Secondary k-column symmetric Neutrosophic Fuzzy Matrices

M.Anandhkumar ${ }^{1}$, G. Punithavalli ${ }^{2}$ and E.Janaki ${ }^{3}$
${ }^{1}$ Department of Mathematics, IFET College of Engineering (Autonomous), Villupuram, Tamilnadu, India
anandhkumarmm@gmail.com
${ }^{2}$ Department of Mathematics, Annaof Mathematicsy (Deputed to Government Arts College, Chidambaram), Tamilnadu, India.
punithavarman78@gmail.com
${ }^{3}$ Department of Mathematics, Panimalar Engineering College, Chennai, Tamilnadu, India
januelango@gmail.com

Abstract

Objective: The objective of this study is to establish the results of secondary k- column symmetric (CS) Neutrosophic fuzzy matrices. Methods and Findings: We have applied CS condition in neutrosophic environment to find the relation between s-k CS, s- CS, $k-C S$ and CS. Novelty: We establish the necessary and sufficient criteria for s-k CS Neutrosophic fuzzy matrices and various g-inverses of an $s-k$ CS Neutrosophic fuzzy matrices to be an $s-k$ CS. The generalized inverses of an $s-k C S P$ corresponding to the sets $P\{1,2\}, \mathrm{P}\{1,2,3\}$ and $\mathrm{P}\{1,2,4\}$ are characterized.

Keywords: Neutrosophic fuzzy matrices (NFM), s-column symmetric, k-column symmetric, column symmetric.

1. Introduction

Zadeh [1] has studied fuzzy set (FS). Atanassov [2] introduced intuitionistic FSs. Smarandache [3] has discussed the concept of neutrosophic sets. Khan, Shyamal, and Pal [4] have studied intuitionistic fuzzy matrices (IFMs) for the first time. Atanassov [5,6] has discussed IFS and Operations over IV IFS. Hashimoto [7] has studied Canonical form of a transitive matrix. Kim and Roush [8] have studied generalized fuzzy matrices. Lee [9] has studied Secondary Skew Symmetric, Secondary Orthogonal Matrices. Hill and Waters [10] have analyzed On k-Real and k-Hermitian matrices. Meenakshi [11] has studied Fuzzy Matrix: Theory and Applications.

Anandhkumar $[12,13]$ has studied Pseudo Similarity of NFM and On various Inverse of NFM. Punithavalli and Anandhkumar [14] have studied Reverse Sharp and Left-T And Right- T Partial Ordering on IFM. Pal and Susanta Kha [15] have studied IV Intuitionistic Fuzzy Matrices. Vidhya and Irene Hepzibah [16] have discussed on Interval Valued NFM. Anandhkumar et.al [17,18] has focused on Reverse Sharp and Left-T Right-T Partial Ordering on NFM and IFM. Anandhkumar,et.al have studied [19] Partial orderings, Characterizations and Generalization of k-idempotent NFM. Here, we introduce the Secondary k-CS NFM and introduce some basic operators on NFMs.

[^0]
1.1 Literature Review

Meenakshi and Jaya Shree [20] have studied On k-kernel symmetric matrices. Meenakshi and Krishanmoorthy [21] have characterized On Secondary k-Hermitian matrices. Meenakshi and Jaya Shree [22] have studied On k -range symmetric matrices. Jaya shree [23] has studied Secondary κ-Kernel Symmetric Fuzzy Matrices. Shyamal and Pal [24] Interval valued Fuzzy matrices. Meenakshi and Kalliraja [25] have studied Regular Interval valued Fuzzy matrices. Anandhkumar [26] has studied Kernal and k-kernal Intuitionistic Fuzzy matrices. Jaya Shree [27] has discussed Secondary κ-range symmetric fuzzy matrices. Anandhkumar et.al.,[28] have studied Generalized Symmetric NFM. Kaliraja and Bhavani [29] have studied Interval Valued Secondary к-Range Symmetric Fuzzy Matrices,

Let P be any fuzzy matrix, P^{\dagger} occurs then this will coincides with the transpose of the matrix $\left(\mathrm{P}^{\mathrm{T}}\right)$. The fuzzy matrix P belongs to Fn is known to be kernel symmetric matrix, then this shows that $\mathrm{N}(\mathrm{P})=\mathrm{N}\left(\mathrm{P}^{\mathrm{T}}\right)$ which does not implies $\mathrm{R}[\mathrm{P}]=\mathrm{R}\left[\mathrm{P}^{\mathrm{T}}\right]$. But the converse is true. Symmetric matrices are established in the field of complex entries for the theory of k - hermitian matrices. This idea make use of the development of k - EP matrices in the generalization of k - hermitian matrices and also EP matrices. Hill and Waters [30] have initiated the study on κ - real and κ - Hermitian matrices. The concept of Theorems on products of EPr matrices introduced by Baskett and Katz [30]. It is commonly known that for complex matrices, the concepts of range and kernel symmetric are equivalent. But this is fails for Interval valued fuzzy matrices.

The concept of interval valued s-k Hermitian and interval valued kernel symmetric matrices for fuzzy matrices. We also expanded many basic conclusions on these two types of matrices. An Interval valued secondary s-k kernel symmetric fuzzy matrix can be described. Suitable standards for determining g - inverses of an Interval valued secondary s-k - kernel symmetric fuzzy matrices are interval valued secondary $s-k-$ kernel symmetric are found. We establish the necessary and sufficient canditions for an interval valued s-k kernel symmetric fuzzy matrices. Meenakshi, Krishnamoorthy and Ramesh [31] have studied on s-k - EP matrices. Meenakshi and Krishnamoorthy [32] have introduced the idea of $\mathrm{s}-\mathrm{k}$ hermitian matrices.

Shyamal and Pal [33] have studied Interval valued Fuzzy matrices. The definition of k -symmetric matrices was introduced by the following authors Ann Lec [34] has studied Secondary symmetric and skew symmetric secondary orthogonal matrices. . Anandhkumar et.al [35] have discussed Interval Valued Secondary k-Range Symmetric NFM.

Table:1 Extension of Neutrosophic Fuzzy Matrices based on previous works

References	Extension of Neutrosophic Fuzzy Matrices from Fuzzy Matrices	Year
$[20]$	On k-kernel symmetric matrices	2009
$[22]$	On k -range symmetric matrices	2009
$[23]$	Secondary k-Kernel Symmetric Fuzzy Matrices	2014
$[27]$	Secondary k-range symmetric FM	2018
$[29]$	Interval Valued Secondary к-Range Symmetric Fuzzy Matrices	2022
Proposed	Secondary k-column symmetric Neutrosophic Fuzzy Matrices	2023

M.Anandhkumar ${ }^{1}$, G.Punithavalli ${ }^{2}$, E.Janaki ${ }^{3}$, Secondary k-column symmetric NFM

From Table 1 and process flow, it is observed that the previous studies are on k-Kernel, K-range, Secondary k-Kernel and Secondary k- range using fuzzy matrices. It is evident that there is a research gap of these studies in Neutrosophic environment. So, based on the above observation, we have established the results of K-column and Secondary k- column in neutrosophic fuzzy matrices.

Notations:

$\mathrm{P}^{\mathrm{T}} \quad=$ Transpose of the matrix P
$\mathrm{P}^{+} \quad=$ Moore-penrose inverse of P
CS = Column symmetric
$C(P)=$ Column space of P

2. Generalized Symmetric NFM

Definition: 2.1 Let P be a NFM, if $\mathrm{C}[\mathrm{P}]=\mathrm{C}\left[\mathrm{P}^{\mathrm{T}}\right]$ then P is said to be CS.
Example:2.1 Let us consider $P=\left[\begin{array}{ccc}\langle 0.3,0.5,0.4\rangle & \langle 0,0,1\rangle & \langle 0.7,0.2,0.5\rangle \\ \langle 0,0,1\rangle & \langle 0,0,1\rangle & \langle 0,0,1\rangle \\ \langle 0.7,0.2,0.5\rangle & \langle 0,0,1\rangle & \langle 0.3,0.2,0.4\rangle\end{array}\right]$,
The following NFM are not CS

$$
\begin{aligned}
& P=\left[\begin{array}{ccc}
\langle 1,1,0\rangle & <1,1,0\rangle & <0,0,1\rangle \\
\langle 0,0,1\rangle & \langle 1,1,0\rangle & <1,1,0\rangle \\
\langle 0,0,1\rangle & \langle 0,0,1\rangle & <1,1,0\rangle
\end{array}\right], P^{T}=\left[\begin{array}{ccc}
\langle 1,1,0\rangle & \langle 0,0,1\rangle & \langle 0,0,1\rangle \\
\langle 1,1,0\rangle & \langle 1,1,0\rangle & \langle 0,0,1\rangle \\
\langle 0,0,1\rangle & \langle 1,1,0\rangle & \langle 1,1,0\rangle
\end{array}\right], \\
& \left.\left.\left.(<1,1,0\rangle<0,0,1\rangle<0,0,1\rangle)^{T} \in C(\mathrm{P}), \quad(<1,1,0\rangle<0,0,1\right\rangle<0,0,1\right\rangle\right)^{T} \notin C\left(\mathrm{P}^{T}\right) \\
& \left.\left.(\langle 1,1,0\rangle\langle 1,1,0\rangle\langle 0,0,1\rangle)^{T} \in C(\mathrm{P}), \quad(\langle 1,1,0\rangle<1,1,0\rangle<0,0,1\right\rangle\right)^{T} \in C\left(\mathrm{P}^{T}\right) \\
& \left.\left.(<0,0,1\rangle<1,1,0\rangle<1,1,0\rangle)^{T} \in C(\mathrm{P}), \quad(\langle 0,0,1\rangle \quad<1,1,0\rangle<1,1,0\right\rangle\right)^{T} \in C\left(\mathrm{P}^{T}\right) \\
& C(\mathrm{P}) \notin C\left(\mathrm{P}^{T}\right)
\end{aligned}
$$

Definition 2.2: A NFM $P \in F_{n}$ is s-symmetric NFM $\Leftrightarrow P=V P^{T} V$.

Example:2.2 Let us consider $P=\left[\begin{array}{ccc}\langle 0.4,0.3,0.2\rangle & \langle 0,0,1\rangle & \langle 0.5,0.4,0.3\rangle \\ \langle 0,0,1\rangle & \langle 0,0,1\rangle & \langle 0,0,1\rangle \\ \langle 0.5,0.4,0.3\rangle & \langle 0,0,1\rangle & \langle 0.3,0.2,0.4\rangle\end{array}\right]$,

$$
V=\left[\begin{array}{ccc}
\langle 0,0,0\rangle & \langle 0,0,0\rangle & \langle 1,1,0\rangle \\
\langle 0,0,0\rangle & \langle 1,1,0\rangle & \langle 0,0,0\rangle \\
\langle 1,1,0\rangle & \langle 0,0,0\rangle & <0,0,0\rangle
\end{array}\right]
$$

Definition 2.3: A NFM $P \in F_{n}$ is s-CS NFM $\Leftrightarrow C(P)=C\left(V^{T} V\right)$.
Example:2.3 Let us consider $P=\left[\begin{array}{ccc}\langle 0.7,0.4,0.5\rangle & \langle 0,0,1\rangle & \langle 0.8,0.2,0.1\rangle \\ \langle 0,0,1\rangle & \langle 0,0,1\rangle & \langle 0,0,1\rangle \\ \langle 0.8,0.2,0.1\rangle & \langle 0,0,1\rangle & \langle 0.5,0.7,0.3\rangle\end{array}\right]$,

$$
V=\left[\begin{array}{ccc}
\langle 0,0,0\rangle & \langle 0,0,0\rangle & \langle 1,1,0\rangle \\
\langle 0,0,0\rangle & \langle 1,1,0\rangle & \langle 0,0,0\rangle \\
\langle 1,1,0\rangle & \langle 0,0,0\rangle & <0,0,0\rangle
\end{array}\right]
$$

Definition 2.4: A NFM $P \in F_{n}$ is $s-k-C S N F M \Leftrightarrow C(P)=C\left(K V P^{T} V K\right)$.

Example:2.4 Let us consider $P=\left[\begin{array}{ll}\langle 0.7,0.3,0.4\rangle & \langle 0.5,0.3,0.4\rangle \\ \langle 0.5,0.3,0.4\rangle & \langle 0.7,0.3,0.5\rangle\end{array}\right]$,

$$
\mathrm{K}=\left[\begin{array}{cc}
\langle 1,1,0\rangle & \langle 0,0,0\rangle \\
\langle 0,0,0\rangle & \langle 1,1,0\rangle
\end{array}\right], V=\left[\begin{array}{cc}
\langle 0,0,0\rangle & \langle 1,1,0\rangle \\
\langle 1,1,0\rangle & \langle 0,0,0\rangle
\end{array}\right],
$$

Preliminary: 2.1 Let V is a permutation NFM its satisfies the conditions
(i) $\quad \mathrm{VV}^{\mathrm{T}}=\mathrm{V}^{\mathrm{T}} \mathrm{V}=\mathrm{I}_{\mathrm{n}}$
(ii) $\mathrm{V}^{\mathrm{T}}=\mathrm{V}$
(iii) $\mathrm{C}(\mathrm{P})=\mathrm{C}(\mathrm{VP})$
(iv) $\quad \mathrm{C}(\mathrm{P})=\mathrm{C}(\mathrm{KP})$.

Remark 2.1: We notice that $\mathrm{P}=K V \mathrm{P}^{\mathrm{T}} \mathrm{VK}$ implies that $\mathrm{C}(\mathrm{P})=\mathrm{C}\left(\mathrm{KVP}^{\mathrm{T}} \mathrm{VK}\right)$
This is illustrating the following example
Example 2.5. Consider a NFM, $V=\left[\begin{array}{cc}<0,0,0\rangle & <1,1,0\rangle \\ <1,1,0\rangle & <0,0,0\rangle\end{array}\right]$,
$P=\left[\begin{array}{cc}<0.7,0.3,0.4> & <0.5,0.3,0.4> \\ <0.5,0.3,0.4> & <0.7,0.3,0.5>\end{array}\right], K=\left[\begin{array}{cc}<1,1,0> & <0,0,0> \\ <0,0,0> & <1,1,0>\end{array}\right]$,
$K V P^{T} V K=\left[\begin{array}{cc}<1,1,0> & <0,0,0> \\ <0,0,0> & <1,1,0>\end{array}\right]\left[\begin{array}{cc}<0,0,0> & <1,1,0> \\ <1,1,0> & <0,0,0>\end{array}\right]\left[\begin{array}{cc}<0.7,0.3,0.4> & <0.5,0.3,0.4> \\ <0.5,0.3,0.4> & <0.7,0.3,0.5>\end{array}\right]$

$$
\left[\begin{array}{cc}
<0,0,0> & <1,1,0> \\
<1,1,0> & <0,0,0>
\end{array}\right]\left[\begin{array}{cc}
<1,1,0> & <0,0,0> \\
<0,0,0> & <1,1,0>
\end{array}\right]
$$

$K V P^{T} V K=\left[\begin{array}{ll}<0.7,0.3,0.4> & <0.5,0.3,0.4> \\ <0.5,0.3,0.4> & <0.7,0.3,0.5>\end{array}\right]=P$

Therefore, $\mathrm{C}(\mathrm{P})=\mathrm{C}\left(\mathrm{KVP}^{\mathrm{T}} \mathrm{VK}\right)$
Example 2.6. Consider a NFM

$$
\begin{aligned}
& K=\left[\begin{array}{ccc}
\langle 0,0,0\rangle & \langle 1,1,0\rangle & \langle 0,0,0\rangle \\
\langle 1,1,0\rangle & \langle 0,0,0\rangle & \langle 0,0,0\rangle \\
\langle 0,0,0\rangle & \langle 0,0,0\rangle & \langle 1,1,0\rangle
\end{array}\right], V=\left[\begin{array}{ccc}
\langle 0,0,0\rangle & \langle 0,0,0\rangle & \langle 1,1,0\rangle \\
\langle 0,0,0\rangle & \langle 1,1,0\rangle & \langle 0,0,0\rangle \\
\langle 1,1,0\rangle & \langle 0,0,0\rangle & \langle 0,0,0\rangle
\end{array}\right] \\
& P=\left[\begin{array}{ccc}
\langle 0,0,0\rangle & \langle 0,0,0\rangle & \langle 1,1,0\rangle \\
<0.5,0.3,0.4\rangle & \langle 1,1,0\rangle & \langle 0,0,0\rangle \\
<0.4,0.2,0.6\rangle & \langle 0.5,0.3,0.4\rangle & \langle 0,0,0\rangle
\end{array}\right] \\
& K V=\left[\begin{array}{ccc}
\langle 0,0,0\rangle & \langle 1,1,0\rangle & \langle 0,0,0\rangle \\
\langle 1,1,0\rangle & \langle 0,0,0\rangle & \langle 0,0,0\rangle \\
\langle 0,0,0\rangle & \langle 0,0,0\rangle & \langle 1,1,0\rangle
\end{array}\right]\left[\begin{array}{ccc}
\langle 0,0,0\rangle & \langle 0,0,0\rangle & \langle 1,1,0\rangle \\
\langle 0,0,0\rangle & \langle 1,1,0\rangle & \langle 0,0,0\rangle \\
\langle 1,1,0\rangle & \langle 0,0,0\rangle & <0,0,0\rangle
\end{array}\right]
\end{aligned}
$$

$K V=\left[\begin{array}{lll}\langle 0,1,0\rangle & \langle 0,1,0\rangle & \langle 0,1,0\rangle \\ \langle 0,1,0\rangle & \langle 0,1,0\rangle & \langle 1,1,0\rangle \\ \langle 1,1,0\rangle & \langle 0,1,0\rangle & \langle 0,1,0\rangle\end{array}\right]$
$V K=\left[\begin{array}{ccc}\langle 0,0,0\rangle & \langle 0,0,0\rangle & \langle 1,1,0\rangle \\ \langle 0,0,0\rangle & \langle 1,1,0\rangle & \langle 0,0,0\rangle \\ \langle 1,1,0\rangle & \langle 0,0,0\rangle & \langle 0,0,0\rangle\end{array}\right]\left[\begin{array}{ccc}\langle 0,0,0\rangle & \langle 1,1,0\rangle & \langle 0,0,0\rangle \\ \langle 1,1,0\rangle & \langle 0,0,0\rangle & \langle 0,0,0\rangle \\ \langle 0,0,0\rangle & \langle 0,0,0\rangle & \langle 1,1,0\rangle\end{array}\right]$
$V K=\left[\begin{array}{ccc}\langle 0,1,0\rangle & \langle 0,1,0\rangle & \langle 1,1,0\rangle \\ \langle 1,1,0\rangle & \langle 0,1,0\rangle & \langle 0,1,0\rangle \\ \langle 0,1,0\rangle & \langle 1,1,0\rangle & <0,1,0\rangle\end{array}\right]$

$K V P^{T} V K=\left[\begin{array}{ccc}\langle 0,1,0\rangle & \langle 0,1,0\rangle & \langle 0,1,0\rangle \\ \langle 0,1,0\rangle & \langle 0,1,0\rangle & \langle 1,1,0\rangle \\ \langle 1,1,0\rangle & \langle 0,1,0\rangle & \langle 0,1,0\rangle\end{array}\right]\left[\begin{array}{ccc}<0.5,0.8,0.4\rangle & \langle 0.4,0.8,0.6\rangle & \langle 0,0,0.4\rangle \\ \langle 0,0.7,0\rangle & \langle 0.5,0.7,0\rangle & \langle 0,0.7,0\rangle \\ \langle 0,0,0\rangle & <0,0,0\rangle & \langle 1,0,0\rangle\end{array}\right]$
$K V P^{T} V K=\left[\begin{array}{ccc}\langle 0,0,0\rangle & \langle 0,0.2,0\rangle & \langle 0,0,0\rangle \\ \langle 0,0,0\rangle & \langle 0,0,0\rangle & \langle 1,0,0\rangle \\ \langle 0.5,0,0\rangle & \langle 0.4,0,0\rangle & \langle 0,0,0\rangle\end{array}\right] \neq P$
$P \neq K V P^{T} V K \quad$ is not s- κ-symmetric iff not s- κ-CS.
Theorem 2.1:For NFM $P \in F_{n}$, the subsequent are equivalent :
(i) $\mathrm{C}(\mathrm{P})=\mathrm{C}\left(\mathrm{P}^{\mathrm{T}}\right)$.
(ii) $\mathrm{P}^{\mathrm{T}}=\mathrm{PH}=\mathrm{KP}$ for several IFM H, K and $\rho(\mathrm{P})=\mathrm{r}$.

Lemma 2.1: For NFM $P \in F_{n}$ and a PM K, $C(P)=C(Q)$ iff $C\left(K_{P K}{ }^{T}\right)=C\left(K_{\text {K }}{ }^{T}\right)$

Theorem 2.2 .For NFM P $\in F_{n}$ the subsequent are equivalent
(i) $\quad \mathrm{C}(\mathrm{P})=\mathrm{C}\left(\mathrm{KVP}^{\mathrm{T}} \mathrm{VK}\right)$
(ii) $\quad \mathrm{C}(\mathrm{KVP})=\mathrm{C}\left((\mathrm{KVP})^{\mathrm{T}}\right)$
(iii) $\mathrm{C}(\mathrm{PKV})=\mathrm{C}\left((\mathrm{PKV})^{\mathrm{T}}\right)$
(iv) $\mathrm{C}(\mathrm{VP})=\mathrm{C}\left(\mathrm{K}(\mathrm{VP})^{\mathrm{T}} \mathrm{K}\right)$
(v) $\mathrm{C}(\mathrm{PK})=\mathrm{C}\left(\mathrm{V}(\mathrm{PK})^{\mathrm{T} V}\right)$
(vi) $\quad \mathrm{C}\left(\mathrm{P}^{\mathrm{T}}\right)=\mathrm{C}(\mathrm{KV}(\mathrm{P}) \mathrm{VK})$
(vii) $\mathrm{C}(\mathrm{P})=\mathrm{C}\left(\mathrm{P}^{\mathrm{T}} \mathrm{VK}\right)$
(viii) $\mathrm{C}\left(\mathrm{P}^{\mathrm{T}}\right)=\mathrm{C}(\mathrm{PKV})$
(ix) $\mathrm{P}=\mathrm{VKP}^{\mathrm{T}} \mathrm{VKH}_{1}$ for $\mathrm{H}_{1} \in \mathrm{~F}_{\mathrm{n}}$
(x) $\quad \mathrm{P}=\mathrm{H}_{1} K V \mathrm{P}^{\mathrm{T}} \mathrm{VK}$ for $\mathrm{H}_{1} \in \mathrm{~F}_{\mathrm{n}}$
(xi) $P^{T}=K V P V K H$ for $H \in F_{n}$
(xii) $\mathrm{P}^{\mathrm{T}}=\mathrm{HKVPKV}$ for $\mathrm{H} \in \mathrm{F}_{\mathrm{n}}$

Proof: (i) \Leftrightarrow (ii) \Leftrightarrow (iv)
$\Leftrightarrow P$ is s- $\kappa-\mathrm{Cs}$
$\Leftrightarrow \mathrm{C}(\mathrm{P})=\mathrm{C}\left(\mathrm{KVP}^{\mathrm{T}} \mathrm{VK}\right)$
$\Leftrightarrow C(K V P)=C\left((K V P)^{T}\right.$
\Leftrightarrow KVP is Column symmetric
\Leftrightarrow VP is κ - Column symmetric
So , (i) \Leftrightarrow (ii) \Leftrightarrow (iv) hence.
(i) \Leftrightarrow (iii) \Leftrightarrow (v)
P is $s-\kappa-C S$
$\Leftrightarrow \mathrm{C}(\mathrm{P})=\mathrm{C}\left(\mathrm{KVP}^{\mathrm{T}} \mathrm{VK}\right)$
[By Definition 2.4]
$\Leftrightarrow C(\mathrm{KVP})=C\left((\mathrm{KVP})^{\mathrm{T}}\right)$
[Preliminary 2.1]
$\Leftrightarrow \mathrm{C}(\mathrm{PKV})=\mathrm{C}\left((\mathrm{PKV})^{\mathrm{T}}\right)$
\Leftrightarrow PKV is Column symmetric
$\Leftrightarrow \mathrm{PK}$ is s- Column symmetric
So , (i) \Leftrightarrow (iii) \Leftrightarrow (v) hence.
(ii) \Leftrightarrow (vii)

KVP is Column symmetric $\Leftrightarrow C(\mathrm{KVP})=\mathrm{C}\left((\mathrm{KVP})^{\mathrm{T}}\right)$
$\Leftrightarrow C(P)=C\left((K V P)^{T}\right)$
[Preliminary 2.1]
$\Leftrightarrow \mathrm{C}(\mathrm{P})=\mathrm{C}\left(\mathrm{P}^{\mathrm{T}} \mathrm{VK}\right)$

So , (ii) \Leftrightarrow (vii) hence.
(iii) \Leftrightarrow (viii):

PVK is Column symmetric $\Leftrightarrow \mathrm{C}(\mathrm{PVK})=\mathrm{C}\left((\mathrm{PVK})^{\mathrm{T}}\right)$
$\Leftrightarrow \mathrm{C}(\mathrm{PVK})=\mathrm{C}\left(\mathrm{P}^{\mathrm{T}}\right)$
[Preliminary 2.1]

So ,(iii) \Leftrightarrow (viii) hence.
(i) \Leftrightarrow (vi)

P is s- κ - Column symmetric $\Leftrightarrow C(P)=C\left(K_{V P}{ }^{T} V K\right)$
$\Leftrightarrow C(\mathrm{KVP})=C\left((\mathrm{KVP})^{\mathrm{T}}\right)$
$\Leftrightarrow(\mathrm{KVP})^{\mathrm{T}}$ is Column symmetric
$\Leftrightarrow \mathrm{P}^{\mathrm{T}} \mathrm{VK}$ is Column symmetric
$\Leftrightarrow \mathrm{P}^{\mathrm{T}}$ is $\mathrm{s}-\kappa$ - Column symmetric
So , (i) \Leftrightarrow (vi) hence.
(i) $\Leftrightarrow \quad(x i) \Leftrightarrow \quad(x)$
P is s- κ - Column symmetric $\Leftrightarrow C(P)=C\left(\mathrm{KVP}^{\mathrm{T}} \mathrm{VK}\right)$
$\Leftrightarrow C\left(\mathrm{P}^{\mathrm{T}}\right)=\mathrm{C}(\mathrm{KVPVK})$
$\Leftrightarrow \mathrm{P}^{\mathrm{T}}=\mathrm{KVPVKH}$
[By Theorem 2.1]
$\Leftrightarrow P=H_{1} K V P^{T} V K \quad$ for $H_{1} \in F_{n}$
So , (i) $\Leftrightarrow(x i) \Leftrightarrow \quad(x)$ hence.
(ii) \Leftrightarrow (xii) \Leftrightarrow (ix)

KVP is Column symmetric \Leftrightarrow VP is κ - Column symmetric
$\Leftrightarrow \mathrm{C}(\mathrm{VP})=\mathrm{C}\left(\mathrm{K}(\mathrm{VP})^{\mathrm{T}} \mathrm{K}\right)$
$\Leftrightarrow \mathrm{C}(\mathrm{P})=\mathrm{C}\left(\mathrm{P}^{\mathrm{T}} \mathrm{VK}\right)$
[Preliminary 2.1]
$\Leftrightarrow C\left(\mathrm{P}^{\mathrm{T}}\right)=\mathrm{C}(\mathrm{KVP})$
$\Leftrightarrow \mathrm{P}^{\mathrm{T}}=\mathrm{HKVP}$ for $\mathrm{H} \in \mathrm{F}_{\mathrm{n}}$
[By Theorem 2.1]
$\Leftrightarrow \mathrm{P}^{\mathrm{T}}=\mathrm{HKVPKV}$
$\Leftrightarrow \mathrm{P}=\mathrm{VKP}^{\mathrm{T}} \mathrm{VKH}_{1}$ for $\mathrm{H}_{1} \in \mathrm{~F}_{\mathrm{n}}$
So , (ii) \Leftrightarrow (xii) \Leftrightarrow (ix) hence.
Corollary 2.1: For $N F M P \in F_{\mathrm{n}}$ the subsequent are equivalent:
(i) $\mathrm{C}(\mathrm{P})=\mathrm{C}\left(\mathrm{VP}^{\mathrm{T}} \mathrm{V}\right)$
(ii) $C(V P)=C(V P)^{T}$
(iii) $C(P V)=C(P V)^{T}$
(iv) P is s-CS
(v) $\mathrm{C}\left(\mathrm{P}^{\mathrm{T}}\right)=\mathrm{C}(\mathrm{VPV})$
(vi) $\mathrm{C}(\mathrm{P})=\mathrm{C}\left(\mathrm{P}^{\mathrm{T}} \mathrm{V}\right)$
(vii) $C\left(\mathrm{P}^{\mathrm{T}}\right)=\mathrm{C}(\mathrm{PV})$
(viii) $\mathrm{C}(\mathrm{KVP})=\mathrm{C}\left((\mathrm{VP})^{\mathrm{T}}\right)$
(ix) $\mathrm{P}=\mathrm{VP}^{\mathrm{T}} \mathrm{VH}_{1}$ for $\mathrm{H}_{1} \in \mathrm{~F}_{\mathrm{n}}$
(x) $\mathrm{P}=\mathrm{H}_{1} \mathrm{VP}^{\mathrm{T}} \mathrm{V}$ for $\mathrm{H}_{1} \in \mathrm{~F}_{\mathrm{n}}$
(xi) $\mathrm{P}^{\mathrm{T}}=\mathrm{VPVH}$ for $\mathrm{H} \in \mathrm{F}_{\mathrm{n}}$
(xii) $\mathrm{P}^{\mathrm{T}}=\mathrm{HVPV}$ for $\mathrm{H} \in \mathrm{F}$

Theorem 2.3: For NFM $P \in F_{n}$. Then any two of the subsequent imply the other one:
(i) $\mathrm{C}(\mathrm{P})=\mathrm{C}\left(\mathrm{KP}^{\mathrm{T}} \mathrm{K}\right)$
(ii) $\quad \mathrm{C}(\mathrm{P})=\mathrm{C}\left(\mathrm{VKP}^{\mathrm{T}} \mathrm{KV}\right)$
(iii) $\mathrm{C}\left(\mathrm{P}^{\mathrm{T}}\right)=\mathrm{C}\left((\mathrm{VKP})^{\mathrm{T}}\right)$

Proof: (i) \& (ii) \Leftrightarrow (iii)

P is $\mathrm{s}-\kappa-\mathrm{Cs}$
$\Rightarrow \mathrm{C}(\mathrm{P})=\mathrm{C}\left(\mathrm{P}^{\mathrm{T}} \mathrm{VK}\right)$
$\Rightarrow \mathrm{C}(\mathrm{KPK})=\mathrm{C}\left(\mathrm{KP}^{\mathrm{T}} \mathrm{K}\right)$

Hence (i) \& (ii) $\Rightarrow C\left(P^{T}\right)=C\left((V P K)^{T}\right)$
So,(iii) hence.
(i) \& (iii) \Leftrightarrow (ii)
P is κ - Column symmetric $\Rightarrow C(P)=C\left(\mathrm{KP}^{\mathrm{T}} \mathrm{K}\right)$
$\Rightarrow \mathrm{C}(\mathrm{KPK})=\mathrm{C}\left(\mathrm{P}^{\mathrm{T}}\right)$
[By Lemma 2.1]
Hence (i) \& (iii)
$\Rightarrow \mathrm{C}(\mathrm{KPK})=\mathrm{C}\left((\mathrm{VPK})^{\mathrm{T}}\right)$
$\Rightarrow \mathrm{C}(\mathrm{P})=\mathrm{C}\left(\mathrm{P}^{\mathrm{T}} \mathrm{VK}\right)$
$\Rightarrow \mathrm{C}(\mathrm{P})=\mathrm{C}\left((\mathrm{KVP})^{\mathrm{T}}\right)$
$\Rightarrow P$ is $\mathrm{s}-\kappa \mathrm{CS}$
[By Theorem 2.2]
So, (ii) hence.
(iii) \& (ii) implies (i)

P is $\mathrm{s}-\kappa-\mathrm{Cs}$
$\Rightarrow \mathrm{C}(\mathrm{P})=\mathrm{C}\left(\mathrm{P}^{\mathrm{T}} \mathrm{VK}\right)$
$\Rightarrow C(\mathrm{KPK})=\mathrm{C}\left(\mathrm{KP}^{\mathrm{T}} \mathrm{V}\right)$
[Preliminary 2.1]

Hence (ii) \& (iii) $\Rightarrow \mathrm{C}(\mathrm{KPK})=\mathrm{C}\left(\mathrm{P}^{\mathrm{T}}\right)$
$\Rightarrow \mathrm{C}(\mathrm{P})=\mathrm{C}\left(\mathrm{KP}^{\mathrm{T}} \mathrm{K}\right)$
[By Lemma 2.1]
$\Rightarrow P \quad$ is κ - Column symmetric
Therefore,(i) hold. Hence the Theorem

3.s- к-Column Symmetric Regular NFM

In this section, it was discovered that there are various generalized inverses of matrices in NFM. The comparable standards for different g-inverses of s-k CS NFM to be s-k CS are also established. The generalized inverses of an $s-\kappa C S P$ corresponding to the sets $P\{1,2\}$, $\mathrm{P}\{1,2,3\}$ and $\mathrm{P}\{1,2,4\}$ are characterized.

Theorem 3.1: Let $\in F_{n}, Z \in P\{1,2\}$ and $P Z, Z P$, are s- $\kappa-C S$ NFM. Then P is $s-\kappa-C S N F M \Leftrightarrow Z$ is
s- κ - CS NFM.
Proof: $\mathrm{C}(\mathrm{KVP})=\mathrm{C}(\mathrm{KVPZP}) \subseteq \mathrm{C}(\mathrm{ZP}) \quad$ [since $\mathrm{P}=\mathrm{PZP}$]
$=\mathrm{C}(\mathrm{ZVVP})=\mathrm{N}(\mathrm{ZVKKVP}) \subseteq \mathrm{C}(\mathrm{KVP})$

$$
\text { Hence, } \begin{aligned}
\mathrm{C}(\mathrm{KVP}) & =\mathrm{C}(\mathrm{ZP}) \\
& =\mathrm{C}\left(\mathrm{KV}(\mathrm{ZP})^{\mathrm{T} V K}\right) \\
& =\mathrm{C}\left(\mathrm{P}^{\mathrm{T}} \mathrm{Z}^{\mathrm{T}} \mathrm{VK}\right) \\
& =\mathrm{C}\left(\mathrm{Z}^{\mathrm{T}} \mathrm{VK}\right) \\
& =\mathrm{C}\left((\mathrm{KVZ})^{\mathrm{T}}\right) \\
\mathrm{C}\left((\mathrm{KVP})^{\mathrm{T}}\right) & =\mathrm{C}\left(\mathrm{P}^{\mathrm{T}} \mathrm{VK}\right) \\
& =\mathrm{C}\left(\mathrm{Z}^{\mathrm{T}} \mathrm{P}^{\mathrm{T}} \mathrm{VK}\right) \\
& =\mathrm{C}\left((\mathrm{KVPZ})^{\mathrm{T}}\right) \\
& =\mathrm{C}(\mathrm{KVPZ}) \\
& =\mathrm{C}(\mathrm{KVZ})
\end{aligned}
$$

KVZ is column symmetric $\Leftrightarrow \mathrm{C}(\mathrm{KVP})=\mathrm{N}\left((\mathrm{KVP})^{\mathrm{T}}\right)$

$$
\begin{aligned}
& \Leftrightarrow \mathrm{C}\left((\mathrm{KVZ})^{\mathrm{T}}\right)=\mathrm{N}(\mathrm{KVZ}) \\
& \Leftrightarrow \mathrm{KVZ} \text { is } \mathrm{CS} \\
& \Leftrightarrow \mathrm{Z} \text { is } \mathrm{s}-\kappa-\mathrm{CS}
\end{aligned}
$$

Theorem 3.2: Let $\left.P \in F_{n}, Z \in P\{1,2,3\}, C(K V P)=C((K V Z))^{T}\right)$.Then P is $s-\kappa-C S N F M \Leftrightarrow Z$ is $s-\kappa-C S$ NFM.

Proof: Given $Z \in P\{1,2,3\}$, we have $P Z P \quad=P, Z P Z=Z,(P Z)^{T}=P Z$

$$
\begin{aligned}
\mathrm{C}\left((\mathrm{KVP})^{\mathrm{T}}\right) & =\mathrm{C}\left(\mathrm{Z}^{\mathrm{T}} \mathrm{P}^{\mathrm{T}} \mathrm{VK}\right) & & {[\text { By using PZP }=\mathrm{P}] } \\
& =\mathrm{C}\left(\mathrm{KV}(\mathrm{PZ})^{\mathrm{T}}\right) & & \\
& =\mathrm{C}\left((\mathrm{PZ})^{\mathrm{T}}\right) & & {[\text { Preliminary } 2.1] } \\
& =\mathrm{C}(\mathrm{PZ}) & & {\left[(\mathrm{PZ})^{\mathrm{T}}=\mathrm{PZ}\right] } \\
& =\mathrm{C}(\mathrm{Z}) & & {[\text { By using } \mathrm{Z}=\mathrm{ZPZ}] } \\
& =\mathrm{C}(\mathrm{KVZ}) & & {[\text { Preliminary } 2.1] }
\end{aligned}
$$

KVP is column symmetric NFM $\Leftrightarrow C(\mathrm{KVP})=C\left((\mathrm{KVP})^{\mathrm{T}}\right)$

$$
\begin{aligned}
& \Leftrightarrow C\left((\mathrm{KVZ})^{\mathrm{T}}\right)=\mathrm{C}(\mathrm{KVZ}) \\
& \Leftrightarrow \mathrm{KVZ} \text { is column symmetric } \\
& \Leftrightarrow \mathrm{Z} \text { is s- } \kappa \text { - column symmetric. }
\end{aligned}
$$

Theorem 3.3: Let $P \in F_{n}, Z \in P\{1,2,4\}, C\left((K V P)^{T}\right)=C(K V Z)$. Then P is $s-\kappa-C S N F M \Leftrightarrow Z$ is $s-\kappa-C S$ NFM.

Proof: Given $Z \in P\{1,2,4\}$,

$$
\begin{aligned}
& P Z P=P, Z P Z=Z,(Z P)^{T}=Z P \\
& \begin{array}{rlrl}
C(\mathrm{KVP}) & =\mathrm{C}(\mathrm{P}) & & {[\text { Preliminary 2.1] }} \\
& =\mathrm{C}(\mathrm{ZP}) & {[\mathrm{ZPZ}=\mathrm{Z}, \mathrm{PZP}=\mathrm{P}]=\mathrm{N}\left((\mathrm{ZP})^{\mathrm{T}}\right)\left[(\mathrm{ZP})^{\mathrm{T}}=\mathrm{ZP}\right]} \\
& =\mathrm{C}\left(\mathrm{P}^{\left.\mathrm{T} Z^{\mathrm{T}}\right)}\right. & \\
& =\mathrm{C}\left(\mathrm{Z}^{\mathrm{T}}\right) & \\
& =\mathrm{C}\left((\mathrm{KVZ})^{\mathrm{T}}\right) . & {[\text { Preliminary 2.1] }}
\end{array}
\end{aligned}
$$

KVP is column symmetric NFM $\Leftrightarrow C(K V P)=C\left((K V P)^{T}\right.$
$\Leftrightarrow C\left((K V Z)^{\mathrm{T}}\right)=\mathrm{C}(\mathrm{KVZ})$
$\Leftrightarrow K V Z$ is CS NFM
$\Leftrightarrow Z$ is s- $\kappa-$ CS NFM.

4.Conclusion:

Firstly, we present equivalent characterizations of an k-CS, CS, s- CS, s-k CS NFM. Also,we give the example of s-k-symmetric NFM is s-k- CS Neutrosophic fuzzy matrix the opposite isn't always true. We discussed various generalized inverses of NFM and generalized inverses of an sk CS P corresponding to the sets $P\{1,2\}, \mathrm{P}\{1,2,3\}$ and $\mathrm{P}\{1,2,4\}$ are characterized. Finally, to conclude we have introduced the concept of secondary k-CS neutrosophic fuzzy matrices. In future we will work on interval valued secondary k-CS neutrosophic fuzzy matrices.

REFERENCES

[1]Zadeh L.A., Fuzzy Sets, Information and control.,(1965),8, pp. 338-353.
[2] K.Atanassov, Intuitionistic Fuzzy Sets: Theory and Applications, Physica-Verlag, 1999.
[3] Smarandache,F, Neutrosophic set, a generalization of the intuitionistic fuzzy set. Int J Pure Appl Math.; .,(2005),.24(3):287-297.
[4] M.Pal, S.K.Khan and A.K.Shyamal, Intuitionistic fuzzy matrices, Notes on Intuitionistic Fuzzy Sets, 8(2) (2002), 51-62.
[5] K.Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 ,(1986), 87-96.
[6] K.Atanassov, Operations over interval-valued intuitionistic fuzzy sets, Fuzzy Sets and Systems, 64, (1994), 159-174.
[7] H.Hashimoto, Canonical form of a transitive matrix, Fuzzy Sets and Systems, 11 (1983),157-162.
[8] K.H.Kim and F.W.Roush, Generalised fuzzy matrices, Fuzzy Sets and Systems, 4, (1980)
,293-315.
[9] A.Lee, Secondary Symmetric, Secondary Skew Symmetric, Secondary Orthogonal Matrices, Period Math, Hungary, 7, (1976) ,63-76.
[10] R.D. Hill and S.R.Waters, On k-Real and k-Hermitian matrices, Linear Algebra and its Applications, 169, (1992), 17-29.
[11] AR.Meenakshi, Fuzzy Matrix: Theory and Applications, MJP Publishers, Chennai, 2008.
[12] M. Anandhkumar. V.Kamalakannan, S.M.Chitra, and Said Broumi, Pseudo Similarity of Neutrosophic Fuzzy matrices, International Journal of Neutrosophic Science, Vol. 20, No. 04, PP. 191-196, 2023.
[13]M.Anandhkumar. B.Kanimozhi, V.Kamalakannan, S.M.Chitra, and Said Broumi, On various Inverse of Neutrosophic Fuzzy Matrices, International Journal of Neutrosophic Science, Vol. 21, No. 02, PP. 20-31, 2023.
[14] G.Punithavalli and M.Anandhkumar "Reverse Sharp And Left-T And Right- T Partial Ordering on Intuitionistic Fuzzy matrices" Accepted in TWMS Journal 2023.
[15] M Pal and Susanta K. Khan Interval-Valued Intuitionistic Fuzzy Matrices, NIFS 11 (2005), 1, 16-27.
[16] R. Vidhya And R. Irene Hepzibah On Interval Valued Neutrosophic Fuzzy Matrices, Advances and Applications in Mathematical Sciences Volume 20, Issue 4, February 2021, Pages 561-57.
[17] M. Anandhkumar ,T. Harikrishnan, S. M. Chithra, V. Kamalakannan, B. Kanimozhi , Broumi Said ,Reverse Sharp and Left-T Right-T Partial Ordering on Neutrosophic Fuzzy Matrices, International Journal of Neutrosophic Science, Vol. 21, No. 04, PP. 135-145, 2023.
[18] M.Anandhkumar, B.Kanimozhi, S.M. Chithra, V.Kamalakannan, .Reverse Tilde (T) and Minus Partial Ordering on Intuitionistic Fuzzy Matrices, Mathematical Modelling of Engineering Problems, 2023, 10(4), pp. 1427-1432.
[19] M. Anandhkumar ,T. Harikrishnan,S. M. Chithra,V. Kamalakannan,B. Kanimozhi. "Partial orderings, Characterizations and Generalization of k-idempotent Neutrosophic fuzzy matrices." International Journal of Neutrosophic Science, Vol. 23, No. 2, 2024 ,PP. 286-295.
[20] AR.Meenakshi and D.Jaya Shree, On k-kernel symmetric matrices, International Journal of Mathematics and Mathematical Sciences, 2009, Article ID 926217, 8 Pages.
[21] AR.Meenakshi and S.Krishanmoorthy, On Secondary k-Hermitian matrices, Journal of Modern Science, 1 (2009) 70-78.
[22] AR.Meenakshi and D.Jaya Shree, On K -range symmetric matrices, Proceedings of the National conference on Algebra and Graph Theory, MS University, (2009), 58-67.
[23] D.Jaya shree, Secondary к-Kernel Symmetric Fuzzy Matrices, Intern. J. Fuzzy Mathematical Archive Vol. 5, No. 2, 2014, 89-94 ISSN: 2320-3242 (P), 2320-3250, Published on 20 December 2014. [24] A. K. Shyamal and M. Pal, Interval valued Fuzzy matrices, Journal of Fuzzy Mathematics 14(3) (2006), 582-592.
[25] A. R. Meenakshi and M. Kalliraja, Regular Interval valued Fuzzy matrices, Advance in Fuzzy Mathematics 5(1) (2010), 7-15.
[26] G.Punithavalli and M.Anandhkumar "Kernal and k-kernal Intuitionistic Fuzzy matrices" Accepted in TWMS Journal 2022.
[27]D. Jaya Shree, Secondary к-range symmetric fuzzy matrices, Journal of Discrete Mathematical Sciences and Cryptography 21(1):1-11,2018.
[28] M. Anandhkumar; G.Punithavalli; T.Soupramanien; Said Broumi, Generalized Symmetric Neutrosophic Fuzzy Matrices, Neutrosophic Sets and Systems, Vol. 57,2023, 57, pp. 114-12.
[29]M. Kaliraja And T. Bhavani, Interval Valued Secondary к-Range Symmetric Fuzzy Matrices, Advances and Applications in Mathematical Sciences Volume 21, Issue 10, August 2022, Pages 5555-5574.
[30]Baskett T. S., and Katz I. J., (1969), Theorems on products of EPr matrices," Linear Algebra and its Applications, 2, 87-103.
[31]Meenakshi AR., Krishnamoorthy S., and Ramesh G., (2008) on s-k-EP matrices", Journal of Intelligent System Research, 2, 93-100.
[32] Meenakshi AR., and Krishanmoorthy S.,(2009), on Secondary k-Hermitian matrices, Journal of Modern Science, 1, 70-78.
[33]Shyamal A. K., and Pal. M., (2006) , Interval valued Fuzzy matrices, Journal of Fuzzy Mathematics 14(3), 582-592.
[34]Ann Lec.,(1976), Secondary symmetric and skew symmetric secondary orthogonal matrices (i) Period, Math Hungary, 7, 63-70.
[35]Anandhkumar, M.; G. Punithavalli; R. Jegan; and Said Broumi.(2024) "Interval Valued Secondary k-Range Symmetric Neutrosophic Fuzzy Matrices." Neutrosophic Sets and Systems 61, 1 .

[^0]: M.Anandhkumar ${ }^{1}$, G.Punithavalli ${ }^{2}$, E.Janaki ${ }^{3}$, Generalized k-column symmetric NFM

