

Secondary k-column symmetric Neutrosophic Fuzzy Matrices

M.Anandhkumar¹, G. Punithavalli² and E.Janaki³

¹Department of Mathematics, IFET College of Engineering (Autonomous), Villupuram, Tamilnadu, India anandhkumarmm@gmail.com

²Department of Mathematics, Annaof Mathematicsy (Deputed to Government Arts College, Chidambaram),Tamilnadu, India. punithavarman78@gmail.com

> ³Department of Mathematics, Panimalar Engineering College, Chennai, Tamilnadu, India januelango@gmail.com

Abstract: **Objective**: The objective of this study is to establish the results of secondary k- column symmetric (CS) Neutrosophic fuzzy matrices. **Methods and Findings**: We have applied CS condition in neutrosophic environment to find the relation between s-k CS, s- CS, k- CS and CS. **Novelty**: We establish the necessary and sufficient criteria for s-k CS Neutrosophic fuzzy matrices and various g-inverses of an s - k CS Neutrosophic fuzzy matrices to be an s - k CS. The generalized inverses of an s - k CS P corresponding to the sets P{1, 2}, P{1, 2, 3} and P{1, 2, 4} are characterized.

Keywords: Neutrosophic fuzzy matrices (NFM), s-column symmetric, k-column symmetric, column symmetric.

1. Introduction

Zadeh [1] has studied fuzzy set (FS). Atanassov [2] introduced intuitionistic FSs. Smarandache [3] has discussed the concept of neutrosophic sets. Khan, Shyamal, and Pal [4] have studied intuitionistic fuzzy matrices (IFMs) for the first time. Atanassov [5,6] has discussed IFS and Operations over IV IFS. Hashimoto [7] has studied Canonical form of a transitive matrix. Kim and Roush [8] have studied generalized fuzzy matrices. Lee [9] has studied Secondary Skew Symmetric, Secondary Orthogonal Matrices. Hill and Waters [10] have analyzed On k-Real and k-Hermitian matrices. Meenakshi [11] has studied Fuzzy Matrix: Theory and Applications.

Anandhkumar [12,13] has studied Pseudo Similarity of NFM and On various Inverse of NFM. Punithavalli and Anandhkumar [14] have studied Reverse Sharp and Left-T And Right- T Partial Ordering on IFM. Pal and Susanta Kha [15] have studied IV Intuitionistic Fuzzy Matrices. Vidhya and Irene Hepzibah [16] have discussed on Interval Valued NFM. Anandhkumar et.al [17,18] has focused on Reverse Sharp and Left-T Right-T Partial Ordering on NFM and IFM. Anandhkumar,et.al have studied [19] Partial orderings, Characterizations and Generalization of k-idempotent NFM. Here, we introduce the Secondary k-CS NFM and introduce some basic operators on NFMs.

1.1 Literature Review

Meenakshi and Jaya Shree [20] have studied On k-kernel symmetric matrices. Meenakshi and Krishanmoorthy [21] have characterized On Secondary k-Hermitian matrices. Meenakshi and Jaya Shree [22] have studied On k -range symmetric matrices. Jaya shree [23] has studied Secondary κ-Kernel Symmetric Fuzzy Matrices. Shyamal and Pal [24] Interval valued Fuzzy matrices. Meenakshi and Kalliraja [25] have studied Regular Interval valued Fuzzy matrices. Anandhkumar [26] has studied Kernal and k-kernal Intuitionistic Fuzzy matrices. Jaya Shree [27] has discussed Secondary κ-range symmetric fuzzy matrices. Anandhkumar et.al.,[28] have studied Generalized Symmetric NFM. Kaliraja and Bhavani [29] have studied Interval Valued Secondary κ-Range Symmetric Fuzzy Matrices,

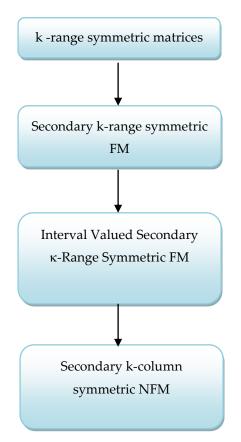
Let P be any fuzzy matrix, P^{\dagger} occurs then this will coincides with the transpose of the matrix (P^T). The fuzzy matrix P belongs to Fn is known to be kernel symmetric matrix, then this shows that $N(P) = N(P^{T})$ which does not implies $R[P] = R[P^{T}]$. But the converse is true. Symmetric matrices are established in the field of complex entries for the theory of k - hermitian matrices. This idea make use of the development of k - EP matrices in the generalization of k - hermitian matrices and also EP matrices. Hill and Waters [30] have initiated the study on κ - real and κ - Hermitian matrices. The concept of Theorems on products of EPr matrices introduced by Baskett and Katz [30]. It is commonly known that for complex matrices, the concepts of range and kernel symmetric are equivalent. But this is fails for Interval valued fuzzy matrices.

The concept of interval valued s - k Hermitian and interval valued kernel symmetric matrices for fuzzy matrices. We also expanded many basic conclusions on these two types of matrices. An Interval valued secondary s - k kernel symmetric fuzzy matrix can be described. Suitable standards for determining g - inverses of an Interval valued secondary s - k - kernel symmetric fuzzy matrices are interval valued secondary s - k - kernel symmetric are found. We establish the necessary and sufficient canditions for an interval valued s - k kernel symmetric fuzzy matrices. Meenakshi, Krishnamoorthy and Ramesh [31] have studied on s - k - EP matrices. Meenakshi and Krishnamoorthy [32] have introduced the idea of s - k hermitian matrices.

Shyamal and Pal [33] have studied Interval valued Fuzzy matrices. The definition of k-symmetric matrices was introduced by the following authors Ann Lec [34] has studied Secondary symmetric and skew symmetric secondary orthogonal matrices. Anandhkumar et.al [35] have discussed Interval Valued Secondary k-Range Symmetric NFM.

References	Extension of Neutrosophic Fuzzy Matrices from Fuzzy Matrices	Year
[20]	On k-kernel symmetric matrices	2009
[22]	On k -range symmetric matrices	2009
[23]	Secondary k-Kernel Symmetric Fuzzy Matrices	2014
[27]	Secondary k-range symmetric FM	2018
[29]	Interval Valued Secondary κ-Range Symmetric Fuzzy Matrices	2022
Proposed	Secondary k-column symmetric Neutrosophic Fuzzy Matrices	2023

 Table:1 Extension of Neutrosophic Fuzzy Matrices based on previous works



From Table 1 and process flow, it is observed that the previous studies are on k-Kernel, K-range, Secondary k-Kernel and Secondary k- range using fuzzy matrices. It is evident that there is a research gap of these studies in Neutrosophic environment. So, based on the above observation, we have established the results of K-column and Secondary k- column in neutrosophic fuzzy matrices.

Notations:

- P^{T} = Transpose of the matrix P
- P⁺ = Moore-penrose inverse of P
- CS = Column symmetric
- C(P) = Column space of P

2. Generalized Symmetric NFM

Definition: 2.1 Let P be a NFM, if $C[P] = C[P^T]$ then P is said to be CS.

Example:2.1 Let us consider
$$P = \begin{bmatrix} <0.3, 0.5, 0.4 > <0.0, 1 > <0.7, 0.2, 0.5 > \\ <0.0, 1 > <0.0, 1 > <0.0, 1 > \\ <0.7, 0.2, 0.5 > <0.0, 1 > <0.3, 0.2, 0.4 > \end{bmatrix}$$

The following NFM are not CS

$$P = \begin{bmatrix} <1,1,0 > <1,1,0 > <0,0,1 > \\ <0,0,1 > <1,1,0 > <1,1,0 > \\ <0,0,1 > <0,0,1 > <1,1,0 > \end{bmatrix}, P^{T} = \begin{bmatrix} <1,1,0 > <0,0,1 > <0,0,1 > \\ <1,1,0 > <1,1,0 > <0,0,1 > \\ <0,0,1 > <1,1,0 > <1,1,0 > \end{bmatrix}, (<1,1,0 > <1,1,0 > \end{bmatrix}, (<1,1,0 > <0,0,1 > \\ (<1,1,0 > <0,0,1 > <0,0,1 >)^{T} \in C(P) , (<1,1,0 > <0,0,1 > <0,0,1 >)^{T} \notin C(P^{T})$$
$$(<1,1,0 > <1,1,0 > <1,1,0 > <1,1,0 >)^{T} \in C(P) , (<1,1,0 > <1,1,0 > <0,0,1 >)^{T} \in C(P^{T})$$
$$(<0,0,1 > <1,1,0 > <1,1,0 > <1,1,0 >)^{T} \in C(P^{T})$$

Definition 2.2: A NFM P \in F_n is s-symmetric NFM \Leftrightarrow P = VP^TV.

Example:2.2 Let us consider
$$P = \begin{bmatrix} <0.4, 0.3, 0.2 > <0, 0, 1 > <0.5, 0.4, 0.3 > \\ <0, 0, 1 > <0, 0, 1 > <0, 0, 1 > \\ <0.5, 0.4, 0.3 > <0, 0, 1 > <0.3, 0.2, 0.4 > \end{bmatrix}$$

 $V = \begin{bmatrix} <0, 0, 0 > <0, 0, 0 > <1, 1, 0 > \\ <0, 0, 0 > <1, 1, 0 > <0, 0, 0 > \\ <1, 1, 0 > <0, 0, 0 > <0, 0, 0 > \end{bmatrix}$

Definition 2.3: A NFM P \in F_n is s-CS NFM \Leftrightarrow C(P) = C(VP^TV).

Example:2.3 Let us consider
$$P = \begin{bmatrix} <0.7, 0.4, 0.5 > <0, 0, 1 > <0.8, 0.2, 0.1 > \\ <0, 0, 1 > <0, 0, 1 > <0, 0, 1 > \\ <0.8, 0.2, 0.1 > <0, 0, 1 > <0.5, 0.7, 0.3 > \end{bmatrix}$$

$$V = \begin{bmatrix} <0,0,0> & <0,0,0> & <1,1,0> \\ <0,0,0> & <1,1,0> & <0,0,0> \\ <1,1,0> & <0,0,0> & <0,0,0> \end{bmatrix}$$

Definition 2.4: A NFM P \in Fn is s-k-CS NFM \Leftrightarrow C(P) = C(KVP^TVK).

Example:2.4 Let us consider $P = \begin{bmatrix} <0.7, 0.3, 0.4 > & <0.5, 0.3, 0.4 > \\ <0.5, 0.3, 0.4 > & <0.7, 0.3, 0.5 > \end{bmatrix}$

$$\mathbf{K} = \begin{bmatrix} <1, 1, 0 > & <0, 0, 0 > \\ <0, 0, 0 > & <1, 1, 0 > \end{bmatrix}, \ V = \begin{bmatrix} <0, 0, 0 > & <1, 1, 0 > \\ <1, 1, 0 > & <0, 0, 0 > \end{bmatrix},$$

Preliminary: 2.1 Let V is a permutation NFM its satisfies the conditions

- (i) $VV^T = V^T V = I_n$
- (ii) $V^T = V$
- (iii) C(P) = C(VP)
- (iv) C(P) = C(KP).

Remark 2.1: We notice that $P = KVP^TVK$ implies that $C(P) = C(KVP^TVK)$

This is illustrating the following example

Example 2.5. Consider a NFM , $V = \begin{bmatrix} <0, 0, 0 > & <1, 1, 0 > \\ <1, 1, 0 > & <0, 0, 0 > \end{bmatrix}$,

$$P = \begin{bmatrix} <0.7, 0.3, 0.4 > & <0.5, 0.3, 0.4 > \\ <0.5, 0.3, 0.4 > & <0.7, 0.3, 0.5 > \end{bmatrix}, K = \begin{bmatrix} <1, 1, 0 > & <0, 0, 0 > \\ <0, 0, 0 > & <1, 1, 0 > \end{bmatrix},$$

$$KVP^{T}VK = \begin{bmatrix} <1,1,0 > <0,0,0 > \\ <0,0,0 > <1,1,0 > \end{bmatrix} \begin{bmatrix} <0,0,0 > <1,1,0 > \\ <1,1,0 > <0,0,0 > \end{bmatrix} \begin{bmatrix} <0.7,0.3,0.4 > <0.5,0.3,0.4 > \\ <0.5,0.3,0.4 > <0.7,0.3,0.5 > \end{bmatrix} \begin{bmatrix} <0,0,0 > <1,1,0 > \\ <1,1,0 > <0,0,0 > \end{bmatrix} \begin{bmatrix} <1,1,0 > <0,0,0 > \\ <0,0,0 > <1,1,0 > \end{bmatrix} \begin{bmatrix} <1,1,0 > <0,0,0 > \\ <0,0,0 > <1,1,0 > \end{bmatrix} \begin{bmatrix} <0,7,0.3,0.4 > <0.5,0.3,0.4 > \\ <0,0,0 > <1,1,0 > \end{bmatrix} \begin{bmatrix} <0.7,0.3,0.4 > <0.5,0.3,0.4 > \\ <0.5,0.3,0.4 > <0.7,0.3,0.5 > \end{bmatrix} = P$$

Therefore, $C(P) = C(KVP^TVK)$

Example 2.6. Consider a NFM

$$K = \begin{bmatrix} <0,0,0> <1,1,0> <0,0,0> \\ <1,1,0> <0,0,0> <0,0,0> \\ <0,0,0> <0,0,0> <1,1,0> \end{bmatrix}, V = \begin{bmatrix} <0,0,0> <0,0,0> <1,1,0> \\ <0,0,0> <1,1,0> <0,0,0> \\ <1,1,0> <0,0,0> <0,0,0> \end{bmatrix}$$
$$P = \begin{bmatrix} <0,0,0> <0,0,0> <1,1,0> \\ <0.5,0.3,0.4> <1,1,0> <0,0,0> \\ <0.4,0.2,0.6> <0.5,0.3,0.4> <0,0,0> \\ <1,1,0> <0,0,0> \end{bmatrix} \begin{bmatrix} <0,0,0> <1,1,0> \\ <0,0,0> <1,1,0> \\ <0,0,0> \end{bmatrix}$$
$$KV = \begin{bmatrix} <0,0,0> <1,1,0> <0,0,0> \\ <1,1,0> <0,0,0> <0,0,0> \\ <1,1,0> <0,0,0> <1,1,0> \\ <0,0,0> <1,1,0> <0,0,0> \\ <1,1,0> <0,0,0> <0,0,0> \end{bmatrix} \begin{bmatrix} <0,0,0> <0,0,0> <1,1,0> \\ <0,0,0> <1,1,0> <0,0,0> \\ <1,1,0> <0,0,0> <0,0,0> \\ <1,1,0> <0,0,0> <0,0,0> \end{bmatrix}$$

 $P \neq KVP^T VK$ is not s- κ –symmetric iff not s- κ -CS. **Theorem 2.1:**For NFM P \in F_n, the subsequent are equivalent :

- (i) $C(P) = C(P^T)$.
- (ii) $P^{T} = PH = KP$ for several IFM H, K and $\rho(P) = r$.

Lemma 2.1: For NFM P \in Fn and a PM K, C(P) = C(Q) iff C(KPK^T) = C(KQK^T)

Theorem 2.2.For NFM P \in F_n the subsequent are equivalent

- (i) $C(P) = C(KVP^{T}VK)$
- (ii) C (KVP) = C((KVP)^T)
- (iii) $C(PKV) = C((PKV)^T)$
- (iv) $C(VP) = C(K(VP)^TK)$
- (v) $C(PK)=C(V(PK)^{T}V)$

(vii)
$$C(P) = C(P^T VK)$$

(viii) $C(P^T) = C(PKV)$

- (ix) $P = VKP^T VKH_1 \text{ for } H_1 \in F_n$
- (x) $P = H_1 K V P^T V K \text{ for } H_1 \in F_n$
- (xi) $P^T = KVPVKH$ for $H \in F_n$
- (xii) $P^T = HKVPKV$ for $H \in F_n$

```
Proof: (i) \Leftrightarrow (ii) \Leftrightarrow (iv)
```

 $\Leftrightarrow P \text{ is } s\text{-} \kappa\text{-} Cs$

$$\Leftrightarrow C(P) = C(KVP^TVK)$$

 $\Leftrightarrow C(KVP) = C ((KVP)^T)$ $\Leftrightarrow KVP \text{ is Column symmetric}$ $\Leftrightarrow VP \text{ is } \kappa\text{- Column symmetric}$ So , (i) \Leftrightarrow (ii) \Leftrightarrow (iv) hence.

(i) \Leftrightarrow (iii) \Leftrightarrow (v)

 \Leftrightarrow C(P) = C (KVP^TVK)

$$\Leftrightarrow C(KVP) = C((KVP)^T)$$

 $\Leftrightarrow C(PKV) = C((PKV)^{T})$

⇔ PKV is Column symmetric ⇔ PK is s- Column symmetric

So , (i)
$$\Leftrightarrow$$
 (iii) \Leftrightarrow (v) hence.

(ii) ⇔ (vii)

KVP is Column symmetric \Leftrightarrow C (KVP) = C((KVP)^T)

 $\Leftrightarrow C(P) = C((KVP)^{T})$ [Preliminary 2.1]

 \Leftrightarrow C (P) = C(P^TVK)

[Preliminary 2.1]

[By Definition 2.4]

[Preliminary 2.1]

So , (ii) \Leftrightarrow (vii) hence. (iii) \Leftrightarrow (viii):	
PVK is Column symmetric \Leftrightarrow C(PVK) = C((PVK) ^T)	
$\Leftrightarrow C (PVK) = C(P^T)$	[Preliminary 2.1]
So ,(iii) \Leftrightarrow (viii) hence. (i) \Leftrightarrow (vi)	
P is s- κ- Column symmetric \Leftrightarrow C (P) = C(KVP ^T VK)	
$\Leftrightarrow C(KVP) = C((KVP)^{T})$	[Preliminary 2.1]
\Leftrightarrow (KVP) ^T is Column symmetric	
$\Leftrightarrow P^{T}VK$ is Column symmetric	
$\Leftrightarrow P^{T}$ is s- κ - Column symmetric	
So , (i) \Leftrightarrow (vi) hence. (i) \Leftrightarrow (xi) \Leftrightarrow (x)	
P is s- κ- Column symmetric \iff C (P) = C (KVP ^T VK)	
$\Leftrightarrow C(P^{T}) = C(KVPVK)$	
$\Leftrightarrow P^{T} = KVPVKH$	[By Theorem 2.1]
$\Leftrightarrow P = H_1 K V P^T V K \text{ for } H_1 \in F_n$	
So , (i) \Leftrightarrow (xi) \Leftrightarrow (x) hence. (ii) \Leftrightarrow (xii) \Leftrightarrow (ix) KVP is Column symmetric \Leftrightarrow VP is κ - Column symmetric	
$\Leftrightarrow C(VP) = C (K(VP)^T K)$	
\Leftrightarrow C(P) = C(P ^T VK)	[Preliminary 2.1]
$\Leftrightarrow C(P^{T}) = C(KVP)$	
$\Leftrightarrow P^T = HKVP \text{ for } H \in F_n$	[By Theorem 2.1]
$\Leftrightarrow P^{T} = HKVPKV$	

 $\iff P = VKP^T VKH_1 \text{ for } H_1 \in F_n$

So , (ii) \Leftrightarrow (xii) \Leftrightarrow (ix) hence.

Corollary 2.1: For NFM $P \in F_n$ the subsequent are equivalent:

(i) $C(P) = C(VP^{T}V)$ (ii) $C(VP) = C(VP)^{T}$ (iii) $C(PV) = C(PV)^{T}$ (iv) P is s-CS (v) $C(P^{T}) = C(VPV)$ (vi) $C(P) = C(P^{T}V)$ (vii) $C(P^{T}) = C(PV)$ (viii) $C(KVP) = C((VP)^{T})$ (ix) P = $VP^{T}VH_{1}$ for $H_{1} \in F_{n}$ (x) P = $H_{1}VP^{T}V$ for $H_{1} \in F_{n}$ (xi) $P^{T} = VPVH$ for $H \in F_{n}$ (xii) $P^{T} = HVPV$ for $H \in F_{n}$

Theorem 2.3: For NFM $P \in F_n$. Then any two of the subsequent imply the other one:

- (i) $C(P) = C(KP^TK)$
- (ii) $C(P) = C(VKP^{T}KV)$
- (iii) $C(P^T) = C((VKP)^T)$

```
Proof: (i) & (ii) \Leftrightarrow (iii)
```

P is s- κ – Cs

 \Rightarrow C(P) = C (P^TVK)

 \Rightarrow C(KPK) = C(KP^TK)

[By Lemma 2.1]

Hence (i) & (ii) $\implies C(P^T) = C((VPK)^T)$	
So,(iii) hence.	
(i) & (iii) \Leftrightarrow (ii)	
P is κ- Column symmetric \Rightarrow C (P) = C (KP ^T K)	
$\Rightarrow C(KPK) = C(P^{T})$	[By Lemma 2.1]
Hence (i) & (iii)	
\Rightarrow C(KPK)= C((VPK) ^T)	
$\Rightarrow C(P) = C(P^T V K)$	
\Rightarrow C(P) = C((KVP) ^T)	
\Rightarrow P is s- κ CS	[By Theorem 2.2]
So, (ii) hence.	
(iii) & (ii) implies (i)	
P is s- κ – Cs	
\Rightarrow C(P)= C (P ^T VK)	
$\Rightarrow C (KPK) = C (KP^{T}V)$	[Preliminary 2.1]
Hence (ii) & (iii) \implies C (KPK) = C(P ^T)	
$\Rightarrow C(P) = C(KP^{T}K)$	[By Lemma 2.1]
\Rightarrow P is κ – Column symmetric	

Therefore,(i) hold. Hence the Theorem

3.s- κ-Column Symmetric Regular NFM

In this section, it was discovered that there are various generalized inverses of matrices in NFM. The comparable standards for different g-inverses of s-k CS NFM to be s-k CS are also established. The generalized inverses of an $s - \kappa$ CS P corresponding to the sets P{1, 2}, P{1, 2, 3} and P{1, 2, 4} are characterized.

Theorem 3.1: Let \in F_n, Z \in P {1,2} and PZ, ZP, are s- κ -CS NFM. Then P is s- κ - CS NFM \Leftrightarrow Z is

s- κ – CS NFM.

Proof: $C(KVP) = C(KVPZP) \subseteq C(ZP)$ [since P = PZP]

 $= C(ZVVP) = N(ZVKKVP) \subseteq C(KVP)$

Hence, C(KVP) = C(ZP)

 $= C(KV(ZP)^{T}VK)$ $= C(P^{T} Z^{T} VK)$ $= C(Z^{T} VK)$ $= C((KVZ)^{T})$ $C((KVP)^{T}) = C(P^{T} VK)$ $= C(Z^{T} P^{T} VK)$ $= C((KVPZ)^{T})$ = C(KVPZ) = C(KVZ) $KVZ \text{ is column symmetric } \Leftrightarrow C(KVP) = N((KVP)^{T})$

 $\Leftrightarrow C((KVZ)^{T}) = N(KVZ)$ $\Leftrightarrow KVZ \text{ is } CS$ $\Leftrightarrow Z \text{ is } s\text{-} \kappa\text{-} CS$

Theorem 3.2: Let $P \in F_n$, $Z \in P\{1,2,3\}$, $C(KVP) = C((KVZ)^T)$. Then P is s- κ -CS NFM \Leftrightarrow Z is s- κ -CS

NFM.

Proof: Given $Z \in P \{1,2,3\}$, we have $PZP = P, ZPZ = Z, (PZ)^T = PZ$

[By using PZP = P]
[Preliminary 2.1]
$[(PZ)^{T} = PZ]$
[By using $Z = ZPZ$]
[Preliminary 2.1]

KVP is column symmetric NFM \Leftrightarrow C (KVP) = C ((KVP)^T)

 \Leftrightarrow C((KVZ)^T) = C(KVZ)

 $\Leftrightarrow \mathrm{KVZ} \text{ is column symmetric}$

 \Leftrightarrow Z is s- κ - column symmetric.

Theorem 3.3: Let $P \in F_n$, $Z \in P\{1,2,4\}$, $C((KVP)^T) = C(KVZ)$. Then P is s- κ - CS NFM \Leftrightarrow Z is s- κ - CS

NFM.

Proof: Given $Z \in P\{1, 2, 4\}$,	
$PZP = P,ZPZ = Z, (ZP)^{T} = ZP$	
C(KVP) = C(P)	[Preliminary 2.1]
= C(ZP)	$[ZPZ = Z, PZP = P] = N((ZP)^{T}) [(ZP)^{T} = ZP]$
$= C(P^{T}Z^{T})$	
$= C (Z^{T})$	
$= C((KVZ)^{T}).$	[Preliminary 2.1]
KVP is column symmetric NFM $\Leftrightarrow C(KVP) = C((KVP)^T)$	

 \Leftrightarrow C((KVZ)^T) = C(KVZ)

 \Leftrightarrow KVZ is CS NFM

 \Leftrightarrow Z is s- κ – CS NFM.

4.Conclusion:

Firstly, we present equivalent characterizations of an k- CS, CS, s- CS, s-k CS NFM. Also, we give the example of s-k-symmetric NFM is s-k- CS Neutrosophic fuzzy matrix the opposite isn't always true. We discussed various generalized inverses of NFM and generalized inverses of an s - k CS P corresponding to the sets P{1, 2}, P{1, 2, 3} and P{1, 2, 4} are characterized. Finally, to conclude we have introduced the concept of secondary k-CS neutrosophic fuzzy matrices. In future we will work on interval valued secondary k-CS neutrosophic fuzzy matrices.

REFERENCES

[1]Zadeh L.A., Fuzzy Sets, Information and control.,(1965),8, pp. 338-353.

[2] K.Atanassov, Intuitionistic Fuzzy Sets: Theory and Applications, Physica-Verlag, 1999.

[3] Smarandache, F, Neutrosophic set, a generalization of the intuitionistic fuzzy set. Int J Pure Appl Math.; .,(2005),.24(3):287–297.

[4] M.Pal, S.K.Khan and A.K.Shyamal, Intuitionistic fuzzy matrices, Notes on Intuitionistic Fuzzy Sets, 8(2) (2002), 51-62.

[5] K.Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, (1986), 87-96.

[6] K.Atanassov, Operations over interval-valued intuitionistic fuzzy sets, Fuzzy Sets and Systems, 64, (1994) ,159-174.

[7] H.Hashimoto, Canonical form of a transitive matrix, Fuzzy Sets and Systems, 11 (1983),157-162.
[8] K.H.Kim and F.W.Roush, Generalised fuzzy matrices, Fuzzy Sets and Systems, 4, (1980)
,293-315.

[9] A.Lee, Secondary Symmetric, Secondary Skew Symmetric, Secondary Orthogonal Matrices, Period Math, Hungary, 7, (1976) ,63-76.

[10] R.D. Hill and S.R.Waters, On k-Real and k-Hermitian matrices, Linear Algebra and its Applications, 169, (1992), 17-29.

[11] AR.Meenakshi, Fuzzy Matrix: Theory and Applications, MJP Publishers, Chennai, 2008.

[12] M. Anandhkumar. V.Kamalakannan, S.M.Chitra, and Said Broumi, Pseudo Similarity of Neutrosophic Fuzzy matrices, International Journal of Neutrosophic Science, Vol. 20, No. 04, PP. 191-196, 2023.

[13]M.Anandhkumar. B.Kanimozhi, V.Kamalakannan, S.M.Chitra, and Said Broumi, On various Inverse of Neutrosophic Fuzzy Matrices, International Journal of Neutrosophic Science, Vol. 21, No. 02, PP. 20-31, 2023.

[14] G.Punithavalli and M.Anandhkumar "Reverse Sharp And Left-T And Right- T Partial Ordering on Intuitionistic Fuzzy matrices" Accepted in TWMS Journal 2023.

[15] M Pal and Susanta K. Khan Interval-Valued Intuitionistic Fuzzy Matrices, NIFS 11 (2005), 1, 16-27.

[16] R. Vidhya And R. Irene Hepzibah On Interval Valued Neutrosophic Fuzzy Matrices, Advances and Applications in Mathematical Sciences Volume 20, Issue 4, February 2021, Pages 561-57.

[17] M. Anandhkumar ,T. Harikrishnan, S. M. Chithra , V. Kamalakannan , B. Kanimozhi , Broumi Said ,Reverse Sharp and Left-T Right-T Partial Ordering on Neutrosophic Fuzzy Matrices, International Journal of Neutrosophic Science, Vol. 21, No. 04, PP. 135-145, 2023.

[18] M.Anandhkumar, B.Kanimozhi, S.M. Chithra, V.Kamalakannan, .Reverse Tilde (T) and Minus Partial Ordering on Intuitionistic Fuzzy Matrices, Mathematical Modelling of Engineering Problems, 2023, 10(4), pp. 1427–1432.

[19] M. Anandhkumar ,T. Harikrishnan,S. M. Chithra,V. Kamalakannan,B. Kanimozhi. "Partial orderings, Characterizations and Generalization of k-idempotent Neutrosophic fuzzy matrices." International Journal of Neutrosophic Science, Vol. 23, No. 2, 2024 , PP. 286-295.

[20] AR.Meenakshi and D.Jaya Shree, On k-kernel symmetric matrices, International Journal of Mathematics and Mathematical Sciences, 2009, Article ID 926217, 8 Pages.

[21] AR.Meenakshi and S.Krishanmoorthy, On Secondary k-Hermitian matrices, Journal of Modern Science, 1 (2009) 70-78.

[22] AR.Meenakshi and D.Jaya Shree, On K-range symmetric matrices, Proceedings of the National conference on Algebra and Graph Theory, MS University, (2009), 58-67.

[23] D.Jaya shree , Secondary κ-Kernel Symmetric Fuzzy Matrices, Intern. J. Fuzzy Mathematical Archive Vol. 5, No. 2, 2014, 89-94 ISSN: 2320 –3242 (P), 2320 –3250 , Published on 20 December 2014.
[24] A. K. Shyamal and M. Pal, Interval valued Fuzzy matrices, Journal of Fuzzy Mathematics 14(3) (2006), 582-592.

[25] A. R. Meenakshi and M. Kalliraja, Regular Interval valued Fuzzy matrices, Advance in Fuzzy Mathematics 5(1) (2010), 7-15.

[26] G.Punithavalli and M.Anandhkumar "Kernal and k-kernal Intuitionistic Fuzzy matrices" Accepted in TWMS Journal 2022.

[27]D. Jaya Shree, Secondary κ-range symmetric fuzzy matrices, Journal of Discrete Mathematical Sciences and Cryptography 21(1):1-11,2018.

[28] M. Anandhkumar; G.Punithavalli; T.Soupramanien; Said Broumi, Generalized Symmetric

Neutrosophic Fuzzy Matrices, Neutrosophic Sets and Systems, Vol. 57,2023, 57, pp. 114–12.

[29]M. Kaliraja And T. Bhavani, Interval Valued Secondary κ-Range Symmetric Fuzzy Matrices, Advances and Applications in Mathematical Sciences Volume 21, Issue 10, August 2022, Pages 5555-5574.

[30]Baskett T. S., and Katz I. J., (1969), Theorems on products of EPr matrices," Linear Algebra and its Applications, 2, 87–103.

[31]Meenakshi AR., Krishnamoorthy S., and Ramesh G., (2008) on s-k-EP matrices", Journal of Intelligent System Research, 2, 93-100.

[32] Meenakshi AR., and Krishanmoorthy S.,(2009), on Secondary k-Hermitian matrices, Journal of Modern Science, 1, 70-78.

[33]Shyamal A. K., and Pal. M., (2006) , Interval valued Fuzzy matrices, Journal of Fuzzy Mathematics 14(3), 582-592.

[34]Ann Lec.,(1976), Secondary symmetric and skew symmetric secondary orthogonal matrices (i) Period, Math Hungary, 7, 63-70.

[35]Anandhkumar, M.; G. Punithavalli; R. Jegan; and Said Broumi.(2024) "Interval Valued Secondary k-Range Symmetric Neutrosophic Fuzzy Matrices." Neutrosophic Sets and Systems 61, 1.

Received: 15 Nov,2023 Accepted: 9 Feb,2024