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—————————————————————————————————————

1. Introduction

The concepts of Plithogeny, Plithogenic logic/set, Plithogenic probability and

Plithogenic statistics were introduced by Smarandache in [26]. Plithogenic set/logic is

an extension of the classical logic/set, fuzzy logic/set of Zadeh [37], intuitionistic fuzzy

logic/set of Atanassov [11], neutrosophic logic/set of Smarandache [30] and quadru-

ple neutrosophic logic/set of Smarandache [29]. Smarandache in [23], [25] and [28]

introduced and studied symbolic Plithogenic algebraic structures and hyper struc-

tures. In [22], Merkepsi and Abobala studied symbolic 2-Plithogenic rings, in [10],

Al-Basheer et al. studied symbolic 3-Plithogenic rings and in [17], Gayen et al. stud-

ied Plithogenic Hypersoft Subgroup. Also in [32], Taffach and Hatip studied Symbolic
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2-Plithogenic Number Theory And Algebraic Equations, in [33], Taffach and Othman

studied Symbolic 2-Plithogenic Modules over Symbolic 2-Plithogenic Rings and in [34],

Taffach studied Symbolic 2-Plithogenic Vector Spaces. In [18], [24] and [27], applica-

tions of Plithogenic set/logic were presented. In the present paper, we study symbolic

Plithogenic algebraic structures and hyper structures. In particular, we study sym-

bolic Plithogenic group, symbolic Plithogenic ring, symbolic Plithogenic hypergroup

and symbolic Plithogenic canonical hypergroup and present their basic properties.

2. Symbolic Plithogenic Set

A symbolic Plithogenic set SPX is defined by

SPX = {(a, a1P1, a2P2, a3P3, · · · , anPn) : a, ai ∈ R or C or any AlgebraicStructure} (1)

where P ′
i s are the Plithogenic parameters/variables. a is called the non-Plithogenic part

of SPX, aiPi is called the Plithogenic part of SPX and a′is are called the coefficients

of Pis where i = 1, 2, 3, · · · , n. For a positive integer k, Pi has the following properties :

P k
i = Pi, ∀i and k ≥ 2, (2)

kPi = Pi + Pi + Pi + · · ·+ Pi [k summand] ∀i, (3)

0Pi = 0 ∀i, (4)

P−1
i =

1

Pi

does not exist ∀i. (5)

when n = 1, equation (1) reduces to

SPX = {(a, a1P1) : a, a1 ∈ R or C or any AlgebraicStructure} (6)

and SPX becomes the usual Neutrosophic set with P1 = I.

When n = 3, equation (1) reduces to

SPX = {(a, a1P1, a2P2, a3P3) : a, xi ∈ R or C or any AlgebraicStructure} (7)

and SPX becomes the usual Neutrosophic Quadruple set with P1 = T , P2 = I and

P3 = F .

When n = 2, equation (1) reduces to

SPX = {(a, a1P1, a2P2) : a, ai ∈ R or C or any AlgebraicStructure} (8)

which is called symbolic 2-Plithogenic set.
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3. Symbolic Plithogenic Algebraic Structure

All the symbolic Plithogenic sets to be considered in this section and the section after

will be symbolic 2-Plithogenic sets of the form given by equation (8) and we are going

to assume throughout the prevalence order P1 > P2 so that

P1P1 = Pmin{1,1} = P1, (9)

P2P2 = Pmin{2,2} = P2, (10)

P1P2 = P2P1 = Pmin{1,2} = P1. (11)

Definition 3.1. Let +, − and . be the usual arithmetic operations of addition, sub-

traction and multiplication of numbers respectively and let k be a nonzero scalar.

If x = (a, a1P1, a2P2) and y = (b, b1P1, b2P2) are arbitrary elements of the symbolic

Plithogenic set SPX where a, b, ai, bi ∈ R or C, then:

x± y = (a± b, (a1 ± b1)P1, (a2 ± b2)P2), (12)

kx = (ka, ka1P1, ka2P2), (13)

x.y = (ab, (ab1 + a1b+ a1b1 + a1b2 + a2b1)P1, (ab2 + a2b+ a2b2)P2). (14)

When k = 0, then we have

0x = (0a, 0a1P1, 0a2P2) = (0, 0P1, 0P2) = (0, 0, 0). (15)

Notation 3.2. In what follows next, we will use the symbols SPN, SPZ, SPQ, SPR
and SPC to denote the Plithogenic sets of natural, integer, rational, real and complex

numbers respectively.

Example 3.3. (SPQ, .), (SPR, .) and (SPC, .) are symbolic Plithogenic groups.

Definition 3.4. Let (X, ∗) be any algebraic structure and let SPX be the corresponding

symbolic Plithogenic set. The couple (SPX, ∗) is called a symbolic Plithogenic algebraic

structure. SPX will be named according to the name of the underlying algebraic struc-

ture X. For instance if X is a group, SPX will be called a symbolic Plithogenic group,

if X is a ring, SPX will be called a symbolic Plithogenic ring, if X is a hypergroup,

SPX will be called a symbolic Plithogenic hypergroup and so on .

Theorem 3.5. Let (G, ∗) be a group and let SPG be the corresponding symbolic

Plithogenic group. Then:

(i) G ⊂ SPG.

(ii) (SPG, ∗) is a semigroup.

(iii) (SPG, ∗) is not a group.
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Proof. (i) This follows from the definition of SPG.

(ii) Let x = (a, a1P1, a2P2), y = (b, b1P1, b2P2) and z = (c, c1P1, c2P2) be arbitrary

elements of SPG. Then:

x ∗ y = (ab, (ab1 + a1b+ a1b1 + a1b2 + a2b1)P1, (ab2 + a2b+ a2b2)P2) ∈ SPG. Now,

(x ∗ y) ∗ z = (abc, (abc1 + ab1c+ a1bc+ a1b1c+ a1b2c+ a2b1c+ ab1c1 + a1bc1 + a1b1c1

+a1b2c1 + a2b1c1 + ab1c2 + a1bc2 + a1b1c2 + a1b2c2 + a2b1c2 + ab2c1

+a2bc1 + a2b2c1)P1, (abc2 + ab2c+ a2bc+ a2b2c+ ab2c2 + a2bc2 + a2b2c2)P2)

x ∗ (y ∗ z) = (abc, (abc1 + ab1c+ ab1c1 + ab1c2 + ab2c1 + a1bc+ a1bc1 + a1b1c+ a1b1c1

+a1b1c2 + a1b2c1 + a1bc2 + a1b2c+ a1b2c2 + a2bc1 + a2b1c+ a2b1c1

+a2b1c2 + a2b2c1)P1, (abc2 + ab2c+ a2bc+ a2b2c+ ab2c2 + a2bc2 + a2b2c2)P2)

= x ∗ (y ∗ z).

This shows that (SPG, ∗) is a semigroup.

(iii) Since P−1
1 and P−1

2 do not exist, it follows that we cannot find x−1, ∀x ∈ SPG.

Hence, (SPG, ∗) is not a group.

Remark 3.6. If (G,+) is a group, then the symbolic Plithogenic group (SPG,+) is a

group.

Example 3.7. (SPZ,+), (SPQ,+), (SPR,+) and (SPC,+) are abelian groups.

Theorem 3.8. Every symbolic Plithogenic group (SPG, .) has at least 2 nontrivial idem-

potent elements.

Proof. Since P1P1 = P1, P2P2 = P2 in SPG, the required result follows.

Theorem 3.9. Let (G, ∗) be a finite group of order n. Then (SPG, ∗) is a finite symbolic

Plithogenic group of order n3.

Example 3.10. Let Z2 be the group of integers modulo 2. Then

SPZ2 = {(0, 0, 0), (1, 0, 0), (0, P1, 0, ), (0, 0, P2), (0, P1, P2), (1, P1, 0), (1, 0, P2), (1, P1, P2)}

is a symbolic Plithogenic group of integers modulo 2. The elements (0, P1, 0, ), (0, 0, P2)

and (1, P1, P2) of SPZ2 are nontrivial idempotent elements.

Definition 3.11. Let ϕ : SPG → SPH be a mapping from the symbolic Plithogenic

group (SPG, ∗) to the symbolic Plithogenic group (SPH, ⋆). ϕ is called a symbolic

Plithogenic group homomorphism if the following conditions hold:
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(i) ϕ(x ∗ y) = ϕ(x) ⋆ ϕ(y), ∀x, y ∈ SPG,

(ii) ϕ(Pi) = Pi, i = 1, 2.

The kernel of ϕ denoted by Kerϕ is defined by

Kerϕ = {x ∈ SPG : ϕ(x) = identity element of SPH}.

Example 3.12. Let (G,+) be a group and let ϕ : SPG× SPG→ SPG be a mapping

defined by

ϕ(a, b) = a ∀(a, b) ∈ SPG× SPG.

Then ϕ is a symbolic Plithogenic group homomorphism.

If G = Z2, then

Kerϕ = {((0, 0, 0), (0, 0, 0)), ((0, 0, 0), (1, 0, 0)), ((0, 0, 0), (0, P1, 0, )), ((0, 0, 0), (0, 0, P2)),

((0, 0, 0), (0, P1, P2)), ((0, 0, 0), (1, P1, 0), ((0, 0, 0), (1, 0, P2)), ((0, 0, 0), (1, P1, P2))}

which is a subgroup of SPZ2 × SPZ2.

Example 3.13. Let G = Z, let SPG be the corresponding symbolic Plithogenic group

of integers and let G(I) be the neutrosophic group of integers. If ϕ : SPG → G(I) is a

mapping defined by

ϕ(x) = (a, (b+ c)I),∀x = (a, bP1, cP2) ∈ SPG,

then ϕ is a group homomorphism and Kerϕ = {(0, kP1,−kP2) : k ∈ Z} which is a

subgroup of SPG.

Definition 3.14. Let (R,+, .) be any ring. The triple (SPR,+, .) is called a symbolic

Plithogenic ring. If R is commutative with unity, so also is SPR.

Theorem 3.15. Let (R,+, .) be any ring. Then (SPR,+, .) is a ring.

Proof. Using Definition 3.1, it can easily be shown that (SPR,+) is an abelian group

and (SPR, .) is a semigroup. Also, for arbitrary x, y, z ∈ SPR, it can be shown that

x(y + z) = xy + xz and (y + z)x = yx+ zx. Hence, (SPR,+, .) is a ring.

Theorem 3.16. Every symbolic Plithogenic ring (SPR,+, .) has at least 2 nontrivial

idempotent elements.

Theorem 3.17. Let (R,+, .) be a finite ring of order n. Then (SPR,+, .) is a finite

symbolic Plithogenic ring of order n3.
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Example 3.18. Let Z2 be the ring of integers modulo 2. Then

SPZ2 = {(0, 0, 0), (1, 0, 0), (0, P1, 0, ), (0, 0, P2), (0, P1, P2), (1, P1, 0), (1, 0, P2), (1, P1, P2)}

is a symbolic Plithogenic ring of integers modulo 2.

Lemma 3.19. Let (SPR,+, .) be a symbolic Plithogenic ring and let x = (a, a1P1, a2P2)

and y = (b, b1P1, b2P2) be any two nonzero elements of SPR.

(a) x is idempotent if and only if all the following hold:

(i) a is idempotent,

(ii) a+ a2 is idempotent and

(iii) a+ a1 + a2 is idempotent.

(b) x and y are zero divisors if and only if all the following hold:

(i) a and b are zero divisors,

(ii) a+ a2 and b+ b2 are zero divisors and

(iii) a+ a1 + a2 and b+ b1 + b2 are zero divisors.

Example 3.20. Let SPZ6 be the symbolic Plithogenic ring of integers modulo 6. Then

(i) (1, 3P1, 3P2), (1, 5P1, 3P2), (3, 5P1, P2) and (4, P1, 5P2) are idempotent elements.

(ii) (2, P1, P2) and (3, 5P1, P2) are zero divisors.

Definition 3.21. Let ϕ : SPR → SPS be a mapping from the symbolic Plithogenic

ring (SPR,+, .) to the symbolic Plithogenic ring (SPS,+, .). ϕ is called a symbolic

Plithogenic ring homomorphism if the following conditions hold:

(i) ϕ(x+ y) = ϕ(x) + ϕ(y), ∀x, y ∈ SPR,

(ii) ϕ(xy) = ϕ(x)ϕ(y), ∀x, y ∈ SPR,

(iii) ϕ(Pi) = Pi, i = 1, 2.

The kernel of ϕ denoted by Kerϕ is defined by

Kerϕ = {x ∈ SPR : ϕ(x) = identity element of SPS}.

Example 3.22. Let (R,+, .) be a ring and let ϕ : SPR× SPR → SPR be a mapping

defined by

ϕ(a, b) = b ∀(a, b) ∈ SPR× SPR.

Then ϕ is a symbolic Plithogenic ring homomorphism.

If R = Z2, then

Kerϕ = {((0, 0, 0), (0, 0, 0)), ((1, 0, 0), (0, 0, 0)), ((0, P1, 0, ), (0, 0, 0)), ((0, 0, P2), (0, 0, 0)),

((0, P1, P2), (0, 0, 0)), ((1, P1, 0), (0, 0, 0)), ((1, 0, P2), (0, 0, 0)), ((1, P1, P2), (0, 0, 0))}

which is a subring of SPZ2 × SPZ2.
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Theorem 3.23. Let ψ : R → S be a ring homomorphism and let ϕ : SPR → SPS be

a mapping from a symbolic Plithogenic ring SPR into a symbolic Plithogenic ring SPS

defined by

ϕ(x) = (ψ(a), ψ(b)P1, ψ(c)P2), ∀ x = (a, bP1, cP2) ∈ SPR.

Then ϕ is a ring homomorphism.

Proof. Let x = (a, bP1, cP2) and y = (d, eP1, fP2) be two arbitrary elements in SPR.

Then

x+ y = (a+ d, (b+ e)P1, (c+ f)P2),

xy = (ad, (ae+ bd+ be+ bf + ce)P1, (af + cd+ cf)P2),

ϕ(x) = (ψ(a), ψ(b)P1, ψ(c)P2),

ϕ(y) = (ψ(d), ψ(e)P1, ψ(f)P2),

∴ ϕ(x+ y) = (ψ(a+ d), ψ(b+ e)P1, ψ(c+ f)P2),

= (ψ(a) + ψ(d), ψ(b)P1 + ψ(e)P1, ψ(c)P2 + ψ(f)P2)

= (ψ(a), ψ(b)P1, ψ(c)P2) + (ψ(d), ψ(e)P1, ψ(f)P2),

= ϕ(x) + ϕ(y),

ϕ(xy) = (ψ(ad), ψ(ae+ bd+ be+ bf + ce)P1, ψ(af + cd+ cf)P2),

= (ψ(a)ψ(d), (ψ(a)ψ(e) + ψ(b)ψ(d) + ψ(b)ψ(e) + ψ(b)ψ(f) + ψ(c)ψ(e))P1,

(ψ(a)ψ(f) + ψ(c)ψ(d) + ψ(c)ψ(f))P2),

= [(ψ(a), ψ(b)P1, ψ(c)P2)][(ψ(d), ψ(e)P1, ψ(f)P2)],

= ϕ(x)ϕ(y).

Accordingly, ϕ is a ring homomorphism.

Example 3.24. Let R = Z6, S = Z2 and let ψ : Z6 → Z2 be a ring homomorphism

defined by ψ(x̄6) = x̄2. Let ϕ : SPZ6 → SPZ2 be a symbolic Plithogenic ring homo-

morphism defined by

ϕ((a, bP1, cP2)) = (ψ(a), ψ(b)P1, ψ(c)P2),∀(a, bP1, cP2) ∈ SPZ6.

Then, Kerψ = {0, 2, 4} and Kerϕ = {(i, jP1, kP2) : i, j, k = 0, 2, 4}.
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4. Symbolic Plithogenic Algebraic Hyper Structure

Definition 4.1. Let H be a nonempty set and ∗ : H×H → P⋆(H) be a hyperoperation.

The couple (H, ∗) is called a hypergroupoid.

For any two nonempty subsets A and B of H and x ∈ H, we define

A ∗B =
⋃

a∈A,b∈B

a ∗ b,

A ∗ x = A ∗ {x} and

x ∗B = {x} ∗B.

A hypergroupoid (H, ∗) is called a semihypergroup if ∀ a, b, c ∈ H we have (a ∗ b) ∗ c =
a ∗ (b ∗ c), which means that ⋃

u∈a∗b

u ∗ c =
⋃

v∈b∗c

a ∗ v.

A hypergroupoid (H, ∗) is called a quasihypergroup if ∀a ∈ H we have a∗H = H∗a = H.

This condition is also called the reproduction axiom.

If a hypergroupoid (H, ∗) is both a semihypergroup and a quasihypergroup, then it

is called a hypergroup.

Example 4.2. (i) Let H be a nonempty set and let x ∗ y = H, ∀x, y ∈ H. Then

(H, ∗) is a hypergroup called a total hypergroup.

(ii) Let (H, .) be a group and let P be a nonempty subset of H. If x ∗ y = xPy,

∀ x, y ∈ H, then, (H, ∗) is a hypergroup called a P -hypergroup.

(iii) Let (H, .) be a group. If x ∗ y =< x, y >, ∀ x, y ∈ H, where < x, y > is the

subgroup generated by x and y, then (H, ∗) is a hypergroup.

Definition 4.3. Let (H, ∗) and (K, ◦) be two hypergroups. A mapping ϕ : H → K, is

called:

(i) an inclusion homomorphism if ϕ(x ∗ y) ⊆ ϕ(x) ◦ ϕ(y), ∀ x, y ∈ H;

(ii) a good homomorphism if ϕ(x ∗ y) = ϕ(x) ◦ ϕ(y), ∀ x, y ∈ H.

Definition 4.4. Let H be a nonempty set and let + be a hyperoperation on H. The

couple (H,+) is called a canonical hypergroup if the following conditions hold:

(i) x+ y = y + x, ∀ x, y ∈ H,

(ii) x+ (y + z) = (x+ y) + z, ∀ x, y, z ∈ H,

(iii) there exists a neutral element 0 ∈ H such that x+ 0 = {x} = 0 + x, ∀ x ∈ H,

(iv) for every x ∈ H, there exists a unique element −x ∈ H such that 0 ∈ x+(−x)∩
(−x) + x,

(v) z ∈ x+ y implies y ∈ −x+ z and x ∈ z − y, ∀ x, y, z ∈ H.
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Example 4.5. Let H = {0, a, b, c} be a set and let + be a hyperoperation on H defined

in the Cayley table below.

+ 0 a b c

0 0 a b c

a a {0, b} {a, c} b

b b {a, c} {0, b} a

c c b a 0

Then (H,+) is a canonical hypergroup.

Definition 4.6. Let (H,+) and (K,+) be two canonical hypergroups. A mapping

ϕ : H → K is called:

(a) a homomorphism if:

(i) ϕ(x+ y) ⊆ ϕ(x) + ϕ(y), ∀ x, y ∈ H and

(ii) ϕ(0) = 0.

(b) a good or strong homomorphism if:

(i) ϕ(x+ y) = ϕ(x) + ϕ(y), ∀ x, y ∈ H and

(ii) ϕ(0) = 0.

The kernel of ϕ denoted by Kerϕ is the set {x ∈ H : ϕ(x) = 0}.

Definition 4.7. Let (H, ∗) be any hypergroup. The couple (SPH, ∗) is called a symbolic

Plithogenic hypergroup. If x = (a, a1P1, a2P2) and y = (b, b1P1, b2P2) are any two

elements of SPH, the composition of x and y in SPH denoted by x ∗ y is defined as

x ∗ y = {(c, c1P1, c2P2) : c ∈ a ∗ b, c1 ∈ (a ∗ b1 ∪ a1 ∗ b ∪ a1 ∗ b1 ∪ a1 ∗ b2 ∪ a2 ∗ b1)P1),

c2 ∈ (a ∗ b2 ∪ a2 ∗ b ∪ a2 ∗ b2)P2)} (16)

Example 4.8. (i) Let (H, ∗) be a total hypergroup. Then (SPH, ∗) is a symbolic

Plithogenic total hypergroup.

(ii) Let (H, ∗) be a P-hypergroup. Then (SPH, ∗) is a symbolic Plithogenic P-

hypergroup.

Theorem 4.9. Let (H, ∗) be a hypergroup and let (SPH, ∗) be the corresponding sym-

bolic Plithogenic hypergroup. Then:

(i) (SPH, ∗) is a semigroup.

(ii) (SPH, ∗) generally is not a hypergroup.

Proof. Let x = (a, a1P1, a2P2), y = (b, b1P1, b2P2) and z = (c, c1P1, c2P2) be arbitrary

elements of SPH.
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(i)

x ∗ y = (a, a1P1, a2P2) ∗ (b, b1P1, b2P2)

= (a ∗ b, (a ∗ b1 ∪ a1 ∗ b ∪ a1 ∗ b1 ∪ a1 ∗ b2 ∪ a2 ∗ b1)P1),

(a ∗ b2 ∪ a2 ∗ b ∪ a2 ∗ b2)P2)

⊂ SPH.

This shows that (SPH, ∗) is a groupoid. Next,

(x ∗ y) ∗ z = [(a, a1P1, a2P2) ∗ (b, b1P1, b2P2)] ∗ (c, c1P1, c2P2)

= [(a ∗ b, (a ∗ b1 ∪ a1 ∗ b ∪ a1 ∗ b1 ∪ a1 ∗ b2 ∪ a2 ∗ b1)P1),

(a ∗ b2 ∪ a2 ∗ b ∪ a2 ∗ b2)P2)] ∗ (c, c1P1, c2P2)

= (a ∗ b ∗ c, (a ∗ b ∗ c1 ∪ a ∗ b1 ∗ c ∪ a1 ∗ b ∗ c ∪ a1 ∗ b1 ∗ c ∪ a1 ∗ b2 ∗ c

∪a2 ∗ b1 ∗ c ∪ a ∗ b1 ∗ c1 ∪ a1 ∗ b ∗ c1 ∪ a1 ∗ b1 ∗ c1 ∪ a1 ∗ b2 ∗ c1 ∪ a2 ∗ b1 ∗ c1

∪a ∗ b1 ∗ c2 ∪ a1 ∗ b ∗ c2 ∪ a1 ∗ b1 ∗ c2 ∪ a1 ∗ b2 ∗ c2 ∪ a2 ∗ b1 ∗ c2 ∪ a ∗ b2 ∗ c1

∪a2 ∗ b ∗ c1 ∪ a2 ∗ b2 ∗ c1)P1, (a ∗ b ∗ c2 ∪ a ∗ b2 ∗ c ∪ a2 ∗ b ∗ c ∪ a2 ∗ b2 ∗ c

∪a ∗ b2 ∗ c2 ∪ a2 ∗ b ∗ c2 ∪ a2 ∗ b2 ∗ c2)P2)

x ∗ (y ∗ z) = (a ∗ b ∗ c, (a ∗ b ∗ c1 ∪ a ∗ b1 ∗ c ∪ a ∗ b1 ∗ c1 ∪ a ∗ b1 ∗ c2 ∪ a ∗ b2 ∗ c1 ∪ a1 ∗ b ∗ c

∪a1 ∗ b ∗ c1 ∪ a1 ∗ b1 ∗ c ∪ a1 ∗ b1 ∗ c1 ∪ a1 ∗ b1 ∗ c2 ∪ a1 ∗ b2 ∗ c1 ∪ a1 ∗ b ∗ c2

∪a1 ∗ b2 ∗ c ∪ a1 ∗ b2 ∗ c2 ∪ a2 ∗ b ∗ c1 ∪ a2 ∗ b1 ∗ c ∪ a2 ∗ b1 ∗ c1 ∪ a2 ∗ b1 ∗ c2

∪a2 ∗ b2 ∗ c1)P1, (a ∗ b ∗ c2 ∪ a ∗ b2 ∗ c ∪ a2 ∗ b ∗ c ∪ a2 ∗ b2 ∗ c ∪ a ∗ b2 ∗ c2

∪a2 ∗ b ∗ c2 ∪ a2 ∗ b2 ∗ c2)P2

= x ∗ (y ∗ z).

Accordingly, (SPH, ∗) is a semigroup.

(ii) For all x = (a, a1P1, a2P2) in SPH, it can be shown that x∗SPH ̸= SPH ̸= SPH∗x.
This shows that reproduction axiom failed to hold in SPH. Hence, (SPH, ∗) is not a
hypergroup.

Definition 4.10. Let (SPH, ∗) and (SPK, ◦) be any two symbolic Plithogenic hyper-

groups and let ϕ : SPH → SPK be a mapping from SPH into SPK.

(a) ϕ is called a symbolic Plithogenic hypergroup homomorphism if the following

conditions hold:

(i) ϕ(x ∗ y) ⊆ ϕ(x) ◦ ϕ(y), ∀x, y ∈ SPH.

(ii) ϕ(Pi) = Pi, for i = 1, 2.
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(b) ϕ is called a symbolic Plithogenic good hypergroup homomorphism if the follow-

ing conditions hold:

(i) ϕ(x ∗ y) = ϕ(x) ◦ ϕ(y), ∀x, y ∈ SPH.

(ii) ϕ(Pi) = Pi, for i = 1, 2.

Theorem 4.11. Let ψ : (H, ∗) → (K, ◦) be a good hypergroup homomorphism from a

hypergroup (H, ∗) into a hypergroup (K, ◦) and let ϕ : SPH → SPK be a mapping from

a symbolic Plithogenic hypergroup SPH into a symbolic Plithogenic hypergroup SPK

defined by

ϕ(x) = (ψ(a), ψ(b)P1, ψ(c)P2), ∀ x = (a, bP1, cP2) ∈ SPH.

Then ϕ is a good hypergroup homomorphism.

Proof. Let x = (a, bP1, cP2) and y = (d, eP1, fP2) be two arbitrary elements in SPR.

Then

x ∗ y = (a ∗ d, (a ∗ e ∪ b ∗ d ∪ b ∗ e ∪ b ∗ f ∪ c ∗ e)P1, (a ∗ f ∪ c ∗ d ∪ c ∗ f)P2),

ϕ(x) = (ψ(a), ψ(b)P1, ψ(c)P2),

ϕ(y) = (ψ(d), ψ(e)P1, ψ(f)P2),

∴ ϕ(x ∗ y) = (ψ(a ∗ d), ψ((a ∗ e ∪ b ∗ d ∪ b ∗ e ∪ b ∗ f ∪ c ∗ e)P1, ψ(a ∗ f ∪ c ∗ d ∪ c ∗ f)P2)),

= (ψ(a) ◦ ψ(d), (ψ(a) ◦ ψ(e) ∪ ψ(b) ◦ ψ(d) ∪ ψ(b) ◦ ψ(e) ∪ ψ(b) ◦ ψ(f) ∪ ψ(c) ◦ ψ(e))P1,

(ψ(a) ◦ ψ(f) ∪ ψ(c) ◦ ψ(d) ∪ ψ(c) ◦ ψ(f))P2),

= [(ψ(a), ψ(b)P1, ψ(c)P2)] ◦ [(ψ(d), ψ(e)P1, ψ(f)P2)],

= ϕ(x) ◦ ϕ(y).

Accordingly, ϕ is a good hypergroup homomorphism.

Definition 4.12. Let (C,+) be any canonical hypergroup. The couple (SPC,+) is

called a symbolic Plithogenic canonical hypergroup. If x = (a, a1P1, a2P2) and y =

(b, b1P1, b2P2) are any two elements of SPC, the composition of x and y in SPC denoted

by x+ y is defined as

x+ y = {(c, c1P1, c2P2) : c ∈ a+ b, c1 ∈ a1 + b1, c2 ∈ a2 + b2}. (17)

Theorem 4.13. Let (SPC,+) be a symbolic Plithogenic canonical hypergroup. Then

(SPC,+) is a canonical hypergroup.
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Proof. Let x = (a, a1P1, a2P2), y = (b, b1P1, b2P2) and z = (c, c1P1, c2P2) be arbitrary

elements of SPC. Then

x+ y = (a, a1P1, a2P2) + (b, b1P1, b2P2)

= {(u, u1P1, u2P2) : u ∈ a+ b, u1 ∈ a1 + b1, u2 ∈ a2 + b2}

= {(u, u1P1, u2P2) : u ∈ b+ a, u1 ∈ b1 + a1, u2 ∈ b2 + a2}

= y + x.

Next,

(x+ y) + z = ((a, a1P1, a2P2) + (b, b1P1, b2P2)) + (c, c1P1, c2P2)

= {(u, u1P1, u2P2) : u ∈ a+ b, u1 ∈ a1 + b1, u2 ∈ a2 + b2}+ (c, c1P1, c2P2)

= {(u, u1P1, u2P2) : u ∈ a+ b+ c, u1 ∈ a1 + b1 + c1, u2 ∈ a2 + b2 + c2}

= {(u, u1P1, u2P2) : u ∈ a+ (b+ c), u1 ∈ a1 + (b1 + c1), u2 ∈ a2 + (b2 + c2)}

= (a, a1P1, a2P2) + ((b, b1P1, b2P2) + (c, c1P1, c2P2))

= x+ (y + z).

Since SPC is a symbolic Plithogenic canonical hypergroup, it follows that (0, 0P1, 0P2) =

(0, 0, 0) ∈ SPC so that

x+ (0, 0, 0) = (a, a1P1, a2P2) + (0, 0, 0)

= {(u, u1P1, u2P2) : u ∈ a+ 0, u1 ∈ a1 + 0, u2 ∈ a2 + 0}

= {(u, u1P1, u2P2) : u ∈ {a}, u1 ∈ {a1}, u2 ∈ {a2}}

= {(a, a1P1, a2P2)}

= {x} and similarly,

(0, 0, 0) + x = {x}.

Also,

x+ (−x) ∩ (−x) + x = [(a, a1P1, a2P2) + (−a,−a1P1,−a2P2)] ∩ [(−a,−a1P1,−a2P2)

+(a, a1P1, a2P2)]

= {(u, u1P1, u2P2) : u ∈ a+ (−a), u1 ∈ a1 + (−a1), u2 ∈ a2 + (−a2)}

∩{(v, v1P1, v2P2) : v ∈ (−a) + a, v1 ∈ (−a1) + (a1), v2 ∈ (−a2) + (a2)}

= {(u, u1P1, u2P2) : u ∈ {0}, u1 ∈ {0}, u2 ∈ {0}}

∩{(v, v1P1, v2P2) : v ∈ {0}, v1 ∈ {0}, v2 ∈ {0}}

∴ (0, 0, 0) ∈ x+ (−x) ∩ (−x) + x
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which shows that −x is the unique inverse of x , ∀ x ∈ SPC.

Lastly, suppose that z ∈ x+ y, then

(c, c1P1, c2P2) ∈ (a, a1P1, a2P2) + (b, b1P1, b2P2)

= {(u, u1P1, u2P2) : u ∈ a+ b, u1 ∈ a1 + b1, u2 ∈ a2 + b2}

= {(u, u1P1, u2P2) : b ∈ −a+ u, b1 ∈ −a1 + u1, b2 ∈ −a2 + u2}

= {(b, b1P1, b2P2) : b ∈ −a+ u, b1 ∈ −a1 + u1, b2 ∈ −a2 + u2}

∴ (b, b1P1, b2P2) ∈ −(a, a1P1, a2P2) + (c, c1P1, c2P2)

that is y ∈ −x+ z and similarly,

z ∈ x+ y ⇒ x ∈ z − y.

Accordingly, (SPC,+) is a canonical hypergroup.

Example 4.14. Let ψ, ψ1, ψ2 : C1 → C2 be good canonical hypergroup homomorphisms

and let SPC1 and SPC2 be two symbolic Plithogenic canonical hypergroups. If ϕ :

SPC1 → SPC2 is a mapping defined by

ϕ(x) = (ψ(a), ψ1(a1)P1, ψ2(a2)P2), ∀ x = (a, a1P1, a2P2) ∈ SPC1,

then ϕ is a good canonical hypergroup homomorphism and

Kerϕ = {(a, a1P1, a2P2) ∈ SPC1 : ϕ((a, a1P1, a2P2)) = (0, 0P1, 0P2)}

= {(a, a1P1, a2P2) ∈ SPC1 : (ψ(a), ψ1(a1)P1, ψ2(a2)P2) = (0, 0P1, 0P2)}

= {(a, a1P1, a2P2) ∈ SPC1 : ψ(a) = 0, ψ1(a1) = 0, ψ2(a2) = 0}

= {(a, a1P1, a2P2) ∈ SPC1 : a ∈ Ker(ψ), a1 ∈ Ker(ψ1), a2 ∈ Ker(ψ2)}

= {(Kerψ,Kerψ1P1,Kerψ2P2)}.

5. Conclusion

We have in this paper studied symbolic Plithogenic algebraic structures and hyper

structures. In particular, we studied symbolic Plithogenic group, symbolic Plithogenic

ring, symbolic Plithogenic hypergroup and symbolic Plithogenic canonical hypergroup,

and we presented their basic properties.
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