

University of New Mexico

Neutrosophic \varkappa -structures in an AG-groupoid

G. Muhiuddin¹, K. Porselvi^{2*} and B. Elavarasan³

¹Department of Mathematics, University of Tabuk, P.O. Box-741, Tabuk-71491, Saudi Arabia.

¹E-mail:chishtygm@gmail.com

^{2,3}Department of Mathematics, Karunya Institute of Technology and Sciences, Coimbatore - 641 114, India.

² E-mail:porselvi94@yahoo.co.in; porselvi@karunya.edu

 ${}^3{\rm E}\mbox{-mail:belavarasan@gmail.com; elavarasan@karunya.edu.}$

*Correspondence: porselvi94@yahoo.co.in

Abstract. An AG-groupoid is the midway between commutative semigroup and groupoid. The core structure of Flock theory is an AG-groupoid, which focuses on motion replication and distance optimization and has numerous applications in physics and biology. Unfortunately, in many cases, modelling real-world problems in domains like computer science, operations research, artificial intelligence, control engineering, and robotics can be risky. Different theories, such as fuzzy sets, intuitionistic fuzzy sets, probability, soft sets, neutrosophic sets, and others, have been created to deal with similar situations. In this paper, We define the notions of neutrosophic \varkappa -ideal structures in an AG-groupoid and investigate their properties. We also obtain equivalent assertion of neutrosophic \varkappa -ideals and product of neutrosophic \varkappa -structures in AG-groupoid.

Keywords: AG-groupoid;neutrosophic \varkappa -structures; ideals; neutrosophic \varkappa -ideals; neutrosophic \varkappa -interior ideals.

1. Introduction

In [1], Zadeh pioneered the fuzzy set theory to model imprecise ideas in the globe. Atanassov expanded fuzzy set theory principles and termed it Intuitionistic fuzzy set in [2]. In his opinion, there are two types of degrees of freedom in an universe: non-membership in a specific subset and membership in a vague subset. In [3], Rosenfeld proposed the notion of fuzziness in groups and produced a number of results. Recently, several authors studied their research in this field, and similar notions are used in variety of algebraic structures, including semigroups, semiring, ordered semigroups, rings (refer, [4] - [14], [18]- [21]).

To deal with the uncertainty that exists everywhere, Smarandache suggested the notions of neutrosophic sets in [15]. It's a combination of fuzzy sets and intuitionistic fuzzy sets that's

G. Muhiuddin et. al., Neutrosophic \varkappa -structures in an AG-groupoid

been generalized. Neutrosophic sets are defined using these three properties, which include membership functions for truth (T), indeterminacy (I), and falsity (F). These sets can be used in a variety of fields to deal with the difficulties that result from ambiguous data. The relative and absolute membership functions can be distinguished by a neutrosophic set. Smarandache employed neutrosophic sets in non-standard analysis, such as control theory, decision making theory, sports decision (winning/losing/tie), and so on.

In BCK-algebra, Muhiuddin et al. discovered an association between (ϵ, ϵ) -neutrosophic subalgebra and (ϵ, ϵ) -neutrosophic ideal in [16], and Muhiuddin et al. created and investigated neutrosophic implicative \varkappa -ideal in [17]. Additionally, the connection between several neutrosophic implicative \varkappa -ideals were examined.

In semigroup, neutrosophic \varkappa -subsemigroup and the ϵ -neutrosophic \varkappa -subsemigroup were defined and their different features were covered in [18] by Khan et al. We examined the properties of various neutrosophic \varkappa -structure notions, namely neutrosophic \varkappa -ideal structures in a semigroup, as inspiration from [18]. A neutrosophic \varkappa -ideals in a semigroup were suggested by B. Elavarasan et al. in [19] and different features were achieved. The comparable claims for the typical neutrosophic \varkappa -structure were also given.

Porselvi et al. studied a number of characteristics of the neutrosophic \varkappa -bi-ideal in a semigroup in [20], and neutrosophic \varkappa -interior ideal in [21]. We have established equivalent claims for regular semigroup. In [22], Elavarasan et al. presented and studied neutrosophic \varkappa -filters in semigroups. In [23], Muhiuddin and others proposed the concepts of neutrosophic \varkappa -structures in ordered semigroup, and examined their properties. Smarandache proposed neutrosophic topologies in [26], Runu Dhar studied compactness and neutrosophic topological space in [27], Sudeep Dey et al. presented neutrosophic composite relation in [28].

We present the ideas of neutrosophic \varkappa -ideal structures in an AG-groupoid in this paper. We prove that the product of two neutrosophic \varkappa -right-ideal is a neutrosophic \varkappa -bi-ideal, and neutrosophic \varkappa -right-ideal is equivalent to neutrosophic \varkappa -interior-ideal, under certain condition.

2. Preliminaries

Unless otherwise specified, \mathcal{M} denotes an AG-groupoid throughout this paper. Here is a glossary of the definitions we have already used for your perusal.

For $M_1, M_2 \subseteq \mathcal{M}$, we denote $(M_1] = \{k \in \mathcal{M} : k \leq m \text{ for some } m \in M_1\}$ and $M_1M_2 = \{k_1k_2 : \text{ for all } k_1 \in M_1 \text{ and } k_2 \in M_2\}$. Following [24] and [25], an AG-groupoid, \mathcal{M} , is a groupoid whose elements hold the left invertive law: $(m_1m_2)k_3 = (k_3m_2)m_1$ for all $m_1, m_2, k_3 \in \mathcal{M}$. An AG-groupoid structure lies between a commutative semigroup and a groupoid. In \mathcal{M} , the medial law $(m_1m_2)(k_3k_4) = (m_1k_3)(m_2k_4)$ for all $m_1, m_2, k_3, k_4 \in \mathcal{M}$ holds. If there is

an element $e \in \mathcal{M} \ni em = m \forall m \in \mathcal{M}$, then e is the left identity. If \mathcal{M} has a right identity, then \mathcal{M} is said to be commutative monoid. If \mathcal{M} is having a left identity, then $(m_1m_2)(k_3k_4) = (k_4k_3)(m_2m_1)$ holds for all $m_1, m_2, k_3, k_4 \in \mathcal{M}$. An element $m \in \mathcal{M}$ is said to be idempotent if $m^2 = m$.

Let \mathscr{M} be an AG-groupoid and $\phi \neq M \subseteq \mathscr{M}$. Then M is called a AG-subgroupoid of \mathscr{M} (see [24]) if $M^2 \subseteq M$. A subset $M \neq \phi$ in \mathscr{M} is called a left(respectively, right) ideal if $\mathscr{M}M \subseteq M$ (respectively, $M\mathscr{M} \subseteq M$), and M is said to be an ideal if it is both a right and a left ideal of \mathscr{M} . A subset $M \neq \phi$ in \mathscr{M} is said to be an interior ideal if $(\mathscr{M}M)\mathscr{M} \subseteq M$. A subset $M \neq \phi$ in \mathscr{M} is known as bi-ideal if $(M\mathscr{M})M \subseteq M$. A subset $M \neq \phi$ in \mathscr{M} is said to be an interior ideal if $(\mathscr{M}M)\mathscr{M} \subseteq M$. A subset $M \neq \phi$ in \mathscr{M} is known as bi-ideal if $(M\mathscr{M})M \subseteq M$. A subset $M \neq \phi$ in \mathscr{M} is said to be a idempotent if MM = M.

Let \mathscr{M} be an AG-groupoid. Then a function $\nu : \mathscr{M} \to [-1,0]$ is the \varkappa -function on \mathscr{M} , and the set of all the \varkappa -functions is given by $F(\mathscr{M}, [-1,0])$. A \varkappa -structure is an ordered pair (\mathscr{M}, h) of \mathscr{M} and an \varkappa -function ν on \mathscr{M} .

Definition 2.1. Let \mathscr{M} be an AG-groupoid. A neutrosophic \varkappa -structure in \mathscr{M} is given in the form:

$$\mathscr{M}_{\zeta} := \frac{\mathscr{M}}{(T_{\zeta}, I_{\zeta}, F_{\zeta})} = \bigg\{ \frac{k}{(T_{\zeta}(k), I_{\zeta}(k), F_{\zeta}(k))} \mid k \in \mathscr{M} \bigg\},$$

where T_{ζ}, F_{ζ} and I_{ζ} are the negative truth, negative falsity and negative indeterminacy membership functions respectively in \mathscr{M} (\varkappa -functions). Clearly, $-3 \leq T_{\zeta}(m) + I_{\zeta}(m) + F_{\zeta}(m) \leq 0$ $\forall m \in \mathscr{M}$.

Throughout this section, we assume that \mathcal{M}_{ζ} and \mathcal{M}_{ξ} are neutrosophic \varkappa -structures in \mathcal{M} , unless otherwise stated.

Notation 1. We denote the set of

- (i) neutrosophic \varkappa -left ideal by \mathcal{M}_l ,
- (ii) neutrosophic \varkappa -right ideal by \mathcal{M}_r ,
- (iii) neutrosophic \varkappa -ideal by \mathscr{M}_i ,
- (iv) neutrosophic \varkappa -bi-ideal by \mathcal{M}_b ,
- (v) neutrosophic \varkappa -interior ideal by \mathcal{M}_n ,
- (vi) neutrosophic \varkappa -AG-subgroupoid by \mathcal{M}_s .
- (vii) neutrosophic \varkappa -idempotent by \mathcal{M}_d .

Definition 2.2. Let $\mathcal{M}_{\zeta} \in \mathcal{M}$. Then $\mathcal{M}_{\zeta} \in \mathcal{M}_s$ provided the below condition is valid:

$$(\forall m_1, m_2 \in \mathscr{M}) \left(\begin{array}{c} T_{\zeta}(m_1 m_2) \leq T_{\zeta}(m_1) \lor T_{\zeta}(m_2) \\ I_{\zeta}(m_1 m_2) \geq I_{\zeta}(m_1) \land I_{\zeta}(m_2) \\ F_{\zeta}(m_1 m_2) \leq F_{\zeta}(m_1) \lor F_{\zeta}(m_2) \end{array} \right).$$

Let $\nu, \gamma, \omega \in [-1, 0]$. Consider the sets:

$$T_{\zeta}^{\nu} = \{ m_1 \in \mathscr{M} \mid T_{\zeta}(m_1) \leq \nu \},$$

$$I_{\zeta}^{\gamma} = \{ m_1 \in \mathscr{M} \mid I_{\zeta}(m_1) \geq \gamma \},$$

$$F_{\zeta}^{\omega} = \{ m_1 \in \mathscr{M} \mid F_{\zeta}(m_1) \leq \omega \}.$$

The set $\mathcal{M}_{\zeta}(\nu, \gamma, \omega) := \{ m_1 \in \mathcal{M} \mid T_{\zeta}(m_1) \leq \nu, I_{\zeta}(m_1) \geq \gamma, F_{\zeta}(m_1) \leq \omega \}$ is known as (ν, γ, ω) -level set on \mathscr{M}_{ζ} . Obviously, $\mathscr{M}_{\zeta}(\nu, \gamma, \omega) = T_{\zeta}^{\nu} \cap I_{\zeta}^{\gamma} \cap F_{\zeta}^{\omega}$.

Definition 2.3. Let $\mathcal{M}_{\zeta} \in \mathcal{M}$. Then $\mathcal{M}_{\zeta} \in \mathcal{M}_i$ provided the below conditions are valid:

(i)
$$(\forall m_1, m_2 \in \mathscr{M})$$

$$\begin{pmatrix} T_{\zeta}(m_1m_2) \leq T_{\zeta}(m_2) \\ I_{\zeta}(m_1m_2) \geq I_{\zeta}(m_2) \\ F_{\zeta}(m_1m_2) \leq F_{\zeta}(m_2) \end{pmatrix}$$
(ii) $(\forall m_1, m_2 \in \mathscr{M})$

$$\begin{pmatrix} T_{\zeta}(m_1m_2) \leq T_{\zeta}(m_1) \\ I_{\zeta}(m_1m_2) \geq I_{\zeta}(m_1) \\ F_{\zeta}(m_1m_2) \leq F_{\zeta}(m_1) \end{pmatrix}$$

If condition (i) hold, then $\mathcal{M}_{\zeta} \in \mathcal{M}_l$. If condition (ii) hold, then $\mathcal{M}_{\zeta} \in \mathcal{M}_r$.

Definition 2.4. Let $\mathcal{M}_{\zeta} \in \mathcal{M}_s$. Then $\mathcal{M}_{\zeta} \in \mathcal{M}_b$ if the below assertion is valid:

$$(\forall a, k_1, k_2 \in \mathscr{M}) \left(\begin{array}{c} T_{\zeta}(k_1 a k_2) \leq T_{\zeta}(k_1) \lor T_{\zeta}(k_2) \\ I_{\zeta}(k_1 a k_2) \geq I_{\zeta}(k_1) \land I_{\zeta}(k_2) \\ F_{\zeta}(k_1 a k_2) \leq F_{\zeta}(k_1) \lor F_{\zeta}(k_2) \end{array} \right).$$

It is obvious that for any $\mathcal{M}_{\zeta} \in \mathcal{M}_i$, we have $\mathcal{M}_{\zeta} \in \mathcal{M}_b$. The converse need not be true, as shown by an example.

Example 2.5. Suppose $\mathcal{M} := \{x_1, x_2, x_3, x_4, x_5\}$. Then $(\mathcal{M}, .)$ is an AG-groupoid as given below:

	x_1	x_2	x_3	x_4	x_5
x_1	x_1	x_4	x_1	x_4	x_4
x_2	x_1	x_2	x_1	x_4	x_4
x_3	x_1	x_4	x_3	x_4	x_5
x_4	x_1	x_4	x_1	x_4	x_4
x_5	x_1	x_4	x_3	x_4	x_5

Let $\mathcal{M}_{\zeta} = \left\{ \begin{array}{c} \frac{x_1}{(-0.8, -0.2, -0.6)}, & \frac{x_2}{(-0.5, -0.9, -0.1)}, & \frac{x_3}{(-0.3, -0.4, -0.5)}, & \frac{x_4}{(-0.8, -0.2, -0.6)}, & \frac{x_5}{(-0.2, -0.5, -0.1)} \end{array} \right\}.$ Then $\mathcal{M}_{\zeta} \in \mathcal{M}_b$, and $\mathcal{M}_{\zeta} \notin \mathcal{M}_i$ as $T_{\mathcal{M}}(x_3x_5) = -0.2 > T_{\mathcal{M}}(x_3), I_{\mathcal{M}}(x_3x_5) = -0.5 < I_{\mathcal{M}}(x_3)$ and $F_{\mathscr{M}}(x_3x_5) = -0.1 > F_{\mathscr{M}}(x_3).$

Definition 2.6. Let $\mathcal{M}_{\zeta} \in \mathcal{M}_s$. Then $\mathcal{M}_{\zeta} \in \mathcal{M}_n$ provided the below assertion is valid:

$$(\forall a, m_1, m_2 \in \mathscr{M}) \left(\begin{array}{c} T_{\zeta}(m_1 a m_2) \leq T_{\zeta}(a) \\ I_{\zeta}(m_1 a m_2) \geq I_{\zeta}(a) \\ F_{\zeta}(m_1 a m_2) \leq F_{\zeta}(a) \end{array} \right)$$

It is obvious that for any $\mathcal{M}_{\zeta} \in \mathcal{M}_i$, we have $\mathcal{M}_{\zeta} \in \mathcal{M}_n$. The converse is not true, as shown by an example.

Example 2.7. Let \mathscr{M} be the collection of all positive integers with 0 except 1. Then under usual multiplication, \mathscr{M} is an AG-groupoid.

Let

$$\mathcal{M}_{\zeta} = \left\{ \begin{array}{c} 0 \\ (-0.8, -0.2, -0.8), \end{array}, \begin{array}{c} \frac{2}{(-0.3, -0.4, -0.5)}, \end{array}, \begin{array}{c} \frac{5}{(-0.5, -0.6, -0.6)}, \end{array}, \begin{array}{c} \frac{10}{(-0.2, -0.5, -0.3)}, \end{array}, \begin{array}{c} \frac{otherwise}{(-0.8, -0.2, -0.4)} \end{array} \right\}.$$
Then $\mathcal{M}_{\zeta} \in \mathcal{M}_n$, and $\mathcal{M}_{\zeta} \notin \mathcal{M}_i$, as $T_{\mathcal{M}}(2.5) = -0.2 > T_{\mathcal{M}}(2)$ and $T_{\mathcal{M}}(2.5) = -0.2 > T_{\mathcal{M}}(5)$.

Definition 2.8. For any $\mathscr{Z} \subseteq \mathscr{M}$, the characteristic neutrosophic χ -structure in \mathscr{M} is referred as

$$\chi_{\mathscr{Z}}(\mathscr{M}_{\zeta}) = \frac{\mathscr{M}}{(\chi_{\mathscr{Z}}(T)_{\zeta}, \chi_{\mathscr{Z}}(I)_{\zeta}, \chi_{\mathscr{Z}}(F)_{\zeta})}$$

where

$$\chi_{\mathscr{Z}}(T)_{\zeta} : \mathscr{M} \to [-1,0], \ m_1 \mapsto \begin{cases} -1 & if \ m_1 \in \mathscr{Z} \\ 0 & otherwise, \end{cases}$$
$$\chi_{\mathscr{Z}}(I)_{\zeta} : \mathscr{M} \to [-1,0], \ m_1 \mapsto \begin{cases} 0 & if \ m_1 \in \mathscr{Z} \\ -1 & otherwise, \end{cases}$$
$$\chi_{\mathscr{Z}}(F)_{\zeta} : \mathscr{M} \to [-1,0], \ m_1 \mapsto \begin{cases} -1 & if \ m_1 \in \mathscr{Z} \\ 0 & otherwise. \end{cases}$$

Definition 2.9. Let $\mathcal{M}_{\xi} := \frac{\mathcal{M}}{(T_{\xi}, I_{\xi}, F_{\xi})} \in \mathcal{M}$ and $\mathcal{M}_{\zeta} := \frac{\mathcal{M}}{(T_{\zeta}, I_{\zeta}, F_{\zeta})} \in \mathcal{M}$. Then (i) \mathcal{M}_{ξ} is said to be a neutrosophic χ substructure in \mathcal{M}_{ξ} denote by $\mathcal{M}_{\xi} \subset \mathcal{M}_{\xi}$

(i) \mathscr{M}_{ξ} is said to be a neutrosophic \varkappa -substructure in \mathscr{M}_{ζ} , denote by $\mathscr{M}_{\zeta} \subseteq \mathscr{M}_{\xi}$, if $T_{\zeta}(m_1) \ge T_{\xi}(m_1), I_{\zeta}(m_1) \le I_{\xi}(m_1), F_{\zeta}(m_1) \ge F_{\xi}(m_1)$ for all $m_1 \in \mathscr{M}$.

If $\mathcal{M}_{\xi} \subseteq \mathcal{M}_{\zeta}$ and $\mathcal{M}_{\zeta} \subseteq \mathcal{M}_{\xi}$, then we write $\mathcal{M}_{\xi} = \mathcal{M}_{\zeta}$.

(ii) The union of \mathcal{M}_{ξ} and \mathcal{M}_{ζ} over $\mathcal M$ is described as

$$\mathscr{M}_{\xi} \cup \mathscr{M}_{\zeta} = \mathscr{M}_{\xi \cup \zeta} = (\mathscr{M}; T_{\xi \cup \zeta}, I_{\xi \cup \zeta}, F_{\xi \cup \zeta}),$$

where $\forall m_1 \in \mathcal{M}$,

$$(T_{\xi} \cup T_{\zeta})(m_1) = T_{\xi \cup \zeta}(m_1) = T_{\xi}(m_1) \wedge T_{\zeta}(m_1), (I_{\xi} \cup I_{\zeta})(m_1) = I_{\xi \cap \zeta}(m_1) = I_{\xi}(m_1) \vee I_{\zeta}(m_1), (F_{\xi} \cup F_{\zeta})(m_1) = F_{\xi \cup \zeta}(m_1) = F_{\xi}(m_1) \wedge F_{\zeta}(m_1).$$

(iii) The intersection of
$$\mathscr{M}_{\xi}$$
 and \mathscr{M}_{ζ} over \mathscr{M} is described as
 $\mathscr{M}_{\xi} \cap \mathscr{M}_{\zeta} = \mathscr{M}_{\xi \cap \zeta} = (\mathscr{M}; T_{\xi \cap \zeta}, I_{\xi \cap \zeta}, F_{\xi \cap \zeta}),$
 $(T_{\xi} \cap T_{\zeta})(m_1) = T_{\xi \cap \zeta}(m_1) = T_{\xi}(m_1) \vee T_{\zeta}(m_1),$
where $\forall m_1 \in \mathscr{M}, \quad (I_{\xi} \cap I_{\zeta})(m_1) = I_{\xi \cap \zeta}(m_1) = I_{\xi}(m_1) \wedge I_{\zeta}(m_1), \quad .$
 $(F_{\xi} \cap F_{\zeta})(m_1) = F_{\xi \cap \zeta}(m_1) = F_{\xi}(m_1) \vee F_{\zeta}(m_1).$

3. Main Results

We present some characteristics of neutrosophic \varkappa -ideal structures in an AG-groupoid \mathcal{M} . In \mathcal{M} , neutrosophic \varkappa -ideals are clearly neutrosophic \varkappa -interior ideals, but the converse is true under certain conditions.

Theorem 3.1. For any \mathcal{M} , $(\mathcal{M}_{\xi}, \odot)$ is an AG-groupoid.

Proof. It is clear that $(\mathscr{M}_{\xi}, \odot)$ is closed. Let $\mathscr{M}_{\xi}, \mathscr{M}_{\zeta}, \mathscr{M}_{\mathscr{R}} \in \mathscr{M}$. Then for any $t \in \mathscr{M}$,

$$\begin{split} ((T_{\xi} \circ T_{\zeta}) \circ T_{\mathscr{R}})(t) &= \{(T_{\xi} \circ T_{\zeta})(y) \lor T_{\mathscr{R}}(z)\} \\ &= \bigwedge_{t=yz} \{\bigwedge_{y=rs} \{T_{\xi}(r) \lor T_{\zeta}(s) \lor T_{\mathscr{R}}(z)\} \\ &= \bigwedge_{t=(rs)z} \{T_{\mathscr{R}}(z) \lor T_{\zeta}(s) \lor T_{\mathscr{R}}(z)\} \\ &= \bigwedge_{t=(zs)r} \{T_{\mathscr{R}}(z) \lor T_{\zeta}(s) \lor T_{\xi}(r)\} \\ &= \bigwedge_{t=ur} \{(T_{\mathscr{R}} \circ T_{\zeta})(u) \lor T_{\xi}(r)\} \\ &= ((T_{\mathscr{R}} \circ T_{\zeta}) \circ T_{\xi})(t), \\ ((I_{\xi} \circ I_{\zeta}) \circ I_{\mathscr{R}})(t) &= \bigvee_{t=yz} \{(I_{\xi} \circ I_{\zeta})(y) \land I_{\mathscr{R}}(z)\} \\ &= \bigvee_{t=yz} \{\bigvee_{y=rs} \{I_{\xi}(r) \land I_{\zeta}(s)\} \land I_{\mathscr{R}}(z)\} \\ &= \bigvee_{t=(rs)z} \{I_{\mathscr{R}}(z) \land I_{\zeta}(s) \land I_{\xi}(r)\} \\ &= \bigwedge_{t=(x)r} \{I_{\mathscr{R}}(z) \land I_{\zeta}(s) \land I_{\xi}(r)\} \\ &= \bigwedge_{t=ur} \{(I_{\mathscr{R}} \circ I_{\zeta})(u) \land I_{\xi}(r)\} \\ &= ((I_{\mathscr{R}} \circ I_{\zeta}) \circ I_{\xi})(t), \end{split}$$

$$\begin{split} ((F_{\xi} \circ F_{\zeta}) \circ F_{\mathscr{R}})(t) &= \bigwedge_{t=yz} \left\{ (F_{\xi} \circ F_{\zeta})(y) \lor F_{\mathscr{R}}(z) \right\} \\ &= \bigwedge_{t=yz} \left\{ \bigwedge_{y=rs} \left\{ F_{\xi}(r) \lor F_{\zeta}(s) \right\} \lor F_{\mathscr{R}}(z) \right\} \\ &= \bigwedge_{t=(rs)z} \left\{ F_{\xi}(r) \lor F_{\zeta}(s) \lor F_{\mathscr{R}}(z) \right\} \\ &= \bigwedge_{t=(zs)r} \left\{ F_{\mathscr{R}}(z) \lor F_{\zeta}(s) \lor F_{\xi}(r) \right\} \\ &= \bigwedge_{t=ur} \left\{ (F_{\mathscr{R}} \circ F_{\zeta})(u) \lor F_{\xi}(r) \right\} \\ &= ((F_{\mathscr{R}} \circ F_{\zeta}) \circ F_{\xi})(t). \end{split}$$

Therefore $(\mathcal{M}_{\xi}, \odot)$ is an *AG*-groupoid. \Box

Corollary 3.2. For any $\mathcal{M}_{\xi}, \mathcal{M}_{\zeta}, \mathcal{M}_{\mathcal{R}}, \mathcal{M}_{\mathcal{Q}} \in \mathcal{M}, (\mathcal{M}_{\xi} \odot \mathcal{M}_{\zeta}) \odot (\mathcal{M}_{\mathcal{R}} \odot \mathcal{M}_{\mathcal{Q}}) = (\mathcal{M}_{\xi} \odot \mathcal{M}_{\mathcal{R}}) \odot (\mathcal{M}_{\zeta} \odot \mathcal{M}_{\mathcal{Q}}).$

 $\begin{array}{l} \textit{Proof. Let } \mathcal{M}_{\xi}, \mathcal{M}_{\zeta}, \mathcal{M}_{\mathscr{R}}, \mathcal{M}_{\mathscr{Q}} \in \mathcal{M} \text{. Then} \\ (T_{\xi} \circ T_{\zeta}) \circ (T_{\mathscr{R}} \circ T_{\mathscr{Q}}) = ((T_{\mathscr{R}} \circ T_{\mathscr{Q}}) \circ T_{\zeta}) \circ T_{\xi}) = ((T_{\zeta} \circ T_{\mathscr{Q}}) \circ T_{\mathscr{R}}) \circ T_{\xi}) = (T_{\xi} \circ T_{\mathscr{R}}) \circ (T_{\zeta} \circ T_{\mathscr{Q}}), \\ (F_{\xi} \circ F_{\zeta}) \circ (F_{\mathscr{R}} \circ F_{\mathscr{Q}}) = ((F_{\mathscr{R}} \circ F_{\mathscr{Q}}) \circ F_{\zeta}) \circ F_{\xi}) = ((F_{\zeta} \circ F_{\mathscr{Q}}) \circ F_{\mathscr{R}}) \circ F_{\xi}) = (F_{\xi} \circ F_{\mathscr{R}}) \circ (F_{\zeta} \circ F_{\mathscr{Q}}) \\ \text{and} \end{array}$

$$(I_{\xi} \circ I_{\zeta}) \circ (I_{\mathscr{R}} \circ I_{\mathscr{Q}}) = ((I_{\mathscr{R}} \circ I_{\mathscr{Q}}) \circ I_{\zeta}) \circ I_{\xi}) = ((I_{\zeta} \circ I_{\mathscr{Q}}) \circ I_{\mathscr{R}}) \circ I_{\xi}) = (I_{\xi} \circ I_{\mathscr{R}}) \circ (I_{\zeta} \circ I_{\mathscr{Q}}).$$
Hence $(\mathscr{M}_{\xi} \odot \mathscr{M}_{\zeta}) \odot (\mathscr{M}_{\mathscr{R}} \odot \mathscr{M}_{\mathscr{Q}}) = (\mathscr{M}_{\xi} \odot \mathscr{M}_{\mathscr{R}}) \odot (\mathscr{M}_{\zeta} \odot \mathscr{M}_{\mathscr{Q}}).$

Theorem 3.3. If \mathscr{M} has left identity, then for any $\mathscr{M}_{\xi}, \mathscr{M}_{\zeta}, \mathscr{M}_{\mathscr{R}}, \mathscr{M}_{\mathscr{Q}} \in \mathscr{M}$, we have the following:

 $\begin{aligned} &(i) \ \mathcal{M}_{\xi} \odot (\mathcal{M}_{\zeta} \odot \mathcal{M}_{\mathscr{R}}) = \mathcal{M}_{\zeta} \odot (\mathcal{M}_{\xi} \odot \mathcal{M}_{\mathscr{R}}), \\ &(ii) \ (\mathcal{M}_{\xi} \odot \mathcal{M}_{\zeta}) \odot (\mathcal{M}_{\mathscr{R}} \odot \mathcal{M}_{\mathscr{Q}}) = (\mathcal{M}_{\mathscr{Q}} \odot \mathcal{M}_{\mathscr{R}}) \odot (\mathcal{M}_{\zeta} \odot \mathcal{M}_{\xi}). \end{aligned}$

Proof. (i) Let $m \in \mathcal{M}$. If $m \neq xy$ for any $x, y \in \mathcal{M}$, then

$$(T_{\xi} \circ (T_{\zeta} \circ T_{\mathscr{R}}))(m) = 0 = (T_{\zeta} \circ (T_{\xi} \circ T_{\mathscr{R}}))(m),$$
$$(I_{\xi} \circ (I_{\zeta} \circ I_{\mathscr{R}}))(m) = -1 = (I_{\zeta} \circ (I_{\xi} \circ I_{\mathscr{R}}))(m),$$
$$(F_{\xi} \circ (F_{\zeta} \circ F_{\mathscr{R}}))(m) = 0 = (F_{\zeta} \circ (F_{\xi} \circ F_{\mathscr{R}}))(m).$$

Suppose m = yz for $y, z \in \mathcal{M}$. Then

$$\begin{split} (T_{\xi} \circ (T_{\zeta} \circ T_{\mathscr{A}}))(m) &= \bigwedge_{m=yz} \{T_{\xi}(y) \lor (T_{\zeta} \circ T_{\mathscr{A}})(z)\} \\ &= \bigwedge_{m=yz} \{T_{\xi}(y) \lor \prod_{z=rs} \{T_{\zeta}(r) \lor T_{\mathscr{A}}(s)\}\} \\ &= \bigwedge_{m=ry} \{T_{\xi}(y) \lor T_{\zeta}(r) \lor T_{\mathscr{A}}(s)\} \\ &= \bigwedge_{m=ry} \{T_{\zeta}(r) \lor T_{\xi}(y) \lor T_{\mathscr{A}}(s)\} \\ &= \bigwedge_{m=ry} \{T_{\zeta}(r) \lor \bigcap_{p=ys} \{T_{\xi}(y) \lor T_{\mathscr{A}}(s)\}\} \\ &= \bigwedge_{m=ry} \{T_{\zeta}(r) \lor (T_{\xi} \circ T_{\mathscr{A}})(p)\} \\ &= (T_{\zeta} \circ (T_{\xi} \circ T_{\mathscr{A}}))(m), \\ (I_{\xi} \circ (I_{\zeta} \circ I_{\mathscr{A}}))(m) &= \bigvee_{m=yz} \{I_{\xi}(y) \land (I_{\zeta} \circ I_{\mathscr{A}})(z)\} \\ &= \bigvee_{m=yz} \{I_{\xi}(y) \land I_{\zeta}(r) \land I_{\mathscr{A}}(s)\}\} \\ &= \bigvee_{m=ry} \{I_{\zeta}(r) \land I_{\zeta}(r) \land I_{\mathscr{A}}(s)\} \\ &= \bigvee_{m=ry} \{I_{\zeta}(r) \land I_{\zeta}(r) \land I_{\mathscr{A}}(s)\} \\ &= \bigvee_{m=ry} \{I_{\zeta}(r) \land (I_{\xi} \circ I_{\mathscr{A}})(p)\} \\ &= (I_{\zeta} \circ (I_{\xi} \circ I_{\mathscr{A}}))(m), \\ (F_{\xi} \circ (F_{\zeta} \circ F_{\mathscr{A}}))(m) &= \bigwedge_{m=yz} \{F_{\xi}(y) \lor (F_{\zeta} \circ F_{\mathscr{A}})(z)\} \\ &= \bigwedge_{m=ry} \{F_{\zeta}(r) \lor F_{\zeta}(r) \lor F_{\mathscr{A}}(s)\} \\ &= \bigwedge_{m=ry} \{F_{\zeta}(r) \lor F_{\zeta}(r) \lor F_{\mathscr{A}}(s)\} \\ &= \bigwedge_{m=ry} \{F_{\zeta}(r) \lor F_{\xi}(y) \lor F_{\mathscr{A}}(s)\} \\ &= \bigwedge_{m=ry} \{F_{\zeta}(r) \lor (F_{\xi} \circ F_{\mathscr{A}})(p)\} \\ &= (F_{\zeta} \circ (F_{\zeta} \circ F_{\mathscr{A}}))(m) \\ &= \bigwedge_{m=ry} \{F_{\zeta}(r) \lor (F_{\xi} \circ F_{\mathscr{A}})(p)\} \\ &= \bigwedge_{m=ry} \{F_{\zeta}(r) \lor (F_{\xi} \circ F_{\mathscr{A}})(p)\} \\ &= \bigwedge_{m=ry} \{F_{\zeta}(r) \lor (F_{\xi} \circ F_{\mathscr{A}})(p)\} \\ &= (F_{\zeta} \circ (F_{\xi} \circ F_{\mathscr{A}}))(m). \\ \text{Therefore } \mathscr{M}_{\zeta} \odot (\mathscr{M}_{\zeta} \odot \mathscr{M}_{\mathscr{A}}) = \mathscr{M}_{\zeta} \odot (\mathscr{M}_{\zeta} \odot \mathscr{M}_{\mathscr{A}}). \end{split}$$

(ii) Let
$$m \in \mathscr{A}$$
. If $m \neq xy$ for any $x, y \in \mathscr{A}$, then

$$((T_{\xi} \circ T_{\zeta}) \circ (T_{\mathscr{B}} \circ T_{\mathscr{B}}))(m) = 1 = ((T_{\mathscr{B}} \circ T_{\mathscr{B}}) \circ (T_{\zeta} \circ T_{\zeta}))(m).$$
Suppose $m = yz$ for any $y, z \in \mathscr{A}$. Then

$$((T_{\xi} \circ T_{\zeta}) \circ (T_{\mathscr{B}} \circ T_{\mathscr{B}}))(m) = \bigwedge_{m=yz} \{(T_{\xi}(p) < T_{\zeta}(q)) \lor (T_{\mathscr{B}} \circ T_{\mathscr{B}})(z)\}$$

$$= \bigwedge_{m=yz} \{T_{\xi}(p) \lor T_{\zeta}(q) \lor T_{\mathscr{B}}(r) \lor T_{\mathscr{B}}(s)\}$$

$$= \bigwedge_{m=(pQ)(rs)} \{T_{\mathscr{B}}(s) \lor T_{\mathscr{B}}(r) \lor T_{\mathscr{B}}(s) \lor T_{\mathscr{B}}(s)\}$$

$$= \bigwedge_{m=(xr)(qp)} \{T_{\mathscr{B}}(s) \lor T_{\mathscr{B}}(r) \lor T_{\mathscr{A}}(q) \lor T_{\xi}(p)\}$$

$$= \bigwedge_{m=(xr)(qp)} \{T_{\mathscr{B}}(s) \lor T_{\mathscr{B}}(r) \lor \nabla T_{\zeta}(q) \lor T_{\xi}(p)\}$$

$$= \bigwedge_{m=xw} \{T_{\mathscr{B}}(s) \lor T_{\mathscr{B}}(r) \lor (T_{\zeta} \circ T_{\xi})(w)\}$$

$$= ((T_{\mathscr{B}} \circ T_{\mathscr{B}}) \circ (T_{\zeta} \circ T_{\xi}))(m),$$

$$((I_{\xi} \circ I_{\zeta}) \circ (I_{\mathscr{B}} \circ I_{\mathscr{B}}))(m) = \bigvee_{u=xr} \{I_{\mathscr{B}}(s) \lor (I_{\mathscr{A}} \circ I_{\mathscr{B}})(z)\}$$

$$= \bigvee_{m=yz} \{V_{v=xr} \{I_{\mathscr{B}}(s) \land I_{\mathscr{B}}(r) \land I_{\mathscr{B}}(s)\}$$

$$= \bigvee_{m=yz} \{I_{\mathscr{B}}(s) \land I_{\mathscr{B}}(r) \land I_{\mathscr{A}}(s) \lor I_{\mathscr{B}}(s)\}$$

$$= \bigvee_{m=yz} \{I_{\mathscr{B}}(s) \land I_{\mathscr{B}}(r) \land I_{\mathscr{A}}(s) \land I_{\mathscr{B}}(r) \land I_{\mathscr{B}}(s)\}$$

$$= \bigvee_{u=xr} \{I_{\mathscr{B}}(s) \land I_{\mathscr{A}}(r) \land I_{\zeta}(q) \land I_{\xi}(p)\}$$

$$= \bigvee_{u=xr} \{I_{\mathscr{B}}(s) \land I_{\mathscr{A}}(r) \land I_{\zeta}(q) \land I_{\xi}(p)\}$$

$$= \bigvee_{u=xw} \{I_{\mathscr{B}}(s) \lor I_{\mathscr{B}}(r) \lor (I_{\zeta} \circ I_{\varepsilon})(w)\}$$

$$= ((I_{\mathscr{B}} \circ I_{\mathscr{B}})(v) \land (I_{\zeta} \circ I_{\varepsilon})(w))$$

$$= ((I_{\mathscr{B}} \circ I_{\mathscr{B}})(v) \land (I_{\zeta} \circ I_{\varepsilon})(w))$$

$$= ((I_{\mathscr{B}} \circ I_{\mathscr{B}})(v) \land (I_{\zeta} \circ I_{\varepsilon})(w))$$

$$= \bigvee_{u=xw} \{I_{\mathscr{B}}(s) \lor I_{\mathscr{B}}(r) \lor I_{\varepsilon}(s) \lor I_{\varepsilon}(s)\}$$

$$= \bigwedge_{u=xw} \{F_{\mathscr{B}}(s) \lor F_{\mathscr{B}}(r) \lor F_{\mathscr{B}}(s)\}$$

$$= \bigwedge_{u=xw} \{F_{\mathscr{B}}(s) \lor F_{\mathscr{A}}(r) \lor F_{\mathscr{A}}(s)\}$$

$$= \bigwedge_{u=xw} \{F_{\mathscr{B}}(s) \lor F_{\mathscr{A}}(r) \lor F_{\varepsilon}(q) \lor F_{\varepsilon}(p)\}$$

$$= \bigwedge_{u=xw} \{F_{\mathscr{B}}(s) \lor F_{\mathscr{A}}(r) \lor F_{\varepsilon}(q) \lor F_{\varepsilon}(p)\}$$

$$= \bigwedge_{u=xw} \{F_{\mathscr{B}}(s) \lor F_{\mathscr{A}}(r) \lor F_{\varepsilon}(q) \lor F_{\varepsilon}(p)\}$$

$$= \bigwedge_{m=vw} \{ (F_{\mathscr{Q}} \circ F_{\mathscr{R}})(v) \lor (F_{\zeta} \circ F_{\xi})(w) \}$$
$$= ((F_{\mathscr{Q}} \circ F_{\mathscr{R}}) \circ (F_{\zeta} \circ F_{\xi}))(m).$$
Therefore $(\mathscr{M}_{\xi} \odot \mathscr{M}_{\zeta}) \odot (\mathscr{M}_{\mathscr{R}} \odot \mathscr{M}_{\mathscr{Q}}) = (\mathscr{M}_{\mathscr{Q}} \odot \mathscr{M}_{\mathscr{R}}) \odot (\mathscr{M}_{\zeta} \odot \mathscr{M}_{\xi}).$

Theorem 3.4. Let
$$\mathcal{M}_{\xi} \in \mathcal{M}$$
. Then the listed conditions hold:
(i) $\mathcal{M}_{\xi} \in \mathcal{M}_{s} \Leftrightarrow \mathcal{M}_{\xi} \odot \mathcal{M}_{\xi} \subseteq \mathcal{M}_{\xi}$.
(ii) $\mathcal{M}_{\xi} \in \mathcal{M}_{l} \Leftrightarrow \chi_{\mathcal{M}}(\mathcal{M}_{\zeta}) \odot \mathcal{M}_{\xi} \subseteq \mathcal{M}_{\xi}$ for any $\mathcal{M}_{\zeta} \in \mathcal{M}$.
(iii) $\mathcal{M}_{\xi} \in \mathcal{M}_{r} \Leftrightarrow \mathcal{M}_{\xi} \odot \chi_{\mathcal{M}}(\mathcal{M}_{\zeta}) \subseteq \mathcal{M}_{\xi}$ for any $\mathcal{M}_{\zeta} \in \mathcal{M}$.
(iv) $\mathcal{M}_{\xi} \in \mathcal{M}_{i} \Leftrightarrow \chi_{\mathcal{M}}(\mathcal{M}_{\zeta}) \odot \mathcal{M}_{\xi} \subseteq \mathcal{M}_{\xi}$ and $\mathcal{M}_{\xi} \odot \chi_{\mathcal{M}}(\mathcal{M}_{\zeta}) \subseteq \mathcal{M}_{\xi}$ for any $\mathcal{M}_{\zeta} \in \mathcal{M}$.

$$\begin{aligned} Proof. (i) \text{ Assume } \mathscr{M}_{\xi} \in \mathscr{M}_{s}. \text{ Now, for any } k \in \mathscr{M}, \\ (T_{\xi} \circ T_{\xi})(k) &= \bigwedge_{k=k_{1}k_{2}} \{T_{\xi}(k_{1}) \lor T_{\xi}(k_{2})\} \geq \bigwedge_{k=k_{1}k_{2}} T_{\xi}(k_{1}k_{2}) = T_{\xi}(k), \\ (I_{\xi} \circ I_{\xi})(k) &= \bigvee_{k=k_{1}k_{2}} \{I_{\xi}(k_{1}) \land I_{\xi}(k_{2})\} \leq \bigvee_{k=k_{1}k_{2}} I_{\xi}(k_{1}k_{2}) = I_{\xi}(k), \\ (F_{\xi} \circ F_{\xi})(k) &= \bigwedge_{k=k_{1}k_{2}} \{F_{\xi}(k_{1}) \lor F_{\xi}(k_{2})\} \geq \bigwedge_{k=k_{1}k_{2}} F_{\xi}(k_{1}k_{2}) = F_{\xi}(k). \\ \text{So } \mathscr{M}_{\xi} \odot \mathscr{M}_{\xi} \subseteq \mathscr{M}_{\xi}. \\ \text{Conversely, assume } \mathscr{M}_{\xi} \odot \mathscr{M}_{\xi} \subseteq \mathscr{M}_{\xi}. \text{ Now, for any } k_{1}, k_{2} \in \mathscr{M}, \\ T_{\xi}(k_{1}k_{2}) &\leq (T_{\xi} \circ T_{\xi})(k_{1}k_{2}) = \bigwedge_{k_{1}k_{2}} \{T_{\xi}(k_{1}) \lor T_{\xi}(k_{2})\} \leq T_{\xi}(k_{1}) \lor T_{\xi}(k_{2}), \\ I_{\xi}(k_{1}k_{2}) &\geq (I_{\xi} \circ I_{\xi})(k_{1}k_{2}) = \bigvee_{k_{1}k_{2}} \{I_{\xi}(k_{1}) \land I_{\xi}(k_{2})\} \geq I_{\xi}(k_{1}) \land I_{\xi}(k_{2}), \\ F_{\xi}(k_{1}k_{2}) &\leq (F_{\xi} \circ F_{\xi})(k_{1}k_{2}) = \bigwedge_{k_{1}k_{2}} \{F_{\xi}(k_{1}) \lor F_{\xi}(k_{2})\} \leq F_{\xi}(k_{1}) \lor F_{\xi}(k_{2}). \\ \text{So } \mathscr{M}_{\xi} \in \mathscr{M}_{s}. \end{aligned}$$

(ii) Assuming
$$\mathcal{M}_{\xi} \in \mathcal{M}_l$$
. Now for any $\mathcal{M}_{\zeta} \in \mathcal{M}$ and $k \in \mathcal{M}$,

$$\begin{aligned} (\chi_{\mathscr{M}}(T)_{\zeta} \circ T_{\xi})(k) &= \bigwedge_{k=k_1k_2} \{\chi_{\mathscr{M}}(T)_{\zeta}(k_1) \lor T_{\xi}(k_2)\} \\ &= \bigwedge_{k=k_1k_2} T_{\xi}(k_2) \\ &\geq T_{\xi}(k_1k_2) \\ &= T_{\xi}(k), \end{aligned}$$

$$\begin{aligned} (\chi_{\mathscr{M}}(I)_{\zeta} \circ I_{\xi})(k) &= \bigvee_{k=k_{1}k_{2}} \{\chi_{\mathscr{M}}(I)_{\zeta}(k_{1}) \wedge I_{\xi}(k_{2})\} \\ &= \bigvee_{k=k_{1}k_{2}} I_{\xi}(k_{2}) \\ &\leq I_{\xi}(k_{1}k_{2}) \\ &= I_{\xi}(k), \end{aligned}$$

$$\begin{aligned} (\chi_{\mathscr{M}}(F)_{\zeta} \circ F_{\xi})(k) &= \bigwedge_{k=k_1k_2} \{\chi_{\mathscr{M}}(F)_{\zeta}(k_1) \lor F_{\xi}(k_2)\} \\ &= \bigwedge_{k=k_1k_2} F_{\xi}(k_2) \\ &\ge F_{\xi}(k_1k_2) \\ &= F_{\xi}(k). \end{aligned}$$

Therefore $\chi_{\mathscr{M}}(\mathscr{M}_{\zeta}) \odot \mathscr{M}_{\xi} \subseteq \mathscr{M}_{\xi}$. Conversely, suppose $\chi_{\mathscr{M}}(\mathscr{M}_{\zeta}) \odot \mathscr{M}_{\xi} \subseteq \mathscr{M}_{\xi}$ for any $\mathscr{M}_{\zeta} \in \mathscr{M}$. Now for any $k_1, k_2 \in \mathscr{M}$,

$$\begin{split} T_{\xi}(k_1k_2) &\leq (\chi_{\mathscr{M}}(T)_{\zeta} \circ T_{\xi})(k_1k_2) \\ &= \bigwedge_{k=k_1k_2} \{\chi_{\mathscr{M}}(T)_{\zeta}(k_1) \lor T_{\xi}(k_2)\} \\ &\leq \chi_{\mathscr{M}}(T)_{\zeta}(k_1) \lor T_{\xi}(k_2) \\ &= T_{\xi}(k_2), \\ I_{\xi}(k_1k_2) &\geq (\chi_{\mathscr{M}}(I)_{\zeta} \circ I_{\xi})(k_1k_2) \\ &= \bigvee_{k=k_1k_2} \{\chi_{\mathscr{M}}(T)_{\zeta}(k_1) \land I_{\xi}(k_2)\} \\ &\geq \chi_{\mathscr{M}}(I)_{\zeta}(k_1) \land I_{\xi}(k_2) \\ &= I_{\xi}(k_2), \\ F_{\xi}(k_1k_2) &\leq (\chi_{\mathscr{M}}(F)_{\zeta} \circ F_{\xi})(k_1k_2) \\ &= \bigwedge_{k=k_1k_2} \{\chi_{\mathscr{M}}(F)_{\zeta}(k_1) \lor F_{\xi}(k_2)\} \\ &\leq \chi_{\mathscr{M}}(F)_{\zeta}(k_1) \lor F_{\xi}(k_2) \\ &= F_{\xi}(k_2). \end{split}$$

Hence $\mathcal{M}_{\xi} \in \mathcal{M}_{l}$.

The proof of (iii) and (iv) is left to the reader. \square

Lemma 3.5. (i) If $\mathcal{M}_{\xi}, \mathcal{M}_{\zeta} \in \mathcal{M}_{s}$, then $\mathcal{M}_{\xi} \cap \mathcal{M}_{\zeta} \in \mathcal{M}_{s}$. (ii) If $\mathcal{M}_{\xi}, \mathcal{M}_{\zeta} \in \mathcal{M}_{l}$, then $\mathcal{M}_{\xi} \cap \mathcal{M}_{\zeta} \in \mathcal{M}_{l}$.

(*iii*) If $\mathcal{M}_{\xi}, \mathcal{M}_{\zeta} \in \mathcal{M}_{r}$, then $\mathcal{M}_{\xi} \cap \mathcal{M}_{\zeta} \in \mathcal{M}_{r}$. (*iv*) If $\mathcal{M}_{\xi}, \mathcal{M}_{\zeta} \in \mathcal{M}_{i}$, then $\mathcal{M}_{\xi} \cap \mathcal{M}_{\zeta} \in \mathcal{M}_{i}$.

Proof. (i) Let \mathscr{M}_{ξ} and \mathscr{M}_{ζ} be two neutrosophic \varkappa -AG-subgroupoids in \mathscr{M} . Now for $k_1, k_2 \in \mathscr{M}$,

$$\begin{aligned} (T_{\xi} \cap T_{\zeta})(k_{1}k_{2}) &= T_{\xi}(k_{1}k_{2}) \vee T_{\zeta}(k_{1}k_{2}) \\ &\leq (T_{\xi}(k_{1}) \vee T_{\xi}(k_{2})) \vee (T_{\zeta}(k_{1}) \vee T_{\zeta}(k_{2})) \\ &= (T_{\xi}(k_{1}) \vee T_{\zeta}(k_{1})) \vee (T_{\xi}(k_{2}) \vee T_{\zeta}(k_{2})) \\ &= (T_{\xi} \cap T_{\zeta})(k_{1}) \vee (T_{\xi} \cap T_{\zeta})(k_{2}), \\ (I_{\xi} \cap I_{\zeta})(k_{1}k_{2}) &= I_{\xi}(k_{1}k_{2}) \wedge I_{\zeta}(k_{1}k_{2}) \\ &\geq (I_{\xi}(k_{1}) \wedge I_{\xi}(k_{2})) \wedge (I_{\zeta}(k_{1}) \wedge I_{\zeta}(k_{2})) \\ &= (I_{\xi}(k_{1}) \wedge I_{\zeta}(k_{1})) \wedge (I_{\xi}(k_{2}) \wedge I_{\zeta}(k_{2})) \\ &= (I_{\xi} \cap I_{\zeta})(k_{1}) \wedge (I_{\xi} \cap I_{\zeta})(k_{2}), \\ (F_{\xi} \cap F_{\zeta})(k_{1}k_{2}) &= F_{\xi}(k_{1}k_{2}) \vee F_{\zeta}(k_{1}k_{2}) \\ &\leq (F_{\xi}(k_{1}) \vee F_{\xi}(k_{2})) \vee (F_{\zeta}(k_{1}) \vee F_{\zeta}(k_{2})) \\ &= (F_{\xi}(k_{1}) \vee F_{\zeta}(k_{1})) \vee (F_{\xi}(k_{2}) \vee F_{\zeta}(k_{2})) \\ &= (F_{\xi} \cap F_{\zeta})(k_{1}) \vee (F_{\xi} \cap F_{\zeta})(k_{2}). \end{aligned}$$

So $\mathscr{M}_{\xi} \cap \mathscr{M}_{\zeta} \in \mathscr{M}_s$.

(ii) Let \mathcal{M}_{ξ} , $\mathcal{M}_{\zeta} \in \mathcal{M}_l$. Now for any $k_1, k_2 \in \mathcal{M}$,

$$(T_{\xi} \cap T_{\zeta})(k_1k_2) = T_{\xi}(k_1k_2) \lor T_{\zeta}(k_1k_2) \le T_{\xi}(k_2) \lor T_{\zeta}(k_2) = (T_{\xi} \cap T_{\zeta})(k_2),$$

$$(I_{\xi} \cap I_{\zeta})(k_1k_2) = I_{\xi}(k_1k_2) \land I_{\zeta}(k_1k_2) \ge I_{\xi}(k_2) \land I_{\zeta}(k_2) = (I_{\xi} \cap I_{\zeta})(k_2),$$

$$(F_{\xi} \cap F_{\zeta})(k_1k_2) = F_{\xi}(k_1k_2) \lor F_{\zeta}(k_1k_2) \le F_{\xi}(k_2) \lor F_{\zeta}(k_2) = (F_{\xi} \cap F_{\zeta})(k_2).$$

So $\mathcal{M}_{\xi} \cap \mathcal{M}_{\zeta} \in \mathcal{M}_{l}$.

The proof of (iii) and (iv) is left to the reader. \square

Lemma 3.6. If \mathscr{M} is having left identity e, then $\chi_{\mathscr{M}}(\mathscr{M}_{\zeta}) = \chi_{\mathscr{M}}(\mathscr{M}_{\zeta}) \odot \chi_{\mathscr{M}}(\mathscr{M}_{\zeta})$ for any $\mathscr{M}_{\zeta} \in \mathscr{M}$.

Proof. Let $k_1 \in \mathcal{M}$. Then $k_1 = ek_1$. Now,

$$(\chi_{\mathscr{M}}(T)_{\zeta} \circ \chi_{\mathscr{M}}(T)_{\zeta})(k_{1}) = \bigwedge_{k_{1}=x_{1}x_{2}} \{\chi_{\mathscr{M}}(T)_{\zeta}(x_{1}) \lor \chi_{\mathscr{M}}(T)_{\zeta}(x_{2})\} \le \chi_{\mathscr{M}}(T)_{\zeta}(e) \lor \chi_{\mathscr{M}}(T)_{\zeta}(k_{1}) = 0$$

which implies $(\chi_{\mathscr{M}}(T)_{\zeta} \circ \chi_{\mathscr{M}}(T)_{\zeta})(k_1) = 0 = \chi_{\mathscr{M}}(T)_{\zeta}(k_1).$

$$(\chi_{\mathscr{M}}(I)_{\zeta} \circ \chi_{\mathscr{M}}(I)_{\zeta})(k_{1}) = \bigvee_{k_{1}=x_{1}x_{2}} \{\chi_{\mathscr{M}}(I)_{\zeta}(x_{1}) \land \chi_{\mathscr{M}}(I)_{\zeta}(x_{2})\} \ge \chi_{\mathscr{M}}(I)_{\zeta}(e) \land \chi_{\mathscr{M}}(I)_{\zeta}(k_{1}) = -1$$

which implies $(\chi_{\mathscr{M}}(I)_{\zeta} \circ \chi_{\mathscr{M}}(I)_{\zeta})(k_1) = -1 = \chi_{\mathscr{M}}(I)_{\zeta}(k_1).$

$$\begin{aligned} (\chi_{\mathscr{M}}(F)_{\zeta} \circ \chi_{\mathscr{M}}(F)_{\zeta})(k_{1}) &= \bigwedge_{k_{1}=x_{1}x_{2}} \{\chi_{\mathscr{M}}(F)_{\zeta}(x_{1}) \lor \chi_{\mathscr{M}}(F)_{\zeta}(x_{2})\} \leq \chi_{\mathscr{M}}(F)_{\zeta}(e) \lor \chi_{\mathscr{M}}(F)_{\zeta}(k_{1}) = 0 \\ \text{which implies } (\chi_{\mathscr{M}}(F)_{\zeta} \circ \chi_{\mathscr{M}}(F)_{\zeta})(k_{1}) = 0 = \chi_{\mathscr{M}}(F)_{\zeta}(k_{1}). \\ \text{Therefore } \chi_{\mathscr{M}}(\mathscr{M}_{\zeta}) = \chi_{\mathscr{M}}(\mathscr{M}_{\zeta}) \odot \chi_{\mathscr{M}}(\mathscr{M}_{\zeta}). \\ \Box \end{aligned}$$

Lemma 3.7. If \mathscr{M} has left identity e, then for any $\mathscr{M}_{\zeta} \in \mathscr{M}$, we have $\chi_{\mathscr{M}}(\mathscr{M}_{\zeta}) \odot \mathscr{M}_{\xi} = \mathscr{M}_{\xi}$ for every $\mathscr{M}_{\xi} \in \mathscr{M}_{l}$.

Proof. Let $k_1 \in \mathcal{M}$. Then $k_1 = ek_1$. Now,

$$\begin{aligned} (\chi_{\mathscr{M}}(T)_{\zeta} \circ (T)_{\xi})(k_{1}) &= \bigwedge_{k_{1}=x_{1}x_{2}} \left\{ (\chi_{\mathscr{M}}(T)_{\zeta})(x_{1}) \lor (T)_{\xi}(x_{2}) \right\} \leq (\chi_{\mathscr{M}}(T)_{\zeta})(e) \lor (T)_{\xi}(k_{1}) = (T)_{\xi}(k_{1}), \\ (\chi_{\mathscr{M}}(I)_{\zeta} \circ (I)_{\xi})(k_{1}) &= \bigvee_{k_{1}=x_{1}x_{2}} \left\{ (\chi_{\mathscr{M}}(I)_{\zeta})(x_{1}) \land (I)_{\xi}(x_{2}) \right\} \geq (\chi_{\mathscr{M}}(I)_{\zeta})(e) \land (I)_{\xi}(k_{1}) = (I)_{\xi}(k_{1}), \\ (\chi_{\mathscr{M}}(F)_{\zeta} \circ (F)_{\xi})(k_{1}) &= \bigwedge_{k_{1}=x_{1}x_{2}} \left\{ (\chi_{\mathscr{M}}(F)_{\zeta})(x_{1}) \lor (F)_{\xi}(x_{2}) \right\} \leq (\chi_{\mathscr{M}}(F)_{\zeta})(e) \lor (F)_{\xi}(k_{1}) = (F)_{\xi}(k_{1}) \\ & \text{So } \mathscr{M}_{\xi} \subseteq \chi_{\mathscr{M}}(\mathscr{M}_{\zeta}) \odot \mathscr{M}_{\xi}. \text{ By Theorem 3.4, } \chi_{\mathscr{M}}(\mathscr{M}_{\zeta}) \odot \mathscr{M}_{\xi} \subseteq \mathscr{M}_{\xi} \text{ and hence } \chi_{\mathscr{M}}(\mathscr{M}_{\zeta}) \odot \mathscr{M}_{\xi} = \mathscr{M}_{\xi}. \end{aligned}$$

$$\mathscr{M}_{\xi}$$
. \Box

Proposition 3.8. Suppose \mathcal{M} is having left identity. If \mathcal{M}_{ξ} , $\mathcal{M}_{\zeta} \in \mathcal{M}_{l}$, then for any $\mathcal{M}_{\mathcal{R}}, \mathcal{M}_{\mathcal{Q}} \in \mathcal{M}, \mathcal{M}_{\xi} \odot \mathcal{M}_{\mathcal{R}} = \mathcal{M}_{\zeta} \odot \mathcal{M}_{\mathcal{Q}}$ implies $\mathcal{M}_{\mathcal{R}} \odot \mathcal{M}_{\xi} = \mathcal{M}_{\mathcal{Q}} \odot \mathcal{M}_{\zeta}$.

Proof. Since $\mathcal{M}_{\xi}, \mathcal{M}_{\zeta} \in \mathcal{M}_{l}$, we have by Lemma 3.7, $\chi_{\mathcal{M}}(\mathcal{M}_{\mathscr{S}}) \odot \mathcal{M}_{\xi} = \mathcal{M}_{\xi}$ and $\chi_{\mathcal{M}}(\mathcal{M}_{\mathscr{U}}) \odot \mathcal{M}_{\zeta} = \mathcal{M}_{\zeta}$ for $\mathcal{M}_{\mathscr{S}}, \mathcal{M}_{\mathscr{U}} \in \mathcal{M}$. Now, for any $\mathcal{M}_{\mathscr{M}} \in \mathcal{M}, \mathcal{M}_{\mathscr{R}} \odot \mathcal{M}_{\xi} = (\chi_{\mathscr{M}}(\mathcal{M}_{\mathscr{M}}) \odot \mathcal{M}_{\mathscr{R}}) \odot \mathcal{M}_{\xi} = (\mathcal{M}_{\xi} \odot \mathcal{M}_{\mathscr{R}}) \odot \chi_{\mathscr{M}}(\mathcal{M}_{\mathscr{M}}) = (\chi_{\mathscr{M}}(\mathcal{M}_{\mathscr{M}}) \odot \mathcal{M}_{\mathscr{Q}}) \odot \mathcal{M}_{\zeta} = \mathcal{M}_{\mathscr{Q}} \odot \mathcal{M}_{\zeta}.$

Corollary 3.9. For any $\mathcal{M}_{\xi}, \mathcal{M}_{\zeta}, \mathcal{M}_{\mathscr{R}} \in \mathcal{M}$, the listed claims are equivalent:

(i) $(\mathcal{M}_{\xi} \odot \mathcal{M}_{\zeta}) \odot \mathcal{M}_{\mathscr{R}} = \mathcal{M}_{\zeta} \odot (\mathcal{M}_{\xi} \odot \mathcal{M}_{\mathscr{R}}),$ (ii) $(\mathcal{M}_{\xi} \odot \mathcal{M}_{\zeta}) \odot \mathcal{M}_{\mathscr{R}} = \mathcal{M}_{\zeta} \odot (\mathcal{M}_{\mathscr{R}} \odot \mathcal{M}_{\xi}).$

Proposition 3.10. Let $\mathcal{M}_{\xi} \in \mathcal{M}_l$. If $\mathcal{M}_{\xi} \in \mathcal{M}_d$, then $\mathcal{M}_{\xi} \in \mathcal{M}_i$.

Proof. Let $\mathcal{M}_{\xi} \in \mathcal{M}_{l}$ and $\mathcal{M}_{\xi} \in \mathcal{M}_{d}$. Then for any $\mathcal{M}_{\zeta} \in \mathcal{M}$, $\mathcal{M}_{\xi} \odot \chi_{\mathcal{M}}(\mathcal{M}_{\zeta}) = (\mathcal{M}_{\xi} \odot \mathcal{M}_{\xi}) \odot \chi_{\mathcal{M}}(\mathcal{M}_{\zeta}) = (\chi_{\mathcal{M}}(\mathcal{M}_{\zeta}) \odot \mathcal{M}_{\xi}) \odot \mathcal{M}_{\xi} \subseteq \mathcal{M}_{\xi} \odot \mathcal{M}_{\xi} = \mathcal{M}_{\xi}$, so $\mathcal{M}_{\xi} \in \mathcal{M}_{i}$. \Box

Remark 3.11. If \mathscr{M} has left identity, then $\mathscr{M}_l = \mathscr{M}_r$.

G. Muhiuddin et. al., Neutrosophic $\varkappa\text{-}\mathrm{structures}$ in an AG-groupoid

Theorem 3.12. Suppose \mathscr{M} has left identity and $\mathscr{M}_{\xi} \in \mathscr{M}_d$. Then the listed claims holds:

(i) $\chi_{\mathscr{M}}(\mathscr{M}_{\zeta}) \odot \mathscr{M}_{\xi} \in \mathscr{M}_d$ for $\mathscr{M}_{\zeta} \in \mathscr{M}$,

(ii) Every $\mathcal{M}_{\zeta} \in \mathcal{M}_l$ commutes with \mathcal{M}_{ξ} .

Proof. (i) It is clear from Corollary 3.2 and Lemma 3.6.

(ii) Let $\mathcal{M}_{\xi}, \mathcal{M}_{\zeta} \in \mathcal{M}$. Now, $\mathcal{M}_{\xi} \odot \mathcal{M}_{\zeta} = (\mathcal{M}_{\xi} \odot \mathcal{M}_{\xi}) \odot \mathcal{M}_{\zeta} = (\mathcal{M}_{\zeta} \odot \mathcal{M}_{\xi}) \odot \mathcal{M}_{\xi} \subseteq (\mathcal{M}_{\zeta} \odot \chi_{\mathcal{M}}(\mathcal{M}_{\xi})) \odot \mathcal{M}_{\xi} \subseteq \mathcal{M}_{\zeta} \odot \mathcal{M}_{\xi}$. Also, $\mathcal{M}_{\zeta} \odot \mathcal{M}_{\xi} = \mathcal{M}_{\zeta} \odot (\mathcal{M}_{\xi} \odot \mathcal{M}_{\xi}) = \mathcal{M}_{\xi} \odot (\mathcal{M}_{\zeta} \odot \mathcal{M}_{\xi}) \subseteq \mathcal{M}_{\xi} \odot (\mathcal{M}_{\zeta} \odot \chi_{\mathcal{M}}(\mathcal{M}_{\xi})) \subseteq \mathcal{M}_{\xi} \odot \mathcal{M}_{\zeta}$. \Box

Lemma 3.13. If \mathscr{M} has left identity and $\mathscr{M}_{\xi} \in \mathscr{M}_{r}$, then $\mathscr{M}_{\xi} \in \mathscr{M}_{i}$.

Proof. Let $\mathcal{M}_{\xi} \in \mathcal{M}_{r}$. Then for $\mathcal{M}_{\zeta} \in \mathcal{M}$, $\mathcal{M}_{\xi} \odot \chi_{\mathcal{M}}(\mathcal{M}_{\zeta}) \subseteq \mathcal{M}_{\xi}$. By Lemma 3.6, $\chi_{\mathcal{M}}(\mathcal{M}_{\zeta}) \odot \mathcal{M}_{\xi} = (\chi_{\mathcal{M}}(\mathcal{M}_{\zeta}) \odot \chi_{\mathcal{M}}(\mathcal{M}_{\zeta})) \odot \chi_{\mathcal{M}}(\mathcal{M}_{\zeta}) \subseteq \mathcal{M}_{\xi} \odot \chi_{\mathcal{M}}(\mathcal{M}_{\zeta}) \subseteq \mathcal{M}_{\xi}$. So $\mathcal{M}_{\xi} \in \mathcal{M}_{l}$ and hence $\mathcal{M}_{\xi} \in \mathcal{M}_{i}$.

Remark 3.14. Suppose \mathscr{M} has left identity. If $\mathscr{M}_{\xi} \in \mathscr{M}_{r}$, then $\mathscr{M}_{\xi} \cup (\chi_{\mathscr{M}}(\mathscr{M}_{\zeta}) \odot \mathscr{M}_{\xi})$ and $\mathscr{M}_{\xi} \cup (\mathscr{M}_{\xi} \odot \mathscr{M}_{\xi})$ are neutrosophic \varkappa - ideals for $\mathscr{M}_{\zeta} \in \mathscr{M}$.

Theorem 3.15. Suppose $\mathcal{M}_{\xi} \in \mathcal{M}_{l}$ with left identity. Then $\mathcal{M}_{\xi} \cup (\mathcal{M}_{\xi} \odot \chi_{\mathcal{M}}(\mathcal{M}_{\zeta}))$ and $\mathcal{M}_{\xi} \cup (\mathcal{M}_{\xi} \odot \mathcal{M}_{\xi})$ are neutrosophic \varkappa -ideals for $\mathcal{M}_{\zeta} \in \mathcal{M}$.

Proof. Now,

$$(\mathcal{M}_{\xi} \cup (\mathcal{M}_{\xi} \odot \chi_{\mathscr{M}}(\mathcal{M}_{\zeta}))) \odot \chi_{\mathscr{M}}(\mathcal{M}_{\zeta}) = (\mathcal{M}_{\xi} \odot \chi_{\mathscr{M}}(\mathcal{M}_{\zeta})) \cup ((\mathcal{M}_{\xi} \odot \chi_{\mathscr{M}}(\mathcal{M}_{\zeta})) \odot \chi_{\mathscr{M}}(\mathcal{M}_{\zeta}))$$
$$= (\mathcal{M}_{\xi} \odot \chi_{\mathscr{M}}(\mathcal{M}_{\zeta})) \cup ((\chi_{\mathscr{M}}(\mathcal{M}_{\zeta}) \odot \chi_{\mathscr{M}}(\mathcal{M}_{\zeta})) \odot \mathcal{M}_{\xi})$$
$$= (\mathcal{M}_{\xi} \odot \chi_{\mathscr{M}}(\mathcal{M}_{\zeta})) \cup (\chi_{\mathscr{M}}(\mathcal{M}_{\zeta}) \odot \mathcal{M}_{\xi})$$
$$= (\mathcal{M}_{\xi} \odot \chi_{\mathscr{M}}(\mathcal{M}_{\zeta})) \cup \mathcal{M}_{\xi}$$
$$= \mathcal{M}_{\xi} \cup (\mathcal{M}_{\xi} \odot \chi_{\mathscr{M}}(\mathcal{M}_{\zeta})).$$

Thus $\mathscr{M}_{\xi} \cup (\mathscr{M}_{\xi} \odot \chi_{\mathscr{M}}(\mathscr{M}_{\zeta})) \in \mathscr{M}_{r}$ and hence $\mathscr{M}_{\xi} \cup (\mathscr{M}_{\xi} \odot \chi_{\mathscr{M}}(\mathscr{M}_{\zeta})) \in \mathscr{M}_{i}$ by Lemma 3.13. Now, for any $\mathscr{M}_{\zeta} \in \mathscr{M}$,

$$(\mathcal{M}_{\xi} \cup (\mathcal{M}_{\xi} \odot \mathcal{M}_{\xi})) \odot \chi_{\mathcal{M}}(\mathcal{M}_{\zeta}) = (\mathcal{M}_{\xi} \odot \chi_{\mathcal{M}}(\mathcal{M}_{\zeta})) \cup ((\mathcal{M}_{\xi} \odot \mathcal{M}_{\xi}) \odot \chi_{\mathcal{M}}(\mathcal{M}_{\zeta}))$$
$$= (\mathcal{M}_{\xi} \odot \chi_{\mathcal{M}}(\mathcal{M}_{\zeta})) \cup ((\chi_{\mathcal{M}}(\mathcal{M}_{\zeta}) \odot \mathcal{M}_{\xi}) \odot \mathcal{M}_{\xi})$$
$$\subseteq (\mathcal{M}_{\xi} \odot \chi_{\mathcal{M}}(\mathcal{M}_{\zeta})) \cup (\mathcal{M}_{\xi} \odot \mathcal{M}_{\xi})$$
$$= (\mathcal{M}_{\xi} \odot \mathcal{M}_{\xi}) \cup (\chi_{\mathcal{M}}(\mathcal{M}_{\zeta}) \odot \mathcal{M}_{\xi})$$
$$\subseteq (\mathcal{M}_{\xi} \odot \mathcal{M}_{\xi}) \cup \mathcal{M}_{\xi}$$
$$= \mathcal{M}_{\xi} \cup (\mathcal{M}_{\xi} \odot \mathcal{M}_{\xi}).$$

Thus $\mathcal{M}_{\xi} \cup (\mathcal{M}_{\xi} \odot \mathcal{M}_{\xi}) \in \mathcal{M}_{r}$ and so $\mathcal{M}_{\xi} \cup (\mathcal{M}_{\xi} \odot \mathcal{M}_{\xi}) \in \mathcal{M}_{i}$ by Lemma 3.13. \Box

Theorem 3.16. Suppose $\phi \neq U \subseteq \mathcal{M}$. Then the below claims are equivalent:

- (i) U is bi-ideal,
- (ii) For any $\mathcal{M}_{\xi} \in \mathcal{M}, \chi_U(\mathcal{M}_{\xi}) \in \mathcal{M}_b$.

Proof. This is similar to Theorem 3.1 in [20]. \Box

Lemma 3.17. Let $\mathcal{M}_{\xi} \in \mathcal{M}_s$. Then the listed claims are equivalent:

(i) $\mathcal{M}_{\xi} \in \mathcal{M}_{b}$, (ii) $(\mathcal{M}_{\xi} \odot \chi_{\mathcal{M}}(\mathcal{M}_{\zeta})) \odot \mathcal{M}_{\xi} \subseteq \mathcal{M}_{\xi}$ for any $\mathcal{M}_{\zeta} \in \mathcal{M}$.

Proof. Assume $\mathcal{M}_{\xi} \in \mathcal{M}_{b}$ and let $k_{1} \in \mathcal{M}$. Suppose $\exists x_{1}, x_{2} \in \mathcal{M} \ni k_{1} = x_{1}x_{2}$. Then

$$\begin{aligned} (((T)_{\xi} \circ \chi_{\mathscr{M}}(T)_{\zeta}) \circ (T)_{\xi})(k_{1}) &= \bigwedge_{k_{1}=x_{1}x_{2}} \{ ((T)_{\xi} \circ \chi_{\mathscr{M}}(T)_{\zeta})(x_{1}) \lor (T)_{\xi}(x_{2}) \} \\ &= \bigwedge_{k_{1}=x_{1}x_{2}} \{ \bigwedge_{x_{1}=x_{3}x_{4}} \{ (T)_{\xi}(x_{3}) \lor \chi_{\mathscr{M}}(T)_{\zeta}(x_{4}) \} \lor (T)_{\xi}(x_{2}) \} \\ &= \bigwedge_{k_{1}=x_{3}x_{4}x_{2}} \{ ((T)_{\xi}(x_{3}) \lor (-1)) \lor (T)_{\xi}(x_{2}) \} \\ &= \bigwedge_{k_{1}=x_{3}x_{4}x_{2}} \{ (T)_{\xi}(x_{3}) \lor (T)_{\xi}(x_{2}) \} \\ &\geq \bigwedge_{k_{1}=x_{3}x_{4}x_{2}} (T)_{\xi}(x_{3}x_{4}x_{2}) \\ &= (T)_{\xi}(k_{1}), \end{aligned}$$

$$\begin{aligned} (((I)_{\xi} \circ \chi_{\mathscr{M}}(I)_{\zeta}) \circ (I)_{\xi})(k_{1}) &= \bigvee_{k_{1}=x_{1}x_{2}} \{ ((I)_{\xi} \circ \chi_{\mathscr{M}}(I)_{\zeta})(x_{1}) \wedge (I)_{\xi}(x_{2}) \} \\ &= \bigvee_{k_{1}=x_{1}x_{2}} \{ (V)_{\xi}(x_{3}) \wedge \chi_{\mathscr{M}}(I)_{\zeta}(x_{4}) \} \wedge (I)_{\xi}(x_{2}) \} \\ &= \bigvee_{k_{1}=x_{3}x_{4}x_{2}} \{ ((I)_{\xi}(x_{3}) \wedge 0) \wedge (I)_{\xi}(x_{2}) \} \\ &= \bigvee_{k_{1}=x_{3}x_{4}x_{2}} \{ (I)_{\xi}(x_{3}) \wedge (I)_{\xi}(x_{2}) \} \\ &\leq \bigvee_{k_{1}=x_{3}x_{4}x_{2}} \{ (I)_{\xi}(x_{3}) \wedge (I)_{\xi}(x_{2}) \} \\ &= (I)_{\xi}(k_{1}), \\ (((F)_{\xi} \circ \chi_{\mathscr{M}}(F)_{\zeta}) \circ (F)_{\xi})(k_{1}) &= \bigwedge_{k_{1}=x_{1}x_{2}} \{ ((F)_{\xi} \circ \chi_{\mathscr{M}}(F)_{\zeta})(x_{1}) \vee (F)_{\xi}(x_{2}) \} \\ &= \bigwedge_{k_{1}=x_{3}x_{4}x_{2}} \{ (F)_{\xi}(x_{3}) \vee \chi_{\mathscr{M}}(F)_{\zeta}(x_{4}) \} \vee (F)_{\xi}(x_{2}) \} \\ &= \bigwedge_{k_{1}=x_{3}x_{4}x_{2}} \{ (F)_{\xi}(x_{3}) \vee (-1)) \vee (F)_{\xi}(x_{2}) \} \\ &= \bigwedge_{k_{1}=x_{3}x_{4}x_{2}} \{ (F)_{\xi}(x_{3}) \vee (F)_{\xi}(x_{2}) \} \\ &= \bigwedge_{k_{1}=x_{3}x_{4}x_{2}} \{ (F)_{\xi}(x_{3}) \vee (F)_{\xi}(x_{2}) \} \\ &= (F)_{\xi}(k_{1}). \end{aligned}$$

Suppose there is no $x_1, x_2 \in \mathcal{M} \ni k_1 = x_1 x_2$. Then

$$(((T)_{\xi} \circ \chi_{\mathscr{M}}(T)_{\zeta}) \circ (T)_{\xi})(k_1) = 0 \ge (T)_{\xi}(k_1),$$
$$(((I)_{\xi} \circ \chi_{\mathscr{M}}(I)_{\zeta}) \circ (I)_{\xi})(k_1) = -1 \le (I)_{\xi}(k_1),$$
$$(((F)_{\xi} \circ \chi_{\mathscr{M}}(F)_{\zeta}) \circ (F)_{\xi})(k_1) = 0 \ge (F)_{\xi}(k_1).$$

Therefore $(\mathcal{M}_{\xi} \odot \chi_{\mathscr{M}}(\mathcal{M}_{\zeta})) \odot \mathscr{M}_{\xi} \subseteq \mathscr{M}_{\xi}$ for any $\mathscr{M}_{\zeta} \in \mathscr{M}$.

Conversely, assume $(\mathscr{M}_{\xi} \odot \chi_{\mathscr{M}}(\mathscr{M}_{\zeta})) \odot \mathscr{M}_{\xi} \subseteq \mathscr{M}_{\xi}$ for any $\mathscr{M}_{\zeta} \in \mathscr{M}$. Let $x_1, x_2 \in \mathscr{M}$. Then

$$(T)_{\xi}(x_1x_2) \le ((T)_{\xi} \circ (T)_{\xi})(x_1x_2) \le (T)_{\xi}(x_1) \lor (T)_{\xi}(x_2),$$

$$(I)_{\xi}(x_1x_2) \ge ((I)_{\xi} \circ (I)_{\xi})(x_1x_2) \ge (I)_{\xi}(x_1) \land (I)_{\xi}(x_2),$$

$$(F)_{\xi}(x_1x_2) \le ((F)_{\xi} \circ (F)_{\xi})(x_1x_2) \le (F)_{\xi}(x_1) \lor (F)_{\xi}(x_2).$$

So $\mathcal{M}_{\xi} \in \mathcal{M}_s$.

Let $x_1, x_2, x_3 \in \mathscr{M}$. Then

 $\begin{aligned} (T)_{\xi}(x_{1}x_{2}x_{3}) &\leq (((T)_{\xi} \circ \chi_{\mathscr{M}}(T)_{\zeta}) \circ (T)_{\xi})(x_{1}x_{2}x_{3}) \leq ((T)_{\xi} \circ \chi_{\mathscr{M}}(T)_{\zeta})(x_{1}x_{2}) \lor (T)_{\xi}(x_{3}) \leq \\ \{(T)_{\xi}(x_{1}) \lor \chi_{\mathscr{M}}(T)_{\zeta}(x_{2})\} \lor (T)_{\xi}(x_{3}) &= (T)_{\xi}(x_{1}) \lor (T)_{\xi}(x_{3}), \\ (I)_{\xi}(x_{1}x_{2}x_{3}) \geq (((I)_{\xi} \circ \chi_{\mathscr{M}}(I)_{\zeta}) \circ (I)_{\xi})(x_{1}x_{2}x_{3}) \geq ((I)_{\xi} \circ \chi_{\mathscr{M}}(I)_{\zeta})(x_{1}x_{2}) \land (I)_{\xi}(x_{3}) \geq \\ \{(I)_{\xi}(x_{1}x_{2}x_{3}) \geq ((I)_{\xi} \circ \chi_{\mathscr{M}}(I)_{\zeta}) \circ (I)_{\xi})(x_{1}x_{2}x_{3}) \geq ((I)_{\xi} \circ \chi_{\mathscr{M}}(I)_{\zeta})(x_{1}x_{2}) \land (I)_{\xi}(x_{3}) \geq \\ \{(I)_{\xi}(x_{1}x_{2}x_{3}) \geq ((I)_{\xi} \circ \chi_{\mathscr{M}}(I)_{\zeta}) \circ (I)_{\xi}(x_{3}) \geq ((I)_{\xi} \circ \chi_{\mathscr{M}}(I)_{\zeta})(x_{1}x_{2}) \land (I)_{\xi}(x_{3}) \geq \\ \{(I)_{\xi}(x_{1}x_{2}x_{3}) \geq ((I)_{\xi} \circ \chi_{\mathscr{M}}(I)_{\zeta}) \circ (I)_{\xi}(x_{3}) \geq \\ \{(I)_{\xi}(x_{1}x_{2}x_{3}) \geq ((I)_{\xi} \circ \chi_{\mathscr{M}}(I)_{\zeta}) \circ (I)_{\xi}(x_{3}) \geq \\ \{(I)_{\xi}(x_{1}x_{2}x_{3}) \geq ((I)_{\xi} \circ \chi_{\mathscr{M}}(I)_{\zeta}) \circ (I)_{\xi}(x_{3}) \geq \\ \{(I)_{\xi}(x_{1}x_{2}x_{3}) \geq ((I)_{\xi} \circ \chi_{\mathscr{M}}(I)_{\zeta}) \circ (I)_{\xi}(x_{3}) \geq \\ \{(I)_{\xi}(x_{1}x_{2}x_{3}) \geq ((I)_{\xi} \circ \chi_{\mathscr{M}}(I)_{\zeta}) \circ (I)_{\xi}(x_{3}) \geq \\ \{(I)_{\xi}(x_{1}x_{2}x_{3}) \geq ((I)_{\xi}(x_{1}x_{2}x_{3}) \geq ((I)_{\xi}(x_{1}x_{2}x_{3}) \geq (I)_{\xi}(x_{1}x_{2}x_{3}) \geq \\ \{(I)_{\xi}(x_{1}x_{2}x_{3}) \geq ((I)_{\xi}(x_{1}x_{2}x_{3}) \geq (I)_{\xi}(x_{1}x_{2}x_{3}) \geq \\ \{(I)_{\xi}(x_{1}x_{2}x_{3}) \geq (I)_{\xi}(x_{1}x_$

$$\begin{split} \chi_{\mathscr{M}}(I)_{\zeta}(x_{2}) \} &\wedge (I)_{\xi}(x_{3}) = (I)_{\xi}(x_{1}) \wedge (I)_{\xi}(x_{3}), \\ (F)_{\xi}(x_{1}x_{2}x_{3}) \leq (((F)_{\xi} \circ \chi_{\mathscr{M}}(F)_{\zeta}) \circ (F)_{\xi})(x_{1}x_{2}x_{3}) \leq ((F)_{\xi} \circ \chi_{\mathscr{M}}(F)_{\zeta})(x_{1}x_{2}) \vee (F)_{\xi}(x_{3}) \leq \\ \{(F)_{\xi}(x_{1}) \vee \chi_{\mathscr{M}}(F)_{\zeta}(x_{2})\} \vee (F)_{\xi}(x_{3}) = (F)_{\xi}(x_{1}) \vee (F)_{\xi}(x_{3}). \text{ Therefore } \mathscr{M}_{\xi} \in \mathscr{M}_{b}. \ \Box \end{split}$$

Lemma 3.18. Suppose $\mathcal{M}_{\xi}, \mathcal{M}_{\zeta} \in \mathcal{M}_{r}$ having left identity. Then $\mathcal{M}_{\xi} \odot \mathcal{M}_{\zeta} \in \mathcal{M}_{b}$ and $\mathcal{M}_{\zeta} \odot \mathcal{M}_{\xi} \in \mathcal{M}_{b}$.

Proof. By Corollary 3.2, $(\mathcal{M}_{\xi} \odot \mathcal{M}_{\zeta}) \odot (\mathcal{M}_{\xi} \odot \mathcal{M}_{\zeta}) = (\mathcal{M}_{\xi} \odot \mathcal{M}_{\xi}) \odot (\mathcal{M}_{\zeta} \odot \mathcal{M}_{\zeta}) \subseteq \mathcal{M}_{\xi} \odot \mathcal{M}_{\zeta}.$ Hence $\mathcal{M}_{\xi} \odot \mathcal{M}_{\zeta} \in \mathcal{M}_{s}.$ Now, by Corollary 3.2 and Lemma 3.6, for any $\mathcal{M}_{\mathscr{R}} \in \mathcal{M},$ $((\mathcal{M}_{\xi} \odot \mathcal{M}_{\zeta}) \odot \chi_{\mathscr{M}}(\mathcal{M}_{\mathscr{R}})) \odot (\mathcal{M}_{\xi} \odot \mathcal{M}_{\zeta}) = ((\mathcal{M}_{\xi} \odot \mathcal{M}_{\zeta}) \odot (\chi_{\mathscr{M}}(\mathcal{M}_{\mathscr{R}}) \odot \chi_{\mathscr{M}}(\mathcal{M}_{\mathscr{R}}))) \odot (\mathcal{M}_{\xi} \odot \mathcal{M}_{\zeta})$ $= ((\mathcal{M}_{\xi} \odot \chi_{\mathscr{M}}(\mathcal{M}_{\mathscr{R}})) \odot (\mathcal{M}_{\zeta} \odot \chi_{\mathscr{M}}(\mathcal{M}_{\mathscr{R}}))) \odot (\mathcal{M}_{\xi} \odot \mathcal{M}_{\zeta})$

$$\subseteq (\mathcal{M}_{\xi} \odot \mathcal{M}_{\zeta}) \odot (\mathcal{M}_{\xi} \odot \mathcal{M}_{\zeta})$$
$$\subseteq \mathcal{M}_{\xi} \odot \mathcal{M}_{\zeta}.$$

By Lemma 3.17, $\mathcal{M}_{\xi} \odot \mathcal{M}_{\zeta} \in \mathcal{M}_{b}$. Similarly, $\mathcal{M}_{\zeta} \odot \mathcal{M}_{\xi} \in \mathcal{M}_{b}$.

Lemma 3.19. Let $\mathcal{M}_{\xi}, \mathcal{M}_{\zeta} \in \mathcal{M}_{b}$. Then $\mathcal{M}_{\xi} \cap \mathcal{M}_{\zeta} \in \mathcal{M}_{b}$.

Proof. Let $\mathcal{M}_{\xi}, \mathcal{M}_{\zeta} \in \mathcal{M}_b$ and $k_1, k_2, a \in \mathcal{M}$. Then

$$(T_{\xi} \cap T_{\zeta})(k_{1}ak_{2}) = T_{\xi}(k_{1}ak_{2}) \vee T_{\zeta}(k_{1}ak_{2})$$

$$\leq (T_{\xi}(k_{1}) \vee T_{\xi}(k_{2})) \vee (T_{\zeta}(k_{1}) \vee T_{\zeta}(k_{2}))$$

$$= (T_{\xi} \cap T_{\zeta})(k_{1}) \vee (T_{\xi} \cap T_{\zeta})(k_{2}),$$

$$(I_{\xi} \cap I_{\zeta})(k_{1}ak_{2}) = I_{\xi}(k_{1}ak_{2}) \wedge I_{\zeta}(k_{1}ak_{2})$$

$$\geq (I_{\xi}(k_{1}) \wedge I_{\xi}(k_{2})) \wedge (I_{\zeta}(k_{1}) \wedge I_{\zeta}(k_{2}))$$

$$= (I_{\xi} \cap I_{\zeta})(k_{1}) \wedge (I_{\xi} \cap I_{\zeta})(k_{2}),$$

$$(F_{\xi} \cap F_{\zeta})(k_{1}ak_{2}) = F_{\xi}(k_{1}ak_{2}) \vee F_{\zeta}(k_{1}ak_{2})$$

$$\leq (F_{\xi}(k_{1}) \vee F_{\xi}(k_{2})) \vee (F_{\zeta}(k_{1}) \vee F_{\zeta}(k_{2}))$$

$$= (F_{\xi} \cap F_{\zeta})(k_{1}) \vee (F_{\xi} \cap F_{\zeta})(k_{2}).$$

Hence $\mathscr{M}_{\xi} \cap \mathscr{M}_{\zeta} \in \mathscr{M}_{b}$.

Theorem 3.20. Let $\mathcal{M}_{\xi} \in \mathcal{M}_{s}$. Then $\mathcal{M}_{\xi} \in \mathcal{M}_{n}$ if and only if $(\chi_{\mathcal{M}}(\mathcal{M}_{\zeta}) \odot \mathcal{M}_{\xi}) \odot \chi_{\mathcal{M}}(\mathcal{M}_{\zeta}) \subseteq \mathcal{M}_{\xi}$ for any $\mathcal{M}_{\zeta} \in \mathcal{M}$.

Proof. This is similar to Theorem 3.18 in [21]. \Box

Proposition 3.21. If every neutrosophic \varkappa -left ideal is neutrosophic \varkappa -idempotent in \mathcal{M} , then the following statements hold:

(i)
$$\mathcal{M}_{\xi} \in \mathcal{M}_{b},$$

(ii) $\mathcal{M}_{\xi} \in \mathcal{M}_{n}.$

Proof. (i) Assume $\mathcal{M}_{\xi} \in \mathcal{M}_{l}$. Then $\mathcal{M}_{\xi} \odot \mathcal{M}_{\xi} = \mathcal{M}_{\xi}$. By Corollary 3.2, for any $\mathcal{M}_{\zeta} \in \mathcal{M}$, $(\mathcal{M}_{\xi} \odot \chi_{\mathcal{M}}(\mathcal{M}_{\zeta})) \odot \mathcal{M}_{\xi} = (\mathcal{M}_{\xi} \odot \chi_{\mathcal{M}}(\mathcal{M}_{\zeta})) \odot (\mathcal{M}_{\xi} \odot \mathcal{M}_{\xi}) = (\mathcal{M}_{\xi} \odot \mathcal{M}_{\xi}) \odot (\chi_{\mathcal{M}}(\mathcal{M}_{\zeta}) \odot \mathcal{M}_{\xi}) \subseteq \mathcal{M}_{\xi} \odot \mathcal{M}_{\xi} = \mathcal{M}_{\xi}$. Hence $\mathcal{M}_{\xi} \in \mathcal{M}_{b}$.

(ii) For any $\mathcal{M}_{\zeta} \in \mathcal{M}$, $(\chi_{\mathcal{M}}(\mathcal{M}_{\zeta}) \odot \mathcal{M}_{\xi}) \odot \chi_{\mathcal{M}}(\mathcal{M}_{\zeta}) \subseteq \mathcal{M}_{\xi} \odot \chi_{\mathcal{M}}(\mathcal{M}_{\zeta}) = (\mathcal{M}_{\xi} \odot \mathcal{M}_{\xi}) \odot \chi_{\mathcal{M}}(\mathcal{M}_{\zeta}) = (\chi_{\mathcal{M}}(\mathcal{M}_{\zeta}) \odot \mathcal{M}_{\xi}) \odot \mathcal{M}_{\xi} \subseteq \mathcal{M}_{\xi} \odot \mathcal{M}_{\xi} = \mathcal{M}_{\xi}$. Hence $\mathcal{M}_{\xi} \in \mathcal{M}_{n}$. \Box

Lemma 3.22. Suppose \mathscr{M} is having left identity e. Then the listed claims are equivalent: (i) $\mathscr{M}_{\mathcal{E}} \in \mathscr{M}_{r}$,

(ii) $\mathcal{M}_{\mathcal{E}} \in \mathcal{M}_n$.

Proof. Let $r \in \mathcal{M}$. Then er = r.

 $(i) \Rightarrow (ii) \text{ Assume } \mathcal{M}_{\xi} \in \mathcal{M}_{r} \text{ and } x_{1}, x_{2}, x_{3} \in \mathcal{M}. \text{ Then}$ $(T)_{\xi}((x_{1}x_{2})x_{3}) \leq (T)_{\xi}(x_{1}x_{2}) = (T)_{\xi}((ex_{1})x_{2}) = (T)_{\xi}((x_{2}x_{1})e) \leq (T)_{\xi}(x_{2}x_{1}) \leq (T)_{\xi}(x_{2}),$ $(I)_{\xi}((x_{1}x_{2})x_{3}) \geq (I)_{\xi}(x_{1}x_{2}) = (I)_{\xi}((ex_{1})x_{2}) = (I)_{\xi}((x_{2}x_{1})e) \geq (I)_{\xi}(x_{2}x_{1}) \geq (I)_{\xi}(x_{2}),$

$$(F)_{\xi}((x_1x_2)x_3) \le (F)_{\xi}(x_1x_2) = (F)_{\xi}((ex_1)x_2) = (F)_{\xi}((x_2x_1)e) \le (F)_{\xi}(x_2x_1) \le (F)_{\xi}(x_2)$$

So $\mathcal{M}_{\xi} \in \mathcal{M}_n$.

 $(ii) \Rightarrow (i)$ Let $\mathscr{M}_{\xi} \in \mathscr{M}_{n}$. For any $x_{1}, x_{3} \in \mathscr{M}$, we can have $(T)_{\xi}(x_{1}x_{3}) = (T)_{\xi}((ex_{1})x_{3}) \leq (T)_{\xi}(x_{1}), (I)_{\xi}(x_{1}x_{3}) = (I)_{\xi}((ex_{1})x_{3}) \geq (I)_{\xi}(x_{1}), (F)_{\xi}(x_{1}x_{3}) = (F)_{\xi}((ex_{1})x_{3}) \leq (F)_{\xi}(x_{1}).$ So $\mathscr{M}_{\xi} \in \mathscr{M}_{r}$. \Box

Lemma 3.23. Let $\mathcal{M}_{\xi} \in \mathcal{M}_{l}$ such that $e \in \mathcal{M}$ as left identity. If $\mathcal{M}_{\xi} \in \mathcal{M}_{n}$, then $\mathcal{M}_{\xi} \in \mathcal{M}_{b}$.

Proof. Since $\mathcal{M}_{\xi} \in \mathcal{M}_{l}$, $(T)_{\xi}(x_{1}x_{2}) \leq (T)_{\xi}(x_{2})$, $(I)_{\xi}(x_{1}x_{2}) \geq (I)_{\xi}(x_{2})$ and $(F)_{\xi}(x_{1}x_{2}) \leq (F)_{\xi}(x_{2})$ for any $x_{1}, x_{2} \in \mathcal{M}$. As $e \in \mathcal{M}$, $ex_{1} = x_{1} \forall x_{1} \in \mathcal{M}$. Now for any $x_{1}, x_{2} \in \mathcal{M}$, $(T)_{\xi}(x_{1}x_{2}) = (T)_{\xi}((ex_{1})x_{2}) \leq (T)_{\xi}(x_{1})$, $(I)_{\xi}(x_{1}x_{2}) = (I)_{\xi}((ex_{1})x_{2}) \geq (I)_{\xi}(x_{1})$, $(F)_{\xi}(x_{1}x_{2}) = (F)_{\xi}((ex_{1})x_{2}) \leq (F)_{\xi}(x_{1})$ which imply $(T)_{\xi}(x_{1}x_{2}) \leq (T)_{\xi}(x_{1}) \lor (T)_{\xi}(x_{2})$, $(I)_{\xi}(x_{1}x_{2}) \geq (I)_{\xi}(x_{1}) \land (I)_{\xi}(x_{2})$, $(F)_{\xi}(x_{1}x_{2}) \leq (F)_{\xi}(x_{1}) \lor (F)_{\xi}(x_{2})$. So $\mathcal{M}_{\xi} \in \mathcal{M}_{s}$.

For any $x_1, x_2, x_3 \in \mathcal{M}$,

$$(T)_{\xi}((x_{1}x_{2})x_{3}) = (T)_{\xi}((x_{1}(ex_{2}))x_{3}) = (T)_{\xi}((e(x_{1}x_{2}))x_{3}) \le (T)_{\xi}(x_{1}x_{2}) = (T)_{\xi}((ex_{1})x_{2}) \le (T)_{\xi}(x_{1}),$$

$$(I)_{\xi}((x_{1}x_{2})x_{3}) = (I)_{\xi}((x_{1}(ex_{2}))x_{3}) = (I)_{\xi}((e(x_{1}x_{2}))x_{3}) \ge (I)_{\xi}(x_{1}x_{2}) = (I)_{\xi}((ex_{1})x_{2}) \ge (I)_{\xi}(x_{1}),$$

$$(F)_{\xi}((x_{1}x_{2})x_{3}) = (F)_{\xi}((x_{1}(ex_{2}))x_{3}) = (F)_{\xi}((e(x_{1}x_{2}))x_{3}) \le (F)_{\xi}(x_{1}x_{2}) = (F)_{\xi}((ex_{1})x_{2}) \le (F)_{\xi}(x_{1}),$$

Also, $(T)_{\xi}((x_1x_2)x_3) = (T)_{\xi}((x_3x_2)x_1) = (T)_{\xi}((x_3(ex_2))x_1) = (T)_{\xi}((e(x_3x_2))x_1) \leq (T)_{\xi}(x_3x_2) = (T)_{\xi}((ex_3)x_2) \leq (T)_{\xi}(x_3)$. Hence $(T)_{\xi}((x_1x_2)x_3) \leq (T)_{\xi}(x_1) \lor (T)_{\xi}(x_3)$. Now, $(I)_{\xi}((x_1x_2)x_3) = (I)_{\xi}((x_3x_2)x_1) = (I)_{\xi}((x_3(ex_2))x_1) = (I)_{\xi}((e(x_3x_2))x_1) \geq (I)_{\xi}(x_3x_2) = (I)_{\xi}((ex_3)x_2) \geq (I)_{\xi}(x_3)$. Hence $(I)_{\xi}((x_1x_2)x_3) \geq (I)_{\xi}(x_1) \land (I)_{\xi}(x_3)$. Now, $(F)_{\xi}((x_1x_2)x_3) = (F)_{\xi}((x_3x_2)x_1) = (F)_{\xi}((e(x_3x_2))x_1) \leq (F)_{\xi}(x_3x_2) = (F)_{\xi}((ex_3)x_2) \leq (F)_{\xi}(x_1) \lor (F)_{\xi}(x_3)$. Therefore $\mathscr{M}_{\xi} \in \mathscr{M}_{b}$. \Box

Proposition 3.24. Let $e \in \mathcal{M}$ be left identity. If $\mathcal{M}_{\xi} \in \mathcal{M}_{l}$ (resp., $\mathcal{M}_{\xi} \in \mathcal{M}_{r}$, $\mathcal{M}_{\xi} \in \mathcal{M}_{i}$), then $\mathcal{M}_{\xi} \odot \mathcal{M}_{\xi} \in \mathcal{M}_{i}$.

Proof. Since $\mathcal{M}_{\xi} \in \mathcal{M}_{l}$, then for $\mathcal{M}_{\zeta} \in \mathcal{M}$, by Theorem 3.4, $\chi_{\mathcal{M}}(\mathcal{M}_{\zeta}) \odot \mathcal{M}_{\xi} \subseteq \mathcal{M}_{\xi}$. By Lemma 3.6 and Corollary 3.2, $\chi_{\mathcal{M}}(\mathcal{M}_{\zeta}) \odot (\mathcal{M}_{\xi} \odot \mathcal{M}_{\xi}) = (\chi_{\mathcal{M}}(\mathcal{M}_{\zeta}) \odot \chi_{\mathcal{M}}(\mathcal{M}_{\zeta})) \odot (\mathcal{M}_{\xi} \odot \mathcal{M}_{\xi}) = (\chi_{\mathcal{M}}(\mathcal{M}_{\zeta}) \odot \mathcal{M}_{\xi}) \odot (\chi_{\mathcal{M}}(\mathcal{M}_{\zeta}) \odot \mathcal{M}_{\xi}) \subseteq \mathcal{M}_{\xi} \odot \mathcal{M}_{\xi}$. Also by Theorem 3.1, $(\mathcal{M}_{\xi} \odot \mathcal{M}_{\xi}) \odot \chi_{\mathcal{M}}(\mathcal{M}_{\zeta}) = (\chi_{\mathcal{M}}(\mathcal{M}_{\zeta}) \odot \mathcal{M}_{\xi}) \odot \mathcal{M}_{\xi} \subseteq \mathcal{M}_{\xi} \odot \mathcal{M}_{\xi}$. Thus $\mathcal{M}_{\xi} \odot \mathcal{M}_{\xi} \in \mathcal{M}_{i}$.

Corollary 3.25. Let $\mathcal{M}_{\xi} \in \mathcal{M}$ has left identity. If $\mathcal{M}_{\xi} \in \mathcal{M}_{l}$, then $\mathcal{M}_{\xi} \odot \mathcal{M}_{\xi} \in \mathcal{M}_{b}$ and $\mathcal{M}_{\xi} \odot \mathcal{M}_{\xi} \in \mathcal{M}_{n}$.

Proof. By Proposition 3.24, $\mathcal{M}_{\xi} \odot \mathcal{M}_{\xi} \in \mathcal{M}_{i}$. Now by Lemmas 3.22 and 3.23, $\mathcal{M}_{\xi} \odot \mathcal{M}_{\xi} \in \mathcal{M}_{b}$ and $\mathcal{M}_{\xi} \odot \mathcal{M}_{\xi} \in \mathcal{M}_{n}$.

Theorem 3.26. If $\mathcal{M}_{\xi} \in \mathcal{M}_i$, then $\mathcal{M}_{\xi} \in \mathcal{M}_b$ and $\mathcal{M}_{\xi} \in \mathcal{M}_n$.

Proof. Let $\mathcal{M}_{\xi} \in \mathcal{M}_{i}$. Then \mathcal{M}_{ξ} is neutrosophic \varkappa -AG-subgroupoid since $\mathcal{M}_{\xi} \odot \mathcal{M}_{\xi} \subseteq \chi_{\mathcal{M}}(\mathcal{M}_{\zeta}) \odot \mathcal{M}_{\xi} \subseteq \mathcal{M}_{\xi}$. Now, $(\chi_{\mathcal{M}}(\mathcal{M}_{\zeta}) \odot \mathcal{M}_{\xi}) \odot \chi_{\mathcal{M}}(\mathcal{M}_{\zeta}) \subseteq \mathcal{M}_{\xi} \odot \chi_{\mathcal{M}}(\mathcal{M}_{\zeta}) \subseteq \mathcal{M}_{\xi}$ and $(\mathcal{M}_{\xi} \odot \chi_{\mathcal{M}}(\mathcal{M}_{\zeta})) \odot \mathcal{M}_{\xi} \subseteq \mathcal{M}_{\xi} \odot \mathcal{M}_{\xi} \subseteq \mathcal{M}_{\xi}$ which imply $\mathcal{M}_{\xi} \in \mathcal{M}_{b}$ and $\mathcal{M}_{\xi} \in \mathcal{M}_{n}$. \Box

4. Conclusion

We presented the ideas of neutrosophic \varkappa -ideal structures in an AG-groupoid and proved that the product of two neutrosophic \varkappa -right-ideal is a neutrosophic \varkappa -bi-ideal, and neutrosophic \varkappa -right-ideal is equivalent to neutrosophic \varkappa -interior-ideal, under certain condition. In future, we will define neutrosophic \varkappa -structures over an ordered AG-groupoid and investigate the features of an ordered AG-groupoid using the results in an AG-groupoid.

Conflict of interest:

The authors declare that they have no conflict of interest.

G. Muhiuddin et. al., Neutrosophic $\varkappa\text{-}\mathrm{structures}$ in an $AG\text{-}\mathrm{groupoid}$

Acknowledgement:

The authors express their gratitude to the referees for valuable comments and suggestions which improve the article.

References

- Zadeh, L. A. Fuzzy sets. Information and Control 1965, 8, 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
- [2] Atanassov, K. T. Intuitionistic fuzzy sets. Fuzzy Sets and Systems 1986, 20, 87-96. https://doi.org/10.1016/S0165-0114(86)80034-3
- [3] Rosenfeld, A. Fuzzy groups. Journal of Mathematical Analysis and Applications 1971, 35, 512–517. https://doi.org/10.1016/0022-247X(71)90199-5
- [4] Elavarasan, B.; Muhiuddin, G.; Porselvi, K.; Jun, Y. B. On hybrid k-ideals in semirings. Journal of Intelligent and Fuzzy Systems 2023, 44, 4681–4691. https://doi.org/10.3233/JIFS-222335
- [5] Elavarasan, B.; Muhiuddin, G.; Porselvi, K.; Jun, Y. B. Hybrid structures applied to ideals in near-rings. Complex and Intelligent Systems 2021, 7(3), 1489–1498. https://doi.org/10.1007/s40747-021-00271-7
- [6] Kehayopulu, N.; Tsingelis, M. A note on fuzzy sets in semigroups. Scientiae Mathematicae 1999, 2, 411 -413.
- [7] Kehayopulu, N.; Tsingelis, M. Fuzzy interior ideals in ordered semigroups. Lobachevskii Journal of Mathematics 2006, 21, 65 - 71.
- [8] Kuroki, N. On fuzzy ideals and fuzzy bi-ideals in semigroups. Fuzzy Sets and Systems 1981, 5, 203-215.
- [9] Molodtsov, D. Soft set theory First results. Computers and Mathematics with Applications 1999, 37, 19
 31.
- [10] Mukherjee, T. K. and Sen, M. K. Prime fuzzy ideals in rings. Fuzzy Sets and Systems 1989, 32, 337 341.
- [11] Porselvi, K.; Muhiuddin, G.; Elavarasan, B.; Assiry, A. Hybrid Nil Radical of a Ring. Symmetry 2022, 14(7), 1367. https://doi.org/10.3390/sym14071367
- [12] Porselvi, K.; Muhiuddin, G.; Elavarasan, B.; Jun, Y.B.; Catherine Grace John, J. Hybrid Ideals in an AG-Groupoid. New Mathematics and Natural Computation 2023, 19(1), 289-305. https://doi.org/10.1142/S1793005723500084
- [13] Muhiuddin, G.; Elavarasan, B.; Catherine G. John, J.; Porselvi, K.; Al-Kadi, D. Properties of k-hybrid ideals in ternary semiring. Journal of Intelligent and Fuzzy Systems 2021, 42(6), 5799–5807.
- [14] Porselvi, K.; Elavarasan, B. On hybrid interior ideals in semigroups. Problemy Analysis Issues of Analysis 2019, 8(26)(3), 137-146.
- [15] Smarandache, F. A. Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set. Neutrosophic Probability. American Research Press, Rehoboth, NM 1999.
- [16] Muhiuddin, G.; Bordbar, H.; Smarandache, F.; Jun, Y. B. Further results on $(\epsilon; \epsilon)$ -neutrosophic subalgebras and ideals in BCK/BCI- algebras. Neutrosophic Sets and Systems **2018**, 20, 36-43. http://doi.org/10.5281/zenodo.1235357
- [17] Muhiuddin, G.; Kim, S. J.; Jun, Y. B. Implicative N-ideals of BCK-algebras based on neutrosophic N structures. Discrete Mathematics, Algorithms and Applications 2019, 11(1), 1950011.
- [18] Khan, M.; Ani, S.; Smarandache, F.; Jun, Y. B. Neutrosophic &-structures and their applications in semigroups. Annals of Fuzzy Mathematics and Informatics 2017, 14(6), 583–598.
- [19] Elavarasan, B.; Smarandache, F.; Jun, Y. B. Neutrosophic ℵ-ideals in semigroups. Neutrosophic Sets and Systems 2019, 28, 273-280. https://zenodo.org/badge/DOI/10.5281/zenodo.3382554
- G. Muhiuddin et. al., Neutrosophic \varkappa -structures in an AG-groupoid

- [20] Porselvi, K.; Elavarasan, B.; Smarandache, F.; Jun, Y. B. Neutrosophic ℵ-bi-ideals in semigroups. Neutrosophic Sets and Systems 2020, 35, 422-434. https://doi.org/10.5281/zenodo.3951696
- [21] Porselvi, K.; Elavarasan, B.; Smarandache, F. Neutrosophic *κ*-interior ideals in semigroups. Neutrosophic Sets and Systems **2020**, 36, 70-80. DOI: 10.5281/zenodo.4065385
- [22] Elavarasan, B.; Porselvi, K.; Jun, Y. B.; Muhiuddin, G. Neutrosophic &-filters in semigroups. Neutrosophic Sets and Systems 2022, 50, 515-531. DOI: 10.5281/zenodo.6774914
- [23] Muhiuddin, G.; Porselvi, K.; Elavarasan, B.; Al-Kadi, D. Neutrosophic ℵ-Structures in Ordered Semigroups. Computer Modeling in Engineering and Sciences 2022, 131 (2), 979-999. https://doi.org/10.32604/cmes.2022.018615
- [24] Khan, M.; Nouman Aslam Khan, M. On fuzzy Abel Grassmann's groupoids. Advances in fuzzy Mathematics, 2010, 5(3), 349-360.
- [25] Khan, Faiz Muhammad, Khan, Hidayat Ullah, Mukhtar, Safyan, Khan, Asghar and Sarmin, Nor Haniza. Some Innovative Types of Fuzzy Ideals in AG-Groupoids. Journal of Intelligent Systems, 2019, 28(4), 649-667. https://doi.org/10.1515/jisys-2017-0258
- [26] Florentin Smarandache, New Types of Topologies and Neutrosophic Topologies, Neutrosophic Systems with Applications, **2023**, 1, 1–3.
- [27] Runu Dhar, Compactness and Neutrosophic Topological Space via Grills, Neutrosophic Systems with Applications, **2023**, 2, 1–7.
- [28] Sudeep Dey, Gautam Chandra Ray, Properties of Redefined Neutrosophic Composite Relation, Neutrosophic Systems with Applications, 2023, 7, 1–12.

Received: June 6, 2023. Accepted: Oct 1, 2023