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Abstract. In this research paper, our aim is to introduce the new concept of neutrosophic doubt fuzzy bi-ideal of BS-
algebras as an extension of doubt fuzzy bi-ideal of BS-algebras and investigated its algebraic nature. Neutrosophic doubt
fuzzy bi-ideal of BS-algebras is also applied in Cartesian product. Finally, we also provide the homomorphic behaviour of

Neutrosophic doubt fuzzy bi-ideal of BS-algebras.
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1. Introduction

The fuzzy subsets was first introduced by L.A.Zadeh[8]. In 1966, Imai and Iseki gave the idea of BCK-
algebras and BCl-algebras[3]. J.Neggers and H.S. Kim initiated the notion of B-algebras[4] which is a
generalisation of BCK-algebras. We launched the notion of BS-algebras which is a generalisation of B-
algebras and established the notion of Doubt fuzzy bi-ideal of BS-algebras[1]. We also innovated the
notion of Neutrosophic fuzzy bi-ideal of BS-algebras[2]. F. Smarandache[5] extented the concept of fuzzy
logic to neutrosophic logic which includes indeterminancy. Neutrosophic set theory played a major role
in decision making problem, medical diagnosis, robotics, image processing, etc.

The main objective of this paper is to putforth the notion of Neutrosophic Doubt Fuzzy Bi-
ideal(NDFB) of BS-algebras and studied their algebraic properties. We obtained the product of
neutrosophic doubt fuzzy bi-ideal for BS-algebras. Finally, we studied how to deal with homomorphism

of neutrosophic doubt fuzzy bi-ideal for BS-algebras.

2. Preliminaries:
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In this Section, some basic definitions are given that are necessary for this paper. Throughout this paper,
let B denotes BS-algebra.

Definition 2.1 [1] A set BS-algebra B#¢ with 1 as constant and * as binary operation satisfying the
following axioms

(i) a*a=1

(ii) a*l=a

(i) (a*B)*y=a*(y*(1*B)Va,B,y €B

Definition 2.2 A fuzzy subset f of B is called the fuzzy ideal of B if it satisfies
(i) F(1) 2 F(a)
(ii) FB)z{Fla) AF(B*a)}V a,p €B

Definition 2.3 [1] A fuzzy subset | of B is called the fuzzy bi-ideal of B if it satisfies
(i) F(1) 2 F(a)
(i) FB*v)2{Fla) AF(@*(B*Y)}V a,B,y €B

Definition 2.4 A fuzzy set | of B is called the doubt fuzzy ideal of B if it satisfies
(i) F(1) <F(a)
(ii) F(B) s {Fla) VF(B*a))}V a,p €B

Definition 2.5 [1] A fuzzy set F of B is called the Doubt Fuzzy Bi- ideal(DF) of B if it satisfies
(i) F(1) < Fla)
(ii) F(B*y) < {Fla) v F(@*(B*YIV a, B,y €B

Example 2.6 [1] Let B = {1, u, v, w} be the set with the following Cayley table

* 1 u v w
1 1 u % w
u u 1 w %
v v w 1 u
w w v u 1

Then (B, *, 1) is a BS-algebra. Then the fuzzy set F:8B—-[0,1] is defined by F(1)= F(a)=0.7 and F(B)=
F(y)=0.9, which is a Doubt Fuzzy(DF) bi-ideal of B.

Definition 2.7 [6] A Neutrosophic fuzzy set IV on the Universe of discourse X characterised by a truth
membership function Ta(a), an indeterminacy function Ja(a) and a falsity membership function Fa(x)

is defined as NV'={<a, Tw(a), In(a), Fa(a)>: a € X} where Tar, I Fa: X—[0,1] and 0 < Ta+ I+ Fa<3

Definition 2.8 [6] Let M and V" be the two neutrosophic fuzzy set of X. Then a € X
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i) MUN={<a, Tacun(a), Jmun(a), Facun(a)>}, where

Treuw(@) = (Tael@) V Tv(@)); Imeuw(@) = (Taela) A In(@)); Facuw(@) = (Facla) A Fa(a))
ii) MaN={<a, Taconn(@), Iman(a), Facon(a)>}, where

Toenw(@) = (Tael@) A Trl(@)); Iacow(a) = (Tacl@) V In(@)); Facon(@) = (Facl@) V Far(a))

Definition 2.9 A Neutrosophic Fuzzy Set V' of BS-algebra 8B is called the Neutrosophic Fuzzy Ideal of
Bif va, B,y EB
(1) Tw (@) 2 T (@); In (1) < In(@); Far(1) < Fav(a);
(i) Tar (B) 2 {Tww (@) A T (B*)};
In(B) ={In (@) V In (B*)};
Fa(B) <{Fn(a) V Fa(B*a)}

Definition 2.10 [2] A Neutrosophic fuzzy set V" of BS-algebra B is called the Neutrosophic Fuzzy Bi-
ideal of B if Va,B8,y€B
(1) Tw (@) =2 Tw(@); In (@) < In(@); Far(L) < Fa(a);
(ii) T (B*y) = {Tw (@) A T (@*(B*¥))
In B*y) <{dn (@) V In (@*(B*Y))};
FaB*y) <{Fa(@) Vv Fx(a*(B*y))}

Definition 2.11 A Neutrosophic fuzzy set D of BS-algebra 8B is called the Neutrosophic Doubt Fuzzy
Ideal of B if Va,B,y €B
() To(1) < To(@); Ip(1) = In(@); Fp(1) = Fp(a);
(ii) To(B) < {To(a) vV To(B*a)};
Jp(B) = {Jp(a) A Jp(B*a)};
Fo(B) = {Fp(a) AFp(B*a)}

3. NEUTROSOPHIC DOUBT FUZzY BI-IDEAL (NDFB) OF BS-ALGEBRAS

In this Section, the concept of doubt fuzzy bi-ideal of 8B can be extented to Neutrosophic doubt
fuzzy bi-ideal of 8. We proved that the union of two NDFB of B is again a NDFB of 8. We also proved
that the intersection of two NDFB of B is again a NDFB of 8.

Definition 3.1 A Neutrosophic fuzzy set D of BS-algebra B is called the Neutrosophic Doubt Fuzzy Bi-
ideal (NDFB) of B if Va,B,y €8
(D 1) To(1) < To(a); Ip(1) = Ip(a); Fp(1) = Fp(a);
(D2) To(B*y) <{Tn(@) V To(a*(B*y)}:
JIp(B*y) = {Jp(a) A Jp(a*(B*Y))}:
Fo(B*y) = {Fp(a) A Fp(a*(B*y))}

Theorem 3.2 Let € and D be two NDFB of 8. Then CUD is a NDFB of B.
Proof
Let €and D be two NDFB of B. Forany a,B,y € B

) Teun(1) = {Te(1) v To(1)}
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<{Te(a) vV To(a)}
= Teun(a)
Therefore, Teup(1) < Teun(a)
and Jeup (1) = {Je(1) A Jp(1)}
> {Je(a) A Jn(a)}
= Jeun(@)
Therefore, Jeup(1) = Jeun(@)
and Feyp(1) = {Fe(1) A Fo(1)}
> {Fe(a) A Fo(a)}
=Feup(a)
Therefore, Feup(1) = Feup(a)
i) Teup(B*y) = {Te(B*y) vV To(B*y)}
< {Te(@) v Te(@*( B*Y))} V {To(@) V Tola*( B*Y))}}
= {{Te(@) vV To(a)} V {Te(a*( 8*y)) V Tola™( B*Y))}}
={Teup(@) V Teup(@*(B*Y))}
Therefore, Teup(B*Y) < {Teup(@) V Teun(a*(B*Y))}
and Jeup (B*Y) = {Je(B*y) A Jn(B*Y)}
> {Je(@) A Je(a*( 7))} AM{Tp(a) A Jo(a*( B*Y)}}
= {Je(@) A Jo(@)} A {Te(a*( B*Y)) A Jo(a*( B*Y)}}
={Jeun(@) A Jeup(@*(B*Y))}
Therefore, Jeup (B*Y) = {Jeun (@) A Jeun (@ (B*Y))}
and Feyp(B*y) = {Fe(B*y) A Fo(B*Y)}
> {{Fe(a@) A Fela*( 8*y))} MFo(a) A Fo(a*( B*y))}}
={{Fe(@) A Fo(a)} AM{Fe(a™( B*y)) A Fola*( B*y))}}
={Feup(@) A Feup(@*(B*y))}

Therefore, Feup(6*Y) = {Feun(@) A Feup(a™(B*y))}
Hence, CUD is a NDFB of B

Theorem 3.3 Let €and D be two NDFB of 8. Then €nD is a NDFB of B.
Proof
Let cand D be two NDFB of B. Forany a,f,y € B
() Tenp(2) ={Te(1) A To(1)}
<{Te(a) A To(x)}
= Tenn(a)
Therefore, Tean(1) < Tenp (@)
and Jenp(1) = {Je(1) v In(1)}
>{Je(a) v In(a)}
= Jenn(a)
Therefore, Jenp(1) = Jenp (@)
and Fenp(1) = {Fe(1) v Fo(1)}
> {Fe(a) v Fo(a)}
=Fenp(a)
Therefore, Fenp(1) = Fenp(@)
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(i) Tenp(B*y) = {Te(B*y) A To(B*Y)}
< {{Te(@) V Te(a*( B*Y))} A {To(@) V Tola™*( B*Y))}}
= {{Te(a) A To(a)} V {Te(a*( B*Y)) A To(a™( B*y))}}
={Tenp(@) V Tenp(a<*(*y))}

Therefore, Tenp(B*Y) < {Tenp(@) V Tenn (@*(B*Y))}

and Jenp (B*y) = {Je(B*Y) V Jn(B*Y)}
= {{Je(a) A Je(a*( B*Y))} V {Tp(a) A Jo(a*( B*Y)}}
={{Je(a) v Jo(@)} A {de(a*( B*Y)) V Tn(a*( B*Y))}}
={Jenp (@) A Jenp(@*(B*Y))}

Therefore, Jenp (B*Y) = {Jenp(@) A Jenp(a*(B*Y))}

Similarly, Fenp(B8*Y) = {Fenp(@) A Fenp(a*(B*y))}
Hence, END is a NDFB of B

Corollary 3.4 Let Dy, Do, ......, D, are NDFB of 8B, then D = N}, D; is also a NDFB of B
Proof
Straight forward using theorem 3.3

Lemma 3.5 For all s, t € | and i be any positive integer, if s = t, then
i)s'<t

i) [(sAt)] = (SAT)

i) [(sV t)]' = (s'V t)

Theorem 3.6 Let D be a NDFB of B, then Di={<a, Toi(a), Joi(a), Fo'(a)>: a € B} is a NDFB of Bi,
where i is any positive integer and Toi(a) = (To(a))i, Joi(a) = (Jo(a)), Foi(a) = (Fo(@))!
Proof
Let D be a NDFB of B. Forany a,,y € B
i) To'(1) = (To(1))
< (To(@))
= Toi(a)
Therefore, Toi(1) < Toi(a)
and Jo'(1) = (Jn(1))!
> (Jn(@))!
= Joi(a)
Therefore, Joi(1) > Jpi()
and Foi(1) = (Fo(1))
> (Fo(a))t
= Foi(a)
Therefore, Foi(1) > Foi(a)
il) To/(8*Y) = (To(B*y)) |
< [{To(@) v To(@*( 81T
={[To()]'V [To(a*( B*Y)]}
={Toi(a) v To'(a*(B*y))}
Therefore, To/(8*y) < {To'(a) V Toi(a*(8*y))}
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and Jo'(B*y) = (Jo(B*y)) _
>[{Jn(@) A Jo(a*( BV}
= {[Jo(@)]'A [Jo(a*( B*y))]'}
= {J»o'(a) A Joi(a*(B*Y))}
Therefore, Jo/(B8*y) = {Jo/(a) A Jp'(a*(B*Y))}
Similarly, we can prove that Foi(8*y) > {Foi(a) A Fol(a*(8*y))}
Hence Di is a NDFB of Bi

4. PRODUCT OF NEUTROSOPHIC DOUBT FUZZY BI IDEAL OF BS-ALGEBRAS

In this section, the product of NDFB of B are defined and corresponding theorems are investigated.
Definition 4.1 Let € and D be two neutrosophic doubt fuzzy subsets of 8B1and B, respectively.
Then the direct product of neutrosophic doubt fuzzy subsets of BS-algebra $B1and 8B:is defined by
CxD: B1x B,—[0,1] such that

CxD ={<(a.,B),Texp(@.B), Jexp(@.B), Fexp(a,B)>: a€B1, EB-}, where

Texp (@,8) = (Te(@) V To(B)); Texn(@.B) = (Je(@) A Jn(B)); Fexp(a.B) = (Fe(a) A Fo(B))

Definition 4.2 Let € and D be two neutrosophic doubt fuzzy subsets of B1and B, respectively. Then
CxD is a NDFB of B1x B:if it satisfies the following conditions
1) Texp(1,1) < Texp(an, @2); Jexp(1,1) = Jexp (@1, @2); Fexp(1,1) 2 Fexp(an, a2);
if) Texp ((Br, B2)* (1, ¥2)) < {Texp(an, a2) V Texp (a1, a2)*((B1, B2)* (v, v2))}:
Jexo((Br, B2)* (v, v2)) Z {Jexp (a1, a2) A Jexp (@1, a2)*((B1, B2)* (v, v2)))}
Fexn((B1, B2)* (v, v2)) = {Fexp(au, a2) A Fexp((@1, a2)*((B1, B2)* (v, v2)))}-

Theorem 4.3 Let Cand D be two NDFB of 8B, and B respectively. Then CxD is a NDFB of B1x B
Proof
Let €and D be two NDFB of B, and B, respectively.
Let (a1, @2), (B1, B2), (v, v2) € B1x B>
i) We have Texp(1,1) = {Te(1) vV To(1)}
< {Te(a) vV To(a2)}
=Texp (ala aZ)
Therefore, Texp(1,1) < Texp (a1, a2)
and Jexp (1,1) = {Je(1) A Io(1)}
> {Je(ar) A Jo(a2)}
:JCXD (al’ (Xz)
Therefore, Jeyp (1,1) > Jexp (a1, a2)
and Fexp(1,1) = {Fe(1) AFo(1)}
> {Fe(a1) A Fo(a2)}
=Fexp(a1, a2)
Therefore, Feyp(1,1) > Fexp(ai, a2)
i) Then Texp ((B1, B2)* (Y1, ¥2)) = Texn (Br*V1, B27Y2)
= {Te(B*y1) V To(B2*y2)}
< [{Te(ar) vV Te(ar*(B1*y1)} V{Tn(a2) V To(a2*(B2*y2))}]
= [{Te(ar) v To(a2)} V{Te(ar*(B1*y1)) V To(a2*(B2*y2))}]
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={Texp (a1, a2) V Texp (ar*(B1*y1)) , (a2*(B2*Y2))}
= {Texp (a1, @2) V Texp (a1, a2)*((B1, B2)* (v1, v2)}
Therefore, Texp((B1, B2)* (Y1, ¥2)) < {Texp (s, a2) V Texp (@1, a2)*((B1, B2)* (v, v2)))}
and Jexp ((B1, B2)* (Y1, ¥2)) = Jexp (Br*v1, B2*Y2)
={Je(B1*y1) A Io(B2*y2)}
> [{Je(ar) A Je(ar*(B1*y1))} M{Tn(az) A Jo(az*(B2*Y2))}]
= [{Je(ar) A dn(az)} A{Te(ar*(B1*y1)) A Ip(a2*(B2*y2))}]
={Jexp(@y, a2)} A Jexp (@*(B1*y1)) A (a2*(B2*Y2))}
= {Jexp (a1 ,a2) }A{Jexp (a1, @2)*((B1, B2)* (Y1, v2))}
Therefore, Jexp ((B1, B2)* (v1, ¥2)) = {dexp (@1, @2) A Jexp (a1, @2)*((B1, B2)* (v1, v2))}
Similarly we can easily prove that,
Fexo((Bu B2)* (v, v2)) = {Fexp(az, a2) A Fexp((a1, @2)*((B1, B2)* (v1, v2))}
Hence €xD is a NDFB of B1x B,

5. HOMOMORPHISM OF NDFB OF B

In this section, the homomorphic behaviour of NDFB of B are defined and related theorems are
discussed.

Definition 5.1 Let B;and B; be two BS-algebras and h:8, —B; be a function.

i) If D is a NDFB inB;, then the preimage of D under h denoted by h™(D) is the NDFB inB, is defined
by h*(D)={<(a), "(To(a)), h"(In(a)), " (Fp(a)) >: a€B},

where h™(To(a)) = To(h(@)); h(Jn(a)) = Jo(h(a)); h*(Fo(a)) = Fo(h());

Theorem 5.2 Let h: B:— B, be an epimorphism of BS-algebras if D is a NDFB of 8B, then the pre image
of D under h is also a NDFB of B;.
Proof
Let D is a NDFB of B.. Let a,8,y € B
Now, h"*(Tp(1)) = To(h(1))
<To(h())
=hY(Tp())
Therefore h*(Tp(1)) <h™(Tp(a))
and h™(Jp(1)) = Jp(h(1))
> Jp(h(a))
= h'(Jp(a))
Therefore h(Jp (1)) > h'(Jp())
and h™(Fp(1)) = Fp(h(1))
> Fp(h(a))
= h'(Fp(a))
Therefore h*(Fp (1)) > h'(Fp(a))
i) Again, h™*(Tp(8*y)) = To(h(B*Y))
=To(h(B)*(y))
<{To("(@)) v To(h(a)*[h(B)*h(y)])}
={To(h(a)) vV To(h(a*(B*y)))}
Therefore, h"(Tp(8*Y)) < {h"(Tp()) v ™ (To (@*(B*1))}

P. Ayesha Parveen and M. Himaya Jaleela Begum, Neutrosophic Doubt Fuzzy Bi-ideal of BS-Algebras



Neutrosophic Sets and Systems, Vol. 65, 2024 108

and h™(Jp (B8*Y)) = Jp(h(B*Y))

= Jp(h(B)*h(y))

> {Jp(h(a)) A Jp(h(@)*[h(B)*h(¥)]}

={Jp(N(a)) A Ip(h(a*(B*Y)))}
Therefore, h™(Jp(8*y)) = {h™(Jp(@)) A h*(Ip(a*(B*Y)))}
and h™(Fp (8*y)) = Fp(h(B*Y))

=Fp(h(B)*h(¥))

> {Fp(h(a)) A Fp(h(a)*[h(B)*h(¥)])}

= {Fp(h(a)) A Fp(h(a*(B*y)))}
Therefore, h'(Fp(8*y)) = {h"(Fp(a)) A h*(Fp(a*(B*y)))}
Hence h™(D)is a NDFB of B;.

Definition 5.3 [1] Let B, and B, be two BS-algebras h: B;— B, be a homomorphism. Then h(1) =1
Theorem 5.4 Let h: B:— B, be a homomorphism of BS-algebras if D is a NDFB of B, then h(D)is a
NDFB of 8B..
Proof
Let a1, a», az € B1and ﬁl, ﬁz, 33 € B, such that h(a1)= ﬁl B h(a2)= ,Bz, h(a3)= ,33
Now, Tp(B1)= Tp(h(a1))
= h™(Tp(a1))
>h*(Tp(2))
=Tp(h(1))
=Tp(D)
Therefore, Tp(f1) = Tp(1)
And Jp(B1)= Jp(h(a))
= h"(Jp(a2))
<h™(Jp(1))
=Jp(h(1))
=Jp(1)
Therefore, Jp(81) < Jp(1)
And Fp(B1)=Fp(h(a))
= h(Fp(a))
< h(Fp(1))
=Fp(h(1))
=Fp(1)
Therefore, Fp(B1) <Fp(1)
ii) Again, Tp(B2* Bs) = Tp(h(a2)* h(as))
= h*(Tp(a2*aa))
< {h*(Tp(a) v h*(Tp(a:*(az*as)))}
={To(h(a1)) vV Tp(h(ar*(a2*as)))}
={To(h(a1)) vV Tp(h(ar)*(h(az)*h(as)))}
={Tp(B) V To(Br*(B2*B3))}
Therefore, Tp(B2* B3) < {To(B) V To(B1*(B2*F3))}
And Jp(B2* B3) = Jp(h(a2)* h(as))
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= h'(Jp(az*as))
> {h*(Jp (1)) A b (Ip (ar*(az*as)))}
={Jp(h(a1)) A Jp(h(ar*(az*a3)))}
={Jp("(az)) A Jp(h(a)*(h(az)*h(as)))}
={Jp(B1) A Jp(B*(B2*B3))}
Therefore, Jp(B2* B3) = {Jp(B1) A Jp(B1*(62*B3))}
Similarly, Fp(B2* B3) = {Fp(B1) A Fo(B1*(B2*B3))}
Hence h(D)is a NDFB of B..

Conclusion

In this research paper, the notion of Neutrosophic doubt fuzzy bi-ideal (NDFB) of BS-algebras B
are introduced and studied their algebraic properties. We obtained the Cartesian product of
neutrosophic doubt fuzzy bi-ideal(NDFB) for BS-algebras 8B. Finally, we studied how to deal with
homomorphism in neutrosophic doubt fuzzy bi-ideal(NDFB) for BS-algebras B.
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