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1. Introduction

In Analysis, we usually face many situations where the analytic solutions to some problems

seem difficult due to the divergence of an infinite series or a power series. Consequently, we

look forward to a modified method of convergence that can sum up the divergence series in

some sense and call it a method of summability. A well-known method is due to Cesàro for

number sequences known as Cesàro summability and is defined as follows:

“A sequence x = (xn) of numbers is said to be Cesàro summable [or (C, 1)− summable to x0

if

lim
n→∞

(
x1 + x2 + . . . xn

n

)
= x0.”

If limn→∞(xn) = x0, then (xn) is (C, 1)−summable to x0 however, the reverse way implication

may not be true. But by adding some additional conditions on sequence called ”Tauberian

conditions”, we obtained the result in the reverse way too. These results obtained by impos-

ing Tauberian conditions are known as Tauberian Theorems. In past years, many interesting
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works have been carried out in this direction and various kinds of Tauberian theorems have

been proved. For some historical view on Cesàro summability and Tauberian Theorems, we

refer to the reader [1], [13]-[15] and [24 ]-[26].

On the other side, Zadeh [28] observed first time that many real-life situations cannot be set

in the framework of classical sets. Therefore, to deal with such situations, in 1965, he pro-

posed the idea of fuzzy sets via introducing the membership function. Later, a revolutionary

development on fuzzy sets has been started. Many existing ideas have been developed again

by applying fuzzy logic. During this developmental phase, several intriguing generalizations

of fuzzy sets have emerged in the literature. For example: intuitionistic fuzzy sets (IFS) [2],

vague fuzzy sets [5], neutrosophic sets (NS) [12], interval-valued fuzzy sets [27], etc. Analogous

to the classical set theory, these sets have also been employed to introduce novel spaces, in-

cluding fuzzy normed spaces ([6], [11]), intuitionistic fuzzy normed spaces ([7], [8], [19], [21]),

and neutrosophic normed spaces ([3], [4], [9], [10], [17], [18], [20], [22], [23]). To develop these

spaces mathematically and topologically, we need to define the concept of limit as one of the

fundamental concepts. Some interesting works in this direction can be found in [7] - [11],

etc. Recently, Talo and Yavuz [25] studied Cesàro summability and proved some Tauberian

theorems in an intuitionistic fuzzy normed space. As neutrosophic normed spaces are gener-

alizations of intuitionistic fuzzy normed spaces so it is natural to extend Cesàro summability

and related concepts in these spaces. In present paper, we define Cesàro summability, slowly

oscillating sequences and prove some Tauberian theorems in neutrosophic normed spaces. We

organize the paper as follows, the first and second sections are introductory and provide basic

information needed in the sequel. In third section we define ∆m-Cesàro summability in NNS

and obtained certain results. Finally in last section we define Slowly oscillating sequences in

NNS and establish related Tauberian Theorems in neutrosophic normed spaces.

2. Background and Preliminaries

This section begin with a short review on some definitions and results.

Throughout this work, I will denote the closed interval [0, 1], and N and R+ denotes the set

of positive integers and positive reals, respectively.

Definition 2.1 [8] “A map from ◦ : I × I to I is said to be a continuous t−norm if, ∀
f, g, h, i ∈ I we have:

(i) f ◦ g = g ◦ f ;
(ii)f ◦ (g ◦ h) = (f ◦ g) ◦ h;
(iii) ◦ is continuous;

(iv) f ◦ 1 = f and

(v) f ◦ g ≤ h ◦ i whenever f ≤ h and g ≤ i.”
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summability in NNS

Neutrosophic Sets and Systems, Vol. 61, 2023                                                                            508



Definition 2.2 [8] “A map from ⋄ : I × I to I is said to be a continuous triangular conorm or

t−conorm if for all f, g, h, i ∈ I we have:

(i) f ⋄ g = g ⋄ f ;
(ii)f ⋄ (g ⋄ h) = (f ⋄ g) ◦ h;
(iii) ⋄ is continuous;

(iv) f ⋄ 0 = f for every f ∈ [0, 1]

(v) f ⋄ g ≤ h ⋄ i whenever f ≤ h and g ≤ i.”

Definition 2.3 [10] “A four tuple V = (F,N, ◦, ⋄, ) where F be a vector space, N =

{⟨ϑ,H(ϑ), I(ϑ),J (ϑ)⟩ : ϑ ∈ F} be a normed space with N : F × R+ → I and ◦, ⋄ re-

spectively are continuous t−norm and continuous t−conorm, is called a neutrosophic normed

spaces (NNS) if the following conditions hold: For every u, v ∈ F and y1, y2 > 0 and for every

α ̸= 0 we have (i) 0 ≤ H (u, y1) ≤ 1, 0 ≤ I (u, y1) ≤ 1, 0 ≤ J (u, y1) ≤ 1 for every y1∈ R+ ;

(ii) H (u, y1) + I (u, y1) + J (u, y1) ≤ 3 for y1∈ R+ ;

(iii) H (u, y1) = 1 (for y1 > 0) if and only if u = θ;

(iv) H (αu, y1) = H
(
u, y1

|α|

)
; (v) H (u, y1) ◦ H (v, y2) ≤ H (u+ v, y1 + y2) ;

(vi) H (u, .) is continuous non-decreasing function;

(vii) limy1→∞H (u, y1) = 1;

(viii) I (u, y1) = 0 (for y1 > 0) if and only if u = θ;

(ix) I (αu, y1) = I
(
u, y1

|α|

)
;

(x) I (u, y1) ⋄ I (v, y2) ≥ I (u+ v, y1 + y2) ;

(xi) I (u, .) is continuous non-decreasing function;

(xii) limy1→∞ I (u, y1) = 0;

(xiii) J (u, y1) = 0 (for y1 > 0) if and only if u = θ;

(xiv) J (αu, y1) = J
(
u, y1

|α|

)
;

(xv) J (u, y1) ⋄ J (v, y2) ≥ J (u+ v, y1 + y2) ;

(xvi) J (u, .) is continuous non-decreasing function;

(xvii) limy1→∞ J (u, y1) = 0;

(xviii) If y1 ≤ 0, then H (u, y1) = 0, I (u, y1) = 1 and J (u, y1) = 1.

We call N = (H, I,J ), the neutrosophic norm and V = (F,H, I,J , ◦, ⋄), the neutrosophic

normed space.”

For some examples on these spaces we refer [10].

“A sequence (un) in a neutrosophic normed spaces V is said to convergent if for each

ε > 0 and y > 0, there exists a positive integer m and u0 ∈ F such that H (un − u0, y) >

1− ε, I (un − u0, y) < ε and J (un − u0, y) < ε for all n ≥ m. This is equivalent to say that
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limn→∞H (un − u0, y) = 1, limn→∞ I (un − u0, y) = 0 and limn→∞ J (un − u0, y) = 0 and we

write N − limn→∞ un = u0.”

“A sequence (un) is said to be Cauchy if for each ε > 0 and y > 0, there exists a posi-

tive integer p such that H (uk − un, y) > 1 − ε, I (uk − un, y) < ε and J (uk − un, y) <

ε for all k, n ≥ p.”

“Let w denotes the set of all sequences in the neutrosophic normed space V =

(F,H, I,J , ◦, ⋄). Define ∆m : w → w by

∆0 ak = ak;

∆1 ak = ak − ak+1;

∆m ak = ∆m−1(ak − ak+1)m ≥ 2 and ∀ k ∈ N.

We now demonstrate two important Lemmas of [24].

For µ > 0 and n ∈ N, let µn = ⌊µn⌋ i.e, the sequence of integral parts of the product µn.”

If we define ⟨µ⟩ = µ− ⌊µ⌋, then we have the following Lemmas.

Lemma 2.1 [24] “(i) If µ > 1, then µn > n, ∀ n ∈ N− {0} along with n > ⟨µ⟩−1.

(ii) If 0 < µ < 1, then µn < n, ∀ n ∈ N− {0}.”

Lemma 2.2[24] “(i) If µ > 1, then ∀ n ∈ N− {0} along with n ≥ 3µ−1
µ(µ−1) , we have

µ

(µ− 1)
<

µn + 1

µn − n
<

2µ

µ− 1
.

(ii) If 0 < µ < 1, then ∀ n ∈ N− {0} along with n = µ−1 we have

0 <
µn + 1

n− µn
<

2µ

1− µ
.

We now turn towards our main section. Throughout the work, V denotes a neutrosophic

normed space with neutrosophic norm N unless otherwise stated and θ, the 0−th element in

V .”

3. ∆m-Cesàro summability in NNS

Definition 3.1 A sequence u = (un) in V is called ∆m-Cesàro summable [or

(C,∆m, 1)−summable w.r.t. N ] to u0 if N − limn→∞ σn = u0 where the sequence (σn) is

precisely defined by

σn =
v1 + v2 + . . . vn

n
=

∑n
k=1 vk
n

. (n ∈ N) and

vn = ∆mun =

m∑
p=0

(−1)p
(
m

p

)
un+p.
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This is similar to say, for ϵ > 0 and y > 0 there exist n0 ∈ N satisfying

H(σn − u0, y) > 1− ϵ and I(σn − u0, y) < ϵ,J (σn − u0, y) < ϵ.

In this case, we abbreviate it as N(C,∆m, 1)− limn→∞ un = u0.

Next Theorem gives the relationship between N−convergence and N(C,∆m, 1)−summability.

Theorem 3.1 For any sequence u = (un) in V , if N − limn→∞∆mun = u0, then

N(C,∆m, 1)− limn→∞ un = u0.

Proof. Assume that N − limn→∞∆mun = u0. We wish to prove that N(C,∆m, 1) −
limn→∞ un = u0. Let ϵ > 0 be given and take y > 0. As N − limn→∞∆mun = u0 so ∃
n1 ∈ N satisfying, for all n ≥ n1

H
(
∆mun − u0,

y

2

)
> 1− ϵ and I

(
∆mun − u0,

y

2

)
< ϵ,J

(
∆mun − u0,

y

2

)
< ϵ;

Moreover,

lim
n→∞

H
( n1∑

k=1

∆muk − u0,
ny

2

)
= 1 and lim

n→∞
I
( n1∑

k=1

∆muk − u0,
ny

2

)
= 0,

lim
n→∞

J
( n1∑

k=1

∆muk − u0,
ny

2

)
= 0;

gives another n2 ∈ N with n ≥ n2 such that

H
( n1∑

k=1

∆muk − u0,
ny

2

)
> 1− ϵ and I

( n1∑
k=1

∆muk − u0,
ny

2

)
< ϵ,

J
( n1∑

k=1

∆muk − u0,
ny

2

)
< ϵ.

Now, for n > max{n1, n2} we have

H
(
1

n

n∑
k=1

∆muk − u0, y

)
= H

(
1

n

n∑
k=1

(∆muk − u0), y

)
= H

( n∑
k=1

(∆muk − u0), ny

)

≥ min

{
H
( n1∑

k=1

(∆muk − u0), n
y

2

)
,H
( n∑

k=n1+1

(∆muk − u0), n
y

2

)}

≥ min

{
H
( n1∑

k=1

(∆muk − u0), n
y

2

)
,H
( n∑

k=n1+1

(∆muk − u0), (n− n1).
y

2

)}

≥ min

{
H
( n1∑

k=1

(∆muk − u0), n
y

2

)
,H
(
(∆mun1+1 − u0),

y

2

)
,H
(
(∆mun1+2 − u0),

y

2

)
, · · ·

H
(
(∆mun − u0),

y

2

)}
> (1− ϵ) and
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I
(
1

n

n∑
k=1

∆muk − u0, y

)
= I

(
1

n

n∑
k=1

(∆muk − u0), y

)
= I

( n∑
k=1

(∆muk − u0), ny

)

< max

{
I
( n1∑

k=1

(∆muk − u0), n
y

2

)
, I
( n∑

k=n1+1

(∆muk − u0), n
y

2

)}

< max

{
I
( n1∑

k=1

(∆muk − u0), n
y

2

)
, I
( n∑

k=n1+1

(∆muk − u0), (n− n1)
y

2

)}

< max

{
I
( n1∑

k=1

(∆muk − u0), n
y

2

)
,

I
(
(∆mun1+1 − u0),

y

2

)
, I
(
(∆mun1+2 − u0),

y

2

)
, · · · I

(
(∆mun − u0),

y

2

)}
< ϵ.

Similarly one can show

J
(
1

n

n∑
k=1

∆muk − u0, y

)
< ϵ.

This implies that N(C,∆m, 1)− limn→∞ un = u0, which completes the proof of the Theorem.□

Example 3.1 Let (R, |.|) denote the space of reals with the usual norm. For a, b ∈ [0, 1], let

the t− norm and t−conorm are defined by

a ◦ b = ab and a ⋄ b = a+ b− ab

Let, u ∈ R and y > 0 with y > |u|. Define H, I and J as follows:

H(u, y) =
y

y+ |u|
, I(u, y) = |u|

y+ |u|
and J (u, y) =

|u|
y
,

then N(H, I,J ) is a neutrosophic norm and (R, ◦, ⋄,H, I,J ) is a NNS.

Define a sequence (un) by un = (−1)n, then for m = 1, ∆1un = 2(−1)n and therefore the

sequence σn is given by

σn =
2(−1)1 + 2(−1)2 + · · ·+ 2(−1)n

n
= 0 or

−2

n
,

according as n is even or odd respectively.

Case-I: If n is even, then σn = 0, and therefore we have

lim
n→∞

H(0, y) = 1 and lim
n→∞

I(0, y) = lim
n→∞

J (0, y) = 0.

(by Definition NNS)
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Case-II: If n is odd, then

H(σn − 0, y) = H(σn, y) =
y

y+ |σn|
=

y

y+ |−2
n |

so, lim
n→∞

H(σn − 0, y) = lim
n→∞

y

y+ |−2
n |

= 1;

and

I(σn − 0, y) = I(σn, y) =
|σn|

y+ |σn|
=

|−2
n |

y+ |−2
n |

gives

lim
n→∞

I(σn − 0, y) = lim
n→∞

|−2
n |

y+ |−2
n |

= 0;

J (σn − 0, y) = J (σn, y) =
∥σn∥
y

=
|−2
n |
y

will imply

lim
n→∞

J (σn − θ, y) = lim
n→∞

|−2
n |
y

= 0.

Hence, in both cases,

lim
n→∞

H(σn − 0, y) = 1, lim
n→∞

I(σn − 0, y) = lim
n→∞

J (σn − 0, y) = 0,

and therefore, N − limn→∞ σn = 0 i.e., N(C,∆, 1)− limn→∞ un = 0.

But clearly the sequence (un) = 2(−1)n is not N−convergent as

H(un − u0, y) =
y

y+ ∥un − u0∥
=

y

y+ |2(−1)n − u0|
=


y

y+|−2−u0| if n is odd;

( y
y+|2−u0|) if n is even.

Thus, if we choose u0 = −2 when n is odd and u0 = 2 when n is even, then we have

lim
n→∞

H(un − u0, y) =

1 if n is odd;

1 if n is even.

Similarly one can show

lim
n→∞

I(un − u0, y) = lim
n→∞

J (un − u0, y)

0 if n is odd;

0 if n is even.

In this way we obtain two subsequences of the sequence un = (−1)n corresponding to sets

of even and odd integers and which are N−convergent to different limits. This shows that

(un) = (−1)n is not N−convergent. □

The following Theorem gives the reverse way of Theorem 3.1 via applying some additional

conditions.
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Theorem 3.2 For any sequence u = (un) in V , if N(C,∆m, 1) − limn→∞ un = u0, then

N − limn→∞∆mun = u0 if and only if

(i) sup
µ>1

[
lim inf
n→∞

H

(
1

µn − n

µn∑
k=n+1

(∆muk −∆mun), y

)]
= 1;

(ii) inf
µ>1

[
lim sup
n→∞

I

(
1

µn − n

µn∑
k=n+1

(∆muk −∆mun), y

)]
= 0;

(iii) inf
µ>1

[
lim sup
n→∞

J

(
1

µn − n

µn∑
k=n+1

(∆muk −∆mun), y

)]
= 0.

(Here for µ > 0, µn = ⌊µn⌋i.e., the integral part of µn)

Proof. Necessity: Let, u = (un) be any sequence in V with N(C,∆m, 1) − limn→∞ un = u0.

We first assume that N − limn→∞∆mun = u0 and obtain conditions (i), (ii) and (iii). Let

y > 0 and take µ > 1. Then, by Lemma 2.1, for each n ∈ N−{0} we have µn > n and n ≥ 1
⟨µ⟩

where ⟨µ⟩ = µ−⌊µ⌋ . Moreover, by Lemma 2.1, we can write the difference of (∆mun−∆mσn)

as

∆mun − σn =
µn + 1

µn − n
[σµn − σn]−

1

µn − n

µn∑
k=n+1

(∆muk −∆mun) ;

and therefore by Lemma 2.2, we have for n ≥ 3µ−1
µ(µ−1) ,

H
(
µn + 1

µn − n
[σµn − σn] , y

)
= H

(
[σµn − σn] ,

y
µn+1
µn−n

)

≥ H

(
[σµn − σn] ,

y
2µ
µ−1

)

so we have, lim
n→∞

H
(
µn + 1

µn − n
[σµn − σn] , y

)
= H

(
0,

y
2µ
µ−1

)
= 1.

as (σn) is a Cauchy sequence.
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Now,

I
(
µn + 1

µn − n
[σµn − σn] , y

)
= I

(
[σµn − σn] ,

y
µn+1
µn−n

)

≤ I

(
[σµn − σn] ,

y
2µ
µ−1

)

so we have, lim
n→∞

I
(
µn + 1

µn − n
[σµn − σn] , y

)
= I

(
0,

y
2µ
µ−1

)
= 0;

similarly,

J
(
µn + 1

µn − n
[σµn − σn] , y

)
= J

(
[σµn − σn] ,

y
µn+1
µn−n

)

≤ J

(
[σµn − σn] ,

y
2µ
µ−1

)

and therefore, lim
n→∞

J
(
µn + 1

µn − n
[σµn − σn] , y

)
= J

(
0,

y
2µ
µ−1

)
= 0.

Hence, we obtain

lim
n→∞

H
(
µn + 1

µn − n
[σµn − σn] , y

)
= 1, lim

n→∞
I
(
µn + 1

µn − n
[σµn − σn] , y

)
= lim

n→∞
I
(
µn + 1

µn − n
[σµn − σn] , y

)
= 0,

which immediately imply (i), (ii) and (iii).

Sufficiency: Suppose (i), (ii) and (iii) holds. We shall show that N − limn→∞∆mun = u0.

For this, let ϵ > 0 be given and take y > 0. By hypothesis, there exists a µ > 1 and a m1 ∈ N
such that for n > m1, we have

H

(
1

µn − n

µn∑
k=n+1

(∆muk −∆mun),
y

3

)
> 1− ϵ and I

(
1

µn − n

µn∑
k=n+1

(∆muk −∆mun),
y

3

)
< ϵ,

J

(
1

µn − n

µn∑
k=n+1

(∆muk −∆mun),
y

3

)
< ϵ;

Since, N(C,∆m, 1) − limn→∞ un = u0, so we have another m2 ∈ N such that for all n > m2

we have

H
(
σn − u0,

y

3

)
> 1− ϵ and I

(
σn − u0,

y

3

)
< ϵ,J

(
σn − u0,

y

3

)
< ϵ.
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Moreover, as N − limn→∞
µn+1
µn−n [σµn − σn] = 0, so there is m3 ∈ N such that for all n > m3

we have

H
(
µn + 1

µn − n
[σµn − σn] ,

y

3

)
> 1− ϵ and I

(
µn + 1

µn − n
[σµn − σn] ,

y

3

)
< ϵ,

J
(
µn + 1

µn − n
[σµn − σn] ,

y

3

)
< ϵ.

Now,

H(∆mun − u0, y) = H(∆mun − σn + σn − u0, y)

= H

(
µn + 1

µn − n
[σµn − σn]−

1

µn − n

µn∑
k=n+1

(∆muk −∆mun) + σn − u0, y

)

≥ min

{
H
(
µn + 1

µn − n
[σµn − σn] ,

y

3

)
,H

(
1

µn − n

µn∑
k=n+1

(∆muk −∆mun) ,
y

3

)
,H
(
σn − u0,

y

3

)}
;

and

I(∆mun − u0, y) = I(∆mun − σn + σn − u0, y)

= I

(
µn + 1

µn − n
[σµn − σn]−

1

µn − n

µn∑
k=n+1

(∆muk −∆mun) + σn − u0, y

)

≤ max

{
I
(
µn + 1

µn − n
[σµn − σn] ,

y

3

)
, I

(
1

µn − n

µn∑
k=n+1

(∆muk −∆mun) ,
y

3

)
, I
(
σn − u0,

y

3

)}
,

J (∆mun − u0, y) = J (∆mun − σn + σn − u0, y)

= J

(
µn + 1

µn − n
[σµn − σn]−

1

µn − n

µn∑
k=n+1

(∆muk −∆mun) + σn − u0, y

)

≤ max

{
J
(
µn + 1

µn − n
[σµn − σn] ,

y

3

)
,J

(
1

µn − n

µn∑
k=n+1

(∆muk −∆mun) ,
y

3

)
,J
(
σn − u0,

y

3

)}
,

Thus, if we select m = max{m1,m2,m3}, then we have H(∆mun−u0, y) > 1−ϵ and I(∆mun−
u0, y) < ϵ, J (∆mun − u0, y) < ϵ and therefore N − limn→∞∆mun = u0. □

The case for 0 < µ < 1 follows similarly by using the expression

∆mun − σn =
µn + 1

n− µn
[σn − σµn ]−

1

n− µn

µn∑
k=n+1

(∆mun −∆muk) .

Another similar result related to Cesàro summability and N−convergence is as follows.

Theorem 3.3 For any sequence u = (un) in V , if N(C, 1) − limn→∞ un = u0, then N −
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limn→∞ un = u0 if and only if

(i) sup
0<µ<1

lim inf
n→∞

H

 1

n− µn

n∑
k=µn+1

(∆mun −∆muk), y

 = 1;

(ii) inf
0<µ<1

lim sup
n→∞

I

 1

n− µn

n∑
k=µn+1

(∆mun −∆muk), y

 = 0;

(iii) inf
0<µ<1

lim sup
n→∞

J

 1

n− µn

n∑
k=µn+1

(∆mun −∆muk), y

 = 0.□

4. Slowly oscillating sequences in NNS

For µn, the sequence of integer part of µn, the concept of ∆m-slowly oscillating sequences

in neutrosophic normed spaces is defined as follow.

Definition 4.1 A sequence u = (un) in V is called slowly oscillating if for all y > 0

(i) sup
µ>1

[
lim inf
n→∞

{
min

n<k≤ µn

H(∆muk −∆mun, y)

}]
= 1 and

(ii) inf
µ>1

[
lim sup
n→∞

{
max

n<k≤µn

I(∆muk −∆mun, y)

}]
= 0,

(iii) inf
µ>1

[
lim sup
n→∞

{
max

n<k≤µn

J (∆muk −∆mun, y)

}]
= 0.

Above definition immediately gives the following remarks.

Remark 4.1 In Definition 3.2, supµ>1 and infµ>1 is equivalent to say limµ→1+ .

Remark 4.2 A sequence u = (un) in V is ∆m-slowly oscillating, if and only if, for all 0 < ϵ < 1

and y > 0 there exists µ > 1 and n0(ϵ, y) ∈ N such that

H(∆muk −∆mun, y) > 1− ϵ and I(∆muk −∆mun, y) < ϵ,J (∆muk −∆mun, y) < ϵ.

holds for every n0 ≤ n < k ≤ µn.

Example 4.1 Let (R, |·|) be a normed space. Let a◦b = ab and a⋄b = a+b−ab ∀ a, b ∈ [0, 1].

For all u ∈ R and every y > 0, we consider H(u, y) = y
y+|u| , I(u, y) =

|u|
y+|u| ,J (u, y) = |u|

y , then

(R, ◦, ⋄,H, I,J ) is a NNS. Define a sequence (un) as follows:

u1 = 1,

u2 = u3 = 1 + 1
2 ,

u4 = u5 = u6 = u7 = 1 + 1
2 + 1

3 ,

. . .
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u2n = u2n+1 = . . . = u2n+1−1 =
n+1∑
j=1

1
j .

Given ϵ > 0, let δ = 1 and m = 0. Choose n0 ∈ N s.t 1
n0

< ϵ. Then if n > n0 and n ≤ k ≤ 2n,

we have

H(uk−un, y) =
y

y+|uk−un| > 1−ϵ and I(uk−un, y) =
|uk−un|

y+|uk−un| < ϵ, J (uk−un, y) =
|uk−un|

y < ϵ.

This shows that (un) is slowly oscillating sequence in (R, ◦, ⋄,H, I,J )

Theorem 4.1 Let u = (un) in V be a ∆m-slowly oscillating sequence. Then for every y > 0,

the conditions (i), (ii) and (iii) in Definition 4.1 are respectively equivalent to

(i) sup
0<µ<1

[
lim inf
n→∞

{
min

µn<k≤ n
H(∆muk −∆mun, y)

}]
= 1 and

(ii) inf
0<µ<1

[
lim sup
n→∞

{
max

µn<k≤n
I(∆muk −∆mun, y)

}]
= 0,

(iii) inf
0<µ<1

[
lim sup
n→∞

{
max

µn<k≤n
J (∆muk −∆mun, y)

}]
= 0.

Proof. We first prove that the following conditions are equivalent:

sup
µ>1

[
lim inf
n→∞

{
min

n<k≤ µn

H(∆muk −∆mun, y)

}]
= 1,

sup
0<µ<1

[
lim inf
n→∞

{
min

µn<k≤ n
H(∆muk −∆mun, y)

}]
= 1.

Let y > 0 be given and for µ > 1, we define

f1(µ) = lim inf
n→∞

{
min

n<k≤⌊µn⌋
H(∆muk −∆mun, y)

}
and

f2

(
1

µ

)
= lim inf

k→∞

{
min

⌊ k
µ
⌋<n≤k

H(∆muk −∆mun, y)

}

By definition of lim inf in f1, we have a subsequence (nr) with

f1(µ) = lim
r→∞

{
min

nr<k≤⌊µnr⌋
H(∆muk −∆munr , y)

}
.

This gives rise another subsequence (kr) satisfying nr < kr ≤ ⌊µnr⌋ with

min
nr<k≤⌊µnr⌋

H(∆muk −∆munr , y) = H(∆mukr −∆munr , y).
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Since, nr < kr ≤ ⌊µnr⌋, so by Remark 3 [16], nr ∈
(
⌊(krµ ⌋, kr

)
, and therefore we have

f2

(
1

µ

)
= lim inf

k→∞

{
min

⌊ k
µ
⌋<n≤k

H(∆muk −∆mun, y)

}
≤ lim

r→∞

{
min

⌊ kr
µ
⌋<n≤kr

H(∆mukr −∆mun, y)

}
≤ lim

r→∞
H(∆mukr −∆munr , y)

= lim
r→∞

{
min

nr<k≤⌊µnr⌋
H(∆muk −∆munr , y)

}
= f1

(
1

µ

)
.

Similarly, we can have f2

(
1
µ

)
≥ f1

(
1
µ

)
by changing their roles and therefore we have f1

(
1
µ

)
=

f2

(
1
µ

)
. This shows that both expressions

sup
µ>1

[
lim inf
n→∞

{
min

n<k≤ µn

H(∆muk −∆mun, y)

}]
= 1,

sup
0<µ<1

[
lim inf
n→∞

{
min

µn<k≤ n
H(∆muk −∆mun, y)

}]
= 1.

are equivalent.

Following the same line of proof, one can easily obtain the equivalence of other pairs of

expressions. □

Example 4.2 Consider the neutrosophic normed space ((R, ◦, ⋄,H, I,J ) as defined in Exam-

ple 3.1.

Define a sequence (un) by un =
∑n

i=1

(
1
i

)
and take y > 0.

Let 0 < ϵ < 1 be given and select µ = yϵ
1−ϵ + 1.

Now, for all n satisfying 1 < n < k < µn, we have

∥uk − un∥ =

∥∥∥∥∥
k∑

i=1

(
1

i

)
−

n∑
i=1

(
1

i

)∥∥∥∥∥
=

∥∥∥∥∥
k∑

i=n+1

(
1

i

)∥∥∥∥∥ ≤
k∑

i=n+1

(
1

i

)
<

1

n
+

1

n
+ · · ·+ 1

n

=
k − n

n
=

k

n
− 1 < µ− 1 =

yϵ

1− ϵ
(by selection of n, k and µ);
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and therefore

H (uk − un, y) =
y

y+ ∥uk − un∥
>

y

y+ yϵ
1−ϵ

= 1− ϵ and

I (uk − un, y) =
∥uk − un∥

y+ ∥uk − un∥
<

(
yϵ
1−ϵ

)
y+

(
yϵ
1−ϵ

) = ϵ.

Similarly, one can have J (uk − un, y) < ϵ.

This shows that (un) is slowly oscillating in (R, ◦, ⋄,H, I,J ). □

Theorem 4.2 Let V be a normed space with norm ∥.∥ and (R, ◦, ⋄,H, I,J ) be the neutro-

sophic normed space as in Example 3.1. Then, a sequence u = (un) is ∆m-slowly oscillating

in V if and only if it is so in (R, ◦, ⋄,H, I,J ).

Proof. We first assume that u = (un) is ∆
m-slowly oscillating in V . Let, y > 0 and 0 < ϵ < 1.

Select ϵ′ = yϵ
1−ϵ , then by Remark 4.2 there exists µ > 1 and n0(ϵ, y) ∈ N such that

H(∆muk −∆mun, y) > 1− ϵ and I(∆muk −∆mun, y) < ϵ,J (∆muk −∆mun, y) < ϵ.

holds for every n0 ≤ n < k ≤ µn.

This proves that u = (un) is ∆
m-slowly oscillating in (R, ◦, ⋄,H, I,J ).

Conversely, assume that u = (un) is ∆m-slowly oscillating in (R, ◦, ⋄,H, I,J ). Then for

0 < ϵ < 1
2 and y = 1 > 0, then there exists µ > 1 and n0(ϵ, 1) ∈ N such that

H(∆muk −∆mun, 1) > 1− ϵ and I(∆muk −∆mun, 1) < ϵ,J (∆muk −∆mun, 1) < ϵ.

holds for every n0 ≤ n < k ≤ µn.

Now, for n0 ≤ n < k ≤ µn, H(∆muk −∆mun, 1) > 1− ϵ will immediately gives

1− ϵ <
1

1 + ∥∆muk −∆mun∥
or ∥∆muk −∆mun∥ <

ϵ

1 + ϵ
< 2ϵ = ϵ′,

and therefore u = (un) is ∆
m-slowly oscillating in V . □

Theorem 4.3 If u = (un) is any ∆m-slowly oscillating sequence in V , then

(i) sup
µ>1

[
lim inf
n→∞

H

(
1

µn − n

µn∑
k=n+1

(∆muk −∆mun), y

)]
= 1;

(ii) inf
µ>1

[
lim sup
n→∞

I

(
1

µn − n

µn∑
k=n+1

(∆muk −∆mun), y

)]
= 0;

(iii) inf
µ>1

[
lim sup
n→∞

J

(
1

µn − n

µn∑
k=n+1

(∆muk −∆mun), y

)]
= 0.
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Proof. Suppose that u = (un) is any ∆m-slowly oscillating sequence in V . Then for y > 0

and 0 < ϵ < 1 there exists µ > 1 and n0(ϵ, y) ∈ N such that

H(∆muk −∆mun, y) > 1− ϵ and I(∆muk −∆mxn, y) < ϵ,J (∆muk −∆mun, y) < ϵ.

holds for every n0 ≤ n < k ≤ µn. Now,

H

(
1

µn − n

µn∑
k=n+1

(∆muk −∆mun), y

)
= H

(
µn∑

k=n+1

(∆muk −∆mun), (µn − n)y

)
≥ min{H(∆mun+1 −∆mun),H(∆mun+2 −∆mun), · · ·H(∆muµn −∆mun)}

> 1− ϵ

and

I

(
1

µn − n

µn∑
k=n+1

(∆muk −∆mun), y

)
= I

(
µn∑

k=n+1

(∆muk −∆mun), (µn − n)y

)
≤ max{I(∆mun+1 −∆mun), I(∆mun+2 −∆mun), · · · I(∆muµn −∆mun)}

< ϵ,

J

(
1

µn − n

µn∑
k=n+1

(∆muk −∆mun), y

)
= J

(
µn∑

k=n+1

(∆muk −∆mun), (µn − n)y

)
≤ max{J (∆mun+1 −∆mun), Y (∆mun+2 −∆mun), · · · J (∆muµn −∆mun)}

< ϵ.

This proves the Theorem. □

Theorem 4.4 If u = (un) is any ∆m-slowly oscillating sequence in V which is

N(C,∆m, 1)−summable with N(C,∆m, 1)− limn→∞ un = u0, then N − limn→∞∆mun = u0.

Proof. The proof is omitted as it can be obtain with the help of Theorem 3.2 and Theorem

4.3. □.
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