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Abstract. Neutrosophy is a new branch of philosophy that 
studies the origin, nature, and scope of neutralities, as well 
as their interactions with different ideational spectra. 
There are many similarities between The Golden Mean 
and Neutrosophy. Chinese and international schol-ars need 
to toil towards expanding and developing The Golden 
Mean, towards its "modernization" and "globali-zation". 
Not only Chinese contemporary popular ideas and

methods, but also international contemporary popular
ideas and methods, should be applied in this endeavour. 
There are many different ways for interpreting and 
expanding The Golden Mean through “Neutrosophic 
tetrad” (thesis-antithesis-neutrothesis-neutrosynthesis). 
This paper em-phasizes that, in practice, The Golden 
Mean cannot be applied alone and unaided for long-term; 
it needs to be combined with other principles. 

Keywords: Neutrosophy, Golden Mean, Neutrosophic tetrad, thesis-antithesis-neutrothesis-neutrosynthesis.

1  Introduction

"The Golden Mean" is a significant achievement of 
Confucius (Kong Zi). Mao Zedong considered that Kong 
Zi's notion of Golden Mean is his greatest discovery, and 
also an important philosophy category, worth discussing 
over and over. 

As well-known, the moderate views originated in an-
cient times. According to historical records, as the Chinese 
Duke of Zhou asked Jizi for advice, Jizi presented nine 
governing strategies, including the viewpoint of "The mean 
principle". That is the unbiased political philosophy domi-
nated by the upright, and a comprehensive pattern obtained 
by combining rigidity and moderation. According to the in-
terpretation of many predecessors’ viewpoints of "The 
mean principle", after expanding and developing these 
viewpoints, Confucius created "The Golden Mean". 

After Confucius, many scholars tried to use different 
ways to interpret and expand "The Golden Mean". 

From Tang dynasty, a number of "Neo-Confucianists" 
emerged, highlighting various characteristics by jointing 
Confucianism with Buddhism, Daoism, and the like, in-
cluding Western academic thoughts, and forming numer-
ous new schools. 

If regarding "The Golden Mean" presented by Confu-
cius as the first milestone, the thought of “worry before the 
people and enjoy after the people ”  produced by Fan 
Zhongyan, the Chinese Northern Song dynasty’s famous 
thinker, statesman, strategist and writer, can be considered 
the second milestone of "The Golden Mean". Its meaning 
is as it follows: neither worry everything, nor enjoy every-
thing; take the middle, namely worry in some cases (before 
the people), and enjoy in some cases (after the people). 
This famous saying is perhaps the most meaningful "gold-
en mean". Someone once pointed out that "The Golden 

Mean" is very conservative, and very negative. However, 
carefully reading this sentence of Fan Zhongyan, one may 
adduce a new assessment for "The Golden Mean". 

The thought of "traditional Chinese values aided with 
modern Western ideology" appeared in late Qing Dynasty, 
and it is the third milestone of "The Golden Mean". Since 
the first opium war (June, 1840 - August, 1842), in view of 
the fact that China repeatedly failed miserably in front of 
the Western powers, some ideologists argued that China 
must be reformed. The early reformists proposed "the poli-
cy mainly governed by Chinese tradition, supported by 
Western thoughts" (this is also a "middle way"), with the 
purpose to encourage people to learn from the West, and to 
oppose against obstinacy and conservatism. In late 19th 
century, there was a harsh dispute between old and new, 
and between Chinese model and Western model. The old-
fashioned feudal diehards firmly opposed to Western cul-
ture. They regarded anything coming from the Western 
capitalist countries as dangerous evils for China, while the 
bourgeois reformers actively advocated for Western learn-
ing, arguing that China should not only inure the advanced 
science and technology, but also follow the Western politi-
cal system. Among the violent debate, ostensibly neutral 
thought of "Chinese learning for the essence, western 
learning for practical use" gradually gained prominence, 
and had a profound impact. Even today, there still exist 
scholars appraising this slogan, and attempting to make 
new interpretations out of it. 

But "The Golden Mean" is not uniquely Chinese. One 
can also find similar formulations in different cultures. For 
example, in Ancient Greece, Aristotle propounded the idea 
of “The Mean Principle”. According to Aristotle, there are 
three categories of human acts, namely excessive, less and 
moderate acts. For instance, all men have desires; while 
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excessive desires and less desires are all tidal waves of evil, 
only moderate desires are virtue-based. There is a clear 
distance between Aristotle's middle path view and Confu-
cius' Golden Mean, since the last one takes "benevolence" 
as its core. 

In 1995, the American-Romanian scholar Florentin 
Smarandache created Neutrosophy, which has similarities 
to "The Golden Mean". For more information about Neu-
trosophy, see references [1-3]. 

To sum up, the ideas of "The Golden Mean" and of 
some similar concepts are crystallizations of mankind wis-
dom. However, in order to keep pace with the times, "The 
Golden Mean" and the similar concepts must be expanded 
and developed in the directions of "modernization" and 
"globalization". In order to achieve this task, Chinese and 
international scholars should take part in related actions, 
and not only Chinese contemporary popular ideas and 
methods, but also international contemporary popular ideas 
and methods should be applied. In this way, the results can 
be widely recognized all over the world, and have a posi-
tive and far-reaching impact. 

The requisite to expand and develop "The Golden 
Mean" applying international contemporary popular ideas 
and methods has not yet attracted enough attention. Conse-
quently, we try to interpret and expand "The Golden 
Mean" through Neutrosophy, hoping that other scholars 
will pay attention too to the issues we expound. 

2 The similarities between "The Golden Mean" 
and "Neutrosophy" 

In references [2,3] we have pointed out that the posi-
tion of “mean” pursued by The Golden Mean is the opti-
mized and critical third position, situated between the ex-
cessive and the less.  

It needs to stress that, according to the fact that Confu-
cius made a great contribution for the amendment of “The 
Book of Changes”, some people thought that The Analects 
of Confucius only discussed two kind of situations, i.e. 
positive and negative situations (masculine and feminine, 
yin and yang, pro and con), while in fact The Analects 
evaluated three kind of situations: positive, negative and 
neutral situations.  

For example, in Book 2, Tzu Kung put forward a posi-
tive and a negative situation: “What do you pronounce 
concerning a poor man who doesn't grovel, and a rich man 
who isn't proud?” Confucius presented the best situation: 
“They are good, but not as good as a poor man who is sat-
isfied and a rich man who loves the rules of propriety.” 

Neutrosophy is a new branch of philosophy that studies 
the origin, nature, and scope of neutralities, as well as their 
interactions with different ideational spectra.  

This theory considers every notion or idea <A> togeth-
er with its opposite or negation <Anti-A> and the spectrum 
of "neutralities" <Neut-A> (i.e. notions or ideas located be-
tween the two extremes, supporting neither <A> nor <An-

ti-A>). The <Neut-A> and <Anti-A> ideas together are re-
ferred to as <Non-A>. 

Neutrosophy is the base of neutrosophic logic, neutro-
sophic set, neutrosophic probability and statistics, used in 
engineering applications (especially for software and in-
formation fusion), medicine, military, cybernetics, and 
physics. 

Neutrosophic Logic (NL) is a general framework for 
unification of many existing logics, such as fuzzy logic 
(especially intuitionistic fuzzy logic), paraconsistent logic, 
intuitionistic logic, etc. The main idea of NL is to charac-
terize each logical statement in a 3D Neutrosophic Space, 
where each dimension of the space represents respectively 
the truth (T), the falsehood (F), and the indeterminacy (I) 
of the statement under consideration, where T, I, F are 
standard or non-standard real subsets of ]-0, 1+[ without 
necessarily connection between them. 

It is obvious that, in discussing the “mean”, the “mid-
dle”, or the “neutralities”, there are many similarities be-
tween The Golden Mean and Neutrosophy. 

It should be mentioned that the biggest difference be-
tween Neutrosophy and The Golden Mean is that the first 
includes a wide variety of practical mathematical methods. 
Because of some reasons, the mathematical knowledge of 
many Confucian scholars is not too elevated. Therefore, in 
general, the Confucian scholars cannot propose quantita-
tive standards to evaluate The Golden Mean, and they only 
rely on their perception. Nevertheless, Karl Marx believed 
that a science can only achieve a perfect situation when it 
is successfully applied to mathematics. 

Now we present a simple example of mathematical 
method application. Let us consider the middle situation 
composed by "positive" and "negative". The proportion of 
positive and negative, besides the standard 5:5, also can be 
6:4 or 4:6, 7:3 or 3:7, 8:2 or 2:8, 9:1 or 1:9, and so on. For 
more complex cases, it is necessary to apply the mathemat-
ical methods of Neutrosophy. 

Therefore, if we need to take into account quantitative 
relationships, then the mathematical methods of Neu-
trosophy are helpful. This is one important part of inter-
preting and expanding "The Golden Mean". Of course, this 
kind of work need to be undertaken by scholars who are 
familiar with both "The Golden Mean" and "Neutrosophy". 

3 Interpreting and expanding The Golden Mean 
with “Neutrosophic tetrad” (thesis-antithesis-
neutrothesis-neutrosynthesis)

In reference [4], Prof. Smarandache called attention for 
the fact that the classical reasoning development about ev-
idences, popularly known as thesis-antithesis-synthesis 
from dialectics, was attributed to the renowned philosopher 
Georg Wilhelm Friedrich Hegel, and it was used later on 
by Karl Marx and Friedrich Engels. Immanuel Kant have 
also written about thesis and antithesis. As a difference, the 
opposites yin [feminine, the moon] and yang [masculine, 
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the sun] were considered complementary in Ancient Chi-
nese philosophy. 

Neutrosophy is a generalization of dialectics. Therefore, 
Hegel's dialectical triad thesis-antithesis-synthesis is ex-
tended to the neutrosophic tetrad thesis-antithesis-
neutrothesis-neutrosynthesis. A neutrosophic synthesis 
(neutrosynthesis) is more refined that the dialectical syn-
thesis. It carries on the unification and synthesis regarding 
the opposites, and their neutrals too.  

There are many different ways for interpreting and ex-
panding The Golden Mean through “Neutrosophic tetrad” 
(thesis-antithesis-neutrothesis-neutrosynthesis), and differ-
ent conclusions are reached. This paper emphasizes the 
conclusion that, in practice, The Golden Mean cannot be 
applied lonely and unaided for long-term; in many cases, it 
needs to be combined with other principles. 

Example 1: If asking a man who likes to do everything 
according to The Golden Mean: will you wear black or 
white clothes to attend the meeting?, the answer should be 
an unbiased one: I will wear grey clothes. According to 
“Neutrosophic tetrad” (thesis-antithesis-neutrothesis-
neutrosynthesis), there are many different possible an-
swers: (1) I will wear deep grey clothes; (2) I will wear 
shallow grey clothes; (3) I will wear a white coat, but black 
trousers; (4) trousers white underwear, but a black coat; (5) 
I will wear black clothes at the beginning of the meeting, 
but white clothes at the end of the meeting; (6) I will 
switch between black, grey, and white clothes during the 
meeting; (7) I will wear black clothes at this conference, 
but white clothes at the next one; (8) I will respectively 
wear black, white, grey (or different combination of the 
three colours) clothes at different conferences. And so 
forth. 

In this example, The Golden Mean cannot be applied 
lonely and unaided for long-term; in fact, no one can al-
ways wear grey clothes to participate in any meeting and 
gathering, at least the bride cannot wear grey clothes at the 
wedding. 

Example 2: In Chinese ancient story of the three king-
doms, as Zhuge Liang command the war, he generally ap-
plies The Golden Mean "combining punishment with leni-
ency". The most obvious example is that, in the battle of 
Red Cliff, he firstly associates with Zhou Yu to beat the 
army of Cao Cao, and obtains a brilliant victory; but he de-
liberately sends Guan Yu to ambush at Huarong Road, due 
to gratitude for the old kindness, Guan Yu and his army 
loose the powerful enemy of Cao Cao. However, in some 
cases, Zhuge Liang cannot carry on The Golden Mean. For 
example, as Ma Su is defeated and losing a place of strate-
gic importance, Zhuge Liang puts him to death without 
mercy. In addition, Zhuge Liang captures Meng Huo sev-
enth times, and releases him seventh times; it is so tolerant, 
as rarely seen in history. 

Example 3: Some scholars believe that the theoretical 
foundation of universe is the unity of heaven and man. An 
instance is as it follows: a boat is travelling from the mid-
stream to the downstream of a river. In Song dynasty, the 

famous poet Su Dongpo was rafting with guests beneath 
Red Cliff, and did write the eternal masterpiece "Chibi Fu". 
For this reason, the men who clings to "The Golden Mean" 
intends to follow Su Dongpo and write a masterpiece again. 
Although thousands of writers visit Red Cliff, no one can 
write a decent poem. 

However, according to the viewpoint of “Neutrosophic 
tetrad” (thesis-antithesis-neutrothesis-neutrosynthesis), one 
can also boat against the current, sail in the sea, sing in the 
loess plateau, and the like, in order to write a decent poem.  

In short, at the right time and the right place, and hav-
ing a good authoring environment (similar to what hap-
pened when Su Dongpo wrote "Chibi Fu"), the writers can 
apply different ways to write excellent poetry or other 
literary works. For example, the "Four Classics" (“A 
Dream of Red Mansions”, “Journey to the West”, “The 
Three Kingdoms”, and “Water Margin”) were not written 
by sticking to the stereotypes of Su Dongpo. 

Due to space limitations, we no longer discuss other 
examples and results of the interpretation and expansion of 
"The Golden Mean". 

Conclusion

The “mean”, the “middle”, or the “neutralities” are nei-
ther fixed points; nor rigid rules. The “mean” is not always 
located at equidistant midpoint between the two opposing 
sides, and is not always fixed at some point or within a cer-
tain range, but it changes with peculiarities like a specific 
time, a specific location, or a specific condition.  

The essences of Chinese traditional culture, including 
here "The Golden Mean", should adapt with the times, ex-
panding and developing towards "modernization" and 
"globalization" through international contemporary popular 
ideas and methods. Applying “Neutrosophic tetrad” (the-
sis-antithesis-neutrothesis-neutrosynthesis) to re-interpret 
The Golden Mean is an initial attempt, and we hope to play 
a significant role, and give a new philosophical direction. 
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Abstract. Neutrosophic set is very useful to express un-
certainty, impreciseness, incompleteness and incon-
sistency in a more general way. It is prevalent in real life 
application problems to express both indeterminate and 
inconsistent information. This paper focuses on introduc-
ing a new similarity measure in the neutrosophic envi-
ronment. Similarity measure approach can be used in 
ranking the alternatives and determining the best among 
them. It is useful to find the optimum alternative for mul-
ti criteria decision making (MCDM) problems from simi-
lar alternatives in neutrosophic form. We define a func-

tion based on hypercomplex number system in this paper 
to determine the degree of similarity between single val-
ued neutrosophic sets and thus a new approach to rank 
the alternatives in MCDM problems has been introduced. 
The approach of using hypercomplex number system in 
formulating the similarity measure in neutrosophic set is 
new and is not available in literature so far. Finally, a 
numerical example demonstrates how this function de-
termines the degree of similarity between single valued 
neutrosohic sets and thereby solves the MCDM problem.

Keywords: Hypercomplex similarity measure, Neutrosophic fuzzy set, Decision Making.

1 Introduction

Zadeh introduced the degree of membership/truth (t) in 
1965 and defined the fuzzy set which is an extension of or-
dinary or crisp set as the elements in the fuzzy set are char-
acterised by the grade of membership to the set. Atanassov 
introduced the degree of nonmembership/falsehood (f) in 
1986 and defined the intuitionistic fuzzy set. An intution-
istic fuzzy set is characterized by a membership and non-
membership function and thus can be thought of as the ex-
tension of fuzzy set. Smarandache introduced the degree of 
indeterminacy/neutrality (i) as independent component in 
1995 (published in 1998) and defined the neutrosophic set 
[1]. He has coined the words “neutrosophy” and 
“neutrosophic”. In 2013 he refined the neutrosophic set to 
n components: 𝑡1, 𝑡2, …𝑡𝑗; 𝑖1, 𝑖2, …,𝑖𝑘;  𝑓1, 𝑓2, …, 𝑓𝑙, with
j+k+l = n > 3. A neutrosophic set generalizes the concepts 
of classical set, fuzzy set and intutionistic fuzzy set by con-
sidering truth-membership function, indeterminacy mem-
bership function and falsity-membership function. Real life 
problems generally deal with indeterminacy, inconsistency 
and incomplete information which can be best represented 
by a neutrosophic set.

Properties of neutrosophic sets, their operations, simi-
larity measure between them and solution of MCDM prob-
lems in neutrosophic environment are available in the liter-
ature. In [2] Wang et al. presented single valued neutro-
sophic set (SVNS) and defined the notion of inclusion, 

complement, union, intersection and discussed various 
properties of set-theoretic operators. They also provided in 
[3] the set-theoretic operators and various properties of in-
terval valued neutrosophic sets (IVNSs). Said Broumi and 
Florentin Smarandache introduced the concept of several 
similarity measures of neutrosophic sets [4]. In this paper 
they presented the extended Hausdorff distance for neutro-
sophic sets and defined a series of similarity measures to 
calculate the similarity between neutrosophic sets. In [5] 
Ye introduced the concept of a simplified neutrosophic set 
(SNS), which is a subclass of a neutrosophic set and in-
cludes the concepts of IVNS and SVNS; he defined some 
operational laws of SNSs and proposed simplified neutro-
sophic weighted averaging (SNWA) operator and simpli-
fied neutrosophic weighted geometric (SNWG) operator 
and applied them to multi criteria decision-making prob-
lems under the simplified neutrosophic environment. Ye 
[6] further generalized the Jaccard, Dice and cosine simi-
larity measures between two vectors in SNSs. Then he ap-
plied the three similarity measures to a multi criteria deci-
sion-making problem in the simplified neutrosophic setting. 
Broumi and Smarandache [7] defined weighted interval 
valued neutrosophic sets and found a cosine similarity 
measure between two IVNSs. Then they applied it to prob-
lems related to pattern recognition. 
      Various comparison methods are used for ranking the 
alternatives. Till date no similarity measure using hyper-
complex number system in neutrosophic environment is 
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available in literature. We introduce hypercomplex number 
in similarity measure. In this paper SVNS is represented as 
a hypercomplex number. The distance measured between 
so transformed hypercomplex numbers can give the simi-
larity value. We have used hypercomplex numbers as dis-
cussed by Silviu Olariu in [8]. Multiplication of such hy-
percomplex numbers is associative and commutative. Ex-
ponential and trigonometric form exist, also the concept of 
analytic function, contour integration and residue is de-
fined. Many of the properties of two dimensional complex 
functions can be extended to hypercomplex numbers in n 
dimensions and can be used in similarity measure problems. 
Here in lies the robustness of this method being another 
application of complex analysis.  

The rest of paper is structured as follows. Section 2 in-
troduces some concepts of neutrosophic sets and SNSs. 
Section 3 describes Jaccard, Dice and cosine similarity 
measures. In section 4 three dimensional hypercomplex 
number system and its properties have been discussed. We 
define a new function based on three dimensional hyper-
complex number system for similarity measure to compare 
neutrosophic sets in section 5. Section 6 demonstrates ap-
plication of hypercomplex similarity measures in Decision-
Making problem. In section 7, a numerical example 
demonstrates the application and effectiveness of the pro-
posed similarity measure in decision-making problems in 
neutrosophic environment. We conclude the paper in sec-
tion 8. 

2 Neutrosophic sets 

2.1 Definition 

Let U be an universe of discourse, then the neutrosoph-
ic set A is defined as 
A = {< 𝑥: TA(x), IA(x), FA(x) >} , where the functions
T, I, F: U → ] −0, 1+[  define respectively the degree of 
membership (or Truth), the degree of indeterminacy and 
the degree of non-membership (or falsehood) of the ele-
ment x ∈ U to the set A with the condition  −0 ≤ TA(x) +
IA(x) + FA(x) ≤ 3+.

To apply neutrosophic set to science and technology, 
we consider the neutrosohic set which takes the value from 
the subset of [0, 1]  instead of ] −0, 1+[  i.e., we consider 
SNS as defined by Ye in [5]. 

. 

2.2 Simplified Neutrosophic Set 

Let X is a space of points (objects) with generic ele-
ments in X denoted by x. A neutrosophic set A in X is 
characterized by a truth-membership functionTA(x), an in-
determinacy membership function IA(x) , and a falsity
membership function FA(x) if the functions
TA(x), IA(x), FA(x) are singletons subintervals/subsets in

the real standard [0, 1] , i.e. TA(x): X → [0, 1], IA(x): X →
[0, 1],  FA(x): X → [0, 1]. Then a simplification of the neu-
trosophic set A is denoted by 
A = {< 𝑥: TA(x), IA(x), FA(x) >, 𝑥 ∈ 𝑋}.

2.3 Single Valued Neutrosophic Sets (SVNS) 

Let X is a space of points (objects) with generic ele-
ments in X denoted by x. An SVNS A in X is characterized 
by a truth-membership function 𝑇𝐴(𝑥), an indeterminacy
membership function 𝐼𝐴(𝑥) and a falsity-membership func-
tion 𝐹𝐴(𝑥) , for each point 𝑥 ∈ 𝑋,  𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ∈
[0, 1]. Therefore, a SVNS A can be written as 𝐴𝑆𝑉𝑁𝑆 =
{< 𝑥:  𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) >, 𝑥 ∈ 𝑋}.

For two SVNS, 𝐴𝑆𝑉𝑁𝑆 = {< 𝑥: 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) >
, 𝑥 ∈ 𝑋}  and 𝐵𝑆𝑉𝑁𝑆 = {< 𝑥: 𝑇𝐵(𝑥), 𝐼𝐵(𝑥), 𝐹𝐵(𝑥) >, 𝑥 ∈ 𝑋} ,
the following expressions are defined in [2] as follows: 
𝐴𝑁𝑆 ⊆ 𝐵𝑁𝑆 if and only if 𝑇𝐴(𝑥) ≤ 𝑇𝐵(𝑥), 𝐼𝐴(𝑥) ≥
𝐼𝐵(𝑥), 𝐹𝐴(𝑥) ≥ 𝐹𝐵(𝑥) . 𝐴𝑁𝑆 = 𝐵𝑁𝑠  if and only if 𝑇𝐴(𝑥) =
𝑇𝐵(𝑥), 𝐼𝐴(𝑥) = 𝐼𝐵(𝑥), 𝐹𝐴(𝑥) = 𝐹𝐵(𝑥). 𝐴𝑐 =< 𝑥, 𝐹𝐴(𝑥), 1 −
𝐼𝐴(𝑥), 𝑇𝐴(𝑥) >

For convenience, a SVNS A is denoted by 𝐴 =<
𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) > for any x∈ 𝑋; for two SVNSs A and
B; the operational relations are defined by [2], 
(1)𝐴 ∪ 𝐵 =
< max(𝑇𝐴(𝑥), 𝑇𝐵(𝑥)) ,𝑚𝑖𝑛(𝐼𝐴(𝑥), 𝐼𝐵(𝑥)),𝑚𝑖𝑛(𝑇𝐴(𝑥), 𝑇𝐵(𝑥))
>
(2)𝐴 ∩ 𝐵 =<
𝑚𝑖𝑛(𝑇𝐴(𝑥), 𝑇𝐵(𝑥)),𝑚𝑎𝑥(𝐼𝐴(𝑥), 𝐼𝐵(𝑥)),𝑚𝑎𝑥(𝑇𝐴(𝑥), 𝑇𝐵(𝑥)) >

3 Jaccard, Dice and cosine similarity

The vector similarity measure is one of the most im-
portant techniques to measure the similarity between ob-
jects. In the following, the Jaccard, Dice and cosine simi-
larity measures between two vectors are introduced 

Let 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛)  and 𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑛) be the
two vectors of length n where all the coordinates are posi-
tive. The Jaccard index of these two vectors is defined as 

𝐽(𝑋, 𝑌) =
𝑋.𝑌

‖𝑋‖2
2
+‖𝑌‖2

2
+𝑋.𝑌

=
∑ 𝑥𝑖.𝑦𝑖

𝑛
𝑖=1

∑ 𝑥𝑖
2+∑ 𝑦𝑖

2−∑ 𝑥𝑖.𝑦𝑖
𝑛
𝑖=1

𝑛
𝑖=1

𝑛
𝑖=1

, 

where 𝑋. 𝑌 = ∑ 𝑥𝑖 . 𝑦𝑖
𝑛
𝑖=1  is the inner product of the 

vectors 𝑋 𝑎𝑛𝑑 𝑌. 

The Dice similarity measure is defined as 

𝐽(𝑋, 𝑌) =
2𝑋. 𝑌

‖𝑋‖2
2
+ ‖𝑌‖2

2 =
2∑ 𝑥𝑖 . 𝑦𝑖

𝑛
𝑖=1

∑ 𝑥𝑖
2 + ∑ 𝑦𝑖

2𝑛
𝑖=1

𝑛
𝑖=1

Cosine formula is defined as the inner product of these 
two vectors divided by the product of their lengths. This is 
the cosine of the angle between the vectors. The cosine 
similarity measure is defined as 
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𝐶(𝑋, 𝑌) =
𝑋. 𝑌

‖𝑋‖2
2
. ‖𝑌‖2

2 =
∑ 𝑥𝑖 . 𝑦𝑖

𝑛
𝑖=1

∑ 𝑥𝑖
2. ∑ 𝑦𝑖

2𝑛
𝑖=1

𝑛
𝑖=1

It is obvious that the Jaccard, Dice and cosine similari-
ty measures satisfy the following properties

(P1) 0 ≤ J(X, Y), D(X, Y), C(X, Y) ≤ 1

(P2) J(X, Y) = J(Y, X), D(X, Y) = D(Y, X) and C(X, Y)
= C(Y, X)

(P3) J(X, Y) = 1, D(X, Y) = 1 and C(X, Y) = 1 if X = Y

i.e., 𝑥𝑖 = 𝑦𝑖(𝑖 = 1, 2, … , 𝑛)for every 𝑥𝑖 ∈ 𝑋 and 𝑦𝑖 ∈ 𝑌.
Also Jaccard, Dice, cosine weighted similarity measures 
between two SNSs A and B as discussed in [6] are 

𝑊𝐽(𝐴, 𝐵)

= ∑𝑤𝑖

𝑇𝐴(𝑥𝑖)𝑇𝐵(𝑥𝑖)

+𝐼𝐴(𝑥𝑖)𝐼𝐵(𝑥𝑖)

+𝐹𝐴(𝑥𝑖)𝐹𝐵(𝑥𝑖)

(𝑇𝐴(𝑥𝑖))
2
+ (𝐼𝐴(𝑥𝑖))

2
+ (𝐹𝐴(𝑥𝑖))

2

+(𝑇𝐵(𝑥𝑖))
2
+ (𝑇𝐴(𝑥𝑖))

2
+ (𝑇𝐴(𝑥𝑖))

2
+ (𝑇𝐴(𝑥𝑖))

2

−𝑇𝐴(𝑥𝑖)𝑇𝐵(𝑥𝑖) − 𝑇𝐵(𝑥𝑖)𝑇𝐶(𝑥𝑖) − 𝑇𝐶(𝑥𝑖)𝑇𝐴(𝑥𝑖)

𝑛

𝑖=1

𝑊𝐷(𝐴, 𝐵)

= ∑𝑤𝑖

2(

𝑇𝐴(𝑥𝑖)𝑇𝐵(𝑥𝑖)

+𝐼𝐴(𝑥𝑖)𝐼𝐵(𝑥𝑖)

+𝐹𝐴(𝑥𝑖)𝐹𝐵(𝑥𝑖)
)

(𝑇𝐴(𝑥𝑖))
2
+ (𝐼𝐴(𝑥𝑖))

2
+ (𝐹𝐴(𝑥𝑖))

2

+(𝑇𝐵(𝑥𝑖))
2
+ (𝑇𝐴(𝑥𝑖))

2
+ (𝑇𝐴(𝑥𝑖))

2
+ (𝑇𝐴(𝑥𝑖))

2

𝑛

𝑖=1

𝑊𝐶(𝐴, 𝐵)

= ∑𝑤𝑖

(

𝑇𝐴(𝑥𝑖)𝑇𝐵(𝑥𝑖)

+𝐼𝐴(𝑥𝑖)𝐼𝐵(𝑥𝑖)

+𝐹𝐴(𝑥𝑖)𝐹𝐵(𝑥𝑖)
)

√(𝑇𝐴(𝑥𝑖))
2
+ (𝐼𝐴(𝑥𝑖))

2
+ (𝐹𝐴(𝑥𝑖))

2

√(𝑇𝐵(𝑥𝑖))
2
+ (𝑇𝐴(𝑥𝑖))

2
+ (𝑇𝐴(𝑥𝑖))

2
+ (𝑇𝐴(𝑥𝑖))

2

𝑛

𝑖=1

4 Geometric representation of hypercomplex 
number in three dimensions  

A system of hypercomplex numbers in three dimen-
sions is described here, for which the multiplication is as-
sociative and commutative, which have exponential and 
trigonometric forms and for which the concepts of analytic 
tricomplex function, contour integration and residue is de-
fined. The tricomplex numbers introduced here have the 
form  𝑢 = 𝑥 + ℎ𝑦 + 𝑘𝑧, the variables x, y and z being real 
numbers. The multiplication rules for the complex units 
ℎ, 𝑘 are ℎ2 = 𝑘, 𝑘2 = ℎ, 1. ℎ = ℎ, 1. 𝑘 = 𝑘, ℎ𝑘 = 1 as dis-

cussed in [8]. In a geometric representation, the tricomplex 
number 𝑢  is represented by the point P of 
nates (𝑥, 𝑦, 𝑧). If O is the origin of the 𝑥, 𝑦, 𝑧 axes, (t) the 
trisector line 𝑥 = 𝑦 = 𝑧  of the positive octant and Π  the 
plane 𝑥 + 𝑦 + 𝑧 = 0  passing through the origin (O) and 
perpendicular to (t), then the tricomplex number u can be 
described by the projection S of the segment OP along the 
line (t), by the distance D from P to the line (t), and by the 
azimuthal angle 𝜙 in the Π  plane. It is the angle between 
the projection of P on the plane Π and the straight line 
which is the intersection of the plane Π and the plane de-
termined by line t and x axis, 0 ≤ 𝜙 ≤ 2𝜋. The amplitude 
𝜌  of a tricomplex number is defined as 𝜌 = (𝑥3 + 𝑦3 +

𝑧3 − 3𝑥𝑦𝑧)
1

3⁄  , the polar angle 𝜃  of OP with respect to
the trisector line (t) is given by 𝑡𝑎𝑛 𝜃 =

𝐷

𝑆
, 0 ≤ 𝜃 ≤ 𝜋 and 

the distance from P to the origin is 𝑑2 = 𝑥2 + 𝑦2 + 𝑧2. the 
tricomplex number 𝑥 + ℎ𝑦 + 𝑘𝑧  can be represented by the 
point P of coordinates (x, y, z). The projection S = OQ of 
the line OP on the trisector line 𝑥 = 𝑦 = 𝑧, which has the 

unit tangent( 1

√3
,

1

√3
,

1

√3
) , 𝑖𝑠 𝑆 =

1

√3
(𝑥 + 𝑦 + 𝑧).  The dis-

tance D = PQ from P to the trisector line 𝑥 = 𝑦 = 𝑧, calcu-
lated as the distance from the point P(x, y ,z) to the point Q 
of coordinates [

𝑥+𝑦+𝑧

3
,
𝑥+𝑦+𝑧

3
,
𝑥+𝑦+𝑧

3
] , is 𝐷2 =

2

3
(𝑥2 + 𝑦2 + 𝑧2 − 𝑥𝑦 − 𝑦𝑧 − 𝑧𝑥). The quantities S and D 

are shown in Fig. 1, where the plane through the point P 
and perpendicular to the trisector line (t) intersects the x 
axis at point A of coordinates (𝑥 + 𝑦 + 𝑧, 0, 0),  the y axis 
at point B of coordinates (0. 𝑥 + 𝑦 + 𝑧, 0), and the z axis at 
point C of coordinates (0, 0, 𝑥 + 𝑦 + 𝑧) . The expression of 
𝜙 in terms of x, y, z can be obtained in a system of coordi-
nates defined by the unit vectors 𝜉1 =

1

√6
(2, −1,−1),

𝜉2 =
1

√2
(0, −1,−1), 𝜉3 =

1

√3
(1, 1, 1)and having the point 

O as origin. The relation between the coordinates of P in 
the systems 𝜉1, 𝜉2, 𝜉3 and x, y, z can be written in the form:

[

𝜉1

𝜉2

𝜉3

] =

[

 
2

√6
−

1

√6
−

1

√6

0 −
1

√2
−

1

√2
1

√3

1

√3

1

√3 ]
 
 
 
 
 
 

[
𝑥
𝑦
𝑧
]

(𝜉1, 𝜉2, 𝜉3) = (
1

√6
(2𝑥 − 𝑦 − 𝑧),

1

√2
(𝑦 − 𝑧),

1

√3
(𝑥 + 𝑦 +

𝑧)). Also cos𝜙 =
2𝑥−𝑦−𝑧

2√(𝑥2+𝑦2+𝑧2−𝑥𝑦−𝑦𝑧−𝑧𝑥)
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sin𝜙 =
√3(𝑦 − 𝑧)

2√(𝑥2 + 𝑦2 + 𝑧2 − 𝑥𝑦 − 𝑦𝑧 − 𝑧𝑥)

The angle 𝜃 between the line OP and the trisector line 
(t) is given by tan 𝜃 =

𝐷

𝑆

Figure 1: Tricomplex variables s, d, 𝜃 , 𝜙  for the tri-
comlex number 𝑥 + ℎ𝑦 + 𝑘𝑧, represented by the point P(x, 
y, z). The azimuthal angle 𝜙 is shown in the plane parallel 
to Π, passing through P, which intersects the trisector line 
(t) at Q and the axis of coordinates x, y, z  at the points A, 
B, C. The orthogonal axis: 𝜉1

||,𝜉2
||, 𝜉3

|| have the origin at Q.
The axis Q𝜉1

|| is parallel to the axis O𝜉1
||, the axis Q𝜉2

|| is
parallel to the axis O𝜉2

||, and the axis Q𝜉3
|| is parallel to the

axis O𝜉3
||, so that, in the plane ABC, the angle 𝜙 is meas-

ured from the line QA. 

5 Hypercomplex similarity measure for SVNS 

We here define a function for similarity measure be-
tween SVNSs. It requires satisfying some properties of 
complex number in three dimensions to satisfy the prereq-
uisites of a similarity measure method. In this sense, we 
can call the function to be defined in three dimensional 
complex number system or hypercomplex similarity meas-
urement function. 

Definition I: Let 𝐴 = {𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)}  and
𝐵 = {𝑥, 𝑇𝐵(𝑥), 𝐼𝐵(𝑥), 𝐹𝐵(𝑥)} are two neutrosophic sets in
𝑋 = {𝑥}; then the similarity function between two neutro-
sophic sets A and B is defined as  

𝑆(𝐴, 𝐵) =

1

2
[

(1+𝐷𝜃1
𝐷𝜃2

)
2

1+𝐷𝜃1
2+𝐷𝜃2

2+𝐷𝜃1
2𝐷𝜃2

2 +
(1+𝐷𝜙1

𝐷𝜙2)
2

1+𝐷𝜙1
2+𝐷𝜙2

2+𝐷𝜙1
2𝐷𝜙2

2] , where 

𝐷𝜃1
=

√(𝑇𝐴(𝑥)−𝐼𝐴(𝑥))
2
+(𝐼𝐴(𝑥)−𝐹𝐴(𝑥))

2
+(𝐹𝐴(𝑥)−𝑇𝐴(𝑥))

2

(𝑇𝐴(𝑋)+𝐼𝐴(𝑥)+𝐹𝐴(𝑥))

𝐷𝜃2
=

√(𝑇𝐵(𝑥) − 𝐼𝐵(𝑥))
2
+ (𝐼𝐵(𝑥) − 𝐹𝐵(𝑥))

2
+ (𝐹𝐵(𝑥) − 𝑇𝐵(𝑥))

2

(𝑇𝐵(𝑋) + 𝐼𝐵(𝑥) + 𝐹𝐵(𝑥))

𝐷𝜙1
=

√3(𝐼𝐴(𝑥) − 𝐹𝐴(𝑥))

2𝑇𝐴(𝑥) − 𝐼𝐴(𝑥) − 𝐹𝐴(𝑥)

𝐷𝜙2
=

√3(𝐼𝐵(𝑥) − 𝐹𝐵(𝑥))

2𝑇𝐵(𝑥) − 𝐼𝐵(𝑥) − 𝐹𝐵(𝑥)

Also (TA(x), IA(x), FA(x) ≠ (0, 0, 0) and (TB(x), IB(x), 
FB(x) ) ≠ (0, 0, 0) . 

Lemma I: Function S (A, B) satisfies the properties of 
similarity measure.  

Proof: Let us consider 𝑆1(𝐴, 𝐵) =
1

2
[

1

1+tan2(𝜃1−𝜃2)
+

1

1+tan2(𝜑1−𝜑2)
] =

1

2
[

(1+tan𝜃1 tan𝜃2)2

1+tan2 𝜃1+tan2 𝜃2+tan2 𝜃1 tan2 𝜃2
+

(1+tan𝜑1 tan𝜑2)2

1+tan2 𝜑1+tan2 𝜑2+tan2 𝜑1 tan2 𝜑2
]. From (1), (2) and (3), 

we get the value of tan𝜃1 , tan 𝜃2 , tan𝜑1 , tan𝜑2 . If
we take tan 𝜃1 = 𝐷𝜃1

, tan 𝜃2 = 𝐷𝜃2
, tan𝜑1 = 𝐷𝜑1

,
tan𝜑2 = 𝐷𝜑2

, then 𝑆1(𝐴, 𝐵) = 𝑆(𝐴, 𝐵)

Clearly the function 𝑆1(𝐴, 𝐵) satisfies the properties

(p1) 0 ≤ S1(A, B) ≤ 1

(𝑃2) 𝑆1(𝐴, 𝐵) = 𝑆1(𝐵, 𝐴)

(𝑃3) 𝑊ℎ𝑒𝑛 𝐴 = 𝐵,  𝜃1 = 𝜃2  𝑎𝑛𝑑 𝜙1 =
𝜙2, 𝑖. 𝑒. , 𝑆1(𝐴, 𝐵) = 1, 𝑖𝑓𝐴 = 𝐵. 

6 Application of Hypercomplex similarity 
Measures in Decision-Making 

In this section, we apply hypercomplex similarity 
measures between SVNSs to the multicriteria decision-
making problem. Let 𝐴 = 𝐴1, 𝐴2, … , 𝐴𝑚be a set of 
alternatives and 𝐶 = 𝐶1, 𝐶2, … , 𝐶𝑛  𝑏𝑒 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎. 
Assume that the weight of the criterion 𝐶𝑗(𝑗 = 1,2, … , 𝑛) 
entered by the decision-maker is 𝑤𝑗, 𝑤𝑗 ∈ [0,1]

and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 . The m options according to the n criteri-

on are given below: 
𝐶1 𝐶2 𝐶3 … 𝐶𝑛

𝐴1 𝐶1
(𝐴1) 𝐶2

(𝐴1) 𝐶1
(𝐴1) … 𝐶𝑛

(𝐴1)

𝐴2 𝐶1
(𝐴2) 𝐶2

(𝐴2) 𝐶3
(𝐴2) … 𝐶𝑛

(𝐴3)

𝐴3 𝐶1
(𝐴3) 𝐶2

(𝐴3) 𝐶3
(𝐴3) … 𝐶𝑛

(𝐴3)

: : : : : :

𝐴𝑚 𝐶1
(𝐴𝑛) 𝐶2

(𝐴3) 𝐶3
(𝐴3) … 𝐶𝑛

(𝐴𝑚)

9
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Generally, the evaluation criteria can be categorized in-
to two types: benefit criteria and cost criteria. Let K be a 
set of benefit criteria and M be a set of cost criteria. In the 
proposed decision-making method, an ideal alternative can 
be identified by using a maximum operator for the benefit 
criteria and a minimum operator for the cost criteria to de-
termine the best value of each criterion among all alterna-
tives. Therefore, we define an ideal alternative 

𝐴∗ = {𝐶1
∗, 𝐶2

∗, 𝐶3
∗, … , 𝐶𝑛

∗}
Where for a benefit criterion 
𝐶𝑗

∗ = {𝑚𝑎𝑥𝑖𝑇𝐶𝑗

(𝐴𝑖), 𝑚𝑖𝑛𝑖𝐼𝐶𝑗

(𝐴𝑖), 𝑚𝑖𝑛𝑖𝐹𝐶𝑗

(𝐴𝑖)} while for
a cost criterion, 

𝐶𝑗
∗ = {𝑚𝑖𝑛𝑖𝑇𝐶𝑗

(𝐴𝑖), 𝑚𝑎𝑥𝑖𝐼𝐶𝑗

(𝐴𝑖), 𝑚𝑎𝑥𝑖𝐹𝐶𝑗

(𝐴𝑖)}

Definition II: We define hypercomplex weighted similari-
ty measure as 

𝑊𝑆𝐾(𝐴𝑖 , 𝐴
∗) = ∑ 𝑊𝑗𝑆(𝐶𝑗

(𝐴𝑖), 𝐶𝑗
∗), (𝑖 =𝑛

𝑗=1

1, 2, 3, … ,𝑚)  Lemma II: 𝑊𝑆𝐾(𝐴𝑖 , 𝐴
∗), (𝑖 = 1, 2, 3, … ,𝑚)

satisfies properties 𝑃1, 𝑃2, 𝑃3.

Proof: Clearly  ∑ 𝑤𝑗𝑆(𝐶𝑗
(𝐴𝑖), 𝐶𝑗

∗) ≥ 0𝑛
𝑗=1  and since

from the property of hypercomplex similarity measure 
𝑆(𝐶𝑗

(𝐴𝑖), 𝐶𝑗
∗) ≤ 1,  ∑ 𝑤𝑗𝑆(𝐶𝑗

(𝐴𝑖), 𝐶𝑗
∗) ≤ ∑ 𝑤𝑗 = 1,𝑛

𝑗=1
𝑛
𝑗=1  so 

0 ≤ 𝑊𝑆𝐾(𝐴𝑖, 𝐴
∗) ≤ 1. Thus 𝑃1 is satisfied.

Since 𝑆(𝐶𝑗
(𝐴𝑖), 𝐶𝑗

∗) =  𝑆(𝐶𝑗
∗, 𝐶𝑗

(𝐴𝑖)),𝑊𝑆𝐾(𝐴𝑖 , 𝐴
∗) =

𝑊𝑆𝐾(𝐴∗, 𝐴𝑖). Thus 𝑃2 is satisfied.

When 𝐶𝑗
(𝐴𝑖) = 𝐶𝐽

∗,  Using the property of hyper-
complex similarity measure 

𝑆(𝐶𝑗
(𝐴𝑖), 𝐶𝑗

∗) = 1,  So ∑ 𝑤𝑗𝑆(𝐶𝑗
(𝐴𝑖), 𝐶𝑗

∗) =𝑛
𝑗=1

∑ 𝑤𝑗
𝑛
𝑗=1 = 1 if 𝐶𝑗

(𝐴𝑖) = 𝐶𝑗
∗.

So 𝑃3 is also satisfied.

Through the similarity measure between each alterna-
tive and the ideal alternative, the ranking order of all alter-
natives can be determined and the best alternative can be 
easily selected. 

7 Numerical Example 

In a certain network, there are four options to go from 
one node to the other. Which path to be followed will be 
impacted by two benefit criteria 𝐶1, 𝐶2 and one cost criteria
𝐶3 and the weight vectors are 0.35, 0.25 and 0.40 respec-
tively. A decision maker evaluates the four options accord-
ing to the three criteria mentioned above. We use the new-
ly introduced approach to obtain the most desirable alterna-
tive from the decision matrix given in table 1. 

𝐶1, 𝐶2 are benefit criteria, 𝐶3 is cost criteria. From table
1 we can obtain the following ideal alternative: 

𝐴∗ = {(0.7, 0, 0.1), (0.6, 0.1, 0.2), (0.5, 0.3, 0.8)} 

𝐴1 𝐴2 𝐴3 𝐴4

𝐶1 (0.4, 0.2, 0.3) (0.6, 0.1, 0.2) (0.3, 0.2, 0.3) (0.7, 0, 0.1)

𝐶2 (0.4, 0.2, 0.3) (0.6, 0.1, 0.2) (0.5, 0.2, 0.3) (0.6, 0.1, 0.2)

𝐶3 (0.8, 0.2, 0.5) (0.5, 0.2, 0.8) (0.5, 0.3, 0.8) (0.6, 0.3, 0.8)

Table 1: Decision matrix (information given by 
DM) 

𝑴𝒆𝒂𝒔𝒖𝒓𝒆 𝒎𝒆𝒕𝒉𝒐𝒅 𝒎𝒆𝒂𝒔𝒖𝒓𝒆 𝒗𝒂𝒍𝒖𝒆 𝑹𝒂𝒏𝒌𝒊𝒏𝒈 𝒐𝒓𝒅𝒆𝒓

𝑾𝑱(𝑨𝟏, 𝑨
∗) = 𝟎. 𝟕𝟔𝟒𝟐

𝑾𝒆𝒊𝒈𝒉𝒕𝒆𝒅 𝑱𝒂𝒄𝒄𝒂𝒓𝒂𝒅 𝑾𝑱(𝑨𝟐, 𝑨
∗) = 𝟎. 𝟗𝟕𝟑𝟓

𝒔𝒊𝒎𝒊𝒍𝒂𝒓𝒊𝒕𝒚 𝒎𝒆𝒂𝒔𝒖𝒓𝒆 𝑾𝑱(𝑨𝟑, 𝑨
∗) = 𝟎. 𝟖𝟎𝟔𝟕 𝑨𝟒 > 𝐴𝟐 > 𝑨𝟑 > 𝑨𝟏

𝑾𝑱(𝑨𝟏, 𝑨
∗) = 𝟎. 𝟗𝟗𝟔𝟐

𝑾𝑫(𝑨𝟏, 𝑨
∗) = 𝟎. 𝟖𝟔𝟑𝟓

𝑾𝒆𝒊𝒈𝒉𝒕𝒆𝒅 𝑱𝒂𝒄𝒄𝒂𝒓𝒂𝒅 𝑾𝑫(𝑨𝟐, 𝑨
∗) = 𝟎. 𝟗𝟖𝟔𝟒

𝒔𝒊𝒎𝒊𝒍𝒂𝒓𝒊𝒕𝒚 𝒎𝒆𝒂𝒔𝒖𝒓𝒆 𝑾𝑫(𝑨𝟑, 𝑨
∗) = 𝟎. 𝟖𝟕𝟑𝟖 𝑨𝟒 > 𝐴𝟐 > 𝑨𝟑 > 𝑨𝟏

𝑾𝑫(𝑨𝟒, 𝑨
∗) = 𝟎. 𝟗𝟗𝟖𝟏

𝑾𝑫(𝑨𝟏, 𝑨
∗) = 𝟎. 𝟖𝟕𝟕𝟑

𝑾𝒆𝒊𝒈𝒉𝒕𝒆𝒅 𝒄𝒐𝒔𝒊𝒏𝒆 𝑾𝑫(𝑨𝟐, 𝑨
∗) = 𝟎. 𝟗𝟖𝟖𝟐

𝒔𝒊𝒎𝒊𝒍𝒂𝒓𝒊𝒕𝒚 𝒎𝒆𝒂𝒔𝒖𝒓𝒆 𝑾𝑫(𝑨𝟑, 𝑨
∗) = 𝟎. 𝟖𝟗𝟑𝟗 𝑨𝟒 > 𝐴𝟐 > 𝑨𝟑 > 𝑨𝟏

𝑾𝑫(𝑨𝟒, 𝑨
∗) = 𝟎. 𝟗𝟗𝟖𝟔

𝑾𝒌𝑺(𝑨𝟏, 𝑨
∗) = 𝟎. 𝟕𝟐𝟏𝟏

𝑾𝒆𝒊𝒈𝒉𝒕𝒆𝒅 𝒉𝒚𝒑𝒆𝒓𝒄𝒐𝒎𝒑𝒍𝒆𝒙 𝑾𝒌𝑺(𝑨𝟐, 𝑨
∗) = 𝟎. 𝟗𝟖𝟓𝟕

𝒔𝒊𝒎𝒊𝒍𝒂𝒓𝒊𝒕𝒚 𝒎𝒆𝒂𝒔𝒖𝒓𝒆 𝑾𝒌𝑺(𝑨𝟑, 𝑨
∗) = 𝟎. 𝟖𝟎𝟗𝟎 𝑨𝟒 > 𝐴𝟐 > 𝑨𝟑 > 𝑨𝟏

𝑾𝒌𝑺(𝑨𝟒, 𝑨
∗) = 𝟎. 𝟗𝟖𝟗𝟓

7.1 Generalization of hypercomplex similarity 
measure 

In this section 7, we formulate a general function for simi-
larity measure using hypercomplex number system. This 
can give similarity measure for any dimension. Before 
formulating it, we should have a fare knowledge of hyper-
complex number in n-dimensions [8] for which the multi-
plication is associative and commutative, and also the con-
cepts of analytic n-complex function, contour integration 
and residue is defined. The n-complex number 𝑥0 +
ℎ1𝑥1 + ℎ2𝑥2 + ⋯+ ℎ𝑛−1𝑥𝑛−1 can be represented by the
point A of coordinates (𝑥0, 𝑥1, … , 𝑥𝑛−1)
whereℎ1, ℎ2, … , ℎ𝑛−1 are the hypercomplex bases for
which the multiplication rules areℎ𝑗ℎ𝑘 = ℎ𝑗+𝑘 if 0 ≤ 𝑗 +

𝑘 ≤ 𝑛 − 1, 𝑎𝑛𝑑 ℎ𝑗ℎ𝑘 = ℎ𝑗+𝑘−𝑛 if 𝑛 ≤ 𝑗 + 𝑘 ≤ 2𝑛 −

2, where ℎ0 = 1. If O is the origin of the n dimensional
space, the distance from the origin O to the point A of co-
ordinates (𝑥0, 𝑥1, … , 𝑥𝑛−1) has the expression 𝑑2 = 𝑥0

2 +
𝑥1

2 + 𝑥2
2 + ⋯+ 𝑥𝑛−1

2. The quantity d will be called
modulus of the n-complex number 𝑢 = 𝑥0 + ℎ1𝑥1 +
ℎ2𝑥2 + ⋯+ ℎ𝑛−1𝑥𝑛−1. The modulus of an n-complex
number u will be designated by 𝑑 = |𝑢|. For even number 
of dimensions (𝑛 ≥ 4) hypercomplex number is charac-
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terized by two polar axis, one polar axis is the normal 
through the origin O to the hyperplane 𝑣+ = 0 where𝑣+ =
𝑥0 + 𝑥1 + ⋯+ 𝑥𝑛−1 and the second polar axis is the
normal through the origin O to the hyperplane 𝑣− =
0 where 𝑣− = 𝑥0 − 𝑥1 + ⋯+ 𝑥𝑛−2 − 𝑥𝑛−1.  Whereas for
an odd number of dimensions, n-complex number is of one 
polar axis, normal through the origin O to the hyperplane  
𝑣+ = 0. 

Thus, in addition to the distance d, the position of the 
point A can be specified, in an even number of dimensions, 
by two polar angles 𝜃+, 𝜃−, by n/2-2 planar angles 𝜓𝑘, and
by 𝑛

2
− 1 azimuthal angles 𝜙𝑘. In an odd number of dimen-

sions, the position of the point A is specified by d, by one 
polar angle 𝜃+, by   planar angles 𝜓𝑘, and by 𝑛−1

2
 azimuthal 

angles 𝜙𝑘. The exponential and trigonometric forms of the
n-complex number u can be obtained conveniently in a ro-
tated system of axes defined by a transformation 

Which, for even n, 

[
 
 
 
 
 
𝜉+

𝜉−

:
𝜉𝑘

𝜂𝑘

: ]
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 

1

√𝑛

1

√𝑛
…

1

√𝑛

1

√𝑛
1

√𝑛
−

1

√𝑛
…

1

√𝑛
−

1

√𝑛
: : : :

√
2

𝑛
√

2

𝑛
cos

2𝜋𝜅

𝑛
… √

2

𝑛
cos

2𝜋(𝑛 − 2)𝑘

𝑛
√

2

𝑛
cos

2𝜋(𝑛 − 1)𝑘

𝑛

0 √
2

𝑛
sin

2𝜋𝑘

𝑛
… √

2

𝑛
sin

2𝜋(𝑛 − 2)𝑘

𝑛
√

2

𝑛
sin

2𝜋(𝑛 − 1)𝑘

𝑛

: : : : : ]
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 

𝑥0

𝑥1:
:
:
:

𝑥𝑛−1]
 
 
 
 
 

Here 𝑘 = 1,2, … ,
𝑛

2
− 1.

And for odd n, 

[
 
 
 
 
 
𝜉+

𝜉−

:
𝜉𝑘

𝜂𝑘

: ]

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1

√𝑛

1

√𝑛
…

1

√𝑛

2

√𝑛
√

2

𝑛
cos

2𝜋

𝑛
… √

2

𝑛
cos

2𝜋(𝑛 − 1)

𝑛

0 √
2

𝑛
sin

2𝜋

𝑛
… √

2

𝑛
sin

2𝜋(𝑛 − 1)

𝑛

: : : :

2

√𝑛
√

2

𝑛
cos

2𝜋𝑘

𝑛
… √

2

𝑛
cos

2𝜋(𝑛 − 1)𝑘

𝑛

0 √
2

𝑛
sin

2𝜋𝑘

𝑛
… √

2

𝑛
sin

2𝜋(𝑛 − 1)𝑘

𝑛

: : : : ]

[
 
 
 
 
 

𝑥0

𝑥1:
:
:
:

𝑥𝑛−1]

Here 𝑘 = 1,2, … ,
𝑛−1

2

Definition III: Let 𝐴 = (𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑛−1)  and 𝐵 = (𝑦0, 
𝑦1, 𝑦2, … , 𝑦𝑛−1) be two n dimensional complex numbers. 
Then similarity measure between A and B is defined as, 
when n is odd 

𝑆(𝐴, 𝐵) =
1

𝑛 − 1
[
 
 
 

1

1 + tan2(𝜃+
(𝐴) − 𝜃+

(𝐵))

+ ∑
1

1 + tan2(𝜙𝑘
(𝐴) − 𝜙𝑘

(𝐵))

𝑛−1
2

𝑘=1

+ ∑
1

1 + tan2(𝜓𝑘−1
(𝐴) − 𝜓𝑘−1

(𝐵))

𝑛−1
2

𝑘=2
]

And when n is even, 

𝑆(𝐴, 𝐵) =
1

𝑛 − 1
[

1

1 + tan2(𝜃+
(𝐴) − 𝜃+

(𝐵))

+
1

1 + tan2(𝜃−
(𝐴) − 𝜃−

(𝐵))

+ ∑
1

1 + tan2(𝜙𝑘
(𝐴) − 𝜙𝑘

(𝐵))

𝑛
2
−1

𝑘=1

+ ∑
1

1 + tan2(𝜓𝑘−1
(𝐴) − 𝜓𝑘−1

(𝐵))

𝑛
2
−1

𝑘=2

]
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Here tan𝜃+ =
√2𝜌1

𝑣+
, tan 𝜃− =

√2𝜌1

𝑣−
, cos𝜙𝑘 =

𝑣𝑘

𝜌𝑘
, sin 𝜙𝑘 =

𝑣̌𝑘

𝜌𝑘
, 𝜌𝑘

2 = 𝑣𝑘
2 + 𝑣̌𝑘 

2,  𝑣+ = √𝑛𝜉+,  𝑣− = √𝑛𝜉−, 𝑣𝑘 =

√
𝑛

2
𝜉𝑘, 𝑣̌𝑘 = √

𝑛

2
𝜂𝑘,  tan𝜓𝑘−1 =

𝜌1

𝜌𝑘
, and also   0 ≤ 𝜃+ ≤

𝜋, 0 ≤ 𝜃− ≤ 𝜋, 0 ≤ 𝜑𝑘 ≤ 2𝜋 and 0 ≤ 𝜉𝑘 ≤
𝜋

2
.

It is very clear that 𝑆(Α, Β) satisfies the three properties 
of similarity measure. 

8 Conclusion 

In this paper we first introduced a new method of simi-
larity measure between single valued neutrosohpic sets us-
ing hypercomplex number. We set up an example of deci-
sion making problem which requires finalizing an optimal 
path based on some certain criteria. We compared the re-
sult of our introduced similarity measure with those of oth-
er methods. We can conclude that we can efficiently apply 
the introduced similarity measure approach in decision 
making problems and any other similarity measure prob-
lems. Later, we proposed a general function for similarity 
measure. 

The proposed similarity measure is based on the con-
cept of hypercomplex number. We can relate the similarity 
measure with hypercomplex number system. Thus, it 
opens a new domain of research in finding the solutions of 
decision making problems related to the network problems 
by the use of similarity measures based on hypercomplex 
number system. 
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Abstract. The purpose of this paper is to introduce multi-
attribute decision making based on the concept of interval 
neutrosophic sets. While the concept of neutrosophic sets is a 
powerful tool to deal with indeterminate and inconsistent  data, 
the  interval neutrosophic set is also a powerful mathematical 
tool as well as more flexible to deal with incompleteness. The 
rating of all alternatives is expressed in terms of interval 
neutrosophic values characterized by interval truth-membership 
degree, interval indeterminacy-membership degree, and interval 
falsity-membership degree. Weight of each attribute is partially 
known to the decision maker. The authors have extended the 
single valued neutrosophic grey relational analysis method to 
interval neutrosophic environment and applied it to multi-

attribute decision making problem. Information entropy method 
is used to obtain the unknown attribute weights. Accumulated 
arithmetic operator is defined to transform interval neutrosophic 
set into single value neutrosophic set. Neutrosophic grey 
relational coefficient is determined by using Hamming distance 
between each alternative to ideal interval neutrosophic estimates 
reliability solution and the ideal interval neutrosophic estimates 
unreliability solution. Then interval neutrosophic relational 
degree is defined to determine the ranking order of all 
alternatives. Finally, an example is provided to illustrate the 
applicability and effectiveness of the proposed approach. 

Keywords: Accumulated arithmetic operator, Grey relational analysis, Ideal interval neutrosophic estimates reliability 
solution, Information entropy, Interval neutrosophic set, Multi-attribute decision making, Neutrosophic set, Single-valued 
neutrosophic set.  

1. Introduction

The concept of neutrosophic sets was introduced by 
Smarandache [1, 2, 3, 4]. The root of neutrosophic set is 
the neutrosophy, a new branch of philosophy [1]. The 
thrust of the neutrosophy creates new field of study such as 
neutrosophic statistics [5], neutrosophic integral [6], 
neutrosophic cognitive map [7], etc. The concept of 
neutrosophic set has been successful in penetrating 
different branches of sciences [8], social sciences [9, 10, 
11], education  [12], conflict resoltion [13, 14],  philosophy 
[15], artificial intelligence and control systems [16], etc.  
Neutrosophic set has drawn the great attention of the 
researchers for its capability of handling uncertainty, 
indeterminacy and incomplete information.  
Zadeh [17] proposed the degree of membership in 1965 
and defined the fuzzy set. Atanassov [18] proposed the de-
gree of non-membership in 1986 and defined the intuition-
istic fuzzy set. Smarandache [1] proposed the degree of in-
determinacy as independent component and defined the 
neutrosophic set.  
To use neutrosophic sets in practical fields such as real 
scientific and engineering applications,  Wang et al.[19] 
restricted the concept of neutrosophic set to single valued 

neutrosophic set since  single value is an instance of set 
value. Neutrosophic set and its various extensions have 
been studied and applied in different fields such as medical 
diagnosis [20, 21, 22, 23, 24], decision making [25, 26, 27, 
28, 29, 30, 31], decision making in hybrid system [32, 33, 
34, 35, 36], image processing [37, 38, 39, 40, 41, 42],  etc.  
However, Zhang et al. [43] opinioned that in many real 
world problems, the decision information may be suitably 
presented by interval form instead of real numbers. In 
order to deal with the situation, Wang et al.[44] introduced  
the concept of interval neutrosophic set (INS) 
characterized by a membership function, non-membership 
function and an indeterminacy function, whose values are 
interval forms.  
Broumi and Smarandache [45] studied correlation 
coefficient of interval neutrosophic sets and applied it in 
medical diagnosis. Broumi and Smarandache [46] studied 
cosine similarity measure in interval neutrosophic 
environment. Zhang et al. [43] studied interval 
neutrosophic sets and its application in multi attribute 
decision making. Ye [47] studied similarity measures 
between interval neutrosophic sets and their applications in 
multicriteria decision making. Ye [48]  proposed improved 
correlation coefficient of SVNS and studied some of its 
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properties, and then extended it to a correlation coefficient 
between INS. Chi and Liu [49] developed the order 
performance technique based on similarity to ideal solution 
(TOPSIS) method for multiple attribute decision making 
problems based on interval neutrosophic set.  
Grey relational analysis (GRA) studied by Deng [50, 51] is 
widely used for multi-attribute decision making problems. 
Zhang et al. 2005 [52] presented GRA method for multi at-
tribute decision-making with interval numbers. Rao & 
Singh [53] proposed improved GRA method by integrating 
analytic hierarchy process and fuzzy logic Wei [54] stud-
ied the GRA method for intuitionistic fuzzy multi-criteria 
decision-making. Pramanik and Mukhopadhyaya [55] pre-
sented GRA based intuitionistic fuzzy multi-criteria group 
decision-making approach for teacher selection in higher 
education. Biswas et al. [56] proposed entropy based GRA 
method for multi-attribute decision making under single 
valued neutrosophic assessments. Biswas et al. [57] also 
studied GRA based neutrosophic multi-attribute decision-
making (MADM) with unknown weight information Mon-
dal and Pramanik [58] applied GRA based neutrosophic 
decision making model of school choice. 
GRA based MADM in interval neutrosophic environment 
is yet to appear in the literature. In this paper, we present 
interval neutrosophic multi attribute decision making based 
on GRA. 
Rest of the paper is organized in the following way. 
Section 2 presents preliminaries of neutrosophic sets and 
interval neutrosophic sets. Section 3 is devoted to present 
GRA method for multi attribute decision-making in 
interval neutrosophic environment. Section 4 presents a 
numerical example of the proposed method. Finally section 
5 presents concluding remarks. 

2 Mathematical preliminaries 

2.1 Definitions on neutrosophic Set [1]
Definition 2.1.1: Let E be a space of points (objects) with 
generic element in E denoted by x. Then a neutrosophic set 
P in E is characterized by a truth membership function 
TP(x), an indeterminacy membership function IP(x) and a 
falsity membership function FP(x). The functions TP(x), 
IP(x) and FP(x) are real standard or non-standard subsets 
of   1,0 that is TP(x) :   1,0E ; IP(x):   1,0E ; 
FP(x):   1,0E . 
The sum of  ,xT P  ,xI P ( )xF P satisfies the relation

      3≤supsupsup≤0- 
 xFxIxT PPP

Definition 2.1.2 (complement) [1]
The complement of a neutrosophic set P is denoted by Pc 
and is defined as follows:  

     xTxT PPc  1 ;      xIxI PPc  1 , and 
     xFxF PPc  1

Definition 2.1.3 (Containment) [1] 
A neutrosophic set P is contained in the other 

neutrosophic set Q, QP if and only if the following 
result holds. 

   ,infinf xTxT QP     xTxT QP supsup 

   ,infinf xIxI QP      xIxI QP supsup 

   ,infinf xFxF QP     xFxF QP supsup 

for all x in E. 
Definition 2.1.4 (Single-valued neutrosophic set) [19]
Let E be a universal space of points (objects) with a 
generic element of E denoted by x. 
A single valued neutrosophic set [Wang et al. 2010] S is 
characterized by a truth membership function  xT S , a
falsity membership function  xF S  and indeterminacy
function  xI S  with  xT S ,  xF S ,  xI S  [ ]1,0 for all x in
E. , 
When E is continuous, a SNVS S can be written as 
follows: 

      
x

SSS ExxxIxFxTS ,,,

and when E is discrete, a SVNS S can be written as 
follows: 

      ExxxIxFxTS SSS  ,,,
It should be observed that for a SVNS S, 

      ExxIxFxT SSS ∈∀,3≤supsupsup≤0 

    Definition 2.1.5: The complement of a single valued 
neutrosophic set S [19] is denoted by cS  and is defined by 

   xFxT S
c

S  ;    xIxI S
c

S 1 ;    xTxF S
c

S 

Definition 2.1.6: A SVNS SP [19] is contained in the other 
SVNS SQ, denoted as SP SQ iff,    xTxT SQS P  ;

   xIxI SQSP  ;     xFxF SQSP  , Ex . 

Definition 2.1.7: Two single valued neutrosophic sets SP 
and SQ [19] are equal, i.e. SP = SQ, iff, SS QP  and 

SS QP  . 
Definition 2.1.8: (Union) The union of two SVNSs SP and 
SQ [19] is a SVNS SR, written as SSS QPR  .Its truth 
membership, indeterminacy-membership and falsity 
membership functions are related to SP and SQ by the 
relations as follows: 

      xTxTxT SQSPSR ,max ;

      xIxIxI SQS PS R ,max ;

      xFxFxF SQS PRS ,min  for all x in E

Definition 2.1.9 (Intersection) [19] 
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The intersection of two SVNSs P and Q is a SVNS V, 
written as .∩QPV   Its truth membership, indeterminacy 
membership and falsity membership functions are related 
to P an Q by the relations as follows: 

       ;,min xTxTxT QSPSVS 

       ;,max xIxIxI QSPSVS 

       ExxFxFxF QSPSVS  ,,max

 Distance between two neutrosophic sets.  

The SVNS can be presented in the following form: 
        ExxFxIxTxS SSS  :,,

Finite SVNSs can be represented as follows: 
       
       

Ex
xFxIxTx

xFxIxTxS
mSmSmSm

SSS
∈∀,

,,
,,,, 1111












   (1)          

Definition 2.1.10: Let 
       
        









xFxIxTx

xFxIxTx
S

nPSnPSnPSn

PSPSPS
P ,,

,,,, 1111  (2)                            

       
        












xFxIxTx

xFxIxTx
S

nQSnQSnQSn

QSQSQS
Q ,,

,,,, 1111 
  (3)                                                                                                   

be two single-valued neutrosophic sets, then  the Hamming 
distance [59] between two SNVS P and Q is defined as 
follows: 

 

   

   

   












n

i

QSPS

QSPS

QSPS

QPS

xFxF

xIxI

xTxT

SSd
1

,   (4)

and normalized Hamming distance [59] between two 
SNVS SP and SQ is defined as follows:  

 

   

   

   












n

i

QSPS

QSPS

QSPS

QPS

xFxF

xIxI

xTxT

nSSdN
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1,  (5)                                                                                                

with the following properties 
1. 0 ),(≤ QPS SSd n3≤   (6) 

2. 0 ),(≤N
QPS SSd n3≤

 (7)                                                                            
Definition 2.1.11 

Let  and β be the collection of benefit attributes and cost 
attributes, respectively. R +

S is the interval relative 
neutrosophic positive ideal solution (IRNPIS) and R -

S is 
the interval relative neutrosophic negative  ideal solution 
(IRNNIS). ],,,[

21 rrrR nSSSS
   is defined  as a solution 

in which every component FITr jjjjS
  ,, is 

characterized by T+
j = }){{(max T ij

i
 attributethj -  , 

( }){min( T ij
i

 attributethj -  } 

Definition 2.1.12  

The interval relative neutrosophic negative ideal solution 
(IRNNIS) ],,,[ --

2
-

1
- rrrR nSSSS  is a solution in which

every component F,I,T=r -
j

-
j

-
j

-
jS is characterized as 

follows: 
T-

j = }){{(min T ij
i

 attributethj - ,( }){max( T ij
i



attributethj -  }, 
I-

j = }){{(max I ij
i

 attributethj - , 

( }){min( I ij
i

 attributethj -  }, 

F-
j = }){{(max F ij

i
 attributethj - ,( }){min( F ij

i


attributethj -  }, 
in the neutrosophic decision matrix 

nmijijijS FITD  ,, (see equation 8) for i = 1, 2, …, n 
and j = 1, 2, …, m 
2.2 Interval Neutrosophic Sets 

Definition 2.2 [44]  
Let X be a space of points (objects) with generic elements 
in X denoted by x. An interval neutrosophic set (INS) M in 
X is characterized by truth-membership function TM(x), 
indeterminacy-membership IM(x), function and falsity-
membership function FM(x).  For each point x in X, we 
have, TM(x), IM(x), FM(x)  [0, 1]. 
For two IVNS,  
MINS ={< x, 
      )(),(,)(),(,)(),( xFxFxIxIxTxT U

M
L
M

U
M

L
M

U
M

L
M > | x X} 

and NINS = 
{<x,       )(),(,)(),(,)(),( xFxFxIxIxTxT U

N
L
N

U
N

L
N

U
N

L
N > | 

x∈X}, the two relations are defined as follows: 
(1) MINS   NINS if and only if TT L

N
L
M  , TT U

N
U
M  ; II L

N
L
M  , 

FF L
N

L
M  ; FF L

N
L
M  , FF L

N
L
M 

(2) MINS   NINS if and only if TT L
N

L
M  , TT U

N
U
M  ; II L

N
L
M  , 

FF L
N

L
M  ; FF L

N
L
M  , FF L

N
L
M  ∀ x ∈ X 

3. Grey relational analysis method for multi attributes

decision-making in interval neutrosophic environment. 

Consider a multi-attribute decision making problem with m 
alternatives and n attributes. Let A1, A2, ..., Am and C1, 
C2, ...,Cn denote the alternatives and attributes respectively.  
The rating describes the performance of alternative Ai 
against attribute Cj. Weight vector W = {w1, w2,...,wn } is 
assigned to the attributes. The weight wj (j = 1, 2, ..., n) 
reflects the relative importance of attributes Cj ( j = 1, 2, ..., 
m) to the decision maker. The values associated with the
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alternatives for MADM problems presented in the 
following table.  
Table1: Interval neutrosophic decision matrix 

 nmijs dD

dddA

dddA
dddA
CCC

mnmmm

n

n

n

...
.............
.............

...

...

21

222122

112111

21 

      (8)         

Here d ij is the interval neutrosophic number related to 
the i-th alternative and the j-th attribute.  
Grey relational analysis (GRA) is one of the adoptive 
methods for MADM. The steps of GRA under interval 
neutrosophic environments are described below.

 

Step1: Determination the criteria 

There are many attributes in decision making problems. 
Some of them are important and others may be less 
important. So it is necessary to select the proper criteria for 
decision making situations. The most important criteria 
may be fixed with help of experts’ opinions.  
Step 2: Data pre-processing and construction of the 

decision matrix with interval neutrosophic form  

It may be mentioned here that the original GRA method 
can deal mainly with quantitative attributes. There exists 
some complexity in the case of qualitative attributes. In the 
case of a qualitative attribute (quantitative value is not 
available), an assessment value is taken as interval 
neutrosophic environment. 
For multiple attribute decision making problem, the rating 
of alternative Ai (i = 1, 2,…m ) with respect to attribute Cj 
(j = 1, 2,…n) is assumed as interval neutrosophic sets. It 
can be represented with the following forms: 

      

      

       





























CC
FFIITTN

C
FFIITTN

C
FFIITTN

C

A

jU
n

L
n

U
n

L
n

U
n

L
nn

n

ULULUL

ULULUL

i

:
,,,,,

,,
,,,,,

,
,,,,,

2222222

2

1111111

1



       












 CC

FFIITTN
C

jU
j

L
j

U
j

L
j

U
j

L
jj

j :
,,,,,                                                                            

for j = 1, 2,…, n       (9)
Here       FFIITTN U

j
L
j

U
j

L
j

U
j

L
jj ,,,,, , (j = 1, 2, ..., n) is the 

interval neutrosophic set with
 
the degrees of interval truth 

membership  TT U
j

L
j , , the degrees of interval indeterminacy

membership  II U
j

L
j ,  and the degrees of interval falsity 

membership  FF U
j

L
j ,  of the alternative Ai satisfying the 

attribute Cj  The interval neutrosophic decision matrix can be 
represented in the following form (see the Table 2): 
Table2: Interval neutrosophic decision matrix  

       nm
U
ij

L
ij

U
ij

L
ij

U
ij

L
ijN FFIITTd ,,,,,

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 FF

II
TT

FF
II
TT

FF
II
TT

A

FF
II
TT

FF
II
TT

FF
II
TT

A

FF
II
TT

FF
II
TT

FF
II
TT

A

CCC

U
mn

L
mn

U
mn

L
mn

U
mn

L
mn

U
m

L
m

U
m

L
m

U
m

L
m

U
m

L
m

U
m

L
m

U
m

L
m

m

U
n

L
n

U
n

L
n

U
n

L
n

UL

UL

UL

UL

UL

UL

U
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L
n

U
n

L
n

U
n

L
n

UL

UL

UL

UL

UL
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,,
,,
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,

,,
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,
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,,

,

,,
,,
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,

,,
,,

,
,,
,,

...

22

22
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11

11

11

22

22

22

2222

2222

2222

2121
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Step 3: Determination of the accumulated arithmetic 

operator
   Let us consider an interval neutrosophic set as  

[ ] [ ] [ ]( ) .,,,,, FFIITTN U
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L
j

U
j

L
j

U
j

L
jj

 We transform the interval neutrosophic number to SVNSs 
by the following operator. The accumulated arithmetic 
operator (AAO) is defined as follows:   
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ij (11)

The decision matrix is transformed in the form of SVNSs 
as follows: 
Table3: Single valued neutrosophic decision matrix in 
transformed form  

 nmijijijS FITd ,,

mnmnmnmmmmmmm

nnn

nnn

n

FITFITFITA

FITFITFITA
FITFITFITA

CCC
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.............
.............
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222111

2222222222121212

1111212121111111

21

(12)
Step 4: Determination of the weights of the criteria
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During decision-making process, decision maker may 
often encounter unknown or partial attribute weights. In 
many cases, the importance of attributes to the decision 
maker is not equal. So, it is necessary to determine 
attribute weight for decision making.  
3.1 Method of entropy: 

Entropy plays an important role for measuring uncertain 
information. Majumdar and Samanta [59] developed some 
similarity and entropy measures for SVNSs. The entropy 
measure can be used to determine the attributes weights 
when these are unequal and completely unknown to 
decision maker.  
Now, using AAO operator, we transform all interval 
neutrosophic numbers to single valued neutrosophic 
numbers. In this paper for entropy measure of an INS, we 
consider the following notation: 
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We write, .)(),(),( iPSiPSiPSP xFxIxTS  Then, 
entropy value is defined as follows: 
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(13)                       

Entropy has the following properties: 
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In order to obtain the entropy value Ej of the j-th attribute 
Cj (j = 1, 2,…, n), the equation (13) can be written as 
follows:  

jE   
m
i i

C
ijiijii xIxIxFxT

n ijij1 )()())()((11

for i = 1, 2, …, m;  j = 1, 2, …, n         (14) 
        

It is observed that Ej ∈ [0,1]. Due to Hwang and Yoon [60], 
the entropy weight of the j-th attribute Cj is presented as 
follows:  

  





n
j j

j
j E

E
W

1 1
1

(15)

We have weight vector W = (w1, w2,…,wn)T of attributes
Cj (j = 1, 2, …, n) with  wj ≥ 0 and  .1∑ 1 

n
i jw

Step 5: Determination of the ideal interval neutrosophic 

estimates reliability solution (IINERS) and the ideal 

interval neutrosophic estimates un-reliability solution 

(IINEURS) for interval neutrosophic decision matrix

For an interval neutrosophic decision making matrix 
=DS nmijijij FIT ,, , Tij, Iij, Fij are the degrees of 

membership, degree of indeterminacy and degree of non 
membership of the alternative Ai satisfying the attribute Cj. 
The interval neutrosophic estimate reliability solution (see 
definition 2.1.11, and 2.1.12) can be determined from the 
concept of SVNS cube [61]. 
 Step 6: Calculation of the interval neutrosophic grey 

relational coefficient of each alternative from IINERS 

and IINEURS 

Grey relational coefficient of each alternative from 
IINERS is: 


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, where 

 qqd
ijSjSij ,  , i = 1, 2, …,m and  j = 1, 2, ….,n    (16)  

Grey relational coefficient of each alternative from 
IINEURS is: 


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, where 

 qqd
ijSijSij

  , , i = 1, 2, …,m and j = 1, 2, ….,n        (17)     

 1,0  is the distinguishable coefficient or the
identification coefficient. It is used to adjust the range of 
the comparison environment, and to control level of 
differences of the relation coefficients. When 1 , the 
comparison environment is unchanged. When 0 , the 
comparison environment disappears. Smaller value of 
distinguishing coefficient will reflect the large range of 
grey relational coefficient. Generally, 5.0 is fixed for 
decision making. 
Step 7: Calculation of the interval neutrosophic grey 

relational coefficient  

Calculate the degree of interval neutrosophic grey 
relational coefficient of each alternative from IINERS and 
IINEURS using the following two equations respectively: 

GwG ij
n
j ji





 1   for i =1, 2, …,m     (18) 

GwG ij
n
j ji





 1   for i = 1, 2, …,m       (19) 

Step 8: Calculation of the interval neutrosophic relative 

relational degree  
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Calculate the interval neutrosophic relative relational 
degree of each alternative from ITFPIS (indeterminacy 
truthfulness falsity positive ideal solution) with the help of 
following two equations: 

GG
GR

ii

i
i 




 , for i = 1, 2, …,m          (20)    

Step 9: Rank the alternatives 

The ranking order of alternatives can be determined based 
on the interval relative relational degree. The highest value 
of Ri reflects the most desirable alternative. 

Step 10: End 

4. Illustrative examples
In this section, interval neutrosophic MADM is considered 
to demonstrate the application and the effectiveness of the 
proposed approach. 
4.1 Example 1 

Consider a decision-making problem adapted from [58] 
studied by Mondal and Pramanik.  Suppose a legal 
guardian wants to get his/her child admitted to a suitable 
school for proper basic education. There is a panel with 
three possible alternatives (schools) to get admitted his/her 
child: (1) A1 is a Christian missionary school; (2) A2 is a 
Basic English medium school; (3) A3 is a Bengali medium 
kindergarten. The proposed decision making method can 
be arranged in the following steps. 
Step 1: Determination the most important criteria

The legal guardian must take a decision based on the 
following four criteria: (1) C1 is the distance and transport; 
(2) C2 is the cost; (3) C3 is the staff and curriculum; and (4) 
C4 is the administration and other facilities.  
Step 2: Data pre-processing and Construction of the 

decision matrix with interval neutrosophic form  

We obtain the following interval neutrosophic decision 
matrix based on the experts’ assessment: 
Table4. Decision matrix with interval neutrosophic number   

       43,,,,, FFIITTd U
ij
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U
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]5.0,3.0[
],5.0,3.0[
],9.0,7.0[

]6.0,4.0[
],6.0,4.0[
],8.0,6.0[

]3.0,1.0[
],7.0,5.0[
],8.0,6.0[

]6.0,4.0[
],4.0,2.0[
],7.0,5.0[

]6.0,4.0[
],5.0,3.0[
],9.0,7.0[

]3.0,1.0[
],4.0,2.0[
],8.0,6.0[

]5.0,3.0[
],6.0,4.0[
],9.0,7.0[

]3.0,1.0[
],5.0,3.0[
],7.0,5.0[

]4.0,2.0[
],4.0,2.0[
],9.0,7.0[

]5.0,3.0[
],3.0,1.0[
],8.0,6.0[

]3.0,1.0[
],4.0,2.0[
],8.0,6.0[

]5.0,3.0[
],4.0,2.0[
],8.0,6.0[
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(21) 
Step 3: Determination of the accumulated arithmetic 

operator (AAO)

Using accumulated arithmetic operator (AAO) from 
equation (11) we have the decision matrix in SVNS form is 
presented as follows:  
Table5: single valued neutrosophic decision matrix in 
transformed form  

4.0,4.0,8.05.0,5.0,7.02.0,6.0,7.05.0,3.0,6.0
5.0,4.0,8.02.0,3.0,7.04.0,5.0,8.02.0,4.0,6.0
3.0,3.0,8.04.0,2.0,7.02.0,3.0,7.04.0,3.0,7.0

3

2

1

4321

A
A
A

CCCC

   

(22)

 

Step 4: Determination of the weights of the attributes 

Entropy value Ej of the j-th (j = 1, 2, 3, 4) attributes can be 
determined from the decision matrix dS (21) and equation 
(14) as: E1= 0.6533, E2 = 0.8200, E3 = 0.6600, E4 = 0.6867. 
Then the corresponding entropy weights wj, (j = 1, 2, 3, 4)
of the attribute Cj (j = 1, 2, 3, 4) according to equation (15) 
is obtained as w1 = 0.2938, w2 = 0.1568, w3 = 0.2836, w4 = 

0.2658 such that 1=∑
4

1=j
jw  

Step 5: Determination of the ideal interval neutrosophic 

estimates reliability solution (IINERS) and the ideal 

interval neutrosophic estimates un-reliability solution 

(IINEURS) 

The ideal interval neutrosophic estimates 
reliability solution (IINERS) is presented as it follows: 
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 3.0,3.0,8.0,2.0,2.0,7.0,2.0,3.0,8.0,2.0,3.0,7.0

 The ideal interval neutrosophic estimates un-reliability 
solution (IINEURS) is presented as follows: 

           

            




















444333

222111

4321

max,max,min,max,max,min

,max,max,min,max,max,min

,,,

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

SSSSS

FITFIT

FITFIT

qqqqQ

 5.0,4.0,8.0,5.0,5.0,7.0,4.0,6.0,7.0,5.0,4.0,6.0

Step 6: Calculation of the interval neutrosophic grey 

relational coefficient of each alternative from IINERS 

and IINEURS 

Using the equation (16) the interval neutrosophic grey 
relational coefficient of each alternative from IINERS can 
be obtained as the following matrix. 
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 



















5000.04444.05714.05714.0
4444.00000.15714.08000.0
6667.08000.00000.18000.0

43Gij  (23)

                       
Similarly, from the equation (17) the interval neutrosophic 
grey relational coefficient of each alternative from 
IINEURS is presented as follows: 
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
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








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7143.00000.15556.07143.0
0000.13333.05556.04545.0
4545.03846.03333.04545.0

43Gij     (24)   

 
Step 7: Determine the degree of interval neutrosophic grey 
relational co-efficient of each alternative from IINERS and 
IINEURS. The required interval neutrosophic grey 
relational co-efficient corresponding to IINERS is obtained 
by using the equation (18) as follows: 
G

1 = 0.7961, G
2 = 0.7264, G

3 = 0.5164 (25)
and corresponding to IINEURS is obtained with the help of 
equation (19) as follows: 
G

1 = 0.4156, G
2 = 0.5810, G

3 = 0.7704 (26)                                                                       
Step 8: Thus interval neutrosophic relative degree of each 
alternative from IINERS can be obtained with the help of 
equation (20) as follows: 
R1 = 0.6570, R2 = 0.5556, R3 = 0.4013  (27)  
Step 9: The ranking order of all alternatives can be 
determined according to the decreasing order of the value 
of interval neutrosophic relational degree i.e.  R1>R2>R3. It 
is seen that the highest value of interval neutrosophic 
relational degree is R1 therefore A1 (Christ missionary 
school) is the best alternative (school) for his/her the child 
for getting admission. 
4.2 Example 2   

An example about investment alternatives for a multi-
attribute decision-making problem studied in [43, 47, 48, 
49, 62] is used to demonstrate the applicability of the 
proposed approach under interval neutrosophic 
environment.  
An investment company wants to invest an amount of 
money in the best option. There are four possible
alternatives to invest the money: 
(1) A1 is a car company;  
(2) A2 is a food company; 
(3) A3 is a computer company;  
(4) A4 is an arms company.  
The proposed decision making method can be arranged in 
the following steps. 
Step 1: Determination the most important criteria

The company must take a decision according to the three 
attributes as follows:  
(1) G1 is the risk; 
(2) G2 is the growth; 
(3) G3 is the environmental impact.  
Step 2: Data pre-processing and Construction of the 

decision matrix with interval neutrosophic form 

We obtain the following interval neutrosophic decision 
matrix based on the experts’ assessment: 
Table 6. Decision matrix with interval neutrosophic 
number  
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],5.0,4.0[
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(28) 
Step 3: Determination of the AAO

  Using AAO,   the decision matrix (see the table 7) in 
SVNS form is presented as follows:  
Table7: single valued neutrosophic decision matrix 

65.0,65.0,85.020.0,15.0,65.015.0,05.0,75.0
45.0,70.0,80.035.0,25.0,55.035.0,25.0,45.0
45.0,60.0,85.025.0,15.0,65.025.0,15.0,65.0
80.0,75.0,45.030.0,20.0,50.035.0,25.0,45.0

4

3

2

1

321

A
A
A
A

CCC

(29)

 

Step 4: Determination of the weights of attribute 

Entropy value Ej of the j-th (j = 1, 2, 3) attributes can be 
determined from the decision matrix d S (12) and the 
equation (14). The obtained values are presented as 
follows: E1 = 0.4400, E2 = 0.4613, E3 = 0.5413. 
Then the entropy weights w1, w2, w3 of the attributes are 
obtained from the eqation (15) and the obtained values are 
presented as follows: w1 = 0.3596, w2 = 0.3459, w3 = 0.2945 

such that 1=∑
4

1=j
jw  

Step 5: Determination of the ideal interval neutrosophic 

estimates reliability solution (IINERS) and the ideal 

interval neutrosophic estimates un-reliability solution 

(IINEURS) 

The ideal interval neutrosophic estimates reliability 
solution (IINERS) is presented as follows. 
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 45.0,60.0,85.0,20.0,15.0,65.0,15.0,05.0,75.0

 The ideal interval neutrosophic estimates un-reliability 
solution (IINEURS) is presented as follows. 
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 80.0,75.0,45.0,35.0,25.0,50.0,35.0,25.0,45.0

Step 6: Calculation of the interval neutrosophic grey 

relational coefficient of each alternative from IINERS 

and IINEURS  

Using equation (16), the interval neutrosophic grey 
relational coefficient of each alternative from IINERS can 
be obtained as the following matrix. 




34][Gij
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

6429.00000.10000.1
7500.05625.03913.0
0000.14737.06000.0
3333.06000.03913.0

  (30)

Similarly, from equation (17) the interval neutrosophic 
grey relational coefficient of each alternative from 
IINEURS is presented as the following matrix. 
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
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
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


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



4091.05294.03913.0
3750.09000.00000.1
3333.05625.05294.0
0000.1.08182.00000.1

         (31)                                                                                           

     

              

Step 7: Determine the degree of interval neutrosophic grey 
relational co-efficient of each alternative from IINERS and 
IINEURS. The required interval neutrosophic grey 
relational co-efficient corresponding to IINERS is obtained 
using equation (18) as follows: 
G

1 = 0.4464, G
2 = 0.6741, G

3 = 0.5562, G
4 = 0.8548  (32)

and corresponding to IINEURS is obtained with the help of 
equation (19) as follows: 
G

1 = 0.9371, G
2 = 0.4831, G

3 = 0.7813, G
4 = 0.4443 (33)                                                                                                     

Step 8: The interval neutrosophic relative degree of each 
alternative from IINERS can be obtained with the help of 
equation (20) as follows: 
R1 = 0.3227, R2 = 0.5825, R3 = 0.4159, R4 = 0.6580     (34)                                              

             

Step 9: The ranking order of all alternatives can be 
determined according to the decreasing order of the value 
of interval neutrosophic relative relational degree i.e. R4> 
R2 > R3 > R1. It is seen that the highest value of interval 
neutrosophic relational degree is R4. Therefore investment 
company must invest money in the best option A4 (Arms 
company).  
4.3 Comparision between the existing methods 

The problem was studied by several methods [43, 47, 48, 
49, 62]. Ye [47] proposed the similarity measures between

INSs based on the relationship between similarity 

measures and distances and used the similarity measures 

between each alternative and the ideal alternative to 

establish a multicriteria decision making method for INSs.

have two sets of rankings,  R4> R2 > R3 > R1 and  R2> R4 
> R3 > R1 based two different similarity measures. 
Obviously, the two rankings in [47] conflict with each 

other. Ye [48] furthet proposed improved correlation 
coefficient for interval neutrosophic sets and obtained the 
ranking R2> R4 > R3 > R1. In contrast, Zhang et al. [43]

presented  the aggregation operators for interval 

neutrosophic numbers and obtained the two different 

rankings  R4> R1 > R2 > R3 and  R1> R4 > R2 > R3. . 
Şahin, and Karabacak [62] suggested a set of axioms for 
the inclusion measure in a family of interval neutrosophic 
sets and proposed a simple and natural inclusion measure 
based on the normalized Hamming distance between 
interval neutrosophic sets. Şahin, and Karabacak [62] 
obtained the ranking R2> R4 > R1 > R3. Chi and Liu [49] 
obtained the ranking  R4> R2 > R3 > R1. The above results 
reflect that the different methods yield different solution or 
rankings. This ensures that the study of interval 
neutrosophic decision making is interesting and 
challenging task. We can observe that our ranking order of 
the four alternatives and best choice are also in agreement 
with the results of Chi and Liu’s externded Topsis method 
[49]. In addition, it is simpler in calculation process than of 
Chi and Liu’s method [49].  
5. Conclusion
INSs can be applied in dealing with problems having 

uncertain, imprecise, incomplete, and inconsistent 

information existing in real scientific and engineering 

applications. In this paper, we have introduced interval 
neutrosophic multi-attribute decision-making problem with 
completely unknown attribute weight information based on 
modified GRA. Here all the attribute weights information 
is unknown. Entropy based modified GRA analysis 
method has been introduced to solve this MADM problem. 
Interval neutrosophic grey relation coefficient has been 
proposed for solving multiple attribute decision-making 
problems. Finally, the effectiveness of the proposed 
approach is illustrated by solving two numerical examples. 
However, the authors hope that the concept presented here 
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will open new avenue of research in current neutrosophic 
decision-making arena. The main applications of this paper 
will be in the field of practical decision-making, medical 
diagnosis, pattern recognition, data mining, clustering 
analysis, etc.  
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Abstract. In 1995, Smarandache talked for the first time 
about neutrosophy and he defined one of the most important 
new mathematical tool which is a neutrosophic set theory as a 
new mathematical tool for handling problems involving im-
precise, indeterminacy, and inconsistent data. He also defined 
the neutrosophic norm and conorms namely N-norm and N-

conorm respectively. In this paper we give generating theo-
rems for N-norm and N-conorm. Given an N-norm we can 
generate a class of N-norms and N-cnorms, and given an N-
conorm we can generate a class of N-conorms and N-norms. 
We also give bijective generating theorems for N-norms and 
N-conorms.  

Keywords: N-norm; N-conorm; generating theorem; bijective generating theorem.

1 Introduction

Since Zadeh [10] defined fuzzy set with min and max as 
the respective intersection and union operators, various 
alternatives operators have been proposed Dubois & Prade 
[2]; Yager [9]. The proposed operators are examples of the 
triangular norm and conorm (t-norm and t-conorm or s-
norm) and hence fuzzy sets with these t-norms and s-norms 
as generalization of intersection and union are discussed in 
Klement [5], Waber [7], Wang [8] and Lowen [6].  In 2007 
Alkhazaleh and Salleh [1] gave two generating theorems 
for s-norms and t-norms, namely given an s-norm we can 
generate a class of s-norms and t-norms, and given a t-
norm we can generate a class of t-norms and s-norms. We 
also give two bijective generating theorems for s-norms 
and t-norms, that is given a bijective function under certain 
condition, we can generate new s-norm and t-norm from a 
given s-norm and also from a given t-norm. In 1995, Sma-
randache talked for the first time about neutrosophy and he 
in 1999 and 2005 [4, 3] defined one of the most important 
new mathematical tools which is a neutrosophic set theory 
as a new mathematical tool for handling problems involv-
ing imprecise, indeterminacy, and inconsistent data. He 
also presented the N-norms/N-conorms in neutrosophic 
logic and set as extensions of T-norms/T-conorms in fuzzy 
logic and set.  In this paper we give two generating 
theorems for N-norms and N-conorms, namely given an N-
norm we can generate a class of N-norms and N-conorms, 
and given a N-conorm we can generate a class of N-
conorms and N-norms. We also give two bijective 
generating theorems for N-norms and N-conorms, that is 
given a bijective function under certain condition, we can 
generate new N-norm and N-conorm from a given N-norm 
and also from a given N-conorm.  

2 Preliminaries 

In this section, we recall some basic notions in fuzzy set 
and neutrosophic set theory.  
For a fuzzy set we have the following s-norm and t-norm: 

Definition 2.1 The function      : 0,1 0,1 0,1s    is
called an s-norm if it satisfies the following four require-
ments: 
Axiom s1.     ,  ,s x y s y x (commutative condition).
Axiom s2. s(s(x, y), z) = s(x, s(y, z)) (associative condition). 
Axiom s3. If 1 2x x  and 1 2y y , then 1 1 2 2( , ) ( , )s x y s x y  
(nondecreasing condition). 
Axiom s4.  s(1, 1) = 1, s(x, 0) = s(0, x) = x (boundary 
condition). 

Definition 2.2 The function      : 0,1 0,1 0,1t    is
called a t-norm if it satisfies the following four 
requirements: 

Axiom t1.  t(x, y) = t(y, x) (commutative condition). 
Axiom t2.  t(t(x, y), z) = t(x, t(y, z)) (associative condition). 
Axiom t3.  If 1 2x x  and 1 2y y , then 1 1 2 2( , ) ( , )t x y t x y
(nondecreasing condition). 
Axiom t4  t(x, 1) = x (boundary condition). 

s-norm t-norm

Basic max(x,y) min(x,y) 

Bounded 
 min ,1x y  max 1,0x y 

Algebraic x y xy   xy

Definition 2.3 [6] A neutrosophic set A  on the universe of 
discourse X  is defined as 
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= {< , ( ), ( ), ( ) >, }A A AA x T x I x F x x X  where T , I , 
: ] 0,1 [F X    and 0 ( ) ( ) ( ) 3 .A A AT x I x F x      

As a generalization of T-norm and T-conorm from the 
Fuzzy Logic and Set, Smarandache introduced the N-

norms and N-conorms for the Neutrosophic Logic and 
Set. He defined a partial relation order on the neutrosoph-
ic set/logic in the following way: 

1 1 1 2 2 2( ,  ,  )  ( ,  ,  )x T I F y T I F iff 1 2 1 2 1 2T  T ,  I  I ,  F  F  

for crisp components. And, in general, for subunitary set 
components: 

1 1 1 2 2 2

1 2 1 2

1 2 1 2

1 2 1 2

( ,  ,  )  ( ,  ,  ) 
inf   inf  ,  sup   sup  ,
inf   inf  ,  sup   sup  ,
inf   inf  ,  sup   sup  .

x T I F y T I F iff
T T T T
I I I I
F F F F



 

 

 

Definition 2.4  [4] N-norms
               

     

2

1 1 1 2 2 2

:   0,1 0,1 0,1    0,1 0,1 0,1  

( ( , , ),  ( , , ))  ( , ,  , ,  , ),
n

n n n n

N

N x T I F y T I F N T x y N I x y N F x y

              



where      .,. ,  .,. ,  .,.n n nN T N I N F are the truth
/membership, indeterminacy, and respectively falsehood 
/nonmembership components. nN have to satisfy, for any 

,  ,  x y z in the neutrosophic logic/set M of the universe of 
discourse U , the following axioms: 
a) Boundary Conditions: ( ,0) 0,  ( ,1)  .n nN x N x x   
b) Commutativity:    ,    ,  .n nN x y N y x

c) Monotonicity: If      ,   ,    ,  .n nx y then N x z N y z 

d) Associativity:       ,  ,    ,  ,  .n n n nN N x y z N x N y z

nN  represent the and operator in neutrosophic logic, and 
respectively the intersection operator in neutrosophic set 
theory. 

Definition 2.5  [4] N-conorms 
               

     

2

1 1 1 2 2 2

:   0,1 0,1 0,1    0,1 0,1 0,1  

( ( , , ),  ( , , ))  ( , ,  , ,  , ),
c

c c c c

N

N x T I F y T I F N T x y N I x y N F x y

              



where      .,. ,  .,. ,  .,.c c cN T N I N F are the truth
/membership, indeterminacy, and respectively falsehood 
/nonmembership components. cN have to satisfy, for any 

,  ,  x y z in the neutrosophic logic/set M of the universe of 
discourse U , the following axioms: 
a) Boundary Conditions: ( ,0) ,  ( ,1)  1.c cN x x N x 

b) Commutativity:    ,    ,  .c cN x y N y x

c) Monotonicity: If      ,   ,    ,  .c cx y then N x z N y z 

d) Associativity:       ,  ,    ,  ,  .c c c cN N x y z N x N y z

A general example of N-norm would be this. 

Let  1 1 1,  ,  x T I F and  1 1 1,  ,  y T I F be in the neutrosophic 

set/logic M. Then:    1 2 1 2 1 2,    ,  ,  .nN x y T T I I F F   

A general example of N-conorm would be this. Let 
 1 1 1,  ,  x T I F and  1 1 1,  ,  y T I F be in the neutrosophic

set/logic M. Then:    1 2 1 2 1 2,    ,  ,  cN x y T T I I F F   

where the “/\” operator, acting on two (standard or non-
standard) subunitary sets, is a N-norm (verifying the above 
N-norms axioms); while the “\/” operator, also acting on 
two (standard or non-standard) subunitary sets, is a N-
conorm (verifying the above N-conorms axioms). For ex-
ample, /\ can be the Algebraic Product T-norm/N-norm, so 
T1/\T2 = T1·T2; and \/ can be the Algebraic Product T-
conorm/N-conorm, so T1\/T2 = T1+T2-T1·T2. Or /\ can be 
any T-norm/N-norm, and \/ any T-conorm/N-conorm from 
the above and below; for example the easiest way would 
be to consider the min for crisp components (or inf for sub-
set components) and respectively max for crisp compo-
nents (or sup for subset components). 
In the folowing we recall some theorems and corollaries 
given by Shawkat and Salleh 2007 in [ 1] 

Theorem 2.6 For any s-norm s(x, y) and for all 1  , we 
get the following s-norms and t-norms: 

1. ( , ) ( , )  sS x y s x y 
  ,

2. ( , ) 1 ((1 ) , (1 ) )sT x y s x y 
     . 

Theorem 2.7 For any t-norm t(x, y) and for all 1  , we 
get the following t-norms and s-norms: 

1. ( , ) ( , )  tT x y t x y 
  ,

2. ( , ) 1 ((1 ) ,(1 ) )tS x y t x y 
       

Theorem 2.8 Let    , : 0,1 0,1f g   be bijective functions
such that (0) 0f  , (1) 1f  , (0) 1g   and (1) 0g  . For 
any s-norm ( , )s x y we get the following s-norm and t-
norm: 

1.       s 1, ,fS x y f s f x f y     ,

      2.      s 1( , ) ,gT x y g s g x g y     .

Corollary 2.9  Let  ( )f x  = sin
2

x and ( )g x  = cos
2

x

then 

1.   1
sin

2 , sin sin ,sin
2 2

sS x y s x y 



  
  

 
 is an s-norm

2.  1
cos

2( , ) cos cos ,cos
2 2

sT x y s x y 



  
  

 
is a t-norm

Theorem 2.10 Let    , : 0,1 0,1f g   be bijective func-
tions such that (0) 0f  , (1) 1f  , (0) 1g   and (1) 0g  . 

24



Neutrosophic Sets and Systems, Vol. 9, 2015 

S. Alkhazaleh, More on neutrosophic norms and conorms

For any t-norm ( , )t x y we get the following t-norm and s-
norm: 

1.       1 , ,t
fT x y f t f x f y     ,

2.       1 , ,t
gS x y g t g x g y    

Corollary 2.10  Let  f(x)= sin
2

x  and  g(x)= cos
2

x then

1.   1
sin

2, sin sin ,sin  
2 2

tT x y t x y 



   
   

  
is a t-norm

2.   1
cos

2, cos cos ,cos
2 2

tS x y t x y 



   
   

  
is an s-norm

3 Generating Theorems 

In this section we give two generating theorems to 
generate N-norms and N-conorms by using any N-
norms and N-conorms. Without loss of generality, we 
will rewrite the Smarandache’s N-norm and N-conorm as 
it follows:  

Definition 3.1 

               

        

2:   0,1 0,1 0,1    0,1 0,1 0,1  

( , , ),  ( , , )  , ,  , ,  , ,
n

n T T I I F F

T

T x T I F y T I F t x y s x y s x y

              



where      , ,  , ,  ,T T I I F Ft x y s x y s x y are the truth
/membership, indeterminacy, and respectively falsehood 
/nonmembership components and s and t are the fuzzy s-
norm and fuzzy t-norm respectively. nT have to satisfy, for 
any ,  ,  x y z in the neutrosophic logic/set M of the universe 
of discourse U , the following axioms: 
a) Boundary Conditions: ( ,0) 0,  ( ,1)  .n nT x T x x   
b) Commutativity:    ,    ,  .n nT x y T y x

c) Monotonicity: If      ,   ,    ,  .n nx y then T x z T y z 

d) Associativity:       ,  ,    ,  ,  .n n n nT T x y z T x T y z

Definition 3.2  N-conorms 

               

        

2:   0,1 0,1 0,1    0,1 0,1 0,1  

( , , ),  ( , , )  , ,  , ,  , ,
n

n T T I I F F

S

S x T I F y T I F s x y t x y t x y

              



where      , ,  , ,  ,T T I I F Fs x y t x y t x y are the truth
/membership, indeterminacy, and respectively falsehood 
/nonmembership components and s and t are the fuzzy s-
norm and fuzzy t-norm respectively. nS  have to satisfy, 
for any ,  ,  x y z in the neutrosophic logic/set M of the un-
iverse of discourse U , the following axioms: 
a) Boundary Conditions: ( ,0) ,  ( ,1)  1.n nS x x S x 

b) Commutativity:    ,    ,  .n nS x y S y x

c) Monotonicity: If      ,   ,    ,  .n nx y then S x z S y z 

d) Associativity:       ,  ,    ,  ,  .n n n nS S x y z S x S y z

From now we use the following notation for N-norm and 

N-conorm respectively  ,nT x y and  , .nS x y

Remark: We will use the following border: 
 0 0,1,1 and   1 1,0,0 .

Theorem 3.3. For any  ,nS x y and for all 1  , by

using any fuzzy union s-norm we get the following 
 ,nS x y and  ,nT x y : 

1.

( , ),

( , ) 1 ((1 ) , (1 ) ),

1 ((1 ) , (1 ) )

T T

n I I
s

F F

s x y

S x y s x y

s x y

 

  

 

   

  

2.

    

 

 

1 1 , 1 ,

( , ) , , .

,

T T

n I I
s

F F

s x y

T x y s x y

s x y

 

  

 

  

  

Where s any s-norm (fuzzy union). 

Proof.  1. 
 Axiom 1. 

   

(0 , ),

0, 1 ((1 1) , (1 ) ), , ,

1 ((1 1) , (1 ) )

T

n I T I F
s

F

s x

S x s x x x x x

s x

 

  

 

    

  

. 

   

(1 , ),

1, 1 ((1 0) , (1 ) ), 1 1,0,0

1 ((1 0) , (1 ) )

T

n I
s

F

s x

S x s x

s x

 

  

 

    

  

Axiom 2. 

( , ),

( , ) 1 ((1 ) , (1 ) ),

1 ((1 ) , (1 ) )

( , ),

1 ((1 ) , (1 ) ),

1 ((1 ) , (1 ) )

( , )

T T

n I I
s

F F

T T

I I

F F

n
s

s x y

S x y s x y

s x y

s y x

s y x

s y x

S y x

 

  

 

 

 

 



   

  

   

  



. 
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Axiom 3. Let    1 2 3 1 2 3,  ,  ,   y ,   yx x x x y y  then

1 1 2 2 3 3, y , yx y x x    and    1 1 1 1, ,s x z s y z      which 

implies     1 1 2 2, , .s x z s y z                   (1) 

Also we have 2 2(1 ) (1 )x y    then 

         2 2 2 21 , 1 1 , 1s x z s y z   
     , which im-

plies that 

         2 2 2 21 1 , 1 1 1 , 1s x z s y z   
        (2) 

And we have 3 3(1 ) (1 )x y    then 

         3 3 3 31 , 1 1 , 1s x z s y z   
     , which im-

plies that 

         3 3 3 31 1 , 1 1 1 , 1s x z s y z   
        (3) 

From (1), (2) and (3) we have    , ,n n
s s

S x z S y z  .

Axiom 4. 

  

( , ),

, , 1 ((1 ) , (1 ) ), ,

1 ((1 ) , (1 ) )

T T

n n n I I
s

F F

s x y

S S x y z S s x y z

s x y

 

    

 

 
 
    

 

   


 

      

      

, , ,

1 1 1 1 , 1 , 1 ,

1 1 1 1 , 1 , 1

T T T

I I I

F F F

s s x y z

s s x y z

s s x y z


  


  




  



 
 
 

 
             

  
            

  

       

       

, , ,

1 1 , 1 , 1 ,

1 1 , 1 , 1

T T T

I I I

F F F

s s x y z

s s x y z

s s x y z

  

  

  

    

   

  

       

       

, , ,

1 1 , 1 , 1 ,

1 1 , 1 , 1

T T T

I I I

F F F

s x s y z

s x s y z

s x s y z

  

  

  

    

   

  , ,n n
s

S x S y z 

Therefore  ,n
s

S x y  is an N-conorm. 

2. The proof is similar to Proof 1.  

Theorem 3.4. For any  ,nT x y and for all 1  , by

using any fuzzy intersection t-norm we get the following 
 ,nS x y and  ,nT x y : 

1.  

    

 

 

1 1 , 1 ,

, , ,

,

T T

n I I
t

F F

t x y

S x y t x y

t x y

 

  

 

  



2.  

 

    

    
,

,

, 1 1 , 1 , .

1 1 , 1

T

T

n I I
t

F F

t x y

T x y t x y

t x y

 

  

 

   

  

 

Where t any t-norm (fuzzy intersection). 

Proof.  The proof is similar to Proof of theorem 3.3.  

4. Bijective Generating Theorems

In this section we give two generating theorems to generate 
N-norms and N-conorms from any N-norms and N-
conorms. By these theorems we can generate infinitely 
many N-norms and N-conorms by using two bijective 
functions with certain conditions. 

Theorem 4.1. Let    , : 0,1 0,1f g   be bijective func-

tions such that (0) 0f  , (1) 1f  , (0) 1g   and (1) 0g  . 

For any  ,nS x y  and by using any fuzzy union s-norm

we get the following  ,nS x y and  ,nT x y :

1.  

    

    

    

1

1

,
1

, ,

, , ,

,

T T

s
n I I

f g

F F

f s f x f y

S x y g s g x g y

g s g x g y










 

   

 
 

, 

2.   

    

    

    

1

1

,
1

, ,

, , ,

,

T T

s
n I I

f g

F F

g s g x g y

T x y f s f x f y

f s f x f y







 
 

   

 
 

. 
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Proof. 1.

Axiom 1. 

 

    

    

    

1

1

,
1

, 0 ,

,0 , 1 , .

, 1

T

s
n I

f g

F

f s f x f

S x g s g x g x

g s g x g







 
 

   

 
 

 

    

    

    

 

1

1

,
1

, 1 ,

,1 , 0 , 1 1,0,0 .

, 0

T

s
n I

f g

F

f s f x f

S x g s g x g

g s g x g







 
 

   

 
 

Axiom 2.

 

    

    

    

1

1

,
1

, ,

, , ,

,

T T

s
n I I

f g

F F

f s f x f y

S x y g s g x g y

g s g x g y







 
 

   

 
 

    

    

    

 

1

1

,
1

, ,

, , , .

,

T T

s
I I n

f g

F F

f s f y f x

g s g y g x S y x

g s g y g x







 
 

   

 
 

Axiom 3. Let x y . Since f  is bijective on the interval

 0,1  and by Axiom s3 we have

         , ,T T T Ts f x f z s f y f z  then

         1 1, ,T T T Tf s f x f z f s f y f z        (1)

Also since g is bijective on the interval  0,1  and by
Axiom t3 we have 

         , ,I I I Is g x g z s g y g z  then

         1 1, ,I I I Ig s g x g z g s g y g z        (2)
And 

         , ,F F F Fs g x g z s g y g z  then 

         1 1, ,F F F Fg s g x g z g s g y g z        (3)

From (1), (2) and (3) we have    
, ,
, ,s s

n n
f g f g

S x z S y z

Axiom 4.

  

    

    

    

1

1

,
1

,

, ,

, , , , ,

,

T T

s s s
n n n I I

f g

F F

f g

f s f x f y

S S x y z S g s g x g y z

g s g x g y







  
  

     
   

  

 

        
        
        

1 1

1 1

1 1

, , ,

, , ,

, ,

T T T

I I I

F F F

f f f s f x f y f z

g g g s g x g y g z

g g g s g x g y g z
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2. The Proof is similar to Proof 1.

Corollary 4.2. Let  ( )f x  = sin
2

x  and ( )g x  = cos
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27



Neutrosophic Sets and Systems, Vol. 9, 2015 

2.   

1

1

sin,cos

1

2 cos cos ,cos ,
2

2, sin sin ,sin ,
2 2

2 sin sin ,sin
2 2

T T

s
n I I

F F

s x y

T x y s x y

s x y

 



 



 









 
 


 
  

 

 
 
 
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Theorem 4.3. Let    , : 0,1 0,1f g   be bijective func-

tions such that (0) 0f  , (1) 1f  , (0) 1g   and (1) 0g  . 

For any  ,nT x y  and by using any fuzzy intersection t-
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Proof.  The proof is similar to Proof of theorem 4.1.  

Corollary 4.4.  Let  ( )f x  = sin
2

x  and ( )g x  = cos
2

x

then 
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5. Examples

In this section we generate some new  ,nS x y and

 ,nT x y from existing  ,nS x y and  ,nT x y using

the Generating Theorems and the Bijective Generating 
Theorems.  

5. 1. BOUNDED SUM GENERATING CLASSES 

New  ,nS x y and  ,nT x y from the bounded sum s-

norm. 
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5.2. ALGEBRAIC SUM GENERATING CLASSES 

New  ,nS x y and  ,nT x y from the algebraic sum s-

norm. 
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5.3. EINSTEIN SUM GENERATING CLASSES 

New  ,nS x y and  ,nT x y from the Einstein sum s-

norm. 
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5. 4. BOUNDED PRODUCT GENERATING CLASSES 

New  ,nS x y and  ,nT x y from the bounded product 
t-norm. 
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5.5. EINSTEIN PRODUCT GENERATING CLASSES 

New  ,nS x y and  ,nT x y from the Einstein product 
t-norm. 
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Remark. Note that for the s-norms max and drastic sum 
and t-norms min, algebraic product and drastic product we 
get the same norms

6 Conclusion 

In this paper, we gave generating theorems for N-norm and N-
conorm. By given any N-norm we generated a class of N-
norms and N-cnorms, and by given any N-conorm we gener-
ated a class of N-conorms and N-norms. We also gave bijec-
tive generating theorems for N-norms and N-conorms.  
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Abstract. Ideologies face two critical problems in the reality, 
the problem of commitment and the problem of validation. 
Commitment and validation are two separate phenomena, in 
spite of the near universal myth that the human is committed 
because his beliefs are valid. Ideologies not only seem external 

and valid but also worth whatever discomforts believing entails. 
In this paper the authors develop a theory of social commitment 
and social validation using concepts of validation of neutro-
sophic logic.

Keywords: Commitment, Ideology, Neutrosophic logic, Social systems, Superstructure, Validation. 

1 INTRODUCTION 

      Ideologies are systems of abstract thought applied to 
public matters and thus make this concept central to poli-
tics. Ideology is not the same thing as Philosophy. Phi-
losophy is a way of living life, while ideology is an al-
most ideal way of life for society. Some attribute to ide-
ology positive characteristics like vigor and fervor, or 
negative features like excessive certitude and fundamen-
talist rigor. The word ideology is most often found in 
political discourse; there are many different kinds of 
ideology: political, social, epistemic, ethical, and so on. 

Karl Marx [1] proposes an economic base superstruc-
ture model of society (See Figure 1). The base refers to 
the means of production of society. The superstructure is 
formed on top of the base, and comprises that society's 
ideology, as well as its legal system, political system, and 
religions. For Marx, the base determines the superstruc-
ture. Because the ruling class controls the society's means 
of production, the superstructure of society, including its 
ideology, will be determined according to what is in the 
ruling class's best interests. Therefore the ideology of a 
society is of enormous importance since it confuses the 
alienated groups and can create false consciousness. 

Minar [2] describes six different ways in which the 
word "ideology" has been used: 

1. As a collection of certain ideas with certain
kinds of content, usually normative;

2. As the form or internal logical structure that
ideas have within a set;

3. By the role in which ideas play in human-social
interaction;

4. By the role that ideas play in the structure of an
organization;

5. As meaning, whose purpose is persuasion; and

6. As the locus of social interaction, possibly.

Althusser [3] proposed a materialistic conception of 
ideology. A number of propositions, which are never un-
true, suggest a number of other propositions, which are, 
in this way, the essence of the lacunar discourse is what 
is not told (but is suggested). For example, the statement 
all are equal before the law, which is a theoretical 
groundwork of current legal systems, suggests that all 
people may be of equal worth or have equal opportuni-
ties. This is not true, for the concept of private property 
over the means of production results in some people be-
ing able to own more than others, and their property 
brings power and influence. Marxism itself is frequently 
described as ideology, in the sense in which a negative 
connotation is attached to the word; that is, that Marxism 
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is a closed system of ideas which maintains itself in the 
face of contrary experience. Any social view must con-
tain an element of ideology, since an entirely objective 
and supra-historical view of the world is unattainable. 
Further, by its very scope and strength, Marxism lends it-
self to transformation into a closed and self-justifying 
system of assertions. 
For Mullins [4], an ideology is composed of four basic 
characteristics: 

1. It must have power over cognitions;

2. It must be capable of guiding one's evaluations;

3. It must provide guidance towards action;

4. And, as stated above, must be logically coher-
ent.

Mullins emphasizes that an ideology should be con-
trasted with the related (but different) issues of utopia 
and historical myth. For Zvi Lamm [5] an ideology is a 
system of assumptions with which people identify. These 
assumptions organize, direct and sustain people's voli-
tional and purposive behaviour. The assumptions on 
which an ideology is based are not collected at random 
but constitute an organized and systematic structure. An 
ideology is a belief system which explains the nature of 
the world and man’s place in it. It explains the nature of 
man and the derivative relationships of humans to one 
another. 

Mi Park [6] writes, “Ideology is the main medium 
with which conscious human beings frame and re-frame 
their lived experience. Accumulated memories and expe-
riences of struggle, success and failure in the past influ-
ence one’s choice of ideological frame”. In according to 
Cranston [7] an ideology is a form of social or political 
philosophy in which practical elements are as prominent 
as theoretical ones. A system of ideas aspires both to ex-
plain the world and to change it. Therefore, the main pur-
pose behind an ideology is to offer change in society 
through a normative thought process. For Duncker [8] the 
term ideology is defined in terms of a system of presenta-
tions that explicitly or implicitly claim to absolute truth.  

Ideas may be good, true, or beautiful in some context 
of meaning but their goodness, truth, or beauty is not suf-
ficient explanation for its existence, sharedness, or per-
petuation through time. Ideology is the ground and tex-
ture of cultural consensus. In its narrowest sense, this 
may be a consensus of a marginal or maverick group. In 
the broad sense in which we use the term ideology is the 
system of interlinked ideas, symbols, and beliefs by 
which any culture seeks to justify and perpetuate itself; 
the web of rhetoric, ritual, and assumption through which 
society coerces, persuades, and coheres. Therefore:  

1) An Ideology is a system of related ideas (learned
and shared) related to each other, which has

some permanence, and to which individuals 
and/or human groups exhibit some commitment.  

2) Ideology is a system of concepts and views,
which serves to make sense of the world while
obscuring the social interest that are expressed
therein, and by completeness and relative inter-
nal consistency tends to form a closed belief
system and maintain itself in the face of contra-
dictory or inconsistent experience.

3) All ideology has the function of constituting
concrete individuals as subjects (Althusser, [3]).

Conventional conceptions of author (authority, origi-
nator) and individual agent are replaced by the ideologi-
cally constituted actor subject. Stereotypes, that actor 
subject rely on to understand and respond to events. As 
much if the Philosophy, Political or Religion is doxical 
reflected of economic relations as if they express in a 
specific language certain mental model of human rela-
tions, or an update of a certain field of a common struc-
ture to society, only be closed the debate after a theoreti-
cal treatment.  

Nevertheless, theoretical treatment of all ideology 
firstly has to be located to synchronism level. Relation 
between synchronous and diachronic order is complicat-
ed when we are located in a unique level:  the structure of 
a social system and transformations are homogenous 
among them.  In the case of synchrony are constructed 
static or dynamic models. In the diachronic case we will 
have to consider History, content multiform movement 
making take part heterogeneous elements. Ideology 
emerges spontaneously at every level of society, and 
simply expresses the existing structure of the Social Sys-
tem. Members of every class construct their own under-
standing of the social system, based on their personal ex-
periences. Since those experiences are primarily of capi-
talist social relations, their ideology tends to reflect the 
norms of capitalist society. The individual subject is 
faced, not with the problem of differentiating the ideolog-
ical from the real, but with the problem of choosing be-
tween competing ideological versions of the real. Draw-
ing on Jaques Lacan's theory in which human subjectivity 
is formed through a process of misrecognition of the ide-
ology in the mirror of language.  

This is far from the only theory of economics to be 
raised to ideology status - some notable economically-
based ideologies include mercantilism, mixed economy, 
social Darwinism, communism, laissez-faire economics, 
free trade, ecologism, Islamic fundamentalism, etc. Sci-
ence is an ideology in itself. Therefore, while the scien-
tific method is itself an ideology, as it is a collection of 
ideas, there is nothing particularly wrong or bad about it. 
In everything what affects the study of the ideologies the 
problem has a double sense:   
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1) Homogeneity: each discourse informs a content
previously given and that puts under its own
syntaxes.

2) Heterogeneity: passage of the reality to lan-
guages introduces a complete displacement of
all the notions, fact that excludes the cause that
they are conceived like simple duplicates.

In Deontical Impure Systems (DIS) 1  approach, the
Superstructure of Social System has been divided in two 
([9-20]):  

1) Doxical Superstructure (DS) is formed by val-
ues in fact, political and religious ideologies and
culture of a human society in a certain historical
time.

2) Mythical Superstructure (MS) also has been di-
vides in two parts:

a) MS1 containing the mythical compo-
nents or primigenial bases of the ideo-
logies and cultures with the ideal val-
ues.

b) MS2 containing ideal values and utopi-
as that are ideal wished and unattaina-

1 Impure sets are sets whose referential elements (abso-
lute beings) are not counted as abstract objects and have 
the following conditions: a) They are real (material or 
energetic absolute beings). b) They exist independently 
of the Subject. c) S develops p-significances on them. d) 
True things can be said about them. e) Subject can know 
these true things about them. f) They have properties that 
support a robust notion of mathematical truth. A simple 
impure system-linkage Σ (M, R) is a semiotic system 
consisting of the pair formed by an impure object set M 
the elements of which are p-significances (relative be-
ings) of entities belonging to Reality (absolute beings) or 
certain attributes of these, and a set of binary relations, 
such that R  P(M x M) =  P(M2). That isr  R/r  M 

XM being   , x / ,i j i jr x y M M x y M   . An

impure system-linkage defined within an impure object 
set M is a simple system S = (M, R) or a finite union of 
simple systems-linkage Σ = n

i=1 Σ i such that Σ i are sim-
ple systems.  This shall be denoted as Σ  (M, R) such 
that R  P(finiteM2). A Deontical system is an organiza-
tion of knowledge on the part of the subject S that fulfils 
the following ones:  a) Other subjects (human beings) are 
elements of the system. b) Some existing relations be-
tween elements have Deontic modalities.  c) There is 
purpose (purposes) ([9-17], [20]).   

ble goals of belief systems of the Doxi-
cal Superstructure (DS).   

It is summarized these ideas in the following diagram 
(Figure 1): 

Ideological Doxical 

Superstructure 

 (IDS) 
Values in fact, Dominant Ideology, 

Primigenial Base (PB) 

 Ideal Values, Myths.

connotative-SB- projection 

(materialization)
Subject

mythical superstructural 

image (MS-image)

Ideal Structure (ISt) 

  Ideal Values, Utopia (Goals)

doxical superstructural 

denotative image (IDS-image). 

denotative-MS-projectio

Mythical Superstructure (MS)

Structural 

Base
[t0 ,tn ] Structural 

Base
[tn,t m]

Figure 1: Deontical Impure Systems (DIS) approach

The following elements ([20-21]) are listed in the or-
der that would be logically required for the understand-
ing a first approach of an ideology. This does not imply 
priority in value or in causal or historical sense. 

1) Values. Implicitly or explicitly, ideologies de-
fine what is good or valuable. We refer to ideal
values belonging to Mythical Superstructure
(MS). They are goals in the sense that they are
the values in terms of which values in fact be-
longing to Doxical Superstructure (DS) are jus-
tified. Ideal values tend to be abstract summar-
ies of the behavioral attributes which social sys-
tem rewards, formulated after the fact. Social
groups think of themselves, however, as setting
out to various things in order to implement their
values. Values are perceived as a priori, when
they are in fact a posteriori to action. Having
abstracted a ideal value from social experience
in SB, a social group may then reverse the pro-
cess by deriving a new course of action from
the principle. At the collective level of social
structure (SB), this is analogous to the capacity
for abstract thought in individual subjects and
allows great (or not) flexibility in adapting to
events. Concrete ideologies often substitute ob-
servable social events for the immeasurable ab-
stract ideal values to give the values in fact im-
mediate social utility.
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2) Substantive beliefs (Sb) [2]. They are the more
important and basic beliefs of an ideology.
Statements such as: all the power for the peo-
ple, God exists, Black is Beautiful, and so on,
comprise the actual content of the ideologies
and may take almost any form. For the believ-
ers, substantive beliefs are the focus of interest.

3) Orientation. The believer may assume the ex-
istence of a framework of assumptions around
his thought, it may not actually exist. The orien-
tation he shares with other believers may be il-
lusory. For example, consider almost any politic
and sociologic ideology. Such system evolves
highly detailed and highly systematic doctrines
long after they come into existence and that
they came into existence of rather specific sub-
stantive beliefs. The believers interact, share
specific consensuses, and give themselves a
specific name: Marxism, socialism, Nazism,
etc. Then, professionals of this ideology work
out an orientation, logic, sets of criteria of va-
lidity, and so forth.

4) Language. It is the logic of an ideology. Lan-
guage L of an ideology is the logical rules
which relates one substantive2 belief ([12-17],
[20]) to another within the ideology. Language
must be inferred from regularities in the way of
a set of substantives beliefs in the way a set of
beliefs is used. The language will be implicit,
and it may not be consistently applied. Let Sb
be a substantive belief. We propose the follow-
ing rules of generation of ideologies:
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Argument is formed by the sum of two charac-
teristics: hypothesis, that is to say, so that this 
physical and social reality?   And goal:  as we 

2 Substantive beliefs ([14-15], [20]) constitute the axioms 
of the system, while many of derived beliefs will consti-
tute their theorems.  

want is this society to reach its "perfection" 
(utopia).   

5) Perspective. Perspective of an ideology or their
cognitive map, is the set of conceptual tools.
Central in most perspectives is some statement
of where the ideology and/or social group that
carries it stands in relation to other things, spe-
cially nature, social events or other social
groups. Are we equals? Enemies? Rulers?
Friends? Perspective as description of the so-
cial environment is a description of the social
group itself, and the place of each individual in
it. The perspective may be stated as a myth in
the Mythical Superstructure ([16-17], [20]). It
explains not only who subjects are and how
subjects came to be in cognitive terms, but also
why subject exist in terms of ideal values.

Meaning (d-significances




Ds )3 and identifica-
tion are provided along with cognitive orienta-
tion. 

6) Prescriptions and proscriptions. This includes
action alternatives or policy recommendations
as well as deontical norms for behavior. They
are the connotative-SB-projection from IDS to
SB (see figure 1). Historical examples of pre-
scriptions are the Marx’s Communist Manifesto,
the Lenin’s What is To Be Done or the Hitler’s
Mein Kampf. Deontical norms represent the
cleanest connection through of MS-image and
SB-projections between the abstract idea (in
Ideal Structure belonging to Mythical Super-
structure) and the concrete applied belief be-
cause they refer to behavior that is observable.
They are the most responsive conditions in be-
ing directly carried by the social group through
the mechanisms of social reward and punish-
ment.

3 Denotation (d-s) is the literal, obvious definition or the 
common sense of the significance of a sign.  We denote s 
to the systemic significance being a denotative signifi-
cance.  ζ is the set of significant (signs) of Reality and ζΣ 
to the set of systemic significants, e.g. the part of signs 
that have been limited by the Subject when establishing 
the borders of the system, and so that ζΣ   ζ . Denota-
tive systemic significance (d-s) sΣ is a function defined in 
 so that if   then     s .Denotative sys-
temic significance (d-significance) is the significance of 
the absolute beings. Denotative systemic significance (d-
significance) agrees with relative beings. 
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7) Ideological Technology. In according Borhek
and Curtis (1983) every ideology contains asso-
ciated beliefs concerning means to attain ideal
values. Some such associated beliefs concern
the subjective legitimacy or appropriateness of
d-significances, while others concern only the
effectiveness of various d-significances. For ex-
ample, political activists and organizational
strategy and tactics are properly called technol-
ogy of the ideology. Ideological Technology is
the associated beliefs and material tools provid-
ing means for the immediate (in Structural Base)
or far (In Ideal Structure as Utopia) goals of an
ideology. Ideological Technology is not used to
justify or validated other elements of an ideolo-
gy, although the existence of ideological tech-
nologies may limit alternative among substan-
tive beliefs. Ideological Technology commands
less commitment from believers than do the oth-
er elements. A change in Ideological Technolo-
gy (strategy) may be responsible for changes in
logical prior elements of an ideology. Ideologi-
cal Technology, like belonging to Structural
Base and having a series of prescriptions con-
cerning doing can influence the life conditions
of believers, thus forcing an adaptation in the
ideology itself. Eurocomunism in Western Eu-
rope gives to a good historical example. Ideo-
logical Technology may become symbolic
through DS-image and an inverse MS-image on
Primigenial Base belonging to Mythical Super-
structure, and it can cause of more fundamental
differences between ideologies and, therefore, a
source of conflict. Conflicts between anarchists
and Communists in the Spanish Civil War or the
ideas of Trotsky and those of Stalin in the USSR
are examples of it. Much blood has been shed
between Muslims and Hindus over the fact that
their religions have different dietary restrictions
(deontical prohibitions).

Then: 
1) Conflicts are not over Ideological Technology

but over what technological difference symbol-
izes in the Primigenial Base of the Mythical Su-
perstructure.

2) Substantive beliefs are understood only in terms
of ideal values, criteria of validity, language and
perspective.

3) The believer is usually better able to verbalize
substantive beliefs than he is values, criteria,
logical principles or orientation, which is apt to
be the unquestioned bases from which he pro-
ceeds.

4) Ideal values, criteria of validity, language and
perspective may have been built up around a

substantive belief to give it significance and jus-
tification.  

Based on these criteria and our DIS approach, we are 
able to propose the following definition of ideology: 

Definition 1 We define systemically as ideology and we 
represent as IRSbId , to the system formed by an 
object set Sb whose elements are substantive beliefs 

  niSbSb i ,...,1,  and whose relational ser IR is 
formed by the set of binary logical abstract relations be-
tween substantive beliefs. 

2 VALIDATION OF IDEOLOGIES 

Ideologies face two critical problems in the reality, 
the problem of commitment and the problem of valida-
tion. Ideologies persist because they and/or the social ve-
hicle that carry them are able to generate and maintain 
commitment. For commitment to be maintained, howev-
er, an ideology must also, independently, seem to valid. 
Commitment and validation are two separate phenomena, 
in spite of the near universal myth that the human is 
committed because his beliefs are valid. Ideologies not 
only seem external and valid but also worth whatever 
discomforts believing entails. Humans often take the 
trouble to validate their beliefs because they are commit-
ted to them. An ideology with high utility limits available 
alternative ideology by excluding them, and limitation of 
alternatives increases the utility of whatever one has left. 
Utility for a group is not always identical to individual 
utility that motivates group reinforcement. Insofar as hu-
mans must collaborate to attain specific goals, they must 
compromise with collective utilities. Groups retain or 
change ideologies according to the history of reinforce-
ment.  
By virtue of its structure (within the Doxical Superstruc-
ture DS), an ideology may be able to fend off negative 
evidence in a given stimuli social environment H’ but 
experience difficulty as social conditions (within Struc-
tural Base SB) change (See figure 1). Ideologies may re-
spond to a changing social environment not only with ad-
justments in the social vehicles that carry those (Social 
States), but also with changes in the ideological logic 
(Semiotic States). Consider the possibilities that are open 
when an ideology is challenged by stimuli: 

1) The ideology may be discarded, or at least the
level commitment reduced.

2) The ideology may be affirmed in the very teeth
of stimuli (the triumph of faith).
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3) The believers may deny that the stimuli (events)
were relevant to the ideology, or that the sub-
stantive belief that was changelled was im-
portantly related to the rest of ideology.

The validation of belief is a largely social process. 
The social power of ideology depends on its external 
quality. Ideologies seem, to believers, to transcend the 
social groups that carry them, to have an independent ex-
istence of their own ([21-22]). For ideologies to persist 
must not only motivate commitment through collective 
utility but also through making the ideology itself seem 
to be valid in its own right. Perceived consensus is a 
necessary but not sufficient condition for the social pow-
er of ideologies. Therefore ideological validation is not 
simply a matter of organizational devices for the mainte-
nance of believer commitment, but also of the social ar-
rangements wherever the abstract system of ideology is 
accorded validity in terms of its own criteria. The appro-
priate criteria for determining validity or invalidity are 
socially defined. Logic and proofs are just as much so-
cial products as the ideologies they validate.  

Cyclical principle of validation: An idea is valid if 
it objectively passes the criterion of validity itself. 

Conditions of validation: 
1) Social condition: Criterion of validity is chosen

consensually and it is applied through a series
of social conventions (Berger and Luckmann,
1966). 

2) First nonsocial condition: Ideology has a logic
of its own, which may not lead where powerful
members of the social group wanted to.

3) Second nonsocial condition: The pressure of
events (physical or semiotic stimuli coming
from the stimulus social environment H’) that
may be pressure on believers to relinquish an
ideology. For an ideology to survive the pres-
sure of events with enough member commit-
ment to make it powerful it must receive valida-
tion beyond the level of more consensuses.

The pressure of the events is translated in form deno-
tative significances as DS-images on the component sub-
jects of the Dogmatic System of the set of believers be-
longing to Structural Base.   

Main Principle of validation: The power of an ide-
ology depends on its ability to validate itself in the face 
of reason for doubt.  

The internal evidence of an ideology (IE) is the data 
which derive from the ideology itself or from a social 
group or organization to which is attached. For highly 
systematic belief system (an ideology), any attack upon 
any of its principles is an attack upon the system itself. 
Then: 

1) If one of the basic propositions (substantive be-
liefs) of an ideology is brought under attack,
then so the entire ideology. In consequence, an
ideology is at the mercy of its weakest elements.

2) An ideology has powerful conceptual properties,
but those very properties highlight the smallest
disagreement and give it importance in its logi-
cal connections with other items of ideology.

3) Even if an ideology is entirely nonempirical, it
is vulnerable because even one shaken belief can
lead to the loss of commitment to the entire ide-
ological structure.

4) An ideology as the religious ideologies, with
relatively little reference to the empirical world
cannot be much affected by external empirical
relevance, simply because the events do not bear
upon it. The essential substantive belief in the
mercy of God can scarcely be challenged by the
continued wretchedness of life.

5) Nevertheless, concrete ideologies are directly
subject to both internal and external evidence.

6) The abstract ideology is protected from external
evidence by its very nature. A cult under fire
may be able to preserve its ideology only by re-
treating to abstraction. Negative external evi-
dence may motivate system-building at the level
of the abstract ideology, where internal evidence
is far more important.

7) The separibility of the abstract ideology from its
concrete expression depends on the ability of
believers no affiliated with the association (cult
and/or concern) that carried it socially to under-
stand and use it, that is to say, subjects belong-
ing to the Structural Base.

8) If the validation of an ideology comes from em-
pirical events and the ability to systematically
relate propositions according to an internally
consistent logic, it can be reconstructed and per-
petual by any social group with only a few hints.

9) The adaptation of an ideology is some sort of
compromise between the need of consensual
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validation and the need for independence from 
the associations that carries it. 

Consensual validation is the confirmation of reality 
by comparison of one's own perceptions and concerns 
with those of others, including the recognition and modi-
fication of distortions. Consensual validation, describes 
the process by which human being realize that their per-
ceptions of the world are shared by others.  This bolsters 
their self-confidence since the confirmation of their ob-
servations normalizes their experience. Consensual vali-
dation also applies to our meanings and definitions.  Ar-
riving at a consensus of what things mean facilitates 
communication and understanding. When we all agree 
what something is, the definition of that something has 
integrity.  Reality is a matter of consensual validation 
([23]). Our exact internal interpretations of all objects 
may differ somewhat, but we agree on the generic class 
enough to communicate meaningfully with each other. 
Phantasy can be, and often is, as real as the "real world." 
Reality is distorted by strong, conflicted needs. People 
seek affiliations with groups that enable them to maintain 
an ideal balance between the desires to fit in and stand 
out. These motives operate in dialectical opposition to 
each other, such that meeting one signal a deficit in the 
other and instigate increased efforts to reduce this deficit. 
Thus, whereas feelings of belonging instigate attempts to 
individuate one, feelings of uniqueness instigate attempts 
to re-embed oneself in the collective. The physicalistic 
accretion to this rule of consensual validation is that, 
physical data being the only "real" data, internal phenom-
ena must be reduced to physiological or behavioural data 
to become reliable or they will be ignored entirely. Public 
observation, then, always refers to a limited, specially 
trained public. It is only by basic agreement among those 
specially trained people that data become accepted as a 
foundation for the development of a science. That laymen 
cannot replicate the observations is of little relevance. 
What is so deceptive about the state of mind of the mem-
bers of a society is the "consensual validation" of their 
concepts. It is naively assumed that the fact that the ma-
jority of people share certain ideas and feelings proves 
the validity of these ideas and feelings. Nothing is further 
from the truth.  

Consensual validation as such has no bearing whatso-
ever on human reason.  Just as there is a "folie a deux" 
there is a "folie a millions." The fact that millions of peo-
ple share the same vices does not make these vices vir-
tues and the fact that they share so many errors does not 
make the errors to be truths ([25]). On the other hand, 
when the ideology is identified with the community (or 
with a consensus), and this community, as well, it is not 
truly identified with a true socio-political institution 
based on the land (nation), but with a transcendental 
principle, personified in the norms of a church, sect or 

another type of messianic organization, its effects on the 
secular political body, within as it prospers but with 
which it is not identified, they are inevitable and predict-
able destructive. The process of consensual validation, 
then ties the content of ideological beliefs to the social 
order (existing in the Structural Base) itself. It is estab-
lished a feedback process: 1) If the social order remains, 
then the ideological beliefs must somehow be valid, re-
gardless of the pressure of the events. 2) If the ideologi-
cal beliefs are agreed upon by all, then the social order is 
safe.   

Commitment of believers is the resultant of two op-
posite forces. 
1) Social support (associations and no militant people),

which maintains ideology.

2) Problems posed by pressure of events, which threat-
en ideology.

When ideology is shaken, further evidence of consen-
sus is required. This can provide by social rituals of vari-
ous sorts, which may have any manifest content, but 
which act to convey the additional messages ([23]). Each 
member of a believer group, in publicly himself through 
ritual is rewarded by the public commitment of the oth-
ers. Patriotic ceremonies, political meetings, manifesta-
tions by the streets of the cities, transfers and public reli-
gious ceremonies are classic examples of this. Such cer-
emonies typically involve a formal restatement of the 
ideal ideology in speeches, as well as rituals that give op-
portunities for individual reaffirmation of commitment. 
For Durkheim ([21]) ideological behaviour could be ren-
dered sociologically intelligible by assuming an identity 
between societies and the object of worship. The ideal of 
all totalitarian ideology is the total identity between the 
civil society and the ideological thought, that is to say, 
the establishment of the unique thought without fissures. 
Thus consensual validation and validation according to 
abstract ideal (Ideal Mythical Superstructure) are indis-
tinguishable in the extreme case. If a certain ideology has 
a sole raison d’être affirmation of group membership 
(fundamentalist ideologies), no amount of logical or em-
pirical proof is even relevant to validation, though proofs 
may in fact be emphasized as part of the ritual of group 
life.  
We have the following examples of consensual validation 
in actual ideologies. :  

1) False patriotism is the belief that whatever gov-
ernment says goes.

2) Neo-conservatism is the belief that the status
quo should be maintained.

3) Radical Progressism is the belief that the social
reality can change undermining the foundations
of a millenarian culture.
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4) Shallow utilitarianism is whatever the majority
says goes, and since the majority, that’s what
shallow utilitarian believe in. This is often called
groupthink. Erich Fromm ([25]) called it "the
pathology of normalcy" and claimed it was
brought about through consensual validation.

5) Islamic fundamentalism. From the perspective
of the Islamists, his Islamic behaviour makes
him a moral person.  Living the dictates of Islam
makes him “good.” He does well, and he is
good. His ethical beliefs and actions find con-
sensual validation and continuous reinforcement
in any and every geographical area of the um-
ma.  He no longer doubts, no longer even won-
ders. In a crude sense, he knows who he is,
where he belongs, and what his purpose in life
is. He knows never to doubt. His is not to reason
why.  Besides, he has lost the will, if not the ca-
pacity. By Islamic standards, the most virulent
jihad is good. Jihadism is the ethical life of Is-
lam. The Islamist embraces it right down to the
last mitochondrion in the last cell of his
body.  He could not give up Islam even if he
wanted, and he never commits the perditious sin
of wanting.

2.1 Neutrosophic logic approach to validation 

For a logical approach to the validation of ideologies, 
we will use the Neutrosophic logic ([20], [26-32]) (See 
figure 1). 

Definition 2:  True IDS-image is the IDS-image which is 
permitted syntactically and semantically and whose
external evidence provides with a degree of truth value in 
its existence.  

Considering the neutrosophic principles we shall estab-
lish the following Axioms: 

Axiom 1: Any IDS-image IDSi is provided with a neutro-
sophic truth value, element of a neutrosophic set  E =] 
-0, 1+ [3.  non enumerable and stable for multiplication. 

Axiom 2: Any IDS-image IDSi is  provided  with  a  neu-

trosophic veritative  value  v   31,0  such that v =
V( )=V((T, I, F)), V reciprocal application of  E in 

 31,0  and which possesses the following properties: 

1) V(0) = -0.

2) V(1, 2) = V(1). V(2).

If T = 1+ it will designate absolute truth and if T= -0 
1 F + it will designate the absolute falseness of the

IDS-image. If complementariness is designated by Μ, the 
principle of complementariness between two IDs-images: 

IDSi and iIDS


, it there is iff (1 + 2)   31,0  . 

When 1  0 y 2  0, such that v ( k
i  M kjIDSi ) = 

0, it is necessary that 1 + 2 = -0, as the sum of verac-
ities does not admit opposing elements. 

Axiom 3: If IDSi  designates the non-IDS-
image IDSi , with the neutrosophic truth value , 

we will have to    1V .

Axiom 4: LIDSi /
     ))0,0,1((,,  FITVVv

Definition 3: Absolute true IDS-image TIDSi is 
the IDS-image that fulfill 

     ))0,0,1((,,  FITVVv

Let S be a Believer Subject. Let IDSi be a IDS-
image. We denote as Δ the operator a priori and the 
equivalence operator as  . We shall designate as 

)(   the equivalence a priori operator and as (□  ) 
the necessarily equivalent operator. We shall desig-
nate as V the true being operator and as □V the neces-
sarily true operator. We designate as F the false being 
operator. We shall designate the equivalent a posteri-
ori operator as .  We may establish the following 
Theorems: 

Theorem 1: Each absolute true IDS-image IDSi con-
sidered by S is equivalent a priori to a necessary IDs-
image IDSi* , that is,

IDSiIDSi * ( )( IDSi □ ).* IDSi

Proof: 

We shall consider the neutrosophic veritative value v 

  31,0   of a specific IDS-image IDSi which shall 

be T=1+ if it is true and T= -0  1F if it is false. 
Therefore  1TIDSi  is a priori by stipulation, 
and T = 1+ is necessary if IDSi is true and necessarily 
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false F = 1+ if ijr  is false. That is )( IDSi k
i*

and  (□ iIDS* □ IDSi* ).

Theorem 2: Each absolute true IDS-image IDSi con-
sidered by S is necessarily equivalent to an a priori S-
image IDSi* : IDSiIDSi * ( IDSirij (□  ) 

IDSi* ). 

Proof: 

a) Given a true IDS-image IDSi we establish the
IDS-image IDSiA  for T = 1+ and such that

  IDSiIDSi A  VIDSi   □V IDSiA . If
IDSi has as neutrosophic veritative value T =
1+, then IDSiIDSi A  will have the same
neutrosophic veritative value, therefore
IDSi(□  ) IDSiIDSi A . Thus, we have
demonstrated that each true IDS-image is
necessarily equivalent IDS-image a priori,
specifically IDSiIDSi A . 

b) In the case of F ijr , the existence of a IDS-

image IDSi*  will be necessary such that
(IDSi(□  ) IDSi*  IDSi* ). For FIDSi
 F IDSiA  as 
( IDSiIDSi A )(□  ) IDSi  and therefore, 
due to this selection of IDSi*  there cannot
be (IDSi (□  ) IDSi* . For FIDSi, IDSi*  is
chosen, that is  ( IDSiIDSi A ). Thus, 
clearly there is (IDSi 
(□  ) IDSi*  IDSi* ) due to the selec-
tion of IDSi* . Therefore, Theorem 2 is
demonstrated.

Theorem 3: Each necessary IDS-image IDSi consid-
ered by S is equivalent a posteriori to an absolute true 
IDS-image IDSi* , that is, 

IDSiIDSi * (□ )( IDSi ).* IDSi  

Proof: 

If IDSi V   )0,0,1(  v  is necessary. 
□

  )1,0,0(/*)0,0,1(/*   vIDSivIDSiIDSi

. The second term )1,0,0(/* vrij  implies 

F ijr*  which contradicts Theorem 1 as the IDS-image

IDSi is true, being equivalent a priori to IDSi*  
which is necessary and therefore )0,0,1( v . 

Theorem 4: Each a posteriori IDS-image IDSi 
considered by S is necessarily equivalent to an abso-
lute true IDS-image IDSi* : 

IDSiIDi * ( IDSi (□  ) IDSi* ). 

Proof. 

If IDSi*  has )0,0,1( v as being true, it will 
imply 
that
 )1,0,0(/)0,0,1(/   vIDSivIDSi . 

For )0,0,1( v  it is obvious. For 

)1,0,0( v it contradicts Theorem 2. 

3 VARIABLES OF AN IDEOLOGY 

Ideologies "are" in the Superstructure, but far from 
our intention to think about neoplatonic ideas that beliefs 
exist per se, without material support. Without believers 
there is no belief system; but the belief system itself is 
not coextensive with any given individual Subject or set 
of Subjects. Ideologies as belief system have longer lives 
than Subjects and are capable of such complexity that 
they would exceed the capacity of a given Subject to de-
tail. Ideologies have the quality of being real and having 
strong consequences but having no specific location, be-
cause Superstructure has not a physical place. In accord-
ing to Rokeach ([33]), people make their inner feelings 
become real for others by expressing them in such cases 
as votes, statements, etc. they built or tear dhow, which in 
turn form the basis of cooperative (or uncooperative) ac-
tivity for humans, the result of which is “Reality”. Ideol-
ogy is one kind of Reality although not all of it. Ideolo-
gies, like units of energy (information), should be thought 
of as things which have variable, abstract characteristics, 
not as members of platonic categories based on similari-
ty. The ideological variables are: 

1) Interrelatedness of their substantive beliefs de-
fines the degree of an ideology (DId) and it is
defined like the number m of their logical ab-
stract relations. Logically, some belief systems
ideologies are more tightly interrelated than oth-
ers. We suppose the ideologies and belief sys-
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tems forming a continuum:  rl IdId ,..., .
Then: a) At the right end of the continuum are 
ideologies that consist of a few highly linked 
general statements from which a fairly large 
number of specific propositions can be derived. 
Confronted by a new situation, the believer may 
refer to the general rule to determine the stance 
he should take. Science considered as ideology 
is an example. b) At the left end of the continu-
um are ideologies that consists of sets of rather 
specific prescriptions and proscriptions (deonti-
cal norms) between which there are only weak 
functional links, although they may be loosely 
based on one or more assumptions. Confronted 
by a new situation, the believer receives little 
guidance from the belief system because there 
are no general rules to apply, only specific be-
havioral deontical norms that may not be rele-
vant to the problem at hand. Agrarian religions 
are typically of this type. They are not true ideo-
logies but proto-ideologies. If DId is defined by 
m or number of logical abstract relations be-
tween substantive beliefs, then m = 0 defines the 
non existence of belief system and m an 
ideal ideology that it contemplated understand-
ing of the totality, that is to say, of the own Re-
ality.  Consequences: a) High DId may inhibit 
diffusion. It may make an otherwise useful trait 
inaccessible or too costly by virtue of baggage 
that must accompany it. Scientific theories are 
understood by a small number of experts.  b) To 
DId is high, social control may be affected on 
the basis of sanctions and may be taught and 
learned. Ideologies with a relative high DId 
seem to rely on rather general internalized deon-
tical norms to maintain social control.  

2) The empirical relevance (ER) is the degree to
which individual substantive belief Sbi confront
the empirical world (Reality). The proposition
that the velocity is the space crossed by a mobile
divided by the time that takes in crossing that
space has high empirical relevance. The propo-
sition God’s existence has low empirical rele-
vance.  1,0ER , being 0 null empirical rele-
vance (Homo neaderthalensis lives at the mo-
ment) and 1 total empirical relevance (a + b =
c).  When beliefs lacking empirical relevance
arise in response to pressing strain in the eco-
nomic or political structures (SB), collective ac-
tion to solve economic or political problems be-
comes unlikely. Lack of ER protects the ideolo-
gy and the social vehicle from controversies
arising between the highly differentiated popula-
tions of believers.

3) The ideological function is the actual utility for
a group of believing subjects. Ideological func-
tion conditions the persistence of the ideology,
or time that is useful or influences social struc-
ture.

4) The degree of the willingness of an ideology
(WD) is the degree to which an ideology accepts
or rejects innovations.  1,0WD  being WD
=  0 null acceptance and WD = 1 total ac-
ceptance.  To major consequence of WD to take
innovations is the ease with which ideologies
adapt changes in their social environment. Be-
liefs with 1WD , accepting innovations of all
ideological degrees survive extreme changes in
social structure: Shinto in Japan or Roman Ca-
tholicism is examples.

5) The degree of tolerance of an ideology (TD) is
the degree with an ideology accepts or rejects
competing ideologies or beliefs systems.

 1,0TD  being TD =  0 total rejection  and
TD = 1 total acceptance. Some accepts all others
as equally valid but simply different explana-
tions of reality 1TD  . Others reject all other
ideology as evil 0TD , and maintain a posi-
tion such as one found in revolutionary or fun-
damentalist movements. Then: a) High TD
seems to be independent of ideological system
and the degree of the willingness (WD). b) Low
TD is fairly strong related with WD. c) Low TD
is fairly strong related with a high ER. Rele-
vance of highly empirical beliefs to each other is

so clear. Therefore 







 ER

WD
fTD ,1

. TD 

has consequences for the ideology: 1) It affects 
the case with the organizational vehicle (social 
structure) may take alignments with other social 
structures. 2) It affects the social relationships of 
the believers.  

6) The degree of commitment demanded by an ide-
ology (DCD) is the intensity of commitment
demanded to the believer by the part of the ide-
ology or the type of social vehicle by which the
ideology is carried.  1,0DCD  being DCD
=  0 null commitment demanded and DCD = 1
total adhesion. Then: a) DCD is not dependent
of ideological system ID, empirical relevance
(ER), acceptance or innovation (WD) and toler-
ance (TD). b) The degree of commitment de-
manded (DCD) has consequences for the persis-
tence of the ideology. If an ideology has

1DCD  and cannot motivate the believers to
make this commitment, it is not likely to persist
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for very long. Intentional communities having 
like immediate objective utopias have typically 
failed in large part for this reason. Revolutionary 
and fundamentalist ideologies typically demand 
DCD = 1 of their believers and typically insti-
tute procedures, such as party names to both en-
sure and symbolize that commitment (Cross-
man, [34]). c) DCD depends of invalidation. 
Ideological systems with low DCD fail or are 
invalidated slowly as beliefs drops from the be-
lievers’ repertoire one by one or are relegated to 
some inactive status. Invalidation of ideological 
systems with high DCD produces apostates. 
High DCD ideological systems seem to become 
invalidated in a painful explosion for their be-
lievers, and such ideologies are replaced by an 
equally high DCD to an ideology opposing the 
original one. But reality is not constructed. Real-
ity is encountered and then modified. Human 
Subjects do, in fact, encounter each other in 
pairs or groups in situations that require them to 
interact and to develop beliefs and ideologies in 
the process. They do so, however, as socialized 
beings with language, including all its values in 
fact, logic, prescriptions and proscriptions; in 
the context of the previous work of others; and 
constrained by endless social restrictions on al-
ternative courses of action. Commitment is focus 
of ideologies, because is focus Ideas may be 
good, true, or beautiful in some context of 
meaning but their goodness, truth, or beauty is 
not sufficient explanation for its existence, 
sharedness, or perpetuation through time. Ideol-
ogy is the ground and texture of cultural consen-
sus. In its narrowest sense, this may be a con-
sensus of a marginal or maverick group. In the 
broad sense in which we use the term ideology 
is the system of interlinked ideas, symbols, and 
beliefs by which any culture seeks to justify and 
perpetuate itself; the web of rhetoric, ritual, and 
assumption through which society coerces, per-
suades, and coheres on those aspects of social 
structure which maintain or create commitment: 
limitation of alternatives, social isolation, and 
social insulation through strategies that dictate 
heavy involvement of the individual Subject in 
group-centered activities. Individual commit-
ment is view as stemming either from learning 
and reinforcements for what is learned, or from 
the fact that ideological functions (actual utility) 
to maintain personality either by compensating 
for some feeling of inadequacy, by providing an 
object for dependence, or by producing order 
out of disorder (Fromm, 1941; Wallace, 1966). 
Commitments are validated (or made legitimate) 
by mechanisms that make them subjectively 

meaningful to Subjects (Berger and Luckmann, 
1966). 

7) The external quality (EQ) of an ideology ([21])
is the property by which ideologies seem to be-
lievers, to transcend the social groups that carry
them, to have an independent existence of their
own.

Then we propose the following definition: 

Definition 3: Ideological system Id during the time 
of its actual utility  wtt ,0  or historical time is a non-
linear function of its main characteristics, such as Id = 
f(DId, ER, WD, TD, DCD) = f(DId, ER, WD, f’(1/WD, 
ER), DCD) = F(DId, ER,WD, DCD).  

An ideology varies in the ideological degree (IdD) 
and its empirical relevance (ER) or the extent to which 
this ideology pertain directly o empirical reality. The ap-
parent elusiveness of an ideology derives from four 
characteristics, all of which result from the fact that 
while beliefs are created and used by humans, they also 
have properties that are independent of their human use. 
In according with Borhek and Curtis ([23]) 

1) Ideologies appear to their believers to have a
stability, immutability, coherence and inde-
pendence. Ideologies to appear to social group
members as a suprasocial set of eternal verities,
unchangeable thorough mere human action and
agreed upon by all right-thinking people not be-
cause the verities belong to a believers but be-
cause they are true ([21]). In reality, beliefs are
changeable.

2) Similarities among substantive beliefs are not
necessary parallel structural similarities among
ideologies.

3) The historic source of beliefs (the myth) may,
by virtue of their original use, endow them with
features that remain through millennia of
change and particularly fit them to use in novel
context.

4) The most important commonality among a set
of substantive beliefs is the social structure.

3 CONCLUSIONS 

We can draw the following conclusions: 
1) Therefore an ideology is a set of beliefs, aims

and ideas.
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2) Ideologies are not a collection of accidental facts
considered separately and referred an underlying
history and it is: a) Thoughts about our own be-
haviors, lives and courses of action. b) A mental
impression – something that is abstract in our
heads – rather than a concrete thing. c) A system
of belief. Just beliefs –non-unchangeable ulti-
mate truths about the way the world should be.

3) Ideology has different meanings:
1) The process of production of meanings,

signs and values in social life.

2) A body of ideas characteristic of a par-
ticular social group or class.

3) Ideas that help to legitimate a dominant
political power.

4) Socially necessary illusion; the conjec-
ture of discourse and power.

5) The medium in which conscious social
actors make sense of their reality.

6) Action oriented set of beliefs.

7) The confusion of linguistic and phe-
nomenal reality.

8) Semiotic closure.

9) The indispensable medium in which
individuals live out their relations to a
social structure.

10) The confusion of the process whereby
social life is converted to a natural.

4) The greater is the ideological degree (Id), the
greater is the negative evidence for the whole
ideology.

5) The less the degree of empirical relevance, the
less the importance of external evidence (pres-
sure of events, but the greater the importance of
external evidence.

6) The suprasocial form of an ideology derives
most significantly from its abstract ideal form
belonging to Mythical Superstructure. The cur-
rent social influence of an ideology derives of its
concrete form belonging to Doxical Superstruc-
ture.

7) The more systematic and empirically relevant an
ideology is, the greater the feasibility of
preserving it as an abstract ideal apart from a
given concrete expression.

8) The greater the Ideological degree (DId) and the
greater the degree of empiricism, the less the re-
liance on internal evidence and the greater the
reliance of external evidence.

9) The extent of commitment to ideology varies di-
rectly with the amount of consensual validation
available, and inversely with the pressure of
events.
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Abstract. 

Nonfunctional requirements refer to global properties of 
software. They are an important part of the requirement 
engineering process and play a key role in software quali-
ty. Current approaches for modelling nonfunctional re-
quirements interdependencies have limitations. In this 

work we proposed a new method to model interdepend-
encies in nonfunctional requirements using neutrosophic 
logic.  This proposal has many advantages for dealing 
with indeterminacy making easy the elicitation of 
knowledge. A case study is shown to demonstrate the ap-
plicability of the proposed method. 

Keywords: Nonfunctional requirements, requirement engineering neutrosophic logic.

1 Introduction

Software engineers are involved in complex decisions 
that require multiples points of view. One frequent reason 
that cause low quality software is associated to problems 
related to analyse requirements [1]. Nonfunctional re-
quirement (NFR) also known as nonfunctional-concerns 
[2] refer to global properties and usually to quality of func-
tional requirements. It is generally recognized that NFR are 
an important and difficult part of the requirement engineer-
ing process. They play a key role in software quality, and 
that is considered a critical problem [3]. 
The current approach is based solely in modeling 
interdependencies using only numerical Fuzzy Cognitive 
Maps (FCM).  In this work we propose a new framework 
for processing uncertainty and indeterminacy in mental 
models. 

This paper is structured as follows: Section 2 reviews 
some important concepts about Non-functional 
requirements interdependencies and neutrosofic logic. In 
Section 3, we present a framework for modelling non-
functional requirements interdependencies with neutro-
sophic logic. Section 4 shows an illustrative example of the 
proposed model. The paper ends with conclusions and fur-
ther work recommendations in.  
2 Non-functional requirements interdependencies 
and neutrosofic logic  

Nonfunctional requirements are difficult to evaluate 
particularly because they are subjective, relative and inter-
dependent [4]. In order to analyse NFR, uncertainty arises, 
making desirable to compute with qualitative information. 
In software development projects analyst must identify and 

specify relationships between NFR. Current approaches 
differentiate three types of relationships: negative (-), posi-
tive (+) or null (no contribution). The opportunity to evalu-
ate NFR depends on the type of these relationships.  

Softgoal Interdependency Graphs [4] is a technique 
used for modelling non-functional requirements and inter-
dependencies between them. Bendjenna [2] proposed the 
use on fuzzy cognitive maps (FCM) relationships between 
NFCs and the weight of these relationships expressed with 
fuzzy weights in the range 0 to 1. This model lacks addi-
tional techniques for analysing the resulting FCM.  
Neutrosophic logic is a generalization of fuzzy logic based 
on neutrosophy [5]. When indeterminacy is introduced in 
cognitive mapping it is called Neutrosophic Cognitive Map 
(NCM) [6]. NCM are based on neutrosophic logic to repre-
sent uncertainty and  indeterminacy in cognitive maps [5] 
extending FCM.  A NCM is a directed graph in which at 
least one edge is an indeterminacy one  denoted by dotted 
lines [7]. Building a NCM allows dealing with 
indeterminacy, making easy the elicitation of 
interdependencies among  NFR.

3 A framework for modelling non-functional re-
quirements interdependencies 

The following steps will be used to establish a frame-
work for modeling non-functional requirements interde-
pendencies NCM (Fig. 1). 
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Figure 1: Proposed framework. 

• NFR interdependency modeling

The first step is the identification of non-
functional concern in a system (nodes).  In this 
framework we propose the approach of Chong 
based on a catalogue of NFR [4]. Causal relation-
ships, its weights and signs are elicited finally [8]. 

• NFR analysis

Static analysis is develop to define the im-
portance of NFR  based on the degree centrality 
measure [9]. A de-neutrosophication process 
gives an interval number for centrality. Finally the 
nodes are ordered and a global order of NFR is 
given.

5 Illustrative example 

In this section, an illustrative example in order to show 
the applicability of the proposed model is presented. Five 
non-functional concerns ) are 
identified (Table 3).   

Table 3 Non-functional requirements 
Node Description 

Quality 

Reliability 

Functionality 

Competitiveness 

Cost 
Table 1 Non-functional requirements 

The experts provide the following causal relations (Fig 
2) .

Figure 2. NCM representing NFR interdependencies. 

The neutrosophic score of each NFR based on the 
centralitydegree  measure [10] is as follows: 

1.6I 
0.9 
I 
1.2 
0.5 

The next step is the de-neutrosophication process as 
proposes by Salmeron and Smarandache [11].  I ∈[0,1] is 
repalaced by both maximum and minimum values. 

[1.6, 2.6] 
0.9 
[0, 1] 
1.2 
0.5 

The final we work with extreme values [12] for giving a 
total order: 

Quality, competitiveness and reliability are the more im-
portant concern in this case. 

Conclusion 

This paper proposes a new framework to model inter-
dependencies in NFR using NCM. Neutrosophic logic is 
used for representing causal relation among NFR.   

Building a NCM allows dealing with indeterminacy, 
making easy the elicitation of knowledge from experts. An 
illustrative example showed the applicability of the pro-
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posal. Further works will concentrate on two objectives: 
developing a consensus model and developing an expert 
system based. 
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Abstract. In this study, we generalize the similarity 
measure of intuitionistic fuzzy set, which was defined by 
Hung and Yang, to interval valued neutrosophic sets. 
Then we propose an entropy measure for interval valued 

neutrosophic sets which generalizes the entropy measures 
defined Wei, Wang and Zhang, for interval valued intui-
tionistic fuzzy sets. 

Keywords: Interval valued neutrosophic set; Entropy; Similarity measure.

1 Introduction

Neutrosophy is a branch of philosophy which studies the 
origin, nature and scope of neutralities. Smarandache [6] 
introduced neutrosophic set by adding an inde-terminancy 
membership on the basis of intuitionistic fuzzy set. 
Neutrosophic set generalizes the concept of the classic set, 
fuzzy set [12], interval valued fuzzy set [7], intuitionistic 
fuzzy set [1], interval valued intuitionistic fuzzy sets [2], 
etc. A neutrosophic set consider truth-membership, in-
determinacy-membership and falsity-membership which 
are completely independent. Wang et al. [9] introduced 
single valued neutrosophic sets (SVNS) which is an in-
stance of the neutrosophic set. However, in many applica-
tions, the decision information may be provided with inter-
vals, instead of real numbers. Thus interval neutrosophic 
sets, as a useful generation of neutrosophic set, was intro-
duced by Wang et al. [8]. Interval neutrosophic set de-
scribed by a truth membership interval, an indeterminacy 
membership interval and false membership interval. 

Many methods have been introduced for measuring the 
degree of similarity between neutrosophic set. Broumi and 
Smarandache [3] gave some similarity measures of neutro-
sophic sets. Ye [11] introduced similarity measures based 
on the distances of interval neutrosophic sets. Further en-
tropy describes the degree of fuzziness in fuzzy set. Simi-
larity measures and entropy of single valued neutrosophic 
sets was introduced by Majumder and Samanta [5] for the 
first time. 

The rest of paper is organized as it follows. Some prelim-
inary definitions and notations interval neutrosophic sets in 
the following section. In section 3, similarity measure be-
tween the two interval neutrosophic sets has been intro-
duced. The notation entropy of interval neutrosophic sets 

has been given in section 4. In section 5 presents our con-
clusion. 

2 Preliminaries 

In this section, we give some basic definition re-lated 
interval valued neutrosophic sets (IVNS) from [8]. 

Definition 2.1. Let 𝑋 be a universal set, with generic 
element of 𝑋 denoted by 𝑥. An interval valued neutrosoph-
ic set (IVNS) 𝐴  in 𝑋  is characterized by a truth-
membership function 𝑇𝐴, indeterminacy-membership func-
tion 𝐼𝐴 and falsity-membership function 𝐹𝐴, with for each
𝑥 ∈ 𝑋, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ⊆ [0,1].

When the universal set 𝑋 is continuous, an IVNS 𝐴 can 
be written as 

𝐴 = ∫
〈𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)〉

𝑥𝑋

, 𝑥 ∈ 𝑋.

When the universal set 𝑋 is discrete, an IVNS 𝐴 can be 
written as 

𝐴 = ∑ 〈𝑇𝐴(𝑥𝑖), 𝐼𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖)〉/𝑥𝑖
𝑛

𝑖=1
, 𝑥 ∈ 𝑋.

Definition 2.2. An IVNS 𝐴  is empty if and only if 
inf 𝑇𝐴(𝑥) = sup𝑇𝐴(𝑥) = 0 , inf 𝐼𝐴(𝑥) = sup 𝐼𝐴(𝑥) = 1  and
inf 𝐹𝐴(𝑥) = sup𝐹𝐴(𝑥) = 0, for all 𝑥 ∈ 𝑋.

Definition 2.3. An IVNS 𝐴 is contained in the other 
IVNS 𝐵, 𝐴 ⊆ 𝐵, if and only if 

inf 𝑇𝐴(𝑥) ≤ inf 𝑇𝐵(𝑥) , sup𝑇𝐴(𝑥) ≤ sup𝑇𝐵(𝑥)

inf 𝐼𝐴(𝑥) ≥ inf 𝐼𝐵(𝑥) , sup 𝐼𝐴(𝑥) ≥ sup 𝐼𝐵(𝑥)

inf 𝐹𝐴(𝑥) ≥ inf 𝐹𝐵(𝑥) , sup𝐹𝐴(𝑥) ≥ sup𝐹𝐵(𝑥)

for all 𝑥 ∈ 𝑋. 
Definition 2.4. The complement of an IVNS 𝐴 is de-

noted by 𝐴𝑐 and is defined by 
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𝑇𝐴𝑐(𝑥) = 𝐹𝐴(𝑥) 
inf 𝐼𝐴𝑐(𝑥) = 1 − sup 𝐼𝐴(𝑥) 
sup 𝐼𝐴𝑐(𝑥) = 1 − inf 𝐼𝐴(𝑥) 
𝐹𝐴𝑐(𝑥) = 𝑇𝐴(𝑥)

for all 𝑥 ∈ 𝑋. 
Definition 2.5. Two IVNSs 𝐴 and 𝐵 are equal if and 

only if 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴. 
Definition 2.6. The union of two IVNSs 𝐴 and 𝐵 is an 

IVNS 𝐶, written as 𝐶 = 𝐴 ∪ 𝐵, is defined as follow 
inf 𝑇𝐶(𝑥) = max{inf 𝑇𝐴(𝑥) , inf 𝑇𝐵(𝑥)} 
sup 𝑇𝐶(𝑥) = max{sup𝑇𝐴(𝑥), sup𝑇𝐵(𝑥)} 
inf 𝐼𝐶(𝑥) = min{inf 𝐼𝐴(𝑥) , inf 𝐼𝐵(𝑥)} 
sup 𝐼𝐶(𝑥) = min{sup 𝐼𝐴(𝑥), sup 𝐼𝐵(𝑥)} 
inf 𝐹𝐶(𝑥) = min{inf 𝐹𝐴(𝑥) , inf 𝐹𝐵(𝑥)} 
sup𝐹𝐶(𝑥) = min{sup𝐹𝐴(𝑥), sup 𝐹𝐵(𝑥)}

for all 𝑥 ∈ 𝑋. 
Definition 2.7. The intersection of two IVNSs 𝐴 and 𝐵, 

written as 𝐶 = 𝐴 ∩ 𝐵, is defined as follow 
inf 𝑇𝐶(𝑥) = min{inf 𝑇𝐴(𝑥) , inf 𝑇𝐵(𝑥)} 
sup𝑇𝐶(𝑥) = min{sup𝑇𝐴(𝑥), sup𝑇𝐵(𝑥)} 
inf 𝐼𝐶(𝑥) = max{inf 𝐼𝐴(𝑥) , inf 𝐼𝐵(𝑥)} 
sup 𝐼𝐶(𝑥) = max{sup 𝐼𝐴(𝑥), sup 𝐼𝐵(𝑥)} 
inf 𝐹𝐶(𝑥) = max{inf 𝐹𝐴(𝑥) , inf 𝐹𝐵(𝑥)} 
sup𝐹𝐶(𝑥) = max{sup𝐹𝐴(𝑥), sup𝐹𝐵(𝑥)}

for all 𝑥 ∈ 𝑋. 

3 Similarity measure between interval valued neu-
trosophic sets

Similarity measure between Interval Neutrosophic sets is 
defined by Ye [11] as follow. 

Definition 3.1. Let 𝑁(𝑋)  be all IVNSs on 𝑋  and 
𝐴, 𝐵 ∈ 𝑁(𝑋). A similarity measure between two IVNSs is 
a function 𝑆:𝑁(𝑋) × 𝑁(𝑋) → [0,1] which is satisfies the 
following conditions: 

i. 0 ≤ 𝑆(𝐴, 𝐵) ≤ 1
ii. 𝑆(𝐴, 𝐵) = 1 iff 𝐴 = 𝐵

iii. 𝑆(𝐴, 𝐵) = 𝑆(𝐵, 𝐴)
iv. If 𝐴 ⊂ 𝐵 ⊂ 𝐶  then 𝑆(𝐴, 𝐶) ≤ 𝑆(𝐴, 𝐵)  and

𝑆(𝐴, 𝐶) ≤ 𝑆(𝐵, 𝐶) for all 𝐴, 𝐵, 𝐶 ∈ 𝑁(𝑋).
We generalize the similarity measure of intuitionistic 

fuzzy set, which defined in [4], to interval valued neutro-
sophic sets as follow. 

Definition 3.2. Let 𝐴, 𝐵  be two IVN sets in 𝑋 . The 
similarity measure between the IVN sets 𝐴 and 𝐵 can be 
evaluated by the function, 

𝑆(𝐴, 𝐵) = 1 − 1/2 [max
i
(|inf 𝑇𝐴(𝑥𝑖) − inf 𝑇𝐵(𝑥𝑖)|)

+ max
i
(|sup𝑇𝐴(𝑥𝑖) − sup𝑇𝐵(𝑥𝑖)|)

+ max
i
(|inf 𝐼𝐴(𝑥𝑖) − inf 𝐼𝐵(𝑥𝑖)|)

+ max
i
(|sup 𝐼𝐴(𝑥𝑖) − sup 𝐼𝐵(𝑥𝑖)|)

+ max
i
(|inf 𝐹𝐴(𝑥𝑖) − inf 𝐹𝐵(𝑥𝑖)|)

+ max
i
(|sup𝐹𝐴(𝑥𝑖) − sup𝐹𝐵(𝑥𝑖)|)]

for all 𝑥 ∈ 𝑋. 

We shall prove this similarity measure satisfies 
the properties of the Definition 3.1.

Proof: We show that 𝑆(𝐴, 𝐵) satisfies all properties 1-
4 as above. It is obvious, the properties 1-3 is satisfied of 
definition 3.1. In the following we only prove 4. 

Let 𝐴 ⊂ 𝐵 ⊂ 𝐶, the we have 
inf 𝑇𝐴(𝑥𝑖) ≤ inf 𝑇𝐵(𝑥𝑖) ≤ inf 𝑇𝐶(𝑥𝑖)
sup 𝑇𝐴(𝑥𝑖) ≤ sup𝑇𝐵(𝑥𝑖) ≤ sup𝑇𝐶(𝑥𝑖)
inf 𝐼𝐴(𝑥𝑖) ≥ inf 𝐼𝐵(𝑥𝑖) ≥ inf 𝐼𝐶(𝑥𝑖)
sup 𝐼𝐴(𝑥𝑖) ≥ sup 𝐼𝐵(𝑥𝑖) ≥ sup 𝐼𝐶(𝑥𝑖)
inf 𝐹𝐴(𝑥𝑖) ≥ inf 𝐹𝐵(𝑥𝑖) ≥ inf 𝐹𝐶(𝑥𝑖)
sup𝐹𝐴(𝑥𝑖) ≥ sup𝐹𝐵(𝑥𝑖) ≥ sup𝐹𝐶(𝑥𝑖)

for all 𝑥 ∈ 𝑋. It follows that 
|inf 𝑇𝐴(𝑥𝑖) − inf 𝑇𝐵(𝑥𝑖)| ≤ |inf 𝑇𝐴(𝑥𝑖) − inf 𝑇𝐶(𝑥𝑖)| 

|sup𝑇𝐴(𝑥𝑖) − sup𝑇𝐵(𝑥𝑖)| ≤ |sup𝑇𝐴(𝑥𝑖) − sup𝑇𝐶(𝑥𝑖)| 
|inf 𝐼𝐴(𝑥𝑖) − inf 𝐼𝐵(𝑥𝑖)| ≤ |inf 𝐼𝐴(𝑥𝑖) − inf 𝐼𝐶(𝑥𝑖)| 

|sup 𝐼𝐴(𝑥𝑖) − sup 𝐼𝐵(𝑥𝑖)| ≤ |sup 𝐼𝐴(𝑥𝑖) − sup 𝐼𝐶(𝑥𝑖)| 
|inf 𝐹𝐴(𝑥𝑖) − inf 𝐹𝐵(𝑥𝑖)| ≤ |inf 𝐹𝐴(𝑥𝑖) − inf 𝐹𝐶(𝑥𝑖)| 

|sup𝐹𝐴(𝑥𝑖) − sup𝐹𝐵(𝑥𝑖)| ≤ |sup𝐹𝐴(𝑥𝑖) − sup𝐹𝐶(𝑥𝑖)|.
It means that 𝑆(𝐴, 𝐶) ≤ 𝑆(𝐴, 𝐵) . Similarly, it seems 

that 𝑆(𝐴, 𝐶) ≤ 𝑆(𝐵, 𝐶). 
The proof is completed 

4 Entropy of an interval valued neutrosophic set 

The entropy measure on IVIF sets is given by Wei [10]. 
We extend the entropy measure on IVIF set to interval val-
ued neutrosophic set. 

Definition 4.1. Let 𝑁(𝑋)  be all IVNSs on 𝑋  and 
𝐴 ∈ 𝑁(𝑋). An entropy on IVNSs is a function 𝐸𝑁: 𝑁(𝑋) →
[0,1] which is satisfies the following axioms: 

i. 𝐸𝑁(𝐴) = 0 if 𝐴 is crisp set
ii. 𝐸𝑁(𝐴) = 1  if [inf 𝑇𝐴(𝑥) , sup 𝑇𝐴(𝑥)] =

[inf 𝐹𝐴(𝑥) , sup𝐹𝐴(𝑥)]  and inf 𝐼𝐴(𝑥) = sup 𝐼𝐴(𝑥)
for all 𝑥 ∈ 𝑋

iii. 𝐸𝑁(𝐴) = 𝐸𝑁(𝐴
𝑐) for all 𝐴 ∈ 𝑁(𝑋)

iv. 𝐸𝑁(𝐴) ≥ 𝐸𝑁(𝐵)  if 𝐴 ⊆ 𝐵  when sup 𝐼𝐴(𝑥) −
sup 𝐼𝐵(𝑥) < inf 𝐼𝐴(𝑥) − inf 𝐼𝐵(𝑥) for all 𝑥 ∈ 𝑋.

Definition 4.2. The entropy of IVNS set 𝐴 is, 

𝐸(𝐴) =
1

𝑛
∑ [

2 − |𝑖𝑛𝑓 𝑇𝐴(𝑥) − 𝑖𝑛𝑓 𝐹𝐴(𝑥)|

2 + |𝑖𝑛𝑓 𝑇𝐴(𝑥) − 𝑖𝑛𝑓 𝐹𝐴(𝑥)|

𝑛

𝑖=1

−|𝑠𝑢𝑝 𝑇𝐴(𝑥) − 𝑠𝑢𝑝 𝐹𝐴(𝑥)| − |𝑖𝑛𝑓 𝐼𝐴(𝑥) − 𝑠𝑢𝑝 𝐼𝐴(𝑥)|

+|𝑠𝑢𝑝 𝑇𝐴(𝑥) − 𝑠𝑢𝑝 𝐹𝐴(𝑥)| + |𝑖𝑛𝑓 𝐼𝐴(𝑥) − 𝑠𝑢𝑝 𝐼𝐴(𝑥)|
]

for all 𝑥 ∈ 𝑋. 
Theorem: The IVN entropy of 𝐸𝑁(𝐴) is an entropy meas-
ure for IVN sets. 

Proof: We show that the 𝐸𝑁(𝐴) satisfies the all proper-
ties given in Definition 4.1.

i. When 𝐴 is a crisp set, i.e.,
[inf 𝑇𝐴(𝑥) , sup𝑇𝐴(𝑥)] = [0,0]
[inf 𝐼𝐴(𝑥) , sup 𝐼𝐴(𝑥)] = [0,0]
[inf 𝐹𝐴(𝑥) , sup𝐹𝐴(𝑥)] = [1,1]

or 
[inf 𝑇𝐴(𝑥) , sup𝑇𝐴(𝑥)] = [1,1]
[inf 𝐼𝐴(𝑥) , sup 𝐼𝐴(𝑥)] = [0,0]
[inf 𝐹𝐴(𝑥) , sup𝐹𝐴(𝑥)] = [0,0]

for all 𝑥𝑖 ∈ 𝑋. It is clear that 𝐸𝑁(𝐴) = 0.
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ii. Let
[inf 𝑇𝐴(𝑥) , sup𝑇𝐴(𝑥)] = [inf 𝐹𝐴(𝑥) , sup𝐹𝐴(𝑥)]
and inf 𝐼𝐴(𝑥) = sup 𝐼𝐴(𝑥) for all 𝑥 ∈ 𝑋. Then

𝐸𝑁(𝐴) =
1

𝑛
∑

2− 0 − 0 − 0

2 + 0 + 0 + 0

𝑛

𝑖=1

=
1

𝑛
∑1

𝑛

𝑖=1

= 1.

iii. Since 𝑇𝐴𝑐(𝑥) = 𝐹𝐴(𝑥), inf 𝐼𝐴𝑐(𝑥) = 1 − sup 𝐼𝐴(𝑥),
sup 𝐼𝐴𝑐(𝑥) = 1 − inf 𝐼𝐴(𝑥)  and 𝐹𝐴𝑐(𝑥) = 𝑇𝐴(𝑥) ,
it is clear that 𝐸𝑁(𝐴) = 𝐸𝑁(𝐴

𝑐).
iv. If A⊆ 𝐵, then inf 𝑇𝐴(𝑥) ≤ inf 𝑇𝐵(𝑥), sup𝑇𝐴(𝑥) ≤

sup𝑇𝐵(𝑥) , inf 𝐼𝐴(𝑥) ≥ inf 𝐼𝐵(𝑥) , sup 𝐼𝐴(𝑥) ≥
sup 𝐼𝐵(𝑥), inf 𝐹𝐴(𝑥) ≥ inf 𝐹𝐵(𝑥) and sup𝐹𝐴(𝑥) ≥
sup𝐹𝐵(𝑥). So
|inf 𝑇𝐴(𝑥) − inf 𝐹𝐴(𝑥)| ≤ |inf 𝑇𝐵(𝑥) − inf 𝐹𝐵(𝑥)|
and
|sup𝑇𝐴(𝑥) − sup𝐹𝐴(𝑥)|

≤ |sup𝑇𝐵(𝑥) − sup𝐹𝐵(𝑥)|
for all 𝑥 ∈ 𝑋. And
|inf 𝐼𝐴(𝑥) − sup 𝐼𝐴(𝑥)| ≤ |inf 𝐼𝐵(𝑥) − sup 𝐼𝐵(𝑥)|
when
sup 𝐼𝐴(𝑥) − sup 𝐼𝐵(𝑥) ≤ inf 𝐼𝐴(𝑥) − inf 𝐼𝐵(𝑥)

for all 𝑥 ∈ 𝑋 . Therefore it is clear that 𝐸(𝐴) ≥
𝐸(𝐵). 

The proof is completed 

Conclusion

In this paper we introduced similarity measure of in-
terval valued neutrosophic sets. These measures are con-
sistent with similar considerations for other sets. Then we 
give entropy of an interval valued neutrosophic set. This 
entropy was generalized the entropy measure on interval 
valued intuitionistic sets in [10]. 
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Abstract. In this paper, we examine the fuzzy neutrosophic relation having a special property that can be equiva-
lently characterised by the essential properties of the lower and upper fuzzy neutrosophic rough approximation 
operators. Further, we prove that the set of all lower approximation sets based on fuzzy neutrosophic equivalence 
approximation space forms a fuzzy neutrosophic topology. Also, we discuss the necessary and sufficient condi-
tions such that the FN interior (closure) equals FN lower (upper) approximation operator. 
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topological spaces.  

1 Introduction 

A rough set, first described by  Pawlak, is a formal approx-
imation of a crisp set  in terms of a pair of sets which give 
the lower and the upper approximation of the original set. 
The problem of imperfect knowledge has been tackled for 
a long time by philosophers, logicians and mathematicians. 
There are many approaches to the problem of how to un-
derstand and manipulate imperfect knowledge. The most 
successful approach is based on the fuzzy set notion pro-
posed by L. Zadeh. Rough set theory proposed by Z. Paw-
lak in [10] presents still another attempt to this problem. 
Rough sets have been proposed for a very wide variety of 
applications. In particular, the rough set approach seems to 
be important for Artificial Intelligence and cognitive sci-
ences, especially in machine learning, knowledge discov-
ery, data mining, expert systems, approximate reasoning 
and pattern recognition. 

Neutrosophic Logic has been proposed by Florentine 
Smarandache [11, 12] which is based on non-standard 
analysis that was given by Abraham Robinson in 1960s. 
Neutrosophic Logic was developed to represent 
mathematical model of uncertainty, vagueness, ambiguity, 
imprecision undefined, incompleteness, inconsistency, 
redundancy, contradiction. The neutrosophic logic is a 
formal frame to measure truth, indeterminacy and 
falsehood. In Neutrosophic set, indeterminacy is quantified 
explicitly whereas the truth membership, indeterminacy 
membership and falsity membership are independent. This 
assumption is very important in a lot of situations such as 
information fusion when we try to combine the data from 
different sensors.  

In this paper we focus on the study of the 
relationship between fuzzy neutrosophic rough 
approximtion operators  and fuzzy neutrosophic 
topological spaces. 

2 Preliminaries 

Definition2.1 [1]: 
A fuzzy neutrosophic set A on the universe of discourse X 
is defined as 
A= {〈𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)〉, 𝑥 ∈ 𝑋}

where  𝑇, 𝐼, 𝐹: 𝑋 →  [0, 1]   and  
3)()()(0  xFxIxT AAA . 

Definition 2.2[1]: 

A fuzzy neutrosophic relation U is a fuzzy neutrosophic 
subset R={<𝑥, 𝑦 >, 𝑇𝑅 (𝑥, 𝑦), 𝐼𝑅(𝑥, 𝑦), 𝐹𝑅(𝑥, 𝑦)/ 𝑥, 𝑦 ∈ 𝑈}
TR: U × U → [0,1], IR: U × U → [0,1], FR: U × U → [0,1]
Satisfies 0 ≤ 𝑇𝑅(𝑥, 𝑦) + 𝐼𝑅(𝑥, 𝑦) + 𝐹𝑅(𝑥, 𝑦) ≤ 3  for all
(x,y) ∈ 𝑈 × 𝑈. 

Definition 2.3[4]: 

Let U be a non empty universe of discourse. For an 
arbitrary fuzzy neutrosophic relation R over 𝑈 × 𝑈 the pair 
(U, R) is called fuzzy neutrosophic approximation space. 
For any 𝐴 ∈ 𝐹𝑁(𝑈) , we define the upper and lower 
approximation with respect to (𝑈, 𝑅), denoted by 𝑅 and 𝑅 
respectively. 

𝑅(𝐴) = {< 𝑥, 𝑇𝑅(𝐴)(𝑥), 𝐼𝑅(𝐴)(𝑥), 𝐹𝑅(𝐴)(𝑥) >/𝑥 ∈ 𝑈}

𝑅(𝐴) = {< 𝑥, 𝑇𝑅(𝐴)(𝑥), 𝐼𝑅(𝐴)(𝑥), 𝐹𝑅(𝐴)(𝑥) > 𝑥 ∈ 𝑈}

𝑇𝑅(𝐴)(𝑥) =
Uy
 [𝑇𝑅(𝑥, 𝑦) ∧ 𝑇𝐴(𝑦)]

𝐼𝑅(𝐴)(𝑥) =
Uy
 [𝐼𝑅(𝑥, 𝑦) ∧ 𝐼𝐴(𝑦)]

𝐹𝑅(𝐴)(𝑥) =
Uy
 [𝐹𝑅(𝑥, 𝑦) ∧ 𝑇𝐴(𝑦)]
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𝑇𝑅(𝐴)(𝑥) =
Uy
 [𝐹𝑅(𝑥, 𝑦) ∧ 𝑇𝐴(𝑦)]

𝐼𝑅(𝐴)(𝑥) =
Uy
  [1 − 𝐼𝑅(𝑥, 𝑦) ∧ 𝐼𝐴(𝑦)]

𝐹𝑅(𝐴)(𝑥)  =
Uy
 [𝑇𝑅(𝑥, 𝑦) ∧ 𝐹𝐴(𝑦)]

The pair (𝑅 , 𝑅) is fuzzy neutrosophic rough set of A with 
respect to (U,R) and 𝑅, 𝑅:FN(U)→FN(U) are refered to as 
upper and lower Fuzzy neutrosophic rough approximation 
operators respectively. 

Theorem2.4[4]: 

Let (U, R) be fuzzy neutrosophic approximation space. 
And 𝐴 ∈ 𝐹𝑁(𝑈), the upper FN approximation operator can 
be represented as follows ∀ 𝑥 ∈ 𝑈, 
(1) 𝑇𝑅(𝐴)(𝑢)  =

 0,1
 [𝛼   𝑅𝛼(𝐴𝛼) (x)]

        = 
 0,1
 [𝛼  𝑅𝛼 (𝐴𝛼+) (x)]

        = 
 0,1
 [𝛼   𝑅𝛼+(𝐴𝛼) (x)]

        = 
 0,1
 [𝛼   𝑅𝛼+(𝐴𝛼+) (x)]

(2) 𝐼𝑅(𝐴)(𝑢)  =
 0,1
  [𝛼   𝑅𝛼(𝐴𝛼) (x)] 

        = 
 0,1
  [𝛼  𝑅𝛼(𝐴𝛼+) (x)] 

        = 
 0,1
  [𝛼   𝑅𝛼(𝐴𝛼) (x)] 

        = 
 0,1
  [𝛼   𝑅𝛼 +(𝐴𝛼+) (x)] 

(3) 𝐹𝑅(𝐴)(𝑢) =
 1,0



[𝛼  (1- 𝑅∝(𝐴𝛼) (x))] 

        = 
 1,0



 [𝛼   (1- 𝑅∝(𝐴𝛼+)(x))] 

       = 
 1,0



 [𝛼   (1- 𝑅∝+(𝐴𝛼)(x))] 

       = 
 1,0



 [𝛼   (1- 𝑅∝+(𝐴𝛼+)(x))] 

(3) [𝑅(𝐴)]𝛼+ ⊆ 𝑅+(𝐴𝛼+) ⊆ 𝑅+(𝐴𝛼) ⊆ 𝑅(𝛼)(𝐴𝛼)⊆ [𝑅(𝐴)] 𝛼

(4) [ 𝑅(𝐴) ] 𝛼 +  ⊆  𝑅 ∝ + (𝐴 𝛼 + ) ⊆  𝑅 ∝ + (𝐴 𝛼 ) ⊆ 
𝑅 ∝(𝐴𝛼)⊆ [𝑅(𝐴)] 𝛼

(6) [𝑅(𝐴)]𝛼+ ⊆ 𝑅∝+(𝐴𝛼+) ⊆ 𝑅∝+(𝐴𝛼) ⊆ 𝑅∝(𝐴𝛼)⊆ [𝑅(𝐴)] 𝛼

Theorem2.5[4]:Let (U, R) be fuzzy neutrosophic 
approximation space. And 𝐴 ∈ 𝐹𝑁(𝑈) , the upper FN 
approximation operator can be represented as follows 
∀ 𝑥 ∈ 𝑈, 

(1) 𝑇𝑅(𝐴)(𝑢)  =
 1,0



[𝛼   1- 𝑅∝(𝐴𝛼+) (x)]

        = 
 1,0



[𝛼 1- 𝑅∝(𝐴𝛼) (x)]

        = 
 1,0



[𝛼   1-𝑅∝+(𝐴𝛼+) (x)]

        = 
 1,0



[𝛼   1-𝑅𝛼+(𝐴𝛼+) (x)]

(2) 𝐼𝑅(𝐴)(𝑢)=
 1,0



 [𝛼   1- 𝑅(1−∝)(𝐴𝛼 +) (x)] 

     = 
 1,0



 [𝛼 1-  𝑅(1−∝)𝐴𝛼) (x)] 

     =
 1,0



 [𝛼  1- 𝑅(1−∝ +)(𝐴𝛼 +) (x)] 

     =
 1,0



 [𝛼  1- 𝑅(1−∝ +)(𝐴𝛼 +) (x)] 

(3) 𝐹𝑅(𝐴)(𝑢) =
 0,1
  [𝛼  (1- 𝑅∝(𝐴𝛼) (x))]

        = 
 0,1
  [𝛼  (1- 𝑅∝(𝐴𝛼+)(x))]

       = 
 0,1
  [𝛼  (1- 𝑅∝+(𝐴𝛼+)(x))]

       = 
 0,1
  [𝛼  (1- 𝑅∝+(𝐴𝛼)(x))]

(3) [ 𝑅(𝐴) ]𝛼+ ⊆  𝑅∝ (𝐴𝛼+) ⊆ 𝑅∝+ (𝐴𝛼+)  ⊆  𝑅∝+( Aα )  ⊆
[𝑅(𝐴)] 𝛼

(4) [ 𝑅(𝐴) ] 𝛼 +  ⊆  𝑅1−∝ (𝐴 𝛼 + ) ⊆  𝑅1−∝ + (𝐴 𝛼 ) ⊆ 
𝑅1−∝ +(𝐴𝛼)⊆ [𝑅(𝐴)] 𝛼

(6) [𝑅(𝐴)]𝛼+ ⊆ 𝑅∝(𝐴𝛼+) ⊆ 𝑅∝+(𝐴𝛼+)  ⊆ 𝑅∝+(Aα)  ⊆

[𝑅(𝐴)] 𝛼

3. Equivalence relation on fuzzy neutrosophic rough

sets 

In this section we tend to prove the fuzzy neutrosophic 
relation having a special property such as reflexivity and 
transitivity, can be equivalentely characterised by the 
essential properties of lower and upper approximation 
operators. 

Theorem 3.1: 

Let R be a fuzzy neutrosophic relation on U and 
𝑅 and 𝑅  the lower and upper approximation operators 
induced by (U, R). Then 

(1) R is reflexive ⟺ 
 R1) 𝑅 (A)⊆ A , ∀ A ∈ FN(U) , 
 R2) A ⊆ 𝑅 (A), ∀ A ∈ FN(U). 

(2) R is symmetric ⟺ 
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S1) 𝑇𝑅 (1𝑥)(y) = 𝑇𝑅 (1𝑦)(x)  , ∀ (x,y)∈ U ×U,
S2) 𝐼𝑅 (1𝑥)(y) = 𝐼𝑅 (1𝑦)(x) , ∀ (x,y) ∈ U ×U,
S3) 𝐹𝑅 (1𝑥)(y) = 𝐹𝑅 (1𝑥)(y)  , ∀ (x,y)∈ U ×U,
S4)𝑇𝑅(1𝑈−{𝑥})(y) = 𝑇𝑅(1𝑈−{𝑦})(x) , ∀ (x,y)∈ U ×U,
S5)𝐼𝑅(1𝑈−{𝑥})(y) = 𝐼𝑅(1𝑈−{𝑦})(x) , ∀ (x,y)∈ U ×U,
S6) 𝐹𝑅(1𝑈−{𝑥})(y) = 𝐹𝑅(1𝑈−{𝑦})(x) , ∀ (x,y)∈ U ×U.

(3) R is transitive ⟺ 
T1) 𝑅 (A) ⊆ 𝑅 (𝑅 (A)) ∀ A ∈ FN(U) 
T2)  𝑅 (𝑅 (A)) ⊆  𝑅 (A), ∀ A ∈ FN(U) 

Proof: 

(1)R1 and R2 are equivalent because of the duality of the 
lower and upper fuzzy neutrosophic  rough approximation 
operators. We need to prove that reflexivity of R is 
equivalent to R2. 
Assume that R is reflexive. For any A ∈ FN(U) and x  ∈ U, 
by the reflexivity of R we have 𝑇𝑅(𝑥, 𝑥) = 1, 𝐼𝑅(𝑥, 𝑥) = 1,
𝐹𝑅(𝑥, 𝑥) = 0. Then

(A)T ( ) [ ( , ) ( )]

( , ) ( ) ( )

R AR y U

R A A

x T x y T y

T x x T x T x


  

  

(A) ( ) [ ( , ) ( )]

( , ) ( ) ( )

R AR y U

R A A

I x I x y I y

I x x I x I x


  

  

( ) ( ) [ ( , ) ( )]

( , ) ( ) ( )

R AR A y U

R A A

F x F x y F y

F x x F x F x


  

  

 Thus A ⊆ 𝑅 (A), ∀ A ∈ FN(U). R2 holds. 

Conversely, assume that R2 holds. 

For any ,Ux  since )(ARA for all ).(UFNA
Let A= 1x , we have  

1= 1 (1 )( ) ( )Rx x
T x T x   1[ ( , ) ( )R x

y U
T x y T y


  ] 

= ( , )RT x x

1= 1 (1 )( ) ( )Rx x
I x I x  1[ ( , ) ( )R x

y U
I x y I y


  ] 

= ( , )RI x x
0 = 1 (1 )

( ) Rx x
F x F

1[ ( , ) ( )R xy U
F x y F y


  ]= ( , )RF x x  

Hence,  
( , )RT x x =1, ( , )RI x x =1, ( , )RF x x =0. 

Thus we can conclude, that FN relation R is reflexive. 

(2) For any UUyx ),( , we have 

(1 ) (x)R y
T = 1

'
[ ( , ') ( ')]R yy U
T x y T y


  = ( , )RT x y  

(1 ) (x)R y
I  = 1

'
[ ( , ') ( ')]R yy U
I x y I y


  = ( , )RI x y

(1 ) (x)R y
F = 1

'
[ ( , ') ( ')R yy U
F x y F y


  = ( , )RF x y

Also, we have 

(1 ) ( )R x
T y = 1

'
[ ( , ') ( ')TR xy U
T y y y


 = ( , )RT y x  

(1 ) ( )R x
I y  = 1

'
[ ( , ') ( ')IR xy U
I y y y


 = ( , )RI y x

(1 ) ( )R x
F y = 1

'
[ ( , ') ( ')FR xy U
F y y y


 = ( , )RF y x

We know, R is symmetric if and only if 
( , )RT x y = ( , )RT y x , ( , )RI x y = ( , )RI y x , ( , )RF x y =
( , )RF y x  and S1, S2, S3 holds and similarly we can prove 

R is symmetric if and only if  S4, S5, S6 holds.  

(3) It can be easily verified that T1 and T2 are equivalent. 
We claim to prove that transitivity of R is equivalent to T2. 
Assume that R is transitive and )(UFNA . For any

Uzyx ,, , we have 
( , ) [ ( , ) ( , )]R R R

y U
T x z T x y T y z


 

( , ) [ ( , ) ( , )]R R R
y U

I x z I x y I y z


 

( , ) [ ( , ) ( , )]R R R
y U

F x z F x y F y z


   . 

We obtain, 

(R(A)) (A)

(A)

(x) [ ( , ) ( )]

[ ( , ) [ ( , ) ( )]

[ ( , ) ( , ) ( )]

[ ( ( , ) ( , )) ( )]

[ ( , ) ( ) ( )

RR Ry U

R R A
y U z U

R R A
y U z U

R R A
y U z U

R A Rz U

T T x y T y

T x y T y z T z

T x y T y z T z

T x y T y z T z

T x z T z T x



 

 

 



  

    

    

    

   

(R(A)) (A)(x) [ ( , ) ( )]

[ ( , ) [ ( , ) ( )]

[ ( , ) ( , ) ( )]

RR Ry U

R R A
y U z U

R R A
y U z U

I I x y I y

I x y I y z I z

I x y I y z I z



 

 

  

    

    
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(A)

[ ( ( , ) ( , )) ( )]

[ ( , ) ( ) ( )

R R A
y U z U

R A Rz U

I x y I y z I z

I x z I z I x
 



    

   

(R(A)) (A)

(A)

(x) [ ( , ) ( )]

[ ( , ) [ ( , ) ( )]

[ ( , ) ( , ) ( )]

[ ( ( , ) ( , )) ( )]

[ ( , ) ( ) ( )

RR Ry U

R R A
y U z U

R R A
y U z U

R R A
y U z U

R A Rz U

F F x y F y

F x y F y z F z

F x y F y z F z

F x y F y z F z

F x z F z F x



 

 

 



  

    

    

    

   

Thus, 𝑅 (𝑅 (A)) ⊆  𝑅 (A), ∀ A ∈ FN(U), T2 holds. 

Conversely, assume that T2 holds, For any Uzyx ,,

And 1 2 3, ,    [0,1], if ( , )RT x y 1  , ( , )RT y z 1

( , )RI y z 2 ( , )RI y z 2 , ( , )F R x y 3 , ( , )F R x y 3

then by T2, we have  

( (1 )) (1 )z z
(x) (x)R R RT T

1[ ( , ) ( )] ( , )R Rzy U
T x y T y T x z


    . 

( (1 )) (1 )z z
(x) (x)R R RI I

1[ ( , ) ( )] ( , )R Rzy U
I x y I y I x z


    . 

( (1 )) (1 )z z
(x) (x)R R RF F

1[ ( , ) ( )] ( , )R Rzy U
F x y F y F x z


    . 

On otherhand, 

z( (1 ))z [0,1]

(R(1 ))z

z

R(1 )z

1

(x) [ (R(1 )) ( )]

sup{ [0,1] }

sup{ [0,1] (R(1 )) }
sup{ [0,1] / [ ( , ) , ( ) ]}

sup{ [0,1] / [ ( , ) , ( , ) ]}
( , ) ( , )

R R

R

R

R R

R R

T R x

x

R
u U T x u T

u U T x u T u z
T x y T y z

 


 

 





 

   

  




  

  

   

     

     

  

Thus we obtain 1( , )RT x z  ,and

z( (1 ))z [0,1]

(R(1 ))z

(x) [ (R(1 )) ( )]

sup{ [0,1] }

R R

R

I R x

x

 


 






  

  

z

R(1 )z

2

sup{ [0,1] (R(1 )) }
sup{ [0,1] / [ ( , ) , ( ) ]}

sup{ [0,1] / [ ( , ) , ( , ) ]}
( , ) ( , )

R

R R

R R

R
u U I x u I

u U I x u I u z
I x y I y z

  

   

  



   

     

     

  

Thus we obtain 2( , )I R x z  . also

        

z( (1 ))z [0,1]

(R(1 ))z

z

R(1 )z

3

(x) [ (R(1 )) ( )]

inf{ [0,1] }

inf{ [0,1] (R(1 )) }
inf{ [0,1] / [ ( , ) , ( ) ]}

inf{ [0,1] / [ ( , ) , ( , ) ]}
( , ) ( , )

R R

R

R

R R

R R

F R x

x

R
u U F x u F

u U F x u F u z
F x y F y z

 


 

 





 

   

  




  

  

   

     

     

  

 

Thus 3( , )F R y z  .
Hence, FN relation is transitive. 

Corollary 3.2: 

Let (U,R) be a fuzzy neutrosophic reflexive and transitive 
aproxiation space, i.e R is a fuzzy neutrosophic reflexive 

and transitive relation on U, and R and R the lower and 
upper FN rough approximation operator induced by (U,R). 
Then 
(RT1) ( ) ( ( )) ( )R A R R A FN U   

(RT2) ( ( )) ( )R R A R A

4. Relation between fuzzy neutrosophic approximation

spaces and fuzzy neutrosophic topological spaces. 

In this section, we generalise Fuzzy neutrosophic  
rough set theory in fuzzy neutrosophic topological spaces 
and investigate the relations between fuzzy neutrosophic 
rough set approximation and topologies.   

4.1. From a fuzzy neutrosophic approximation space to 

fuzzy neutrosophic topological space 

In this subsection, we assume that U  is a universe of 
discourse, R a fuzzy neutrosophic reflexive and transitive 

binary relation on U and R and R the lower and upper FN 
rough approximation operator induced by (U,R). 

Theorem 4.1.1: 
Let J be an index set, ( )A j FN U . Then 

( ( )) ( )j j
j J j J

R R A R A
 

 . 
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Proof: 
By reflexivity of R and Theorem (3.1), we have 

( ( )) ( )j j
j J j J

R R A R A
 

 . 

Since ( ) ( )j j
j J

R A R A


 , for all Jj . 

We have, ( ( ))j
j J

R R A


 ( ( ))jR R A

By  transitivity of Rand theorem(3.1) 
( ( )) ( )j jR R A R A . 

 Thus ( ( )) ( )j j
j J

R R A R A


 , for all Jj . 

Consequently, 
( ( )) ( )j j

j J j J
R R A R A

 


Hence we conclude 
( ( )) ( )j j

j J j J
R R A R A

 
 . 

Theorem 4.1.2: 

{ ( ) / ( )}R R A A FN U    is a fuzzy neutrosophic toplogy 
on U. 
Proof: 
(I) In terms of Theorem (1) [4] we have (1 ~) 1 ~R  , thus 
1 ~ R Since R is reflexive, by theorem 3.1, we have

(0 ~) 0 ~R  ,therefore 0 ~ R ,
(II)  A, B FN(U), since ( ), ( ) RR A R B  by theorem
(1) [4] we have ( ) ( ) ( )R A R B R A B   R

(III) ( ), ,A j FN U j J J   is an index set, by theorem 
4.1.1  we have  

( ( )) ( )j j
j J j J

R R A R A
 

 . 

Thus   ( )j
j J

R A


R .

Therefore, { ( ) / ( )}R R A A FN U    is a fuzzy 
neutrosophic toplogy on U. 

Therefore Theorem 4.1.2 states that a fuzzy neutrosophic 
reflexive and transitive approximation space can generate 
fuzzy neutrosophic topolgical space such that the family of 
all lower approximations of fuzzy neutrosophic sets with 
respect to fuzzy neutrosophic approximation  space forms 
fuzzy neutrosophic topology.  

Theorem 4.1.3: 

Let ( , )RU   be the fuzzy neutrosophic topological space
induced from a fuzzy neutrsophic reflexive and transitive 
approximation space (U,R), i.e  

{ ( ) / ( )}R R A A FN U   . Then,  ( ).A FN U 

1) ( ) int( ) { ( ) ( ) , ( )}

2) ( ) ( ) {~ ( ) ~ ( ) , ( )}

{ ( ) ( ) , ( )}

R A A R B R B A B FN U

R A cl A R B R B A B FN U

R B R B A B FN U

    

    

   

 

Proof: 
(1) Since R is reflexive, by Theorem 3.1, we have  

( ) .R A A  
Thus ( )R A  { ( ) ( ) , ( )}R B R B A B FN U   . 
On other hand { ( ) ( )}R B R B A ,  
then by Theorem 3.1 
We obtain ( { ( ) ( )}) ( )R R B R B R A  .In terms of 
Theorem 3.2 we concude  { ( ) ( ) }R B R B A   

{ ( ) ( ) }R B R B A  = R ( { ( ) ( ) }R B R B A  ) 
Hence, ( ) int( ) { ( ) ( ) }R A A R B R B A     

(2) Follows from the duality of R and R  and (1) 

Theorem 4.1.4 : 

Let (U, R) be a fuzzy neutrosophic reflexive and 
transitive approxiatin space and (U,  ) the fuzzy 
neutrosophic topological space induced by (U,R). Then  

( , )R
B y

T x y



  ( ),BT x I ( , )B
B y

x y



  I ( ),B x

F ( , )R
B y

x y



  ( ),BF x ,x y U  .

Where 
(y) { ( ) ~ ,

( ) 1, I ( ) 1,F ( ) 0}

R

B B B

B FN U B

T y y y

   

  

Proof: 
For any Uyx , , by Thm 4.1.2 we have 

(1 )yR = (1 )ycl .

Also, 1(1 )
T ( ) [T ( , ) ( )]RR yy u U

x x u T u


  = ( , )RT x y  

(1 )
( ) [I ( , ) ( )]RR y u U

I x x u I u


  = ( , )RI x y

1( )1
( ) [ ( , ) ( )]FR yR y u U

F x F x u u


  = F ( , )R x y  

On other hand (1 )ycl

= { ( ) }B FN U B  is a FN closed set and 1y B}

= { ( ) ~ }RB FN U B     and 1y B}

Then  
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(1 )T ( )cl y x = { ( ) ~ , 1 }B R yT x B B  

{ ( ) ~ ,
( ) 1, ( ) 1,F ( ) 0

B R

B B B

T x B
T y I y y

  

  

( )
( )B

B y
T x


  

(1 )I ( )cl y x = { ( ) ~ , 1 }B R yT x B B  

{ ( ) ~ ,
( ) 1, ( ) 1, ( ) 0

B R

B B B

I x B
T y I y F y

  

  

( )
( )B

B y
I x




( )1F ( )cl y x = { ( ) ~ , 1 }B R yF x B B    

{ ( ) ~ ,
( ) 1, ( ) 1,F ( ) 0

B R

B B B

F x B
T y I y y

  

  

       
( )

( )B
B y

F x


   

   Hence, 
( , )R

B y
T x y


  BT ( ),x ( , )R

B y
I x y


  ( ),BI x

( , )R
B y

F x y


  ( ),BF x ,x y U  . 

4.2. Fuzzy neutrsophic approximation space 

In this section we discuss the suffiecient and necessary 
conditions under which a FN topological space be 
associated with a fuzzy neutrosophic approximation space 
and proved ( ) ( )cl A R A and int( ) ( )A R A . 

Definition 4.2.1: 

If P:FN(U)FN(U) is an operator from FN(U) to FN(U), 
we can define three operators from F(U) to F(U), denoted 
by , ,P P PT I F , such that (A)( )T A PP T T and 

(A)( )T A PP T I  and (A)( )T A PP T F .

That is ( ) (( , , ))A A AP A P T I F  

( ) ( ) ( )( , , )P A P A P AT I F

= ( ), ( ), ( )T A I A F AP T P I P F

Theorem 4.2.2: 

Let ),( U  be fuzzy neutrosophic topological space and 

Cl, int:FN(U)FN(U) the fuzzy neurtrosophic closure 
operator and fuzzy neutrosophic interior operator 
respectively. Then there exits a fuzzy neutrosophic 
reflexive and transitive relation R on U such that 

( ) ( )R A cl A and ( ) int( )R A A for all ( )A FN U  
Iff cl satisfies the fowing conditions (C1) and (C2), or 
equivalently, int satisfies the following conditions (I1) and 
(I2). 

(I1) ( ( , , )) ( ) ( , , )
( ), , , [0,1]

cl A cl A
A FN U

     

  

  

   

 With 𝛼 + 𝛽 + 𝛾 ≤ 3 
(I2) cl( ( )i

i J
A


 ) = 

i J
 cl(c), ( ), ,iA FN U i J  J is any

index set. 

( 1) int( ( , , )) int( ) ( , , )
( ), , , [0,1]

C A A
A FN U

     

  

  

   

(C2)int( ( )i
i J

A

 )=

i J
 int( iA ), ( ), ,iA FN U i J  J is any 

index set. 
Proof: 
Assume that there exists a fuzzy neutrosophic reflexive 
and transitive relation R on U such that ( ) ( )R A cl A and 

( ) int( )R A A for all ( )A FN U , then by theorem 3.1, it 
can be easily seen that (C1), (C2), (I1), (I2) easily hold. 
Converesly, Assume that closure operator 
cl:FN(U)FN(U) satisfies conitions (C1) and (C2) and the 
interior operator int:FN(U)FN(U) satifies the conditions 
(I1) and (I2). 
For the closure operator we derive operators Tcl , Icl  and

Fcl from FN(U) to FN(U) such that ( )( )T A cl Acl T T  ,

( )( )T A cl Acl I I , ( )( )T A cl Acl F F . Likewise, from the 

interior operator int we have three operators int int int, ,T I F
from FN(U) to FN(U) such that  int(A)int ( )T AT T

int(A)int ( )T AT I , int(A)int ( )T AT F . We now define a 

FN relation R on U by cl as follows: for ( , )x y U U  . 

1y( , ) (T )( )R TT x y cl x , 1y( , ) ( )( )R II x y cl I x , 

1y( , ) ( )( )R FF x y cl F x

For ( )A FN U  

1[ (y)],A Ayy U
T T T


  

1[ (y)],A Ayy U
I I I


  
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1[ (y)],A Ayy U
F F F


  

We also observe that (C1) implies (CT1), (CI1) and (CF1), 
and (C2) implies (CT2), (CI2)  and  (CF2)  

(CT1) 
( , , ) ( )

( (T ) (T ) ( )T T T AA A
cl cl cl T

   


 
    

( ), , , [0,1]A FN U       with 3.      

(CI1) 
( , , ) ( )

( ( ) ( ) ( )I I I AA A
cl I cl I cl I

   


 
    

( ), , , [0,1]A FN U       with 3.      

(CF1)
( , , ) ( )

( ( ) ( ) ( )F F F AA A
cl F cl F cl F

   


 
  

( ), , , [0,1]A FN U       with 3.      
(CT2) i(T A )T

i J
cl


 = ( )T Aii J

cl T



= 
i J
 Tcl ( AiT ), ( )iA FN U , Ji , J is any index set.

(CI2) i( A )I
i J

cl I

 = ( )I Aii J

cl I



= 
i J
 Icl ( AiI ), ( )iA FN U , Ji , J is any index set.

, J is any index set. 

(CF2) i( A )F
i J

cl F

 = ( )F Aii J

cl F

  

= 
i J
 Fcl ( AiF ), ( )iA FN U , Ji , J is any index set.

Then for any , Ux according to definition 4.2.1, and 
above properties, we have 

(A)

1

1

1

1

1

( )

(x) [ ( , ) ( ))]

[ ( )( ) ( ))]

[( ( ) ( ))]

[( ( ( )))]

[ ( ( ( )))]( )

[( ( ( ( )))]( )

( ( )( ) ( )

R AR y U

T Ayy U

T Ayy U

T Ayy U

T Ayy U

T Ayy U

T A cl A

T T x y T y

cl T y T y

cl T T y

cl T T y

cl T T y x

cl T T y x

cl T x T x



















 

 

 

 

 

 

 

(A)

1

1

(x) [ ( , ) ( ))]

[ ( )( ) ( ))]

[( ( ) ( ))]

R AR y U

I Ayy U

I Ayy U

I I x y I y

cl I y I y

cl I I y










 

 

 

1

1

1

( )

[( ( ( )))]

[ ( ( ( )))]( )

[( ( ( ( )))]( )

( ( )( ) ( )

I Ayy U

I Ayy U

I Ayy U

I A cl A

cl I I y

cl I I y x

cl I I y x

cl I x I x










 

 

 

 

(A)

1

1

1

1

1

( )

(x) [ ( , ) ( ))]

[ ( )( ) ( ))]

[( ( ) ( ))]

[( ( ( )))]

[ ( ( ( )))]( )

[( ( ( ( )))]( )

( ( )( ) ( )

R AR y U

F Ayy U

F Ayy U

F Ayy U

F Ayy U

F Ayy U

F A cl A

F F x y F y

cl F y F y

cl F F I y

cl F F y

cl F F y x

cl F F y x

cl F x F x



















 

 

 

 

 

 

 

Thus ( ) ( )cl A R A . 
Similary we can prove int( ) ( )A R A

Conclusion: 

In this paper we defined the topological structures 
of fuzzy neutrosophic rough sets. We found that fuzzy neu-
trosophic topological space can be induced by fuzzy rough 
approximation operator if and only if fuzzy neutrosophic 
relation is reflexive and transitive. Also we have investi-
gated the sufficient and necessary condition for which a 
fuzzy neutrosophic topological space can associate with 
fuzzy neutrosophic reflexive and transitive rough approxi-
mation space such that FN rough upper approximation 
equals closure and FN rough lower approximation equals 
interior operator.   
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Abstract. In this paper, we make a short history about: the 
neutrosophic set, neutrosophic numerical components and 
neutrosophic literal components, neutrosophic numbers, 
neutrosophic intervals, neutrosophic hypercomplex num-
bers of dimension n, and elementary neutrosophic alge-
braic structures. Afterwards, their generalizations to re-
fined neutrosophic set, respectively refined neutrosophic 
numerical and literal components, then refined neutro-
sophic numbers and refined neutrosophic algebraic struc-
tures. The aim of this paper is to construct examples of 

splitting the literal indeterminacy ሺࡵሻ into literal sub-inde-
terminacies ሺࡵ૚, ,૛ࡵ … ,  ሻ, and to define a multiplication࢘ࡵ
law of these literal sub-indeterminacies in order to be able 
to build refined ࡵ െ neutrosophic algebraic structures. 
Also, examples of splitting the numerical indeterminacy 
ሺ࢏ሻ into numerical sub-indeterminacies, and examples of 
splitting neutrosophic numerical components into neutro-
sophic numerical sub-components are given. 

Keywords: neutrosophic set, elementary neutrosophic algebraic structures, neutrosophic numerical components, neutrosophic literal 
components, neutrosophic numbers, refined neutrosophic set, refined elementary neutrosophic algebraic structures, refined neutrosophic 
numerical components, refined neutrosophic literal components, refined neutrosophic numbers, literal indeterminacy, literal sub-inde-
terminacies, ࡵ-neutrosophic algebraic structures.

1 Introduction 
Neutrosophic Set was introduced in 1995 by 
Florentin Smarandache, who coined the words   
"neutrosophy” and its derivative „neutrosophic”. The first 
published work on neutrosophics was in 1998 see [3]. 

There exist two types of neutrosophic components: numeri-
cal and literal. 
2 Neutrosophic Numerical Components 

Of course, the neutrosophic numerical components 
ሺݐ, ݅, ݂ሻ are crisp numbers, intervals, or in general subsets of 
the unitary standard or nonstandard unit interval. 

Let ࣯ be a universe of discourse, and ܯ a set included 
in ࣯. A generic element ݔ from ࣯ belongs to the set ܯ in 
the following way: ݔሺݐ, ݅, ݂ሻ ∈  s degree’ݔ meaning that ,ܯ
of membership/truth with respect to the set ܯ is ݔ ,ݐ’s de-
gree of indeterminacy with respect to the set ܯ is ݅, and ݔ’s 
degree of non-membership/falsehood with respect to the set 
,ݐ is ݂, where ܯ ݅, ݂ are independent standard subsets of the 
interval ሾ0, 1ሿ, or non-standard subsets of the non-standard 
interval	ሿ 0, 1ାି

ି ሾ in the case when one needs to make dis-
tinctions between absolute and relative truth, indeterminacy, 
or falsehood. 

Many papers and books have been published for the 
cases when ݐ, ݅, ݂  were single values (crisp numbers), or 

,ݐ ݅, ݂ were intervals. 

3 Neutrosophic Literal Components 
In 2003, W. B. Vasantha Kandasamy and Florentin Smaran-
dache [4] introduced the literal indeterminacy “ܫ”, such that 
ଶܫ ൌ ܫ  (whence ܫ௡ ൌ ܫ  for ݊ ൒ 1,  ݊  integer). They 
extended this to neutrosophic numbers of the form: ܽ ൅  ,ܫܾ
where ܽ, ܾ are real or complex numbers, and  

ሺܽଵ ൅ ܾଵܫሻ ൅ ሺܽଶ ൅ ܾଶܫሻ ൌ ሺܽଵ ൅ ܽଶሻ ൅ ሺܾଵ ൅ ܾଶሻ(1) ܫ 

1 1 2 2 1 2 1 2 2 1 1 2( )( ) ( ) ( )a b I a b I a a a b a b b b I      (2) 

and developed many ܫ -neutrosophic algebraic structures 
based on sets formed of neutrosophic numbers. 

Working with imprecisions, Vasantha Kandasamy & 
Smarandache have proposed (approximated) I2 by I;  yet dif-
ferent approaches may be investigated by the interested re-
searchers where I2 ≠ I (in accordance with their believe and 
with the practice), and thus a new field would arise in the 
neutrosophic theory. 

The neutrosophic number ܰ ൌ ܽ ൅ ܫܾ  can be inter-
preted as: “ܽ” represents the determinate part of number ܰ, 
while “ܾܫ” the indeterminate part of number ܰ.  

For example, 7 2.6457... that is irrational has infi-
nitely many decimals. We cannot work with this exact num-
ber in our real life, we need to approximate it. Hence, we 
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may write it as 2 + I with I ∈ (0.6, 0.7), or as 2.6 + 3I with 
I ∈ (0.01, 0.02), or 2.64 + 2I with I ∈ (0.002, 0.004), etc. 
depending on the problem to be solved and on the needed 
accuracy. 

Jun Ye [9] applied the neutrosophic numbers to decision 
making in 2014. 

4 Neutrosophic Intervals 

We now for the first time extend the neutrosophic num-
ber to (open, closed, or half-open half-closed) neutrosophic 
interval. A neutrosophic interval A is an (open, closed, or 
half-open half-closed) interval that has some indeterminacy 
in one of its extremes, i.e. it has the form A = [a, b] {cI}, 
or A ={cI} [a, b], where [a, b] is the determinate part of 
the neutrosophic interval A, and I is the indeterminate part 
of it (while a, b, c are real numbers, andmeans union). 
(Herein I is an interval.) 
We may even have neutrosophic intervals with double inde-
terminacy (or refined indeterminacy): one to the left (I1), and 
one to the right (I2): 

A = {c1I1} [a, b] {c2I2}.    (3) 

A classical real interval that has a neutrosophic number as 
one of its extremes becomes a neutrosophic interval. For ex-
ample: [0, 7 ] can be represented as [0, 2] I with I ൌ 
(2.0, 2.7), or [0, 2] {10I} with I ൌ (0.20, 0.27), or [0, 2.6]
 {10I} with I ൌ (0.26, 0.27), or [0, 2.64] {10I} with I ൌ 
(0.264, 0.265), etc. in the same way depending on the prob-
lem to be solved and on the needed accuracy. 

We gave examples of closed neutrosophic intervals, but the 
open and half-open half-closed neutrosophic intervals are 
similar. 

5 Notations 

In order to make distinctions between the numerical and 
literal neutrosophic components, we start denoting the nu-
merical indeterminacy by lower case letter “݅” (whence con-
sequently similar notations for numerical truth “ݐ”, and for 
numerical falsehood “݂”), and literal indeterminacy by up-
per case letter “ܫ” (whence consequently similar notations 
for literal truth “ܶ”, and for literal falsehood “ܨ”). 

6 Refined Neutrosophic Components 
In 2013, F. Smarandache [3] introduced the refined neu-

trosophic components in the following way: the neutro-
sophic numerical components ݐ, ݅, ݂  can be refined (split) 
into respectively the following refined neutrosophic numer-
ical sub-components: 

,ଵݐ〉 ݐ ଶ, … ݐ ௣; 	݅ଵ, ݅ ଶ, …  ݅ ௥; 	݂ଵ, ݂ ଶ, … ݂ ௦ 〉,    (4) 

where ݌, ,ݎ are integers ൒ ݏ 1 and maxሼ݌, ,ݎ ሽݏ ൒ 2, mean-
ing that at least one of ݌, ,ݎ is ൒ ݏ 2; and ݐ௝ represents types 
of numeral truths, ݅௞ represents types of numeral indetermi-
nacies, and ௟݂  represents types of numeral falsehoods, for 
݆ ൌ 1, 2, … , ݇ ;݌ ൌ 1, 2, … , ݈ ;ݎ ൌ 1, 2, … ,  .ݏ

,௝ݐ ݅௞, ௟݂ are called numerical subcomponents, or respec-
tively numerical sub-truths, numerical sub-indeterminacies, 
and numerical sub-falsehoods. 

Similarly, the neutrosophic literal components ܶ, ,ܫ  ܨ
can be refined (split) into respectively the following neutro-
sophic literal subcomponents: 

〈ܶଵ, ܶ ଶ, … ܶ ௣; ,ଵܫ	 ܫ ଶ, … ܫ ௥; ,ଵܨ	 ܨ ଶ, … ܨ ௦ 〉,  (5) 

where ݌, ,ݎ ݏ  are integers ൒ 1  too, and maxሼ݌, ,ݎ ሽݏ ൒ 2 , 
meaning that at least one of ݌, ,ݎ is ൒ ݏ 2; and similarly ௝ܶ 
represent types of literal truths, ܫ௞ represent types of literal 
indeterminacies, and ܨ௟ represent types of literal falsehoods, 
for ݆ ൌ 1, 2, … , ݇ ;݌ ൌ 1, 2, … , ݈ ;ݎ ൌ 1, 2, … ,  .ݏ

௝ܶ , ,௞ܫ ௟ܨ  are called literal subcomponents, or respec-
tively literal sub-truths, literal sub-indeterminacies, and lit-
eral sub-falsehoods. 

Let consider a simple example of refined numerical com-
ponents. 

Suppose that a country ܥ is composed of two districts 
-ଶ, and a candidate John Doe competes for the posiܦ ଵ andܦ
tion of president of this country ܥ . Per whole country, 
ൌ (Joe Doe)ܮܰ ሺ0.6, 0.1, 0.3ሻ, meaning that 60% of people 
voted for him, 10% of people were indeterminate or neutral 
– i.e. didn’t vote, or gave a black vote, or a blank vote –, and 
30% of people voted against him, where ܰܮ means the neu-
trosophic logic values. 

But a political analyst does some research to find out 
what happened to each district separately. So, he does a re-
finement and he gets: 

  (6) 

which means that 40% of people that voted for Joe Doe were 
from district ܦଵ, and 20% of people that voted for Joe Doe 
were from district ܦଶ; similarly, 8% from ܦଵ and 2% from 
 ଵ and 25%ܦ ଶ were indeterminate (neutral), and 5% fromܦ
from ܦଶ were against Joe Doe. 

It is possible, in the same example, to refine (split) it in 
a different way, considering another criterion, namely: what 
percentage of people did not vote ሺ݅ଵሻ, what percentage of 
people gave a blank vote – cutting all candidates on the bal-
lot – ሺ݅ଶሻ, and what percentage of people gave a blank vote 
– not selecting any candidate on the ballot ሺ݅ଷሻ. Thus, the
numerical indeterminacy ሺ݅ሻ	is refined into ݅ଵ,	݅ଶ, and ݅ଷ: 

(7) 
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In 2015, F. Smarandache [6] introduced the refined lit-
eral indeterminacy ሺܫሻ, which	was	split	ሺrefinedሻ  as 
,ଵܫ ,ଶܫ … , ௥ܫ , with ݎ ൒ 2, where ܫ௞ , for ݇ ൌ 1, 2, … , -repre ݎ
sent types of literal sub-indeterminacies. A refined neutro-
sophic number has the general form: 

௥ܰ ൌ ܽ ൅ ܾଵܫଵ ൅ ܾଶܫଶ ൅ ⋯൅ ܾ௥ܫ௥,    (8) 

where ܽ, ܾଵ, ܾଶ,… , ܾ௥ are real numbers, and in this case ௥ܰ 
is called a refined neutrosophic real number; and if at least 
one of ܽ, ܾଵ, ܾଶ,… , ܾ௥ is a complex number (i.e. of the form 
ߙ ൅ ߚ െ1, with√ߚ ് 0, and	α, β	real	numbers), then ௥ܰ is 
called a refined neutrosophic complex number. 
      An example of refined neutrosophic number, with three 
types of indeterminacies resulted from the cubic root (I1), 
from Euler’s constant e (I2), and from number π (I3): 

3
3 6 59 2 11N e         (9) 

Roughly  
N3 = -6  + (3 + I1) – 2(2 + I2) + 11(3 + I3)  
    = (-6 + 3 - 4 + 33) + I1 – 2I2 + 11I3 = 26 + I1 – 2I2 + 11I3 
where I1 ∈ (0.8, 0.9), I2 ∈ (0.7, 0.8), and I3 ∈ (0.1, 0.2), 
since 3 59 = 3.8929…, e = 2.7182…, π = 3.1415… . 
Of course, other 3-valued refined neutrosophic number rep-
resentations of N3 could be done depending on accuracy. 

Then F. Smarandache [6] defined the refined ܫ-neutro-
sophic algebraic structures in 2015 as algebraic structures 
based on sets of refined neutrosophic numbers. 

Soon after this definition, Dr. Adesina Agboola wrote a 
paper on refined I-neutrosophic algebraic structures [7]. 

They were called “ܫ-neutrosophic” because the refine-
ment is done with respect to the literal indeterminacy ሺܫሻ, in 
order to distinguish them from the refined ሺݐ, ݅, ݂ሻ-neutro-
sophic algebraic structures, where “ሺݐ, ݅, ݂ሻ-neutrosophic” is 
referred to as refinement of the neutrosophic numerical 
components ݐ, ݅, ݂. 

Said Broumi and F. Smarandache published a paper [8] 
on refined neutrosophic numerical components in 2014. 

8 Neutrosophic Hypercomplex Numbers of Dimension n 

      The Hypercomplex Number of Dimension n (or n-Com-
plex Number) was defined by S. Olariu [10] as a number of 
the form: 
u = xo +h1x1 + h2x2 + … + hn-1xn-1                                  (10) 
where n ≥ 2,  and the variables x0, x1, x2, …, xn-1 are real 
numbers, while h1, h2, …, hn-1 are the complex units, ho = 1,  
and they are multiplied as follows: 
hjhk = hj+k if 0 ≤ j+k≤ n-1, and hjhk = hj+k-n if n ≤ j+k≤ 2n-2. 

        (11) 
We think that the above (11) complex unit multiplication 
formulas can be written in a simpler way as: 
hjhk = hj+k (mod n)                                                               (12) 
where mod n means modulo n. 
For example, if n =5, then h3h4 = h3+4(mod 5) = h7(mod5) = h2. 
Even more, formula (12) allows us to multiply many com-
plex units at once, as follows: 

hj1hj2…hjp = hj1+j2+…+jp (mod n), for p ≥ 1.   (13) 

We now define for the first time the Neutrosophic Hyper-
complex Number of Dimension n (or Neutrosophic n-Com-
plex Number), which is a number of the form: 
u+vI,                                                                              (14) 
where u and v are n-complex numbers and I = indetermi-
nacy. 
We also introduce now the Refined Neutrosophic Hyper-
complex Number of Dimension n (or Refined Neutrosophic 
n-Complex Number) as a number of the form: 
u+v1I1+v2I2+…+vrIr                                                      (15) 
where u, v1, v2, …, vr are n-complex numbers, and I1, I2, …, 
Ir are sub-indeterminacies, for r ≥ 2. 

Combining these, we may define a Hybrid Neutrosophic 
Hypercomplex Number (or Hybrid Neutrosophic n-Complex 
Number), which is a number of the form u+vI, where either 
u or v is a n-complex number while the other one is different 
(may be an m-complex number, with m ≠ n, or a real number, 
or another type of number). 
And a Hybrid Refined Neutrosophic Hypercomplex Num-
ber (or Hybrid Refined Neutrosophic n-Complex Number), 
which is a number of the form u+v1I1+v2I2+…+vrIr, where 
at least one of u, v1, v2, …, vr is a n-complex number, while 
the others are different (may be m-complex numbers, with 
m ≠ n, and/or a real numbers, and/or other types of num-
bers). 

9 Neutrosophic Graphs 
We now introduce for the first time the general defini-

tion of a neutrosophic graph [12], which is a (directed or 
undirected) graph that has some indeterminacy with respect 
to its edges, or with respect to its vertexes (nodes), or with 
respect to both (edges and vertexes simultaneously). We 
have four main categories of neutrosophic graphs: 

1) The ሺݐ, ݅, ݂ሻ-Edge Neutrosophic Graph.
In such a graph, the connection between two vertexes ܣ 

and ܤ, represented by edge ܤܣ: 
A                                           B 

has the neutroosphic value of ሺݐ, ݅, ݂ሻ. 

2) .Edge Neutrosophic Graph-ܫ
This one was introduced in 2003 in the book “Fuzzy 

Cognitive Maps and Neutrosophic Cognitive Maps”, by Dr. 
Vasantha Kandasamy and F. Smarandache, that used a dif-
ferent approach for the edge: 

 A                                              B 
which can be just ܫ	 ൌ literal indeterminacy of the edge, 
with ܫଶ ൌ ܫ	  (as in ܫ -Neutrosophic algebraic structures). 
Therefore, simply we say that the connection between ver-
tex ܣ and vertex ܤ is indeterminate. 

3) Orientation-Edge Neutrosophic Graph.
At least one edge, let’s say AB, has an unknown orientation 
(i.e. we do not know if it is from A to B, or from B to A). 
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4) .Vertex Neutrosophic Graph-ܫ
Or at least one literal indeterminate vertex, meaning we 

do not know what this vertex represents. 

5) ሺݐ, ݅, ݂ሻ-Vertex Neutrosophic Graph.
We can also have at least one neutrosophic vertex, for 

example vertex ܣ only partially belongs to the graph ሺݐሻ, in-
determinate appurtenance to the graph ሺ݅ሻ, does not partially 
belong to the graph ሺ݂ሻ, we can say ܣሺݐ, ݅, ݂ሻ. 

And combinations of any two, three, four, or five of the 
above five possibilities of neutrosophic graphs.  

If ሺݐ, ݅, ݂ሻ or the literal ܫ are refined, we can get corre-
sponding refined neurosophic graphs. 

10 Example of Refined Indeterminacy and Multi-
plication Law of Sub-Indeterminacies 

Discussing the development of Refined ܫ-Neutrosophic 
Structures with Dr. W.B. Vasantha Kandasamy, Dr. A.A.A. 
Agboola, Mumtaz Ali, and Said Broumi, a question has 
arisen: if ܫ is refined into ܫଵ, ,ଶܫ … , ݎ ௥, withܫ ൒ 2, how to de-
fine (or compute) ܫ௝ ∗ ݆ ௞, forܫ ് ݇? 

We need to design a Sub-Indeterminacy ∗ Law Table. 
Of course, this depends on the way one defines the alge-

braic binary multiplication law ∗ on the set: 

ሼ ௥ܰ ൌ ܽ ൅ ܾଵܫଵ ൅ ܾଶܫଶ ൅⋯൅ ܾ௥ܫ௥|ܽ, ܾଵ, ܾଶ,… , ܾ௥ ∈      ,ሽܯ
(16) 

where ܯ can be Թ	(the set of real numbers), or ԧ (the set of 
complex numbers). 

We present the below example. 
But, first, let’s present several (possible) interconnec-

tions between logic, set, and algebra. 

op
er

at
or

s 

Logic Set Algebra
Disjunction 

(or) ∨ 
Union 
∪ 

Addition 
+

Conjunction 
(and) ∧ 

Intersection 
∩ 

Multiplication 
∙ 

Negation 
൓ 

Complement 
∁ 

Subtraction 
െ

Implication 
→ 

Inclusion 
⊆ 

Subtraction, 
Addition 
െ, +

Equivalence 
↔ 

Identity 
≡ 

Equality 
=

 Table 1: Interconnections between logic, set, and algebra. 

In general, if a Venn Diagram has ݊ sets, with ݊ ൒ 1,  
the number of disjoint parts formed is 2௡. Then, if one  
combines the 2௡ parts either by none, or by one, or by 

2,…, or by 2௡, one gets: 

ଶ೙ܥ
଴ ൅ ଶ೙ܥ

ᇱ ൅ ଶ೙ܥ
ଶ ൅ ⋯൅ ଶ೙ܥ

ଶ೙ ൌ ሺ1 ൅ 1ሻଶ
೙
ൌ 2ଶ

೙
.    (17)

Hence, for ݊ ൌ 2, the Venn diagram, with literal truth 

ሺܶሻ, and literal falsehood ሺܨሻ, will make 2ଶ ൌ 4 disjoint 
parts, where the whole rectangle represents the whole uni- 

    Venn Diagram for n =2. 

verse of discourse (࣯).  
Then, combining the four disjoint parts by none, by one, 

by two, by three, and by four, one gets 

ସܥ
଴ ൅ ସଵܥ ൅ ସଶܥ ൅ ସܥ

ଷ ൅ ସସܥ ൌ ሺ1 ൅ 1ሻସ ൌ 2ସ ൌ 16
ൌ 2ଶ

మ
.	 	ሺ18ሻ 

For ݊ ൌ 3, one has 2ଷ ൌ 8 disjoint parts, 

   Venn Diagram for n = 3. 

and combining them by none, by one, by two, and so on, by  
eight, one gets 2଼ ൌ 256, or 2ଶ

య
ൌ 256. 

For the case when ݊ ൌ 2 ൌ ሼܶ,  ሽ one can make up toܨ
16 sub-indeterminacies, such as: 

ଵܫ			 ൌ ܥ ൌ ܖܗܑܜ܋ܑ܌܉ܚܜܖܗ܋ ൌ True	and	False ൌ ܶ ∧  ܨ
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ଶܫ		 ൌ ܻ ൌ ܡܜܖܑ܉ܜܚ܍܋ܖܝ ൌ True	or	False ൌ ܶ ∨  ܨ

ଷܫ			 ൌ ܵ ൌ ܛܛ܍ܖ܍ܚܝܛܖܝ ൌ either	True	or	False ൌ ܶ ∨  ܨ

ସܫ ൌ ܪ ൌ ܛܛ܍ܖܔܑܐܑܖ ൌ neither	True	nor	False
ൌ ൓ܶ ∧ ൓ܨ 

ହܫ ൌ ܸ ൌ ܛܛ܍ܖ܍ܝ܏܉ܞ ൌ not	True	or	not	False
ൌ ൓ܶ ∨ ൓ܨ 

଺ܫ		 ൌ ܧ ൌ ܛܛ܍ܖܑܜܘܕ܍ ൌ neither	True	nor	not	True
ൌ ൓ܶ ∧ ൓ሺ൓ܶሻ ൌ ൓ܶ ∧ ܶ 

Let’s consider the literal indeterminacy ሺܫሻ refined into 

only six literal sub-indeterminacies as above. 
The binary multiplication law 
∗:  ሼܫଵ, ,ଶܫ ,ଷܫ ,ସܫ ,ହܫ ଺ሽଶܫ → ሼܫଵ, ,ଶܫ ,ଷܫ ,ସܫ ,ହܫ  ଺ሽ     (19)ܫ

defined as:  
௝ܫ ∗  ;௞ = intersections of their Venn diagram representationsܫ
or ܫ௝ ∗ ௝ܫ .௞ = application of ∧ operator, i.eܫ ∧  .௞ܫ

We make the following:  

 Table 2: Sub-Indeterminacies Multiplication Law 

11 Remark on the Variety of Sub-Indeterminacies 
Diagrams 

One can construct in various ways the diagrams that 
represent the sub-indeterminacies and similarly one can 
define in many ways the ∗ algebraic multiplication law, ܫ௝ ∗
 .௞, depending on the problem or application to solveܫ

What we constructed above is just an example, not a 
general procedure. 

Let’s present below several calculations, so the reader 
gets familiar: 

ଵܫ ∗ ଶܫ ൌ ሺshaded	area	of	ܫଵሻ ∩ ሺshaded	area	of	ܫଶሻ ൌ
shaded	area	of	ܫଵ, 
or ܫଵ ∗ ଶܫ ൌ ሺܶ ∧ ሻܨ ∧ ሺܶ ∨ ሻܨ ൌ ܶ ∧ ܨ ൌ  .ଵܫ
ଷܫ ∗ ସܫ ൌ ሺshaded	area	of	ܫଷሻ ∩ ሺshaded	area	of	ܫସሻ ൌ
empty	set ൌ  ,଺ܫ
or ܫଷ ∗ ସܫ ൌ ൫ܶ ∨ ൯ܨ ∧ ሺ൓ܶ ∧ ൓ܨሻ ൌ ሾܶ ∧ ሺ൓ܶ ∧
൓ܨሻሿ ∨ ሾܨ ∧ ሺ൓ܶ ∧ ൓ܨሻሿ ൌ ሺܶ ∧ ൓ܶ ∧ ൓ܨሻ ∨ ሺܨ ∧
൓ܶ ∧ ൓ܨሻ ൌ ሺimpossibleሻ ∨ ሺimpossibleሻ  
because of ܶ ∧ ൓ܶ in the first pair of parentheses and be-
cause of ܨ ∧ ൓ܨ in the second pair of parentheses 
ൌ ሺimpossibleሻ ൌ   .଺ܫ
ହܫ ∗ ହܫ ൌ ሺshaded	area	of	ܫହሻ ∩ ሺshaded	area	of	ܫହሻ ൌ
ሺshaded	area	of	ܫହሻ = ܫହ, 
or ܫହ ∗ ହܫ ൌ ሺ൓ܶ ∨ ൓ܨሻ ∧ ሺ൓ܶ ∨ ൓ܨሻ ൌ ൓ܶ ∨ ൓ܨ ൌ
 .ହܫ

Now we are able to build refined ܫ-neutrosophic alge-
braic structures on the set 

ܵ଺ ൌ ሼܽ଴ ൅ ܽଵܫଵ ൅ ܽଶܫଶ ൅ ⋯൅ ܽ଺ܫ଺, for	ܽ଴, ܽଵ, ܽଶ, …	ܽ଺ ∈
Թ	ሽ,                                                                                 (20) 

by defining the addition of refined I-neutrosophic numbers: 

ሺܽ଴ ൅ ܽଵܫଵ ൅ ܽଶܫଶ ൅ ⋯൅ ܽ଺ܫ଺ሻ ൅ ሺܾ଴ ൅ ܾଵܫଵ ൅ ܾଶܫଶ ൅
⋯൅ ܾ଺ܫ଺ሻ ൌ ሺܽ଴ ൅ ܾ଴ሻ ൅ ሺܽଵ ൅ ܾଵሻܫଵ ൅ ሺܽଶ ൅ ܾଶሻܫଶ ൅
⋯൅ ሺܽ଺ ൅ ܾ଺ሻܫ଺ ∈ ܵ଺.                                              (21) 
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And the multiplication of refined neutrosophic numbers: 

ሺܽ଴ ൅ ܽଵܫଵ ൅ ܽଶܫଶ ൅ ⋯൅ ܽ଺ܫ଺ሻ ∙ ሺܾ଴ ൅ ܾଵܫଵ ൅ ܾଶܫଶ ൅
⋯൅ ܾ଺ܫ଺ሻ ൌ ܽ଴ܾ଴ ൅ ሺܽ଴ܾଵ ൅ ܽଵܾ଴ሻܫଵ ൅ ሺܽ଴ܾଶ ൅
ܽଶܾ଴ሻܫଶ ൅ ⋯൅ ሺܽ଴ܾ଺ ൅ ܽ଺ܾ଴ሻܫ଺ ൅  

൅∑ ௝ܾܽ௞
଺
௝,௞ୀଵ ൫ܫ௝ ∗ ௞൯ܫ ൌ ܽ଴ܾ଴ ൅ ∑ ሺܽ଴ܾ௞ ൅

଺
௞ୀଵ

ܽ௞ܾ଴ሻܫ௞ ൅ ∑ ௝ܾܽ௞൫ܫ௝ ∗ ௞൯ܫ
଺
௝,௞ୀଵ ∈ ܵ଺,    (22) 

where the coefficients (scalars) ܽ௠ ∙ ܾ௡ , for ݉ ൌ
0, 1, 2, … ,6 and ݊ ൌ 0, 1, 2, … , 6, are multiplied as any real 
numbers, while ܫ௝ ∗ -௞ are calculated according to the previܫ
ous Sub-Indeterminacies Multiplication Law (Table 2). 

Clearly, both operators (addition and multiplication of 
refined neutrosophic numbers) are well-defined on the set 
ܵ଺. 
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Abstract. The purpose of this paper is to present quality 
clay-brick selection approach based on multi-attribute 
decision making with single valued neutrosophic grey 
relational analysis. Brick plays a significant role in 
construction field. So it is important to select quality 
clay-brick for construction based on suitable 
mathematical decision making tool. There are several 
selection methods in the literature. Among them decision 
making with neutrosophic set is very pragmatic and 
interesting. Neutrosophic set is one tool that can deal 
with indeterminacy and inconsistent data. In the 
proposed method, the rating of all alternatives is 
expressed with single-valued neutrosophic set which is 

characterized by truth-membership degree (acceptance), 
indeterminacy membership degree and falsity 
membership degree (rejection). Weight of each attribute 
is determined based on experts’ opinions. Neutrosophic 
grey relational coefficient is used based on Hamming 
distance between each alternative to ideal neutrosophic 
estimates reliability solution and ideal neutrosophic 
estimates unreliability solution. Then neutrosophic 
relational degree is used to determine the ranking order 
of all alternatives (bricks). An illustrative numerical 
example for quality brick selection is solved to show the 
effectiveness of the proposed method.  

Keywords: Single-valued neutrosophic set; grey relational analysis; neutrosophic relative relational degree, multi-attribute 
decision making; clay-brick selection.  

 Introduction 

Operations research management science has been 
mostly studied with structured and well defined problems 
with crisply or fuzzily defined information. However, in 
realistic decision making situations, some information 
cannot be defined crisply or fuzzily where indeterminacy 
involves.  In order to deal with this situation neutrosophic 
set studied by Smarandache [15] is very helpful. Several 
researchers studied decision making problems [4, 19, 20] 
using single valued neutrosophic set proposed by Wang et 
al.  [16]. Ye [18] proposed multi-criteria decision making 
problem using single valued neutrosophic sets. Biswas et al. 
[2] proposed multi attribute decision making (MADM) 
using neutrosophic grey relational analysis. Biswas et 
al.[3] also proposed a new method for MADM using 
entropy weight information based on neutrosophic grey 
relation analysis. Mondal and Pramanik [11] applied 
neutrosophic grey relational analysis based MADM to 
modeling school choice problem. Mondal and Pramanik 
[10] also applied single valued neutrosophic decision 

making concept for teacher recruitment in higher education. 
Mondal and Pramanik [9] also proposed a hybrid model 
namely rough neutrosophic multi-attribute decision making 
and applied in educational problem.  So decision making in 
neutrosophic environment is an emergence area of research. 

Brick selection is a special type of personnel selection 
problem.  Pramanik and Mukhopadhyaya [12] studied grey 
relational analysis based intuitionistic fuzzy multi criteria 
group decision-making approach for teacher selection in 
higher education.  Robertson and Smith [13] presented 
good reviews on personnel selection studies. They 
investigated the role of job analysis, contemporary models 
of work performance, and set of criteria employed in 
personnel selection process. Brick selection problem in 
intuitionistic fuzzy environment is studied by Mondal and 
Pramanik [8]. Brick selection problem in neutrosophic 
environment is yet to appear in the literature. In this paper 
brick selection in neutrosophic environment is studied. 

Bricks are traditionally selected based on its color, size 
and total cost of brick, without considering the complexity 
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of indeterminacy involved in characterizing the attributes 
of brick. In that case the building construction may have 
some problems regarding low rigidity, longevity, etc, 
which cause great threat for the construction. However, 
indeterminacy inherently involves in some of the attributes 
of bricks. So it is necessary to formulate new scientific 
based selection method which is capable of handling 
indeterminacy related information. In order to select the 
most suitable brick to construct a building, the following 
criteria of bricks obtained from experts’ opinions 
considered by Mondal and Pramanik [8] are used in this 
paper. The criteria are namely, solidity, color, size and 
shape, strength of brick, cost of brick, and carrying cost. 

A good quality brick is characterized by its regular 
shape and size, with smooth even sides and no cracks or 
defects. Poor quality bricks are generally produced as a 
result of employing poor techniques but these errors can 
often be easily corrected. If bricks are well-made and well 
fired, a metallic sound or ring is heard when they are 
knocked together. If the produced sound is a dull sound, it 
reflects that the bricks are either cracked or under fired [1, 
14]. In the proposed approach, the information provided by 
the experts about the attribute values assumes the form of 
single valued neutrosophic set. In the proposed approach, 
the ideal neutrosophic estimates reliability solution and the 
ideal neutrosophic estimate un-reliable solution are used. 
Neutrosophic grey relational coefficient of each alternative 
is determined to rank the alternatives. 

Rest of the paper is organized in the following manner. 
Section 2 presents preliminaries of neutrosophic sets. 
Section 3 describes the attributes of brick and their 
operational definitions. Section 4 is devoted to present 
multi-attribute decision making based on neutrosophic grey 
relational analysis for brick selection process. In section 5, 
illustrative example is provided for brick selection process. 
Section 6 describes the advantage of the proposed 
approach. Section 7 presents conclusion and future 
direction of research work. 

2 Mathematical Preliminaries 

2.1 Neutrosophic Sets and single valued neutro-
sophic sets 

Neutrosophic set is derived from neutrosophy, a new 
branch of philosophy studied by Smarandache [15].  
Neutrosophy is devoted to study the origin, nature, and 
scope of neutralities, as well as their interactions with 
different ideational spectra. 

 2.1 Definition of Neutrosophic set [15] 

Definition 1: Let X be a space of points (objects) with 
generic element in X denoted by x. Then a neutrosophic set 
A in X is characterized by a truth membership function TA 
an indeterminacy membership function IA and a falsity 

membership function FA. The functions TA and FA are real 
standard or non-standard subsets of   1,0 that is

TA:   1,0X ; IA:   1,0X ; FA:   1,0X with 
the following relation 

0-  ≤ ( ) ( ) ( )xIxFxT SSS sup+sup+sup ≤3+,  Xx∈∀
Definition 2: The complement [15] of a neutrosophic 

set A is denoted by Ac  and is defined by 
     xTxT AAc  1 ;      xIxI AAc  1 ; 

     xFxF AAc  1
Definition 3: (Containment [15]): A neutrosophic set A 

is contained in the other neutrosophic set B, denoted 
by BA  if and only if the following result holds. 

   xTxT BA infinf     xTxT BA supsup 

   xIxI BA infinf  ,     xIxI BA supsup 

   xFxF BA infinf  ,    xFxF BA supsup 

for all x in X. 
Definition 4: (SVNS) [16]: Let X be a universal space 

of points (objects), with a generic element of X denoted by 
x. A SVNS set S is characterized by a true membership
function TS(x), a falsity membership function IS(x), and an 
indeterminacy function FS(x), with TS(x), IS(x), FS(x) [0, 
1]. 

      XxxxIxFxTS SSS  ,,,
It should be noted that for a SVNS S, 
0 ≤ ( ) ( ) ( )xIxFxT SSS sup+sup+sup ≤3,  Xx∈∀
For example, suppose ten members of a school 

managing committee will critically review a specific 
agenda. Six of them agree with this agenda, three of them 
disagree and rest of one member remain undecided. Then 
by neutrosophic notation it can be expressed 
as 1.0,3.0,6.0x . 

Definition 5: The complement of a SVNS S is denoted 
by Sc

 and is defined by 
   xFxT S

c
S  ; ( ) ( )xIxI S

c
S -1= ;    xTxF S

c
S 

Definition 6: A SVNS SA is contained in the other 
single valued neutrosophic set SB, denoted as SA  SB 

iff,    xTxT BSAS  ;    xIxI BSAS  ;    xFxF BSAS  , 
Xx . 

Definition 7: Two single valued neutrosophic sets SA 
and SB are equal, i.e, SA = SB, if and only if 

SA⊆ SB and SA⊇ SB 
Definition 8 (Union): The union of two SVNSs SA and 

SB is a SVNS SC, written as 
SC = SA ∪ SB  .
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Its truth membership, indeterminacy-membership and 
falsity membership functions are related to those of SA and 
SB as follows: 

      xTxTxT BSASCS ,max ;
      xIxIxI BSASCS ,min ; 
      xFxFxF BSASCS ,min for all x in X

Definition 9 (intersection): The intersection of two 
SVNSs SA and SB is a SVNS SC written as BAC SSS  . 
Its truth membership, indeterminacy-membership and 
falsity membership functions are related to those of SA and 
SB as follows:  

       ;,min xTxTxT BSASCS 

       ;,max xIxIxI BSASCS 

       XxxFxFxF BSASCS  ,,max
Distance between two neutrosophic sets  

The general SVNS has the following pattern: 
        XxxFxIxTxS SSS  :,,

For finite SVNSs can be represented by the ordered 
tetrads: 

S =
                ,,,,,,, 1111 xFxIxTxxFxIxTx mSmSmSmSSS 

    Xx

Definition 10: Let 
AS
                xFxIxTxxFxIxTx nASnASnASnASASAS ,,,,,, 1111 

BS
                xFxIxTxxFxIxTx nBSnBSnBSnBSBSBS ,,,,,, 1111 

be two single-valued neutrosophic sets  
(SVNSs) in x={x1, x2, x3,…,xn} 
Then the Hamming distance between two SVNSs SA 

and SB  
is defined as follows: 

 

   

   

   












n

i

BSAS

BSAS

BSAS

BAS

xFxF

xIxI

xTxT

SSd
1

,  )1(

and normalized Hamming distance between two 
SVNSs SA and SB is defined as follows: 

 

   

   

   












n

i

BSAS

BSAS

BSAS

BAN
S

xFxF

xIxI

xTxT

n
SSd

13
1,  )2(

with the following two properties
  nSSd BAS 3,0.1      )3(
  1,0.2  BA

N
S SSd    )4(

Definition 11: Ideal neutrosophic reliability solution 
INERS [18] 

qqqQ
nSSSS


 ,,,

21
 is a solution in which every 

component is presented by FITq jjjjS


 ,, where 

 TT ij
i

j max ,  II ij
i

j min and  FF ij
i

j min  in the 

neutrosophic decision matrix nmijijijS FITD  ,,  for i = 1, 
2, …, m,  j = 1, 2, …, n 

Definition 12: Ideal neutrosophic estimates un-
reliability solution (INEURS) [18] 

qqqQ
nSSSS


 ,,,

21
 is a solution in which every 

component is represented by FITq jjjjS


 ,, where 

 TT ij
i

j min ,  II ij
i

j max and  FF ij
i

j max  in the 

neutrosophic decision matrix nmijijijS FITD  ,,  for i = 1, 
2, …, m,  j = 1, 2, …, n   

3. Brick Attributes [8]

Six criteria [8] of bricks are considered, namely, 
solidity (C1), color (C2), size and shape (C3), and strength 
of brick (C4), brick cost (C5), carrying cost (C6). These six 
criteria’s are explained as follows: 

(i) Solid clay brick (C1): An ideal extended solid rigid 
body prepared by loam soil having fixed size and shape 
remains unaltered when fixed forces are applied. The 
distance between any two given points of the rigid body 
remains unchanged when external fixed forces applied on 
it. If we soap a solid brick in water and drop it from 3 or 4 
feet heights [1, 14], it remains unbroken.  

 (ii) Color (C2): Color of quality brick refers to reddish 
or light maroon. 

(iii) Size and shape (C3): All bricks are to be more or 
less same size and shape having same length, width and 
height. The size or dimensions of a brick are determined by 
how it is used in construction work. Standard size of a 
brick may vary. Size of a brick may be around 
190mm 90mm 40mm [14]. 

Width 

The width of a brick should be small enough to allow a 
bricklayer to lift the brick with one hand and place it on a 
bed of mortar. For the average person, the width should not 
be more than 115 mm.  

Length  

The length of a brick refers to twice its width plus 10 
mm (for the mortar joint). A brick with this length will be 
easier to build with because it will provide and even 
surface on both sides of the wall. For example, if you 
follow the rule of the length being twice the width plus 10 
mm, if you would like to have a brick x mm wide, then the 
ideal length would be (2x + 10) mm. 

Height 
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The height of a brick is related to the length of the brick. 
The height of three bricks plus two 10 mm joints is equal 
to the length of a brick. This allows a bricklayer to lay 
bricks on end (called a soldier course) and join them into 
the wall without having to cut the bricks. The height of a 
brick is determined by subtracting 20 mm (the thickness of 
the two 10 mm mortar joints) from the length and dividing 
the result by three (this represents the three bricks).  

Possible brick Sizes  
In India the standard brick size is 190 mm x 90 mm x 

40 mm while the British standard is 215 mm x 102.5 mm x 
65 mm. To select your brick size, first contact the local 
public works department to see if your country has a 
standard size. If not, you will have to choose your own size. 
Possible brick sizes can be found in [8].  

 (iv) Well dried and burnt (strength of brick) (C4) 
[14]: Raw bricks are well dried in sunshine and then 
properly burnt. If bricks have been well- made and well-
fired, a metallic sound is heard when they are knocked 
together. If knocking creates a dull sound, it reflects that 
they are either cracked or under-fired. A simple test for 
strength of a brick is to drop it from a height of 1.2 meters 
(shoulder height). A good brick will not break. This test 
should be repeated with a wet brick (a brick soaked in 
water for one week). If the soaked brick does not break 
when dropped, it reflects that the quality of the brick is 
good enough to build single storied structures. 

v) Brick cost (C5): Decision maker always tries to
minimize purchasing cost. Reasonable price of quality 
brick is more acceptable.  

vi) Carrying cost (C6): The distance between brick
field and construction site must be reasonable for 
maintaining minimum carrying cost. 

4. GRA method for multiple attribute decision
making problems with single valued neutrosophic 
information 

 Consider a multi-attribute decision making problem 
with m alternatives and n attributes. Let A1, A2, …, Am and 
C1, C2 ,…, Cn represent the alternatives and attributes 
respectively. The rating reflects the performance of the 
alternative Ai against the attribute Cj. For MADM, weight 
vector W = w1, w2,…, wn is fixed to the attributes. The 
weight wj > 0, j = 1, 2, 3,…, n reflects the relative 
importance of attributes Cj , j = 1, 2, …, n to the decision 
making process. The weights of the attributes are usually 
determined on subjective basis. The values associated with 
the alternatives for MADM problems presented in the 
decision table 1.  

Table1: Decision table of attribute values 

 nmijdD

dddA

dddA
dddA
CCC

mnmmm

n

n

n
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.............
.............

...

...

...

21

222212

112111

21

                      

 (5)  

          GRA is one of the derived evaluation methods for 
MADM based on the concept of grey relational space. The 
main procedure  of  GRA  method  is  firstly translating  
the performance  of  all  alternatives  into  a  comparability 
sequence.  According to these sequences, a reference 
sequence (ideal target sequence) is defined. Then, the grey 
relational coefficient between all comparability sequences 
and the reference sequence for different values of 
distinguishing coefficient are calculated. Finally, based on 
these grey relational coefficients, the grey relational degree 
between the reference sequence and every comparability 
sequences is calculated. If an alternative gets the highest 
grey relational grade with the reference sequence, it means 
that the comparability sequence is the most similar to the 
reference sequence and that alternative would be the best 
choice (Fung [7]). The steps of improved GRA under 
SVNS are described below: 

Step 1. Determination of the most important criteria 
Generally, there exist many criteria or attributes in 

decision making problems where some of them are 
important and others may not be so important. So it is 
important to select the proper criteria or attributes for 
decision making situations. The most important criterion 
may be selected based on experts’ opinions. 

Step 2. Construction of the decision matrix with 

single valued neutrosophic sets (SVNSs) 
The rating of alternatives Ai (i = 1, 2, . . , m) with 

respect to the attribute Cj (j = 1, 2, . . ., n) is assumed as 
SVNS. It can be represented with the following forms: 


















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ininin

n

iiiiii
i

,,

,...,,,,,, 222
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111
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; CC j









 CC

FIT
C

j
ijijij

j :
,,

for j = 1, 2,…, n 

Here Tij, Iij, Fij are the degrees of truth membership, 
degree of indeterminacy and degree of falsity membership 
of the alternative Ai is satisfying the attribute Cj, 
respectively where 

3010,10,10  FITandFIT ijijijijijij

  The decision matrix DS is presented in the table 2. 
Table2. Decision matrix DS 
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 nmijijijS FITD ,,
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(6)

 
Step 3. Determination of the weights of criteria

In the decision making process, decision maker may 
often encounter with unknown attribute weights. It may 
happen that the importance of the attributes is different. 
Therefore we need to determine reasonable attribute 
weight for making a proper decision.  

Step 4. Determination of the ideal neutrosophic 

estimates reliability solution (INERS) and the ideal 

neutrosophic estimates un-reliability solution 

(INEURS) for neutrosophic decision matrix. 
For a neutrosophic decision making matrix 

nmijSS qD 



 = nmijijij FIT ,, , Tij, Iij, Fij are the degrees of 

membership, degree of indeterminacy and degree of non 
membership of the alternative Ai of A satisfying the 
attribute Cj of C. The neutrosophic estimate reliability 
solution can be determined from the concept of SVNS 
cube proposed by Dezert [5] 

Step 5. Calculation of the neutrosophic grey 

relational coefficient of alternative from INERS 

Grey relational coefficient of each alternative from 
INERS is as follows: 
















ij

ji
ij

ij
ji

ij
ji

ijg
maxmax

maxmaxminmin
, where 

 qqd
ijSjSij ,   (7) 

i = 1, 2, …, m and j = 1, 2, …., n  
Step 6. Calculation of the neutrosophic grey 

relational coefficient of alternative from INEURS 

Grey relational coefficient of each alternative from 
INEURS is as follows: 
















ij

ji
ij

ij
ji

ij
ji

ijg
maxmax

maxmaxminmin
, where 

 qqd
jSijSij

  ,     (8) 

 i = 1, 2, …, m and j = 1, 2, …., n  

 1,0 is the distinguishable coefficient or the
identification coefficient used to adjust the range of the 
comparison environment, and to control level of 
differences of the relation coefficients. When 1 , the 
comparison environment is unaltered; when 0 , the 
comparison environment disappears. Smaller value of 
distinguishing coefficient will yield in large range of grey 
relational coefficient. Generally, 5.0 is considered for 
decision making. 

Step 7. Calculation of the neutrosophic grey 

relational coefficient 

Calculate the degree of neutrosophic grey relational 
coefficient of each alternative from INERS and INEURS 
using the following equation respectively: 

gwg ij
n
j ji






 1   for i = 1, 2, …, m  (9)     

gwg ij
n
j ji






 1   for i = 1, 2, …, m    (10) 

Step 8. Calculation the neutrosophic relative 

relational degree  

We calculate the neutrosophic relative relational degree 
of each alternative from indeterminacy truthfulness falsity 
positive ideal solution (ITFPIS) with the help of following 
equations: 

gg
g

R
ii

i
i 




 , for i = 1, 2, …, m  (11)        

Step 9. Ranking the alternatives 

According to the relative relational degree, the ranking 
order of all alternatives can be determined. The highest
value of Ri

 
represents the most important alternative.

Step10. End 

5. Example of Brick selection

The steps of brick selection procedure using the 
proposed approach are arranged as follows: 

Step 1: Determination of the most important 

criteria 

The most important criterion of brick is selected based 
on experts’ opinions are namely, solidity, color, size and 
shape, strength of brick, cost of brick, and carrying cost.  

Step 2: Construction of the decision matrix with 

single valued neutrosophic sets (SVNSs) 
Here the most important criterion of brick is chosen 

based on experts’ opinions. When the four possible 
alternatives with respect to the six criteria are evaluated by 
the expert, we can obtain the following single-valued 
neutrosophic decision matrix:  
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 64,, FITD ijijijS

2.0,3.0,7.03.0,2.0,6.01.0,2.0,8.01.0,3.0,7.00.0,2.0,9.01.0,0.0,7.0
2.0,4.0,6.01.0,1.0,7.01.0,2.0,6.01.0,2.0,7.01.0,0.0,8.01.0,1.0,8.0
1.0,4.0,5.01.0,1.0,8.01.0,1.0,6.01.0,1.0,8.01.0,2.0,7.00.0,1.0,7.0
3.0,3.0,5.00.0,0.0,7.02.0,2.0,6.02.0,1.0,7.01.0,1.0,8.01.0,2.0,7.0

4

3

2

1

654321

A
A
A
A

CCCCCC

        (12) 

Step 3.  Determination weights of the criteria 

In the decision making situation, decision makers 
recognize that all the criteria of bricks are not equal 
importance. Here the importance of the criteria is obtained 
from expert opinion through questionnaire method i.e. the 
weights of the criteria are previously determined such that 
the sum of the weights of the criteria is equal to unity. Data 
was collected from fifteen constructional engineers, ten 
construction labors of Nadia district from twelve brick 
fields of surrounding areas. After extended interviews and 
discussions with the experts, the criteria of brick were 
found the same as found in [8] namely, solidity, color, size 
and shape, strength of brick, brick cost, and carrying cost. 
We have the weight of each criterion wj, j = 1, 2, 3, 4, 5, 6 
as follows: 

w1 = 0.275, w2 = 0.175, w3 = 0.2, w4 = 0.1, w5 = 0.05, 
w6 = 0.2 such that 

6
1 1j jw  

Step 4. Determine the ideal neutrosophic estimates 

reliability solution (INERS) and the ideal neutrosophic 

estimates un-reliability solution (INEURS) 
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Step 5. Calculation of the neutrosophic grey 

relational coefficient of each alternative from INERS 

Using Equation (7), the neutrosophic grey relational 
coefficient of each alternative from INERS can be obtained 
as follows: 


g ij





















0000.15556.03539.03539.03797.04641.0
5556.05556.05505.04641.04641.04641.0
5556.07143.00000.10000.12899.04641.0
4545.00000.14641.04641.04641.03333.0

(13)

 

Step 6. Calculation of the neutrosophic grey 

relational coefficient of each alternative from INEURS 

         
Similarly, from Equation (8) the neutrosophic grey 

relational coefficient of each alternative from INEURS can 
be obtained as follows: 


g ij





















5000.00000.13539.05505.03539.03797.0
7500.04286.05505.04641.03539.04641.0
7500.03750.04641.03333.00000.14641.0
0000.13333.00000.13797.04641.00000.1

(14)

Step 7. Determination of the degree of neutrosophic 

grey relational co-efficient of each alternative from 

INERS and INEURS 

 The required neutrosophic grey relational co-efficient 
corresponding to INERS is obtained using equation (9) as 
follows:  

52720.0,49562.0,62520.0,63635.0 4321 
 gggg )15(

and corresponding to INEURS is obtained with the help 
of equation (10) as follows: 

46184.0,50886.0,58445.0,74882.0 4321 
 gggg )16(

Step 8. Calculation of neutrosophic relative relational 

degree 

Thus neutrosophic relative degree of each alternative 
from INERS can be obtained with the help of equation (11) 
as follows:       

R1 = 0.459402;  R2 = 0.516844; 
 R3 = 0.493410;  R4 = 0.533042                                 (17)    
Step 9. Ranking the alternatives 
The ranking order of all alternatives can be determined 

according the value of neutrosophic relational degree i.e. 
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RRRR 1324 

It is seen that the highest value of neutrosophic 
relational degree is R4. Therefore the best alternative brick 
is identified as A4.  

Step10. End 

6. Advantages of the proposed approach

The proposed approach is very flexible as it uses the 
realistic nature of attributes i.e. the degree of 
indeterminacy as well as degree of rejection and 
acceptance simultaneously. In this paper, we showed how 
the proposed approach could provide a well-structured, 
practical, and scientific selection. New criteria are easily 
incorporated in the formulation of the proposed approach.       

Conclusion 

In the study, the concept of single valued neutrosophic 
set proposed by Wang et al. [16] with grey relational 
analysis [6] is used to deal with realistic brick selection 
process. Neutrosophic decision making based on grey 
relational analysis approach is a practical, versatile and 
powerful tool that identifies the criteria and offers a 
consistent structure and process for selecting bricks by 
employing the concept of acceptance, indeterminacy and 
rejection of single valued neutrosophic sets simultaneously. 
In the study, we demonstrated how the proposed approach 
could provide a well-structured, rational, and scientific 
selection practice.  

Therefore, in future, the proposed approach can be used 
for dealing with multi-attribute decision-making problems 
such as project evaluation, supplier selection, 
manufacturing system, data mining, medical diagnosis and 
many other areas of management decision making. 
Neutrosophic sets, degree of rejection (non membership), 
degree of acceptance (membership) and degree of 
indeterminacy (hesitancy) are independent to each other. In 
this sense, the concept of single valued neutrosophic set 
applied in this paper is a realistic application of brick 
selection process. This selection process can be extended 
to the environment dealing with interval single valued 
neutrosophic set [17]. 
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Abstract. We take into consideration four mechanical 
worldviews: the single "gravity" (as <A>, or t); the 
single "repulsion" (as <antiA>, or f); the "gravity and 
repulsion" taking the same object as carrier (as <neu-
tA>1, or I1 = first type of subindeterminacy); and the 
contradictory objects of "gravity and repulsion" 
formed by natural external force and natural repulsive 
force (as <neutA>2, or I2 = second type of subinde-

terminacy), and interpret them by employing Neu-
trosophy, expanding their application scope. We point 
out that the fourth mechanical worldview is consistent 
with the Neutrosophic tetrad, and that the natural ex-
ternal force and natural repulsive force are the correct 
qualitative analysis of the natural forces of the uni-
verse, and thus it can be used to interpret a variety of 
phenomena of the universe. 

Keywords: Mechanical worldview, Neutrosophy, Neutrosophic tetrad, natural force of the universe, natural external force, 
natural repulsive force.

1 Introduction 

Various mechanical worldviews were proposed 
through the ages. We select four mechanical worldviews to 
be interpreted through neutrosophic theory and method. 

Neutrosophy, introduced by Prof. Florentin 
Smarandache in 1995, is a new branch of philosophy that 
studies the origin, nature, and scope of neutralities, as well 
as their interactions with different ideational spectra. 

This theory considers every notion or idea <A> 
together with its opposite or negation <Anti-A> and the 
spectrum of "neutralities" <Neut-A> (i.e. notions or ideas 
located between the two extremes, supporting neither <A> 
nor <Anti-A>). The <Neut-A> and <Anti-A> ideas are 
both referred to as <Non-A>. 

Neutrosophy is the base of neutrosophic logic, 
neutrosophic set, neutrosophic probability and statistics, 
which are used in engineering applications (especially for 
software and information fusion), medicine, military, 
cybernetics, and physics. 

Neutrosophic Logic (NL) is a general framework for 
unification of many existing logics, such as fuzzy logic 
(especially intuitionistic fuzzy logic), paraconsistent logic, 
intuitionistic logic, etc. The main idea of NL is to 
characterize each logical statement in a 3D Neutrosophic 
Space, where each space dimension represents respectively 
the truth (T), the falsehood (F), and the indeterminacy (I) 
of the statement under consideration, where T, I, F are 
standard or non-standard real subsets of ]-0, 1+[ without a 
necessary connection between them. 

For example, we talk about two opposite forces, 
gravity and repulsion, but also the "gravity and repulsion 
together" (= indeterminacy, from neutrosophy). Then, we 
also split this indeterminacy into two indeterminacies (see 
reference [3]) such as: 

I1 = gravity and repulsion with the same carrier, and  
I2 = gravity and repulsion without the same carrier. 
Smarandache introduced the degree of indeterminacy/ 

neutrality (i) as independent component, and defined the 
neutrosophic set, coining the words “neutrosophy” and 
“neutrosophic”. In 2013, he refined/split the neutrosophic 
set to n components: t1, t2, …tj; i1, i2, …, ik; f1, f2, …, fl, 
with j+k+l = n > 3. In our article we have t, i1, i2, and f. 
Hence indeterminacy i was split into two 
subindeterminacies i1 and i2. 

More about Neutrosophy can be found in references 
[1-3]. 

Obviously, we have broad application prospects when 
combining various mechanical worldviews with 
Neutrosophy. 

We now interpret the four mechanical worldviews 
through Neutrosophy, for issues related to the effect of 
"gravity" and "repulsion", and the like. 

2 Isaac Newton (English scholar): the mechanical 
worldview of single "gravity"  

Newton's "law of gravity" is the beginning of the 
mechanical worldview of single "gravity". But natheless, it 
can only be used to describe the attraction between objects, 
and not the repulsion caused by light and heat radiation of 
celestial objects, therefore it cannot be used to solve the 
issues of mutual repulsion and departure between celestial 
objects. In addition, the mechanical worldview of single 
"gravity" does not explain the celestial objects' lateral 
motion and gravitational instantaneous transmitting, and it 
does not reveal the nature of gravity. So, in many ways, 
Newton's "gravity" is erroneous and one-sided, and it can 
not be taken as an accurate qualitative analysis of the 
natural forces of the universe.  
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However, according to the neutrosophic viewpoint, 
any theory, or law, holds three situations: truth, falsehood, 
and indeterminacy. Because the law of gravity applies for 
some issues, we conclude, after interpreting it through 
Neutrosophy, that it is conducive to further development 
and improvement. 

3 Edwin P. Hubble (American scholar): the 
mechanical worldview of single "repulsion" 

The mechanical worldview of single "repulsion" is 
derived by Hubble according to the galaxy redshift, the 
expansion of the universe, and the light and heat radiation 
of celestial objects, in order to solve the issues of the 
mutual repulsion and departure between them. While not 
only this view cannot be used to solve the problems of 
celestial objects' lateral motion, but also cannot answer the 
reason that the apple should indeed go down to the land, 
therefore, in general, the mechanical worldview of single 
"repulsion" is fallacious. Consequently, the "Hubble's law" 
also needs to be further developed and improved. 

4 Albert Einstein (American scholar): the 
mechanical worldview of the "gravity and 
repulsion" taking the same object as the carrier  

Adding to  gravity and repulsion the cosmological 
constant (repulsion) on a "gravitational field equation" of 
space-time warpage, Einstein built another mechanical 
worldview. Later on, Einstein found that the universe 
devised by gravity and repulsion is a static one, and thus 
not meeting the dynamical universe as the observed data. 
Thereby, the cosmological constant (repulsion) was 
abandoned. Actually, this view was not firstly proposed by 
Einstein: before that, Kant, Hegel, Marx, Engels, Lenin, 
and others, have already enunciated similar viewpoints of 
"attraction and repulsion". Even if Einstein's cosmological 
constant (repulsion) was considered to be accurate for a 
long time, in modern physics the mechanical worldview of 
the "gravity and repulsion" was rebuilt, disposing "gravity" 
to explain the mutual attraction between objects, and 
"repulsion" to define the mutual exclusion between objects. 
But that's just subjective wishful thinking. Because this 
mechanical worldview takes the same object as the carrier, 
according to a philosophical judgement criterion, the 
"gravity and repulsion" do not constitute two contradictory 
objects, therefore we face a fabricated and false concept. 
To sum up, using the primary and the secondary 
contradictions in modern physics to discuss the mutual 
transformation of the "gravity and repulsion" on the same 
celestial object is misleading, and the mechanical 
worldview of the "gravity and repulsion" taking the same 
object as the carrier is erroneous. 

5 Luo Zhengda (Chinese scholar): the mechanical 
worldview of natural external force and natural 
repulsive force  

This mechanical worldview is fundamentally different 
from Einstein's view. Taking natural external force and 
natural repulsive force as the core, this mechanical 
worldview points out that the natural external force is the 
energy field of the universal space, having contraction and 
aggregation as natural property. The mutual aggregation of 
celestial objects is not the mutual attraction, but the mutual 
aggregation follows the contraction and aggregation of the 
energy field. 

Enacted by the natural property of contraction and 
aggregation of natural external force, the energy of 
celestial objects' core accumulates. The mass can also be 
changed into energy, thus creating the radiation of 
repulsion, and forming the celestial objects' repulsion field 
taking celestial objects' core as the center. The mutual 
opposition and rejection between celestial objects are 
caused by the actions of contraction and aggregation of 
natural external force. 

Essentially, all natural external forces and natural 
repulsive forces are energy matter. Natural external force is 
caused by aggregation of celestial objects, and natural 
repulsive force is provoked by repulsion of celestial 
objects. Natural external force is taking the space energy 
field as the carrier, and natural repulsive force is taking the 
celestial object of mass as the carrier. The two carriers of 
natural external force and natural repulsive force are 
different and contradictory, and thus meet the 
philosophical condition of contradiction. 

This mechanical worldview is consistent with the 
principle and analysis of Neutrosophy. 

In reference [2], the dialectical triad thesis-antithesis-
synthesis of Hegel is extended to the neutrosophic tetrad 
thesis-antithesis-neutrothesis-neutrosynthesis. 

A neutrosophic synthesis (neutrosynthesis) is more 
refined that the dialectical synthesis. It carries on the 
unification and synthesis regarding the opposites and their 
neutrals too.  

A neutrosophic synthesis (neutrosynthesis) includes 
<A>, <Anti-A>, <Neut-A>, <A> plus <Anti-A>, <A> plus 
<Neut-A>, <Anti-A> plus <Neut-A>, <A> plus <Anti-A> 
plus <Neut-A>, and so on. 

Similarly, the mechanical worldview taking natural 
external force and natural repulsive force as the core also 
considers and includes various situations and combinations 
related to "gravity", "repulsion", and the like. 

Therefore, natural external force and natural repulsive 
force are correct qualitative analysis of the natural force of 
the universe, thus this mechanical worldview is flawless 
and can be used to interpret a variety of phenomena of the 
universe. Detailed information can be found in references 
[4-8], where Luo Zhengda coined the concepts of “natural 
force of the universe”,“natural external force”, and “natural 
repulsive force”. 

6 Conclusions 

Natural external force causes the aggregation of celes-
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tial objects, while natural repulsive force causes the repul-
sion of celestial objects. By combining the theory of the 
natural force of the universe with Neutrosophy, we con-
clude that the two theories complement each other, creat-
ing new paths for interpreting and dealing with all sort of 
natural phenomena.  
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Abstract. This paper presents the application of 
Neutrosophic Set Theory (NST) in solving 
Generalized Assignment Problem (GAP). GAP has 
been solved earlier under fuzzy environment. NST is 
a generalization of the concept of classical set, fuzzy 
set, interval-valued fuzzy set, intuitionistic fuzzy set. 
Elements of Neutrosophic set are characterized by a 
truth-membership function, falsity and also 
indeterminacy which is a more realistic way of 
expressing the parameters in real life problem. Here 
the elements of the cost matrix for the GAP are 
considered as neutrosophic elements which have not 
been considered earlier by any other author. The 
problem has been solved by evaluating score 
function matrix and then solving it by Extremum 
Difference Method (EDM) [1] to get the optimal 
assignment. The method has been demonstrated by a 
suitable numerical example. 

Keywords: NST, GAP, EDM. 

1. Introduction

The concept of fuzzy sets and the degree of 
membership/truth (T) was first introduced by Zadeh 
in 1965 [2]. This concept is very much useful to 
handle uncertainty in real life situation. After two 
decades, Turksen [3] introduced the concept of 
interval valued fuzzy set which was not enough to 
consider the non-membership function. In the year 
1999, Atanassov [4], [5], [6] proposed the degree of  

nonmembership/falsehood (F) and intuitionistic  
fuzzy set (IFS) which is not only more practical in 
real life but also the generalization of fuzzy set. The 
paper considers both the degree of membership µA(x) 
Є [0, 1] of each element x Є X to a set A and the 
degree of non-membership νA(x) Є [0, 1] s.t. µA(x) + 
νA(x) ≤ 1. IFS deals with incomplete information 
both for membership and non-membership function 
but not with indeterminacy membership function 
which is also very natural and obvious part in real life 
situation. Wang et. Al [7] first considered this 
indeterminate information which is more practical 
and useful in real life problems. F.Smarandache 
introduced the degree of indeterminacy/neutrality (i) 
as independent component in 1995 (published in 
1998) and defined the neutrosophic set. He coined the 
words “neutrosophy” and “neutrosophic”. In 2013 he 
refined the neutrosophic set to n components: t1, t2, 
...; i1, i2, ...; f1, f2, ... . So in this paper we have used 
the neutrosophic set theory to solve GAP which 
hasn’t been done till now. 

2. Preliminaries

2.1 Neutrosophic Set [8] 

Let U be the space of points (or objects) with generic 
element ‘x’. A neutrosophic set A in U is 
characterized by a truth membership function TA, and 
indeterminacy function IA and a falsity membership 
function FA, where TA, IA and FA are real standard or 
non-standard subsets of   ] -0, 1+[, i.e  sup TA: x →] -0,
1+[ 

sup FA: x →] -0, 1+[

University of New Mexico 
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sup IA: x →] -0, 1+[

A neutrosophic set A upon U as an object is defined 
as  

= { 
AAA FIT

x
,,

 : x Є U },

where TA(x), IA(x) and FA(x) are subintervals or 
union of subintervals of [0, 1]. 

2.2 Algebraic Operations with Neutrosophic 

Set [8] 

For two neutrosophic sets A and B where     and    

a> Complement of A 
A/ = { 𝑥

𝑇,𝐼,𝐹
 │ T = 1 - TA, I = 1 - IA, F = 1 - 

FA } 
b> Intersection of A and B 

A ∩ B = { 𝑥

𝑇,𝐼,𝐹
 │ T = TA TB, I = IA IB, F = 

FA FB } 
c> Union of A and B 

A U B = { 𝑥

𝑇,𝐼,𝐹
 │ T = TA + TB - TA TB, I = 

IA + IB - IA IB, F = FA + FB - FA FB } 
d> Cartesian Product of A and B 

A X B = { (
AAA FIT

x
,,

, 
BBB FIT

y
,,

) | 

AAA FIT
x

,,
 Є A, 

BBB FIT
y

,,
 Є B } 

e> A is a subset of B 

A C B ∀ 
AAA FIT

x
,,

 Є A and 
BBB FIT

y
,,

Є B, TA ≤ TB, IA ≥ IB and FA ≥ FB 
f> Difference of A and B 

A\B = { 𝑥

𝑇,𝐼,𝐹
 │ T = TA - TA TB, I = IA - IA IB, 

F = FA - FA FB } 

NST can be used in assignment problem (AP) and 
Generalized Assignment Problem (GAP). 

3. Generalized Assignment Problem using

Neutrosophic Set Theory

In this section, we have formulated the GAP using 
NST. GAP has been solved earlier in different ways 
by different mathematicians. David B. Shymos and 
Eva Tardos [April, 1991] considered the GAP as the 
problem of scheduling parallel machines and solved 
it by polynomial time algorithm. Dr. Zeev Nutov 
[June, 2005] solved GAP considering it as a Max-
profit scheduling problems. Supriya Kar, Dr. Kajla 
Basu, Dr. Sathi Mukherjee [International Journal of 
Fuzzy Mathematics & Systems, Vol.4, No.2 (2014) 
pp.-169-180] solved GAP under fuzzy environment 
using Extremum Difference Method. Supriya Kar et. 
al solved FGAP with restriction on the cost of both 
job & person using EDM [International Journal of 
management, Vol.4, Issue5, September-October 
(2013) pp.-50-59]. They solved FGAP also under 
Hesitant Fuzzy Environment [Springer India, 
Opsearch, 29th October 2014, ISSN 0030-3887. 

Here, we have used NST to solve GAP because in 
neutrosophy, every object has not only a certain 
degree of truth, but also a falsity degree and an 
indeterminacy degree that have to be considered 
independently. 

3.1 Mathematical model for GAP under 

Neutrosophic Set Theory 

Let us consider a GAP under neutrosophic set in 
which there are m jobs J= {J1, J2,…….,Jm} and n 
persons P= { P1,P2,……..,Pn}. The cost matrix of the 
Neutrosophic Generalized Assignment Problem 
(NGAP) contains neutrosophic elements denoting 
time for completing j-th job by i-th machine and the 
mathematical model for NGAP will be as follows- 

Model 1. 

Minimize Z = 


m

i 1



n

j 1
CijXij    ……… [1] 

s.t.    


n

j 1
 xij = 1, i = 1, 2, ….. , m    …….. [2]   




m

i 1
 cijxij ≤ aj ,  j = 1,2,…….,n    ....... [3] 

)(),(),( xFxIxT
x

AAA
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       Xij = 0 or 1, i= 1,2,……,m and                                                                              
j=1,2,……,n  ……..[4] 

 Where aj is the total cost available that worker j can 
be assigned. 

3.2 Solution Procedure of NGAP 

To solve NGAP first we have calculated the 
evaluation matrix for each alternative. Using the 
elements of Evaluation Matrix for alternatives Score 
function ( Sij) matrix has been calculated. Taking the 
Score function matrix ( Sij) as the initial input data we 
get the model 2. 

Model 2. 

Minimize Z= 


m

i 1



n

j 1
SijXij    …………….. [5] 

 s.t. the constraints [2], [3], [4]. 

To solve the model 2 we have used EDM and to 
verify it the problem has been transformed into LPP 
form and solved by LINGO 9.0. 

3.3 Algorithm for NGAP 

Step1.  Construct the cost matrix of Neutrosophic 
generalized assignment problem D = (Cij)m×n 

Step2.  Determine the Evaluation Matrix of the job Ji 

as E(Ji) =  u
J

l
J ii

TT ,  where 

[ u
J

l
J ii

TT , ]=  























))
2

1
(),

2
max((

)),
2

1
(),

2
min((

ijijijij

ijijijij

JJJJ

JJJJ

IFIT

IFIT

Step3.  Compute the Score function S(Jij) of an 
alternative 

S(Jij) = 2( u
J ij

T - l
J ij

T ) 

     = 2 
























))
2

1
(),

2
min((

))
2

1
(),

2
max((

ijijijij

ijijijij

JJJJ

JJJJ

IFIT

IFIT

Where 0 ≤ S(Jij) ≤ 1 

Step4.  Take the Score function matrix as initial input 
data for NGAP and solve it by EDM.  

Step5.  End. 

4. Numerical Example

Let us consider a NGAP having four jobs and three 
machines where the cost matrix contains 
neutrosophic elements denoting time for completing 
jth job by ith machine. It is required to find optimal 
assignment of jobs to machines. 

Input data table 

     

Solution: 

Evaluate E(Ji) as the evaluation function of the job Ji 
as  

E(Ji) =  u
J

l
J ii

TT ,  where 

[ u
J

l
J ii

TT , ]=  























))
2

1
(),

2
max((

)),
2

1
(),

2
min((

ijijijij

ijijijij

JJJJ

JJJJ

IFIT

IFIT

Therefore elements of the Evaluation matrix for 
alternatives 

     
     
     
      


















9.0,6.0,5.08.0,4.0,5.03.0,6.0,4.0
0.1,5.0,0.15.0,1.0,45.02.0,4.0,8.0

2.0,46.0,68.005.0,9.0,75.025.0,5.0,6.0
45.0,8.0,4.015.0,6.0,8.01.0,39.0,75.0

4

3

2

1

J
J
J
J

321 MMM

77



Neutrosophic Sets and Systems, Vol. 9, 2015  

Supriya Kar, Kajla Basu, Sathi Mukherjee, Application of Neutrosophic Set Theory in Generalized Assignment 

Problem 

 u
J

l
J jiij

TT ,  = 

     
     
     
      


















55.0,35.045.0,3.065.0,5.0
75.0,25.03.0,275.06.0,6.0
63.0,57.0925.0,825.0625.0,55.0

675.0,6.0725.0,7.0645.0,57.0

Compute the Score function S(Jij) of an alternative 

S(Jij) = 2( u
J ij

T - l
J ij

T ) 

     = 2 
























))
2

1
(),

2
min((

))
2

1
(),

2
max((

ijijijij

ijijijij

JJJJ

JJJJ

IFIT

IFIT

. 

Where 0 ≤ S(Jij) ≤ 1 

Therefore elements of Score function matrix will be 
as follows- 

S(Jij) = 



















4.03.03.0
0.105.00.0
12.02.015.0
15.005.015.0

. 

Solving S(Jij) by EDM, 

M1 M2 M3 Row 
Penalties 

J1 0.15 [0.05] 0.15 0.10 
J2 0.15 0.2 [0.12] 0.08 
J3 [0.0] 0.05 1.0 1.00 
J4 [0.3] 0.3 0.4 0.10 

aj → 0.525 0.475 0.81 

Therefore optimal assignment is, 

J1 → M2, J2 → M3, J3 → M1, J4 → M1. 

To verify the problem, it has been transformed into 
LPP form and solved by LINGO 9.0 as follows- 

Minimize Z= 
0.15x11+0.05x12+0.15x13+0.15x21+0.2x22+0.12x23+0.0
x31+0.05x32+1.0x33+0.3x41+0.3x42+0.4x43 

s.t     


n

j 1
 xij = 1, i = 1, 2, ….. , m  




m

i 1
 cijxij ≤ aj ,  j = 1,2,…….,n 

       Xij = 0 or 1, i= 1,2,……,m and j= 1,2,……,n 

By LINGO 9.0, we get the solution as, 

x12=1, x23=1, x31=1, x41=1 

Therefore the optimal assignment is J1 → M2, J2 → 
M3, J3 → M1, J4 → M1. 

Therefore the solution has been verified as same 
result has been obtained both by Model 1 and Model 
2. 

5. Conclusion

Neutrosophic set theory is a generalization of 
classical set, fuzzy set, interval-valued fuzzy set, 
intuitionistic fuzzy set because it not only considers 
the truth membership TA and falsity membership FA, 
but also an indeterminacy function IA which is very 
obvious in real life situation. In this paper, we have 
considered the cost matrix as neutrosophic elements 
considering the restrictions on the available costs. By 
calculation Evaluation matrix and Score function 
matrix, the problem is solved by EDM which is very 
simple yet efficient method to solve GAP. Now to 
verify the solution the problem has been transformed 
to LPP form and solved by standard software LINGO 
9.0. 
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Abstract: In this paper, the tangent similarity measure of 
neutrosophic sets is proposed and its properties are studied. The 
concept of this tangent similarity measure of single valued 
neutrosophic sets is a parallel tool of improved cosine similarity 

measure of single valued neutrosophic sets. Finally, using this 
tangent similarity measure of single valued neutrosophic set, two 
applications namely, selection of educational stream and medical 
diagnosis are presented.

Keywords: Tangent similarity measure, Single valued neutrosophic set, Cosine similarity measure, Medical diagnosis 

1 Introduction

Smarandache  [1, 2]  introduced  the concept of neutro-
sophic set to deal with imprecise, indeterminate, and in-
consistent data. In the concept of neutrosophic set, inde-
terminacy is quantified explicitly and truth-membership, 
indeterminacy-membership, and falsity-membership are 
independent. Indeterminacy plays an important role in 
many real world decision making problems.  The concept 
of neutrosophic set [1, 2, 3, 4] generalizes the Cantor set 
discovered  by  Smith [5] in 1874 and introduced by 
German mathematician Cantor [6] in 1883, fuzzy set 
introduced by Zadeh [7], interval valued fuzzy sets 
introduced independently by Zadeh [8], Grattan-Guiness 
[9], Jahn [10], Sambuc [11], L-fuzzy sets proposed by 
Goguen [12],  intuitionistic fuzzy set proposed by 
Atanassov [13], interval valued intuitionistic fuzzy sets 
proposed by Atanassov and Gargov [14],  vague sets 
proposed by Gau, and  Buehrer [15], grey sets proposed by 
Deng [16], paraconsistent set proposed by  Brady [17], 
faillibilist set [2], paradoxist set [2], pseudoparadoxist set 
[2], tautological set [2] based on the philosophical point of 
view. From philosophical point of view, truth-membership, 
indeterminacy-membership, and falsity-membership of the 
neutrosophic set assume the value from real standard or 
non-standard subsets of ]−0, 1+[.  Realizing the difficulty in 
applying the neutrosophic sets in realistic problems, Wang 
et al. [18] introduced the concept of single valued 
neutrosophic set (SVNS) that is the subclass of a neutro-
sophic set. SVNS can be applied in real scientific and en-
gineering fields. It offers us additional possibility to repre-
sent uncertainty, imprecise, incomplete, and inconsistent 
information that manifest the real world. Wang et al. [19] 
further studied interval neutrosophic sets (INSs) in which 

the truth-membership, indeterminacy-membership, and 
false-membership were extended to interval numbers. 

Neutrosophic sets and its various extensions have been 
studied and applied in different fields such as medical 
diagnosis [20, 21, 22, 23], decision making problems [ 24, 
25, 26, 27, 28, 29, 30], social problems [31,32], 
educational problem [33, 34], conflict resolution [35, 36], 
image processing [ 37, 38, 39], etc.  

The concept of similarity is very important in studying 
almost every scientific field.  Literature review reflects that 
many methods have been proposed for measuring the de-
gree of similarity between fuzzy sets studied by Chen [40], 
Chen et al., [41],  Hyung et al.[42], Pappis & Karacapilidis 
[43], presented by Wang [44]. But these methods are not 
capable of dealing with the similarity measures involving 
indeterminacy. In the literature few studies have addressed 
similarity measures for neutrosophic sets and single valued 
neutrosophic sets [24, 45, 46, 47, 48, 49, 50, 51]. 

In 2013, Salama [45] defined the correlation coeffi-
cient, on the domain of neutrosophic sets, which is another 
kind of similarity measure. In 2013, Broumi and 
Smarandache [46] extended the Hausdorff distance to neu-
trosophic sets that plays an important role in practical ap-
plication, especially in many visual tasks, computer assist-
ed surgery, etc. After that a new series of similarity 
measures has been proposed for neutrosophic set using dif-
ferent approaches.  In  2013, Broumi  and  Smarandache 
[47] also  proposed  the correlation  coefficient  between  
interval  neutrosphic  sets. Majumdar  and  Smanta  [48]  
studied  several  similarity measures of single valued 
neutrosophic sets based on  distances,  a  matching  
function, memebership grades, and entropy  measure  for  a  
SVNS.   
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In 2013, Ye [24] proposed the distance-based 
similarity measure of SVNSs and applied it to the group 
decision making problems with single valued neutrosophic 
information. Ye  [26] also proposed  three vector 
similarity  measure  for  SNSs, an  instance  of  SVNS and 
interval valued neutrosophic set, including the Jaccard, 
Dice, and cosine similarity and applied them to multi-
criteria decision-making problems with simplified 
neutrosophic information. Recently, Jun [51] discussed 
similarity measures on interval neutrosophic set based on 
Hamming distance and Euclidean distance and offered a 
numerical example of its use in decision making problems.  

Broumi and Smarandache [52] proposed a cosine 
similarity measure of interval valued neutrosophic sets 

Ye  [53] further studied and found  that there exsit 
some disadvantages of existing cosine similarity measures 
defined in vector space [26] in some situations. He [53] 
mentioned that they may produce absurd result in some re-
al cases. In order to overcome theses disadvantages, Ye 
[53] proposed improved cosine similarity measures based 
on cosine function, including single valued neutrosophic 
cosine similarity measures and interval neutrosophic co-
sine similarity measures. In his study Ye [53]   proposed 
medical diagnosis method based on the improved cosine 
similarity measures. Ye [54] further studied  medical 
diagnosis problem namely,“Multi-period medical diagnosis 
using a single  valued neutrosophic similarity measure 
based on tangent function`` However, it is yet to publish. 
Recently, Biswas et al. [50] studied cosine similarity 
measure based multi-attribute decision-making with 
trapezoidal fuzzy neutrosophic numbers.  In hybrid 
environment Pramanik and Mondal [55] proposed cosine 
similarity measure of rough neutrosophic sets and provided 
its application in medical diagnosis.  Pramanik and Mondal 
[56] also proposed cotangent similarity measure of rough 
neutrosophic sets and its application to medical diagnosis. 

Pramanik and Mondal [57] proposed weighted fuzzy 
similarity measure based on tangent function and its 
application to medical diagnosis. Pramanik and Mondal 
[58] also proposed tangent similarity measures between 
intuitionistic fuzzy sets and studied some of its properties 
and applied it for medical diagnosis.  

In this paper we have extended the concept of 
intuitionistic tangent similarity measure [56] to 
neutrosophic environment. We have defined a new 
similarity measre called “tangent   similarity   measure   for   
single valued  neutrosophic  sets``. The properties of 
tangent similarity are established. The proposed tangent 
similarity measure is applied to medical diagnosis.  

Rest of the paper is structured as follows.  Section 2 
presents preliminaries of neutrosophic sets. Section 3 is 
devoted to introduce tangent similarity measure for single 
valued neutrosophic sets and some of its properties. Sec-
tion 4 presents decision making based on neutrosophic 
tangent similarity measure. Section 5 presents  the applica-

tion of tangent similarity measure to two problems namely, 
neutrosophic decision making of student’s educational 
stream selection and neutrosophic decision making on 
medical diagnosis. Finally, section 6 presents concluding 
remarks and scope of future research. 

2 Neutrosophic preliminaries 

2.1 Neutrosophic sets 

Definition 2.1[1, 2] 

Let U be an universe of discourse. Then the 
neutrosophic set P can be presented of the form: 

P = {< x:TP(x ), IP(x ), FP(x)>, x U},  where  the  
functions T, I, F: U→ ]−0,1+[ define  respectively  the 

degree of  membership, the degree  of indeterminacy, and 
the degree of  non-membership of the element xU to the 
set P satisfying the following the condition.  

−0≤ supTP(x)+ supIP( x)+ supFP(x) ≤ 3+                     (1)
From philosophical point of view, the neutrosophic set 

assumes the value from real standard or non-standard 
subsets of ]−0, 1+[. So instead of ]−0, 1+[  one needs to take 
the interval  [0, 1] for technical applications, because  ]−0, 
1+[ will be difficult to apply in the real applications such as 
scientific and engineering problems. For two netrosophic 
sets (NSs), PNS = {<x: TP (x ), IP( x), FP(x ) > | x X} and 
QNS ={< x, TQ(x ), IQ(x ), FQ(x) > | x X } the two relations 
are defined as follows:  

(1) PNS  QNS if and only if TP(x )  TQ(x ), IP(x ) 
 IQ(x ), FP(x )  FQ(x) 

(2)  PNS = QNS if and only if TP(x) = TQ(x), IP(x) = IQ(x), 
FP(x ) = FQ(x)   

2.2 Single valued neutrosophic sets 

Definition 2.2 [18] 
Let X be a space of points (objects) with generic 

elements in X denoted by x. A SVNS P in X is 
characterized by a truth-membership function TP(x ), an 
indeterminacy-membership function IP(x ), and a falsity 
membership function FP(x), for each point x in X, TP(x), 
IP(x), FP(x) [0, 1]. When X is continuous, a SVNS P can 
be written as follows: 

Xx:
x

)x(F),x(I),x(TP X
PPP 




 When X is discrete, a SVNS P can be written as 
follows: 

Xx:
x

)x(F),x(I),x(TP i
n
i

i

iPiPiP



 1

For two SVNSs , PSVNS = {<x: TP(x ), IP(x), FP(x )> | x 
X} and QSVNS = {<x, TQ(x), IQ(x), FQ(x)> | xX } the two 
relations are defined as follows: 

(1) PSVNS  QSVNS if and only if TP(x)  TQ(x), 
IP(x)  IQ(x), FP(x )  FQ( x) 
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(2) PSVNS = QSVNS if and only if TP(x) = TQ(x), IP(x) = 
IQ(x), FP(x) = FQ(x) for any xX  

3 Tangent similarity measures for single valued 
neutrosophic sets

Let P = <x(TP(x)IP(x)FP(x))> and Q = <x(TQ(x), IQ(x), 
FQ(x))>  be two single valued neutrosophic numbers. Now 
tangent similarity function which measures the similarity 
between two vectors based only on the direction, ignoring 
the impact of the distance between them can be presented 
as follows: 

TSVNS(P,Q)=














































n
i

iQiP

iQiPiQiP

)x(F)x(F

)x(I)x(I)x(T)x(T

tan
n 1 12

11


    (1) 

Proposition 3.1. The defined tangent similarity 
measure TSVNS(A, B) between SVNS P and Q satisfies the 
following properties: 

1. 0   TSVNS (P, Q)  1
2. TSVNS(P, Q) = 1 iff P = Q
3. TSVNS(P, Q) = TNRS(Q, P)
4. If R is a SVNS in X and P Q R then
TSVNS(P, R)   TSVNS(P, Q) and TSVNS(P, R)   TSVNS(Q, 

R) 
Proofs: 

(1)
As the membership, indeterminacy and non-

membership functions of the SVNSs and the value of  the 
tangent function are within [0 ,1], the  similarity measure  
based  on  tangent  function  also  is  within [ 0,1]. 

Hence 0  TSVNS(P, Q)   1       
(2) 
For any two SVNS P and Q if  P = Q, this implies 

TP(x) = TQ(x), IP(x) = IQ(x), FP(x) = FQ(x). Hence 
0 )x(T)x(T QP  , 0 )x(I)x(I QP , 0 )x(F)x(F QP , 

Thus TSVNS(P, Q) = 1 
Conversely, 
If TSVNS(P, Q) = 1 then 0 )x(T)x(T QP , 

0 )x(I)x(I QP , 0 )x(F)x(F QP since tan(0)=0. 

So we can we can write, TP(x) = TQ(x) , IP(x) = IQ(x), 
FP(x)  = FQ(x). Hence P = Q.  

(3) 
This proof is obvious.   
(4) 
If P  Q  R then TP(x)  TQ(x)  TR(x), IP(x)   IQ(x) 

  IR(x), FP(x)   FQ(x)   FR(x) for xX. 
Now we have the following inequalities: 

)x(T)x(T)x(T)x(T RPQP  , 
)x(T)x(T)x(T)x(T RPRQ  ;

)x(I)x(I)x(I)x(I RPQP  , 
)x(I)x(I)x(I)x(I RPRQ  ;

 )x(F)x(F)x(F)x(F RPQP  , 
)x(F)x(F)x(F)x(F RPRQ  . 

Thus TSVNS(P, R)   TSVNS(P, Q) and TSVNS(P, R)   
TSVNS(Q, R). Since tangent function is increasing in the 

interval 






 

4
,0 . 

4. Single valued neutrosophic decision making
based on tangent similarity measure 

Let A1, A2 , ..., Am be a discrete set of candidates, C1, 
C2, ..., Cn be the set of criteria of each candidate, and B1, 
B2, ..., Bk  are the alternatives of each candidates. The deci-
sion-maker provides the ranking of alternatives with re-
spect to each candidate. The ranking presents the perfor-
mances of candidates Ai (i = 1, 2,..., m) against the criteria 
Cj (j = 1, 2, ..., n). The values associated with the alterna-
tives for MADM problem can be presented in the follow-
ing decision matrix (see Table 1 and Table 2). The relation 
between candidates and attributes are given in the Table 1. 
The relation between attributes and alternatives are given 
in the Table 2. 

Table 1: The relation between candidates and attributes 

mnmmm

n

n

n

dddA

dddA
dddA
CCC

...
...............

...

...

...

21

222212

112111

21

Table 2: The relation between attributes and alterna-
tives 

nknnn

k

k

k

C

C
C

BBB







...
...............

...

...

...

21

222212

112111

21

Here dij and ij  are all single valued neutrosophic 
numbers. 

The steps corresponding to single valued neutrosophic 
number based on tangent function are presented using the 
following steps. 

Step 1: Determination of the relation between can-

didates and attributes 

The relation between candidate Ai (i = 1, 2, ..., m)  and  
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the attribute Cj (j = 1, 2, ..., n) is presented in the Table 3. 
Table 3: relation between candidates and attributes in 

terms of SVNSs 

mnmnmnmmmmmmm

nnn

nnn

n

FITFITFITA

FITFITFITA
FITFITFITA

CCC

,,...,,,,
...............

,,...,,,,
,,...,,,,

...

2221111

2222222222121212

1111212121111111

21

Step 2: Determination of the relation between at-

tributes and alternatives 

 The relation between attribute Ci (i = 1, 2, ..., n) and 
alternative Bt (t = 1, 2, ..., k) is presented in the table 4. 

Table 4: The relation between attributes and alterna-
tives in terms of SVNSs 

nknknknnnnnnn

kkk

kkk

k

FITFITFITC

FITFITFITC
FITFITFITC

BBB

,,...,,,,
...............

,,...,,,,
,,...,,,,

...

222111

2222222222121212

1111212121111111

21

Step 3: Determination of the relation between at-

tributes and alternatives 

Determine the correlation measure between the table 3 
and the table 4 using TSVNS(P,Q). 

Step 4: Ranking the alternatives 

Ranking the alternatives is prepared based on the de-
scending order of correlation measures. Highest value re-
flects the best alternative. 

Step 5: End 

5. Example 1: Selection of educational stream for
higher secondary education (XI-XII) 

Consider the illustrative example which is very important 
for students after secondary examination (X) to select suit-
able educational stream for higher secondary education 
(XI-XII). After class X, the student takes up subjects of his 
choice and puts focused efforts for better career prospects 
in future. This is the crucial time when most of the students 
get confused too much and takes a decision which he starts 
to dislike later. Students often find it difficult to decide 
which path they should choose and go. Selecting a career 
in a particular stream or profession right at this point of 
time has a long lasting impact on a student's future.  If the 
chosen branch is improper, the student may encounter a 
negative impact to his/her carrier. It is very important for 
any student to choose carefully from various options avail-
able to him/her in which he/she is interested. So it is neces-
sary to use a suitable mathematical method for decision 
making. The proposed similarity measure among the stu-

dents’ attributes and attributes versus educational streams 
will give the proper selection of educational stream of stu-
dents. The feature of the proposed method is that it in-
cludes truth membership, indeterminate and falsity mem-
bership function simultaneously. Let A = {A1, A2, A3} be a 
set of students, B = {science (B1), humanities/arts (B2), 
commerce (B3), vocational course (B4)} be a set of educa-
tional streams and C = {depth in basic science and mathe-
matics (C1), depth in language (C2), good grade point in 
secondary examination (C3), concentration (C4), and labo-
rious (C5)} be a set of attributes. Our solution is to examine 
the students and make decision to choose suitable educa-
tional stream for them (see Table 5, 6, 7). The decision 
making procedure is presented using the following steps. 

Step 1: The relation between students and their attrib-
utes in the form SVNSs is presented in the table 5. 

Table 5: The relation between students and attributes 

Rela-
tion-1 

C1 C2 C3 C4 C5 

A1 

















0.3
 0.3,

0.7,

















 0.2
0.3,
0.6,

















0.1
0.1,
0.7,

















  0.4)
0.4,
(0.7,

















0.4
0.3,
0.5,

A2 

















 0.3
0.2,
0.5,

















0.3
0.2,
0.6,

















 0.1)
0.1,
0.6,

















 0.3)
0.3,
0.6,

















0.2
0.3,
0.6,

A3  

















 0.2)
0.2,
0.6,

















0.2
0.3,
0.6,

















0.0
0.1,
0.6,

















 0.2)
0.3,
0.6,

















0.3
0.3,
0.5,

Step 2: The relation between student’s attributes and 
educational streams in the form SVNSs is presented in the 
table 6. 

Table 6: The relation between attributes and education-
al streams 
Relation-

2 
B1 B2 B3 B4 

C1 

















0.2
0.2,
0.9,

















0.2
0.3,
0.7,

















0.3
0.3,
0.8,

















0.6
0.3,
0.4,

C2 

















0.2
0.2,
0.6,

















0.2
0.4,
0.8,

















0.5
0.3,
0.4,

















0.5
0.2,
0.3,
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C3 

















0.2
0.2,
0.7,

















0.2
0.4,
0.7,

















0.3
0.3,
0.5,

















0.4
0.2,
0.5,

C4 

















0.1
0.2,
0.8,

















0.1
0.3,
0.8,

















0.1
0.1,
0.7,

















0.3
0.3,
0.5,

C5 

















0.2
0.3,
0.7,

















0.2
0.3,
0.6,

















0.2
0.2,
0.8,

















0.1
0.2,
0.7,

Step 3: Determine the correlation measure between the 
table 5 and the table 6 using tangent similarity measures 
(equation 1). The obtained measure values are presented in 
table 7. 

Table 7:  The correlation measure between Reation-
1(table 5) and Relation-2 (table 6) 

Tangent 
similarity 
measure 

B1 B2 B3 B4 

A1 0.91056 0.91593 0.87340 0.84688 
A2 0.92112 0.90530 0.90534 0.90003 
A3  0.92124 0.91588 0.87362 0.85738 

Step 4: Highest correlation measure value of A1, A2 and 
A3 are 0.91593, 0.92112 and 0.92124 respectively. The 
highest correlation measure from the table 7 gives the 
proper decision making of students for educational stream 
selection. Therefore student A1 should select in arts stream, 
student A2 should select in science stream and student A3 
should select the science stream. 

Example2:  Medical diagnosis 

Let us consider an illustrative example adopted from 
Szmidt and Kacprzyk [59] with minor changes. As medical 
diagnosis contains a large amount of uncertainties and 
increased volume of information available to physicians 
from new medical technologies, the process of classifying 
different set of symptoms under a single name of a disease. 
In some practical situations, there is the possibility  of  
each  element  having  different  truth membership, 
indeterminate  and  falsity  membership functions. The 
proposed similarity measure among the patients versus 
symptoms and symptoms versus diseases will give the 
proper medical diagnosis. The main feature of this 
proposed method is that it includes truth membership, 
indeterminate and  false  membership by taking one time 
inspection for diagnosis.   

Now, an example of  a  medical diagnosis  will be 
presented. Example: Let P = {P₁, P₂, P₃, P4} be a set of 

patients, D = {Viral fever, malaria, typhoid, stomach 
problem, chest problem} be a set of diseases  and  
S={Temperature, headache, stomach  pain,  cough,  chest  
pain.} be a set of symptoms. The solution strategy  is to  
examine  the  patient  which  will provide  truth 
membership, indeterminate and false membership function 
for each patien regarding  the relatiom between patient and 
different symptoms (see the table 8), the relation among 
symptoms and diseases (see the table 9), and the 
correlation measure between R-1 and R-2 (see the table 10). 

Table 8: (R-1) The relation between Patient and 
Symptoms  

R-1 Temper-
ature 

Headac
he 

Stom-
ach  
pain 

Cough Chest-  
pain 

P1 

















0.1
0.1,
0.8,

















0.3
0.1,
0.6,

















0.0
0.8,
0.2,

















0.3
0.1,
0.6,

















0.3
0.6,
0.1,

P2 

















0.2
0.8,
0.0,

















0.2
0.4,
0.4,

















0.3
0.1,
0.6,

















0.2
0.7,
0.1,

















0.1
0.8,
0.1,

P3 

















0.1
0.1,
0.8,

















0.1
0.1,
0.8,

















0.4
0.6,
0.0,

















0.1
0.7,
0.2,

















0.5
0.5,
0.0,

P4 

















0.3
0.1,
0.6,

















0.1
0.4,
0.5,

















0.3
0.4,
0.3,

















0.1
0.2,
0.7,

















0.3
0.4,
0.3,

Table 9: (R-2) The relation among symptoms and 
diseases  

R-2 Viral 
fever 

Malari
a 

Typhoi
d 

Stomac
h 
proble
m 

Chest 
proble
m 

Temperatu
re 

















0.6
0.0,
0.4,

















0.3
0.0,
0.7,

















0.4
0.3,
0.3,

















0.2
0.7,
0.1,

















0.1
0.8,
0.1,

Headache 

















0.2
0.5,
0.3,

















0.2
0.6,
0.2,

















0.3
0.1,
0.6,

















0.4
0.4,
0.2,

















0.2
0.8,
0.0,

Stomach  
pain 

















0.2
0.7,
0.1,

















0.1
0.9,
0.0,

















0.1
0.7,
0.2,

















0.2
0.0,
0.8,

















0.0
0.8,
0.2,
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Cough 

















0.3
0.3,
0.4,

















0.3
0.0,
0.7,

















0.2
0.6,
0.2,

















0.1
0.7,
0.2,

















0.0
0.8,
0.2,

Chest  
pain 

















0.2
0.7,
0.1,

















0.1
0.8,
0.1,

















0.0
0.9,
0.1,

















0.1
0.7,
0.2,

















0.1
0.1,
0.8,

Table 10: The correlation measure between R-1 and R-
2 
Tangen
t 
similar
ity 
measur
e 

Viral 
Fever 

Malaria Typhoi
d 

Stomac
h 
proble
m 

Chest 
proble
m 

P1 0.8522 0.8729 0.8666 0.6946 0.6929 
P2 0.7707 0.7257 0.8288 0.9265 0.7724 
P3 0.7976 0.7630 0.8296 0.7267 0.6921 
P4 0.8469 0.8407 0.7978 0.7645 0.6967 

 The highest  correlation  measure  (shown in the  
Table  10) reflects  the  proper  medical  diagnosis.  
Therefore, patient P₁ suffers from malaria,  P₂ suffers from 
stomach problem, and P₃ suffers from typhoid and P4 
suffers from viral fever.  

 Conclusion

In this paper, we have proposed tangent similarity 
measure based multi-attribte decision making of single 
valued neutrosophic set and proved some of its basic 
properties. We have presented two applications, namely 
selection of educational stream and medical diagnosis. The 
concept presented in this paper can be applied to other 
multiple attribute decision making problems in 
neutrosophic envirobment.  
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Abstract- Neutrosophic set is a part of 
neutrosophy which studies the origin, nature, 
and scope of neutralities, as well as their 
interactions with different ideational spectra. 
Neutrosophic set is a powerful general formal 
framework that has been recently proposed. The 
paper aims to give computational algorithm to 
solve a multi-objective non-linear programming 
problem (MONLPP) using neutrosophic 
optimization method. The proposed method is 
for solving MONLPP with single valued 
neutrosophic data. We made a comparative 
study of optimal solution between intuitionistic 
fuzzy and neutrosophic optimization technique. 
The developed algorithm has been illustrated by 
a numerical example. Finally, optimal riser 
design problem is presented as an application of 
such technique.   

Keywords: Neutrosophic set, single valued 
neutrosophic set, neutrosophic optimization 
method, Riser design problem. 

1 Introduction 

The concept of fuzzy sets was introduced by 
Zadeh in 1965 [1]. Since the fuzzy sets and 
fuzzy logic have been applied in many real 

applications to handle uncertainty. The 
traditional fuzzy sets uses one real value 
𝜇𝐴(𝑥) ϵ [0, 1] to represents the truth
membership function of fuzzy set A defined 
on universe X. Sometimes  µ𝐴(𝑥)  itself is
uncertain and hard to be defined by a crisp 
value. So the concept of interval valued 
fuzzy sets was proposed [2] to capture the 
uncertainty of truth membership. In some 
applications we should consider not only the 
truth membership supported by the evident 
but also the falsity membership against by 
the evident. That is beyond the scope of 
fuzzy sets and interval valued fuzzy sets. In 
1986, Atanassov introduced the intuitionistic 
fuzzy sets [3], [5] which is a generalisation 
of fuzzy sets. The intuitionistic fuzzy sets 
consider both truth membership and falsity 
membership. Intuitionistic fuzzy sets can 
only handle incomplete information not the 
indeterminate information and inconsistent 
information. In neutrosophic sets 
indeterminacy is quantified explicitly and 
truth membership, indeterminacy 
membership and falsity membership are 
independent. Neutrosophy was introduced 
by Smarandache in 1995 [4]. The motivation 
of the present study is to give computational 
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algorithm for solving multi-objective non-
linear programming problem by single 
valued neutrosophic optimization approach. 
We also aim to study the impact of truth 
membership, indeterminacy membership 
and falsity membership functions in such 
optimization process and thus have made 
comparative study in intuitionistic fuzzy and 
neutrosophic optimization technique. Also 
as an application of such optimization 
technique optimal riser design problem is 
presented.    

2 Some preliminaries 

2.1   Definition -1 (Fuzzy set) [1] 

Let X be a fixed set. A fuzzy set A of X 
is an object having the form 𝐴̃ = {(x,𝜇𝐴

(x)), x Є X} where the function 𝜇𝐴(𝑥) :
X → [0, 1] define the truth membership 
of the element x Є X to the set A.  

2.2   Definition-2 (Intuitionistic 

fuzzy set) [3] 

Let a set X be fixed. An intuitionistic fuzzy 
set or IFS 𝐴̃𝑖 in X is an object of the form
𝐴̃𝑖 = {< 𝑋, 𝜇𝐴 (𝑥), 𝜈𝐴(𝑥) > /𝑥 ∈ 𝑋} where
𝜇𝐴 (𝑥) : X→ [0, 1] and           𝜈𝐴 (𝑥) : X→

[0, 1]  define  the Truth-membership and 
Falsity-membership respectively , for every 
element of x∈  X , 0≤ 𝜇𝐴 (𝑥) + 𝜈𝐴(𝑥)  ≤1 .

2.3   Definition-3 (Neutrosophic 

set) [4] 

Let X be a space of points (objects) 
and 𝑥 ∈ 𝑋. A neutrosophic set 𝐴̃n in X is 
defined by a Truth-membership 
function𝜇𝐴 (𝑥), an indeterminacy-
membership function 𝜎𝐴(𝑥) and a
falsity-membership function 𝜈𝐴(𝑥)  and
having the form       𝐴̃𝑛 = {< 𝑋, 𝜇𝐴 (𝑥),

𝜎𝐴(𝑥), 𝜈𝐴(𝑥) > /𝑥 ∈ 𝑋}.
𝜇𝐴 (𝑥),  𝜎𝐴(𝑥) 𝑎𝑛𝑑 𝜈𝐴(𝑥) are real
standard or non-standard subsets of  

] 0-, 1+ [. that is 
𝜇𝐴 (𝑥) : X→ ] 0-, 1+ [
𝜎𝐴(𝑥) : X→ ] 0-, 1+ [
𝜈𝐴 (𝑥) : X→ ] 0-, 1+ [

There is no restriction on the sum of 
𝜇𝐴 (𝑥),  𝜎𝐴(𝑥) 𝑎𝑛𝑑 𝜈𝐴(𝑥), so

-0 ≤ sup 𝜇𝐴(𝑥) + sup 𝜎𝐴(𝑥) +
sup 𝜈𝐴(𝑥) ≤ 3+

2.4  Definition-3 (Single valued 

Neutrosophic sets) [6]  

     Let X be a universe of discourse. A single 
valued neutrosophic set 𝐴̃𝑛     over X is an 
object having the form 𝐴̃𝑛 =
{< 𝑋, 𝜇𝐴 (𝑥),  𝜎𝐴(𝑥), 𝜈𝐴(𝑥) > /𝑥 ∈ 𝑋} where  
𝜇𝐴 (𝑥) : X→ [0, 1], 𝜎𝐴(𝑥) : X→[0, 1] and 𝜈𝐴 (𝑥)

: X→ [0, 1] with 0≤ 𝜇𝐴 (𝑥) + 𝜎𝐴(𝑥) +

𝜈𝐴(𝑥)  ≤3 for all x ∈ X.

Example   Assume that X = [x1, x2, x3]. X1 is 
capability, x2 is trustworthiness and x3 is price. 
The values of x1, x2and x3 are in [0, 1]. They are
obtained from the questionnaire of some domain 
experts, their option could be a degree of “good 
service”, a degree of indeterminacy and a degree 
of “poor service”. A is a single valued 
neutrosophic set of X defined by 

A = 〈0.3,0.4,0.5〉/x1 + 〈0.5,0.2,0.3〉/x2 + 
〈0.7,0.2,0.2〉/x3     

2.5   Definition- 4(Complement): [6] The 
complement of a single valued neutrosophic set 
A is denoted by c(A) and is defined by  

𝜇𝑐(𝐴)(𝑥) = 𝜈𝐴 (𝑥)

𝜎𝑐(𝐴)(𝑥) = 1 − 𝜎𝐴 (𝑥)

𝜈𝑐(𝐴)(𝑥) = 𝜇𝐴 (𝑥)

for all x in X. 

Example 2:   let A be a 
single valued 

Neutrosophic Sets and Systems, Vol. 9, 2015 

Pintu Das, Tapan Kumar Roy, Multi-objective non-linear programming problem based on Neutrosophic Optimization Technique and 
its application in Riser Design Problem 

89



neutrosophic set defined 
in example 1. Then, 
c(A) =  〈0.5,0.6,0.3〉/x1 
+ 〈0.3,0.8,0.5〉/x2    
+〈0.2,0.8,0.7〉/x3 . 

2.6 Definition 

5(Union):[6]  The 
union of two single 
valued neutrosophic 
sets A and B is a 
single valued 
neutrosophic set C, 
written as C = A ∪  
B, whose truth-
membership, 
indeterminacy-
membership and 
falsity-membership 
functions are are 
given by 

𝜇𝑐(𝐴)(𝑥) = max
(𝜇𝐴(𝑥), 𝜇𝐵(𝑥))
𝜎𝑐(𝐴)(𝑥)=max(
𝜎𝐴(𝑥), 𝜎𝐵(𝑥))
𝜈𝑐(𝐴)(𝑥) =

min (𝜈𝐴(𝑥),
𝜈𝐵(𝑥))      for
all x in X 

Example 3:   Let A and 
B be two single valued 
neutrosophic sets 
defined in example -1. 
Then, A ∪  B = 
〈0.6,0.4,0.2〉/x1 + 
〈0.5,0.2,0.3〉/x2 + 
〈0.7,0.2,0.2〉/x3. 

2.7 Definition 

6(Intersection):[6]  

The Intersection of 
two single valued 
neutrosophic sets A 
and B is a single 
valued neutrosophic 
set C, written as C = 
A ∩  B, whose truth-

membership, 
indeterminacy-
membership and 
falsity-membership 
functions are are 
given by 

𝜇𝑐(𝐴)(𝑥) = min
(𝜇𝐴(𝑥), 𝜇𝐵(𝑥))
𝜎𝑐(𝐴)(𝑥) = min
(𝜎𝐴(𝑥), 𝜎𝐵(𝑥))

𝜈𝑐(𝐴)(𝑥)  = max
(𝜈𝐴(𝑥), 𝜈𝐵(𝑥))
for all x in X 

Example 4:   Let A and 
B be two single valued 
neutrosophic sets 
defined in example -1. 
Then, A ∩  B = 
〈0.3,0.1,0.5〉/x1 + 
〈0.3,0.2,0.6〉/x2 + 
〈0.4,0.1,0.5〉/x3. 

Here, we notice that by 
the definition of 
complement, union and 
intersection of single 
valued neutrosophic 
sets, single valued 
neutrosophic sets satisfy 
the most properties of 
classic set, fuzzy set and 
intuitionistic fuzzy set. 
Same as fuzzy set and 
intuitionistic fuzzy set, it 
does not satisfy the 
principle of middle 
exclude.   

3 Neutrosophic Optimization Technique to 

solve minimization type multi-objective non-

linear programming problem. 
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A non-linear multi-objective optimization 

problem of the form  

Minimize {𝑓1(𝑥), 𝑓2(𝑥), ………𝑓𝑝(𝑥)}  (1) 

𝑔𝑗(𝑥)    ≤ 𝑏𝑗         j=1, ………..,q 

Now the decision set 𝐷̃n, a conjunction of 

Neutrosophic objectives and constraints is 

defined as  

𝐷̃n = ( ⋂ 𝐺̃𝑘
𝑛𝑝

𝑘=1  ) ∩ (⋂ 𝐶̃𝑗
𝑛𝑞

𝑗=1 ) = 

{(𝑥, 𝜇𝐷̃𝑛(𝑥), 𝜎𝐷̃𝑛(𝑥), 𝜈𝐷̃𝑛(𝑥))} 

Here     𝜇𝐷̃𝑛(𝑥)=min     

  (𝜇
𝐺̃1

𝑛(𝑥), 𝜇
𝐺̃2

𝑛(𝑥), ……… . 𝜇
𝐺̃𝑝

𝑛(𝑥); 

 𝜇
𝐶̃1

𝑛(𝑥), 𝜇
𝐶̃2

𝑛(𝑥), …… . 𝜇
𝐶̃𝑞

𝑛(𝑥)   

for 𝑎𝑙𝑙 𝑥 ∈ 𝑋 .   

𝜎𝐷̃𝑛(𝑥)=min

(𝜎
𝐺̃1

𝑛(𝑥), 𝜎
𝐺̃2

𝑛(𝑥), ……… . 𝜎
𝐺̃𝑝

𝑛(𝑥); 

𝜎
𝐶̃1

𝑛(𝑥), 𝜎
𝐶̃2

𝑛(𝑥), …… . 𝜎
𝐶̃𝑞

𝑛(𝑥) )  

for all 𝑥 ∈ 𝑋  

   𝜈𝐷̃𝑛(𝑥)=max         

(𝜈
𝐺̃1

𝑛(𝑥), 𝜈
𝐺̃2

𝑛(𝑥), ……… . 𝜈
𝐺̃𝑝

𝑛(𝑥); 

𝜈
𝐶̃1

𝑛(𝑥), 𝜈
𝐶̃2

𝑛(𝑥), …… . 𝜈
𝐶̃𝑞

𝑛(𝑥) ) 

for all 𝑥 ∈ 𝑋. 

Where 𝜇𝐷̃𝑛(𝑥), 𝜎𝐷̃𝑛(𝑥), 𝜈𝐷̃𝑛(𝑥) are Truth 

membership function, Indeterminacy 

membership function, falsity membership 

function of  Neutrosophic decision set 

respectively. Now using the neutrosophic 

optimization the problem (1) is transformed to 

the non-linear programming problem as 

   Max  α………………(2) 

    Max γ 

  Min β 

 such that                  𝜇
𝐺̃𝑘

𝑛(𝑥) ≥ α, 

  𝜇
𝐶̃𝑗

𝑛(𝑥≥α                                                                

 𝜎
𝐺̃𝑘

𝑛(𝑥)  ≥ γ   

 𝜎
𝐶̃𝑗

𝑛(𝑥) ≥ γ 

 𝜈
𝐺̃𝑘

𝑛(𝑥) ≤ β 

 𝜈
𝐶̃𝑗

𝑛(𝑥) ≤ β 

  α + β +γ ≤ 3 

  α ≥ β 

 α ≥ γ 

 α ,β, γ ∈ [0, 1] 

Now this non-linear programming problem (2) 

can be easily solved by an appropriate 

mathematical programming algorithm to give 

solution of multi-objective non-linear 

programming problem (1) by neutrosophic 

optimization approach. 

4 Computational algorithm 

Step-1:  Solve the MONLP problem (1) as a 

single objective non-linear problem p times for 

each problem by taking one of the objectives at a 

time and ignoring the others. These solution are 

known as ideal solutions. Let 𝑥𝑘 be the

respective optimal solution for the kth different 

objective and evaluate each objective values for 

all these kth optimal solution.   

Step-2: From the result of step-1, determine the 

corresponding values for every objective for 

each derived solution. With the values of all 

objectives at each ideal solution, pay-off matrix 

can be formulated as follows.  

[
 
 
 
 

𝑓1
∗(𝑥1)     𝑓2(𝑥

1)…………𝑓𝑝(𝑥1)

𝑓1(𝑥
2)     𝑓2

∗(𝑥2)…………𝑓𝑝(𝑥2)
…………………………………… . .
𝑓1(𝑥

𝑝)     𝑓2(𝑥
𝑝)…………𝑓𝑝

∗(𝑥𝑝)
]
 
 
 
 

Step-3. For each objective 𝑓𝑘(𝑥), find lower

bound 𝐿𝑘
𝜇 and the upper bound 𝑈𝑘

𝜇.

𝑈𝑘
𝜇 = max {𝑓𝑘(𝑥𝑟∗

)}  and  𝐿𝑘
𝜇 = min

{𝑓𝑘(𝑥𝑟∗
)}   where   r =1, 2,…,k.

For truth membership of objectives. 
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Step-4. We represents upper and lower bounds 
for indeterminacy and falsity membership of 
objectives as follows: 

𝑈𝑘
𝜈  = 𝑈𝑘

𝜇    and  𝐿𝑘
𝜈 = 𝐿𝑘

𝜇 + t (𝑈𝑘
𝜇 -

𝐿𝑘
𝜇 )

𝐿𝑘
𝜎  = 𝐿𝑘

𝜇   and  𝑈𝑘
𝜎 = 𝐿𝑘

𝜇   + s
(𝑈𝑘

𝜇 − 𝐿𝑘
𝜇  )

Here t and s are to predetermined real number in 
(0, 1). 

Step-5. Define Truth membership, 
Indeterminacy membership, Falsity membership 
functions as follows: 

𝜇𝑘(𝑓𝑘(𝑥)) = 

{
 𝑈𝑘

𝜇 −𝑓𝑘(𝑥)

𝑈𝑘
𝜇 − 𝐿𝑘

𝜇

 1 𝑖𝑓  𝑓𝑘(𝑥) ≤  𝐿𝑘
𝜇

𝑖𝑓  𝐿𝑘
𝜇 ≤ 𝑓𝑘(𝑥) ≤  𝑈𝑘

𝜇

0 𝑖𝑓 𝑓𝑘(𝑥) ≥ 𝑈𝑘
𝜇

𝜎𝑘(𝑓𝑘(𝑥)) = 

{
 𝑈𝑘

𝜎 −𝑓𝑘(𝑥)

𝑈𝑘
𝜎 − 𝐿𝑘

𝜎

 1 𝑖𝑓  𝑓𝑘(𝑥) ≤  𝐿𝑘
𝜎

𝑖𝑓  𝐿𝑘
𝜎 ≤ 𝑓𝑘(𝑥) ≤  𝑈𝑘

𝜎

0 𝑖𝑓 𝑓𝑘(𝑥) ≥ 𝑈𝑘
𝜎

𝜈𝑘(𝑓𝑘(𝑥)) = 

{
𝑓𝑘(𝑥)−𝐿𝑘

𝜈

𝑈𝑘
𝜈 − 𝐿𝑘

𝜈

 0 𝑖𝑓  𝑓𝑘(𝑥) ≤  𝐿𝑘
𝜈

        𝑖𝑓  𝐿𝑘
𝜈 ≤ 𝑓𝑘(𝑥) ≤  𝑈𝑘

𝜈

1 𝑖𝑓 𝑓𝑘(𝑥) ≥ 𝑈𝑘
𝜈

Step-6.  Now neutrosophic optimization method 
for MONLP problem gives a equivalent non- 
linear programming problem as: 

 Max   α - β + γ ……………… (3) 

   Such that   
𝜇𝑘(𝑓𝑘(𝑥))≥α                   

𝜎𝑘(𝑓𝑘(𝑥))  ≥ γ
𝜈𝑘(𝑓𝑘(𝑥)) ≤ β

  α + β +γ ≤ 3 
  α ≥ β 
 α ≥ γ 
 α ,β, γ ∈ [0, 1] 

𝑔𝑗(𝑥) ≤ 𝑏𝑗  , x ≥ 0,
  K=1,2,…….p;  

j=1,2,……..q
Which is reduced to equivalent non-
linear-programming problem as: 

  Max   α - β + γ …………… (4) 

   Such that  
𝑓𝑘(𝑥) + (𝑈𝑘

𝜇  −  𝐿𝑘
𝜇) .α ≤ 𝑈𝑘

𝜇

𝑓𝑘(𝑥) + (𝑈𝑘
𝜎  −  𝐿𝑘

𝜎) .γ ≤ 𝑈𝑘
𝜎

𝑓𝑘(𝑥) - (𝑈𝑘
𝜈  −  𝐿𝑘

𝜈) .β ≤ 𝐿𝑘
𝜈

for k = 1, 2, …….,p 
   α + β +γ ≤ 3 

  α ≥ β 
 α ≥ γ 
 α ,β, γ ∈ [0, 1] 
𝑔𝑗(𝑥) ≤ 𝑏𝑗

for j=1,2,……..q. 
 x ≥ 0, 

5 Illustrated example 

Min 𝑓1(𝑥1, 𝑥2) = 𝑥1
−1𝑥2

−2

Min 𝑓2(𝑥1, 𝑥2) =2 𝑥1
−2𝑥2

−3

Such that 𝑥1 + 𝑥2 ≤ 1

Here pay-off matrix is  [
6.75 60.78
6.94 57.87

]

Here 𝐿1
𝜇 =6.75, 𝑈1

𝜈  = 𝑈1
𝜇  = 6.94 and

𝐿1
𝜈 = 6.75 + 0.19 t

𝐿1
𝜎  = 𝐿1

𝜇 = 6.75 and  𝑈1
𝜎 = 6.75  +

0.19 s     
𝐿2

𝜇 =57.87, 𝑈2
𝜈  = 𝑈2

𝜇  = 60.78 and
𝐿2

𝜈 = 57.87 + 2.91 t
𝐿2

𝜎  = 𝐿2
𝜇 = 57.87 and  𝑈2

𝜎 = 57.87  +
2.91 s     
      We take t = 0.3 and s = 0.4 

Table-1: Comparison of optimal solutions by 
IFO and NSO technique. 

Optimizati
on 

Optim
al 

Opti
mal 

Aspirati
on 

Sum 
of 
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techniques Decisi
on   
Varia
bles 
𝑥1

∗,
𝑥2

∗

Obje
ctive 
Funct
ions 
𝑓1

∗ ,
𝑓2

∗

levels 
of truth, 
falsity 
and 
indeter
minacy 
member
ship 
function
s 

optim
al 
object
ive 
values 

Intuitionist
ic fuzzy 
optimizatio
n(IFO) 

0.365
9009, 
0.635
6811 

6.797
078 
58.79
110 

𝛼* = 
0.71969
6 
β* = 
0.02295
3 

65.58

8178 

Proposed 
neutrosoph
ic 
optimizatio
n(NSO) 

0.363
5224, 
0.636
4776 

6.790
513 
58.69
732 

𝛼*= 
0.71569
84 
β*= 
0.01653
271 
γ*= 
0.28924
61 

65.48
7833 

Table-1. Shows that Neutrosophic optimization 
technique gives better result than Intuitionistic 
fuzzy non-linear programming technique.  

6  Application of Neutrosophic 

Optimization in Riser Design Problem 

The function of a riser is to supply additional 
molten metal to a casting to ensure a shrinkage 
porosity free casting.  Shrinkage porosity occurs 
because of the increase in density from the 
liquid to solid state of metals. To be effective a 
riser must solidify after casting and contain 
sufficient metal to feed the casting. Casting 
solidification time is predicted from Chvorinov’s 
rule.  Chvorinov’s rule provides guidance on 

why risers are typically cylindrical. The longest 
solidification time for a given volume is the one 
where the shape of the part has the minimum 
surface area. From a practical standpoint 
cylinder has least surface area for its volume and 
is easiest to make. Since the riser should solidify 
after the casting, we want it’s solidification time 
to be longer than the casting. Our problem is to 
minimize the volume and solidification time of 
the riser under Chvorinov’s rule. 

A cylindrical side riser which consists of a 
cylinder of height H and diameter D. The 
theoretical basis for riser design is Chvorinov’s 
rule, which is    t = k (V/SA)2. 

Where t = solidification time (minutes/seconds) 

     K = solidification constant for molding 
material (minutes/in2 or      seconds/cm2)   

     V = riser volume (in3 or cm3) 

SA = cooling surface area of the riser. 

The objective is to design the smallest riser such 
that 𝑡𝑅 ≥ 𝑡𝐶

Where tR = solidification time of the riser. 

     tC = solidification time of the casting. 

KR (VR/SAR)2 ≥ KC (VC/SAC)2

The riser and the casting are assumed to be 
molded in the same material, so that KR and KC 
are equal. So   (VR/SAR) ≥  (VC/SAC) .  

The casting has a specified volume and surface 
area, so VC/SAC = Y = constant, which is called 
the casting modulus. 

(VR/SAR) ≥ Y    ,   VR = п D2H/4, SAR= п DH
+ 2 п D2/4 

 (п D2H/4)/( п DH + 2 п D2/4) = (DH)/(4H+2D) 
≥ Y 

We take 𝑉𝑐 = 2.8.6=96 cubic inch. and 𝑆𝐴𝐶 =
2.(2.8+2.6+6.8)= 152 square inch. 

then,   48

19
D-1 + 24

19
H-1 ≤ 1 
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Multi-objective cylindrical riser design problem 
can be stated as : 

Minimize VR (D, H) = п D2H/4

Minimize 𝑡𝑅 (D, H) = (DH)/(4H+2D)

       Subject to 48

19
D-1 + 24

19
H-1 ≤ 1 

Here pay-off matrix is   
[
42.75642 0.631579
12.510209 0.6315786

]  

Table-2. Values of Optimal Decision variables 
and Objective Functions by Neutrosophic 
Optimization Technique. 

Optimal 
Decision 
Variables 

Optimal 
Objective 
Functions 

Aspiration 
levels 
of truth, falsity 
and 
indeterminacy 
membership 
functions 

D* = 
3.152158 
H* = 
3.152158 

V*
R (D*, H*)=

24.60870, 
t*

R (D*, H*) =
0.6315787. 

𝛼* = 
0.1428574 
β* = 0.1428574 
γ *= 0.00001 

 Conclusion:  In view of comparing the 
Neutrosophic optimization with Intuitionistic 
fuzzy optimization method, we also obtained the 
solution of the numerical problem by 
Intuitionistic fuzzy optimization method [14] 
and took the best result obtained for comparison 
with present study. The objective of the present 
study is to give the effective algorithm for 
Neutrosophic optimization method for getting 
optimal solutions to a multi-objective non-linear 
programming problem. The comparisons of 
results obtained for the undertaken problem 
clearly show the superiority of Neutrosophic 
optimization over Intuitionistic fuzzy 
optimization. Finally as an application of 
Neutrosophic optimization multi-objective Riser 
Design Problem is presented and using 

Neutrosophic optimization algorithm an optimal 
solution is obtained.    
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