

University of New Mexico

Properties of neutrosophic \varkappa -ideals in subtraction semigroups

G. Muhiuddin¹, B. Elavarasan², K. Porselvi³ and D. Al-Kadi⁴

¹ Department of Mathematics, University of Tabuk, P.O. Box-741, Tabuk-71491, Saudi Arabia. ¹ E-mail:chishtygm@gmail.com.

^{2,3}Department of Mathematics, Karunya Institute of Technology and Sciences, Coimbatore - 641 114, India.
²E-mail:belavarasan@gmail.com; ³ E-mail:porselvi94@yahoo.co.in.

⁴ Department of Mathematics and Statistic, College of Science, Taif University, P.O. Box 11099, Taif 21944,

Saudi Arabia. ⁴E-mail: d.alkadi@tu.edu.sa

*Correspondence: belavarasan@gmail.com

Abstract. Our aim is to explore the idea of neutrosophic \mathfrak{N} -ideals in near-subtraction semigroups in this article and obtain some outcomes that are equivalent to them. We also illustrate the notion of a neutrosophic \varkappa - intersection. Additionally, in a near-subtraction semigroup, we examine the term homomorphism of a neutrosophic \varkappa - structure and establish some conclusions based on a homomorphic neutrosophic \varkappa - structure preimage of a neutrosophic \varkappa - left (respectively, right) ideal.

Keywords: Semigroups; Subtraction semigroups; neutrosophic \varkappa -structures, neutrosophic \varkappa - ideals, homomorphism.

1. Introduction

In [26], Schein investigated the systems of the type $(\Sigma, \circ, \backslash)$, where Σ is a family of functions closed under the composition \circ of functions (and therefore (Σ, \circ) is a function semigroup) and the set theoretic subtraction \backslash (and therefore (Σ, \backslash) is a subtraction algebra). In [29], Zelinka examined Schein's suggestion for the multiplication structure and discovered a method for resolving a challenge in a kind of subtraction algebra, namely atomic subtraction algebras. In subtraction algebras [11], Jun et al. proposed the idea of ideals by examining the characterisation of ideals. In [10], Jun et al. explored the ideals produced by a set and its associated outcomes. Dheena et al. [1], formed the ideas of near-subtraction semigroups as well as strongly regular near-subtraction semigroups. They found an equivalent assertion for a near-subtraction semigroup to be strongly regular.

Zadeh [30] developed the idea that a fuzzy subset φ of a set K is a map from K into [0, 1]. Since then, this concept has been effectively used in a range of applications, including image processing, control systems, engineering, robotics, industrial automation, and optimisation.

G. Muhiuddin et al., Properties of neutrosophic $\varkappa\text{-}\mathrm{ideals}$ in subtraction semigroups

In subtraction algebras, Lee et al. [14] established the term fuzzy ideal and made some assertions that a fuzzy set is to be a fuzzy ideal. Prince Williams [28] coined the terms fuzzy ideals and fuzzy intersection in near-subtraction semigroups and homomorphic fuzzy images and preimages of a near-subtraction semigroup.

In [16], Molodtsov introduced a concept, namely the soft set (F, \mathfrak{F}) , which is a mapping from \mathfrak{F} into the power set of \mathbb{U} given a base universe set \mathbb{U} and the gathering of attributes \mathfrak{F} . Jun et al. [12] extended Molodtsov's concept to hybrid structures, a concept that is similar to the theories of soft and fuzzy sets, and proved a number of hybrid structure attributes for a gathering of parameter values over a base universe set. The authors further explored the ideas of hybrid subalgebras, and hybrid fields based on this approach. Several authors produced hybrid concepts in a variety of algebraic structures (See [2–5, 15, 17, 18, 20–23]).

Smarandache came up with neutrophophic sets as a way to deal with the constant unpredictability. It makes intuitionistic fuzzy sets as well as fuzzy sets more broad. Neutrosophic sets can be described by these three things: their membership functions for indeterminacy (I), falsity (F), and truth (T). These sets can be used in a lot of different ways to deal with the problems that come from unclear information. A neutrosophic set can tell the difference between membership functions that are absolute and those that are relative. Smarandache used these collections for non-standard analyses like sports choices (losing, tying, and winning), control theory, decision-making theory, and so on. This area has been studied by several authors(See [8,9,27]).

Khan et al. examined ϵ -neutrosophic \varkappa -subsemigroup and a semigroup in [13]. Elavarasan et al. [6] examined the idea of neutrosophic \varkappa -ideals in semigroups. Elavarasan et al. presented neutrosophic filters and bi-filters in a semigroup and examined their properties in [7]. Muhiuddin et al. provided the definitions and characteristics of neutrosophic \varkappa -interior ideals as well as neutrosophic \varkappa - ideals in ordered semigroups in [19].

Porselvi et al. proposed neutrosophic \varkappa -interior ideal structure as well as neutrosophic \varkappa -simple in semigroups in [25], and they obtained comparable statements for the two types of structures. Porselvi et al. [24] described numerous characteristics of a neutrosophic \varkappa -bi-ideal structure in a semigroup and showed that when a semigroup is regular left duo, both a neutrosophic \varkappa -right ideal and a neutrosophic \varkappa -bi-ideal are identical. They discussed analogous claims for the regular semigroup with regard to the neutrosophic \varkappa -product.

This article explores the idea of neutrosophic \varkappa -ideal in near-subtraction semigroups and its associated characteristics. Additionally, we provide examples of a neutrosophic \varkappa -left ideal that is not a neutrosophic \varkappa -right ideal and vice versa. Moreover, we examine and discuss the neutrosophic \varkappa -image, neutrosophic \varkappa -intersection, and neutrosophic \varkappa -preimage of a nearsubtraction semigroup using homomorphism.

G. Muhiuddin et al., Properties of neutrosophic \varkappa -ideals in subtraction semigroups

2. Preliminaries of subtraction semigroups

We compile some basic definitions for near-subtraction semigroups in this portion, which we will use in the next section.

Definition 2.1. [26] A set $\Im(\neq \emptyset)$ with the binary operation "-" that fulfils the below assertions is referred to as a subtraction algebra. $\forall q_0, l_0, i_0 \in \Im$,

(i) $q_0 - (l_0 - q_0) = q_0.$ (ii) $q_0 - (q_0 - l_0) = l_0 - (l_0 - q_0).$ (iii) $(q_0 - l_0) - i_0 = (q_0 - i_0) - l_0.$

The following are some characteristics of a subtraction algebra:

- (i) $q_0 0 = q_0$ and $0 q_0 = 0$.
- (ii) $(q_0 l_0) q_0 = 0.$
- (iii) $(q_0 l_0) l_0 = q_0 l_0.$

(iv) $(q_0 - l_0) - (l_0 - q_0) = q_0 - l_0$, where $0 = q_0 - q_0$ is an element that is independent on the choice of $q_0 \in \mathfrak{S}$.

Definition 2.2. [29] A set $\Im(\neq \emptyset)$ with the binary operations "-" and "." that satisfies the following requirements is referred to as a subtraction semigroup:

(i) $(\mathfrak{F}, -)$ and $(\mathfrak{F}, .)$ are a subtraction algebra and a semigroup, respectively.

(ii) $l_0(l_1 - l_2) = l_0 l_1 - l_0 l_2$ and $(l_0 - l_1) l_2 = l_0 l_2 - l_1 l_2 \ \forall l_0, l_1, l_2 \in \Im$.

Definition 2.3. [29] A set $\Im(\neq \emptyset)$ with the binary operations "-" and "." that satisfy the following requirements is referred to as a near-subtraction semigroup (*NSS* for short):

(i) $(\Im, -)$ and $(\Im, .)$ are a subtraction algebra and a semigroup, respectively.

(ii) $(l_0 - l_1)l_2 = l_0l_2 - l_1l_2 \ \forall l_0, l_1, l_2 \in \Im.$

Clearly $0l_0 = 0 \ \forall l_0 \in \mathfrak{S}$.

Hereafter, \Im represents the near-subtraction semigroup.

Definition 2.4. If $l_0 - l_1 \in L$ whenever $l_0, l_1 \in L$, then a subset $L \neq \emptyset$ of \Im is said to be a subalgebra of \Im .

Definition 2.5. Let $(\Im, -, .)$ be a *NSS*. A subset $\Re(\neq \emptyset)$ of \Im is referred as

(i) a right ideal whenever \Re is a subalgebra of $(\Im, -)$ and $\Re \Im \subseteq \Re$.

(ii) a left ideal whenever \Re is a subalgebra of $(\Im, -)$ and $p_1c_1 - p_1(w_1 - c_1) \in \Re \ \forall p_1, w_1 \in \Im; c_1 \in \Re$.

(iii) an ideal whenever \Re is both a right and a left ideal.

3. Preliminaries of Neutrosophic \varkappa - structures

This portions outlines the basic ideas of neutrosophic \varkappa -structures of \Im , which are essential for the sequel.

For a set $Q \neq \emptyset$, $\mathcal{F}(Q, \mathbb{I}^-)$ is the family of functions with negative-values from a set Q to \mathbb{I}^- , where $\mathbb{I}^- = [-1, 0]$. An element $k_1 \in \mathcal{F}(Q, \mathbb{I}^-)$ is known as a \varkappa -function on Q and \varkappa -structure denotes (Q, k_1) of X.

Definition 3.1. [12] For a set $Q \neq \emptyset$, a *neutrosophic* \varkappa - structure of Q is described as below:

$$Q_M := \frac{Q}{(T_M, I_M, F_M)} = \left\{ \frac{v_0}{(T_M(v_0), I_M(v_0), F_M(v_0))} : v_0 \in Q \right\}$$

where T_M on Q means the negative truth membership function, I_M on Q means the negative indeterminacy membership function and F_M on Q means the negative false membership function.

Note 3.2. Q_M satisfies the requirement: $-3 \leq T_M(b_1) + I_M(b_1) + F_M(b_1) \leq 0 \ \forall b_1 \in Q$.

Definition 3.3. [13] For a set $Q(\neq \emptyset)$, let $Q_J := \frac{Q}{(T_J, I_J, F_J)}$ and $Q_V := \frac{Q}{(T_V, I_V, F_V)}$,

(i) Q_J is defined as a *neutrosophic* \varkappa -substructure of Q_V , represented by $Q_J \subseteq Q_V$, if it fulfils the below criteria: for any $z_0 \in Q$,

$$T_J(z_0) \ge T_V(z_0), I_J(z_0) \le I_V(z_0), F_J(z_0) \ge F_V(z_0).$$

If $Q_J \subseteq Q_V$ and $Q_V \subseteq Q_J$, then $Q_J = Q_V$.

(ii) The intersection of Q_J and Q_V is a neutrosophic \varkappa -structure over Q and is defined as follows: $Q_J \cap Q_V = Q_{J \cap V} = (Q; T_{J \cap V}, I_{J \cap V}, F_{J \cap V})$, where

$$(T_J \cap T_V)(h_0) = T_{J \cap V}(h_0) = T_J(h_0) \vee T_V(h_0),$$

$$(I_J \cap I_V)(h_0) = I_{J \cap V}(h_0) = I_J(h_0) \wedge I_V(h_0),$$

$$(F_J \cap F_V)(h_0) = F_{J \cap V}(h_0) = F_J(h_0) \vee F_V(h_0) \text{ for any } h_0 \in Q.$$

Definition 3.4. For $V_0 \subseteq Q \neq \emptyset$, consider the neutrosophic \varkappa -structure

$$\chi_{V_0}(Q_D) = \frac{Q}{(\chi_V(T)_D, \chi_V(I)_D, \chi_V(F)_D)},$$

where

$$\chi_{V_0}(T)_D : Q \to \mathbb{I}^-, \ j_1 \to \begin{cases} -1 & \text{if } j_1 \in V_0 \\ 0 & \text{if } j_1 \notin V_0, \end{cases}$$
$$\chi_{V_0}(I)_D : Q \to \mathbb{I}^-, \ j_1 \to \begin{cases} 0 & \text{if } j_1 \in V_0 \\ -1 & \text{if } j_1 \notin V_0, \end{cases}$$
$$\chi_{V_0}(F)_D : Q \to \mathbb{I}^-, \ j_1 \to \begin{cases} -1 & \text{if } j_1 \in V_0 \\ 0 & \text{if } j_1 \notin V_0, \end{cases}$$

which is described as the *characteristic neutrosophic* \varkappa -structure of V_0 over Q.

Definition 3.5. [12] For a nonempty set Q, let $Q_N = \frac{Q}{(T_N, I_N, F_N)}$ and $\eth, \varphi, \Theta \in \mathbb{I}^-$ with $-3 \leq \eth + \varphi + \Theta \leq 0$. Consider the following sets:

 $T_N^{\eth} = \{c_1 \in Q \mid T_N(c_1) \leq \eth\}, I_N^{\varphi} = \{c_1 \in Q \mid I_N(c_1) \geq \varphi\}, F_N^{\Theta} = \{c_1 \in Q | F_N(c_1) \leq \Theta\}.$ Then the set $Q_N(\eth, \varphi, \Theta) = \{c_1 \in Q | T_N(c_1) \leq \eth, I_N(c_1) \geq \varphi, F_N(c_1) \leq \Theta\}$ is referred as a (\eth, φ, Θ) -level set of Q_N . Note that $Q_N(\eth, \varphi, \Theta) = T_N^{\eth} \cap I_N^{\varphi} \cap F_N^{\Theta}.$

4. Neutrosophic \varkappa -ideals in subtraction semigroups

The idea of neutrosophic \varkappa - ideals in near-subtraction is defined in this portion. We also develop a case where a neutrosophic \varkappa - right ideal is not a neutrosophic \varkappa - left ideal, and vice versa, and we describe certain properties of a neutrosophic \varkappa - structure's homomorphism in a near-subtraction semigroup.

Definition 4.1. A neutrosophic \varkappa -structure $\Im_B = \frac{\Im}{(T_B, I_B, F_B)}$ of \Im is defined as a *neutrosophic* \varkappa -ideal of \Im if it meets the below axioms:

(i)
$$(\forall g_0, l_0 \in \Im) \begin{pmatrix} T_B(g_0 - l_0) \leq T_B(g_0) \lor T_B(l_0) \\ I_B(g_0 - l_0) \geq I_B(g_0) \land I_B(l_0) \\ F_B(g_0 - l_0) \leq F_B(g_0) \lor F_B(l_0) \end{pmatrix}$$
.
(ii) $(\forall s_0, j_0, l_0 \in \Im) \begin{pmatrix} T_B(s_0 l_0 - s_0(j_0 - l_0)) \leq T_B(l_0) \\ I_B(s_0 l_0 - s_0(j_0 - l_0)) \geq I_B(l_0) \\ F_B(s_0 l_0 - s_0(j_0 - l_0)) \leq F_B(l_0) \end{pmatrix}$.
(iii) $(\forall l_0, q_0 \in \Im) \begin{pmatrix} T_B(l_0 q_0) \leq T_B(l_0) \\ I_B(l_0 q_0) \geq I_B(l_0) \\ F_B(l_0 q_0) \leq F_B(l_0) \end{pmatrix}$.

Note that \mathfrak{F}_B of \mathfrak{F} is a *neutrosophic* \varkappa -*left ideal* when (i) and (ii) are hold, and \mathfrak{F}_B of \mathfrak{F} is a *neutrosophic* \varkappa -*right ideal* when (i) and (iii) are hold.

Notation 1. Let \Im be a NSS. Then we use the below notations:

- (i) $\mathcal{N}_{\mathfrak{I}}(\mathfrak{F})$ is the gathering of all neutrosophic \varkappa ideals of \mathfrak{F} .
- (ii) $\mathscr{N}_{\mathfrak{R}}(\mathfrak{F})$ is the gathering of all neutrosophic \varkappa right ideals of \mathfrak{F} .
- (iii) $\mathcal{N}_{\mathfrak{L}}(\mathfrak{F})$ is the gathering of all neutrosophic \varkappa left ideals of \mathfrak{F} .

Here are a few examples of neutrosophic \varkappa -ideals.

Example 4.2. Let $\Im = \{0, i_0, p_0\}$ be a set with two operations "-" and "." that are represented by the below tables:

	0					i_0	
0	0	0	0	0	0	0	0
i_0	i_0	0	i_0	i_0	0	i_0	0
p_0	p_0	p_0	0	p_0	i_0	0	p_0

Then $(\mathfrak{F}, -, .)$ is a NSS. Define a neutrosophic \varkappa -structure $\mathfrak{F}_N := \{\frac{0}{(w, l, w_1)}, \frac{i_0}{(r, k, r_1)}, \frac{p_0}{(y, v, y_1)}\}$ of \mathfrak{F} for $v, k, l, w, w_1, r, r_1, y, y_1 \in [-1, 0]$.

(i) If y > r = w; v < k = l and $y_1 > r_1 = w_1$, then $\mathfrak{S}_N \in \mathcal{N}_{\mathfrak{I}}(\mathfrak{S})$.

(ii) If y = r > w; k = v < l and $y_1 = r_1 > w_1$, then $\Im_N \in \mathscr{N}_{\mathfrak{R}}(\Im)$, but $\Im_N \notin \mathscr{N}_{\mathfrak{L}}(\Im)$ as $T_N(p_0.0-p_0(p_0-0)) = T_N(i_0) = r \nleq w = T_N(0); I_N(p_0.0-p_0(p_0-0)) = I_N(i_0) = k \ngeq l = I_N(0)$ and $F_N(p_0.0-p_0(p_0-0)) = F_N(i_0) = r_1 \nleq w_1 = F_N(0).$

(iii) If r > y > w; k < v < l and $r_1 > y_1 > w_1$, then \mathfrak{S}_N is neither in $\mathscr{N}_{\mathfrak{R}}(\mathfrak{S})$ nor in $\mathscr{N}_{\mathfrak{L}}(\mathfrak{S})$ as $T_N(p_0.0 - p_0(i_0 - 0)) = T_N(i_0) = r \nleq w = T_N(0), I_N(p_0.0 - p_0(i_0 - 0)) = I_N(i_0) = k \ngeq l = I_N(0), F_N(p_0.0 - p_0(i_0 - 0)) = F_N(i_0) = r_1 \nleq w_1 = F_N(0)$ and $T_N(p_0.0) = T_N(i_0) = r \nleq y = T_N(p_0), I_N(p_0.0) = I_N(i_0) = k \nsucceq v = I_N(p_0), F_N(p_0.0) = F_N(i_0) = r_1 \nleq y_1 = F_N(p_0)$. But it fulfils the assertion (i) of Definition 4.1.

Example 4.3. Let $\Im = \{0, r, l, k\}$ be a set with two operations "-" and "." are given by

	0								k
0	0	0	0	0	0	0	0	0	0
r	r	0	k	1	r	0	r	1	k
1	1	0	0	1	1	0	0	0	0
k	k	0	k	0	k	0	r	1	k

Then $(\mathfrak{F}, -, .)$ is a NSS. For $p, w, n, m, m_1, y, y_1, s, s_1 \in [-1, 0]$, define a neutrosophic \varkappa structure $\mathfrak{F}_N := \{\frac{0}{(m, p, m_1)}, \frac{r}{(y, w, y_1)}, \frac{l}{(s, n, s_1)}, \frac{k}{(s, n, s_1)}\}$ of \mathfrak{F} . If s > y > m, n < w < p and $s_1 > y_1 > m_1$, then $\mathfrak{F}_N \in \mathscr{N}_{\mathfrak{L}}(\mathfrak{F})$, but $\mathfrak{F}_N \notin \mathscr{N}_{\mathfrak{R}}(\mathfrak{F})$ as $T_N(r.l) = T_N(l) = s \nleq y = T_N(r)$, $I_N(r.l) = I_N(l) = n \nsucceq w = I_N(r)$ and $F_N(r.l) = F_N(l) = s_1 \nleq y_1 = F_N(r)$.

Theorem 4.4. For $\Im_N = \frac{\Im}{(T_N, I_N, F_N)}$, the listed assertions are equivalent:

(i) For any $\rho, \lambda, \nu \in \mathbb{I}^-$, $\mathfrak{S}_N(\rho, \lambda, \nu) \neq \phi$) of \mathfrak{S} is a left(right) ideal, (ii) $\mathfrak{S}_N \in \mathscr{N}_{\mathfrak{L}}(\mathfrak{S})$ ($\mathscr{N}_{\mathfrak{R}}(\mathfrak{S})$).

Proof: (i) \Rightarrow (ii) Let $c, z \in \Im$. Then $T_N(c) = q_1; F_N(c) = r_1; I_N(c) = t_1$ and $T_N(z) = q_2; F_N(z) = r_2; I_N(z) = t_2$, for some $q_1, q_2, t_1, t_2, r_1, r_2 \in \mathbb{I}^-$.

If $q = max\{q_1, q_2\}; t = min\{t_1, t_2\}$ and $r = max\{r_1, r_2\}$, then $T_N(c) \le q; I_N(c) \ge t; F_N(c) \le r$ r and $T_N(z) \le q; I_N(z) \ge t; F_N(z) \le r$, so $c, z \in \mathfrak{S}_N(q, t, r)$. By assumption, we get $c - z \in \mathfrak{S}_N(q, t, r)$ which implies $T_N(c-z) \le q = T_N(c) \lor T_N(z); I_N(c-z) \ge t = I_N(c) \land I_N(z); F_N(c-z) \le r = F_N(c) \lor F_N(z).$

For any $n_0, v \in \mathfrak{S}$, we have $n_0c - n_0(v - c) \in \mathfrak{S}_N(q_1, t_1, r_1)$ which implies $T_N(n_0c - n_0(v - c)) \leq q_1 = T_n(c), I_N(n_0c - n_0(v - c)) \geq t_1 = I_N(c), F_N(n_0c - n_0(v - c)) \leq r_1 = F_N(c)$. So $\mathfrak{S}_N \in \mathscr{N}_{\mathfrak{L}}(\mathfrak{S})$. Also, for $r \in \mathfrak{S}$, we have $cr \in \mathfrak{S}_N(q_1, t_1, r_1)$ which implies $T_N(cr) \leq q_1 = T_N(c); I_N(cr) \geq t_1 = I_N(c); F_N(cr) \leq r_1 = F_N(c)$. So $\mathfrak{S}_N \in \mathscr{N}_{\mathfrak{R}}(\mathfrak{S})$.

 $(ii) \Rightarrow (i)$ Let $q, z \in \mathfrak{S}_N(\varrho, \lambda, \nu)$. Then $T_N(q-z) \leq T_N(q) \vee T_N(z) \leq \varrho$; $I_N(q-z) \geq I_N(q) \wedge I_N(z) \geq \lambda$ and $F_N(q-z) \leq F_N(q) \vee F_N(z) \leq \nu$ which imply $q-z \in \mathfrak{S}_N(\varrho, \lambda, \nu)$.

Also, $T_N(qz) \leq T_N(q) \leq \varrho$; $I_N(qz) \geq I_N(q) \geq \lambda$ and $F_N(qz) \leq F_N(q) \leq \nu$ imply that $qz \in \mathfrak{S}_N(\varrho, \lambda, \nu)$. So $\mathfrak{S}_N(\varrho, \lambda, \nu)$ of \mathfrak{S} is a right ideal.

For $l \in \mathfrak{S}_N(\varrho, \lambda, \nu)$ and $s, j \in \mathfrak{S}$, we have $T_N(sl - s(j - l)) \leq T_N(l) = \varrho; I_N(sl - s(j - l)) \geq I_N(l) = \lambda$ and $F_N(sl - s(j - l)) \leq F_n(l) = \nu$ which imply $sl - s(j - l) \in \mathfrak{S}_N(\varrho, \lambda, \nu)$. So, $\mathfrak{S}_N(\varrho, \lambda, \nu)$ of \mathfrak{S} is a left ideal.

We have the succeeding corollary as a outcome of the Theorem 4.4.

Corollary 4.5. For $\emptyset \neq D \subseteq \Im$, a neutrosophic \varkappa -structure $\Im_N = \frac{\Im}{(T_N, I_N, F_N)}$ of \Im is characterized as below: For $g_1, l_1, \omega_1, t_1, s_1, v_1 \in [-1, 0]$,

$$T_N(y_0) := \begin{cases} g_1 & if \ y_0 \in D\\ l_1 & otherwise \end{cases}; \quad I_N(y_0) := \begin{cases} \omega_1 & if \ y_0 \in D\\ t_1 & otherwise, \end{cases}; \quad F_N(y_0) := \begin{cases} s_1 & if \ y_0 \in D\\ v_1 & otherwise, \end{cases}$$

where $g_1 < l_1; \omega_1 > t_1$ and $s_1 < v_1$ in [-1, 0], the mentioned below statements are equivalent:

- (i) $\mathfrak{S}_N \in \mathscr{N}_{\mathfrak{L}}(\mathfrak{S})(\mathscr{N}_{\mathfrak{R}}(\mathfrak{S})),$
- (ii) D of \Im is a left(right) ideal.

Corollary 4.6. For $\emptyset \neq L \subseteq \Im$ and $\Im_N = \frac{\Im}{(T_N, I_N, F_N)}$, the listed below statements are equivalent:

- (i) $\chi_L(\mathfrak{S}_N) \in \mathscr{N}_{\mathfrak{L}}(\mathfrak{S})(\mathscr{N}_{\mathfrak{R}}(\mathfrak{S})),$
- (ii) L of \Im is a left(right) ideal.

Theorem 4.7. Let $\mathfrak{F}_N = \frac{\mathfrak{F}}{(T_N, I_N, F_N)} \in \mathscr{N}_{\mathfrak{L}}(\mathfrak{F})(\mathscr{N}_{\mathfrak{R}}(\mathfrak{F}))$. Then the sets $T_N^0 = \{c_1 \in Q \mid T_N(c_1) = T_N(0)\}, I_N^0 = \{c_1 \in Q \mid I_N(c_1) = I_N(0)\}, F_N^0 = \{c_1 \in Q \mid F_N(c_1) = F_N(0)\}$ of \mathfrak{F} are left (right) ideals.

Proof: For $l_0, w_0 \in T_N^0 \cap I_N^0 \cap F_N^0$, we have $T_N(l_0 - w_0) \leq T_N(l_0) \vee T_N(w_0) = T_N(0)$, $I_N(l_0 - w_0) \geq I_N(l_0) \wedge I_N(w_0) = I_N(0)$ and $F_N(l_0 - w_0) \leq F_N(l_0) \vee F_N(w_0) = F_N(0)$. So $l_0 - w_0 \in T_N^0 \cap I_N^0 \cap F_N^0$.

For $s \in \mathfrak{S}$, we have $T_N(sl_0 - s(w_0 - l_0)) \leq T_N(l_0) = T_N(0), I_N(sl_0 - s(w_0 - l_0)) \geq I_N(l_0) = I_N(0)$ and $F_N(sl_0 - s(w_0 - l_0)) \leq F_N(l_0) = F_N(0)$. So $sl_0 - s(w_0 - l_0) \in T_N^0 \cap I_N^0 \cap F_N^0$. Therefore T_N^0, I_N^0 and F_N^0 are left ideals.

Theorem 4.8. Let $\mathfrak{F}_J := \frac{\mathfrak{F}}{(T_J, I_J, F_J)}$ and $\mathfrak{F}_W := \frac{\mathfrak{F}}{(T_W, I_W, F_W)}$ be the neutrosophic \varkappa -structures in \mathfrak{F} . If $\mathfrak{F}_J, \mathfrak{F}_W \in \mathcal{N}_{\mathfrak{L}}(\mathfrak{F})(\mathcal{N}_{\mathfrak{R}}(\mathfrak{F}))$, then $\mathfrak{F}_J \cap \mathfrak{F}_W \in \mathcal{N}_{\mathfrak{L}}(\mathfrak{F})(\mathcal{N}_{\mathfrak{R}}(\mathfrak{F}))$.

Proof: Let $w_1, f_1 \in \mathfrak{S}$. Then

$$T_{J\cap W}(f_1 - w_1) = (T_J \cap T_W)(f_1 - w_1)$$

= $T_J(f_1 - w_1) \lor T_W(f_1 - w_1)$
 $\leq \{T_J(f_1) \lor T_J(w_1)\} \lor \{T_W(f_1) \lor T_W(w_1)\}$
= $(T_J \cap T_W)(f_1) \lor (T_J \cap T_W)(w_1) = T_{J\cap W}(f_1) \lor T_{J\cap W}(w_1),$

$$\begin{split} I_{J\cap W}(f_1 - w_1) &= (I_J \cap I_W)(f_1 - w_1) \\ &= I_J(f_1 - w_1) \wedge I_W(f_1 - w_1) \\ &\geq \{I_J(f_1) \wedge I_J(w_1)\} \wedge \{I_W(f_1) \wedge I_W(w_1)\} \\ &= (I_J \cap I_W)(f_1) \wedge (I_J \cap I_W)(w_1) = I_{J\cap W}(f_1) \wedge I_{J\cap W}(w_1), \\ F_{J\cap W}(f_1 - w_1) &= (F_J \cap F_W)(f_1 - w_1) \\ &= F_J(f_1 - w_1) \vee F_W(f_1 - w_1) \\ &\leq \{F_J(f_1) \vee F_J(w_1)\} \vee \{F_W(f_1) \vee F_W(w_1)\} \\ &= (F_J \cap F_W)(f_1) \vee (F_J \cap F_W)(w_1) = F_{J\cap W}(f_1) \vee F_{J\cap W}(w_1). \end{split}$$

For $s_1 \in \mathfrak{S}$, we have

$$\begin{split} T_{J\cap W}(s_1w_1 - s_1(f_1 - w_1)) &= (T_J \cap T_W)(s_1w_1 - s_1(f_1 - w_1)) \\ &= T_J(s_1w_1 - s_1(f_1 - w_1)) \lor T_W(s_1w_1 - s_1(f_1 - w_1)) \\ &\leq T_J(w_1) \lor T_W(w_1) = (T_J \cap T_W)(w_1), \\ I_{J\cap W}(s_1w_1 - s_1(f_1 - w_1)) &= (I_J \cap I_W)(s_1w_1 - s_1(f_1 - w_1)) \\ &= I_J(s_1w_1 - s_1(f_1 - w_1)) \land I_W(s_1w_1 - s_1(f_1 - w_1)) \\ &\geq I_J(w_1) \land I_W(w_1) = (I_J \cap I_W)(w_1), \\ F_{J\cap W}(s_1w_1 - s_1(f_1 - w_1)) &= (F_J \cap F_W)(s_1w_1 - s_1(f_1 - w_1)) \\ &= F_J(s_1w_1 - s_1(f_1 - w_1)) \lor F_W(s_1w_1 - s_1(f_1 - w_1)) \\ &\leq F_J(w_1) \lor F_W(w_1) = (F_J \cap F_W)(w_1). \end{split}$$

So, $\Im_J \cap \Im_W \in \mathscr{N}_{\mathfrak{L}}(\mathfrak{I}).$

Hereafter, the symbols \Im and \Im' denote the near-subtraction semigroups.

Definition 4.9. A homomorphism ξ of \mathfrak{F} into \mathfrak{F}' such that $\xi(w_1 - a_1) = \xi(w_1) - \xi(a_1)$ and $\xi(w_1a_1) = \xi(w_1)\xi(a_1) \ \forall w_1, a_1 \in \mathfrak{F}$ is defined.

Definition 4.10. Consider a mapping $\Omega : \mathbb{N} \to \mathbb{M}$, where $\mathbb{N}, \mathbb{M} \neq \{\phi\}$. Suppose $\mathbb{M}_S := \frac{\mathbb{M}}{(T_S, I_S, F_S)}$ over \mathbb{M} is a neutrosophic \varkappa -structure. Then, under Ω , the preimage of \mathbb{M}_S is described as a neutrosophic \varkappa -structure $\Omega^{-1}(\mathbb{M}_S) = \frac{\mathbb{N}}{(\Omega^{-1}(T_S), \Omega^{-1}(I_S), \Omega^{-1}(F_S))}$ over \mathbb{N} , where $\Omega^{-1}(T_S)(l_0) = T_S(\Omega(l_0)), \ \Omega^{-1}(I_S)(l_0) = I_S(\Omega(l_0))$ and $\Omega^{-1}(F_S)(l_0) = F_S(\Omega(l_0))$ for all $l_0 \in \mathbb{N}$.

Theorem 4.11. Let $\Omega : \mathfrak{T} \to \mathfrak{T}'$ be a homomorphism of NSS. If $\mathfrak{T}'_S \in \mathscr{N}_{\mathfrak{T}}(\mathfrak{T}')$, where $\mathfrak{T}'_S := \frac{\mathfrak{T}'}{(T_S, I_S, F_S)}$, then $\Omega^{-1}(\mathfrak{T}'_S) \in \mathscr{N}_{\mathfrak{T}}(\mathfrak{T})$.

Proof: Let $k_0, g_0 \in \mathfrak{S}$. Then

$$\Omega^{-1}(T_S)(k_0 - g_0) = T_S(\Omega(k_0 - g_0)) = T_S(\Omega(k_0) - \Omega(g_0))$$

$$\leq T_S(\Omega(k_0)) \vee T_S(\Omega(g_0)) = \Omega^{-1}(T_S)(k_0) \vee \Omega^{-1}(T_S)(g_0),$$

G. Muhiuddin et al., Properties of neutrosophic \varkappa -ideals in subtraction semigroups

$$\Omega^{-1}(I_S)(k_0 - g_0) = I_S(\Omega(k_0 - g_0)) = I_S(\Omega(k_0) - \Omega(g_0))$$

$$\geq I_S(\Omega(k_0)) \wedge I_S(\Omega(g_0)) = \Omega^{-1}(I_S)(k_0) \wedge \Omega^{-1}(I_S)(g_0),$$

$$\Omega^{-1}(F_S)(k_0 - g_0) = F_S(\Omega(k_0 - g_0)) = F_S(\Omega(k_0) - \Omega(g_0))$$

$$\leq F_S(\Omega(k_0)) \vee F_S(\Omega(g_0)) = \Omega^{-1}(F_S)(k_0) \vee \Omega^{-1}(F_S)(g_0).$$

Let $q_0 \in \mathfrak{S}$. Then

$$\begin{split} \Omega^{-1}(T_S)(q_0k_0 - q_0(g_0 - k_0)) &= T_S(\Omega(q_0k_0 - q_0(g_0 - k_0))) \\ &= T_S(\Omega(q_0k_0) - \Omega(q_0(g_0 - k_0))) \\ &= T_S(\Omega(q_0)\Omega(k_0) - \Omega(q_0)(\Omega(g_0) - \Omega(k_0))) \\ &\leq T_S(\Omega(k_0)) = \Omega^{-1}(T_S)(k_0), \\ \Omega^{-1}(I_S)(q_0k_0 - q_0(g_0 - k_0)) = I_S(\Omega(q_0k_0 - q_0(g_0 - k_0))) \\ &= I_S(\Omega(q_0k_0) - \Omega(q_0(g_0 - k_0))) \\ &= I_S(\Omega(q_0)\Omega(k_0) - \Omega(q_0)(\Omega(g_0) - \Omega(k_0))) \\ &\geq I_S(\Omega(k_0)) = \Omega^{-1}(I_S)(k_0), \\ \Omega^{-1}(F_S)(q_0k_0 - q_0(g_0 - k_0)) = F_S(\Omega(q_0k_0 - q_0(g_0 - k_0))) \\ &= F_S(\Omega(q_0k_0) - \Omega(q_0(g_0 - k_0))) \\ &= F_S(\Omega(q_0k_0) - \Omega(q_0(g_0 - k_0))) \\ &= F_S(\Omega(q_0)\Omega(k_0) - \Omega(q_0)(\Omega(g_0) - \Omega(k_0))) \\ &\leq F_S(\Omega(k_0)) = \Omega^{-1}(F_S)(k_0). \end{split}$$

Also,

$$\begin{split} \Omega^{-1}(T_S)(k_0g_0) &= T_S(\Omega(k_0g_0) = T_S(\Omega(k_0)\Omega(g_0)) \le T_S(\Omega(k_0)) = \Omega^{-1}(T_S)(k_0), \\ \Omega^{-1}(I_S)(k_0g_0) &= I_S(\Omega(k_0g_0) = I_S(\Omega(k_0)\Omega(g_0)) \ge I_S(\Omega(k_0)) = \Omega^{-1}(I_S)(k_0), \\ \Omega^{-1}(F_S)(k_0g_0) &= F_S(\Omega(k_0g_0) = F_S(\Omega(k_0)\Omega(g_0)) \le F_S(\Omega(k_0)) = \Omega^{-1}(F_S)(k_0). \\ \text{So, } \Omega^{-1}(\Im'_S) \in \mathscr{N}_{\mathfrak{I}}(\Im). \end{split}$$

Definition 4.12. Consider a onto map $\Omega : \mathbb{N} \to \mathbb{M}$, where $\mathbb{N}, \mathbb{M} \neq \{\phi\}$. Suppose $\mathbb{N}_{\mathscr{B}} := \frac{\mathbb{N}}{(T_{\mathscr{B}}, I_{\mathscr{B}}, F_{\mathscr{B}})}$ over \mathbb{N} is a neutrosophic \varkappa -structure. Then, under Ω , the image of $\mathbb{N}_{\mathscr{B}}$ is described as a neutrosophic \varkappa -structure

$$\Omega(\mathbb{N}_{\mathscr{B}}) = \frac{\mathbb{M}}{(\Omega(T_{\mathscr{B}}), \Omega(I_{\mathscr{B}}), \Omega(F_{\mathscr{B}}))}$$

over \mathbb{M} , where, for all $y_2 \in \mathbb{M}$,

$$\Omega(T_{\mathscr{B}})(y_2) = \bigwedge_{y_1 \in \Omega^{-1}(y_2)} T_{\mathscr{B}}(y_1),$$

$$\Omega(I_{\mathscr{B}})(y_2) = \bigvee_{y_1 \in \Omega^{-1}(y_2)} I_{\mathscr{B}}(y_1),$$

$$\Omega(F_{\mathscr{B}})(y_2) = \bigwedge_{y_1 \in \Omega^{-1}(y_2)} F_{\mathscr{B}}(y_1).$$

Theorem 4.13. Let $\xi : \mathfrak{T} \to \mathfrak{T}'$ be an onto homomorphism of NSS and $\mathfrak{T}'_{\mathscr{Z}} := \frac{\mathfrak{T}'}{(T_{\mathscr{Z}}, I_{\mathscr{Z}}, F_{\mathscr{Z}})}$ is a neutrosophic \varkappa -structure of \mathfrak{T}' . If $\xi^{-1}(\mathfrak{T}'_{\mathscr{Z}}) \in \mathscr{N}_{\mathfrak{I}}(\mathfrak{T})$, then $\mathfrak{T}'_{\mathscr{Z}} \in \mathscr{N}_{\mathfrak{I}}(\mathfrak{T}')$.

$$\begin{aligned} \text{Proof: Let } v'_{0}, r'_{0} \in \mathfrak{I}'. \text{ Then } \exists v_{0}, r_{0} \in \mathfrak{I} \text{ such that } \xi(v_{0}) = v'_{0} \text{ and } \xi(r_{0}) = r'_{0}. \text{ Now,} \\ T_{\mathscr{Z}}(v'_{0} - r'_{0}) = T_{\mathscr{Z}}(\xi(v_{0}) - \xi(r_{0})) = T_{\mathscr{Z}}(\xi(v_{0} - r_{0})) = \xi^{-1}(T_{\mathscr{Z}})(v_{0} - r_{0}) \\ &\leq \xi^{-1}(T_{\mathscr{Z}})(v_{0}) \lor \xi^{-1}(T_{\mathscr{Z}})(r_{0}) \\ &= T_{\mathscr{Z}}(\xi(v_{0})) \lor T_{\mathscr{Z}}(\xi(r_{0})) \\ &= T_{\mathscr{Z}}(\xi(v_{0})) \lor T_{\mathscr{Z}}(\xi(r_{0})) \\ &= \xi^{-1}(I_{\mathscr{Z}})(v_{0}) \land \xi^{-1}(I_{\mathscr{Z}})(r_{0}) \\ &\geq \xi^{-1}(I_{\mathscr{Z}})(v_{0}) \land \xi^{-1}(I_{\mathscr{Z}})(r_{0}) \\ &= I_{\mathscr{Z}}(\xi(v_{0})) \land I_{\mathscr{Z}}(\xi(r_{0})) \\ &= I_{\mathscr{Z}}(v'_{0}) \land I_{\mathscr{Z}}(r'_{0}), \\ F_{\mathscr{Z}}(v'_{0} - r'_{0}) = F_{\mathscr{Z}}(\xi(v_{0}) - \xi(r_{0})) = F_{\mathscr{Z}}(\xi(v_{0} - r_{0})) = \xi^{-1}(F_{\mathscr{Z}})(v_{0} \lor \xi^{-1}(F_{\mathscr{Z}})(r_{0}) \\ &= F_{\mathscr{Z}}(\xi(v_{0})) \lor F_{\mathscr{Z}}(\xi(r_{0})) \\ &= F_{\mathscr{Z}}(\xi(v_{0})) \lor F_{\mathscr{Z}}(\xi(v_{0})) \\ &= F_{\mathscr{Z}}(\xi(v_{0})) \lor F_{\mathscr{Z}}(\xi(v_{0})) \\ &= F_{\mathscr{Z}}(\xi(v_{0})) \lor F_{\mathscr{Z}}(\xi$$

Let
$$s'_0 \in \mathfrak{S}'$$
. Then $\exists s \in \mathfrak{S}$ such that $\xi(s) = s'_0$. Now
 $T_{\mathscr{X}}(s'_0v'_0 - s'_0(r'_0 - v'_0)) = T_{\mathscr{X}}(\xi(s)\xi(v_0) - \xi(s)(\xi(r_0) - \xi(v_0)))$
 $= T_{\mathscr{X}}(\xi(sv_0) - \xi(s)\xi(r_0 - v_0)))$
 $= T_{\mathscr{X}}(\xi(sv_0) - \xi(s(r_0 - v_0)))$
 $= \xi^{-1}(T_{\mathscr{X}})(sv_0 - s(r_0 - v_0)) \leq \xi^{-1}(T_{\mathscr{X}})(v_0) = T_{\mathscr{X}}(\xi(v_0)) = T_{\mathscr{X}}(v'_0),$
 $I_{\mathscr{X}}(s'_0v'_0 - s'_0(r'_0 - v'_0)) = I_{\mathscr{X}}(\xi(s)\xi(v_0) - \xi(s)(\xi(r_0) - \xi(v_0)))$
 $= I_{\mathscr{X}}(\xi(sv_0) - \xi(s)\xi(r_0 - v_0))$
 $= I_{\mathscr{X}}(\xi(sv_0) - \xi(s(r_0 - v_0)))$
 $= I_{\mathscr{X}}(\xi(sv_0 - s(r_0 - v_0)))$
 $= \xi^{-1}(I_{\mathscr{X}})(sv_0 - s(r_0 - v_0)) \geq \xi^{-1}(I_{\mathscr{X}})(v_0) = I_{\mathscr{X}}(\xi(v_0)) = I_{\mathscr{X}}(v'_0),$
 $F_{\mathscr{X}}(s'_0v'_0 - s'_0(r'_0 - v'_0)) = F_{\mathscr{X}}(\xi(s)\xi(v_0) - \xi(s)(\xi(r_0 - \xi(v_0))))$
 $= F_{\mathscr{X}}(\xi(sv_0) - \xi(s(r_0 - v_0)))$
 $= F_{\mathscr{X}}(\xi(sv_0) - \xi(s(r_0 - v_0)))$
 $= F_{\mathscr{X}}(\xi(sv_0) - \xi(s(r_0 - v_0)))$
 $= F_{\mathscr{X}}(\xi(sv_0 - s(r_0 - v_0)))$
 $= F_{\mathscr{X}}(\xi(sv_0 - s(r_0 - v_0)))$
 $= F_{\mathscr{X}}(\xi(sv_0 - s(r_0 - v_0)))$

Also,

$$\begin{split} T_{\mathscr{Z}}(v_0'r_0') &= T_{\mathscr{Z}}(\xi(v_0r_0)) = \xi^{-1}(T_{\mathscr{Z}})(v_0r_0) \leq \xi^{-1}(T_{\mathscr{Z}})(v_0) = T_{\mathscr{Z}}(\xi(v_0)) = T_{\mathscr{Z}}(v_0'),\\ I_{\mathscr{Z}}(v_0'r_0') &= I_{\mathscr{Z}}(\xi(v_0r_0)) = \xi^{-1}(I_{\mathscr{Z}})(v_0r_0) \geq \xi^{-1}(I_{\mathscr{Z}})(v_0) = I_{\mathscr{Z}}(\xi(v_0)) = I_{\mathscr{Z}}(v_0'),\\ F_{\mathscr{Z}}(v_0'r_0') &= F_{\mathscr{Z}}(\xi(v_0r_0)) = \xi^{-1}(F_{\mathscr{Z}})(v_0r_0) \leq \xi^{-1}(F_{\mathscr{Z}})(v_0) = F_{\mathscr{Z}}(\xi(v_0)) = F_{\mathscr{Z}}(v_0').\\ \text{So, } \Im_{\mathscr{Z}}' \in \mathscr{N}_{\mathfrak{I}}(\Im'). \end{split}$$

Definition 4.14. A neutrosophic \varkappa - structure $\Im_{\mathscr{B}} := \frac{\Im}{(T_{\mathscr{B}}, I_{\mathscr{B}}, F_{\mathscr{B}})}$ is defined to fulfils the sup property in \Im if $\forall S \subseteq \Im, \exists l_0 \in S : T_{\mathscr{B}}(l_0) = \bigwedge_{l \in S} T_{\mathscr{B}}(l); I_{\mathscr{B}}(l_0) = \bigvee_{l \in S} I_{\mathscr{B}}(l); F_{\mathscr{B}}(l_0) = \bigwedge_{l \in S} F_{\mathscr{B}}(l).$

Proposition 4.15. A homomorphic image of a neutrosophic \varkappa -ideal having sup property is a neutrosophic \varkappa -ideal.

Proof: Let $\varrho : \Im \to \Im'$ be a homomorphism of NSS and let $\Im_{\mathscr{Z}} := \frac{\Im}{(T_{\mathscr{Z}}, I_{\mathscr{Z}}, F_{\mathscr{Z}})}$ of \Im be a neutrosophic \varkappa -ideal having sup property.

Suppose $\varrho(b), \varrho(w) \in \mathfrak{T}'$ and let $b_0 \in \varrho^{-1}(\varrho(b))$ and $w_0 \in \varrho^{-1}(\varrho(w))$ be such that

$$T_{\mathscr{Z}}(b_0) = \bigwedge_{k_0 \in \varrho^{-1}(\varrho(b))} T_{\mathscr{Z}}(k_0), \quad I_{\mathscr{Z}}(b_0) = \bigvee_{k_0 \in \varrho^{-1}(\varrho(b))} I_{\mathscr{Z}}(k_0), \quad F_{\mathscr{Z}}(b_0) = \bigwedge_{k_0 \in \varrho^{-1}(\varrho(b))} F_{\mathscr{Z}}(k_0),$$
$$T_{\mathscr{Z}}(w_0) = \bigwedge_{k_0 \in \varrho^{-1}(\varrho(b))} T_{\mathscr{Z}}(k_0), \quad I_{\mathscr{Z}}(w_0) = \bigvee_{k_0 \in \varrho^{-1}(\varrho(b))} I_{\mathscr{Z}}(k_0), \quad F_{\mathscr{Z}}(w_0) = \bigwedge_{k_0 \in \varrho^{-1}(\varrho(b))} F_{\mathscr{Z}}(k_0).$$

Then

$$\begin{split} \varrho(T_{\mathscr{X}})(\varrho(b) - \varrho(w)) &= \bigwedge_{z \in \varrho^{-1}(\varrho(b) - \varrho(w))} T_{\mathscr{X}}(z) \leq T_{\mathscr{X}}(b_0) \lor T_{\mathscr{X}}(w_0) \\ &= \left(\bigwedge_{k_0 \in \varrho^{-1}(\varrho(b))} T_{\mathscr{X}}(k_0)\right) \lor \left(\bigwedge_{k_0 \in \varrho^{-1}(\varrho(w))} T_{\mathscr{X}}(k_0)\right) \\ &= \varrho(T_{\mathscr{X}})(\varrho(b)) \lor \varrho(T_{\mathscr{X}})(\varrho(w)), \\ \varrho(I_{\mathscr{X}})(\varrho(b) - \varrho(w)) &= \bigvee_{z \in \varrho^{-1}(\varrho(b) - \varrho(w))} I_{\mathscr{X}}(z) \geq I_{\mathscr{X}}(b_0) \land I_{\mathscr{X}}(w_0) \\ &= \left(\bigvee_{k_0 \in \varrho^{-1}(\varrho(b))} I_{\mathscr{X}}(k_0)\right) \land \left(\bigvee_{k_0 \in \varrho^{-1}(\varrho(w))} I_{\mathscr{X}}(k_0)\right) \\ &= \varrho(I_{\mathscr{X}})(\varrho(b)) \land \varrho(I_{\mathscr{X}})(\varrho(w)), \\ \varrho(F_{\mathscr{X}})(\varrho(b) - \varrho(w)) &= \bigwedge_{z \in \varrho^{-1}(\varrho(b) - \varrho(w))} F_{\mathscr{X}}(z) \leq F_{\mathscr{X}}(b_0) \lor F_{\mathscr{X}}(w_0) \\ &= \left(\bigwedge_{k_0 \in \varrho^{-1}(\varrho(b))} F_{\mathscr{X}}(k_0)\right) \lor \left(\bigwedge_{k_0 \in \varrho^{-1}(\varrho(w))} F_{\mathscr{X}}(k_0)\right) \\ &= \varrho(F_{\mathscr{X}})(\varrho(b)) \lor \varrho(F_{\mathscr{X}})(\varrho(w)). \end{split}$$

Given $\varrho(s) \in \mathfrak{I}'$ and let $s_0 \in \varrho^{-1}(\varrho(s))$. Then
$$\begin{split} \varrho(T_{\mathscr{X}})(\varrho(s)\varrho(b) - \varrho(s)(\varrho(w) - \varrho(b))) &= \bigwedge_{z \in \varrho^{-1}(\varrho(s)\varrho(b) - \varrho(s)(\varrho(w) - \varrho(b)))} T_{\mathscr{X}}(z) \\ &\leq T_{\mathscr{X}}(b_0) = \bigwedge_{k_0 \in \varrho^{-1}(\varrho(b))} T_{\mathscr{X}}(k_0) = \varrho(T_{\mathscr{X}})(\varrho(b)), \end{split}$$

$$\begin{split} \varrho(I_{\mathscr{X}})(\varrho(s)\varrho(b) - \varrho(s)(\varrho(w) - \varrho(b))) &= \bigvee_{z \in \varrho^{-1}(\varrho(s)\varrho(b) - \varrho(s)(\varrho(w) - \varrho(b))))} I_{\mathscr{X}}(z) \\ &\geq I_{\mathscr{X}}(b_0) = \bigvee_{k_0 \in \varrho^{-1}(\varrho(b))} I_{\mathscr{X}}(k_0) = \varrho(I_{\mathscr{X}})(\varrho(b)), \end{aligned}$$

$$\begin{split} \varrho(F_{\mathscr{X}})(\varrho(s)\varrho(b) - \varrho(s)(\varrho(w) - \varrho(b)))) &= \bigwedge_{z \in \varrho^{-1}(\varrho(s)\varrho(b) - \varrho(s)(\varrho(w) - \varrho(b))))} F_{\mathscr{X}}(z) \\ &\leq F_{\mathscr{X}}(b_0) = \bigwedge_{k_0 \in \varrho^{-1}(\varrho(b))} F_{\mathscr{X}}(k_0) = \varrho(F_{\mathscr{X}})(\varrho(b)). \end{split}$$

Also,

$$\begin{split} \varrho(T_{\mathscr{Z}})(\varrho(b)\varrho(w)) &= \bigwedge_{z \in \varrho^{-1}(\varrho(b)\varrho(w))} T_{\mathscr{Z}}(z) \leq T_{\mathscr{Z}}(b_0) = \bigwedge_{k_0 \in \varrho^{-1}(\varrho(b))} T_{\mathscr{Z}}(k_0) = \varrho(T_{\mathscr{Z}})(\varrho(b)),\\ \varrho(I_{\mathscr{Z}})(\varrho(b)\varrho(w)) &= \bigvee_{z \in \varrho^{-1}(\varrho(b)\varrho(w))} I_{\mathscr{Z}}(z) \geq I_{\mathscr{Z}}(b_0) = \bigvee_{k_0 \in \varrho^{-1}(\varrho(b))} I_{\mathscr{Z}}(k_0) = \varrho(I_{\mathscr{Z}})(\varrho(b)),\\ \varrho(F_{\mathscr{Z}})(\varrho(b)\varrho(w)) &= \bigwedge_{z \in \varrho^{-1}(\varrho(b)\varrho(w))} F_{\mathscr{Z}}(z) \leq F_{\mathscr{Z}}(b_0) = \bigwedge_{k_0 \in \varrho^{-1}(\varrho(b))} F_{\mathscr{Z}}(k_0) = \varrho(F_{\mathscr{Z}})(\varrho(b)). \end{split}$$

Hence $\rho(\mathfrak{G}_{\mathscr{Z}})$ is a neutrosophic \varkappa -ideal of $\rho(\mathfrak{G})$.

5. Conclusion

We defined and examined neutrosophic \varkappa - ideals in near-subtraction semigroups in this article. We formed ideals for a neutrosophic \varkappa - ideal in a near-subtraction semigroup, and we also obtained various aspects of the neutrosophic \varkappa - image as well as the neutrosophic \varkappa - preimage of a near-subtraction semigroup using homomorphism mapping. In our future research work, we will explore the notion of a neutrosophic \varkappa - prime ideal and its related properties in near-subtraction semigroups using the ideas and findings presented in this paper.

Acknowledgments

The authors express their sincere thanks to the referees for valuable comments and suggestions which improve the paper a lot.

References

- Dheena, P.; Satheesh kumar, G. On strongly regular near-subtraction semigroups. Commun. Korean Math. Soc. 2007, 22(3), 323–330.
- Elavarasan, B.; Porselvi, K.; Jun, Y.B. Hybrid generalized bi-ideals in semigroups. International Journal of Mathematics and Computer Science 2019, 14(3), 601–612.
- G. Muhiuddin et al., Properties of neutrosophic *z*-ideals in subtraction semigroups

- Elavarasan, B.; Jun, Y.B. Hybrid ideals in semirings. Advances in Mathematics: Scientific Journal 2020, 9(3), 1349–1357.
- Elavarasan, B.; Muhiuddin, G.; Porselvi, K.; Jun, Y. B. Hybrid structures applied to ideals in near-rings. Complex & Intell Syst. 2021, 7(3), 1489–1498.
- Elavarasan, B.; Jun, Y. B. Regularity of semigroups in terms of hybrid ideals and hybrid bi-ideals. Kragujev. J. Math. 2022, 46(6), 857–864.
- Elavarasan, B.; Smarandache, F.; Jun, Y. B. Neutrosophic ≈-ideals in semigroups. Neutrosophic Sets and Systems 2019, 28, 274 –280.
- Elavarasan, B.; Porselvi, K.; Smarandache, F.; Jun, Y. B.; Muhiuddin, G. Neutrosophic N-filters in semigroups. Neutrosophic Sets and Systems 2022, 50, 515 –531.
- 8. Hezam, I. M. An Intelligent Decision Support Model for Optimal Selection of Machine Tool under Uncertainty: Recent Trends. Neutrosophic Systems with Applications 2023, 3, 35 – 44.
- Jdid, M.; Smarandache, F.; Broumi, S. Inspection Assignment Form for Product Quality Control Using Neutrosophic Logic. Neutrosophic Systems with Applications 2023, 1, 4–13.
- 10. Jun, Y. B.; Kim, H. S. On ideals in subtraction algebras. Sci. Math. Jpn. 2007, 65(1), 129–134.
- Jun, Y. B.; Kim, H. S.; Roh, E. H. Ideal theory of subtraction algebras. Sci. Math. Jpn. 2005, 61(3), 459–464.
- Jun, Y. B.; Song, S. Z.; Muhiuddin, G. Hybrid structures and applications. Annals of communications in Mathematics. 2018, 1(1), 11–25.
- Khan, M.; Anis, S.; Smarandache, F.; Jun, Y. B. Neutrosophic *κ*-structures and their applications in semigroups. Annals of Fuzzy Mathematics and Informatics 2017, 14(6), 583 – 598.
- Lee, K. J.; Park, C. H. Some questions on fuzzifications of ideals in subtraction algebras. Commun. Korean Math. Soc. 2007, 22(3), 359–363.
- Meenakshi, S.; Muhiuddin, G.; Elavarasan, B.; Al-Kadi, D. Hybrid ideals in near-subtraction semigroups. AIMS Mathematics 2022, 7(7), 13493–13507.
- 16. Molodtsov, D. Soft set theory-first results. Comput. Math. Appl. 1999, 37, 19–31.
- Muhiuddin, G.; Grace John, J. C.; Elavarasan, B.; Jun, Y. B.; Porselvi, K. Hybrid structures applied to modules over semirings. J. Intell. Fuzzy Syst. 2022, 42(3), 2521–2531.
- Muhiuddin, G.; Catherine Grace John, J.; Elavarasan, B.; Porselvi, K.; Al-Kadi, D. Properties of k-hybrid ideals in ternary semiring. J Intell Fuzzy Syst. 2022, 42(6), 5799–5807.
- Muhiuddin, G.; Porselvi, K.; Elavarasan, B.; Al-Kadi, D. Neutrosophic N-Structures in Ordered Semigroups. Computer Modeling in Engineering and Sciences 2022, 130(3).
- Porselvi, K.; Elavarasan, B. On hybrid interior ideals in semigroups. Probl. Anal. Issues Anal. 2019, 8(26)(3), 137 –146.
- Porselvi, K.; Elavarasan, B.; Jun, Y. B. Hybrid Interior Ideals in Ordered Semigroups. New Math. Nat. Comput. 2022, 18(1), 1 –8.
- Porselvi, K.; Muhiuddin, G.; Elavarasan, B.; Assiry, A. Hybrid Nil Radical of a Ring. Symmetry 2022, 14(7), 1367.
- Porselvi, K.; Muhiuddin, G.; Elavarasan, B.; Jun, Y. B.; Catherine Grace John, J. Hybrid ideals in an AG-groupoid. New Math. Nat. Comput. 2023, 19(1), 289 – 305.
- Porselvi, K.; Elavarasan, B.; Smarandache, F.; Jun, Y. B. Neutrosophic z-bi-ideals in semigroups. Neutrosophic Sets and Systems 2020, 35, 422–434.
- Porselvi, K.; Elavarasan, B.; Smarandache, F. Neutrosophic *κ*-interior ideals in semigroups. Neutrosophic Sets and Systems 2020, 36, 70 − 80.
- 26. Schein, B.M. Difference Semigroups. Commun. Algebra. 1992, 20(8), 2153-2169.
- Sleem, A.; Mostafa, N.; Elhenawy, I. Neutrosophic CRITIC MCDM Methodology for Ranking Factors and Needs of Customers in Product's Target Demographic in Virtual Reality Metaverse. Neutrosophic Systems with Applications 2023, 2, 55–65.
- Williams, D. R. P. Fuzzy ideals in near-subtraction semigroups. International scholarly and scientific research and innovation 2008, 2(7), 625–632.
- 29. Zelinka, B. Subtraction Semigroups. Math. Bohem. 1995, 120(4), 445-447.
- 30. Zadeh, L. A. Fuzzy sets. Information and Control 1965, 8, 338–353.

Received: July 1, 2023. Accepted: Nov 19, 2023