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Abstract. The goal of this article is to establish a methodology for ordering of single-valued neutrosophic

numbers (SVN-numbers) on the basis of values and ambiguities. First of all, the idea of neutrosophic numbers

is discussed, and (α, β, γ)-cut and arithmetic oprations definecd over SVN-numbers are examined. There-

after,corresponding to each components,the values and ambiguities are defined and using these definitions, the

ratio ranking function is constructed. Then, for the stability of the ratio ranking function, some examples are

provided for comparing this method with other approaches. Applying this ratio ranking function, neutrosophic

linear programming problem(Neu-LPP) converts to the crisp linear programmning problems (CLP-Problems)

and solved it by computational lingo method. At last, Neu-LPP is illustrated by two numerical real-life exam-

ples.

Keywords: Neutrosophic number, Value and ambiguity, Ranking function, Neu-LPP, C-LPP, Computational

Lingo method.

—————————————————————————————————————————-

1. Introduction

In operation research, LP is one of the most significant and valuable optimizations methods.

LP-models expand in a variety of decision problems that happen in economics, engineering,

industry, and government. The practical decision problems are described not only by these

models but also find applications in science. Some variation in this data must impact on

optimal solution, and hence the opinion of decision maker’s, that we need to investigate for a

new scientific algorithm that gives us optimal solutions useful for all conditions and accepts all

variations that may happen. In the work environment, we search for applications of the idea

of neutrosophic science that take into consideration variations that cab happen in the work

environment thorogh the indeterminacy of neutrosophic values. Hence, applying the idea of

neutrosophic science, we define many practical problems.

In 1965, First of all, Zadeh [1] presented a fuzzy set(FS), which was classified through only

the membership component, and then in 1986, K. Atanassov [2] presented an intuitionistic

fuzzy set (IFS), which was classified by two components: membership and non-membership

simultaneously. Regularly, to manage incertitude, FS and IFS perform a vital role. In 1998,

Smarandache [3] presented neutrosophic set (NS) to manage some incomplete and inconsistant

information in philosophical sense. The components truth, indeterminacy, and falsity inde-

pendently classified on NS.Sometimes a few suitable decisions are impossible to take by IFS,

and hence the indeterminacy of NS plays a vital role. Because some real-world problems such

as politics, law, medicine, industry, psychology, and economics, are completely indeterminate.

The ordering of SVN-number has vital role in the application of sequential problems, lin-

ear and non linear programming problems and multi-attribute selection making problems,etc.

Lately, some writers [4–6,8,9,14–16,19] researched IFS models for applications and some writ-

ers [10–13, 17, 20, 22–29, 36] have researched NS models for applications. For the importance
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of the LP-method, we introduce the neutrosophic linear model [30]. We presented the neutro-

sophic linear programming method and applied it in the field of education [31]. We applied

the neutrosophic linear programming method to determine optimal agricultural land use [32].

Chakraborty et al. [33] use the removal area method and apply it to time cost optimization.

Jdid and Smarandache [34] used the neutrosophic method and applied it to management and

corporate work. Karak et al. [21] established a ranking teachnique between SVN-numbers

using the newly developed sign distance method and applied it to the transportation problem.

The struture of the paper is given step by step. Firstly, in section 2, some essential defenitions,

such as NS, single valued trapezoidal and triangular neutrosophic number (SVTN-numbers,

SVTrN-numbers), and arithmetic operation are given. In section 3, the value and ambiguity

indexes of SVN-numbers were designed, and we presented a new ratio ranking function pri-

marily based on expanding values and ambiguities. In this subsection, for the validity and

feasibility of the ratio ranking function, we satisfied some reasonable properties. In section 4,

a set of six examples is given, using these examples, the ranking results of proposed method

are compared with other approaches [4,8,10,12,13,19,20]. In section 5, based on the ranking

algorithm, Neu-LPP with neutrosophic constraints transfered to C-LPP with real constraints

and solved by computational lingo method. In section 6, the concept of Neu-LPP is illustrated

by two suitable real-life numerical examples. In the last section, the conclusion is stated briefly.

2. Preliminaries

Let’s remind ourselves of a few fundamental definitions that are essential to reaching the main

idea of this paper.

Definition 2.1. [3] Let us take ξ as an arbitary element of X, the universe of discourse.

Then Ñ is called NS over X if it is classified through three independent components, namely

TÑ , IÑ , and FÑ , which were said to be truth, indeterminacy and falsity neutrosophic compo-

nents, respectively. These components are maps from X to ]−0, 1+[ i.e., TÑ (ξ), IÑ (ξ), FÑ (ξ) ∈
]−0, 1+[ where ]−0, 1+[ is called non-standard unit interval. Thus, Ñ is described by Ñ =

{
〈
ξ;TÑ (ξ), IÑ (ξ), FÑ (ξ)

〉
: ξ ∈ X}, with −0 ≤ supTÑ (ξ) + sup IÑ (ξ) + supFÑ (ξ) ≤ 3+.

Definition 2.2. [7] Performing non-standard analysis of neutrosophic components in real

ground is too tough. So for real application, only their standard subset is taken. When

three neutrosophic components take the values on [0, 1], NS is said to be SVN-Set. Thus an

SVN-Set Ñ is designed as : Ñ = {< ξ, TÑ (ξ), IÑ (ξ), FÑ (ξ) >: ξ ∈ X;TÑ (ξ), IÑ (ξ), FÑ (ξ) ∈
[0, 1] and 0 ≤ supTÑ (ξ) + sup IÑ (ξ) + supFÑ (ξ) ≤ 3}.

Definition 2.3. [18] Let Ñ be defined as NS over R, which is called a neutrosophic number

if it fulfils three characteristics given below:
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1. TÑ (ξ0) = 1 and IÑ (ξ0) = FÑ (ξ0) = 0 for some ξ0 ∈ R i.e.,Ñ is normal.

2. TÑ (νξ1 + (1− ν)ξ2) ≥ min(TÑ (ξ1), TÑ (ξ2)), ∀ξ1, ξ2 ∈ R, and ν ∈ [0, 1] i.e.,N is convex for

TÑ (ξ).

3. IÑ (νξ1+(1−ν)ξ2) ≥ max(IÑ (ξ1), IÑ (ξ2)), and FÑ (νξ1+(1−ν)ξ2) ≥ max(FÑ (ξ1), FÑ (ξ2)),

∀ξ1, ξ2 ∈ R, and ν ∈ [0, 1] i.e., Ñ is concave for IÑ (ξ) and FÑ (ξ).

Definition 2.4. [12] A NS m̃ = ⟨([l,m, n]; tm̃, im̃, fm̃)⟩ defined on R, where tm̃, im̃, fm̃ ∈
[0, 1] and l,m, n ∈ R satisfy the condition l ≤ m ≤ n is called SVTrN-number whose

truth,indetereminacy, and falsity component are denoted by Tm̃ : R 7→ [0, tm̃], Im̃ : R 7→ [im̃, 1],

and Fm̃ : R 7→ [fm̃, 1] as described below:

Tm̃(ξ) =


(ξ−l)tm̃
(m−l) , l ≤ ξ ≤ m,
(n−ξ)tm̃
(n−m) , m ≤ ξ ≤ n,

0, otherwise.

Im̃(ξ) =


(m−ξ)+im̃(ξ−l)

(m−l) , l ≤ ξ ≤ m,
(ξ−m)+im̃(n−ξ)

(n−m) , m ≤ ξ ≤ n,

0, otherwise.

Fm̃(ξ) =


(m−ξ)+fm̃(ξ−l)

(m−l) , l ≤ ξ ≤ m,
(ξ−m)+fm̃(n−ξ)

(n−m) , m ≤ ξ ≤ n,

0, otherwise.

respectively.

For example, let us take SVTrN-number Ã1 = ⟨[1, 4, 8]; 0.9, 0.3, 0.5⟩. Then the graphical

representation of Ã1 is given below:
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Figure 1. Graphical representation of single valued triangular neutrosophic

number(SVTN) Ã1.
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Definition 2.5. [12] Let m̃ = ⟨([l,m, n, p]; tm̃, im̃, fm̃)⟩ be NS on R where l,m, n, p ∈ R, and
tm̃, im̃, fm̃ ∈ [0, 1] having condition l ≤ m ≤ n ≤ p is called SVTN-numbers whose truth,

indetereminacy, and falsity component are denoted by Tm̃ : R 7→ [0, tm̃], Im̃ : R 7→ [im̃, 1], and

Fm̃ : R 7→ [fm̃, 1] as described below.

Tñ(ξ) =



(ξ−l)tm̃
(m−l) , l ≤ ξ < m,

tm̃, m ≤ ξ ≤ n,
(p−ξ)tm̃
(p−n) , n < ξ ≤ p,

0, otherwise.

Im̃(ξ) =



(m−ξ)+im̃(ξ−l)
(m−l) , l ≤ ξ < m,

im̃, m ≤ ξ ≤ n,
(ξ−n)+im̃(p−ξ)

(p−n) , n < ξ ≤ p,

0, otherwise.

Fñm(ξ) =



(m−ξ)+fm̃(ξ−l)
(m−l) , l ≤ ξ < m,

fm̃, m ≤ ξ ≤ n,
(ξ−n)+fm̃(p−ξ)

(p−n) , n < ξ ≤ p,

0, otherwise.

respectively.

For example, let us take SVTN-number Ã2 = ⟨[1, 3, 6, 9]; 0.7, 0.5, 0.6⟩. Then the graphical

representation of Ã2 is given below:
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Figure 2. Graphical representation of single valued trapezoidal neutrosophic

number(SVTN) Ã2.
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Definition 2.6. [12] For Ñ defined in 2.3, (α, β, γ)-cut is designed as : Ñ(α,β,γ)={ξ ∈ X :

TÑ (ξ) ≥ α, IÑ (ξ) ≤ β, FÑ (ξ) ≤ γ} where 0 ≤ α, β, γ ≤ 1.

Then for SVTrN-number m̃ defined in 2.4, the (α, β, γ) cuts are respectively

m̃α = [Lm̃(α), Rm̃(α)] =
[
(tm̃−α)l+αm

tm̃
, (tm̃−α)n+αm

tm̃

]
,

m̃β = [L′
m̃(β), R′

m̃(β)] =
[
(1−β)m+(β−im̃)l

1−im̃
, (1−β)m+(β−im̃)n

1−im̃

]
,

and m̃γ = [L′′
m̃(γ), R′′

m̃(γ)] =
[
(1−γ)m+(γ−fm̃)l

1−fm̃
, (1−γ)m+(γ−fm̃)n

1−fm̃

]
.

Here Lm̃, R′
m̃, and R′′

m̃ are non-decreasing and continuous functions, and Rm̃, L′
m̃, and L′′

m̃ are

non-increasing continuous functions in their respectively intervals.

Similarly (α, β, γ) cut of SVTN-number m̃ defined in 2.5, are respectively

m̃α = [Lm̃(α), Rm̃(α)] =
[
(tm̃−α)l+αm

tm̃
, (tm̃−α)p+αn

tm̃

]
,

m̃β = [L′
m̃(β), R′

m̃(β)] =
[
(1−β)m+(β−im̃)l

1−im̃
, (1−β)n+(β−im̃)p

1−im̃

]
,

m̃γ = [L′′
m̃(γ), R′′

m̃(γ)] =
[
(1−γ)m+(γ−fm̃)l

1−fm̃
, (1−γ)n+(γ−fm̃)p

1−fm̃

]
.

Definition 2.7. [11] Let us take two SVTN-numbers m̃ = ⟨([l,m, n, p]; tm̃, im̃, fm̃)⟩ and

ñ = ⟨([u, v, w, x]; tñ, iñ, fñ)⟩, and δ(̸= 0) ∈ R. Then

(i) m̃⊕ ñ = ⟨(+u,m+ v, n+ w, p+ x); tm̃ ∧ tñ, im̃ ∨ iñ, fm̃ ∨ fñ⟩ .

(ii) δm̃ =

{
⟨(δl, δm, δn, δp); tm̃, im̃, fm̃⟩ (δ > 0).

⟨(δp, δn, δm, δl); tm̃, im̃, fm̃⟩ (δ < 0).

(iii) m̃⊖ ñ = ⟨(l − x,m− w, n− v, p− u); tm̃ ∧ tñ, im̃ ∨ iñ, fm̃ ∨ fñ⟩.

Definition 2.8. [11] Let us take two SVTrN-numbers m̃ = ⟨([l,m, n]; tm̃, im̃, fm̃)⟩ and
ñ = ⟨([u, v, w]; tñ, iñ, fñ)⟩, and δ(̸= 0) ∈ R. Then

(i) m̃⊕ ñ = ⟨(l + u,m+ v, n+ w); tm̃ ∧ tñ, im̃ ∨ iñ, fm̃ ∨ fñ⟩.

(ii) δm̃ =

{
⟨(δl, δm, δn); tm̃, im̃, fm̃⟩ (δ > 0).

⟨(δn, δm, δl); tm̃, im̃, fm̃⟩ (δ < 0).

(iii) m̃⊖ ñ = ⟨(l − w,m− v, n− u); tm̃ ∧ tñ, im̃ ∨ iñ, fm̃ ∨ fñ⟩.

3. Neutrosophic numbers and their ordering method

In this part, we presented an ordering method for SVN-numbers depending on values and

ambiguities in a new direction.
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Definition 3.1. If m̃ is any arbitrary SVN-number, then

1. the value and ambiguity of m̃ for truth component, are symbolised by VT (m̃) and AT (m̃)

and described as follows:

(i) VT (m̃) =
∫ tm̃
0 {Lm̃(α) +Rm̃(α)}f(α)dα.

(ii) AT (m̃) =
∫ tm̃
0 {Rm̃(α)− Lm̃(α)}f(α)dα.

Where f(α) ∈ [0, 1] (α ∈ [0, tm̃]), f(0) = 0, and f(α) is non decreasing monotonic continuous

function of α.

2. the value and ambiguity of m̃ for indeterminacy component, are symbolised by VI(m̃) and

AI(m̃) and described as follows:

(i) VI(m̃) =
∫ 1
iñ

{L′
m̃(β) +R′

m̃(β)}g(β)dβ.
(ii) AI(m̃) =

∫ 1
iñ

{R′
m̃(β)− L′

m̃(β)}g(β)dβ.

Where g(β) ∈ [0, 1] (β ∈ [im̃, 1]), g(1)=0 , and g(β) is non increassing monotonic continuous

function of β.

3. the value and ambiguity of m̃ for falsity component, are symbolised by VF (m̃) and AF (m̃)

and described as follows:

(i) VF (m̃) =
∫ 1
fñ

{L′′
m̃(γ) +R′′

m̃(γ)}h(γ)dγ.
(ii) AF (m̃) =

∫ 1
fm̃

{R′′
m̃(γ)− L′′

m̃(γ)}h(γ)dγ.

Where h(γ) ∈ [0, 1] (γ ∈ [fm̃, 1]) , h(1)=0 , and h(γ) is non increassing monotonic continuous

function of γ.

Definition 3.2. For an arbitary SVN-number m̃ , the value and ambiguity of m̃ are symbolised

as V (m̃) and A(m̃) and expressed as follows:

(i) V (m̃) = 1
3 [VT + VI + VF ], and

(ii) A(m̃) = 1
3 [AT +AI +AF ].

From now on we take f(α) = α
tm̃

, α ∈ [0, tm̃] (tm̃ ∈ (0, 1]), g(β) = 1−β
1−im̃

, β ∈ [im̃, 1] (im̃ ∈ [0, 1)),

h(γ) = 1−γ
1−fm̃

, γ ∈ [fm̃, 1] (fm̃ ∈ [0, 1)) for the SVN-number m̃, and similarly for other SVN-

numbers throughout the paper.

Remark 1. It is easily derived that the value function V (m̃) should be maximized, whereas

the ambiguity function should be minimised.

Corollary 3.1. For arbitary SVTrN-number m̃ =< [l,m, n]; tm̃, im̃, fm̃ >, the value and

ambiguity are given by

(i) V (m̃) = 1
18 [(l + 4m+ n)× (2 + tm̃ − im̃ − fm̃)], and

(ii) A(m̃) = 1
18 [{(n− l)} × (2 + tm̃ − im̃ − fm̃)].

Corollary 3.2. for arbitary SVTN-number m̃ = ⟨[l,m, n, p]; tm̃, im̃, fm̃⟩, the value and ambi-

guity are given by
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(i) V (m̃) = 1
18 [(l + 2m+ 2n+ p)× (2 + tm̃ − im̃ − fm̃)], and

(ii) A(m̃) = 1
18 [{p− l − 2(m− n)} × (2 + tm̃ − im̃ − fm̃)].

Property 1. For any SVN-number m̃ and δ(̸= 0) ∈ R,

(i) V (δm̃) = δV (m̃).

(ii) A(δm̃) = δA(m̃).

Proof: (i),(ii) are obvious (see definitions 2.7,2.8, and 3.1).

Theorem 3.1. For two SNTrN-numbers m̃ and ñ with tñ = tm̃, iñ = im̃, fñ = fm̃,

(i) V (m̃⊕ ñ)=V (m̃) + V (ñ).

(ii) A(m̃⊕ ñ)=A(m̃) +A(ñ).

Proof:

(i) By the definition 2.8 and given condition, we get

V (m̃⊕ ñ)= 1
18 [{(l + u) + 2(m+ v) + 2(n+ w) + (p+ x)} × (2 + tñ − iñ − fñ)]

=V (m̃) + V (ñ).

Hence,the proof.

(ii) Similarly, it can be proved.

NOTE: The theorem is also true for SNTrN-numbers.

Definition 3.3. Let us consider a atio ranking function ϕ that maps from N(R) to R and is

described by ϕ(m̃) = V (m̃)
1+A(m̃) ∀m̃ ∈ N(R), where N(R) indicates set of all SVN-numbers on

R whose truth component ∈ (0, 1], indeterminacy component ∈ [0, 1), and falsity component

∈ [0, 1) .

For any m̃, ñ ∈ N(R) , we define ordering of m̃, ñ by

(1) m̃ ≺ϕ ñ iff ϕ(m̃) < ϕ(ñ).

(2) m̃ ≻ϕ ñ iff ϕ(m̃) > ϕ(ñ).

(3) m̃ ≈ϕ ñ iff ϕ(m̃) = ϕ(ñ).

Then the order ⪯ϕ is formulated as m̃ ⪯ϕ ñ iff m̃ ≈ϕ ñ or m̃ ≺ϕ ñ.

Corollary 3.3. Let m̃ ∈ N(R) be SVTrN-number defined in definition 2.4. Then the ranking

functional value of SVTrN-number m̃ is described by ϕ(m̃) = (l+4m+n)×(2+tm̃−im̃−fm̃)
18+(n−l)×(2+tm̃−im̃−fm̃)

Corollary 3.4. Let m̃ ∈ N(R) be SVTN-number defined in definition 2.5. Then the ranking

functional value of SVTN-number m̃ is describeed by ϕ(m̃) = (l+2m+2n+n)×(2+tm̃−im̃−fm̃)
18+(p−l−2m+2n)×(2+tm̃−im̃−fm̃) .

Remark 2. It is easily seen that ϕ(m̃) is not linear function of a SVN-number m̃ although

V (m̃) and A(m̃) are linear on m̃. In other words, ϕ(m̃⊕ ñ) ̸= ϕ(m̃) + ϕ(ñ)

Example 1. Let m̃ = ⟨[1, 4, 7]; 0.6, 0.1, 0.4⟩ , ñ = ⟨[3, 5, 6]; 0.7, 0.1, 0.2⟩ ∈ N(R).
Then, by definition 3.5, ϕ(m̃) = 1.1667, and ϕ(ñ) = 2.19005.

So, ϕ(m̃) < ϕ(ñ) and hence the ranking of SVTrN-numbers m̃ and ñ is m̃ ≺ϕ ñ.
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Example 2. Let m̃ = ⟨[1, 2, 4, 7]; 0.7, 0.1, 0.3⟩ , ñ = ⟨[1, 3, 5, 6]; 0.6, 0.2, 0.4⟩ ∈ N(R)
Then, by definition 3.5, ϕ(m̃) = 1.1219, and ϕ(ñ) = 1.2778.

So, ϕ(m̃) < ϕ(ñ) and hence the ranking of SVTN-numbers m̃ and ñ is m̃ ≺ϕ ñ.

Property 2. The relations ⪯ϕ is total ordering on N(R).
Proof: If the relation ⪯ϕ is total ordering on N(R), then we need to prove the following:

(a) ⪯ is a partial order i.e., ⪯ϕ is reflexive, anti symmetric, and transitive.

(b) any two element in N(R) are comparable.

We now prove the condition (a) and (b).

(a) By definition 3.6 , it is clear that the relation ⪯ϕ is reflexive i.e., m̃ ⪯ϕ m̃, ∀m̃ ∈ N(R)
let m̃, ñ ∈ N(R) with m̃ ⪯ϕ ñ and ñ ⪯ϕ m̃

Then by definition 3.6, ϕ(m̃)− ϕ(ñ) ⩽ 0 and ϕ(m̃)− ϕ(ñ) ⩾ 0, and hence ϕ(m̃)− ϕ(ñ) = 0.

Therefore, m̃ ≈ϕ ñ i.e., the relation ⪯ϕ is anti symmetric.

let m̃, ñ, p̃ ∈ N(R) with m̃ ⪯ϕ ñ and ñ ⪯ϕ p̃.

Then by definition 3.6 , ϕ(m̃)− ϕ(ñ) ⩽ 0 and ϕ(ñ)− ϕ(p̃) ⩽ 0, and hence ϕ(m̃)− ϕ(p̃) ⩽ 0.

Therefore, m̃ ⪯ϕ p̃ i.e., the relation ⪯ϕ is transitive.

Therefore, the relation ⪯ϕ satisfy all the condition of partial ordering on N(R).
(b) By the definition 3.6, we can say that any two element in N(R) are comparable.

Therefore, the relation ⪯ϕ is total ordering.

3.1. Rationality of validation of the ratio ranking algorithm

Seven axioms A1 −A7 proposed by Wang and Kerre [35] have reasonable properties for the

validation of ratio ranking algorithm for ordering fuzzy numbers. In this article, the introduced

ratio ranking method fulfils the the properties A1, A2, A3, and A5 easily. However, the prop-

erties A4, A6, and A7 are not satisfied by the ratio ranking method because this method is not

linear according to Remark 2. By the Remark 1, the value index V (m̃) should be maximized,

whereas the ambiguity index A(m̃) should be minimised, i.e., V (m̃) and A(m̃) are in conflict.

Hence, the ranking algorithm should be established depanding on the above two functions and

applied it to solve Neu-LPP. Even, in general, Neu-LPP are not easily solved. Hence, the ratio

ranking algorithm is used to aggregate V (m̃) and A(m̃). As a consequence, the ordering of

SVN-numbers is depandent on the ratio of V (m̃) and 1 + A(m̃) rather than either V (m̃) and

A(m̃).

4. Comparison Analysis

Here the ranking of neutrosophic numbers is compared with other approaches with the pro-

posed method by six set of examples given in the following:

Manas Karak, Pramodh Bharati , Animesh Mahata, Subrata paul , Santosh Biswas , 
Supriya Mukherjee , Said Broumi , Mahendra Rong and Banamali Roy, Ranking of Neutrosophic 
number based on values and ambiguities and its application to linear programming problem 

Neutrosophic Sets and Systems, Vol. 63, 2024                                                                             211



Set-1: m̃ = ⟨([1, 5, 7, 8]; 0.9, 0.3, 0.4)⟩, ñ = ⟨([2, 4, 6, 7]; 0.8, 0.4, 0.5)⟩
Then,by definition 3.5, ϕ(m̃) = 0.8601896, ϕ(ñ) = 0.7849003

So,ϕ(ñ) < ϕ(m̃), and hence ñ ≺ϕ m̃.

Set-2: m̃ = ⟨([2, 4, 7, 9]; 0.4, 0.1, 0.3⟩, ñ = ⟨[1, 4, 5, 9]; 0.8, 0.2, 0.5⟩
Then, by definition 3.5, ϕ(m̃) = 0.75, ϕ(ñ) = 0.7538462

So,ϕ(m̃) < ϕ(ñ), and hence m̃ ≺ϕ ñ.

Set-3: m̃ = ⟨([1, 3, 6, 8]; 0.7, 0.2, 0.5)⟩, ñ = ⟨([3, 6, 8, 9]; 0.9, 0.1, 0.3)⟩
Then, by definition 3.5, ϕ(m̃) = 0.6136364, ϕ(ñ) = 1.162791

So,ϕ(m̃) < ϕ(ñ), and hence m̃ ≺ϕ ñ.

Set-4: m̃ = ⟨([1, 2, 3, 4]; 0.5, 0.1, 0.2)⟩ , ñ = ⟨([2, 4, 5, 6]; 0.6, 0.2, 0.3)⟩ , p̃ =

⟨([3, 4, 6, 7]; 0.7, 0.2, 0.4)⟩
Then, by definition 3.5, ϕ(m̃) = 0.5689655, ϕ(ñ) = 0.8921569, ϕ(p̃) = 0.9051724

So, ϕ(m̃) < ϕ(ñ) < ϕ(p̃), and hence m̃ ≺ϕ ñ ≺ϕ p̃.

Set-5: m̃ = ⟨([2, 5, 8, 9]; 0.7, 0.1, 0.2⟩ , ñ = ⟨([1, 3, 6, 8]; 0.6, 0.2, 0.3)⟩ , p̃ =

⟨([3, 4, 5, 7]; 0.5, 0.1, 0.3)⟩
Then, by definition 3.5, ϕ(m̃) = 0.9024390, ϕ(ñ) = 0.6258278, ϕ(p̃) = 0.9607843

So, ϕ(ñ) < ϕ(m̃) < ϕ(p̃), and hence ñ ≺ϕ m̃ ≺ϕ p̃.

Set-6: m̃ = ⟨([4, 5, 6, 7]; 0.5, 0.1, 0.4)⟩ , ñ = ⟨([2, 4, 6, 8]; 0.6, 0.2, 0.3)⟩ , p̃ =

⟨([3, 5, 7, 9]; 0.7, 0.2, 0.5)⟩
Then,by definition 3.5, ϕ(m̃) = 1.178571, ϕ(ñ) = 0.8076923, ϕ(p̃) = 0.9473684

So, ϕ(ñ) < ϕ(p̃) < ϕ(m̃), and hence ñ ≺ϕ p̃ ≺ϕ m̃.

We now compare the ranking results of the above six set of examples with other approaches.In

the articles [10,12,13,20] on NS, for ranking of these examples , we directly apply the respective

approaches. But in the articles [4, 8, 19] on IFS, for the ranking of these examples, we must

reject the hesitancy part and then apply the respective methods.

Table-1 : A Comparison of ordering for several approaches

Source Set− 1 Set− 2 Set− 3 Set− 4 Set− 5 Set− 6

Deli et al. [12] ñ < m̃ ñ < m̃ m̃ < ñ m̃ < ñ < p̃ ñ < p̃ < m̃ ñ < m̃ < p̃

Peng et al. [13] ñ ≺ m̃ m̃ ≺ ñ m̃ ≺ ñ ñ ≺ p̃ ≺ m̃ p̃ ≺ ñ ≺ m̃ m̃ ≈ p̃ ≺ ñ

Ye. [10] ñ ≺ m̃ m̃ ≺ ñ m̃ ≺ ñ p̃ ≺ ñ ≺ m̃ p̃ ≺ ñ ≺ p̃ ñ ≺ m̃ ≺ p̃

Fahad A.Alzahrani et al. [20] ñ < m̃ ñ < m̃ m̃ < ñ m̃ < ñ < p̃ ñ < p̃ < m̃ ñ < m̃ < p̃

Qiang and Zhong [4] ñ < m̃ m̃ < ñ m̃ < ñ m̃ < ñ < p̃ p̃ < ñ < m̃ m̃ < p̃ < ñ

De and Das [8] ñ < m̃ ñ < m̃ m̃ < ñ m̃ < ñ < p̃ p̃ < ñ < m̃ m̃ < ñ < p̃

Suresh Mohan et al. [19] ñ < m̃ ñ < m̃ m̃ < ñ m̃ < ñ < p̃ ñ < m̃ < m̃ ñ < m̃ < p̃

proposed method ñ ≺ m̃ m̃ ≺ ñ m̃ ≺ ñ m̃ ≺ ñ ≺ p̃ ñ ≺ m̃ ≺ p̃ ñ ≺ p̃ ≺ m̃

Here, Deli and Subas [12] applies score and accuracy to determine the ranking of SVN-numbers,

and the ranking results of this method are very close to the ranking results of the introduced

method. Peng et al. [13] and Ye. [10] designed score and accuracy to determine the ordering
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of neutrosophic numbers, and applying the score function, the ordering of six set of examples

is given in Table-1, which is almost unequal to the ordering results of the introduced method.

Alzahrani et al. [20] use de-neutrosophication method to determine the ordering of SVN-

numbers, and the ranking results of this method are almost equal to the ranking results of the

introduced method. De and Das [8] define a ranking function using value and ambiguity in

IFS, and usins this ranking function, the ordering of given SVTN numbers is given in Table-1,

which is very close to the ranking results of proposed method and has few difference because it

has no hesitancy part. Qiang and Zhong [4] described accuracy and score functions and using

this ordering of SVTN-numbers are given in Table-1, which has the same reason as De and

Das for the comparison of ranking results with the proposed method. Suresh Mohan et al. [19]

define magnitude to define the ordering of neutrosophic numbers and using this magnitude,

the ordering of above set of examples are given in Table-1 which is almost equal to the ranking

results of proposed method and has few difference because it has no hesitancy part.

5. Neutrosophic linear programming problem and its solution

In this section, we propose the idea of Neu-LPP in a new direction using the ranking function.

First, we recall the concept of linear programming problems with crisp data, i.e., C-LPP.

Usually, C-LPP is expressed as:

Maximize Z = Cξ

subject to Aξ ⩽ B, ξ ≥ 0

Where C ∈ Rs, Bt ∈ Rr, ξ ∈ Rs and A = (aij)r×s

Here, the constraints of C-LPP are crisp numbers. Next, we designed Neu-LPP.

Definition 5.1. The Neu-LPP with constraints in terms of SVN-numbers is defined in the

following below:

Maximize Z̃ ≈ϕ C̃ξ

subject to Ãξ ⪯ϕ B̃, ξ ≥ 0

Where Ã = (ãij)r×s ∈ (N(R))s, B̃ ∈ (N(R))r, C̃t ∈ (N(R))s, ξ ∈ Rs.

METHODOLOGY

There are four steps to reaching the optimal solution, and the steps are given below.

Step-1: First of all, the given Neu-LPP with SVN-numbers can be wriiten in the form of a

mathematically formulation.

Step-2. Using ranking function ϕ(m̃) = V (m̃)
1+A(m̃) convert the mentioned SVN-numbers to crisp

numbers.

Step-3. Formulate the C-LPP.

Step-4. Solve the C-LPP by Computational Lingo method.
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6. Numerical Example

In this section, we give two examples of Neu-LPP with constraints SVN-numbers. In the

first examples, we take Neu-LPP with constraints in terms of SVTN-numbers, and in second

example, we take Neu-LPP with constraints in terms of SVTrN-numbers. Example 3. A

firm produces three products I, II, and III. The per unit profits are Rs. c̃1 and Rs. c̃2 and

Rs. c̃3 respectively, they are uncertain in nature, assuming as SVTN-numbers. The firm has

two machines and each product is processed on two machines X and Y. The processing time

required in hours in terms of SNTN-numbers on each product is given below the table.

Machines Product− I Product− II Product− III

X ã1 ã2 ã3

Y ã′1 ã′2 ã′3

The machines X and Y have b̃1 and b̃2 machine hours in terms of SVTN-numbers, respectively.

We have to maximize the profit of the company.

Where,

c̃1 = ⟨([6, 8, 11, 14]; 0.7, 0.2, 0.5)⟩, c̃2 = ⟨([5, 8, 9, 10]; 0.6, 0.1, 0.2)⟩, c̃3 =

⟨([7, 10, 14, 17]; 0.8, 0.3, 0.4)⟩
ã1 = ⟨([3, 7, 9, 15]; 0.6, 0.1, 0.3)⟩, ã2 = ⟨([7, 9, 12, 16]; 0.6, 0.2, 0.5)⟩, ã3 =

⟨([3, 8, 12, 14]; 0.5, 0.3, 0.4)⟩,
ã′1 = ⟨([4, 7, 10, 13]; 0.4, 0.1, 0.2)⟩, ã′1 = ⟨([4, 7, 10, 13]; 0.4, 0.1, 0.2)⟩, ã′2 =

⟨([5, 9, 12, 15]; 0.5, 0.4, 0.1)⟩,
ã′3 = ⟨([5, 10, 13, 15]; 0.7, 0.3, 0.5)⟩, b̃1 = ⟨([35, 38, 47, 58]; 0.9, 0.1, 0.3)⟩, b̃2 =

⟨([35, 50, 56, 63]; 0.8, 0.2, 0.4)⟩.
Solution:

Step-1: Let the company produce the quantity ξ1, ξ2, ξ3 of the products A, B, and C respec-

tively. Then the mathematical form of the above Neu-LPP is

Maximize Z̃ ≈ϕ c̃1ξ1 ⊕ c̃2ξ2 ⊕ c̃3ξ3

subject to, ã1ξ1 ⊕ ã2ξ2 ⊕ ã3ξ3 ⪯ϕ b̃1

ã′1ξ1 ⊕ ã′2ξ2 ⊕ ã′3ξ3 ⪯ϕ b̃2

and ξi ⪖ 0, i = 1, 2, 3.

Step-2: In this step, we will apply ranking function to convert SVTN-numbers to real

numbers. ϕ(c̃1) = 2.521739, ϕ(c̃2) = 3.304985, ϕ(c̃3) = 2.709677 ϕ(ã1) = 2.067669,

ϕ(ã2) = 2.655914, ϕ(ã3) = 1.965517, ϕ(ã′1) = 2.163636,ϕ(ã′2) = 2.480000 ϕ(ã′3) = 2.590909,

ϕ(b̃1) = 5.456432, ϕ(b̃2) = 6.433962.

Step-3: Thertefore, the C-LPP with constraints in terms of crisp number is
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Maximize Z = 2.521739ξ1 + 3.304985ξ2 + 2.709677ξ3

subject to

2.067669ξ1 + 2.655914ξ2 + 1.965517ξ3 ≤ 5.456432

2.163636ξ1 + 2.480000ξ2 + 2.590909ξ3 ≤ 6.433962

Step-4: By Lingo method, the optimal feasible solition is ξ1 = 0 , ξ2 = 0.7430211,

ξ3 = 1.772069 and Zmax = 7.257408.

Example 4. At a cattle breeding firm it is prescribed that the food ration for one animal

must contain at least b̃1, b̃2 and b̃3 respectively, they are uncertain in nature, assuming as

SVTrN-numbers. Two different kinds of fooder are available. Each unit weight of these two

contains the following amounts of the three nutrients in terms of SVTrN-numbers:

Fodder − 1 Fodder − 2

Nutrient-A ã1 ã2

Nutrient-B ã′1 ã′2

Nutrient-C ã′′1 ã′′2

It is given that the costs of unit quantity of Fodder-1 and Fodder-2 are c̃1 and c̃2 monetary

units respectively. Pose a linear programming problem in terms of minimizing the cost of

purchasing the fodders for the above cattle breeding firm.

Where,

c̃1 = ⟨([4, 7, 8]; 0.9, 0.2, 0.5)⟩, c̃2 = ⟨([2, 3, 5]; 0.5, 0.3, 0.4)⟩, ã1 = ⟨([1, 6, 7]; 0.6, 0.2, 0.5)⟩,
ã2 = ⟨([4, 8, 9]; 0.5, 0.1, 0.4)⟩, ã′1 = ⟨([1, 2, 4]; 0.6, 0.2, 0.3)⟩, ã′2 = ⟨([2, 3, 6]; 0.4, 0.3, 0.2)⟩
ã′′1 = ⟨([3, 4, 7]; 0.5, 0.4, 0.2)⟩, ã′′2 = ⟨([4, 5, 6]; 0.6, 0.3, 0.4)⟩, b̃1 = ⟨([1, 3, 5]; 0.5, 0.3, 0.1)⟩,
b̃2 = ⟨([1, 2, 3]; 0.5, 0.3, 0.5)⟩, b̃3 = ⟨([2, 4, 6]; 0.6, 0.3, 0.4)⟩.

Solution:

Step-1: Let ξ1 unit of Fodder-1 and ξ2 unit of Fodder-2 are to be purchased to fulfil the

requirement and minimizing the cost of purchasing.

Therefore, the mathematical formulation of the abpve Neu-LPP is

Minimize Z̃ ≈ϕ c̃1ξ1 ⊕ c̃2ξ2

subject to, ã1ξ1 ⊕ ã2ξ2 ⪰ϕ b̃1

ã′1ξ1 ⊕ ã′2ξ2 ⪰ϕ b̃2

ã′′1ξ1 ⊕ ã′′2ξ2 ⪰ϕ b̃3

and ξi ⪖ 0, i = 1, 2.

Step-2: In this step, we will apply ranking function to convert SVTrN-numbers to real

numbers. ϕ(c̃1) = 3.283582, ϕ(c̃2) = 1.461538, ϕ(ã1) = 2.068027, ϕ(ã2) = 3.214286,
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ϕ(ã′1) = 1.123457,ϕ(ã′2) = 1.484375, ϕ(ã′′1) = 1.929688, ϕ(ã′′2) = 2.614679, ϕ(b̃1) = 1.431818,

ϕ(b̃2) = 0.9532710, ϕ(b̃3) = 1.781250.

Step-3: Therefore, the C-LPP with constraints in terms of crisp number is

Minimize Z = 3.283582ξ1 + 1.461538ξ2

subject to

2.068027ξ1 + 3.214286ξ2 ≥ 1.431818,

1.123457ξ1 + 1.484375ξ2 ≥ 0.9532710,

1.929688ξ1 + 2.614679ξ2 ≥ 1.781250.

Step-4: By Computational Lingo method, the optimal feasible solition is ξ1 = 0, ξ2 =

0.6812500 and Zmin = 0.9956727.

7. Conclusions

In this article , we describe the ranking system of neutrosophic numbers in a new direction

based on value and ambiguity. We also developed some properties and theorems about value

and ambiguity. Here, we generalised C-LPP by considering the constraints in terms of SVN-

numbers, and the generalised C-LPP is called Neu-LPP. Then, to solve such Neu-LPP, we

proposed a simplex algirithm, and finally, this newly developed algorithm is used in real-life

problems. The proposed ranking method is applied to convert the Neu-LPP with constraints

in terms of SVTN-numbers to the C-LPP with constraints in terms of real numbers and solves

it by the computational Lingo method. The idea has been explained by two numerical exam-

ples using both SVTN-numbers and SVTrN-numbers. For the stability and feasibility of this

methodology, we also compared different existing methodologies with the proposed method.

In the future, the idea of Neu-LPP may be more generalised way.

Funding: None.

Author Contributions: All authors contributed equally in this manuscript.

Declaration of interests: The authors claim that none of their known financial or interper-

sonal conflicts may have impacted the study described in this paper.

Conflict of Interest: The authors have not revealed any conflicts of interest.

References

[1] Zadeh L.A. (1965) Fuzzy sets. Information and control, 8: 338-353.

[2] Atanassov, K.T. (1986) Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87-96.

https://doi.org/10.1016/S0165-0114(86)80034-3.

[3] Smarandache, F., (1998) Neutrosophy, neutrosophic probability, set and logic. Amer. Res. Press, Rehoboth,

USA. p. 105. http://fs.gallup.unm.edu/eBook-neutrosophics6.pdf (sixth version).

Manas Karak, Pramodh Bharati , Animesh Mahata, Subrata paul , Santosh Biswas , 
Supriya Mukherjee , Said Broumi , Mahendra Rong and Banamali Roy, Ranking of Neutrosophic 
number based on values and ambiguities and its application to linear programming problem 

Neutrosophic Sets and Systems, Vol. 63, 2024                                                                             216



[4] W.J.Qiang,Z.Zhong (2009) Aggregation operators on intuitionistic trapezoidal fuzzy number and its ap-

plication to multi-criteria decision making problems,Journel of System Engineering and Electronics, 20, 2,

321-326.

[5] Li, DF., Nan, JX., and Zhang, MJ. (2010) A ranking method of triangular intuitionistic fuzzy numbers

and application to decision making, Int J Comput Intell Syst, 3(5):522–530.

[6] Deng Feng Li,Jian Xia Nan,Mao Jun Zhang (2010) A ranking method of Triangular Intuitionis-

tic Fuzzy Numbers and Application to Decision Making, International Journal of Computational

Systems,Vol.3.No.5,522-530.

[7] Wang, H., Zhang, Y., Sunderraman, R., and Smarandache, F. (2011) Single valued neutrosophic sets.

Fuzzy Sets, Rough Sets andMultivalued Operations and Applications, 3(1): 33-39.

[8] De P.K., Das D. (2012) Ranking of trapezoidal intuitionistic fuzzy numbers,National Institute of Technology

Silchar, India, DOI: 10.1109/ISDA.2012.6416534.

[9] Wan, SP. (2013) Power average operators of trapezoidal intuitionistic fuzzy numbers and application to

multi-attribute group decision making, Appl Math Modell, 37:4112–4126.

[10] Ye, J. (2014) A multicriteria decision-making method using aggregation operators for simplified neutro-

sophic sets. J. Intell. Fuzzy Syst., 26, 2459 – 2466. [CrossRef].

[11] Subas, Y. (2015) Neutrosophic numbers and their application to Multi-attribute decision making problems

(In Turkish) (Masters Thesis, Kilis 7 Aralık University, Graduate School of Natural and Applied Science).

[12] Deli, I., Subas, Y. (2016) A ranking method of single valued neutrosophic numbers and its appli-

cation to multi-attribute decision making problems, Int. J. Mach. Learn.and Cyber, 8(4):1309–1322,

DOI:10.100713042-016-0505-3.

[13] Peng, J.-J.; Wang, J.-Q.; Wang, J.; Zhang, H.-Y.; Chen, X.-H. (2016) Simplified neutrosophic sets and

their applications in multi-criteria group decision-making problems. Int. J. Syst. Sci., 47, 1 – 17. [CrossRef].

[14] Keikha A., Nehi H.M (2016)Operations and Ranking methods for intuitionistic fuzzy numbers, a review

and new methods,I.J.Intelligent and Applications, 1,35-48.

[15] Loganathan c., Lalitha M. (2017) ‘A new approach on solving intuitionistic fuzzy nonlinear programming

problem’, Int. J. Sc. Res. in Comp. and Engg., 5(5),pp. 1-9.

[16] Mehlawat, M.K. and Grover, N. (2018) Intuitionistic fuzzy multi-criteria group decision making

with an application to critical path selection. Annals of Opera- tions Research, 269(1-2), 505-520.

https://doi.org/10.1007/s10479-017-2477-4.

[17] Edalatpanah, S.A. (2019) A nonlinear approach for neutrosophic linear programming, Journal of Applied

Research on Industrial Engineering, 6(4): 367-373.

[18] Sumathi, IR., Sweety, CAC. (2019) New approach on differential equation via trapezoidal neutrosophic

number, Complex Intell Syst, 5(4):417–424.

[19] Mohan S., Kannusamy A.P. , Samiappan V. (2020) A new Approach for Ranking of Intuitionistic Fuzzy

Numbers, J.Fuzzy.Ext.Appl.Vol.1, 15-26.

[20] Alzahrani F.A.;Ghorui N.,Gazi K.H.,Giri B.C. ,Ghosg A.,Mondal S.P (2023) Optimal site selection for

Women university using Neutrosophic multi-crioteria Decision making Approach.Buildings,13,152.

[21] Karak Manas, Mahata. A, Rong. M, Mukherjee. S, Mondal S.P, Broumi. S, Roy. B (2023), A solution tech-

nique of Transportation Problem in Neutrosophic Environment, Neutrosophic System with applications,

Vol.3.

[22] A.N. Revathi, S. Mohanaselvi, and Broumi Said (2023), An Efficient Neutrosophic Technique for Uncertain

Multi Objective Transportation Problem, Neutrosophic Sets and Systems, vol.53.

[23] Sujatha Ramalingam1, Kuppuswami Govindan and Said Broumi (2021), Analysis of Covid-19 via Fuzzy

Cognitive Maps and Neutrosophic Cognitive Maps, Neutrosophic Sets and Systems, vol.42.

Manas Karak, Pramodh Bharati , Animesh Mahata, Subrata paul , Santosh Biswas , 
Supriya Mukherjee , Said Broumi , Mahendra Rong and Banamali Roy, Ranking of Neutrosophic 
number based on values and ambiguities and its application to linear programming problem 

Neutrosophic Sets and Systems, Vol. 63, 2024                                                                             217



[24] Broumi Said , Malayalan Lathamaheswari, Prem Kumar Singh , Asma Ait Ouallane1,Abdellah Bakhouyi

, Assia Bakali, Mohamed Talea, Alok Dhital and Nagarajan Deivanayagampillai (2022), An Intelligent

Traffic Control System Using Neutrosophic Sets, Rough sets, Graph Theory, Fuzzy sets and its Extended

Approach: A Literature Review, Neutrosophic Sets and Systems, vol.50.

[25] Praba B, Balambal Suryanarayanan, D.Nagarajan, Broumi Said (2023), Analysis of Teaching-Learning

Efficiency Using Attribute Based Double Bounded Rough Neutrosophic Set Driven Random Forests, Neu-

trosophic Sets and Systems, vol.55.

[26] Surapati Pramanik, Suman Das, Rakhal Das, and Binod Chandra Tripathy (2023), Neutrosophic BWM-

TOPSIS Strategy under SVNS Environment, Neutrosophic Sets and Systems, Vol. 56.

[27] M. Mullai, S. Broumi , R. Jeyabalan, R. Meenakshi (2021), Split Domination in Neutrosophic Graphs,

Neutrosophic Sets and Systems, Vol. 47.

[28] S. Satham Hussain, Saeid Jafari, Said Broumi and N. Durga S. Satham Hussain, Saeid Jafari, Said Broumi

and N. Durga (2020), Operations on Neutrosophic Vague Graphs, Neutrosophic Sets and Systems, Vol. 35.

[29] Ashish Acharya, Animesh Mahata, Supriya Mukherjee, Manajat Ali Biswas, Krishna Pada Das, Sankar

Prasad Mondal, Banamali Roy (2023), A Neutrosophic differential equation approach for modelling glucose

distribution in the bloodstream using neutrosophic sets, Decision Analytics Journal Vol.8 .

[30] Maissam Jdid, Huda E Khalid, Mysterious Neutrosophic Linear Models, International Journal of Neutro-

sophic Science, Vol.81, No. 2, 2022.

[31] Maissam Jdid, The Use of Neutrosophic linear Programming Method in the Field of Education, Handbook

of Research on the Applications of Neutrosophic Sets Theory and Their Extensions in Education, Chapter

15, IGI-Global, 2023.

[32] Maissam Jdid , and Florentin Smarandache, Optimal Agricultural Land Use: An Efficient Neu-

trosophic Linear Programming Method, Neutrosophic Systems with Applications, Vol. 10, 2023,

https://doi.org/10.61356/j.nswa.2023.76.

[33] Avishek Chakraborty, Sankar Prasad Mondal, Animesh Mahata and Shariful Alam, Different linear and

non-linear form of trapezoidal neutrosophic numbers, de-neutrosophication techniques and its application

in time-cost optimization technique, sequencing problem, RAIRO-Oper. Res., vol-55 (2021), S97-S118,

https://doi.org/10.1051/ro/2019090.

[34] Maissam Jdid and Florentin Smarandache, The Use of Neutrosophic Methods of Operation Re-

search in the Management of Corporate Work, Neutrosophic Systems with Applications, Vol. 3, 2023,

https://doi.org/10.61356/j.nswa.2023.11.

[35] Xuzhu Wang, Etienne E. Kerre, Reasonable properties for the ordering of fuzzy quantities (I), Fuzzy Sets

and Systems, Volume 118, Issue 3, 16 March 2001, Pages 375-385.

[36] Abduallah Gamal , Mohamed Abdel-Basset , Ibrahim M. Hezam , Karam M. Sallam and Ibrahim A.

Hameed, An Interactive Multi-Criteria Decision-Making Approach for Autonomous Vehicles and Dis-

tributed Resources Based on Logistic Systems: Challenges for a Sustainable Future, Sustainability 2023,

15, 12844. https://doi.org/10.3390/su151712844.

Manas Karak, Pramodh Bharati , Animesh Mahata, Subrata paul , Santosh Biswas , 
Supriya Mukherjee , Said Broumi , Mahendra Rong and Banamali Roy, Ranking of Neutrosophic 
number based on values and ambiguities and its application to linear programming problem 

Received: Oct 8, 2023. Accepted: Jan 13, 2024

Neutrosophic Sets and Systems, Vol. 63, 2024                                                                             218


	1. Introduction
	2. Preliminaries
	3. Neutrosophic numbers and their ordering method
	3.1. Rationality of validation of the ratio ranking algorithm

	4. Comparison Analysis
	5. Neutrosophic linear programming problem and its solution
	6. Numerical Example
	7. Conclusions
	References

