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Abstract. The primary goal of this study is to address the limitations of classical statistics in handling am-

biguous or indeterminate data. The best alternative to classical and fuzzy statistics for handling such data

uncertainty is neutrosophic statistics, which is a generalization of both. A generalization of classical statistics,

neutrosophic statistics addresses hazy, ambiguous, and unclear information. To achieve this, this manuscript

recommends the neutrosophic ranked set sampling approach. We have introduced neutrosophic estimators for

estimating the mean of the finite population using auxiliary information under neutrosophic ranked set sampling

to address the challenges of estimation of the population mean of neutrosophic data. The proposed estimators

outperform the other existing estimators and proposed estimators evaluated in this work using MSE and PRE

criteria, and equations for bias and mean squared error produced for the suggested estimators up to the first

order of approximation. Under neutrosophic ranked set sampling, the suggested estimator has demonstrated

superiority over the class of estimators, unbiased estimators, and comparable estimators. Using the R pro-

gramming language, a numerical illustration and a simulation study have been conducted to demonstrate the

effectiveness of the suggested methodology. When computing results when working with ambiguous, hazy, and

neutrosophic-type data, the provided estimators are particularly helpful. These estimators produce findings that

are not single-valued but rather have an interval form where our population parameter may lie more frequently.

Since we now have an estimated interval with the population mean’s unknown value provided a minimum MSE,

the estimators are more effective.

Keywords: Neutrosophic ranked set sampling; Neutrosophic Statistics; Ranked Set Sampling; Study Vari-

able; Auxiliary Variable; Bias; Mean Squared Error.
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1. Introduction

Sampling is a crucial practice for a variety of reasons, such as cost and time constraints. In

sampling theory, the goal of estimation procedures is to enhance the effectiveness of estimators

for population parameters while minimizing sampling errors. To achieve this, auxiliary infor-

mation is utilized to improve estimator efficiency, and this information can be incorporated

at various stages of the process. When highly correlated auxiliary information is not readily

available, it can be gathered from previous surveys. Estimation techniques like ratio, product,

and regression are commonly employed in this context.

For instance, Sisodia and Dwivedi [1] introduced a modified ratio estimator that incorpo-

rates the coefficient of variation of auxiliary information. Pandey and Dubey [2], Bahl and

Tuteja [3], Upadhyaya and Singh [4], Singh et al. [5], Kadilar and Cingi [6], and Singh et al.

[7] have also proposed population parameter estimation methods using auxiliary information.

However, our focus here is on ranked set sampling.

Efforts in sampling continually strive for improvements in estimator efficiency, cost-

effectiveness, simplicity, and time savings. Ranked Set Sampling (RSS) offers a superior alter-

native to Simple Random Sampling (SRS) in various fields, including medicine, agriculture,

earth sciences, statistics, and mathematics, especially when measurements are cumbersome,

time-consuming, or expensive. The RSS technique was initially described for population mean

estimation by McIntyre [8], and the mathematical theory behind RSS was provided by Taka-

hashi and Wakimoto [9]. Dell and Clutter [10] demonstrated that, under both perfect and

imperfect ranking scenarios, the mean estimate in RSS remains unbiased.

Numerous researchers, such as Samawi and Muttlak [11], Stokes [12], Al-Shaleh and Al-

Omari [13], Bouza [14], Ganesh and Ganeslingam [15], Bouza [16], Kadilar et al. [17], Singh et

al. [18], Mandowara and Mehta [19], Al-Omari and Bouza [20] have contributed to the field of

ranked set sampling. For recent work, one can prefer Singh and Vishwakarma [21], Bhushan

and Kumar [22], and Singh and Kumari [23].

Classical ranked set sampling deals solely with precise data, assuming no uncertainty. How-

ever, data can be uncertain and imprecise in practice, containing sets or intervals. To address

such situations, fuzzy logic is a valuable tool that handles data with imprecision. Fuzzy

statistics are used to analyze data with fuzzy, ambiguous, unclear, uncertain, or imprecise

characteristics. Yet, they do not account for the degree of indeterminacy inherent in the data.
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Neutrosophic statistics, an extension of fuzzy logic, offers a way to measure both indetermi-

nacy and determinate aspects of uncertain or imprecise data.

When dealing with data that contains indeterminacy, neutrosophic statistics are employed.

Neutrosophic statistics expand upon classical statistics and encompass fuzzy and intuitionistic

statistics. Neutrosophy is applicable when observations in a population or sample lack preci-

sion, are indeterminate or are vague. Some examples of neutrosophic data include district-wise

water level measurements with intervals, variations in machinery part sizes due to measure-

ment errors, and day-wise temperature measurements resulting in interval-type data.

Atanassov [24] and Atanassov [25] defined Neutrosophic statistics is a generalization of

classical statistics as well as fuzzy. The concept of neutrosophy was initially introduced by

Smarandache [26-32], and extensive literature on neutrosophic sets, logic, and statistics can

be found in his works. In the realm of sampling theory, Tahir et al. [33] recently addressed

the estimation of population parameters under a neutrosophic environment, introducing neu-

trosophic ratio-type estimators for population means under SRS. One can also prefer Singh &

Mishra [34] and Singh et al. [35] for neutrosophic estimators under SRS framework. However,

there has been little focus on neutrosophic ranked set sampling for estimating population pa-

rameters.

Efficiency improvements in estimators are a constant objective in sampling. In this context,

we propose enhanced neutrosophic ranked set sampling (NRSS) estimators for population

mean estimation, with a particular emphasis on minimizing mean square error (MSE) and

enhancing precision.

Our study is designed as follows: Section 1 presents an introduction, and Section 2 outlines

motivation, needs, and research gaps. Section 3 outlines the NRSS method. Section 4 presents

existing NRSS estimators. Section 5 presents proposed NRSS estimators, Section 6 presents

an empirical study using natural growth rate data, and Section 7 offers a simulation study.

Section 8 is dedicated to a discussion, and Section 9 covers a conclusion.

2. Motivation, Need and Research Gap

This article’s main objective is to introduce a less explored approach known as “neutro-

sophic ranked set sampling”for dealing with neutrosophic or interval-type data. This method

can encompass various types of NRSS, similar to classical RSS. Our study focuses on sampling

theory, marking the instance of proposing an RSS technique tailored to neutrosophic data,

along with the development of NRSS estimators for population mean estimation. This is a
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significant step in expanding the field of sampling theory and comparing these estimators with

existing neutrosophic methods such as ratio, product, and generalized estimators. RSS is con-

sidered a superior alternative to SRS, making it an attractive avenue for further exploration

in the context of NRSS.

Several factors drive our exploration of NRSS and its associated estimators for population

parameter estimation. A primary motivation is to introduce RSS and RSS estimators in a neu-

trosophic setting. Previous research in survey sampling has predominantly focused on clear,

well-defined data, where classical sampling methods yield precise results, albeit with poten-

tial risks of inaccuracies, overestimations, or underestimations. However, classical methods

fall short when handling set-type or undetermined data, characteristic of neutrosophic data,

which is more prevalent in real-world scenarios than crisp data. As such, there is a growing

need for additional neutrosophic statistical techniques. Traditional statistical approaches are

ill-suited to compute accurate estimates of unknown parameters when dealing with indeter-

minate, vague, imprecise, set-type, or interval-type data. Neutrosophic statistics serve as a

suitable replacement for classical statistics in such scenarios.

Inspired by the work of Tahir et al. [33] and driven by the need to bridge the gap between

classical and neutrosophic statistics, our work introduces enhanced NRSS estimators for pop-

ulation mean estimation. Despite thorough research in the field, we found not many prior

studies in survey sampling that addressed the estimation of population means in the presence

of auxiliary variables using neutrosophic data under ranked set sampling other than Singh

and Vishwakarma [36]. Following Singh and Vishwakarma’s work, this research represents a

significant step toward filling this gap and contributes to the evolving domain of neutrosophic

statistics.

It has been well-established by multiple authors that RSS is a more suitable option than SRS

when dealing with cumbersome, expensive, or time-consuming measurements. The challenges

associated with measurements in a neutrosophic context exacerbate these issues. Therefore,

our research introduces an NRSS method to enhance the accuracy of the population mean

estimators in this unique context.

3. Sampling Methodology

Numerous methods can be used to display the neutrosophic observations, and the neutro-

sophic numbers may include an unknown interval [a, b]. We are describing neutrosophic values
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as ZrssN ≡ ZrssL + ZrssUIrssN with IrssN ∈ [IrssL, IrssU ], N is here to represent the neutro-

sophic number and IrssN is the degree of indeterminacy. Hence, our neutrosophic observations

will lie in an interval ZrssN ∈ [a, b], where ‘a’and ‘b’denote the neutrosophic data’s lower and

upper values.

In RSS, a small subset of randomly chosen population units are measured after they have been

ranked solely based on observation or past experience. Within the framework of RSS, multiple

independent random sets, each comprising m units drawn from the population, are chosen.

Each unit within a set has an equal probability of selection. The constituents of each random

set are then ranked based on the characteristics of the auxiliary variable. Subsequently, the

selection process involves choosing the smallest unit from the first ordered set, followed by the

next-smallest unit from the second ordered set, and so on. This sequential selection continues

until the largest rank in the mth set is reached. Throughout this iterative cycle, a total of rm

(= n) units are measured, and this entire process is repeated r times.

The method of NRSS consists of selecting mN ∈ [mL,mU ] bivariate random samples

of size mN ∈ [mL,mU ] from a population of size N, and then ranking inside each sam-

ple concerning for auxiliary variable XN ∈ [XL, XU ] associated with YN ∈ [YL, YU ]. The

book “Introduction to Neutrosophic Statistics”by Smarandache [32] will be the basis for

the ranking of the neutrosophic number. To show the process of ranking, we are utilizing

here two sets as X1N ∈ [X1L, X1U ] and X2N ∈ [X2L, X2U ], also their mid-points are as

X1midN = [X1L +X1U ]/2 and X2midN = [X2L +X2U ]/2. The ordering of neutrosophic num-

bers mN ∈ [mL,mU ] can be done as X1N ∈ [X1L, X1U ] will be less than X2N ∈ [X2L, X2U ]

if X1midN ≤ X2midN , also if both are same that is X1midN = X2midN then we will compare

or see by X1L ≤ X2L . Further, if again X1L = X2L then this implies X1U = X2U and hence

X1N ∈ [X1L, X1U ] = X2N ∈ [X2L, X2U ], so the neutrosophic number ranking will be carried

out in this manner. In the whole NRSS structure, first we count the smallest unit of the first

data set size mN ∈ [mL,mU ], for the first measurement unit in the entire NRSS structure,

and then we scrap the remaining units. In a similar manner, we count the second-smallest

observation from the second data set as the second observation and discard the remaining

observations. This process counts the total mN ∈ [mL,mU ] neutrosophic bivariate units for

up to the mth term. After r cycles of these steps, the total nN = mNr ∈ [nL, nU ] bivariate

NeRSS units are obtained.

Consider a neutrosophic random sample of size nN ∈ [nL, nU ] using RSS, which is ac-

quired from a finite population of ‘N’ units (U1, U2, ..., UN ). The neutrosophic study and

auxiliary variable are YN ∈ [YL, YU ] and XN ∈ [XL, XU ]. Let y[n]N ∈ [y[n]L, y[n]U ] and

x(n)N ∈ [x(n)L, x(n)U ] be the sample means of the neutrosophic study and auxiliary variables
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respectively, and also, let Y N ∈ [Y L, Y U ] and XN ∈ [XL, XU ] be the population means of the

neutrosophic study and auxiliary variables, respectively. The correlation coefficient between

both neutrosophic study and auxiliary variables is ρyxN ∈ [ρyxL, ρyxU ], CxN ∈ [CxL, CxU ] and

CyN ∈ [CyL, CyU ] be the coefficient of variation of neutrosophic variables YN and XN .

Let the neutrosophic mean error terms are ϵ0N ∈ [ϵ0L, ϵ0U ] and ϵ1N ∈ [ϵ1L, ϵ1U ]. To obtain the

bias and MSE of the estimators, we write

y[n]N = Y N (1 + ϵ0N ), x(n)N = XN (1 + ϵ1N )

E(ϵ20N ) = (ηc2yN −D2
y[N ]) = VyrN

E(ϵ21N ) = (ηc2xN −D2
x[N ]) = VxrN

E(ϵ0N , ϵ0N ) = (ηCyx −D2
yx[N ]) = VyxrN

where,

ηN = 1
nNr ,

D2
y[N ] =

1

m2
NrY

2
N

∑mN
i=1(µ[iyN ] − Y N )2

D2
x[N ] =

1

m2
NrX

2
N

∑mN
i=1(µ[ixN ] −XN )2

Dyx[N ] =
1

m2
NrY NX

2
N

∑mN
i=1(µ[iyN ] − Y N )(µ[ixN ] −XN )

where µ[iy] and µ(ix) are the means of the ith ranked set and are given by

µ[iyN ] =
1

r

r∑
j=1

yj[N ], µ(ixN) =
1

r

r∑
l=1

xj[N ].

ηN ∈ [ηL, ηU ]; SxN ∈ [SxL, SxU ]; SyN ∈ [SyL, SyU ] ; SxyN ∈ [SxyL, SxyU ] e
2
0N ∈ [e20L, e

2
0U ];e

2
1N ∈

[e21L, e
2
1U ] ;e0Ne1N ∈ [e0Le1L, e0Ue0U ];

CxN ∈ [CxL, CxU ] ; CyN ∈ [CyL, CyU ] ; CxyN ∈ [CxyL, CxyU ] D
2
y[N ] ∈ [D2

y[L], D
2
y[U ]] ; D

2
x[N ] ∈

[D2
x[L], D

2
x[U ]] ; Dyx[N ] ∈ [Dyx[L], Dyx[U ]] ; ρyxN ∈ [ρyxL, ρyxU ]; VyrN ∈ [VyrL, VyrU ]

VxrN ∈ [VxrL, VxrU ] ; VyxrN ∈ [VyxrL, VyxrU ] ; µ[iyN ] ∈ [µ[iyL], µ[iyU ]] ; µ[ixN ] ∈ [µ[ixL], µ[ixU ]].

4. Existing Estimators

Using the NRSS technique, the usual unbiased estimator for the population mean Y is

provided by

y[n]N =
1

nN

nN∑
i=1

y[i]N (1)

The variance of the estimator y[n]N is given by

var(y[n]N ) = Y
2
NVyrN (2)

The ratio estimator under NRSS for the population mean Y

yrN = y[n]N

(
XN

x[n]N

)
(3)
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The MSE of the estimator yrN is given by

MSE(yrN ) = Y
2
N (VyrN + VxrN − 2VyxrN ) (4)

Using NRSS, the regression estimator for the population mean Y is provided by

yregN = y[n]N + β(XN − y[n]N ) (5)

The MSE of the estimator yregN is given by

MSE(yregN ) = Y
2
N

(
VyrN −

V 2
yxrN

VxrN

)
(6)

Using NRSS, the exponential estimator for the population mean Y is provided by

yexpN = y[n]N exp

(
XN − x[n]N

XN + x[n]N

)
(7)

The MSE of the estimator yexpN is given by

MSE(yexpN ) = Y
2
(
VyrN +

VyrN

4
− VyxrN

)
(8)

Vishwakarma and Singh (2021) gave NRSS generalized class of estimators

yvsN = y[n]N

(
ANXN +BN

ANx[n]N +BN

)δ

(9)

The MSE of the estimator yvsN is given by

MSE(yvsN ) = Y
2
N

(
VyrN −

V 2
yxrN

VxrN

)
(10)

5. Proposed Estimators

No single estimator is universally effective in all situations. Consequently, prioritizing esti-

mators that yield minimal Mean Squared Error (MSE) and high precision is desirable. The

objective of this section is to develop estimators that demonstrate effective performance across

a broader range of scenarios. We have chosen to incorporate Mishra et al.’s [37] estimator

within the NRSS and have additionally introduced two novel estimators for the mean of a

finite population under NRSS, leveraging auxiliary variables for improved accuracy.

1.)P1N = y[n]N (g1N + 1) + g2N log

(
x[n]N

XN

)
(11)

where the constants g1N and g2N ensure that the estimators’ MSE is kept to a minimal.

Expressing the estimator P1N given in equation (11) in terms of ϵ′s we get

P1N = Y N (1 + ϵ01) (g1N + 1) + g2N log

(
XN (1 + ϵ1N )

XN

)
(12)
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Taking expectations by focusing on first-order approximation, we obtain MSE,

MSE (P1N ) = Y N
2
VyrN + g21NA1N + g22NB1N − 2g1NC1N − 2g2ND1N + 2g1Ng2NE1N (13)

where,

A1N = Y N
2
(1 + VyrN )

B1N = VxrN

C1N = Y N
2
VyrN

D1N = Y VyxrN

E1N = Y

(
VyxrN − 1

2
VxrN

)
To find out the minimum MSE for P1N , we partially differentiate equation (13) w.r.t. g1N &

g2N and equating to zero we get

g1N
∗ =

B1NC1N −D1NE1N

E2
1N −A1NB1N

(14)

g2N
∗ =

A1ND1N − C1NE1N

E2
1N −A1NB1N

(15)

Putting the optimum value of g1N & g2N in the equation (13), we obtain a minimum value

of MSE of P1N as

MinMSE(P1N ) = C1N +
B1NC2

1N +A1ND2
1N − 2C1ND1NE1N

E2
1N −A1NB1N

(16)

where MSE(P1N ) ∈ [MSE(P1L),MSE(P1U )]

2.)P2N = g3Ny[n]N + g4Nexp

(
XN − x[n]N

XN + x[n]N

)(
1 + log

x[n]N

XN

)
(17)

Expressing P2N given in equation (17) in terms of ϵ′s we get

P2N = g3NY N (1 + ϵ0N ) + g4N exp

(
−ϵ1N
2 + ϵ1N

)
(1 + log (1 + ϵ1N ) ) (18)

P2N − Y N = (g3N − 1)Y N + g3NY N ϵ0N + g4N

(
1 +

ϵ1N
2

− 5ϵ1N
2

8

)
(19)

Bias(P2N ) = Y N (g3N − 1) + g4N

[
1− 5

8
VxrN

]
(20)
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CASE 1: IF SUM OF WEIGHTS IS FIXED(g3N + g4N = 1)

The MSE of the estimator P2N is shown as

MSE(P2N ) = Y
2
N

[
VyrN + g24NVxrN − 2g4NVyxrN

]
(21)

To find out the minimum value of MSE for P2N , we partially differentiate equation (21) w.r.t.

g4N , and equating to zero we get

g4N
∗ =

VyxrN

VxrN
(22)

Putting the optimum value of g4N in the equation (21), we obtain a minimum MSE of P2N

as

MinMSE(P2N ) = Y N
2
(
VyrN −

VyxrN
2

VxrN

)
(23)

where MSE(P2N ) ∈ [MSE(P2L),MSE(P2U )]

CASE 2: IF THE SUM OF WEIGHTS IS ADJUSTABLE (g3N + g4N ̸= 1)

P2N − Y N = (g3N − 1)Y N + g3NY N ϵ0N + g4N

(
1 +

ϵ1N
2

− 5ϵ1
2

8

)
(24)

Squaring on both sides we get

(P2N − Y N )
2
= Y N

2
+Y N

2
g23N (1+ ϵ201)+ g24N

(
1− ϵ21N

)
− 2g3NY N

2− 2g4NY N

(
1−

5ϵ21N
8

)
+ 2g3Ng4NY N

(
1− 5ϵ1N

2

8
+

ϵ0N ϵ1N
2

)
(25)

Taking expectations by focusing on first-order approximation, we obtain mean square error

(MSE),

MSE (P2N ) = Y N
2
VyrN + g23NA2N + g24NB2N − 2g3NC2N − 2g4ND2N + 2g3Ng4NE2N (26)

where,

A2N = Y N
2
(1 + VyrN )

B2N = 1− VxrN

C2N = Y N
2

D2N = Y N

(
1− 5

8
VxrN

)
E2N = Y N

(
1− 5

8
VxrN +

1

2
VyxrN

)
To find out the minimum MSE for P2N , we partially differentiate equation (26) w.r.t. g3N &

g4N and equating to zero we get

g3N
∗ =

B2NC2N −D2NE2N

A2NB2N − E2
2N

(27)
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g4N
∗ =

A2ND2N − C2NE2N

A2NB2N − E2
2N

(28)

Putting the optimum value of g3N & g4N in the equation (26), we obtain a minimum MSE

of P2N as

MinMSE(P2N ) = C2N +
B2NC2

2N +A2ND2
2N − 2C2ND2NE2N

E2
2N −A2NB2N

(29)

where MSE(P2N ) ∈ [MSE(P2L),MSE(P2U )]

3.)P3N = g5Ny[n]N + g6N

(
XN

x[n]N

)
exp

(
XN − x[n]N

XN + x[n]N

)
(30)

Expressing P3N given in equation (30) in terms of ϵ′s we get

P3N = g5NY N (1 + ϵ0N ) + g6N (1 + ϵ1N )−1 exp

(
−ϵ1

2 + ϵ1N

)
(31)

P3N − Y N = (g5N − 1)Y N + g5NY N ϵ01 + g6N

(
1− 3ϵ1N

2
+

15ϵ1N
2

8

)
(32)

Bias(P3N ) = Y N (g5N − 1) + g6N

[
1 +

15

8
VxrN

]
(33)

CASE 1: IF SUM OF WEIGHTS IS FIXED (g5N + g6N = 1)

The MSE of the estimator P3N is shown as

MinMSE(P3N ) = Y N
2 [

VyrN + g26NVxrN − 2g6NVyxrN

]
(34)

To find out the minimum value of MSE for P 3N , we partially differentiate equation (34)

w.r.t. g6N and equating to zero we get

g6N
∗ =

VyxrN

VxrN
(35)

Putting the optimum value of g6N in the equation (34), we obtain a minimum MSE of P3N

as

MinMSE(P3N ) = Y N
2

(
VyrN −

V 2
yxrN

VxrN

)
(36)

where MSE(P3N ) ∈ [MSE(P3L),MSE(P3U )]

CASE 2: IF THE SUM OF WEIGHTS IS ADJUSTABLE (g5N + g6N ̸= 1)

P3N − Y N = (g5N − 1)Y N + g5NY ϵ0N + g6N

(
1− 3ϵ1N

2
+

15ϵ1N
2

8

)
(37)
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Squaring on both sides we get

(P3N − Y N )
2
= Y N

2
+Y N

2
g5N

2(1+ϵ20N )+g6N
2
(
1 + 6ϵ21N

)
−2g5NY N

2−2g6NY N

(
1 +

15ϵ1N
2

8

)
+ 2g5Ng6NY N

(
1 +

15ϵ1N
2

8
− 3ϵ0N ϵ1N

2

)
(38)

By utilizing first-order approximations for expectations, we can derive mean square error

(MSE)

MSE (P3N ) = Y N
2
VyrN + g25NA3N + g26NB3N − 2g5NC3N − 2g6ND3N + 2g5Ng6NE3N (39)

where,

A3N = Y N
2
(1 + VyrN )

B3N = 1 + 6V xrN

C3N = Y N
2

D3N = Y N

(
1 +

15

8
VxrN

)

E3N = Y N

(
1 +

15

8
VxrN − 3

2
VyxrN

)
To find out the minimum MSE for P3N , we partially differentiate equation (39) w.r.t. g5N &

g6N and equating to zero we get

g5N
∗ =

B3NC3N −D3NE3N

A3NB3N − E2
3N

(40)

g6N
∗ =

A3ND3N − C3NE3N

A3NB3N − E2
3N

(41)

Putting the optimum value of g5N & g6N in the equation (39), we obtain a minimum MSE of

P3N as

MinMSE((P3N )) = C3N +
B3NC2

3N +A3ND2
3N − 2C3ND3NE3N

E2
3N −A3NB3N

(42)

where MSE(P3N ) ∈ [MSE(P3L),MSE(P3U )]

PiN ∈ [PiL, PiU ]; i = 1, 2, 3 , AiN ∈ [AiL, AiU ]; i = 1, 2, 3 , BiN ∈ [BiL, BiU ]; i = 1, 2, 3

CiN ∈ [CiL, CiU ]; i = 1, 2, 3 , DiN ∈ [DiL, DiU ]; i = 1, 2, 3 , EiN ∈ [EiL, EiU ]; i = 1, 2, 3
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6. Numerical Illustrations

Here, we evaluate the performance of the recommended estimators in comparison to the

other existing estimators considered in this paper. We have taken real-life natural growth rate

data from the sample registration system (SRS) (2020). The data mentioned in the sample

registration system (SRS) (2020) have four neutrosophic variables for every state, but in our

research, we use birth rate vs natural growth rate. Here, the birth rate is the neutrosophic

auxiliary variable XN ∈ [XL, XU ] and natural growth rate is a neutrosophic study variable

YN ∈ [YL, YU ].

Table 1: The Data of Natural Growth Rate as per SRS 2020

State BRl BRu NGRl NGRu State BRl BRu NGRl NGRu

Andhra

Pradesh

15 16 9 10.1 Uttar

Pradesh

22.1 26.1 19.3 16.7

Assam 14.3 21.9 8.9 15.5 Uttarakhand 15.6 17 10.5 10.3

Bihar 21 26.2 15.7 20.7 West Ben-

gal

11.2 16.1 10.8 5.4

Chhattisgarh 17.3 23.4 11 15 Arunachal

Pradesh

15 17.8 11.8 10.6

NCT of

Delhi

14.1 15.5 10.6 11.4 Goa 11.7 12.4 6.9 5.3

Gujrat 17.1 21.1 12 15.1 Himachal

Pradesh

10 15.7 8.7 5.6

Haryana 17.7 21.2 12.3 14.7 Manipur 12.8 13.5 9.5 8

Jammu &

Kashmir

11.1 16.1 7 11.3 Meghalaya 12.9 25.1 19.6 8.5

Jharkhand 17.6 23.4 13.1 17.9 Mizoram 11.7 16.8 13 7.1

Karnataka 15 17.5 10.2 10.5 Nagaland 11.8 12.9 9 8.4

Kerala 13.1 13.3 6.1 6.3 Sikkim 14 18.2 14.5 9.7

Madhya

Pradesh

18.8 26 13.1 19.2 Tripura 10.7 13.4 8 4.2

Maharashtra 14.6 15.3 9.1 10.1 Andaman &

Nicobar

10 11.5 5.4 4.7

Odisha 13.1 18.7 6.6 11.2 Chandigarh 12.8 18.1 14 9

Punjab 13.6 14.9 6.6 7.9 Dadar Na-

gar Haveli

18 21.4 18.1 13.3

Rajasthan 20.8 24.4 15.7 18.6 Ladakh 10.8 15.2 10 6.5
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Tamil Nadu 13.6 14 6.8 8.5 Lakshadweep 13.1 19.9 12.7 8.1

Telangana 15.9 16.8 9.6 11.7 Puducherry 13.1 13.1 7 5.6

Further, we have drawn total nN = mNr = 12 samples from the given population of size

36 by utilizing the method of NRSS with set size mN = [3, 3] and replication r = 4. The

NRSS method for the study and auxiliary variables is used to draw the NRSS sample simul-

taneously, as explained in Section 2. The formula for Percent Relative Efficiency (PRE) is

defined, as

PRE (Estimators) =
MSE(y[n]N )

MSE(estimator)
× 100 (43)

Table 2: The MSE and PRE of the Estimators

Estimators MSE IN PRE

y[n]N [0.51461, 0.95605] [0, 0.46] [100, 100]

yrN [0.11421, 0.16089] [0, 0.29] [451, 594]

yregN [0.06610, 0.11572] [0, 0.42] [778, 826]

yexpN [0.26370, 0.43450] [0, 0.39] [195, 220]

yvsN [0.06610, 0.11572] [0, 0.42] [778, 826]

tp1 [0.06550, 0.11467] [0, 0.42] [786, 834]

tp2 [0.01237, 0.03204] [0, 0.61] [2983, 4158]

tp3 [0.01551, 0.03096] [0, 0.49] [3088, 3317]

7. Simulation Studies

We perform simulation studies to check the recommended estimator’s efficiency with other

existing estimators like the conventional, ratio, regression estimator, etc. This is done via the

following steps

1. It is well known that a neutrosophic normal distribution (NND) will be followed by neutro-

sophic random variables (NRV), i.e.(XN , YN ) ∼ NN [(µxN , σ2
xN ), (µyN , σ2

yN )], XN ∈ [XL, XU ],

YN ∈ [YL, YU ], µxN ∈ [(µxL, µxU )], µyN ∈ [(µyL, µyU )], σ
2
xN ∈ [σ2

xL, σ
2
xU ], σ

2
yN ∈ [σ2

yL, σ
2
yU ].

We have generated 4-variate random observations of size N=1000 from a 4-variate nor-

mal distribution with mean (µxL, µyL µxU , µyU ) = (50, 50, 60, 60) and covariance matrix
σ2
xL ρxyLσxLσyL 0 0

ρxyLσxLσyL σ2
yL 0 0

0 0 σ2
xU ρxyLσvσyL

0 0 ρxyUσxUσyU σ2
yU

 , where we have σ2
xL = 100 , σ2

yL =

100 , σ2
xU = 121 , σ2

yU = 121.

2. For this N = 1000 simulated population, the parameters were computed.
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3. A sample of size n with mN = 3 and r = 4, 6, 10 has been selected from this simulated

population.

4. To find the MSE of each estimator under study, use the sample data.

5. To get MSEs, the entire step 3–4 process was repeated 10,000 times. The MSE of each

population mean estimator is the average of the 10,000 values that were obtained.

6. The PRE of each estimator in relation to y[n]N has been calculated using the formula.

7. It can be done for some other population with parameters (µxL, µyL , µxU , µyU ) =

(150, 150, 200, 200) where we have σ2
xL = 625 , σ2

yL = 625 , σ2
xU = 961 , σ2

yU = 961 .

Table 3: MSEs and PREs of the recommended and existing estimators under

NRSS for Population 1

n=12 ρ=0.9 ρ=0.8

Estimators MSE IN PRE MSE IN PRE

y[n]N [4.74611, 8.39614] [0, 0.43] [100, 100] [5.28228, 8.15711] [0, 0.35] [100, 100]

yrN [1.45809, 1.7075] [0, 0.14] [326, 492] [2.85339, 3.37538] [0, 0.15] [185, 242]

yregN [1.27631, 1.45609] [0, 0.12] [372, 577] [2.41149, 2.65902] [0, 0.09] [219, 307]

yexpN [2.07258, 2.97855] [0, 0.30] [229, 282] [3.03606 , 3.68283] [0, 0.17] [174, 221]

yvsN [1.27631, 1.45609 ] [0, 0.12] [372, 577] [2.41149, 2.65902] [0, 0.09] [219, 307]

tp1 [1.27201, 1.44744] [0, 0.12] [373, 580] [2.40421, 2.64772] [0, 0.09] [220, 308]

tp2 [0.62571, 0.99329] [0, 0.37] [759, 845] [0.81364, 1.50894] [0, 0.46] [541, 649]

tp3 [0.46767, 0.53091] [0, 0.11] [1015,

1581]

[0.9161, 1.0529] [0, 0.12] [577, 775]

ρ=0.7 ρ=0.6

MSE IN PRE MSE IN PRE

y[n]N [5.80652, 8.11845] [0, 0.28] [100, 100] [6.14863, 8.47812] [0, 0.27] [100, 100]

yrN [4.21099, 5.02332] [0, 0.16] [138, 162] [5.45556, 6.86807] [0, 0.20] [113, 123]

yregN [3.46994, 3.75404] [0, 0.07] [167, 216] [4.25988, 4.95358] [0, 0.14] [144, 171]

yexpN [3.97544, 4.50379] [0, 0.11] [146, 180] [4.76362, 5.58763] [0, 0.14] [129, 152]

yvsN [3.46994, 3.75404] [0, 0.07] [167, 216] [4.25988, 4.95358] [0, 0.14] [144, 171]

tp1 [3.45901, 3.74] [0, 0.07] [168, 217] [4.24612, 4.93587] [0, 0.13] [145, 172]

tp2 [0.89482, 1.7252] [0, 0.48] [471, 649] [0.92517, 1.84276] [0, 0.49] [460, 665]

tp3 [1.34764, 1.57163] [0, 0.14] [431, 517] [1.74662, 2.15988] [0, 0.19] [352, 393]

n=18 ρ=0.9 ρ=0.8

MSE IN PRE MSE IN PRE

y[n]N [3.28385, 5.96403] [0, 0.44] [100, 100] [3.68678, 5.79281] [0, 0.36] [100, 100]
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yrN [1.03602,1.21419] [0, 0.14] [317, 491] [2.02872, 2.39945] [0, 0.15] [182, 241]

yregN [0.9431, 1.08339] [0, 0.12] [348, 550] [1.78499, 1.98643] [0, 0.10] [207, 292]

yexpN [1.45551, 2.11756] [0, 0.31] [226, 282] [2.1514, 2.61751] [0, 0.17] [171, 221]

yvsN [0.9431, 1.08339] [0, 0.12] [348, 550] [1.78499, 1.98643] [0, 0.10] [207, 292]

tp1 [0.94105, 1.07914] [0, 0.12] [349, 553] [1.78141, 1.98074] [0, 0.10] [207, 292]

tp2 [0.453, 0.74575] [0, 0.39] [725, 800] [0.58369, 1.12502] [0, 0.48] [515, 632]

tp3 [0.34604, 0.4] [0, 0.13] [949, 1491] [0.67659, 0.79081] [0, 0.14] [545, 733]

ρ=0.7 ρ=0.6

y[n]N [4.06532, 5.77401] [0, 0.29] [100, 100] [4.32649, 6.02582] [0, 0.28] [100, 100]

yrN [2.96637, 3.57305] [0, 0.16] [137, 162] [3.85889, 4.88325] [0, 0.20] [112, 123]

yregN [2.54775, 2.79559] [0, 0.08] [160, 207] [3.14193, 3.68093] [0, 0.14] [138, 164]

yexpN [2.81002, 3.20285] [0, 0.12] [145, 180] [3.38185, 3.97694] [0, 0.14] [128, 152]

yvsN [2.54775, 2.79559] [0, 0.08] [160, 207] [3.14193, 3.68093] [0, 0.14] [138, 164]

tp1 [2.54239, 2.78846] [0, 0.08] [160, 207] [3.13511, 3.67194] [0, 0.14] [138, 164]

tp2 [0.63681, 1.28576] [0, 0.50] [449, 638] [0.6594, 1.36624] [0, 0.51] [441, 656]

tp3 [0.98574, 1.17705] [0, 0.16] [412, 491] [1.28237 , 1.61483] [0, 0.20] [337, 373]

n=30 ρ=0.9 ρ=0.8

MSE IN PRE MSE IN PRE

y[n]N [2.02919, 3.74983] [0, 0.45] [100, 100] [2.28937, 3.65813] [0, 0.37] [100, 100]

yrN [0.64949, 0.76453] [0, 0.15] [312, 490] [1.27051, 1.51332] [0, 0.16] [180, 242]

yregN [0.6084, 0.70205] [0, 0.13] [334, 534] [1.15219, 1.29443] [0, 0.10] [199, 283]

yexpN [0.90713, 1.33037] [0, 0.31] [224, 282] [1.34678, 1.65497] [0, 0.18] [170, 221]

yvsN [0.6084, 0.70205] [0, 0.13] [334, 534] [1.15219, 1.29443] [0, 0.10] [199, 283]

tp1 [0.60762, 0.70039] [0, 0.13] [334, 535] [1.1508, 1.29218] [0, 0.10] [199, 283]

tp2 [0.28907, 0.48705] [0, 0.40] [702, 770] [0.36999, 0.72973] [0, 0.49] [501, 619]

tp3 [0.2232, 0.26151] [0, 0.14] [909, 1434] [0.43531, 0.51667] [0, 0.15] [526, 708]

ρ=0.7 ρ=0.6

MSE IN PRE MSE IN PRE

y[n]N [2.53419, 3.64756] [0, 0.30] [100, 100] [2.70872, 3.79625] [0, 0.28] [100, 100]

yrN [1.85449, 2.25458] [0, 0.17] [137, 162] [2.41511, 3.07899] [0, 0.21] [112, 123]

yregN [1.63839, 1.81847] [0, 0.09] [155, 201] [2.03392, 2.38552] [0, 0.14] [133, 159]

yexpN [1.76129, 2.02175] [0, 0.12] [144, 180] [2.12632, 2.50541] [0, 0.15] [127, 152]

yvsN [1.63839, 1.81847] [0, 0.09] [155, 201] [2.03392, 2.38552] [0, 0.14] [133, 159]

tp1 [1.63631, 1.81563] [0, 0.09] [155, 201] [2.03124, 2.38195] [0, 0.14] [133, 159]

tp2 [0.40188, 0.83762] [0, 0.52] [435, 631] [0.41655, 0.8877] [0, 0.53] [428, 650]

tp3 [0.63275, 0.76768] [0, 0.17] [401, 475] [0.82381, 1.05238] [0, 0.21] [329, 361]
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Table 4: MSEs and PREs of the recommended and existing estimator under NRSS

for Population 2

n=12 ρ=0.9 ρ=0.8

Estimators MSE IN PRE MSE IN PRE

y[n]N [29.57415, 66.14823] [0, 0.55] [100, 100] [33.01424, 64.78497] [0, 0.49] [100, 100]

yrN [9.15248, 13.43196] [0, 0.31] [323, 492] [17.79146, 26.83172] [0, 0.33] [186, 241]

yregN [8.07017, 11.47311] [0, 0.29] [366, 577] [15.07181, 21.11836] [0, 0.28] [219, 307]

yexpN [12.91778, 23.47267] [0, 0.44] [229, 282] [18.97746, 29.18226] [0, 0.34] [174, 222]

yvsN [8.07017, 11.47311] [0, 0.29] [366, 577] [15.07181, 21.11836] [0, 0.28] [219, 307]

tp1 [8.06334, 11.45174] [0, 0.29] [367, 578] [15.06036, 21.09007] [0, 0.28] [219, 307]

tp2 [3.96677, 7.94098] [0, 0.50] [746, 833] [5.0761, 12.12343] [0, 0.58] [534, 650]

tp3 [2.96821, 4.26557] [0, 0.30] [996, 1551] [5.75332, 8.46915] [0, 0.32] [574, 765]

ρ=0.7 ρ=0.6

MSE PRE MSE PRE

y[n]N [36.2907, 66.5611] [0, 0.45] [100, 100] [38.4289, 67.3345] [0, 0.42] [100, 100]

yrN [26.3081, 40.3418] [0, 0.34] [138, 165] [33.9908, 54.1438] [0, 0.37] [113, 124]

yregN [21.6871, 30.9702] [0, 0.29] [167, 215] [26.6243, 39.3420] [0, 0.32] [144, 171]

yexpN [24.8384, 37.1523] [0, 0.33] [146, 179] [29.7571, 44,3811] [0, 0.32] [129, 152]

yvsN [21.6871, 30.9702] [0, 0.29] [167, 215] [26.6243, 39.3420] [0, 0.32] [144, 171]

tp1 [21.67, 30.9336] [0, 0.29] [167, 215] [26.6026, 39.2976] [0, 0.32] [144, 171]

tp2 [5.6044, 13.5728] [0, 0.58] [490, 648] [5.7578, 14.4769] [0, 0.60] [465, 667]

tp3 [8.4746, 12.8287] [0, 0.33] [428, 519] [10.9482, 17.1972] [0, 0.36] [351, 392]

n=18 ρ=0.9 ρ=0.8

MSE PRE MSE PRE

y[n]N [20.46536, 47.09541] [0, 0.56] [100, 100] [23.0424, 46.00735] [0, 0.49] [100, 100]

yrN [6.46258, 9.56084] [0, 0.32] [317, 493] [12.65581, 19.08902] [0, 0.33] [182, 241]

yregN [5.91444, 8.54838] [0, 0.30] [346, 551] [11.15622, 15.77654] [0, 0.29] [207, 292]

yexpN [9.0553, 16.73269] [0, 0.45] [226, 281] [13.44981, 20.74272] [0, 0.35] [171, 222]

yvsN [5.91444, 8.54838] [0, 0.30] [346, 551] [11.15622, 15.77654] [0, 0.29] [207, 292]

tp1 [5.91119, 8.53782] [0, 0.30] [346, 552] [11.15058, 15.76229] [0, 0.29] [207, 292]

tp2 [2.85023, 5.91261] [0, 0.51] [718, 797] [3.63777, 9.02249] [0, 0.59] [510, 633]

tp3 [2.17347, 3.19023] [0, 0.31] [942, 1476] [4.23969, 6.33831] [0, 0.33] [543, 726]
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ρ=0.7 ρ=0.6

MSE PRE MSE PRE

y[n]N [25.40823, 47.41032] [0, 0.46] [100, 100] [27.04054, 47.85793] [0, 0.43] [100, 100]

yrN [18.53928, 28.71605] [0, 0.35] [137, 165] [24.0593, 38.54122] [0, 0.37] [112, 124]

yregN [15.92344, 23.08036] [0, 0.31] [160, 205] [19.63708, 29.23447] [0, 0.32] [138, 164]

yexpN [17.55694, 26.47846] [0, 0.33] [145, 179] [21.13014, 31.59581] [0, 0.33] [128, 151]

yvsN [15.92344, 23.08036] [0, 0.31] [160, 205] [19.63708, 29.23447] [0, 0.32] [138, 164]

tp1 [15.91501, 23.06175] [0, 0.30] [160, 206] [19.62635, 29.21191] [0, 0.32] [138, 164]

tp2 [3.98907, 10.09363] [0, 0.60] [470, 637] [4.10388, 10.73474] [0, 0.61] [446, 659]

tp3 [6.18868, 9.58314] [0, 0.35] [411, 495] [8.02644, 12.83379] [0, 0.37] [337, 373]

n=30 ρ=0.9 ρ=0.8

MSE PRE MSE PRE

y[n]N [12.6555, 29.7430] [0, 0.57] [100, 100] [14.3085, 29.0534] [0, 0.50] [100, 100]

yrN [4.0533, 6.0421] [0, 0.32] [312, 492] [7.9305, 12.0457] [0, 0.34] [180, 241]

yregN [3.8106, 5.5601] [0, 0.31] [332, 535] [7.2011, 10.2805] [0, 0.29] [199, 283]

yexpN [5.6476, 10.5702] [0, 0.46] [224, 281] [8.4200, 13.1170] [0, 0.35] [170, 221]

yvsN [3.8106, 5.5601] [0, 0.31] [332, 535] [7.2011, 10.2805] [0, 0.29] [199, 283]

tp1 [3.8093, 5.5560] [0, 0.31] [332, 535] [7.19898, 10.2749] [0, 0.29] [199, 283]

tp2 [1.8154, 3.8495] [0, 0.52] [697, 773] [2.3060, 5.8458] [0, 0.60] [497, 620]

tp3 [1.3995, 2.0815] [0, 0.32] [904,1429] [2.7238, 4.1296] [0, 0.34] [525, 704]

ρ=0.7 ρ=0.6

MSE PRE MSE PRE

y[n]N [15.83871, 29.97289] [0, 0.47] [100, 100] [16.9295, 30.15039] [0, 0.43] [100, 100]

yrN [11.59369, 18.12673] [0, 0.36] [137, 165] [15.06837, 24.32259] [0, 0.38] [112, 124]

yregN [10.23995, 14.99098 ] [0, 0.31] [155, 200] [12.712, 18.94614] [0, 0.32] [133, 159]

yexpN [11.00532, 16.73579 ] [0, 0.34] [144, 179] [13.28795, 19.90633] [0, 0.33] [127, 151]

yvsN [10.23995, 14.99098] [0, 0.31] [155, 200] [12.712, 18.94614] [0, 0.32] [133, 159]

tp1 [10.23667, 14.98357] [0, 0.31] [155, 200] [12.70778, 18.93718] [0, 0.32] [133, 159]

tp2 [2.51734, 6.55744 ] [0, 0.61] [457, 629] [2.59353, 6.98028] [0, 0.62] [432, 653]

tp3 [3.96677, 6.23344 ] [0, 0.36] [399, 481] [5.15061, 8.35123] [0, 0.38] [329, 361]

Table 5: PREs of the NRSS estimators over estimators under NSRS for Pop-

ulation 1
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n=12 ρ=0.9 ρ=0.8 ρ=0.7 ρ=0.6

Estimators PRE PRE PRE PRE

y[n]N [120, 183] [120, 165] [120, 149] [120, 142]

yrN [119, 122] [119, 125] [120, 126] [119, 131]

yrgN [120, 121] [120, 121] [119, 121] [120, 121]

yexpN [119, 148] [119, 131] [119, 121] [119, 121]

yvsN [120, 121] [120, 121] [119, 121] [120, 121]

tp1 [120, 121] [120, 121] [119, 121] [120, 121]

tp2 [121, 170] [122, 193] [123, 205] [122, 210]

tp3 [121, 121] [121, 125] [122, 128] [121, 131]

n=18 ρ=0.9 ρ=0.8 ρ=0.7 ρ=0.6

PRE PRE PRE PRE

y[n]N [112, 174] [112, 156] [112, 142] [112, 133]

yrN [112, 115] [112, 118] [113, 120] [112, 124]

yregN [112, 113] [112, 113] [113, 113] [112, 113]

yexpN [112, 139] [112, 122] [112, 115] [112, 113]

yvsN [112, 113] [112, 113] [113, 113] [112, 113]

tp1 [112, 113] [112, 113] [112, 113] [112, 113]

tp2 [113, 165] [112, 188] [114, 197] [113, 204]

tp3 [113, 114] [113, 118] [113, 121] [113, 124]

n=30 ρ=0.9 ρ=0.8 ρ=0.7 ρ=0.6

PRE PRE PRE PRE

y[n]N [107, 169] [107, 150] [107, 136] [107, 127]

yrN [106, 110] [106, 112] [107, 115] [106, 118]

yregN [107, 107] [106, 107] [107, 107] [107, 107]

yexpN [107, 133] [107, 116] [107, 110] [107, 107]

yvsN [107, 107] [106, 107] [107, 107] [107, 107]

tp1 [107, 107] [106, 107] [107, 107] [107, 107]

tp2 [107, 159] [107, 183] [108, 192] [107, 199]

tp3 [107, 109] [107, 112] [107, 116] [107, 119]

Table 6: PREs of the NRSS estimators over estimators under NSRS for Pop-

ulation 2
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n=12 ρ=0.9 ρ=0.8 ρ=0.7 ρ=0.6

Estimators PRE PRE PRE PRE

y[n]N [121, 183] [120, 165] [121, 149] [120, 142]

yrN [120, 121] [119, 125] [120, 126] [119, 131]

yregN [120, 122] [120, 121] [119, 123] [120, 121]

yexpN [120, 147] [119, 131] [121, 121] [119, 121]

yvsN [120, 122] [120, 121] [119, 123] [120, 121]

tp1 [119, 122] [120, 121] [119, 122] [120, 121]

tp2 [120, 167] [121, 194] [123, 205] [123, 210]

tp3 [120, 120] [120, 125] [122, 127] [121, 131]

n=18 ρ=0.9 ρ=0.8 ρ=0.7 ρ=0.6

PRE PRE PRE PRE

y[n]N [112, 176] [112, 156] [113, 142] [112, 133]

yrN [113, 115] [112, 118] [113, 120] [112, 124]

yregN [113, 113] [112, 113] [113, 114] [112, 113]

yexpN [141, 112] [122, 113] [115, 113] [113, 112]

yvsN [113, 113] [112, 113] [112, 113] [112, 113]

tp1 [113, 113] [112, 113] [112, 113] [112, 113]

tp2 [113, 161] [112, 189] [114, 197] [144, 205]

tp3 [113, 115] [112, 118] [113, 121] [113, 124]

n=30 ρ=0.9 ρ=0.8 ρ=0.7 ρ=0.6

PRE PRE PRE PRE

y[n]N [107, 170] [107, 150] [107, 136] [107, 127]

yrN [107, 109] [106, 112] [107, 115] [107, 118]

yregN [107, 107] [106, 107] [107, 107] [107, 107]

yexpN [107, 135] [107, 116] [107, 110] [107, 107]

yvsN [107, 107] [106, 107] [107, 107] [107, 107]

tp1 [107, 107] [106, 107] [107, 107] [106, 107]

tp2 [107, 156] [106, 183] [108, 192] [108, 199]

tp3 [107, 109] [106, 113] [107, 116] [107, 119]

Table 7: PREs of the estimators (neutrosophic vs classical) for Population 1
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n=12 PRE PRE PRE PRE

ρ=0.9 ρ=0.8 ρ=0.7 ρ=0.6

Estimators neutrosophic classical neutrosophic classical neutrosophic classical neutrosophic classical

y[n]N [100, 100] 100 [100, 100] 100 [100, 100] 100 [100, 100] 100

yrN [326, 492] 291 [185, 242] 167 [138, 162] 125 [113, 123] 103

yregN [372, 577] 364 [219, 307] 215 [167, 216] 166 [144, 171] 142

yexpN [229, 282] 246 [174, 221] 179 [146, 180] 148 [129, 152] 129

yvsN [372, 577] 364 [219, 307] 215 [167, 216] 166 [144, 171] 142

tp1 [373, 580] 366 [220, 308] 215 [168, 217] 166 [145, 172] 143

tp2 [759, 845] 559 [541, 649] 497 [471, 649] 506 [460, 665] 530

tp3 [1015,1581] 923 [577, 775] 523 [431, 517] 390 [352, 393] 320

n=18 PRE PRE PRE PRE

ρ=0.9 ρ=0.8 ρ=0.7 ρ=0.6

neutrosophic classical neutrosophic classical neutrosophic classical neutrosophic classical

y[n]N [100, 100] 100 [100, 100] 100 [100, 100] 100 [100, 100] 100

yrN [317, 491] 285 [182, 241] 165 [137, 162] 124 [112, 123] 103

yregN [348, 550] 342 [207, 292] 203 [160, 207] 158 [138, 164] 136

yexpN [226, 282] 243 [171, 221] 177 [145, 180] 146 [128, 152] 128

yvsN [348, 550] 342 [207, 292] 203 [160, 207] 158 [138, 164] 136

tp1 [349, 553] 343 [207, 292] 204 [160, 207] 158 [138, 164] 136

tp2 [725, 800] 534 [515, 632] 482 [449, 638] 496 [441, 656] 522

tp3 [949, 1491] 862 [545, 733] 493 [412, 491] 371 [337, 373] 307

n=30 PRE PRE PRE PRE

ρ=0.9 ρ=0.8 ρ=0.7 ρ=0.6

neutrosophic classical neutrosophic classical neutrosophic classical neutrosophic classical

y[n]N [100, 100] 100 [100, 100] 100 [100, 100] 100 [100, 100] 100

yrN [312, 490] 280 [180, 242] 163 [137, 162] 123 [112, 123] 102

yregN [334, 534] 326 [199, 283] 195 [155, 201] 152 [133, 159] 131

yexpN [224, 282] 240 [170, 221] 175 [144, 180] 145 [127, 152] 127

yvsN [334, 534] 326 [199, 283] 195 [155, 201] 152 [133, 159] 131

tp1 [334, 535] 327 [199, 283] 195 [155, 201] 152 [133, 159] 132

tp2 [702, 770] 521 [501, 619] 476 [435, 631] 491 [428, 650] 519

tp3 [909,1434] 821 [526, 708] 474 [401, 475] 357 [329, 361] 296

Singh and Kumari, Neutrosophic RSS Estimators

Neutrosophic Sets and Systems, Vol. 68, 2024                                                                             265



Table 8: PREs of the estimators (neutrosophic vs classical) for Population 2

n=12 PRE PRE PRE PRE

ρ=0.9 ρ=0.8 ρ=0.7 ρ=0.6

Estimators neutrosophic classical neutrosophic classical neutrosophic classical neutrosophic classical

y[n]N [100, 100] 100 [100, 100] 100 [100, 100] 100 [100, 100] 100

yrN [323, 492] 322 [186, 241] 183 [138, 165] 136 [113, 124] 112

yregN [366, 577] 369 [219, 307] 217 [167, 215] 168 [144, 171] 144

yexpN [229, 282] 227 [174, 222] 173 [146, 179] 146 [129, 152] 129

yvsN [366, 577] 369 [219, 307] 217 [167, 215] 168 [144, 171] 144

tp1 [367, 578] 369 [219, 307] 217 [167, 215] 168 [144, 171] 144

tp2 [746, 833] 757 [534, 650] 641 [490, 648] 635 [465, 667] 654

tp3 [996,1551] 1013 [574, 765] 574 [428, 519] 429 [351, 392] 352

n=18 PRE PRE PRE PRE

ρ=0.9 ρ=0.8 ρ=0.7 ρ=0.6

neutrosophic classical neutrosophic classical neutrosophic classical neutrosophic classical

y[n]N [100, 100] 100 [100, 100] 100 [100, 100] 100 [100, 100] 100

yrN [317, 493] 314 [182, 241] 180 [137, 165] 135 [112, 124] 112

yregN [346, 551] 344 [207, 292] 205 [160, 205] 160 [138, 164] 137

yexpN [226, 281] 223 [171, 222] 171 [145, 179] 144 [128, 151] 128

yvsN [346, 551] 344 [207, 292] 205 [160, 205] 160 [138, 164] 137

tp1 [346, 552] 345 [207, 292] 205 [160, 206] 160 [138, 164] 137

tp2 [718, 797] 725 [510, 633] 623 [470, 637] 622 [446, 659] 642

tp3 [942,1476] 945 [543, 726] 543 [411, 495] 408 [337, 373] 337

n=30 PRE PRE PRE PRE

ρ=0.9 ρ=0.8 ρ=0.7 ρ=0.6

neutrosophic classical neutrosophic classical neutrosophic classical neutrosophic classical

y[n]N [100, 100] 100 [100, 100] 100 [100, 100] 100 [100, 100] 100

yrN [312, 492] 308 [180, 241] 178 [137, 165] 134 [112, 124] 111

yregN [332, 535] 329 [199, 283] 197 [155, 200] 154 [133, 159] 133

yexpN [224, 281] 221 [170, 221] 169 [144, 179] 143 [127, 151] 127

yvsN [332, 535] 329 [199, 283] 197 [155, 200] 154 [133, 159] 133

tp1 [332, 535] 329 [199, 283] 197 [155, 200] 154 [133, 159] 133

tp2 [697, 773] 703 [497, 620] 611 [457, 629] 611 [432, 653] 634

tp3 [904,1429] 900 [525, 704] 520 [399, 481] 392 [329, 361] 325
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8. Discussion

The study established mathematical expressions for novel NRSS estimators, approximating

up to the first order. Subsequently to examine the properties of the proposed NRSS estimators,

numerical illustrations and simulation studies were conducted. The former used real-world

natural growth rate data, while the latter involved two artificial neutrosophic datasets with

varying correlation coefficients and sample sizes. The results were encapsulated in Tables 2,

3, and 4, showcasing MSEs and PREs for both existing and proposed neutrosophic ranked set

estimators. We have computed the PREs of the NRSS estimators over estimators under NSRS

and these results are displayed in Tables 5 and 6.

In Table 2, the MSEs of the existing and proposed estimators are given along with PRE. The

superiority of the suggested NRSS estimators over the existing NRSS estimators is displayed

in Table 2 in the bolded text. We also see the MSE and PRE of the recommended estimator

are lesser and higher than other existing estimators. It is evident from the table that recom-

mended estimators outperformed existing ones, offering lower MSEs and higher PREs, and it

has been established that tp3 is the best estimator available.

Similarly, in Table 3 and Table 4, the MSEs of the recommended and existing estimators are

given along with PRE through a simulation study based on artificial neutrosophic data for

different values of the correlation coefficient and different sample sizes. Like Table 2, also in

Tables 3 and 4, the superiority of the suggested NRSS estimators over the existing NRSS esti-

mators is displayed by the bolded text. We also see the MSEs and PREs of the recommended

estimators are lesser and higher, respectively than those of other existing estimators. Hence,

Tables 3 and 4 mirrored these findings, with the proposed estimators continuing to outshine

existing ones, demonstrating lower MSEs and higher PREs in the simulation study too.

From Tables 3 and 4, we see with the increase in values of sample sizes, and correlation coef-

ficients, the MSE and PRE of the recommended estimator decrease and increase. Therefore,

under NRSS, the suggested estimators exhibit sensitivity similar to that of classical ranked set

sampling.

Tables 5 and 6 featured PRE values of the proposed NRSS estimators over NSRS counterparts.

We see from Tables 5 and 6, that all PRE values exceeded 100 that is all the NRSS estimators

are superior to corresponding estimators under NSRS as RSS is the best replacement for SRS.

The comparison between classical RSS and NRSS using PREs is provided in Tables 7 and

8. Tables 7 and 8 demonstrate that the PREs of the suggested estimators obtained through

classical RSS are lower than those obtained using NRSS, indicating that the latter method is

more effective than the former.

The study highlighted that classical ranked set sampling was ill-suited for dealing with vague

or indeterminate data. NRSS proved superior for estimating uncertain or interval data. The
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tables presented dependable results for neutrosophic data compared to classical results.

9. Conclusion

In this research paper, we’ve put forth some enhanced neutrosophic ranked set estimators

designed for estimating population means while making use of auxiliary information. To assess

their accuracy, we calculated both bias and MSE for these proposed estimators, focusing on

first-order approximations. We compared our recommended estimators against existing ones,

by using a natural population’s data on natural growth rates and two simulated populations.

Through a combination of numerical illustrations and simulated studies, we’ve found com-

pelling evidence that our proposed estimators outperform existing ones within the framework

of neutrosophic ranked set sampling. Among these estimators, tp3 emerged as the top per-

former. It’s important to note that the sensitivity analysis of our recommended estimators

under NRSS mirrors that of classical RSS.

Moreover, a comparison between the recommended estimators under NRSS and the estimators

under NSRS revealed that NRSS is a more effective alternative to NSRS, much like classical

RSS to classical SRS. Our study underscores the efficiency and reliability of NRSS for handling

neutrosophic data, with our proposed NRSS delivering superior mean estimations compared

to existing methods.

The current investigation is subject to certain constraints, notably concerning the applicabil-

ity of neutrosophic ranked set sampling. This method proves to be proficient in estimating

population parameters under conditions of equal allocation, perfect ranking, and adherence to

a symmetric distribution. However, when these conditions are not met, the efficiency of the

estimation diminishes, leading to suboptimal results.

Based on the numerical illustrations and simulation studies we’ve conducted, it’s reasonable

to recommend the use of our proposed estimators over the alternatives presented in this paper

in various real-world scenarios, spanning fields like agriculture, mathematics, biology, poultry

farming, economics, commerce, and the social sciences.

Furthermore, given the limited availability of neutrosophic RSS estimators, there’s ample room

for further exploration. Building upon this study, we can consider defining variations of neutro-

sophic ranked set sampling, such as unbalanced NRSS, median NRSS, extreme NRSS, double

NRSS, and percentile neutrosophic ranked set sampling, akin to what exists in classical ranked

set sampling. Additionally, we can explore the replacement of our proposed estimators with

alternative methods or estimators.

Expanding beyond sampling theory, further research avenues in statistics, encompassing fields
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like control charts, inference, reliability analysis, non-parametric estimation, hypothesis test-

ing, and some other fields of science, present promising opportunities for exploration.

Conflicts of Interest: The authors declare no conflict of interest.
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