8], [0.5, 0.9], [0.3, 0.8]>} be a subset of Ĺ. Then, ΨY (S) =

{0NV , 1NV , {<α, [0.3, 0.5] , [0.5, 0.9] , [0.8, 0.9]>,<β, [0.2, 0.5], [0.9, 0.9], [0.3, 0.5]>,<γ, [0.2, 0.5],

[0.9, 0.9], [0.3, 0.5]>,< δ, [0.3, 0.5], [0.5, 0.9], [0.8, 0.9]>},{< α, [0.6, 0.8], [0.2, 0.6], [0.3, 0.8]>,< β,

[0.6, 0.7], [0.5, 0.7], [0.2, 0.4]>,<γ, [0.6, 0.7], [0.5, 0.7], [0.2, 0.4]>,<δ, [0.6, 0.8], [0.2, 0.6], [0.3, 0.8]>

},{<α, [0.6, 0.8], [0.2, 0.6], [0.3, 0.8]>,<β, [0.3, 0.5], [0.5, 0.7][0.2, 0.5]>,<γ, [0.3, 0.5], [0.5, 0.7], [0.2,

0.5]>,<δ, [0.6, 0.8], [0.2, 0.6], [0.3, 0.8]>}} is a NVNT on Ĺ. Let Ω =

{<α, [0.2, 0.7], [0.1, 0.6], [0.8, 0.9]>,<β, [0.2, 0.5], [0.7, 0.9], [0.3, 0.5]>,<γ, [0.1, 0.4], [0.9, 0.9], [0.2,

0.5]>,<δ, [0.3, 0.5], [0.5, 0.9], [0.8, 0.9]>}. Then, ΩY(S) =

{0NMV , 1NMV ,{< α, [0.3, 0.5], [0.5, 0.9], [0.8, 0.9]>,< β, [0.2, 0.5], [0.9, 0.9], [0.3, 0.5]>,< γ, [0.2,

0.5], [0.9, 0.9], [0.3, 0.5]>,< δ, [0.3, 0.5], [0.5, 0.9], [0.8, 0.9]>},{< α, [0.6, 0.8], [0.2, 0.6], [0.3, 0.8]>,
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<β, [0.6, 0.7], [0.5, 0.7], [0.2, 0.4]>,<γ, [0.6, 0.7], [0.5, 0.7], [0.2, 0.4]>,< δ, [0.6, 0.8], [0.2, 0.6], [0.3,

0.8]>},{<α, [0.6, 0.8], [0.2, 0.6], [0.3, 0.8]>,<β, [0.3, 0.5], [0.5, 0.7], [0.2, 0.5]>,< γ, [0.3, 0.5], [0.5,

0.7], [0.2, 0.5]>,< δ, [0.6, 0.8], [0.2, 0.6], [0.3, 0.8]>},{< α, [0.2, 0.7], [0.1, 0.6], [0.8, 0.9]>,<β, [0.2,

0.5], [0.7, 0.9], [0.3, 0.5]>,<γ, [0.1, 0.4], [0.9, 0.9], [0.2, 0.5]>,<δ, [0.3, 0.5], [0.5, 0.9], [0.8, 0.9]>},{
<α, [0.6, 0.8], [0.1, 0.6], [0.3, 0.8]>,<β, [0.3, 0.5], [0.5, 0.7], [0.2, 0.5]>,<γ, [0.3, 0.5], [0.5, 0.7], [0.2,

0.5]>,<δ, [0.6, 0.8], [0.2, 0.6], [0.3, 0.8]>},{< α, [0.2, 0.5], [0.5, 0.9], [0.8, 0.9]> ,<β, [0.2, 0.5], [0.9,

0.9], [0.3, 0.5]>,<γ, [0.1, 0.4], [0.9, 0.9], [0.3, 0.5]>,< δ, [0.3, 0.5], [0.5, 0.9], [0.8, 0.9]>},{< α, [0.2,

0.7], [0.2, 0.6], [0.8, 0.9]>,< β, [0.2, 0.5], [0.7, 0.9], [0.3, 0.5]>,< γ, [0.1, 0.4], [0.9, 0.9], [0.2, 0.5]> ,

< δ, [0.3, 0.5], [0.5, 0.9], [0.8, 0.9]>}, {< α, [0.3, 0.7], [0.1, 0.6], [0.8, 0.9]>,< β, [0.2, 0.5], [0.7, 0.9],

[0.3, 0.5]>,<γ, [0.2, 0.5], [0.9, 0.9], [0.2, 0.5]>,<δ, [0.3, 0.5], [0.5, 0.9], [0.8, 0.9]>}, {< α, [0.3, 0.7],

[0.2, 0.6], [0.8, 0.9]>, < β, [0.2, 0.5], [0.7, 0.9], [0.3, 0.5]>, < γ, [0.2, 0.5], [0.9, 0.9], [0.2, 0.5]>,<δ,

[0.3, 0.5], [0.5, 0.9], [0.8, 0.9]>},{< α, [0.6, 0.8], [0.1, 0.6], [0.3, 0.8]>,< β, [0.6, 0.7], [0.5, 0.7], [0.2,

0.4]>,<γ, [0.6, 0.7], [0.5, 0.7], [0.2, 0.4]>,<δ, [0.6, 0.8], [0.2, 0.6], [0.3, 0.8]>}} is called the

NMVT on S. The triplet (Ĺ,ΨY (S) ,ΩY(S)) is called the NMVT S.

Definition 3.3. Let PNMV and QNMV be two NMV sets in (Ĺ,ΨY (S) ,ΩY(S)). If ∀νs ∈ Ĺ,

Γ̂P (νs) ≤ Γ̂Q(νs), ∆̂P (νs) ≥ ∆̂Q (νs), Υ̂P (νs) ≥ Υ̂Q(νs) then the NMV set PNMV is included

or contained in the NMV set QNMV , denoted by PNMV ⊆ QNMV where 1 ≤ s ≤ n.

Remark 3.4. Here, the set PNMV = { < νs, Γ̂P (νs), ∆̂P (νs), Υ̂P (νs) > } denotes

the NMV set in (Ĺ,ΨY (S) ,ΩY(S)) where ∆̂P (νs) =
[
Γ−
P (νs),Γ

+
P (νs)

]
, ∆̂P (νs) =[

∆−
P (νs),∆

+
P (νs)

]
and Υ̂P (νs) =

[
Υ−

P (νs),Υ
+
P (νs)

]
.

Example 3.5. Let us consider the NMVT S (Ĺ,ΨY (S) ,ΩY(S)) defined in ex.3.2. Let

PNMV = { < α, [0.2, 0.5], [0.5, 0.9], [0.8, 0.9] >, < β, [0.2, 0.5] , [0.9, 0.9] , [0.3, 0.5] >,

< γ, [0.1, 0.4] , [0.9, 0.9] , [0.3, 0.5] >,< δ, [0.3, 0.5] , [0.5, 0.9], [0.8, 0.9] >} and QNMV =

{ < α, [0.6, 0.8], [0.1, 0.6], [0.3, 0.8] >, < β, [0.6, 0.7] , [0.5, 0.7] , [0.2, 0.4] >, <

γ, [0.6, 0.7] , [0.5, 0.7] , [0.2, 0.4] >,< δ, [0.6, 0.8] , [0.2, 0.6], [0.3, 0.8] >} be two NMV sets.

Here, PNMV ⊆ QNMV .

Definition 3.6. Let PNMV and QNMV be two NMV in (Ĺ,ΨY (S) ,ΩY(S)). If ∀νs ∈ Ĺ,

Γ̂P (νs) = Γ̂Q(νs), ∆̂P (νs) = ∆̂Q (νs), Υ̂P (νs) = Υ̂Q(νs), then the NMV set PNMV is equal

to the NMV set QNMV , denoted by PNMV = QNMV where 1 ≤ s ≤ n.

Definition 3.7. The complement of a NMV set PNMV in (Ĺ,ΨY (S) ,ΩY(S)) denoted by

PC
NMV is defined as PC

NMV = {< νs, [1− Γ+
P (νs), 1− Γ−

P (νs)], [1−∆+
P (νs), 1−∆−

P (νs)], [1−
Υ+

P (νs), 1−Υ−
P (νs)] >}.

Example 3.8. Let us consider the NMVT S (Ĺ,ΨY (S) ,ΩY(S)) defined in ex.3.2. Let

PNMV = { < α, [0.3, 0.7], [0.1, 0.6], [0.8, 0.9] >, < β, [0.2, 0.5] , [0.7, 0.9] , [0.3, 0.5] >,
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< γ, [0.2, 0.5] , [0.9, 0.9] , [0.2, 0.5] >,< δ, [0.3, 0.5] , [0.5, 0.9], [0.8, 0.9] >} be a NMV set.

Then the complement of P is as follows:

PC
NMV = { < α, [0.3, 0.7], [0.4, 0.9], [0.1, 0.2] >,< β, [0.5, 0.8] , [0.1, 0.3] , [0.5, 0.7] >,

< γ, [0.5, 0.8] , [0.1, 0.1] , [0.5, 0.8] >,< δ, [0.5, 0.7] , [0.1, 0.5], [0.1, 0.2] >}.

Definition 3.9. Let PNMV be a NMV set in (Ĺ,ΨY (S) ,ΩY(S)). If ∀νs ∈ Ĺ, Γ̂P (νs) =

[1, 1], ∆̂P (νs) = [0, 0] and Υ̂P (νs) = [0, 0], then PNMV is called Absolute NMV set where

1 ≤ s ≤ n.

Definition 3.10. Let PNMV be a NMV set in (Ĺ,ΨY (S) ,ΩY(S)). If ∀νs ∈ Ĺ, Γ̂P (νs) =

[0, 0], ∆̂P (νs) = [1, 1] and Υ̂P (νs) = [1, 1], then PNMV is called Null NMV set where 1 ≤
s ≤ n.

Definition 3.11. The Union of two NMV sets PNMV and QNMV is a NMV set R which

is written as R = PNMV ∪ QNMV whose Γ̂R (νs) , ∆̂R (νs) , Υ̂R (νs) are defined ∀ νs ∈ Ĺ

where 1 ≤ s ≤ n as follows:

Γ̂R (νs) =
[∨(

Γ−
P (νs) , Γ−

Q (νs)
)
,
∨(

Γ+
P (νs) , Γ+

Q (νs)
)]

∆̂R (νs) =
[∧(

∆−
P (νs) , ∆−

Q (νs)
)
,
∧(

∆+
P (νs) , ∆+

Q (νs)
)]

Υ̂R (νs) =
[∧(

Υ−
P (νs) , Υ−

Q (νs)
)
,
∧(

Υ+
P (νs) , Υ+

Q (νs)
)]

Example 3.12. Let us consider the NMVT S (Ĺ,ΨY (S) ,ΩY(S)) defined in ex.3.2. Let

PNMV = { < α, [0.6, 0.8], [0.2, 0.6], [0.3, 0.8] >, < β, [0.6, 0.7] , [0.5, 0.7] , [0.2, 0.4] >,

< γ, [0.6, 0.7] , [0.5, 0.7] , [0.2, 0.4] >,< δ, [0.6, 0.8] , [0.2, 0.6], [0.3, 0.8] >} and QNMV =

{ < α, [0.6, 0.8], [0.1, 0.6], [0.3, 0.8] >, < β, [0.3, 0.5] , [0.5, 0.7] , [0.2, 0.5] >, <

γ, [0.3, 0.5] , [0.5, 0.7] , [0.2, 0.5] >,< δ, [0.6, 0.8] , [0.2, 0.6], [0.3, 0.8] >} be two NMV sets.

Then the union RNMV = PNMV ∪QNMV is given as follows:

RNMV = { < α, [0.6, 0.8], [0.1, 0.6], [0.3, 0.8] >,< β, [0.6, 0.7] , [0.5, 0.7] , [0.2, 0.4] >,

< γ, [0.6, 0.7] , [0.5, 0.7] , [0.2, 0.4] >,< δ, [0.6, 0.8] , [0.2, 0.6], [0.3, 0.8] >}.

Definition 3.13. The Intersection of two NMV sets PNMV and QNMV is a NMV set SNMV

which is written as SNMV = PNMV ∩ QNMV whose Γ̂S (νs) , ∆̂S (νs) , Υ̂S (νs) are defined

∀ νs ∈ Ĺ where 1 ≤ s ≤ n as follows:

Γ̂S (νs) =
[∧(

Γ−
P (νs) , Γ−

Q (νs)
)
,
∧(

Γ+
P (νs) , Γ+

Q (νs)
)]

∆̂S (νs) =
[∨(

∆−
P (νs) , ∆−

Q (νs)
)
,
∨(

∆+
P (νs) , ∆+

Q (νs)
)]

Υ̂S (νs) =
[∨(

Υ−
P (νs) , Υ−

Q (νs)
)
,
∨(

Υ+
P (νs) , Υ+

Q (νs)
)]
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Example 3.14. Let us consider the NMVT S (Ĺ,ΨY (S) ,ΩY(S)) defined in ex.3.2. Let

PNMV = { < α, [0.6, 0.8], [0.2, 0.6], [0.3, 0.8] >, < β, [0.6, 0.7] , [0.5, 0.7] , [0.2, 0.4] >,

< γ, [0.6, 0.7] , [0.5, 0.7] , [0.2, 0.4] >,< δ, [0.6, 0.8] , [0.2, 0.6], [0.3, 0.8] >} and QNMV =

{ < α, [0.6, 0.8], [0.1, 0.6], [0.3, 0.8] >, < β, [0.3, 0.5] , [0.5, 0.7] , [0.2, 0.5] >, <

γ, [0.3, 0.5] , [0.5, 0.7] , [0.2, 0.5] >,< δ, [0.6, 0.8] , [0.2, 0.6], [0.3, 0.8] >} be two NMV sets.

Then the intersection SNMV = PNMV ∩QNMV is given as follows:

SNMV = { < α, [0.6, 0.8], [0.2, 0.6], [0.3, 0.8] >,< β, [0.3, 0.5] , [0.5, 0.7] , [0.2, 0.5] >,

< γ, [0.3, 0.5] , [0.5, 0.7] , [0.2, 0.5] >,< δ, [0.6, 0.8] , [0.2, 0.6], [0.3, 0.8] >}.

Definition 3.15. Let {P sNMV
: s ∈ D} where D = {1, 2, . . . , n} be an arbitrary family of

NMV sets. Then

(1) ∪ PsNMV =
〈

m̀;
[∨

s∈D

(
Γ−
PsNMV

)
,
∨

s∈D

(
Γ+
PsNMV

)]
,[∧

s∈D

(
∆−

PsNMV

)
,
∧

s∈D

(
∆+

PsNMV

)]
,
[∧

s∈D

(
Υ−

PsNMV

)
,
∧

s∈D

(
Υ+

PsNMV

)] 〉
(2) ∩ PsNMV =

〈
m̀;

[∧
s∈D

(
Γ−
PsNMV

)
,
∧

s∈D

(
Γ+
PsNMV

)]
,[∨

s∈D

(
∆−

PsNMV

)
,
∨

s∈D

(
∆+

PsNMV

)]
,
[∨

s∈D

(
Υ−

PsNMV

)
,
∨

s∈D

(
Υ+

PsNMV

)] 〉
Proposition 3.16. Let PNMV , QNMV , RNMV and SNMV be NMV sets in

(Ĺ,ΨY (S) ,ΩY(S)).

(1) If PNMV ⊆ QNMV and RNMV ⊆ SNMV , then

(a) (PNMV ∪RNMV) ⊆ (QNMV ∪ SNMV)

(b) (PNMV ∩RNMV) ⊆ (QNMV ∩ SNMV)

(2) If PNMV ⊆ QNMV and PNMV ⊆ RNMV , then PNMV ⊆ (QNMV ∩RNMV)

(3) If PNMV ⊆ RNMV and QNMV ⊆ RNMV , then (PNMV ∪QNMV) ⊆ RNMV

(4) If PNMV ⊆ QNMV and QNMV ⊆ RNMV , then PNMV ⊆ RNMV

(5) If PNMV ⊆ QNMV , then QNMV ⊆ PNMV

(6) 1NMV = 0NMV

(7) 0NMV = 1NMV

Proof. Proof is obvious.

Corollary 3.17. Let PsNMV(s ∈ D) and QNMV be NMV sets in (Ĺ,ΨY (S) ,ΩY(S)). Then
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(1) PsNMV ⊆ QNMV for each s ∈ D implies that ∪(PsNMV) ⊆ QNMV

(2) QNMV ⊆ PsNMV for each s ∈ D implies that QNMV ⊆ ∩(P sNMV)

Proof. Proof is obvious.

Remark 3.18. (1) In NMVT S, the boundary region cannot be empty.

(2) Let { ηi|i ∈ l} be the family of NMVT s on Xi, then
⋂

i∈l ηi is a NMVT in X.

(3) Let (Ĺ,ΨY (S) ,ΩY(S)) and (Ĺ,ΨY (S) , η′R(S)) be two NMVT Ss over X. Then

(Ĺ,ΨY (S) ,ΩY(S)) ∪ η′R(S)) need not to be a NMVT S.

4. Properties of Neutrosophic Micro Vague Sets

Theorem 4.1. (Idempotent law) For any non-empty NMV set PNMV in NMVT S
(Ĺ,ΨY (S) ,ΩY(S)),

(1) PNMV ∪ PNMV = PNMV .

(2) PNMV ∩ PNMV = PNMV .

Proof. The proof is obvious.

Example 4.2. (1). Let us consider the NMVT S (Ĺ,ΨY (S) ,ΩY(S)) defined in ex.3.2.

Let PNMV = { < α, [0.2, 0.7], [0.2, 0.6], [0.8, 0.9] >, < β, [0.2, 0.5], [0.7, 0.9], [0.3, 0.5] >,

< γ, [0.1, 0.4], [0.9, 0.9], [0.2, 0.5] >,< δ, [0.3, 0.5], [0.5, 0.9], [0.8, 0.9] >} be a NMV set. Then,

PNMV ∪ PNMV = { < α, [0.2, 0.7], [0.2, 0.6], [0.8, 0.9] >, < β, [0.2, 0.5], [0.7, 0.9], [0.3, 0.5] >,

< γ, [0.1, 0.4], [0.9, 0.9], [0.2, 0.5] >,< δ, [0.3, 0.5], [0.5, 0.9], [0.8, 0.9] >}

(2). Similar to (1).

Theorem 4.3. (Identity law) For any non-empty NMV sets PNMV and QNMV in

NMVT S (Ĺ,ΨY (S) ,ΩY(S)), identity law holds:

(1) PNMV ∪ 0NMV = PNMV .

(2) QNMV ∩ 1NMV = QNMV .

Proof. (1). Let PNMV be a NMV set in the NMVT S (Ĺ,ΨY (S) ,ΩY(S)) of the form

PNMV = { < νs,
[
Γ−
P (νs),Γ

+
P (νs)

]
,
[
∆−

P (νs),∆
+
P (νs)

]
,
[
Υ−

P (νs),Υ
+
P (νs)

]
> }. Let the null

NMV set be of the form 0NMV = {< νs, [0, 0] , [1, 1] , [1, 1] >}. Then,

Vargees Vahini T and Trinita Pricilla M, A Hybrid Approach to Micro Vague Topological
Space via Neutrosophic Topological Space

Neutrosophic Sets and Systems, Vol. 68, 2024                                                                              230



PNMV ∪ 0NMV =


〈
νs,

[∨ (
Γ−
P (νs) , 0

)
,
∨(

Γ+
P (νs) , 0

)]
,

[∧ (
∆−

P (νs) , 1
)
,
∧(

∆+
P (νs) , 1

)]
,

[∧ (
Υ−

P (νs) , 1
)
,
∧(

Υ+
P (νs) , 1

)]
〉


= PNMV .

Therefore, PNMV ∪ 0NMV = PNMV .

(2). Let QNMV be a NMV set in the NMVT S (Ĺ,ΨY (S) ,ΩY(S)) of the form QNMV =

{ < νs, [Γ
−
Q(νs),Γ

+
Q(νs)], [∆

−
Q(νs),∆

+
Q(νs)], [Υ−

Q(νs),Υ
+
Q(νs)]>}. Let the absolute NMV set

be of the form 1NMV = {< νs, [1, 1] , [0, 0] , [0, 0] >}. Then,

QNMV ∩ 1NMV =



〈
νs,

[∧(
Γ−
Q (νs) , 1

)
,
∧(

Γ+
Q (νs) , 1

)]
,

[∨(
∆−

Q (νs) , 0
)
,
∨(

∆+
Q (νs) , 0

)]
,

[∨(
Υ−

Q (νs) , 0
)
,
∨(

Υ+
Q (νs) , 0

)]
〉


= QNMV .

Therefore, QNMV ∩ 1NMV = QNMV .

Example 4.4. (1). Let us consider the NMVT S (Ĺ,ΨY (S) ,ΩY(S)) defined in ex.3.2.

Let PNMV = { < α, [0.2, 0.7], [0.2, 0.6], [0.8, 0.9] >, < β, [0.2, 0.5], [0.7, 0.9], [0.3, 0.5] >,

< γ, [0.1, 0.4], [0.9, 0.9], [0.2, 0.5] >,< δ, [0.3, 0.5], [0.5, 0.9], [0.8, 0.9] >} be a NMV set. Then,

PNMV ∪ 0NMV = { < α, [0.2, 0.7], [0.2, 0.6], [0.8, 0.9] >, < β, [0.2, 0.5], [0.7, 0.9], [0.3, 0.5] >,

< γ, [0.1, 0.4], [0.9, 0.9], [0.2, 0.5] >,< δ, [0.3, 0.5], [0.5, 0.9], [0.8, 0.9] >}

(2). Similar to (1).

Theorem 4.5. (Dominance law) Let PNMV and QNMV be NMV subsets of the NMVT S
(Ĺ,ΨY (S) ,ΩY(S)). Then for the null set and the absolute set the following conditions holds:

(1) PNMV ∩ 0NMV = 0NMV .

(2) QNMV ∪ 1NMV = 1NMV .

Proof. (1). Let PNMV be a NMV set in the NMVT S (Ĺ,ΨY (S) ,ΩY(S)) of the form

PNMV = { < νs,
[
Γ−
P (νs),Γ

+
P (νs)

]
,
[
∆−

P (νs),∆
+
P (νs)

]
,
[
Υ−

P (νs),Υ
+
P (νs)

]
> }. Let the empty

NMV set be of the form 0NMV = {< νs, [0, 0] , [1, 1] , [1, 1] >}. Then,
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PNMV ∩ 0NMV =


〈
νs,

[∧ (
Γ−
P (νs) , 0

)
,
∧(

Γ+
P (νs) , 0

)]
,

[∨ (
∆−

P (νs) , 1
)
,
∨(

∆+
P (νs) , 1

)]
,

[∨ (
Υ−

P (νs) , 1
)
,
∨(

Υ+
P (νs) , 1

)]
〉


= 0NMV .

Therefore, PNMV ∩ 0NMV = 0NMV .

(2). Let QNMV be a NMV set in the NMVT S (Ĺ,ΨY (S) ,ΩY(S)) of the form QNMV =

{ < νs, [Γ
−
Q(νs),Γ

+
Q(νs)], [∆

−
Q(νs),∆

+
Q(νs)], [Υ−

Q(νs),Υ
+
Q(νs)]>}. Let the absolute NMV set

be of the form 1NMV = {< νs, [1, 1] , [0, 0] , [0, 0] >}. Then,

QNMV ∪ 1NMV =



〈
νs,

[∨(
Γ−
Q (νs) , 1

)
,
∨(

Γ+
Q (νs) , 1

)]
,

[∧(
∆−

Q (νs) , 0
)
,
∧(

∆+
Q (νs) , 0

)]
,

[∧(
Υ−

Q (νs) , 0
)
,
∧(

Υ+
Q (νs) , 0

)]
〉


= 1NMV .

Hence QNMV ∪ 1NMV = 1NMV .

Example 4.6. (1). Let us consider the NMVT S (Ĺ,ΨY (S) ,ΩY(S)) defined in ex.3.2.

Let PNMV = { < α, [0.2, 0.7], [0.2, 0.6], [0.8, 0.9] >, < β, [0.2, 0.5], [0.7, 0.9], [0.3, 0.5] >,

< γ, [0.1, 0.4], [0.9, 0.9], [0.2, 0.5] >,< δ, [0.3, 0.5], [0.5, 0.9], [0.8, 0.9] >} be a NMV set and

0NMV = {< α, [0, 0], [1, 1], [1, 1] >,< β, [0, 0], [1, 1], [1, 1] >,< γ, [0, 0], [1, 1], [1, 1] >,<

δ, [0, 0], [1, 1], [1, 1] >}. Then, PNMV ∩ 0NMV = 0NMV

(2). Similar to (1).

Theorem 4.7. (Double Complement law) For any NMV subset PNMV in the NMVT S
(Ĺ,ΨY (S) ,ΩY(S)),

(
PC
NMV

)C
= PNMV .

Proof. Let PNMV =
{〈

νs,
[
Γ−
P (νs) ,Γ

+
P (νs)

]
,
[
∆−

P (νs) ,∆
+
P (νs)

]
,
[
Υ−

P (νs) ,Υ
+
P (νs)

]〉}
be a

NMV subset in a NMVT S (Ĺ,ΨY (S) ,ΩY(S)). Then,

PC
NMV =

{〈
νs,

[
1− Γ+

P (νs) , 1− Γ−
P (νs)

]
,
[
1−∆+

P (νs) , 1−∆−
P (νs)

]
,[

1−Υ+
P (νs) , 1−Υ−

P (νs)
] 〉}

Now,
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(
PC
NMV

)C
=


〈
νs,

[
1−

(
1− Γ+

P (νs)
)
, 1− (1− Γ−

P (νs) )
]
,

[
1−

(
1−∆+

P (νs)
)
, 1− (1−∆−

P (νs) )
]
,

[
1−

(
1−Υ+

P (νs)
)
, 1− (1−Υ−

P (νs) )
]

〉


=
{〈

νs,
[
Γ−
P (νs) ,Γ

+
P (νs)

]
,
[
∆−

P (νs) ,∆
+
P (νs)

]
,
[
Υ−

P (νs) ,Υ
+
P (νs)

]〉}
Therefore,

(
PC
NMV

)C
= PNMV .

Example 4.8. (1). Let us consider the NMVT S (Ĺ,ΨY (S) ,ΩY(S)) defined in ex.3.2.

Let PNMV = { < α, [0.2, 0.7], [0.2, 0.6], [0.8, 0.9] >, < β, [0.2, 0.5], [0.7, 0.9], [0.3, 0.5] >, <

γ, [0.1, 0.4], [0.9, 0.9], [0.2, 0.5] >,< δ, [0.3, 0.5], [0.5, 0.9], [0.8, 0.9] >} be a NMV set. Then,

PC
NMV = { < α, [0.3, 0.8], [0.4, 0.8], [0.1, 0.2] >, < β, [0.5, 0.8], [0.1, 0.3], [0.5, 0.7] >,<

γ, [0.6, 0.9], [0.1, 0.1], [0.5, 0.8] >,< δ, [0.5, 0.7], [0.1, 0.5], [0.1, 0.2] >}(
PC
NMV

)C
= { < α, [0.2, 0.7], [0.2, 0.6], [0.8, 0.9] >, < β, [0.2, 0.5], [0.7, 0.9], [0.3, 0.5] >,

< γ, [0.1, 0.4], [0.9, 0.9], [0.2, 0.5] >,< δ, [0.3, 0.5], [0.5, 0.9], [0.8, 0.9] >} = PNMV

Theorem 4.9. (Absorption law) For any two NMV subsets PNMV and RNMV in the

NMVT S (Ĺ,ΨY (S) ,ΩY(S)),

(1) QNMV ∪ (QNMV ∩RNMV) = QNMV

(2) QNMV ∩ (QNMV ∪RNMV) = QNMV

Proof. (1). Let QNMV = { < νs, [Γ
−
Q(νs),Γ

+
Q(νs)], [∆

−
Q(νs),∆

+
Q(νs)], [Υ−

Q(νs),Υ
+
Q(νs)]>}

and RNMV = { < νs, [Γ
−
R(νs),Γ

+
R(νs)], [∆

−
R(νs),∆

+
R(νs)], [Υ−

R(νs),Υ
+
R(νs)]>} be the subsets

of the NMVT S (Ĺ,ΨY (S) ,ΩY(S)). Then,

QNMV ∩RNMV =



〈
νs,

[(
Γ−
Q (νs) ∧ Γ−

R (νs)
)
,
(
Γ+
Q (νs) ∧ Γ+

R (νs)
)]

,

[(
∆−

Q (νs) ∧∆−
R (νs)

)
,
(
∆+

Q (νs) ∧∆+
R (νs)

)]
,

[(
Υ−

Q (νs) ∧Υ−
R (νs)

)
,
(
Υ+

Q (νs) ∧Υ+
R (νs)

)]
〉


Case (i): If QNMV ⊆ RNMV , then,

QNMV ∩RNMV =
{〈

νs,
[
Γ−
Q (νs) ,Γ

+
Q (νs)

]
,
[
∆−

Q (νs) ,∆
+
Q (νs)

]
,
[
Υ−

Q (νs) ,Υ
+
Q (νs)

] 〉}
QNMV ∪ (QNMV ∩RNMV)
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=
{〈

νs,
[
Γ−
Q (νs) ,Γ

+
Q (νs)

]
,
[
∆−

Q (νs) ,∆
+
Q (νs)

]
,
[
Υ−

Q (νs) ,Υ
+
Q (νs)

] 〉}
∪{〈

νs,
[
Γ−
Q (νs) ,Γ

+
Q (νs)

]
,
[
∆−

Q (νs) ,∆
+
Q (νs)

]
,
[
Υ−

Q (νs) ,Υ
+
Q (νs)

] 〉}
= QNMV .

Case (ii): If RNMV ⊆ QNMV , then,

QNMV ∩RNMV =
{〈

νs,
[
Γ−
R (νs) ,Γ

+
R (νs)

]
,
[
∆−

R (νs) ,∆
+
R (νs)

]
,
[
Υ−

R (νs) ,Υ
+
R (νs)

]〉}
QNMV ∪ (QNMV ∩RNMV)

=
{〈

νs,
[
Γ−
Q (νs) ,Γ

+
Q (νs)

]
,
[
∆−

Q (νs) ,∆
+
Q (νs)

]
,
[
Υ−

Q (νs) ,Υ
+
Q (νs)

] 〉}
∪{〈

νs,
[
Γ−
R (νs) ,Γ

+
R (νs)

]
,
[
∆−

R (νs) ,∆
+
R (νs)

]
,
[
Υ−

R (νs) ,Υ
+
R (νs)

] 〉}
= QNMV .

Hence QNMV ∪ (QNMV ∩RNMV) = QNMV .

(2).Proof of (2) is similar to (1).

Example 4.10. (1). Let us consider the NMVT S (Ĺ,ΨY (S) ,ΩY(S)) defined in ex.3.2.

Let QNMV = { < α, [0.2, 0.7], [0.2, 0.6], [0.8, 0.9] >, < β, [0.2, 0.5], [0.7, 0.9], [0.3, 0.5] >,

< γ, [0.1, 0.4], [0.9, 0.9], [0.2, 0.5] >,< δ, [0.3, 0.5], [0.5, 0.9], [0.8, 0.9] >} and RNMV = {<
α, [0, 0], [1, 1], [1, 1] >,< β, [0, 0], [1, 1], [1, 1] >,< γ, [0, 0], [1, 1], [1, 1] >,< δ, [0, 0], [1, 1], [1, 1] >

} be NMV sets. Then,

QNMV ∩RNMV

= { < α, [0.2, 0.7], [0.2, 0.6], [0.8, 0.9] >, < β, [0.2, 0.5], [0.7, 0.9], [0.3, 0.5] >,

< γ, [0.1, 0.4], [0.9, 0.9], [0.2, 0.5] >,< δ, [0.3, 0.5], [0.5, 0.9], [0.8, 0.9] >}.

QNMV ∪ (QNMV ∩RNMV)

= { < α, [0.2, 0.7], [0.2, 0.6], [0.8, 0.9] >, < β, [0.2, 0.5], [0.7, 0.9], [0.3, 0.5] >,

< γ, [0.1, 0.4], [0.9, 0.9], [0.2, 0.5] >,< δ, [0.3, 0.5], [0.5, 0.9], [0.8, 0.9] >} = QNMV

(2). Similar to (1).

Theorem 4.11. (De-Morgan law) Let QNMV and RNMV be any two subsets of NMVT S
(Ĺ,ΨY (S) ,ΩY(S)). Then the following statements hold true.

(1) (QNMV ∪RNMV)
C = (QNMV)

C ∩ (RNMV)
C .

(2) (QNMV ∩RNMV)
C = (QNMV)

C ∪ (RNMV)
C .

Proof. Let QNMV = { < νs, [Γ
−
Q(νs),Γ

+
Q(νs)], [∆

−
Q(νs),∆

+
Q(νs)], [Υ−

Q(νs),Υ
+
Q(νs)]>} and

RNMV = { < νs, [Γ
−
R(νs),Γ

+
R(νs)], [∆

−
R(νs),∆

+
R(νs)], [Υ−

R(νs),Υ
+
R(νs)]>} be the subsets of
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NMVT S (Ĺ,ΨY (S) ,ΩY(S)).

1. LHS:

QNMV ∪RNMV =
{〈

νs,
[
Γ−
Q (νs) ,Γ

+
Q (νs)

]
,
[
∆−

Q (νs) ,∆
+
Q (νs)

]
,
[
Υ−

Q (νs) ,Υ
+
Q (νs)

]〉}
∪

{〈
νs,

[
Γ−
R (νs) ,Γ

+
R (νs)

]
,
[
∆−

R (νs) ,∆
+
R (νs)

]
,
[
Υ−

R (νs) ,Υ
+
R (νs)

]〉}

QNMV ∪RNMV =



〈
νs,

[
Γ−
Q (νs)∨Γ−

R (νs) ,Γ
+
Q (νs) ∨ Γ+

R (νs)
]
,

[
∆−

Q (νs) ∧∆−
R (νs) ,∆

+
Q (νs) ∧∆+

R (νs)
]
,

[
Υ−

Q (νs) ∧Υ−
R (νs) ,Υ

+
Q (νs) ∧Υ+

R (νs)
]

〉


(QNMV ∪RNMV)
c =



〈
νs,

[
1− (Γ+

Q (νs) ∨ Γ+
R (νs) ),1− (Γ−

Q (νs)∨Γ−
R (νs))

]
,

[
1− (∆+

Q (νs) ∧∆+
R (νs) ),1− (∆−

Q (νs) ∧∆−
R (νs) )

]
,

[
1− (Υ+

Q (νs) ∧Υ+
R (νs) ),1−

(
Υ−

Q (νs) ∧Υ−
R (νs)

)]
〉


2. RHS:

QC
NMV =



〈
νs,

[
1− Γ+

Q (νs) , 1− Γ−
Q (νs)

]
,

[
1−∆+

Q (νs) , 1−∆−
Q (νs)

]
,

[
1−Υ+

Q (νs) , 1−Υ−
Q (νs)

]
〉


and

RC
NMV =


〈
νs,

[
1− Γ+

R (νs) , 1− Γ−
R (νs)

]
,

[
1−∆+

R (νs) , 1−∆−
R (νs)

]
,

[
1−Υ+

R (νs) , 1−Υ−
R (νs)

]
〉


QC
NMV ∩RC

NMV
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=



〈
νs,

[
1− Γ+

Q (νs) , 1− Γ−
Q (νs)

]
,

[
1−∆+

Q (νs) , 1−∆−
Q (νs)

]
,

[
1−Υ+

Q (νs) , 1−Υ−
Q (νs)

]
〉


∩


〈
νs,

[
1− Γ+

R (νs) , 1− Γ−
R (νs)

]
,

[
1−∆+

R (νs) , 1−∆−
R (νs)

]
,

[
1−Υ+

R (νs) , 1−Υ−
R (νs)

]
〉


=



〈
νs,

[
1− Γ+

Q (νs) ∧ 1− Γ+
R (νs) , 1− Γ−

Q (νs) ∧ 1− Γ−
R (νs)

]
,

[
1−∆+

Q (νs) ∨ 1−∆+
R (νs) , 1−∆−

Q (νs) ∨ 1−∆−
R (νs)

]
,

[
1−Υ+

Q (νs) ∨ 1−Υ+
R (νs) , 1−Υ−

Q (νs) ∨ 1−Υ−
R (νs)

]
〉


=



〈
νs,

[
1− (Γ+

Q (νs) ∨ Γ+
R (νs) ),1− (Γ−

Q (νs)∨Γ−
R (νs))

]
,

[
1− (∆+

Q (νs) ∧∆+
R (νs) ),1− (∆−

Q (νs) ∧∆−
R (νs) )

]
,

[
1− (Υ+

Q (νs) ∧Υ+
R (νs)), 1−

(
Υ−

Q (νs) ∧Υ−
R (νs)

)]
〉


So, LHS = RHS.

2.Proof of (2) is similar as proof of (1).

Corollary 4.12. Let PNMV , QNMV , RNMV and SNMV be NMV sets in

(Ĺ,ΨY (S) ,ΩY(S)). Then,

(1) ∪ (PiNMV) = ∩
(
PiNMV

)
(2) ∩ (PiNMV) = ∪

(
PiNMV

)
Proof. The proof is obvious from the above theorem.

Theorem 4.13. (Commutative law) Let PNMV and QNMV be NMV sets in the NMVT S
(Ĺ,ΨY (S) ,ΩY(S)). Then the following statements hold true.

(1) PNMV ∪QNMV = QNMV ∪ PNMV .

(2) PNMV ∩QNMV = QNMV ∩ PNMV .

Proof. Let PNMV and QNMV be NMV sets in the NMVT S (Ĺ,ΨY (S) ,ΩY(S)) of the

form PNMV = { < νs,
[
Γ−
P (νs),Γ

+
P (νs)

]
,
[
∆−

P (νs),∆
+
P (νs)

]
,
[
Υ−

P (νs),Υ
+
P (νs)

]
> } and

QNMV = { < νs, [Γ
−
Q(νs),Γ

+
Q(νs)], [∆

−
Q(νs),∆

+
Q(νs)], [Υ−

Q(νs),Υ
+
Q(νs)]>}.
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1.PNMV ∪QNMV

=



〈
νs,

[∨(
Γ−
P (νs) , Γ−

Q (νs)
)
,
∨(

Γ+
P (νs) , Γ+

Q (νs)
)]

,

[∧(
∆−

P (νs) , ∆−
Q (νs)

)
,
∧(

∆+
P (νs) , ∆+

Q (νs)
)]

,

[∧(
Υ−

P (νs) , Υ−
Q (νs)

)
,
∧(

Υ+
P (νs) , Υ+

Q (νs)
)]

〉


=



〈
νs,

[∨(
Γ−
Q (νs) ,Γ

−
P (νs)

)
,
∨(

Γ+
Q (νs) ,Γ

+
P (νs)

)]
,

[∧(
∆−

Q (νs) ,∆
−
P (νs)

)
,
∧(

∆+
Q (νs) ,∆

+
P (νs)

)]
,

[∧(
Υ−

Q (νs) ,Υ
−
P (νs)

)
,
∧(

Υ+
Q (νs) ,Υ

+
P (νs)

)]
〉


= QNMV ∪ PNMV .

Therefore, PNMV ∪QNMV = QNMV ∪ PNMV .

2.Proof of (2) is similar to (1).

Theorem 4.14. (Associative law) Following conditions are true for the NMV sets PNMV ,

QNMV and RNMV of the NMVT S (Ĺ,ΨY (S) ,ΩY(S)).

(1) (PNMV ∪QNMV) ∪RNMV = PNMV ∪ (QNMV ∪RNMV).

(2) (PNMV ∩QNMV) ∩RNMV = PNMV ∩ (QNMV ∩RNMV).

Proof. Let PNMV , QNMV and RNMV be subsets of NMVT S (Ĺ,ΨY (S) ,ΩY(S)) de-

fined as PNMV = { < νs,
[
Γ−
P (νs),Γ

+
P (νs)

]
,
[
∆−

P (νs),∆
+
P (νs)

]
,
[
Υ−

P (νs),Υ
+
P (νs)

]
> },

QNMV = { < νs, [Γ
−
Q(νs),Γ

+
Q(νs)], [∆

−
Q(νs),∆

+
Q(νs)], [Υ−

Q(νs),Υ
+
Q(νs)]>} and RNMV =

{ < νs, [Γ
−
R(νs),Γ

+
R(νs)], [∆

−
R(νs),∆

+
R(νs)], [Υ−

R(νs),Υ
+
R(νs)]>}.

1.PNMV ∪QNMV

=



〈
νs,

[∨(
Γ−
P (νs) , Γ−

Q (νs)
)
,
∨(

Γ+
P (νs) , Γ+

Q (νs)
)]

,

[∧(
∆−

P (νs) , ∆−
Q (νs)

)
,
∧(

∆+
P (νs) , ∆+

Q (νs)
)]

,

[∧(
Υ−

P (νs) , Υ−
Q (νs)

)
,
∧(

Υ+
P (νs) , Υ+

Q (νs)
)]

〉
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=



〈
νs,

[(
Γ−
P (νs) ∨ Γ−

Q (νs)
)
,
(
Γ+
P (νs) ∨ Γ+

Q (νs)
)]

,

[(
∆−

P (νs) ∧∆−
Q (νs)

)
,
(
∆+

P (νs) ∧∆+
Q (νs)

)]
,

[(
Υ−

P (νs) ∧Υ−
Q (νs)

)
,
(
Υ+

P (νs) ∧Υ+
Q (νs)

)]
〉


Then,

(PNMV ∪QNMV) ∪RNMV

=



〈
νs,

[(
Γ−
P (νs) ∨ Γ−

Q (νs)
)
∨
(
Γ−
R (νs)

)
,
(
Γ+
P (νs) ∨ Γ+

Q (νs)
)
∨
(
Γ+
R (νs)

)]
,

[(
∆−

P (νs) ∧∆−
Q (νs)

)
∧
(
∆−

R (νs)
)
,
(
∆+

P (νs) ∧∆+
Q (νs)

)
∧
(
∆+

R (νs)
)]

,

[(
Υ−

P (νs) ∧Υ−
Q (νs)

)
∧
(
Υ−

R (νs)
)
,
(
Υ+

P (νs) ∧Υ+
Q (νs)

)
∧
(
Υ+

R (νs)
)]

〉


=



〈
νs,

[(
Γ−
P (νs) ∨ Γ−

Q (νs) ∨ Γ−
R (νs)

)
,
(
Γ+
P (νs) ∨ Γ+

Q (νs) ∨ Γ+
R (νs)

)]
,

[(
∆−

P (νs) ∧∆−
Q (νs) ∧∆−

R (νs)
)
,
(
∆+

P (νs) ∧∆+
Q (νs) ∧∆+

R (νs)
)]

,

[(
Υ−

P (νs) ∧Υ−
Q (νs) ∧Υ−

R (νs)
)
,
(
Υ+

P (νs) ∧Υ+
Q (νs) ∧Υ+

R (νs)
)]

〉


=



〈
νs,

[(
Γ−
P (νs)

)
∨
(
Γ−
Q (νs) ∨ Γ−

R (νs)
)
,
(
Γ+
P (νs)

)
∨
(
Γ+
Q (νs) ∨ Γ+

R (νs)
)]

,

[(
∆−

P (νs)
)
∧
(
∆−

Q (νs) ∧∆−
R (νs)

)
,
(
∆+

P (νs)
)
∧
(
∆+

Q (νs) ∧∆+
R (νs)

)]
,

[(
Υ−

P (νs)
)
∧
(
Υ−

Q (νs) ∧Υ−
R (νs)

)
,
(
Υ+

P (νs)
)
∧
(
Υ+

Q (νs) ∧Υ+
R (νs)

)]
〉


= PNMV ∪ (QNMV ∪RNMV).

2. Proof of (2) is similar to proof of (1).

Theorem 4.15. (Distributive law) Let PNMV , QNMV and RNMV be NMV sets in the

NMVT S (Ĺ,ΨY (S) ,ΩY(S)). Then distributive law holds.

(1) PNMV ∪ (QNMV ∩RNMV) = (PNMV ∪QNMV) ∩ (PNMV ∪RNMV).

(2) PNMV ∩ (QNMV ∪RNMV) = (PNMV ∩QNMV) ∪ (PNMV ∩RNMV).
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Proof.

Let PNMV , QNMV and RNMV be subsets of NMV topological space (Ĺ,ΨY (S) ,ΩY(S))

defined as PNMV = { < νs,
[
Γ−
P (νs),Γ

+
P (νs)

]
,
[
∆−

P (νs),∆
+
P (νs)

]
,
[
Υ−

P (νs),Υ
+
P (νs)

]
> },

QNMV = { < νs, [Γ
−
Q(νs),Γ

+
Q(νs)], [∆

−
Q(νs),∆

+
Q(νs)], [Υ−

Q(νs),Υ
+
Q(νs)]>} and RNMV = { <

νs, [Γ
−
R(νs),Γ

+
R(νs)], [∆

−
R(νs),∆

+
R(νs)], [Υ−

R(νs),Υ
+
R(νs)]>}.

1. LHS: QNMV ∩RNMV =



〈
νs,

[(
Γ−
Q (νs) ∧ Γ−

R (νs)
)
,
(
Γ+
Q (νs) ∧ Γ+

R (νs)
)]

,

[(
∆−

Q (νs) ∨∆−
R (νs)

)
,
(
∆+

Q (νs) ∨∆+
R (νs)

)]
,

[(
Υ−

Q (νs) ∨Υ−
R (νs)

)
,
(
Υ+

Q (νs) ∨Υ+
R (νs)

)]
〉


PNMV ∪ (QNMV ∩RNMV)

=
〈
νs,

[
Γ−
P (νs) ,Γ

+
P (νs)

]
,

[
∆−

P (νs) ,∆
+
P (νs)

]
,

[
Υ−

P (νs) ,Υ
+
P (νs)

]
〉


∪



〈
νs,

[(
Γ−
Q (νs) ∧ Γ−

R (νs)
)
,
(
Γ+
Q (νs) ∧ Γ+

R (νs)
)]

,

[(
∆−

Q (νs) ∧∆−
R (νs)

)
,
(
∆+

Q (νs) ∧∆+
R (νs)

)]
,

[(
Υ−

Q (νs) ∧Υ−
R (νs)

)
,
(
Υ+

Q (νs) ∧Υ+
R (νs)

)]
〉


=



〈
νs,

[(
Γ−
P (νs)

)
∨
(
Γ−
Q (νs) ∧ Γ−

R (νs)
)
,
(
Γ+
P (νs)

)
∨
(
Γ+
Q (νs) ∧ Γ+

R (νs)
)]

,

[(
∆−

P (νs)
)
∨
(
∆−

Q (νs) ∧∆−
R (νs)

)
,
(
∆+

P (νs)
)
∨
(
∆+

Q (νs) ∧∆+
R (νs)

)]
,

[(
Υ−

P (νs)
)
∨
(
Υ−

Q (νs) ∧Υ−
R (νs)

)
,
(
Υ+

P (νs)
)
∨
(
Υ+

Q (νs) ∧Υ+
R (νs)

)]
〉


RHS:

PNMV ∪QNMV

=



〈
νs,

[∨(
Γ−
P (νs) , Γ−

Q (νs)
)
,
∨(

Γ+
P (νs) , Γ+

Q (νs)
)]

,

[∧(
∆−

P (νs) , ∆−
Q (νs)

)
,
∧(

∆+
P (νs) , ∆+

Q (νs)
)]

,

[∧(
Υ−

P (νs) , Υ−
Q (νs)

)
,
∧(

Υ+
P (νs) , Υ+

Q (νs)
)]

〉
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=



〈
νs,

[(
Γ−
P (νs) ∨ Γ−

Q (νs)
)
,
(
Γ+
P (νs) ∨ Γ+

Q (νs)
)]

,

[(
∆−

P (νs) ∧∆−
Q (νs)

)
,
(
∆+

P (νs) ∧∆+
Q (νs)

)]
,

[(
Υ−

P (νs) ∧Υ−
Q (νs)

)
,
(
Υ+

P (νs) ∧Υ+
Q (νs)

)]
〉


(PNMV ∪RNMV)

=


〈
νs,

[∨ (
Γ−
P (νs) , Γ−

R (νs)
)
,
∨(

Γ+
P (νs) , Γ+

R (νs)
)]

,

[∧ (
∆−

P (νs) , ∆−
R (νs)

)
,
∧(

∆+
P (νs) , ∆+

R (νs)
)]

,

[∧ (
Υ−

P (νs) , Υ−
R (νs)

)
,
∧(

Υ+
P (νs) , Υ+

R (νs)
)]

〉


=


〈
νs,

[(
Γ−
P (νs) ∨ Γ−

R (νs)
)
,
(
Γ+
P (νs) ∨ Γ+

R (νs)
)]

,

[(
∆−

P (νs) ∧∆−
R (νs)

)
,
(
∆+

P (νs) ∧∆+
R (νs)

)]
,

[(
Υ−

P (νs) ∧Υ−
R (νs)

)
,
(
Υ+

P (νs)∧Υ+
R (νs)

)]
〉


Then, (PNMV ∪QNMV) ∩ (PNMV ∪RNMV)

=



〈
νs,

[(
Γ−
P (νs) ∨ Γ−

Q (νs)
)
,
(
Γ+
P (νs) ∨ Γ+

Q (νs)
)]

,

[(
∆−

P (νs) ∧∆−
Q (νs)

)
,
(
∆+

P (νs) ∧∆+
Q (νs)

)]
,

[(
Υ−

P (νs) ∧Υ−
Q (νs)

)
,
(
Υ+

P (νs) ∧Υ+
Q (νs)

)]
〉


∩


〈
νs,

[(
Γ−
P (νs) ∨ Γ−

R (νs)
)
,
(
Γ+
P (νs) ∨ Γ+

R (νs)
)]

,

[(
∆−

P (νs) ∧∆−
R (νs)

)
,
(
∆+

P (νs) ∧∆+
R (νs)

)]
,

[(
Υ−

P (νs) ∧Υ−
R (νs)

)
,
(
Υ+

P (νs) ∧Υ+
R (νs)

)]
〉
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=

〈
νs,

[(
Γ−
P (νs) ∨ Γ−

Q (νs)
)
∧
(
Γ−
P (νs) ∨ Γ−

R (νs)
)
,
(
Γ+
P (νs) ∨ Γ+

Q (νs)
)
∧
(
Γ+
P (νs) ∨ Γ+

R (νs)
)]

,

[(
∆−

P (νs) ∧∆−
Q (νs)

)
∨
(
∆−

P (νs) ∧∆−
R (νs)

)
,
(
∆+

P (νs) ∧∆+
Q (νs)

)
∨
(
∆+

P (νs) ∧∆+
R (νs)

)]
,

[(
Υ−

P (νs) ∧Υ−
Q (νs)

)
∨
(
Υ−

P (νs) ∧Υ−
R (νs)

)
,
(
Υ+

P (νs) ∧Υ+
Q (νs)

)
∨
(
Υ+

P (νs) ∧Υ+
R (νs)

)]
〉


=



〈
νs,

[(
Γ−
P (νs)

)
∨
(
Γ−
Q (νs) ∧ Γ−

R (νs)
)
,
(
Γ+
P (νs)

)
∨
(
Γ+
Q (νs) ∧ Γ+

R (νs)
)]

,

[(
∆−

P (νs)
)
∨
(
∆−

Q (νs) ∧ ∆−
R (νs)

)
,
(
∆+

P (νs)
)
∨
(
∆+

Q (νs) ∧∆+
R (νs)

)]
,

[(
Υ−

P (νs)
)
∨
(
Υ−

Q (νs) ∧Υ−
R (νs)

)
,
(
Υ+

P (νs)
)
∨
(
Υ+

Q (νs) ∧Υ+
R (νs)

)]
〉


Therefore, LHS = RHS. Hence Distributive law holds.

2. Proof of (2) is similar to (1).

5. Closure and Interior of NMV set

Definition 5.1. Let (Ĺ,ΨY (S) ,ΩY(S)) be a NMVT S. Let PNMV be a NMV set. The

NMV interior of PNMV is defined as the union of all NMVOSs contained in PNMV . (i.e)

NMVint (PNMV) = ∪{G : G is a NMV open set and G ⊆ PNMV}. Clearly, NMV-int
(PNMV) is the largest NMV open set that is contained in PNMV .

Definition 5.2. Let (Ĺ,ΨY (S) ,ΩY(S)) be a NMVT S. Let PNMV be a NMV set. The

NMV closure of PNMV is defined as the intersection of all NMVCSs containing PNMV .

(i.e) NMVcl (PNMV) = ∩{K : K is NMV closed set and PNMV ⊆ K}. Clearly, NMV-cl
(PNMV) is the smallest NMV closed set that contains PNMV .

Proposition 5.3. Let PNVM be any NMV set in (Ĺ,ΨY (S) ,ΩY(S)). Then

(1) NMVint (1− PNMV ) = 1− (NMVcl (PNMV ))

(2) NMVcl (1− PNMV ) = 1− (NMVint (PNMV ))

Proof. (1) By definition, NMVcl (PNMV ) = ∩{K : K is NMV closed set and PNMV ⊆ K}.
Therefore, 1− (NMVcl (PNMV )) = 1− ∩{K : K is NMV closed set and PNMV ⊆ K}

= ∪{(1−K) : K is NMV closed set and PNMV ⊆ K}

= ∪{G : G is a NMV open set and G ⊆ (1−PNMV )}

= NMVint (1− PNMV )
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(2) The proof is similar to (1).

Proposition 5.4. For any two NMV sets PNMV and QNMV in (Ĺ,ΨY (S) ,ΩY(S)) the

following statements hold:

(1) PNMV is NMV Closed set if and only if NMV −cl (PNMV) = PNMV

(2) PNMV is NMV Open set if and only if NMV −int (PNMV) = PNMV

(3) PNMV ⊆ QNMV implies NMV − int (PNMV) ⊆ NMV − int (QNMV)

(4) PNMV ⊆ QNMV implies NMV −cl (PNMV) ⊆ NMV −cl (QNMV)

(5) NMV − cl (NMV −cl (PNMV)) = NMV −cl (PNMV)

(6) NMV − int (NMV − int (PNMV)) = NMV − int (PNMV)

Proof. (1) If PNMV is a NMV closed set, then PNMV is the smallest NMV closed set

containing itself and hence NMV − cl(PNMV) = PNMV . Conversely if NMV −
cl(PNMV) = PNMV , then PNMV is the smallest NMV closed set containing itself

and hence PNMV is NMV closed set.

(2) Let PNMV be a Neutrosophic Micro Vague Open set in the NMVT S
(Ĺ,ΨY (S) ,ΩY(S)). We know that NMV − int(PNMV) of any set is a subset of

the set PNMV . So, NMV − int(PNMV) ⊆ PNMV . Since, PNMV is a Neutro-

sophic Micro Vague open set, we have PNMV ⊆ NMV − int(PNMV). Therefore,

NMV−int(PNMV) = PNMV . Conversely suppose if NMV−int(PNMV) = PNMV ,

then since NMV − int(PNMV) is a NMV open set, clearly PNMV is also a NMV
open set.

(3) Let PNMV ⊆ QNMV , then 1−PNMV ⊆ 1−QNMV , this implies that NMV−cl (1−
PNMV) ⊆ NMV−cl (1− QNMV) =⇒ NMV−int(PNMV) ⊆ NMV−int(QNMV).

(4) Similarly, it is proved that NMV − cl(PNMV) ⊆ NMV − cl(QNMV).

(5) Since NMV− int(PNMV) is a NMV open set, NMV− int (NMV− int(PNMV)) =

NMV − int(PNMV).

(6) Similarly, since NMV − int(PNMV) is a NMV closed set, then NMV − cl (NMV −
cl(PNMV)) = NMV − cl(PNMV).

Hence Proved.

Proposition 5.5. For any two NMV sets PNMV and QNMV in (Ĺ,ΨY (S) ,ΩY(S)) the

following statements hold:

(1) NMV − cl (PNMV ∪QNMV) = NMV − cl (PNMV) ∪ NMV − cl (QNMV)

(2) NMV − cl (PNMV ∩QNMV) ⊆ NMV − cl (PNMV) ∩ NMV − cl (QNMV)
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Proof. (1) Since PNMV ⊆ PNMV ∪ QNMV and QNMV ⊆ PNMV ∪ QNMV , then

NMV − cl(PNMV) ⊆ NMV − cl(PNMV ∪ QNMV) and NMV − cl(QNMV) ⊆
NMV−cl(PNMV ∪ QNMV). Therefore, NMV−cl(PNMV) ∪ NMV−cl(QNMV) ⊆
NMV − cl(PNMV ∪ QNMV).

Conversely since PNMV ⊆ NMV−cl(PNMV) and QNMV ⊆ NMV−cl(QNMV),

then PNMV ∪QNMV ⊆ NMV− cl(PNMV) ∪ NMV − cl(QNMV). Besides NMV−
cl(PNMV ∪ QNMV) is the smallest NMV closed set that containing PNMV ∪QNMV .

Therefore, NMV−cl (PNMV ∪ QNMV) ⊆ NMV−cl(PNMV) ∪ NMV−cl(QNMV).

Thus, NMV − cl (PNMV ∪ QNMV) = NMV − cl(PNMV) ∪ NMV − cl(QNMV).

(2) Since, PNMV ∩QNMV ⊆ NMV − cl(PNMV) ∩ NMV − cl(QNMV) and NMV −
cl(PNMV ∩ QNMV) is the smallest NMV closed set that containing PNMV ∩ QNMV ,

then NMV − cl(PNMV ∩ QNMV) ⊆ NMV − cl(PNMV) ∩ NMV − cl(QNMV).

Hence Proved.

Proposition 5.6. For any two NMV sets PNMV and QNMV in (Ĺ,ΨY (S) ,ΩY(S)) the

following statements hold:

(1) NMV − int (PNMV ∪QNMV) ⊇ NMV − int (PNMV) ∪ NMV − int (QNMV)

(2) NMV − int (PNMV ∩QNMV) = NMV − int (PNMV) ∩ NMV − int (QNMV)

Proof. (1) Since PNMV ⊆ PNMV ∪ QNMV and QNMV ⊆ PNMV ∪ QNMV , then

NMV − int(PNMV) ⊆ NMV − int(PNMV ∪ QNMV) and NMV − int(QNMV) ⊆
NMV − int(PNMV ∪ QNMV). Therefore, NMV − int(PNMV) ∪ NMV −
int(QNMV) ⊆ NMV − int (PNMV ∪ QNMV).

(2) Since PNMV ∩ QNMV ⊆ PNMV and PNMV ∩ QNMV ⊆ QNMV , then NMV −
int(PNMV ∩ QNMV) ⊆ NMV− int(PNMV) and NMV− int(PNMV ∩ QNMV) ⊆
NMV − int(QNMV). So, NMV − int(PNMV ∩ QNMV) ⊆ NMV − int(PNMV) ∩
NMV − int(QNMV).

On the other hand, sinceNMV−int(PNMV) ⊆ PNMV andNMV−int(QNMV) ⊆
QNMV , thenNMV−int(PNMV) ∩ NMV−int(QNMV) ⊆ PNMV ∩ QNMV . Besides

NMV − int(PNMV ∩ QNMV) ⊆ PNMV ∩ QNMV and it is the biggest NMV open

set that contained in PNMV ∩ QNMV . Therefore, NMV − int(PNMV) ∩ NMV −
int(QNMV) ⊆ NMV−int(PNMV ∩ QNMV). Thus NMV−int(PNMV∩ QNMV) =

NMV − int(PNMV) ∩ NMV − int(QNMV).

Hence the proof.

Proposition 5.7. (1) NMV − cl (QC
NMV) = [NMV − int (QNMV)]

C

(2) NMV − int (QC
NMV) = [NMV − cl (QNMV)]

C
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Proof. Proof of the above proposition is obvious.

6. Conclusion

By applying simple extension on Neutrosophic Vague Nano topological spaces, this research

presents a brand-new topological space known as Neutrosophic Micro Vague Topological Space.

Various operations on Neutrosophic Micro Vague sets such as union, intersection, inclusion and

complement are defined with suitable examples. Moreover, some of the fundamental algebraic

set properties for Neutrosophic Micro Vague sets have been described and evaluated with

appropriate examples. Neutrosophic micro vague set encourages inventiveness in variety of

domains. In dynamic contexts where information is continuously shifting or evolving, these

sets are advantageous and they offer a strong foundation for managing uncertainty in a vari-

ety of applications which enhances decision-making and problem-solving skills. Utilizing this

advanced framework researchers may explore applications in fields including image processing,

natural language comprehension, robotics and optimization. In future, Neutrosophic Micro

Vague sets can be used in association with other mathematical infrastructure to represent

various characteristics of unknowns and insufficient accuracy.
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Abstract. The primary goal of this study is to address the limitations of classical statistics in handling am-

biguous or indeterminate data. The best alternative to classical and fuzzy statistics for handling such data

uncertainty is neutrosophic statistics, which is a generalization of both. A generalization of classical statistics,

neutrosophic statistics addresses hazy, ambiguous, and unclear information. To achieve this, this manuscript

recommends the neutrosophic ranked set sampling approach. We have introduced neutrosophic estimators for

estimating the mean of the finite population using auxiliary information under neutrosophic ranked set sampling

to address the challenges of estimation of the population mean of neutrosophic data. The proposed estimators

outperform the other existing estimators and proposed estimators evaluated in this work using MSE and PRE

criteria, and equations for bias and mean squared error produced for the suggested estimators up to the first

order of approximation. Under neutrosophic ranked set sampling, the suggested estimator has demonstrated

superiority over the class of estimators, unbiased estimators, and comparable estimators. Using the R pro-

gramming language, a numerical illustration and a simulation study have been conducted to demonstrate the

effectiveness of the suggested methodology. When computing results when working with ambiguous, hazy, and

neutrosophic-type data, the provided estimators are particularly helpful. These estimators produce findings that

are not single-valued but rather have an interval form where our population parameter may lie more frequently.

Since we now have an estimated interval with the population mean’s unknown value provided a minimum MSE,

the estimators are more effective.

Keywords: Neutrosophic ranked set sampling; Neutrosophic Statistics; Ranked Set Sampling; Study Vari-

able; Auxiliary Variable; Bias; Mean Squared Error.
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1. Introduction

Sampling is a crucial practice for a variety of reasons, such as cost and time constraints. In

sampling theory, the goal of estimation procedures is to enhance the effectiveness of estimators

for population parameters while minimizing sampling errors. To achieve this, auxiliary infor-

mation is utilized to improve estimator efficiency, and this information can be incorporated

at various stages of the process. When highly correlated auxiliary information is not readily

available, it can be gathered from previous surveys. Estimation techniques like ratio, product,

and regression are commonly employed in this context.

For instance, Sisodia and Dwivedi [1] introduced a modified ratio estimator that incorpo-

rates the coefficient of variation of auxiliary information. Pandey and Dubey [2], Bahl and

Tuteja [3], Upadhyaya and Singh [4], Singh et al. [5], Kadilar and Cingi [6], and Singh et al.

[7] have also proposed population parameter estimation methods using auxiliary information.

However, our focus here is on ranked set sampling.

Efforts in sampling continually strive for improvements in estimator efficiency, cost-

effectiveness, simplicity, and time savings. Ranked Set Sampling (RSS) offers a superior alter-

native to Simple Random Sampling (SRS) in various fields, including medicine, agriculture,

earth sciences, statistics, and mathematics, especially when measurements are cumbersome,

time-consuming, or expensive. The RSS technique was initially described for population mean

estimation by McIntyre [8], and the mathematical theory behind RSS was provided by Taka-

hashi and Wakimoto [9]. Dell and Clutter [10] demonstrated that, under both perfect and

imperfect ranking scenarios, the mean estimate in RSS remains unbiased.

Numerous researchers, such as Samawi and Muttlak [11], Stokes [12], Al-Shaleh and Al-

Omari [13], Bouza [14], Ganesh and Ganeslingam [15], Bouza [16], Kadilar et al. [17], Singh et

al. [18], Mandowara and Mehta [19], Al-Omari and Bouza [20] have contributed to the field of

ranked set sampling. For recent work, one can prefer Singh and Vishwakarma [21], Bhushan

and Kumar [22], and Singh and Kumari [23].

Classical ranked set sampling deals solely with precise data, assuming no uncertainty. How-

ever, data can be uncertain and imprecise in practice, containing sets or intervals. To address

such situations, fuzzy logic is a valuable tool that handles data with imprecision. Fuzzy

statistics are used to analyze data with fuzzy, ambiguous, unclear, uncertain, or imprecise

characteristics. Yet, they do not account for the degree of indeterminacy inherent in the data.
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Neutrosophic statistics, an extension of fuzzy logic, offers a way to measure both indetermi-

nacy and determinate aspects of uncertain or imprecise data.

When dealing with data that contains indeterminacy, neutrosophic statistics are employed.

Neutrosophic statistics expand upon classical statistics and encompass fuzzy and intuitionistic

statistics. Neutrosophy is applicable when observations in a population or sample lack preci-

sion, are indeterminate or are vague. Some examples of neutrosophic data include district-wise

water level measurements with intervals, variations in machinery part sizes due to measure-

ment errors, and day-wise temperature measurements resulting in interval-type data.

Atanassov [24] and Atanassov [25] defined Neutrosophic statistics is a generalization of

classical statistics as well as fuzzy. The concept of neutrosophy was initially introduced by

Smarandache [26-32], and extensive literature on neutrosophic sets, logic, and statistics can

be found in his works. In the realm of sampling theory, Tahir et al. [33] recently addressed

the estimation of population parameters under a neutrosophic environment, introducing neu-

trosophic ratio-type estimators for population means under SRS. One can also prefer Singh &

Mishra [34] and Singh et al. [35] for neutrosophic estimators under SRS framework. However,

there has been little focus on neutrosophic ranked set sampling for estimating population pa-

rameters.

Efficiency improvements in estimators are a constant objective in sampling. In this context,

we propose enhanced neutrosophic ranked set sampling (NRSS) estimators for population

mean estimation, with a particular emphasis on minimizing mean square error (MSE) and

enhancing precision.

Our study is designed as follows: Section 1 presents an introduction, and Section 2 outlines

motivation, needs, and research gaps. Section 3 outlines the NRSS method. Section 4 presents

existing NRSS estimators. Section 5 presents proposed NRSS estimators, Section 6 presents

an empirical study using natural growth rate data, and Section 7 offers a simulation study.

Section 8 is dedicated to a discussion, and Section 9 covers a conclusion.

2. Motivation, Need and Research Gap

This article’s main objective is to introduce a less explored approach known as “neutro-

sophic ranked set sampling”for dealing with neutrosophic or interval-type data. This method

can encompass various types of NRSS, similar to classical RSS. Our study focuses on sampling

theory, marking the instance of proposing an RSS technique tailored to neutrosophic data,

along with the development of NRSS estimators for population mean estimation. This is a
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significant step in expanding the field of sampling theory and comparing these estimators with

existing neutrosophic methods such as ratio, product, and generalized estimators. RSS is con-

sidered a superior alternative to SRS, making it an attractive avenue for further exploration

in the context of NRSS.

Several factors drive our exploration of NRSS and its associated estimators for population

parameter estimation. A primary motivation is to introduce RSS and RSS estimators in a neu-

trosophic setting. Previous research in survey sampling has predominantly focused on clear,

well-defined data, where classical sampling methods yield precise results, albeit with poten-

tial risks of inaccuracies, overestimations, or underestimations. However, classical methods

fall short when handling set-type or undetermined data, characteristic of neutrosophic data,

which is more prevalent in real-world scenarios than crisp data. As such, there is a growing

need for additional neutrosophic statistical techniques. Traditional statistical approaches are

ill-suited to compute accurate estimates of unknown parameters when dealing with indeter-

minate, vague, imprecise, set-type, or interval-type data. Neutrosophic statistics serve as a

suitable replacement for classical statistics in such scenarios.

Inspired by the work of Tahir et al. [33] and driven by the need to bridge the gap between

classical and neutrosophic statistics, our work introduces enhanced NRSS estimators for pop-

ulation mean estimation. Despite thorough research in the field, we found not many prior

studies in survey sampling that addressed the estimation of population means in the presence

of auxiliary variables using neutrosophic data under ranked set sampling other than Singh

and Vishwakarma [36]. Following Singh and Vishwakarma’s work, this research represents a

significant step toward filling this gap and contributes to the evolving domain of neutrosophic

statistics.

It has been well-established by multiple authors that RSS is a more suitable option than SRS

when dealing with cumbersome, expensive, or time-consuming measurements. The challenges

associated with measurements in a neutrosophic context exacerbate these issues. Therefore,

our research introduces an NRSS method to enhance the accuracy of the population mean

estimators in this unique context.

3. Sampling Methodology

Numerous methods can be used to display the neutrosophic observations, and the neutro-

sophic numbers may include an unknown interval [a, b]. We are describing neutrosophic values
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as ZrssN ≡ ZrssL + ZrssUIrssN with IrssN ∈ [IrssL, IrssU ], N is here to represent the neutro-

sophic number and IrssN is the degree of indeterminacy. Hence, our neutrosophic observations

will lie in an interval ZrssN ∈ [a, b], where ‘a’and ‘b’denote the neutrosophic data’s lower and

upper values.

In RSS, a small subset of randomly chosen population units are measured after they have been

ranked solely based on observation or past experience. Within the framework of RSS, multiple

independent random sets, each comprising m units drawn from the population, are chosen.

Each unit within a set has an equal probability of selection. The constituents of each random

set are then ranked based on the characteristics of the auxiliary variable. Subsequently, the

selection process involves choosing the smallest unit from the first ordered set, followed by the

next-smallest unit from the second ordered set, and so on. This sequential selection continues

until the largest rank in the mth set is reached. Throughout this iterative cycle, a total of rm

(= n) units are measured, and this entire process is repeated r times.

The method of NRSS consists of selecting mN ∈ [mL,mU ] bivariate random samples

of size mN ∈ [mL,mU ] from a population of size N, and then ranking inside each sam-

ple concerning for auxiliary variable XN ∈ [XL, XU ] associated with YN ∈ [YL, YU ]. The

book “Introduction to Neutrosophic Statistics”by Smarandache [32] will be the basis for

the ranking of the neutrosophic number. To show the process of ranking, we are utilizing

here two sets as X1N ∈ [X1L, X1U ] and X2N ∈ [X2L, X2U ], also their mid-points are as

X1midN = [X1L +X1U ]/2 and X2midN = [X2L +X2U ]/2. The ordering of neutrosophic num-

bers mN ∈ [mL,mU ] can be done as X1N ∈ [X1L, X1U ] will be less than X2N ∈ [X2L, X2U ]

if X1midN ≤ X2midN , also if both are same that is X1midN = X2midN then we will compare

or see by X1L ≤ X2L . Further, if again X1L = X2L then this implies X1U = X2U and hence

X1N ∈ [X1L, X1U ] = X2N ∈ [X2L, X2U ], so the neutrosophic number ranking will be carried

out in this manner. In the whole NRSS structure, first we count the smallest unit of the first

data set size mN ∈ [mL,mU ], for the first measurement unit in the entire NRSS structure,

and then we scrap the remaining units. In a similar manner, we count the second-smallest

observation from the second data set as the second observation and discard the remaining

observations. This process counts the total mN ∈ [mL,mU ] neutrosophic bivariate units for

up to the mth term. After r cycles of these steps, the total nN = mNr ∈ [nL, nU ] bivariate

NeRSS units are obtained.

Consider a neutrosophic random sample of size nN ∈ [nL, nU ] using RSS, which is ac-

quired from a finite population of ‘N’ units (U1, U2, ..., UN ). The neutrosophic study and

auxiliary variable are YN ∈ [YL, YU ] and XN ∈ [XL, XU ]. Let y[n]N ∈ [y[n]L, y[n]U ] and

x(n)N ∈ [x(n)L, x(n)U ] be the sample means of the neutrosophic study and auxiliary variables
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respectively, and also, let Y N ∈ [Y L, Y U ] and XN ∈ [XL, XU ] be the population means of the

neutrosophic study and auxiliary variables, respectively. The correlation coefficient between

both neutrosophic study and auxiliary variables is ρyxN ∈ [ρyxL, ρyxU ], CxN ∈ [CxL, CxU ] and

CyN ∈ [CyL, CyU ] be the coefficient of variation of neutrosophic variables YN and XN .

Let the neutrosophic mean error terms are ϵ0N ∈ [ϵ0L, ϵ0U ] and ϵ1N ∈ [ϵ1L, ϵ1U ]. To obtain the

bias and MSE of the estimators, we write

y[n]N = Y N (1 + ϵ0N ), x(n)N = XN (1 + ϵ1N )

E(ϵ20N ) = (ηc2yN −D2
y[N ]) = VyrN

E(ϵ21N ) = (ηc2xN −D2
x[N ]) = VxrN

E(ϵ0N , ϵ0N ) = (ηCyx −D2
yx[N ]) = VyxrN

where,

ηN = 1
nNr ,

D2
y[N ] =

1

m2
NrY

2
N

∑mN
i=1(µ[iyN ] − Y N )2

D2
x[N ] =

1

m2
NrX

2
N

∑mN
i=1(µ[ixN ] −XN )2

Dyx[N ] =
1

m2
NrY NX

2
N

∑mN
i=1(µ[iyN ] − Y N )(µ[ixN ] −XN )

where µ[iy] and µ(ix) are the means of the ith ranked set and are given by

µ[iyN ] =
1

r

r∑
j=1

yj[N ], µ(ixN) =
1

r

r∑
l=1

xj[N ].

ηN ∈ [ηL, ηU ]; SxN ∈ [SxL, SxU ]; SyN ∈ [SyL, SyU ] ; SxyN ∈ [SxyL, SxyU ] e
2
0N ∈ [e20L, e

2
0U ];e

2
1N ∈

[e21L, e
2
1U ] ;e0Ne1N ∈ [e0Le1L, e0Ue0U ];

CxN ∈ [CxL, CxU ] ; CyN ∈ [CyL, CyU ] ; CxyN ∈ [CxyL, CxyU ] D
2
y[N ] ∈ [D2

y[L], D
2
y[U ]] ; D

2
x[N ] ∈

[D2
x[L], D

2
x[U ]] ; Dyx[N ] ∈ [Dyx[L], Dyx[U ]] ; ρyxN ∈ [ρyxL, ρyxU ]; VyrN ∈ [VyrL, VyrU ]

VxrN ∈ [VxrL, VxrU ] ; VyxrN ∈ [VyxrL, VyxrU ] ; µ[iyN ] ∈ [µ[iyL], µ[iyU ]] ; µ[ixN ] ∈ [µ[ixL], µ[ixU ]].

4. Existing Estimators

Using the NRSS technique, the usual unbiased estimator for the population mean Y is

provided by

y[n]N =
1

nN

nN∑
i=1

y[i]N (1)

The variance of the estimator y[n]N is given by

var(y[n]N ) = Y
2
NVyrN (2)

The ratio estimator under NRSS for the population mean Y

yrN = y[n]N

(
XN

x[n]N

)
(3)
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The MSE of the estimator yrN is given by

MSE(yrN ) = Y
2
N (VyrN + VxrN − 2VyxrN ) (4)

Using NRSS, the regression estimator for the population mean Y is provided by

yregN = y[n]N + β(XN − y[n]N ) (5)

The MSE of the estimator yregN is given by

MSE(yregN ) = Y
2
N

(
VyrN −

V 2
yxrN

VxrN

)
(6)

Using NRSS, the exponential estimator for the population mean Y is provided by

yexpN = y[n]N exp

(
XN − x[n]N

XN + x[n]N

)
(7)

The MSE of the estimator yexpN is given by

MSE(yexpN ) = Y
2
(
VyrN +

VyrN

4
− VyxrN

)
(8)

Vishwakarma and Singh (2021) gave NRSS generalized class of estimators

yvsN = y[n]N

(
ANXN +BN

ANx[n]N +BN

)δ

(9)

The MSE of the estimator yvsN is given by

MSE(yvsN ) = Y
2
N

(
VyrN −

V 2
yxrN

VxrN

)
(10)

5. Proposed Estimators

No single estimator is universally effective in all situations. Consequently, prioritizing esti-

mators that yield minimal Mean Squared Error (MSE) and high precision is desirable. The

objective of this section is to develop estimators that demonstrate effective performance across

a broader range of scenarios. We have chosen to incorporate Mishra et al.’s [37] estimator

within the NRSS and have additionally introduced two novel estimators for the mean of a

finite population under NRSS, leveraging auxiliary variables for improved accuracy.

1.)P1N = y[n]N (g1N + 1) + g2N log

(
x[n]N

XN

)
(11)

where the constants g1N and g2N ensure that the estimators’ MSE is kept to a minimal.

Expressing the estimator P1N given in equation (11) in terms of ϵ′s we get

P1N = Y N (1 + ϵ01) (g1N + 1) + g2N log

(
XN (1 + ϵ1N )

XN

)
(12)
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Taking expectations by focusing on first-order approximation, we obtain MSE,

MSE (P1N ) = Y N
2
VyrN + g21NA1N + g22NB1N − 2g1NC1N − 2g2ND1N + 2g1Ng2NE1N (13)

where,

A1N = Y N
2
(1 + VyrN )

B1N = VxrN

C1N = Y N
2
VyrN

D1N = Y VyxrN

E1N = Y

(
VyxrN − 1

2
VxrN

)
To find out the minimum MSE for P1N , we partially differentiate equation (13) w.r.t. g1N &

g2N and equating to zero we get

g1N
∗ =

B1NC1N −D1NE1N

E2
1N −A1NB1N

(14)

g2N
∗ =

A1ND1N − C1NE1N

E2
1N −A1NB1N

(15)

Putting the optimum value of g1N & g2N in the equation (13), we obtain a minimum value

of MSE of P1N as

MinMSE(P1N ) = C1N +
B1NC2

1N +A1ND2
1N − 2C1ND1NE1N

E2
1N −A1NB1N

(16)

where MSE(P1N ) ∈ [MSE(P1L),MSE(P1U )]

2.)P2N = g3Ny[n]N + g4Nexp

(
XN − x[n]N

XN + x[n]N

)(
1 + log

x[n]N

XN

)
(17)

Expressing P2N given in equation (17) in terms of ϵ′s we get

P2N = g3NY N (1 + ϵ0N ) + g4N exp

(
−ϵ1N
2 + ϵ1N

)
(1 + log (1 + ϵ1N ) ) (18)

P2N − Y N = (g3N − 1)Y N + g3NY N ϵ0N + g4N

(
1 +

ϵ1N
2

− 5ϵ1N
2

8

)
(19)

Bias(P2N ) = Y N (g3N − 1) + g4N

[
1− 5

8
VxrN

]
(20)
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CASE 1: IF SUM OF WEIGHTS IS FIXED(g3N + g4N = 1)

The MSE of the estimator P2N is shown as

MSE(P2N ) = Y
2
N

[
VyrN + g24NVxrN − 2g4NVyxrN

]
(21)

To find out the minimum value of MSE for P2N , we partially differentiate equation (21) w.r.t.

g4N , and equating to zero we get

g4N
∗ =

VyxrN

VxrN
(22)

Putting the optimum value of g4N in the equation (21), we obtain a minimum MSE of P2N

as

MinMSE(P2N ) = Y N
2
(
VyrN −

VyxrN
2

VxrN

)
(23)

where MSE(P2N ) ∈ [MSE(P2L),MSE(P2U )]

CASE 2: IF THE SUM OF WEIGHTS IS ADJUSTABLE (g3N + g4N ̸= 1)

P2N − Y N = (g3N − 1)Y N + g3NY N ϵ0N + g4N

(
1 +

ϵ1N
2

− 5ϵ1
2

8

)
(24)

Squaring on both sides we get

(P2N − Y N )
2
= Y N

2
+Y N

2
g23N (1+ ϵ201)+ g24N

(
1− ϵ21N

)
− 2g3NY N

2− 2g4NY N

(
1−

5ϵ21N
8

)
+ 2g3Ng4NY N

(
1− 5ϵ1N

2

8
+

ϵ0N ϵ1N
2

)
(25)

Taking expectations by focusing on first-order approximation, we obtain mean square error

(MSE),

MSE (P2N ) = Y N
2
VyrN + g23NA2N + g24NB2N − 2g3NC2N − 2g4ND2N + 2g3Ng4NE2N (26)

where,

A2N = Y N
2
(1 + VyrN )

B2N = 1− VxrN

C2N = Y N
2

D2N = Y N

(
1− 5

8
VxrN

)
E2N = Y N

(
1− 5

8
VxrN +

1

2
VyxrN

)
To find out the minimum MSE for P2N , we partially differentiate equation (26) w.r.t. g3N &

g4N and equating to zero we get

g3N
∗ =

B2NC2N −D2NE2N

A2NB2N − E2
2N

(27)
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g4N
∗ =

A2ND2N − C2NE2N

A2NB2N − E2
2N

(28)

Putting the optimum value of g3N & g4N in the equation (26), we obtain a minimum MSE

of P2N as

MinMSE(P2N ) = C2N +
B2NC2

2N +A2ND2
2N − 2C2ND2NE2N

E2
2N −A2NB2N

(29)

where MSE(P2N ) ∈ [MSE(P2L),MSE(P2U )]

3.)P3N = g5Ny[n]N + g6N

(
XN

x[n]N

)
exp

(
XN − x[n]N

XN + x[n]N

)
(30)

Expressing P3N given in equation (30) in terms of ϵ′s we get

P3N = g5NY N (1 + ϵ0N ) + g6N (1 + ϵ1N )−1 exp

(
−ϵ1

2 + ϵ1N

)
(31)

P3N − Y N = (g5N − 1)Y N + g5NY N ϵ01 + g6N

(
1− 3ϵ1N

2
+

15ϵ1N
2

8

)
(32)

Bias(P3N ) = Y N (g5N − 1) + g6N

[
1 +

15

8
VxrN

]
(33)

CASE 1: IF SUM OF WEIGHTS IS FIXED (g5N + g6N = 1)

The MSE of the estimator P3N is shown as

MinMSE(P3N ) = Y N
2 [

VyrN + g26NVxrN − 2g6NVyxrN

]
(34)

To find out the minimum value of MSE for P 3N , we partially differentiate equation (34)

w.r.t. g6N and equating to zero we get

g6N
∗ =

VyxrN

VxrN
(35)

Putting the optimum value of g6N in the equation (34), we obtain a minimum MSE of P3N

as

MinMSE(P3N ) = Y N
2

(
VyrN −

V 2
yxrN

VxrN

)
(36)

where MSE(P3N ) ∈ [MSE(P3L),MSE(P3U )]

CASE 2: IF THE SUM OF WEIGHTS IS ADJUSTABLE (g5N + g6N ̸= 1)

P3N − Y N = (g5N − 1)Y N + g5NY ϵ0N + g6N

(
1− 3ϵ1N

2
+

15ϵ1N
2

8

)
(37)
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Squaring on both sides we get

(P3N − Y N )
2
= Y N

2
+Y N

2
g5N

2(1+ϵ20N )+g6N
2
(
1 + 6ϵ21N

)
−2g5NY N

2−2g6NY N

(
1 +

15ϵ1N
2

8

)
+ 2g5Ng6NY N

(
1 +

15ϵ1N
2

8
− 3ϵ0N ϵ1N

2

)
(38)

By utilizing first-order approximations for expectations, we can derive mean square error

(MSE)

MSE (P3N ) = Y N
2
VyrN + g25NA3N + g26NB3N − 2g5NC3N − 2g6ND3N + 2g5Ng6NE3N (39)

where,

A3N = Y N
2
(1 + VyrN )

B3N = 1 + 6V xrN

C3N = Y N
2

D3N = Y N

(
1 +

15

8
VxrN

)

E3N = Y N

(
1 +

15

8
VxrN − 3

2
VyxrN

)
To find out the minimum MSE for P3N , we partially differentiate equation (39) w.r.t. g5N &

g6N and equating to zero we get

g5N
∗ =

B3NC3N −D3NE3N

A3NB3N − E2
3N

(40)

g6N
∗ =

A3ND3N − C3NE3N

A3NB3N − E2
3N

(41)

Putting the optimum value of g5N & g6N in the equation (39), we obtain a minimum MSE of

P3N as

MinMSE((P3N )) = C3N +
B3NC2

3N +A3ND2
3N − 2C3ND3NE3N

E2
3N −A3NB3N

(42)

where MSE(P3N ) ∈ [MSE(P3L),MSE(P3U )]

PiN ∈ [PiL, PiU ]; i = 1, 2, 3 , AiN ∈ [AiL, AiU ]; i = 1, 2, 3 , BiN ∈ [BiL, BiU ]; i = 1, 2, 3

CiN ∈ [CiL, CiU ]; i = 1, 2, 3 , DiN ∈ [DiL, DiU ]; i = 1, 2, 3 , EiN ∈ [EiL, EiU ]; i = 1, 2, 3
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6. Numerical Illustrations

Here, we evaluate the performance of the recommended estimators in comparison to the

other existing estimators considered in this paper. We have taken real-life natural growth rate

data from the sample registration system (SRS) (2020). The data mentioned in the sample

registration system (SRS) (2020) have four neutrosophic variables for every state, but in our

research, we use birth rate vs natural growth rate. Here, the birth rate is the neutrosophic

auxiliary variable XN ∈ [XL, XU ] and natural growth rate is a neutrosophic study variable

YN ∈ [YL, YU ].

Table 1: The Data of Natural Growth Rate as per SRS 2020

State BRl BRu NGRl NGRu State BRl BRu NGRl NGRu

Andhra

Pradesh

15 16 9 10.1 Uttar

Pradesh

22.1 26.1 19.3 16.7

Assam 14.3 21.9 8.9 15.5 Uttarakhand 15.6 17 10.5 10.3

Bihar 21 26.2 15.7 20.7 West Ben-

gal

11.2 16.1 10.8 5.4

Chhattisgarh 17.3 23.4 11 15 Arunachal

Pradesh

15 17.8 11.8 10.6

NCT of

Delhi

14.1 15.5 10.6 11.4 Goa 11.7 12.4 6.9 5.3

Gujrat 17.1 21.1 12 15.1 Himachal

Pradesh

10 15.7 8.7 5.6

Haryana 17.7 21.2 12.3 14.7 Manipur 12.8 13.5 9.5 8

Jammu &

Kashmir

11.1 16.1 7 11.3 Meghalaya 12.9 25.1 19.6 8.5

Jharkhand 17.6 23.4 13.1 17.9 Mizoram 11.7 16.8 13 7.1

Karnataka 15 17.5 10.2 10.5 Nagaland 11.8 12.9 9 8.4

Kerala 13.1 13.3 6.1 6.3 Sikkim 14 18.2 14.5 9.7

Madhya

Pradesh

18.8 26 13.1 19.2 Tripura 10.7 13.4 8 4.2

Maharashtra 14.6 15.3 9.1 10.1 Andaman &

Nicobar

10 11.5 5.4 4.7

Odisha 13.1 18.7 6.6 11.2 Chandigarh 12.8 18.1 14 9

Punjab 13.6 14.9 6.6 7.9 Dadar Na-

gar Haveli

18 21.4 18.1 13.3

Rajasthan 20.8 24.4 15.7 18.6 Ladakh 10.8 15.2 10 6.5
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Tamil Nadu 13.6 14 6.8 8.5 Lakshadweep 13.1 19.9 12.7 8.1

Telangana 15.9 16.8 9.6 11.7 Puducherry 13.1 13.1 7 5.6

Further, we have drawn total nN = mNr = 12 samples from the given population of size

36 by utilizing the method of NRSS with set size mN = [3, 3] and replication r = 4. The

NRSS method for the study and auxiliary variables is used to draw the NRSS sample simul-

taneously, as explained in Section 2. The formula for Percent Relative Efficiency (PRE) is

defined, as

PRE (Estimators) =
MSE(y[n]N )

MSE(estimator)
× 100 (43)

Table 2: The MSE and PRE of the Estimators

Estimators MSE IN PRE

y[n]N [0.51461, 0.95605] [0, 0.46] [100, 100]

yrN [0.11421, 0.16089] [0, 0.29] [451, 594]

yregN [0.06610, 0.11572] [0, 0.42] [778, 826]

yexpN [0.26370, 0.43450] [0, 0.39] [195, 220]

yvsN [0.06610, 0.11572] [0, 0.42] [778, 826]

tp1 [0.06550, 0.11467] [0, 0.42] [786, 834]

tp2 [0.01237, 0.03204] [0, 0.61] [2983, 4158]

tp3 [0.01551, 0.03096] [0, 0.49] [3088, 3317]

7. Simulation Studies

We perform simulation studies to check the recommended estimator’s efficiency with other

existing estimators like the conventional, ratio, regression estimator, etc. This is done via the

following steps

1. It is well known that a neutrosophic normal distribution (NND) will be followed by neutro-

sophic random variables (NRV), i.e.(XN , YN ) ∼ NN [(µxN , σ2
xN ), (µyN , σ2

yN )], XN ∈ [XL, XU ],

YN ∈ [YL, YU ], µxN ∈ [(µxL, µxU )], µyN ∈ [(µyL, µyU )], σ
2
xN ∈ [σ2

xL, σ
2
xU ], σ

2
yN ∈ [σ2

yL, σ
2
yU ].

We have generated 4-variate random observations of size N=1000 from a 4-variate nor-

mal distribution with mean (µxL, µyL µxU , µyU ) = (50, 50, 60, 60) and covariance matrix
σ2
xL ρxyLσxLσyL 0 0

ρxyLσxLσyL σ2
yL 0 0

0 0 σ2
xU ρxyLσvσyL

0 0 ρxyUσxUσyU σ2
yU

 , where we have σ2
xL = 100 , σ2

yL =

100 , σ2
xU = 121 , σ2

yU = 121.

2. For this N = 1000 simulated population, the parameters were computed.
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3. A sample of size n with mN = 3 and r = 4, 6, 10 has been selected from this simulated

population.

4. To find the MSE of each estimator under study, use the sample data.

5. To get MSEs, the entire step 3–4 process was repeated 10,000 times. The MSE of each

population mean estimator is the average of the 10,000 values that were obtained.

6. The PRE of each estimator in relation to y[n]N has been calculated using the formula.

7. It can be done for some other population with parameters (µxL, µyL , µxU , µyU ) =

(150, 150, 200, 200) where we have σ2
xL = 625 , σ2

yL = 625 , σ2
xU = 961 , σ2

yU = 961 .

Table 3: MSEs and PREs of the recommended and existing estimators under

NRSS for Population 1

n=12 ρ=0.9 ρ=0.8

Estimators MSE IN PRE MSE IN PRE

y[n]N [4.74611, 8.39614] [0, 0.43] [100, 100] [5.28228, 8.15711] [0, 0.35] [100, 100]

yrN [1.45809, 1.7075] [0, 0.14] [326, 492] [2.85339, 3.37538] [0, 0.15] [185, 242]

yregN [1.27631, 1.45609] [0, 0.12] [372, 577] [2.41149, 2.65902] [0, 0.09] [219, 307]

yexpN [2.07258, 2.97855] [0, 0.30] [229, 282] [3.03606 , 3.68283] [0, 0.17] [174, 221]

yvsN [1.27631, 1.45609 ] [0, 0.12] [372, 577] [2.41149, 2.65902] [0, 0.09] [219, 307]

tp1 [1.27201, 1.44744] [0, 0.12] [373, 580] [2.40421, 2.64772] [0, 0.09] [220, 308]

tp2 [0.62571, 0.99329] [0, 0.37] [759, 845] [0.81364, 1.50894] [0, 0.46] [541, 649]

tp3 [0.46767, 0.53091] [0, 0.11] [1015,

1581]

[0.9161, 1.0529] [0, 0.12] [577, 775]

ρ=0.7 ρ=0.6

MSE IN PRE MSE IN PRE

y[n]N [5.80652, 8.11845] [0, 0.28] [100, 100] [6.14863, 8.47812] [0, 0.27] [100, 100]

yrN [4.21099, 5.02332] [0, 0.16] [138, 162] [5.45556, 6.86807] [0, 0.20] [113, 123]

yregN [3.46994, 3.75404] [0, 0.07] [167, 216] [4.25988, 4.95358] [0, 0.14] [144, 171]

yexpN [3.97544, 4.50379] [0, 0.11] [146, 180] [4.76362, 5.58763] [0, 0.14] [129, 152]

yvsN [3.46994, 3.75404] [0, 0.07] [167, 216] [4.25988, 4.95358] [0, 0.14] [144, 171]

tp1 [3.45901, 3.74] [0, 0.07] [168, 217] [4.24612, 4.93587] [0, 0.13] [145, 172]

tp2 [0.89482, 1.7252] [0, 0.48] [471, 649] [0.92517, 1.84276] [0, 0.49] [460, 665]

tp3 [1.34764, 1.57163] [0, 0.14] [431, 517] [1.74662, 2.15988] [0, 0.19] [352, 393]

n=18 ρ=0.9 ρ=0.8

MSE IN PRE MSE IN PRE

y[n]N [3.28385, 5.96403] [0, 0.44] [100, 100] [3.68678, 5.79281] [0, 0.36] [100, 100]
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yrN [1.03602,1.21419] [0, 0.14] [317, 491] [2.02872, 2.39945] [0, 0.15] [182, 241]

yregN [0.9431, 1.08339] [0, 0.12] [348, 550] [1.78499, 1.98643] [0, 0.10] [207, 292]

yexpN [1.45551, 2.11756] [0, 0.31] [226, 282] [2.1514, 2.61751] [0, 0.17] [171, 221]

yvsN [0.9431, 1.08339] [0, 0.12] [348, 550] [1.78499, 1.98643] [0, 0.10] [207, 292]

tp1 [0.94105, 1.07914] [0, 0.12] [349, 553] [1.78141, 1.98074] [0, 0.10] [207, 292]

tp2 [0.453, 0.74575] [0, 0.39] [725, 800] [0.58369, 1.12502] [0, 0.48] [515, 632]

tp3 [0.34604, 0.4] [0, 0.13] [949, 1491] [0.67659, 0.79081] [0, 0.14] [545, 733]

ρ=0.7 ρ=0.6

y[n]N [4.06532, 5.77401] [0, 0.29] [100, 100] [4.32649, 6.02582] [0, 0.28] [100, 100]

yrN [2.96637, 3.57305] [0, 0.16] [137, 162] [3.85889, 4.88325] [0, 0.20] [112, 123]

yregN [2.54775, 2.79559] [0, 0.08] [160, 207] [3.14193, 3.68093] [0, 0.14] [138, 164]

yexpN [2.81002, 3.20285] [0, 0.12] [145, 180] [3.38185, 3.97694] [0, 0.14] [128, 152]

yvsN [2.54775, 2.79559] [0, 0.08] [160, 207] [3.14193, 3.68093] [0, 0.14] [138, 164]

tp1 [2.54239, 2.78846] [0, 0.08] [160, 207] [3.13511, 3.67194] [0, 0.14] [138, 164]

tp2 [0.63681, 1.28576] [0, 0.50] [449, 638] [0.6594, 1.36624] [0, 0.51] [441, 656]

tp3 [0.98574, 1.17705] [0, 0.16] [412, 491] [1.28237 , 1.61483] [0, 0.20] [337, 373]

n=30 ρ=0.9 ρ=0.8

MSE IN PRE MSE IN PRE

y[n]N [2.02919, 3.74983] [0, 0.45] [100, 100] [2.28937, 3.65813] [0, 0.37] [100, 100]

yrN [0.64949, 0.76453] [0, 0.15] [312, 490] [1.27051, 1.51332] [0, 0.16] [180, 242]

yregN [0.6084, 0.70205] [0, 0.13] [334, 534] [1.15219, 1.29443] [0, 0.10] [199, 283]

yexpN [0.90713, 1.33037] [0, 0.31] [224, 282] [1.34678, 1.65497] [0, 0.18] [170, 221]

yvsN [0.6084, 0.70205] [0, 0.13] [334, 534] [1.15219, 1.29443] [0, 0.10] [199, 283]

tp1 [0.60762, 0.70039] [0, 0.13] [334, 535] [1.1508, 1.29218] [0, 0.10] [199, 283]

tp2 [0.28907, 0.48705] [0, 0.40] [702, 770] [0.36999, 0.72973] [0, 0.49] [501, 619]

tp3 [0.2232, 0.26151] [0, 0.14] [909, 1434] [0.43531, 0.51667] [0, 0.15] [526, 708]

ρ=0.7 ρ=0.6

MSE IN PRE MSE IN PRE

y[n]N [2.53419, 3.64756] [0, 0.30] [100, 100] [2.70872, 3.79625] [0, 0.28] [100, 100]

yrN [1.85449, 2.25458] [0, 0.17] [137, 162] [2.41511, 3.07899] [0, 0.21] [112, 123]

yregN [1.63839, 1.81847] [0, 0.09] [155, 201] [2.03392, 2.38552] [0, 0.14] [133, 159]

yexpN [1.76129, 2.02175] [0, 0.12] [144, 180] [2.12632, 2.50541] [0, 0.15] [127, 152]

yvsN [1.63839, 1.81847] [0, 0.09] [155, 201] [2.03392, 2.38552] [0, 0.14] [133, 159]

tp1 [1.63631, 1.81563] [0, 0.09] [155, 201] [2.03124, 2.38195] [0, 0.14] [133, 159]

tp2 [0.40188, 0.83762] [0, 0.52] [435, 631] [0.41655, 0.8877] [0, 0.53] [428, 650]

tp3 [0.63275, 0.76768] [0, 0.17] [401, 475] [0.82381, 1.05238] [0, 0.21] [329, 361]
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Table 4: MSEs and PREs of the recommended and existing estimator under NRSS

for Population 2

n=12 ρ=0.9 ρ=0.8

Estimators MSE IN PRE MSE IN PRE

y[n]N [29.57415, 66.14823] [0, 0.55] [100, 100] [33.01424, 64.78497] [0, 0.49] [100, 100]

yrN [9.15248, 13.43196] [0, 0.31] [323, 492] [17.79146, 26.83172] [0, 0.33] [186, 241]

yregN [8.07017, 11.47311] [0, 0.29] [366, 577] [15.07181, 21.11836] [0, 0.28] [219, 307]

yexpN [12.91778, 23.47267] [0, 0.44] [229, 282] [18.97746, 29.18226] [0, 0.34] [174, 222]

yvsN [8.07017, 11.47311] [0, 0.29] [366, 577] [15.07181, 21.11836] [0, 0.28] [219, 307]

tp1 [8.06334, 11.45174] [0, 0.29] [367, 578] [15.06036, 21.09007] [0, 0.28] [219, 307]

tp2 [3.96677, 7.94098] [0, 0.50] [746, 833] [5.0761, 12.12343] [0, 0.58] [534, 650]

tp3 [2.96821, 4.26557] [0, 0.30] [996, 1551] [5.75332, 8.46915] [0, 0.32] [574, 765]

ρ=0.7 ρ=0.6

MSE PRE MSE PRE

y[n]N [36.2907, 66.5611] [0, 0.45] [100, 100] [38.4289, 67.3345] [0, 0.42] [100, 100]

yrN [26.3081, 40.3418] [0, 0.34] [138, 165] [33.9908, 54.1438] [0, 0.37] [113, 124]

yregN [21.6871, 30.9702] [0, 0.29] [167, 215] [26.6243, 39.3420] [0, 0.32] [144, 171]

yexpN [24.8384, 37.1523] [0, 0.33] [146, 179] [29.7571, 44,3811] [0, 0.32] [129, 152]

yvsN [21.6871, 30.9702] [0, 0.29] [167, 215] [26.6243, 39.3420] [0, 0.32] [144, 171]

tp1 [21.67, 30.9336] [0, 0.29] [167, 215] [26.6026, 39.2976] [0, 0.32] [144, 171]

tp2 [5.6044, 13.5728] [0, 0.58] [490, 648] [5.7578, 14.4769] [0, 0.60] [465, 667]

tp3 [8.4746, 12.8287] [0, 0.33] [428, 519] [10.9482, 17.1972] [0, 0.36] [351, 392]

n=18 ρ=0.9 ρ=0.8

MSE PRE MSE PRE

y[n]N [20.46536, 47.09541] [0, 0.56] [100, 100] [23.0424, 46.00735] [0, 0.49] [100, 100]

yrN [6.46258, 9.56084] [0, 0.32] [317, 493] [12.65581, 19.08902] [0, 0.33] [182, 241]

yregN [5.91444, 8.54838] [0, 0.30] [346, 551] [11.15622, 15.77654] [0, 0.29] [207, 292]

yexpN [9.0553, 16.73269] [0, 0.45] [226, 281] [13.44981, 20.74272] [0, 0.35] [171, 222]

yvsN [5.91444, 8.54838] [0, 0.30] [346, 551] [11.15622, 15.77654] [0, 0.29] [207, 292]

tp1 [5.91119, 8.53782] [0, 0.30] [346, 552] [11.15058, 15.76229] [0, 0.29] [207, 292]

tp2 [2.85023, 5.91261] [0, 0.51] [718, 797] [3.63777, 9.02249] [0, 0.59] [510, 633]

tp3 [2.17347, 3.19023] [0, 0.31] [942, 1476] [4.23969, 6.33831] [0, 0.33] [543, 726]
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ρ=0.7 ρ=0.6

MSE PRE MSE PRE

y[n]N [25.40823, 47.41032] [0, 0.46] [100, 100] [27.04054, 47.85793] [0, 0.43] [100, 100]

yrN [18.53928, 28.71605] [0, 0.35] [137, 165] [24.0593, 38.54122] [0, 0.37] [112, 124]

yregN [15.92344, 23.08036] [0, 0.31] [160, 205] [19.63708, 29.23447] [0, 0.32] [138, 164]

yexpN [17.55694, 26.47846] [0, 0.33] [145, 179] [21.13014, 31.59581] [0, 0.33] [128, 151]

yvsN [15.92344, 23.08036] [0, 0.31] [160, 205] [19.63708, 29.23447] [0, 0.32] [138, 164]

tp1 [15.91501, 23.06175] [0, 0.30] [160, 206] [19.62635, 29.21191] [0, 0.32] [138, 164]

tp2 [3.98907, 10.09363] [0, 0.60] [470, 637] [4.10388, 10.73474] [0, 0.61] [446, 659]

tp3 [6.18868, 9.58314] [0, 0.35] [411, 495] [8.02644, 12.83379] [0, 0.37] [337, 373]

n=30 ρ=0.9 ρ=0.8

MSE PRE MSE PRE

y[n]N [12.6555, 29.7430] [0, 0.57] [100, 100] [14.3085, 29.0534] [0, 0.50] [100, 100]

yrN [4.0533, 6.0421] [0, 0.32] [312, 492] [7.9305, 12.0457] [0, 0.34] [180, 241]

yregN [3.8106, 5.5601] [0, 0.31] [332, 535] [7.2011, 10.2805] [0, 0.29] [199, 283]

yexpN [5.6476, 10.5702] [0, 0.46] [224, 281] [8.4200, 13.1170] [0, 0.35] [170, 221]

yvsN [3.8106, 5.5601] [0, 0.31] [332, 535] [7.2011, 10.2805] [0, 0.29] [199, 283]

tp1 [3.8093, 5.5560] [0, 0.31] [332, 535] [7.19898, 10.2749] [0, 0.29] [199, 283]

tp2 [1.8154, 3.8495] [0, 0.52] [697, 773] [2.3060, 5.8458] [0, 0.60] [497, 620]

tp3 [1.3995, 2.0815] [0, 0.32] [904,1429] [2.7238, 4.1296] [0, 0.34] [525, 704]

ρ=0.7 ρ=0.6

MSE PRE MSE PRE

y[n]N [15.83871, 29.97289] [0, 0.47] [100, 100] [16.9295, 30.15039] [0, 0.43] [100, 100]

yrN [11.59369, 18.12673] [0, 0.36] [137, 165] [15.06837, 24.32259] [0, 0.38] [112, 124]

yregN [10.23995, 14.99098 ] [0, 0.31] [155, 200] [12.712, 18.94614] [0, 0.32] [133, 159]

yexpN [11.00532, 16.73579 ] [0, 0.34] [144, 179] [13.28795, 19.90633] [0, 0.33] [127, 151]

yvsN [10.23995, 14.99098] [0, 0.31] [155, 200] [12.712, 18.94614] [0, 0.32] [133, 159]

tp1 [10.23667, 14.98357] [0, 0.31] [155, 200] [12.70778, 18.93718] [0, 0.32] [133, 159]

tp2 [2.51734, 6.55744 ] [0, 0.61] [457, 629] [2.59353, 6.98028] [0, 0.62] [432, 653]

tp3 [3.96677, 6.23344 ] [0, 0.36] [399, 481] [5.15061, 8.35123] [0, 0.38] [329, 361]

Table 5: PREs of the NRSS estimators over estimators under NSRS for Pop-

ulation 1
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n=12 ρ=0.9 ρ=0.8 ρ=0.7 ρ=0.6

Estimators PRE PRE PRE PRE

y[n]N [120, 183] [120, 165] [120, 149] [120, 142]

yrN [119, 122] [119, 125] [120, 126] [119, 131]

yrgN [120, 121] [120, 121] [119, 121] [120, 121]

yexpN [119, 148] [119, 131] [119, 121] [119, 121]

yvsN [120, 121] [120, 121] [119, 121] [120, 121]

tp1 [120, 121] [120, 121] [119, 121] [120, 121]

tp2 [121, 170] [122, 193] [123, 205] [122, 210]

tp3 [121, 121] [121, 125] [122, 128] [121, 131]

n=18 ρ=0.9 ρ=0.8 ρ=0.7 ρ=0.6

PRE PRE PRE PRE

y[n]N [112, 174] [112, 156] [112, 142] [112, 133]

yrN [112, 115] [112, 118] [113, 120] [112, 124]

yregN [112, 113] [112, 113] [113, 113] [112, 113]

yexpN [112, 139] [112, 122] [112, 115] [112, 113]

yvsN [112, 113] [112, 113] [113, 113] [112, 113]

tp1 [112, 113] [112, 113] [112, 113] [112, 113]

tp2 [113, 165] [112, 188] [114, 197] [113, 204]

tp3 [113, 114] [113, 118] [113, 121] [113, 124]

n=30 ρ=0.9 ρ=0.8 ρ=0.7 ρ=0.6

PRE PRE PRE PRE

y[n]N [107, 169] [107, 150] [107, 136] [107, 127]

yrN [106, 110] [106, 112] [107, 115] [106, 118]

yregN [107, 107] [106, 107] [107, 107] [107, 107]

yexpN [107, 133] [107, 116] [107, 110] [107, 107]

yvsN [107, 107] [106, 107] [107, 107] [107, 107]

tp1 [107, 107] [106, 107] [107, 107] [107, 107]

tp2 [107, 159] [107, 183] [108, 192] [107, 199]

tp3 [107, 109] [107, 112] [107, 116] [107, 119]

Table 6: PREs of the NRSS estimators over estimators under NSRS for Pop-

ulation 2
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n=12 ρ=0.9 ρ=0.8 ρ=0.7 ρ=0.6

Estimators PRE PRE PRE PRE

y[n]N [121, 183] [120, 165] [121, 149] [120, 142]

yrN [120, 121] [119, 125] [120, 126] [119, 131]

yregN [120, 122] [120, 121] [119, 123] [120, 121]

yexpN [120, 147] [119, 131] [121, 121] [119, 121]

yvsN [120, 122] [120, 121] [119, 123] [120, 121]

tp1 [119, 122] [120, 121] [119, 122] [120, 121]

tp2 [120, 167] [121, 194] [123, 205] [123, 210]

tp3 [120, 120] [120, 125] [122, 127] [121, 131]

n=18 ρ=0.9 ρ=0.8 ρ=0.7 ρ=0.6

PRE PRE PRE PRE

y[n]N [112, 176] [112, 156] [113, 142] [112, 133]

yrN [113, 115] [112, 118] [113, 120] [112, 124]

yregN [113, 113] [112, 113] [113, 114] [112, 113]

yexpN [141, 112] [122, 113] [115, 113] [113, 112]

yvsN [113, 113] [112, 113] [112, 113] [112, 113]

tp1 [113, 113] [112, 113] [112, 113] [112, 113]

tp2 [113, 161] [112, 189] [114, 197] [144, 205]

tp3 [113, 115] [112, 118] [113, 121] [113, 124]

n=30 ρ=0.9 ρ=0.8 ρ=0.7 ρ=0.6

PRE PRE PRE PRE

y[n]N [107, 170] [107, 150] [107, 136] [107, 127]

yrN [107, 109] [106, 112] [107, 115] [107, 118]

yregN [107, 107] [106, 107] [107, 107] [107, 107]

yexpN [107, 135] [107, 116] [107, 110] [107, 107]

yvsN [107, 107] [106, 107] [107, 107] [107, 107]

tp1 [107, 107] [106, 107] [107, 107] [106, 107]

tp2 [107, 156] [106, 183] [108, 192] [108, 199]

tp3 [107, 109] [106, 113] [107, 116] [107, 119]

Table 7: PREs of the estimators (neutrosophic vs classical) for Population 1
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n=12 PRE PRE PRE PRE

ρ=0.9 ρ=0.8 ρ=0.7 ρ=0.6

Estimators neutrosophic classical neutrosophic classical neutrosophic classical neutrosophic classical

y[n]N [100, 100] 100 [100, 100] 100 [100, 100] 100 [100, 100] 100

yrN [326, 492] 291 [185, 242] 167 [138, 162] 125 [113, 123] 103

yregN [372, 577] 364 [219, 307] 215 [167, 216] 166 [144, 171] 142

yexpN [229, 282] 246 [174, 221] 179 [146, 180] 148 [129, 152] 129

yvsN [372, 577] 364 [219, 307] 215 [167, 216] 166 [144, 171] 142

tp1 [373, 580] 366 [220, 308] 215 [168, 217] 166 [145, 172] 143

tp2 [759, 845] 559 [541, 649] 497 [471, 649] 506 [460, 665] 530

tp3 [1015,1581] 923 [577, 775] 523 [431, 517] 390 [352, 393] 320

n=18 PRE PRE PRE PRE

ρ=0.9 ρ=0.8 ρ=0.7 ρ=0.6

neutrosophic classical neutrosophic classical neutrosophic classical neutrosophic classical

y[n]N [100, 100] 100 [100, 100] 100 [100, 100] 100 [100, 100] 100

yrN [317, 491] 285 [182, 241] 165 [137, 162] 124 [112, 123] 103

yregN [348, 550] 342 [207, 292] 203 [160, 207] 158 [138, 164] 136

yexpN [226, 282] 243 [171, 221] 177 [145, 180] 146 [128, 152] 128

yvsN [348, 550] 342 [207, 292] 203 [160, 207] 158 [138, 164] 136

tp1 [349, 553] 343 [207, 292] 204 [160, 207] 158 [138, 164] 136

tp2 [725, 800] 534 [515, 632] 482 [449, 638] 496 [441, 656] 522

tp3 [949, 1491] 862 [545, 733] 493 [412, 491] 371 [337, 373] 307

n=30 PRE PRE PRE PRE

ρ=0.9 ρ=0.8 ρ=0.7 ρ=0.6

neutrosophic classical neutrosophic classical neutrosophic classical neutrosophic classical

y[n]N [100, 100] 100 [100, 100] 100 [100, 100] 100 [100, 100] 100

yrN [312, 490] 280 [180, 242] 163 [137, 162] 123 [112, 123] 102

yregN [334, 534] 326 [199, 283] 195 [155, 201] 152 [133, 159] 131

yexpN [224, 282] 240 [170, 221] 175 [144, 180] 145 [127, 152] 127

yvsN [334, 534] 326 [199, 283] 195 [155, 201] 152 [133, 159] 131

tp1 [334, 535] 327 [199, 283] 195 [155, 201] 152 [133, 159] 132

tp2 [702, 770] 521 [501, 619] 476 [435, 631] 491 [428, 650] 519

tp3 [909,1434] 821 [526, 708] 474 [401, 475] 357 [329, 361] 296
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Table 8: PREs of the estimators (neutrosophic vs classical) for Population 2

n=12 PRE PRE PRE PRE

ρ=0.9 ρ=0.8 ρ=0.7 ρ=0.6

Estimators neutrosophic classical neutrosophic classical neutrosophic classical neutrosophic classical

y[n]N [100, 100] 100 [100, 100] 100 [100, 100] 100 [100, 100] 100

yrN [323, 492] 322 [186, 241] 183 [138, 165] 136 [113, 124] 112

yregN [366, 577] 369 [219, 307] 217 [167, 215] 168 [144, 171] 144

yexpN [229, 282] 227 [174, 222] 173 [146, 179] 146 [129, 152] 129

yvsN [366, 577] 369 [219, 307] 217 [167, 215] 168 [144, 171] 144

tp1 [367, 578] 369 [219, 307] 217 [167, 215] 168 [144, 171] 144

tp2 [746, 833] 757 [534, 650] 641 [490, 648] 635 [465, 667] 654

tp3 [996,1551] 1013 [574, 765] 574 [428, 519] 429 [351, 392] 352

n=18 PRE PRE PRE PRE

ρ=0.9 ρ=0.8 ρ=0.7 ρ=0.6

neutrosophic classical neutrosophic classical neutrosophic classical neutrosophic classical

y[n]N [100, 100] 100 [100, 100] 100 [100, 100] 100 [100, 100] 100

yrN [317, 493] 314 [182, 241] 180 [137, 165] 135 [112, 124] 112

yregN [346, 551] 344 [207, 292] 205 [160, 205] 160 [138, 164] 137

yexpN [226, 281] 223 [171, 222] 171 [145, 179] 144 [128, 151] 128

yvsN [346, 551] 344 [207, 292] 205 [160, 205] 160 [138, 164] 137

tp1 [346, 552] 345 [207, 292] 205 [160, 206] 160 [138, 164] 137

tp2 [718, 797] 725 [510, 633] 623 [470, 637] 622 [446, 659] 642

tp3 [942,1476] 945 [543, 726] 543 [411, 495] 408 [337, 373] 337

n=30 PRE PRE PRE PRE

ρ=0.9 ρ=0.8 ρ=0.7 ρ=0.6

neutrosophic classical neutrosophic classical neutrosophic classical neutrosophic classical

y[n]N [100, 100] 100 [100, 100] 100 [100, 100] 100 [100, 100] 100

yrN [312, 492] 308 [180, 241] 178 [137, 165] 134 [112, 124] 111

yregN [332, 535] 329 [199, 283] 197 [155, 200] 154 [133, 159] 133

yexpN [224, 281] 221 [170, 221] 169 [144, 179] 143 [127, 151] 127

yvsN [332, 535] 329 [199, 283] 197 [155, 200] 154 [133, 159] 133

tp1 [332, 535] 329 [199, 283] 197 [155, 200] 154 [133, 159] 133

tp2 [697, 773] 703 [497, 620] 611 [457, 629] 611 [432, 653] 634

tp3 [904,1429] 900 [525, 704] 520 [399, 481] 392 [329, 361] 325
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8. Discussion

The study established mathematical expressions for novel NRSS estimators, approximating

up to the first order. Subsequently to examine the properties of the proposed NRSS estimators,

numerical illustrations and simulation studies were conducted. The former used real-world

natural growth rate data, while the latter involved two artificial neutrosophic datasets with

varying correlation coefficients and sample sizes. The results were encapsulated in Tables 2,

3, and 4, showcasing MSEs and PREs for both existing and proposed neutrosophic ranked set

estimators. We have computed the PREs of the NRSS estimators over estimators under NSRS

and these results are displayed in Tables 5 and 6.

In Table 2, the MSEs of the existing and proposed estimators are given along with PRE. The

superiority of the suggested NRSS estimators over the existing NRSS estimators is displayed

in Table 2 in the bolded text. We also see the MSE and PRE of the recommended estimator

are lesser and higher than other existing estimators. It is evident from the table that recom-

mended estimators outperformed existing ones, offering lower MSEs and higher PREs, and it

has been established that tp3 is the best estimator available.

Similarly, in Table 3 and Table 4, the MSEs of the recommended and existing estimators are

given along with PRE through a simulation study based on artificial neutrosophic data for

different values of the correlation coefficient and different sample sizes. Like Table 2, also in

Tables 3 and 4, the superiority of the suggested NRSS estimators over the existing NRSS esti-

mators is displayed by the bolded text. We also see the MSEs and PREs of the recommended

estimators are lesser and higher, respectively than those of other existing estimators. Hence,

Tables 3 and 4 mirrored these findings, with the proposed estimators continuing to outshine

existing ones, demonstrating lower MSEs and higher PREs in the simulation study too.

From Tables 3 and 4, we see with the increase in values of sample sizes, and correlation coef-

ficients, the MSE and PRE of the recommended estimator decrease and increase. Therefore,

under NRSS, the suggested estimators exhibit sensitivity similar to that of classical ranked set

sampling.

Tables 5 and 6 featured PRE values of the proposed NRSS estimators over NSRS counterparts.

We see from Tables 5 and 6, that all PRE values exceeded 100 that is all the NRSS estimators

are superior to corresponding estimators under NSRS as RSS is the best replacement for SRS.

The comparison between classical RSS and NRSS using PREs is provided in Tables 7 and

8. Tables 7 and 8 demonstrate that the PREs of the suggested estimators obtained through

classical RSS are lower than those obtained using NRSS, indicating that the latter method is

more effective than the former.

The study highlighted that classical ranked set sampling was ill-suited for dealing with vague

or indeterminate data. NRSS proved superior for estimating uncertain or interval data. The
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tables presented dependable results for neutrosophic data compared to classical results.

9. Conclusion

In this research paper, we’ve put forth some enhanced neutrosophic ranked set estimators

designed for estimating population means while making use of auxiliary information. To assess

their accuracy, we calculated both bias and MSE for these proposed estimators, focusing on

first-order approximations. We compared our recommended estimators against existing ones,

by using a natural population’s data on natural growth rates and two simulated populations.

Through a combination of numerical illustrations and simulated studies, we’ve found com-

pelling evidence that our proposed estimators outperform existing ones within the framework

of neutrosophic ranked set sampling. Among these estimators, tp3 emerged as the top per-

former. It’s important to note that the sensitivity analysis of our recommended estimators

under NRSS mirrors that of classical RSS.

Moreover, a comparison between the recommended estimators under NRSS and the estimators

under NSRS revealed that NRSS is a more effective alternative to NSRS, much like classical

RSS to classical SRS. Our study underscores the efficiency and reliability of NRSS for handling

neutrosophic data, with our proposed NRSS delivering superior mean estimations compared

to existing methods.

The current investigation is subject to certain constraints, notably concerning the applicabil-

ity of neutrosophic ranked set sampling. This method proves to be proficient in estimating

population parameters under conditions of equal allocation, perfect ranking, and adherence to

a symmetric distribution. However, when these conditions are not met, the efficiency of the

estimation diminishes, leading to suboptimal results.

Based on the numerical illustrations and simulation studies we’ve conducted, it’s reasonable

to recommend the use of our proposed estimators over the alternatives presented in this paper

in various real-world scenarios, spanning fields like agriculture, mathematics, biology, poultry

farming, economics, commerce, and the social sciences.

Furthermore, given the limited availability of neutrosophic RSS estimators, there’s ample room

for further exploration. Building upon this study, we can consider defining variations of neutro-

sophic ranked set sampling, such as unbalanced NRSS, median NRSS, extreme NRSS, double

NRSS, and percentile neutrosophic ranked set sampling, akin to what exists in classical ranked

set sampling. Additionally, we can explore the replacement of our proposed estimators with

alternative methods or estimators.

Expanding beyond sampling theory, further research avenues in statistics, encompassing fields
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like control charts, inference, reliability analysis, non-parametric estimation, hypothesis test-

ing, and some other fields of science, present promising opportunities for exploration.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: The ongoing research employs both the neutrosophic set and the Decision Making and 

Evaluation Method (DEMATEL) to analyze and determine the factors influencing supplier selection 

within the realm of Supply Chain Management (SCM). Recognized as a proactive strategy for 

enhancing performance and securing competitive advantages, DEMATEL guides this investigation. 

The study utilizes neutrosophic set Theory to refine overall assessments, introducing a novel scale to 

distinctly represent each value. Through a practical case study focusing on selecting the optimal 

supplier for a distribution company, the proposed methodology's application is illustrated. The 

research framework integrates a neutrosophic DEMATEL approach for data collection, incorporating 

surveys among experts and interviews with professionals in management, procurement, and 

production. In addressing application-oriented challenges characterized by multiple criteria marked by 

ambiguity and varying degrees of accuracy, Smarandache introduced Treesoft sets an extension of 

hypersoft sets to effectively navigate through ambiguous and imprecise options. 
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___________________________________________________________________________ 

 

1. Literature Review 

Air pollution [1] stands as one of the most significant environmental hazards to human health. By 

mitigating air pollution, nations can alleviate the burden of diseases such as stroke, heart disease, lung 

cancer, chronic respiratory diseases, and asthma, both chronic and acute. Shockingly, in 2019, 99% of 

the global population inhabited areas failing to meet the air quality standards set by the World Health 

Organization (WHO). The combined impact of ambient air pollution and household air pollution 
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contributes to approximately 6.7 million premature deaths annually. Specifically, outdoor air pollution 

was responsible for an estimated 4.2 million premature deaths worldwide in 2019, with 89% occurring 

in low- and middle-income countries, notably concentrated in the WHO Southeast Asia and Western 

Pacific Regions. Implementing policies and investments that promote cleaner transportation, energy-

efficient housing, sustainable power generation, industrial practices, and enhanced municipal waste 

management would effectively curb major sources of outdoor air pollution. Additionally, ensuring 

access to clean household energy sources would significantly diminish ambient air pollution in various 

regions. 

Decision-making encompasses a nuanced cognitive process aimed at problem-solving while 

considering multiple factors to achieve desired outcomes. This process may unfold rationally or 

irrationally, driven by implicit and explicit assumptions influenced by biological, cultural, 

physiological, and social dynamics. Decision-making complexity is further shaped by the level of risk 

and authority involved. In contemporary times, computer technologies facilitate automated 

calculations and estimations for decision-making conundrums, leveraging mathematical equations, 

diverse statistical approaches, and economic theories. 

Multicriteria decision-making [6] (MCDM) endeavors to identify optimal choices by weighing several 

criteria throughout the selection process. These methods find application across diverse sectors like 

finance, engineering, and robotics[2]–[5]. 

In this realm, the Decision-Making Trial and Evaluation Laboratory [6] (DEMATEL) method emerges 

as a systematic approach for exploring cause-and-effect relationships among factors within complex 

systems, finding extensive utility across various domains. However, the DEMATEL method heavily 

relies on expert judgment, introducing a subjective element into the analysis[7], [8]. Overall, the 

DEMATEL method serves as a potent tool for dissecting intricate relationships and dependencies 

among factors within specific contexts, offering valuable insights for decision-makers[9], [10]. 
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It's crucial to mitigate the subjectivity inherent in expert judgment, particularly in fields like aerospace 

where objective data are often scarce. Recent efforts have integrated methods such as Criteria 

Importance Through Intercriteria Correlation (CRITIC), artificial neural networks, analytic hierarchy 

process, and analytic network process into DEMATEL to lessen subjectivity by refining data processing 

techniques. However, these endeavors have not fully tackled subjectivity during the data acquisition 

phase. 

To address this gap, fuzzy triangular numbers and the multi-criteria group-based decision-making 

(MCGDM) method have been extensively utilized to quantify the uncertainty surrounding expert 

opinions. While prior studies focused primarily on reducing subjectivity through either data processing 

or data collection alone, there's a notable absence of comprehensive research addressing subjectivity 

from both perspectives. 

Thus, this study aims to establish a systematic framework for selecting influential factors and 

mitigating subjectivity in both the data collection and analysis processes, thereby offering a more 

holistic approach to addressing this issue. 

The hypersoft sets, an extension of soft sets, utilize a multi-argument approximation function to address 

limitations in current structures for attribute-valued disjoint sets. Subsequently, Multi Soft sets were 

introduced to handle ambiguity in real-world scenarios, further evolving to include tree soft sets, which 

closely resemble hypersoft sets [11]. Treesoft sets focus on parameters, sub-parameters, and subsequent 

levels of granularity, whereas hypersoft sets deal with parameters and their sub-levels[12]. 

The TrSS model [13] is proposed to model specific criteria and elucidate their relationships, aiding in 

problem-solving. Treesoft sets aid in categorizing problems into functional and non-functional 

attributes, enhancing the clarity of the DEMATEL method. The DEMATEL method encompasses three 

main components: diverse criteria, a range of alternatives, and a comparison process among them.  
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2. Approach 
 

This section is to propose the Neutrosophic DEMATEL method under the Tree-soft set. 

 

2.1 Tree Soft Set 

 

Smarandache proposes the definition of TreeSoft Set as: 

Let U be the universe of discourse, and H be a non-empty subset of U, with P(H) being a power set of 

H. 

Let A be a set of attributes (parameters, factors, etc.,), 𝐴 = {𝐴1, 𝐴2 … … . 𝐴𝑛}, 𝑛 ≥ 1, where 𝐴1, 𝐴2 … … . 𝐴𝑛 

are considered attributes of the first level. Each attribute 𝐴𝑖 , 1 ≤ 𝑖 ≤ 𝑛, is formed  

by sub-attributes: 𝐴1 =  {𝐴1,1, 𝐴1,2, … } 𝐴2 =  {𝐴2,1 , 𝐴2,2 , … } 𝐴𝑛 =  {𝐴𝑛, 1 , 𝐴𝑛, 2 , … } where the 

above 𝐴𝑖,𝑗 are sub-attributes (or attributes of the second level) (since they have two-digit indexes). 

Again, each sub-attribute 𝐴𝑖,𝑗 is formed by sub-sub-attributes (attributes of the third level): 𝐴𝑖,𝑗,𝑘 and so 

on, as much refinement as needed into each application, up to sub-sub-…-sub-attributes (or attributes 

of m-level (or having m digits into the indexes). 

Therefore, a graph tree is formed, which we denote as Tree(A), whose root is A (considered of level 

zero), then nodes of level 1, level 2, up to level m. We call the leaves of the graph-tree, all terminal nodes 

(nodes that have no descendants). Then the TreeSoft Set is: 

 

F: P(Tree(A)) → P(H) 

 

Tree(A) is the set of all nodes and leaves (from level 1 to level m) of the graph tree, and P(Tree(A)) is 

the powerset of the Tree(A). All node sets of the TreeSoft Set of level m are: 

 

Tree(A) = {Ai1| i1= 1, 2, ...} 

 

So, the Problem must be defined as the tree structure. 

 

Example: Consider the set A={A1, A2, A3, A4, A5, A6} be the Air pollution symptoms and P(A) is the 

powerset of A with the corresponding attributes T={T1, T2, T3, T4, T5}. 
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Now let us assume that the classification of Air pollution and its effects are given by the following 

terms: 

2.2 Air Pollutions 
 

PM 

 

T11 Heart Disease       

 T111 Angina 

 T112 Heart attacks 

 T113  Heart Failure 

  

T12 Asthma 

 T121 Trigger Coughing 

 T122 Wheezing 

 

T13 Low birth weight 

 T131 Improper Immune System 

 

CO2     

 

T21 Headache     

 T211 Relative Humidity 

 T212 High Risk of Migraine 

 

T22 Sleepiness 

 T221 Headaches 

 T222 Fatigue 

 

T23 Stagnant       

 T231 Difficult to breath 

 T232 Cough 

 T233 Headache 
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O3 

 

T31 Chest Pain 

 T311 Shortness of breath 

 T312 Cough 

 T313 Wheezing 

 

T32 Coughing 

 T321 Headaches 

 T322 Vomiting 

 T323 Dizziness 

 

T33 Throat irritation    

 T331 Cough 

 T332 Tightness of the chest 

 

NO2   

 

T41 Damage to the human respiratory tract 

 T411 Asthma 

 T412 Lung Cancer 

 

T42 Asthma 

 T421 Trigger Coughing 

 T422 Wheezing 

 

SO2 

T51 Damage trees and plants 

 T511 Increasing temperature 

 T512 Injury to foliage of leaf 

              T52 Inhibit plant growth 

 T521 Leaf cuticles 

 T522 Stomatal Conductance 
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3. Tree soft set Neutrosophic DEMATEL Approach 

Step 1: Build a tree and define the nodes. 

The tree has more than one level, in the first level, the main criteria and introduced as TrS1, TrS2…….. 

TrSn. In the second level, the sub-criteria are introduced as TrS11, TrS12…….. TrS1n and TrS21, TrS22…… 

Step 2: Define a problem with a set of criteria 

The main and sub-criteria are defined in this step by problem definition. 

Step 3: Identifying decision goals: collecting relevant information presenting the problem.  

i.  Selection of experts and decision-makers that have experience in the field.  

ii.  Identifying the relevant criteria to the problem. 

Step 4: Pairwise comparison matrices between relevant criteria. 

i. Identify the criteria. 

ii. Experts make pairwise comparison matrices between criteria.  

iii. Experts should determine the maximum truth-membership degree (α), the minimum 

indeterminacy-membership degree (β), and the minimum falsity membership degree (θ) 

of single-valued neutrosophic numbers. 

iv. Determine the crisp value of each opinion, using the following equation: 

 
Table 1: The pairwise comparison matrix between criteria 

Criteria 𝐴1 𝐴2 …. 𝐴𝑛 

𝐴1 (𝑝11, 𝑞11, 𝑟11) (𝑝12, 𝑞12, 𝑟12) …. (𝑝1𝑛, 𝑞1𝑛, 𝑟1𝑛) 

𝐴2 (𝑝21, 𝑞21, 𝑟21) (𝑝22, 𝑞22, 𝑟22) …. (𝑝2𝑛, 𝑞2𝑛, 𝑟2𝑛) 

…. …. …. …. …. 

𝐴𝑛 (𝑝𝑛1, 𝑞𝑛1, 𝑟𝑛1) (𝑝𝑛2, 𝑞𝑛2, 𝑟𝑛2) …. (𝑝𝑛𝑛, 𝑞𝑛𝑛, 𝑟𝑛𝑛) 

 
 

Table 2: The pairwise comparison matrix between criteria with the T, F, and I values 

Criteria 𝐴1 𝐴2 …. 𝐴𝑛 

𝐴1 (𝑝11, 𝑞11, 𝑟11; 𝑇, 𝐹, 𝐼) (𝑝12, 𝑞12, 𝑟12 ; 𝑇, 𝐹, 𝐼) …. (𝑝1𝑛, 𝑞1𝑛, 𝑟1𝑛 ; 𝑇, 𝐹, 𝐼) 

𝐴2 (𝑝21, 𝑞21, 𝑟21 ; 𝑇, 𝐹, 𝐼) (𝑝22, 𝑞22, 𝑟22  ; 𝑇, 𝐹, 𝐼) …. (𝑝2𝑛, 𝑞2𝑛, 𝑟2𝑛 ; 𝑇, 𝐹, 𝐼) 

…. …. …. …. …. 

𝐴𝑛 (𝑝𝑛1, 𝑞𝑛1, 𝑟𝑛1 ; 𝑇, 𝐹, 𝐼) (𝑝𝑛2, 𝑞𝑛2, 𝑟𝑛2 ; 𝑇, 𝐹, 𝐼) …. (𝑝𝑛𝑛, 𝑞𝑛𝑛, 𝑟𝑛𝑛 ; 𝑇, 𝐹, 𝐼) 
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Table 3: The crisp values of the comparison matrix 

Criteria 𝐴1 𝐴2 …. 𝐴𝑛 

𝐴1 𝐶𝑟𝑉11 𝐶𝑟𝑉21 …. 𝐶𝑟𝑉𝑚1 

𝐴2 𝐶𝑟𝑉12 𝐶𝑟𝑉22 …. 𝐶𝑟𝑉𝑚2 

…. …. …. …. …. 

𝐴𝑛 𝐶𝑟𝑉1𝑛 𝐶𝑟𝑉2𝑛 …. 𝐶𝑟𝑉𝑚𝑛 

 
Step 5: Integration of matrices 

 

All opinions of experts need to be integrated into one matrix presenting the average opinions of all 

experts about each criterion. 

 
Table 4: Integration of the average opinions of all experts 

Criteria 𝐴1 𝐴2 …. 𝐴𝑛 

𝐴1 𝐶𝑟𝑉11 𝐶𝑟𝑉21 …. 𝐶𝑟𝑉𝑚1 

𝐴2 𝐶𝑟𝑉12 𝐶𝑟𝑉22 …. 𝐶𝑟𝑉𝑚2 

…. …. …. …. …. 

𝐴𝑛 𝐶𝑟𝑉1𝑛 𝐶𝑟𝑉2𝑛 …. 𝐶𝑟𝑉𝑚𝑛 

 

Score function 𝑆𝑓 =
1

9
(𝑎 + 𝑏 + 𝑐) × (2 + 𝑇 − 𝐹 − 𝐼)  

Accuracy function 𝐴𝑓 =
1

9
(𝑎 + 𝑏 + 𝑐) × (2 + 𝑇 − 𝐹 − 𝐼)  

 

Step 6; Generating a direct relation matrix 

 

An initial direct relation matrix 𝐴 is a 𝑛 × 𝑛 matrix obtained by pairwise comparisons, 𝐴 = [𝐴𝑖𝑗]
𝑛×𝑛 

. 

𝐴𝑖𝑗  denotes the degree to which criterion i affects criterion j. 

 

Step 7: Normalizing the direct relation matrix 

 

The normalized direct relation matrix can be obtained using the equation: 

𝐾 =
1

𝑀𝑎𝑥 ∑ 𝑎𝑖𝑗
𝑛
𝑗=1

 

 
     𝑁 = 𝐾 × 𝐴 

Step 8: Total relation matrix 

 

A total relation matrix (T), in which (I) denotes the identity matrix, is shown as follows: 

 
𝑇 = 𝑁 × (𝐼 − 𝑁)−1 

Step 9: Obtaining the sum of rows and columns 

 

The sum of rows is denoted by (𝑅), and the sum of columns is denoted by(𝐶). Calculate 𝑅 + 𝐶 and 
𝑅 − 𝐶. 
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𝐶 = [∑ 𝑎𝑖𝑗

𝑛

𝑖=1
]

1×𝑛

= [𝑎𝑗]
𝑛×1

 

 

𝑅 = [∑ 𝑎𝑖𝑗

𝑛

𝑗=1
]

1×𝑛

= [𝑎𝑗]
𝑛×1

 

 

Step 10: Draw the cause-and-effect diagram 

 

The cause and effect diagram is in blue shade presented by 𝑅 +  𝐶 and in orange shade presented by 

𝑅 − 𝐶 which is a degree of relation and it depicts the steps of the proposed model. 

 

4. The proposed methodology in a case study  

 
In this section, we describe the details of the proposed methodology of a Tree soft set approach of 

neutrosophic sets and the DEMATEL method of cause and effect for the air pollution criteria. 

  

4.1. The calculation process of the Treesoft set-neutrosophic DEMATEL Approach 

For collecting data, we are going to analyze the criteria of air pollution of cause and effect. The three 

experts determined the most important evaluation criterion to be used. The criteria symbols in this 

research are as follows: PM (T1), 𝐶𝑂2 (T2), 𝑂3 (T3), 𝑁𝑂2 (T4), 𝑆𝑂2 (T5). The data collected from the 

three experts were analyzed by the Tree soft set of the Neutrosophic DEMATEL method. The steps 

that were conducted are the following. 

Step 1: Build a tree and define the nodes. 

The tree has more than one level, in the first level, the main criteria and introduced as TrS1, TrS2…….. 

TrSn. In the second level, the sub-criteria are introduced as TrS11, TrS12…….. TrS1n and TrS21, TrS22…… 

Step 2: Define a problem with a set of criteria 

The main and sub-criteria are defined in this step by problem definition. 

Step 3: Identifying decision goals: collecting relevant information presenting the problem.  

The first step of the Tree soft set Neutrosophic DEMATEL method is the selection of the best experts in 

the field of management purchasing and setup contracts. We selected three experts, to which we further 

refer as the first expert, the second expert, and the third expert. We sorted five evaluation criteria as 

selected by the team of experts, namely: PM (T1), 𝐶𝑂2 (T2), 𝑂3 (T3), 𝑁𝑂2 (T4), 𝑆𝑂2 (T5) 
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Step 4: Pairwise comparison matrices between relevant criteria. 

i. Identify the criteria. 

ii. Experts make pairwise comparison matrices between criteria.  

iii. Experts should determine the maximum truth-membership degree (𝑇), the minimum 

indeterminacy-membership degree (𝐼), and the minimum falsity membership degree (𝐹) 

of single-valued neutrosophic numbers. 

iv. Determine the crisp value of each opinion, using the following equation: 

 

𝐶𝑟𝑉 =
𝐶𝑟𝑉1 + 𝐶𝑟𝑉2 + 𝐶𝑟𝑉3

3
 

 

Table 5: The pairwise comparison matrix of criteria 

Criteria 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 
𝐴1 (0.3,0.6,0.4) (0.3,0.4,0.2) (0.3, 0.7, 0.8) (0.8,0.3,0.5) (0.5, 0.4, 0.8) 
𝐴2 (0.5, 0.6, 0.2) (0.4, 0.4 ,0.5) (0.8, 0.2 ,0.4) (0.4, 0.6, 0.4) (0.9, 0.7 ,0.1) 

𝐴3 (0.9, 0.7, 0.6) (0.5, 0.9, 0.4) (0.3, 0.7, 0.5) (0.8, 0.3, 0.5) (0.7, 0.5, 0.6) 

𝐴4 (1.0, 0.4, 0.5) (0.5, 0.5, 0.5) (0.4, 0.6, 0.4) (0.4, 0.5, 0.2) (0.1, 0.6, 0.3) 

𝐴5 (0.5, 0.5, 0.5) (0.2, 0.4, 0.6) (0.3, 0.7, 0.8) (0.7, 0.5, 0.3) (0.4, 0.6, 0.5) 
 

 

Table 6: The pairwise comparison matrix of criteria 

Criteria 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 
𝐴1 (0.1, 0.5, 0.4) (0.4, 0.5, 0.6) (0.5, 0.7, 0.8) (0.3, 0.2, 0.6) (0.2, 0.4, 0.3) 

𝐴2 (0.9, 0.6, 0.3) (0.3, 0.6, 0.8) (0.2, 0.7, 0.3) (0.3, 0.4, 0.7) (0.5, 0.3, 0.5) 
𝐴3 (0.7, 0.5, 0.3) (0.4, 0.2, 0.5) (0.3, 0.4, 0.6) (0.4, 0.2, 0.5) (0.8, 0.6, 0.4) 

𝐴4 (0.1, 0.5, 0.4) (0.3, 0.5, 0.4) (0.2, 0.3, 0.4) (0.7, 0.5, 0.4) (0.5, 0.7, 0.8) 

𝐴5 (0.5, 0.5, 0.5) (0.8, 0.5, 0.4) (0.5, 0.5, 0.1) (0.1, 0.5, 0.0) (0.6, 0.4, 0.3) 
 

 

Table 7: The pairwise comparison matrix of criteria 

Criteria 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 
𝐴1 (0.3, 0.6, 0.5) (0.3, 0.4, 0.2) (0.3, 0.7, 0.1) (0.1, 0.5, 0.6) (0.8, 0.4, 0.5) 

𝐴2 (1.0, 0.4, 0.5) (0.5, 0.9, 0.4) (0.5, 0.4, 0.5) (0.4, 0.1, 0.6) (0.1, 0.6, 0.3) 
𝐴3 (0.7, 0.7, 0.6) (0.2, 0.4, 0.6) (0.3, 0.7, 0.5) (0.4, 0.7, 0.3) (0.5, 0.4, 0.8) 

𝐴4 (0.9, 0.7, 0.6) (0.5, 0.5, 0.5) (0.2, 0.8, 0.3) (0.7, 0.2, 0.6) (0.1, 0.6, 0.3) 

𝐴5 (0.3, 0.6, 0.4) (0.5, 0.9, 0.0) (0.4, 0.5, 0.7) 0.4, 0.5, 0.2 (0.9, 0.4, 0.3) 
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Table 8: The pairwise comparison matrix of criteria with 𝑇, 𝐹, 𝐼 values 

Criteria 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 
𝐴1 (0.3, 0.6, 0.4; 

0.5, 0.3, 0.4) 

(0.3, 0.4, 0.2; 
0.7, 0.2, 0.5) 

(0.3, 0.7, 0.8;  
0.9, 0.4, 0.6) 

(0.8, 0.3, 0.5; 
0.4, 0.3, 0.5) 

(0.5, 0.4, 0.8; 
0.8, 0.2, 0.4) 

𝐴2 (0.5, 0.6, 0.2; 
0.5, 0.2, 0.1) 

(0.4, 0.4, 0.5; 
0.8, 0.5, 0.3) 

(0.8, 0.2, 0.4; 
0.4, 0.5, 0.6) 

(0.4, 0.6, 0.4; 
0.5, 0.2, 0.1) 

(0.9, 0.7, 0.1; 
0.7, 0.4, 0.6) 

𝐴3 (0.9, 0.7, 0.6; 
0.2, 0.4, 0.3) 

(0.5, 0.9, 0.4; 
0.9, 0.5, 0.4) 

(0.3, 0.7, 0.5; 
0.5, 0.7, 0.2) 

(0.8, 0.3, 0.5; 
0.7, 0.3, 0.4) 

( 0.7, 0.5, 0.6; 
0.3, 0.4, 0.1) 

𝐴4 (1.0, 0.4, 0.5; 
0.7, 0.2, 0.4) 

(0.5, 0.5, 0.5; 
0.3, 0.1, 0.5) 

(0.4, 0.6, 0.4; 
0.9, 0.4, 0.6) 

(0.4, 0.5, 0.2; 
0.9, 0.1, 0.6) 

(0.1, 0.6, 0.3; 
0.7, 0.6, 0.5) 

𝐴5 (0.5, 0.5, 0.5; 
0.8, 0.4, 0.5) 

(0.2, 0.4, 0.6; 
0.4, 0.3, 0.6) 

(0.3, 0.7, 0.8; 
0.4, 0.2, 0.3) 

(0.7, 0.5, 0.3; 
0.5, 0.2, 0.9) 

(0.4, 0.6, 0.5; 
0.8, 0.3, 0.5) 

 

 
Table 9: The pairwise comparison matrix of criteria with 𝑇, 𝐹, 𝐼 values 

Criteria 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 

𝐴1 (0.1, 0.5, 0.4; 
0.5, 0.6, 0.2) 

(0.4, 0.5, 0.6; 
0.2, 0.1, 0.7) 

(0.5, 0.7, 0.8; 
0.5, 0.4, 0.4) 

(0.3, 0.2, 0.6; 
0.2, 0.5, 0.7) 

(0.2, 0.4, 0.3; 
0.4, 0.3, 0.6) 

𝐴2 (0.9, 0.6, 0.3; 
0.5, 0.4, 0.6) 

(0.3, 0.6, 0.8; 
0.5, 0.2, 0.6) 

(0.2, 0.7, 0.3; 
0.2, 0.5, 0.7) 

(0.3, 0.4, 0.7; 
0.8, 0.7, 0.5) 

(0.5, 0.3, 0.5; 
0.4, 0.3, 0.2) 

𝐴3 (0.7, 0.5, 0.3; 
0.2, 0.3, 0.1) 

(0.4, 0.2, 0.5; 
0.2, 0.3, 0.5) 

(0.3, 0.4, 0.6; 
0.3, 0.6, 0.8) 

(0.4, 0.2, 0.5; 
0.4, 0.8, 0.1) 

(0.8, 0.6, 0.4; 
0.5, 0.3, 0.3) 

𝐴4 (0.1, 0.5, 0.4; 
0.4, 0.3, 0.5) 

(0.3, 0.5, 0.4; 
0.5, 0.4, 0.3) 

(0.2, 0.3, 0.4; 
0.2, 0.3, 0.9) 

(0.7, 0.5, 0.4; 
0.5, 0.7, 0.2) 

(0.5, 0.7, 0.8; 
0.4, 0.7, 0.2) 

𝐴5 (0.5, 0.5, 0.5; 
0.8, 0.6, 0.3) 

(0.8, 0.5, 0.4; 
0.6, 0.3, 0.8) 

(0.5, 0.5, 0.1; 
0.2, 0.6, 0.3) 

(0.1, 0.5, 0.0; 
0.2, 0.5, 0.4) 

(0.6, 0.4, 0.3; 
0.3, 0.8, 0.4) 

 

 
Table 10: The pairwise comparison matrix of criteria with 𝑇, 𝐹, 𝐼 values 

Criteria 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 
𝐴1 (0.3, 0.6, 0.5; 

0.5, 0.4, 0.6) 

(0.3, 0.4, 0.2; 
0.4, 0.5, 0.8) 

(0.3, 0.7, 0.1; 
0.7, 0.4, 0.1) 

(0.1, 0.5, 0.6; 
0.3, 0.1, 0.7) 

(0.8, 0.4, 0.5; 
0.3, 0.5, 0.4) 

𝐴2 (1.0, 0.4, 0.5; 
0.2, 0.1, 0.3) 

(0.5, 0.9, 0.4; 
0.8, 0.7, 0.9) 

(0.5, 0.4, 0.5; 
0.8, 0.4, 0.8) 

(0.4, 0.1, 0.6; 
0.4, 0.5, 0.6) 

(0.1, 0.6, 0.3; 
0.6, 0.5, 0.2) 

𝐴3 (0.7, 0.7, 0.6; 
0.4, 0.6, 0.9) 

(0.2, 0.4, 0.6; 
0.8, 0.6, 0.5) 

(0.3, 0.7, 0.5; 
0.7, 0.5, 0.8) 

(0.4, 0.7, 0.3; 
0.1, 0.5, 0.4) 

(0.5, 0.4, 0.8; 
0.7, 0.2, 0.1) 

𝐴4 (0.9, 0.7, 0.6; 
0.6, 0.5, 0.7) 

(0.5, 0.5, 0.5; 
0.4, 0.3, 0.5) 

(0.2, 0.8, 0.3; 
 0.4, 0.3, 0.5) 

(0.7, 0.2, 0.6; 
0.2, 0.3, 0.6) 

(0.1, 0.6, 0.3; 
0.7, 0.4, 0.6) 

𝐴5 (0.3, 0.6, 0.4; 
0.3, 0.2, 0.4 

(0.5, 0.9, 0.0; 
0.4, 0.5, 0.8) 

(0.4, 0.5, 0.7; 
0.7, 0.5, 0.8) 

(0.4, 0.5, 0.2; 
 0.7, 0.4, 0.6) 

(0.9, 0.4, 0.3; 
0.6, 0.5, 0.2) 
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Table 11: Crisp value of the comparison matrix 

Criteria 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 
𝐴1 0.26 0.2 0.38 0.284 0.416 
𝐴2 0.318 0.289 0.202 0.342 0.321 
𝐴3 0.367 0.4 0.269 0.356 0.36 
𝐴4 0.443 0.283 0.296 0.269 0.178 
𝐴5 0.317 0.2 0.38 0.233 0.333 

 

 
Table 12: Crisp value of the comparison matrix 

Criteria 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 

𝐴1 0.189 0.233 0.378 0.1222 0.15 
𝐴2 0.3 0.321 0.133 0.249 0.274 
𝐴3 0.3 0.171 0.13 0.183 0.38 
𝐴4 0.178 0.24 0.1 0.284 0.333 
𝐴5 0.317 0.283 0.159 0.087 0.159 

 

 
Table 13: Crisp value of the comparison matrix 

Criteria 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 
𝐴1 0.233 0.11 0.269 0.2 0.264 
𝐴2 0.38 0.24 0.249 0.159 0.211 
𝐴3 0.2 0.227 0.233 0.187 0.453 
𝐴4 0.342 0.267 0.231 0.217 0.189 
𝐴5 0.246 0.171 0.249 0.208 0.338 

 
Step 5: Integration of matrices 

 

All opinions of experts need to be integrated into one matrix presenting the average opinions of all 

experts about each criterion. 

 
Table 14: Integration of matrices 

Criteria 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 

𝐴1 0.227 0.181 0.342 0.2021 0.277 
𝐴2 0.333 0.283 0.195 0.25 0.269 
𝐴3 0.289 0.266 0.211 0.242 0.398 
𝐴4 0.321 0.263 0.209 0.257 0.233 
𝐴5 0.293 0.218 0.263 0.176 0.277 

 
Step 6: Generating a direct relation matrix 
 

An initial direct relation matrix 𝐴 is a 𝑛 × 𝑛 matrix obtained by pairwise comparisons, 𝐴 = [𝐴𝑖𝑗]
𝑛×𝑛 

. 

𝐴𝑖𝑗  denotes the degree to which criterion i affects criterion j. 
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Step 7: Normalizing the direct relation matrix 

 

The normalized direct relation matrix can be obtained using the equation: 

 

𝐾 =
1

𝑀𝑎𝑥 ∑ 𝑎𝑖𝑗
𝑛
𝑗=1

 

 

     𝑁 = 𝐾 × 𝐴 

 
Table 15: Normalizing the direct relation matrix 

Criteria 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 
𝐴1 0.185 0.147 0.278 0.164 0.225 
𝐴2 0.250 0.213 0.147 0.188 0.202 
𝐴3 0.206 0.189 0.150 0.172 0.283 
𝐴4 0.25 0.205 0.163 0.200 0.182 
𝐴5 0.239 0.178 0.214 0.143 0.226 

 

Step 8: Total relation matrix 

 

A total relation matrix (T), in which (I) denotes the identity matrix, is shown as follows: 

 
𝑇 = 𝑁 × (𝐼 − 𝑁)−1 

 
Table 16: Total relation matrix 

Criteria 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 

𝐴1 998.99 820.45 870.41 763.33 1001.49 
𝐴2 999.99 821.29 872.41 764.07 1002.39 
𝐴3 999.99 821.29 871.97 764.08 1002.51 
𝐴4 999.99 821.28 872.27 764.08 1002.37 
𝐴5 999.99 821.26 871.79 764.03 1002.43 

 
Step 9: Find the sum of rows and columns 

The sum of rows is denoted by (𝑅), and the sum of columns is denoted by (𝐶). Calculate 𝑅 +  𝐶 and 

𝑅 − 𝐶. 

𝐶 = [∑ 𝑎𝑖𝑗

𝑛

𝑖=1
]

1×𝑛

= [𝑎𝑗]
𝑛×1

 

 

𝑅 = [∑ 𝑎𝑖𝑗

𝑛

𝑗=1
]

1×𝑛

= [𝑎𝑗]
𝑛×1

 

 

Row + Column      Row - Column 

9453.62                         -544.28 

                                                                 8465.72     354.58 

        8818.69     100.99 
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       8279.58      640.4 

        9470.69                   -551.69 

Step 10: Draw the cause-and-effect diagram 

The cause-and-effect diagram is in blue shade presented by 𝑅 +  𝐶 and in orange shade presented by 

𝑅 − 𝐶 which is a degree of relation, and it depicts the steps of the proposed model. 

4.2. Analysing the evaluation criteria 

The research results determine the most important criterion. From this causal chart, according to the 

Tree soft set Neutrosophic DEMATEL Method, the importance of all criteria was established. 

According to experts’ opinions, 𝑁𝑂2 (𝐴4) had the greatest impact and 𝑆𝑂2 (𝐴5) had a lesser impact on 

the selection of the cause of air pollution. 

 

 
 

Figure 1. The cause-and-effect diagram. 

5. Conclusions 

 
Potential supply chain management practices have been developed and performed using the Tree soft 

set Neutrosophic DEMATEL Method to select the best standards that have a greater impact on other 

criteria. The proposed approach succeeded in developing the DEMATEL Method by applying to it the 

Neutrosophic Set Theory, using a new scale from 0 to 1 and employing the maximum truth membership 
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degree (𝑇), the minimum indeterminacy membership degree (𝐼) and the minimum falsity membership 

degree (𝐹) of a single-valued neutrosophic number. The opinions were collected from experts through 

interviews and consequently analyzed using the Neutrosophic DEMATEL Method, by comparisons of 

each criterion, according to each expert, and their formulation of each value according to a single-

valued neutrosophic number. 
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Abstract. This article’s main goal is to provide and investigate a novel statistical convergence generalisation

for generalized difference sequences in Neutrosophic Normed Spaces (NNS) called rough ideal statistical con-

vergence. The collection of approximate optimal statistical limit points and cluster points is defined, and their

algebraic and topological features are examined. Additionally, we included the relationship for generalized dif-

ference sequences in NNS between rough I-statistical cluster points and rough I-statistical limit points.

Keywords: Neutrosophic normed space; ideal statistical convergence; rough ideal statistical convergence; dif-

ference sequence

—————————————————————————————————————————-

1. Introduction

Numerous fields of analysis and number theory have found use for statistical convergence,

which has been thoroughly researched to comprehend the convergence behaviour of various

kinds of sequences and series. It enables mathematicians to investigate convergence in more

versatile and general contexts, which may produce fresh ideas and discoveries in a variety of

mathematical fields. Zygmund first introduced statistical convergence in his 1935 monograph,

which was first published in Warsaw [52]. Steinhaus [50] and Fast [20] developed the idea of

statistical convergence, and then later reintroduced by Schoenberg [42]. The idea of natural

density serves as its foundation.

The Natural density, denoted by δ(Kp) of the set Kp = {p ∈ N : p ≤ n} ⊆ N, is defined

as δ(Kp) = lim
p→∞

|Kp|
n

, where |Kp| denotes the cardinality of the set Kp. If, for each ϵ > 0,

δ({p ∈ N : ||yp − y0|| ≥ ϵ}) = 0, then a sequence y = {yp} in R is considered as statistically

convergent to y0 ∈ R.
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For sequences on finite-dimensional normed linear spaces, Phu [38] first proposed rough

convergence in 2001. After that, numerous authors were inspired to work on this type of

convergence on various sequence-spaces, including those for double sequences [32, 33], triple

sequences [14], lacunary sequences [26], ideals [33,36] etc. Despite this, it has been established

in a variety of spaces, see [2,3,9,14] etc. It was later expanded to infinite-dimensional normed

linear spaces [39]. In 2008, Aytar [5] also worked on same and introduced new generalized

convergence named rough statistical convergence.

In 2000, Kostryko et al. [30] proposed the concept of ideal convergence(I-convergence)

by generalizing the statistical convergence with the helps of ideals. For more details we refer

[6–8,29,31]. With the help of ideals, In 2011, a new generalisation named rough ideal statistical

convergence in normed spaces was defined by Das, Savas and Ghosal [13]. They studied its

fundamental properties.

Initially, Kizmaz [28] proposed the concept of difference sequence spaces as Z(∆) =

{y = (yp) : (∆yp) ∈ Z} for Z = l∞(spaces of all bounded sequences), C(convergent sequences),

C0(null sequences), where ∆y = (∆yp) = (yp−yp+1). In particular, l(∆), C(∆) and C0(∆) are

also Banach spaces, relative to a norm induced by ||yp||∆ = |y1|+supk |∆yp| and the generalized

difference sequence spaces was introduced as (see [18]): Z(∆myp) = {y = (yp) : ∆
myp ∈ Z}

where ∆my = (∆myp) = (∆m−1yp −∆m−1yp+1) so that ∆myp =
∑m

r=0(−1)r
(
m
r

)
yk+r.

Various characteristics and properties of difference sequences have been explored by re-

searchers can be found in [17–19, 21, 35]. Demir and Gümüş [15] investigated rough conver-

gence through difference sequences on finite dimensional normed space. In 2022, Gümüş [16]

defined rough statistical convergence for (∆yp) sequences and established some properties for

the collection of approximate optimal statistical limit points. Karabacak and Or [22] also

studied these generalized convergence in normed linear spaces.

In order to examine the ambigious qualitative or quantitative data, Zadeh [51] invented an

extension of classical sets known as fuzzy sets. Atannassov [4] prsented a new generalization

named intuitionistic fuzzy sets(I.F.s). Smarandache [44] suggested Neutrosophic sets, a new

variant of I.F.s. Additionally, Neutrosophic soft linear spaces [11] and Neutrosophic metric

spaces [25] are also defined using this idea. Not only these, further extensions related to su-

per soft hyper set, Revolutionary topologies, Neutrosophic topologies, Neutrosophic algebra,

Neutrosophic SuperHyperStructure and Neutrosophic numbers can be seen in [10, 45–49]. In

addition to establishing a number of sequential concepts in these spaces, including conver-

gence, Cauchy, and convexity, Bera and Mahapatra [12] introduced the term neutrosophic

norm. These places are employed in situations where complicated, ambiguous, and indeter-

minate information must be handled at the same time. There are several applications in

decision-making, control theory, and other domains where imprecision and uncertainty exist.
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Neutrosophic fuzzy normed spaces are a relatively advanced and specialized topic in mathemat-

ics and are primarily used in areas that require the modeling of complex and uncertain data.

More recently, statistical convergence and its features in these spaces have been expanded by

Kirişci and Şimşek [25].

Notable advancements in the area of rough convergence in past few years served as inspi-

ration for the current research work. Very recently, Kişi and Yildil [27], added the theory of

rough statistical convergence via difference operator in NNS and Kaur and Meenakshi also [24]

worked on generalized ideal convergence in same space, which are the motivation for this re-

search paper. The significance of this work is to investigate the theory of rough I-statistical

convergence(rough I-st-convergence) for generalized difference sequences in the setup of NNS

including the algebraic and topological characteristics for the set of rough I-st-limit points and

rough I-st-cluster points for generalised difference sequences. Along with investigating some

features, we also established the relationship between limit points set and cluster points set.

The main objective is to find the feasibility of new notion convergence with classical one con-

vergence. Also to identify whether this convergence i.e. rough I-st-converegnce for generalized

difference sequences in NNS, serves the theory of convergence in NNS.

In the next section, the basic definitions are included which are necessary for the development

of this work. Section 3 and 4 includes the main results of the paper. In section 3, rough I-st-

convergence for generalized difference sequences in NNS has been introduced. The algebraic

and topological characteristics for the set of rough I-st-limit points for generalized difference

sequences like convexity, closedness etc. are proved. In section 4, rough I-st-cluster points for

generalized difference sequences in NNS have been defined and the relationship between limit

points and cluster points has been explored.

2. Preliminaries

we begin this section with fundamental definitions utilised for perceptual progression, which

are as follows:

Definition 2.1. [34] A t-norm is a continuous correspondance ⊛ : [0, 1]× [0, 1] → [0, 1], which

is associative, commutative and having identity 1 and f ⊛ g ≤ j ⊛ k for each whenever f ≤ j

and g ≤ k for each f, g, j and k ∈ [0, 1].

Definition 2.2. [34] A t-conorm is a continuous correspondance ⋄ : [0, 1] × [0, 1] → [0, 1],

which is associative, commutative and having identity 0 and f ⋄ g ≤ j ⋄ k whenever f ≤ j and

g ≤ k for each f, g, j and k ∈ [0, 1].

In veiw of these notations, Kirişci and Şimşek [25], recently defined NNS and worked on

statistical convergence in same spaces.
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Definition 2.3. [25] Consider N = {p, ψ(p), η(p), σ(p) : p ∈ V} be a normed space such

that N : V ×R+ → [0, 1], V be a vector space and ⊛, ⋄ are continuous t-norm and continuous

t-conorm respectively. Then Y = (V, N,⊛, ⋄) is named as Neutrosophic Normed Spaces (NNS )

if the following axioms hold:

For each p, q ∈ V and ξ, λ > 0 and for every α ̸= 0 we have

(1) 0 ≤ ψ(p, ξ), η(p, ξ), σ(p, ξ) ≤ 1 for every ξ ∈ R+;

(2) ψ(p, ξ) + η(p, ξ) + σ(p, ξ) ≤ 3 for ξ ∈ R+;

(3) ψ(p, ξ) = 1, η(p, ξ) = 0 and σ(p, ξ) = 0 for ξ > 0 iff p = 0;

(4) ψ(p, ξ) = 0, η(p, ξ) = 1 and σ(p, ξ) = 1 for ξ ≤ 0;

(5) ψ(αp, ξ) = ψ(p, ξ
|α|), η(αp, ξ) = η(p, ξ

|α|) and σ(αp, ξ) = σ(p, ξ
|α|);

(6) ψ(p, λ)⊛ ψ(p, ξ) ≤ ψ(p+ q, λ+ ξ);

(7) ψ(p,⊛) is continuous non-decreasing function;

(8) η(p, λ) ⋄ η(q, ξ) ≥ η(p+ q, λ+ ξ);

(9) η(p, ⋄) is continuous non-decreasing function;

(10) σ(p, λ) ⋄ σ(q, ξ) ≥ σ(p+ q, λ+ ξ);

(11) σ(p, ⋄) is continuous non-decreasing function;

(12) limξ→∞ ψ(p, ξ) = 1, limξ→∞ η(p, ξ) = 0 and limξ→∞ σ(p, ξ) = 0.

Here, N(ψ, η, σ) is the Neutrosophic norm on V.

Definition 2.4. [25] A sequence {yp} in NNS Y = (V, N,⊛, ⋄) is called statistically convergent

to κ ∈ Y w.r.t to norms (ψ, η, σ) if for ϵ > 0 and λ ∈ (0, 1)

lim
n→∞

1

n
|{p ∈ N : ψ(yp − κ, ϵ) ≤ 1− λ or η(yp − κ, ϵ) ≥ λ or σ(yp − κ, ϵ) ≥ λ}| = 0.

equivalently δ(A(ϵ, λ)) = 0 where

A(ϵ, λ) = {p ∈ N : ψ(yp − κ, ϵ) ≤ 1− λ or η(yp − κ, ϵ) ≥ λ or σ(yp − κ, ϵ) ≥ λ}.

In 2023, Kişi and Yildil [27], defined rough statistical convergence via difference operator in

NNS as follow:

Definition 2.5. [27] A sequence ∆y = {∆yp} in NNS Y = (V, N,⊛, ⋄) is called rough statis-

tically convergent to κ ∈ Y w.r.t. norms (ψ, η, σ) for some r > 0 if for each ϵ > 0 and λ ∈ (0, 1)

lim
n→∞

1

n
|{p ≤ n : ψ(∆yp − κ; r + ϵ) ≤ 1− λ or η(∆yp − κ; r + ϵ) ≥ λ or σ(∆yp − κ; r + ϵ) ≥ λ}| = 0, .

or

δ({p ≤ n : ψ(∆yp − κ; r+ ϵ) ≤ 1− λ or η(∆yp − κ; r+ ϵ) ≥ λ or σ(∆yp − κ; r+ ϵ) ≥ λ}) = 0, .

It is denoted by ∆yp
r−st(ψ,η,σ)−−−−−−−→ κ or r − st(ψ,η,σ) − lim

p→∞
∆yp = κ.

Let st(ψ,η,σ)−LIM r
yp represents the the set of all rough st-limit points of the differenc sequence

∆y = {∆yp}.
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3. Rough ideal statistical convergence for generalized difference sequences in NNS

In this section, we introduce the notion of Rough I-Statistical Convergence for generalized

difference sequences in NNS and then examined some results using generalized difference

sequence. Throughout the article I is an admissible ideal and (∆myp) = ∆m−1yp−∆m−1yp+1,

where m ∈ N, be the generalized difference sequence.

Definition 3.1. Let Y = (V, N,⊛, ⋄) be NNS, ∆my = (∆myp) wherem ∈ N, a generalized dif-

ference sequence is considered as rough ∆m-statistical convergent to ξ ∈ Y w.r.t. neutrosophic

norm (ψ, η, σ) for r ≥ 0 if for every ϵ > 0 and λ ∈ (0, 1)

lim
n→∞

1

n
|{p ≤ n : ψ(∆myp−ξ; r+ϵ) ≤ 1−λ or η(∆myp−ξ; r+ϵ) ≥ λ or σ(∆myp−ξ; r+ϵ) ≥ λ}| = 0,

or

δ({p ≤ n : ψ(∆myp − ξ; r + ϵ) ≤ 1− λ or η(∆myp − ξ; r + ϵ) ≥ λ or σ(∆myp − ξ; r + ϵ) ≥ λ}) = 0.

It is denoted by ∆myp
r−st(ψ,η,σ)−−−−−−−→ ξ or r − st(ψ,η,σ) − lim

p→∞
∆myp = ξ.

Let st(ψ,η,σ) − LIM r
∆myp

represnts the collection of all rough st-limit points of (∆myp).

Remark 3.2. For r = 0, the notion rough ∆m-st-convergence is equivalent to the ∆m- st-

convergence for (∆myp) in NNS.

Remark 3.3. For m = 1 , the notion rough ∆m-statistical convergence agrees with rough

∆-st-convergence studied in [27].

The r − st(ψ,η,σ)-limit of a generalized difference sequence may not be unique in

NNS. So, consider the set of rough st-limit points of (∆myp) as st(ψ,η,σ) − LIM r
∆myp

=[
ξ : ∆myp

r−st(ψ,η,σ)−−−−−−−→ ξ

]
. Note that the sequence (∆myp) is r(ψ,η,σ)-convergent if LIM

r(ψ,η,σ)
∆myp

̸=

ϕ, where

LIM
r(ψ,η,σ)
∆myp

=
[
ξ∗ ∈ Y : ∆myp

r(ψ,η,σ)−−−−→ ξ∗
]
.

Example 3.4. Let (Y, ∥.∥) be real normed space. For every q > 0 and for all∆my = (∆myp) ∈
Y , define ψ(∆myp, q) =

q
q+||∆myp|| , η(∆

myp, q) =
∆myp

q+||∆myp|| and σ(∆
myp, q) =

∆myp
q+||∆myp|| . Then

Y = (V,N,⊛, ⋄) is NNS. Consider a sequence (∆myp)m∈N such that

∆myp =

{
(−1)p, if p ̸= n2

p, if p = n2 .

Then ∆myp = (−1, 2, 3, 1, 5, 6, 7, 8,−1.........) and Clearly for every ϵ > 0 and λ ∈ (0, 1)

lim
n→∞

1

n
|{p ≤ n : ψ(∆myp−ξ; r+ϵ) ≤ 1−λ or η(∆myp−ξ; r+ϵ) ≥ λ or σ(∆myp−ξ; r+ϵ) ≥ λ}| = 0.
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Also,

st(ψ,η,σ) − LIM r
∆myp =

{
ϕ r < 1

[1− r, r − 1] otherwise.

For unbounded sequences, LIM
r(ψ,η,σ)
∆myp

= ϕ, But st(ψ,η,σ)−LIM r
∆myp

̸= ϕ. That is the sequence

might be rough st-convergent. Above example shows that a generalized sequence can be rough

st-convergent but not rough convergent.

Definition 3.5. Let Y = (V, N,⊛, ⋄) be NNS, ∆my = (∆myp), be a generalized difference

sequence in Y is considered to be I-∆m-statistically convergent to ξ ∈ Y w.r.t. neutrosophic

norm (ψ, η, σ) if for every ϵ > 0 and λ ∈ (0, 1)

{n ∈ N :
1

n
|{p ≤ n : ψ(∆myp − ξ; ϵ) ≤ 1− λ or η(∆myp − ξ; ϵ) ≥ λ or

σ(∆myp − ξ; r + ϵ) ≥ λ}| ≥ δ} ∈ I,

It is denoted by ∆myp
I−st(ψ,η,σ)−−−−−−−→ ξ. Let I − st(ψ,η,σ)−LIM∆myp represnts the collection of all

I- statistical limit points of (∆myp).

Next, we added rough I-st-convergence for generalized differenece sequences in NNS.

Definition 3.6. Let Y = (V, N,⊛, ⋄) be NNS, ∆my = (∆myp), be a generalized difference

sequence in Y is considered to be rough I-∆m-statistically convergent to ξ ∈ Y w.r.t. neutro-

sophic norm (ψ, η, σ) for some r ≥ 0 if for every ϵ > 0 and λ ∈ (0, 1)

{n ∈ N :
1

n
|{p ≤ n : ψ(∆myp − ξ; r + ϵ) ≤ 1− λ or η(∆myp − ξ; r + ϵ) ≥ λ

or σ(∆myp − ξ; r + ϵ) ≥ λ}| ≥ δ} ∈ I,

It is denoted by ∆myp
r−I−st(ψ,η,σ)−−−−−−−−−→ ξ. Let I − st(ψ,η,σ) − LIM r

∆myp
represents the collection

of all rough I-st-limit points of (∆myp).

Remark 3.7. For r = 0 , the notion rough I-∆m-st-convergence agrees with the I-∆m-st-

convergence in NNS.

Example 3.8. Let (Y, ∥.∥) be any real normed space. For every q > 0 and for all

∆my = (∆myp) ∈ Y , define ψ(∆myp, q) = q
q+||∆myp|| , η(∆myp, q) =

∆myp
q+||∆myp|| and

σ(∆myp, q) =
∆myp

q+||∆myp|| . Then Y = (V,N,⊛, ⋄) is NNS. If we take Id = {A ∈ N with δ(A) = 0}
then for this admissible ideal, define (∆myp)m∈N such that

∆myp =

{
p, if p ∈ A

(−1)p, p /∈ A.

Then

I − st(ψ,η,σ) − LIM r
∆myp =

{
ϕ r < 1

[1− r, r − 1] otherwise.

Hence I − st(ψ,η,σ) − LIM r
∆myp

̸= ϕ.
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Definition 3.9. A sequence ∆my = (∆myp) in NNS Y = (V, N,⊛, ⋄) is I −∆m-st bounded

if ∃ G > 0, for ϵ > 0 and 0 < λ < 1 such that

{n ∈ N :
1

n
|{p ≤ n : ψ(∆myp;G) ≤ 1− λ or η(∆myp;G) ≥ λ or σ(∆myp;G) ≥ λ}| ≥ δ} ∈ I

We found the following results for generalised difference sequences using the aforementioned

definitions in NNS.

Theorem 3.10. Let Y = (V,N,⊛, ⋄) be NNS. A sequence (∆myp) in Y is I-∆m-st-bounded

iff I − st(ψ,η,σ) − LIM r
∆myp

̸= ϕ for some r > 0.

Proof. Firstly suppose the sequence (∆myp) is I-∆m-st-bounded in NNS Y = (V,N,⊛, ⋄) .

Then for each ϵ > 0, λ ∈ (0, 1) and some r > 0, ∃G > 0 such that

{n ∈ N :
1

n
|{p ≤ n : ψ(∆myp;G) ≤ 1− λ or η(∆myp;G) ≥ λ or σ(∆myp − ξ; r + ϵ) ≥ λ}| ≥ δ} ∈ I.

Since I is admissible ideal , therefore M = N \H is a non-empty set, where

H =

{
n ∈ N :

1

n
|{p ≤ n : ψ(∆myp;G) ≤ 1− λ or η(∆myp;G) ≥ λ or σ(∆myp;G) ≥ λ}| ≥ δ

}
.

Choose p ∈ M, then

1

n
|{p ≤ n : ψ(∆myp;G) ≤ 1− λ or η(∆myp;G) ≥ λ or σ(∆myp;G) ≥ λ}| < δ

=⇒ 1

n
|{p ≤ n : ψ(∆myp;G) > 1− λ and η(∆myp;G) < λ or σ(∆myp;G) ≥ λ}| ≥ 1−δ. (1)

Let K = {p ≤ n : ψ(∆myp;G) > 1− λ and η(∆myp;G) < λ and σ(∆myp;G) < λ}.
Also for p ∈ K,

ψ(∆myp; r +G) ≥ min {ψ(0, r), ψ(∆myp, G)}

= min {1, ψ(∆myp;G)}

> 1− λ

η(∆myp; r +G) ≤ max {η(0, r), η(∆myp, G)}

= max {0, η(∆myp;G)}

< λ

σ(∆myp; r +G) ≤ max {σ(0, r), σ(∆myp, G)}

= max {0, σ(∆myp;G)}

< λ
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Thus K ⊂ {p ≤ n : ψ(∆myp; r +G) > 1− λ, η(∆myp; r +G) < λ, σ(∆myp; r +G) < λ}.
Using (1), we have

1−δ ≤ |K|
n

≤ 1

n
|{p ≤ n : ψ(∆myp; r +G) > 1− λ, η(∆myp; r +G) < λ, σ(∆myp; r +G) < λ}| .

Therefore,

1

n
|{p ≤ n : ψ(∆myp; r +G) ≤ 1− λ or η(∆myp; r +G) ≥ λ or σ(∆myp; r +G) < λ}| < 1−(1−δ) < δ.

Then for n ∈ N,
1

n
|{p ≤ n : ψ(yp; r +G) ≤ 1− λ or η(yp; r +G) ≥ λ or σ(∆myp; r +G) ≥ λ}| ≥ δ ⊂ H ∈ I.

Hence 0 ∈ I − st(ψ,η,σ) − LIM r
∆my. Therefore, I − st(ψ,η,σ) − LIM r

∆my ̸= ϕ.

Conversely; for some r > 0 , let I − st(ψ,η,σ) − LIM r
∆myp

̸= ϕ. Then ∃ some ω ∈ Y such that

ω ∈ I − st(ψ,η) − LIM r
∆myp

.

For every ϵ > 0 and 0 < λ < 1, we have

{n ∈ N :
1

n
|{p ≤ n : ψ(∆myp − ω; r + ϵ) ≤ 1− λ or η(∆myp − ω; r + ϵ) ≥ λ or

,

σ(∆myp − ω; r + ϵ) < λ}| ≥ δ} ∈ I

It follows that nearly all ∆myp’s are encircled in a ball with centre ω in NNS, This suggests

(∆myp) is I-∆
m-statistically bounded in NNS.

Next, we will show that the algebraic characterization also hold for rough I-st-convergent

sequences for generalized difference sequences in NNS.

Theorem 3.11. Let (∆myp) and (∆myq) be two generalized difference sequences in NNS

Y = (V, N,⊛, ⋄) with I as admissible ideal and r ≥ 0, then the following results holds:

(i) if ∆myp
r−I−st(ψ,η,σ)−−−−−−−−−→ L and β ∈ R, then β∆myp

r−I−st(ψ,η,σ)−−−−−−−−−→ βL.

(ii) if ∆myp
r−I−st(ψ,η,σ)−−−−−−−−−→ L1 and ∆myq

r−I−st(ψ,η,σ)−−−−−−−−−→ L2 then (∆myp + ∆myq)
r−I−st(ψ,η,σ)−−−−−−−−−→

(L1 + L2)

Proof. (i) If β = 0 then the result is obvious. So assume β ̸= 0. As ∆myp
r−I−st(ψ,η,σ)−−−−−−−−−→ L then

for given λ > 0 and r ≥ 0,

Consider G = {n ∈ N : 1
n |{p ≤ n : ψ(∆myp − L; r + ϵ) ≤ 1 − λ or η(∆myp − L; r + ϵ) ≥

λ or σ(∆myp −L; r+ ϵ) < λ}| ≥ δ} ∈ I. As I is admissible ideal, therefore take M = N \G as

an non-empty set. Choose m ∈ M, then

1

n
|{p ≤ n : ψ(∆myp − L; r + ϵ) ≤ 1− λ or η(∆myp − L; r + ϵ) ≥ λ or σ(∆myp − L; r + ϵ) < λ}| < δ
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=⇒ 1

n
|{p ≤ n : ψ(∆myp − L; r + ϵ) > 1− λ or η(∆myp − L; r + ϵ) < λ

or σ(∆myp − L; r + ϵ) < λ}| ≥ 1− δ.

=⇒ 1

n
|K| ≥ 1− δ. (2)

Where

K = {p ∈ N : ψ(∆myp − L; r + ϵ) > 1− λ, η(∆myp − L; r + ϵ) < λ, σ(∆myp − L; r + ϵ) < λ} .

It suffices to demonstrate that for each λ > 0 and r ≥ 0 ;

K ⊂ {m ∈ N : ψ(β∆myp − βL; r + ϵ) > 1− λ, η(β∆myp − βL; r + ϵ) < λ, σ(β∆myp − βL; r + ϵ) < λ} .

Let k ∈ K, then ψ(∆myk−L; r+ϵ) > 1−λ, η(∆myk−L; r+ϵ) < λ and σ(∆myp−L; r+ϵ) < λ.

So;

ψ(β∆myp − βL; r + ϵ) = ψ

(
∆myp − L,

r + ϵ

|β|

)
≥ min

{
ψ(∆myp − L, r + ϵ), ψ

(
0,
r + ϵ

|β|
− (r + ϵ)

)}
≥ min {ψ(∆myp − L, r + ϵ), 1}

= ψ(∆myp − L, r + ϵ) > 1− λ,

η(β∆myp − βL; r + ϵ) = η

(
∆myp − L,

r + ϵ

|β|

)
≤ max

{
η(∆myp − L, r + ϵ), η

(
0,
r + ϵ

|β|
− (r + ϵ)

)}
≤ max {η(∆myp − L, r + ϵ), 0}

= σ(∆myp − L, r + ϵ) < λ.

and σ(β∆myp − βL; r + ϵ) = σ

(
∆myp − L,

r + ϵ

|β|

)
≤ max

{
σ(∆myp − L, r + ϵ), σ

(
0,
r + ϵ

|β|
− (r + ϵ)

)}
≤ max {σ(∆myp − L, r + ϵ), 0}

= σ(∆myp − L, r + ϵ) < λ.

which gives;

K ⊂ {m ∈ N : ψ(β∆myp−βL; r+ϵ) > 1−λ, η(β∆myp−βL; r+ϵ) < λ, σ(β∆myp−βL; r+ϵ) < λ}.

Using (2), we have

1− δ ≤ |K|
n

≤ 1

n
|{p ≤ n : ψ(β∆myp − βL; r + ϵ) > 1− λ, η(β∆myp − βL; r + ϵ) < λ,

σ(β∆myp − βL; r + ϵ) < λ}|.
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Therefore,

1

n
|{p ≤ n : ψ(β∆myp − βL; r + ϵ) ≤ 1− λ or η(β∆myp − βL; r + ϵ) ≥ λ,

or σ(β∆myp − βL; r + ϵ) ≥ λ}| < 1− (1− δ) < δ.

Then

{n ∈ N :
1

n
|{p ≤ n : ψ(β∆myp − βL; r + ϵ) ≤ 1− λ or η(β∆myp − βL; r + ϵ) ≥ λ,

or σ(β∆myp − βL; r + ϵ) ≥ λ}| ≥ δ} ⊂ G ∈ I.

which shows that β∆myp
r−I−st(ψ,η,σ)−−−−−−−−−→ βL.

(ii) In the similar manner, we can prove (ii) part. So, we are omitting its proof.

In next result, we will show the set I − st(ψ,η,σ) − LIM r
∆myp

is closed.

Theorem 3.12. The set I − st(ψ,η,σ) −LIM r
∆myp

of a generalized difference sequence (∆myp)

is a closed set in NNS Y = (V, N,⊛, ⋄).

Proof. If I − st(ψ,η,σ) − LIM r
∆myp

= ϕ then the result is obvious as I − st(ψ,η,σ) − LIM r
∆my is

either empty set or singleton set.

Let I − st(ψ,η,σ) − LIM r
∆myp

̸= ϕ .

Let ∆mx = (∆mxp) be a convergent sequence in Y = (V, N,⊛, ⋄) which converges to x0 ∈ Y.
For λ ∈ (0, 1) and ϵ > 0 ∃ m0 ∈ N such that

ψ
(
∆mxp − x0;

ϵ

2

)
> 1− λ, η

(
∆mxp − x0;

ϵ

2

)
< λ, σ(∆mxp − x0;

ϵ

2
) < λ for all p ≥ m0.

Let us take ∆mxm1 ∈ I − st(ψ,η,σ) − LIM r
∆myp

with m1 > m0 such that

A = {p ∈ N :
1

n
|{p ≤ n : ψ(∆myp −∆mxm1 ; r +

ϵ

2
) ≤ 1− λ or η(∆myp −∆mxm1 ; r +

ϵ

2
) ≥ λ,

or σ(∆myp −∆mxm1 ; r +
ϵ

2
) ≥ λ}| ≥ δ} ∈ I

Take G = N \ A is a non-empty set. Choose n ∈ G, then

1

n
|{p ≤ n : ψ(∆myp −∆mxm1 ; r +

ϵ

2
) ≤ 1− λ or η(∆myp −∆mxm1 ; r +

ϵ

2
) ≥ λ

or σ(∆myp −∆mxm1 ; r +
ϵ

2
) ≥ λ}| < δ

⇒ 1

n
|{p ≤ n : ψ(∆myp −∆mxm1 ; r +

ϵ

2
) > 1− λ, η(∆myp −∆mxm1 ; r +

ϵ

2
) < λ,

σ(∆myp −∆mxm1 ; r +
ϵ

2
) < λ}| ≥ 1− δ.

Let Bn = {p ≤ n : ψ(∆myp −∆mxm1 ; r +
ϵ

2
) > 1− λ, η(∆myp −∆mxm1 ; r +

ϵ

2
) < λ,

σ(∆myp −∆mxm1 ; r +
ϵ

2
) < λ}.
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Then for j ∈ Bn, j ≥ m0 , we have

ψ(∆myj − x0; r + ϵ) ≥ min
{
ψ
(
∆myj −∆mxm1 ; r +

ϵ

2

)
, ψ

(
∆mxm1 − x0;

ϵ

2

)}
> 1− λ,

η(∆myj − x0; r + ϵ) ≤ max
{
η
(
∆myj −∆mxm1 ; r +

ϵ

2

)
, η

(
∆mxm1 − x0;

ϵ

2

)}
< λ

σ(∆myj − x0; r + ϵ) ≤ max
{
σ
(
∆myj −∆mxm1 ; r +

ϵ

2

)
, σ

(
∆mxm1 − x0;

ϵ

2

)}
< λ.

Therefore;

j ∈ {p ∈ N : ψ(∆myp − x0; r + ϵ) > 1− λ, η(∆myp − x0; r + ϵ) < λ, σ(∆myp − x0; r + ϵ) < λ}.

Hence

Bn ⊂ {p ∈ N : ψ(∆myp − x0; r+ ϵ) > 1− λ, η(∆myp − x0; r+ ϵ) < λ, σ(∆myp − x0; r+ ϵ) < λ}

which implies

1−δ ≤ |Bn|
n

≤ 1

n
|{p ≤ n : ψ (∆myp − x0; r + ϵ) > 1−λ, η(∆myp−x0; r+ϵ) < λ, σ(∆myp−x0; r+ϵ) < λ}|.

Therefore,

1

n
|{p ≤ n : ψ(∆myp − x0; r + ϵ) ≤ 1− λ or η(∆myp − x0; r + ϵ) ≥ λ

or σ(∆myp − x0; r + ϵ) ≥ λ}| < 1− (1− δ) = δ.

Then

{n ∈ N :
1

n
|{p ≤ n : ψ(∆myp − x0; r + ϵ) ≤ 1− λ or η(∆myp − x0; r + ϵ) ≥ λ or

σ(∆myp − x0; r + ϵ) ≥ λ}| ≥ δ} ⊂ A ∈ I.

implies x0 ∈ I − st(ψ,η,σ) − LIM r
∆myp

in (Y, ψ, η).

The convexity of the set I − st(ψ,η,σ) − LIM r
∆my is demonstrated in the following result.

Theorem 3.13. The set I − st(ψ,η,σ) −LIM r
∆myp

of a generalized difference sequence in NNS

Y = (V, N,⊛, ⋄) is a convex set for some non-negative number r.

Proof. Let φ1, φ2 ∈ I − st(ψ,η,σ) − LIM r
∆myp

. For convexity we have to show that

(1− ω)φ1 + ωφ2 ∈ I − st(ψ,η,σ) − LIM r
∆my
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for any real number ω ∈ (0, 1).

Since φ1, φ2 ∈ I − st(ψ,η,σ) − LIM r
∆myp

, then ∃ p ∈ N for each ϵ > 0 and λ ∈ (0, 1) such that

A0 = {p ∈ N : ψ

(
∆myp − φ1;

r + ϵ

2(1− ω)

)
≤ 1− λ or η

(
∆myp − φ1;

r + ϵ

2(1− ω)

)
≥ λ

or σ

(
∆myp − φ1;

r + ϵ

2(1− ω)

)
≥ λ},

and

A1 = {p ∈ N : ψ

(
∆myp − φ2;

r + ϵ

2ω

)
≤ 1− λ or η

(
∆myp − φ2;

r + ϵ

2ω

)
≥ λ

or σ

(
∆myp − φ2;

r + ϵ

2ω

)
≥ λ}.

For δ > 0 , we have {
n ∈ N :

1

n
|{p ≤ n : p ∈ A0 ∪ A1}| ≥ δ

}
∈ I,

Now choose δ1 ∈ (0, 1) such that (1− δ1) ∈ (0, δ) Let

A =

{
n ∈ N :

1

n
|{p ≤ n : p ∈ A0 ∪ A1}| ≥ δ1

}
∈ I,

Now for n /∈ A, 1
n |{p ≤ n : p ∈ A0 ∪ A1}| < 1−δ1 or 1

n |{p ≤ n : p /∈ A0 ∪ A1}| ≥ 1− (1−δ1) =
δ1 This implies {p ≤ n : m /∈ A0 ∪ A1} ≠ ϕ

Let m0 ∈ (A0 ∪ A1)
c = Ac0 ∩ Ac1

Then

ψ(∆mym0−[(1− ω)φ1 + ωφ2]; r + ϵ) = ψ[(1− ω)(∆mym0 − φ1) + ω(∆mym0 − φ2); r + ϵ]

≥ min

{
ψ

(
(1− ω)(∆mym0 − φ1);

r + ϵ

2

)
, ψ

(
ω(∆mym0 − φ2);

r + ϵ

2

)}
= min

{
ψ

(
∆mym0 − φ1;

r + ϵ

2(1− ω)

)
, ψ

(
∆mym0 − φ2;

r + ϵ

2ω

)}
> 1− λ,

η(∆mym0−[(1− ω)φ1 + ωφ2]; r + ϵ) = η[(1− ω)(∆mym0 − φ1) + ω(∆mym0 − φ2); r + ϵ]

≤ max

{
η

(
(1− ω)(∆mym0 − φ1);

r + ϵ

2

)
, η

(
ω(∆mym0 − φ2);

r + ϵ

2

)}
= max

{
η

(
∆mym0 − φ1;

r + ϵ

2(1− ω)

)
, η

(
∆mym0 − φ2;

r + ϵ

2ω

)}
< λ,

σ(∆mym0−[(1− ω)φ1 + ωφ2]; r + ϵ) = σ[(1− ω)(∆mym0 − φ1) + ω(∆mym0 − φ2); r + ϵ]

≤ max

{
σ

(
(1− ω)(∆mym0 − φ1);

r + ϵ

2

)
, σ

(
ω(∆mym0 − φ2);

r + ϵ

2

)}
= max

{
σ

(
∆mym0 − φ1;

r + ϵ

2(1− ω)

)
, σ

(
∆mym0 − φ2;

r + ϵ

2ω

)}
< λ.
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This implies Ac0 ∩ Ac1 ⊂ Bc where

B = {p ∈ N : ψ(∆mym0−[(1−ω)φ1+ωφ2]; r+ϵ) ≤ 1−λ or η (∆mym0 − [(1− ω)φ1 + ωφ2]; r + ϵ) ≥ λ

or σ (∆mym0 − [(1− ω)φ1 + ωφ2]; r + ϵ) ≥ λ}.

So for n /∈ A,
δ1 ≤

1

n
|{p ≤ n : p /∈ A0 ∪ A1}| ≤

1

n
|{p ≤ n : p /∈ B}|

or
1

n
|{p ≤ n : p ∈ B}| < 1− δ1 < δ

Thus Ac ⊂
{
n ∈ N : 1

n |p ≤ n : p ∈ B| < δ
}
. Since Ac ∈ F(I), So,

{
n : 1

n |p ≤ n : p ∈ B| < δ
}
∈

F(I), which implies{
n : 1

n |p ≤ n : p ∈ B| ≥ δ
}
∈ I. This implies that I − st(ψ,η,σ) − LIM r

∆myp
is a convex set.

Theorem 3.14. A generalized difference sequence ∆my = (∆myp) in NNS Y = (V, N,⊛, ⋄)
is rough-I-∆m-statistically convergent to ρ ∈ Y w.r.t. the norm (ψ, η, σ) for some r > 0 if

there exists a sequence ∆mz = (∆mzp) in Y such that I − st(ψ,η,σ) − LIM∆mzp = ρ in Y
and for each λ ∈ (0, 1) we have ψ(∆myp − ∆mzp; r + ϵ) > 1 − λ, η(∆myp − ∆mzp; r + ϵ) <

λ, σ(∆myp −∆mzp; r + ϵ) < λ for all p ∈ N.

Proof. Since ∆mz = (∆mzp) be a generalized difference sequence in Y , which is I-∆m-

statistically convergent to ρ ∈ Y and ψ(∆myp−∆mzp; r+ ϵ) > 1−λ, η(∆myp−∆mzp; r+ ϵ) <

λ, σ(∆myp −∆mzp; r + ϵ) < λ for all p ∈ N and λ ∈ (0, 1).

Then by definition, for any ϵ, δ > 0 and λ ∈ (0, 1) the set

M = {n ∈ N :
1

n
|{p ≤ n : ψ(∆mzp − ρ; ϵ) ≤ 1− λ or η(∆mzp − ρ; ϵ) ≥ λ

or σ(∆mzp − ρ; ϵ) ≥ λ}| ≥ δ} ∈ I.

Define

A1 = {p ∈ N : ψ(∆mzp − ρ; ϵ) ≤ 1− λ or η(∆mzp − ρ; ϵ) ≥ λ or σ(∆mzp − ρ; ϵ) ≥ λ}

A2 = {p ∈ N : ψ(∆myp−∆mzp; r) ≤ 1−λ or η(∆myp−∆mzp; r) ≥ λ or σ(∆myp−∆mzp; r) ≥ λ}.

For δ > 0 , we have

{
n ∈ N :

1

n
|{p ≤ n : p ∈ A1 ∪ A2|} ≥ δ

}
∈ I,

Now choose δ1 ∈ (0, 1) such that (1− δ1) ∈ (0, δ) and let

A =

{
n :

1

n
|{p ≤ n : p ∈ A1 ∪ A2|} ≥ δ1

}
∈ I,

Now for n /∈ A
1

n
|{p ≤ n : p ∈ A1 ∪ A2|} < 1− δ1
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1

n
|{p ≤ n : p /∈ A1 ∪ A2|} ≥ 1− (1− δ1) = δ1

This implies {p ≤ n : p /∈ A1 ∪ A2} ≠ ϕ

Let p ∈ (A1 ∪ A2)
c = Ac1 ∩ Ac2

Then

ψ (∆myp − ρ; r + ϵ) ≥ min {ψ(∆myp −∆mzp; r), ψ(∆
mzp − ρ; ϵ)}

> 1− λ

η (∆myp − ρ; r + ϵ) ≤ max {η(∆myp −∆mzp; r), η(∆
mzp − ρ; ϵ)}

< λ

σ (∆myp − ρ; r + ϵ) ≤ max {σ(∆myp −∆mzp; r), σ(∆
mzp − ρ; ϵ)}

< λ.

Which gives Ac1 ∩ Ac2 ⊂ Bc, where

B = {p ∈ N : ψ(∆myp− ρ; r+ ϵ) ≤ 1−λ or η(∆myp− ρ; r+ ϵ) ≥ λ or σ(∆myp− ρ; r+ ϵ) ≥ λ}.

So for n /∈ A,

δ1 ≤
1

n
|{p ≤ n : p /∈ A1 ∪ A2}| ≤

1

n
|{p ≤ n : p /∈ B}|

or
1

n
|{p ≤ n : p ∈ B}| < 1− δ1 < δ

Thus Ac ⊂ {n : 1
n |p ≤ n : p ∈ B| < δ}. Since Ac ∈ F(I), So,

{
n : 1

n |p ≤ n : p ∈ B| < δ
}
∈ F(I),

which implies
{
n : 1

n |p ≤ n : p ∈ B| ≥ δ
}
∈ I.

Hence, ∆myp
r−I−st(ψ,η,σ)−−−−−−−−−→ ρ in NNS Y = (V,N,⊛, ⋄).

Theorem 3.15. Let ∆my = (∆myp) be a generalized differenece sequence in NNS Y =

(V, N,⊛, ⋄) then the existence of two elements α1, α2 ∈ I−st(ψ,η,σ)−LIM r
∆my is not possible for

r > 0 and λ ∈ (0, 1) such that ψ(α1−α2; cr) ≤ 1−λ or η(α1−α2; cr) ≥ λ or σ(α1−α2; cr) ≥ λ

for c > 2.

Proof. Let us assume the existence of two elements α1, α2 ∈ I− st(ψ,η,σ)−LIM r
∆my is possible

such that

ψ(α1 − α2; cr) ≤ 1− λ or η(α1 − α2; cr) ≥ λ or σ(α1 − α2; cr) ≥ λ for c > 2. (3)

Then for each ϵ > 0 and λ ∈ (0, 1). Define,

A1 = {p ∈ N : ψ(∆myp − α1; r +
ϵ

2
) ≤ 1− λ or η(∆myp − α1; r +

ϵ

2
) ≥ λ

or σ(∆myp − α1; r +
ϵ

2
) ≥ λ}
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A2 = {p ∈ N : ψ(∆myp − α2; r +
ϵ

2
) ≤ 1− λ or η(∆myp − α2; r +

ϵ

2
) ≥ λ

or σ(∆myp − α2; r +
ϵ

2
) ≥ λ}.

Then
1

n
|{p ≤ n : p ∈ A1 ∪ A2}| ≤

1

n
|{p ≤ n : p ∈ A1}|+

1

n
|{p ≤ n : p ∈ A2}|

So, by the property of I-convergence, we have

I− lim
n→∞

1

n
|{p ≤ n : p ∈ A1 ∪ A2}| ≤ I− lim

n→∞

1

n
|{p ≤ n : p ∈ A1}|+I− lim

n→∞

1

n
|{p ≤ n : p ∈ A2}| = 0

Thus

{
n :

1

n
|{p ≤ n : p ∈ A1 ∪ A2|} ≥ δ

}
∈ I, for all δ > 0

Now choose 0 < δ1 = 1/2 < 1 such that (1− δ1) ∈ (0, δ)

Let

K =

{
n :

1

n
|{p ≤ n : p ∈ A1 ∪ A2|} ≥ δ1

}
∈ I,

Now for n /∈ K
1

n
|{p ≤ n : p ∈ A1 ∪ A2|} < 1− δ1 = 1/2

1

n
|{p ≤ n : p /∈ A1 ∪ A2|} ≥ 1− (1− δ1) = 1/2

This implies {p ≤ n : p /∈ A1 ∪ A2} ≠ ϕ. Then for p ∈ Ac1 ∩ Ac2 we have

ψ (α1 − α2; 2r + ϵ) ≥ min
{
ψ
(
∆myp − α2; r +

ϵ

2

)
, ψ

(
∆myp − α1; r +

ϵ

2

)}
> 1− λ,

η (α1 − α2; 2r + ϵ) ≤ max
{
η
(
∆myp − α2; r +

ϵ

2

)
, η

(
∆myp − α1; r +

ϵ

2

)}
< λ

σ (α1 − α2; 2r + ϵ) ≤ max
{
σ
(
∆myp − α2; r +

ϵ

2

)
, σ

(
∆myp − α1; r +

ϵ

2

)}
< λ.

Hence,

ψ (α1 − α2; 2r + ϵ) > 1− λ, η (α1 − α2; 2r + ϵ) < λ, σ (α1 − α2; 2r + ϵ) < λ. (4)

Then from (4) we have

ψ (α1 − α2; cr) > 1− λ, η (α1 − α2; cr) < λ, σ (α1 − α2; cr) < λ for c > 2.

It contradicts (3). So, existence of two elements is not possible such that ψ(α1 − α2; cr) ≤
1− λ or η(α1 − α2; cr) ≥ λ or σ(α1 − α2; cr) ≥ λ for c > 2.
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4. Rough ideal statistical cluster points for generalized difference sequences in

NNS

Definition 4.1. Let Y = (V, N,⊛, ⋄) be NNS. Then γ ∈ Y is called rough I-∆m-statistical

cluster point of the sequence ∆my = (∆myp) in Y w.r.t. norm (ψ, η, σ) for some r > 0 if for

every ϵ > 0 and λ ∈ (0, 1)

δI({p ∈ N : ψ(∆myp − γ; r + ϵ) > 1− λ, η(∆myp − γ; r + ϵ) < λ, η(∆myp − γ; r + ϵ) < λ}) ̸= 0

where δI(A) = I − lim
n→∞

1

n
|{p ≤ n : p ∈ A}| if exists. Here γ is known as r-I-∆m-st-cluster

point of a sequence (∆myp).

Let Γ
r(I)
st(ψ,η,σ)(∆

myp) indicates the collection of all r-I-∆m-st-cluster points w.r.t. the norm

(ψ, η, σ) of a sequence (∆myp) in NNS Y = (V,N,⊛, ⋄). If r = 0 then the notion stands

for only I-∆m-st-cluster point in NNS Y = (V,N,⊛, ⋄). Symbolically; Γ
r(I)
st(ψ,η,σ)

(∆myp) =

Γ Ist(ψ,η,σ)
(∆myp).

In the next result, we have derived the closedness of the set Γ
r(I)
st(ψ,η,σ)

(∆myp) of generalized

difference sequence (∆myp) in Y.

Theorem 4.2. The set Γ
r(I)
st(ψ,η,σ)(∆

myp) of generalized difference sequence ∆my = (∆myp) in

NNS Y = (V, N,⊛, ⋄) is closed for some r > 0.

Proof. If Γ
r(I)
st(ψ,η,σ)(∆

myp) = ϕ, then the result is obvious. So nothing to prove.

Let us suppose Γ
r(I)
st(ψ,η,σ)(∆

myp) ̸= ϕ. Consider ∆mx = (∆mxp) be a generalized difference

sequence such that

(∆mx) ⊆ Γ
r(I)
st(ψ,η,σ)(∆

myp) and ∆
mxp

(ψ,η)−−−→ x0.

To prove closedness, we will prove x0 ∈ Γ
r(I)
st(ψ,η,σ)(∆

myp).

As ∆mxp
(ψ,η,σ)−−−−→ x0, so for λ ∈ (0, 1) and ϵ > 0 , ∃ pϵ ∈ N such that

ψ(∆mxp − x0;
ϵ
2) > 1− λ, η(∆mxp − x0;

ϵ
2) < λ, σ(∆mxp − x0;

ϵ
2) < λ for p ≥ pϵ.

Choose some p0 ∈ N such that p0 ≥ pϵ. Then we have

ψ(∆mxp0 − x0;
ϵ

2
) > 1− λ, η(∆mxp0 − x0;

ϵ

2
) < λ, σ(∆mxp0 − x0;

ϵ

2
) < λ.

Again as ∆mx = (∆mxp) ⊆ Γ
r(I)
st(ψ,η,σ)(∆

myp), we have ∆mxp0 ∈ Γ
r(I)
st(ψ,η,σ)(∆

myp).

=⇒ δI({p ∈ N : ψ(∆myp − c; r +
ϵ

2
) > 1− λ, η(∆myp −∆mxp0); r +

ϵ

2
) < λ,

σ(∆myp −∆mxp0); r +
ϵ

2
) < λ}) ̸= 0. (5)

Consider

G = {p ∈ N : ψ(∆myp−∆mxp0 ; r+
ϵ

2
) > 1−λ, η(∆myp−∆mxp0 ; r+

ϵ

2
) < λ, σ(∆myp−∆mxp0 ; r+

ϵ

2
) < λ}
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Choose j ∈ G, then we have ψ(∆myj − ∆mxp0 ; r +
ϵ
2) > 1 − λ, η(∆myj − ∆mxp0 ; r +

ϵ
2) <

λ, σ(∆myj −∆mxp0 ; r +
ϵ
2) < λ.

Now,

ψ(∆myj − x0; r + ϵ) ≥ min
{
ψ
(
∆myj −∆mxp0 ; r +

ϵ

2

)
, ψ

(
∆mxp0 − x0; r +

ϵ

2

)}
> 1− λ,

η(∆myj − x0; r + ϵ) ≤ max
{
η
(
∆myj −∆mxp0 ; r +

ϵ

2

)
, η

(
∆mxp0 − y0; r +

ϵ

2

)}
< λ

σ(∆myj − x0; r + ϵ) ≤ max
{
σ
(
∆myj −∆mxp0 ; r +

ϵ

2

)
, σ

(
∆mxp0 − y0; r +

ϵ

2

)}
< λ.

Thus

j ∈ {p ∈ N : ψ(∆myp − x0; r + ϵ) > 1− λ, η(∆myp − x0; r + ϵ) < λ, (∆myp − x0; r + ϵ) < λ} .

Hence

{p ∈ N : ψ(∆myp−∆mxp0 ; r+
ϵ

2
) > 1−λ, η(∆myp−∆mxp0 ; r+

ϵ

2
) < λ, σ(∆myp−∆mxp0 ; r+

ϵ

2
) < λ}

⊆ {p ∈ N : ψ(∆myp − x0; r + ϵ) > 1− λ, η(ym − x0; r + ϵ) < λ, σ(ym − x0; r + ϵ) < λ} .

On the other side, we have the inequality:

δI({p ∈ N : ψ(∆myp −∆mxp0 ; r +
ϵ

2
) > 1− λ, η(∆myp −∆mxp0 ; r +

ϵ

2
) < λ,

σ(∆myp −∆mxp0 ; r +
ϵ

2
) < λ})

≤ δI({p ∈ N : ψ(∆myp − x0; r + ϵ) > 1− λ, η(∆myp − x0; r + ϵ) < λ,

σ(∆myp − x0; r + ϵ) < λ}). (6)

Using (5), we conclude that

δI ({p ∈ N : ψ(∆myp − x0; r + ϵ) > 1− λ, η(∆myp − x0; r + ϵ) < λ, σ(∆myp − x0; r + ϵ) < λ}) ̸= 0,

as the set on L.H.S.of (6) possesses natural density more than zero.

So, x0 ∈ Γ
r(I)
st(ψ,η,σ)(∆

myp).

Theorem 4.3. Let Γ Ist(ψ,η,σ)(∆
myp) be the collection of all I-∆m-st-cluster points of ∆my =

(∆myp) in NNS Y = (V, N,⊛, ⋄). Then for any arbitrary ν ∈ Γ Ist(ψ,η,σ)(∆
myp), λ ∈ (0, 1) and

r ≥ 0, we have ψ(ζ − ν; r) > 1−λ, η(ζ − ν; r) < λ, σ(ζ − ν; r) < λ for all ζ ∈ Γ
r(I)
st(ψ,η,σ)(∆

myp).
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Proof. Since ν ∈ Γ Ist(ψ,η,σ)(∆
myp) then for λ ∈ (0, 1) and ϵ > 0,

δI ({p ∈ N : ψ(∆myp − ν; ϵ) > 1− λ, η(∆myp − ν; ϵ) < λ, σ(∆myp − ν; ϵ) < λ}) ̸= 0. (7)

Now it is sufficient to show that if any ζ ∈ Y satisfying ψ(ζ − ν; ϵ) > 1 − λ, η(ζ − ν; ϵ) <

λ, η(ζ − ν; ϵ) < λ then ζ ∈ Γ
r(I)
st(ψ,η,σ)(∆

myp).

Suppose j ∈ {p ∈ N : ψ(∆myp − ν; ϵ) > 1− λ, η(∆myp − ν; ϵ) < λ, σ(∆myp − ν; ϵ) < λ} then

ψ(∆myj − ν; ϵ) > 1− λ, η(∆myj − ν; ϵ) < λ, σ(∆myj − ν; ϵ) < λ.

On the other side,

ψ (∆myj − ζ; r + ϵ) ≥ min {ψ (∆myj − ν; ϵ) , ψ (ζ − ν; r)}

> 1− λ,

η (∆myj − ζ; r + ϵ) ≤ max {η (∆myj − ν; ϵ) , η (ζ − ν; r)}

< λ

σ (∆myj − ζ; r + ϵ) ≤ max {σ (∆myj − ν; ϵ) , σ (ζ − ν; r)}

< λ

So, we have ψ (∆myj − ζ; r + ϵ) > 1− λ, η (∆myj − ζ; r + ϵ) < λ, σ (∆myj − ζ; r + ϵ) < λ.

Thus

j ∈ {p ∈ N : ψ(∆myp − ζ; r + ϵ) > 1− λ, η(∆myp − ζ; r + ϵ) < λ, σ(∆myp − ζ; r + ϵ) < λ}
which gives the inclusion

{p ∈ N : ψ(∆myp − ν; ϵ) > 1− λ, η(∆myp − ν; ϵ) < λ, σ(∆myp − ν; ϵ) < λ}

⊆ {p ∈ N : ψ(∆myp − ζ; r + ϵ) > 1− λ, η(∆myp − ζ; r + ϵ) < λ, η(∆myp − ζ; r + ϵ) < λ} .

Then

δI ({p ∈ N : ψ(∆myp − ν; ϵ) > 1− λ, η(∆myp − ν; ϵ) < λ, σ(∆myp − ν; ϵ) < λ})

≤ δI ({p ∈ N : ψ(∆myp − ζ; r + ϵ) > 1− λ, η(∆myp − ζ; r + ϵ) < λ, η(∆myp − ζ; r + ϵ) < λ}) .

Therefore, from (7),

δI ({p ∈ N : ψ(∆myp − ζ; r + ϵ) > 1− λ, η(∆myp − ζ; r + ϵ) < λ, σ(∆myp − ζ; r + ϵ) < λ}) ̸= 0.

Hence ζ ∈ Γ
r(I)
st(ψ,η,σ)(∆

myp).

Theorem 4.4. Let ∆my = (∆myp) be a generalized difference sequence in NNS Y =

(V, N,⊛, ⋄). and B(ρ, λ, r) = {∆my ∈ Y : ψ(∆my − ρ; r) ≥ 1 − λ, η(∆my − ρ; r) ≤
λ, σ(∆my − ρ; r) ≤ λ}, denotes the closure of the open ball B(ρ, λ, r) = {∆my ∈ Y :

ψ(∆my − ρ; r) > 1− λ, η(∆my − ρ; r) < λ, σ(∆my − ρ; r) < λ} for some r > 0 and 0 < λ < 1

with ρ ∈ Y then Γ
r(I)
st(ψ,η,σ)(∆

myp) =
⋃

ρ∈Γ I
st(ψ,η,σ)

(∆myp)

B(ρ, λ, r).
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Proof. Let ζ ∈
⋃

ρ∈Γ I
st(ψ,η,σ)

(∆myp)

B(ρ, λ, r) then there exists some ρ ∈ Γ Ist(ψ,η,σ)(∆
myp) for r >

0, and 0 < λ < 1 such that ψ(ρ− ζ; r) > 1− λ, η(ρ− ζ; r) < λ, σ(ρ− ζ; r) < λ.

As ρ ∈ Γ Ist(ψ,η,σ)(∆
myp) then there exists a set

M = {p ∈ N : ψ(∆myp − ρ; ϵ) > 1− λ, η(∆myp − ρ; ϵ) < λ, σ(∆myp − ρ; ϵ) < λ}

with δI(M) ̸= 0. For p ∈ M,

ψ (∆myp − ζ; r + ϵ) ≥ min {ψ (∆myp − ρ; ϵ) , ψ (ρ− ζ; r)}

> 1− λ,

η (∆myp − ζ; r + ϵ) ≤ max {η (∆myp − ρ; ϵ) , η (ρ− ζ; r)}

< λ

σ (∆myp − ζ; r + ϵ) ≤ max {σ (∆myp − ρ; ϵ) , σ (ρ− ζ; r)}

< λ.

This implies that

δI({p ∈ N : ψ(∆myp − ζ; r + ϵ) > 1− λ, η(∆myp − ζ; r + ϵ) < λ, σ(∆myp − ζ; r + ϵ) < λ}) ̸= 0.

Hence ζ ∈ Γ
r(I)
st(ψ,η,σ)(∆

myp). So,
⋃

ρ∈Γ I
st(ψ,η,σ)

(∆myp)

B(ρ, λ, r) ⊆ Γ
r(I)
st(ψ,η,σ)(∆

myp).

Conversely, Take ζ ∈ Γ
r(I)
st(ψ,η,σ)(∆

myp) if possible let ζ /∈
⋃

ρ∈Γ I
st(ψ,η,σ)

(∆myp)

B(ρ, λ, r) i.e. ζ /∈

B (ρ, λ, r) for all ρ ∈ Γ Ist(ψ,η,σ)(∆
myp).

Then for all ρ ∈ Γ Ist(ψ,η,σ)(∆
myp), we have ψ(ζ−ρ; r) ≤ 1−λ or η(ζ−ρ; r) ≥ λ or σ(ζ−ρ; r) ≥ λ.

According to theorem (4.3) for any arbitrary ρ ∈ Γ Ist(ψ,η,σ)(∆
myp), we have ψ(ζ − ρ; r) >

1 − λ, η(ζ − ρ; r) < λ, σ(ζ − ρ; r) < λ which is contradiction to our supposition. Hence ζ ∈⋃
ρ∈Γ I

st(ψ,η,σ)
(∆myp)

B(ρ, λ, r). Hence Γ
r(I)
st(ψ,η,σ)(∆

myp) ⊆
⋃

ρ∈Γ I
st(ψ,η,σ)

(∆myp)

B(ρ, λ, r). This completes

the proof.

Theorem 4.5. Let ∆my = (∆myp) be a generalized difference sequence in NNS Y =

(V, N,⊛, ⋄), Then for λ ∈ (0, 1) and r > 0,

(i) If ρ ∈ Γ Ist(ψ,η,σ)(∆
myp) then I − st(ψ,η,σ) − LIM r

∆myp
⊆ B (ρ, λ, r).

(ii) I − st(ψ,η,σ) − LIM r
∆myp

=
⋂

ρ∈Γ I
st(ψ,η,σ)

(∆myp)

B(ρ, λ, r) =

{
ξ ∈ Y : Γ Ist(ψ,η,σ)(∆

myp) ⊆ B (ξ, λ, r)
}
.

Proof. Let ξ ∈ I − st(ψ,η,σ) − LIM r
∆myp

and ρ ∈ Γ Ist(ψ,η,σ)(∆
myp)

For ϵ > 0 and λ ∈ (0, 1),
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Consider

G = {p ∈ N : ψ(∆myp − ξ; r + ϵ) > 1− λ, η(∆myp − ξ; r + ϵ) < λ, σ(∆myp − ξ; r + ϵ) < λ}

and

H = {p ∈ N : ψ(∆myp − ρ; ϵ) > 1− λ, η(∆myp − ρ; ϵ) < λ, σ(∆myp − ρ; ϵ) < λ}

with δI(Gc) = 0 and δI(H) ̸= 0 respectively. Now for p ∈ G ∩H,

ψ (ξ − ρ; r) ≥ min {ψ (∆myp − ρ; ϵ) , ψ (∆myp − ξ; r + ϵ)}

> 1− λ,

η (ξ − ρ; r) ≤ max {η (∆myp − ρ; ϵ) , η (∆myp − ξ; r + ϵ)}

< λ,

σ(ξ − ρ; r) ≤ max {σ(∆myp − ρ; ϵ), σ(∆myp − ξ; r + ϵ)}

< λ.

Thus ξ ∈ B (ρ, λ, r). Hence I − st(ψ,η,σ) − LIM r
∆myp

⊆ B (ρ, λ, r).

(ii) It follows from (i) part that I − st(ψ,η,σ) − LIM r
∆myp

⊆
⋂

ρ∈Γ I
st(ψ,η,σ)

(∆myp)

B(ρ, λ, r)

Take y ∈
⋂

ρ∈Γ I
st(ψ,η,σ)

(∆myp)

B(ρ, λ, r) then

ψ(y − ρ; r) ≥ 1 − λ, η(y − ρ; r) ≤ λ, σ(y − ρ; r) ≤ λ for all ρ ∈ Γ Ist(ψ,η,σ)(∆
myp). This implies

that Γ Ist(ψ,η,σ)(∆
myp) ⊆ B(y, λ, r) i.e.

⋂
ρ∈Γ I

st(ψ,η,σ)
(∆myp)

B(ρ, λ, r) ⊆ {ξ ∈ Y : Γ Ist(ψ,η,σ)(∆
myp) ⊆

B (ξ, λ, r)}.
Now assume y /∈ I − st(ψ,η,σ) − LIM r

∆myp
, then for λ ∈ (0, 1) and ϵ > 0, we have

δI({p ∈ N : ψ(∆myp−y; r+ϵ) ≤ 1−λ or η(∆myp−y; r+ϵ) ≥ λ or σ(∆myp−y; r+ϵ) ≥ λ}) ̸= 0.

It means there exists some I-statistical cluster point ρ for the sequence ∆my = (∆myp) with

ψ(y − ρ; r + ϵ) ≤ 1− λ or η(y − ρ; r + ϵ) ≥ λ or σ(y − ρ; r + ϵ) ≥ λ.

Thus Γ Ist(ψ,η,σ)(∆
myp) ⊈ B(y, λ, r) and y /∈ {ξ ∈ Y : Γ Ist(ψ,η,σ)(∆

myp) ⊆ B(ξ, λ, r)}
Hence {ξ ∈ Y : Γ Ist(ψ,η,σ)(∆

myp) ⊆ B (ξ, λ, r)} ⊆ I − st(ψ,η,σ) − LIM r
∆myp

And
⋂
ρ∈Γ I

st(ψ,η)
(∆myp)

B (ρ, λ, r) ⊆ I − st(ψ,η,σ) − LIM r
∆myp

.

So, I − st(ψ,η,σ) − LIM r
∆myp

=
⋂

ρ∈Γ I
st(ψ,η,σ)

(∆myp)

B(ρ, λ, r) = {ξ ∈ Y : Γ Ist(ψ,η,σ)(∆
myp) ⊆

B(ξ, λ, r)}.

Theorem 4.6. Let ∆my = (∆myp) is ideal statistically convergent to ρ in NNS Y =

(V, N,⊛, ⋄), then B (ρ, λ, r) = I − st(ψ,η,σ) − LIM r
∆myp

.
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Proof. Since (∆myp) is ideal statistically convergent to ρ w.r.t.the norms (ψ, η) i.e.

(∆myp)
I−st(ψ,η,σ)−−−−−−−→ ρ, then by definition

A =

{
n :

1

n
|{p ≤ n : ψ(∆myp − ρ; ϵ) ≤ 1− λ or η(∆myp − ρ; ϵ) ≥ λ or σ(∆myp − ρ; ϵ) ≥ λ}| > δ

}
∈ I.

Take G = N \ A, as non-empty set then for p ∈ Gc,

1

n
|{p ≤ n : ψ(∆myp − ρ; ϵ) ≤ 1− λ or η(∆myp − ρ; ϵ) ≥ λ or σ(∆myp − ρ; ϵ) ≥ λ}| < δ

⇒ 1

n
|{p ≤ n : ψ(∆myp − ρ; ϵ) > 1− λ, η(∆myp − ρ; ϵ) < λ, σ(∆myp − ρ; ϵ) < λ}| ≥ 1− δ.

Put Bn = {p ≤ n : ψ (∆myp − ρ; ϵ) > 1− λ, η (∆myp − ρ; ϵ) < λ, σ (∆myp − ρ; ϵ) < λ} for j ≥
m.

Now for j ∈ Bn, we have ψ (∆myj − ρ; ϵ) > 1− λ, η (∆myj − ρ; ϵ) < λ, σ (∆myj − ρ; ϵ) < λ.

Let y ∈ B (ρ, λ, r). We will prove y ∈ I − st(ψ,η,σ) − LIM r
∆myp

ψ(∆myj − y; r + ϵ) ≥ min {ψ(∆myj − ρ, ϵ), ψ(y − ρ, r)}

> 1− λ

η(∆myj − y; r + ϵ) ≤ max {η(∆myj − ρ, ϵ), η(y − ρ, r)}

< λ

σ(∆myj − y; r + ϵ) ≤ max {σ(∆myj − ρ, ϵ), σ(y − ρ, r)}

< λ.

Hence Bn ⊂ {p ∈ N : ψ(∆myp−y; r+ϵ) > 1−λ, η(∆myp−y; r+ϵ) < λ, σ(∆myp−y; r+ϵ) < λ},
which gives:

1−δ ≤ |Bn|
n ≤ 1

n |{p ≤ n : ψ(∆myp−y; r+ϵ) > 1−λ, η(∆myp−y; r+ϵ) < λ, σ(∆myp−y; r+ϵ) <
λ}|.
Therefore,

1

n
|{p ≤ n : ψ(∆myp − y; r + ϵ) ≤ 1− λ or η(∆myp − y; r + ϵ) ≥ λ

or σ(∆myp − y; r + ϵ) ≥ λ}| < 1− (1− δ) = δ.

Then {
n ∈ N :

1

n
|{p ≤ n : ψ(∆myp − y; r + ϵ) ≤ 1− λ or η(∆myp − y; r + ϵ) ≥ λ

or σ(∆myp − y; r + ϵ) ≥ λ}| ≥ δ} ⊂ A ∈ I.

i.e. y ∈ I − st(ψ,η,σ) − LIM r
∆myp

in NNS Y = (V,N,⊛, ⋄).
Hence B (ρ, λ, r) ⊆ I − st(ψ,η,σ) − LIM r

∆myp
. Also I − st(ψ,η,σ) − LIM r

∆myp
⊆ B (ρ, λ, r)

Hence, I − st(ψ,η,σ) − LIM r
∆myp

= B (ρ, λ, r).
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Theorem 4.7. Let ∆my = (∆myp) be a generalized difference sequence in NNS Y =

(V, N,⊛, ⋄), which is ideal statistically convergent to ξ then Γ
r(I)
st(ψ,η,σ)(∆

myp) = I − st(ψ,η,σ) −
LIM r

∆myp
.

Proof. Firstly, Assume yp
I−st(ψ,η,σ)−−−−−−−→ ξ, which gives Γ

r(I)
st(ψ,η,σ)(∆

myp) = {ξ}. Then for r >

0 and λ ∈ (0, 1) by Theorem (4.4) , we have Γ
r(I)
st(ψ,η,σ)

(∆myp) = B (ξ, λ, r). Also from Theorem

(4.6), B (ξ, λ, r) = I − st(ψ,η,σ) − LIM r
∆myp

.

Hence Γ
r(I)
st(ψ,η,σ)(∆

myp) = I − st(ψ,η,σ) − LIM r
∆myp

.

Conversely, Assume Γ
r(I)
st(ψ,η,σ)(∆

myp) = I − st(ψ,η,σ) − LIM r
∆myp

, then by Theorem (4.4) and

(4.5)(ii), ⋂
ξ∈Γ I

st(ψ,η,σ)
(∆myp)

B (ρ, λ, r) =
⋃

ξ∈Γ I
st(ψ,η,σ)

(∆myp)

B (ρ, λ, r)

This is possible only if either Γ Ist(ψ,η,σ)(∆
myp) = ϕ or Γ Ist(ψ,η,σ)(∆

myp) is a singlton set.

Then I − st(ψ,η,σ) − LIM r
∆myp

=
⋂
ρ∈Γ I

st(ψ,η,σ)
(∆myp)

B (ρ, λ, r) = B (ξ, λ, r) for some ξ ∈
Γ Ist(ψ,η,σ)(∆

myp). Also, By Theorem (4.4), I − st(ψ,η,σ) − LIM r
∆myp

= ξ.

Conclusions

The present work is more generalized than rough statistical convergence for difference se-

quences on NNS defined by Kişi and Yildil [27]. For this type of convergence various properties

like statistical boundness, algebraic properties, closedness, convexity and relationship between

limit points and cluster points have been obtained. Further this type of convergence can be

investigated for double sequences, triple sequences in various sapces like Iintuitionistic fuzzy

normed spaces, probablistic norm spaces or neutrosophic normed spaces.
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Abstract. This paper presents a thorough assessment and classification of different uncertain environments

used by researchers to analyze inventory management(IM) systems across various sectors, such as ABC anal-

ysis, Last In, First Out (LIFO), and batch tracking. Moreover, it introduces the concepts of the neutrosophic

principle and fuzzy principle in inventory management. it also investigates the difficulties associated with the

traditional inventory model. The primary focus of the study lies in inventory management under the Neu-

trosophic principle, specifically addressing uncertain demand and imprecise data. By shedding light on the

potential of neutrosophic principle, this manuscript contributes valuable insights into overcoming the challenges

posed by fuzzy models and enhancing decision-making in the realm of inventory control system.

Keywords: Supply chain; Trapezoidal fuzzy number(TpFN); Fuzzy economic order quantity (FEOQ); Trape-

zoidal Neutrosophic number(TpNN); Neutrosophic inventory management(NIM).

1. Introduction

An inventory control system is a mathematical algorithm used to optimize inventory levels

for businesses and organizations. It considers factors such as carrying cost, stock out cost, de-

mand, lead time, and ordering costs to determine the most suitable inventory levels. Ronald H.

Ballou defines inventory models as quantitative models that determine the appropriate order

quantities, timing of orders, and safety stock levels for specific inventory items or sets of items.

Notable studies in the field of inventory control models have made significant contributions.In

1996, Song and Zipkin [1] introduced a model incorporating a Markovian representation of

the supply system. Feng and Xiao [2], in 2001, focused on enhancing airline seat inventory

Ankit Dubey; A Dey; S Broumi; R Kumar; A Survey on Neutrosophic Principles for Inventory Management
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control through a dynamic model and optimal policy approach. Levi et al. (2007) [3] presented

sampling-based policies that provided provable near-optimality for stochastic inventory control

models. In 2011, Che-Fu Hsueh [4] conducted research to examine inventory control policies

within a manufacturing/remanufacturing system across the entire product life cycle. Lastly,

Zhou et al. (2013) [5] proposed a comprehensive inventory control model that integrated mul-

tiple products and echelons, along with a joint replenishment strategy. These studies have

offered valuable insights into the development and improvement of inventory control policies

and systems.

After examining the problem of classical inventory, it has become clear that there are many

problems that cannot be solved. That is why in 1965, Zadeh [6] introduced fuzzy logic. Fuzzy

set is a mathematical framework for handling uncertainty and vagueness. In 1988, Dubois and

Parade [7] proposed a model of IM that handles uncertainty. Section 3 explains how uncer-

tainty is handled in inventory management. Table 1 and Figure 1 provide a summary of the

significant contributions to understanding the FIM.

Table 1. Represents the impact of uncertainty in Inventory Control Models.

Authors Year Application

and Environ-

ment

Contribution

Paksoy and Pehli-

van [8]

2013 Application: Sup-

ply Chain Envi-

ronment: TpFN

A fuzzy linear programming model

is proposed for optimizing multi-

stage supply chain networks by in-

corporating triangular and trape-

zoidal membership functions.

Ran-

ganathan and

Thirunavukarasu

[9]

2014 Application: ICM

for fixed deteri-

oration Environ-

ment: TpFN

A fuzzy environment ICM for man-

aging constant deterioration.

Sadeghi et

al. [10]}
2016 Application:

MIEPQM Envi-

ronment: TpFN

Two tuned meta-heuristics for op-

timizing the MIEPQM with trape-

zoidal fuzzy demand and backorder-

ing.

Continued on next page
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Table 1 – Continued from previous page

Authors Year Application

and Environ-

ment

Contribution

Singh and Singh

[11]

2016 Application: Ven-

dor and Buyers

Problem Environ-

ment: TpFN

A relationship model between ven-

dors and buyers for deteriorat-

ing items, incorporating shortages,

fuzzy trapezoidal costs, and infla-

tion.

This manuscript displays different applications and methodologies of fuzzy inventory control

in below Figure 1.

Figure 1. Represent the different applications involved in FIM

In our ongoing investigation, we examined the unique characteristics of fuzzy logic and found

that some challenges are important to know. Our goal is to deliver valuable understandings
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of different methods that are commonly associated with IM. We will focus on important as-

pects of IM in fuzzy extension scenarios. We aim to assist academics in developing a deep

understanding of NIM. Additionally, our manuscript surveys crucial aspects of NIM compre-

hensively. Moreover, we explore the existence of and challenges of IM that are associated with

uncertainty. These challenges include ABC analysis [12], First In, First Out (FIFO) [13], and

safety stock [14].

The introduction of this research article lays the groundwork for a comprehensive exploration

of fuzzy theory and neutrosophic theory in the context of inventory management. In section 2,

we established important definitions related to fuzzy theory, while section 3 shed light on the

challenges of the FIM. Moving to section 4, we introduced the key concepts of neutrosophic

theory, and specifically in section 4.1, we examined its practical application. In section 5,

we delved into IM under the neutrosophic principle, and finally, in section 6, we arrived at

the conclusion of our investigation in IM within neutrosophic environments. The forthcoming

sections offer a comprehensive analysis of the application and implications of these theories

in inventory management, opening new avenues for addressing uncertainties and enhancing

decision-making processes in complex supply chain scenarios.

1.1. List of Abbreviations are as follows:

FIM stands for “Fuzzy Inventory Management”.

ICM stands for “Inventory Control Model”.

NTN stands for “Neutrosophic Triangular Number”.

PSAOIM stands for “Particle Swarm Algorithm to optimize inventory management”.

PIM stands for “Production Inventory Model”.

ITFN stands for “Intuitionistic Triangular Fuzzy Number”.

MIEPQM stands for “Multi-item Economic Production Quantity Model”.

IVTNN stands for “Interval Valued Trapezoidal Neutrosophic Number”.

2. Some Important Definitions Related to Fuzzy Theory

Definition 2.1. [6] Fuzzy Set: As per the Zedah’s definition, The set f̃ is illustrated as f̃ ={(
ψ, µ

f̃
(ψ)
)

: ψ ∈ f, µ
f̃
(ψ) ∈ [0, 1]

}
and generally denoted by the ordered pair

(
ψ, µ

f̃
(ψ)
)

,

here ψ ∈ f be the crisp set and µ
f̃
(ψ) ∈ [0, 1]; such that 0 ≤ µ

f̃
(ψ) ≤ 1, f̃ is termed as the

fuzzy set.

Definition 2.2. [15] Intuitionistic Fuzzy set (IFS): A set ĨFS , denoted as ĨFS =

{〈δ; [τ(δ), γ(δ)]〉 : δ ∈ ϕ} can be represented graphically as a membership function where

τ(δ), γ(δ) : ϕ → [0, 1]the truth membership function is denoted byτ(δ) and the false
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membership function is denoted by γ(δ). The condition for the set τ(δ), γ(δ) to satisfy

0 ≤ τ(δ) + γ(δ) ≤ 1

Definition 2.3. [16] Trapezoidal Fuzzy Number (TpFN): A trapezoidal fuzzy number T̃F can

be illustrated as (jn1 , jn2 , jn3 , jn4)shown in Figure.2 with the membership function µ
T̃ F

as

follows (ref Figure 2.)

υ
T̃ F

(ϕ) =



ϕ− jn1

jn2 − jn1

, jn1 ≤ ϕ ≤ jn2 ;

1, jn2 ≤ ϕ ≤ jn3 ;

jn4 − ϕ
tf4 − tf3

, jn3 ≤ ϕ ≤ jn4 ;

0, Otherwise

where jn1 , jn2 , jn3 , jn4 ∈ R

Figure 2. Figure 2:Trapezoidal Fuzzy Number

Definition 2.4. [17] Trapezoidal Intuitionistic Fuzzy Number (TpIFN):LetT̃ pIF =〈(
[t, u, v, w] ; τ

T̃ pIF

)
,
(

[u1, r, s, w1]; γT̃ pIF

)〉
has a non-membership γ

T̃ pIF
(ϕ), and a member-

ship τ
T̃ pIF

(ϕ) functions as follows (ref Figure3):

τ
T̃ pIF

(ϕ) =



(ϕ− t)
(n− q)

τ
T̃ pIF

, t ≤ ϕ ≤ u;

τ
T̃ pIF

, u ≤ ϕ ≤ v;

(w − ϕ)

(w − v)
τ
T̃ pIF

, v < ϕ ≤ w;

0, Otherwise.
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, γ
T̃ pIF

(ϕ) =



(u− ϕ) + ν
ĨTF

(ϕ− t1)
(u−m1)

γ
T̃ pIF

, t ≤ ϕ ≤ u;

γ
T̃ pIF

, n ≤ ϕ ≤ v;

(ϕ− v) + ν
T̃ pIF

(w1 − ϕ)

(w1 − o)
γ
T̃ pIF

, v < ϕ ≤ w;

0, Otherwise.

Where 0 ≤ τ
T̃ pIF

(δ) ≤ 1; 0 ≤ γ
T̃ pIF

(δ) ≤ 1; and τ
T̃ pIF

+ γ
T̃ pIF

≤ 1; t, u, v, w ∈ R.

Definition 2.5. [18] α-cut: α-cut of Ã
−

= (aa1, a
n
2 , a

k
3, a

i
4) is

A(α) = [AL(α), AR(α)]Where,AL(α) = aa1 + (an2 − aa1) & , AR(α) = ai4 − (ai4 − ak3)α

Definition 2.6. [18] Arithmetical operation in fuzzy Environment : Let Ã
−

=(
ãa1, ã

n
2 , ã

k
3, ã

i
4

)
andB̃

−
=
(
b̃a1, b̃

n
2 , b̃

k
3, b̃

i
4

)
are two Trapezoidal Neutrosophic numbers, then,

Ã
−
⊕ B̃

−
=
(
ãa1 + b̃a1, ã

n
2 + b̃n2 , ã

k
3 + b̃k3, ã

i
4 + b̃i4

)
.

Ã
−
⊗ B̃

−
=
(
ãa1 b̃

a
1, ã

n
2 b̃

n
2 , ã

k
3 b̃

k
3, ã

i
4b̃

i
4

)
α⊗ Ã

−
=
(
αãa1, αã

n
2 , αã

k
3, αã

i
4

)
, α ≥ 0

α⊗ Ã
−

=
(
αãi4, αã

k
3, αã

n
2 , αã

a
1

)
, α < 0

Figure 3. Trapezoidal Fuzzy Number

In Section 2, we presented several crucial definitions related to fuzzy theory. As we are

aware, fuzzy inventory models involve various parameters, such as demand, holding cost,

ordering cost, and others, which are incapable of managing uncertainties. Consequently, it

becomes necessary to confront certain challenges. In the forthcoming Section 3, we intend to

discuss these challenges in detail.
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3. Challenges of the FIM

The FIM is a technique designed to handle the variability and uncertainty in supply and de-

mand. Sometimes, things are not clear or certain. Fuzzy theory is a way to deal with that, but

it is not enough. Fuzzy theory alone fails to solve uncertainty, imprecise and vagueness. So,

some people came up with new ideas to improve fuzzy theory. These ideas are called extended

fuzzy theories i.e., Intuitionistic theory by Atanassov in 1986 [15], Neutrosophic theory [19] by

Smarandche in 1990, and Pythagorean theory by Yager in 2013 [20]. The next paragraph will

explain more about these ideas.

4. Important Definitions, and Introduction Related to Neutrosophic Environment

This section discusses important definitions, preliminaries and applications related to Neu-

trosophic logic. It also highlights some applications of Neutrosophic Inventory Models (NIM).

Definition 4.1. [21] Trapezoidal Neutrosophic number (TpNNs): Let N be a TpNNs in the

set of real numbers with the truth, falsity and indeterminacy membership functions are defined

by

TN (ω) =



(ω − p)tN
q − p

, p ≤ ω < q

tN ,q ≤ ω ≤ r

(s− ω)tN
s− r

, r < ω ≤ s

0 ,otherwise


, IN (ω) =



q − ω + (ω − p)iN
q − p

, q > ω ≥ p

iN ,q ≤ ω ≤ r

ω − c+ (d− ω)tN
s− r

, r < ω ≤ s

0 ,otherwise



, and FN (ω) =



(ω − p)fN + p− ω
q − p

, p ≤ ω < q

fN ,q ≤ ω ≤ r

ω − r + (s− ω)fN
s− r

, r < ω ≤ s

0 ,otherwise


Where iN =

[
iL, iU

]
⊂ [0, 1] ,fN =

[
fL, fU

]
⊂ [0, 1], and tN =

[
tL, tU

]
⊂ [0, 1] are interval

numbers. Then the number N can be denoted by
(
[p, q, r, s] ; [iL, iU ], [fL, fU ], [tL, tU ]

)
and is

called IVTNN.

Definition 4.2. [22] : Let Td̃, Id̃, Fd̃ ∈ [0, 1], then a SVTpN numberd̃ =〈[
d̃a, d̃s, d̃h, d̃o

]
, (Td̃, Id̃, Fd̃)

〉
is a special Ns on the real number set R, whose truth-MF ψd̃(x),

falsity-MF ζd̃(x), and indeterminacy-MF ξd̃(x) are given as follows:
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ψd̃(x) =



Td̃(x− d̃a)

(d̃s − d̃a)
, d̃a ≤ x ≤ d̃s

Td̃, d̃
s ≤ x ≤ d̃h

Td̃(d̃o − x)

(d̃o − d̃h)
, d̃h ≤ x ≤ d̃o

0, otherwise


, ξd̃(x) =



(d̃s − x+ Id̃(x− d̃a))

(d̃s − d̃a)
, d̃a ≤ x ≤ d̃s

Id̃, d̃
s ≤ x ≤ d̃h

(x− d̃h + Id̃(d̃o − x))

(d̃o − d̃h)
, d̃h ≤ x ≤ d̃o

1, otherwise


,and

ζd̃(x) =



(d̃s − x+ Fd̃(x− d̃a))

(d̃s − d̃a)
, d̃a ≤ x ≤ d̃s

Fd̃, d̃
s ≤ x ≤ d̃h

(x− d̃h + Fd̃(d̃o − x))

(d̃o − d̃h)
, d̃h ≤ x ≤ d̃o

1, otherwise


4.1. The Application of the Neutrosophic Principle in Inventory management

Neutrosophic principles exhibit a broad spectrum of applications spanning across diverse

sectors and domains. Presented in Table 2 is a comprehensive overview of the notable pro-

gressions in Neutrosophic principle, highlighting their multifarious implementations in various

fields.

Table 2. Comprehensive overview in inventory management under neutro-

sophic environment.

Authors Year Environment Application Contribution

Mullai and

Surya [23]

2018 TpNN Economic Order

Quantity (EOQ)

To presents the develop-

ment of an IM with a

price break, utilizing an

EOQ approach.

Sarma et al.

[24]

2019 TpNN Disaster Manage-

ment

Cost minimization in

disaster management

under uncertainty using

TpNN necessitates

redistribution.

Continued on next page
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Table 2 – Continued from previous page

Authors Year Environment Application Contribution

Martin et

al. [25]

2020 TpNN Production Man-

agement

To presents a revised

PIM that explores

the transition towards

a smart production

process.

Bhavani et

al. [26]

2022 TpNN PSAOIM To introduces a restruc-

tured inventory system

with a neutrosophic

cost pattern, incorpo-

rating novel demand

considerations such

as deterioration and

discounts on defective

items. The proposed

system employs a

PSOOIM.

Sugapriya

et al. [27]

2022 TpNN Power Demand

Patterns

A two-warehouse sys-

tem is proposed for

managing TpNN dis-

parate and expeditious

deteriorate items with

power demand.

This article features Figure 3, which illustrates the vital components and processes of Neu-

trosophic Principle in a visually engaging manner. This graphical representation facilitates

readers’ understanding of the concepts discussed and offers a practical view of how Neu-

trosophic Principle operates. Furthermore, Figure 3 seamlessly integrates Table 2 for easy

reference.

The main objective of this table 2 is to show that fuzzy isn’t the only way to handle uncer-

tainty. There are other methods, like Neutrosophic principles, that can give better and more

precise solution. These methods are becoming more popular in many areas and applications.

However, due to limitations, it is impractical to extensively discuss all these mentioned appli-

cations within this paper. So, we’ll focus on how the Neutrosophic theory affects inventory

management.
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Figure 4. This illustrates the various applications and environments associ-

ated with Neutrosophic Principle.

5. The Inventory Management under the Neutrosophic Principle

Supply Chain is a complex decision-making problem with conflicting objectives in various

supply chain operations and their corresponding sub-criteria. Haq et al. (2021) [28] aims to de-

velop a model that incorporates key components of real-world supply chain planning. Haq et al.

(2021) [28] propose a supply chain model that involves multiple suppliers, plants, warehouses,

and distributors. This approach addresses the challenges of a complex multi-site composite

supply chain problem under uncertainty by utilizing a fuzzy multi-objective model. Haq et al.

(2021) primary objective is to optimize transportation cost and delivery time concurrently. To

Ankit Dubey; A Dey; S Broumi; R Kumar, A Survey on Neutrosophic Principles for
Inventory Management Problem



Neutrosophic Sets and Systems, Vol. 68, 2024 321

handle the ambiguity inherent in the supply chain, Haq et al. (2021) [28] employ neutrosoph-

ical set theory, using falsity, indeterminacy, and truth membership functions. Additionally, a

neutrosophical compromise programming approach is employed to obtain the desired solution.

To showcase the effectiveness of authors models, Haq et al. (2021) [28] present an industrial

design problem. The reported findings are compared against other well-known approaches.

Suresh et al. (2021) [29] explores the application of the Euclidean Distance measure in frame

centroid-based ranking for NTFN and NTpFN. The effectiveness of the model is demonstrated

through an illustrative example of a multi-criteria decision-making (MCDM) problem in the

Neutrosophic fuzzy environment. The proposed ranking approach offers a solution to various

decision-making and optimization problems characterized by uncertainty.

Mondal et al. (2021) [30] looked at a system for managing inventory of seasonal products.

These products have changing demand rates and partial backordering in a viable market.

The Weibull distribution shows the seasonality and versatility of these products. Weibull dis-

tribution deterioration rates, fully permissible payment delays, and partial backordering are

considered in this paper. The proposed EOQ model is optimized using the neutrosophic set

which quatifies imprecise information in real-life senarios. The study suggests reducing ex-

penses on early promotions to lessen demand fluctuations at the start of the cycle. It also

shows that the best time to deplete inventory depends on the demand during shortages within

a neutrosophic environment.

Lakshmi et al. (2022) [31] The purpose of this manuscript is to present a TpN approach

for dealing with the logarithmic demand model involving shortage of deteriorating items.

The vendor determines the order placement for customers based on stock availability. The

logarithmic demand model is applied to multiple products and takes into account the shortage

of items initially. Additionally, a practical example is provided to demonstrate the extraction

of optimal values and the attainment of valuable and effective results.

Conclusion

This manuscript provides a comprehensive assessment and classification of uncertain situ-

ations used in IM systems across diverse areas. By recognizing the limitations of traditional

inventory models, the study presents the concepts of the neutrosophic and fuzzy principle

as alternative approaches in inventory management. This manuscript focused on how the

Neutrosophic principle can help manage inventory, especially when dealing with uncertain de-

mand and imprecise data. Our research highlights the potential of the neutrosophic theory
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to improve decision-making in inventory management by overcoming the limitations of fuzzy

models. This study contributes valuable insights and paves the way for future research in this

field.
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Abstract. In this paper, we have presented rough statistical convergence of sequence on neutrosophic normed

spaces as an important convergence criterion. As neutrosophication can handle partially dependent compo-

nents, partially independent components and even independent components involved in real-world problems.

By examining some properties related to rough convergence in these spaces we provide some useful functional

tools in the situations of inconsistency and indeterminacy in the real world. Further, we have established some

equivalent conditions on the set of statistical limit points as well as on the set of cluster points in these spaces

for rough statistically convergent sequences.

Keywords: Neutrosophic normed space; statistical convergence; rough convergence, rough statistical conver-

gence

—————————————————————————————————————————-

1. Introduction

It has been seen that new quests are revealing in the real-life problems with time. So many

methods are already existing, and researchers are still investigating new variants for existing

and future problems. In modern logic, the three-way decision situations like from accept-

ing/rejecting/pending, from yes/no/not-applicable, from sports win/lose/tie etc. the standard

analysis is not sufficient, which leads to employ non-standard analysis. Smarandache [36–38]

provided neutrosophic sets with regard to the powerful advancement of the intuitionistic fuzzy

sets, that established the concept for the classic sets, fuzzy sets, vague sets etc., for non-

standard analysis. The conception of neutrosophic set can manage the indeterminate data of

the problem whereas the impression of fuzzy set theory as well as intuitionistic fuzzy set the-

ory are not able to provide solution when the relation is indeterminate. Neutrosophic sets are
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providing the ideas to solve real-life situations where indeterminacy occurs like Databases [4],

Image processing problems [15], Control theory [1], Medical diagnosis problems [2], Decision

making problems [19], and so on.

As every element of the neutrosophic set has a truth value, a false value and an indeter-

minacy value respectively, which lies in the non-standard unit interval. Due to this nature

neutrosophic is more adjustable and efficient tool because of its ability to handle, not only the

free components of information but also partially independent and dependent information. In

neutrosophic set elements may have inconsistent information (i.e. sum of the components > 1)

or incomplete information (i.e. sum of the components < 1) or consistent information (i.e. sum

of the components = 1), and other interval-valued components (i.e. without any restriction on

the sum of superior or inferior components).

Definition 1.1. [36] Let U be a subset of X (which is space of points) with a ∈ X. Then set

U with τ(a), υ(a) and η(a) in X is called neutrosophic set(NS) and expressed as

U = {< a, τ(a), υ(a), η(a) > : a ∈ X, τ(a), υ(a), η(a) ∈ I}

where τ(a), υ(a) and η(a) denotes truth membership, indeterminacy membership and falsity

membership functions respectively such that 0− ≤ τ(a) + υ(a) + η(a) ≤ 3+. Also I = ]0−, 1+[

represents some non-standard unit interval.

However, Wang et al. [41] and Ye [42] have customized the existing definition for neu-

trosophic sets by suggesting the structure of single-valued neutrosophic sets and simplified

neutrosophic sets respectively using the interval [0, 1], that can be utilized in engineering and

scientific applications.

Later, Mahapatra and Bera [9] studied the notion of neutrosophic soft linear spaces. Kirişci

and Şimşek [20] has introduced neutrosophic metric spaces and established its basic character-

istic properties like open ball, compactness, completeness and nowhere dense. Further, Kirişci

and Şimşek [21] presented the idea of neutrosophic normed spaces as a notable consideration

of neutrosophic metric spaces. Further, required basic terms related to neutrosophic normed

spaces are elaborated as below:

Definition 1.2. [35] A continuous t-norm is the mapping ⊛ : [0, 1]× [0, 1] → [0, 1] such that

(i) ⊛ is continuous, associative, commutative and with identity 1,

(ii) a1 ⊛ b1 ≤ a2 ⊛ b2 whenever a1 ≤ a2 and b1 ≤ b2, for a1, a2, b1, b2 ∈ [0, 1].

Definition 1.3. [35] A continuous t-conorm is the mapping ⊙ : [0, 1] × [0, 1] → [0, 1] such

that

(i) ⊙ is continuous, associative, commutative and with identity 0,

(ii) a1 ⊙ b1 ≤ a2 ⊙ b2 whenever a1 ≤ a2 and b1 ≤ b2, for a1, a2, b1, b2 ∈ [0, 1].
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Definition 1.4. [21] A neutrosophic normed space(NNS) is 4-tuple (X,ℵ,⊛,⊙) with vec-

tor space X, continuous t-norm ⊛, continuous t-conorm ⊙ and normed space ℵ = {<
τ(a), υ(a), η(a) > : a ∈ X} such that ℵ : X× R+ → [0, 1], if for each x, y ∈ X and s, t > 0, we

have

(i) 0 ≤ τ(x, t), υ(x, t), η(x, t) ≤ 1,

(ii) τ(x, t) + υ(x, t) + η(x, t) ≤ 3,

(iii) τ(x, t) = 1, υ(x, t) = 0 and η(x, t) = 0 for t > 0 iff x = 0,

(iv) τ(x, t) = 0, υ(x, t) = 1 and η(x, t) = 1 for t ≤ 0,

(v) τ(αx, t) = τ
(
x, t

|α|

)
, υ(αx, t) = υ

(
x, t

|α|

)
and η(αx, t) = η

(
x, t

|α|

)
for α ̸= 0,

(vi) τ(x, ◦) is continuous non-decreasing function,

(vii) τ(x, s)⊛ τ(x, t) ≤ τ(x+ y, s+ t),

(viii) υ(x, ◦) is continuous non-increasing function,

(ix) υ(x, s)⊙ υ(y, t) ≥ υ(x+ y, s+ t),

(x) η(x, ◦) is continuous non-increasing function,

(xi) η(x, s)⊙ η(y, t) ≥ η(x+ y, s+ t),

(xii) lim
t→∞

τ(x, t) = 1, lim
t→∞

υ(x, t) = 0 and lim
t→∞

η(x, t) = 0.

Then (τ, υ, η) is known as neutrosophic norm.

Example 1.5. [21] Let (X, ∥ . ∥) be any normed space. For every t > 0 and all x ∈ X, take
(i) τ(x, t) = t

t+∥x∥ , υ(x, t) = ∥x∥
t+∥x∥ and (x, t) = ∥x∥

t when t > ∥x∥,
(ii) τ(x, t) = 0, υ(x, t) = 1 and (x, t) = 1 when t ≤ ∥x∥.
Also, a⊛ b = ab and a⊙ b = a+ b− ab ∀ a, b ∈ [0, 1].

Then, 4-tuple (X,ℵ,⊛,⊙) is a NNS which satisfies above mentioned conditions.

A generalized version of intuitionistic fuzzy norms is considered in neutrosophic normed

spaces that help to explore the basic properties like convergence and completeness in such

spaces using continuous and bounded linear operators. Omran and Elrawy [30] have discussed

the continuous operators along with bounded operators in the setting of neutrosophic normed

spaces. Also, Khan and Khan [16] studied the various topological characterization of such

spaces. Further, Kirişci and Şimşek [21] have established sequence convergence on neutrosophic

normed spaces as given below.

Definition 1.6. [21] Let (X,ℵ,⊛,⊙) be a NNS with neutrosophic norm (τ, υ, η). A sequence

x = {xk} in X is called convergent to ξ ∈ X with respect to neutrosophic norm (τ, υ, η) if for

every ϵ > 0 and t > 0 we can find k0 ∈ N provided τ(xk − ξ, t) > 1 − ϵ, υ(xk − ξ, t) < ϵ and

η(xk − ξ, t) < ϵ for k ≥ k0. It is convenient to represent symbolically by (τ, υ, η)- lim
k→∞

xk = ξ

or xk
(τ,υ,η)−−−−→ ξ.

R. Antal, M. Chawla and V. Kumar, On Rough Statistical Convergence in Neutrosophic
Normed Spaces

Neutrosophic Sets and Systems, Vol. 68, 2024                                                                             326

𝜂 

𝜂 



Remark 1.7. Let (X, ∥ . ∥) be any normed space. For every t > 0 and all x ∈ X, take
(i) τ(x, t) = t

t+∥x∥ , υ(x, t) = ∥x∥
t+∥x∥ and (x, t) = ∥x∥

t when t > ∥x∥,
(ii)τ(x, t) = 0, υ(x, t) = 1 and (x, t) = 1 when t ≤ ∥x∥.
Also, a⊛ b = ab and a⊙ b = a+ b− ab ∀ a, b ∈ [0, 1].

Then, 4-tuple (X,ℵ,⊛,⊙) is a NNS.

Also, xk
(τ,υ,η)−−−−→ x if and only if xk

∥.∥−−→ x.

Also Kirişci and Şimşek [21] have established the statistical convergence for sequences on

neutrosophic normed spaces with natural density. Although, natural density of set A, where

A ⊆ N, has given by δ(A) = lim
n→∞

1

n
| {a ≤ n : a ∈ A} |, provided limit exists, where | . |

designates the order of the enclosed set. Further, sequence x = {xk} converges statistically to

ξ, if A(ϵ) = {k ∈ N : |xk − ξ| > ϵ} has zero natural density (see [14]).

Definition 1.8. [21] Let (X,ℵ,⊛,⊙) be a NNS with neutrosophic norm (τ, υ, η). A sequence

x = {xk} in X is called statistically convergent to ξ ∈ X with respect to neutrosophic norm

(τ, υ, η) if for every ϵ > 0 and t > 0, we have

δ({k ∈ N : τ(xk − ξ, t) ≤ 1− ϵ or υ(xk − ξ, t) ≥ ϵ, η(xk − ξ, t) ≥ ϵ}) = 0.

It is convenient to represent symbolically by St(τ,υ,η) − lim
k→∞

xk = ξ or xk
St(τ,υ,η)−−−−−→ ξ .

Some remarkable results on the theory of neutrosophic normed spaces and statistical conver-

gence on the framework of neutrosophic normed spaces have been studied in different aspects

(c.f. [8, 10, 16–18, 22, 23, 23, 25, 34, 39]). This convergence concept can also be further studied

in different directions as this theory has a basic function in so many areas of mathematics,

economics, science and technology. In this paper we associate this theory with the rough

convergence of sequences.

The concept of rough convergence deals with the approximate solution of any real-life situ-

ation from the numerical point of view. It helps to verify the correctness of solutions obtained

from the computer programs and to draw conclusions from scientific experiments. The rough

convergence has been initially introduced by Phu [32] as an interesting generalization of usual

convergence for the sequences on finite-dimensional normed linear spaces, and later suggested

on infinite-dimensional normed linear spaces [33]. Apart from defining the idea of rough

convergence, he also contributed towards the properties like closeness and convexity of the

rough limit set.

Definition 1.9. [32] A sequence x = {xk} in a normed linear space (X, ∥ . ∥) is called rough

convergent to ξ ∈ X for some non-negative number r if for every ϵ > 0 we can find k0 ∈ N
provided ∥xk − ξ∥ < r + ϵ for k ≥ k0.
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Aytar [6] developed the extensive notion of rough convergence by applying the statistical

analogue about this concept as rough statistical convergence for the sequences, like usual

convergence is continued to statistical convergence for sequences using natural density by

Fast [13]. Moreover, Aytar [7] also examined some criteria related to convexity and closeness

associated with the set of rough statistical limit points. In fact, he established some properties

related to this set with the set of rough cluster points.

Definition 1.10. [6] A sequence x = {xk} in any normed linear space (X, ∥ . ∥) is called rough

statistically convergent to ξ ∈ X for some non-negative number r if for every ϵ > 0 we get

δ({k ∈ N : ∥xk − ξ∥ ≥ r + ϵ}) = 0,

and ξ is identified as r-St-limit of sequence x = {xk}.

In the literature, during last few years, considerable progress is going on the field of rough

convergence (c.f. [3, 5, 11, 12, 24, 26–29, 31]) in different aspects which leads us to investigate

and explore rough statistical convergence on the theory of neutrosophic normed spaces. The

significance of introducing rough convergence in this structure is to obtain an efficient tool

of convergence for acting on various types of uncertainties and imprecision unified in real-life

systems.

2. Main Results

We first mention the conception of rough statistical convergence of sequences on neutro-

sophic normed spaces that will be helpful in studying the major results of our work.

Definition 2.1. Let (X,ℵ,⊛,⊙) be a NNS with neutrosophic norm (τ, υ, η). A sequence

x = {xk} in X is said to be rough convergent to ξ ∈ X with respect to neutrosophic norm

(τ, υ, η) for some non-negative number r if for every ϵ > 0 and λ ∈ (0, 1) we can find k0 ∈ N
provided

τ(xk − ξ; r + ϵ) > 1− λ, υ(xk − ξ, t) < λ and η(xk − ξ, t) < λ for k ≥ k0.

It is convenient to represent symbolically by r(τ,υ,η) − lim
k→∞

xk = ξ or xk
r(τ,υ,η)−−−−→ ξ.

Definition 2.2. Let (X,ℵ,⊛,⊙) be a NNS with neutrosophic norm (τ, υ, η). A sequence

x = {xk} in X is said to be rough statistically convergent to ξ ∈ X with respect to neutrosophic

norm (τ, υ, η) for some non-negative number r if for every ϵ > 0 and λ ∈ (0, 1),

δ({k ∈ N : τ(xk − ξ; r + ϵ) ≤ 1− λ or υ(xk − ξ, r + ϵ) ≥ λ, η(xk − ξ, r + ϵ) ≥ λ}) = 0.

It is convenient to represent symbolically by r-St(τ,υ,η)- lim
k→∞

xk = ξ or xk
r-St(τ,υ,η)−−−−−−→ ξ.
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Remark 2.3. For r = 0, the impression of rough statistical convergence due to neutrosophic

norm (τ, υ, η) agrees with the impression of statistical convergence due to neutrosophic norm

(τ, υ, η) in a NNS (X,ℵ,⊛,⊙).

The r-St(τ,υ,η)-limit of a sequence may be not unique. Therefore, we take into consideration

r-St(τ,υ,η)-limit set of sequence x = {xk} as St(τ,υ,η)-LIM
r
x = {ξ : xk

r-St(τ,υ,η)−−−−−−→ ξ}. Moreover,

sequence x = {xk} is r(τ,υ,η)-convergent if LIM
r(τ,υ,η)
x ̸= ϕ where LIM

r(τ,υ,η)
x = {ξ∗ ∈ X :

xk
r(τ,υ,η)−−−−→ ξ∗}. For unbounded sequence LIM

r(τ,υ,η)
x is always empty.

But in rough statistical convergence on a NNS (X,ℵ,⊛,⊙), we may have St(τ,υ,η)-LIM
r
x ̸= ϕ

for unbounded sequence. To justify this the next example is given.

Example 2.4. Consider any real normed space (X, ∥ . ∥). For every t > 0 and all x ∈ X, take
(i) τ(x, t) = t

t+∥x∥ , υ(x, t) = ∥x∥
t+∥x∥ and (x, t) = ∥x∥

t when t > ∥x∥,
(ii)τ(x, t) = 0, υ(x, t) = 1 and (x, t) = 1 when t ≤ ∥x∥.
Also, a ⊛ b = ab and a ⊙ b = a + b − ab ∀ a, b ∈ [0, 1]. Then, 4-tuple (X,ℵ,⊛,⊙) is a NNS.

Define a sequence

xk =

{
(−1)k k ̸= n2

k otherwise

Then

St(τ,υ,η)-LIM
r
x =

{
ϕ r < 1

[1− r, r − 1] otherwise

and St(τ,υ,η)-LIM
r
x = ϕ for all r ≥ 0. Thus, this sequence is divergent in ordinary sense being

unbounded. Also, this sequence is not rough convergent in a NNS (X,ℵ,⊛,⊙) for any r.

If x′ = {xki} be a sub-sequence of x = {xk} in a NNS (X,ℵ,⊛,⊙) then LIM
r(τ,υ,η)
xk ⊂

LIM
r(τ,υ,η)
xki

. But this fact fails to hold in case of rough statistical convergence. This can be

justified with the next given example.

Example 2.5. Consider any real normed space (X, ∥.∥). For every t > 0 and all x ∈ X, take
(i) τ(x, t) = t

t+∥x∥ , υ(x, t) = ∥x∥
t+∥x∥ and (x, t) = ∥x∥

t when t > ∥x∥,
(ii)τ(x, t) = 0, υ(x, t) = 1 and (x, t) = 1 when t ≤ ∥x∥.
Also, a ⊛ b = ab and a ⊙ b = a + b − ab ∀ a, b ∈ [0, 1]. Then, 4-tuple (X,ℵ,⊛,⊙) is a NNS.

Also the sequence

xk =

{
k k ̸= n2

0 otherwise

have St(τ,υ,η)-LIM
r
x = [−r, r]. And its sub-sequence x′ = {1, 4, 9, .......} have St(τ,υ,η)-LIM

r
x′ =

ϕ.

But this fact is true for non-thin sub-sequences of the rough statistical convergent sequence

in a NNS which is explained by the next result.
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Theorem 2.6. If x′ = {xki} be a non-thin sub-sequence of the sequence x = {xk} in a NNS

(X,ℵ,⊛,⊙) then St(τ,υ,η)-LIM
r
x ⊂ St(τ,υ,η)-LIM

r
x′.

Proof. Proof of this result is trivial so we are omitting it.

Theorem 2.7. The set St(τ,υ,η)-LIM
r
x of any sequence x = {xk} in a NNS (X,ℵ,⊛,⊙) is a

closed set.

Proof. We have nothing to prove as St(τ,υ,η)-LIM
r
x = ϕ.

Let St(τ,υ,η)-LIM
r
x ̸= ϕ for some r > 0 and consider y = {yk} be a convergent sequence in

St(τ,υ,η)-LIM
r
x with respect to neutrosophic norm (τ, υ, η) to y0 ∈ X.

For t ∈ (0, 1) take λ ∈ (0, 1) with (1− λ)⊛ (1− λ) > 1− t and λ⊙ λ < t. Then for ϵ > 0 and

λ ∈ (0, 1) we get k1 ∈ N such that

τ
(
yk − y0;

ϵ

2

)
> 1− λ, υ

(
yk − y0;

ϵ

2

)
< λ and η

(
yk − y0;

ϵ

2

)
< λ for all k ≥ k1.

Let us choose ym ∈ St(τ,υ,η)-LIM
r
x with m > k1 such that

δ
(
{k ∈ N : τ

(
xk − ym; r +

ϵ

2

)
≤ 1− λ or υ

(
xk − ym; r +

ϵ

2

)
≥ λ, η

(
xk − ym; r +

ϵ

2

)
≥ λ}

)
= 0.

(1)

For j ∈ {k ∈ N : τ
(
xk − ym; r + ϵ

2

)
> 1 − λ, υ

(
xk − ym; r + ϵ

2

)
< λ and η

(
xk − ym; r + ϵ

2

)
<

λ} we have τ
(
xj − ym; r + ϵ

2

)
> 1 − λ, υ

(
xj − ym; r + ϵ

2

)
< λ and η

(
xj − ym; r + ϵ

2

)
< λ.

Then, we have

τ(xj − y0; r + ϵ) ≥ τ
(
xj − ym; r +

ϵ

2

)
⊛ τ

(
ym − y0;

ϵ

2

)
> (1− λ)⊛ (1− λ)

> 1− t,

υ(xj − y0; r + ϵ) ≤ υ
(
xj − ym; r +

ϵ

2

)
⊙ υ

(
ym − y0;

ϵ

2

)
< λ⊙ λ

< t,

and

η(xj − y0; r + ϵ) ≤ η
(
xj − ym; r +

ϵ

2

)
⊙ η

(
ym − y0;

ϵ

2

)
< λ⊙ λ

< t.

Hence, j ∈ {k ∈ N : τ(xk − y0; r+ ϵ) > 1− t, υ (xk − y0; r + ϵ) < t and η (xk − y0; r + ϵ) < t}.
Now we have the following inclusion

{k ∈ N : τ
(
xk − ym; r +

ϵ

2

)
> 1− λ, υ

(
xk − ym; r +

ϵ

2

)
< λ and η

(
xk − ym; r +

ϵ

2

)
< λ}

⊆ {k ∈ N : τ(xk − y0; r + ϵ) > 1− t, υ (xk − y0; r + ϵ) < t and η (xk − y0; r + ϵ) < t}
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Therefore,

δ({k ∈ N : τ(xk − y0; r + ϵ) ≤ 1− t or υ (xk − y0; r + ϵ) ≥ t, η (xk − y0; r + ϵ) ≥ t})

≤ δ
(
{k ∈ N : τ

(
xk − ym; r +

ϵ

2

)
≤ 1− λ or υ

(
xk − ym; r +

ϵ

2

)
≥ λ, η

(
xk − ym; r +

ϵ

2

)
≥ λ}

)
Using (1) we get

δ({k ∈ N : τ(xk − y0; r + ϵ) ≤ 1− t or υ (xk − y0; r + ϵ) ≥ t, η (xk − y0; r + ϵ) ≥ t}) = 0

Therefore, y0 ∈ St(τ,υ,η)-LIM
r
x .

In next result, we are proving the convexity for set St(τ,υ,η)-LIM
r
x .

Theorem 2.8. Let x = {xk} be any sequence in a NNS (X,ℵ,⊛,⊙). Then, rough statistical

limit set St(τ,υ,η)-LIM
r
x with respect to neutrosophic norm (τ, υ, η) is convex for some non-

negative number r.

Proof. Let ξ1, ξ2 ∈ St(τ,υ,η)-LIM
r
x . For the convexity of the set St(τ,υ,η)-LIM

r
x , we have to

show that [(1− β)ξ1 + βξ2] ∈ St(τ,υ,η)-LIM
r
x for some β ∈ (0, 1).

For t ∈ (0, 1) take λ ∈ (0, 1) with (1− λ)⊛ (1− λ) > 1− t and λ⊙ λ < t. Now for every ϵ > 0

and λ ∈ (0, 1), we define

M1 = {k ∈ N : τ

(
xk − ξ1;

r + ϵ

2(1− β)

)
≤ 1−λ or υ

(
xk − ξ1;

r + ϵ

2(1− β)

)
≥ λ, η

(
xk − ξ1;

r + ϵ

2(1− β)

)
≥ λ},

M2 = {k ∈ N : τ

(
xk − ξ2;

r + ϵ

2β

)
≤ 1−λ or υ

(
xk − ξ2;

r + ϵ

2β

)
≥ λ, η

(
xk − ξ2;

r + ϵ

2β

)
≥ λ}.

As ξ1, ξ2 ∈ St(τ,υ,η)-LIM
r
x , we have δ(M1) = δ(M2) = 0. For k ∈ M c

1 ∩M c
2 we have

τ(xk − [(1− β)ξ1 + βξ2]; r + ϵ) ≥ τ((1− β)(xk − ξ1) + β(xk − ξ2); r + ϵ)

≥ τ

(
(1− β)(xk − ξ1);

r + ϵ

2

)
⊛ τ

(
β(xk − ξ2);

r + ϵ

2

)
≥ τ

(
xk − ξ1;

r + ϵ

2(1− β)

)
⊛ τ

(
xk − ξ2;

r + ϵ

2β

)
> (1− λ)⊛ (1− λ)

> 1− t,

υ(xk − [(1− β)ξ1 + βξ2]; r + ϵ) ≤ υ((1− β)(xk − ξ1) + β(xk − ξ2); r + ϵ)

≤ υ

(
(1− β)(xk − ξ1);

r + ϵ

2

)
⊙ υ

(
β(xk − ξ2);

r + ϵ

2

)
≤ υ

(
xk − ξ1;

r + ϵ

2(1− β)

)
⊙ υ

(
xk − ξ2;

r + ϵ

2β

)
< λ⊙ λ

< t.
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and

η(xk − [(1− β)ξ1 + βξ2]; r + ϵ) ≤ η((1− β)(xk − ξ1) + β(xk − ξ2); r + ϵ)

≤ η

(
(1− β)(xk − ξ1);

r + ϵ

2

)
⊙ η

(
β(xk − ξ2);

r + ϵ

2

)
≤ η

(
xk − ξ1;

r + ϵ

2(1− β)

)
⊙ η

(
xk − ξ2;

r + ϵ

2β

)
< λ⊙ λ

< t.

Thus, we get δ({k ∈ N : τ(xk−[(1−β)ξ1+βξ2]; r+ϵ) ≤ 1−t or υ(xk−[(1−β)ξ1+βξ2]; r+ϵ) ≥
1− t, η(xk − [(1− β)ξ1 + βξ2]; r + ϵ) ≥ 1− t}) = 0.

Hence, [(1− β)ξ1 + βξ2] ∈ St(τ,υ,η)-LIM
r
x i.e. St(τ,υ,η)-LIM

r
x is a convex set.

Theorem 2.9. A sequence x = {xk} in a NNS (X,ℵ,⊛,⊙) is rough statistically convergent to

ξ ∈ X with respect to neutrosophic norm (τ, υ, η) for some non-negative number r if a sequence

y = {yk} exists in X, which is statistically convergent to ξ ∈ X with respect to neutrosophic

norm (τ, υ, η) and for every λ ∈ (0, 1) have τ(xk − yk; r) > 1 − λ, υ(xk − yk; r) < λ and

η(xk − yk; r) < λ for all k ∈ N.

Proof. Let ϵ > 0 and λ ∈ (0, 1). Consider yk
St(τ,υ,η)−−−−−→ ξ and τ(xk − yk; r) < λ, υ(xk − yk; r) >

1 − λ and η(xk − yk; r) > 1 − λ for all k ∈ N. For given λ ∈ (0, 1) take t ∈ (0, 1) with

(1− t)⊛ (1− t) > 1− λ and λ⊙ λ < t. Define

A = {k ∈ N : τ(yk − ξ; ϵ) ≤ 1− t or υ(yk − ξ; ϵ) ≥ t, η(yk − ξ; ϵ) ≥ t}

B = {k ∈ N : τ(xk − yk; r) ≤ 1− t or υ(xk − yk; r) ≥ t, η(xk − yk; r) ≥ t}

Clearly, δ(A) = 0 and δ(B) = 0. For k ∈ Ac ∩Bc, we have

τ(xk − ξ; r + ϵ) ≥ τ(xk − yk; r)⊛ τ(yk − ξ; ϵ)

> (1− t)⊛ (1− t)

> 1− λ,

υ(xk − ξ; r + ϵ) ≤ υ(xk − yk; r)⊙ υ(yk − ξ; ϵ)

< t⊙ t

< λ,

and

η(xk − ξ; r + ϵ) ≤ η(xk − yk; r)⊙ η(yk − ξ; ϵ)

< t⊙ t

< λ.
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Then τ(xk − ξ; r+ ϵ) > 1− λ, υ(xk − ξ; r+ ϵ) < λ and η(xk − ξ; r+ ϵ) < λ for all k ∈ Ac ∩Bc.

This implies that {k ∈ N : τ(xk − ξ; r + ϵ) ≤ 1− λ or υ(xk − ξ; r + ϵ) ≥ λ, η(xk − ξ; r + ϵ) ≥
λ} ⊆ A ∪B.

Then, δ({k ∈ N : τ(xk − ξ; r + ϵ) ≤ 1 − λ or υ(xk − ξ; r + ϵ) ≥ λ, η(xk − ξ; r + ϵ) ≥ λ}) ≤
δ(A) + δ(B).

Hence, we get δ({k ∈ N : τ(xk−ξ; r+ϵ) ≤ 1−λ or υ(xk−ξ; r+ϵ) ≥ λ, η(xk−ξ; r+ϵ) ≥ λ}) = 0.

Therefore, xk
r-St(τ,υ,η)−−−−−−→ ξ.

Theorem 2.10. Let x = {xk} be any sequence in a NNS (X,ℵ,⊛,⊙). There does not exist

elements y, z ∈ St(τ,υ,η)-LIM
r
x for some r > 0 and every λ ∈ (0, 1) with (y − z;mr) ≤ 1− λ

or (y − z;mr) ≥ λ

Proof. We prove this result by contradiction. Assume there are elements y, z ∈ St(τ,υ,η)-LIM
r
x

such that

τ(y − z;mr) ≤ 1− λ or υ(y − z;mr) ≥ λ, η(y − z;mr) ≥ λ for m > 2 (2)

As y, z ∈ St(τ,υ,η)-LIM
r
x .

For given λ ∈ (0, 1) take t ∈ (0, 1) with (1− t)⊛ (1− t) > 1− λ and λ⊙ λ < t. Then for every

ϵ > 0 and t ∈ (0, 1) we have δ(K1) = δ(K2) = 0 where K1 = {k ∈ N : τ
(
xk − y; r + ϵ

2

)
≤

1 − t or υ
(
xk − y; r + ϵ

2

)
≥ t, η

(
xk − y; r + ϵ

2

)
≥ t} and K2 = {k ∈ N : τ

(
xk − z; r + ϵ

2

)
≤

1− t or υ
(
xk − z; r + ϵ

2

)
≥ t, η

(
xk − z; r + ϵ

2

)
≥ t}. For k ∈ Kc

1 ∩Kc
2 we have

τ(y − z; 2r + ϵ) ≥ τ
(
xk − z; r +

ϵ

2

)
⊛ τ

(
xk − y; r +

ϵ

2

)
> (1− t)⊛ (1− t)

> 1− λ,

υ(y − z; 2r + ϵ) ≤ υ
(
xk − z; r +

ϵ

2

)
⊙ υ

(
xk − y; r +

ϵ

2

)
< t⊙ t

< λ,

and

η(y − z; 2r + ϵ) ≤ η
(
xk − z; r +

ϵ

2

)
⊙ η

(
xk − y; r +

ϵ

2

)
< t⊙ t

< λ.

Hence,

τ(y − z; 2r + ϵ) > 1− λ, υ(y − z; 2r + ϵ) < λ and η(y − z; 2r + ϵ) < λ. (3)
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Then, from (3) we have

τ(y − z;mr) > 1− λ, υ(y − z;mr) < λ and η(y − z;mr) < λ for m > 2.

which is a contradiction to (2). Therefore, there does not exists elements y, z ∈ St(τ,υ,η)-LIM
r
x

such that τ(y − z;mr) ≤ 1− λ or υ(y − z;mr) ≥ λ, η(y − z;mr) ≥ λ for m > 2.

Now, we are giving definition of statistically bounded sequence on NNS as follows:

Definition 2.11. Let (X,ℵ,⊛,⊙) be a NNS with neutrosophic norm (τ, υ, η). A sequence

x = {xk} in X is said to be statistically bounded with respect to neutrosophic norm (τ, υ, η)

if for every ϵ > 0 and λ ∈ (0, 1) we can find a real number M > 0 satisfying

δ({k ∈ N : τ(xk;M) ≤ 1− λ or υ(xk,M) ≥ λ, η(xk,M) ≥ λ}) = 0.

In view of the above definition, we obtained the next interesting result on rough statistical

convergence on NNS.

Theorem 2.12. Let x = {xk} be any sequence in a NNS (X,ℵ,⊛,⊙). Then x = {xk} is

statistically bounded with respect to neutrosophic norm (τ, υ, η) if and only if St(τ,υ,η)-LIM
r
x ̸=

ϕ for some r > 0.

Proof. Necessary part :

Consider sequence x = {xk} which is statistically bounded in NNS (X,ℵ,⊛,⊙). Then, for

every ϵ > 0, λ ∈ (0, 1) and some r > 0 we get a real number M > 0 satisfying

δ({k ∈ N : τ(xk;M) ≤ 1− λ or υ(xk,M) ≥ λ, η(xk,M) ≥ λ}) = 0.

Let K = {k ∈ N : τ(xk;M) ≤ 1− λ or υ(xk,M) ≥ λ, η(xk,M) ≥ λ}.
For k ∈ Kc we have τ(xk;M) > 1− λ, υ(xk,M) < λ and η(xk,M) < λ .

Also

τ(xk; r +M) ≥ τ(0; r)⊛ τ(xk;M)

> 1⊛ (1− λ)

= 1− λ,

υ(xk; r +M) < υ(0; r)⊙ υ(xk;M)

< 0⊙ λ

= λ,

and

η(xk; r +M) < η(0; r)⊙ η(xk;M)

< 0⊙ λ

= λ.
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Hence, 0 ∈ St(τ,υ,η)-LIM
r
x . Therefore, St(τ,υ,η)-LIM

r
x ̸= ϕ.

Sufficient Part:

Let St(τ,υ,η)-LIM
r
x ̸= ϕ for some r > 0. So some ξ ∈ X exists such that ξ ∈ St(τ,υ,η)-LIM

r
x .

For every ϵ > 0 and λ ∈ (0, 1) we have

δ({k ∈ N : τ(xk − ξ; r + ϵ) ≤ 1− λ or υ(xk − ξ, r + ϵ) ≥ λ, η(xk − ξ, r + ϵ) ≥ λ}) = 0.

Therefore, almost all xk’s are contained in some ball with center ξ which implies that x = {xk}
is statistically bounded in a NNS (X,ℵ,⊛,⊙).

Further, we define statistical cluster point for the sequence on NNS and establish some

results related to it.

Definition 2.13. Let (X,ℵ,⊛,⊙) be a NNS with neutrosophic norm (τ, υ, η). Then γ ∈ X is

said to be rough statistical cluster point of sequence x = {xk} in X with respect to neutrosophic

norm (τ, υ, η) for some non-negative number r if for every ϵ > 0 and λ ∈ (0, 1),

δ({k ∈ N : τ(xk − γ; r + ϵ) > 1− λ and υ(xk − γ; r + ϵ) < λ, η(xk − γ; r + ϵ) < λ}) > 0,

i.e.

δ({k ∈ N : τ(xk − γ; r + ϵ) > 1− λ and υ(xk − γ; r + ϵ) < λ, η(xk − γ; r + ϵ) < λ}) ̸= 0.

In this case, γ is known as r-St(τ,υ,η)-cluster point of a sequence x = {xk}.

Let Γ r
(τ,υ,η)(x) denotes the set of all r-St(τ,υ,η)-cluster points with respect to neutrosophic

norm (τ, υ, η) of sequence x = {xk} in a NNS (X,ℵ,⊛,⊙) . If r = 0 then we get ordinary

statistical cluster point with respect to neutrosophic norm (τ, υ, η) in a NNS (X,ℵ,⊛,⊙) i.e.

Γ r
(τ,υ,η)(x) = Γ(τ,υ,η)(x).

Theorem 2.14. Let (X,ℵ,⊛,⊙) be a NNS. Then, Γ r
(τ,υ,η)(x) which is the set of of all

r-St(τ,υ,η)-cluster points with respect to neutrosophic norm (τ, υ, η) of any sequence x = {xk}
is closed for some non-negative real number r.

Proof. (i) If Γ r
(τ,υ,η)(x) = ϕ, then we have to prove nothing.

(ii) If Γ r
(τ,υ,η)(x) ̸= ϕ. Then, take sequence y = {yk} ⊆ Γ r

(τ,υ,η)(x) such that yk
(τ,υ,η)−−−−→ y∗. It is

enough to show that y∗ ∈ Γ r
(τ,υ,η)(x). Now for t ∈ (0, 1) take λ ∈ (0, 1) with (1−λ)⊛ (1−λ) >

(1− t) and λ⊙ λ < t.

As yk
(τ,υ,η)−−−−→ y∗, then for every ϵ > 0 and λ ∈ (0, 1) we get kϵ ∈ N such that τ

(
yk − y∗;

ϵ
2

)
>

1− λ, υ
(
yk − y∗;

ϵ
2

)
< λ and η

(
yk − y∗;

ϵ
2

)
< λ for k ≥ kϵ.
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Now choose k0 ∈ N such that k0 ≥ kϵ. Then, we have τ
(
yk0 − y∗;

ϵ
2

)
> 1−λ, υ

(
yk0 − y∗;

ϵ
2

)
< λ

and η
(
yk0 − y∗;

ϵ
2

)
< λ. Again as y = {yk} ⊆ Γ r

(τ,υ,η)(x), we have yk0 ∈ Γ r
(τ,υ,η)(x). Then

δ
({

k ∈ N : τ
(
xk − yk0 ; r +

ϵ

2

)
> 1− λ, υ

(
xk − yk0 ; r +

ϵ

2

)
< λ and η

(
xk − yk0 ; r +

ϵ

2

)
< λ

})
> 0.

(4)

Choose j ∈{
k ∈ N : τ

(
xk − yk0 ; r +

ϵ
2

)
> 1− λ, υ

(
xk − yk0 ; r +

ϵ
2

)
< λ and η

(
xk − yk0 ; r +

ϵ
2

)
< λ

}
,

then we have τ
(
xj − yk0 ; r +

ϵ
2

)
> 1− λ, υ

(
xj − yk0 ; r +

ϵ
2

)
< λ and η

(
xj − yk0 ; r +

ϵ
2

)
< λ.

τ(xj − y∗; r + ϵ) ≥ τ
(
xj − yk0 ; r +

ϵ

2

)
⊛ τ

(
yk0 − y∗;

ϵ

2

)
> (1− λ)⊛ (1− λ)

> 1− t,

υ(xj − y∗; r + ϵ) ≥ υ
(
xj − yk0 ; r +

ϵ

2

)
⊙ υ

(
yk0 − y⊙;

ϵ

2

)
< λ⊙ λ

< t,

and

η(xj − y∗; r + ϵ) ≥ η
(
xj − yk0 ; r +

ϵ

2

)
⊙ η

(
yk0 − y⊙;

ϵ

2

)
< λ⊙ λ

< t.

Thus, j ∈ {k ∈ N : τ(xk − y∗; r + ϵ) > 1− t, υ(xk − y∗; r + ϵ) < t and η(xk − y∗; r + ϵ) < t}.
Hence

{k ∈ N : τ
(
xk − yk0 ; r +

ϵ

2

)
> 1− λ, υ

(
xk − yk0 ; r +

ϵ

2

)
< λ and η

(
xk − yk0 ; r +

ϵ

2

)
< λ}

⊆ {k ∈ N : τ(xk − y∗; r + ϵ) > 1− t, υ(xk − y∗; r + ϵ) < t and η(xk − y∗; r + ϵ) < t}.

Now,

δ({k ∈ N : τ
(
xk − yk0 ; r +

ϵ

2

)
> 1− λ, υ

(
xk − yk0 ; r +

ϵ

2

)
< λ and η

(
xk − yk0 ; r +

ϵ

2

)
< λ})

≤ δ({k ∈ N : τ(xk − y∗; r + ϵ) > 1− t, υ(xk − y∗; r + ϵ) < t and η(xk − y∗; r + ϵ) < t}).
(5)

Then using equation (4) and equation (5), we get

δ({k ∈ N : τ(xk − y∗; r + ϵ) > 1− t, υ(xk − y∗; r + ϵ) < t and η(xk − y∗; r + ϵ) < t}) > 0.

Therefore, y∗ ∈ Γ r
(τ,υ,η)(x).
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Theorem 2.15. Let Γ(τ,υ,η)(x) be the set of all statistical cluster points with respect to neutro-

sophic norm (τ, υ, η) of sequence x = {xk} in a NNS (X,ℵ,⊛,⊙) and r be some non-negative

real number. Then, for an arbitrary γ ∈ Γ(τ,υ,η)(x) and λ ∈ (0, 1) we have (ξ − γ; r) > 1− λ

and (ξ − γ; r) < λ

Proof. For λ ∈ (0, 1) take t ∈ (0, 1) with (1 − t) ⊛ (1 − t) > 1 − λ and t ⊙ t < λ. Let

γ ∈ Γ(τ,υ,η)(x). Then, for every ϵ > 0 and t ∈ (0, 1) we have

δ({k ∈ N : τ(xk − γ; ϵ) > 1− t, υ(xk − γ; ϵ) < t and η(xk − γ; ϵ) < t}) > 0. (6)

Now we will show that if ξ ∈ X have τ(ξ − γ; r) > 1 − t, υ(ξ − γ; r) < t and η(ξ − γ; r) < t

then ξ ∈ Γ r
(τ,υ,η)(x).

Let j ∈ {k ∈ N : τ(xk −γ; ϵ) > 1− t, υ(xk −γ; ϵ) < t and η(xk −γ; ϵ) < t}, then τ(xj −γ; ϵ) >

1− t, υ(xj − γ; ϵ) < t and η(xj − γ; ϵ) < t. Now,

τ(xj − ξ; r + ϵ) ≥ τ(xj − γ; ϵ)⊛ τ(ξ − γ; r)

> (1− t)⊛ (1− t)

> 1− λ,

υ(xj − ξ; r + ϵ) ≤ υ(xj − γ; ϵ)⊙ υ(ξ − γ; r)

< t⊙ t

< λ,

and

η(xj − ξ; r + ϵ) ≤ η(xj − γ; ϵ)⊙ η(ξ − γ; r)

< t⊙ t

< λ.

we have τ(xj − ξ; r + ϵ) > 1 − λ, υ(xj − ξ; r + ϵ) < λ and η(xj − ξ; r + ϵ) < λ. Thus

j ∈ {k ∈ N : τ(xk − ξ; r + ϵ) > 1 − λ, υ(xk − ξ; ϵ) < λ and η(xk − ξ; ϵ) < λ}. Now the next

inclusion holds.

{k ∈ N : τ(xk − γ; ϵ) > 1− t, υ(xk − γ; ϵ) < t and η(xk − γ; ϵ) < t}

⊆ {k ∈ N : τ(xk − ξ; r + ϵ) > 1− λ, υ(xk − ξ; r + ϵ) < λ and η(xk − ξ; r + ϵ) < λ}.

Then

δ({k ∈ N : τ(xk − γ; ϵ) > 1− t, υ(xk − γ; ϵ) < t and η(xk − γ; ϵ) < t})

≤ δ({k ∈ N : τ(xk − ξ; r + ϵ) > 1− λ, υ(xk − ξ; ϵ) < t and η(xk − ξ; r + ϵ) < λ}).

Using equation (6) we get δ({k ∈ N : τ(xk − ξ; r+ ϵ) > 1− λ, υ(xk − ξ; r+ ϵ) < λ and η(xk −
ξ; r + ϵ) < λ}) > 0. Therefore, ξ ∈ Γ r

(τ,υ,η)(x).
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Theorem 2.16. If B(c, λ, r) = {x ∈ X : φ(x − c; r) ≥ 1 − λ, ϑ(x − c; r) ≤ λ} represents the

closure of open ball B(c, λ, r) = {x ∈ X : φ(x− c; r) > 1− λ, ϑ(x− c; r) < λ} for some r > 0,

λ ∈ (0, 1) and fixed c ∈ X then Γ r
(τ,υ,η)(x) =

⋃
c∈Γ(τ,υ,η)(x)

B(c, λ, r).

Proof. For λ ∈ (0, 1) take t ∈ (0, 1) with (1 − t) ⊛ (1 − t) > 1 − λ and t ⊙ t < λ. Let

γ ∈
⋃

c∈Γ(τ,υ,η)(x)

B(c, λ, r) then there exists c ∈ Γ(τ,υ,η)(x) for some r > 0 and every t ∈ (0, 1)

such that

τ(c− γ; r) > 1− t, υ(c− γ; r) < t and η(c− γ; r) < t.

Fix ϵ > 0. Since c ∈ Γ(τ,υ,η)(x) then we get K = {k ∈ X : τ(xk − c; ϵ) > 1 − t, υ(xk − c; ϵ) <

t and η(xk − c; ϵ) < t} with δ(K) > 0. Now, for k ∈ K,

τ(xk − γ; r + ϵ) ≥ τ(xk − c; ϵ)⊛ τ(c− γ; r)

> (1− t)⊛ (1− t)

> 1− λ,

υ(xk − γ; r + ϵ) ≤ υ(xk − c; ϵ)⊙ υ(c− γ; r)

< t⊙ t

< λ,

and

η(xk − γ; r + ϵ) ≤ η(xk − c; ϵ)⊙ η(c− γ; r)

< t⊙ t

< λ.

This implies that δ({k ∈ N : φ(xk − γ; r + ϵ) > 1− λ and ϑ(xk − γ; r + ϵ) < λ}) > 0. Hence,

γ ∈ Γ r
(τ,υ,η)(x).

Therefore,
⋃

c∈Γ(τ,υ,η)(x)

B(c, λ, r) ⊆ Γ r
(τ,υ,η)(x).

Conversely,

Let γ ∈ Γ r
(τ,υ,η)(x). For result, we will show that γ ∈

⋃
c∈Γ(τ,υ,η)(x)

B(c, λ, r).

Let if possible, γ /∈
⋃

c∈Γ(τ,υ,η)(x)

B(c, λ, r) i.e. γ /∈ B(c, λ, r) for all c ∈ Γ(τ,υ,η)(x).

Then τ(γ − c; r) ≤ 1 − λ or υ(γ − c; r) ≥ λ, η(γ − c; r) ≥ λ for every c ∈ Γ(τ,υ,η)(x). By

Theorem 2.15 for arbitrary c ∈ Γ(τ,υ,η)(x) we have τ(γ − c; r) > 1 − λ, υ(γ − c; r) < λ

and η(γ − c; r) < λ for every c ∈ Γ r
(τ,υ,η)(x) which leads to contradiction of our assumption.

Therefore, γ ∈
⋃

c∈Γ(τ,υ,η)(x)

B(c, λ, r). Hence, Γ r
(τ,υ,η)(x) ⊆

⋃
c∈Γ(τ,υ,η)(x)

B(c, λ, r).
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Theorem 2.17. Let x = {xk} be any sequence in a NNS (X,ℵ,⊛,⊙) then for any λ ∈ (0, 1),

(i) If c ∈ Γ(τ,υ,η)(x) then St(τ,υ,η)-LIM
r
x ⊆ B(c, λ, r).

(ii) St(τ,υ,η)-LIM
r
x =

⋂
c∈Γ(τ,υ,η)(x)

B(c, λ, r) = {ξ ∈ X : Γ(τ,υ,η)(x) ⊆ B(ξ, λ, r)}.

Proof. (i) Let ϵ > 0. For given λ ∈ (0, 1) take t ∈ (0, 1) with (1 − t) ⊛ (1 − t) > 1 − λ and

t⊙ t < λ. Consider ξ ∈ St(τ,υ,η)-LIM
r
x and c ∈ Γ(τ,υ,η)(x).

Now for every ϵ > 0 and t ∈ (0, 1) consider sets

A = {k ∈ N : τ(xk−ξ : r+ϵ) > 1−t, υ(xk−ξ : r+ϵ) < t and η(xk−ξ : r+ϵ) < t} with δ(Ac) = 0,

and

B = {k ∈ N : τ(xk − c; ϵ) > 1− t, υ(xk − c; ϵ) < t and η(xk − c; ϵ) < t} with δ(B) ̸= 0.

Now for k ∈ A ∩B we have

τ(ξ − c; r) ≥ τ(xk − c; ϵ)⊛ τ(xk − ξ; r + ϵ)

> (1− t)⊛ (1− t)

> 1− λ.

υ(ξ − c; r) ≥ υ(xk − c; ϵ) ∗ υ(xk − ξ; r + ϵ)

< t⊙ t

< λ,

and

η(ξ − c; r) ≥ η(xk − c; ϵ) ∗ η(xk − ξ; r + ϵ)

< t⊙ t

< λ.

Therefore, ξ ∈ B(c, λ, r). Hence, St(τ,υ,η)-LIM
r
x ⊆ B(c, λ, r).

(ii) By previous part we have St(τ,υ,η)-LIM
r
x ⊆

⋂
c∈Γ℘(x)

B(c, λ, r).

Assume y ∈
⋂

c∈Γ(τ,υ,η)(x)

B(c, λ, r) then τ(y−c; r) ≥ 1−λ, υ(y−c; r) ≤ λ and η(y−c; r) ≤ λ for

all c ∈ Γ(τ,υ,η)(x). This implies that Γ(τ,υ,η)(x) ⊆ B(y, λ, r), i.e.
⋂

c∈Γ(τ,υ,η)(x)

B(c, λ, r) ⊆ {ξ ∈

X : Γ(τ,υ,η)(x) ⊆ B(ξ, λ, r)}.
Further, let y /∈ St(τ,υ,η)-LIM

r
x then for ϵ > 0 we have δ({k ∈ N : τ(xk − y; r + ϵ) ≤

1−λ or υ(xk−y; r+ ϵ) ≥ λ, η(xk−y; r+ ϵ) ≥ λ}) ̸= 0, which implies that a statistical cluster

point c exists for x = {xk} with τ(y−c; r+ ϵ) ≤ 1−λ, υ(y−c; r+ ϵ) ≥ λ or η(y−c; r+ ϵ) ≥ λ.

Thus, Γ(τ,υ,η)(x) ⊈ B(y, λ, r) and y /∈ {ξ ∈ X : Γ(τ,υ,η)(x) ⊆ B(ξ, λ, r)}. This implies
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that {ξ ∈ X : Γ(τ,υ,η)(x) ⊆ B(ξ, λ, r)} ⊆ St(τ,υ,η)-LIM
r
x and we get

⋂
c∈Γ(τ,υ,η)(x)

B(c, λ, r) ⊆

St(τ,υ,η)-LIM
r
x .

Therefore, St(τ,υ,η)-LIM
r
x =

⋂
c∈Γ(τ,υ,η)(x)

B(c, λ, r) = {ξ ∈ X : Γ(τ,υ,η)(x) ⊆ B(ξ, λ, r)}.

Theorem 2.18. Let x = {xk} be any sequence in a NNS (X,ℵ,⊛,⊙) which is statistically

convergent to ξ ∈ X with respect to neutrosophic norm (τ, υ, η) then there exists λ ∈ (0, 1) such

that St(τ,υ,η)-LIM
r
x = B(ξ, λ, r) for some r > 0.

Proof. Let ϵ > 0. For given λ ∈ (0, 1) take t ∈ (0, 1) with (1 − t) ⊛ (1 − t) > 1 − λ and

t⊙ t < λ. Since xk
St(τ,υ,η)−−−−−→ ξ then there is a set A = {k ∈ N : τ(xk− ξ : ϵ) ≤ 1− t or υ(xk− ξ :

ϵ) ≥ t, η(xk − ξ : ϵ) ≥ t} with δ(A) = 0. Consider y ∈ B(ξ, t, r) = {y ∈ X : τ(y − ξ; r) ≥
1− t, υ(y − ξ; r) ≤ t, η(y − ξ; r) ≤ t}.
For k ∈ Ac

τ(xk − y; r + ϵ) ≥ τ(xk − ξ; ϵ)⊛ τ(y − ξ; r)

> (1− t)⊛ (1− t)

> 1− λ,

υ(xk − y; r + ϵ) ≤ υ(xk − ξ; ϵ)⊙ υ(y − ξ; r)

< t⊙ t

< λ,

and

η(xk − y; r + ϵ) ≤ η(xk − ξ; ϵ)⊙ η(y − ξ; r)

< t⊙ t

< λ.

This implies that y ∈ St(τ,υ,η)-LIM
r
x , i.e. B(ξ, λ, r) ⊆ St(τ,υ,η)-LIM

r
x . Also St(τ,υ,η)-LIM

r
x ⊆

B(ξ, λ, r). Hence, St(τ,υ,η)-LIM
r
x = B(ξ, λ, r).

Theorem 2.19. Let x = {xk} be any sequence in a NNS (X,ℵ,⊛,⊙) which converges statis-

tically with respect to neutrosophic norm (τ, υ, η) then Γ r
(τ,υ,η)(x) = St(τ,υ,η)-LIM

r
x for some

r > 0.

Proof. Necessary part :

Suppose xk
St(τ,υ,η)−−−−−→ ξ. Then Γ(τ,υ,η)(x) = {ξ}. By Theorem 2.16 for some r > 0 and λ ∈ (0, 1)

we have Γ r
(τ,υ,η)(x) = B(ξ, λ, r). Also by Theorem 2.18 we get B(ξ, λ, r) = St(τ,υ,η)-LIM

r
x .

Hence, Γ r
(τ,υ,η)(x) = St(τ,υ,η)-LIM

r
x .
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Sufficient part :

Let Γ r
(τ,υ,η)(x) = St(τ,υ,η)-LIM

r
x . By using Theorem 2.16 and Theorem 2.17(ii) we get⋃

c∈Γ(τ,υ,η)(x)

B(c, λ, r) =
⋂

c∈Γ(τ,υ,η)(x)

B(c, λ, r)

. This implies that either Γ(τ,υ,η)(x) = ϕ or Γ(τ,υ,η)(x) is a singleton set. Then St(τ,υ,η)-LIM
r
x =⋂

c∈Γ(τ,υ,η)(x)

B(c, λ, r) = B(ξ, λ, r) for some ξ ∈ Γ(τ,υ,η)(x), further by Theorem 2.18 we get

St(τ,υ,η)-LIM
r
x = {ξ}.

3. Conclusion

We have introduced the considerable convergence structure called rough statistical conver-

gence on neutrosophic normed spaces. As neutrosophic set is an effective tools to control

the inconsistent and indeterminate data, also the theory of rough convergence is a powerful

mathematical technique for dealing the convergence problems with present incompleteness in

data. The computational techniques with these structures may not always sufficient to pro-

duce the best results alone although the merging of two or more of them can provide much

improved results. Thus, the significance of introducing rough convergence in this structure is

that resultant computational techniques will give a novel mathematical tool to deal with the

convergence problems that have been motivated on the basis of practical approach by factual

incompleteness, indeterminacy and inconsistency of the data. Moreover, rough statistical con-

vergence on neutrosophic normed spaces can be explored for the different setups like double

sequences, triple sequences, ideals, difference sequences and many more.
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23. Kişi, Ö. (2021). Ideal convergence of sequences in neutrosophic normed spaces. J. Intell. Fuzzy Syst.,

41(2):2581–2590.
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