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Abstract. The neutrosophic theory has been effectively used to address uncertainty and ambiguity. Neutro-

sophic Metric Space (NMS) was introduced by Krisci and Simsek in 2020. Following that, several kinds of

compatible maps and their characteristics were investigated in the context of Intuitionistic fuzzy metric spaces

and fuzzy metric spaces. In this paper, the author introduce the notion of compatible maps of type (α) and

type (β) in neutrosophic metric space. For this purpose, four non-comparable mappings are used to prove the

basic results. Furthermore, we prove several common fixed points results for compatible maps of type (α) and

type (β) in neutrosophic metric space and provide a non-trivial examples.
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—————————————————————————————————————————-

1. Introduction

The concept of metric spaces and the Banach contraction principle serve as the foundation

of fixed point theory. The openness of metric space attracts a huge number of academics to

the axiomatic interpretation. Following Zadeh’s [29] introduction of the idea of fuzzy sets

(FSs), many academics offered a variety of generalisations for classical structures. The idea of

Fuzzy Metric Space (FMS) was first put forth in 1975 by Kramosil and Michalek [14]. Later,

George and Veeramani [6] redefined the concept of FMS. Following then, several researchers

looked at the FMS characteristics and produced numerous fixed point results. Intuitionistic

Fuzzy Sets(IFSs) was introduced by Atanassov [1] with the concept of non - membership to

S Sowndrarajan and M. Jeyaraman, Some Results for Compatible maps on Neutrosophic Metric Spaces

Neutrosophic Sets and Systems, Vol. 60, 2023



FSs. Park [22] defined Intuitionistic Fuzzy Metric Space (IFMS) from the concept of IFSs and

given some fixed point results. In FMS and IFMS various fixed point theorems has been proved

by Alaca et al [2]. Grabiec [20] gave fuzzy interpretation of Banach and Edelstein fixed point

theorems in the sense of Kramosil and Michalek. Weakly commuting maps in metric spaces

were first proposed by Sessa [24], who started the trend of enhancing commutativity in fixed

point theorems. Jungck [24] soon enlarged this concept to compatible maps. Smarandache

[25,26] established the new idea called Neutrosophic logic and Neutrosophic Set (NS) in 1998.

In general, the ideas of FS and IFS deal with degrees of membership and non-membership,

respectively. By incorporating a degree of indeterminacy, the neutrosophic set generalises fuzzy

and intuitionistic fuzzy sets. Hence several researchers have made studies on the concept

of neutrosophic set. Parimala Mani et al. [8, 9]obtained decision making applications form

Neutrosophic Support Soft Topological Spaces. Sahin et al. [23]studied adequacy of online

education using Hausdorff Measures based on neutrosophic quadruple sets. Recently, Sahin

and Kargin [19] obtained neutrosophic triplet metric spaces and neutrosophic triplet normed

spaces. Kirisci and Simsek [15] established the concept of neutrosophic metric spaces (NMSs)

that deals with membership, non-membership and naturalness functions and derived various

fixed point theorems for neutrosophic metric space. Sowndrarajan and Jeyaraman et al. [12,27]

studied Banach and Edelstein contraction fixed point results for neutrosophic metric space.

In this manuscript, we introduce the notion of compatible maps of type (α) and type (β) in

neutrosophic metric space. We also establish fixed point results by using four mappings and

obtain a non trivial example

2. Preliminaries

Definition 2.1 [26] Let Σ be a non-empty fixed set. A Neutrosophic Set N in Σ is a col-

lection of elements in the form N = {〈a, ξN (a), %N (a), νN (a)〉 : a ∈ Σ} where the functions

ξN (a), %N (a) and νN (a) represent the degree of membership, degree of indeterminacy and the

degree of non-membership respectively of each element a ∈ N to the set Σ.

Definition 2.2 [10] A continuous t - norm (CTN) is a function ? : [0, 1]× [0, 1] → [0, 1] that

satisfies the following conditions;

For all %1, %2, %3, %4 ∈ [0, 1]

(i) %1 ? 1 = %1;

(ii) If %1 ≤ %3 and %2 ≤ %4 then %1 ? %2 ≤ %3 ? %4;
(iii) ? is continuous;

(iv) ? is commutative and associative.
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Definition 2.3 [10] A continuous t - co norm (CTC) is a function � : [0, 1] × [0, 1] → [0, 1]

that satisfies the following conditions;

For all %1, %2, %3, %4 ∈ [0, 1]

(i) %1 � 0 = %1;

(ii) If %1 ≤ %3 and %2 ≤ %4 then %1 � %2 ≤ %3 � %4;
(iii) � is continuous;

(iv) � is commutative and associative.

3. Neutrosophic Metric Spaces

In this section, we define basic concepts of neutrosophic metric space and prove various

properties of the space with suitable examples.

Definition 3.1 [27] A 6 - tuple (Σ,Λ,ℵ,i, ?, �) is called Neutrosophic Metric Space(NMS),

if Σ is an arbitrary non empty set, ? is a neutrosophic CTN, � is a neutrosophic CTC and

Λ,ℵ,i are neutrosophic sets on Σ2 × R+ satisfying the following conditions:

For all %, ς, ω ∈ Σ, ϑ ∈ R+

(i) 0 ≤ Λ(%, ς, ϑ) ≤ 1; 0 ≤ ℵ(%, ς, ϑ) ≤ 1; 0 ≤ i(%, ς, ϑ) ≤ 1;

(ii) Λ(%, ς, ϑ) + ℵ(%, ς, ϑ) + i(%, ς, ϑ) ≤ 3;

(iii) Λ(%, ς, ϑ) = 1 if and only if % = ς ;

(iv) Λ(%, ς, ϑ) = Λ(ς, %, ϑ) for ϑ > 0;

(v) Λ(%, ς, ϑ) ? Λ(ς, %, µ) ≤ Λ(%, ω, ϑ+ µ), for all ϑ, µ > 0;

(vi) Λ(%, ς, .) : [0,∞)→ [0, 1] is neutrosophic continuous ;

(vii) limϑ→∞Λ(%, ς, ϑ) = 1 for all ϑ > 0;

(viii) ℵ(%, ς, ϑ) = 0 if and only if % = ς ;

(ix) ℵ(%, ς, ϑ) = ℵ(ς, %, ϑ) for ϑ > 0;

(x) ℵ(%, ς, ϑ) � ℵ(%, ω, µ) ≥ ℵ(%, ω, ϑ+ µ), for all ϑ, µ > 0;

(xi) ℵ(%, ς, .) : [0,∞)→ [0, 1] is neutrosophic continuous ;

(xii) limϑ→∞ℵ(%, ς, ϑ) = 0 for all ϑ > 0;

(xiii) i(%, ς, ϑ) = 0 if and only if % = ς;

(xiv) i(%, ς, ϑ) = i(ς, %, ϑ) for ϑ > 0;

(xv) i(%, ς, ϑ) � i(%, ω, µ) ≥ i(%, ω, ϑ+ µ), for all ϑ, µ > 0;

(xvi) i(%, ς, .) : [0,∞)→ [0, 1] is neutrosophic continuous ;

(xvii) limϑ→∞i(%, ς, ϑ) = 0 for all ϑ > 0;

(xviii) If ϑ > 0 then Λ(%, ς, ϑ) = 0,ℵ(%, ς, ϑ) = 1,i(%, ς, ϑ) = 1.

Then (Λ,ℵ,i) is called neutrosophic metric on Σ. The functons Λ,ℵ and i denote degree of

closedness, neturalness and non - closedness between % and ς with respect to ϑ respectively.
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Example 3.2 [27] Let (Σ, d) be a metric space. Λ,ℵ,i : Σ2 × R+ → [0, 1] defined by

Λ(%, ς, ϑ) =
ϑ

ϑ+ d(%, ς)
; ℵ(%, ς, ϑ) =

d(%, ς)

ϑ+ d(%, ς)
; i(%, ς, ϑ) =

d(%, ς)

ϑ

for all %, ς ∈ Σ and ϑ > 0. where %?ς = min{%, ς} and %�ς = max{%, ς}. Then (Σ,Λ,ℵ,i, ?, �)
is called NMS induced by a standard neutrosophic metric.

Definition 3.3 Let (Σ,Λ,ℵ,i, ?, �) be neutrosophic metric space. Then

(a) {%n} in Σ is converging to a point % ∈ Σ if for each ϑ > 0

limn→∞Λ(%n, %, ϑ) = 1; limn→∞ℵ(%n, %, ϑ) = 0; limn→∞i(%n, %, ϑ) = 0.

(b) {%n} in Σ is called a Cauchy if for each ε > 0 and ϑ > 0 there exist n ∈ N such that

Λ(%n+p, %n, ϑ) = 1 ; ℵ(%n+p, %n, ϑ) = 0 ; i(%n+p, %n, ϑ) = 0.

(c) (Σ,Λ,ℵ,i, ?, �) is said to be complete NMS if every Cauchy sequence is convergence

in it.

Lemma 3.4 Let {%n} be a sequence in a NMS (Σ,Λ,ℵ,i, ?, �). If there exist a number k ∈
(0, 1)such that for all %, ς ∈ Λ and ϑ > 0

Λ(%n+2, %n+1, kϑ) ≥ Λ(%n+1, %n, kϑ),

ℵ(%n+2, %n+1, kϑ) ≤ ℵ(%n+1, %n, kϑ),

i(%n+2, %n+1, kϑ) ≤ i(%n+1, %n, kϑ)

(1)

for all ϑ > 0 and n = 1, 2, 3 · · · , then {%n} is a Cauchy sequence in Λ

Proof. By Mathematical induction, we have

Λ(%n+2, %n+1, ϑ) ≥ Λ(%2, %1,
ϑ

kn
),

ℵ(%n+2, %n+1, ϑ) ≤ ℵ(%2, %1,
ϑ

kn
),

i(%n+2, %n+1, ϑ) ≤ i(%2, %1,
ϑ

kn
)

(2)

for all ϑ > 0 and n = 1, 2, . . . .

Λ(%n, %n+p, ϑ) ≥ Λ(%1, %2,
ϑ

pkn−1
) ? · · · ? Λ(%1, %2,

ϑ

pkn+p−2 ),

ℵ(%n, %n+p, ϑ) ≤ ℵ(%1, %2,
ϑ

pkn−1
) � · · · � ℵ(%1, %2,

ϑ

pkn+p−2 ),

i(%n, %n+p, ϑ) ≤ i(%1, %2,
ϑ

pkn−1
) � · · · � i(%1, %2,

ϑ

pkn+p−2 ).

(3)
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Therefore, from equation(1),we have

lim
n→∞

Λ(%1, %n+p, ϑ) ≥ 1 ? 1 ? · · · ? 1 ≥ 1,

lim
n→∞

ℵ(%1, %n+p, ϑ) ≤ 0 ? 0 � · · · � 0 ≤ 0

lim
n→∞

i(%1, %n+p, ϑ) ≤ 0 ? 0 � · · · � 0 ≤ 0

(4)

which implies that {%n} is a Cauchy sequence in Λ. �

Definition 3.5 Let Φ and Ψ be two mappings from neutrosophic metric space Σ into itself.

The mappings are said to be compatible if

lim
n→∞

Λ(ΦΨ(%n),ΨΦ(%n), ϑ) = 1, lim
n→∞

ℵ(ΦΨ(%n),ΨΦ(%n), ϑ) = 0, lim
n→∞

i(ΦΨ(%n),ΨΦ(%n), ϑ) = 0.

(5)

for all ϑ > 0 whenever {%n} ⊂ Λ such that limn→∞Φ(%n) = limn→∞Ψ(%n) = % for some

% ∈ Σ.

Definition 3.6 Let Φ and Ψ be two mappings from NMS Σ into itself. The mappings are

said to be compatible maps of type(α) if

lim
n→∞

Λ(ΦΨ(%n),ΨΨ(%n), ϑ) = 1 and lim
n→∞

Λ(ΨΦ(%n),ΦΦ(%n), ϑ) = 1,

lim
n→∞

ℵ(ΦΨ(%n),ΨΨ(%n), ϑ) = 0 and lim
n→∞

ℵ(ΨΦ(%n),ΦΦ(%n), ϑ) = 0,

lim
n→∞

i(ΦΨ(%n),ΨΨ(%n), ϑ) = 0 and lim
n→∞

i(ΨΦ(%n),ΦΦ(%n), ϑ) = 0.

for all ϑ > 0 whenever {%n} ⊂ Λ such that limn→∞Φ(%n) = limn→∞Ψ(%n) = % for some

% ∈ Σ.

Definition 3.7 Let Φ and Ψ be two mappings from NMS Σ into itself. The mappings are

said to be compatible maps of type(β) if for all ϑ > 0

lim
n→∞

Λ(ΦΦ(%n),ΨΨ(%n), ϑ) = 1, lim
n→∞

ℵ(ΦΦ(%n),ΨΨ(%n), ϑ) = 0, lim
n→∞

i(ΦΦ(%n),ΨΨ(%n), ϑ) = 0.

for all ϑ > 0 whenever {%n} ⊂ Λ such that limn→∞Φ(%n) = limn→∞Ψ(%n) = % for some

% ∈ Σ.

Proposition 3.8 Let Σ be a NMS and Φ,Ψ be continuous mapping from Σ into itself. Then

Φ and Ψ be compatible if and only if they are compatible of type(α).

Proof: Let {%n} ⊂ Λ such that limn→∞Φ(%n) = limn→∞Ψ(%n) = % for some % ∈ Λ. Since

Φ is continuous, we have limn→∞ΦΦ(%n) = limn→∞ΦΨ(%n) = ΦΨ. Also, since Φ,Ψ are

compatible,

lim
n→∞

Λ(ΦΨ(%n),ΨΦ(%n), ϑ) = 1, lim
n→∞

ℵ(ΦΨ(%n),ΨΦ(%n), ϑ) = 0, lim
n→∞

i(ΦΨ(%n),ΨΦ(%n), ϑ) = 0.
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for all ϑ > 0. From the inequality,

Λ(ΦΦ(%n),ΨΦ(%n), ϑ) ≥ Λ(ΦΦ(%n),ΦΨ(%n),
ϑ

2
) ? Λ(ΦΨ(%n),ΨΦ(%n),

ϑ

2
),

ℵ(ΦΦ(%n),ΨΦ(%n), ϑ) ≤ ℵ(ΦΦ(%n),ΦΨ(%n),
ϑ

2
) � ℵ(ΦΨ(%n),ΨΦ(%n),

ϑ

2
),

i(ΦΦ(%n),ΨΦ(%n), ϑ) ≤ i(ΦΦ(%n),ΦΨ(%n),
ϑ

2
) � i(ΦΨ(%n),ΨΦ(%n),

ϑ

2
).

Therefore,

lim
n→∞

Λ(ΦΦ(%n),ΨΦ(%n), ϑ) = 1, lim
n→∞

ℵ(ΦΦ(%n),ΨΦ(%n), ϑ) = 0, lim
n→∞

i(ΦΦ(%n),ΨΦ(%n), ϑ) = 0.

Also we get,

lim
n→∞

Λ(ΨΨ(%n),ΦΨ(%n), ϑ) = 1, lim
n→∞

ℵ(ΨΨ(%n),ΦΨ(%n), ϑ) = 0, lim
n→∞

i(ΨΨ(%n),ΦΨ(%n), ϑ) = 0.

Hence Φ and Ψ are compatible of type α.

Conversely, Let {%n} ⊂ Λ such that limn→∞Φ(%n) = limn→∞Φ(%n) = % for some % ∈ Λ.

Since Ψ is also continuous, we have

lim
n→∞

ΨΦ(%n) = lim
n→∞

ΨΨ(%n) = Ψ%

Since Φ and Ψ are compatible of type (α), we get

Λ(ΦΨ(%n),ΨΨ(%n),
ϑ

2
) = Λ(ΨΦ(%n),ΦΦ(%n),

ϑ

2
) = 1,

ℵ(ΦΨ(%n),ΨΨ(%n),
ϑ

2
) = ℵ(ΨΦ(%n),ΦΦ(%n),

ϑ

2
) = 0,

i(ΦΨ(%n),ΨΨ(%n),
ϑ

2
) = i(ΨΦ(%n),ΦΦ(%n),

ϑ

2
) = 0

for all ϑ > 0. Thus from the inequality,

Λ(ΦΨ(%n),ΨΦ(%n), ϑ) ≥ Λ(ΦΨ(%n),ΨΨ(%n),
ϑ

2
) ? Λ(ΨΨ(%n),ΨΦ(%n),

ϑ

2
),

ℵ(ΦΨ(%n),ΨΦ(%n), ϑ) ≤ ℵ(ΦΨ(%n),ΨΨ(%n),
ϑ

2
) � ℵ(ΨΨ(%n),ΨΦ(%n),

ϑ

2
),

i(ΦΦ(%n),ΨΦ(%n), ϑ) ≤ i(ΦΦ(%n),ΦΨ(%n),
ϑ

2
) � i(ΦΨ(%n),ΨΦ(%n),

ϑ

2
)

Therefore

lim
n→∞

Λ(ΦΦ(%n),ΨΦ(%n), ϑ) = 1, lim
n→∞

ℵ(ΦΦ(%n),ΨΦ(%n), ϑ) = 0, lim
n→∞

i(ΦΦ(%n),ΨΦ(%n), ϑ) = 0.

Hence Φ and Ψ are compatible maps. �

Proposition 3.9 Let (Σ,Λ,ℵ,i, ?, �) be a NMS and Φ,Ψ be self mappings from Σ into

itself. If Φ,Ψ are compatible maps of type (α) and Φ(%) = Ψ(%) for some % ∈ Σ, then

ΦΨ(%) = ΨΨ(%) = ΨΦ(%) = ΦΦ(%)
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Proof:Let {%n} ⊂ Σ defined by limn→∞ %n = % for some % ∈ Σ and n = 1, 2, . . . and Φ(%) =

Ψ(%). Then we have

lim
n→∞

Φ(%n) = lim
n→∞

Ψ(%n) = Φ(%) = Ψ(%).

Since, Φ,Ψ are compatible of type(α), we get

Λ(ΦΨ(%),ΨΨ(%), ϑ) = lim
n→∞

Λ(ΦΨ(%n),ΨΨ(%n), ϑ) = 1,

ℵ(ΦΨ(%),ΨΨ(%), ϑ) = lim
n→∞

ℵ(ΦΨ(%n),ΨΨ(%n), ϑ) = 0,

i(ΦΨ(%),ΨΨ(%), ϑ) = lim
n→∞

i(ΦΨ(%n),ΨΨ(%n), ϑ) = 0.

Therefore ΦΨ(%) = ΨΨ(%). Also, we have ΨΦ(%) = ΦΦ(%).

Since Φ(%) = Ψ(%), ΨΨ(%) = ΦΨ(%). Hence ΦΨ(%) = ΨΨ(%) = ΨΦ(%) = ΦΦ(%). �

Proposition 3.10 Let (Σ,Λ,ℵ,i, ?, �) be a NMS and Φ,Ψ be two self maps from Σ into itself.

If Φ,Ψ are compatible maps of type (α)and {%n} ⊂ Σ such that

limn→∞Φ(%n) = limn→∞Ψ(%n) = % for some % ∈ Σ, then

(i) limn→∞ΨΦ(%n) = Φ% if Φ is continuous at % ∈ Σ,

(ii) ΦΨ(%) = ΨΦ(%) and Φ(%) = Ψ(%) if Φ,Ψ are continuous at % ∈ Σ.

Proof:(i) Since Φ is continuous at % and limn→∞Φ(%n) = %, limn→∞ΦΦ(%n) = Φ%. Also we

have Φ,Ψ are compatible maps of ype (α), Then

lim
n→∞

Λ(ΨΦ(%n),ΦΦ(%n), ϑ) = 1, lim
n→∞

ℵ(ΨΦ(%n),ΦΦ(%n), ϑ) = 0, lim
n→∞

i(ΨΦ(%n),ΦΦ(%n), ϑ) = 0.

for all ϑ > 0. From the definition (3.1),

lim
n→∞

Λ(ΨΦ(%n),Φ(%), ϑ) ≥ lim
n→∞

Λ(ΨΦ(%n),ΦΦ(%n),
ϑ

2
) ? Λ(ΦΦ(%n),Φ(%),

ϑ

2
) ≥ 1,

lim
n→∞

ℵ(ΨΦ(%n),Φ(%), ϑ) ≤ lim
n→∞

ℵ(ΨΦ(%n),ΦΦ(%n),
ϑ

2
) � ℵ(ΦΦ(%n),Φ(%),

ϑ

2
) ≤ 0,

lim
n→∞

i(ΨΦ(%n),Φ(%), ϑ) ≤ lim
n→∞

i(ΨΦ(%n),ΦΦ(%n),
ϑ

2
) � i(ΦΦ(%n),Φ(%),

ϑ

2
) ≤ 0.

Hence limn→∞ΨΦ(%n) = Φ(%).

(ii) we have limn→∞Φ(%n) = limn→∞Ψ(%n) = %. and Φ,Ψ are continuous at % ∈ Σ. From

the result(i) we have, limn→∞ΦΨ(%n) = Φ(%) and limn→∞ΨΦ(%n) = Ψ(%). Since the lim-

it is always unique, so we obtain Φ(%) = Ψ(%). By Proposition(3.9), Hence, we prove that

ΦΨ(%) = ΨΦ(%). �
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Example 3.11 Let Σ = [0,∞) be a metric d which is defined by d(%, ς) = |%− ς|, where ? and

� defined by a ? b = min{a, b}, a � b = max{a, b}. we define (Λ,ℵ,i) by

Λ(%, ς, ϑ) =

(
exp

(
d(%, ς)

ϑ

))−1
,

ℵ(%, ς, ϑ) =

exp

(
d(%,ς)

ϑ

)
− 1

exp

(
d(%,ς)

ϑ

) ,

i(%, ς, ϑ) = exp

(
d(%, ς)

ϑ

)
.

for all %, ς ∈ Σ and ϑ > 0. Then (Σ,Λ,ℵ,i, ?, �) is a NMS. Let Φ,Ψ be defined by

Φ(%) =

1, if for all % ∈ [0, 1]

1 + %, if for all % ∈ (1,∞)

Ψ(%) =

1, if for all % ∈ [0, 1]

1 + %, if for all % ∈ [0, 1)

Let {%n} be a sequence in Σ such that limn→∞Φ%n = limn→∞Ψ%n = ω. From the definition

of Φ,Ψ, % and limn→∞ %n = 0. Since Φ,Ψ are discontinuous at % = 1, Therefore (Φ,Ψ) are

compatible maps of type (β).

4. Main Results

In this section, we present some interesting concepts such as compatible maps of of type (α)

and type (β) in neutrosophic metric space with suitable examples. Also we prove some fixed

point theorems using compatible mapping of type (α).

Theorem 4.1 Let (Σ,Λ,ℵ,i, ?, �) be a complete neutrosophic metric space with ϑ ? ϑ ≥
ϑ, ϑ � ϑ ≤ ϑ for all ϑ ∈ [0, 1] and satisfy the condition (1). Let Φ,Ψ,Ω,Λ and Γ be mappings

from Σ into itself such that

(i) Γ(Σ) ⊂ ΦΨ(Σ), Γ(Σ) ⊂ ΩΛ(Σ);

(ii) There exists k ∈ (0, 1) such that for all %, ς ∈ Σ, β ∈ (0, 2) and ϑ > 0

Λ(Γ%,Γς, kϑ) ≥ Λ(ΦΨ%,Γ%, ϑ) ? Λ(ΩΓς,Γς, ϑ) ? Λ(ΩΓς,Γ%, βϑ)

? Λ(ΦΨ%,Γς, (2− β)ϑ) ? Λ(ΦΨ%,ΩΓς, ϑ),

ℵ(Γ%,Γς, kϑ) ≤ ℵ(ΦΨ%,Γ%, ϑ) � ℵ(ΩΓς,Γς, ϑ) � ℵ(ΩΓς,Γ%, βϑ)

� ℵ(ΦΨ%,Γς, (2− β)ϑ) � ℵ(ΦΨ%,ΩΓς, ϑ),

i(Γ%,Γς, kϑ) ≤ i(ΦΨ%,Γ%, ϑ) � i(ΩΓς,Γς, ϑ) � i(ΩΓς,Γ%, βϑ)

� i(ΦΨ%,Γς, (2− β)ϑ) � i(ΦΨ%,ΩΓς, ϑ).
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(iii) ΓΨ = ΨΓ, ΓΛ = ΛΓ, ΦΨ = ΨΦ and ΩΛ = ΛΩ,

(iv) Φ and Ψ are continuous,

(v) Γ and ΦΨ are compatible of type (α),

(vi) Λ(%,ΩΓ%, ϑ) ≥ Λ(%,ΦΨ%, ϑ), ℵ(%,ΩΓ%, ϑ) ≤ ℵ(%,ΦΨ%, ϑ),

i(%,ΩΓ%, ϑ) ≤ i(%,ΦΨ%, ϑ) for all % ∈ Σ and ϑ > 0.

Then Φ,Ψ,Ω,Λ and Γ have a common fixed point in Σ.

Proof: Since Γ(Σ) ⊂ ΦΨ(Σ) for fixed %0 ∈ Λ, we choose a point %1 ∈ Λ such that Γ%0 = ΦΨ%1.

Since Γ(Σ) ⊂ ΩΛ(Λ), we take %2 ∈ Λ for this point %1 such that Φ%1 = ΩΛ%2. Consider a

sequence {ςn} ⊂ Λ , bu mathematical induction,

ς2n = Γ%2n = ΦΨ%2n+1, ς2n+1 = Γ%2n+1 = ΦΨ%2n+2

for n = 1, 2, . . . . From (ii)we have

Λ(ς2n+1, ς2n+2, kϑ) = Λ(Γ%2n+1,Γ%2n+2, kϑ) ≥ Λ(ς2n, ς2n+1, ϑ) ? Λ(ς2n+1, ς2n+2, ϑ)

? Λ(ς2n+1, ς2n+1, ϑ) ? Λ(ς2n, ς2n+2, (1 + q)ϑ)

? Λ(ς2n, ς2n+1, ϑ),

ℵ(ς2n+1, ς2n+2, kϑ) = ℵ(Γ%2n+1,Γ%2n+2, kϑ) ≤ ℵ(ς2n, ς2n+1, ϑ) � ℵ(ς2n+1, ς2n+2, ϑ)

� ℵ(ς2n+1, ς2n+1, ϑ) � ℵ(ς2n, ς2n+2, (1 + q)ϑ)

� ℵ(ς2n, ς2n+1, ϑ),

i(ς2n+1, ς2n+2, kϑ) = i(Γ%2n+1,Γ%2n+2, kϑ) ≤ i(ς2n, ς2n+1, ϑ) � i(ς2n+1, ς2n+2, ϑ)

� i(ς2n+1, ς2n+1, ϑ) � i(ς2n, ς2n+2, (1 + q)ϑ)

� i(ς2n, ς2n+1, ϑ)

(6)

for all ϑ > 0 and β = 1 - q with q ∈ (0, 1).

Since ?, � are continuous also Λ(%, ς, .),ℵ(%, ς, .) and i(%, ς, .) are continuous, let q → 1 in the

above equation, we get

Λ(ς2n+1, ς2n+2, kϑ) ≥ Λ(ς2n, ς2n+1, ϑ) ? Λ(ς2n+1, ς2n+2, ϑ),

ℵ(ς2n+1, ς2n+2, kϑ) ≤ ℵ(ς2n, ς2n+1, ϑ) � ℵ(ς2n+1, ς2n+2, ϑ),

i(ς2n+1, ς2n+2, kϑ) ≤ i(ς2n, ς2n+1, ϑ) � i(ς2n+1, ς2n+2, ϑ)

(7)

Also we have

Λ(ς2n+2, ς2n+3, kϑ) ≥ Λ(ς2n+1, ς2n+2, ϑ) ? Λ(ς2n+2, ς2n+3, ϑ),

ℵ(ς2n+2, ς2n+3, kϑ) ≤ ℵ(ς2n+1, ς2n+2, ϑ) � ℵ(ς2n+2, ς2n+3, ϑ),

i(ς2n+2, ς2n+3, kϑ) ≤ i(ς2n+1, ς2n+2, ϑ) � i(ς2n+2, ς2n+3, ϑ).

(8)
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From equation (7) and (8)

Λ(ς2n+1, ς2n+2, kϑ) ≥ Λ(ςn, ςn+1, ϑ) ? Λ(ςn+1, ςn+2, ϑ),

ℵ(ς2n+1, ς2n+2, kϑ) ≤ ℵ(ςn, ςn+1, ϑ) � ℵ(ςn+1, ςn+2, ϑ),

i(ς2n+1, ς2n+2, kϑ) ≤ i(ςn, ςn+1, ϑ) � i(ςn+1, ςn+2, ϑ).

for n = 1, 2, . . . . Then for positive integers n and p,

Λ(ς2n+1, ς2n+2, kϑ) ≥ Λ(ςn, ςn+1, ϑ) ? Λ(ςn+1, ςn+2,
ϑ

kp
),

ℵ(ς2n+1, ς2n+2, kϑ) ≤ ℵ(ςn, ςn+1, ϑ) � ℵ(ςn+1, ςn+2,
ϑ

kp
),

i(ς2n+1, ς2n+2, kϑ) ≤ i(ςn, ςn+1, ϑ) � i(ςn+1, ςn+2,
ϑ

kp
).

Since

limn→∞Λ(ςn+1, ςn+2, kϑ) = 1, limn→∞ℵ(ςn+1, ςn+2, kϑ) = 0, limn→∞i(ςn+1, ςn+2, kϑ) = 0,

we have

Λ(ςn+1, ςn+2, kϑ) ≥ Λ(ςn, ςn+1, ϑ),

ℵ(ςn+1, ςn+2, kϑ) ≤ ℵ(ςn, ςn+1, ϑ),

i(ςn+1, ςn+2, kϑ) ≤ i(ςn, ςn+1, ϑ).

By lemma(3.4), Since Σ is complete, so {ςn} is a Cauchy sequence which is converges to a

point % ∈ Σ. Also {Γ%n}, {ΦΨ%2n+1}, {ΩΛ%2n+2} are subsequences of {ςn}, limn→∞ Γ%n =

% = limn→∞ΦΨ%2n+1 = limn→∞ΩΛ%2n+2. Also, since Φ,Ψ are continuous and ΓΦΨ are

compatible of type (α), by proposition (3.9), we have limn→∞ ΓΦΨ(%2n+1) = ΦΨ% and

limn→∞(ΦΨ)2%2n+1 = ΦΨ%. By(ii) with β = 1, we obtain

Λ(ΓΦΨ%2n+1,Γ%2n+2, kϑ) ≥ Λ((ΦΨ)2%2n+1,ΓΦΨ%2n+1, ϑ) ? Λ(ΩΛ%2n+2,Γ%2n+2, ϑ)

? Λ(ΩΓ%2n+2,ΓΦΨ%, ϑ) ? Λ((ΦΨ)2%2n+1,ΓΦ%2n+2, ϑ)

? Λ((ΦΨ)2%2n+1,ΩΛ%2n+2, ϑ),

ℵ(ΓΦΨ%2n+1,Γ%2n+2, kϑ) ≤ ℵ((ΦΨ)2%2n+1,ΓΦΨ%2n+1, ϑ) � ℵ(ΩΛ%2n+2,Γ%2n+2, ϑ)

� ℵ(ΩΓ%2n+2,ΓΦΨ%, ϑ) � ℵ((ΦΨ)2%2n+1,ΓΦ%2n+2, ϑ)

� ℵ((ΦΨ)2%2n+1,ΩΛ%2n+2, ϑ),

i(ΓΦΨ%2n+1,Γ%2n+2, kϑ) ≤ i((ΦΨ)2%2n+1,ΓΦΨ%2n+1, ϑ) � i(ΩΛ%2n+2,Γ%2n+2, ϑ)

� i(ΩΓ%2n+2,ΓΦΨ%, ϑ) � i((ΦΨ)2%2n+1,ΓΦ%2n+2, ϑ)

� i((ΦΨ)2%2n+1,ΩΛ%2n+2, ϑ),
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which implies that

Λ(ΦΨ%, %, kϑ) = limn→∞Λ(ΓΦΨ%2n+1,Γ%2n+2, kϑ)

≥ 1 ? 1 ? Λ(%,ΦΨ%, ϑ) ? Λ(ΦΨ%, %, ϑ) ? Λ(ΦΨ%, %, ϑ),

ℵ(ΦΨ%, %, kϑ) = limn→∞ℵ(ΓΦΨ%2n+1,Γ%2n+2, kϑ)

≤ 0 � 0 � ℵ(%,ΦΨ%, ϑ) � ℵ(ΦΨ%, %, ϑ) � ℵ(ΦΨ%, %, ϑ),

i(ΦΨ%, %, kϑ) = limn→∞i(ΓΦΨ%2n+1,Γ%2n+2, kϑ)

≤ 0 � 0 � i(%,ΦΨ%, ϑ) � i(ΦΨ%, %, ϑ) � i(ΦΨ%, %, ϑ.

Hence, by lemma (3.4), ΦΨ% = %. Also, by(vi), since Λ(%,ΩΓ%, ϑ) ≥ Λ(%,ΦΨ%, ϑ) = 1 and

ℵ(%,ΩΓ%, ϑ) ≤ ℵ(%,ΦΨ%, ϑ) = 0 and i(%,ΩΓ%, ϑ) ≤ i(%,ΦΨ%, ϑ) = 0 for all ϑ > 0, we get

ΩΛ% = %. By(ii) with β = 1, we have

Λ(ΓΦΨ%,Γ%, kϑ) ≥ Λ((ΦΨ)2%2n+1,ΓΦΨ%2n+1, ϑ) ? Λ(ΩΛ%,Γ%, ϑ)

? Λ(ΩΓ%,ΓΦΨ%2n+1, ϑ) ? Λ((ΦΨ)2%2n+1,Γ%, ϑ)

? Λ((ΦΨ)2%2n+1,ΩΛ%, ϑ),

ℵ(ΓΦΨ%,Γ%, kϑ) ≤ ℵ((ΦΨ)2%2n+1,ΓΦΨ%2n+1, ϑ) � ℵ(ΩΛ%,Γ%, ϑ)

� Λ(ΩΓ%,ΓΦΨ%2n+1, ϑ) � ℵ((ΦΨ)2%2n+1,Γ%, ϑ)

� ℵ((ΦΨ)2%2n+1,ΩΛ%, ϑ),

i(ΓΦΨ%,Γ%, kϑ) ≤ i((ΦΨ)2%2n+1,ΓΦΨ%2n+1, ϑ) � i(ΩΛ%,Γ%, ϑ)

� i(ΩΓ%,ΓΦΨ%2n+1, ϑ) � i((ΦΨ)2%2n+1,Γ%, ϑ)

� i((ΦΨ)2%2n+1,ΩΛ%, ϑ).

Thus

Λ(ΦΨ%,Γ%, kϑ) = limn→∞Λ(ΓΦΨ%2n+1,Γ%, kϑ)

≥ 1 ? 1 ? 1 ? Λ(ΦΨ%,Γ%, ϑ) ? 1

≥ Λ(ΦΨ%,Γ%, kϑ),

ℵ(ΦΨ%,Γ%, kϑ) = limn→∞ℵ(ΓΦΨ%2n+1,Γ%, kϑ)

≤ 0 � 0 � 0 � ℵ(ΦΨ%,Γ%, ϑ) � 0

≤ ℵ(ΦΨ%,Γ%, kϑ),

i(ΦΨ%,Γ%, kϑ) = limn→∞i(ΓΦΨ%2n+1,Γ%, kϑ)

≤ 0 � 0 � 0 � i(ΦΨ%,Γ%, ϑ) � 0

≤ i(ΦΨ%,Γ%, kϑ).
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By using the by Lemma (3.4), we get ΦΨ% = Γ% = %. Now we will prove that Ψ% = %. By(ii)

with β = 1 and (iii), we obtain

Λ(Ψ%, %, kϑ) = Λ(ΨΓ%,Γ%, ϑ) = Λ(ΓΨ%,Γ, kϑ) ≥ Λ(ΦΦ%,ΓΨ, ϑ) ? Λ(ΩΛ%,Γ%, ϑ)

? Λ(ΩΓ%,ΓΨ%, ϑ) ? Λ(ΦΦ%,Γ%, ϑ)

? Λ(ΦΦ%,ΩΓ%, ϑ),

ℵ(Ψ%, %, kϑ) = Λ(ΨΓ%,Γ%, ϑ) = ℵ(ΓΨ%,Γ, kϑ) ≤ ℵ(ΦΦ%,ΓΨ, ϑ) � ℵ(ΩΛ%,Γ%, ϑ)

� ℵ(ΩΓ%,ΓΨ%, ϑ) � ℵ(ΦΦ%,Γ%, ϑ)

� ℵ(ΦΦ%,ΩΓ%, ϑ),

i(Ψ%, %, kϑ) = i(ΨΓ%,Γ%, ϑ) = i(ΓΨ%,Γ, kϑ) ≤ i(ΦΦ%,ΓΨ, ϑ) � i(ΩΛ%,Γ%, ϑ)

� i(ΩΓ%,ΓΨ%, ϑ) � i(ΦΦ%,Γ%, ϑ)

� i(ΦΦ%,ΩΓ%, ϑ).

Therefore, we get Ψ% = %. Since ΦΨ% = %, hence Φ% = %. Next we show that Λ% = %. By(ii)

with β = 1 and (iii), we get

Λ(Λ%, %, kϑ) = Λ(ΛΓ%,Γ%, kϑ) = Λ(Γ%,ΛΓ%, kϑ) = 1 ? 1 ? Λ(Λ%, %, ϑ) ? Λ(%,Γ%, ϑ) ? Λ(%,Γ%, ϑ),

ℵ(Λ%, %, kϑ) = ℵ(ΛΓ%,Γ%, kϑ) = ℵ(Γ%,ΛΓ%, kϑ) = 0 � 0 � ℵ(Λ%, %, ϑ) � ℵ(%,Γ%, ϑ) � ℵ(%,Γ%, ϑ),

i(Λ%, %, kϑ) = i(ΛΓ%,Γ%, kϑ) = i(Γ%,ΛΓ%, kϑ) = 0 � 0 � i(Λ%, %, ϑ) � i(%,Γ%, ϑ) � i(%,Γ%, ϑ).

which implies that ϑ% = %. Since ΩΛ% = %, we have Ω% = ΩΛ% = %. Hence, we get

Φ% = Ψ% = Ω% = Λ% = Ω% = %, that is % is a common fixed point of Φ,Ψ,Ω,Λ and Γ.

Uniqueness of the fixed point % follows from (ii). Hence % is unique common fixed point of the

five mappings Φ,Ψ,Ω,Λ and Γ. �

Corollary 4.2 Let Σ be a complete neutrosophic metric space with ϑ ? ϑ ≥ ϑ, ϑ � ϑ ≤ ϑ for

all ϑ ∈ [0, 1]. Let Φ,Ψ and Γ be mappings from Σ into itself such that

(i) Γ(Σ) ⊂ Φ(Σ), Γ(Σ) ⊂ Ω(Σ);

(ii) There exists k ∈ (0, 1) such that for all %, ς ∈ Σ, β ∈ (0, 2) and ϑ > 0

Λ(Γ%,Γς, kϑ) ≥ Λ(Φ%,Γ%, ϑ) ? Λ(Ως,Γς, ϑ) ? Λ(Φ%,Ως, βϑ)

? Λ(Φ%,Γς, (2− β)ϑ) ? Λ(Ως,Γ%, ϑ),

ℵ(Γ%,Γς, kϑ) ≤ ℵ(Φ%,Γ%, ϑ) � ℵ(Ως,Γς, ϑ) � ℵ(Φ%,Ως, βϑ)

� ℵ(Φ%,Γς, (2− β)ϑ) � ℵ(Ως,Γ%, ϑ),

i(Γ%,Γς, kϑ) ≤ i(Φ%,Γ%, ϑ) � i(Ως,Γς, ϑ) � i(Φ%,Ως, βϑ)

� i(Φ%,Γς, (2− β)ϑ) � i(Ως,Γ%, ϑ).
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(iii) Φ is continuous,

(iv) Γ and Φ are compatible of type (α),

(vi) Λ(%,Ω%, ϑ) ≥ Λ(%,Φ%, ϑ), ℵ(%,Ω%, ϑ) ≤ ℵ(%,Φ%, ϑ), i(%,Ω%, ϑ) ≤ i(%,Φ%, ϑ). for all

% ∈ Σ and ϑ > 0.

Then Φ,Ω and Γ have a common fixed point in Σ.

Proof. Suppose IX be the identity mapping on Σ. We prove this corollary by using theorem

(4.1) with Ψ = Γ = IX . �

Example 4.3 Let Σ = { 1n ;n ∈ N} ∪ {0} be a metric defined by d(%, ς) = |% − ς| . For all

%, ς ∈ Σ and ϑ ∈ (0,∞), define

Λ(%, ς, ϑ) =
ϑ

ϑ+ |%− ς|
; ℵ(%, ς, ϑ) =

|%− ς|
ϑ+ |%− ς|

; i(%, ς, ϑ) =
|%− ς|
ϑ

Clearly (Σ,Λ,ℵ,i, ?, �) is a complete neutrosophic metric space on Σ. Here ? is defined by

% ? ς = min{%, ς} and � is defined as % � ς = max{%, ς} respectively.

Let Φ,Ψ,Ω,Λ and Γ is defined by

Φ(%) =
%

4
, Ψ(%) =

%

6
, Ω(%) =

%

2
, Λ(%) =

%

3
, Γ(%) =

%

36
.

Then we have Γ(Σ) ⊂ Φ(Σ), Γ(Σ) ⊂ Ω(Σ); It is evident that Φ,Ψ,Ω,Λ and Γ are continuous.

Also the all conditions of Theorem(4.1) has been satisfied. Hence 0 is a unique fixed point of

Φ,Ψ,Ω,Λ and Γ .

5. Conclusion:

In this paper, we establish a novel concept termed Neutrosophic Metric Space (NMS) and

investigate its many features. In the context of NMS, compatible maps of type (α) and type

(β) definitions are defined, and various fixed point results are proven for five mappings. In

addition, we provided several instances to support our findings. Additionally, neutrosophic

normed space, neutrosophic triplet b-metric space, and neutrosophic triplet bipolar metric

spaces can all be included in the concept of compatible mappings.
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