Neutrosophic Pseudo-t-Norm and Its Derived Neutrosophic Residual Implication

Hongru Bu ${ }^{1}$, Qingqing Hu ${ }^{2}$ and Xiaohong Zhang ${ }^{\text {3,* }}$
1 School of Mathematics and Data Science, Shaanxi University of Science \& Technology, Xi’an 710021, China; 221711026@sust.edu.cn
2 School of Electrical and Control Engineering, Shaanxi University of Science \& Technology, Xi’an 710021, China; bs1906001@sust.edu.cn
3 School of Mathematics and Data Science, Shaanxi University of Science and Technology, Xi'an 710021, China; zhangxiaohong@sust.edu.cn
* Correspondence: zhangxiaohong@sust.edu.cn; Tel.: 029-86168320

Abstract

First of all, on the basis of complete lattice, the concept of neutrosophic pseudo-t-norm (NPT) is given. Definitions and examples of representable neutrosophic pseudo-t-norms (RNPTs) are given, while unrepresentable neutrosophic pseudo-t-norms (UNPTs) is also given. Secondly, De Morgan neutrosophic triples (DMNTs) consists of three operators: NPTs, neutrosophic negators (NNs) and neutrosophic pseudo-s-norms (NPSs), where NPTs and NPSs are dual about NNs. Again, we study the neutrosophic residual implications (NRIs) of NPTs, as well as their underlying properties. Finally, we give a method to get NPTs from neutrosophic implications (NIs) and construct non-commutative residuated lattices (NCRLs) based on NRIs and NPTs.

Keywords: Neutrosophic set; Neutrosophic pseudo-t-norm; Neutrosophic residual implication; Non-commutative residuated lattices

1. Introduction

From the perspective of philosophy, Smarandache introduced neutrosophic sets (NSs). NSs is a expansion of fuzzy sets (FSs), and has universality [1]. Although NSs has expanded the expression of uncertain information, there are many inconveniences in practical application. From a scientific standpoint, so as to solve more practical problems, single valued neutrosophic sets (SVNSs) was put forward by Wang [2]. Some multi-attribute decision problems are solved by applying SVNSs. "SVNSs" is simply denoted as "NSs" in this article.

The t-norms, s-norms, negators, pseudo-t-norms, pseudo-s-norms and implications operators are fundamental tools in FS theory. Pseudo-t-norm and pseudo-s-norm was proposed in [3], followed by their residual implication were put forward by Wang in [4]. Pseudo-t-norm has many applications, such as resolution of finite fuzzy relation equations, linear optimization problems of mixed fuzzy relation inequalities and so on [5-10].

NSs has a lot of important neutrosophic logical operators, such as: NPTs, NPSs, NNs, NIs, NRIs and so on. In past few years, Smarandache [11] introduced n-conorm and n-norm in neutrosophic logic. Zhang et al. [12] introduced a new type of relation of inclusion for NSs. A new kind of residuated lattice obtained through neutrosophic t-norms and its derived NRIs was introduced by Hu and Zhang [13]. On the basis of neutrosophic t-norms, fuzzy reasoning triple I method was studied by Luo et al. [14]. Therefore, it is very meaningful to study the NRIs of NPTs.

[^0]The basic framework of this paper: Section 2 presents the basics knowledge that will be useful for writing this paper. We defined NPTs, NPSs, NNs and so on in Section 3. Moreover, we also provide some useful typical examples and theorems. In Section 4, the definitions of NRIs generated from NPTs are obtained, and their basic properties are discussed in depth. In addition, this paper provides a new method to generate NPTs from NIs, and at the same time prove that system ($D^{*} ; \wedge 1$, $\left.\vee 1, \otimes, \rightarrow, \leadsto, 0_{D^{*}}, 1_{D^{*}}\right)$ is a NCRL. Section 5 concludes the whole content of this paper.

2. Preliminaries

Definition 2.1 ([3]) A mapping $P T:[0,1]^{2} \rightarrow[0,1]$ be a pseudo-t-norm iff, $\forall m, n, r \in[0,1]$:
(PT1) $P T(m, P T(n, r))=P T(n, P T(m, r))$;
(PT2) if $m \leq n$, then $P T(m, r) \leq P T(n, r), P T(r, m) \leq P T(r, n)$;
(PT3) $P T(1, m)=m, P T(m, 1)=m$.
Definition 2.2 ([3]) A mapping $P S:[0,1] \times[0,1] \rightarrow[0,1]$ be a pseudo-s-norm iff, $\forall m, n, r \in[0,1]$:
(PS1) $P S(m, P S(n, r))=P S(n, P S(m, r))$;
(PS2) if $m \leq n$, then $P S(m, r) \leq P S(n, r), P S(r, m) \leq P S(r, n)$;
(PS3) $P S(0, m)=m, P S(m, 0)=m$.
Definition 2.3 ([15]) An intuitionistic fuzzy set (IFS) W in nonempty set M is depicted through two mappings: $\mu_{W}(m)$ and $v_{W}(m): M \rightarrow[0,1] . W$ is expressed as, when $\forall m \in M$,

$$
W=\left\{\left(m, \mu_{W}(m), v_{W}(m)\right) \mid m \in M\right\},
$$

satisfy $0 \leq \mu_{W}(m)+v_{W}(m) \leq 1$, where $\mu_{W}(m)$ is affiliation function, $v_{W}(m)$ is non-affiliation function.
Definition 2.4 ([2]) Let the set M be nonempty. A SVNS W in M is depicted through $T w(m)$, $I w(m)$, and $F w(m)$, all of which are functions defined on [0, 1]. Then, W is expressed as, when $\forall m \in M$,

$$
W=\left\{\left\langle m, T_{W}(m), I_{W}(m), F_{W}(m)\right\rangle \mid m \in M\right\},
$$

satisfy $0 \leq T w(m)+\operatorname{Iw}(m)+F w(m) \leq 3$, where $T w(m)$ is the function of truth-affiliation, $\operatorname{Iw}(m)$ is the function of indeterminacy- affiliation, and $F_{W}(m)$ is the function of falsity- affiliation.

Proposition 2.5 ([13]) The first type of inclusion relationship is discussed in this article.
Definition $2.6([1,17,18])$ Let the set M be nonempty. Give two NSs W, N in M, where $W=\{\langle m$, $\left.\left.T w(m), I w(m), F_{w}(m)\right\rangle \mid m \in M\right\}, N=\left\{\left\langle m, T_{N}(m), I_{N}(m), F_{N}(m)\right\rangle \mid m \in M\right\}$. The algebraic operations of the first type of inclusion relation was given as shown below, $\forall m \in M$,
(1) $W \subseteq_{1} N \Leftrightarrow T_{\mathrm{w}}(m) \leq T_{\mathrm{N}}(m), I_{w}(m) \geq I_{\mathrm{N}}(m), F_{\mathrm{w}}(m) \geq F_{\mathrm{N}}(m)$;
(2) $W \cup_{1} N=\left\{\left\langle m, \max \left(T_{W}(m), T_{N}(m)\right), \min \left(I_{W}(m), I_{N}(m)\right), \min \left(F_{W}(m), F_{N}(m)\right)\right\rangle \mid m \in M\right\}$;
(3) $W \cap_{1} N=\left\{\left\langle m, \min \left(T_{w}(m), T_{N}(m)\right), \max \left(I_{w}(m), I_{N}(m)\right), \max \left(F_{W}(m), F_{N}(m)\right)\right\rangle \mid m \in M\right\}$;
(4) $W^{c}=\{\langle m, I w(m), 1-F w(m), T w(m)\rangle \mid m \in M\}$.

Proposition 2.7 ([13]) We consider that set D^{*} defined by,

$$
D^{*}=\left\{m=\left(m_{1}, m_{2}, m_{3}\right) \mid m_{1}, m_{2}, m_{3} \in[0,1]\right\}
$$

$\forall m, n \in D^{*}$, the order relation we define \leq_{1} on D^{*} is shown below:

$$
m \leq_{1} n \Leftrightarrow m_{1} \leq n_{1}, m_{2} \geq n_{2}, m_{3} \geq n_{3} .
$$

Proposition 2.8 ([13]) ($\left.D^{*} ; \leq_{1}\right)$ is a partially ordered set.

Proposition 2.9 ([13]) $\forall m, n \in D^{*}, m \wedge 1 n$ is called maximum lower bound of m, n, and expressed as $\inf (m, n) ; m \vee 1 n$ is called minimum upper bound of m, n, and expressed as $\sup (m, n)$. In other word, $\left(D^{*} ; \leq_{1}\right)$ is a lattice.

The content of definition of operators $\wedge 1$ and \vee_{1} refers to proposition 2 in [13].
Proposition $2.10([13])\left(D^{*} ; \leq 1\right)$ is a complete lattice.
The maximun of D^{*} is indicated as $1_{D^{*}}=(1,0,0)$, the minimun of D^{*} is indicated as $0_{D^{*}}=(0,1,1)$.
Definition 2.11 ([16]) A pseudo-t-norm $P T: L \times L \rightarrow L$ on $\left(L ; \leq_{L}\right)$ be undecreasing and associative mapping that meets $P T\left(1_{L}, m\right)=m=P T\left(m, 1_{L}\right)$, which $\forall m \in L$. A pseudo-s-norm $P S: L^{2} \rightarrow L$ on $\left(L_{;} \leq_{L}\right)$ be associative and undecreasing mapping that meets $P S\left(0_{L}, m\right)=m=P S\left(m, 0_{L}\right), \forall m \in L$.

Definition 2.12 ([13]) For every $m \in D^{*}$, we define a complement of m as follows:

$$
m^{c}=\left(m_{3}, 1-m_{2}, m_{1}\right) .
$$

Proposition 2.13 ([13]) The system $\left(D^{*} ; \wedge 1, \vee 1, c, 0 D^{*}, 1_{D^{*}}\right)$ is a De Morgan algebra.

3. NPTs On $\left(D^{*} ; \leq 1\right)$

Definition 3.1 A binary function $\boldsymbol{P T}: D^{*} \times D^{*} \rightarrow D^{*}$ is called NPT, $\forall m, n, u, v, r \in D^{*}$, if $\boldsymbol{P T}$ satisfies: (NPT1) $\boldsymbol{P T}(m, \boldsymbol{P T}(n, r))=\boldsymbol{P T}(n, \boldsymbol{P T}(m, r))$;
(NPT2) $\boldsymbol{P T}(m, n) \leq_{1} \boldsymbol{P T}(u, v)$ and $\boldsymbol{P T}(n, m) \leq_{1} \boldsymbol{P} \boldsymbol{T}(v, u)$, where $m \leq_{1} u, n \leq_{1} v$;
(NPT3) $\boldsymbol{P T}\left(1_{D^{*}}, m\right)=m, \boldsymbol{P} \boldsymbol{T}\left(m, 1_{D^{*}}\right)=m$.
Definition 3.2 A binary function PS: $D^{*} \times D^{*} \rightarrow D^{*}$ is called NPS, $\forall m, n, u, v, r \in D^{*}$, if $P S$ satisfies: (NPS1) PS $(m, \operatorname{PS}(n, r))=\operatorname{PS}(n, \operatorname{PS}(m, r))$;
(NPS2) $\operatorname{PS}(m, n) \leq_{1} \operatorname{PS}(u, v)$ and $\operatorname{PS}(n, m) \leq_{1} \operatorname{PS}(v, u)$, where $m \leq_{1} u, n \leq_{1} v$;
(NPS3) $\operatorname{PS}\left(0_{D^{*}}, m\right)=m, \operatorname{PS}\left(m, 0_{D^{*}}\right)=m$.
Example 3.3 ([3,19]) Table 1 below gives part pseudo-t-norms, and its derived residual implications.

Table 1. Eaxmple of part pseudo-t-norms

Pseudo-t-norms	Residual implications
$\begin{aligned} & P T_{1}(m, n)= \begin{cases}0 & \text { if } m \in\left[0, a_{1}\right], n \in\left[0, b_{1}\right], \\ \min (m, n) \text { otherwise },\end{cases} \\ & \text { where } 0<a_{1}<b_{1}<1 . \end{aligned}$	$\begin{aligned} & I_{1 L}(m, n)= \begin{cases}\max \left(a_{1}, n\right) & \text { if } m \leq b_{1}, m>n, \\ n & \text { if } m>b_{1}, m>n, \\ 1 & \text { if } m \leq n .\end{cases} \\ & I_{1 R}(m, n)= \begin{cases}b_{1} & \text { if } m \leq a_{1}, m>n, \\ n & \text { if } m>a_{1}, m>n, \\ 1 & \text { if } m \leq n .\end{cases} \end{aligned}$
$P T_{2}(m, n)= \begin{cases}\min (m, n) & \text { if } \sin \left(\frac{\pi}{2} m\right)+n>1, \\ 0 & \text { if } \sin \left(\frac{\pi}{2} m\right)+n \leq 1 .\end{cases}$	$\begin{aligned} & I_{2 L}(m, n)= \begin{cases}1 & \text { if } m \leq n, \\ \max \left\{n, \frac{2}{\pi} \arcsin (1-m)\right\} \text { if } m>n .\end{cases} \\ & I_{2 R}(m, n)= \begin{cases}1 & \text { if } m \leq n, \\ \max \left\{n, 1-\sin \left(\frac{\pi}{2} m\right)\right\} & \text { if } m>n .\end{cases} \end{aligned}$

$$
\begin{aligned}
& P T_{3}(m, n)= \begin{cases} \begin{cases}\min (m, n) & \text { if } m^{2}+n^{3}>1, \\
0 & \text { if } m^{2}+n^{3} \leq 1 .\end{cases} & I_{3 L}(m, n)= \begin{cases}1 & \text { if } m \leq n, \\
\max \left\{n, \sqrt{1-m^{3}}\right\} & \text { if } m>n .\end{cases} \\
P T_{4}(m, n)= \begin{cases}1 & \text { if } m \leq n, \\
\min (m, n) & \text { if } m+\sqrt{n}>1, \\
\max \left\{n, \sqrt[3]{1-m^{2}}\right\} & \text { if } m>n .\end{cases} & I_{4 L}(m, n)= \begin{cases}1 & \text { if } m \leq n, \\
\max \{n, 1-\sqrt{m}\} & \text { if } m>n .\end{cases} \\
0 & \text { if } m+\sqrt{n} \leq 1 .\end{cases} \\
& I_{4 R}(m, n)= \begin{cases}1 & \text { if } m \leq n, \\
\max \left\{n,(1-m)^{2}\right\} & \text { if } m>n .\end{cases}
\end{aligned}
$$

Example 3.4 Table 2 below gives part pseudo-s-norms, and its derived residual co-implications.
Table 2. Example of part pseudo-s-norms

Example 3.5 Suppose that $P T_{\mathrm{i}}(\mathrm{i}=1,2,3,4)$ are pseudo-t-norms as shown in Example 3.3 and $P S_{\mathrm{i}}$ $(\mathrm{i}=1,2,3,4)$ are pseudo-s-norms as shown in Example 3.4. Then, the binary function $\boldsymbol{P} \boldsymbol{T}_{\mathrm{i}}(\mathrm{i}=1,2,3,4,5,6)$ defined on D^{*} are NPTs as follows:
(1) $\boldsymbol{P} \boldsymbol{T}_{1}(m, n)=\left(P T_{1}\left(m_{1}, n_{1}\right), P S_{1}\left(m_{2}, n_{2}\right), P S_{1}\left(m_{3}, n_{3}\right)\right)$;
(2) $\boldsymbol{P T} \boldsymbol{T}_{2}(m, n)=\left(P T_{2}\left(m_{1}, n_{1}\right), P S_{2}\left(m_{2}, n_{2}\right), P S_{2}\left(m_{3}, n_{3}\right)\right)$;
(3) $\boldsymbol{P T} \boldsymbol{T}_{3}(m, n)=\left(P T_{3}\left(m_{1}, n_{1}\right), P S_{3}\left(m_{2}, n_{2}\right), P S_{3}\left(m_{3}, n_{3}\right)\right)$;
(4) $\boldsymbol{P T} \boldsymbol{T}_{4}(m, n)=\left(P T_{4}\left(m_{1}, n_{1}\right), P S_{4}\left(m_{2}, n_{2}\right), P S_{4}\left(m_{3}, n_{3}\right)\right)$;
(5) $\boldsymbol{P T} T_{5}(m, n)=\left(P T_{1}\left(m_{1}, n_{1}\right), P S_{2}\left(m_{2}, n_{2}\right), P S_{3}\left(m_{3}, n_{3}\right)\right)$;
(6) $\boldsymbol{P T} \boldsymbol{T}_{6}(m, n)=\left(P T_{1}\left(m_{1}, n_{1}\right), P S_{3}\left(m_{2}, n_{2}\right), P S_{3}\left(m_{3}, n_{3}\right)\right)$.

Example 3.6 Suppose that $\mathrm{PT}_{\mathrm{i}}(\mathrm{i}=1,2,3,4)$ are pseudo-t-norms as shown in Example 3.3 and PS_{i} ($\mathrm{i}=1,2,3,4$) are pseudo-s-norms as shown in Example 3.4. Then, the binary function $P S_{i}(\mathrm{i}=1,2,3,4,5,6)$ defined on D^{*} are NPSs as follows:
(1) $P S_{1}(m, n)=\left(P S_{1}\left(m_{1}, n_{1}\right), P T_{1}\left(m_{2}, n_{2}\right), P T_{1}\left(m_{3}, n_{3}\right)\right)$;
(2) $P S_{2}(m, n)=\left(P S_{2}\left(m_{1}, n_{1}\right), P T_{2}\left(m_{2}, n_{2}\right), P T_{2}\left(m_{3}, n_{3}\right)\right)$;
(3) $P S_{3}(m, n)=\left(P S_{3}\left(m_{1}, n_{1}\right), P T_{3}\left(m_{2}, n_{2}\right), P T_{3}\left(m_{3}, n_{3}\right)\right)$;
(4) $P S_{4}(m, n)=\left(P S_{4}\left(m_{1}, n_{1}\right), P T_{4}\left(m_{2}, n_{2}\right), P T_{4}\left(m_{3}, n_{3}\right)\right)$;
(5) $P S_{5}(m, n)=\left(P S_{1}\left(m_{1}, n_{1}\right), P T_{2}\left(m_{2}, n_{2}\right), P T_{3}\left(m_{3}, n_{3}\right)\right)$;
(6) $P S_{6}(m, n)=\left(P S_{1}\left(m_{1}, n_{1}\right), P T_{3}\left(m_{2}, n_{2}\right), P T_{3}\left(m_{3}, n_{3}\right)\right)$.

Theorem 3.7 Give a binary function $P T: D^{*} \times D^{*} \rightarrow D^{*}$, two pseudo-s-norms $P S_{i}(\mathrm{i}=1,2)$ and a pseudo-t-norm $P T$. Then, $\forall m, n \in D^{*}$,

$$
\boldsymbol{P T}(m, n)=\left(P T\left(m_{1}, n_{1}\right), P S_{1}\left(m_{2}, n_{2}\right), P S_{2}\left(m_{3}, n_{3}\right)\right)
$$

is a NPT.
Proof. $\forall m, u, n, v, r \in D^{*}$, have following:
(NPT1) According to item (PT1) of Definition 2.1 and item (PS1) of Definition 2.2, it is obvious that $\boldsymbol{P T}(m, \boldsymbol{P T}(n, r))=\boldsymbol{P T}\left(m,\left(P T\left(n_{1}, r_{1}\right), P S_{1}\left(n_{2}, r_{2}\right), P S_{2}\left(n_{3}, r_{3}\right)\right)\right)=\left(P T\left(m_{1}, P T\left(n_{1}, r_{1}\right)\right), P S_{1}\left(m_{2}, P S_{1}\left(n_{2}, r_{2}\right)\right)\right.$, $\left.P S_{2}\left(m_{3}, P S_{2}\left(n_{3}, r_{3}\right)\right)\right)=\left(P T\left(n_{1}, P T\left(m_{1}, r_{1}\right)\right), P S_{1}\left(n_{2}, P S_{1}\left(m_{2}, r_{2}\right)\right), P S_{2}\left(n_{3}, P S_{2}\left(m_{3}, r_{3}\right)\right)\right)=\boldsymbol{P T}(n, \boldsymbol{P T}(m, r))$;
(NPT2) If $m \leq_{1} u, n \leq 1 v$, then $P T\left(m_{1}, n_{1}\right) \leq P T\left(u_{1}, v_{1}\right), P S_{1}\left(m_{2}, n_{2}\right) \geq P S_{1}\left(u_{2}, v_{2}\right), P S_{2}\left(m_{3}, n_{3}\right) \geq P S_{2}\left(u_{3}\right.$, $\left.v_{3}\right)$. Therefore, $\boldsymbol{P T}(m, n) \leq_{1} \boldsymbol{P} \boldsymbol{T}(u, v)$. Likewise, we can also get $\boldsymbol{P T}(n, m) \leq_{1} \boldsymbol{P} \boldsymbol{T}(v, u)$.
(NPT3) $\boldsymbol{P T}\left(m, 1_{D^{*}}\right)=\left(P T\left(m_{1}, 1\right), P S_{1}\left(m_{2}, 0\right), P S_{2}\left(m_{3}, 0\right)\right)=\left(m_{1}, m_{2}, m_{3}\right)=m$. Similarly, $\boldsymbol{P T}\left(1_{D^{*}}, m\right)=m$. Thus, $\boldsymbol{P} \boldsymbol{T}(m, n)$ is a NPT.

Theorem 3.8 Give a binary function $P S: D^{*} \times D^{*} \rightarrow D^{*}$, two pseudo-t-norms $P T_{i}(i=1,2)$ and a pseudo-s-norm PS. Then,

$$
\operatorname{PS}(m, n)=\left(P S\left(m_{1}, n_{1}\right), P T_{1}\left(m_{2}, n_{2}\right), P T_{2}\left(m_{3}, n_{3}\right)\right)
$$

is a NPS, for arbitrary $m, n \in D^{*}$.
Theorem 3.7 provieds a idea for constructing NPT on D^{*} with pseudo-s-norm and pseudo-t-norm. However, the reverse is not able to find two pseudo-s-norms $P S_{\mathrm{i}}(\mathrm{i}=1,2)$ and a pseudo-t-norm $P T$ to make $P T=\left(P T, P S_{1}, P S_{2}\right)$.

In order to make a clear distinction between the two types of NPTs, so put forward a concept of RNPT.

Definition 3.9 If $\forall m, n \in D^{*}$, there exists two pseudo-s-norms $P S_{\mathrm{i}}(\mathrm{i}=1,2)$ and a pseudo-t-norm $P T$ such that $\boldsymbol{P T}$ holds with respect to the following equation:

$$
\boldsymbol{P T}(m, n)=\left(P T\left(m_{1}, n_{1}\right), P S_{1}\left(m_{2}, n_{2}\right), P S_{2}\left(m_{3}, n_{3}\right)\right) .
$$

Then $\boldsymbol{P T}$ is said to be representable.

Definition 3.10 If $\forall m, n \in D^{*}$, there exists pseudo-s-norm $P S$ and pseudo-t-norm $P T$ such that $P T$ holds with respect to the following equation:

$$
\boldsymbol{P T}(m, n)=\left(P T\left(m_{1}, n_{1}\right), P S\left(m_{2}, n_{2}\right), P S\left(m_{3}, n_{3}\right)\right) .
$$

Then $\boldsymbol{P T}$ is said to be standard representable.
These NPTs given in Example 3.5 are representable.
Definition 3.11 If $\forall m, n \in D^{*}$, there exists two pseudo-t-norms $P T_{\mathrm{i}}(\mathrm{i}=1,2)$ and a pseudo-s-norm $P S$ such that PS holds with respect to the following equation:

$$
\operatorname{PS}(m, n)=\left(P S\left(m_{1}, n_{1}\right), P T_{1}\left(m_{2}, n_{2}\right), P T_{2}\left(m_{3}, n_{3}\right)\right) .
$$

Then PS is said to be representable.
Definition 3.12 If $\forall m, n \in D^{*}$, there exists pseudo-s-norm $P S$ and pseudo-t-norm $P T$ such that $P S$ holds with respect to the following equation:

$$
\operatorname{PS}(m, n)=\left(P S\left(m_{1}, n_{1}\right), P T\left(m_{2}, n_{2}\right), P T\left(m_{3}, n_{3}\right)\right) .
$$

Then $P S$ is said to be standard representable.
These NPSs given in Example 3.6 are representable.
Propositions 3.13 and 3.14 below demonstrate a approach to construct new RNPTs (RNPSs) with intuitionistic fuzzy t-norms (IFTs) and intuitionistic fuzzy s-norms (IFSs).

Proposition $3.13 \forall x=\left(x_{1}, x_{3}\right) \in L, y=\left(y_{1}, y_{3}\right) \in L, T(x, y)=\left(t\left(x_{1}, y_{1}\right), s_{2}\left(x_{3}, y_{3}\right)\right)$ is a representable IFT, which t and s_{2} are t-norm and s-norm, respectively. If $\forall m, n \in D^{*}$, there is a pseudo-s-norm $p s_{1}$ that makes $0 \leq t\left(m_{1}, n_{1}\right)+p s_{1}\left(m_{2}, n_{2}\right)+s_{2}\left(m_{3}, n_{3}\right) \leq 3$ true, then $\boldsymbol{P T}(m, n)=\left(t\left(m_{1}, n_{1}\right), p s_{1}\left(m_{2}, n_{2}\right), s_{2}\left(m_{3}, n_{3}\right)\right)$ is a RNPT.

Proposition 3.14 $\forall x=\left(x_{1}, x_{3}\right) \in L, y=\left(y_{1}, y_{3}\right) \in L, S(x, y)=\left(s\left(x_{1}, y_{1}\right), t_{2}\left(x_{3}, y_{3}\right)\right)$ is a representable IFS, where s and t_{2} are s-norm and t-norm, respectively. If $\forall m, n \in D^{*}$, there is a pseudo-t-norm $p t_{1}$ that makes $0 \leq s\left(m_{1}, n_{1}\right)+p t_{1}\left(m_{2}, n_{2}\right)+t_{2}\left(m_{3}, n_{3}\right) \leq 3$ true, then $\operatorname{PS}(m, n)=\left(s\left(m_{1}, n_{1}\right), p t_{1}\left(m_{2}, n_{2}\right), t_{2}\left(m_{3}, n_{3}\right)\right)$ is a RNPS.

Example 3.15 ([20]) Table 3 below gives part t-norms, and its derived residual implications.
Table 3. Example of the part t-norms

t-norms	Residual implications
$T_{M}(m, n)=\min (m, n)$	$I_{G D}(m, n)= \begin{cases}1 & \text { if } m \leq n, \\ n & \text { if } m>n .\end{cases}$
$T_{P}(m, n)=m \cdot n$	$I_{G G}(m, n)= \begin{cases}1 & \text { if } m \leq n, \\ \frac{n}{m} & \text { if } m>n .\end{cases}$
$T_{L K}(m, n)=\max (m+n-1,0)$	$I_{L K}(m, n)=\min (1,1-m+n)$

Example 3.16 ([20]) Table 4 below gives part s-norms, and its derived residual co-implications.
Table 4. Example of the part s-norms
s-norms Residual co-implications
$\overline{\text { Hongru Bu, Qingqing Hu and Xiaohong Zhang, Neutrosophic Pseudo-t-Norm and Its Derived Neutrosophic Residual }}$ Implication

$$
\begin{array}{rlrl}
\hline S_{M}(m, n)=\max (m, n) & J_{G D}(m, n) & = \begin{cases}0 & \text { if } m \geq n, \\
n & \text { if } m<n .\end{cases} \\
S_{P}(m, n)=m+n-m \cdot n & J_{G G}(m, n)= \begin{cases}0 & \text { if } m \geq n, \\
\frac{n-m}{1-m} & \text { if } m<n .\end{cases} \\
S_{L K}(m, n)=\min (m+n, 1) & J_{L K}(m, n)=\max (0, n-m)
\end{array}
$$

Example 3.17 Let $P S_{i}(\mathrm{i}=1,2,4)$ are pseudo-s-norms as shown in Example 3.4, $T_{M}, T_{P}, T_{L K}$ are t-norms as shown in Example 3.15, and $S_{M}, S_{P}, S_{L K}$ are s-norms as shown in Example 3.16. Then, the binary function $P T_{i}(\mathrm{i}=7,8,9)$ constructed by IFTs defined on D^{*} are RNPTs as follows:
(1) $\boldsymbol{P T} T_{7}(m, n)=\left(T_{M}\left(m_{1}, n_{1}\right), P S_{4}\left(m_{2}, n_{2}\right), S_{L K}\left(m_{3}, n_{3}\right)\right)$;
(2) $\boldsymbol{P} \boldsymbol{T}_{8}(m, n)=\left(T_{P}\left(m_{1}, n_{1}\right), P S_{2}\left(m_{2}, n_{2}\right), S_{M}\left(m_{3}, n_{3}\right)\right)$;
(3) $\boldsymbol{P} \boldsymbol{T}_{9}(m, n)=\left(T_{L K}\left(m_{1}, n_{1}\right), P S_{1}\left(m_{2}, n_{2}\right), S_{P}\left(m_{3}, n_{3}\right)\right)$.

Example 3.18 Let $P T_{\mathrm{i}}(\mathrm{i}=1,2,4)$ are pseudo-t-norms as shown in Example 3.3, $T_{M}, T_{P}, T_{L K}$ are t-norms as shown in Example 3.15, and $S_{M}, S_{P}, S_{L K}$ are s-norms as shown in Example 3.16. Then, the binary function $P S_{i}(i=7,8,9)$ constructed by IFSs defined on D^{*} are RNPSs as follows:
(1) $P S_{7}(m, n)=\left(S_{M}\left(m_{1}, n_{1}\right), P T_{4}\left(m_{2}, n_{2}\right), T_{L K}\left(m_{3}, n_{3}\right)\right)$;
(2) $\operatorname{PS}_{8}(m, n)=\left(S_{P}\left(m_{1}, n_{1}\right), P T_{2}\left(m_{2}, n_{2}\right), T_{M}\left(m_{3}, n_{3}\right)\right)$;
(3) $\boldsymbol{P S}_{9}(m, n)=\left(S_{L K}\left(m_{1}, n_{1}\right), P T_{1}\left(m_{2}, n_{2}\right), T_{P}\left(m_{3}, n_{3}\right)\right)$.

Definition 3.19 ([13]) A mapping $N: D^{*} \rightarrow D^{*}$ be known as NN if satisfies, $\forall m, n \in D^{*}$:
(NN1) $m \leq_{1} n$ iff $\boldsymbol{N}(m) \geq_{1} \boldsymbol{N}(n)$;
(NN2) $N\left(1_{D^{*}}\right)=0 D^{*}$;
(NN3) $N\left(0 D^{*}\right)=1_{D^{*}}$.
If $N(N(m))=m$ holds with $\forall m \in D^{*}$, then N is said to be involutive NN .
The function $N s: D^{*} \rightarrow D^{*}$ defined by, $\forall\left(m_{1}, m_{2}, m_{3}\right) \in D^{*}$,

$$
N \mathrm{~s}\left(m_{1}, m_{2}, m_{3}\right)=\left(m_{3}, 1-m_{2}, m_{1}\right)
$$

is a involutive NN, which is also called standard NN. Meanwhile, $N(m)=\left(m_{2}, 1-m_{3}, m_{1}\right), N(m)=\left(m_{2}\right.$, $\left.m_{1}, m_{1}\right), N(m)=\left(m_{2}, 1-m_{2}, m_{1}\right)$ are NNs.

Definition 3.20 Assume that PT is a NPT, N is a NN and PS is a NPS. $\forall m, n \in D^{*}$, if the triple ($P T, N, P S$) satisfied the following conditions:

$$
\begin{aligned}
& \boldsymbol{N}(\boldsymbol{P S}(m, n))=\boldsymbol{P} \boldsymbol{T}(\boldsymbol{N}(m), \boldsymbol{N}(n)) . \\
& \mathbf{N}(\boldsymbol{P T}(m, n))=\boldsymbol{P S}(\boldsymbol{N}(m), \boldsymbol{N}(n)) ;
\end{aligned}
$$

Then, we call the triple $(P T, N, P S)$ is a DMNT.
Theorem 3.21 Suppose N is involutive. If exists a NPS PS, then such that PT be defined as

$$
\boldsymbol{P T}(m, n)=\boldsymbol{N}(\boldsymbol{P S}(\boldsymbol{N}(m), \boldsymbol{N}(n)))
$$

is NPT. Besides, $(P T, N, P S)$ is a DMNT.
Proof. According to known condition, there are as follows, $\forall m, u, n, v, r \in D^{*}$:
(NPT1)According to item (NPS1) of Definition 3.2, naturally there is $\boldsymbol{P T}(m, \boldsymbol{P T}(n, r))=\boldsymbol{P T}(m$, $N(\operatorname{PS}(N(n), N(r))))=N(\operatorname{PS}(N(m), N(N(\operatorname{PS}(N(n), N(r)))))=N(\operatorname{PS}(N(m), \operatorname{PS}(N(n), N(r))))=N(\operatorname{PS}(N(n)$, $\boldsymbol{P S}(\boldsymbol{N}(m), N(r))))=\boldsymbol{P T}(n, \boldsymbol{P T}(m, r))$.
(NPT2) If $m \leq_{1} u, n \leq 1 v$, so $N(m) \geq_{1} N(u), N(n) \geq_{1} N(v)$. From (NPS2) of Definition 3.2 and (NN1) of Definition 3.19, we get $P S(N(m), N(n)) \geq_{1} P S(N(u), N(v))$ and $P S(N(n), N(m)) \geq_{1} P S(N(v), N(u))$. Thus, $N(\operatorname{PS}(N(m), N(n))) \leq_{1} N(P S(N(u), N(v)))$ and $N(P S(N(n), N(m))) \leq_{1} N(P S(N(v), N(u)))$, that is, $\boldsymbol{P T}(m, n) \leq_{1} \boldsymbol{P T}(u, v)$ and $\boldsymbol{P T}(n, m) \leq_{1} \boldsymbol{P} \boldsymbol{T}(v, u)$.
(NPT3) $\boldsymbol{P T}\left(1_{D^{*}}, m\right)=N\left(\operatorname{PS}\left(N\left(1_{D^{*}}\right), N(m)\right)\right)=N\left(P S\left(0_{D^{*}}, N(m)\right)\right)=N(N(m))=m$. Similarly, PT($\left.m, 1_{D^{*}}\right)$ $=m$.

Therefore, the statement that $P T$ is NPT is proved.
Besides, (PT, N, PS) is a DMNT.
Theorem 3.22 Assume N is involutive. If exists a NPT $P T$, then such that $P S$ be defined as

$$
\operatorname{PS}(m, n)=\boldsymbol{N}(\boldsymbol{P T}(N(m), N(n)))
$$

being NPS. Moreover, ($\boldsymbol{P T}, \mathbf{N}, \boldsymbol{P S}$) is a DMNT.
Example 3.23 A few NPTs and NPSs are dual about N s.
(1) $\boldsymbol{P T} \boldsymbol{T}_{1}(m, n)=\left(P T_{1}\left(m_{1}, n_{1}\right), P S_{1}\left(m_{2}, n_{2}\right), P S_{1}\left(m_{3}, n 3\right)\right), P S_{1}(m, n)=\left(P S_{1}\left(m_{1}, n_{1}\right), P T_{1}\left(m_{2}, n_{2}\right), P T_{1}\left(m_{3}\right.\right.$, n3)).

Indeed, $\boldsymbol{P} \boldsymbol{T}_{1}(\boldsymbol{N s}(m), \boldsymbol{N s}(n))=\boldsymbol{P} \boldsymbol{T}_{1}\left(\left(m_{3}, 1-m_{2}, m_{1}\right),\left(n_{3}, 1-n_{2}, n_{1}\right)\right)=\left(P T_{1}\left(m_{3}, n_{3}\right), P S_{1}\left(1-m_{2}, 1-n_{2}\right), P S_{1}\left(m_{1}\right.\right.$, $\left.\left.n_{1}\right)\right)$, then $\boldsymbol{N s}\left(\boldsymbol{P} \boldsymbol{T}_{1}\left(\boldsymbol{N s}_{s}(m), \boldsymbol{N s}(n)\right)\right)=\left(P S_{1}\left(m_{1}, n_{1}\right), 1-P S_{1}\left(1-m_{2}, 1-n_{2}\right), P T_{1}\left(m_{3}, n_{3}\right)\right)=\left(P S_{1}\left(m_{1}, n_{1}\right), P T_{1}\left(m_{2}, n_{2}\right)\right.$, $\left.P T_{1}\left(m_{3}, n_{3}\right)\right)=P S_{1}(m, n)$.
(2) $\boldsymbol{P T} \boldsymbol{T}_{3}(m, n)=\left(P T_{3}\left(m_{1}, n_{1}\right), P S_{3}\left(m_{2}, n_{2}\right), P S_{3}\left(m_{3}, n_{3}\right)\right), P S_{3}(m, n)=\left(P S_{3}\left(m_{1}, n_{1}\right), P T_{3}\left(m_{2}, n_{2}\right), P T_{3}\left(m_{3}\right.\right.$, n3)).

The theorem about UNPT is given next:
Theorem 3.24 Let PT: $D^{*} \times D^{*} \rightarrow D^{*}$ being a function. $\forall m, n \in D^{*}$,

$$
\boldsymbol{P T}(m, n)= \begin{cases}m & n=1_{D^{* \prime}} \\ n & m=1_{D^{*}} \\ \left(\min \left(2 m_{1}, n_{1}\right), \max \left(1-2 m_{1}, 1-n_{1}\right), \max \left(m_{3}, n_{3}\right)\right) & \text { otherwise } .\end{cases}
$$

is a UNPT.
Proof. First, we show that $\boldsymbol{P T}$ is a NPT, $\forall m, u, n, v, r \in D^{*}$.
 $r))=\left(\min \left(2 m_{1}, \min \left(2 n_{1}, r_{1}\right)\right), \max \left(1-2 m_{1}, 1-\min \left(2 n_{1}, r_{1}\right)\right), \max \left(m_{3}, \max \left(n_{3}, r_{3}\right)\right)\right)=\left(\min \left(2 m_{1}, 2 n_{1}, r_{1}\right)\right.$, $\left.\max \left(1-2 m_{1}, 1-2 n_{1}, 1-r_{1}\right), \max \left(m_{3}, n_{3}, r_{3}\right)\right)=\left(\min \left(2 n_{1}, \min \left(2 m_{1}, r_{1}\right)\right), \max \left(1-2 n_{1}, 1-\min \left(2 m_{1}, r_{1}\right)\right), \max \left(n_{3}\right.\right.$, $\left.\left.\max \left(m_{3}, r_{3}\right)\right)\right)=\boldsymbol{P} \boldsymbol{T}(n, \boldsymbol{P} \boldsymbol{T}(m, r))$.
(NPT2) If $m=1_{D^{*}}$ or $n=1_{D^{*}}$, we can prove $P T$ is undecreasing in each variable. If $m \neq 1_{D^{*}}, n \neq 1_{D^{*}}$, at the same time satisfy $m \leq_{1} u, n \leq 1 v_{1}$, and $m_{1} \leq u_{1}, n_{1} \leq v_{1}, m_{3} \geq u_{3}, n_{3} \geq v_{3}$. Thus, $\min \left(2 m_{1}, n_{1}\right) \leq \min \left(2 u_{1}\right.$, $\left.v_{1}\right), \max \left(1-2 m_{1}, 1-n_{1}\right) \geq \max \left(1-2 u_{1}, 1-v_{1}\right), \max \left(m_{3}, n_{3}\right) \geq \max \left(u_{3}, v_{3}\right)$. That is, $\boldsymbol{P T}(m, n) \leq_{1} \boldsymbol{P T}(u, v)$. Likewise, we can also have $\boldsymbol{P T}(n, m) \leq_{1} \boldsymbol{P T}(v, u)$.
(NPT3) $\boldsymbol{P T}\left(m, 1_{D^{*}}\right)=m, \boldsymbol{P} \boldsymbol{T}\left(1_{D^{*}}, m\right)=m$. Therefore, $\boldsymbol{P T}$ is a NPT.
Second, assume NPT PT is representable, $m=\left(m_{1}, m_{2}, m_{3}\right) \in D^{*}, n=\left(n_{1}, n_{2}, n_{3}\right) \in D^{*}$, there are a pseudo-t-norm $P T$ and two pseudo-s-norms $P S_{i}(\mathrm{i}=1,2)$ such that $\boldsymbol{P T}(m, n)=\left(P T\left(m_{1}, n_{1}\right), P S_{1}\left(m_{2}, n_{2}\right)\right.$, $\left.P S_{2}\left(m_{3}, n 3\right)\right)$. Let $m=(0.2,0.5,0.4), u=(0.4,0.3,0.2), n=(0.5,0.7,0.6)$. From $\boldsymbol{P T}(m, n)=(0.4,0.6,0.6)$ and $\operatorname{PT}(u, n)=(0.5,0.5,0.6)$, we get $P S_{1}\left(m_{2}, n_{2}\right)=0.6$ and $P S_{1}\left(u_{2}, n_{2}\right)=0.5$, so $P S_{1}\left(m_{2}, n_{2}\right) \neq P S_{1}\left(u_{2}, n_{2}\right)$. Thus $P S_{1}(m, n)$ is not independent from m_{1}, that is to say $\boldsymbol{P T}$ is UNPT.

Moreover, $\forall m, n \in D^{*}$, the dual of NPT PT about standard NN Ns is NPS PS, which be defined as:

$$
\operatorname{PS}(m, n)= \begin{cases}m & n=0_{D^{* \prime}} \\ n & m=0_{D^{* \prime}} \\ \left(\max \left(m_{1}, n_{1}\right), \min \left(2 m_{3}, n_{3}\right), \min \left(2 m_{3}, n_{3}\right)\right) & \text { otherwise } .\end{cases}
$$

Then, $P S$ is unrepresentable.
Remark 3.25 On the one hand, suppose $\boldsymbol{P T}$ and $N \mathrm{~s}$ are UNPT and standard NN on D^{*}, respectively. The dual of $P T$ about N_{s} is $P S$. Then, we have that $P S$ is UNPS. On the other hand, let N be involutive NN, the dual NPT about N of UNPS is unrepresentable.

4. NRI Induced by NPT on D^{*}

Definition 4.1 ([13]) A NI is a mapping I: $D^{*} \times D^{*} \rightarrow D^{*}, \forall m, u, n, v \in D^{*}$, if it satisfies:
(NI1) $m \leq 1 u \Rightarrow \mathbf{I}(m, n) \geq_{1} \mathbf{I}(u, n)$;
(NI2) $n \leq_{1} v \Rightarrow \mathbf{I}(m, n) \leq_{1} \mathbf{I}(m, v)$;
(NI3) $I\left(1 D_{D^{*}}, 1 D^{*}\right)=I\left(0_{D^{*}}, 0_{D^{*}}\right)=1 D^{*}$;
(NI4) $I\left(1 D_{D^{*}}, 0_{D^{*}}\right)=0 D_{D^{*}}$.
Since NPT without commutativity, we can define left and right NRIs which satisfy the residual property induced by NPT.

Definition 4.2 Let $\boldsymbol{P T}$ be a NPT. Define two functions $\boldsymbol{I}^{(L)}, \boldsymbol{I}^{(R)}: D^{*} \times D^{*} \rightarrow D^{*}$,

$$
\begin{aligned}
& \boldsymbol{I}^{(L)}(m, n)=\sup \left\{k \mid k \in D^{*}, \boldsymbol{P} \boldsymbol{T}(k, m) \leq 1 n\right\} ; \\
& \boldsymbol{I}^{(R)}(m, n)=\sup \left\{k \mid k \in D^{*}, \boldsymbol{P} \boldsymbol{T}(m, k) \leq 1 n\right\} .
\end{aligned}
$$

Then, $\boldsymbol{I}^{(L)}\left(\boldsymbol{I}^{(R)}\right)$ is called left NRI (right NRI) induced by $\boldsymbol{P T}$.
We note that the two NRIs induced by $\boldsymbol{P T}$ as $\boldsymbol{I}_{\boldsymbol{P T} T^{(L)},} \boldsymbol{I r t}^{(R)}$.
Besides, Let $\boldsymbol{P} \boldsymbol{T}$ be a NPT, then $\forall m, n, k \in D^{*}, \boldsymbol{P} \boldsymbol{T}$ satisfies the residual criteria iff,

$$
\begin{aligned}
& \boldsymbol{P T}(k, m) \leq 1 n \text { iff } k \leq_{1} \operatorname{IrT}_{T^{(L)}(m, n) ;}^{\boldsymbol{P T}(m, k) \leq 1 n \text { iff } k \leq_{1} \boldsymbol{P T}^{(R)}(m, n) .} .
\end{aligned}
$$

Likewise, the concept of neutrosophic co-implications (NCIs) and related knowledge are also given as follows:

Definition 4.3 ([13]) A NCI is a binary function $\mathrm{J}:\left(D^{*}\right)^{2} \rightarrow D^{*}, \forall m, u, n, v \in D^{*}$, if it satisfies:
(NJ1) $m \leq 1 u \Rightarrow J(m, n) \geq_{1} J(u, n)$;
(NJ 2$) n \leq 1 v \Rightarrow J(m, n) \leq_{1} J(m, v)$;
(NJ3) $J\left(0_{D^{*}}, 0_{D^{*}}\right)=J\left(1_{D^{*}}, 1_{D^{*}}\right)=0 D^{*}$;
(NJ4) $J\left(0_{D^{*}}, 1_{D^{*}}\right)=1 D_{D^{*}}$.
Analogously, we can also define left and right neutrosophic residual co-implications (NRCIs) which satisfie the residual property induced by NPS.

Definition 4.4 Suppose that $P S$ is a NPS. Define two functions $\boldsymbol{J}^{(L)}, \boldsymbol{J}^{(R)}: D^{*} \times D^{*} \rightarrow D^{*}$,

$$
\begin{aligned}
& \boldsymbol{J}^{(L)}(m, n)=\inf \left\{k \mid k \in D^{*}, P S(k, m) \geq 1 n\right\} ; \\
& J^{(R)}(m, n)=\inf \left\{k \mid k \in D^{*}, \boldsymbol{P S}(m, k) \geq 1 n\right\} .
\end{aligned}
$$

Then, $\boldsymbol{J}^{(L)}\left(\boldsymbol{J}^{(R)}\right)$ is called left NRCI (right NRCI) induced by PS.
We remark that two NRCIs induced by $P S$ as $J P s s^{(L)}, J^{(R s}{ }^{(R)}$.
Let $\boldsymbol{P S}$ be a NPS, then $\forall m, n, k \in D^{*}, P S$ satisfies the residual criteria iff

$$
\boldsymbol{P S}(k, m) \geq_{1} n \text { iff } k \geq_{1} J_{P S}(L)(m, n) ;
$$

$$
P S(m, k) \geq_{1} n \text { iff } k \geq_{1} J_{P S}(R)(m, n)
$$

Through learning above definitions, we give the NRIs (NRCIs) of NPTs (NPSs) discussed in Section 3 as follows:

Example 4.5 Suppose that $I_{i L}(\mathrm{i}=1,2,3,4)$ and $I_{\mathrm{i} R}(\mathrm{i}=1,2,3,4)$ are left and right residual implications induced by pseudo-t-norms $P T_{\mathrm{i}}(\mathrm{i}=1,2,3,4)$ as shown in Example 3.3; $J_{\mathrm{iL}}(\mathrm{i}=1,2,3,4)$ and $J_{\mathrm{iR}}(\mathrm{i}=1,2,3,4)$ are left and right residual co-implications induced by pseudo-s-norms $P S_{i}(i=1,2,3,4)$ as shown in Example 3.4. Then, the binary functions $I_{P T(\mathrm{i})^{(L)}}(\mathrm{i}=1,2,3,4,5,6)$ and $I_{P T(i)^{(R)}}(\mathrm{i}=1,2,3,4,5,6)$ induced by RNPTs $P T_{\mathrm{i}}(\mathrm{i}=1,2,3,4,5,6)$ of Example 3.5 defined on D^{*} are left and right NRIs as follows:
(1) $\boldsymbol{I}_{P T_{1}}{ }^{(L)}(m, n)=\left(I_{1 L}\left(m_{1}, n_{1}\right), J_{1 L}\left(m_{2}, n_{2}\right), J_{1 L}\left(m_{3}, n_{3}\right)\right)$;

$$
\boldsymbol{I}_{P T_{1}}{ }^{(R)}(m, n)=\left(I_{1 R}\left(m_{1}, n_{1}\right), J_{1 R}\left(m_{2}, n_{2}\right), J_{1 R}\left(m_{3}, n_{3}\right)\right) ;
$$

(2) $\boldsymbol{I}_{P T_{2}}{ }^{(L)}(m, n)=\left(I_{2 L}\left(m_{1}, n_{1}\right), J_{2 L}\left(m_{2}, n_{2}\right), J_{2 L}\left(m_{3}, n_{3}\right)\right)$;
$\boldsymbol{I}_{P T_{2}}{ }^{(R)}(m, n)=\left(I_{2 R}\left(m_{1}, n_{1}\right), J_{2 R}\left(m_{2}, n_{2}\right), J_{2 R}\left(m_{3}, n_{3}\right)\right) ;$
(3) $\boldsymbol{I}_{P T_{3}}{ }^{(L)}(m, n)=\left(I_{3 L}\left(m_{1}, n_{1}\right), J_{3 L}\left(m_{2}, n_{2}\right), J_{3 L}\left(m_{3}, n_{3}\right)\right)$;
$\boldsymbol{I}_{P T_{3}}{ }^{(R)}(m, n)=\left(I_{3 R}\left(m_{1}, n_{1}\right), J_{3 R}\left(m_{2}, n_{2}\right), J_{3 R}\left(m_{3}, n_{3}\right)\right) ;$
(4) $\boldsymbol{I}_{\boldsymbol{P T}{ }_{4}}{ }^{(L)}(m, n)=\left(I_{4 L}\left(m_{1}, n_{1}\right), J_{4 L}\left(m_{2}, n_{2}\right), J_{4 L}\left(m_{3}, n_{3}\right)\right)$;
$\boldsymbol{I}_{P T_{4}}{ }^{(R)}(m, n)=\left(I_{4 R}\left(m_{1}, n_{1}\right), J_{4 R}\left(m_{2}, n_{2}\right), J_{4 R}\left(m_{3}, n_{3}\right)\right) ;$
(5) $\boldsymbol{I}_{P T_{5}}{ }^{(L)}(m, n)=\left(I_{1 L}\left(m_{1}, n_{1}\right), J_{2 L}\left(m_{2}, n_{2}\right) J_{3 L}\left(m_{3}, n_{3}\right)\right)$;
$\boldsymbol{I}_{P T_{5}}{ }^{(R)}(m, n)=\left(I_{1 R}\left(m_{1}, n_{1}\right), J_{2 R}\left(m_{2}, n_{2}\right), J_{3 R}\left(m_{3}, n_{3}\right)\right) ;$
(6) $\boldsymbol{I}_{P T_{6}}{ }^{(L)}(m, n)=\left(I_{1 L}\left(m_{1}, n_{1}\right), J_{3 L}\left(m_{2}, n_{2}\right) J_{3 L}\left(m_{3}, n_{3}\right)\right)$;
$\boldsymbol{I}_{P T_{6}}{ }^{(R)}(m, n)=\left(I_{1 R}\left(m_{1}, n_{1}\right), J_{3 R}\left(m_{2}, n_{2}\right), J_{3 R}\left(m_{3}, n_{3}\right)\right)$.
Example 4.6 Suppose that $I_{i L}(i=1,2,3,4)$ and $I_{i R}(i=1,2,3,4)$ are left and right residual implications induced by pseudo-t-norms $P T_{\mathrm{i}}(\mathrm{i}=1,2,3,4)$ as shown in Example 3.3; $J_{\mathrm{iL}}(\mathrm{i}=1,2,3,4)$ and $J_{\mathrm{iR}}(\mathrm{i}=1,2,3,4)$ are left and right residual co-implications induced by pseudo-s-norms $P S_{i}(\mathrm{i}=1,2,3,4)$ as shown in Example 3.4. Then, the binary functions $J_{P S(i)}{ }^{(L)}(\mathrm{i}=1,2,3,4,5,6)$ and $J_{P S(\mathrm{i})^{(R)}}(\mathrm{i}=1,2,3,4,5,6)$ induced by RNPSs $P S_{\mathrm{i}}(\mathrm{i}=1,2,3,4,5,6)$ of Example 3.6 defined on D^{*} are left and right NRCIs as follows:
(1) $J_{P S_{1}}{ }^{(L)}(m, n)=\left(J_{1 L}\left(m_{1}, n_{1}\right), I_{1 L}\left(m_{2}, n_{2}\right), I_{1 L}\left(m_{3}, n_{3}\right)\right)$;
$J_{P S_{1}}{ }^{(R)}(m, n)=\left(J_{1 R}\left(m_{1}, n_{1}\right), I_{1 R}\left(m_{2}, n_{2}\right), I_{1 R}\left(m_{3}, n_{3}\right)\right) ;$
(2) $J_{P S_{2}}{ }^{(L)}(m, n)=\left(J_{2 L}\left(m_{1}, n_{1}\right), I_{2 L}\left(m_{2}, n_{2}\right) I_{2 L}\left(m_{3}, n_{3}\right)\right)$;
$J_{P S_{2}}{ }^{(R)}(m, n)=\left(J_{2 R}\left(m_{1}, n_{1}\right), I_{2 R}\left(m_{2}, n_{2}\right), I_{2 R}\left(m_{3}, n_{3}\right)\right) ;$
(3)
$\boldsymbol{J}_{P S_{3}}{ }^{(L)}(m, n)=\left(J_{3 L}\left(m_{1}, n_{1}\right), I_{3 L}\left(m_{2}, n_{2}\right), I_{3 L}\left(m_{3}, n_{3}\right)\right) ;$
$J_{P S_{3}}{ }^{(R)}(m, n)=\left(J_{3 R}\left(m_{1}, n_{1}\right), I_{3 R}\left(m_{2}, n_{2}\right), I_{3 R}\left(m_{3}, n_{3}\right)\right) ;$
(4)
$J_{P S_{4}}{ }^{(L)}(m, n)=\left(J_{4 L}\left(m_{1}, n_{1}\right), I_{4 L}\left(m_{2}, n_{2}\right), I_{4 L}\left(m_{3}, n_{3}\right)\right) ;$
$J_{P S_{4}}{ }^{(R)}(m, n)=\left(J_{4 R}\left(m_{1}, n_{1}\right), I_{4 R}\left(m_{2}, n_{2}\right), I_{4 R}\left(m_{3}, n_{3}\right)\right) ;$

$$
\begin{equation*}
\left.J_{P S_{5}}{ }^{(L)}(m, n)=\left(J_{1 L}\left(m_{1}, n_{1}\right), I_{2 L} m_{2}, n_{2}\right), I_{3 L}\left(m_{3}, n_{3}\right)\right) ; \tag{5}
\end{equation*}
$$

$J_{P S_{5}}{ }^{(R)}(m, n)=\left(J_{1 R}\left(m_{1}, n_{1}\right), I_{2 R}\left(m_{2}, n_{2}\right), I_{3 R}\left(m_{3}, n_{3}\right)\right) ;$
(6) $J_{P S_{6}}{ }^{(L)}(m, n)=\left(J_{1 L}\left(m_{1}, n_{1}\right), I_{3 L}\left(m_{2}, n_{2}\right), I_{3 L}\left(m_{3}, n_{3}\right)\right)$;
$J_{P S_{6}}{ }^{(R)}(m, n)=\left(J_{1 R}\left(m_{1}, n_{1}\right), I_{3 R}\left(m_{2}, n_{2}\right), I_{3 R}\left(m_{3}, n_{3}\right)\right)$.

Because NPS PS are dual operator of NPT PT about Ns, so the NRIs induced by NPT and the NRCIs induced by NPS are dual. For Examples 3.5 and 3.6 given above, If $\boldsymbol{P S}$ and $\boldsymbol{P T}$ are dual, then the NRCIs $J_{P S}$ derived by PS is the dual operator of the NRIs $I_{P T}$ induced by PT.

The following we will show an important theorem which proves sufficient conditions that the residual operator derived by a NPT is always a NI.

Theorem 4.7 Assume $\boldsymbol{P T}$ be a NPT on D^{*}. Then, $\forall m, n \in D^{*}$,

$$
\begin{aligned}
& \boldsymbol{I P T}^{(L)}(m, n)=\sup \left\{k \mid k \in D^{*}, \boldsymbol{P} \boldsymbol{T}(k, m) \leq_{1} n\right\} ; \\
& \boldsymbol{I P T}^{(R)}(m, n)=\sup \left\{k \mid k \in D^{*}, \boldsymbol{P T}(m, k) \leq_{1} n\right\} .
\end{aligned}
$$

are NIs.
Proof. First give the proof that $\boldsymbol{I}_{P T^{(L)}}{ }^{(L)}$ a NI, $\forall m, u, n, v \in D^{*}$:
We get $\boldsymbol{I P T}_{\boldsymbol{P}}(L)\left(m, 1_{D^{*}}\right)=\sup \left\{k \mid k \in D^{*}, \boldsymbol{P T}(k, m) \leq 11_{D^{*}}\right\}=1_{D^{*}}$ by Definition 4.2. Thus $\boldsymbol{I}_{\boldsymbol{P} \boldsymbol{T}^{(L)}}\left(1_{D^{*}}, 1_{D^{*}}\right)=$ $1_{D^{*}}$. From (NPT2) in Definition 3.1, we get $\boldsymbol{I}_{\boldsymbol{P} T^{(L)}}\left(1_{D^{*}}, 0_{D^{*}}\right)=\sup \left\{k \mid k \in D^{*}, \boldsymbol{P} \boldsymbol{T}\left(k, 1_{D^{*}}\right) \leq 0_{D^{*}}\right\}=0_{D^{*}}$. $\boldsymbol{I P T} \boldsymbol{T}^{L L}\left(0_{D^{*}}, 0_{D^{*}}\right)=\sup \left\{k \mid k \in D^{*}, \boldsymbol{P T}\left(k, 0_{D^{*}}\right) \leq 1_{D^{*}}\right\}=1_{D^{*}}$.

If $m \leq_{1} u$. By (NPT2) in Definition 3.1, $\left\{k \mid k \in D^{*}, \boldsymbol{P} \boldsymbol{T}(k, m) \leq_{1} n\right\} \supseteq_{1}\left\{k \mid k \in D^{*}, \boldsymbol{P} \boldsymbol{T}(k, u) \leq_{1} n\right\}$, then $\sup \left\{k \mid k \in D^{*}, \boldsymbol{P} \boldsymbol{T}(k, m) \leq_{1} n\right\} \geq_{1} \sup \left\{k \mid k \in D^{*}, \boldsymbol{P} \boldsymbol{T}(k, u) \leq_{1} n\right\}$. Thus, $\boldsymbol{I}_{\boldsymbol{P T}}{ }^{(L)}(m, n) \geq_{1} \boldsymbol{I}_{\boldsymbol{P} \boldsymbol{T}^{(L)}}(u, n)$.

If $n \leq_{1} v$. Since the undecreasingness of $\boldsymbol{P T}$, we have $\left\{k \mid k \in D^{*}, \boldsymbol{P} \boldsymbol{T}(k, m) \leq_{1} n\right\} \subseteq_{1}\left\{k \mid k \in D^{*}, \boldsymbol{P} \boldsymbol{T}(k\right.$, $m) \leq 1 v\}$, then $\sup \left\{k \mid k \in D^{*}, \boldsymbol{P T}(k, m) \leq_{1} n\right\} \leq_{1} \sup \left\{k \mid k \in D^{*}, \boldsymbol{P} \boldsymbol{T}(k, m) \leq_{1} v\right\}$. Thus, $\boldsymbol{I P T}^{(L)}(m, n) \leq_{1} \boldsymbol{I P T} \boldsymbol{T}^{(L)}(m$, v).

To sum up, $I_{P T}{ }^{(L)}$ is a NI. Likewise, $I_{P T^{(R)}}$ is a NI can also be proved.
Some relevant properties of NRI are given below.
Theorem 4.8 Suppose that $\boldsymbol{P T}$ be a NPT on $D^{*}, \boldsymbol{I}_{P T^{(L)},}{\boldsymbol{I} P T^{(R)}}^{(R)}$ are NRIs. Then, $\forall m, n, r \in D^{*}$,
(1) $\boldsymbol{I}_{P T^{(L)}}\left(0_{D^{*}}, n\right)=1_{D^{*}}$;
(2) $I_{P T^{(L)}}\left(m, 1_{D^{*}}\right)=1_{D^{*}}$;
(3) $\boldsymbol{I}_{\boldsymbol{P T}}{ }^{(L)}(m, m)=1_{D^{*} ;}$
(4) $I_{P T T^{L L}}\left(1_{D^{*}}, n\right)=n$;
(5) $\boldsymbol{I P T}^{(L)}(m, n) \geq_{1} n$;
\left. (6) ${\boldsymbol{I} P T^{(L)}}^{(L)} m, n\right)=1_{D^{*}}$ iff $m \leq_{1} n$;
(7) $\boldsymbol{I}_{\boldsymbol{P T}}{ }^{(L)}(\boldsymbol{P T}(m, n), \boldsymbol{P T}(m, r)) \geq_{1} \boldsymbol{I}_{\boldsymbol{P T}}{ }^{(L)}(n, r)$;
(8) $m \leq_{1} \boldsymbol{I P T}^{(L)}(n, \boldsymbol{P T}(m, n))$.

Similarly, $I_{P T^{(R)}}$ also satisfies the properties (1)-(7) in Theorem 4.8. However, it should be noted that NI induced by NPT, because pseudo-t-norm removes commutativity, leads to the difference in property (8) in the corresponding Theorem 4.8 of $\boldsymbol{I}_{P T^{(R)}}$, as shown below:
(8) $m \leq_{1} \boldsymbol{I P T}^{(R)}(n, \boldsymbol{P T}(n, m))$.

Proof. The proofs of (1)-(4) are straightforward to obtain by Definition 4.2, so the proof is ignored.
(5) From (NI1) in Definition 4.1, we get that $\boldsymbol{I P T}^{(L)}(m, n) \geq_{1} \boldsymbol{I P T}_{T_{T}(L)}\left(1_{D^{*}}, n\right)=n$.
(6) (\Rightarrow) if $\boldsymbol{I} \boldsymbol{P T}^{(L)}(m, n)=1_{D^{*}}$, then $\boldsymbol{P T}\left(1_{D^{*}}, m\right) \leq_{1} n$. Thus, $m \leq_{1} n$. $\left.\Leftrightarrow\right)$ since $m \leq_{1} n, \boldsymbol{P T}\left(1_{D^{*}}, m\right) \leq_{1} n$. Thus, $\boldsymbol{I}_{\boldsymbol{P T}}{ }^{(L)}(m, n) \geq_{1} 1_{D^{*}}$, that is $\boldsymbol{I}_{\boldsymbol{P T}}{ }^{(L)}(m, n)=1_{D^{*}}$.
(7) $\boldsymbol{I}_{\boldsymbol{P T}}{ }^{(L)}(\boldsymbol{P} \boldsymbol{T}(m, n), \boldsymbol{P T}(m, r))=\sup \left\{k \mid k \in D^{*}, \boldsymbol{P} \boldsymbol{T}(k, \boldsymbol{P T}(m, n)) \leq_{1} \boldsymbol{P T}(m, r)\right\}=\sup \left\{k \mid k \in D^{*}, \boldsymbol{P} \boldsymbol{T}(m\right.$, $\left.\boldsymbol{P T}(k, n)) \leq_{1} \boldsymbol{P T}(m, r)\right\} \geq_{1} \sup \left\{k \mid k \in D^{*}, \boldsymbol{P T}(k, n) \leq_{1} r\right\}=\boldsymbol{I}_{\boldsymbol{P} \boldsymbol{T}^{(L)}}(n, r)$.
(8) Since $\boldsymbol{P} \boldsymbol{T}(m, n) \leq_{1} \boldsymbol{P} \boldsymbol{T}(m, n)$, so we get $m \leq_{1} \boldsymbol{I}_{\boldsymbol{P}} \boldsymbol{T}^{(L)}(n, \boldsymbol{P} \boldsymbol{T}(m, n))$.

The proof which $\boldsymbol{I P T}_{\boldsymbol{T}^{(R)}}$ satisfies the properties (1)-(8) is similar to the proof of $\boldsymbol{I} \boldsymbol{P T}^{(L)}$.
In the same way, we give two theorems about NPS on D^{*}.

Theorem 4.9 Let PS be a NPS on D^{*}. Then, $\forall m, n \in D^{*}$,

$$
\begin{aligned}
& \operatorname{JPS}_{P S}^{(L)}(m, n)=\inf \left\{k \mid k \in D^{*}, \operatorname{PS}(k, m) \geq_{1} n\right\} ; \\
& \boldsymbol{J P S}^{(R)}(m, n)=\inf \left\{k \mid k \in D^{*}, \operatorname{PS}(m, k) \geq_{1} n\right\} .
\end{aligned}
$$

are NCIs.
Proof. According to the Definition 4.4, we can use the proof of Theorem 4.7 method to prove it.
Theorem 4.10 Let $P S$ is a NPS on $D^{*}, \boldsymbol{J}_{P S}{ }^{(L)}, \boldsymbol{J}_{P S}{ }^{(R)}$ are NRCIs. Then, $\forall m, n, r \in D^{*}$,
(1) $J_{P S}{ }^{(L)}\left(1_{D^{*}}, n\right)=0 D^{*}$;
(2) $J P S^{(L)}\left(m, 0_{D^{*}}\right)=0 D_{D^{*}}$;
(3) $J_{P S}{ }^{(L)}(m, m)=0 D^{*}$;
(4) $J_{P S}(L)\left(0 D^{*}, n\right)=n$;
(5) $J P S^{(L)}(m, n) \leq_{1} n$;
(6) $J P S^{(L)}(m, n)=0 D^{*}$ iff $m \geq 1 n$;
(7) $\boldsymbol{J P S}{ }^{(L)}(\boldsymbol{P S}(m, n), \operatorname{PS}(m, r)) \leq_{1} \boldsymbol{J P S}^{(L)}(n, r)$;
(8) $m \geq 1 \operatorname{JPS}^{(L)}(n, \operatorname{PS}(m, n))$.

Similarly, $J_{P S}{ }^{(R)}$ also satisfies the properties (1)-(7) in Theorem 4.10. However, it should be noted that NCI induced by NPS, because pseudo-s-norm removes commutativity, leads to the difference in property (8) in the corresponding Theorem 4.10 of $J_{P S}(R)$, as shown below:
(8) $m \geq 1 \operatorname{JPS}^{(R)}(n, \operatorname{PS}(n, m))$.

Definition 4.11 Let $\boldsymbol{I}^{(L)}, \boldsymbol{I}^{(R)}: D^{*} \times D^{*} \rightarrow D^{*}$ are NIs. $\forall m, n \in D^{*}$, the induced operators $\boldsymbol{P} \boldsymbol{T}_{I}{ }^{(L)}, \boldsymbol{P} \boldsymbol{T}_{I}{ }^{(R)}$ by $\boldsymbol{I}^{(L)}, \boldsymbol{I}^{(R)}$ are defined as follows:

$$
\begin{aligned}
& \boldsymbol{P}_{\boldsymbol{T}^{(L)}}(m, n)=\inf \left\{k \mid k \in D^{*}, m \leq 1 \boldsymbol{I}^{(L)}(n, k)\right\} ; \\
& \boldsymbol{P}_{\boldsymbol{I}^{(R)}}(m, n)=\inf \left\{k \mid k \in D^{*}, n \leq_{1} \boldsymbol{I}^{(R)}(m, k)\right\} .
\end{aligned}
$$

Theorem 4.12 Let $\boldsymbol{I}^{(L)}, \boldsymbol{I}^{(R)}$ are NIs on $D^{*} . \forall m, n, r \in D^{*}$, if $\boldsymbol{I}^{(L)}$, $\boldsymbol{I}^{(R)}$ satisfies below conditions:
(a) $r \leq_{1} \boldsymbol{I}^{(L)}(n, m)$ iff $n \leq 1 \boldsymbol{I}^{(R)}(r, m)$;
(b) $\boldsymbol{I}^{(L)}\left(m, \boldsymbol{I}^{(L)}(n, r)\right)=\boldsymbol{I}^{(L)}\left(n, \boldsymbol{I}^{(L)}(m, r)\right) ; \boldsymbol{I}^{(R)}\left(m, \boldsymbol{I}^{(R)}(n, r)\right)=\boldsymbol{I}^{(R)}\left(n, \boldsymbol{I}^{(R)}(m, r)\right)$;
(c) $\boldsymbol{I}^{(L)}(m, n)=1_{D^{*}}$ iff $m \leq 1 n ; \boldsymbol{I}^{(R)}(m, n)=1_{D^{*}}$ iff $m \leq 1 n$;
(d) $\boldsymbol{I}^{(L)}\left(1_{D^{*}}, m\right)=m ; \boldsymbol{I}^{(R)}\left(1_{D^{*}}, m\right)=m$.

Then, the induced operators $\boldsymbol{P} \boldsymbol{T}_{I^{(L)},} \boldsymbol{P} \boldsymbol{T}_{I^{(R)}}$ by $\boldsymbol{I}^{(L)}, \boldsymbol{I}^{(R)}$ in Definition 4.11 are NPTs.
Proof. $\forall m, u, n, v \in D^{*}$, there are below:
(NPT1) From (a) and (b), $\boldsymbol{P} \boldsymbol{T}_{I}{ }^{(L)}\left(m, \boldsymbol{P} \boldsymbol{T}_{I}(L)(n, r)\right)=\inf \left\{k \mid k \in D^{*}, m \leq_{1} \boldsymbol{I}^{(L)}\left(\boldsymbol{P} \boldsymbol{T}_{I}(L)(n, r), k\right)\right\}=\inf \{k \mid$ $\left.k \in D^{*}, \boldsymbol{P} \boldsymbol{T}_{I^{(L)}}(n, r) \leq 1 \boldsymbol{I}^{(R)}(m, k)\right\}=\inf \left\{k \mid k \in D^{*}, r \leq 1 \boldsymbol{I}^{(R)}\left(n, \boldsymbol{I}^{(R)}(m, k)\right)\right\}=\inf \left\{k \mid k \in D^{*}, r \leq 1 \boldsymbol{I}^{(R)}\left(m, \boldsymbol{I}^{(R)}(n, k)\right)\right\}=$ $\inf \left\{k \mid k \in D^{*}, \boldsymbol{P} \boldsymbol{T}_{I}{ }^{(L)}(m, r) \leq 1 \boldsymbol{I}^{(R)}(n, k)\right\}=\inf \left\{k \mid k \in D^{*}, n \leq 1 \boldsymbol{I}^{(L)}\left(\boldsymbol{P} \boldsymbol{T}_{I}{ }^{(L)}(m, r), k\right)\right\}=\boldsymbol{P} \boldsymbol{T}_{I}{ }^{(L)}\left(n, \boldsymbol{P}_{I}{ }^{(L)}(m, r)\right)$.
(NPT2) If $m \leq_{1} u, n \leq 1 v$. So $\boldsymbol{I}^{(L)}(v, k) \leq_{1} \boldsymbol{I}^{(L)}(n, k)$ for $\forall k \in D^{*}$. $\forall k_{0} \in\left\{k \mid k \in D^{*}, u \leq 1 \boldsymbol{I}^{(L)}(v, k)\right\}$, it can be concluded that $u \leq 1 \boldsymbol{I}^{(L)}\left(v, k_{0}\right)$. Since $m \leq_{1} u$, and $\boldsymbol{I}^{(L)}\left(v, k_{0}\right) \leq_{1} \boldsymbol{I}^{(L)}\left(n, k_{0}\right), m \leq_{1} \boldsymbol{I}^{(L)}\left(n, k_{0}\right)$, namely $k_{0} \in\{k \mid$ $\left.k \in D^{*}, m \leq I^{(L)}(n, k)\right\}$. Thus, $\left\{k \mid k \in D^{*}, u \leq 1 \boldsymbol{I}^{(L)}(v, k)\right\} \subseteq_{1}\left\{k \mid k \in D^{*}, m \leq I^{(L)}(n, k)\right\}$. Hence, $\inf \left\{k \mid k \in D^{*}, m\right.$ $\left.\leq_{1} \boldsymbol{I}^{(L)}(n, k)\right\} \leq_{1} \inf \left\{k \mid k \in D^{*}, u \leq_{1} \boldsymbol{I}^{(L)}(v, k)\right\}$, that is, $\boldsymbol{P} \boldsymbol{T}_{I}(L)(m, n) \leq_{1} \boldsymbol{P} \boldsymbol{T}_{I^{(L)}}(u, v)$. Likewise, we can prove that $\boldsymbol{P} \boldsymbol{T}_{I}(L)(n, m) \leq 1 \boldsymbol{P} \boldsymbol{T}_{I}{ }^{(L)}(v, u)$.
(NPT3) $\boldsymbol{P} \boldsymbol{T}_{I^{(L)}}\left(1_{D^{*}}, m\right)=\inf \left\{k \mid k \in D^{*}, 1_{D^{*}} \leq \boldsymbol{I}^{(L)}(m, k)\right\}=\inf \left\{k \mid k \in D^{*}, \boldsymbol{I}^{(L)}(m, k)=1_{D^{*}}\right\}=\inf \left\{k \mid k \in D^{*}, m\right.$ $\leq 1 k\}=m ; \boldsymbol{P} \boldsymbol{I}_{I^{(L)}}\left(m, 1_{D^{*}}\right)=\inf \left\{k \mid k \in D^{*}, m \leq 1 \boldsymbol{I}^{(L)}\left(1_{D^{*}}, k\right)\right\}=\inf \left\{k \mid k \in D^{*}, m \leq 1 k\right\}=m$.

Therefore $\boldsymbol{P} \boldsymbol{T}_{I}{ }^{(L)}$ is a NPT, and in the same way, we can also show that $\boldsymbol{P} \boldsymbol{T}_{I}{ }^{(R)}$ is a NPT.
Theorem 4.13 If $\boldsymbol{P T}$ is a NPT on D^{*}, so there is $\boldsymbol{P T}=\boldsymbol{P} \boldsymbol{T}_{I}{ }^{(L)}=\boldsymbol{P} \boldsymbol{T}_{I}{ }^{(R)}$.

Proof. $\forall m, n \in D^{*}$, from Definitions 4.2 and 4.11, we get $\boldsymbol{P} \boldsymbol{T}_{I^{(L)}}(m, n)=\inf \left\{k \mid k \in D^{*}, m \leq 1 \boldsymbol{I}^{(L)}(n\right.$, $k)\}=\inf \left\{k \mid k \in D^{*}, \boldsymbol{P} \boldsymbol{T}(m, n) \leq_{1} k\right\}=\boldsymbol{P} \boldsymbol{T}(m, n)$ and $\boldsymbol{P} \boldsymbol{T}_{I}{ }^{(R)}(m, n)=\inf \left\{k \mid k \in D^{*}, n \leq_{1} \boldsymbol{I}^{(R)}(m, k)\right\}=\inf \{k \mid$ $\left.k \in D^{*}, \boldsymbol{P} \boldsymbol{T}(m, n) \leq_{1} k\right\}=\boldsymbol{P} \boldsymbol{T}(m, n)$. Thus, $\boldsymbol{P} \boldsymbol{T}=\boldsymbol{P} \boldsymbol{T}_{I^{(L)}}=\boldsymbol{P} \boldsymbol{T}_{I^{(R)}}$.

Definition 4.14 ([21]) An algebraic system $S=(S ; \wedge, \vee, \otimes, \rightarrow, \leadsto, 0,1)$ is said to be a NCRL, $\forall m, n$, $r \in S$, if S satisfies:
(1) $(S ; \wedge, \vee, 0,1)$ be a bounded lattice on S, its corresponding order is $\leq, 0$ is minimal element and 1 is maximal element of S;
(2) $(S ; \otimes, 1)$ be non-commutative monoid and its neutral element is 1 ;
(3) $m \otimes n \leq r \Leftrightarrow m \leq n \rightarrow r \Leftrightarrow n \leq m \mapsto r$.

Sections 3 and 4 focus on NPTs and their NRIs. Next, a NCRL is established, which is constructed from three neutrosophic logic operators.

Theorem 4.15 Suppose ($D^{*} ; \wedge 1, \vee_{1}, c, 0_{D^{*},} 1_{D^{*}}$) is a system and PT is a NPT on $D^{*} . \forall m, n \in D^{*}$, define the following three equations:

$$
m \otimes n=\boldsymbol{P} \boldsymbol{T}(m, n) ; m \rightarrow n=\boldsymbol{I}_{\boldsymbol{P} \boldsymbol{T}^{(L)}}(m, n) ; m \leadsto n=\boldsymbol{I}_{\boldsymbol{P} \boldsymbol{T}^{(R)}}(m, n) .
$$

Then, $\left(D^{*} ; \wedge 1, \vee 1, \otimes, \rightarrow, \leadsto, 0_{D^{*}}, 1_{D^{*}}\right)$ is NCRL.
Proof. First, by Proposition 2.9, we get that ($D^{*} ; \wedge 1, \vee_{1}, 0_{D^{*}}, 1_{D^{*}}$) be a bounded lattice on D^{*}.
Second, the fact that $\left(D^{*} ; \otimes, 1_{D^{*}}\right)$ is non-commutative monoid is proved. (1) $m \otimes 1_{D^{*}}=\inf \{k \mid$ $\left.k \in D^{*}, m \leq I_{1} \boldsymbol{I}^{(L)}\left(1_{D^{*}}, k\right)\right\}=\inf \left\{k \mid k \in D^{*}, m \leq 1 k\right\}=m$ and $1_{D^{*}} \otimes m=\inf \left\{k \mid k \in D^{*}, 1_{D^{*}} \leq I^{(L)}(m, k)\right\}=\inf \{k \mid$ $\left.k \in D^{*}, \boldsymbol{I}^{(L)}(m, k)=1_{D^{*}}\right\}=\inf \left\{k \mid k \in D^{*}, m \leq 1 k\right\}=m$, i.e. $\forall m \in D^{*}$, the equation $1_{D^{*}} \otimes m=m \otimes 1_{D^{*}}=m$ is true. (2) Theorem 4.13 proves that $\boldsymbol{P} \boldsymbol{T}_{I^{(L)}}=\boldsymbol{P T}$ is a NPT. Thus, $\boldsymbol{P T}$ does not satisfy the commutative law. (3) From (NPT1) of Definition 3.1, \otimes satisfies the associative law.

Finally, $\forall m, n, k \in D^{*}$, we prove the below equivalence relation

$$
m \otimes n \leq 1 k \Leftrightarrow m \leq n \rightarrow k \Leftrightarrow n \leq m \leadsto k
$$

holds. On the one hand, by what we know about \otimes, there are $m \otimes n=\inf \left\{k \mid k \in D^{*}, m \leq 1 I^{(L)}(n, k)\right\}$, $m \otimes n \leq 1 k$. Thus, there are $n \leq m \leadsto k$ and $m \leq n \rightarrow k$. On the other hand, by what we know about \rightarrow, we get $n \rightarrow k=\sup \left\{t \mid t \in D^{*}, \boldsymbol{P} \boldsymbol{T}(t, n) \leq 1 k\right\}$. Since $m \leq n \rightarrow k$, therefore $m \otimes n \leq 1 k$. Likewise, there are $n \leq m \rightarrow$ $k \Rightarrow m \otimes n \leq 1 k$.

Thus, $\left(D^{*} ; \wedge 1, \vee 1, \otimes, \rightarrow, \rightsquigarrow, 0_{D^{*}}, 1_{D^{*}}\right)$ is NCRL.

5. Conclusions

Neutrosophic logic is an important part of NS theory. Common neutrosophic logic operators are: NPTs, NPSs NIs, NNs and so on. On the basis of complete lattice ($D^{*} ; \leq 1$), We define NPTs and NPSs. In addition, DMNTs are defined, describing that NPT and NPS are dual with regard to the standard NN. Then, on the basis of complete lattice ($D^{*} ; \leq_{1}$), the concepts of NRI and NRCI is given, and we present a theorem which states that residual operators derived by NPTs must be NIs, and further study their fundamental properties. Finally, we provide a method to get NPT from NI and construct NCRLs. In the future, we will investigate neutrosophic inference methods and neutrosophic pseudo overlap functions based on some new results [22-36], and further study their fundamental properties.

References

1. Smarandache, F. Neutrosophy: Neutrosophic Probability, Set, and Logic: Analytic Synthesis and Synthetic Analysis. American Research Press: Santa Fe, NM, USA 1998, 25-38.
2. Wang, H.B.; Smarandache F.; Zhang, Y.Q.; Sunderraman, R. Single valued neutrosophic sets. Multispace Multistruct.Neutrosophic Transdiscipl. 2010, 4, 410-413.
3. Flondor, P.; Georgescu, G.; Iorgulescu, A. Pseudo-t-norms and pseudo-BL algebras. Soft computing 2001, 5(5), 355-371.
4. Wang, Z.D.; Yu, Y.D. Pseudo-t-norms and implication operators on a complete Brouwerian lattice. Fuzzy Sets and Systems 2002, 132(1), 113-124.
5. Han, S.C.; Li, H.X.; Wang, J.Y. Resolution of finite fuzzy relation equations based on strong pseudo-t-norms. Applied Mathematics Letters 2006, 19(8), 752-757.
6. Abbasi Molai, A. Linear optimization with mixed fuzzy relation inequality constraints using the pseudo-t-norms and its application. Soft Computing 2015, 19(10), 3009-3027.
7. Molai, A.A. An algorithm for solving fuzzy relation programming with the max-t composition operator. TWMS Journal of Applied and Engineering Mathematics 2015, 5(1), 21-29.
8. Mehenni, A.; Zedam, L. Pseudo triangular norms on bounded trellises. arXiv preprint arXiv:2212.03605 2022.
9. Wang, Z.D.; Yu, Y.D. Pseudo-t-norms and implication operators: direct products and direct product decompositions. Fuzzy Sets and Systems 2003, 139(3), 673-683.
10. Luo, M.X.; Sang, N. Triple I method based on residuated implications of left-continuous pseudo-t-norms. 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery; IEEE, 2012; 196-200.
11. Smarandache, F. N-norm and N-conorm in Neutrosophic Logic and Set, and the Neutrosophic Topologies. Review of the Air Force Academy 2009, (1), 5-11.
12. Zhang, X.H.; Bo, C.X.; Smarandache, F.; Dai, J.H. New inclusion relation of neutrosophic sets with applications and related lattice structure. International Journal of Machine Learning and Cybernetics 2018, 9, 1753-1763.
13. Hu, Q.Q.; Zhang, X.H. Neutrosophic triangular norms and their derived residuated lattices. Symmetry 2019, 11, 817. DOI:10.3390/sym11060817.
14. Luo, M.X.; Xu, D.H.; Wu, L.X. Fuzzy Inference Full Implication Method Based on Single Valued Neutrosophic t-Representable t-Norm. In Proceedings; MDPI, 2022; 81, 24.
15. Atanassov, K. Intuitionistic fuzzy sets. International journal bioautomation 2016, $20,1$.
16. Deschrijver, G. Implication functions in interval-valued fuzzy set theory. Stud. Fuzziness Soft Comput. 2013, 300, 73-99.
17. Smarandache, F. Neutrosophic set-a generalization of the intuitionistic fuzzy set. 2006 international conference on granular computing; IEEE, 2006; 38-42.
18. Smarandache, F. Neutrosophic Perspectives: Triplets, Duplets, Multisets, Hybrid Operators, Modal Logic, Hedge Algebras. And Applications, Infinite Study: Conshohocken, PA, USA, 2017.
19. Zhang, X.H. Fuzzy logic and its algebraic analysis, 1rd ed.; Science Press: Beijing, China, 2008; pp. 50-56.
20. Baczynski, M.; Jayaram, B. Fuzzy implications, Stud. Fuzziness Soft Comput, 2008; pp. 41-105.
21. Ciungu, L.C. Non-commutative multiple-valued logic algebras, Springer Science \& Business, New York, 2013.
22. Zhang, X.H.; Liang, R.; Bustince, H.; Bedregal, B.; Fernandez, J.; Li, M.Y.; Ou, Q.Q. Pseudo overlap functions, fuzzy implications and pseudo grouping functions with applications. Axioms 2022, 11, 593. DOI: 10.3390/axioms11110593.
23. Liang, R.; Zhang, X.H. Interval-valued pseudo overlap functions and application. Axioms 2022, 11, 216. DOI:10.3390/axioms11050216.
24. Liang, R.; Zhang, X.H. Pseudo general overlap functions and weak inflationary pseudo BL-algebras. Mathematics 2022, 10, 3007. DOI: 10.3390/math10091396.
25. Jing, M.; Zhang, X.H. Pseudo-quasi overlap functions and related fuzzy inference methods. Axioms 2023, 12, 217. DOI: 10.3390/axioms12020217.
26. Zhang, X.H.; Liang, R. Interval-valued general residuated lattice-ordered groupoids and expanded triangle algebras. Axioms 2023, 12, 42. DOI: 10.3390/axioms 12010042.
27. Zhang, X.H.; Sheng, N.; Borzooei, R.A. Partial residuated implications induced by partial triangular norms and partial residuated lattices. Axioms 2023, 12, 63. DOI: 10.3390/axioms12010063
28. Wang, J.Q.; Zhang, X.H. A novel multi-criteria decision-making method based on rough sets and fuzzy measures. Axioms 2022, 11, 275. DOI: 10.3390/axioms 11060275.

[^1]29. Wang, J.Q.; Zhang, X.H.; Hu, Q.Q. Three-way fuzzy sets and their applications (II). Axioms 2022, 11, 532. DOI: 10.3390/axioms11100532
30. Hu, Q.Q.; Zhang, X.H. Three-way fuzzy sets and their applications (III). Axioms 2023, 12, 57. DOI: 10.3390/axioms12010057
31. Zhang, X.H.; Liang, R.; Bedregal, B. Weak inflationary BL-algebras and filters of inflationary (pseudo) general residuated lattices. Mathematics 2022, 10, 3394. DOI i: 10.3390/math10183394
32. Sheng, N.; Zhang, X.H. Regular partial residuated lattices and their filters. Mathematics 2022, 10, 2429. DOI:10.3390/math10142429.
33. Zhang, X.H.; Shang, J.Y.; Wang, J.Q. Multi-granulation fuzzy rough sets based on overlap functions with a new approach to MAGDM. Information Sciences 2023, 622, 536-559.
34. Jing, M.; Zhang, X. H. Pseudo-quasi overlap functions and related fuzzy inference methods. Axioms 2023, 12, 217. DOI:10.3390/axioms12020217
35. Zhang, X.H.; Li, M.Y.; Liu, H. Overlap functions-based fuzzy mathematical morphological operators and their applications in image edge extraction. Fractal Fract. 2023, 7, 465. DOI:10.3390/fractalfract7060465.
36. Zhang, X.H.; Jiang, H.; Wang, J.Q. New classifier ensemble and fuzzy community detection methods using POP Choquet-like integrals. Fractal Fract. 2023, 7, 588. DOI:10.3390/fractalfract7080588.

Received: April 29, 2023. Accepted: Aug 19, 2023

[^0]: $\overline{\text { Hongru Bu, Qingqing Hu and Xiaohong Zhang, Neutrosophic Pseudo-t-Norm and Its Derived Neutrosophic Residual }}$ Implication

[^1]: $\overline{\text { Hongru Bu, Qingqing Hu and Xiaohong Zhang, Neutrosophic Pseudo-t-Norm and Its Derived Neutrosophic Residual }}$ Implication

