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Abstract: A new concept of neutrosophic overlap function is given, furthermore a neutrosophic 
residual implication derived from it is also introduced. Firstly, we give new concept of 
neutrosophic overlap function and some classical examples which are introduced on the lattice. 
Secondly, the concept of representable neutrosophic overlap function and its pertinent examples 
are given, meanwhile the general method of constructing representable neutrosophic overlap 
function by using intuitionistic overlap function is given. Finally, neutrosophic residual implication 
induced by neutrosophic overlap function and its basic properties are studied. 

Keywords: neutrosophic overlap function; lattice; representable neutrosophic overlap function; 
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1. Introduction  

In 1998, smarandache added an independent membership degree of uncertainty to intuitionistic 
fuzzy set (IFS) [1], thus putting forward the neutrosophic set (NS) initially. NS is such a robust 
formal frame extending those concepts of typical set, fuzzy set, IFS and interval-valued IFS from 
philosophical viewpoint. Because IFS and interval-valued IFS that can solely address incomplete 
information, but can't address uncertainty and the lack of consistent information which exists in 
reality. Hence, NS is introduced. Its uncertainty can be explicitly quantified, and its true affiliation, 
uncertain affiliation and false affiliation are expressed independent. However, its application is hard 
to solve the actual problems, some scholars have brought forward that notion of single-valued NS 
[2], as one specific case of NS. And those relevant contents of using single-valued NS to address 
decision-making issues are as follows [3-8]. 

Since the triangular norm has a broad range of applications in solving pragmatic issues, it is 
also important to study the wide range of forms of the triangular norm in applications. The overlap 
function is a generalization of triangular norm that fulfils continuity [9]. Bustince et al. gave accurate 
definition of overlap(grouping) function in [10,11]. Over the past period of time, overlap function 
and grouping function evolved rapidly in theory and practice. See the following literature [12-16] for 
the rich achievements in the field of theoretical research about overlap function and grouping 
function. In decision problems, image processing and other fields of wide application see the 
following literature [17-20]. In an effort to better handle inconclusive information, some scholars 
extend the overlap function [12, 21] into the IFS, while introducing the method at [22]. 
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Fuzzy implication and fuzzy residual implication play an integral part in traditional fuzzy 
logic. Fuzzy implication [23] generalizes classical implication into fuzzy logic via the consideration 
of truth values varying in [0, 1] as opposed to {0, 1}. Fuzzy implication is one of the important 
components of fuzzy logic and acts as a very crucial part in some fields, such as image processing, 
fuzzy control, data mining sees the following literature [24-26], etc. Based on the wide application of 
fuzzy implication, it is necessary to research it from the theoretical viewpoint [19]. There are a few 
various models of fuzzy implication for example the R-implication induced by triangular norm [27], 
(S-N)-implication induced by triangular conorm and fuzzy negation [28], etc. Because overlap 
function is closely related to triangular norm, in view of the research of neutrosophic triangular 
norm on neutrosophic fuzzy residual implication, and referring to the research of neutrosophic 
triangular norm derived residual implication in Hu and Zhang [18], it is natural to consider the 
neutrosophic residual implication (NRI) induced by neutrosophic overlap function. 

The second section mainly introduces the basic knowledge that needs to be used, such as 
overlap function, grouping function and NS etc. And in the third section, the new concept and 
related examples of neutrosophic overlap function are given. In addition, the notions and relevant 
examples of representable neutrosophic overlap function and non-representable neutrosophic 
overlap function are presented, respectively. Furthermore, the new concept of neutrosophic 
negation and De Morgan neutrosophic triple which can express the dual relationship between 
neutrosophic overlap function and neutrosophic grouping function is introduced. The general 
method of constructing representable neutrosophic overlap functions by intuitionistic overlap 
functions is given. The fourth section focuses on NRI induced by neutrosophic overlap function, 
and concludes that every NRI induced by neutrosophic overlap function must be a neutrosophic 
implication. The final section summarizes the research content. 

2. Preliminaries 

Definition 2.1 ([29]) O is referred to as an overlap function, if the binary map O: [0, 1]  [0, 1]→[0, 1] 
fulfils prerequisites below, s, t, v [0, 1]: 

(a) O fulfils exchangeability; 
(b) O(s, t) = 0 when and only when st= 0; 
(c) O(s, t) = 1 when and only when st= 1; 
(d) O(s, t) 1 O(s, v) if t 1 v; 
(e) O fulfils continuity. 

Example 2.1 The bivariate functions below are overlap functions, s, t [0, 1]: 

(a) ( ) ( ) ( )O s t s t s t2 2
mM , min , max , ; 

(b) ( )  p p
pO s t s t, , for   0 and 1p p ; 

(c) 
2

( )
.

  
 



 

st s t
O s t s t

s t
DB

, if +  0,
, +

0 , if +  0
; 

(d) ( ) { }O s t s tmin , min , . 

Definition 2.2 ([30]) The bivariate function G: [0, 1]  [0, 1]→[0, 1] is referred to as the grouping 
function, when it fulfils prerequisites below,  s, t, v [0, 1]: 
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(a) G fulfils exchangeability; 
(b) G(s, t) = 0 when and only when s= 0 and t= 0; 
(c) G(s, t) = 1 when and only when s= 1 or t= 1; 
(d) G(s, t) 1 G(s, v) if t 1 v; 
(e) G fulfils continuity. 

Example 2.2 The bivariate functions below are grouping functions, s, t [0, 1]: 

(a) ( ) ( ) (( ) ( ) )     G s t s t s t2 2
mM , 1 min 1 ,1 max 1 , 1 ; 

(b) ( ) ( ) ( )   p p
pG s t s t, 1 1 1 , for   0 and 1p p ; 

(c) ( )
.

   
 





s t st s t
G s t s t

s t
DB

+ 2 , if + 2,
, 2

1, if + 2
; 

(d) ( ) { }   G s t s tmin , 1 min 1 , 1 . 

Definition 2.3 ([31]) An affiliation function μE(s) and a non-affiliation function νE(s) portray an IFS E 
in S. S is a set that is not empty. And the IFS E be denoted as 

{( | }E   E Es s s s S, ( ), ( )) . 
In which μE(s), νE(s) [0, 1] and satisfies the term of 0≤ μE(s)+ νE(s)≤ 1. 

Definition 2.4 ([2]) Truth-affiliation function TE(s), uncertainty-affiliation function UE(s) and falsity 
-affiliation function FE(s) portray the single-valued NS E in S. S is a set that is not empty. And the 
single-valued NS E is defined as 

{ ( ) ( ) | } E E EE s T s U s F s s S, ( ), , . 
In which TE(s), UE(s), FE(s) [0, 1] and satisfies the term of 0 ≤ TE(s)+UE(s)+FE(s) ≤ 3. 

Definition 2.5 ([32]) The overlap function is a map O: L2→L on (L; L) which fulfils monotonicity, 
commutative and continuity, while it fulfils O(s, 0L)= 0L, O(0L, t)= 0L and O(1L, 1L)= 1L, s, t L; the 
grouping function is a map G: L2→L on (L; L) which fulfils monotonicity, commutative and 
continuity, while it fulfils G(s, 1L)= 1L, G(1L, t)= 1L and G(0L, 0L)= 0L, s, t L. 

Definition 2.6 ([18]) Define the set D in the following way, 
* { ( ) | [ ]}.  D s s s s s s s1 2 3 1 2 3, , , , 0,1  

If s D, as above, then s has three components s1, s2 and s3. 
s, t D, where s= (s1, s2, s3), t is analogous to s. 1 on D is defined as the order relation below, 

s 1 t iff s1  t1, s2  t2, s3  t3. 
And the definition of the first type inclusion relation 1 is analogous to the definition of 1. 

Proposition 2.1 ([18]) (D; 1) is a complete lattice. 

Definition 2.7 ([18]) The supplement of s is written as below, s D, 
sc= (s3, 1-s2, s1). 

In particular, 1D*= (1, 0, 0) and 0D*= (0, 1, 1) represent the maximum and minimum in (D; 1), 
respectively. 
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Proposition 2.2 ([18]) s1 t is defined as maximum lower bound of s, t, and expressed as inf(s, t); s1 t 
is defined as minimum upper bound of s, t, and expressed as sup(s, t), s, tD*.  

3. Neutrosophic overlap function  

This section proposes new concept of neutrosophic overlap function and provides relevant 
examples, giving the concept and examples of representable and non-representable neutrosophic 
overlap function. Finally, a new method for constructing representable neutrosophic overlap 
function through intuitionistic fuzzy overlap function (IFO) is proposed. 

Definition 3.1 A neutrosophic overlap function is a map O: D D→D which fulfils prerequisites 
below, s, t, v D: 

(NO1) O fulfils exchangeability; 
(NO2) O(s, t) 1 O(s, v) if t 1 v; 
(NO3) O(0D*, t) =0D* or O(s, 0D*) = 0D*; 
(NO4) O(1D*, 1D*) = 1D*; 
(NO5) O fulfils continuity. 

Definition 3.2 A neutrosophic grouping function is a map G: D D→D which fulfils prerequisites 
below, s, t, v D: 

(NG1) G fulfils exchangeability; 
(NG2) G(s, t) 1 G(s, v) if t 1 v; 
(NG3) G(1D*, t) = 1D* or G(s, 1D*) = 1D*; 
(NG4) G(0D*, 0D*) = 0D*; 
(NG5) G fulfils continuity. 

Example 3.1 The following binary functions are neutrosophic overlap functions, s, t D, 

(1) ( ) ( ( ) ( ) ( ))s t O s t G s t G s tmM mM 1 1 mM 2 2 mM 3 3, , , , , ,O  

( ( ) ( ) ( ) (( ) ( ) ) ( ) (( ) ( ) ))          s t s t s t s t s t s t2 2 2 2 2 2
1 1 1 1 2 2 2 2 3 3 3 3min , max , ,1 min 1 ,1 max 1 , 1 ,1 min 1 ,1 max 1 , 1 ; 

(2) ( ) ( ( ) ( ) ( )) ( ( ) ( ) ( ) ( ) )       p p p p p p
p p p ps t O s t G s t G s t s t s t s t1 1 2 2 3 3 1 1 2 2 3 3, , , , , , ,1 1 1 ,1 1 1O , for p > 0 and p 1; 

(3) ( ) ( ( ) ( ) ( )) ( )


 
   

s + t s ts t s t s ts t O s t G s t G s t
s t s t s t

3 3 3 31 1 2 2 2 2
DB DB 1 1 DB 2 2 DB 3 3

1 1 2 2 3 3

22 + 2, , , , , , , ,
+ 2 2

O , for  s t1 1 0 ,  

   s t2 2 1  and  s t3 3 1 ; 

(4) ( ) ( ( ) ( ) ( ))s t O s t G s t G s tmin min 1 1 min 2 2 min 3 3, , , , , ,O  

( { } { } { })      s t s t s t1 1 2 2 3 3min , ,1 min 1 , 1 ,1 min 1 , 1 . 

Example 3.2 The following binary functions are neutrosophic grouping functions, s, t D, 

(1) ( ) ( ( ) ( ) ( ))s t G s t O s t O s tmM mM 1 1 mM 2 2 mM 3 3, , , , , ,G  

( ( ) (( ) ( ) ( ) ( ) ( ) ( ))     s t s t s t s t s t s t2 2 2 2 2 2
1 1 1 1 2 2 2 2 3 3 3 31 min 1 ,1 max 1 , 1 ,min , max , ,min , max , ; 
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(2) ( ) ( ( ) ( ) ( )) ( ( ) ( ) )    p p p p p p
p p p ps t G s t O s t O s t s t s t s t1 1 2 2 3 3 1 1 2 2 3 3, , , , , , 1 1 1 , ,G , for p > 0 and p 1; 

(3) ( ) ( ( ) ( ) ( )) ( )


 
 

s ts t s t s ts t G s t O s t O s t
s t s t s + t

3 31 1 1 1 2 2
DB DB 1 1 DB 2 2 DB 3 3

1 1 2 2 3 3

2+ 2 2, , , , , , , ,
2 +

G , for  s t1 1 1 , 

   s t2 2 0  and  s t3 3 0 ; 

(4) ( ) ( ( ) ( ) ( ))s t G s t O s t O s tmin min 1 1 min 2 2 min 3 3, , , , , ,G  

( { } { } { })   s t s t s t1 1 2 2 3 31 min 1 , 1 ,min , ,min , .
 

Theorem 3.1 Let O is a bivariate operation on D, s, t D, 
( ) ( ( ) ( ) ( ))s t O s t G s t G s t1 1 1 2 2 2 3 3, , , , , ,O . 

Then O is a neutrosophic overlap function, where O is the overlap function, G1 and G2 are grouping 
functions on [0, 1]. 
Proof. s, t, v D in which s= (s1, s2, s3), t and v are analogous to s.  

(NO1) Since G1 and G2 are grouping functions, O is the overlap function, then O(s1, t1) = O(t1, s1), 
G1(t2, s2) = G1(s2, t2) and G2(t3, s3) = G2(s3, t3), thus O fulfils exchangeability. 

(NO2) Let t 1 v, then O(s1, t1)  O(s1, v1), G1(s2, t2)  G1(s2, v2), G2(s3, t3)  G2(s3, v3). Therefore, O(s, 
t) 1 O(s, v). 

(NO3) O(0D*, t)= (O(0, t1), G1(1, t2), G2(1, t3))=(0, 1, 1)= 0D
, and O(s, 0D*)= (O(s1, 0), G1(s2, 1), G2(s3, 

1))=(0, 1, 1)= 0D*. 
(NO4)O(1D*, 1D*)= (O(1, 1), G1(0, 0), G2(0, 0))= (1, 0, 0)= 1D*. 

(NO5) Firstly, we prove left continuous. That is, prove that this equation O(s, ˅iIti)= ˅iIO(s, ti) 

holds. Because the overlap function and the grouping function are continuous, so O(s1, ˅iIti)= 
˅iIO(s1, ti), G2(s3, ˅iIti)= ˅iIG2(s3, ti) and G1(s2, ˅iIti)= ˅iIG1(s2, ti) is valid. 

So we can get  
( ) ( ( ) ( ) ( ))

( ( ) ( ) ( ))

( )

   

  



    

   

 

O

O

i i i i i i i i

i i i i i i

i i

s t O s t G s t G s t
O s t G s t G s t

s t

I 1 I 1 2 I 2 3 I

I 1 I 1 2 I 2 3

I

, , , , , ,
, , , , ,

,
 

In this way, show that O is left continuous. 
Likewise, O(s, ˄iIti)= ˄iIO(s, ti) is simple to prove, state clearly that O is right continuous. To 

sum up, O is shown to be a neutrosophic overlap function. 

Theorem 3.2 G is a bivariate operation on D, s, t D, 
( ) ( ( ) ( ) ( ))s t G s t O s t O s t1 1 1 2 2 2 3 3, , , , , ,G . 

Then G can be called the neutrosophic grouping function, where G is the grouping function, O1 and 
O2 are overlap functions on [0, 1]. 
Proof. The procedure for proving analogy Theorem 3.1. 

Above Theorem 3.1 supplies the measure for constructing neutrosophic overlap function using 
overlap function O and grouping functions G1, G2 which are defined on [0, 1]. But it requires a 
condition that O= (O, G1, G2) holds. According to this condition, we bring in the concept of 
representable neutrosophic overlap function.  
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Definition 3.3 A neutrosophic overlap function O is referred to as representable, when and only 
when, there exists O which is an overlap function on [0, 1] and G1, G2 which are grouping functions 
on [0, 1] satisfying, s, t D, 

( ) ( ( ) ( ) ( ))s t O s t G s t G s t1 1 1 2 2 2 3 3, , , , , ,O . 

Example 3.3 The representable neutrosophic overlap function is shown below, s, t D, 
( ) ( ( ) ( ) ( )) ps t O s t G s t G s tDB 1 1 2 2 mM 3 3, , , , , ,O . 

Proof. The first step verifies that O is a neutrosophic overlap function holds. s, t, v D in which s= 
(s1, s2, s3), t and v are analogous to s. 

(NO1) Let G1= Gp, G2= GmM (p=2) are grouping functions, O= ODB is an overlap function on [0, 1]. 
Since ODB(s1, t1)= ODB(t1, s1), Gp(s2, t2)= Gp(t2, s2), GmM(s3, t3)= GmM(s3, t3), thus O fulfils exchangeability. 

(NO2) Let t 1 v, then ODB(s1, t1)  ODB(s1, v1), Gp(s2, t2)  Gp(s2, v2), GmM(s3, t3)  GmM(s3, v3). 
Therefore,O(s, t) 1 O(s, v). 

(NO3) O(0D*, t)= (ODB(0, t1), Gp(1, t2), GmM(1, t3))= (0, 1, 1)= 0D*, and O(s, 0D*)= (ODB(s1, 0), Gp(s2, 1), 
GmM(s3, 1))= (0, 1, 1)= 0D*. 

(NO4)O(1D*, 1D*)= (ODB(1, 1), Gp(0, 0), GmM(0, 0))= (1, 0, 0)= 1D*. 
(NO5) Firstly, we prove left continuous. That is, prove that this equation O(s, ˅iIti)= ˅iIO(s, ti) 

holds. Because of an overlap function ODB and grouping functions Gp and GmM are continuous, so 
ODB(s1, ˅iIti)= ˅iIODB(s1, ti), GmM(s3, ˅iIti)= ˅iIGmM(s3, ti) and Gp(s2, ˅iIti)= ˅iIGp(s2, ti) is valid. 

So we can get 
 

( ) ( ( ) ( ) ( ))

( ( ) ( ) ( ))

( )

   

  



    

   

 

O

O

i i DB i i p i i i i

i DB i i p i i i

i i

s t O s t G s t G s t
O s t G s t G s t

s t

I 1 I 2 I mM 3 I

I 1 I 2 I mM 3

I

, , , , , ,
, , , , ,

,

 

In this way, show that O is left continuous. 
Likewise, O(s, ˄iIti)= ˄iIO(s, ti) is simple to prove, state clearly that O is right continuous. To 

sum up, O is shown to be the neutrosophic overlap function. 
Finally, it is simple to show that fulfils O(s, t)= (ODB(s1, t1), Gp(s2, t2), GmM(s3, t3)), so it must be the 

representable neutrosophic overlap function. 

Definition 3.4 The neutrosophic overlap function O is known as standard representable, when and 
only when, there exists G which is a grouping function on [0, 1] and O which is an overlap function 
on [0, 1] satisfying, s, t D, 

( ) ( ( ) ( ) ( ))s t O s t G s t G s t1 1 2 2 3 3, , , , , ,O . 

Example 3.4 The standard representable neutrosophic overlap function is as follows, s, t D, 
DB( ) ( ( ) ( ) ( ))p ps t O s t G s t G s t1 1 2 2 3 3, , , , , ,O . 

Proof. This procedure for proving analogy Example 3.3. 

Definition 3.5 The N-dual representable neutrosophic overlap function O by the following being 
defined by, s, t D, 

( ) ( ( ) ( ) ( ))s t O s t G s t G s t1 1 2 2 3 3, , , , , ,O . 
O and G has dual relation as follows, 

( ) ( )   O s t G s t1 1 1 1, 1 1 ,1 . 

Example 3.5 The N-dual representable neutrosophic overlap function is as follows, s, t D, 
( ) ( ( ) ( ) ( )) p p ps t O s t G s t G s t1 1 2 2 3 3, , , , , ,O . 

Proof. This procedure for proving analogy Example 3.3. 
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Definition 3.6 G is referred to as representable neutrosophic grouping function, when and only 
when, there obtains the grouping function G and the overlap functions O1, O2 on [0, 1] satisfying, s, 
t D, 

1 2( ) ( ( ) ( ) ( ))s t G s t O s t O s t1 1 2 2 3 3, , , , , ,G . 

Other concepts can be derived from the analogy of the neutrosophic overlap function.  

In recent years, there have been many extensions of overlap functions. However, due to the 
limitations of existing definitions in addressing practical issues by using intuitionistic fuzzy 
information, scholars have proposed IFO. In the preceding paragraphs, the representable 
neutrosophic overlap function is proposed and further the below propositions propose a method to 
construct new representable neutrosophic overlap function (grouping function) with IFO 
(intuitionistic fuzzy grouping function). 

Proposition 3.1 Where m= (m1, m3), n= (n1, n3), m, n L. O is an IFO while satisfying O(m, n)= (O(m1, 
n1), G2(m3, n3)), with O being an overlap function on [0, 1], G2 being a grouping function on [0, 1]. 
Suppose G1 is a grouping function on [0, 1] satisfying 

( ) ( ) ( )   O s t G s t G s t1 1 1 2 2 2 3 30 , , , 3 . 
Then O(s, t)= (O(s1, t1), G1(s2, t2), G2(s3, t3)) is called the representable neutrosophic overlap function, 
s, t D. 
Proof. First, we can get O(m, n)= (O(m1, n1), G2(m3, n3)) which is an IFO, and then we add another 
grouping function G1, satisfying 0  O(s1, t1)+ G1(s2, t2)+ G2(s3, t3)  3.  

s, t, v D in which s= (s1, s2, s3), t and v are analogous to s. 
(NO1) Since O(s1, t1)= O(t1, s1), G2(s3, t3)= G2(t3, s3), G1(s2, t2)= G1(s2, t2), then O(s, t)= O(t, s), thus it 

shown that O fulfils exchangeability. 
(NO2) Let t 1 v, then O(s1, t1) O(s1, v1), G2(s3, t3) G2(s3, v3), G1(s2, t2) G1(s2, v2). Therefore,O(s, t) 

1 O(s, v). 
(NO3) O(0D*, t)= (O(0, t1), G1(1, t2), G2(1, t3))= (0, 1, 1)= 0D*, and O(s, 0D*)= (O(s1, 0), G1(s2, 1), G2(s3, 

1))=(0, 1, 1)= 0D*. 
(NO4) O(1D*, 1D*)= (O(1, 1), G1(0, 0), G2(0, 0))= (1, 0, 0)= 1D*. 
(NO5) Firstly, we prove left continuous. That is, prove that this equation O(s, ˅iIti)= ˅iIO(s, ti) 

holds. Because the overlap function O and the grouping functions G2, G1 are continuous, O(s1, 
˅iIti)= ˅iIO(s1, ti), G2(s3, ˅iIti)= ˅iIG2(s3, ti) and G1(s2, ˅iIti)= ˅iIG1(s2, ti) is holding. 

So we can get  
( ) ( ( ) ( ) ( ))

( ( ) ( ) ( ))

( )

   

  



    

   

 

O

O

i i i i i i i i

i i i i i i

i i

s t O s t G s t G s t
O s t G s t G s t

s t

I 1 I 1 2 I 2 3 I

I 1 I 1 2 I 2 3

I

, , , , , ,
, , , , ,

,
 

In this way, show that O is left continuous. 
Likewise, O(s, ˄iIti)= ˄iIO(s, ti) is simple to prove, state clearly that O is right continuous. To 

sum up, O is shown to be the neutrosophic overlap function. 
It is simple to show that satisfies O(s, t)= (O(s1, t1), G1(s2, t2), G2(s3, t3)), so O is a representable 

neutrosophic overlap function. 

Proposition 3.2 Where m= (m1, m3), n= (n1, n3), m, n L. G is an intuitionistic fuzzy grouping 
function, while satisfying the fact that G(m, n)= (G(m1, n1), O2(m3, n3)), with G being a grouping 
function on [0, 1], O2 being an overlap function on [0, 1]. Suppose O1 is an overlap function on [0, 1] 
satisfying,  

1 2( ) ( ) ( )   G s t O s t O s t1 1 2 2 3 30 , , , 3 . 
Then G(s, t)= (G(s1, t1), O1(s2, t2), O2(s3, t3)) is a representable neutrosophic grouping function, s, t 

D. 
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Proof. This procedure for proving analogy Proposition 3.1. 

The dual relation between triangular norm and triangular conorm in relation to fuzzy negation 
can be characterized by De Morgan triple, which is a proper expression for the relationship between 
triangular norm, triangular conorm and fuzzy negation [18]. There are also corresponding studies 
on NS. Based on the close connection between triangular norm and overlap function, one can 
naturally consider De Morgan neutrosophic triple about neutrosophic overlap function, 
neutrosophic grouping function and neutrosophic negation. First, neutrosophic negation as an 
extension of fuzzy negation can be denoted by the method below. 

Definition 3.7 ([18]) A neutrosophic negaton is a map N: D→D that fulfils prerequisites below: 
(a) N(t) 1 N(s), s, t D such as t 1 s; 

(b) N(0D*)= 1D*; 
(c) N(1D*)= 0D*. 

N is referred to as the involutive neutrosophic negaton when and only when that fulfils 
N(N(s))= s, s D. 

An involutive neutrosophic negaton Ng: D→D satisfies the following, where s= (s1, s2, s3), s 

D, 
Ng(s1, s2, s3)= (s3, 1-s2, s1). 

Further, we define such Ng as the standard neutrosophic negaton. 

Definition 3.8 O, G and N are a neutrosophic overlap function, a neutrosophic grouping function, 
and a neutrosophic negation, respectively. 

For this triple (O, N, G) if the conditions below holding true, s, t D, 
N(O(s, t))= G(N(s), N(t)); 
N(G(s, t))=O(N(s), N(t)). 

Then such the triple is referred to as De Morgan neutrosophic triple. In addition, O and G have a 
dual relationship in relation to N. 

Theorem 3.3 Suppose neutrosophic negaton N is involutory, that it fulfils N(N(s))= s, s D.  
(a) Assume G is the neutrosophic grouping function, O is expressed in the following form, s, t 
D, 

O(s, t)=N(G(N(s), N(t))). 
Then O is the neutrosophic overlap function. Moreover, (O, N, G) is De Morgan neutrosophic triple. 
(b) Assume O is the neutrosophic overlap function, G is expressed in the following form, s, t D, 

G(s, t)=N(O(N(s), N(t))). 
Then G is the neutrosophic grouping function. Moreover, (O, N, G) is De Morgan neutrosophic 
triple. 
Proof. (a) Suppose N, G are the involutory neutrosophic negaton and the neutrosophic grouping 
function, respectively. s, t, v D in which s= (s1, s2, s3), t and v are analogous to s. 

(NO1) It is pretty simple to justify that O(s, t)=N(G(N(s), N(t))) =N(G(N(t), N(s)))= O(t, s), O 
fulfils exchangeability. 

(NO2) Let t 1 v, O(s, t)=N(G(N(s), N(t))), O(s, v)=N(G(N(s), N(v))), because N is non-increasing, 
then N(t) 1 N(v). Moreover G(s, t) 1 G(s, v) and when t 1 v, then G(N(s), N(t)) 1 G(N(s), N(v)). 
Hence N(G(N(s), N(t))) 1 N(G(N(s), N(v))), then O(s, t) 1 O(s, v). 

(NO3) O(0D*, t)= N(G(N(0D*), N(t)))=N(G(1D*, N(t)))=N(1D*)= 0D*, similarly O(s, 0D*)= N(G(N(s), 
N(0D*)))= 0D*. 

(NO4) O(1D*, 1D*)=N(G(N(1D*), N(1D*)))= N(G(0D*, 0D*))= N(0D*)= 1D*. 
(NO5) Firstly, we prove left continuous. That is, prove that this equation O(s, ˅iIti)= ˅iIO(s, ti) 

holds. As a result of O(s, ˅iIti)= N(G(N(s), N(˅iIti)))= N(G(N(s), ˄iIN(ti)))= N(˄iIG(N(s), N(ti))) = 
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˅iIN(G(N(s), N(ti))) = ˅iIO(s, ti). Then we could get O(s, ˅iIti)= ˅iIO(s, ti). In this way, show that 
O is left continuous. 

Likewise, O(s, ˄iIti)= ˄iIO(s, ti) is simple to prove, state clearly that O is right continuous. To 
sum up, O(s, t) is shown to be the neutrosophic overlap function. 

Moreover, (O, N, G) is the De Morgan neutrosophic triple. 
(b) Likewise, suppose O is the neutrosophic overlap function and that G can be shown to be the 

neutrosophic grouping function, (O, N, G) would be the De Morgan neutrosophic triple. 

Example 3.6 The following functions are the neutrosophic overlap(grouping) functions, which are 
dual in relation to Ng, s, t D, 
(1) ( ) ( ( ) ( ) ( ))s t O s t G s t G s tmM mM 1 1 mM 2 2 mM 3 3, , , , , ,O and ( ) ( ( ) ( ) ( ))s t G s t O s t O s tmM mM 1 1 mM 2 2 mM 3 3, , , , , ,G ; 
In fact, OmM(N(s), N(t))= OmM((s3, 1-s2, s1), (t3, 1-t2, t1))= (OmM(s3, t3), GmM(1-s2, 1-t2), GmM(s1, t1)), then 
N(OmM(N(s), N(t)))= N(OmM(s3, t3), GmM(1-s2, 1-t2), GmM(s1, t1))= (GmM(s1, t1), 1-GmM(1-s2, 1-t2), OmM(s3, 
t3))= (GmM(s1, t1), OmM(s2, t2), OmM(s3, t3))= GmM(s, t). Thus, OmM and GmM are dual with respect to Ng. 
(2) ( ) ( ( ) ( ) ( ))p p p ps t O s t G s t G s t1 1 2 2 3 3, , , , , ,O and ( ) ( ( ) ( ) ( ))p p p ps t G s t O s t O s t1 1 2 2 3 3, , , , , ,G ;

 (3) ( ) ( ( ) ( ) ( ))s t O s t G s t G s tDB DB 1 1 DB 2 2 DB 3 3, , , , , ,O and ( ) ( ( ) ( ) ( ))s t G s t O s t O s tDB DB 1 1 DB 2 2 DB 3 3, , , , , ,G ; 
(4) ( ) ( ( ) ( ) ( ))s t O s t G s t G s tmin min 1 1 min 2 2 min 3 3, , , , , ,O and ( ) ( ( ) ( ) ( ))s t G s t O s t O s tmin min 1 1 min 2 2 min 3 3, , , , , ,G ; 
(5) ( ) ( ( ) ( ) ( )) p ps t O s t G s t G s tDB 1 1 2 2 3 3, , , , , ,O and ( ) ( ( ) ( ) ( )) p ps t G s t O s t O s t1 1 2 2 DB 3 3, , , , , ,G . 

We give the following theorem for non-representable neutrosophic overlap function. 

Theorem 3.4 Let O be a map on D below, s, t D, 

* * *

* *( )

( ) .

s  


  






D D D

D D

t
s t s t

s t s t s t1 1 3 3 3 3

0 , if 0 or 0 ,
, 1 , if 1 ,

, , , otherwise
O

 

Then O is a non-representable neutrosophic overlap function. 
Proof. The first step is to verify that O is the neutrosophic overlap function. s, t, v, u D in which 
s= (s1, s2, s3), t, u and v are analogous to s. 

(NO1) The proof that O fulfils exchangeability is very straightforward. 
(NO2) Let t 1 v. The obvious one is O(s, t) 1 O(s, v). 
(NO3) O(0D*, t)= O(s, 0D*)= (0, 1, 1)= 0D*. 
(NO4) O(1D*, 1D*)= (1, 0, 0)= 1D*. 
(NO5) Firstly, we prove left continuous. That is, prove that this equation O(s, ˅iIti)= ˅iIO(s, ti) 

holds. As a result of O(s, ˅iIti)= (s1*max(ti), s3*max(ti), s3*max(ti)); ˅iIO(s, ti)= (s1*t1, s3*t1, s3*t1)˅ (s1*t2, 
s3*t3, s3*t3)˅ (s1*t3, s3*t3, s3*t3)= (s1*max(ti), s3*max(ti), s3*max(ti)). We can get O(s, ˅iIti)= ˅iIO(s, ti). 
Therefore, it is show that O fulfils left continuity. 

Likewise, O(s, ˄iIti)= ˄iIO(s, ti) is simple to prove, state clearly that O is right continuous. To 
sum up, O(s, t) is shown to be the neutrosophic overlap function. 

And then, verify that for the representable neutrosophic overlap function O whether there has 
the overlap function O and grouping functions G1, G2 on [0, 1] fulfilling the form O= (O, G1, G2). 

Have s= (0.3, 0.5, 0.6), u= (0.3, 0.5, 0.2) and t= (0.4, 0.5, 0.8) respectively. From O(s, t)= (0.12, 0.48, 
0.48) and O(u, t)= (0.12, 0.16, 0.16). We get G1(s2, t2)= 0.48 and G1(u2, t2)= 0.16, so G1(u2, t2)≠ G1(s2, t2). 
Thus, G1 is not independent from s3, which suggests that O is non-representable. 

In addition, the neutrosophic grouping function G is the dual of O in relation to the standard 
neutrosophic negaton Ng, defined as below, s, t D, 
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* *

* * *( )

( ( )( )( )( )) .

 


  
         


 

D D

D D D

s t
s t s t

s t s t s t1 1 3 3 3 3

0 , if 0 ,
, 1 , if 1 or 1 ,

1 1 1 ),1 (1 1 ),1 (1 1 , otherwise
G  

Then G is a non-representable neutrosophic grouping function. 

4. NRI derived from neutrosophic overlap function  

This section would bring in the concept of NRI on D and research fundamental properties of 
NRI. First, the notion of neutrosophic implication is introduced on D. 

Definition 4.1 ([18]) The map I: (D)2→D is known as the neutrosophic implication when it fulfils 
the prerequisites below, s, u, t, v  D: 
(a) I is non-increasing for the first variable component (in relation to the order relation 1), which 
means that when s 1 u, there is I(s, t) 1 I(u, t); 
(b) I is non-decreasing for the second variable component (in relation to the order relation 1), 
which means that when t 1 v, there is I(s, t) 1 I(s, v); 
(c) I(0D*, 0D*)= 1D*; 
(d) I(1D*, 1D*)= 1D*; 
(e) I(1D*, 0D*)= 0D*. 

Definition 4.2 Suppose I: (D)2→D is a binary map. A neutrosophic overlap function O exists which 
enables the following condition to hold, s, t, h D, 

*
1( ) { | ( ) }  s t h h D s h t, sup , ,I O . 

Thus such I: (D)2→D is referred to as the NRI. 
When I is a NRI derived from a neutrosophic overlap function O, it is written as IO. 
Additionally, a neutrosophic overlap function O fulfils the residual principle, s, t, h D: 

h 1 IO(s, t) iff O(s, h) 1 t. 

Example 4.1 The functions below are NRIs derived from neutrosophic overlap functions in Example 
3.1, s, t D, 

(1) 

( )

( { } { })
( ) ( )

( { })
( )

( {

( )

  

  
      

   

 
    

 



 

 

 

s t s t s t

t tt t s t s t s t
s s s s

t t s t s t s t
s s

s t
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3 32 2
1 1 2 2 3 32 2

2 2 3 3

3 3
1 1 2 2 3 32

3 3

1,0,0 , if ,  and ,

1 11 11,max 1 ,1 ,max 1 ,1 , if ,  and ,
1 1 1 1

1 11,0,max 1 ,1 , if ,  and
1 1

1,max 1

,OI

} })
( )

( { } { } { })
( ) ( )

( { } )

 
    

 

  
      

   

  

 





t t s t s t s t
s s

t tt t t t s t s t s t
s s s s s s

t t s t s t s
s s

2 2
1 1 2 2 3 32

2 2

3 31 1 2 2
1 1 2 2 3 32 2 2

1 1 2 2 3 3

1 1
1 1 2 2 32

1 1

1 1,1 ,0 , if ,  and ,
1 1

1 11 1min , ,max 1 ,1 ,max 1 ,1 , if ,  and ,
1 1 1 1

min , ,0,0 , if , and 

( { } { } )
( )

( { } { }) .
( )





















        

  

    
 





t

t t t t s t s t s t
s s s s

t tt t s t s t s t
s s s s

3

1 1 2 2
1 1 2 2 3 32 2

1 1 2 2

3 31 1
1 1 2 2 3 32 2

1 1 3 3

,

1 1min , ,max 1 ,1 ,0 , if ,  and ,
1 1

1 1min , ,0,max 1 ,1 , if ,  and 
1 1
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(2) 

( )

( 0 0) 1 1

( 0) 1 1

( 0 )
( )
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1
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1

1
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1
1 1 .
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Theorem 4.1 Suppose O is the neutrosophic overlap function on D, s, t, h D: 
*

1( ) { | ( ) }  s t h h D s h t, sup , ,OI O . 
Thus, IO is a neutrosophic implication. 
Proof. s, u, t, h, v D with s= (s1, s2, s3), t, h, u and v are analogous to s.  

(a) Let s1 u and since O is non-decreasing, {h|h D, O(s, h) 1 t} 1 {h|h D, O(u, h) 1 t} then 
sup{h|h D, h 1 IO(s, t)}1 sup{h|h D, h 1 IO(u, t)}. Thus IO(s, t) 1 IO(u, t). In other words, the first 
variable of IO regarding 1 is non-increasing. 

(b) Let t1 v and since O is non-decreasing, {h|h D, O(s, h)1 t} 1 {h|h D, O(s, h) 1 v } then 
sup{h|h D, h 1 IO(s, t)} 1 sup{h|h D, h1 IO(s, v)}. Thus IO(s, t) 1 IO(s, v). In other words, the 
second variable of IO regarding 1 is non-decreasing. 

(c) IO(0D*, 0D*)= sup{h|h D,O(0D*, h) 1 0D*} = 1D*; 
(d) IO(1D*, 1D*)= sup{h|h D,O(1D*, h) 1 1D*}= sup{h|h D, h 1 1D*} = 1D*;  
(e) IO(1D*, 0D*)= sup{h|h D, O(1D*, h) 1 0D*}= sup{h|h D, h 1 0D*} = 0D*. 

The NRI has the following important properties. 

Theorem 4.2 Assume that IO is NRI, O is neutrosophic overlap function on D. s, t, h D, the 
follows properties are valid, 
(1) IO(0D*, t)= 1D* ; 
(2) IO(s, 1D*)= 1D*; 
(3) IO(s, s)= 1D*; 
(4) IO(1D*, t)= t; 
(5) IO(s, t) 1 t; 
(6) IO(s, t) = 1D* iff s 1 t; 
(7) s 1 IO(t, h) iff t 1 IO(s, h); 
(8) s 1 IO(t, IO(s, t)). 
Proof. s, t, h D in which s= (s1, s2, s3), t and h are analogous to s. 

(1) IO(0D*, t)= 1D* is the same thing as IO(0D*, t)= sup{h|h D,O(0D*, h)1 t}= 1D*, then h= 1D* for 
O(0D*, h) 1 t. Then this formula is proved. 

The proofs of (2)–(4) is similar to that of (1). 
(5) I is non-increasing for the first variable component (in relation to the order relation 1), 

thenIO(s, t) 1 IO(1D*, t) = t. 
(6) IO(s, t)= 1D* iff s 1 t. Let s 1 t, O(1D*, s) 1 t, then IO(s, t)= 1D*. In contrast, let IO(s, t)= 1D*,thus 

O(1D*, s) 1 t, hence s 1 t. 
(7) s 1 IO(t, h) iff t1 IO(s, h). Since s 1 IO(t, h),O(t, s) 1 h. Thus, t 1 IO(s, h). Likewise, s 1 IO(t, h) 

can be proved from t 1 IO(s, h). 
(8) s 1 IO(t, IO(s, t)). Since O(t, s) 1 O(s, t), then s 1 IO(t, IO(s, t)). 

Example 4.2 These concrete cases about NRI deduced from neutrosophic overlap function as shown 
in Example 4.1 are given. And it is readily proved that NRI deduced from neutrosophic overlap 
functions satisfy the properties characterised by Theorem 4.2. 

Furthermore, for the non-representable neutrosophic overlap function, using the neutrosophic 
overlap function got from Theorem 3.4 as an example, s, t D, 

* *

( ) ( [0 ] max{ })

( [0 ] max{ })


    
 






   





D D D D
s t s t

t ts t s t
s s

t tt s t
s s s
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Then it follows that IO(s, t) is a neutrosophic implication, while the properties from Theorem 
4.2 is satisfied. 

5. Conclusions  

As an important part of NS theory, neutrosophic logic plays a significant part in it. 
Neutrosophic overlap function, neutrosophic grouping function and neutrosophic implication 
which are crucial neutrosophic logic operators. For the first kind of inclusion relationship, the 
definitions of neutrosophic overlap function (neutrosophic grouping function) on (D; 1) are 
defined and related examples are given. At the same time, new definitions of representable and 
non-representable neutrosophic overlap function are proposed. In the next place, based on the close 
relationship between overlap function and triangular norm, a new description of neutrosophic 
negation is offered through analogy research, then the dual relationship between neutrosophic 
overlap function and neutrosophic grouping function on neutrosophic negation is described. 
Moreover, we show that definition of neutrosophic implication is given based on (D; 1) and the 
basic properties of NRI are studied. Finally, the result that NRI induced by neutrosophic overlap 
function must be neutrosophic implication is proved. Based on these results and some new results 
[33-44], we consider applying them to generalized neutrosophic overlap function and neutrosophic 
inference systems of the future. 
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