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Abstract:  Fractional transportation problem that includes source  and destination may have fractional objective 

functions in real- world applications to maximize the profitability ratio like profit/ cost or profit/ time. We refere 

to such transportation problems as fractional transportation problem.The paper considers the interval- valued 

neutrosophic numbers and its aritemematic operations. This paper deals with fractional transportation problem 

having discounting cost in neutrosophic environment, where the supply, demand and transportation costs are 

uncertain. The problem is considered by introducing all the parameters as neutrosophic numbers. Using the benefits 

of the score function definition, the problem is transformed into the corresponding deterministic form which  can 

be illustrated by any method. and hence by applying of least cost method with the help of Kuhn- Tucker' optimality 

conditions, the optimal solution is resulted. Our strategy is to assess the issue and can rank different sort of 

neutrosophic numbers. To claify the proposed technique, a numerical example is given to show the adequacy of 

the new model. 

Keywords: Optmization, Optimization problems; Fractional programming, Transportation problem, Non-linear 

programming,  Discounting cost, Pentagonal fuzzy neutrosophic numbers, Score function, Vogel's approximation 

method, Kuhn- Tucker optimality conditions,  Optimal neutrosophic solution,Decision making 

 

1. Introduction  

        Transportation problem is one of the oldest applications of linear programming problems. The basic 

transportation problem was originally developed by Hitchcock [1]. In a transportation problem, products have to 

be transported from a number of sources to a number of destinations. Decisions have to be taken according to the 

amount of products transported between each two locations to minimize total transportation cost [2]. Typically, 

only a variable cost proportional to the number of products transported is afforded. However, in many real-world 

problems, a fixed/setup cost is also afforded when the transportation amount is positive [3]. The transportation 

problem can be modeled as a standard linear programming problem, that can be solved by the simplex method. 

We can get an initial basic feasible solution for the transportation problem by using the North-West corner rule, 
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Row Minima, Column Minima, Matrix Minima or the Vogel’s Approximation Method. To get an optimal solution 

for the transportation problem, we use the MODI method (Modified Distribution Method). Transportation problem 

(TP) is a special type of linear programming (LP) problem; where the objective is to minimize the cost of 

distributing product from 𝑚  sources or origins to 𝑛 distributions and their capacities are 𝑎1, 𝑎2, … , 𝑎𝑚  and 

𝑏1, 𝑏2, … , 𝑏𝑚 , respectively. In other hand, there is a penalty 𝑐𝑖𝑗  connected with transportation a unit of product 

from source 𝑖 to destination 𝑗. This penalty, perhaps cost or delivery time of safety of delivery, etc. A variable 𝑥𝑖𝑗 

represents the unidentified quantity to be shipped from source 𝑖 to destination 𝑗. Oheigeartaigh [4] developed an 

algorithm for fuzzy transportation problem (FTP) Chanas et al. [5] developed a parametric approach to solve single 

objective FTP. Thamaraiselvi and Santhi [6] studied FTP with hexagonal fuzzy numbers. 

 In Fractional problem (FP), decision problem arises to optimize the ratio subject to constraints. In real life decision 

conditions decision maker (DM) sometimes may face to evaluate ratio between inventory and sales, real cost and 

standard cost, output etc., with both denominator and numerator are linear. If only one ratio is considered as an 

objective function then under linear constraints, the problem is said to be linear fractional programming (LFP) 

problem. The Fractional programming problem, i. e., the maximization of a fraction of two functions subject to 

given conditions, arises in various decision making situations; for instance , fractional programming is used in the 

fields of traffic  planning (Dantzig et al. [6]), network flows (Arisawa and Elmaghraby, [7]), and game theory 

(Isbell and Marlow, [8]). A review of various applications is given by Schaible, [9-11]. Tantawy [12-13] introduced 

two approaches to solve the LFP problem namely; a feasible direction approach and a duality approach. Odior[14]  

introduced an algebraic approach based on the duality concept and the partial fractions to solve the LFP problem. 

Gupta and Chakraborty [15]  solved the LFP problem depending on the sign of the numerator under the assumption 

that the denominator is non -vanishing in the feasible region using the fuzzy programming approach. Stanojevic 

and Stancu- Minasian [16] proposed a method for solving fully fuzzified LFP problem. Buckley and Feuring 

(2000) studied fully fuzzified linear programming involving coefficients and decision variables as fuzzy quantities. 

Li and Chen [17]  introduced a fuzzy LFP problem with fuzzy coefficients and present the concept of a fuzzy 

optimal solution. Pop and Stancu [18]  studied LFP problem with all parameters and decision variables are 

triangular fuzzy numbers.  Gomathi and Jayalakshmi [19] proposed an approach for solving linear fractional 

transportation problem. A nermous researchers studied fractional transportation (Veeramani et al. [20 ], Haque [21- 

24], Bas et al., [25], Akram et al., [26], El Sayed and Bakry [27], Khalifa et al., [28] ). 

  In this paper, fractional transportation problem having discounting cost in neutrosophic environment is 

introduced. With the help of least cost method and the Kuhn- Tucker's optimality conditions, the optimal solution 

of the problem is resulted. The following are the study's main contributions and novelties: 

1. Introducing suitable terminologies and measures that consider the properties of a possible optimal solution. 

2. Presenting a parametric study by solving a parametric problem and determining the stability set of the first 

kind for collecting the most possible information about the possible optimal solutions in an uncertain situation 

3. Interacting the analyst with the DM to assign a set of selected alternatives  

4. Doing a multicriteria analysis by interacting with the DM for selecting one of the possible optimal as the 

satisfied optimal solution . 

 

The rest of the paper is outlined as follows:  
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The following is how the paper is structured: Section 2 Presents some preliminaries and notation needed.  Section 

3, Formulates a neutrosophic fractional transportation problem with non- linear discounting cost. Section 4, 

proposes an algorithm combining with the least cost method and the Kuhn- Tucker's optimality conditions for 

solving the problem. Section 5, Introduces a numerical example for illustration. Section 6, Introduces discussion 

about the results. Section 7, introduces comparitive study  with some existing relevant literature. Finally, some 

concluding remarks are reported. 

2.Preliminaries 

      In This section, some of basic concepts and results related to neutrosophic set, single- valued trapezoidal 

neutrosophic numbers, and their arithmetic operations and its score function are recalled. 

Definition1. (Atanason, [31]). A fuzzy set B̃ is said to be an intuitionistic fuzzy set B̃INof a non empty set X if   

B̃IN = {〈x, μB̃IN , ρB̃IN〉: x ∈ X} , where μB̃IN  , and ρB̃IN  are non-membership and membership functions such that  

μB̃IN , ρB̃IN: X → [0, 1] and 0 ≤ μB̃IN + ρB̃IN ≤ 1, for all x ∈ X. 

Definition 2.  (Atanason, [32]). An intuitionistic fuzzy set B̃INof a ℝ  is named an Intuitionistic fuzzy number if 

the following conditions hold: 

1. There exists c ∈ ℝ: μB̃IN(c) = 1, and ρB̃IN(c) = 0, 

2. μB̃IN: ℝ → [0, 1] is continuous function such that 

              0 ≤ μB̃IN + ρB̃IN ≤ 1, for all x ∈ X, 

3. The membership and nonmembership functions of B̃IN are  

       μB̃IN(x) =

{
 
 

 
 

 0,              − ∞ <  x < r,
h(x),                   r ≤ x ≤ s,
1,                             x = s,

   l(x),             s ≤ x ≤ t,           
0,                       t ≤ x < ∞,

         

          ρB̃IN(x) =

{
 
 

 
 

 0,              − ∞ <  x < a,
f(x),                   a ≤ x ≤ s,
1,                             x = s,

   g(x),             s ≤ x ≤ b,        
0,                       b ≤ x < ∞.

 

 

Where f, g, h, l: ℝ → [0, 1] , h   and g  are completely increasing functions, l  and f  are completely decreasing 

functions with the constraints 0 ≤ f(x) + h(x) ≤ 1, and 0 ≤ l(x) + g(x) ≤ 1. 

Definition 3.  (Jianqiang and Zhong, [33]). A trapezoidal intuitionistic fuzzy number is denoted by B̃IN =

(r, s, t, u), (p, s, t, q), where p ≤ r ≤ s ≤ t ≤ u ≤ q with non-membership and membership functions are defined 

as 

A trapezoidal intuitionistic fuzzy number is denoted by B̃IN = (r, s, t, u), (p, s, t, q), where p ≤ r ≤ s ≤ t ≤ u ≤ q 

with membership and nonmembership functions are defined as: 
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        μB̃INT(x) =

{
 
 

 
 

x−r

s−r
,        r ≤ x < s,

1,          s ≤ x ≤ t,
u−x

u−t
,      t ≤ x ≤ u,        

0,                   otherwise,

                            ρB̃INT(x) =

{
 
 

 
 

s−x

s−p
,        p ≤ x < s,

0,          s ≤ x ≤ t,
x−t

q−t
,      t ≤ x ≤ q,        

1,                   otherwise

 

 Definition 4. (Smarandache, [34]). A neutrosophic set B̅N of  non empty set X is defined as  

B̅N = {〈x, IB̅N(x), JB̅N(x), VB̅N(x)〉: x ∈ X, IB̅N(x), JB̅N(x), VB̅N(x) ∈ ]0−, 1
+[} , where IB̅N(x), JB̅N(x),  and VB̅N(x) 

are an indeterminacy- membership function, truth membership function, and a falsity- membership function and 

there is no limit on the sum of IB̅N(x), JB̅N(x),  and VB̅N(x)  , so 0− ≤ IB̅N(x) + JB̅N(x) +  VB̅N(x) ≤ 3
+ , and 

]0−, 1
+[  is a nonstandard unit interval.  

Definition 5. (Wang et al., [35]). A Single- valued neutrosophic set B̅SVNof a non empty set X is defined as 

   B̅SVN = {〈x, IB̅N(x), JB̅N(x), VB̅N(x)〉: x ∈ X} , where IB̅N(x), JB̅N(x),  and VB̅N(x) ∈ [0, 1]  for each x ∈ X  and 0 ≤

IB̅N(x) + JB̅N(x) + VB̅N(x) ≤ 3. 

Definition 6. (Thamariselvi and Santhi, [36]). Let τq̃, φq̃,ωq̃ ∈ [0, 1] and r, s, t, u ∈ ℝ such that r ≤ s ≤ t ≤  u. 

Then a single valued trapezoidal neutrosophic number, b̃N = 〈(r, s, t, u): τq̃, φq̃, ωq̃ 〉 is a special neutrosophic set 

on ℝ, whose  truth-membership, indeterminacy- membership, and falsity- membership functions are 

       μq̃
N(x) =

{
 
 

 
 τq̃N (

x−r

s−r
) ,        r ≤ x < s,

τb̃,          s ≤ x ≤ t,

τq̃N (
u−x

u−t
) ,      t ≤ x ≤ u,        

0,                   otherwise,

 

 

       σq̃
N(x) =

{
 
 

 
 

s−x+ω
q̃N
(x−r)

s−r
,        r ≤ x < s,

ωq̃N ,          s ≤ x ≤ t,
x−t+ω

q̃N
(u−x)

u−t
,      t ≤ x ≤ u,      

1,                   otherwise.

 

Where τq̃, φq̃, and ωq̃ indicate the maximum truth, minimum- indeterminacy, and minimum falsity membership 

degrees, respectively. A single- valued trapezoidal neutrosophic number q̃N = 〈(r, s, t, u): τq̃N , φq̃N , ωq̃N  〉 might 

express in ill- defined amount about q, which is roughly equal to [s, t]. 

Definition 7. (Thamariselvi and Santhi, [36]). Let q̃N = 〈(r, s, t, u): τq̃N , φq̃N , ωq̃N  〉 , and d̃N =

〈(r′, s′, t′, u′): τd̃N , φd̃N , ωd̃N  〉   be two single- valued trapezoidal neutrosophic numbers and v ≠ 0 . The 

arithematic operations on q̃N, and d̃Nare 

1. q̃N⊕ d̃N = 〈(r + r′, s + s′ , t + t′, u + u′);  τq̃N ∧ τd̃N , φq̃N ∨  φd̃N , ωq̃N ∨ ωd̃N  〉 , 

2. q̃N⊖ d̃N = 〈(r − u′, s − t′, t − s′ , u′ − r); τq̃N ∧ τd̃N , φq̃N ∨ φd̃N , ωq̃N ∨ ωd̃N〉, 

3. q̃N⊗ d̃N =

{
 
 

 
 

〈(rr′, ss′ , tt′, uu′);  τq̃N ∧ τd̃N , φq̃N ∨ φd̃N , ωq̃N ∨ ωd̃N  〉, u, u
′ > 0

〈(ru′, st′, st′, ru′); τq̃N ∧ τd̃N , φq̃N ∨ φd̃N , ωq̃N ∨ωd̃N  〉, u < 0, u
′ > 0

〈(uu′, ss′ , tt′, rr′);  τq̃N ∧ τd̃N , φq̃N ∨ φd̃N , ωq̃N ∨ ωd̃N  〉, u < 0, u
′ < 0,

 

4. q̃N⊘ d̃N =

{
 
 

 
 

〈(r/u′, s/t′, t/s′, u/r′); τq̃N ∧ τd̃N , φq̃N ∨ φd̃N , ωq̃N ∨ ωd̃N〉, u, u
′ > 0

〈(u/u′, t/t′, s/s′, r/r′);  τq̃N ∧ τd̃N , φq̃N ∨ φd̃N , ωq̃N ∨ ωd̃N  〉, u < 0, u
′ > 0

〈(u/r′, t/s′, s/t′, r/u′); τq̃N ∧ τd̃N , φq̃N ∨ φd̃N , ωq̃N ∨ωd̃N  〉, u < 0, u
′ < 0,
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5. kd̃N = f(x) = {
〈(kr, ks, kt, k); ττ

d̃N
, φτ

d̃N
, ωτ

d̃N
 〉 , k > 0,

〈(ku, kt, ks, k r); ττ
d̃N
, φτ

d̃N
, ωτ

d̃N
 〉 , k < 0,

 

6. d̃N
−1
= 〈(1/u′, 1/t′, 1/s′, 1/r′); ττ

d̃N
, φτ

d̃N
, ωτ

d̃N
 〉 , d̃N ≠ 0. 

Definition 8. (Thamariselvi and Santhi, [37]). A two single- valued trapezoidal neutrosophic numbersb̃, and d̃ can 

be compared based on the score and accuracy functions as 

1. Accuracy function AC(q̃N) = (
1

16
) [r + s + t + u] ∗ [μq̃N + (1 − ρq̃N(x) + (1 + σq̃N(x)], 

2. Score function SC(q̃N) = (
1

16
) [r + s + t + u] ∗ [μq̃N + (1 − ρq̃N(x) + (1 − σq̃N(x)]. 

 Definition 9. (Thamariselvi and Santhi, [37]). The order relations between b̃N and  d̃N based on SC(q̃N)  and 

AC(q̃N) are defined as 

1. If SC(q̃N) < SC(d̃N), then q̃N < d̃N 

2. If SC(q̃N) = SC(d̃N), then q̃N = d̃N, 

3. If AC(q̃N) < 𝐴𝐶(d̃N), then q̃N < d̃N, 

4. If AC(q̃N) > 𝐴𝐶(d̃N), then q̃N < d̃N, 

5. If AC(q̃N) = AC(d̃N), then q̃N = d̃N. 

3. Problem statement and solution concepts 

      Consider the following general neutrosophic fractional transportation problem 

(NFTP)   max F̃N(x) =
P̃N(x)

Q̃N(x)
=

∑ ∑ p̃ij
Nxij

n
j=1

m
i=1

∑ ∑ q̃ij
Nxij

n
j=1

m
i=1

 

               Subject to 

                               ∑ xij = ãi
N, i = 1,m,n

j=1  

                               ∑ xij = b̃j
N, j = 1, n,m

i=1  

                               xij ≥ 0; ∀i, j. 

Where, p̃ij
N, q̃ij

N, ãi
N, and b̃j

N,  are neutrosophic numbers.  Based on the score function introduced in Definition 8, the 

NFTP is converted into the following FTP as 

 (FTP)   maxF(x) =
P(x)

Q(x)
=

∑ ∑ pijxij
n
j=1

m
i=1

∑ ∑ qijxij
n
j=1

m
i=1

 

              Subject to 

                               ∑ xij ≤ ai, i = 1,m,
n
j=1  

                               ∑ xij ≥ bj, j = 1, n,
m
i=1  

                               xij ≥ 0; ∀i, j. 

It is supposed that Q(x) > 0; ∀𝑥 = (xij) ∈ G  , where G  is the feasible domain and ai > 0, bj > 0 . Also, it is 

assumed that  ∑ ai ≥ ∑ bj
n
j=1

m
i=1 . 

Definition 10. (Bajalinov. [38]). A point 𝑥 = {𝑥𝑖𝑗 : i = 1,m;1, n } is said to be feasible solution to FTP if 𝑥 satisfies 

the constraints in it. 

Definition 11. A feasible point 𝑥 = {𝑥𝑖𝑗 : i = 1,m; 1, n } is called an optimal solution to  FTP if F(x) ≥ F(x);  ∀x. 

The Lagrange function for the FTP can be formulated as 

  L(x, ζ) =
P(x)

Q(x)
− ζi(∑ xij − ai 

n
j=1 ) − ζj(bj −∑ xij 

m
i=1 ) − ξijxij = 0. 

Where, ζ iand   ζ j are Lagrange multipliers. 
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The optimal point 𝑥 satisfies the Kuhn- Tucker's optimality conditions: 

    
𝜕𝐹

𝜕𝑥𝑖𝑗
=

𝜕𝐹(𝑥)

𝜕𝑥𝑖𝑗
− (ζi + ζj) − ξij = 0, 

   ζi(∑ xij − ai 
n
j=1 ) = 0, 

   ζj(bj − ∑ xij 
m
i=1 ) = 0, 

   ∑ xij ≤ ai, i = 1,m,
n
j=1  

    ∑ xij ≥ bj, j = 1, n,
m
i=1  

     ξ x̂ij = 0, 

    ζ i ≥ 0 and  ζ j ≥ 0 . 

4. Solution Algorithm 

 In This section, a solution approach for solving NFTP is illustrated in the following steps: 

 Step1:  Convert the NFTP into the corresponding crisp FTP based on the score function.  

Step2:  Consider the FTP (
pij

qij
). 

Step3: Search for the initial basic feasible solution of FTP using the least cost method. 

Step4: Estimate the objective function value at x    (i.e.,    
P(x)

Q(x)
 ). Add 𝑠𝑖 and 𝑡𝑗   to the R.H.S and the bottom of the 

TP Table 1 

Step5: Add 𝑠𝑖 and 𝑡𝑗   to the R.H.S and the bottom of the TP tableau, respectively as 

Table 1. Fractional transportation representation  

𝛛𝐅(𝐱)

𝛛𝐱𝐢𝐣
 … … 𝛛𝐅(𝐱)

𝛛𝐱𝟏𝐦
 𝐚𝟏 𝐬𝟏 

… … … … … … 

… ∂F(x)

∂xij
 … … ai si 

𝛛𝐅(𝐱)

𝛛𝐱𝐧𝟏
 … … ∂F(x)

∂xnm
 an sn 

𝐛𝟏 … … bm   

𝐭𝟏 … … tm   

   Step 6:  Calculate the values of 𝑠𝑖 and 𝑡𝑗   from the relation 
𝜕𝐹

𝜕𝑥𝐵𝑖𝑗
= 𝑠𝑖 + 𝑡𝑗  

     
𝜕𝐹

𝜕𝑥𝐵𝑖𝑗
= 𝑠𝑖 + 𝑡𝑗                                                                                                         (1) 

   Step 7: If 𝑀𝑖𝑗 =
𝜕𝐹

𝜕𝑥𝑁𝐵𝑖𝑗
− 𝑠𝑖 − 𝑡𝑗 ≥ 0; ∀𝑥𝑖𝑗                                                              (2) 

 (non- basic variables), then x is Kuhn- Tucker point. Otherwise, go to step8 as 𝑥𝑖𝑗 (non- basic variables). 

  Step 8: Termination conditions: 

  (i).  If all 
𝜕𝐹

𝜕𝑥𝑁𝐵𝑖𝑗
> 0 ⇒ the optimality and the uniqueness of the solution. 

  (ii).  If all 
𝜕𝐹

𝜕𝑥𝑁𝐵𝑖𝑗
≥ 0  with at least one 

𝜕𝐹

𝜕𝑥𝑁𝐵𝑖𝑗
= 0 ⇒   the optimality  of the solution and the alternative solution 
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exists. 

  (iii). If at least one 
𝜕𝐹

𝜕𝑥𝑁𝐵𝑖𝑗
< 0 ⇒ the solution is not optimal 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                   N                                                                         N 

 

 

 

 

                                                        Y 

 

 

 

 

 

 

 

START 

Convert the NFTP into the corresponding crisp FTP 

 based on the score function. Consider the FTP (
pij

qij
). 

Search for the initial basic feasible solution of FTP  

using the least cost method. 

 

Estimate the objective function value at x    (i.e.,    

P(x)

Q(x)
 ). Add 𝑠𝑖 and 𝑡𝑗  to the R.H.S and the bottom of 

the TP Table 1 

Calculate the values of 𝑠𝑖  and 𝑡𝑗    from the relation 

𝜕𝐹

𝜕𝑥𝐵𝑖𝑗
= 𝑠𝑖 + 𝑡𝑗  

 

𝜕𝐹

𝜕𝑥𝑁𝐵𝑖𝑗
> 0 

optimality and the uniqueness of the solution. 

STOP 

𝜕𝐹

𝜕𝑥𝑁𝐵𝑖𝑗

≥ 0 with at least one 
𝜕𝐹

𝜕𝑥𝑁𝐵𝑖𝑗
= 0 

 

The optimality  of the 

solution and the 

alternative solution 

exists. 

 

𝜕𝐹

𝜕𝑥𝑁𝐵𝑖𝑗
< 0 

No optimal 

solution exists 
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Fig. 1 The flow chart of the proposed solution procedure 

 

5.Numerical example  

             Consider the following NFTP in which the objective function is the maximization of ratio of total profit 

given the total cost. 

The following table illustrated the transportation company profit gained 

Table 2.  Input data of neutrosophic profit associated with shipment (in $) 

 𝑫𝟏 𝑫𝟐 𝑫𝟑 𝑫𝟒 

𝑶𝟏 〈(14,17,21,28); 0.7,0.1,0.2〉 〈(28,30,35,44); 0.9,0.2,0.6〉 〈(10,16,18,20); 0.8,0.1,0.2〉 〈(17,25,30,35); 0.7,0.2,0.4〉 

𝑶𝟐 〈(18,20,22,25); 0.8,0.2,0.7〉 〈(14,17,21,28); 0.7,0.1,0.2〉 〈(31,35,40,45); 0.6,0.4,0.5〉 〈(16,18,20,26); 0.8,0.2,0.6〉 

𝑶𝟑 〈(18,21,23,26); 0.8,0.2,0.6〉 〈(14,18,20,24); 0.6,0.4,0.5〉 〈(25,30,35,40); 0.6,0.2,0.3〉 〈(18,21,23,26); 0.8,0.2,0.6〉 

The cost of the shipping unit of the commodity from the supply to the demand is shown in the following table 

Table 3.  Input data of neutrosophic cost associated of shipment (in $) 

 𝑫𝟏 𝑫𝟐 𝑫𝟑 𝑫𝟒 

𝑶𝟏 〈(25,30,35,40); 0.6,0.2,0.3〉 〈(17,25,30,35); 0.7,0.2,0.4〉 〈(28,30,35,44); 0.9,0.2,0.6〉 〈(18,20,22,25); 0.8,0.2,0.7〉 

𝑶𝟐 〈(18,20,22,25); 0.8,0.2,0.7〉 〈(14,18,20,24); 0.6,0.4,0.5〉 〈(23,27,30,35); 0.7,0.2,0.4〉 〈(17,25,30,35); 0.7,0.2,0.4〉 

𝑶𝟑 〈(23,28,30,34); 0.7,0.2,0.4〉 〈(25,30,35,40); 0.6,0.2,0.3〉 〈(14,17,21,28); 0.7,0.1,0.2〉 〈(14,17,21,28); 0.7,0.1,0.2〉 

Supplies: ã1
N = 〈(190,250,260,300); 0.7,0.2,0.1〉, , ã2

N = 〈(340,380,447,500); 0.7,0.2,0.1〉, ã3
N =

〈(283,300,350,400); 0.7,0.2,0.1〉  

Demands: b̃1
N = 〈(157,163,169,178); 0.7,0.1,0.2〉, b̃2

N = 〈(340,380,446,500); 0.7,0.1,0.2〉, b̃3
N =

〈(157,163,169,178); 0.7,0.1,0.2〉, b̃4
N = 〈(190,250,260,300); 0.7,0.2,0.1〉.  

The discounting cost related to the commodity unit of purchased, transported and the discounted (%) resulted from 

some shipping policy is given in the following table 

 Table 4.  Discount cost associated of shipment (%) 

 𝑫𝟏 𝑫𝟐 𝑫𝟑 𝑫𝟒 

𝑶𝟏 0.02 0.03 0.05 0.02 

𝑶𝟐 0.03 0.01 0.005 0.02 

𝑶𝟑 0.014 0.04 0.013 0.04 

In Table 2, 3: the profit and cost Based on the score function of the neutrosophic number are converted into:   

Table 5.  Input data of profit associated with shipment (in $) 

 𝑫𝟏 𝑫𝟐 𝑫𝟑 𝑫𝟒 Supply 

𝑶𝟏 12 18 10 14 150 
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𝑶𝟐 10 14 16 10 250 

𝑶𝟑 11 8 17 11 200 

Demand 100 250 100 150  

 

Table 6.  Input data of cost associated of shipment (in $) 

 𝐃𝟏 𝐃𝟐 𝐃𝟑 𝐃𝟒 Supply 

𝑶𝟏 17 14 18 10 150 

𝑶𝟐 12 8 15 14 250 

𝑶𝟑 15 17 14 12 200 

Demand 100 250 100 150  

 

From Table 5 and Table 6, the fractional transportation problem can be formulated as follows 

       max𝐹(𝑥) =

(
12𝑥11+18𝑥12+10𝑥13+14𝑥14
+10𝑥21+14𝑥22+16𝑥23+10𝑥24
+11𝑥31+8𝑥32+17𝑥33+11𝑥34

)

(
17𝑥11+14𝑥12+18𝑥13+10𝑥14
+12𝑥21+8𝑥22+15𝑥23+14𝑥24
+15𝑥31+17𝑥32+14𝑥33+12𝑥34

)

 

        Subject to 

                  𝑥11 + 𝑥12 + 𝑥13 + 𝑥14 = 150,   

                 𝑥21 + 𝑥22 + 𝑥23 + 𝑥24 = 250, 

                 𝑥31 + 𝑥32 + 𝑥33 + 𝑥34 = 200, 

                 𝑥11 + 𝑥21 + 𝑥31 = 100, 

                 𝑥12 + 𝑥22 + 𝑥32 = 250, 

                 𝑥13 + 𝑥23 + 𝑥33 = 100, 

                 𝑥14 + 𝑥24 + 𝑥34 = 150, 

                 𝑥𝑖𝑗 ≥ 0, 𝑖 = 1, 2, 3; 𝑗 = 1, 2, 3, 4. 

Then, the cost function terms are: 

𝑝11
𝑞11

𝑥11 =
12

17
𝑥11 − 𝑑11𝑥11

2 ⇒
𝑝11
𝑞11

𝑥11 = 0.706𝑥11 − 0.02𝑥11
2 , 

𝑝12
𝑞12

𝑥12 =
18

14
𝑥12 − 𝑑12𝑥12

2 ⇒
𝑝12
𝑞12

𝑥12 = 1.286𝑥12 − 0.03𝑥12
2 , 

𝑝13
𝑞13

𝑥13 =
10

18
𝑥13 − 𝑑13𝑥13

2 ⇒
𝑝13
𝑞13

𝑥13 = 0.556𝑥13 − 0.05𝑥13
2 , 

𝑝14
𝑞14

𝑥14 =
18

14
𝑥14 − 𝑑14𝑥14

2 ⇒
𝑝14
𝑞14

𝑥14 = 1.4𝑥14 − 0.02𝑥14
2 , 

𝑝21
𝑞21

𝑥21 =
10

12
𝑥21 − 𝑑21𝑥21

2 ⇒
𝑝21
𝑞21

𝑥21 = 0.833𝑥21 − 0.03𝑥21
2 , 

𝑝22
𝑞22

𝑥22 =
14

8
𝑥22 − 𝑑22𝑥22

2 ⇒
𝑝22
𝑞22

𝑥22 = 1.75𝑥22 − 0.01𝑥22
2 , 
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𝑝23
𝑞23

𝑥23 =
16

15
𝑥23 − 𝑑23𝑥23

2 ⇒
𝑝23
𝑞23

𝑥23 = 1.067𝑥23 − 0.005𝑥23
2 , 

𝑝24
𝑞24

𝑥24 =
10

14
𝑥24 − 𝑑24𝑥24

2 ⇒
𝑝24
𝑞24

𝑥24 = 0.714𝑥24 − 0.02𝑥24
2 , 

𝑝31
𝑞31

𝑥31 =
11

15
𝑥31 − 𝑑31𝑥31

2 ⇒
𝑝31
𝑞31

𝑥31 = 0.733𝑥31 − 0.014𝑥31
2 , 

𝑝32
𝑞32

𝑥32 =
8

17
𝑥32 − 𝑑32𝑥32

2 ⇒
𝑝32
𝑞32

𝑥32 = 0.4706𝑥32 − 0.04𝑥32
2 , 

𝑝33
𝑞33

𝑥33 =
17

14
𝑥33 − 𝑑33𝑥33

2 ⇒
𝑝33
𝑞33

𝑥33 = 1.2143𝑥33 − 0.013𝑥33
2 , 

𝑝34
𝑞34

𝑥34 =
11

12
𝑥34 − 𝑑34𝑥34

2 ⇒
𝑝34
𝑞34

𝑥34 = 0.917𝑥34 − 0.04𝑥34
2 , 

Now, let us apply the Vogel's approximation method to determine the initial basic feasible solution for the 

transportation as 

Table 7. Initial basic feasible solution tableau 

 𝑫𝟏 𝑫𝟏 𝑫𝟏 𝑫𝟏 Supply Raw penalty 

𝑶𝟏 12                𝟓𝟎 

17 

18 

14 

10             𝟏𝟎𝟎 

18 

14   

10 

 

150 4 

𝑶𝟐 10               𝟓𝟎 

12 

14                  𝟓𝟎               

8 

16 

15 

10                      𝟏𝟓𝟎 

14 

250 4 

𝑶𝟑 11  

15 

8                    𝟐𝟎𝟎 

17 

17      

14 

11 

12 

200 2 

Demand 100 250 100 150   

Column 

penalty 

3 6 1 2   

 Then, the initial basic feasible solution is 

𝑥 = (𝑥11, 𝑥13, 𝑥21, 𝑥22, 𝑥24, 𝑥32 ) = (50, 100, 50, 50, 150, 200), and F =
P(x)

Q(x)
= 0.6448 

To improve the solution, let us apply the Kuhn- Tucker's optimality conditions as 

Fx11 = −1.294      , Fx12 = 1.286     , Fx13 = −9.444, Fx14 = 1.4     , 

Fx21 = −2.167     , Fx22 =  0.75    , Fx23 = 1.067        , Fx24 = −5.286   , 

Fx31 =  0.733     , Fx32 = −15.5294    , Fx33 = 1.2143        , Fx34 =  0.917   . 

To determine the cost equation, let us use the equation (1) 

     
𝜕𝐹

𝜕𝑥𝐵𝑖𝑗
= 𝑠𝑖 + 𝑡𝑗  

Since, 
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Fx11 = 𝑠1 + 𝑡1 ⇒ 𝑠1 + 𝑡1 = −1.294 , Fx12 = 𝑠1 + 𝑡2 ⇒ 𝑠1 + 𝑡2 = 1.286,      

  Fx13 = 𝑠1 + 𝑡3 ⇒ 𝑠1 + 𝑡3 = −9.444       , Fx14 = 𝑠1 + 𝑡4 ⇒ 𝑠1 + 𝑡4 = 1.4,      

Fx21 = 𝑠2 + 𝑡1 ⇒ 𝑠2 + 𝑡1 = −2.167, Fx22 = 𝑠2 + 𝑡2 ⇒ 𝑠2 + 𝑡2 =  0.75,     

 Fx23 = 𝑠2 + 𝑡3 ⇒ 𝑠2 + 𝑡3 = 1.067,   Fx24 = 𝑠2 + 𝑡4 ⇒ 𝑠2 + 𝑡4 = −5.286,  

Fx31 = 𝑠3 + 𝑡1 ⇒ 𝑠3 + 𝑡1 =  0.733,   Fx32 = 𝑠3 + 𝑡2 ⇒ 𝑠3 + 𝑡2 = −15.5294,     

 Fx33 = 𝑠3 + 𝑡3 ⇒ 𝑠3 + 𝑡3 = 1.2143   , Fx34 = 𝑠3 + 𝑡4 ⇒ 𝑠3 + 𝑡4 =  0.917.  

Put 𝑠1 = 0, we have 

𝑡1 = −1.294, 𝑡2 = 1.286, 𝑡3 = −9.444 , 𝑡4 = 1.4, 𝑠2 = −0.873, 𝑡3 = 1.94, 𝑡4 = −4.413, 

𝑠3 = 2.027,          

Let us estimate the reduced cost from the equation (2) as 

M12 =
∂F

∂xNB12
− s1 − t2 = −35, 

M14 =
∂F

∂xNB14
− s1 − t4 = 5.81, 

M23 =
∂F

∂xNB23
− s2 − t3 = 11.43, 

M31 =
∂F

∂xNB14
− s1 − t4 = 19.18, 

M33 =
∂F

∂xNB14
− s1 − t4 = 28.33, 

M34 =
∂F

∂xNB14
− s1 − t4 = 22.99. 

It is clear that   M12 = −35 , so 𝑥12 should be entered as basic variables. Then the next iteration resulted in the 

initial basic feasible solution  

𝑥 = (𝑥12, 𝑥13, 𝑥21, 𝑥24, 𝑥32 ) = (50, 100, 100, 100, 200), and F =
P(x)

Q(x)
= 0.5294 

By repeating the previous procedure, we obtain 

Fx11 = 0.706      , Fx12 = −1.714     , Fx13 = −9.444, Fx14 = 1.4     , 

Fx21 = −5.176     , Fx22 =  1.75    , Fx23 = 1.067,         Fx24 = −3.286   , 

Fx31 =  0.733     , Fx32 = −15.5294    , Fx33 = 1.2143        , Fx34 =  0.917   . 

Let us use the equation (1), to determine the cost equation as 

Fx11 = 𝑠1 + 𝑡1 ⇒ 𝑠1 + 𝑡1 = 0.706       , Fx12 = 𝑠1 + 𝑡2 ⇒ 𝑠1 + 𝑡2 = −1.714,      

  Fx13 = 𝑠1 + 𝑡3 ⇒ 𝑠1 + 𝑡3 = −9.444     , Fx14 = 𝑠1 + 𝑡4 ⇒ 𝑠1 + 𝑡4 = 1.4,      

Fx21 = 𝑠2 + 𝑡1 ⇒ 𝑠2 + 𝑡1 = −5.176 , Fx22 = 𝑠2 + 𝑡2 ⇒ 𝑠2 + 𝑡2 = 1.75,     

 Fx23 = 𝑠2 + 𝑡3 ⇒ 𝑠2 + 𝑡3 = 1.067,   Fx24 = 𝑠2 + 𝑡4 ⇒ 𝑠2 + 𝑡4 = −3.286,  

Fx31 = 𝑠3 + 𝑡1 ⇒ 𝑠3 + 𝑡1 =  0.733 ,   Fx32 = 𝑠3 + 𝑡2 ⇒ 𝑠3 + 𝑡2 = −− 15.5294,     

 Fx33 = 𝑠3 + 𝑡3 ⇒ 𝑠3 + 𝑡3 = 1.2143   , Fx34 = 𝑠3 + 𝑡4 ⇒ 𝑠3 + 𝑡4 =  0.917 .  

Set 𝑠1 = 0, we get 

𝑡1 = 0.706, 𝑡2 = −1.714, 𝑡3 = −9.444, 𝑡4 = 1.4, 𝑠2 = −5.882, 𝑠3 = 0.027.           

By applying the equation (2), let us estimate the reduced cost from as 

M11 =
∂F

∂xNB12
− s1 − t1 = 23.2, 

M14 =
∂F

∂xNB14
− s1 − t4 = 10.15, 
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M22 =
∂F

∂xNB23
− s2 − t2 = 4.0522, 

M23 =
∂F

∂xNB14
− s2 − t3 = 7.1, 

M31 =
∂F

∂xNB14
− s3 − t1 = 23.2, 

M33 =
∂F

∂xNB14
− s3 − t3 = 24.5, 

M34 =
∂F

∂xNB14
− s3 − t4 = 23.5. 

Since al of 
∂F

∂xNBij
> 0 at 𝑥 = (𝑥12, 𝑥13, 𝑥21, 𝑥24, 𝑥32 ) = (50, 100, 100, 100, 200) this leads to the optimal solution 

with the optimum value equal to 𝐹 = 0.5294, and in neutrosophic is 

�̃�𝑁 =
〈(8600, 10500, 11550, 14100); 0.6, 0.4, 0.7〉

〈(9850, 14750, 17200, 20150); 0.6, 0.4, 0.7〉
= 〈(0.4268, 0.61045,0.78305, 1.4315); 0.6, 0.4, 0.7〉 

6. Results and Discussions 

It is clear that the neutrosophic optimum value is: 

 F̃N = 〈(0.4268, 0.61045,0.78305, 1.4315); 0.6, 0.4, 0.7〉 is better than the primary basic feasible solution, where 

it lies between 0.4268 𝑎𝑛𝑑 1.4315. Also, as the optimum value lies between 0.61045 𝑎𝑛𝑑 0.78305 , the overall 

acceptance level is60%. Also, the degrees of truthfulness  and indeterminacy, respectively are given by: 

 

      μ(x) =

{
 
 

 
 0.6 (

x−0.4268

 0.61045−0.4268
) ,        0.4268 ≤ x < 0.61045,

0.6,          0.61045 ≤ x ≤ 0.78305,

0.6 (
1.4315−x

1.4315−0.78305
) ,      0.78305 ≤ x ≤ 1.4315,        

0,                   otherwise,

 

 

   ρ(x) =

{
 
 

 
 

0.61045−x+0.4(x−0.4268)

0.61045−0.4268
,        0.4268 ≤ x < 0.61045,

0.4,          0.61045 ≤ x ≤ 0.78305,
x−0.78305+0.4(1.4315−x)

1.4315−0.78305
,     0.78305 ≤ x ≤ 1.4315,      

1,                   otherwise,

 

  σ(x) =

{
 
 

 
 

0.61045−x+0.7(x−0.4268)

0.61045−0.4268
,        0.4268 ≤ x < 0.61045,

0.7,               0.61045 ≤ x ≤ 0.78305,
x−0.78305+0.7(1.4315−x)

1.4315−0.78305
,     0.78305 ≤ x ≤ 1.4315,      

1,                   otherwise,

 

Hence, the decision maker concludes that the optimum value range in between0.4268 and 1.4315. On the other 

hand, the unit profit maximum is achieved with the supply 50 units from 𝑂1 to 𝐷2 with discount 3%,   100 units 

from 𝑂1  to 𝐷3  with discount 5% , 100  units from 𝑂2   to 𝐷1  with discount 3% , 100  units from 𝑂2   to 𝐷4  with 

discount 2%, and 200 units from 𝑂3  to 𝐷2 with discount 4%.  

 

6.1 Advantages/Limitations of the proposed algorithm 

The proposed algorithm's principal advantage is a novel combination of a parametric study, a multicriteria 

analysis, and the DM's vision. This combination uses the benefit of a parametric study that is used to scan the 
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searching space smartly, the benefit of the multicriteria analysis that is used to rank the alternative solutions by 

employing the vision of the DM, and the benefit of involving the vision of the DM. Applying the proposed 

algorithm to real-life problems may encounter some limitations such as: 

1- It does not take into account the complete parametric space, which has an endless number of possible 

scenarios. But, no other techniques can handle such situations where there are infinite scenarios.  

2- It is impossible to assign a unified technique for assigning the interesting scenarios for the DM i.e. the 

approach does not involve a unified method; where the DM's vision and weights differ from one to another. 

3- Many factors must be considered such as; (i) the possibility of formulating the problem as a FTP problem, 

(ii) the possibility of formulating the KKT conditions and solving it, and (iii) the capability of solving the 

PFTP problem's selected scenarios and finding their exact optimal solutions. 

 

7. Comparitive Study 

   In this section, the proposed study is compared with some existing relevant literature to carve out the 

advantageous aspect of the proposed study. The Table 8 presents this comparison under certain parameters. 

It’s obvious that the result obtained by the proposed approach is less than the result by Gomathi and 

Jayalakshmi [ 19 ]   

Table 8. Comparisons of different researcher's contributions 

 

Author's 

name 

Vogel's 

approximation 

method 

Kuhn- Tucker 

optimality 

conditions 

Optimal 

neutrosophic 

solution 

Environment 

Gomathi and 

Jayalakshmi 

[ 19 ]   

√ √ × crisp 

Bas et al., 

[25], 

× × √ Crisp 

Akram et 

al., [26] 

× × √ Fuzzy  

Our 

proposed 

approach 

√ √ √ Neutrosophic 
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    8. Conclusions and future works 

In this paper, the maximization fractional transportation problem has solved efficiently in neutrosophic 

environment. The method which has applied is can be used in all of road tax, discount cost and others. In addition, 

the analysis process in the proposed approach depends upon some proposed characteristics that consider the 

uncertainty in determining the optimal solution. Fundamental definitions for NINP problems, such as optimistic-

optimal solutions, pessimistic-optimal solutions, satisfactory-optimal solutions, and feasibility-risk factors, were 

also introduced. Furthermore, the proposed approach involves the vision of the DM in the process of finding the 

optimal solution, and a utility function is used to rank the different alternatives so that the satisfactory optimal 

solution can be easily identified. Finally, an example is introduced to clarify the efficiency of the proposed 

approach. Finally, an example is introduced to clarify the efficiency of the proposed approach and compare the 

results obtained by one of the most prominent evolutionary algorithms, the genetic algorithm (GA), to validate the 

accuracy and reliability of simulation results.  Future work may include the further extension of this study to other 

fuzzy- like structure (i. e., interval- valued fuzzy set, Neutrosophic set, Pythagorean fuzzy set, Spherical fuzzy set 

etc. with more discussion and suggestive comments.  
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