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Abstract. Tarski associative groupoid (TA-groupoid) and Tarski associative neutrosophic extended triplet

groupoid (TA-NET-groupoid) are two interesting structures in non-associative algebra. In this paper, a new

concept of TA-group is proposed based on TA-groupoid, as a special quasi TA-Neutrosophic extended triplet, its

related properties are investigated and the relationship between TA-group and regular TA-groupoid is described

in more detail. Moreover, the decomposition theorem of inverse TA-groupoid is proved. Finally, some concrete

examples are provided to reveal that the relations among all kinds of TA-groupoids.
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—————————————————————————————————————————-

1. Introduction

Associative law is a kind of operation law describing symmetry in algebraic systems. Groups

and semigroups are two typical algebraic systems which satisfy associative law ([1–3]). In re-

cent years, with the wide application of algebraic systems in various fields ([4–6]), many kinds

of non-associative algebraic structures have been studied in order to explore more general-

ized symmetries and operation laws in algebras. Among them, Abel-Grassmann’s groupoid

(AG-groupoid), Cyclic associative groupoid (CA-groupoid) and TA-groupoid have been widely

discussed.

AG-groupoid([7]) is a non-associative groupoid satisfying the condition (xy)z = (zy)x.

Based on this research, a series of AG-groupoid satisfying different conditions have been

proposed([8–10]). In 1954, the term “cyclic associative law” was used in Sholander’s
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article([11]) to represent the operating law: (xy)z = (yz)x. Subsequently, many scholars

systematically studied the relevant algebraic structures satisfying cyclic associative law.

If a semigroup satisfies x(yz) = x(zy), it can be called right commutative. On this basis, the

association law is added, then the following equation holds: (xy)z = x(zy) (Tarski associative

law). Tarski associative law is actually a special case of generalized associative law proposed

by Suschkewitsch ([12]) as early as 1929. Accordingly, Xiaohong Zhang proposed the concept

of TA-groupoid in 2020 and studied its related properties([13]).

In addition, based on the relevant theory of Neutrosophic set([14]) proposed in 1995,

Smarandache put forward a new algebraic structure of the neutrosophic extended triplet group

(NETG) ([15]). Subsequently, domestic and foreign scholars carried out a lot of research on

this basis. Among them, Xiaohong Zhang clarified some theoretical knowledge of TA-NET-

groupoid in 2020 by adding local identity elements and local inverse elements to the NETGs

and combining with TA-groupoid, laying a theoretical foundation for the research of related

algebraic structures. Xiaogang An et al. concluded that TA-NET-groupoid is a semigroup,

and explained the relationship between regular TA-groupoid and Tarski associative neutro-

sophic extended triplet groupoid (TA-NET-groupoid)([16]). The research of these scholars

greatly promoted the further development of algebra. In order to further study the structure

of regular TA-groupoid, the TA-group and inverse TA-groupoid are proposed, properties of

TA-group and the relations between different TA-groupoids are studied in detail in this paper.

This paper is organized as follows. In Section 2, some basic definitions and properties of

TA-groupoid and TA-NET-groupoid are recalled. In TA-groupoid, there is a special class of

groupoid with several right identity elements, which we call TA-group. Thus, the concept

of TA-group is put forward first in Section 3, which is followed with the discussion of some

structural properties of TA-group and the relationship between TA-group and other algebraic

structures. We then summarize our paper and indicate the next research direction at last.

2. Preliminaries

Definition 2.1 ([13]). If a groupoid (S, ∗) satisfies Tarski associative law: ∀x, y, z ∈ S, (x ∗
y) ∗ z = x ∗ (z ∗ y), then S is said as a Tarski associative groupoid (shortly TA-groupoid).

A TA-groupoid (S, ∗) is called locally associative ([13]) if ∀m ∈ S, (m∗m)∗m = m∗(m∗m).

Then TA-groupoid is locally associative.

Proposition 2.1 ([13]). Let (S, ∗) be a TA-groupoid. Then ∀a, b, c, d, e, f ∈ S,

(1) (a ∗ b) ∗ (c ∗ d) = (a ∗ d) ∗ (c ∗ b);
(2) ((a ∗ b) ∗ (c ∗ d)) ∗ (e ∗ f) = (a ∗ d) ∗ ((e ∗ f) ∗ (c ∗ b)).

Definition 2.2 ([15, 17]). If S is a non-empty set under the binary operation ∗, for any

m ∈ S, there are neut(m) and anti(m), s.t. neut(m) ∈ S, anti(m) ∈ S, and m ∗ neut(m) =
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neut(m) ∗m = m; m ∗ anti(m) = anti(m) ∗m = neut(m). Then S is said as a neutrosophic

extended triplet set.

Annotation: For any m ∈ S, neither neut(m) nor anti(m) is unique. Thus {neut(m)} and

{anti(m)} are used to denote the sets of neut(m) and anti(m), respectively.

Definition 2.3 ([13]). Let (G, ∗) be a neutrosophic extended triplet set. If

(1) ∀x, y ∈ G, x ∗ y ∈ G;

(2) ∀x, y, z ∈ G, (x ∗ y) ∗ z = x ∗ (z ∗ y).
Then, we say that (G, ∗) is a Tarski associative neutrosophic extended triplet groupoid (or

TA-NET-groupoid). A TA-NET-groupoid satisfying the commutative law is a commutative

TA-NET-groupoid.

Theorem 2.1 ([13]). Let (G, ∗) be a TA-NET-groupoid. Then ∀w ∈ G,

(1) neut(w) ∗ neut(w) = neut(w);

(2) neut(neut(w)) = neut(w);

(3) anti(neut(w)) ∈ {anti(neut(w))}, w = anti(neut(w)) ∗ w.

Theorem 2.2 ([13]). Let (G, ∗) be a TA-NET-groupoid. Then ∀w ∈ G, ∀p, q ∈
{anti(w)},∀anti(w) ∈ {anti(w)},
(1) p ∗ (neut(w)) = neut(w) ∗ q;
(2) anti(neut(w)) ∗ anti(w) ∈ {anti(w)};
(3) neut(w) ∗ anti(q) = w ∗ neut(q);
(4) neut(p) ∗ neut(w) = neut(w) ∗ neut(p) = neut(w);

(5) (q ∗ neut(w)) ∗ w = w ∗ (neut(w) ∗ q) = neut(w);

(6) neut(q) ∗ w = w.

Theorem 2.3 ([13]). If (G, ∗) is a TA-NET-groupoid. E(G) represents the set composed of

all different neutral elements in G, for all e ∈ E(G), G(e) = {a ∈ G|neut(a) = e}. Then,
(1) G(e) is a subgroup of G.

(2) for ∀e1, e2 ∈ E(G), e1 ̸= e2 ⇒ G(e1) ∩G(e2) = ∅.

(3) G = ∪e∈E(G)G(e).

Theorem 2.4 ([16]). A TA-NET-groupoid is a semigroup.

Definition 2.4 ([13]). A TA-groupoid (G, ∗) is said to be left cancellative, if x ∈ G, a, b ∈ G,

x ∗ a = x ∗ b implies a = b.

Definition 2.5 ([13]). A TA-groupoid (G, ∗) is said to be a right cancellative TA-groupoid,

if x ∈ G, a, b ∈ G, a ∗ x = b ∗ x implies a = b. A groupoid is a cancellative TA-groupoid which

is both a left and right cancellative.
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Theorem 2.5 ([13]). Let (G, ∗) be a TA-groupoid. Then

(1) A left cancellative element is a right cancellative element;

(2) Two left cancellative elements are still left cancellative after * operation;

(3) A left cancellative element and a right cancellative element are left cancellative after *

operation;

(4) For any x, y ∈ G, if x ∗ y is right cancellative, then y is right cancellative.

Definition 2.6 ([16]). Assume that (G, ∗) is a TA-groupoid, a ∈ G. Then a is a regular

element of G if there exists x ∈ G such that a ∗ (x ∗ a) = a. The TA-groupoid G is said to be

regular if all its elements are regular.

Definition 2.7 ([2]). A semigroup S is said to be an inverse semigroup, if there is a unary

operation a 7→ a−1 satisfying

(a−1)−1 = a, aa−1a = a,

and for all x, y ∈ S,

(xx−1)(yy−1) = (yy−1)(xx−1).

Theorem 2.6 ([2]). Let S be a semigroup. It is an inverse semigroup iff all its elements have

a unique inverse.

3. TA-Group and Inverse TA-Groupoid

In the following, we propose two new concepts of TA-group and inverse TA-groupoid, and

investigate their properties and structures.

Definition 3.1. Let (S, ∗) be a TA-groupoid. Then, S is called a TA-(r,l)-loop, if for any a ∈ S,

exist two elements neut(r,l)(a) and anti(r,l)(a) in S satisfying the condition: a∗neut(r,l)(a) = a,

anti(r,l)(a) ∗ a = neut(r,l)(a). That is, a ∗ (anti(r,l)(a) ∗ a) = a.

Definition 3.2. Assume that (G, ∗) is a TA-groupoid. G is said to be a Tarski associative

group (or simply TA-group), if

(1) there is a right identity element in G, that is to say, ∃e ∈ G, for all element a ∈ G, a∗e = a;

(2) there is a certain right identity element e ∈ G, for any a ∈ G, there exists an element a′ ∈ G

such that a′ ∗ a = e.

Obviously, by definition 3.1 and 3.2 we know that TA-group is a special TA-(r,l)-loop.

Exmaple 3.1. Let G = {1, 2, 3, 4}. In Table 1, the TA-group (G, ∗) is given. And

1 ∗ 1 = 1, 2 ∗ 1 = 2, 3 ∗ 1 = 3, 4 ∗ 1 = 4;

1 ∗ 1 = 1, 1 ∗ 2 = 1, 3 ∗ 3 = 1, 3 ∗ 4 = 1.
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At this time, right identity element is 1.

1 ∗ 2 = 1, 2 ∗ 2 = 2, 3 ∗ 2 = 3, 4 ∗ 2 = 4;

2 ∗ 1 = 2, 2 ∗ 2 = 2, 4 ∗ 3 = 2, 4 ∗ 4 = 2.

At this time, right identity element is 2.

Table 1. This is a TA-group.

∗ 1 2 3 4

1 1 1 3 3

2 2 2 4 4

3 3 3 1 1

4 4 4 2 2

Theorem 3.1. Let (G, ∗) be a TA-group, e is a right identity element in G. Then

(1) (a, a′ ∈ G, a′ ∗ a = e) ⇒ e ∗ a′ = a′;

(2) (a, a′ ∈ G, a′ ∗ a = e) ⇒ (a ∗ a′) ∗ (a ∗ a′) = a ∗ a′;
(3) (a, a′ ∈ G, a′ ∗ a = e) ⇒ x ∗ (a ∗ a′ = x) for all x ∈ G.

Proof. (1) In order to obtain the conclusion, suppose that a, a′ ∈ G, a′ ∗ a = e. We have

e ∗ a′ = (a′ ∗ a) ∗ a′ = a′ ∗ (a′ ∗ a) = a′ ∗ e = a′.

(2) If a, a′ ∈ G, a′ ∗ a = e. Then by (1),

(a ∗ a) ∗ a′ = (a ∗ a) ∗ (e ∗ a′) = (a ∗ a′) ∗ (e ∗ a) = ((a ∗ a′) ∗ a) ∗ e = (a ∗ a′) ∗ a = a ∗ (a ∗ a′);

a = a ∗ e = a ∗ (a′ ∗ a) = (a ∗ a) ∗ a′.

It follows that a = (a ∗ a) ∗ a′ = a ∗ (a ∗ a′). On the other hand,

a′ ∗ a = a′ ∗ (a ∗ (a ∗ a′)) = (a′ ∗ (a ∗ a′)) ∗ a;

a′ = e ∗ a′ = (a′ ∗ a) ∗ a′ = ((a′ ∗ (a ∗ a′)) ∗ a) ∗ a′

= (a′ ∗ (a ∗ a′)) ∗ (a′ ∗ a) = (a′ ∗ (a ∗ a′)) ∗ e

= a′ ∗ (a ∗ a′).

Therefore,

a ∗ a′ = ((a ∗ a) ∗ a′) ∗ (a′ ∗ (a ∗ a′)) = ((a ∗ a) ∗ (a ∗ a′)) ∗ (a′ ∗ a′)

= ((a ∗ a′) ∗ (a ∗ a)) ∗ (a′ ∗ a′) = (a ∗ a′) ∗ ((a′ ∗ a′) ∗ (a ∗ a))

= (a ∗ a′) ∗ ((a′ ∗ a) ∗ (a ∗ a′)) = (a ∗ a′) ∗ (e ∗ (a ∗ a′))

= ((a ∗ a′) ∗ (a ∗ a′)) ∗ e = (a ∗ a′) ∗ (a ∗ a′).
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(3) Assume that a, a′ ∈ G, a′ ∗ a = e. For any x ∈ G, applying (1) we get that x ∗ (a ∗ a′) =
(x ∗ (a ∗ a′)) ∗ e = x ∗ (e ∗ (a ∗ a′)) = x ∗ ((e ∗ a′) ∗ a) = x ∗ (a′ ∗ a) = x ∗ e = x.

Theorem 3.2. Let (G, ∗) be a TA-groupoid with right identity element. Then it is a semi-

group.

Proof. Let (G, ∗) be a TA-groupoid with right identity element. e is right identity element in

G, for any a, b, c ∈ G, there is,

a ∗ (b ∗ c) = [a ∗ (b ∗ c)] ∗ e

= a ∗ [e ∗ (b ∗ c)]

= (a ∗ b) ∗ (e ∗ c)

= (a ∗ c) ∗ (e ∗ b)(ByProposition2.1)

= a ∗ [(e ∗ b) ∗ c]

= a ∗ [e ∗ (c ∗ b)]

= [a ∗ (c ∗ b)] ∗ e

= a ∗ (c ∗ b).

Then according to Tarski associative law, a ∗ (b ∗ c) = a ∗ (c ∗ b) = (a ∗ b) ∗ c. That is to say,

G satisfies associative law. So G is a semigroup.

Theorem 3.3. Let (G, ∗) be a TA-group. Then it is a regular semigroup.

Proof. Because TA-group is a TA-groupoid with right identity element, according to Theorem

3.2, G is a semigroup. Then according to definition of TA-group, there exists x ∈ G such that

a ∗ (x ∗ a) = a. So G is regular semigroup.

But not every regular semigroup is TA-group, see Example 3.2.

Exmaple 3.2. Let G = {1, 2, 3, 4}. In Table 2, a regular semigroup (G, ∗) is given.

Table 2. This is a regular semigroup.

∗ 1 2 3 4

1 1 1 1 1

2 1 2 3 4

3 3 3 3 3

4 4 4 4 4

But it isn’t TA-group since (2 ∗ 1) ∗ 3 = 1 ̸= 3 = 2 ∗ (3 ∗ 1).
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Theorem 3.4. TA-group is TA-NET-groupoid.

Proof. Let G be a TA-group and e is right identity element of G. Then for all a ∈ G, there

exists x ∈ G such that x ∗ a = e. That is, a ∗ (x ∗ a) = a. On the basis of Theorem 3.2,

a ∗ (a ∗ x) = a. Assume that a ∗ x = neut(a) and x = anti(a), there is, a ∗ neut(a) = a and

a ∗ anti(a) = neut(a) = anti(a) ∗ a. Then neut(a) ∗ a = (a ∗ x) ∗ a = a ∗ (a ∗ x) = a. So

neut(a) ∗ a = a = a ∗ neut(a) and anti(a) ∗ a = neut(a) = a ∗ anti(a). So G is a TA-NET-

groupoid.

But not every TA-NET-groupoid is TA-group, see Example 3.3.

Exmaple 3.3. Let G = {1, 2, 3, 4}. Consider a TA-NET-groupoid in Table 3.

neut(1) = 1, anti(1) = 1;neut(2) = 2, anti(2) = 2;

neut(3) = 3, anti(3) = 3;neut(4) = 4, anti(4) = 4.

Table 3. This is a TA-NET-groupoid.

∗ 1 2 3 4

1 1 1 1 1

2 2 2 3 2

3 4 4 3 4

4 4 4 4 4

But it isn’t TA-group since there isn’t right identity element.

Theorem 3.5. Let (S, ∗) be a TA-group, a, b, c, d, f ∈ S, e is the right identity element in S.

There is,

(1) if a ∗ b = e, e is identity element of a;

(2) ((a ∗ b) ∗ c) ∗ d = a ∗ (d ∗ (c ∗ b));
(3) if a ∗ b = c ∗ d, then a ∗ (d−1 ∗ b) = c.

Proof. (1) If a ∗ b = e, i.e. a is left inverse element of b. Then

a = a ∗ e = a ∗ (a ∗ b) = (a ∗ b) ∗ a = e ∗ a.

That means that e is an identity element of a.

(2) According to Proposition 2.1, ((a ∗ b) ∗ c) ∗ d = (a ∗ b) ∗ (d ∗ c) = (a ∗ c) ∗ (d ∗ b) =

a ∗ ((d ∗ b) ∗ c) = a ∗ (d ∗ (b ∗ c)).
(3) If a∗b = c∗d, there exists d−1 ∈ S s.t. d−1 ∗d = e. Then according to Tarski associative

law,

(a ∗ b) ∗ d−1 = (c ∗ d) ∗ d−1 = c ∗ (d−1 ∗ d) = c ∗ e = c.
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That is to say, a ∗ (d−1 ∗ b) = c.

But right identity element of TA-group isn’t unique, see Example 3.4.

Exmaple 3.4. Let G = {1, 2, 3, 4}. Consider a TA-group in Table 1.

Right identity elements are 1 and 2.

Theorem 3.6. Let (G, ∗) be a TA-group, e be right identity element of G. Then for any

a ∈ G, left inverse element of a relative to e is unique.

Proof. Let a ∈ G and e is right identity element in G. Assume that left inverse element of a

relative to e isn’t unique, that is, there exist b, c ∈ G s.t. b ∗ a = e and c ∗ a = e. Then

b = b ∗ e = b ∗ (c ∗ a) = (b ∗ a) ∗ c = (c ∗ a) ∗ c = c ∗ (c ∗ a) = c ∗ e = c.

So b = c and left inverse element is unique.

Proposition 3.1. Assume that (G, ∗) is a TA-group. There is,

(1) G is right cancellative;

(2) if a ∗ b = e is a right identity element, then b ∗ a = e1 also is a right identity element.

Proof. (1) Assume that (G, ∗) is a TA-group and e is a right identity element in G. For

any a, b ∈ G and there exists y ∈ G s.t. a ∗ y = b ∗ y. And there exists y′ ∈ G s.t.

a ∗ e = a, b ∗ e = b, y ∗ e = y, y′ ∗ y = e. Then

a = a ∗ e = a ∗ (y′ ∗ y) = (a ∗ y) ∗ y′ = (b ∗ y) ∗ y′ = b ∗ (y′ ∗ y) = b ∗ e = b.

So G is right cancellative.

(2) According to Theorem 3.2, TA-group satisfies right commutative law, then for any c ∈ G,

there is,

c ∗ (b ∗ a) = c ∗ (a ∗ b) = c ∗ e = c.

Then b∗a is a right identity element in G, that is, b∗a = e1 is a right identity element in G.

Theorem 3.7. Let G be semigroup. Then it is a TA-group if and only if it satisfies:

(1) ∀a, b ∈ G, there is unique solution to equation x ∗ a = b;

(2) ∀a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (c ∗ b).

Proof. (⇒) Assume that c, d are solutions to equation x ∗ a = b, then c ∗ a = d ∗ a. Because G

is TA-group, according to Proposition 3.1(1), c = d. So there is unique a solution to equation

x ∗ a = b.
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(⇐) For given a ∈ G, there exists e ∈ G s.t. e ∗ a = a. Then e2 ∗ a = e ∗ (e ∗ a) = e ∗ a = a,

because x ∗ a = b has a unique solution, and e2 = e. If there exists e′ s.t. e′ ∗ a = a ∗ e, then
(e′ ∗ a) ∗ e = (a ∗ e) ∗ e = a ∗ e2 = a ∗ e. So e′ ∗ a = a ∗ e = (e′ ∗ a) ∗ e, then a = e′ ∗ a = a ∗ e.
For all b ∈ G, because x ∗ a = e has unique solution, there exists c ∈ G s.t. c ∗ a = b. And

b ∗ e = (c ∗ a) ∗ e = c ∗ (a ∗ e) = c ∗ a = b, so e is right identity element of G.

Let b = e, there exists c ∈ G s.t. c ∗ a = e, that is, c is left inverse element of a relative to

a. So G is TA-group.

Theorem 3.8. Assume that G is TA-groupoid. Then it is TA-group if and only if it satisfies:

(1) e is right identity element in G, that is, ∀a ∈ G, there is, a ∗ e = a;

(2) e is right identity element in G, and there exists right inverse element b ∈ G such that

a ∗ b = e.

Proof. (⇒) Let G be TA-groupoid. According to the definition of TA-group and e is right

identity element in G, ∀a ∈ G, there exist a′ ∈ G, s.t. a ∗ e = a, a′ ∗ a = e. According to

Proposition 3.1, a ∗ a′ = e1 is also a right identity element. So for any a ∈ G, there exist a′, e1

s.t. a ∗ a′ = e1. According to Theorem 3.3, for all a, b, c ∈ G, there is, (a ∗ b) ∗ c = a ∗ (b ∗ c).
(⇐) Let G be a TA-groupoid. Then for any a ∈ G, there exist e, c ∈ G s.t. a∗e = a, a∗c = e.

Accoring to Theorem 3.2, it satisfies right commutative law.

a ∗ (c ∗ a) = a ∗ (a ∗ c) = a ∗ e = a.

That is to say, c ∗ a is local right identity element of a. And ∀b ∈ G,

b ∗ (c ∗ a) = b ∗ (a ∗ c) = b ∗ e = a.

So c ∗ a is right identity element in G, and c is left inverse element of a relative to c ∗ a. Thus
G is TA-group.

In the following, we proposed the notion of TA-subgroup and gave the equivalent charac-

terization of TA-subgroup.

Definition 3.3. Let (G, ∗) be TA-group and S be non-empty subset of G. If S is a TA-group

under operation ∗ on G, then S is called TA-subgroup of G.

Theorem 3.9. The non-empty subset S of G is TA-subgroup if and only if

(1) ∀a, b ∈ S, there is, a ∗ b ∈ S;

(2) e is a right identity element of S, and for all a ∈ S, there is a′ ∈ S s.t. a′ ∗ a = e.
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Proof. (⇒) According to Definition 3.3, (1) and (2) hold.

(⇐) ∀a, b ∈ S, there is, a ∗ b ∈ S, then S is a TA-groupoid. Because e is right identity

element of S, then for any a ∈ S, there is, a ∗ e = a. And there exists a′ ∈ S such that

a′ ∗ a = e. So S is TA-group. Thus, S is TA-subgroup of G.

Theorem 3.10. Commutative TA-group is Abelian group.

Proof. Let (G, ∗) be a TA-group, e is a right identity element in G. According to Theorem 3.3,

G is a commutative semigroup. Then for any a ∈ G, there is x ∈ G s.t. a ∗ e = a, x ∗ a = e.

Then e ∗ a = a ∗ e = a and a ∗ x = x ∗ a = e. So e is identity element of G and x is inverse

element of a. Assume that e′ also is identity element in G, there is, e = e ∗ e′ = e′. That is to

say, identity element is unique. Assume that there exist x, y ∈ G such that x ∗ a = e = y ∗ a,
according to Proposition 3.1, G is right cancellative, and x = y, thus the inverse element is

unique. So G is Abelian group.

Theorem 3.11. If right identity element of TA-group is unique, then

(1) left inverse element is right inverse element;

(2) right identity element is left identity element;

(3) identity element is unique;

(4) inverse element is unique;

(5) it is a group.

Proof. (1) Suppose that (G, ∗) is a TA-group. ∀a ∈ G, ∃a′, a′′ ∈ G, s.t. a ∗ e = a, a′ ∗ a = e.

a′ ∗ e = a′, a′′ ∗ a′ = e. a′′ ∗ e = a′′. Then

e ∗ a = a′′ ∗ a′ ∗ a = a′′ ∗ (a′ ∗ a) = a′′ ∗ e = a′′.

Then

e ∗ a′ = a′′ ∗ a′ ∗ a′ = e ∗ a ∗ a′ ∗ a′,

And

e ∗ a′ = e ∗ a ∗ a′ ∗ a′.

e ∗ a′ ∗ a = e ∗ (a′ ∗ a) = e ∗ e = e.

e ∗ a ∗ a′ ∗ a′ ∗ a = e ∗ a ∗ a′ ∗ e = e ∗ a ∗ (a′ ∗ e) = e ∗ a ∗ a′.

So e = e ∗ a ∗ a′. Because e is unique, then a ∗ a′ = e.

(2) By(1), e ∗ a = (a ∗ a′) ∗ a = a ∗ (a ∗ a′) = a ∗ e = a.

(3) According to (2), right identity element is left identity element and right identity element

is unique, then there exists identity element and it is unique.
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(4) By (1), left inverse element and right inverse element are unique and they are equivalent

to each other. Assume that inverse element of a isn’t unique and there exists y ∈ G s.t.

a ∗ y = e. So a′ = a′ ∗ e = a′ ∗ (a ∗ y) = (a′ ∗ a) ∗ y = e ∗ y = y. That is, inverse element of a is

unique.

(5) By (3) and (4), there are identity element and inverse element in G, and they are unique.

And TA-group satiefies associative law, then G is a group.

Example 3.5 shows that TA-group whose right identity element is unique, and it is a group.

Exmaple 3.5. Let G = {a, b, c, d}, in Table 4, the operation ∗ on G is given. It is both a

TA-group and a group. And

a ∗ a = a, b ∗ a = b = a ∗ b, c ∗ a = c = a ∗ c, d ∗ a = d = a ∗ d.

a ∗ a = a, b ∗ b = a, c ∗ d = a = d ∗ c.

Table 4. This is a group.

∗ a b c d

a a b c d

b b a d c

c c d b a

d d c a b

Remark 3.1. TA-group is regular TA-groupoid.

But not every regular TA-groupoid is TA-group, see Example 3.6.

Exmaple 3.6. Let G = {a, b, c, d}, consider the regular TA-groupoid in Table 5. Since there

is no right identity element, so it isn’t TA-group.

Table 5. This is a regular TA-groupoid.

∗ a b c d

a a a b b

b a a b b

c c c c c

d d d d d

In the next part, the concept and property of inverse TA-groupoid are given.

Definition 3.4. Let G be a regular TA-groupoid. Then for any a ∈ G, there exists x ∈ G s.t.

a ∗ (x ∗ a) = a. G is called an inverse TA-groupoid if x is unique.
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The following Theorem shows that the decomposition theorem of inverse TA-groupoid.

Theorem 3.12. Let G be inverse TA-groupoid. Then it is disjoint union of groups.

Proof. Let x ∗ a = e, then a ∗ e = a. Assume that Ge is composed of element whose local right

identity element is e.

For any a, b, c ∈ Ge, there is,

a ∗ (b ∗ c) = [a ∗ (b ∗ c)] ∗ e = a ∗ [e ∗ (b ∗ c)]

= (a ∗ b) ∗ (e ∗ c) = (a ∗ c) ∗ (e ∗ b)(ByProposition2.1)

= a ∗ [(e ∗ b) ∗ c] = a ∗ [e ∗ (c ∗ b)]

= [a ∗ (c ∗ b)] ∗ e = a ∗ (c ∗ b)

According to Tarski associative law, (a ∗ b) ∗ c = a ∗ (c ∗ b) = a ∗ (b ∗ c). Then it satisfies

associative law.

For any a ∈ Ge, there exists x ∈ G such that a ∗ (x ∗ a) = a. Assume that x ∗ a = e, then

a∗ e = a, a∗ ((x∗ e)∗a) = a∗ (x∗ (a∗ e)) = a∗ (x∗a) = a. Because x is unique, then x∗ e = x.

That is to say, x ∈ Ge.

For any a ∈ Ge, a ∗ e = a. Then a ∗ (e ∗ e) = (a ∗ e) ∗ e = a ∗ e = a. And there exists x ∈ Ge

such that x∗a = e. (e∗ e)∗ e = (e∗ e)∗ (x∗a) = (e∗a)∗ (x∗ e) = (e∗a)∗x = e∗ (x∗a) = e∗ e.
That is to say, e ∗ e ∈ Ge and e ∗ e is right identity element of Ge. According to Theorem 3.2,

e ∗ e = (x ∗ a) ∗ (x ∗ a) = (x ∗ a) ∗ (a ∗ x) = x ∗ ((a ∗ x) ∗ a) = x ∗ (a ∗ (x ∗ a)) = x ∗ a = e. So

e ∈ Ge.

For any a, b ∈ Ge, according to associative law, there is, (a ∗ b) ∗ e = a ∗ (b ∗ e) = a ∗ b. So

a ∗ b ∈ Ge. That is to say, Ge is TA-groupoid.

Above all, Ge satisfies associative law, e ∈ Ge and for any a ∈ Ge, there exists x ∈ Ge such

that x ∗ a = e.

Because x is unique and e is unique, we know Ge is a TA-group with unique right identity

element, then it is a group.

Then G is union of group, and x is unique and x ∗ a = e is unique. That is to say, for any

local right identity element e ∈ G, every subgroup Ge of G is disjoint, G is disjoint union of

groups.

According to Definition 2.3 and Theorem 3.12, we know inverse TA-groupoid is TA-NET-

groupoid, but whether a TA-NET-groupoid is a inverse TA-groupoid? see Example 3.7. The

example shows that not every TA-NET-groupoid is inverse TA-groupoid.

Exmaple 3.7. Let G = {1, 2, 3, 4}. In Table 6, the TA-NET-groupoid (G, ∗) is shown. And

1 ∗ 1 = 1; 2 ∗ 2 = 2;
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1 ∗ 3 = 3 = 3 ∗ 1, 3 ∗ 3 = 1;

4 ∗ 4 = 4; 5 ∗ 5 = 5.

Table 6. This is a TA-NET-groupoid.

∗ 1 2 3 4 5

1 1 1 3 4 4

2 1 2 3 4 5

3 3 3 1 4 4

4 4 4 4 4 4

5 4 5 4 4 5

It isn’t inverse TA-groupoid since 1 ∗ (1 ∗ 1) = 1 , 1 ∗ (2 ∗ 1) = 1 and 1 ̸= 2.

We know both completely regular semigroup and inverse TA-groupoid are disjoint union

of groups, and completely regular semigroup satisfies associative law, whether a completely

regular semigroup is a TA-groupoid? See Example 3.8. The example shows that not every

completely regular semigroup is TA-groupoid.

Exmaple 3.8. Let G = {1, 2, 3, 4}. In Table 7, a completely regular semigroup (G, ∗) is given.

Table 7. This is a completely regular semigroup.

∗ 1 2 3 4

1 1 4 4 4

2 1 2 3 4

3 1 3 3 4

4 1 4 4 4

It isn’t TA-groupoid since (1 ∗ 1) ∗ 2 = 4 ̸= 1 = 1 ∗ (2 ∗ 1).
Because TA-NET-groupoid is semigroup and inverse TA-groupoid is TA-NET-groupoid,

inverse TA-groupoid is semigroup. According to Definition 2.7, Theorem 2.6 and Definition

3.4, inverse TA-groupoid is inverse semigroup.

The following figure shows relationships among various TA-groupoid.

4. Conclusions

In this paper, we proposed the concept of TA-group and inverse TA-groupoid. Some results

are obtained as follows: (1) if right identity element of TA-group is unique, then it is a group;

(2) the equivalent characterization of TA-group is given; (3) inverse TA-groupoid is disjoint

union of group; (4) commutative TA-groupoid is group. Figure 1 shows their relations.
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Figure 1. The relationships among various TA-groupoid.

As a future direction for further research, we can discuss the relationships among TA-

groupoid, AG-groupoid and hyper logical algebras(see [18–20]).

Funding: This research was funded by Shaanxi Provincial Education Department (No.

20JK0549).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Clifford, A. H.; Preston, G. B. The algebraic theory of semigroup. American Mathematical

Society, Providence, RI, USA, 1961.

2. Howie, J. M. Fundamentals of Semigroup Theory. Oxford University Press: Oxford, UK,

1995.

3. Akinmoyewa, J. T. A study of some properties of generalized groups. Octogon 2009, 17,

599-626.

4. Hirsch, R.; Jackson M.; Kowalski, T. Algebraic foundations for qualitative calculi and

networks. Theoretical Computer Science, 2019, 768, 99-116.

5. Maksa, G. CM solutions of some functional equations of associative type. Ann. univ. sci.

budapest. sect. comput, 2004, 24, 125-132.

6. Lazendic, S.; Pizurica, A.; Bie, H. D. Hypercomplex algebras for dictionary learning.

7th Conference on Applied Geometric Algebras in Computer Science and Engineering,

Unicamp/IMECC, 2018, 57-64.

7. Kazim, M. A.; Naseeruddin, M. On almost semigroups. Alig. Bull. Math. 1972, 2, 1-7.

8. Mushtaq, Q. Zeroids and idempoids in AG-groupoids. Quasigroups Relat. Syst. 2004, 11,

79-84.

9. Shah, M.; Ali, A. Some structural properties of AG-group. Int. Math. Forum 2011, 6,

1661-1667.

10. Mushtaq, Q.; Khan, M. Ideals in AG-band and AG*-groupoid. Quasigroups Relat. Syst.

2006, 14, 207-215.

Mingming Chen, Yudan Du, Xiaogang An, Research on a Class of Special Quasi
TA-Neutrosophic Extended Triplet: TA-Groups

Neutrosophic Sets and Systems, Vol. 57, 2023                                                                             421



11. Sholander, M. Medians, lattices, and trees. Proc. Am. Math. Soc. 1954, 5, 808-812.

12. Suschkewitsch, A. On a generalization of the associative law. Transactions of the American

Mathematical Society. 1929, 31(1), 204-214.

13. Zhang, X. H.; Yuan, W. T.; Chen, M. M.; Smarandache F. A kind of variation symmetry:

Tarski associative groupoids (TA-groupoids) and Tarski associative neutrosophic extended

triplet groupoids (TA-NET-groupoids). Symmetry, 2020, 12, 714.

14. Smarandache, F. Neutrosophic set-a generalization of the intuitionistic fuzzy set. Journal

of Defense Resources Management , 2010, 1, 107-116.

15. Smarandache, F. Neutrosophic Perspectives: Triplets, Duplets, Multisets, Hybrid Oper-

ators, Modal Logic, Hedge Algebras and Applications. Pons Publishing House: Brussels,

Belgium, 2017.

16. An, X. G.; Chen, M. M.; Zhang, X. H. An open problem on Tarski associative NET-

groupoids and GTA-NET-groupoids. International Journal of Pure and Applied Mathe-

matics, 2022, 47, 1091-1112.

17. Smarandache, F.; Ali, M. Neutrosophic triplet group. Neural Comput. Appl. 2018, 29,

595-601.

18. Zhang, X. H.; Du, Y. D. A class of BCI-algebra and quasi-hyper BCI-algebra. Axioms

2022, 11(2), 72.

19. Du, Y. D.; Zhang, X. H. QM-BZ-algebras and quasi-hyper BZ-algebras. Axioms 2022,

11(3), 93.

20. Du, Y. D.; Zhang, X. H.; An, X. G. Transposition regular AG-groupoids and their decom-

position theorems. Mathematics 2022, 10(9), 1396.

Mingming Chen, Yudan Du, Xiaogang An, Research on a Class of Special Quasi
TA-Neutrosophic Extended Triplet: TA-Groups

Neutrosophic Sets and Systems, Vol. 57, 2023                                                                             422

Received: April 29, 2023. Accepted: Aug 20, 2023


	1. Introduction
	2. Preliminaries
	3. TA-Group and Inverse TA-Groupoid
	4. Conclusions
	References

