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Abstract. Our aim is to explore the idea of neutrosophic N−ideals in near-subtraction semigroups in this

article and obtain some outcomes that are equivalent to them. We also illustrate the notion of a neutrosophic

κ− intersection. Additionally, in a near-subtraction semigroup, we examine the term homomorphism of a neu-

trosophic κ− structure and establish some conclusions based on a homomorphic neutrosophic κ− structure

preimage of a neutrosophic κ− left (respectively, right) ideal.
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—————————————————————————————————————————-

1. Introduction

In [26], Schein investigated the systems of the type (Σ, ◦, \), where Σ is a family of functions

closed under the composition ◦ of functions (and therefore (Σ, ◦) is a function semigroup) and

the set theoretic subtraction \ (and therefore (Σ, \) is a subtraction algebra). In [29], Zelinka

examined Schein’s suggestion for the multiplication structure and discovered a method for

resolving a challenge in a kind of subtraction algebra, namely atomic subtraction algebras. In

subtraction algebras [11], Jun et al. proposed the idea of ideals by examining the character-

isation of ideals. In [10], Jun et al. explored the ideals produced by a set and its associated

outcomes. Dheena et al. [1], formed the ideas of near-subtraction semigroups as well as strongly

regular near-subtraction semigroups. They found an equivalent assertion for a near-subtraction

semigroup to be strongly regular.

Zadeh [30] developed the idea that a fuzzy subset φ of a set K is a map from K into [0, 1].

Since then, this concept has been effectively used in a range of applications, including image

processing, control systems, engineering, robotics, industrial automation, and optimisation.
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In subtraction algebras, Lee et al. [14] established the term fuzzy ideal and made some

assertions that a fuzzy set is to be a fuzzy ideal. Prince Williams [28] coined the terms fuzzy

ideals and fuzzy intersection in near-subtraction semigroups and homomorphic fuzzy images

and preimages of a near-subtraction semigroup.

In [16], Molodtsov introduced a concept, namely the soft set (F,ℑ), which is a mapping

from ℑ into the power set of U given a base universe set U and the gathering of attributes ℑ.
Jun et al. [12] extended Molodtsov’s concept to hybrid structures, a concept that is similar to

the theories of soft and fuzzy sets, and proved a number of hybrid structure attributes for a

gathering of parameter values over a base universe set. The authors further explored the ideas

of hybrid subalgebras, and hybrid fields based on this approach. Several authors produced

hybrid concepts in a variety of algebraic structures ( See [2–5,15,17,18,20–23]).

Smarandache came up with neutrophophic sets as a way to deal with the constant unpre-

dictability. It makes intuitionistic fuzzy sets as well as fuzzy sets more broad. Neutrosophic

sets can be described by these three things: their membership functions for indeterminacy (I),

falsity (F), and truth (T). These sets can be used in a lot of different ways to deal with the

problems that come from unclear information. A neutrosophic set can tell the difference be-

tween membership functions that are absolute and those that are relative. Smarandache used

these collections for non-standard analyses like sports choices (losing, tying, and winning),

control theory, decision-making theory, and so on. This area has been studied by several

authors(See [8, 9, 27]).

Khan et al. examined ϵ-neutrosophic κ-subsemigroup and a semigroup in [13]. Elavarasan

et al. [6] examined the idea of neutrosophic κ-ideals in semigroups. Elavarasan et al. pre-

sented neutrosophic filters and bi-filters in a semigroup and examined their properties in [7].

Muhiuddin et al. provided the definitions and characteristics of neutrosophic κ-interior ideals
as well as neutrosophic κ- ideals in ordered semigroups in [19].

Porselvi et al. proposed neutrosophic κ-interior ideal structure as well as neutrosophic

κ-simple in semigroups in [25], and they obtained comparable statements for the two types

of structures. Porselvi et al. [24] described numerous characteristics of a neutrosophic κ-
bi-ideal structure in a semigroup and showed that when a semigroup is regular left duo,

both a neutrosophic κ-right ideal and a neutrosophic κ-bi-ideal are identical. They discussed

analogous claims for the regular semigroup with regard to the neutrosophic κ-product.
This article explores the idea of neutrosophic κ−ideal in near-subtraction semigroups and

its associated characteristics. Additionally, we provide examples of a neutrosophic κ-left ideal
that is not a neutrosophic κ-right ideal and vice versa. Moreover, we examine and discuss the

neutrosophic κ-image, neutrosophic κ-intersection, and neutrosophic κ-preimage of a near-

subtraction semigroup using homomorphism.
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2. Preliminaries of subtraction semigroups

We compile some basic definitions for near-subtraction semigroups in this portion, which

we will use in the next section.

Definition 2.1. [26] A set ℑ(̸= ∅) with the binary operation “ − ” that fulfils the below

assertions is referred to as a subtraction algebra. ∀q0, l0, i0 ∈ ℑ,
(i) q0 − (l0 − q0) = q0.

(ii) q0 − (q0 − l0) = l0 − (l0 − q0).

(iii) (q0 − l0)− i0 = (q0 − i0)− l0.

The following are some characteristics of a subtraction algebra:

(i) q0 − 0 = q0 and 0− q0 = 0.

(ii) (q0 − l0)− q0 = 0.

(iii) (q0 − l0)− l0 = q0 − l0.

(iv) (q0 − l0)− (l0 − q0) = q0 − l0, where 0 = q0 − q0 is an element that is independent on

the choice of q0 ∈ ℑ.

Definition 2.2. [29] A set ℑ(̸= ∅) with the binary operations “− ” and “.” that satisfies the

following requirements is referred to as a subtraction semigroup:

(i) (ℑ,−) and (ℑ, .) are a subtraction algebra and a semigroup, respectively.

(ii) l0(l1 − l2) = l0l1 − l0l2 and (l0 − l1)l2 = l0l2 − l1l2 ∀l0, l1, l2 ∈ ℑ.

Definition 2.3. [29] A set ℑ( ̸= ∅) with the binary operations “− ” and “.” that satisfy the

following requirements is referred to as a near-subtraction semigroup (NSS for short):

(i) (ℑ,−) and (ℑ, .) are a subtraction algebra and a semigroup, respectively.

(ii) (l0 − l1)l2 = l0l2 − l1l2 ∀l0, l1, l2 ∈ ℑ.

Clearly 0l0 = 0 ∀l0 ∈ ℑ.
Hereafter, ℑ represents the near-subtraction semigroup.

Definition 2.4. If l0 − l1 ∈ L whenever l0, l1 ∈ L, then a subset L(̸= ∅) of ℑ is said to be a

subalgebra of ℑ.

Definition 2.5. Let (ℑ,−, .) be a NSS. A subset ℜ( ̸= ∅) of ℑ is referred as

(i) a right ideal whenever ℜ is a subalgebra of (ℑ,−) and ℜℑ ⊆ ℜ.
(ii) a left ideal whenever ℜ is a subalgebra of (ℑ,−) and p1c1 − p1(w1 − c1) ∈ ℜ ∀p1, w1 ∈

ℑ; c1 ∈ ℜ.
(iii) an ideal whenever ℜ is both a right and a left ideal.
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3. Preliminaries of Neutrosophic κ- structures

This portions outlines the basic ideas of neutrosophic κ-structures of ℑ, which are essential

for the sequel.

For a set Q( ̸= ∅), F(Q, I−) is the family of functions with negative-values from a set Q to I−,
where I− = [−1, 0]. An element k1 ∈ F(Q, I−) is known as a κ-function on Q and κ-structure
denotes (Q, k1) of X.

Definition 3.1. [12] For a set Q(̸= ∅), a neutrosophic κ- structure of Q is described as below:

QM := Q
(TM ,IM ,FM ) =

{
v0

(TM (v0),IM (v0),FM (v0))
: v0 ∈ Q

}
,

where TM on Q means the negative truth membership function, IM on Q means the nega-

tive indeterminacy membership function and FM on Q means the negative false membership

function.

Note 3.2. QM satisfies the requirement: −3 ≤ TM (b1) + IM (b1) + FM (b1) ≤ 0 ∀b1 ∈ Q.

Definition 3.3. [13] For a set Q(̸= ∅), let QJ := Q
(TJ ,IJ ,FJ )

and QV := Q
(TV ,IV ,FV ) ,

(i) QJ is defined as a neutrosophic κ-substructure of QV , represented by QJ ⊆ QV , if it

fulfils the below criteria: for any z0 ∈ Q,

TJ(z0) ≥ TV (z0), IJ(z0) ≤ IV (z0), FJ(z0) ≥ FV (z0).

If QJ ⊆ QV and QV ⊆ QJ , then QJ = QV .

(ii) The intersection of QJ and QV is a neutrosophic κ-structure over Q and is defined as

follows: QJ ∩QV = QJ∩V = (Q;TJ∩V,IJ∩V,FJ∩V ), where

(TJ ∩ TV )(h0) =TJ∩V (h0) = TJ(h0) ∨ TV (h0),

(IJ ∩ IV )(h0) =IJ∩V (h0) = IJ(h0) ∧ IV (h0),

(FJ ∩ FV )(h0) =FJ∩V (h0) = FJ(h0) ∨ FV (h0) for any h0 ∈ Q.

Definition 3.4. For V0 ⊆ Q ̸= ∅, consider the neutrosophic κ-structure

χV0(QD) =
Q

(χV (T )D,χV (I)D,χV (F )D) ,

where

χV0(T )D : Q → I−, j1 →

{
−1 if j1 ∈ V0

0 if j1 /∈ V0,

χV0(I)D : Q → I−, j1 →

{
0 if j1 ∈ V0

−1 if j1 /∈ V0,

χV0(F )D : Q → I−, j1 →

{
−1 if j1 ∈ V0

0 if j1 /∈ V0,

which is described as the characteristic neutrosophic κ-structure of V0 over Q.
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Definition 3.5. [12] For a nonempty set Q, let QN = Q
(TN ,IN ,FN ) and ð, φ,Θ ∈ I− with

−3 ≤ ð+ φ+Θ ≤ 0. Consider the following sets:

T ð
N = {c1 ∈ Q | TN (c1) ≤ ð}, IφN = {c1 ∈ Q | IN (c1) ≥ φ}, FΘ

N = {c1 ∈ Q|FN (c1) ≤ Θ}.
Then the set QN (ð, φ,Θ) = {c1 ∈ Q|TN (c1) ≤ ð, IN (c1) ≥ φ, FN (c1) ≤ Θ} is referred as a

(ð, φ,Θ)-level set of QN . Note that QN (ð, φ,Θ) = T ð
N ∩ IφN ∩ FΘ

N .

4. Neutrosophic κ-ideals in subtraction semigroups

The idea of neutrosophic κ− ideals in near-subtraction is defined in this portion. We also

develop a case where a neutrosophic κ− right ideal is not a neutrosophic κ− left ideal, and

vice versa, and we describe certain properties of a neutrosophic κ− structure’s homomorphism

in a near-subtraction semigroup.

Definition 4.1. A neutrosophic κ-structure ℑB = ℑ
(TB ,IB ,FB) of ℑ is defined as a neutrosophic

κ-ideal of ℑ if it meets the below axioms:

(i) (∀g0, l0 ∈ ℑ)

 TB(g0 − l0) ≤ TB(g0) ∨ TB(l0)

IB(g0 − l0) ≥ IB(g0) ∧ IB(l0)

FB(g0 − l0) ≤ FB(g0) ∨ FB(l0)

 .

(ii) (∀s0, j0, l0 ∈ ℑ)

 TB(s0l0 − s0(j0 − l0)) ≤ TB(l0)

IB(s0l0 − s0(j0 − l0)) ≥ IB(l0)

FB(s0l0 − s0(j0 − l0)) ≤ FB(l0)

.

(iii) (∀l0, q0 ∈ ℑ)

 TB(l0q0) ≤ TB(l0)

IB(l0q0) ≥ IB(l0)

FB(l0q0) ≤ FB(l0)

.

Note that ℑB of ℑ is a neutrosophic κ−left ideal when (i) and (ii) are hold, and ℑB of ℑ
is a neutrosophic κ−right ideal when (i) and (iii) are hold.

Notation 1. Let ℑ be a NSS. Then we use the below notations:

(i) NI(ℑ) is the gathering of all neutrosophic κ− ideals of ℑ.
(ii) NR(ℑ) is the gathering of all neutrosophic κ− right ideals of ℑ.
(iii) NL(ℑ) is the gathering of all neutrosophic κ− left ideals of ℑ.

Here are a few examples of neutrosophic κ-ideals.

Example 4.2. Let ℑ = {0, i0, p0} be a set with two operations “− ” and “.” that are repre-

sented by the below tables:

- 0 i0 p0
0 0 0 0

i0 i0 0 i0
p0 p0 p0 0

. 0 i0 p0
0 0 0 0

i0 0 i0 0

p0 i0 0 p0

Then (ℑ,−, .) is a NSS. Define a neutrosophic κ-structure ℑN := { 0
(w,l,w1)

, i0
(r,k,r1)

, p0
(y,v,y1)

} of

ℑ for v, k, l, w, w1, r, r1, y, y1 ∈ [−1, 0].
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(i) If y > r = w; v < k = l and y1 > r1 = w1, then ℑN ∈ NI(ℑ).
(ii) If y = r > w; k = v < l and y1 = r1 > w1, then ℑN ∈ NR(ℑ), but ℑN /∈ NL(ℑ) as

TN (p0.0−p0(p0−0)) = TN (i0) = r ≰ w = TN (0); IN (p0.0−p0(p0−0)) = IN (i0) = k ≱ l = IN (0)

and FN (p0.0− p0(p0 − 0)) = FN (i0) = r1 ≰ w1 = FN (0).

(iii) If r > y > w; k < v < l and r1 > y1 > w1, then ℑN is neither in NR(ℑ) nor in NL(ℑ)
as TN (p0.0− p0(i0 − 0)) = TN (i0) = r ≰ w = TN (0), IN (p0.0− p0(i0 − 0)) = IN (i0) = k ≱ l =

IN (0), FN (p0.0− p0(i0 − 0)) = FN (i0) = r1 ≰ w1 = FN (0) and TN (p0.0) = TN (i0) = r ≰ y =

TN (p0), IN (p0.0) = IN (i0) = k ≱ v = IN (p0), FN (p0.0) = FN (i0) = r1 ≰ y1 = FN (p0). But it

fulfils the assertion (i) of Definition 4.1.

Example 4.3. Let ℑ = {0, r, l, k} be a set with two operations “− ” and “.” are given by

- 0 r l k

0 0 0 0 0

r r 0 k l

l l 0 0 l

k k 0 k 0

. 0 r l k

0 0 0 0 0

r 0 r l k

l 0 0 0 0

k 0 r l k

Then (ℑ,−, .) is a NSS. For p, w, n,m,m1, y, y1, s, s1 ∈ [−1, 0], define a neutrosophic κ-
structure ℑN := { 0

(m,p,m1)
, r
(y,w,y1)

, l
(s,n,s1)

, k
(s,n,s1)

} of ℑ. If s > y > m,n < w < p and

s1 > y1 > m1, then ℑN ∈ NL(ℑ), but ℑN /∈ NR(ℑ) as TN (r.l) = TN (l) = s ≰ y = TN (r),

IN (r.l) = IN (l) = n ≱ w = IN (r) and FN (r.l) = FN (l) = s1 ≰ y1 = FN (r).

Theorem 4.4. For ℑN = ℑ
(TN ,IN ,FN ) , the listed assertions are equivalent:

(i) For any ϱ, λ, ν ∈ I−, ℑN (ϱ, λ, ν)(̸= ϕ) of ℑ is a left(right) ideal,

(ii) ℑN ∈ NL(ℑ) (NR(ℑ)).

Proof: (i) ⇒ (ii) Let c, z ∈ ℑ. Then TN (c) = q1;FN (c) = r1; IN (c) = t1 and TN (z) =

q2;FN (z) = r2; IN (z) = t2, for some q1, q2, t1, t2, r1, r2 ∈ I−.
If q = max{q1, q2}; t = min{t1, t2} and r = max{r1, r2}, then TN (c) ≤ q; IN (c) ≥ t;FN (c) ≤

r and TN (z) ≤ q; IN (z) ≥ t;FN (z) ≤ r, so c, z ∈ ℑN (q, t, r). By assumption, we get c − z ∈
ℑN (q, t, r) which implies TN (c−z) ≤ q = TN (c)∨TN (z); IN (c−z) ≥ t = IN (c)∧IN (z); FN (c−
z) ≤ r = FN (c) ∨ FN (z).

For any n0, v ∈ ℑ, we have n0c−n0(v−c) ∈ ℑN (q1, t1, r1) which implies TN (n0c−n0(v−c)) ≤
q1 = Tn(c), IN (n0c−n0(v−c)) ≥ t1 = IN (c), FN (n0c−n0(v−c)) ≤ r1 = FN (c). So ℑN ∈ NL(ℑ).

Also, for r ∈ ℑ, we have cr ∈ ℑN (q1, t1, r1) which implies TN (cr) ≤ q1 = TN (c); IN (cr) ≥
t1 = IN (c);FN (cr) ≤ r1 = FN (c). So ℑN ∈ NR(ℑ).

(ii) ⇒ (i) Let q, z ∈ ℑN (ϱ, λ, ν). Then TN (q − z) ≤ TN (q) ∨ TN (z) ≤ ϱ; IN (q − z) ≥
IN (q) ∧ IN (z) ≥ λ and FN (q − z) ≤ FN (q) ∨ FN (z) ≤ ν which imply q − z ∈ ℑN (ϱ, λ, ν).

Also, TN (qz) ≤ TN (q) ≤ ϱ; IN (qz) ≥ IN (q) ≥ λ and FN (qz) ≤ FN (q) ≤ ν imply that

qz ∈ ℑN (ϱ, λ, ν). So ℑN (ϱ, λ, ν) of ℑ is a right ideal.
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For l ∈ ℑN (ϱ, λ, ν) and s, j ∈ ℑ, we have TN (sl− s(j − l)) ≤ TN (l) = ϱ; IN (sl− s(j − l)) ≥
IN (l) = λ and FN (sl − s(j − l)) ≤ Fn(l) = ν which imply sl − s(j − l) ∈ ℑN (ϱ, λ, ν).

So, ℑN (ϱ, λ, ν) of ℑ is a left ideal.

We have the succeeding corollary as a outcome of the Theorem 4.4.

Corollary 4.5. For ∅ ̸= D ⊆ ℑ, a neutrosophic κ- structure ℑN = ℑ
(TN ,IN ,FN ) of ℑ is

characterized as below: For g1, l1, ω1, t1, s1, v1 ∈ [−1, 0],

TN (y0) :=

{
g1 if y0 ∈ D

l1 otherwise
; IN (y0) :=

{
ω1 if y0 ∈ D

t1 otherwise,
; FN (y0) :=

{
s1 if y0 ∈ D

v1 otherwise,

where g1 < l1;ω1 > t1 and s1 < v1 in [−1, 0], the mentioned below statements are equivalent:

(i) ℑN ∈ NL(ℑ)(NR(ℑ)),
(ii) D of ℑ is a left(right) ideal.

Corollary 4.6. For ∅ ≠ L ⊆ ℑ and ℑN = ℑ
(TN ,IN ,FN ) , the listed below statements are equiva-

lent:

(i) χL(ℑN ) ∈ NL(ℑ)(NR(ℑ)),
(ii) L of ℑ is a left(right) ideal.

Theorem 4.7. Let ℑN = ℑ
(TN ,IN ,FN ) ∈ NL(ℑ)(NR(ℑ)). Then the sets T 0

N = {c1 ∈
Q | TN (c1) = TN (0)}, I0N = {c1 ∈ Q | IN (c1) = IN (0)}, F 0

N = {c1 ∈ Q|FN (c1) = FN (0)}
of ℑ are left (right) ideals.

Proof: For l0, w0 ∈ T 0
N ∩ I0N ∩ F 0

N , we have TN (l0 − w0) ≤ TN (l0) ∨ TN (w0) = TN (0),

IN (l0 − w0) ≥ IN (l0) ∧ IN (w0) = IN (0) and FN (l0 − w0) ≤ FN (l0) ∨ FN (w0) = FN (0). So

l0 − w0 ∈ T 0
N ∩ I0N ∩ F 0

N .

For s ∈ ℑ, we have TN (sl0 − s(w0 − l0)) ≤ TN (l0) = TN (0), IN (sl0 − s(w0 − l0)) ≥ IN (l0) =

IN (0) and FN (sl0 − s(w0 − l0)) ≤ FN (l0) = FN (0). So sl0 − s(w0 − l0) ∈ T 0
N ∩ I0N ∩ F 0

N .

Therefore T 0
N , I0N and F 0

N are left ideals.

Theorem 4.8. Let ℑJ := ℑ
(TJ ,IJ ,FJ )

and ℑW := ℑ
(TW ,IW ,FW ) be the neutrosophic κ-structures

in ℑ. If ℑJ ,ℑW ∈ NL(ℑ)(NR(ℑ)), then ℑJ ∩ ℑW ∈ NL(ℑ)(NR(ℑ)).

Proof: Let w1, f1 ∈ ℑ. Then

TJ∩W (f1 − w1) = (TJ ∩ TW )(f1 − w1)

= TJ(f1 − w1) ∨ TW (f1 − w1)

≤ {TJ(f1) ∨ TJ(w1)} ∨ {TW (f1) ∨ TW (w1)}

= (TJ ∩ TW )(f1) ∨ (TJ ∩ TW )(w1) = TJ∩W (f1) ∨ TJ∩W (w1),
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IJ∩W (f1 − w1) = (IJ ∩ IW )(f1 − w1)

= IJ(f1 − w1) ∧ IW (f1 − w1)

≥ {IJ(f1) ∧ IJ(w1)} ∧ {IW (f1) ∧ IW (w1)}

= (IJ ∩ IW )(f1) ∧ (IJ ∩ IW )(w1) = IJ∩W (f1) ∧ IJ∩W (w1),

FJ∩W (f1 − w1) = (FJ ∩ FW )(f1 − w1)

= FJ(f1 − w1) ∨ FW (f1 − w1)

≤ {FJ(f1) ∨ FJ(w1)} ∨ {FW (f1) ∨ FW (w1)}

= (FJ ∩ FW )(f1) ∨ (FJ ∩ FW )(w1) = FJ∩W (f1) ∨ FJ∩W (w1).

For s1 ∈ ℑ, we have

TJ∩W (s1w1 − s1(f1 − w1)) = (TJ ∩ TW )(s1w1 − s1(f1 − w1))

= TJ(s1w1 − s1(f1 − w1)) ∨ TW (s1w1 − s1(f1 − w1))

≤ TJ(w1) ∨ TW (w1) = (TJ ∩ TW )(w1),

IJ∩W (s1w1 − s1(f1 − w1)) = (IJ ∩ IW )(s1w1 − s1(f1 − w1))

= IJ(s1w1 − s1(f1 − w1)) ∧ IW (s1w1 − s1(f1 − w1))

≥ IJ(w1) ∧ IW (w1) = (IJ ∩ IW )(w1),

FJ∩W (s1w1 − s1(f1 − w1)) = (FJ ∩ FW )(s1w1 − s1(f1 − w1))

= FJ(s1w1 − s1(f1 − w1)) ∨ FW (s1w1 − s1(f1 − w1))

≤ FJ(w1) ∨ FW (w1) = (FJ ∩ FW )(w1).

So, ℑJ ∩ ℑW ∈ NL(ℑ).
Hereafter, the symbols ℑ and ℑ′ denote the near-subtraction semigroups.

Definition 4.9. A homomorphism ξ of ℑ into ℑ′
such that ξ(w1 − a1) = ξ(w1) − ξ(a1) and

ξ(w1a1) = ξ(w1)ξ(a1) ∀w1, a1 ∈ ℑ is defined.

Definition 4.10. Consider a mapping Ω : N → M, where N,M ̸= {ϕ}. Suppose MS :=

M
(TS ,IS ,FS)

over M is a neutrosophic κ-structure. Then, under Ω, the preimage of MS is

described as a neutrosophic κ-structure Ω−1(MS) = N
(Ω−1(TS),Ω−1(IS),Ω−1(FS))

over N, where
Ω−1(TS)(l0) = TS(Ω(l0)), Ω

−1(IS)(l0) = IS(Ω(l0)) and Ω−1(FS)(l0) = FS(Ω(l0)) for all l0 ∈ N.

Theorem 4.11. Let Ω : ℑ → ℑ′
be a homomorphism of NSS. If ℑ′

S ∈ NI(ℑ
′
), where

ℑ′
S := ℑ′

(TS ,IS ,FS)
, then Ω−1(ℑ′

S) ∈ NI(ℑ).

Proof: Let k0, g0 ∈ ℑ. Then

Ω−1(TS)(k0 − g0) = TS(Ω(k0 − g0)) = TS(Ω(k0)− Ω(g0))

≤ TS(Ω(k0)) ∨ TS(Ω(g0)) = Ω−1(TS)(k0) ∨ Ω−1(TS)(g0),
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Ω−1(IS)(k0 − g0) = IS(Ω(k0 − g0)) = IS(Ω(k0)− Ω(g0))

≥ IS(Ω(k0)) ∧ IS(Ω(g0)) = Ω−1(IS)(k0) ∧ Ω−1(IS)(g0),

Ω−1(FS)(k0 − g0) = FS(Ω(k0 − g0)) = FS(Ω(k0)− Ω(g0))

≤ FS(Ω(k0)) ∨ FS(Ω(g0)) = Ω−1(FS)(k0) ∨ Ω−1(FS)(g0).

Let q0 ∈ ℑ. Then

Ω−1(TS)(q0k0 − q0(g0 − k0)) = TS(Ω(q0k0 − q0(g0 − k0)))

= TS(Ω(q0k0)− Ω(q0(g0 − k0)))

= TS(Ω(q0)Ω(k0)− Ω(q0)(Ω(g0)− Ω(k0)))

≤ TS(Ω(k0)) = Ω−1(TS)(k0),

Ω−1(IS)(q0k0 − q0(g0 − k0)) = IS(Ω(q0k0 − q0(g0 − k0)))

= IS(Ω(q0k0)− Ω(q0(g0 − k0)))

= IS(Ω(q0)Ω(k0)− Ω(q0)(Ω(g0)− Ω(k0)))

≥ IS(Ω(k0)) = Ω−1(IS)(k0),

Ω−1(FS)(q0k0 − q0(g0 − k0)) = FS(Ω(q0k0 − q0(g0 − k0)))

= FS(Ω(q0k0)− Ω(q0(g0 − k0)))

= FS(Ω(q0)Ω(k0)− Ω(q0)(Ω(g0)− Ω(k0)))

≤ FS(Ω(k0)) = Ω−1(FS)(k0).

Also,

Ω−1(TS)(k0g0) = TS(Ω(k0g0) = TS(Ω(k0)Ω(g0)) ≤ TS(Ω(k0)) = Ω−1(TS)(k0),

Ω−1(IS)(k0g0) = IS(Ω(k0g0) = IS(Ω(k0)Ω(g0)) ≥ IS(Ω(k0)) = Ω−1(IS)(k0),

Ω−1(FS)(k0g0) = FS(Ω(k0g0) = FS(Ω(k0)Ω(g0)) ≤ FS(Ω(k0)) = Ω−1(FS)(k0).

So, Ω−1(ℑ′
S) ∈ NI(ℑ).

Definition 4.12. Consider a onto map Ω : N → M, where N,M ̸= {ϕ}. Suppose NB :=

N
(TB,IB,FB) over N is a neutrosophic κ-structure. Then, under Ω, the image of NB is described

as a neutrosophic κ-structure

Ω(NB) = M
(Ω(TB),Ω(IB),Ω(FB))

over M, where, for all y2 ∈ M,

Ω(TB)(y2) =
∧

y1∈Ω−1(y2)

TB(y1),

Ω(IB)(y2) =
∨

y1∈Ω−1(y2)

IB(y1),

Ω(FB)(y2) =
∧

y1∈Ω−1(y2)

FB(y1).
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Theorem 4.13. Let ξ : ℑ → ℑ′
be an onto homomorphism of NSS and ℑ′

Z := ℑ′

(TZ ,IZ ,FZ )

is a neutrosophic κ-structure of ℑ′
. If ξ−1(ℑ′

Z ) ∈ NI(ℑ), then ℑ′
Z ∈ NI(ℑ

′
).

Proof: Let v′0, r
′
0 ∈ ℑ′

. Then ∃ v0, r0 ∈ ℑ such that ξ(v0) = v′0 and ξ(r0) = r′0. Now,

TZ (v′0 − r′0) = TZ (ξ(v0)− ξ(r0)) = TZ (ξ(v0 − r0)) = ξ−1(TZ )(v0 − r0)

≤ ξ−1(TZ )(v0) ∨ ξ−1(TZ )(r0)

= TZ (ξ(v0)) ∨ TZ (ξ(r0))

= TZ (v′0) ∨ TZ (r′0),

IZ (v′0 − r′0) = IZ (ξ(v0)− ξ(r0)) = IZ (ξ(v0 − r0)) = ξ−1(IZ )(v0 − r0)

≥ ξ−1(IZ )(v0) ∧ ξ−1(IZ )(r0)

= IZ (ξ(v0)) ∧ IZ (ξ(r0))

= IZ (v′0) ∧ IZ (r′0),

FZ (v′0 − r′0) = FZ (ξ(v0)− ξ(r0)) = FZ (ξ(v0 − r0)) = ξ−1(FZ )(v0 − r0)

≤ ξ−1(FZ )(v0) ∨ ξ−1(FZ )(r0)

= FZ (ξ(v0)) ∨ FZ (ξ(r0))

= FZ (v′0) ∨ FZ (r′0).

Let s′0 ∈ ℑ′
. Then ∃s ∈ ℑ such that ξ(s) = s′0. Now

TZ (s′0v
′
0 − s′0(r

′
0 − v′0)) = TZ (ξ(s)ξ(v0)− ξ(s)(ξ(r0)− ξ(v0)))

= TZ (ξ(sv0)− ξ(s)ξ(r0 − v0))

= TZ (ξ(sv0)− ξ(s(r0 − v0)))

= TZ (ξ(sv0 − s(r0 − v0)))

= ξ−1(TZ )(sv0 − s(r0 − v0)) ≤ ξ−1(TZ )(v0) = TZ (ξ(v0)) = TZ (v′0),

IZ (s′0v
′
0 − s′0(r

′
0 − v′0)) = IZ (ξ(s)ξ(v0)− ξ(s)(ξ(r0)− ξ(v0)))

= IZ (ξ(sv0)− ξ(s)ξ(r0 − v0))

= IZ (ξ(sv0)− ξ(s(r0 − v0)))

= IZ (ξ(sv0 − s(r0 − v0)))

= ξ−1(IZ )(sv0 − s(r0 − v0)) ≥ ξ−1(IZ )(v0) = IZ (ξ(v0)) = IZ (v′0),

FZ (s′0v
′
0 − s′0(r

′
0 − v′0)) = FZ (ξ(s)ξ(v0)− ξ(s)(ξ(r0)− ξ(v0)))

= FZ (ξ(sv0)− ξ(s)ξ(r0 − v0))

= FZ (ξ(sv0)− ξ(s(r0 − v0)))

= FZ (ξ(sv0 − s(r0 − v0)))

= ξ−1(FZ )(sv0 − s(r0 − v0)) ≤ ξ−1(FZ )(v0) = FZ (ξ(v0)) = FZ (v′0).
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Also,

TZ (v′0r
′
0) = TZ (ξ(v0r0)) = ξ−1(TZ )(v0r0) ≤ ξ−1(TZ )(v0) = TZ (ξ(v0)) = TZ (v′0),

IZ (v′0r
′
0) = IZ (ξ(v0r0)) = ξ−1(IZ )(v0r0) ≥ ξ−1(IZ )(v0) = IZ (ξ(v0)) = IZ (v′0),

FZ (v′0r
′
0) = FZ (ξ(v0r0)) = ξ−1(FZ )(v0r0) ≤ ξ−1(FZ )(v0) = FZ (ξ(v0)) = FZ (v′0).

So, ℑ′
Z ∈ NI(ℑ

′
).

Definition 4.14. A neutrosophic κ- structure ℑB := ℑ
(TB,IB,FB) is defined to fulfils the sup

property in ℑ if ∀ S ⊆ ℑ, ∃ l0 ∈ S : TB(l0) =
∧
l∈S

TB(l); IB(l0) =
∨
l∈S

IB(l); FB(l0) =
∧
l∈S

FB(l).

Proposition 4.15. A homomorphic image of a neutrosophic κ-ideal having sup property is a

neutrosophic κ-ideal.

Proof: Let ϱ : ℑ → ℑ′ be a homomorphism of NSS and let ℑZ := ℑ
(TZ ,IZ ,FZ ) of ℑ be a

neutrosophic κ-ideal having sup property.

Suppose ϱ(b), ϱ(w) ∈ ℑ′ and let b0 ∈ ϱ−1(ϱ(b)) and w0 ∈ ϱ−1(ϱ(w)) be such that

TZ (b0) =
∧

k0∈ϱ−1(ϱ(b))

TZ (k0), IZ (b0) =
∨

k0∈ϱ−1(ϱ(b))

IZ (k0), FZ (b0) =
∧

k0∈ϱ−1(ϱ(b))

FZ (k0),

TZ (w0) =
∧

k0∈ϱ−1(ϱ(b))

TZ (k0), IZ (w0) =
∨

k0∈ϱ−1(ϱ(b))

IZ (k0), FZ (w0) =
∧

k0∈ϱ−1(ϱ(b))

FZ (k0).

Then

ϱ(TZ )(ϱ(b)− ϱ(w)) =
∧

z∈ϱ−1(ϱ(b)−ϱ(w))

TZ (z) ≤ TZ (b0) ∨ TZ (w0)

=

 ∧
k0∈ϱ−1(ϱ(b))

TZ (k0)

 ∨

 ∧
k0∈ϱ−1(ϱ(w))

TZ (k0)


= ϱ(TZ )(ϱ(b)) ∨ ϱ(TZ )(ϱ(w)),

ϱ(IZ )(ϱ(b)− ϱ(w)) =
∨

z∈ϱ−1(ϱ(b)−ϱ(w))

IZ (z) ≥ IZ (b0) ∧ IZ (w0)

=

 ∨
k0∈ϱ−1(ϱ(b))

IZ (k0)

 ∧

 ∨
k0∈ϱ−1(ϱ(w))

IZ (k0)


= ϱ(IZ )(ϱ(b)) ∧ ϱ(IZ )(ϱ(w)),

ϱ(FZ )(ϱ(b)− ϱ(w)) =
∧

z∈ϱ−1(ϱ(b)−ϱ(w))

FZ (z) ≤ FZ (b0) ∨ FZ (w0)

=

 ∧
k0∈ϱ−1(ϱ(b))

FZ (k0)

 ∨

 ∧
k0∈ϱ−1(ϱ(w))

FZ (k0)


= ϱ(FZ )(ϱ(b)) ∨ ϱ(FZ )(ϱ(w)).
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Given ϱ(s) ∈ ℑ′ and let s0 ∈ ϱ−1(ϱ(s)). Then

ϱ(TZ )(ϱ(s)ϱ(b)− ϱ(s)(ϱ(w)− ϱ(b))) =
∧

z∈ϱ−1(ϱ(s)ϱ(b)−ϱ(s)(ϱ(w)−ϱ(b)))

TZ (z)

≤ TZ (b0) =
∧

k0∈ϱ−1(ϱ(b))

TZ (k0) = ϱ(TZ )(ϱ(b)),

ϱ(IZ )(ϱ(s)ϱ(b)− ϱ(s)(ϱ(w)− ϱ(b))) =
∨

z∈ϱ−1(ϱ(s)ϱ(b)−ϱ(s)(ϱ(w)−ϱ(b)))

IZ (z)

≥ IZ (b0) =
∨

k0∈ϱ−1(ϱ(b))

IZ (k0) = ϱ(IZ )(ϱ(b)),

ϱ(FZ )(ϱ(s)ϱ(b)− ϱ(s)(ϱ(w)− ϱ(b))) =
∧

z∈ϱ−1(ϱ(s)ϱ(b)−ϱ(s)(ϱ(w)−ϱ(b)))

FZ (z)

≤ FZ (b0) =
∧

k0∈ϱ−1(ϱ(b))

FZ (k0) = ϱ(FZ )(ϱ(b)).

Also,

ϱ(TZ )(ϱ(b)ϱ(w)) =
∧

z∈ϱ−1(ϱ(b)ϱ(w))

TZ (z) ≤ TZ (b0) =
∧

k0∈ϱ−1(ϱ(b))

TZ (k0) = ϱ(TZ )(ϱ(b)),

ϱ(IZ )(ϱ(b)ϱ(w)) =
∨

z∈ϱ−1(ϱ(b)ϱ(w))

IZ (z) ≥ IZ (b0) =
∨

k0∈ϱ−1(ϱ(b))

IZ (k0) = ϱ(IZ )(ϱ(b)),

ϱ(FZ )(ϱ(b)ϱ(w)) =
∧

z∈ϱ−1(ϱ(b)ϱ(w))

FZ (z) ≤ FZ (b0) =
∧

k0∈ϱ−1(ϱ(b))

FZ (k0) = ϱ(FZ )(ϱ(b)).

Hence ϱ(ℑZ ) is a neutrosophic κ-ideal of ϱ(ℑ).

5. Conclusion

We defined and examined neutrosophic κ− ideals in near-subtraction semigroups in this

article. We formed ideals for a neutrosophic κ− ideal in a near-subtraction semigroup, and

we also obtained various aspects of the neutrosophic κ− image as well as the neutrosophic

κ− preimage of a near-subtraction semigroup using homomorphism mapping. In our future

research work, we will explore the notion of a neutrosophic κ− prime ideal and its related

properties in near-subtraction semigroups using the ideas and findings presented in this paper.
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