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Chapter |
Study of Neutrosophic linear equations

I ntroduction:

Given the significance of the linear programming method as
one of the operations research methods, we felt it necessary to
reformulate the systems of lineaguations and some of the
methods for solving them using the concepts of neutrosophic
science, since research and studies using neutrosophics
produced more accurate results than research employing
classical logic.

1.1. Systems of linear equationsaccording to
classical logic:

The propositionsof linear equations in which the number of
equations equalm and the number of variables equalsare
given according to classical logic in the following general
form:

88888888888888

= [ d

andwritten in the following matrix form

o8y 6
where
A A 8A A 7]
A ABA A 2
! 8888888 B 8 &
A A 8A A %)
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whered ando are real numbers for all values of

"Q plth8 it andQ plths FE.

Three distinct examples of linear equation systems were
identified.

First case

There are the same number of equations and varjabées

a €.

Second case

There are more equations thaariablesi.e.,& ¢

Third case:

There are fewer equations than there are variabéesd €.

The following linear equation systems will be given utilizing
neutrosophic science concepls.this case, the real numbers
® and @ will be treated as neutrosophic numbers, or as
indefinite values of the form( & and 0 &. Perfectly
determined, they can be any neighborhood of the real numbers
& andw, expressed in any of the following forms:

060 & - and0w @ * where- N h  or

~

- N _ h_ orotherwise, then theystemsf neutrosophic
linear equations is written in tHerm below.

1.2. Systems of neutrosophic linear equationg/here
the number of equations equalsd and the
number of variables equals :

General form:
b 0w E oo Uo
0w 0w E 0o
88888888888888888
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~
[ 14 3

0w 00w E 0o 0o
In the following matrix form

oo&8B 00
where:
0 ® 0w 80 ® ) %]
58 0 0w 80 56 0 w g %]
8888888 B &8
0 0w 80 ® 0 w %)

We examine the preceding equation systems in terms of the
three previously described examples in order to establish
their general solution.
First case:
There are the same number of equations and varjaitdes
a €.
We write the systems of equations as follows:

0w 0w E oo Uo

R

0b 0 0w E 0Hw 0
888888888888888888
6w 0w E Gdw 00

Or, in matrix form:

no8& 00
where:
0 ® 0w 80 ® 0® ()
55 0 0w 80M 56 0w o ()
8888888 &8 8
0@ 0 80 W 0w ()
The matrix is a square matrix whose determinabtt is 9 &
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Here we distinguish two cases:

%

1- Y . This case gives rise to two cases:
a. lfy mandy nwhereY s the determinant

resulting from the determinant of the matrix¥%f after
repladng the column containinghe unknownw with
the column ofconstants, therthe systems have no
solution.

b.f Y mandy T, this means that the systems of

equations are not linearly independent, meaning that
some are linearly related to each otherorder to handle
this case, we eliminate one of the two equations that are
linearly related; as a result, there are n@wequations
instead of two, wheré a panda €, which is
the same as the second case that will be addressed later.
c. When Y m that is, the systems of equations are
linearly independent and the systems have a single
solution, that can be found inmultiple ways. We
investigate the Gauskrdan method in this study
because it serves as the foundation for the direct simplex
algorithm that we employ to find the best solution for
linear models.

1.3. GaussJordan method for solving systems of
neutrosophic linea equationswherel = :

To clarify the mathematical framework of the approach, we
present the equations in the following matrix form:

Vw Ow 80w w 0®
0 Ve 80® 8(30 0 ®

8888888 8 33
0@ 0w 80w w 0 @
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Or in the following abbreviated form:
D08 UVO ¢
SinceY 9 & T, this means that the matrix 6 has an
inversei.e., 0 0 . We multiply both sides of equation (2) by
0 0 and we find:
VDO 8008 00 &6
Hence, weget:

@ 00
whichis written in the following detailed form:
pmomm W 0w
T p M8 8(30 0 & G
88888 B &B
nnngp O 0

This process is the basis of the Gaideslan method for
solving a system of linear equations.dider to convert Figure
(1) to Figure (2), we follow the following steps:

1- We express Figure (1) in the following table:

Variables .

Equations * ¢ € * 4
p 0@ 0@ é . 0® @
C 0w 0w é 0w 0 @
é . é é é é é
€ 0@ 0 ® é 0 ® 0 @

Table No. (1): Table of equations
2- We convert the matrixd 0 to the unit matrixOby
processing theows of the table so that we make all
nondiagonal elements in all its rows equal to zero
and the diagonal elements equal to ofhbke steps
below are used to eliminate the variablefrom the
equationo:
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a To makew equal to one, we divide all the element
of rowt by 0 @. This causeso to equal one and
modifies the other expressions.

b- We set all elements of the column with (except
row 0) equal to zero.

c- We calculate the rest of the elements of the new table
from the following two relation:

. . .. 0® OO0 000,

0® 0®W 00 — — '
DLW D W .

o wx .. b0 VWO 000w ,

VD W VW U W — .
0w VW v

The elemenb & is called the pivot element
Following the previous process, théollowing table is
produced:

Yariables 14 14 6 1 o J] "
Equations

p p 1 é . i 0w

C i P é I 0w

é . é é é é é

& T T é p 0w

Table No. (2) Final solution table
The linear equation systems are expressed in the following
matrix form:

@w 0o
pmom8n W 0w
npn8n8(b 0 &
88888 ~ B &8
nnngp O 06
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0 W 0
0 ® 0Q
e 3] 8
0w 0w
0w OoMoeo oMM Ok

Second case:

There are more equations than variapbles,& €.

In this case, we form a new system from the set of equations in
which the number of equations is equal to the number of
variables by excluding a number of equations of 1. Then,

to make sure the equations that were excluded are satisfied; we
solve the new systems in the same way as we solved the first
case.

Third case: There are fewer equations than there are variables
e, a €.
We are presented with a set of equations of the following form
in this particular case. )

oo wow E 00w E (0w O

0w 0dw E 0w E 00w 0w

8888888888888888888888888  °
00w 0w E 0w E 0o (0w
whichis writtenin the following matrix form:

()

~ rvd)l’l

0 ® 0 80 880 ® 0w I gyt

(5 VO 00 80® 880G . Th . '
YO sssssssssgssssg V% g © N0
0w DLw 8Lw 88L W 0 W L1831
uw

In the following brief form:
00 8 a0 8 00 8 ()
1- Wedividethe matrix0 6 g into two matrices:
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a A square matrix of ranka & which we denote
00 g
b- And a rectangular matrix of ranlkd & & which
we denote0 O 4
2- The column matrix® g is dividedinto two matrices

® g and®® g .

Subsequently, he equation systems (5) are expressed in the
matrix form shown below:
cx ® g .
VO g MO g 8 ¢ U0 g X
W 8
V0 g & g 00 g &° g U0 g
We find that:

VO g & g UVO g U0VO g &° g Ul
Assuming that) &8 1, we multiply both sides in relation (8)
by0 6 and we find:

DO & @ VO 800 U G
@ 00 &0 00 W w
Assumingthatt 6 & 6 006 ando 6 & O 0O 5 we
find that:
p T T8 T 00

T p n8n800
88888 B
mnnnép W
66 .00 0Q 800 R
0  '9Q 0Q 80Q n, @
& . 8888888888 o 8 PT
66 pao o séQ gy ©

which can be converted as follows into a set of linear
equations:
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b 00 0Q o 0Q ® E 00Q )
b 00 0Q 0Q ® E 0Q )
888888888888888888888
b 0o 0Q o 0Q o E 00Q &)

This means that we were able to calculatein terms of
¢ & ,w ho mMho. We note that the values of the
variables o oo I8 R , it relates to the values taken by the
variableso ho B hw, or in other words, what we give to
the variableso hw B hw, and that for everproposition
ofvaluessuchds R MR for these variables we get
a set of values for the variableso /8 oo is:

0o 0o 0Qf 0Q 1 0Q 1

0o 00 0Qf 0Q 1 E 0Q I

88888888888888888888888888
0o (o 0Q 1 0Q T E 0Q i
Thus, we obtain a solution that includes all the variables of
proposition(5)
Here is how the solution is structured:

THBR R A BA
But since the variable® Fho B hi can take an infinite
number of qualitative values (even if they are restricted by
certain conditions), we obtain an infiniteaumber of
corresponding values for the variable$m (8 fro .
Thus, the set of equations (5) has an infinite number of
acceptable solutions of the following formgif &5 71T
whoMB o o o B ho

Thus, we obtain a solution that includds \ariables of the
proposition which is the ordered solution:

rThBH R K mBH

T
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1.4. Basic solutions of the neutrosophic linear

equations:
Since proposition (5) has an infinite number of acceptable
solutions, we will try to limit ourselves to a limited number by
setting the variableso ho B hw equal to zero. Then
proposition(9) takes the following form:

pmt M W 0w
mpe m8m W 0w
88888 ° 8 8 PP
mmnngdp W 0w

We get:
® (o oM 00
Consequentlythe complete solution is:
OO O o s
Because it can be attributed to the rule with single normal
vectors in the spac¥ , we refer to this solution as the basic
solution:

1 IO 1 IO 1 T
| &5 | & ! g
U’ U’ Uy U

The set of vectorQhQ M KQ form a rule because they are
linearly independent, and the vectoi® can be expressed
using the factorialgo hoo F8 Fro  as follows:

06 Quw Qo E Qw
We call the variables ho i8 Fro |, basic variables and we call
other variableso hw B fw free or norbasic variables
because they take qualitative values.

-11-
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The variablesw o /8 oo are chosen at random to serve as
basic variables because, if we know that the following options
exist for obtaining basic solutions, we can build alternative
basic solutions: _
EA
GAE a A
There is a finite number of infinitely possible solutions.
Example 1:
The two linear equations below have a joint solution.
CO X®» 0w CcO Cch
o ww T o ol
® Lo 0w Tw Th
In the set of equations, the number of variables ist and
the number of equations & o©. Therefore, the number of
basic variables is equal to 3 and the number oflamsic free
variables is€ & p. The number of possible solutions is
calculated from the relation:
. EA
o T T
A a A

. TA
© GAt oA !
We write as follows:
To obtain these solutions, we write the systems of equations
in the following form:
Cw X® o» ch o
on Wy T O o
® Lo ow Th T
The previouspropositionis written in thefollowing matrix
form:

-12-
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¢ x o ® cv ¢
O w T 8W ofx p 8w
p LU o W Thy T
¢ X O @ ch S
6 o w1 ® W 06 ox O p &
P LU O w Thy T
We calculate the determinagits.
We find:
. ¢ X O
DS 0 W T o T
p L O
We determine the matrix's reciprocal to identify the solutions:
. ¢ X O
0O 0 W T
p L O
We find:
ni _pl’l
" 110 1
(0] 11V pl,l
IIO. P O.l’ll
o vc popl
We compensate in the relation:
VO & @ U0 800 U @&
We get
ni C _pl,l
110 1 C X o
110 p.’.80 W T
5 P Ghpuo
Ye p oY
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n_X _pI7| ~

110 S O~ dlu C

11U pn8 ofx p 8w
g P e T T

Ug p pUY

X q P X C _Py

110 (0 Cfll) 110 o~ G

v pn8 olx 1 pr8p 8w
I Ia. P FI,'I T ﬁ]p | Ia. P FI,II T

Ue¢ p pV U¢ p pVU

which can be transformed into the following systems of
eguations:

P

n’T[ﬁ? Ul PO
LL4 A I I I,I T Al
VW 11 o o 8w
L] on P
uoh 0 P
Setting the free variabl® equal to zerowe get:
o nﬁ_p U}
. 11 o
UV W 11 o
L] on
u ol U

. p . T .
W nh—pm) ph- v  oh
o o

Thus, we obtain the firgsteutrosophic basic solution, which is:

Lo P T
@ how ho bt nthh ph6h0huhn

We obtain other basic solutions in the same way.

-14-
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Dissolved basic solutions:

If we get a value of zero for the variables we have selected as a
basis, the fundamental solutiordisgenerate and invalid.
1.5.Gauss Jordan method for solving a set of linear

equationswhered = :
The following are the basic steps of the GausS@mlan
method, which are based on the previously mentioned
mathematical principles:
1- We write the system®f equations (5) in the following
matrix form:

@ 00 808" 0o &0 Vo
[ L T4 oy (I) o
O o & 08(1)C 0O P C
which s written in the following detailed form:

P T T8 00 0Q 80Q - 0®
T p M8TM 0Q 0Q 800Q ,’,80‘0 0o 00
1B88888888888888888 ), B B
gt Tm8p 0Q 0Q 800Q o ® 0w

The transition from Figure (5) to Figure (12) is done the same
steps we mentioned in the previous paragraph, but this method
does not give us a basic solution unless we set the free
variables equal to zero. If we do that, we only get the first

solution To obtain all solutions, weperform the following
steps:

a. We organize the following table:

-15-
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Variables , . J]
_ o o |é.| o | o o é.| e, l
Equation
p W W €. ® W W e.| @& 0w
C () () e | ® () () 88| ® 0w
é . é é é é é é é é é
a () () e | ® () () e | ® 0

b.

Table No. (3) The first table for theGauss Jordan method
We find the identity matriXO by processing the rows
of the previous table in the same was/explained in the
previous paragrapfi.o do thisthe specifyvariables that
areentered in the base and let themabbw F8 ho . As
a result of this processing, wbtainthe following table:

Variables
Equation

[ ) [ ] é . o o o é . e, 4 ”

P

0Q 0Q é.| 0Q 0w

Tt
P 5Q | 0Q |88|0Q 0
é é 6 | é é é

G
é.
a

3™ 5|©

('D\('D\('D\CD‘
o | ™54

s 0Q 0Q é | 0Q 0w

C.

Table No. (4): Table of the first basic solution
Setting all the free variables in Table (4) equal to zero,
we obtain the following first basic solution:

OO O o A8

To obtain a second basic solution, we replace one of the
basic variables, sayo , with one of the notbasic
variables @ , by selecting the appropriate pivot
element, and here it 8Q . We work to deletan
from all equations except equation In this equation,
we set the coefficient of this variable to one. We use the
two relations (4) to carry out the necessary
computations. We solve the subsequent second basic
solution:

-16-
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oMol Mo s
We repeat the steps mentioned in step (d) to get additional
basic solutions.

1.6. Non-negative basic solutions of systems of

neutrosophic linear equations:
If all or some of the variables must be noegative, then
certain fundamentabolutions are not sufficient since they
violate the criterion. In this kind of circumstance, we need to
look for good fundamental solutions among the basic solutions.
Because the procedure in the example is not easily used,
especially when there are numeso variables, the Gauss
Jordan method was devised to immediately find positive
solutions.
The new method was called the simplex method, which is
carried out according to the following steps:

1.7. The simplex method for finding nonnegative
basic solutions to a system of linear equations

wherel =
In the systems of equations (5):

1- By multiplying the equation with the negative second
side by ¢1), we are able to make all elements of the
constant's columrNB on the second side of the
equations noimegative.

2- We put the coefficients of the new systems in a table.

3- We form a rule consistg of & variables byselecting
the variable that we want to enter into the rule, for
examplew, then we calculate the index.

— U Q55— —— T Vw TLw T
U W U W

-17-
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We call the element) ¢ the pivot element, we
deletethe variablew from all equations according to
the GaussJordanmethod, except for the equatian
in which itscoefficientis equal to one. We repeat the
previous step until we form a base consistingiof
variables.

4- Setting the notbasic variablesequal to zero we
obtain the following nomegative basic solution:

oMo o Mo s

5- We designate one of the variables as a basic variable,
find the pivot element, and then carry out the same
steps as for the variabte to obtain additional new
nortnegative basic solutions. We continue working
until we have all of the nenegative basic solutions
after we find a new one.

We explain the aboveusing the following example:
Example 2:
® 0 C® plo
®» c®w ow chy
We multiply the first equation by-{) until the condition
0 @ Tis met,andwe obtain the following new systems:

® ow ¢ plo

®» c®w ow chy
The stopping criterion is met if we are unable to locate a single
free column that was not used fewitching and that has at
least one positive element. This indicates that all of the free

column elements that were not utilized during the swap have
negative values.

- 18-
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In the systems of equations, the number of variablés isu
and the number of equatiors& ¢ Therefore, the number
of basic variables is equal to 2 and the number ofbamic
free variables i€ @& 0. The number of possible solutions
is calculated from the relation:

. EA

o T T .
aAeg a A

LA

o) S —
CAv CA

p T

We write as follows:
6 hoo FrdrdTe h 6 Frdo frdre h 6 Frdrdoo e h oo brdmimdo b
oo heo frde o Frdhco b b oo Frdminco b oo Ao e b
i e h ridTice hoo
To obtain these solutions, we organize the following table:

Variables B
. [ ] [ ] [ ] [ ] [ ] ”
Equations
P p | M| m o s ply
q T p | m G o Chp

Table No. (5): The first table for the simplex method
To find a basic solution to the set of equations, se&ecta
variable, for examplew, to be a basic variable, and to
determine the appropriate anchor element, catulate the
index:

0® o . ch lo
— 0Q&— 0 "Qép hc|1l|J P
0 W o C o
The pivot is @ 0. The following table is produced after the
necessary computations are made to remove the varable

from the two equations:
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Variables 1]
. [ J [ J [ J [ [ J "
Equations
® P | m | m P < P
o o cm
< S |p| ™| m v L
o o o

Table No. (6) The second table for the simplex method
We choose another variable to be a basic variable. We note that

the variablew is ready to be a basic variable, and thus we get
the following table:

Variables ]|
N [ ] [ ] [ ] [ ] [ ] "
Equation
W P Tt Tt p q p.
o o cm
[ C p i i v T.
o o chp

Table No. (7): Final solution table
Thus, we obtain a base consisting of the variatilelsh . We
set the free variables equal to zero, and we obtain the following
nortnegative neutrosophic basic solution:

T, . .P. .
mh—hp hrh—=hp hit
ohp oho
We repeat the steps we took to find the previous solution to get
additional solutions.
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Conclusion:

In this study, we have examined the sets of neutrosophic linear
equations that serve as the foundation for neutrosophic linear
programming. Additionally, we have discussed the Gauss
Jordan method, which is regarded as the mathematical
foundation for the snplex method, which finds positive basic
solutions when there are constraints on some or all of the
variables' values being positive. This method is then used to
find the optimal solution for linear models using direct
simplex. Our fundamental neutrosoplsiclutions that express
indeterminate values are derived from the examples we have
given on systems of neutrosophic equations. can be applied
when the data supplied to the systems that follow these
equation systems are dynamic. The margin of freedom
provided by neutrosophic values might be advantageous in this
case.
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Chapter Il : Neutrosophic Linear Models

Introduction
21 1- Basic formulas of neutrosophic linear models
2-1-1-The general formula for the neutrosophic linear model

2-1-2- The canonical neutiosophic formula for the linear
model.

2-1-3- The standard neutrosophic formula for the linear model.

2-1-4- The symmetrical formula of the neutrosophic linear
model

2-2- How to move from one formula to another
2-3- Examples of the above

Conclusion.
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Chapter Il
Neutrosophic Linear Models

Introduction :

This chapter presents the formulas for neutrosophic linear
mathematical models, which are linear models that include
neutrosophic values in their mathematical relations, either in
the constraint relatioor the objective function relation. This
allows the model to account for all possible changes in the
operating environment of the system it represents, ensuring a
safe workflow for the facility. To this end, we will treat the
variables in the objective fgtion as neutrosophic valuas.,

00 @ -.

Also, the values that express the available capabilities are
neutrosophic values, i, @ | and, 0 & @&

where 'Q plt8 it HQ pltiB h  are undefined values that
have a margin of freedom and are taken according to the nature
of the situation represented by thieear modettherefore,
utilizing the subsequent investigation, we give the fundamental
formulas of linear models:

21 1- Basic formulas of neutrosophic linear models

Neutrosophic linear models can be classified according to the
following formulas

2-1-1-The general formula for the neutrosophic linear
model:

The general neutrosophic formula for the linear mathematical
model is givenn abbreviated form as follows

-23-
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~
v

0 ® W - D W® 10 Q¢
Constraints:
0w ® 1 NQ pkM

W T
where @ - h @ 1 h &hQ pf8 R HQ plis h
are constants having set or interval values according to the

nature of the given probleray are decision variables.

It is given in the following detailed form
Find:

0 0w Vb E 0§ oo D Wwd 1L Q¢

Constraints:

€
@)
o

A
=
3

O0bdw 0dw E (0 o 0

whoB hd
Linear models can also be expressed using matrices, and

therefore the neutrosophic linear model given in the general
form can be written using matrices as follows:

Find:
0w 008 0 O® 10 Q¢

Constraints:
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0 08 00
8 Tt
where
0w 0W80® 0 ® U(Z) w
56 0 0w 80 W 0 w b6 0(1)8 w
8888888 8B Eﬁ B
0w 0w 80 w 0 w 0 w w

2-1-2- The canonical neutrosophic formula for the linear
model:

If every variable is required to be noegative and every
constraint is provided in the form of an inequality that must be
entered in the format (whefeis less than or equal to), then the
linear program is caidered canonical. The following is an
abbreviatedorm of the neutrosophic canonical form:

bH O - Dh

Constraints:

W T
It is given in the following detailed form:
Find:

~ ~

00 Gad G E G 000

- 25.
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Constraints:
b 0O E .0 w 0
b 0w E 0Ow 00
8888888888888
0 @ 0w E 0O o o
whoB hd
Linear models can also be expressed using matrices, and

therefore the neutrosophic linear model given indhaeonical
form can be written using matrices as follows:

Find:
0w 0 08 0 W

Constraints:

008 00
8 Tt
where
() 0wW80® 0@ 0 G W
56 0 0w 80 W 0w 66 6(1)8 W
8888888 B B &8
0 ® 0w 80 W 0w 0 W W

2-1-3- The standard neutrosophic formula for the linear
model:

When it comes to solving linear programming problems, the
standard form is crucial. This is because solving a linear
programming problem has been reduced to solving a set of
linear equations made up wequations witle & unknowns.
Solving this sentence is helpful if it can be done, meaning that
if it satisfies the requirement that 1T be nonnegative, then
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the ideal values for the variables are those that satisfy the
constraints and give the objective function the mmaxn or
smallest value permissible by the problem text.

The standard neutrosophic formula is given in the following
abbreviated form:

Find:

W 0 wag 10 Q¢

€

0 @

Constraints:

W T
It is given in the following detailed form
Find:
0w Ooaw O E 0 own 0 o 10 Qe
Constraints:

~
L 14 3

.0 w0

[T

DOow 00w

Dww 0w

[T

Dww 00w
8888888888888

~ ~

VO w 0w E 0ww tw
OhoBhdy
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Neutrosaphic linear models and algorithms to find their optimal solution

Since matrices may also be used to define linear models, the
neutrosophic linear model given in standard form can be stated
as follows in matrices:

Find:
0w U 08 0 W iDL Q¢
Constraints:
008 060
8 T
where
0w 0wW80® 0 ® (’)(Zo W
56 0 0w 80w . . 0w 66 0(‘)8 W
8888888 E§ Eﬁ 3B
() 0 80 ® 0 w 0 w W

With the exception of the nemegative constraints, which
continue to be inequalities, all of thenstraints in this case are
of the equality type. All of the decision variables must also be
norntnegative, as must the right side of each equality constraint.
In the standard neutrosophic form, the objective function can
either be a minimization functicor a maximization function.

2-1-4- The symmetrical formula of the neutrosophic linear
model:

We say of a linear program that it is in the symmetrical form if
all variables are constrained to be nwgative and if all
constraints are given in tHerm of inequalities the inequalities

of the constraints of the maximization problem must be in the
form ( (less than or equal Yowhile the inequalities of the
constraints in the minimization problem must inethe form

( (greater than or equal)toNext we utilize one of the two
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following formulas to construct the neutrosophic symmetric
formula:

First figure :

The neutrosophic symmetric formulafor the linear
mathematical model is given in the abbreviated form as
follows:

D Ow

€
e

0 @

Constraints:

W T
It is given in the following detailed form
Find:

= v

0O Dow OUww E 00w 0 Ow
Constraints:

~
[ 14 3

.0 W 0

[Tt

DOow 00w

0do 0w

[T

Dww 00w
8888888888888

= 4

0w w Vww E 0w ow 0w
whoB hd
Using matrices as follows:
Find:

VD 068 Doww
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Constraints:

008 060
8 Tt
where
0 ® 080 ® A u@ @
55 0® 0w 80 ® 0w 68 0@8 [0)
8888888 8 8% B
0 ® 0w 80 ® 0w 0w W

Second form:
The summary is as follows:

The neutrosophic symmetric formula for the linear

mathematical model is given in the abbreviated form as
follows:

0w

€
)
C:
o)
™

Constraints:

W T
It is given in the following detailed form
Find:
0 Oow Oan E 0 own 0 Q¢

Constraints:

[T
]

DOow 0ww .0 w0
0

[T
S

DOWw U 0O w
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8888888888888
0 @ 0w E 0O o o
whoB hy
Using matrices as follows:
Find:
0& 068 OET

Constraints:

008 060
8 T
where:
0 ® 080 ® 0o (’)Q) W
65 0 ® 0w 80 ® 68 60’066 0m8 )
8888888 te 3] &i B
0 ® 0w 80 ® 0w 0w )

2-2- How to move from one formula to another
A brief explanation of the neutrosophic linear models'
formulas. It should be mentioned that we may use the
following basic transformations to get from one formula to
another:
1 Converting the minimum value of the objective
function f(x) to a maximum value by multiplying it
by (-1) we get{ (Qw .
1 If the inequalities were of the form (greater than or
equal to) they will be @anverted to the form (less than

or equal to) by multiplying both sides byl}, and
vice versa.
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)l

The equality constraint can be converted into two
inequalities of different direction.

If the left side of an (inequality) constraint is given in
absolute valueit can be converted into two regular
inequalities.

Constraint inequalities of the type (greater than or
equal to) are converted to an equality constraint by
subtracting an appropriate positive variable (i.e.,
artificial variable) from the left side of ¢hinequality
and this variable is entered into the objective function
with zero coefficient.

Constraint inequalities of the type (less than or equal
to) are converted into an equality constraint by
adding an appropriate positive variable (i.e., slack
variable) to the lefhand side of the inequality and
then this variable is entered into the objective
function with zero coefficient.

If one of the decision variables is not constrained
by the nomnegative condition (that is, it can be
negative, positive or zero), then it can be expressed as
the difference between two nmegative variables
wlhofas followsw @ ofand whuf T

2-3- Examples of the above

The linear models in all examples are given in detailed form:
Example 1:

In its generic form, refer to the following as neutrosophic linear
programming:

DQBO 0o - ®w 0 - W X - W

Constraints:
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W W ow T
W W XW LT
VW O0wW C T
V0  Yws p T
who
where- is indeterminate and could be

~

- N _h or-N _ R :Q pith.
Also, the values that express the available possibilitieare
neutrosophic values. This means titats indeterminate and
couldbe

TN K or] NCRQ pighoht
To convert the above problem into the neutrosophic canonical
form, we perform the following transformations:

A The objective function is a
turn into a function omaximization

DQBL 0o - W 0 - W X - W
Transformed into

DO ® o - ®w 0 - W X - ®
A The second constraint I's giwv

converted into (less than or equal) by multiplying both sides by
(-1) we get
W o Xw U TT

A Third vbowst c ai nttansformed into two
entries

VW O0wW C T

VW OwW C T
Then we turn the constraintb ow ¢ 1T | Iinto:

VW oW C T
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A The comsdursap nmtt] is equivalent to the
two inequalities
vw Yw p T
LW Yw p T
A The woa 1s i natbréseicted by the nemegative
constraint, so it is replaced by the following assumption
®» o Fwherghf TU
The canonical neutrosophierm becomes:
D O® W o - W 0 - ®w X - o o
Constraints:

W O ow o T

W ww Xw o LT
VW OwW C T
LW oW QT

vw Yw o pTm
vw Yw o pTT]
oo o hef 1
Example 2:

A factory produces four types of produciYRiYRY. For
this purpose, the following raw materials are ugedid

Keeping in mind that the profit is directly correlated with the
quantity of units sold of the products, the factargnage ment
seeks to analyze the best way to organize production over a
given time period (say, a month) and calculate the monthly
production for each product in order to maximize profit. The
following table displays the available amounts of raw materials
required for each product as well as the profit:
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Products Product Type Available
Materi iti
vy “y Y % Quantities
5 0® o c8 P CTMT
5 N U p o WTTN
G p®_| o | o® | p | xmmh
winoneproduct | T - | @Y - | L - | @

Assuming thato hoo hoo fo  represent the number of units
created from the types of goods during the course of the
production period (a month, for example), the amount of raw
material 0 that is consumed in the creation of the four
variations is as fddbws:

PR W 8w
and it must not exceedoo0® 4, from the available quantity,
that is:

PR w 8w w oOoTnmnn P
Likewise, the amount of raw materiabMonsumed in the
production of the four types is:

W LW W DWW WTTIT C
andthe amount consumed of the raw materialiivithe
production of the four types is:

PR ow oBdW w XTTN o
In addition, the produced quantities must be-negative, i.e.:

whohoho 1 1
These are referred to as Roegative conditions.

Thus, we have identified all the constraints imposed on the
variables of the problem.
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We now define the objective function. If quantified units
o fo oo oo of species are produced in order, then the profit
during the productive period will be:

0 1T - Y - ® LV - P - W
It represents the objective function Therefore, the
mathematical model of the problem is:
PO 1T - Y - ® ULV -0 @ - W
Constraints:
PR w (8w w oTnmnn
W LW W OoB’W WTTI
PR ow OodW w XTTN
We have obtained a neutrosophiaanonical linear model
using the appropriate transformations, which can be written in
the following neutrosophical standard farm
PO 1T - ® Y - ® U - ®
¢ - O TW TwW T
Constraints:
PR W 8w w W OTTI
W LW W O0BW W WTTI
PR ow O0BdW W W XTI
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Conclusion:

The indeterminacy that we introduced into the data described
by the linear model provides us with neutrosophical linear
models that simulate reality and account for riegority of the
changes that could occur in the operating environment of the
system represented by the linear mathematical model, allowing
us to continue studying linear programming topics such as
identifying accompanying programs that need to be developed
The symmetrical mathematical model, solving linear models
using the simplex approach, which involves creating models in
the standard form, and other linear programming subjects are
covered.
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Chapter Il : The graphical method for finding
the optimal sdution for neutrosophic linear
models

Introduction
3.1. Graphical method for solving linear models

3.2. Graphical method for finding the optimal solution for
neutrosophic linear models

3.3. Nonnegative constraints for optimal solution of some
neutrosophic linear models using the graphical method

3.4. Neutrosophic linear mathematical modahclusion
Conclusion.
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Chapter Il
The graphical method for finding the optimal
solution for neutrosophic linear models

Introduction :
After discussingthe linear models and their various fornaula
based on neutrosophic scientific principles, we provide the
neutrosophic graphical approach that we apply to solve the
neutrosophic linear models in this chapter.
One of the easiest approaches to tackling liragramming
iIssues is the graphical method, which visualizes the model. But
since linear programming issues frequently involve a lot of
variables, it is insufficient to solve all of them, and the
graphical technique can only be applied in the following
situations:

1 The number of unknowns isn=1,orn=2,0rn=3.

1 In linear models whose constraints are equal constraints, if
the number of unknowns and the number of equations meet
one of the following conditions: nm =1 orni m=2 or
ni m=3.

Here we may use the nemegative constraints that the linear

model's variables have to turn the model into a function of one,

two, or three variables. The graphical method for solving linear
models where the constraints are equal and the difference
between tB number of unknowns and the number of
constraints is equal to one, two, or three is reformulated in this
study along with the graphical method for solving linear
models using neutrosophics.
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3.1. Graphical method for solving linear models
We find theoptimal solution by following the steps below:

1. We determine the hafilanes defined by the inequalities
of the constraints by drawing the straight lines resulting
from the transformation of the inequalities of the
constraints. To do this, we specify twoiqts that fulfill
the constraint, and connect the two points to obtain the
straight line that corresponds to the constraint. This
straight line divides the plane into two halves to
determine the halblane that satisfies the constraint. We
select a pointtathe top of the mapping from one of the
two halfplanes. We substitute the coordinates of this
point into the inequality. If it is satisfied, then the region
in which this point is located is the solution region. If it
Is not satisfied, then the oppositegion is the solution
region.

2. We define the common solution region, i.e., the region
resulting from the intersection of the halves of the
planes defined by constraint inequalities. This region
must be norempty so that we can proceed with the
solution.

3. To represent the objective function, we note that its
relaton  contains three  unknowns,éh hw.
Therefore, we need to know a value fdrthat is
unknown to us. Here we assume a value, let it be
@ 1, draw the equation of the objective functian
specify another value, let it lbe, and represent the
equation.If we continue on in the same way, we will
eventually have a sequence of parallel lines that
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represent the objective function in addition to a line that
is parallel to the original line.

, W - " .

4. We draw ray® & wherew is coefficient ofw and
@ is coefficient of & in the objective function
statement, and the direction of its increasing function is

) . . W . . .
the direction of ray® & and the direction of its

decreasingunction is the opposite direction. This ray,

l.e., the drawing is done according to the type of
objective function (maximization or minimization). To

put it more clearly, we find the optimal solution point by
drawing the line rgpresenting’b parallel to itself

. W . .
towards the ray® = to find the maximum value of

the objective function (and reversing this direction to
find the smallest value), until it passes through the last
point of the common solution region and this point is the
optimal solution point, whichis located at the
boundaries of the common solution region and any other
displacement, no matter how small, takes it out of it.

3.2. Graphical method for finding the optimal
solution for neutrosophic linear models

By using the concept of neutrosophic lmemodels, we can
determine that the bessolution a neutrosophic value
appropriate under allcircumstances maybe reached by
applying the same earlier procedur@ge illustrate the above
with the following example:
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Example 1

A company produces two types of produdts 0 and uses
three types of raw materiald ¥ H in the production
process; the available quantities of each of the raw materials
ared NQ plth, the quantity required to produce one unit of
each product® NQ plt, and the profit derived from one
unit of each of the producs © is shown in the following
table:

products 5 5 available
raw materials guantities
0 [0) T oQ
0 S o XS
0 v 1 p Tt
profit Qh ch

Table Issue data
Requirement

Determine the quantities that must be produced of each product
6 N'Q plt, for the company to achieve maximum profit:

Ascertain the necessary production volumes for each product
& N'Q plt, in order for the business to make the most profit

possible:
Solution:

Suppose @ is the quantity produced from the product,

whereQ plt, then we can formulate the following
neutrosophic linear mathematical model:

A chupd) cFr WO 0w
Constraints

v T® o0 p
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Gw 0w PG G
LW PpPU
who T
Because the coefficients of the variables in the objective
function are undetermined, the preceding model is a linear
neutrosophic model. To identify the optimal solution for the

preceding model, wevill use a graphical method as shown
below:

The first constraint
We draw the straight line representing the first constraint:
W TWw 0O
We impose
W T 0@ O W
We get the first poin® Tiw .

We impose

W T W 0@ W O
We get the secongoint:6 @
We take a point at the top of the designation from one of the
two halves of the resulting plane after having drawn the
straight line through the two pointd miw and® @i . Let it
be the point ) Tt and substitute it in the inequality of the
first entry. We find that the inequality is satisfied i.e., the half
of the plane to which the poinb Tttt belongs is half of the
solution plane of the firstonstraint inequality.
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We proceed in the same way fdhe second and third
constraints and obtain the following graphical representation:
Figure No. (1)

Figure No. (1) Graphic representation of the limitations of the linear
model in Example 1

After we have shown the constraints, we notice that the
common solution area is bounded by the polygon whose
vertices are the pointgtit , O ofit, 0 andé Tt .

The pointd is the intersection poingnd the second and third
constraints coordinates aretaimed by solving the following
two equations:

Gw 0® PG
LW pPU
Wefind: 0 oft

Substituting the coordinates of the vertex points into the
objective function expression, we get:
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W T
OGN po
O N qlvg
O N Up o
This means that the highest value of functibms reached at
point oft , i.e., the company must produce three units of the

first product and two units of the second product, then it will
achieve the maximum profit.

~

D O N ¢ ¢
Note:

When thenumber of points is small, we can easily substitute
them in the objective function, and the point that gives the best
value for the objective function is the optimal solution, but
when there are a large number of constraints, we get a large
number from therertical points located on the perimeter of the
common solution area. In the above scenario, calculating all of
these points’ coordinates and putting them into the objective
function becomes problematic. As a result, as previously
stated, we resort to threpresentation of the objective function
and the calculation of the optimal solution point.

3.3. Nonnegative constraints for optimal solution of
some neutrosophic linear models using the
graphical method

Example 2

Find the optimal solution for théllowing linear neutrosophic
model:
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O O O 0w O chow o cw pPLve DO

Constraints
W W W v P
v ® W PP G
W W W T o]
W w0 T
Ch Oow W W Y 0]

Solution:

We note that the number of constraintsdis v and the
number of variables is ¥, which means th& a c.

As a result, using thgraphical method and the noegative
constraints, identify the best solution for the previous model
using the steps below.

1- We calculate five variables in terms of only two
variables.

Given that the linear model's variables fulfill the non
negative requements, we can derive five inequalities of
the type greater than or equal to from the variables we
computed.

The objective function with only two variables is
obtained by substituting the five variables.

We write the new model, which is a linear model with
two variables, so that the optimal solution can be found
graphically.

We apply the previous steps to Example 2.

We find:

2

3

4
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W U W W p e
W ow cw o C &
W W 0w T o &
W Q¢ W T &
W X 0O o L&

Substituting in the objective function, we get:

» phow owe Yo
Sinceowhwhohohw mnwwfrom (1) 06, (2) 6,
get the following set of constraints:

L W W T

oW Cw O T

W W T T

@ W T

X O o T
Neutrosophic linear mathematical model
Find:

w pho owed Yerovoddw

Constraints

L W W T

ow Cw @ T

W W T T

X O w T
who T
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Because the model includes two variables, the best solution
may beidentified visually by following the procedures outlined
in Example (1).

The required graphic representation is found in Figure No. (2)

At

|

Figure No. (2): Graphical representation of the constraints of the
linear model in Example 2

RegionO is the regionof joint solutions and is defined by the
polygond 6 'Y "Mdhere( mim, v, 6 o , and for the two
points 'Yh'Ywe find that the pointY is the point of intersection
of the first and fourth entries.

We obtain its coordinates by solving the se¢gfiations:
L W W T
@ W T
We get'Y p p .
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The int “Yis the point of intersection of the second and fourth
entries.

We obtain its coordinates by solving the set of equations:
ow Cw ¢ T
@ W T
We get:"Ychp .

Since the optimal solution is located one of the vertices of
the common solution region, we substitute the coordinates of
these points with the objective function:

At point ) Tt
@ T

At point 6 vt

» pau
At pointY p fip

WN o TIU
At point "Y¢lyp

ONocipw
At point & Tio

OWN pR o

The greatest value of the objective function is at the point
'Yp fw thatis®w p pande .

We calcul ate the values of t he
(3) 6, (4) 6, (5) 6.

Wefind:oo mhd ¢y ¢dw mnh c.
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Substitutig in the objective function of the original model we
obtain the maximum value of thefunction, which is

URAYALARGE RO
Important Notes:

1- A vertical point in spaceY is covered by the graphical
solution. The ideal solution pertains to a vertical point,
which is the outcome of several lines or planes
intersecting, therefore the number of roastent
components is at least & components.

2- Certain conditions that ar@relevant to the solution
process might be included in the model.

3- When one of the sides of the common solution area that
passes through the ideal solution point is parallel to the
straightline Z=0, the ideal solution can be a single point
or an infinitenumber of points. Thus, when the objective
function is represented by a straight line, this line will
apply to the parallel side, and all of the infinitely many
points on that side will be perfect solutions.

4- We say that the objective function has an esxlle
number of acceptable solutions that offer us greater
values of Z if the region of acceptable solutions is open
iIn terms of growing the function Z, meaning that we
cannot stop at a particular perfect solution.

5- When the requirements clash, there is naoeald
(acceptable) solution and the zone of alternatives is an
empty set (the problem is impossible to solve).
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Conclusion

This chapter addressed both the graphical approach and a
method that is rarely discussed in classical operations research
references:employing nomegative constraints to graphically
identify the optimal solution for specific neutrosophic linear
models. It should be emphasized, however, that certain
neutrosophic linear models contain two variables. In particular
cases, reaching the carman solution region or determining the
optimal solution once the common solution has been located
may be challenging, hence the simplex neutrosophic method is
recommended. Because the main goal is to arrive at the optimal
solution, the researcher must stléhe appropriate strategy for
the model he seeks to solve.
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Chapter IV: The simplex direct neutrosophic
algorithm for finding the optimal solution for
linear models

Introduction.

4-1- The neutrosophic linear models set in the symmetrical
form and of tha) & dype.

4-2- The neutrosophic linear models are in symmetric form and
are of type- E.1

Conclusion.
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Chapter IV

The simplex direct neutrosophic algorithm for
finding the optimal solution for linear models

Introduction:

Linear programming is a method for choosing decisions and
approving the optimal program for independent activities while
taking available resources into accoumtear programming is
used to solve problemsitlv specific goals, such as maximizing
profit, minimizing cost, or saving the most time or effort... etc.,
noting that the linear programming problem, which consists of
a linear function and knowledge of a set of inequalities or
equations (constraints), haracterized by the presence of a
large number of acceptable noagative solutions, and what is
required is to find the optimal solution from a set of solutions.
We depend on the information obtained when we explored
nortnegative solutions to the systeof neutrosophic linear
equations (in the first chapter) to arrive at this solution. Then
we used the simplex method, which serves as the mathematical
foundation for the direct simplex algorithm utilized to
determine the optimal solution for the linear ratsdpresented

in this chapter.

Direct simplex algorithm for solving neutrosophic linear
models:

The direct simplex algorithm consists of three stages:

a The stage of converting the imposed model into an
equivalent systematic form.

b- The stage of converting theegular form into a basic
form to obtain the nomegative basic solutions.
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c- The stage of searching for the optimal solution required
from among the nonegative basic solutions.

We will utilize the direct simplex method in this chapter to
determine thebest solution for the neutrosophic linear
models described in the second chapter of this book, and we
will identify the following cases:

1- The neutrosophic linear models are in symmetric form
and are of typ® ® w
2- The neutrosophic linear models are in sy@tme form
and are of typ® Q¢
3- The neutrosophic linear models are given in the general
form.
Using the direct simplex method to find the optimal
solution:

4-1- The neutrosophic linear models set in the
symmetrical form and of typed & o

The neutrosphic linear model of typ® ¢ ¢s written in the
symmetrical form, as we mentioned in the second chapter, in
the following form:

Find:

= ~

0O Dow Uoww E 00w 0 Ow
Constraints:

L 14

O o

[T

DOow 0ww

0do 0

[T

Dww 00w
8888888888888

V6 @ 0w E 0ww tw

~
3
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whoB ho 1
The study is carried out according to the following steps
1- We write the model in standard form; we:get
Find:
06 Odw Odw E O md m E mo 0 0w
Constraints:
b 0o E .00 @ 00
b 00w E 0w © U
e888888888888888

00 @ 0w E 0o o 00
whoMB o oo iy
2- We convert the model to the bagiem. We can see here
that the extra variables serve as a starting point for
searching for theptimal solution. As a result, the model
information is organized in the table below:

riables . . L . , , , Available

> w w é é ) Wl w|8|w -
basic guantities

® 0 0@ 8 00 plm|8| m 0®

® 00 | 0 8 0 m|{p |8 | m A

8 8 8 8 8 818 |8 8 8

© 0 |0® 8 |6 |[n|m|[8]|p 0
objective v . ¥ .o "

. 0w 0w 8 0w TT| T | TU| Tt W T
function

Table No. (1): Basic information of the model

We have a first base consisting of the variatlel) Fesh |
then the variables) hoo 88 are norbasc variables and we
move to the next step:
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3- We determine the appropriate variable from the
equations and insert it into the rule by studying examples
of the variables in the row of the objective functien
Since the objective function is a maximization function,
we selectthe largest positive vadis in the row of the
objective function. In other words, we take:

D e Gy B @ 0
For example, let it b& dcorresponding to the variabla.

Thus, we have determined the pivot column. This means that
the variablew will enter the base to determine the variable that
will exit from the base, and therefore the pivot line. We
calculate the following indicator:

—N 0 Q&— M Vw TV W T
0w 0w
The element located at the intersection lé fpivot column

with the pivot row is the pivot element.

- We divide the pivot row by the pivot element, we get:
(ﬁbh_hg (lerph (e?.phB 0 Q«)em 0 @

06y 0 06y 0 Gy i U%. U(e).

- We make all the elements of tipgsot column equal
to zeros, except for the pivot element, which is equal
to one.

- We perform the appropriate calculations to calculate
the current of the new table using the following
relatiors:

0 0& 0

0 @ 0 ®
00 06 @ O Gy,
06 0 G U(HU({Q Ty
i §
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e . .00 VWwd VAo
LW 0] UV W— AR
VD W Uw
We get the following table:
riabl i
lables Available
) ) 8 oy o, 8 o, « « |8« .
) quantities
basic
W 0w |0 [8 | 0® m|8| 0w pl |8 | ™ 0w
W 00 |0 8|10 m(8|0® m|p |8 | ™ 0w
8 8 8 8 8 |8 8 818 1(8]|8 8
. 0 |0 0 ® 0 ® 0 ®
W —— | —— | 8 T . 8 - 11 m|8 11 e
0 0 0w 0w 0 ®
8 8 8 8 8 |8 8 8 81 8 8
18 06 |0 [ 8|00 n|8|0® [n|n|[8]p 0 Q
objective v .o v v -
. Vw Vw |8 Vw m|8| Dw M| m|T| Tt 0w
function

Table No. (2) The first step in the simplex direcheutrosophic

algorithm

- We apply the stopping criterion of the Simplex algorithm

to the objective function row in Table No. (2).

Stopping criterion:

Because the objective function is of the maximize type, the
objective function row in the table must nwve any positive
values (but if the objective function is of the minimization
type, the objective function row in the new table must not
contain any negative values). If the requirement is not fulfilled,
we return to step (3) and continue the process tinatistopping
criterion is met and the desired optimal solution is obtained. As
we have new namegative neutrosophic basic
solutions as well as ndmasic (free) solutions equal to zero.

a

The ideal solution is expressed as follows:

result,

0 @ g8 h Fhrimts
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The following table represents the final solution if the basic
solutions are:chy B iy

lables o (o |8 ey o 8 o, « « 8 « :\l:/aarl:s:?ées
plm|8| m|l0w 8|0 )] 0T 8 | uf 0w
m|p|8| m|lw 8|0 [0 0f 8 | 0T 0w
8 18 |8 | 1 8 8 8 8 8 8 8
n|n|8|p |00 8|0 |0f AR 0 @
objective | m | m |8 | m | 0w 8| 0w | 0 |0 |8]0n 0 &

Table No. (3) The final solution in the simplex direct neutrosophic
algorithm
where 0f and 0 4 are the examples of the additional
variables in the constraints and in the objective function after
performing the aforementioned iterative operatiohs, aptimal
solution is

o O (OB 0o
which gives the maximum value of the following objective
function:
00 G G E 0odd
We explain the abovesingthe following example:
Example 1:
Problem StatementsClassical Values:

A corporation manufactures two types of produédtsand B

from four raw materialsTORORORO. The following table
shows the amounts required from each of these materials to
produce one unit of each of the two products, the accessible
quantities of raw materials, and the profit returned from one
unit of both products:
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Products | Required quantity per Available
unit quantities of
Raw MaterialS = [ the raw
materials
O 2 3 19
O 2 1 13
O 0 3 15
O 3 0 18
Profit Returned per unit 7 5

Table No. (4) Classic data for the issue
Requirement

Finding the ideal production plan that maximizes the
company's profit fronproductso ando.

We representhe quantities producdaly the producd with the
symbolw, andthe quantities created lilge produc with the
symbol w. After developing and solving the necessary
mathematical modelwe find that @ vhw o, and hence
the maximum profih @ w v TOf monetary unit.

Problem Statementsneutrosophic Values:

A company produces two types of produgt$ using four raw
materials OFORORO. The quantities needed from each of
these materials to produce one unit of each of the two pt®du
6, the available quantities of the ramaterials, and the
profit returned from one unit of both products are shown in the
following table:

-59-



Neutrosaphic linear models and algorithms to find their optimal solution

Products | Required quantity per Available
unit quantities of the
Raw Materials 0 0 raw materials
O C o pfr
0 C p pipo
0 s o Py
"0 o T plx p
Profit Returned per unit vhp olp

Table No. (5) Neutrosophic data for the issue
Requirement
Finding the ideal production plan that maximizes the
company's profit from prodieo ando.

Representhe quantities produced from the prodactvith the
symbol @, and from the producd with the symbolw, the
problem will be reformulated from the neutrosophic
perspective as follow:

06 vipa ovwa Oow
Constraints:

Ccw o w pilgmn
(w ® w ptpe
o p oy
ow w pirp
Gfey T

The preceding program must be rewritten in an equivalent way
by including slack variables:

0& vibw oo M W T T 0w

Constraints:
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C ow W plTm
Cw ® w pPpoY
ow w ppy
o ® pirp

Ohohdhdhdhd T

We arrange the previous information in the following table

Variables ° ° « « « « Available
basic guantities
) 2 3 1 0 0 0 ptt m
) 2 1 0 1 0 0 ptp o
@ 0 3 0 0 1 0 p o Y
) 0 0 o | 0| 1 pim p
objective ~ ~ v
function vhp chp 0 0 0 0 0D T
Table No. (6): The first step in the simplex method
1 We note that the additional variables form an initial base

consisting of the variablesafyfofy . Then we
consider the variablesay iy are norbasic variables
and we move to the next step:

We determine the appropriate variable from the
equations and insert it into the rule by studying the
examples of the variables included in the expression for
the objective functiord & Since theobjective function is

a maximization function, we choose the variable with the
largest positive examples from the last row in the table,
that is from the row of the objective function. In other
words, we take

- A @uhp h ofp vhp
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It is clear that versus to the column @f , meaning that the

variable @ should be placed instead of one of the basic

variables. The following calculation has been performed to

indicate which basic variables should be expelled:

Epfpcpﬁplhmp plr p oy
C o o

vt BT
The value of—indicates that the row versus to the variable
and the element positioned in the cross row/colunmwhich
is the pivot element, divide the elements of the row versus to
w Yyields:

ORRRRRA e g

000000 O
Then we make all the elements of the pivot column equal to
zero, except for the pivot element, which is equal to one. We
perform the appropriate calculations using the following
relatiors:

Vw Ow LW

0w 0
N w v . U0 U6 Q@ U QU
065 06 U@ — —

U Q@ U
e .. .00 VWO VA
Dw 0w U w— —

0 0®

We obtainthe following table:
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variables Available
. ° ) [ [ « (] ..
basic quantities
% 0 3| 1010 ?c Thp
@ 0 1101 110 _S it
o
@ 0 - 0| o0 |1 0 oy
& 1 o] o] o0o]o P ol
o
objective . Y. L |0
function 0 op | 0 0 |0 A ¢ g

For No. (7), the second step is the simplex method

The variablew should be added to the basic variables as there
is still a nonnegative value in the row of the objective function
(i.e., [3,6]) that is corresponding to the column. Which
fundamental variable ought to be eliminated now? To get the
solution to this gestion, take these steps:

. Tho it _p @ fa 5
—N-Elhph hp‘tlDUJ T 1
o p o o

o)

which is versus to the slack variahkbe the pivot element equal
o, hence the row versus ® should be divided by , the
required calculations yield the following table:
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Variables Available
. ° ° « « « « ..
basic quantities
. p C T.
0 = 0 0 — -
® 1 o ) oh;
. p T T.
W 0 0 5 1 0 5 5 h
% 0| o 1 0 1 g U ¢
0 110 0 0 0 (E, uix
- . Q. 0 ®
objective function 0 0 -2,-1 0 0 —nh -
) [ ] o' P Cpy

Table No. (8) Final solution

The objective functionodos row
element is either zero orrautrosophic negative integer. This
indicates that we have arrived at the optimal solution, which is:

NZ Y~ Mz -[" ™~ rz T" ~ rz ~ ~ rz rz
G ok S —F RN —F RS b i @

The following results from substituting the aforementioned
optimal solution into the objectivemaximum function:

~ ~

. . LT .
0 & @ ONGOULhP 8uly ohp8ah: clwoe Tphg Ccy
which isidentical to thegoreviousresult.

Substituting the optimal solution into the constraints we find:

T .
ghc m ptm

C ulx o

~

. T
hg ?hﬁ pip @

G uk

al-

T. - «
o o he Upc pipyY
cuk T pigop
We observe thahe optimal solution satisfies all constraints.
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We summarize the previous results in the following table:

issue data results
7 5 19 13 15 18 5 3 50
issue data results
[5,8] | [3,6] | [14,20] | [10,16] | [12,18] | [15,21] | [5,7] | © e [29,68]
o

Table No. (9) Comparison between the results of solving the problem,
classical data, and neutrosophical data

4-2- The neutrosophic linear models are in
symmetric form and are of type i

The neutrosophic linear model of typeQés written in the
symmetrical form, as we mentioned in the second chapter, in
the following form:
Find:

00 Gaw Oow E 0§ 6w 0 Q¢
Constraints

[Tt

0w 00w
0o Gdd E (dw 0
68888888888888
06 @ 0w E 00 @ 00
OB
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We can search for the optimal solution by following one of
the following methods:

- As we examined in the second chapter, the objective
function may be converted to a function of the
maximizing type by multiplying its line by-X), which
yields the optimal solution for the prior linear model.

The model is then writtemistandard form. Since all of
the extra variables are preceded by a negative sign, we
can see that there isn't a pnade beginning rule in this
case. Instead, we must first look for an initial solution,
then refine it until we get the optimal one by gobarck
through the same processes.

- Additionally, we may identify the dual model, which
will  undoubtedly resemble a symmetry of the
maximization kind. Next, we can solve it optimally as
we previously did, or by applying the dual method to
solve both thenodel and the dual model, which we shall
di scuss in the bookds sevent |

- In such models, it is preferable to use the synthetic
simplex algorithm, which will be presentedn t he b ool
sixth chapter

- Additionally, we can find the solution without alging
the objective function. However, we must alter the
previously described steps in one way: to find the anchor
column, we must choose the element that is the most
negative; t his el ement 0s col
column. We then follow the previoysktated solution,
with the stopping criterion being that all of the objective
functiondbs |l ine el ements musHt
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1- Neutrosophic linear models are given in the general
form:

The neutrosophic linear model is written in the following
general form:

Find:

00 Daw UVow E 0 on 0D W® 10 Q¢
Constraints

Db 0O E 00 o 0w Q li;FBV

whofB ho
In the beginning, the model is written in standard form; extra
variables are rarely used while writing the model in basic form.
Here, we observe that while some of the extra variables fit into
the definition to be considered fundamental variables, some do
not. Furthermore, no equivalent additional variables exist if
there are certain limits on the equality typAs a result, there
are no basic variabledVe must first construct a foundation
upon which to launch our exploration for the optimal answer.
Additionally, using a simplex with an artificial bage which
will be covered in this book's sixth chapi@r is preferred in
this situation.

Important Notes:

If some of the examples corresponding to the free variables in
the objective function line in the final table for the
maximization type are positive, this indicatbat we have not
reached the required ideal solution and must delete the free
variables aszciated to the positive value. We return to step 2
and complete the essential steps. This is something we keep
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mentioningd Operations till we achieve an objective function
line with just zeros or negative (positive) values. Alternatively,
we may encountesne of the following scenarios:

a_

There is no ideal solution because the solution region is
open in the direction of increasitige and we infer this
from the absence of a positive element in the fulcrum.
There is an infinite number of optimal solutions because
the levels of the objective functian ware parallel to one

of the sides or surfaces of the common solution region.
We deduce this from the presence of a zero in the final
row of the table of theakt optimal solution, which
corresponds to one of the free variables. Then, by
adjusting the variable, we can achieve another optimal
solution. We will receive another basic solution as a
result of changing one of the basic variables.

If there is no optimasolution, this happens because the
constraints conflict with each other. We infer this from
the absence of any positive element except for the
constant gyin one of the linesThis indicates that, in
cases where restrictions conflict, the left sidé&es a
positive value and the right side takes a negative value.
After finding theoptimal solution, we must ensure that it
meets all of the requirements and returns the same value
for the objective function by substituting the objective
function and theonstraints.
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Conclusion:

We draw the following conclusions from the earlier research
and the data presented in Table (9): when we solve using
classical data, the values we obtain are specific and do not
account for changes that might occur in the adpaga
environment of the system represented by the mathematical
model. In contrast, when we use neutrosophic data, we obtain
areas of any indeterminate values, and this indeterminacy is
more accurate, simulates reality, and takes into account most of
the clanges that may occur in the operating environment of the
system represented by the linear mathematical model.

As a result, neutrosophical data provide us with a more general
and comprehensive study than known classical daa,
working with known classal data is no longer sufficient at
present, because the development of science and the instability
in the status of the facility's work environment has placed
before us a large number of cases that require quick and
accurate treatment to avoid losses thz facility may be
exposed to, which cannot be treated.

Neutrosophy, meanwhile, delivers greater comprehensiveness
in analyzing the results and assists in getting the essential
accuracy. On the one hand, we emphasize the importance of
selecting the prope method to solve the model under
consideration from among the algorithms presented in this
book in order to save effort and time in looking for the optimal
solution.
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Chapter V: Modified Neutrosophic Simplex
algorithm to find the optimal solution for
linear models

Introduction:
5-1- Steps of the modified simplex neutrosophic algorithm:

Conclusion and results:
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Chapter V

Modified Neutrosophic Simplex algorithm to
find the optimal solution for linear models

Introduction:

In this chapter, we present the modified neutrosophic simplex
algorithm, which was developed to address a problem we
encountered when using the direct simplex algorithm: the
large number of calculations required in each stephef
solution, which takes a long time and effort.

5-1- Steps of the modified simplex neutrosophic
algorithm:

We explain the steps of the modified simplex algoritismg
the following neutrosophic linear mathematical model:

DO 0w Vo E 0o
ODw Ow E G 00
®w Ow E Oow w
®w Ow E Oow w
8888888888888888 &8
® 0w O w E O o o
ooy

To find the optimal solution for this linear neutrosophic
model using themodified simplex algorithm.

1- We write the neutrosophic linear model in standard form,
andwe get the followingnodel:

A O Gw E OGo m mw E 1o
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Go O E dd o o
G Ow E do o o
G Ow E do o o
8888888888888888888

whoMB ho hohdho B hy
2- We convert the regular linear model to the basic form and
insert the coefficients in a short table with the basic
variables inthe first column and the nebasic variables in
the top row.

a. We define the pivot column, which is the column
corresponding to the largest positive value in the
objective function row because the objective
function is a maximization function (but if the
objective function is a minimization function, it is
the column corresponding to the most negative
values). Let this column be the column of the
variablew .

b. We define thepivot row; The pivot row is

determinedwith following indicator:

R Y W . -
— 0Q¢&— —-— m w 7w Tt
W W

Let this row be the line of the base variatile

Then the pivot element is the element resulting from the
intersection of the fulcrum column and the pivot row, Wee
explain the second step in the followitadple:
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-Basic variables . . . . . . v
Basic Variables ® ® €. @ € @ v
@ W () e é () é . @ 0
@ W () T ) é . @ 0
e é. . €é.| éeé. |éeé.|éé é . é é é é.
@ @ @ eée P ce [ & 0®
€ é é é é é é . é. .| é. é é é é.
A @ W é€é.| ® é . W 0 @
0® ) bw | éé bw | é. b | 00 00

Table No. 1: Anchor element table

The pivot element is the one formed by the junction of the
fulcrum column and the pivot row. The second phase is
explained in the tablbelow.

1. We put opposite theivot elementid the reciprocal of

2. We calculate the elements of the row corresfog to
the pivot row (except theivot row element) by dividing
the elements of thegivot row by the anchor elemeat

3. We calculate all the elements of the column opposite the
fulcrum (except the fulcrum element) by dividing the
elements of the fulam column by the fulcrum element
@ and then multiplying them t§y1)

4. We calculate the other elements from the following

relation
) W
. . .0 0 G 0 G0
DWw VW U w= m C
) W
o L. ) O G 06X
VW LW UL W= - o
W W
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We obtainthe following table

-Basic Variables . . , , , . v ¥
. - w w é. .| w e . W Ow
Basic Variable
o (L) [ 5
W w w éé — | é () 0w
()
’ 2 o (L) ’ 114 r 5
w w (A —— | é. ) 0w
®
é é éé éé. | éé é é é é.
) [ o @ 0w
W - T e e T —
w () w W
é é éé éé é é é é é.
() » w éé = é . ) 0®
()
1 i i l’j(b 7 ” i I ” Ee v
0 ® 0w Ow | é€é 5 é . Dw| VO 0w

Table No. 2: The first stage in searching for the optimal solution

We apply the stopping criterion of the Simplex algorithm to the
objective function row in Table (2) below

Given that the objectivlunction is of the maximize type, the
objective function row in the table must not include any
positive value (but if the objective function is of the minimize
type, the objective function row in the new table must not
contain any negative value), assumihgt the criterion is of
the maximize type, weeturnto step No. (3) and repeat the
same steps until the stopping criterion is met and we obtain the
desired ideal solutian

We explain the abovesingthe following example:

Example:

A company produces two types of produté using four raw
materials "'ORORORO. The quantities needeffom each of
these materials to produce one unit of each of theptwducts
oM, the available quantities of the raw materials, and the

-74-



Neutrosaphic linear models and algorithms to find their optimal solution

profit returned from one unit of both products are shown in the
following table:

Products | Reauired quantity per Available
Raw Materials unit quantities of the
- || raw materials
2 S o pfLm
2 S P P9
2 n o Py
kS o m piLp
Profit Returned per unit vhp ofp

Table No. 3: Issue data
Requirement

Finding the ideal production plan that maximizes the
company's profit fronproductso ando.

Representhe quantities produced from the prodoctith the
symbol®, and from the produad with the symbolw . The
problem will beredefinedfrom a neutrosophical standpoint as
follows:

Constraints:

cw ok pigm
cw & pipo
ow  pépy
ow pirp
o Tt T

We apply the modified simplexalgorithm:
1- The standard form of the previous linear model is:
[ A@y vpw op o T T T TW

Constraints:
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C ow W plTm
Cw ® w pPpoY
ow W p oy
o ® pirp
2- We organize the previous information tine following
modified simplex table:

Non-basic var. . . >
) w w W
Basic var.
W 2 3 p fr m
2 1 pipo
® 0 3 Py

@ 0 pirp
objective function vhp ofp O T

Table No.4: Simplex table according to the modified Neutrosophic
simplex algorithm

We know ¢ho  @iQ if & and® 'Q,Therefore.

It is clear thati A @uhp holy vhp versus to the column
of @ , meaning that the variableo should be placed instead
of one of the basic variables

The following calculation has beeperformed to indicate
which basic variables should be expelled

~

vpﬁ%pﬁp p i p
(0)

N
—N a Qe

h
C C o

The value of—indicates that the row versus to the variabdle
and the element positioned in the cross row/colunmvsere

I
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is the pivot elerant, divide the elements of the row versus to
W Yields.

3- We calculate the elements of the new table using
relatiors (1), (2), (3), weobtain the following table:

Non-basic var. . . »
: w w W
Basic var.
W S ™
_ T
o - ¥
w _C 1 it
o
@ 0 3 plpy
w .
P 0 ulx
o
objective function (T . . .
S | P | @ cwe

Table No.5: Table of the first step in searching for the optimal
solution

4- We apply a stopping criterion in the algorithm. We find:
There is still a nomegative number in the objective function's
row. (i.e., chp ).

This means that we have not yet reached the optimal solution,
S0 we repeat the previous steps as follows:

Whereis versus to thes column,this leads to the fact that the
variable w should be entered into the basic variabl€ke
guestion now is, which fundamental variable should be
eliminated?

To solve this question, perform the following calculation:

o dQifw wandw 'Q Therefore

. Thy it _p @ Th T

£ lp SSLU ® Y p T
o p o o o

hg
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which is versus to the slack varialeg thepivot element equal
o, hence the row versus t should be divided by. The
necessary computations result in the following tables:

Non-basic var. . . =
. ) ) &
basic var.
w q T.
> I o
W T p T,
w o Rl
d) -
S up ¢
o
@ 1 0 ufx
objective function oh p ch p O clpy

Table No. 6: Final solution table

We apply the algorithm stopping criterioWe discover that
the condition has been satisfied, and hence we have arrived at
the optimal solution.

The optimal solution for the linear model is
G5 v Ui S v < f e — g RS uip i 6 m
The valueof the objective function corresponds to
[ Agr vipsul  oipssi  cdo Tho iy
It is clear from the row of the objective function that all the

elements are neutrosophic negative numbers, this means that
we have reached to the optimal solution is:

NZ "l AWA T"  rZ T" o rZ 'l A rzZ
W N vk N Eh;m)N Fh; ho N Up chw W Tt

Substitute the above optimal solution into the objective
maximumfunction,the result is
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This means that the company mustoduce the quantity

o3 N vl of productd and quantitys N -h; of productd,

thereby achieving a maximum profit of:

o g g LT
| A@N vhp 8uly 0hp88hq

¢ o

Tip ¢

C Y

To compare between the modified Simplex method and the
direct Simplex method, we solved the same example using
the direct Simplex algorithm. Below are the solution tables:

-basic var. . . . . . . 5
. @ @ W @ W W W
Basic var.
) 2 3 1 0 0 0 p tt 1
) 2 1 0 1 0 0 pip @
® 0 3 0 0 1 0 p oy
&) 0 0 0 0 1 plr p
objective function vhp ofp 0 0 0 0 O T
Table No. 7: Simplex table according to the direcheutrosophic
simplex algorithm
on-basic var. . . . . . 5
: @ @ ® @ W W
Basic var.
RN ERKECIERE
o
. C .
® 0 1 0 1 — it
o
&) 0 3 0 0 0 p oy
\ p o
w 1 0 0 0 - vl
o
I . ~ Y. v ~
objective function 0 (6)() 0 0 ?h? ¢ o

Table No. 8: Table of the first step in searching for the optimal

solution
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-basic var. o o o o o o o
basic var.
‘ q T.
w 0 0 0 — -
[ s | i
: P T T.
w 0 0 — 0 — —
o L w o %
0 0 0 -1 0 | 1 % ip ¢
@ 1 | o0 0 0|0 (E, Ok
objective function | 0 0 [2,-1] | © 0 ﬁ(p h p W ¢y

Table No. 9: Final solution table
The row of the objective function clearly shows that all of the
components are either zero or neutrosophic negative values,
indicating that we havarrived at the optimal solution, which
is:

L T, . T, . L
W N Uthl)ZNEmI’Ii)ZN ?l”(h.OZNLHIDChA)Z W T
Substitute the above optimal solution into the objective
maximum function:

[ A vigsulx ok cioe Thc cipy
Conclusion

We are able to observe fromime previous study that we
obtained the same optimal solution as when we used the direct
simplex method, but with a much smaller number of
calculations, as shown by comparing the solution tables using
the modified simplex method, Tables No. (4), No. (59, k6),

with solution tables using the direct simplex method, Tables
No. (7), No. (8), No. (9). To save time and effort, we
emphasize the importance of adopting the modified simplex
approach to identify the best solution for linear models,
especially wherthere are a lot of variables and restrictions in
the model.
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Chapter VI: Finding a rule solution for linear
models using artificial variables

Introduction.

6-1- Artificial base simplex algorithm.

6-2- Processing the model and all constraints of ggeals
6-3- Processing model constraints mixed.

Conclusion.
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Chapter VI

Finding a rule solution for linear models
using artificial variables

Introduction:

In this chapter, we show the simplex approach with
neutrosophic artificial variables, which favored for usage in
linear models when there is no readgde base to utilize to
find the best solution.

As an initial phase in the study, artificial variables are
introduced to the constraints in a number equal to the number
of constraints that do nafontain a basic variable. Concerning
the optimal solution, we must eliminate all artificial variables
and convert them to ndpasic variables so that they take the
value zero and therefore do
perfect solution. The following stly is used to explain the
preceding:

6-1- Artificial base simplex algorithm:

The end result of solving linear models is to find the optimal
solution among a collection of acceptable solutions. This is
accomplished by the use of a basic solution that amced
using the direct simplex method, and it consists of three main
phases.

1. The stage of converting the imposed model into an
equivalent systematic form.

2. The stage of converting the regular form into a basic
form to obtain the nonegative basic solutions.
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3. The stage of searching for the ideal solution required
from among the nenegative basic solutions

As a result, the process of searching for dpgimal solution
does not begin until a basic solution is obtained. However, in
many linear models, obtaining the lwasolution is difficult, so

the simplex method with an artificial base was proposed, In
which a base is formed consisting of a set ofiadl variables
that are nomegative is added to constraints that do not contain
a basic variable, thus obtaining the basic solution. Then we use
the direct simplex technique to refine it till we have the best
answer. Using neutrosophic principles, wdl wvaformulate the
simplex method with an artificial basis to discover the best
solution for linear models when obtaining a basis solution is
problematic.

Text of the issue

Find the optimal solution for the following neutrosophic
linear model:

0Od G660 06w E 06w 06

Constraints:
Ow O®w E ® w - 0w
88888888}38888888883~
O W O w E ® o - 0 w
oM
where:
66 6 - hOood ® 9Thodh
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are constants having set or interval values according to the
nature of the given problenp are decision variabledt is
worth noting that the indeXN subscribes to coefficients with
neutrosophic values.The objective function coefficients

06 M) 6B Ay 6 , They are neutrosophic values of the form

~ ~

That is,0 o8 _ h_ , where_ h_ are the upper and the
lower bounds of the objective variable® respectively,
O pltB RE. the righthand side of the inequality constraints
Oy * H |, here,' H are the upper and the lower
bounds of the constrain) plth8 h .

In the previous model, we note that the number of variables is
¢ and the number of constraintsds and this model is in the
standard form.

We move to the second stage, which is to find a basic solution.
We apply the simplex method with an artificial basis in this
case, where is represented by

1- We create an atrtificial basic form from the standard form
by adding a nomegative artificial variale - to the left
side of each of the constraint equatiofiBus, we form a
base consisting of the nomwgative variables
-h Bh

2- Because the artificial variables are put into constraints
that were initially linear equations, these variables must
have the value zero in order for the linear constraints to
be unaffected.

3- As a result, we must shift all of them off the base until
they become nebase variables, and we utilize the direct
simplex technique to do this.
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4- We introduce these variables inteetobjective function
with the valueM (whereM is a sufficiently large positive
number that is at least greater than afly®) and
preceded by a minus sign (because the objective function
IS @ maximization function) in order to avoid transferring
themback to the base variables.

5- We obtain the following basic form of the neutrosophic

linear model:
DM@ 06w 06w E 006w O- 0 - E
0 - 00
Constraints:
Dw dGw E G - 0o
®w Ow E ® w - 0w
®w Ow E ® w - 0w
88888888888888888
® O O w E © o - 0w

o mh mh o nrfQ pkB R G: Q pithB M
6- After obtaining the basic solution, we use the direct
simplex algorithm to improve this solution reach the

optimal solution. Therefore, we arrange the previous
information in a table as follows:

ariables . . , . ~

) w w é . ) - - é - A
Basic

- IR IR é. | o P nm|é.| m ®

- IR IR é IR Tt p | M| m ™

é . é é é é é é é é é

- IR IR é IR Tt m | é p ®
Objective v v o o . o v o

. 0o | 0O é ()¢} 0 0 | é O |@® VO
function

Table No. (1) General data of the model
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We eliminate the artificial variablesHere we study the
constants corresponding to the artificial variablesid select
the largest of them, let it b® corresponding to the variable
and we consider its row to be the pivot row. Then we
determine the pivot element in it by dividing the elements of
the objective functionrow (elements) 6) by the elements of
the- row and then we take the smallest positive ratishere:
.00 00
— - El— ™ —
W W

where®w T, then the pivot element & , and we exchange

the variablesw and - , according to the direct neutrosophic
Simplex algorithminstructions

We repeat step (Mntil all artificial variables are removed and
a normal basis consisting of the basic variables is obtained

After eliminating the artificial variableswe revert to using
the direct neutrosophic simplex technique.

6-2- Processing the model and all constraints of type
equals

Using the following example, we show how to use the simplex
method with a synthetic rule to discover the best solution for
linear models with all equal constraints:

Example 1:
Find the ideal solutio for the following linear model:
D@ po o oo

Constraints:

~

w o Tto  Th
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PO 0w 0w ph w
whohw 1
Solution:

1- We convert the model to the standard form, multiply the
second equation by-1) and we obtain the following
model

Find a rule solution for the following neutrosophic linear
model:

D@ po o¢wod oo
Constraints:
o w Tt® th
o0 o0 ow  up ¢
whoho T
2- We add the artificial variables and enter them into the

objective function with a capital letter preceded by a
minus sign. Here we take p v

Find a rule solution for the following neutrosophic linear
model:

DO pe ¢wd ow pw puw
Congraints:
o & Ttw th
o0 0w oo  up ¢
whohoh b 7

-87-



Neutrosaphic linear models and algorithms to find their optimal solution

We arrange the previous information in the following table:

Variables . . . 5
. w w w - - W
Basic
- U] p T Y T TJ‘D
: o MM o] n | p | e
Objective - "
function S G ° pu p v @ n

Table No. @) :Artificial base table

Since the rule is artificial, we study the constatsand find
that the largest of them belongs to theterval oip ¢
corresponding to the variable . Therefore, we divide the
objective functionrow by the positive elements in the row
and calculate the index-and we find that:
EFLLEN L

o o

Thus, the pivot element is (3) correspondinguato Therefore,
we replacew with - , then the variableo becomes a bas
variable and- comes out of the base. We perform the
necessary calculations and obtain the following table:

ariables . . . >
) W W W - - A
Basic
5 i o p P xfp 1
o
) ¢ | p p T P oft
o
Objective . - . . .
function mp | T | up g pu phpx | w plvo

Table No. @): The first change table in the base

Because the artificial variable remains in the base, we do
another replacement, this time using the pivot line as the line
opposite it. We compute the indexto identify the pivot
column and find:
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.. dbc i

N

o)

¢

Thus the pivot element is (6) correspondinguig so we move
w to the base instead of, so we get the following table:

riables . . . 5

) w w w W
Basic

DD RN

i () py )

® n ol m P 3 P ge ¢

o W o O

Objective - . UT| .
function n n ® pbpu pﬂno w P

Table No. @): The second change in the base

We can see from the preceding table that the basis variables
o andfw have an initial solution for the linear model, which
gives us the following rule solution:

ov 2N PSRy m om o

Q@ @ O O

But it is clear from the table that this solution is not the ideal
solution because in thebjective function row there is a
positive value corresponding to the varialide Therefore, we
apply the direct simplex algorithm to improve theasic

solution. We obtain the ideal solution from the following table:

ariables . . . 5.
) w w w - - W
Basic
) p XpPT
w q T p p o oh_
W 11 p i P t P g ¢
o w o O
objective . . Lo . .
function pYl m| T CRGQrT pdm—0 w oo

Table No. 6): The optimal solution for the model
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Optimal solution for the linear model:

o o TT. o
o mon 2R Sy AR e n
O O O 0

In this solution, theobjective function takes its greatest value,
which is:

ON odx @
By transferring the constraints and the objective function
statement, we cawerify the solution. We remark that the

values in the ideal solution of the preceding linear model are
neutrosophic values.

6-3- Processing model constraints mixed:

Using the following example, we show how to use the simplex
method with a synthetic rule tiscover the best solution for
linear models with mixed constraints:

Example 2:
Find the ideal solution for the following linear model:
0 Q& o Yp T Tip ®
Constraints:
» Ccw & ol
T O CW a0
Gw W p
whohd 1
Convertingthis model to standard form the problem becomes:
Find the ideal solution for the following linear model:

D Q& o YYpm T o T T
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Constraints:

» O o w ofy

T W W oﬁp

G W p
oy

The variablew in the first constraint is a basic variable, and
since there are no other basic variables, we add artificial
variables to the second and third restrictions and enter them
into the objective function in sufficiently positive times
because the model is ammization model, and thus we obtain
the following basic form:

Because the variableo in the first constraint is a basic
variable, and there are no other basic variables, we add
artificial variables to the second and third constraints and enter
them into the objective function in sufficiently positive times
because the model is a minimipait model, yielding the basic
form:

Find the ideal solution for the following linear model:
0QE ow YWpm mpd T TW peE peE

Constraints:

» Ccw O o oy
T ® W O - A
G w - P
whohhohoh b 1
To insert the basic variables and delete the artificial variables
from the base, we use the identical procedures as in Example 1.
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We apply the direct simplexnethodto determine the best
solution after acquiring the optimal solution.

Important Notes:

1- If the row- does not include a positive element and
@ T, this indicates a conflict of constraints and the
problem is unsolvable.

2- If we cannot find a positive ratie—, we calculate the

largest negative ratie- where:

. .00 06
— LV WW— U -
W W

wheredd T, sow is the pivot element and it is definitely a
positive element.

Conclusion:

In the previous research, we introduced the synthetic simplex
method, which is an essential method for determining the
optimal solution for neutrosophic linear models in the event
that a rule solution cannot be foundfe found that the optimal
solution tha we obtained has neutrosophic values,
indeterminate values, perfectly defined, belonging to a field
that represents its minimunithe linear model can reflect the
maximum value of the objective function, which is
proportionate to the conditions surroundinge system's
operational environment.
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Chapter VIl : NeutrosophicDual Linear
Models and theBinary Algorithm

Introduction.
7-1- Neutrosophic companion models.
7-1-1- The matrix form of the neutrosophiltialmodels.

7-1-2- Finding neutrosophic duatodels using the double
table.

7-1-3- Constructing neutrosophic dual linear models using
tables.

7-2- Formulationof the binary neutrosophic algorithm.
7-2-1- Steps of the binargimplex algorithm.

7-2-2- Binary simplex algorithm for the original and dual
models.

7-3- Economic interpretation of the dual models.

Conclusion.
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Chapter VI

Neutrosophic Conjugate Linear Models and
the Dual Algorithm

Introduction:

In our practical life, we encounter many problems that are
formulated in the form of linear mathematical models
consisting of an objective function and a set of constraints in
the form of equations anequalities .Thdinear model is stated

in a number of fomulas that differ according to the kind of
objective function and the form of the constraints. The linear
model formula are described in the second chapter of this
book, and as previously mentioned, each of these foshals

a purpose.For example, whenve want to find the optimal
solution for a linear model, we must first put it in the standard
form. One of the most significant theories in linear
programming, the dual theory, uses symmetric formulas as we
previously mentioned. Its bastenet is that for every linear
model, there exists a conjugate linear model. This is because
solving the original linear model yields a solution to the dual
model, meaning that solving the linear programming model
actually produces solutions for two limgaodels.

In this chapter, we present a study of the neutrosopuad
models and theinary simplexalgorithm that works to find the
optimal solution for the two model$he original and thelual

ones at the same timé&his algorithm is significant becagist

Is used in numerous operations research fields such as integer
programming techniques, certain nonlinear programming
algorithms, and sensitivity analysis in linear programming.
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7-1- Neutrosophic companion models:

7-1-1- The matrix form of the neutrosophic conjugate
models:

To use matrices to discover the related model for a given
neutrosophic linear model, we first put the neutrosophic linear
model in symmetrical form. As we learned in the second
chapter, the linear model is in the symmetrical fornalif
variables are constrained to be nwmygative and if all
constraints are given in the form of inequalities (and the
inequalities of the maximization model constraints must be
written in the form ( less than or equal to), whereas the
inequalities of theminimization model constraints must be
written in the form ( greater than or equal tdhen the linear
model is written in one of two cases:

The first case: The original model is symmetrical and of the
maximization type:

Original model:

Find:
0w 008 0 Ww
Constraints
008 00
8 1t
where
0 ® 080G A ug) W
65 0 0w 80 ® 68 6"506 Uo‘og @
8888888 8 852 a8
0 ® 00 80 ® 0 ® ) @
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The dual linear model:
Find:

Constraints

009 00
9 1
where:
0w O0wWw8L® A u@ W
55 0 ® 0w 80 ® 68 60’066 i')cbg %)
8888888 fe 3] Eﬁ B
0 ® 0w 80 ® 0w 0w %)

The second case: The model is symmetrical and
miniaturized:

Original model:

Find:
0w 008 0 Q¢
Constraints
0B 0O
8 1t
where:
0w 0w 80 ® 0@ 0 (Z) w
56 0 ® 0® 80 ® 56 0w 56 0w 5 w
8888888 8 &2 a8
0 ® 0w 80 W 0w 0 w w

-96-



Neutrosaphic linear models and algorithms to find their optimal solution

The dual linear model:

Find:
00 0069 0 W
Constraints
009 00
9 1
where:
0w 0w 80 0 ® U@ W
56 0 0w 80 ® 56 6(1)66 i’)(bg W
8888888 E§ Eﬁ B
0 ® 0w 80 w 0w 0 W W

We summarize the process of finding neutrosophic dual
models using matrices in the following steps:

1. We define a new nenegative variable for each
constraint of the original model

2. We make the wind (cost) vector in the original model a
column vector of constds in the companion model

3. We make the constants column vector in the original
model the cost (profit) vector in the companion model

4. We transform a matrix of the parsimony of the variables
of the constraints in the original model into the
parsimony of thevariables in thelualmodel

5. We reverse the direction of the constraint inequalities

6. We reverse the direction of the examples, that is, we
change the increase to the maximum limit to a decrease
to the minimum limit, and vice versa.
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7-1-2- Finding neutrosophic dual models using the double
table:

We previously found that we can write linear models in three
forms:

The matrix form is as shown in the previous paragraph.
The following short form:

6o O - DMdidae

Constrains:;
0 Ow ® 1 NQ pk
W T
The detailed figure follows:
Find:
0O Dow Oow E 00w 0D W 10 Q¢
Constraints

6o 0oe E e 06 N pi

whoB oy
To find thedual model, we put the neutrosophic linear model
in the symmetrical form, and here we distinguish two cases:
First case:
The original model is symmetrical and of the maximization
type:
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Constraints

Second case:

The model is symmetrical and miniaturized
00 w - o 00

Constraints

W T
In both cases, we haveo 1 which are the decision
variables, unknown values that we obtain after solving the
linear model.
b ® - and 0O & 9 and 0 & & ¢
where ('Q plti8 iE AQ plktB it are neutrosophic values,
which are undefined values with a margin of error that are

determined by the characteristics of the situation as it is
represented by the linear model
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7-1-3- Constructing neutrosophic dual linear models using
tables:

The following procedures are followed in order to create a

double table for the original andual models in order to

construct linear neutrosophic models utilizing tables

1. The coefficients of the objective function in the original
model are the constants column in the companion model,
and the constants column in the original model are the
coefficients of the objective function in the companion
model.

2. We invert the signs of the inequalities of the constraints
(if they were in the original model of typé&), they
become in thelualmodel of type =).

3. We change the objective from maximizing in the original
model to minimizing in thelualmodel.

4. We place each constraint (row) in the original model
corresponding to a column in tltial model, meaning
there is one variable for each constraint in the oaigin
model.

5. The variables in the original model and the dual model
satisfy thenon-negativeconstraints.

We explain the abovesingthe following two cases:
First case:
The original model is symmetrical and of the maximization
type:
First case: The original model is symmetrical and of the
maximization type
Find:

06 0aw Gaw E 0§ dw D Ow
Constraints
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bhw o E .od 00
fdw (dw E 00w 00
€88888888888888
0d @ 0dwd E (dw 0

whoMB o 1
The binary table for the original model and thedual model
is as follows:

Original model
objective Daw ODow E U oo 4 =|= o
nction Co fnts column
constants
P bow 0w E 0o 6 &
C bhbo Dhom E 0o 0@
8 88888888888888 8
a b o E 00 o 0w
Non-negative @ ho B ho Tt
constraints
Dual model
Objectve [ (§Joxdo 0w E 0w 4.
function Constarits column
constraints
P oo 0Ovd E 660 0 @
q 0hm o E 60 ® 0 @
8 88888888888888 8
3 0 & 0w E 00 & 0 @
Non-negative TT
constraints

Table No. (1) Objectivefollower of the maximization type
The second case: The original model is symmetrical and of
the reduction type:

Find:

60 Gow Oow E 0§ ow 0 Q¢
Constraints:

oo o E .0Ow o
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Do 0w E 0ow o
€88888888888888
0 @ 0ww E 00w U
whoB o
The binary table for the original model and thedual model
Is as follows
| Original model
becive |5 (o b G E 6 00 -
unction
onstants
constants
column
P b 0ow E oo 0 ®
C bdw 0w E 00O 0 ®
8 88888888888888 8
a 0w 0w E 00 ® 0w
Non-negative oo B o T
constraints
Dual model
decve | G O E Gan | JEe
unction
onstants
constants
column
o bow 0wow E 00 0 ®
C bow 0wow E 00 0 ®
8 88888888888888 8
¢ 0w 0O E 00 o 0 ®
Non-negative I
constraintS

Table No. (2) objective follower in the original model of the reduce type

7-2-

Formulation of the binary neutrosophic
algorithm.

The binary simplex algorithm is neutrosophic (for both the
original and dual models). This approach allows us to
simultaneously identify the two optimal solutions for the dual
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and original models. The modified simplex algorithm that will
be used inside ehcstep of the binary algorithm must be
mentioned before beginning the binary simplex algorithm.

Modified simplex algorithm:

In the modified Simplex algorithm, after converting the regular
linear model to the basic form, we place the coefficients in a
short table whose first column includes the basic variables and
whose top row includes the ndwasic variables only. We
define tke pivot column, which is the column corresponding to
the largest positive value in the objective function row if the
objective function is a maximization function (but if the
objective function is a minimization function, it is the column
corresponding téthe most negative values). Let this column be
the column of the variableo. We define the pivot row. The
pivot row is determined. Through the following indicator:

UL— a Qe— —— T VW T w T

0w 0w

Let this line be theime of the base variabte, then the anchor
element is the element resulting from the intersection of the
anchor column and the anchor line, i.®.,00. Then we
calculate the new elements corresponding to the anchor line
and the anchor column asfmks:

1. We put opposite the pivot elemdnto the reciprocal of

2. We calculate the elements of the row corresponding to
the pivot row (except the pivot element) by dividing the
elements of the pivot row by the pivot elemané

3. We calculate all the elements of the column opposite the
pivot (except the pivot element) by dividing the elements
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of the pivot column by the pivot elemeitcd and then
multiplying them by(-1)
4. We calculate the other elements from the following

relation:
e e L2000 0O 0w
Dw 0w Uw—

0 0
DO 0 UW—

0 0
w v w v n’?’l’jd) (jdﬁd) Gdﬁd)
Dw LVLw 0w

0w 0w
On theobjective function row, we use the stopping criterion of
the direct Simplex algorithm. If the objective function is of the
maximum type, the objective function row in the table must not
contain any positive value. However, if the objective function
is of the minimization function, the objective function row in
the new table must not have any negative values. If the
condition is not fulfilled, we continue the process until the
stopping criterion is met and the desired ideal solution is
obtained.

7-2-1- Stepsof the binary simplex algorithm:

a. We write the two models in basic form by adding or
subtracting additional variables or using synthetic
variables and isolating the neestricting variables.

Basal form of the original model:

Find:

06 Gad Oaw E 0o m 1w
Constraints:

mh
3
cC:
e
e

bdw oo E 0dw o0 O

0w God E 6O 6 0
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£88888888888888
0 0 0w E 0O w o 0w
w TIE plf A
6 TIE plt8 H
Here we do not require thato Tt
Basic form of the dual model

Find:
00 0w Oow E 0 WM ™ E M 0 Q¢
Constraints:

0O @ 0dw E OO ® 0 0 @
0w 0Odw E 00O ® 0 0 @
88888888888888
0 @ 0O E 06 @ 0 0 @

w TNQ plthB M

0 TIlE pltBA
Here we do not require th&t® 7T
The coefficients in both models are the same, and the matrix of
instances in the dual model is the transpose of the matrix of
instances in the original model. The two models are written in

the binary table below:
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Original model
objectve | g O ow E O M 1 00w
nction
E 1™ Cortistants
constant column
p 0w 00w E 0Ow 6 0@
C 0O ® 0w E Ghew O 0 &
8 88888888888888 8
G 00 @ OHw E 00w 6 0@
Non- oMo M MBM s
negative
constraints
Du al mo d e |
obectve | G0 O E O ™ mw E |4 .
nction T[f) Conistants
constant column
p 0w 00w E 0O® U 0 W
C 0w 0VOw E 0O U 0 ®
8 88888888888888 8
& 0Hhw 0Hhw E 0O ® U 0 ®
Non- Tt
negative
constraints

Table No. (3) Standard format for the original and companion
models

b. We place the variables and coefficients of the original
model in the modified simplex table, and we place the
variables of the dual model outside the table as follows:
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basicvariables with a () sign in
the dual model
0 0 8 0
Non-basic W W 8 W Follow the
vibrable objective of the
basic vibrahle dual model 6 6
5 W o 0w |0® 8 0 @ 0«
KT
20 7 7 w T T T
59 | w 0 0w |VW® 8 0 ® 0w
s £
4z
s e 8 8 8 8 8 8 8
§ £|w o 0w |[0® 8 0w 0«
objective of the | () o O ® 8 06 B—T10 U "0}
original model ¢ 1o A,

Table No. (4): Thebinary table for the original and dual models according to the
modified Simplex algorithm

7-2-2- Binary simplex algorithm for the original and dual
models:

From the modified simplex algorithm of the original model, we
obtain the optimal solution of the original model when all the
elements are in the last row (the objective function row of the
original model)0 @ TIE plgfB A and at the same time
all the elements are irhe last column (associated objective
function column) 0 @ mIMQ phkfB K and we get the
optimal solution for the dual model when all elements in the
last column (associated objective function column) are
0w mIMQ pltf8 i and at he same time the last row (the
objective function row of the original model)

0w mIE pkMHAS
(Becauset will correspond tol & 0 ) which are the two
conditions Same for both modelSherefore, when searching
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for the optimal solution for both models together, we must
work to make all element$ & mNQ pkf i and to
make allelementsi & T IE plgf8 A , to achieve this we
rely on one of the two models, put its variables and coefficients
in a table, angblace the dual model in an external frame of that
table. In general, we find that the necessity of placing the two
models in a short table does not allow toseliminate the
negative constants on the right side, and therefore the general
case of the prewus binary table can include negative constants
0 @ 11, and the elements of the last row can include positive
elementsi @ T, so when searching for the optimal solution
for the two models, we must work to address these elements
based on one of thevo models.

Depending on the original model, we do this in two stages:
First stage:

We make the constait G non-negative, which corresponds to
obtaining a nomegative basic solution for the original model.

Second stage:

We make every element of thabjective function row non
positive (maximization in the case of the objective function),
which corresponds to finding the optimal solution required for
the original model.

Based on the dual model, we do this in two stages:
First stage:

We must make thelements of the dual model objective
function column
0w TIE pkMH . Thelast row is nomegative
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The second stage:

We must make the free constants for the dual model

0 nonpositive, and this corresponds to obtaining the
optimal solutionfor the dual model. We explain the above
through the following example:

Find the optimal solution for both the following neutrosophic
linear model and its dual using the binary algorithm

Example 1:
Find:
vhp w olp w U Ww
Constraints:
cw ow pilgm
cw w pipo
ow pépy
ow pimp
w0 T

We form the binary table of the model and the dual model
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Non-negative
constraints

Original model
objective Mo S 1
nction vhp & oty @ + .
constants onstants
column
W oW ~
p C p it m
0w W -
S ¢ p1p g
o ow ~
Py
T ow ~
plxp
Non-negative w hw TT
constraints
Dual model
objective -, -, s I
nction | P T PP @ p o yw E
constants p onstants
column
p CW CW 0w vk
C ow W oW ofp
Tt

Table No. (5) The original model and its dual mode

We used standard form to write the two models in the table

that follows:
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Non-negative
constraints

Original model
objectve f Up @ o W MW W MW |0
ction Caonstants
constant column
0 Cw 0w O p Tt
C Cw W O p TP ¢
o ow o ptpy
T ow O pirp
Non-negative oo b M T
constraints
Dual model
objective | pmd pfo@ pUw pEPL [D0QE
ction ™ T Canstants
constant column
) CO CO Oow U vhp
C ow ® 0w U cohp
Tt

Table No. (6) Standard format for the original model and the dual model

We notice from the table that the standard form of the original

model includes a readyade base of additional variables
6,00, o,h0;, but for the dual model there is no readgde

base. Therefore, we multiply the two restrictions Hl) @nd
we obtainthe basic form of the dual model.

The following table shows the basic form of the original and

dual models:
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Original model
{ AEA/ vip o opw ™ ™ T JJ=|=o
Q1 A ™ Constants
Al 16¢ column
0 Cw 0w O pifrm
S W w 06 pip @
o ow 0 ppuy
T ow 0 pixp
Non-negative oo T
constraints
Dual model
gbjeciive|  pRem phe pouw |L -
function pigpd ™ m #4760
consta Al | C
) CO CO Oow U vhp
C ow ® 0w U ofp
constraints

Table No. (7): The basic shape of the original model and the dual model

We put the two models in the modified Simplex algorithm
table and weyet the following table:
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objective
function

Non-basic vibrable Dual

Non-basic
ibrable
basitwibrable

objective
function
Dual model

Table No. (8): The binary table for the original and dual models according
to the modified Simplex algorithm
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First stage:
1- For the original model:
Sincetheval ues i n the constantos

study the values in the objective function row and determine
the largest positive value. We find:
i A @hp hohp vhp ,which is an expression of the
variablew . This means that it will entéhe base. To determine
the element that will exit from the base, we calculate the index
0 —where:
prRMPppo.plp pwp oy
C o o

We find that the pivot column is the column of the +@se
variable @, meaning that the variabl® will enter the base
instead of the variablé , and the pivot element is the element
resulting from the intersection of the pivot row and the pivot
column, which is (3)
We perform the switching between variables using a modified
simplex algorithm.

2- For the dual model:
We study the elements of the objective function row. We
notice that all the values are positive. Therefore, we study the

b - 6 Q8

C

el ement s of t he constant 6s col

negative values. We choose the most negative of them, which
is  ulp which is the row of the base variahle, so its row

Is the pivot row. To determine the pivot column and the pivot
element, we calculate the indéx—where:

R oo -
G P T PP o0 p pth;p

So, the column of the nemasc variable 6 is the pivot
column, meaning that the variable will enter the base
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instead of the variable , and the pivot element is the element
resulting from the intersection of the pivot row and the pivot
column, which is {3). We perform the switching beégn the
variables using the modified simplex algorithm, from (1) and
(2) We get the following double table:

W 0
Non-basic 0 w objective
vibrable function
Original model
basic vibra 0 0

o | ® 6 3 o Thp

8 o _

S |6 6 S P Tt

Qo g -

2w o} T o ptp Y

{9

S ; 0 =

S| w [ T (0]

0 ~ ~
objective Y. v ofp C o
. — h— =
function o o » m O
ENEOTHE T W
ok -
0 0 0 W
Non-basic w w w ) objective
vibrable function
basic vikrable Original model
0 ®
0 @ C C T p NV

o 2|2 — -

2 % o) o) o g0

£ 5 -

25 o 0 o p o Tt oty
objective thp | mit | p & w| ulx ® ¢io
function 0 W @

"Bl OCHE T WM
4 AL
Ik

Table No. (9): Thébinary table for the first stage, the solution according to the
original and dual models
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Second phase:

We apply the stopping criterion of the algorithm

For the original model:

Since the values in the const al
study the values the objective function row. We notice that
there is a positive value, which isfp , meaning that we have
not yet reached the optimal solution. Therefore, we specify the
pivot column, which is the column of the variable
corresponding to the only positive value in the objective
function row. ofp to determine the pivot row and the pivot
element, we calculate the indéxs—where:

e it p @y T

g P o o

O ET

It corresponds to the base elemeént so its row is the ipot

row and the pivot element is . We swap between the
variables using the modified simplex algorithm.

For the dual model:

We study the elements of the objective function row. We
notice that all the values are positive. Therefore, we study the
elementso f the constantds <col umn.
single negative value, which is ofp , which is the line of

the base variablé , so its row is the pivot row. To determine
the pivot column and the pivot element, we calculate the index
U —where:

W e T T p Y Th
U—N DL 0w h h
o P o o
So, the column of the nelmase variabley is the pivot column,
meaning that the variableo will enter the base instead of the

variablev , and the pivot element is the element resulting from
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the intersection of thpivot row and the pivot column, which is

o . We perform the switching between the variables using
the modified simplex algorithm, from (1) and (2Ye get the
following double table:

W ()
n-basic 0 0o objective
vibrakle function
Dual model
basic vibrable 006
() () G p T.
3 w o om
9o 0 T p T,
& w o th;
§ 0 S P Yip ¢
: &) 0 T uix
> P
objective function oh p ch p C tpy
Original model O ¢ hpu
0 ®
W 0 0 w
Non-basic | 0 w w 0 objective function
vibrable Original model
basic vibr T
2 ® ST I p oh p
g W W o
>
Q - —
g o LR T chp
5 o o
z
objective function | T . T. Up ¢ ux QO ¢ tpiy
Dual model — — 0 n
| o o q

Table No. (10): The binary algorithm table for the second stage

We apply the stopping criterion of the algorithm:
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1- In the original model, we investigate the elements of the
objective function row until the requiremefadr ending
the procedure, which is the lack of any positive element,
is fulfilled.

2- We also investigate the elements of the constants column
for the dual model until the requirement for ending the
process, which is the lack of any negative element, is
fulfilled.

3- We determine that the condition has been satisfied, and
hence we have arrived at the optimal solution.

The optimal solution of the original model is:
v —fc R < R up o ol B 60 m
The value of the objective functioncorresponds to:
06 0O ¢ by
The optimal solution of the dual model is:
WN oplt RN php O & & O m
The value of the objective function corresponds to:
00 07t 0ic oo
We note that
0 DO cwy 00 0Qticoo
This solution is acceptable according to the following

theory:

If cohohB o is an acceptable solution to the original model
of typed & @nd & hfB hdy  was an acceptable solution for
the dual model of typgé "Qéso the alue of the objective

function of the original model does not exceed the value of the
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objective function of the dual model for these two solutions,
that is, it is

0 G 0 G

This applies to all appropriate solutions for both models
(including the optimal solution).

7-3- Economic interpretation of the dual models:

The following example illustrates the economic interpretation
of the dual model:

Example2:

A factory wants to move its products as cheaply as possible
from two warehouses tdhree retail locations. The data
supplied by the factory official is shown in the table below:

Sales center] 06 0 0 Available
Stores guantities
) plo ch o O T T
) thp pht phv @ TUTT
Quantitiesrequired ¢ T OTMT T T WTLT
WTT

The plant manager demanded a4oest transportation strategy
so that the distributiom e n t reqeest® could be filled from
the available amounts.

The previous issue is a balanced transfer issue because

A ® WTT
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To formulate the mathematical model
We assumew the quantity transported from stoi@where

"Q plt, to distribution centefQ where’Q pltho. Thus, we
obtain the following linear model:
Find:
ON plo o ch @ o @ Thy ph @
phv w 0 Q¢
Constraints:
W 0w w T
W W w QT
) ) CTUTT
W W CTT
W W TTT
® TNE plt fE plio
We write the model in the following symmetrical form:

Because the objective function is a minimization function, all
constraints must be larger than or equalhence the model
takes the symmetric form:
Find:

ON plo o ch oo  Thy & ph @
ph G 0 Q¢

Constraints:
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W W CTT
W W T
w TNE pk E pklo
Forming the dual modelye obtain the following linear model:
Find:
@ OTIGN QTGN C T O TG T TAW O QOW®
Constraints:

w o plo
®w o ch
W W Tt
®w o Thy
®w o ph
® o ph

Based on the content of the original problem, weld an
adequate text for the accompanying model:

It is clear from the original model that the factory's goal is to
transport all of its products at the lowest possible cost:

Text of the issue dual to the attached form:

A transport company submitted tofactory an offer that it
would transport the entire quantity in the first warehouse, i.e.,
O T Units, at a price ofo monetary unit per unit, and transfer
the entire quantity available in tisecond warehouse, 1,7at a
price of monetary units peunit. Thebusiness promised to
supply the three retail outlets with 200, 300, and 400 units,
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respectively.These units are sold in these centdra price of

w hwhw  monetary units, respectivel$o, you can convince
the factory official that if heaccepts your offer, the
transportation cost in his factory will be less than the cost.
Using the constraints in the dual model as follows:

You pay the cost of transporting one unit from the first factory
to the first sales center, an amount whose valuenigslto the
range plo , but if you use the transport company, the cost is

w w, and we have from the first entry in the
accompanying model

®w o plo
Here the official in the laboratory will notice that the
transportation approppatenfied s of f er

In the same way we discuss all the limitations of the dual
model, the conclusion that the factory official will reach is that

the cost of transportation on any route if the transportation
companyo6s offer i s atothescpsttead | s
he would pay if he himself carried out the transportation
process.

The transport company will adopt the valuesh fo b fro |
because it will achieve maximum profit through them, as the
transport companyOos mlationf it is

OTILDL QTG ¢ TGt O TIGDl T TIOD

It is the same as the objective function of the dual model,
meaning that the dual model represertte transportation
company that is trying to maximize its profits

The best values of the dual model and the model itself are
always equivalent, according to the fundamental theorem of
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association. Although it saves the manufacturer the trouble of
solving tre original model to determine the minimum cost of
transportation, and because it guarantees the transportation
company a deal to transport the goods with the maximum
profit, the manufacturer does not save any money because he
will pay the transportation copany the minimum cost of
transportation.

Conclusion:

The interpretation of the optimal solution for the original
model is that it gives us the best production plan that makes the
value of that production as large as possible, within available
capabilities. Based on the previous study, we arrived at a
solution for the original and utility models simultaneously,
which are neutrosophic values from which we know the
minimum and maximum profit that we can obtain. The
optimum values for raw materigdrices are provided by the
optimal solution for the dual model. If these prices are
employed efficiently, they also yield the best production plan,
which maximizes profit.
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Chapter VIII : Some applications to
neutrosophic linear models

Introduction.
8-1- Problem of the composition of mixtures.
8-2- Problem of product mixture.

Conclusion.

- 124-



Neutrosaphic linear models and algorithms to find their optimal solution

Chapter VI

Some applications to neutrosophic linear
models

Introduction:

In the majority of useful domains, one of the most popular
operations researctechniques is linear programming@his
approach is predicated on turning the problem at hand into a
linear mathematical model. From there, we use specialized
algorithms designed for solving linear models to determine the
best solution. This approach facilitates the process of making
well-founded, scientificalhbased judgments for the decision
makers in charge of overseeing the system that follows this
modellhe creation of the linear model, or representing the
iIssue under investigation in mathematical relations, is the most
crucial step idinear programming. To create the linear model,
the following fundamental components must be present.

1. Determine the goal quantitatively, and it is expressed by
the goal function, which is the function for which the
maximum or minimum value is required. Thia, we
must be able to express the goal quantitatively, such as if
the goal is to achieve the greatest profit or achieve the
lowest cost.

2. Determine the constraints: The constraints that express
the available resources must be specific, that is, the
resouces must be measurable, and expressed in a
mathematical formula in the form of inequalities or
equals.

3. ldentifying the different alternatives: This element
indicates that the problem should have more than one
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solution so that linear programming can be leoh
because if the problem had one solution, there would be
no need to use linear programming, whose benefit is
focused on helping to choose the best solution from
among the acceptable solutions.

In this chapter, we present some problems that lead to
neurosophic linear models, that is, we will take some or all of
the problem data as neutrosophic values.

8-1- Problem of the composition of mixtures:

By mixtures, we mean anything that is installed from a number
of materials such as dietanedicine- any meal mixture and
here the stretch loop is to choose the materials that enter the
composition of this mixture so that the cost of production is as
little as possible, the goal of putting forward this model in the
field of education is that the student camkl between
neutrosophic equations and linear inequations as well as the
neutrosophic function and problems from real life.

General text of the problem:
We want to install a mixture of raw materid@shd 8 ho and
the price of one unit of each of thasnequal to

0 6h) 68 A) 6 respectively, and the meal must include an
amount of important elements

6 B B that the quantity of each element shall not be
less thard o B o

0 o) & Fesd) @ unit in the order required to findhé
necessary amounts of each of the materials

6 B B M which must be included in the mixture so that its
cost is as low as possible, knowitigat the content of each of
the materials 6 O 3D  of each of the elements

6 M B ,is shown in the following table:
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Materials
Elements o) o} e éeé 0 U0
o 1] 1) é6éé & 0 &
(0] w w eee w DL W
€éeéeelgge.|66ce.|6éé.|6666.
6 1] 1) 6éé.| o 0 &

Table No. (1) Raw materials and element®r the problem of
composition of mixtures

lfand 0 @ @ - Q pltf8 FE where- is indefinite and

can be- _ R Oor-7 _ A

Also values that express the quantities of elements that must be
available in the mixtureand @ @ | "Q pltM8 K

wherg is indefinite and can hé “p or

T h

Building the Mathematical Model:

We representhe necessary quantities of evanaterial
O MM bywhoh o and put all the information in the

following table:

Materials . . B . Minimum
Elements ' amounts
6 & [&) é 0 0w
0 &) &) é W 0 @
eEée| ééeé | éé | é € éé € éé
0 &) () é @ 0 @
Profit per unit . . . ~
0w Ow| é 0w
Required amounts () () é ()

Table No. (2) General data on the issue of composition of mixtures
What is required in the problem is to determine a value for

eachof the variableso oo F8 hi so that, given the constraints,
the objective function opts for the lowest value.
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Based on the data of the problem, the objective function is
written in the following form:

00 bow Oow E Jow
We expresghe terms mathematically and offer the following
explanation:

Each unit of the materiab gives us® unit of the element

0 , and thus we find thato unit gives us® @ unit of the
elementé , and so we find for the rest of the materials and
elements, and therefore the condition related to the eletnent
is as follows:

We proceed in the same manner to obtain the following
mathematical model for all materiadsid elements:

DQE 0O WO o E o
Constraints:

~
L 14 3

W w 0

[Tt

o OO E Ow o
8888888888888

~
3

W w O 0w E O o o
whoB oy
We writein the following abbreviated form:

~

- EB O 0 - ®

Constraints:
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v

O o 1 NQ pkM M

~ v

:T<

where® - h o 1 h pltf8 FE HQ plth8 h

Example 1:

A school wishes to serve four different types of food for
breakfast to its student§: 5 h hand 6 . The cost of one

unit of each of these would be) ch) ) GO .
Additionally, | et 6s assume t hat
quantity of vital nutrientsproteinsd , starch6 , carbohydrates

0 . In order to ensure thathe meal contains at least the
minimum amount of nutrients required to be provided and that
the amount of protein in it is not less thén®d unit, and the
amount of carbohydrates 8 @ unit, and the amount of
carbohydrates ig) @ unit, it is necessary to determine the
necessary amounts of substances that must be included into the
meal. The following table outlines the requirements for each
element and the essential nutrients they contelere

0w ® - and Q pltloft where- s indefinite and
can be - _ m Oor-7 _ A

Also values that express the amounts of nutrients that must be
availableinthe meald @ | andQ pigho wherel it

is indefinite and can be A or| T

We denote the required amounts of each of the materials

6 B M M with symbols fro o iy respectively put the

I nformation contained i n the t
follows:
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Materials _ _ _ _ Minimum
Elements amounts
0 W W ) W 0 &
0 &) W ) &) 0 ®
0 &) W ) &) 0 @
Profit - ~ ~ v
0w 0w 0w 0w
Required amounts| @ w w w

Table No. (3): Basic data for building the linear model for example 1
Follow the objective function:
We find:
00 Gaw Oow 0ow 0o
Nutrient conditions:
Nutrient protein requiremeidt
Requirement of starch nutriedt
Requirement of carbohydrate nutrient
Non-negativecondition:
The appropriate mathematical model emerges.
Find:
DQEVWan Oaw 0w 0o
Constraints:
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We apply the neutrosophic simplex approach outlined in the
research to get the best solution.

8-2- Problem of product mixture:

When a product isaid to be a mixture of products, it refers to
one that is produced in all production facilities using a variety
of raw materials in order to achieve optimal workflow and
maximum profit. This process is guided by a scientific analysis
that determines theuqntities required to produce each product
using the best available resources in order to meet market
demand and turn a profit. This model can be used to
demonstrate to students the application of linear models. As a
result, students will learn that the e notebooks, benches,
tables, transportation, and other items they use on a daily basis
are produced using process research methods that rely on
developing mathematical models. The optimal solution for
solving a model is what the institution must undesta

General text of the problem:

A production institution that can produce products

6 B M M and includes in its composition of raw materials,
the quantities used of eabhhd M8 5 of the rawmaterials

in each of the products are shown in the following table:
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aterials « v s
0 o] 8 o] (e}
Elements
0 ) ") 8 ) 0w
0 A ") 8 ) 0w
8 8 8 8
0 A ") 8 ) 0w

Table No. (4) Raw materials and elements for thproduct mix issue
The quantities available to the institution of these raw materials
arel o B Y  where
0 @ | and] isindefinite and can be
1 R T O Y f,Q pRiB
0 6h) 618 h) 6 , is required to find the amount of what must

be prodiced from each of the products, knowing that the profit
returned from one unit of each of the products is respectively

O0® ® - where- isindeterminate and can be

Building the Mathematical Model:

We code the quantities produced from each of the products
O MM be @hoM o and put all the information in
the following table:
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Products = = 8 _ Available
Materials ' Quantities
o] ® (&) 8 ) O (13
o] ® (&) 8 ) 0
8 8 8 8 8 8~
0 &) 1) 8 ) 0 0
Profit 0 & 0 ® 8 o6
Quantities o o 3 o
produced

Table No. (5) Neutrosophic data for the model

What is required in the problem is to determine a value for
each of the variablesoho B ho  so that theobjective
function takes the greatest value, within the imposed
conditions.

Based on the data of the problem, the objective function is
written in the fdlowing form:

0w bow 0w E (0o
We give the following explanation by mathematically
formulating the terms:

To produce one unit of thproduct 0 , we need® unit of

the materiab , and thus we find thab unit of the producd
needsd & unit of the materiab , and so we find for the rest

of the products and materials, and therefore the condition
related to the material is as follow®: w0 ® w0 0

®w O E Oow
Following the same procedure fall goods and materials, we
obtain the following mathematical model:

Find the maximum value of the function

DOwlWon (oo E Jow
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Constraints:

88888888888888
whoB by
It shall be written in the following abbreviated form:

~

Constraints:
o ® 1 NQ pkihs
W T
whered - ho 1 h &hQ pkfB R AQ pitMs

are constants having set or interval values according to the
nature of the given problem) are decision variables

Example2:

A factory for manufacturing pens produces four types
S, S,S,.S and uses the following raw materials

M,,M,, M, for this. The factory management wants to study

the optimal organization of production during a period of time
(for example, a month) and determine the monthly production
of each product to aeve a maximum profit, knowing that the
profit is directly proportional to the number of units sold of
products. We explain the available quantities of raw materials
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required for each product and the profit returned in the
following table:

Materials Available

Elemants -” -” -” '” Quantities
0 () () ) ) 0 &
() () ) ) 0 &
() () ) ) 0 &

Table No. (6): Data in Example 2

To construct the mathematicaldodel,we assume x counting
units produced fromyY

X2 number of units produced from
X3 number of units produced from
X, Number of units produced froilY

During the productive period (for example, a month) we put
the information in the followingable:

atereals _“ _” _” _" Available
Elements Quantities
0 () () ) ) 0 &
0 W () ) ) 0 &
0 W () () ) 0 &
Profit 0 ® 0 ® 0 ® 0 ®
Quantities & & & i
produced

Table No. (7): Basidnformation for building the mathematical model

From the table we can see that the primary material condition
5

DWW O O oo 0
Initial material requirement M
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MW 0w O O 04
Initial material requirement M

MW 0O O 0w 04
In addition, the quantities produced must be-negative, i.e.:
We now define th@bjective functionlf units of the same type
are producedx, , X; , X, , X, respectively, the profit during the
production period will be:

DW Dww LVww UVww U
Therefore, the mathematical model of the problem is:
Find the maximum value of the function

Donddaw Oow 0w 00
Within the conditions

Ww O 0O ow 0da

W 0w O 0w 04

W 0w 0w 0w 04
Using neutrosophic science principles, we shall apply
the above to a model of optimal agricultural land use.
We will be employing data that is influenced by the
environment, i.e., neutrosophic values
Text of the issue:
Let us assume that we haweagricultural areas (plain or
cultivated), each of which has an area equal to
O EEM . We want to plant it withd types of
agricul tural crops to secure
it. Knowing that we need of croff2the amount® , if the
average productivity of one area in pl&bf crop Qs equal to
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0 & tons/ha.wher 'Q plth8 8 e and’Q plkthB 8 ha, and

the profit returned from one unit of cro® equal to0 n,
whered 1] is a neutrosophic value, an undefined -specific
value that designates a perfect and can be any neighbor of the
value® , also U fywhich can be any neighbor Qf.

Requirement

Ascertain the acreage required for cultivation of each crop in
each region in order to maximize profit asdtisfy societal
demands.

Formulation of the mathematical model:

We represenby e amount of area in aré@&hat must be
cultivated withcrop, and we place the data for the problem in
the following table:

egions 1 2 E £ Order amount | profit amount
Crops i 1
1 0 ® 0@ E 0w @ 0n
2 0 ® 0@ E 0@ @ 0n
W W (&)
E E E E EE E E
a 0 ® 0@ E 0@ @ 0n
W @ w
Available &) &) E 1)
spacet:

Table No. (8) Issue data

Then we find that the conditions imposed on the variatiles
are:

1- Space restrictions:

The total area allocated to various crops in aneast be equal

to @ , that is, it must be:

W

W
-13

W
W

[Th [Th

W
W

~N | [T [Th
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:::::::::::

EEEEEEEEEEE
W W EE o @
2- Conditions for meeting community requirements:

The total production of crofin all regions must not be less
than the amound , that is, it must be:

bbb God EE (e o

xxxxxxxxxxxxxxxx

EEEEEEEEEEEEEEEE
0w 00 ® EE 0O ® W
Find the objective function:

We note that the profit resulting from the production of cp
only and from all regions is equal to the product of the profit
times thequantity, which is

onddew o EE (00w
Thus, we find that the objective function, which expresses the
total profit resulting from all crops, is egjuo:
@ 0n 0 W 0N 00 W
EE 0n 0O W 900w
From the above we get the following mathematical model:
Find the maximum value of
w 0n 00 ® 0N 00 W EE

i 66 @ °0d
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Constraints:

xxxxxxxxxxx

® W EE
EE O

xxxxxxxxxxxxxxxx

EEEEEEEEEEEEEEEE
w T NQ pkthE E hd hQ pighE E ke

Example3:
Let us assume that we want to exploit four agricultural areas

o i M M, and the area of each of them, respectively,
is@ 1p vigtip by planting them with the following crops:
wheat, barley, cotton, tobacco, and beet, from which we need
the following: ¢ mthy Tthp rthpe T Mg 7O 71 et us assume that
the regionsd productivity of
given in the following table:

egions| 0 0 0 0 order | Price per ton
Crops
wheat thp 4 3 6 2500 pt Wpmp
barley 7 5 4 ofv 1000 wrmhwp T
cotton 4 ofp p 8 5 600 | 1 v fprmT Tt
tobacco 6 ch 0 0 200 | t miwmmT M
beet 3 ptpt| 10| 6 800 | tmhnm
Space 6 0 150 20| 10

Table No. ©) Example data

Requirement
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Formulate the mathematical model for this problem in a way
that maximizes the production value.

To formulate the mathematical modele extract the following
linear conditions:

Space restrictions:

W 0w 0 0 W QT
W 0w W W () pPULUT
[V BV RV R ¢V I 0 ¢ T
[V BV RV R ¢V I O p Tl

Order restrictions:
thhow Tt®W o0® @O CUTT

~

X0 LW TW olv @ PTTT
1N ofpp® WO v QT
) cho ™ ™ ¢TI

0w ptptw pm e Ynm
Non-Negative restrictions:
w TN pigi Gt XQ plghot
Objective function that expresses the value of production
IS:
O pripmpnrnmed TGO 0O @D
WTpp TR VO T

oy @

T v Tt TT T op poo  Yw
LW

T T TTIT T Qo cho 1
T T T T TOG p Ip T

p o ©° 0 dw
Mathematical model:
Find the maximum value of
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@ prTpmRThhe TGO O0© @O
WP P TR LB  T®

olv &

T U TRPITT TT T ofp po® Y
LW

T T TOTUT 1T [ ch o 1O
T T Tt 1T TOG pipT®

P e %0 ww

Constraints:

[V I ¢ B OV R VI ¢V QT

[V I ¢V N OV N ¢ I ¢V pPULT

) ) ) ) ) CTr

W w0 0w W p T
thhow Tt®W 0O @ CUTT
X0 L T ohé pnmm
1IN ofppo WO v QT
P cht @ T T CTUTT

@ mnIE pkvhiv AT A& plgloh
The first issue:
An operations research expert was consulted by an executive in
one of the companies to help him find thest way to operate
warehouses at the Ilowest possible cost and minimize
transportation costs. The executive gave the expert information
that allowed the expert to formulate the following problem:
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The text of the problem according to the concepts of
neutrogphic science: A retail company plans to expand its
activities in a specific area by establishing two new
warehousesThe following table shows the potential locations,
the number of customerand the possibility of meeting the
demand for the sites where) has been placed in the event that
the site can meet the customer's request and put (x) the
opposite and codé & The transfer of one unit from location i

to customer j is shown in the following table:

ustomer 5 5 5 5
site
6 z z z
0 ® 00 0
0o z z z z
0w () ) 00
0o z z z
() ) )
Customer (0] (@) (@) (6]
orders

Table (10) Transportation cost in case of location selection

We havethe followinginformation available for eaabf the
candidate locations for warehouses

information Operating cost Initial Invested Site Capacity
site per unit Capital(Monetary
(monetary unit) Unit)
first 00 0 0
second 01 jo! 0
third 00 0 0

Table (11) operation information
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It is required to choose suitable locations for warehouses that
make the total costs of investment, operation and transportation
as small as possible.

Building the mathematical model:

The total cost of setting up and running the warehouse is
therefore a nofinear function of the stored quantity. The
problem of locating the warehouse can be formulated using
binary integer variables in a program with integers, where we
assume that the mmry integer variable#: represents the
decision to choose the site or not. Each site has a fixed capital
cost independent of the quantity stored in the warehouse
referred to that site and also has a variable cost proportional to
the quantity transported:
p EEAA E | @WEREQ A

T I OEAOxEOA
Supposethat the quantity transferred from sité to
so the constraint expressing the ability of the first
site to meet the requests is as follows:

|

W 0w W 0
Wherni p, the first location with capacity is chosen. The

quantity transported from the first site cannot exceed the
capacity of that sité wher| Tt the nonnegative variables

o hw o 1 directly, indicating that it is not possible to
ship from the first location

In a similar way, we obtain the following two constraints for
the second and third signatories.

2 @ @ @ ]
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To choose exactly two locations, we nedte tfollowing
restriction:

11 q

As 1 can take one of the values of O or 1 only, the new
constraint will force two variables from among tlieree
variables,) to be equal to one

The restrictions for customer requests can be written as
follows:

First clstomerw 0O

Second customab = W W 0O
Third customerw 0O

Forth customey ® 0O

To write the objective function, we note that the total cost of
investment, operation and transportation for the first site is as
follows:

QY R @ o He 00

When we do not choosethe first site, variable] 1T And
that forcesthe variables

W_0_w T

In a similar way, the cost functions of the secondand third
sitescanbe written, and thus the full formulation of the issue
of assigningthe location of the warehousés reducedto the

following correct mixed program: Z is meant tobe made
minimal
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W g inNw w o b (oo
Oboo Q inNw o o 0 ®w
bow (o O(ow 1O on

&) bow (ow oo

consideringthe following restrictions:

® ®w o 0]

1 true variable fofQ pltlo
w TNQ pkiv dé © pkloh
The second problem:

The executive's second request concerned how to select the
best projects to carry out the limited capital that the company
has available among the various projects that have been
presented. Using the data supplied by the official responsible
for overseeinghe business, the expert developed the following
problem:

Theissueof the capital budget: A companyplansto disburse
its capitalduring the ™Y periods.Where:

'Q pltfB H , andthere isd A proposedproject where:

"Q plth H versus a limited capital & Available for

investment in period "Qand when choosing any project Q
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becomesin need of a certain capital in each period Qwe
denote it0 ®. It is a neutrosophicvalue, the valuef each
project is measuredin terms of the liquidity flow
correspondingo the projectin eachperiod minus the value of
inflation, and this is called net present value (NPV), we denote
it 0 U Accordingly, the following table can be organized:

period Y Y 8 Y
project
0 0 0® 8 0
0 0 0 ® 8 0
8 8 8 8 8
0 0 0 8 0
Limited capital 0 0 8 o)

Table (12) Return on Investment during Periods

What is requiredin this problemis to select the right projects
that maximize the total value (NPV) of all selected projects.
Formulation of the mathematical model:

Here we assume a binary integer variable takes the value

one if the projeciQs selected and takes the value zerthé
project. is not selected

EXAAE T BDAT EQAA O
T | OEAOxEOA
Then the objective function is given by the following relation:

o P

W 00w
Then the objective function is given by the followiredation
bow 6 TIQ pMr

Accordingly, we get the following mathematical model:
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Find the maximum value of the function:
™ 00w
considering the following restrictions:
0w 6 TIQ ptsr

w A binary variabletakesone of the values @r 1 for al values
of ‘Q pB ha in the previous two issuesre gpt modelswith
integersthat have special methodsof solution. This research
cannotbe presentedand we will presentthemin laterresearch
using the mnceptof neutrosophicscience

1- Formulation of the problem and the construction of
mathematical model according to neutrosophic
values:

The study concluded in the research [12] shows us how to
construct neutrosophic linear models, (the linear model is a
neutrosophic model if at least one of the likes of variables in
the objective function or neutrosophic value constraints)

The text of theissue:

The company has rank for inspectors and wants to assign the
task of quality control to them, and pieces should be audited
daily during an“Yhour of work per day, in the following table
we explain the full information about the inspectors and for all
ranks:
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About the Number of Accuracy Inspector's Number of | The fine paid by the
spector pieces (percent) remuneration inspectors company for each
checked ( Monetary Unit fault to the
(hour) per Hour ) inspector
Inspect
rank
p 00 00 "0 0 Y
C 00 00O O 0 Y
8 8 8 8 8 8
£ 00 00 "0 0 Y

Table (13) Information on inspectors using neutrosophic values
The number of pieces is a neutrosophic valie 0 @ -
where- is the indeterminacy on the number of pieces, it can
take one of the shapes h. € i _ h_ or any value close
to0 as well as the precision, neutrosophic values
LO O |
wherg is the indeterminacy on the precision that can take one
ofthe shapes H or * H  orany value close t© 8
Requirement

Create a suitable mathematical model that will allow us to
allocate the inspectors with tlegtimal support, resulting in the
lowest possible inspection cost.

Building the neutrosophic mathematical model:
To build the mathematical model, we impose

wio h o the number of inspectors of each rank on
the order assigned to the inspectiask then the following
inequality must be met:

®w 6 NQ plth R
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Since the company needs to audit piece daily within™Y
working hour per day, the following set of restrictions must be
met:

YOO @ U

In order to derive thebjective function, we first notice that the
corporation is responsible for paying the inspector's fee as well
as the fine for each mistake the inspector makes. Based on this
information, the target follower writes as follows:

prm0 O
pTT

0w Y O 00

Then the mathematical model is written as follows:

e . v w, PTITIOO | .
D Y O VLY ——— wo - EI
P T
Constraints:
®w 6 NQ plth R
YOO @ U
w T1NQ pkh ¢
Exampled:

The following table explains all the information about the
inspectors and for all ranks. In this example, we will use the
number of pieces checked by the inspectors from each rank as
neutrosophic values. A company wants to assign the task of
quality contrd to its inspectors, who have three ranks. The
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inspectors should audit 1500 pieces every day during eight
working hours.

out the Inspector | Number of Accuracy Inspector's Number of | The fine paid by
pieces (percent) remuneration inspectors | the company for
checked ( Monetary Unit per each fault to the
Inspector rank (hoyr) Hour ) inspector
P P tP @ Wy T pTt Q
S P TP P Wt o @ Q
o clo Wy v P q

Table (14) Information on inspectors using neutrosophic values
Requirement

Create a suitable mathematical mode&t will allow us to
assign the best inspection assignments to the inspectors while
keeping the inspection cost as low as feasible.

To build the mathematical model, we impabdgw hw as the
number of inspectors from the three ranks in the ordegraedi

to the inspection task, then the following inequality must be
met:

W pT
w ¢
w Y

Since the company needs to auditpieces daily within™Y
working hour per day, the following set of restrictions must be
met:

PULUTT

That Is

Yo w 0w 0w PUTT

- 150-




Neutrosaphic linear models and algorithms to find their optimal solution

From it we get the following restriction:

bpilp oo wpippo Yolwed pumm
To establish the objective function, we observe that the
company pays two types of expenses throughout the inspection
process, thenspector's fee and the fine corresponding to the
inspector's fault committed for each piece, and then the target
follower writes as follows:

Then the cost of the inspector is calculated fr@he hourly
rank through the followingelation

vu e v w o, PTTTO e .
vo O oVvULY XL N'Q plgh re
We get
v . PTTMWU .
LO T plpe g —pmnm LB
v . PTTMWT .
Vo o ptpp ¢ o Ll
pPTITIMWY

06 v qmmo ¢ ST Plpdt 1

The total costs for all inspectors assigned to the task of quality
control per hour shall be given by tfwlowing relation
pmmO
P T
0% uvdhdo vhg o  @pdt to

substituting the following target phrase:

0¥ O 00Y

.. . P oo, PTITTO
Vw Y O VY —/4m
p T TT
We get:
0 Th&w ThEgeo 1@ @cw
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From the above, we can develop the following mathematical
model:

We want tofind:
DQH O ThRF Thopd T §cw
Constraints:
W pT
w ¢
w Y

Ypilp g Ypippo g it eo
» TNQ pkio

PULUTT

Example 5:

The company has three ranks for inspectors and wants to assign
the task of quality control to them. 1500 pieces should be
checked daily during eight working hours per day. For the
purposes of this example, we will use each inspector's accuracy
of inspectimm as a neutrosophic value, with the lowest range
representing the inspector's level of accuracy and the highest
range representing the inspector's level of accuracy by rank.
The following table provides comprehensive information about
inspectors and all nks.

out the Inspector Number of Accuracy Inspector's Number of | The fine paid by
pieces (percent) remuneration inspectors | the company for
checked (monetary unit per each fault to the
Inspector rank (hour) hour) inspector
p pu @ @ X T pm C
S p T wiwg o ® S
o (] w W @ v U G

Table (15) Information on inspectors using neutrosophic values
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Requirement Formulatea suitable mathematical model that
will allow to allocate the inspectors in the best feasible way,
minimizing the inspection cost.

To build the mathematical model, we impoég ho the
number of inspectors from the three ranks in the order assigned
to the inspection task, then the following inequality must be
met:

W P
w 9
w Y

Since the company needs to audipieces dailyduring S hours
of work each daythe following set of restrictions must be met:

W w pPUTT

That is

Yo w 0w U w PULUTT
We get the following entry:

pgat Ym CTW PUTT

In order to derive the objective functiong first notice that the
corporation is responsible for paying the inspector's fee as well
as the fine for each mistake the inspector makes. Based on this
information, the target follower writes as follows:

Then the cost of the inspector is calculated frd@he hourly

rank through the followingelation
55 0 oy P mo O 0 ofk 5
LO U o nQ plg
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We get
. p T Wiy 5
DO T pPUL C T8vd
p T
v PTT WG o
VO O PTG b T
. PTT Wi @ 5
DO UL CU C o vg

The total costs for all inspectors assigned to the task of quality
control per hour shall be given by the followirgjation

pmm. O
pTT

0% t8hdw 1Pve vg o

0¥ O 0Y

substituting the following target phrase:
prtmmy O
pTT

0w Y O 0

We get:
00 o@h tw o@hm 1 & yw
From the above, we can develop the following mathematical
model:
We want tofind:
DY O o@h o o@hm 1 & g
Constraints:

W PpT
w
@ Y
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pgar Ym CTW PUTT
» TmNQ pkio
In the two examples! and 2 for the optimal solution we use the
neutrosophic simplex method

From the previous model, we notice that takes a positive
value only whe p , and in this case, the production of the
product’@s limited by the quantitiQ and the fixed production
costU is included in the goal function

The idea ofindeterminacy ighe basis of neutrosophic science
represented here through the use of the binary integer variable
because the optimal solution depends on the decision to
produce a product or not to produce it

However, given the significant changes in the labor market du
to price strikes, resource availability or rawailability, and
other factors, we cannot guarantee the company a safe working
environment.

So it was necessary to reformulate this problem using
neutrosophic values for the sales opportufitynd the ost of

producing one unit of each produtt and selling pricé so
that the sales opportunity beconfés - , production cost
6 * and seling pricad + where- and° ande are

the indeterminacy the change in the sales opportunity, cost and
selling price respectively depending on the conditions of the
work environment and takes one of the following forms:

- N _ 5 Or-N _ g éand N H or

~

‘N’ H é ande N —h— or ¢+ N — h—
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which are values close to the valu@sand 6 and can be any
neighborhood to them.

Then the text of the problem becomes as follows:
The text of the problem according to neutrosophiccience

A company is planning to producgé product where the
product’Oneeds a fixed preparation cost or a fixed production
cost U independent of the quantity produced, and needs a

variable costd ‘ per production unit commensurate with

the quantity produced, we suppose that each unit of the product
‘Qneeds® a unit of the supplieiwhere there i$ supplier.

Assuming that the produ&@hat has a sales opportunt®y -
is sold at tle price of 0 ¢ monetary unit per unit and that
only & unit of the suppliefCls available whereQ plgf8

the goal of the problem becomes to determine the optimal
product mix that makes the net profit as great as possible.

Formulation of the mathematical model:
Determination of the cost:

The problends text indicates that the variable cost, which is a
nonlinear function of the quantity produced, and the fixed cost
make up the overall cost of production.

However, the issue may be represented as a linear model with
integers using binary integer varialjles

It is assumed that the binary integer varigbleepresents the
choice of whether or not to generate the prodct
; p CEBROI AIOIABR EOADOAEAI
Tt I OEAOxEOA
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Then the cost of producing one unit of the product becomes as
follows U 0 ‘ w,wherd pif ® Tand 1
if @ 1 and therefore the goal function becomes as follows:

& 0 . 01 6 ' @

Restrictions of the problem:

A restriction on the suppli€fds given in the followingelation
O o o N pl D
The restriction of the demand for the prodd@s given by the
following relation
® Q -1 IQ pkM
Mathematical model: Find the maximum value of the function:
@ D ¢ 0] 0 '

Within Restrictions

W Tand p Orf T
And or for all values
Q pltB ho
From the previous model, we note thatakes a positive value
only when p and in this case the production of the product

Qis limited by the quantityQ - and the fixed production
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costU included in the goal function, by solving this model
we get an optimal neutrosophic value for the goal function

0 & throughwhich we know the profit that the company can
achieve in the best and worst conditions and enable the
company to develop appropriate plans for the workflow in it.

Conclusion:

In our study, we aim to provide the optimal solution to most of
the problems that production companies can face by
formulating the situation under treatment with a problem that
can be converted into a linear model, the optimal solution of
which helps decisn-makers make optimal decisions for the
workflow so that the greatest profit is achieveto find
solutions with a margin of freedom, we can employ data,
neutrosophic values, values that account for all of the situations
that the system represented by timear model may encounter.
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