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Chapter I  

Study of Neutrosophic linear equations 

 Introduction:  

Given the significance of the linear programming method as 

one of the operations research methods, we felt it necessary to 

reformulate the systems of linear equations and some of the 

methods for solving them using the concepts of neutrosophic 

science, since research and studies using neutrosophics 

produced more accurate results than research employing 

classical logic. 

1.1. Systems of linear equations according to 

classical logic: 

The propositions of linear equations in which the number of 

equations equals m and the number of variables equals n are 

given according to classical logic in the following general 

form: 

ὥ ὼ ὥ ὼ Ễ ὥ ὼ ὦ 

ὥ ὼ ὥ ὼ Ễ ὥ ὼ ὦ 

ȣȣȣȣȣȣȣȣȣȣȣȣȣȣ 

ὥ ὼ ὥ ὼ Ễ ὥ ὼ ὦ  

and written in the following matrix form: 

ὃȢὢ ὄ 

where: 

   !

Á        Á ȣÁ
 Á         Á  ȣÁ
ȣȣȣȣȣȣȣ
Á        Á ȣÁ

     "

Â
Â
ȢȢ
Â

          8

Ø
Ø
ȢȢ
Ø
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where ὥ and ὦ are real numbers for all values of 

 Ὥ ρȟςȟȣȟά and Ὦ ρȟςȟȣȟὲ. 

Three distinct examples of linear equation systems were 

identified. 

First case:  

There are the same number of equations and variables, i.e., 

ά ὲ. 

Second case: 

There are more equations than variables, i.e., ά ὲ 

Third case:  

There are fewer equations than there are variables, i.e.,  ά ὲ. 

The following linear equation systems will be given utilizing 

neutrosophic science concepts. In this case, the real numbers 

ὥ and ὦ will be treated as neutrosophic numbers, or as 

indefinite values of the form ὔὦ and ὔὥ. Perfectly 

determined, they can be any neighborhood of the real numbers 

ὥ  and ὦ, expressed in any of the following forms:   

  ὔὥ ὥ ‐  and ὔὦ ὦ ‘ where ‐ ᶰ‗ ȟ‗  or 

‐ ᶰ‗ ȟ‗  or otherwise, then the systems of neutrosophic 

linear equations is written in the form below. 

1.2. Systems of neutrosophic linear equations where 

the number of equations equals □ and the 

number of variables equals ▪:  

General form: 

ὔὥ ὼ ὔὥὼ Ễ ὔὥὼ ὔὦ 

ὔὥ ὼ ὔὥὼ Ễ ὔὥὼ ὔὦ 

ȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȢ 
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ὔὥ ὼ ὔὥ ὼ Ễ ὔὥ ὼ ὔὦ 

In the following matrix form: 

ὔὃȢ8 ὔὄ 

where: 

ὔὃ

ὔὥ       ὔὥ ȣὔὥ
 ὔὥ         ὔὥ  ȣὔὥ
ȣȣȣȣȣȣȣ

ὔὥ        ὔὥ ȣὔὥ

  ὔὄ

ὔὦ
ὔὦ
ȢȢ
ὔὦ

   8

Ø
Ø
ȢȢ
Ø

 

We examine the preceding equation systems in terms of the 

three previously described examples in order to establish 

their general solution. 

First case: 

There are the same number of equations and variables, i.e., 

ά ὲ. 

 We write the systems of equations as follows: 

ὔὥ ὼ ὔὥὼ Ễ ὔὥὼ ὔὦ 

ὔὥ ὼ ὔὥὼ Ễ ὔὥὼ ὔὦ 

ȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣ 

ὔὥὼ ὔὥὼ Ễ ὔὥὼ ὔὦ 

 Or, in matrix form: 

ὔὃ Ȣὢ ὔὄ 

where: 

ὔὃ

ὔὥ       ὔὥ ȣὔὥ
 ὔὥ         ὔὥ  ȣὔὥ
ȣȣȣȣȣȣȣ

ὔὥ        ὔὥ ȣὔὥ

     ὔὄ

ὔὦ
ὔὦ
ȢȢ
ὔὦ

      ὢ

ὼ
ὼ
ȢȢ
ὼ

 

The matrix is a square matrix whose determinant is Ў ȿὔὃȿ 
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Here we distinguish two cases:   

1- Ў π . This case gives rise to two cases: 

a. If Ў π and Ў π where Ў  is the determinant 

resulting from the determinant of the matrix of Ў  after 

replacing the column containing the unknown ὼ with 

the column of constants, then the systems have no 

solution. 

b. If Ў π and Ў π, this means that the systems of 

equations are not linearly independent, meaning that 

some are linearly related to each other. In order to handle 

this case, we eliminate one of the two equations that are 

linearly related; as a result, there are now ά  equations 

instead of two, where ά ά ρ and ά ὲ, which is 

the same as the second case that will be addressed later. 

c. When Ў π, that is, the systems of equations are 

linearly independent and the systems have a single 

solution, that can be found in multiple ways. We 

investigate the Gauss-Jordan method in this study 

because it serves as the foundation for the direct simplex 

algorithm that we employ to find the best solution for 

linear models. 

1.3. Gauss-Jordan method for solving systems of 

neutrosophic linear equations where □ ▪: 

To clarify the mathematical framework of the approach, we 

present the equations in the following matrix form: 

ὔὥ       ὔὥ ȣὔὥ
 ὔὥ         ὔὥ  ȣὔὥ
ȣȣȣȣȣȣȣ

ὔὥ        ὔὥ ȣὔὥ

Ȣ

ὼ
ὼ
ȢȢ
ὼ

ὔὦ
ὔὦ
ȢȢ
ὔὦ

     ρ 
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Or in the following abbreviated form: 

ὔὃ Ȣὢ ὔὄ     ς 

Since Ў ȿὔὃȿ π, this means that the matrix ὔὃ has an 

inverse i.e., ὔὃ . We multiply both sides of equation (2) by 

ὔὃ  and we find: 

ὔὃ Ȣὔὃ Ȣὢ ὔὃ Ȣὔὄ   

Hence, we get: 

ὍȢ8 ὔὄ   

which is written in the following detailed form: 

ρ   π    πȣπ
 π    ρ    πȣπ
ȣȣȣȣȣ
π    π   πȣρ

Ȣ

ὼ
ὼ
ȢȢ
ὼ

ὔὦ

ὔὦ
ȢȢ
ὔὦ

     σ 

This process is the basis of the Gauss-Jordan method for 

solving a system of linear equations. In order to convert Figure 

(1) to Figure (2), we follow the following steps: 

1- We express Figure (1) in the following table: 

╝║ ●▪ é. ● ● 
Variables 

Equations 

ὔὦ ὔὥ  é. ὔὥ  ὔὥ  ρ 

ὔὦ ὔὥ  é ὔὥ  ὔὥ  ς 

é é é é é é. 

ὔὦ ὔὥ  é ὔὥ  ὔὥ  ὲ 

Table No. (1): Table of equations 

2- We convert the matrix ὔὃ to the unit matrix Ὅ by 

processing the rows of the table so that we make all 

non-diagonal elements in all its rows equal to zero 

and the diagonal elements equal to one. The steps 

below are used to eliminate the variable ὼ from the 

equation ὸ: 
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a- To make ὼ equal to one, we divide all the elements 

of row t by ὔὥ. This causes ὼ  to equal one and 

modifies the other expressions. 

b- We set all elements of the column with ὼ (except 

row ὸ) equal to zero. 

c- We calculate the rest of the elements of the new table 

from the following two relation: 

ὔὥ ὔὥ ὔὥ
ὔὥ

ὔὥ

ὔὥὔὥ ὔὥὔὥ

ὔὥ

ὔὦ ὔὦ ὔὥ
ὔὦ

ὔὥ

ὔὦὔὥ ὔὥὔὦ

ὔὥ Ứ
ủ
ủ
ủ
Ủ

     τ 

The element ὔὥ is called the pivot element. 

Following the previous process, the following table is 

produced: 

╝║ ╝●▪ é. ╝● ╝● 
Variables 

Equations 

ὔὦ π é. π ρ ρ 

ὔὦ π é ρ π ς 

é é é é é é. 

ὔὦ ρ é π π ὲ 

Table No. (2) Final solution table 

The linear equation systems are expressed in the following 

matrix form: 

ὍȢὔὢ ὔὄ   

ρ   π    πȣπ
 π    ρ    πȣπ
ȣȣȣȣȣ
π    π   πȣρ

Ȣ

ὼ
ὼ
ȢȢ
ὼ

ὔὦ

ὔὦ
ȢȢ
ὔὦ
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ὔὼ
ὔὼ
ȢȢ
ὔὼ

ὔὦ

ὔὦ
ȢȢ
ὔὦ

    

ὔὼ ὔὦ ȟὔὼ ὔὦ ȟȣȟὔὼ ὔὦ   

Second case:  

There are more equations than variables, i.e., ά ὲ. 

In this case, we form a new system from the set of equations in 

which the number of equations is equal to the number of 

variables by excluding a number of equations of Í Î. Then, 

to make sure the equations that were excluded are satisfied; we 

solve the new systems in the same way as we solved the first 

case. 

Third case: There are fewer equations than there are variables, 

i.e., ά ὲ. 

We are presented with a set of equations of the following form 

in this particular case. 

ὔὥ ὼ ὔὥὼ Ễ ὔὥ ὼ Ễ ὔὥὼ ὔὦ
ὔὥ ὼ ὔὥὼ Ễ ὔὥ ὼ Ễ ὔὥὼ ὔὦ  
ȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣ 
ὔὥ ὼ ὔὥ ὼ Ễ ὔὥ ὼ Ễ ὔὥ ὼ ὔὦ

 υ 

which is written in the following matrix form: 

ὔὃ

ὔὥ       ὔὥ ȣὔὥ ȣȣὔὥ
 ὔὥ         ὔὥ  ȣὔὥ ȣȣὔὥ
ȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣ
ὔὥ        ὔὥ ȣὔὥ ȣȣὔὥ

ὔὄ

ὔὦ
ὔὦ
ȢȢ
ὔὦ

ὢ

ụ
Ụ
Ụ
Ụ
Ụ
Ụ
ợ
ὼ
ὼ
ȢȢ
ὼ
ȢȢ
ȢȢ
ὼỨ
ủ
ủ
ủ
ủ
ủ
Ủ

 

In the following brief form: 

ὔὃ Ȣ Ȣὢ Ȣ ὔὄ Ȣ     φ 

1- We divide the matrix ὔὃ Ȣ  into two matrices: 
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a- A square matrix of rank άȢά  which we denote 

ὔὅ Ȣ . 

b- And a rectangular matrix of rank άȢὲ ά  which 

we denote  ὔὈ Ȣ  

2- The column matrix ὢ Ȣ  is divided into two matrices 

ὢ Ȣ  and ὢͼ Ȣ . 

Subsequently, the equation systems (5) are expressed in the 

matrix form shown below: 

ὔὅ Ȣ ȟὔὈ Ȣ  Ȣ
ὢ Ȣ 

ὢͼ Ȣ
ὔὄ Ȣ     χ 

ὔὅ Ȣ Ȣὢ Ȣ ὔὈ Ȣ Ȣὢͼ Ȣ ὔὄ Ȣ  

We find that: 

ὔὅ Ȣ Ȣὢ Ȣ ὔὄ Ȣ ὔὈ Ȣ Ȣὢͼ Ȣ      ψ 

Assuming that ȿὔὅȿ π, we multiply both sides in relation (8) 

by ὔὅ  and we find: 

ὔὅ ȢὔὅȢὢ ὔὅ Ȣὔὄ ὔὈȢὢͼ  

ὍȢὢ ὔὅ Ȣὔὄ ὔὅ ȢὔὈȢὢͼ   ω 

Assuming that ὔὅ Ȣὔὄ ὔὄ and ὔὅ ȢὔὈ ὔὈ Ȣ  we 

find that: 

ρ   π    πȣπ
 π    ρ    πȣπ
ȣȣȣȣȣ
π    π   πȣρ

Ȣ

ὼ
ὼ
ȢȢ
ὼ

 

ὔὦ

ὔὦ
ȢȢ
ὔὦ

 

ụ
Ụ
Ụ
Ụ
ợ
ὔὨ        ὔὨ ȣὔὨ

 ὔὨ         ὔὨ  ȣὔὨ
ȣȣȣȣȣȣȣȣȣȣ

ὔὨ       ὔὨ ȣ ὔὨ Ứ
ủ
ủ
ủ
Ủ

Ȣ  

ὼ
ὼ
ȣ
ὼ

     ρπ 

which can be converted as follows into a set of linear 

equations: 
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ὔὼ ὔὦ ὔὨ ὼ ὔὨ ὼ Ễ ὔὨ ὼ  

ὔὼ ὔὦ ὔὨ ὼ ὔὨ ὼ Ễ ὔὨ ὼ  

ȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣ 

ὔὼ ὔὦ ὔὨ ὼ ὔὨ ὼ Ễ ὔὨ ὼ  

This means that we were able to calculate ά in terms of 

ὲ ά , ὼ ȟὼ ȟȣȟὼ. We note that the values of the 

variables ὼȟὼȟȣȟὼ , it relates to the values taken by the 

variables ὼ ȟὼ ȟȣȟὼ, or in other words, what we give to 

the variables ὼ ȟὼ ȟȣȟὼ, and that for every proposition 

of values such as  ȟ ȟȣȟ for these variables we get 

a set of values for the variables ὼȟὼȟȣȟὼ  is: 

ὔὼ ὔὦ ὔὨ  ὔὨ  Ễ ὔὨ   

ὔὼ ὔὦ ὔὨ  ὔὨ  Ễ ὔὨ   

ȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣ 

ὔὼ ὔὦ ὔὨ  ὔὨ  Ễ ὔὨ   

Thus, we obtain a solution that includes all the variables of 

proposition (5) 

Here is how the solution is structured: 

ȟȟȣȟȟ ȟ ȟȣȟ  

But since the variables ὼ ȟὼ ȟȣȟὼ can take an infinite 

number of qualitative values (even if they are restricted by 

certain conditions), we obtain an infinite number of 

corresponding values for the variables ὼȟὼȟȣȟὼ . 

Thus, the set of equations (5) has an infinite number of 

acceptable solutions of the following form if ȿὔὅȿ π: 

ὼȟὼȟȣȟὼȟὼ ȟὼ ȟȣȟὼ  

Thus, we obtain a solution that includes all variables of the 

proposition, which is the ordered solution: 

ȟȟȣȟȟ ȟ ȟȣȟ  
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1.4. Basic solutions of the neutrosophic linear 

equations: 

Since proposition (5) has an infinite number of acceptable 

solutions, we will try to limit ourselves to a limited number by 

setting the variables ὼ ȟὼ ȟȣȟὼ equal to zero. Then 

proposition (9) takes the following form: 

ρ   π    πȣπ
 π    ρ    πȣπ
ȣȣȣȣȣ
π    π   πȣρ

Ȣ

ὼ
ὼ
ȢȢ
ὼ

ὔὦ

ὔὦ
ȢȢ
ὔὦ

           ρρ 

We get: 

ὼ ὔὦ   ȟὼ ὔὦ  ȟȣȟὼ ὔὦ  

 Consequently, the complete solution is: 

ὔὦȟὔὦȟȣȟὔὦȟπȟπȟȣȟπ 

Because it can be attributed to the rule with single normal 

vectors in the space Ὑ , we refer to this solution as the basic 

solution: 

 

Ὡ

ụ
Ụ
Ụ
Ụ
Ụ
ợ
ρ
π
π
π
ȢȢ
πỨ
ủ
ủ
ủ
ủ
Ủ

      Ὡ

ụ
Ụ
Ụ
Ụ
Ụ
ợ
π
ρ
π
π
ȢȢ
πỨ
ủ
ủ
ủ
ủ
Ủ

    ȣ    ȣ  Ὡ

ụ
Ụ
Ụ
Ụ
Ụ
ợ
π
π
π
π
ȢȢ
άỨ
ủ
ủ
ủ
ủ
Ủ

 

The set of vectors ὩȟὩȟȣȟὩ  form a rule because they are 

linearly independent, and the vector ὔὄ can be expressed 

using the factorials ὼȟὼȟȣȟὼ  as follows: 

ὔὄ Ὡὼ Ὡὼ Ễ Ὡὼ  

We call the variables ὼȟὼȟȣȟὼ , basic variables and we call 

other variables ὼ ȟὼ ȟȣȟὼ free or non-basic variables 

because they take qualitative values. 
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The variables ὼȟὼȟȣȟὼ  are chosen at random to serve as 

basic variables because, if we know that the following options 

exist for obtaining basic solutions, we can build alternative 

basic solutions: 

ὅ
ὲȦ

άȦὲ άȦ
 

There is a finite number of infinitely possible solutions. 

Example 1: 

The two linear equations below have a joint solution. 

ςὼ χὼ σὼ ςὼ ςȟυ 

σὼ ωὼ τὼ ὼ σȟχ 

ὼ υὼ σὼ τὼ τȟψ 

In the set of equations, the number of variables is ὲ τ and 

the number of equations is ά σ. Therefore, the number of 

basic variables is equal to 3 and the number of non-basic free 

variables is ὲ ά ρ. The number of possible solutions is 

calculated from the relation: 

ὅ
ὲȦ

άȦὲ άȦ
 

i.e., 

ὅ
τȦ

σȦτ σȦ
τ 

We write as follows: 

ὼȟὼȟὼȟπ   ȟὼȟὼȟπȟὼ  ȟὼȟπȟὼȟὼ ȟπȟὼȟὼȟὼ    

To obtain these solutions, we write the systems of equations 

in the following form: 

ςὼ χὼ σὼ ςȟυ ςὼ 

σὼ ωὼ τὼ ὼ σȟχ ὼ 

ὼ υὼ σὼ τȟψ τὼ 

The previous proposition is written in the following matrix 

form: 
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ς χ σ
σ ω τ
ρ υ σ

Ȣ

ὼ
ὼ
ὼ

ςȟυ

σȟχ

τȟψ

ς
ρ
τ
Ȣὼ     

ὅ
ς χ σ
σ ω τ
ρ υ σ

   ὢ  

ὼ
ὼ
ὼ
   ὔὄ  

ςȟυ

σȟχ

τȟψ

    Ὀ
ς
ρ
τ
  ὢͼ ὼ  

We calculate the determinant ȿὅȿ . 

We find: 

ȿὅȿ
ς χ σ
σ ω τ
ρ υ σ

σ π 

We determine the matrix's reciprocal to identify the solutions:  

ὅ
ς χ σ
σ ω τ
ρ υ σ

 

We find: 

ὅ

ụ
Ụ
Ụ
Ụ
ợ
χ

σ
ς

ρ

σ
υ

σ
ρ

ρ

σ
ς ρ ρỨ

ủ
ủ
ủ
Ủ

 

We compensate in the relation: 

ὔὅ ȢὔὅȢὢ ὔὅ Ȣὔὄ ὔὈȢὢͼ 

We get: 

ụ
Ụ
Ụ
Ụ
ợ
χ

σ
ς

ρ

σ
υ

σ
ρ

ρ

σ
ς ρ ρỨ

ủ
ủ
ủ
Ủ

Ȣ
ς χ σ
σ ω τ
ρ υ σ
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ụ
Ụ
Ụ
Ụ
ợ
χ

σ
ς

ρ

σ
υ

σ
ρ

ρ

σ
ς ρ ρỨ

ủ
ủ
ủ
Ủ

Ȣ

ςȟυ

σȟχ

τȟψ

ς
ρ
τ
Ȣὼ  

ρ π π
π ρ π
π π ρ

ὔὼ
ὔὼ
ὔὼ

 

ụ
Ụ
Ụ
Ụ
ợ
χ

σ
ς

ρ

σ
υ

σ
ρ

ρ

σ
ς ρ ρỨ

ủ
ủ
ủ
Ủ

Ȣ

ςȟυ

σȟχ

τȟψ
ụ
Ụ
Ụ
Ụ
ợ
χ

σ
ς

ρ

σ
υ

σ
ρ

ρ

σ
ς ρ ρỨ

ủ
ủ
ủ
Ủ

Ȣ
ς
ρ
τ
Ȣὼ  

which can be transformed into the following systems of 

equations: 

ὔὼ

ụ
Ụ
Ụ
Ụ
ợπȟ

ρ

σ

ρȟ
τ

σ
σȟυ Ứ

ủ
ủ
ủ
Ủ ρφ

σ
ρ
ρ

Ȣὼ  

Setting the free variable ὼ equal to zero, we get: 

ὔὼ

ụ
Ụ
Ụ
Ụ
ợπȟ

ρ

σ

ρȟ
τ

σ
σȟυ Ứ

ủ
ủ
ủ
Ủ

 

i.e., 

ὼ πȟ
ρ

σ
ȟὼ ρȟ

τ

σ
ȟὼ σȟυ 

Thus, we obtain the first neutrosophic basic solution, which is: 

ὼȟὼȟὼȟπ πȟ
ρ

σ
ȟ ρȟ

τ

σ
ȟσȟυȟπ 

We obtain other basic solutions in the same way.  
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Dissolved basic solutions: 

If we get a value of zero for the variables we have selected as a 

basis, the fundamental solution is degenerate and invalid. 

1.5. Gauss- Jordan method for solving a set of linear 

equations where □ ▪: 

The following are the basic steps of the Gaussian-Jordan 

method, which are based on the previously mentioned 

mathematical principles: 

1- We write the systems of equations (5) in the following 

matrix form: 

ὍȢὢ ὔὅ ȢὈȢὢͼ ὔὅ Ȣὔὄ ὔὄ 

Ὅ ȟὔὅ ȢὔὈ Ȣ
ὢ
ὢͼ

 ὔὄ       ρς 

which is written in the following detailed form: 

ụ
Ụ
Ụ
ợ
ρ   π    πȣπ     ὔὨ     ὔὨ ȣὔὨ

 π    ρ    πȣπ      ὔὨ    ὔὨ  ȣὔὨ
ȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣ
π    π   πȣρ    ὔὨ    ὔὨ ȣ ὔὨ Ứ

ủ
ủ
Ủ

Ȣ

ὼ
ὼ
ȢȢ
ὼ

ὔὦ

ὔὦ
ȢȢ
ὔὦ

     ρσ 

The transition from Figure (5) to Figure (12) is done the same 

steps we mentioned in the previous paragraph, but this method 

does not give us a basic solution unless we set the free 

variables equal to zero. If we do that, we only get the first 

solution. To obtain all solutions, we perform the following 

steps: 

a.  We organize the following table: 
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╝║ ●▪ é. ●□  ●□  ●□ é. ● ● 
Variables 

Equations 

ὔὦ ὥ  é. ὥ  ὥ  ὥ  é. ὥ  ὥ  ρ 

ὔὦ ὥ  ȣȢ ὥ  ὥ  ὥ  é ὥ  ὥ  ς 

é é é é é é é é é é. 

ὔὦ  ὥ  é ὥ  ὥ  ὥ  é ὥ  ὥ  ά 

Table No. (3) The first table for the Gauss- Jordan method 

b. We find the identity matrix Ὅ  by processing the rows 

of the previous table in the same way as explained in the 

previous paragraph. To do this the specify variables that 

are entered in the base and let them be ὼȟὼȟȣȟὼ . As 

a result of this processing, we obtain the following table:  

╝║ ●▪ é. ●□  ●□  ●□ é. ● ● 
Variables 

Equations 

ὔὦ ὔὨ  é. ὔὨ  ὔὨ  π é. π ρ ρ 

ὔὦ ὔὨ  ȣȢ ὔὨ  ὔὨ  π é ρ π ς 

é é é é é é é é é é. 

ὔὦ ὔὨ  é ὔὨ  ὔὨ  ρ é π π ά 

Table No. (4): Table of the first basic solution 

c. Setting all the free variables in Table (4) equal to zero, 

we obtain the following first basic solution: 

ὔὦȟὔὦȟȣȟὔὦȟπȟπȟȣȟπ 

a. To obtain a second basic solution, we replace one of the 

basic variables, say ὼ , with one of the non-basic 

variables ὼ , by selecting the appropriate pivot 

element, and here it is ὔὨ . We work to delete ὼ  

from all equations except equation ά. In this equation, 

we set the coefficient of this variable to one. We use the 

two relations (4) to carry out the necessary 

computations. We solve the subsequent second basic 

solution: 
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ὔὦȟὔὦȟȣȟὔὦ ȟπȟὔὦ ȟπȟȣȟπ 

We repeat the steps mentioned in step (d) to get additional 

basic solutions. 

1.6. Non-negative basic solutions of systems of 

neutrosophic linear equations: 

If all or some of the variables must be non-negative, then 

certain fundamental solutions are not sufficient since they 

violate the criterion. In this kind of circumstance, we need to 

look for good fundamental solutions among the basic solutions. 

Because the procedure in the example is not easily used, 

especially when there are numerous variables, the Gauss-

Jordan method was devised to immediately find positive 

solutions. 

The new method was called the simplex method, which is 

carried out according to the following steps: 

1.7. The simplex method for finding non-negative 

basic solutions to a system of linear equations 

where □ ▪: 

In the systems of equations (5): 

1- By multiplying the equation with the negative second 

side by (-1), we are able to make all elements of the 

constant's column NB on the second side of the 

equations non-negative. 

2- We put the coefficients of the new systems in a table.  

3- We form a rule consisting of ά variables by selecting 

the variable that we want to enter into the rule, for 

example, ὼ, then we calculate the index.  

— ὓὭὲ
ὔὦ

ὔὥ

ὔὦ

ὔὥ
πȠ     ὔὥ πȟὔὦ π 
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We call the element ὔὥ the pivot element, we 

delete the variable ὼ from all equations according to 

the Gauss-Jordan method, except for the equation ὸ, 

in which its coefficient is equal to one. We repeat the 

previous step until we form a base consisting of ά 

variables. 

4- Setting the non-basic variables equal to zero we 

obtain the following non-negative basic solution: 

ὔὦȟὔὦȟȣȟὔὦ ȟπȟὔὦ ȟπȟȣȟπ 

5- We designate one of the variables as a basic variable, 

find the pivot element, and then carry out the same 

steps as for the variable ὼ to obtain additional new 

non-negative basic solutions. We continue working 

until we have all of the non-negative basic solutions 

after we find a new one. 

We explain the above using the following example: 

Example 2: 

ὼ σὼ ςὼ ρȟσ 

ὼ ςὼ σὼ ςȟψ 

We multiply the first equation by (-1) until the condition 

 ὔὦ π is met, and we obtain the following new systems: 

ὼ σὼ ςὼ ρȟσ 

ὼ ςὼ σὼ ςȟψ 

The stopping criterion is met if we are unable to locate a single 

free column that was not used for switching and that has at 

least one positive element. This indicates that all of the free 

column elements that were not utilized during the swap have 

negative values. 
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In the systems of equations, the number of variables is ὲ υ 

and the number of equations is ά ς Therefore, the number 

of basic variables is equal to 2 and the number of non-basic 

free variables is ὲ ά σ. The number of possible solutions 

is calculated from the relation: 

ὅ
ὲȦ

άȦὲ άȦ
 

i.e., 

ὅ
υȦ

ςȦυ ςȦ
ρπ 

We write as follows: 

ὼȟὼȟπȟπȟπ ȟὼȟπȟὼȟπȟπȟὼȟπȟπȟὼȟπȟὼȟπȟπȟπȟὼ ȟ 

πȟὼȟὼȟπȟπ πȟὼȟπȟὼȟπȟπȟὼȟπȟπȟὼ ȟπȟπȟὼȟὼȟπȟ 

πȟπȟὼȟπȟὼ ȟπȟπȟπȟὼȟὼ  

To obtain these solutions, we organize the following table: 

 

╝║ ● ● ● ● ● 
Variables 

Equations 

ρȟσ ς σ π π ρ ρ 

ςȟψ σ ς π ρ π ς 

Table No. (5): The first table for the simplex method 

To find a basic solution to the set of equations, we select a 

variable, for example ὼ, to be a basic variable, and to 

determine the appropriate anchor element, we calculate the 

index: 

— ὓὭὲ
ὔὦ

ὔὥ
ὓὭὲ

ρȟσ

σ
ȟ
ςȟψ

ς

ρȟσ

σ
 

The pivot is ὥ σ. The following table is produced after the 

necessary computations are made to remove the variable ὼ 

from the two equations: 
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╝║ ● ● ● ● ● 
Variables 

Equations 

ρ

σ
ȟρ 

ς

σ
 

ρ π π ρ

σ
 

ὼ 

τ

σ
ȟφ 

υ

σ
 

π π ρ ς

σ
 

ς 

Table No. (6) The second table for the simplex method 

We choose another variable to be a basic variable. We note that 

the variable ὼ is ready to be a basic variable, and thus we get 

the following table:  

 

╝║ ● ● ● ● ● 
Variables 

Equations 

ρ

σ
ȟρ 

ς

σ
 

ρ π π ρ

σ
 

ὼ 

τ

σ
ȟφ 

υ

σ
 

π π ρ ς

σ
 

ὼ 

Table No. (7): Final solution table 

Thus, we obtain a base consisting of the variables ὼ ȟὼ. We 

set the free variables equal to zero, and we obtain the following 

non-negative neutrosophic basic solution: 

πȟ
τ

σ
ȟφȟπȟ

ρ

σ
ȟρȟπ 

We repeat the steps we took to find the previous solution to get 

additional solutions. 
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Conclusion: 

In this study, we have examined the sets of neutrosophic linear 

equations that serve as the foundation for neutrosophic linear 

programming. Additionally, we have discussed the Gauss-

Jordan method, which is regarded as the mathematical 

foundation for the simplex method, which finds positive basic 

solutions when there are constraints on some or all of the 

variables' values being positive. This method is then used to 

find the optimal solution for linear models using direct 

simplex. Our fundamental neutrosophic solutions that express 

indeterminate values are derived from the examples we have 

given on systems of neutrosophic equations. can be applied 

when the data supplied to the systems that follow these 

equation systems are dynamic. The margin of freedom 

provided by neutrosophic values might be advantageous in this 

case. 
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Chapter II : Neutrosophic Linear Models 

Introduction. 

2ï1- Basic formulas of neutrosophic linear models. 

2-1-1-The general formula for the neutrosophic linear model. 

2-1-2- The canonical neutrosophic formula for the linear 

model. 

2-1-3- The standard neutrosophic formula for the linear model. 

2-1-4- The symmetrical formula of the neutrosophic linear 

model. 

2-2- How to move from one formula to another. 

2-3- Examples of the above. 

Conclusion. 
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Chapter II  

Neutrosophic Linear Models 

Introduction : 

This chapter presents the formulas for neutrosophic linear 

mathematical models, which are linear models that include 

neutrosophic values in their mathematical relations, either in 

the constraint relation or the objective function relation. This 

allows the model to account for all possible changes in the 

operating environment of the system it represents, ensuring a 

safe workflow for the facility. To this end, we will treat the 

variables in the objective function as neutrosophic values, i.e., 

ὔὧ ὧ ‐. 

Also, the values that express the available capabilities are 

neutrosophic values,  i.e., ὔὦ ὦ and , ὔὥ  ὥ ‘  

where Ὦ ρȟςȟȣȟὲ ȟὭ ρȟςȟȣȟά  are undefined values that 

have a margin of freedom and are taken according to the nature 

of the situation represented by the linear model therefore, 

utilizing the subsequent investigation, we give the fundamental 

formulas of linear models: 

2ï1- Basic formulas of neutrosophic linear models: 

Neutrosophic linear models can be classified according to the 

following formulas: 

2-1-1-The general formula for the neutrosophic linear 

model: 

The general neutrosophic formula for the linear mathematical 

model is given in abbreviated form as follows: 
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ὔὤ ὧ ‐ὼ ὓὥὼ έὶ ὓὭὲ 

Constraints: 

ὔὥὼ ὦ Ƞ  Ὥ     ρȟςȟȣȟά 

ὼ π 

where ὧ ‐  ȟ    ὦ ȟ    ὥȟὮ ρȟςȟȣȟὲ ȟὭ ρȟςȟȣȟά  

are constants having set or interval values according to the 

nature of the given problem, ὼ are decision variables. 

It is given in the following detailed form: 

Find: 

ὔὤ ὔὧὼ ὔὧὼ Ễ ὔὧὼ ὓὥὼ έὶ ὓὭὲ 

Constraints: 

ὔὥὼ ὔὥὼ Ễ ὔὥ ὼ ὔὦ    Ὥ ρȟςȟȣȟά 

ὼȟὼȟȣȟὼ π 

Linear models can also be expressed using matrices, and 

therefore the neutrosophic linear model given in the general 

form can be written using matrices as follows: 

Find: 

ὔὤ ὔὅ 8 ὓὥὼ έὶ ὓὭὲ 

Constraints: 
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ὔὃ 8 ὔὄ 

8 π 

where: 

ὔὃ

ὔὥ       ὔὥȣὔὥ
 ὔὥ         ὔὥ  ȣὔὥ
ȣȣȣȣȣȣȣ

ὔὥ        ὔὥ ȣὔὥ

  ὔὄ

ὔὦ
ὔὦ
ȢȢ
ὔὦ

   ὔὅ

ὔὧ
ὔὧ
ȢȢ
ὔὧ

 8

ὼ
ὼ
ȢȢ
ὼ

 

 

2-1-2- The canonical neutrosophic formula for the linear 

model: 

If every variable is required to be non-negative and every 

constraint is provided in the form of an inequality that must be 

entered in the format (where ¢ is less than or equal to), then the 

linear program is considered canonical. The following is an 

abbreviated form of the neutrosophic canonical form: 

ὔὤ ὧ ‐ὼ ὓὥὼ  

Constraints: 

ὔὥὼ ὦ Ƞ  Ὥ     ρȟςȟȣȟά 

ὼ π 

It is given in the following detailed form: 

Find: 

ὔὤ ὔὧὼ ὔὧὼ Ễ ὔὧὼ ὓὥὼ  
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Constraints: 

ὔὥὼ ὔὥὼ Ễ .ὥ ὼ ὔὦ 

ὔὥὼ ὔὥὼ Ễ ὔὥὼ ὔὦ 

éȣȣȣȣȣȣȣȣȣȣȣȣȣ 

ὔὥ ὼ ὔὥ ὼ Ễ ὔὥ ὼ ὔὦ 

ὼȟὼȟȣȟὼ π 

Linear models can also be expressed using matrices, and 

therefore the neutrosophic linear model given in the canonical 

form can be written using matrices as follows: 

Find: 

ὔὤ ὔὅ 8 ὓὥὼ  

Constraints: 

ὔὃ 8 ὔὄ 

8 π 

where: 

ὔὃ

ὔὥ       ὔὥȣὔὥ
 ὔὥ         ὔὥ  ȣὔὥ
ȣȣȣȣȣȣȣ

ὔὥ        ὔὥ ȣὔὥ

  ὔὄ

ὔὦ
ὔὦ
ȢȢ
ὔὦ

  ὔὅ

ὔὧ
ὔὧ
ȢȢ
ὔὧ

  8

ὼ
ὼ
ȢȢ
ὼ

 

2-1-3- The standard neutrosophic formula for the linear 

model: 

When it comes to solving linear programming problems, the 

standard form is crucial. This is because solving a linear 

programming problem has been reduced to solving a set of 

linear equations made up of n equations with ὲ ά unknowns. 

Solving this sentence is helpful if it can be done, meaning that 

if it satisfies the requirement that ὼ π be non-negative, then 
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the ideal values for the variables are those that satisfy the 

constraints and give the objective function the maximum or 

smallest value permissible by the problem text. 

The standard neutrosophic formula is given in the following 

abbreviated form: 

Find: 

ὔὤ ὧ ‐ὼ ὓὥὼ  έὶ ὓὭὲ  

Constraints: 

ὔὥὼ ὦ Ƞ  Ὥ     ρȟςȟȣȟά 

ὼ π 

It is given in the following detailed form: 

Find: 

ὔὤ ὔὧὼ ὔὧὼ Ễ ὔὧὼ ὓὥὼ  έὶ ὓὭὲ  

Constraints: 

 

ὔὥὼ ὔὥὼ Ễ .ὥ ὼ ὔὦ 

ὔὥὼ ὔὥὼ Ễ ὔὥὼ ὔὦ 

éȣȣȣȣȣȣȣȣȣȣȣȣȣ 

ὔὥ ὼ ὔὥ ὼ Ễ ὔὥ ὼ ὔὦ 

ὼȟὼȟȣȟὼ π 
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Since matrices may also be used to define linear models, the 

neutrosophic linear model given in standard form can be stated 

as follows in matrices: 

Find: 

ὔὤ ὔὅ 8 ὓὥὼ  έὶ ὓὭὲ  

Constraints: 

ὔὃ 8 ὔὄ 

8 π 

where: 

ὔὃ

ὔὥ       ὔὥȣὔὥ
 ὔὥ         ὔὥ  ȣὔὥ
ȣȣȣȣȣȣȣ

ὔὥ        ὔὥ ȣὔὥ

 ὔὄ

ὔὦ
ὔὦ
ȢȢ
ὔὦ

    ὔὅ

ὔὧ
ὔὧ
ȢȢ
ὔὧ

 8

ὼ
ὼ
ȢȢ
ὼ

 

With the exception of the non-negative constraints, which 

continue to be inequalities, all of the constraints in this case are 

of the equality type. All of the decision variables must also be 

non-negative, as must the right side of each equality constraint. 

In the standard neutrosophic form, the objective function can 

either be a minimization function or a maximization function. 

2-1-4- The symmetrical formula of the neutrosophic linear 

model: 

We say of a linear program that it is in the symmetrical form if 

all variables are constrained to be non-negative and if all 

constraints are given in the form of inequalities. the inequalities 

of the constraints of the maximization problem must be in the 

form (  (less than or equal to), while the inequalities of the 

constraints in the minimization problem must be in the form 

(  (greater than or equal to). Next, we utilize one of the two 
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following formulas to construct the neutrosophic symmetric 

formula: 

First figure: 

The neutrosophic symmetric formula for the linear 

mathematical model is given in the abbreviated form as 

follows: 

ὔὤ ὧ ‐ὼ ὓὥὼ  

Constraints: 

ὔὥὼ ὦ Ƞ  Ὥ     ρȟςȟȣȟά 

ὼ π 

It is given in the following detailed form: 

Find: 

ὔὤ ὔὧὼ ὔὧὼ Ễ ὔὧὼ ὓὥὼ  

Constraints: 

ὔὥὼ ὔὥὼ Ễ .ὥ ὼ ὔὦ 

ὔὥὼ ὔὥὼ Ễ ὔὥὼ ὔὦ 

éȣȣȣȣȣȣȣȣȣȣȣȣȣ 

ὔὥ ὼ ὔὥ ὼ Ễ ὔὥ ὼ ὔὦ 

ὼȟὼȟȣȟὼ π 

Using matrices as follows: 

Find: 

ὔὤ ὔὅ 8 ὓὥὼ  
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Constraints: 

ὔὃ 8 ὔὄ 

8 π 

where: 

ὔὃ

ὔὥ       ὔὥȣὔὥ
 ὔὥ         ὔὥ  ȣὔὥ
ȣȣȣȣȣȣȣ

ὔὥ        ὔὥ ȣὔὥ

ὔὄ

ὔὦ
ὔὦ
ȢȢ
ὔὦ

    ὔὅ

ὔὧ
ὔὧ
ȢȢ
ὔὧ

  8

ὼ
ὼ
ȢȢ
ὼ

 

Second form: 

The summary is as follows: 

The neutrosophic symmetric formula for the linear 

mathematical model is given in the abbreviated form as 

follows: 

ὔὤ ὧ ‐ὼ ὓὭὲ  

Constraints: 

ὔὥὼ ὦ Ƞ  Ὥ     ρȟςȟȣȟά 

ὼ π 

It is given in the following detailed form: 

Find: 

ὔὤ ὔὧὼ ὔὧὼ Ễ ὔὧὼ ὓὭὲ 

Constraints: 

ὔὥὼ ὔὥὼ Ễ .ὥ ὼ ὔὦ 

ὔὥὼ ὔὥὼ Ễ ὔὥὼ ὔὦ 
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éȣȣȣȣȣȣȣȣȣȣȣȣȣ 

ὔὥ ὼ ὔὥ ὼ Ễ ὔὥ ὼ ὔὦ 

ὼȟὼȟȣȟὼ π 

Using matrices as follows: 

Find: 

ὔὤ ὔὅ 8 ὓÉÎ  

Constraints: 

ὔὃ 8 ὔὄ 

8 π 

where: 

ὔὃ

ὔὥ       ὔὥȣὔὥ
 ὔὥ         ὔὥ  ȣὔὥ
ȣȣȣȣȣȣȣ

ὔὥ        ὔὥ ȣὔὥ

  ὔὄ

ὔὦ
ὔὦ
ȢȢ
ὔὦ

 ὔὅ

ὔὧ
ὔὧ
ȢȢ
ὔὧ

   8

ὼ
ὼ
ȢȢ
ὼ

 

 

2-2- How to move from one formula to another: 

A brief explanation of the neutrosophic linear models' 

formulas. It should be mentioned that we may use the 

following basic transformations to get from one formula to 

another: 

¶ Converting the minimum value of the objective 

function f(x) to a maximum value by multiplying it 

by (-1) we get (- (Ὢὼ . 

¶  If the inequalities were of the form (greater than or 

equal to) they will be converted to the form (less than 

or equal to) by multiplying both sides by (-1), and 

vice versa. 
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¶ The equality constraint can be converted into two 

inequalities of different direction. 

¶ If the left side of an (inequality) constraint is given in 

absolute value, it can be converted into two regular 

inequalities. 

¶ Constraint inequalities of the type (greater than or 

equal to) are converted to an equality constraint by 

subtracting an appropriate positive variable (i.e., 

artificial variable) from the left side of the inequality 

and this variable is entered into the objective function 

with zero coefficient. 

¶  Constraint inequalities of the type (less than or equal 

to) are converted into an equality constraint by 

adding an appropriate positive variable (i.e., slack 

variable) to the left-hand side of the inequality and 

then this variable is entered into the objective 

function with zero coefficient. 

¶ If one of the decision variables ὼ is not constrained 

by the non-negative condition (that is, it can be 

negative, positive or zero), then it can be expressed as 

the difference between two non-negative variables 

ὼȟὼͼas follows ὼ ὼ ὼͼand  ὼȟὼͼ π 

2-3- Examples of the above: 

The linear models in all examples are given in detailed form: 

Example 1: 

In its generic form, refer to the following as neutrosophic linear 

programming: 

ὓὭὲ ὔὒ σ ‐ὼ σ ‐ ὼ χ ‐ ὼ  

Constraints: 



Neutrosophic linear models and algorithms to find their optimal solution 

- 33 - 
 

ὼ ὼ σὼ τπ  

ὼ ωὼ χὼ υπ  

υὼ σὼ ςπ  

ȿυὼ ψὼȿ ρππ 

ὼȟὼ π    

where ‐ is indeterminate and could be 

‐ᶰ‗ ȟ‗  or ‐ᶰ ‗ ȟ‗  ; Ὦ ρȟςȟσ. 

Also, the values that express the available possibilities  are 

neutrosophic values. This means that it is indeterminate and 

could be 

‘ᶰ‘ȟ  or ᶰ‘ȟ‘  ; Ὥ ρȟςȟσȟτ 

To convert the above problem into the neutrosophic canonical 

form, we perform the following transformations: 

Å The objective function is a function of minimization that we 

turn into a function of maximization:   

ὓὭὲ ὔὒ σ ‐ὼ σ ‐ ὼ χ ‐ ὼ 

Transformed into: 

ὓὥὼ ὔὤ σ ‐ὼ σ ‐ ὼ χ ‐ ὼ 

Å The second constraint is given (greater than or equal to) is 

converted into (less than or equal) by multiplying both sides by 

(-1) we get: 

ὼ ωὼ χὼ υπ   

Å Third constraint υὼ σὼ ςπ  transformed into two 

entries:  

υὼ σὼ ςπ  

υὼ σὼ ςπ  

Then we turn the constraint υὼ σὼ ςπ  :into 

υὼ σὼ ςπ   
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Å The constraint ȿυὼ ψὼȿ ρππ is equivalent to the 

two inequalities:   

υὼ ψὼ ρππ 

υὼ ψὼ ρππ 

Å The variable ὼ is not restricted by the non-negative 

constraint, so it is replaced by the following assumption 

  ὼ ὼ ὼͼwhereὼȟὼͼ π.  

The canonical neutrosophic form becomes: 

ὓὥὼ ὔὤ σ ‐ὼ σ ‐ὼ χ ‐ ὼ ὼͼ  

Constraints: 

ὼ ὼ σὼ ὼͼ τπ  

ὼ ωὼ χὼ ὼͼ υπ   

υὼ σὼ ςπ  

υὼ σὼ ςπ   

υὼ ψὼ ὼͼ ρππ 

υὼ ψὼ ὼͼ ρππ 

ὼȟὼȟὼȟὼͼ π 

Example 2: 

A factory produces four types of products ὛȟὛȟȟὛȟὛ. For 

this purpose, the following raw materials are used: ὓȟὓȟὓ  .  

Keeping in mind that the profit is directly correlated with the 

quantity of units sold of the products, the factory management 

seeks to analyze the best way to organize production over a 

given time period (say, a month) and calculate the monthly 

production for each product in order to maximize profit. The 

following table displays the available amounts of raw materials 

required for each product as well as the profit: 
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Available 

Quantities 

Product Type Products 

Materials 

 Ὓ Ὓ Ὓ Ὓ 

σπππ ρ ςȢτ ρ ρȢυ ὓ  

ωπππ σȢυ ρ υ ρ ὓ  

χπππ   ρ σȢυ σ ρȢυ ὓ  

 φ ‐ υ ‐ ψ ‐ τ ‐ win one product 

 

Assuming that ὼȟὼȟ ὼȟὼ represent the number of units 

created from the types of goods during the course of the 

production period (a month, for example), the amount of raw 

material ὓ  that is consumed in the creation of the four 

variations is as follows: 

ρȢυὼ ὼ ςȢτὼ ὼ 

and it must not exceed 13000 d°  from the available quantity, 

that is: 

ρȢυὼ ὼ ςȢτὼ ὼ σπππ          ρ 

Likewise, the amount of raw material M2 consumed in the 

production of the four types is: 

ὼ υὼ ὼ σȢυὼ ωπππ        ς 

and the amount consumed of the raw material M3 in the 

production of the four types is: 

ρȢυὼ σὼ σȢυὼ ὼ χπππ         σ 

In addition, the produced quantities must be non-negative, i.e.: 

ὼȟὼȟὼȟὼ π       τ 

These are referred to as non-negative conditions. 

Thus, we have identified all the constraints imposed on the 

variables of the problem. 
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We now define the objective function. If quantified units  

ὼȟὼȟὼȟὼ of species are produced in order, then the profit 

during the productive period will be: 

ὔὤ τ ‐ὼ ψ ‐ ὼ υ ‐ ὼ φ ‐ ὼ   

It represents the objective function. Therefore, the 

mathematical model of the problem is: 

ὓὥὼ ὔὤ τ ‐ὼ ψ ‐ ὼ υ ‐ ὼ φ ‐ὼ   

Constraints: 

ρȢυὼ ὼ ςȢτὼ ὼ σπππ 

ὼ υὼ ὼ σȢυὼ ωπππ 

ρȢυὼ σὼ σȢυὼ ὼ χπππ 

ὼȟὼȟὼȟὼ π    

We have obtained a neutrosophical canonical linear model 

using the appropriate transformations, which can be written in 

the following neutrosophical standard form: 

ὓὥὼ ὔὤ τ ‐ὼ ψ ‐ ὼ υ ‐ ὼ

φ ‐ ὼ πώ πώ πώ 

Constraints: 

ρȢυὼ ὼ ςȢτὼ ὼ ώ σπππ 

ὼ υὼ ὼ σȢυὼ ώ ωπππ 

ρȢυὼ σὼ σȢυὼ ὼ ώ χπππ 

ὼȟὼȟὼȟὼ π   
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Conclusion: 

The indeterminacy that we introduced into the data described 

by the linear model provides us with neutrosophical linear 

models that simulate reality and account for the majority of the 

changes that could occur in the operating environment of the 

system represented by the linear mathematical model, allowing 

us to continue studying linear programming topics such as 

identifying accompanying programs that need to be developed. 

The symmetrical mathematical model, solving linear models 

using the simplex approach, which involves creating models in 

the standard form, and other linear programming subjects are 

covered. 
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Chapter III : The graphical method for finding 

the optimal solution for neutrosophic linear 

models 

Introduction. 
3.1. Graphical method for solving linear models. 

3.2. Graphical method for finding the optimal solution for 

neutrosophic linear models. 

3.3. Non-negative constraints for optimal solution of some 

neutrosophic linear models using the graphical method.  

3.4. Neutrosophic linear mathematical model conclusion. 

Conclusion. 
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Chapter III  

The graphical method for finding the optimal 

solution for neutrosophic linear models 

 

Introduction : 
After discussing the linear models and their various formulas 

based on neutrosophic scientific principles, we provide the 

neutrosophic graphical approach that we apply to solve the 

neutrosophic linear models in this chapter. 

One of the easiest approaches to tackling linear programming 

issues is the graphical method, which visualizes the model. But 

since linear programming issues frequently involve a lot of 

variables, it is insufficient to solve all of them, and the 

graphical technique can only be applied in the following 

situations: 

¶ The number of unknowns is n = 1, or n = 2, or n = 3.  

¶ In linear models whose constraints are equal constraints, if 

the number of unknowns and the number of equations meet 

one of the following conditions: n ï m = 1 or n ï m = 2 or  

n ï m = 3. 

Here, we may use the non-negative constraints that the linear 

model's variables have to turn the model into a function of one, 

two, or three variables. The graphical method for solving linear 

models where the constraints are equal and the difference 

between the number of unknowns and the number of 

constraints is equal to one, two, or three is reformulated in this 

study along with the graphical method for solving linear 

models using neutrosophics. 
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3.1. Graphical method for solving linear models 

We find the optimal solution by following the steps below: 

1. We determine the half-planes defined by the inequalities 

of the constraints by drawing the straight lines resulting 

from the transformation of the inequalities of the 

constraints. To do this, we specify two points that fulfill 

the constraint, and connect the two points to obtain the 

straight line that corresponds to the constraint. This 

straight line divides the plane into two halves to 

determine the half-plane that satisfies the constraint. We 

select a point at the top of the mapping from one of the 

two half-planes. We substitute the coordinates of this 

point into the inequality. If it is satisfied, then the region 

in which this point is located is the solution region. If it 

is not satisfied, then the opposite region is the solution 

region. 

2. We define the common solution region, i.e., the region 

resulting from the intersection of the halves of the 

planes defined by constraint inequalities. This region 

must be non-empty so that we can proceed with the 

solution. 

3. To represent the objective function, we note that its 

relation contains three unknowns, ὤȟὼ  ȟὼ.  

Therefore, we need to know a value for Z that is 

unknown to us. Here we assume a value, let it be 

 ὤ π, draw the equation of the objective function ὤ 

specify another value, let it be ὤ, and represent the 

equation. If we continue on in the same way, we will 

eventually have a sequence of parallel lines that 
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represent the objective function in addition to a line that 

is parallel to the original line. 

4. We draw ray ὅᴆ
ὧ
ὧ  where ὧ is coefficient of ὼ and 

ὧ is coefficient of ὼ in the objective function 

statement, and the direction of its increasing function is 

the direction of ray ὅᴆ
ὧ
ὧ , and the direction of its 

decreasing function is the opposite direction. This ray, 

i.e., the drawing is done according to the type of 

objective function (maximization or minimization). To 

put it more clearly, we find the optimal solution point by 

drawing the line representing ὤ parallel to itself 

towards the ray ὅᴆ
ὧ
ὧ  to find the maximum value of 

the objective function (and reversing this direction to 

find the smallest value), until it passes through the last 

point of the common solution region and this point is the 

optimal solution point, which is located at the 

boundaries of the common solution region and any other 

displacement, no matter how small, takes it out of it. 

3.2. Graphical method for finding the optimal 

solution for neutrosophic linear models 

By using the concept of neutrosophic linear models, we can 

determine that the best solution a neutrosophic value 

appropriate under all circumstances may be reached by 

applying the same earlier procedures. We illustrate the above 

with the following example: 
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Example 1 

A company produces two types of products ὃ   ȟὃ  and uses 

three types of raw materials ὄ   ȟὄ ȟὄ in the production 

process; the available quantities of each of the raw materials 

are ὄ ȠὭ ρȟςȟσ, the quantity required to produce one unit of 

each products ὃ   Ƞ  Ὦ ρȟς, and the profit derived from one 

unit of each of the products ὃ   ȟὃ is shown in the following 

table: 

available 

quantities 
ὃ  ὃ   

products 
raw materials 

σφ τ φ ὄ   
ρς σ ς ὄ 
ρπ π υ ὄ 

 ςȟτ φȟψ profit  

Table Issue data 

 Requirement 

Determine the quantities that must be produced of each product 

ὃ   Ƞ  Ὦ ρȟς , for the company to achieve maximum profit: 

Ascertain the necessary production volumes for each product 

ὃ   Ƞ  Ὦ ρȟς, in order for the business to make the most profit 

possible: 

Solution: 

Suppose ὼ is the quantity produced from the product, 

where Ὦ ρȟς, then we can formulate the following 

neutrosophic linear mathematical model: 

ὤ φȟψὼ ςȟτὼᴼὓὥὼ 

Constraints: 

φὼ τὼ σφ     ρ 
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ςὼ σὼ ρς    ς 
υὼ ρυ 

ὼȟὼ π 

Because the coefficients of the variables in the objective 

function are undetermined, the preceding model is a linear 

neutrosophic model. To identify the optimal solution for the 

preceding model, we will use a graphical method as shown 

below: 

The first constraint 

We draw the straight line representing the first constraint: 

φὼ τὼ σφ   

We impose: 

ὼ πᵼτὼ σφᵼὼ ω 
We get the first point: ὃπȟω.  
We impose: 

ὼ πᵼφὼ σφᵼὼ φ 

We get the second point: ὄφȟπ 
We take a point at the top of the designation from one of the 

two halves of the resulting plane after having drawn the 

straight line through the two points  ὃπȟω and ὄφȟπ. Let it 

be the point  ὕπȟπ and substitute it in the inequality of the 

first entry. We find that the inequality is satisfied i.e., the half 

of the plane to which the point  ὕπȟπ belongs is half of the 

solution plane of the first-constraint inequality. 
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We proceed in the same way for the second and third 

constraints and obtain the following graphical representation: 

Figure No. (1): 
 

 
Figure No. (1) Graphic representation of the limitations of the linear 

model in Example 1 

After we have shown the constraints, we notice that the 

common solution area is bounded by the polygon whose 

vertices are the points πȟπ , Ὁσȟπ, ὓ and ὅπȟτ.  

The point ὓ is the intersection point, and the second and third 

constraints coordinates are obtained by solving the following 

two equations: 

ςὼ σὼ ρς     

υὼ ρυ 
We find: ὓσȟς  
Substituting the coordinates of the vertex points into the 

objective function expression, we get: 
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ὤ π 

ὤ ᶰρςȟρφ 

ὤ ᶰςςȟσς 

ὤ ᶰψȟρφ 

This means that the highest value of function Z is reached at 

point σȟς, i.e., the company must produce three units of the 

first product and two units of the second product, then it will 

achieve the maximum profit. 

ὓὥὼ ὤ ὤ ᶰςςȟσς 

Note: 

When the number of points is small, we can easily substitute 

them in the objective function, and the point that gives the best 

value for the objective function is the optimal solution, but 

when there are a large number of constraints, we get a large 

number from the vertical points located on the perimeter of the 

common solution area. In the above scenario, calculating all of 

these points' coordinates and putting them into the objective 

function becomes problematic. As a result, as previously 

stated, we resort to the representation of the objective function 

and the calculation of the optimal solution point. 

3.3. Non-negative constraints for optimal solution of 

some neutrosophic linear models using the 

graphical method 

Example 2 

Find the optimal solution for the following linear neutrosophic 

model: 
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ὤ ὼ ὼ σὼ ὼ ςȟυὼ ὼ ςὼ ρπȟρυO ὓὥὼ 

Constraints: 
ὼ ὼ ὼ υ                              ρ 

ςὼ ὼ ὼ ὼ ρρ            ς 

ὼ ὼ ὼ τ                           σ 
ὼ ὼ φ                                       τ 
ςὼ σὼ ὼ ςὼ ψ          υ 
ὼȟὼȟὼȟὼȟὼȟὼȟὼ π 

Solution: 

We note that the number of constraints is ά υ and the 

number of variables is ὲ χ, which means that ὲ ά ς. 

As a result, using the graphical method and the non-negative 

constraints, identify the best solution for the previous model 

using the steps below. 

1- We calculate five variables in terms of only two 

variables. 

2-  Given that the linear model's variables fulfill the non-

negative requirements, we can derive five inequalities of 

the type greater than or equal to from the variables we 

computed. 

3- The objective function with only two variables is 

obtained by substituting the five variables. 

4- We write the new model, which is a linear model with 

two variables, so that the optimal solution can be found 

graphically. 

We apply the previous steps to Example 2. 

We find: 
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ὼ υ ὼ ὼ             ρᴂ 

ὼ  σὼ ςὼ φ        ςᴂ 

ὼ ὼ ὼ τ              σᴂ 

ὼ φ ὼ                      τᴂ 

ὼ χ  ὼ ὼ           υᴂ 

Substituting in the objective function, we get: 

ὤ ρȟτὼ σȟφὼ ψȟςυ 

Since ὼȟὼȟὼȟὼȟὼ π from (1)ô, (2)ô, (3)ô, (4)ô, (5)ô, we 

get the following set of constraints: 

υ ὼ ὼ π   

 σὼ ςὼ σ π   

ὼ ὼ τ π    
φ ὼ π    
χ  ὼ ὼ π   

Neutrosophic linear mathematical model:  

 Find:  

ὤ ρȟτὼ σȟφὼ ψȟςυO ὓὥὼ 

Constraints: 
υ ὼ ὼ π  

σὼ ςὼ φ π 

ὼ ὼ τ π  

φ ὼ π  
χ  ὼ ὼ π   
ὼȟὼ π 
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Because the model includes two variables, the best solution 

may be identified visually by following the procedures outlined 

in Example (1). 

The required graphic representation is found in Figure No. (2): 

 
Figure No. (2): Graphical representation of the constraints of the 

linear model in Example 2 

Region Ὀ is the region of joint solutions and is defined by the 

polygon ὕὄὙὛὅ, where ὕπȟπ, υȟπ, ὅπȟσ, and for the two 

points ὙȟὛ we find that the point Ὑ is the point of intersection 

of the first and fourth entries.  

We obtain its coordinates by solving the set of equations: 

υ ὼ ὼ π 

φ ὼ π 

We get: Ὑρρȟφ. 
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The point Ὓ is the point of intersection of the second and fourth 

entries. 

We obtain its coordinates by solving the set of equations: 

σὼ ςὼ φ π 

φ ὼ π 
We get: Ὓςȟφ. 

Since the optimal solution is located at one of the vertices of 

the common solution region, we substitute the coordinates of 

these points with the objective function: 

At point ὕπȟπ  

ὤ π 

At point ὄυȟπ 

ὤ ρσȟτυ 

At point Ὑρρȟφ  

ὤ ᶰσχȟρπυ 

At point Ὓςȟφ  

ὤᶰςψȟφω 

At point ὅπȟσ  

ὤ ᶰρχȟτσ 

The greatest value of the objective function is at the point 

Ὑρρȟφ that is ὼ ρρ and ὼ φ.  

We calculate the values of the remaining variables by (1)ô, (2)ô, 

(3)ô, (4)ô, (5)ô. 

We find: ὼ π  ȟὼ ςχ ȟὼ ςρ ȟὼ π ȟὼ ς.  
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Substituting in the objective function of the original model we 

obtain the maximum value of the ὤ function, which is: 

ὓὥὼὤɴφψȟρςφ 

Important Notes: 

1- A vertical point in space  Ὑ  is covered by the graphical 

solution. The ideal solution pertains to a vertical point, 

which is the outcome of several lines or planes 

intersecting, therefore the number of non-existent 

components is at least ὲ ά components. 

2-  Certain conditions that are irrelevant to the solution 

process might be included in the model. 

3- When one of the sides of the common solution area that 

passes through the ideal solution point is parallel to the 

straight-line Z=0, the ideal solution can be a single point 

or an infinite number of points. Thus, when the objective 

function is represented by a straight line, this line will 

apply to the parallel side, and all of the infinitely many 

points on that side will be perfect solutions. 

4- We say that the objective function has an endless 

number of acceptable solutions that offer us greater 

values of Z if the region of acceptable solutions is open 

in terms of growing the function Z, meaning that we 

cannot stop at a particular perfect solution.  

5- When the requirements clash, there is no ideal 

(acceptable) solution and the zone of alternatives is an 

empty set (the problem is impossible to solve). 
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Conclusion: 
This chapter addressed both the graphical approach and a 

method that is rarely discussed in classical operations research 

references: employing non-negative constraints to graphically 

identify the optimal solution for specific neutrosophic linear 

models. It should be emphasized, however, that certain 

neutrosophic linear models contain two variables. In particular 

cases, reaching the common solution region or determining the 

optimal solution once the common solution has been located 

may be challenging, hence the simplex neutrosophic method is 

recommended. Because the main goal is to arrive at the optimal 

solution, the researcher must select the appropriate strategy for 

the model he seeks to solve. 
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Chapter IV : The simplex direct neutrosophic 

algorithm for finding the optimal solution for 

linear models 

Introduction. 

4-1- The neutrosophic linear models set in the symmetrical 

form and of the ὓὥὼ type. 

4-2- The neutrosophic linear models are in symmetric form and 

are of type -ÉÎ. 

Conclusion. 
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Chapter IV  

The simplex direct neutrosophic algorithm for 

finding the optimal solution for linear models 

Introduction:  

Linear programming is a method for choosing decisions and 

approving the optimal program for independent activities while 

taking available resources into account Linear programming is 

used to solve problems with specific goals, such as maximizing 

profit, minimizing cost, or saving the most time or effort... etc., 

noting that the linear programming problem, which consists of 

a linear function and knowledge of a set of inequalities or 

equations (constraints), is characterized by the presence of a 

large number of acceptable non-negative solutions, and what is 

required is to find the optimal solution from a set of solutions. 

We depend on the information obtained when we explored 

non-negative solutions to the system of neutrosophic linear 

equations (in the first chapter) to arrive at this solution. Then 

we used the simplex method, which serves as the mathematical 

foundation for the direct simplex algorithm utilized to 

determine the optimal solution for the linear models presented 

in this chapter. 

Direct simplex algorithm for solving neutrosophic linear 

models: 

The direct simplex algorithm consists of three stages: 

a- The stage of converting the imposed model into an 

equivalent systematic form. 

b- The stage of converting the regular form into a basic 

form to obtain the non-negative basic solutions. 
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c- The stage of searching for the optimal solution required 

from among the non-negative basic solutions. 

We will utilize the direct simplex method in this chapter to 

determine the best solution for the neutrosophic linear 

models described in the second chapter of this book, and we 

will identify the following cases: 

1- The neutrosophic linear models are in symmetric form 

and are of type ὓὥὼ. 

2- The neutrosophic linear models are in symmetric form 

and are of type ὓὭὲ. 

3- The neutrosophic linear models are given in the general 

form. 

Using the direct simplex method to find the optimal 

solution:  

4-1- The neutrosophic linear models set in the 

symmetrical form and of type ╜╪●: 

The neutrosophic linear model of type ὓὥὼ is written in the 

symmetrical form, as we mentioned in the second chapter, in 

the following form:  

Find: 

ὔὤ ὔὧὼ ὔὧὼ Ễ ὔὧὼ ὓὥὼ  

Constraints: 

ὔὥὼ ὔὥὼ Ễ .ὥ ὼ ὔὦ 

ὔὥὼ ὔὥὼ Ễ ὔὥὼ ὔὦ 

éȣȣȣȣȣȣȣȣȣȣȣȣȣ 

ὔὥ ὼ ὔὥ ὼ Ễ ὔὥ ὼ ὔὦ 
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ὼȟὼȟȣȟὼ π 

The study is carried out according to the following steps: 

1- We write the model in standard form; we get: 

  Find: 

      ὔὤ ὔὧὼ ὔὧὼ Ễ ὔὧὼ πȢώ πȢώ Ễ πȢώ ὓὥὼ  

Constraints: 

ὔὥὼ ὔὥὼ Ễ .ὥ ὼ ώ ὔὦ 

ὔὥὼ ὔὥὼ Ễ ὔὥὼ ώ ὔὦ 

éȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣ 

ὔὥ ὼ ὔὥ ὼ Ễ ὔὥ ὼ ώ ὔὦ 

ὼȟὼȟȣȟὼȟώȟώȟȣȟώ π 

2- We convert the model to the basic form. We can see here 

that the extra variables serve as a starting point for 

searching for the optimal solution. As a result, the model 

information is organized in the table below: 

Available 

quantities 
ώ  ȣ ώ ώ ὼ éé ὼ ὼ 

Variables 

 basic  

ὔὦ π ȣ π ρ ὔὥ  ȣ ὔὥ  ὔὥ  ώ 

ὔὦ π ȣ ρ π ὔὥ  ȣ ὔὥ  ὔὥ  ώ 

ȣ ȣ ȣ ȣ ȣ ȣ ȣ ȣ ȣ ȣ 

ὔὦ ρ ȣ π π ὔὥ  ȣ ὔὥ  ὔὥ  ώ  

ὤ π π π π π ὔὧ ȣ ὔὧ ὔὧ 
objective 

function 

Table No. (1): Basic information of the model 

We have a first base consisting of the variables ώȟώȟȢȢȢȟώ , 

then the variables ὼȟὼȟȢȢȢȟὼ are non-basic variables and we 

move to the next step: 
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3- We determine the appropriate variable from the 

equations and insert it into the rule by studying examples 

of the variables in the row of the objective function ὤ. 

Since the objective function is a maximization function, 

we select the largest positive values in the row of the 

objective function. In other words, we take: 

ὓὥὼὔὧȟὔὧȟȣȟὔὧ ὔὧ 

For example, let it be ὔὧ corresponding to the variable ὼ.  

Thus, we have determined the pivot column. This means that 

the variable ὼ will enter the base to determine the variable that 

will exit from the base, and therefore the pivot line. We 

calculate the following indicator: 

—ᶰὓὭὲ
ὔὦ

ὔὥ

ὦ

ὔὥ
πȠ     ὔὥ πȟὔὦ π 

The element located at the intersection of the pivot column 

with the pivot row is the pivot element. 

- We divide the pivot row by the pivot element, we get: 

ὔὥὸρ

ὔὥὸί
ȟ
ὔὥὸς

ὔὥὸί
ȟȣȟ
ὔὥὸίρ

ὔὥὸί
ȟρȟ
ὔὥὸίρ

ὔὥὸί
ȟȣȟ
ὔὥὸὲ

ὔὥὸί
ȟȣȟ
ὔὦὸ

ὔὥὸί
 

- We make all the elements of the pivot column equal 

to zeros, except for the pivot element, which is equal 

to one. 

- We perform the appropriate calculations to calculate 

the current of the new table using the following 

relations: 

ὔὥ ὔὥ ὔὥ
ὔὥ

ὔὥ

ὔὥὔὥ ὔὥὔὥ

ὔὥ
 

ὔὦὭ
ᴂ ὔὦὭ ὔὦὸ

ὔὥὭί
ὔὥὸί

ὔὦὭὔὥὸί ὔὦὸὔὥὭί
ὔὥὸί
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ὔὧ ὔὧ ὔὧ
ὔὥ

ὔὥ

ὔὧὔὥ ὔὧὔὥ

ὔὥ
 

We get the following table: 

Available 

quantities 
◐□ ȣ ◐ ◐ ●▪ ȣ ●▼ ●▼  ȣ ● ● 

Variables 

 

     basic 

ὔὦ π ȣ π ρ ὔὥ  ȣ π ὔὥ  ȣ ὔὥ  ὔὥ  ώ 

ὔὦ π ȣ ρ π ὔὥ  ȣ π ὔὥ  ȣ ὔὥ  ὔὥ  ώ 

ȣ ȣ ȣ ȣ ȣ ȣ ȣ π ȣ ȣ ȣ ȣ ȣ 

ὔὦ

ὔὥ
 π ȣ π π 

ὔὥ

ὔὥ
 ȣ ρ 

ὔὥ

ὔὥ
 ȣ 

ὔὥ

ὔὥ
 

ὔὥ

ὔὥ
 ὼ 

ȣ ȣ ȣ ȣ ȣ ȣ ȣ π ȣ ȣ ȣ ȣ ȣ 

ὔὦ ρ ȣ π π ὔὥ  ȣ π ὔὥ  ȣ ὔὥ  ὔὥ  ώ  

ὔὤ π π π π ὔὧ ȣ π ὔὧ  ȣ ὔὧ ὔὧ 
objective 

function 

Table No. (2) The first step in the simplex direct neutrosophic 

algorithm 

- We apply the stopping criterion of the Simplex algorithm 

to the objective function row in Table No. (2). 

Stopping criterion: 

Because the objective function is of the maximize type, the 

objective function row in the table must not have any positive 

values (but if the objective function is of the minimization 

type, the objective function row in the new table must not 

contain any negative values). If the requirement is not fulfilled, 

we return to step (3) and continue the process until the stopping 

criterion is met and the desired optimal solution is obtained. As 

a result, we have new non-negative neutrosophic basic 

solutions as well as non-basic (free) solutions equal to zero. 

The ideal solution is expressed as follows: 

ὔὦρ
ᴂȟὔὦς

ᴂȟȣȟὔὦά
ᴂȟπȟπȟȣȟπ 
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The following table represents the final solution if the basic 

solutions are: ὼρȟὼςȟȣȟὼά  

Available 

quantities 
◐□ ȣ ◐ ◐ ●▪ ȣ ●□  ●□ ȣ ● ● 

variables 

basic 

ὔὦ ὔ  ȣ ὔ  ὔ  ὔὥ  ȣ ὔὥ  π ȣ π ρ ὼ 

ὔὦ ὔ  ȣ ὔ  ὔ  ὔὥ  ȣ ὔὥ  π ȣ ρ π ὼ 

ȣ ȣ ȣ ȣ ȣ ȣ ȣ π π ȣ ȣ ȣ ȣ 

ὔὦ ὔ  ȣ ὔ  ὔ  ὔὥ  ȣ ὔὥ ȟ  ρ ȣ π π ὼ  

ὔὤ ὔή ȣ ὔή ὔή ὔὧ ȣ ὔὧ  π ȣ π π objective 

function 

Table No. (3) The final solution in the simplex direct neutrosophic 

algorithm 

where ὔ and ὔή are the examples of the additional 

variables in the constraints and in the objective function after 

performing the aforementioned iterative operations, the optimal 

solution is: 

ὼ ὔὦȟὼ ὔὦȟȣȟὼ ὔὦ 

which gives the maximum value of the following objective 

function: 

ὔὤ ὔὧὔὦ ὔὧὔὦ Ễ ὔὧὔὦ 

We explain the above using the following example:  

 Example 1: 

Problem Statements Classical Values: 

A corporation manufactures two types of products A and B 

from four raw materials ὊȟὊȟὊȟὊ. The following table 

shows the amounts required from each of these materials to 

produce one unit of each of the two products, the accessible 

quantities of raw materials, and the profit returned from one 

unit of both products: 
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Available 

quantities of 

the raw 

materials 

Required quantity per 

unit  

Products 

 

Raw Materials   ║ ═ 

19 3  2  Ὂ 

13 1 2  Ὂ 

15 3  0  Ὂ 

18 0  3 Ὂ 

 5  7  Profit Returned per unit  

Table No. (4) Classic data for the issue 

Requirement: 

 Finding the ideal production plan that maximizes the 

company's profit from products ὃ and ὄ. 

We represent the quantities produced by the product ὃ with the 

symbol ὼ, and the quantities created by the product ὄ with the 

symbol ὼ. After developing and solving the necessary 

mathematical model, we find that ὼ υȟὼ σ, and hence 

the maximum profit ὓὥὼὤυπ of monetary unit.  

Problem Statements neutrosophic Values: 

A company produces two types of products ὃȟὄ using four raw 

materials ὊȟὊȟὊȟὊ. The quantities needed from each of 

these materials to produce one unit of each of the two products 

ὃȟὄ, the available quantities of the raw materials, and the 

profit returned from one unit of both products are shown in the 

following table: 
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Available 

quantities of the 

raw materials 

Required quantity per 

unit  

Products 

 

Raw Materials ὄ ὃ 

ρτȟςπ σ ς Ὂ 

ρπȟρφ ρ ς Ὂ 

ρςȟρψ σ π Ὂ 

ρυȟςρ π σ Ὂ 

 σȟφ υȟψ Profit Returned per unit  

Table No. (5) Neutrosophic data for the issue 

Requirement: 

Finding the ideal production plan that maximizes the 

company's profit from products ὃ and ὄ. 

Represent the quantities produced from the product ὃ with the 

symbol ὼ, and from the product ὄ with the symbol ὼ, the 

problem will be reformulated from the neutrosophic 

perspective as follow: 

ὔὤ υȟψ ὼρ σȟφ ὼς ὓὥὼ 

Constraints: 

ςὼ σὼ ώ ρτȟςπ

ςὼ ὼ ώ ρπȟρφ

σὼ ώ ρςȟρψ

σὼ ώ ρυȟςρ

 

ὼρȟὼς π 

The preceding program must be rewritten in an equivalent way 

by including slack variables: 

ὔὤ υȟψ ὼ σȟφ ὼ πώ πώ πώ πώ ὓὥὼ 

Constraints: 
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ςὼ σὼ ώ ρτȟςπ

ςὼ ὼ ώ ρπȟρφ

σὼ ώ ρςȟρψ

σὼ ώ ρυȟςρ

 

ὼȟὼȟώȟώȟώȟώ π 

We arrange the previous information in the following table: 

 

Available 

quantities 

◐ ◐ ◐ ◐ ● ● Variables 

basic 

ρτȟςπ 0 0 0 1 3 2 ώ 

ρπȟρφ 0 0 1 0 1 2 ώ 

ρςȟρψ 0 1 0 0 3 0 ώ 

ρυȟςρ 1 0 0 0 0 3 ώ 

ὔὤ π 0 0 0 0 σȟφ υȟψ 
objective 

function 

Table No. (6): The first step in the simplex method 

¶ We note that the additional variables form an initial base 

consisting of the variables ώ
ρ
ȟώ
ς
ȟώ
σ
ȟώ
τ

. Then we 

consider the variables ὼ
ρ
ȟὼς  are non-basic variables 

and we move to the next step: 

¶ We determine the appropriate variable from the 

equations and insert it into the rule by studying the 

examples of the variables included in the expression for 

the objective function ὔὤ. Since the objective function is 

a maximization function, we choose the variable with the 

largest positive examples from the last row in the table, 

that is from the row of the objective function. In other 

words, we take  

-ÁØυȟψȟσȟφ υȟψ 
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It is clear that versus to the column of ὼ , meaning that the 

variable  ὼ should be placed instead of one of the basic 

variables. The following calculation has been performed to 

indicate which basic variables should be expelled: 

—ᶰὓὭὲ
ρτȟςπ

ς
ȟ
ρπȟρφ

ς
ȟ
ρυȟςρ

σ

ρυȟςρ

σ
υȟχ 

The value of — indicates that the row versus to the variable ώ, 

and the element positioned in the cross row/column is σ which 

is the pivot element, divide the elements of the row versus to 

ώ yields: 

σ

σ
ȟ
π

σ
ȟ
π

σ
ȟ
π

σ
ȟ
π

σ
ȟ
ρ

σ
ȟ
ρυȟςρ

σ
υȟχ 

Then we make all the elements of the pivot column equal to 

zero, except for the pivot element, which is equal to one. We 

perform the appropriate calculations using the following 

relations: 

ὔὥ ὔὥ ὔὥ
ὔὥ

ὔὥ

ὔὥὔὥ ὔὥὔὥ

ὔὥ
 

ὔὦὭ
ᴂ ὔὦὭ ὔὦὸ

ὔὥὭί
ὔὥὸί

ὔὦὭὔὥὸί ὔὦὸὔὥὭί
ὔὥὸί

 

ὔὧ ὔὧ ὔὧ
ὔὥ

ὔὥ

ὔὧὔὥ ὔὧὔὥ

ὔὥ
 

We obtain the following table:  
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Available 

quantities 
◐ ◐ ◐ ◐ ● ● 

variables 

basic 

τȟφ 
ς

σ
 0  0  1 3  0 ώ 

πȟτ 
ς

σ
 0  1 0  1 0 ώ 

ρςȟρψ 0 1 0  0  σ 0 ώ 

υȟχ 
ρ

σ
 0  0  0  0  1 ὼ 

ὔὤ

ςυȟυφ 

ψ

σ
ȟ
υ

σ
 0  0  0  σȟφ 0 

objective 

function 

For No. (7), the second step is the simplex method 

The variable ὼ should be added to the basic variables as there 

is still a non-negative value in the row of the objective function 

(i.e., [3,6]) that is corresponding to the ὼ column. Which 

fundamental variable ought to be eliminated now? To get the 

solution to this question, take these steps: 

—ᶰ-ÉÎ
τȟφ

σ
ȟ
πȟτ

ρ
ȟ
ρςȟρψ

σ

τȟφ

σ

τ

σ
ȟς 

which is versus to the slack variable ώ, the pivot element equal 

σ, hence the row versus to ώ should be divided by σ , the 

required calculations yield the following table: 
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Available 

quantities 
◐ ◐ ◐ ◐ ● ● 

Variables 

basic 

τ

σ
ȟς 

ς

ω
 0  0  

ρ

σ
 1 0  ὼ 

τ

σ
ȟς 

τ

ω
 0  1 

ρ

σ
 0  0  ώ 

ψȟρς 
ς

σ
 1 0  -1 0  0  ώ 

υȟχ 
ρ

σ
 0  0  0 0  1 ὼ 

ὔὤ

ςωȟφψ 

φ

ω
ȟρ 0  0  [-2, -1] 0  0  objective function 

Table No. (8) Final solution 

The objective functionôs row makes it evident that every 

element is either zero or a neutrosophic negative integer. This 

indicates that we have arrived at the optimal solution, which is: 

ὼᶻᶰυȟχȟὼᶻᶰ
τ

σ
ȟςȟώᶻᶰ

τ

σ
ȟςȟώᶻᶰψȟρςȟώᶻ ώᶻ π 

The following results from substituting the aforementioned 

optimal solution into the objective maximum function: 

ὓὥὼὔὤɴυȟψȢυȟχ σȟφȢ
τ

σ
ȟς ςυȟυφ τȟρς ςωȟφψ 

which is identical to the previous result. 

Substituting the optimal solution into the constraints we find: 

ςυȟχ σ
τ

σ
ȟς π ρτȟςπ

ςυȟχ
τ

σ
ȟς

τ

σ
ȟς ρπȟρφ

σ
τ

σ
ȟς ψȟρς ρςȟρψ

συȟχ π ρυȟςρ

 

We observe that the optimal solution satisfies all constraints. 
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We summarize the previous results in the following table: 

Classical logic 

results issue data 

ὓὥὼ ὤ ὼ ὼ ὦ ὦ ὦ ὦ ὧ ὧ 

50 3 5 18 15 13 19 5 7 

Neutrosophic logic 

results issue data 

ὓὥὼ ὔὤ ὼ  ὼ  ὦ  ὦ  ὦ  ὦ  ὧ  ὧ  

[29,68] τ

σ
ȟς 

[5,7]  [15,21]  [12,18]  [10,16]  [14,20]  [3,6]  [5,8] 

Table No. (9) Comparison between the results of solving the problem, 

classical data, and neutrosophical data 

4-2- The neutrosophic linear models are in 

symmetric form and are of type ╜░▪. 

The neutrosophic linear model of type ὓὭὲ is written in the 

symmetrical form, as we mentioned in the second chapter, in 

the following form: 

Find: 

ὔὒ ὔὧὼ ὔὧὼ Ễ ὔὧὼ ὓὭὲ  

Constraints: 

ὔὥὼ ὔὥὼ Ễ .ὥ ὼ ὔὦ 

ὔὥὼ ὔὥὼ Ễ ὔὥὼ ὔὦ 

éȣȣȣȣȣȣȣȣȣȣȣȣȣ 

ὔὥ ὼ ὔὥ ὼ Ễ ὔὥ ὼ ὔὦ 

ὼȟὼȟȣȟὼ π 
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We can search for the optimal solution by following one of 

the following methods: 

- As we examined in the second chapter, the objective 

function may be converted to a function of the 

maximizing type by multiplying its line by (-1), which 

yields the optimal solution for the prior linear model. 

The model is then written in standard form. Since all of 

the extra variables are preceded by a negative sign, we 

can see that there isn't a pre-made beginning rule in this 

case. Instead, we must first look for an initial solution, 

then refine it until we get the optimal one by going back 

through the same processes. 

- Additionally, we may identify the dual model, which 

will undoubtedly resemble a symmetry of the 

maximization kind. Next, we can solve it optimally as 

we previously did, or by applying the dual method to 

solve both the model and the dual model, which we shall 

discuss in the bookôs seventh chapter. 

- In such models, it is preferable to use the synthetic 

simplex algorithm, which will be presented in the bookôs 

sixth chapter. 

- Additionally, we can find the solution without changing 

the objective function. However, we must alter the 

previously described steps in one way: to find the anchor 

column, we must choose the element that is the most 

negative; this elementôs column serves as the anchor 

column. We then follow the previously stated solution, 

with the stopping criterion being that all of the objective 

functionôs line elements must be either positive or zero. 
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1- Neutrosophic linear models are given in the general 

form : 

The neutrosophic linear model is written in the following 

general form: 

Find: 

ὔὤ ὔὧὼ ὔὧὼ Ễ ὔὧὼ ὓὥὼ έὶ ὓὭὲ 

Constraints: 

ὔὥὼ ὔὥὼ Ễ ὔὥ ὼ ὔὦ    Ὥ ρȟςȟȣȟά 

ὼȟὼȟȣȟὼ π 

In the beginning, the model is written in standard form; extra 

variables are rarely used while writing the model in basic form. 

Here, we observe that while some of the extra variables fit into 

the definition to be considered fundamental variables, some do 

not.  Furthermore, no equivalent additional variables exist if 

there are certain limits on the equality type.  As a result, there 

are no basic variables. We must first construct a foundation 

upon which to launch our exploration for the optimal answer. 

Additionally, using a simplex with an artificial base ð which 

will be covered in this book's sixth chapter ð is preferred in 

this situation. 

Important Notes: 

If some of the examples corresponding to the free variables in 

the objective function line in the final table for the 

maximization type are positive, this indicates that we have not 

reached the required ideal solution and must delete the free 

variables associated to the positive value. We return to step 2 

and complete the essential steps. This is something we keep 
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mentioning ð Operations till we achieve an objective function 

line with just zeros or negative (positive) values. Alternatively, 

we may encounter one of the following scenarios: 

a- There is no ideal solution because the solution region is 

open in the direction of increasing ὔὤ, and we infer this 

from the absence of a positive element in the fulcrum. 

b- There is an infinite number of optimal solutions because 

the levels of the objective function ὔὤ are parallel to one 

of the sides or surfaces of the common solution region. 

We deduce this from the presence of a zero in the final 

row of the table of the last optimal solution, which 

corresponds to one of the free variables. Then, by 

adjusting the variable, we can achieve another optimal 

solution. We will receive another basic solution as a 

result of changing one of the basic variables. 

c- If there is no optimal solution, this happens because the 

constraints conflict with each other. We infer this from 

the absence of any positive element except for the 

constant ὔὦὭ in one of the lines. This indicates that, in 

cases where restrictions conflict, the left side takes a 

positive value and the right side takes a negative value. 

d- After finding the optimal solution, we must ensure that it 

meets all of the requirements and returns the same value 

for the objective function by substituting the objective 

function and the constraints. 
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Conclusion: 

We draw the following conclusions from the earlier research 

and the data presented in Table (9): when we solve using 

classical data, the values we obtain are specific and do not 

account for changes that might occur in the operating 

environment of the system represented by the mathematical 

model. In contrast, when we use neutrosophic data, we obtain 

areas of any indeterminate values, and this indeterminacy is 

more accurate, simulates reality, and takes into account most of 

the changes that may occur in the operating environment of the 

system represented by the linear mathematical model. 

As a result, neutrosophical data provide us with a more general 

and comprehensive study than known classical data, i.e., 

working with known classical data is no longer sufficient at 

present, because the development of science and the instability 

in the status of the facility's work environment has placed 

before us a large number of cases that require quick and 

accurate treatment to avoid losses that the facility may be 

exposed to, which cannot be treated. 

Neutrosophy, meanwhile, delivers greater comprehensiveness 

in analyzing the results and assists in getting the essential 

accuracy. On the one hand, we emphasize the importance of 

selecting the proper method to solve the model under 

consideration from among the algorithms presented in this 

book in order to save effort and time in looking for the optimal 

solution. 
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Chapter V: Modified Neutrosophic Simplex 

algorithm to find the optimal solution for 

linear models 

Introduction: 

5-1- Steps of the modified simplex neutrosophic algorithm: 

Conclusion and results: 
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Chapter V 

Modified Neutrosophic Simplex algorithm to 

find the optimal solution for linear models 

 

Introduction:  

In this chapter, we present the modified neutrosophic simplex 

algorithm, which was developed to address a problem we 

encountered when using the direct simplex algorithm: the 

large number of calculations required in each step of the 

solution, which takes a long time and effort. 

5-1- Steps of the modified simplex neutrosophic 

algorithm:  

We explain the steps of the modified simplex algorithm using 

the following neutrosophic linear mathematical model:  

ὓὥὼὤ ὔὧὼ ὔὧὼ Ễ ὔὧὼ 

ὥ ὼ ὥ ὼ Ễ ὥ ὼ ὔὦ
ὥ ὼ ὥ ὼ Ễ ὥ ὼ ὔὦ
ὥ ὼ ὥ ὼ Ễ ὥ ὼ ὔὦ
ȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȢȢ
ὥ ὼ ὥ ὼ Ễ ὥ ὼ ὔὦ

 

ὼȟὼȟȣȟὼ π 

To find the optimal solution for this linear neutrosophic 

model using the modified simplex algorithm. 

1- We write the neutrosophic linear model in standard form, 

and we get the following model: 

ÍÁØὤ ὧ ὼ ὧ ὼ Ễ ὧ ὼ πώ πώ Ễ πώ  
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ὥ ὼ ὥ ὼ Ễ ὥ ὼ ώ ὦ
ὥ ὼ ὥ ὼ Ễ ὥ ὼ ώ ὦ
ὥ ὼ ὥ ὼ Ễ ὥ ὼ ώ ὦ
ȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣ
ὥ ὼ ὥ ὼ Ễ ὥ ὼ ώ ὦ

 

ὼȟὼȟȣȟὼȟώȟώȟώȟȣȟώ π 

2- We convert the regular linear model to the basic form and 

insert the coefficients in a short table with the basic 

variables in the first column and the non- basic variables in 

the top row. 

a. We define the pivot column, which is the column 

corresponding to the largest positive value in the 

objective function row because the objective 

function is a maximization function (but if the 

objective function is a minimization function, it is 

the column corresponding to the most negative 

values). Let this column be the column of the 

variable ὼ. 

b. We define the pivot row; The pivot row is 

determined with following indicator:  

— άὭὲ
ὦ

ὥ

ὦ

ὥ
πȠ     ὥ πȟὦ π 

Let this row be the line of the base variable ώ 

Then the pivot element is the element resulting from the 

intersection of the fulcrum column and the pivot row, i.e., We 

explain the second step in the following table: 
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Non-Basic variables 

Basic Variables 
ὼ ὼ é.. ὼ é. ὼ ὔὦ 

ώ ὥ  ὥ  éé ὥ  é.. ὥ  ὔὦ 

ώ ὥ  ὥ  ....... ὥ  é. ὥ  ὔὦ 

éé.. éé. éé.. éé. éé é.. éé éé. 

ώ ὥ  ὥ  éé ὥ  éé ὥ  ὔὦ 

éé éé éé é. é.. é.. éé éé. 

ώ  ὥ  ὥ  éé. ὥ  é. ὥ  ὔὦ 

ὔὤ ὔὧ ὔὧ éé ὔὧ é.. ὔὧ ὔὤ ὔὧ 

Table No. 1: Anchor element table 

The pivot element is the one formed by the junction of the 

fulcrum column and the pivot row. The second phase is 

explained in the table below. 

1. We put opposite the pivot element ὥ  the reciprocal of 

. 

2. We calculate the elements of the row corresponding to 

the pivot row (except the pivot row element) by dividing 

the elements of the pivot row by the anchor element ὥ  

3. We calculate all the elements of the column opposite the 

fulcrum (except the fulcrum element) by dividing the 

elements of the fulcrum column by the fulcrum element 

ὥ  and then multiplying them by  )1-(  

4. We calculate the other elements from the following 

relation: 

ὥ ὥ ὥ
ὥ

ὥ

ὥὥ ὥὥ

ὥ
           ρ 

ὔὦ ὔὦ ὔὦ
ὥ

ὥ

ὔὦὥ ὔὦὥ

ὥ
       ς 

ὔὧ ὔὧ ὔὧ
ὥ

ὥ

ὔὧὥ ὔὧὥ

ὥ
        σ 
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We obtain the following table: 

Non-Basic Variables 

Basic Variables 
ὼ ὼ é.. ώ é. ὼ ὔὦ 

ώ ὥ  ὥ  éé 
ὥ

ὥ
 é.. ὥ  ὔὦ 

ώ ὥ  ὥ  ....... 
ὥ

ὥ
 é. ὥ  ὔὦ 

éé.. éé. éé.. éé. éé é.. éé éé. 

ὼ 
ὥ

ὥ
 

ὥ

ὥ
 éé 

ρ

ὥ
 éé 

ὥ

ὥ
 

ὔὦ

ὥ
 

éé éé éé é. é.. é.. éé éé. 

ώ  ὥ  ὥ  éé. 
ὥ

ὥ
 é. ὥ  ὔὦ  

ὔὤ ὔὧ ὔὧ éé 
ὔὧ

ὥ
 é.. ὔὧ ὔὤ ὔὧ 

Table No. 2: The first stage in searching for the optimal solution 

We apply the stopping criterion of the Simplex algorithm to the 

objective function row in Table (2) below: 

Given that the objective function is of the maximize type, the 

objective function row in the table must not include any 

positive value (but if the objective function is of the minimize 

type, the objective function row in the new table must not 

contain any negative value), assuming that the criterion is of 

the maximize type, we return to step No. (3) and repeat the 

same steps until the stopping criterion is met and we obtain the 

desired ideal solution. 

We explain the above using the following example:  

Example:  

A company produces two types of products ὃȟὄ using four raw 

materials ὊȟὊȟὊȟὊ. The quantities needed from each of 

these materials to produce one unit of each of the two products 

ὃȟὄ, the available quantities of the raw materials, and the 
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profit returned from one unit of both products are shown in the 

following table: 

Available 

quantities of the 

raw materials 

Required quantity per 

unit  
Products 

Raw Materials 
║ ═ 

ρτȟςπ σ ς Ὂ 

ρπȟρφ ρ ς Ὂ 

ρςȟρψ σ π Ὂ 

ρυȟςρ π σ Ὂ 

 σȟφ υȟψ Profit Returned per unit  

Table No. 3: Issue data 

Requirement: 

Finding the ideal production plan that maximizes the 

company's profit from products ὃ and ὄ. 

Represent the quantities produced from the product ὃ with the 

symbol ὼ, and from the product ὄ with the symbol ὼ. The 

problem will be redefined from a neutrosophical standpoint as 

follows: 

ÍÁØὤᶰυȟψ ὼ σȟφ ὼ 

Constraints: 

ςὼ σὼ ρτȟςπ

ςὼ ὼ ρπȟρφ

σὼ ρςȟρψ

σὼ ρυȟςρ

 

ὼ πȟὼ π 

We apply the modified simplex algorithm:  

1-  The standard form of the previous linear model is: 

ÍÁØὤᶰυȟψ ὼ σȟφ ὼ πώ πώ πώ πώ 

Constraints: 
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ςὼ σὼ ώ ρτȟςπ

ςὼ ὼ ώ ρπȟρφ

σὼ ώ ρςȟρψ

σὼ ώ ρυȟςρ

 

ὼȟὼ πȟώȟώȟώȟώ π 

2- We organize the previous information in the following 

modified simplex table: 

ὦ ὼ ὼ 
Non-basic var. 

Basic var. 

ρτȟςπ 3 2 ώ 

ρπȟρφ 1 2 ώ 

ρςȟρψ 3 0 
ώ 

ρυȟςρ 0 3 
ώ 

ὤ π σȟφ υȟψ objective function 

Table No.4: Simplex table according to the modified Neutrosophic 

simplex algorithm 

We know ὥȟὦ ὧȟὨ if ὥ ὧ and ὦ Ὠ ,Therefore. 

It is clear that ÍÁØυȟψȟσȟφ υȟψ versus to the column 

of ὼ , meaning that the variable  ὼ should be placed instead 

of one of the basic variables.  

The following calculation has been performed to indicate 

which basic variables should be expelled:  

—ᶰάὭὲ
ρτȟςπ

ς
ȟ
ρπȟρφ

ς
ȟ
ρυȟςρ

σ

ρυȟςρ

σ
υȟχ 

The value of — indicates that the row versus to the variable ώ, 

and the element positioned in the cross row/column is σ where 



Neutrosophic linear models and algorithms to find their optimal solution 

- 77 - 
 

is the pivot element, divide the elements of the row versus to 

ώ yields.  

3- We calculate the elements of the new table using 

relations (1), (2), (3), we obtain the following table: 

ὦ ὼ ὼ 
Non-basic var. 

Basic var. 

τȟφ  
ς

σ
 

ώ 

πȟτ 1 
ς

σ
 

ώ 

ρςȟρψ 3  0 ώ 

υȟχ 0  
ρ

σ
 

ὼ 

ὤ ςυȟυφ σȟφ 
ψ

σ
ȟ
υ

σ
 

objective function 

Table No.5: Table of the first step in searching for the optimal 

solution 

4-  We apply a stopping criterion in the algorithm. We find: 

There is still a non-negative number in the objective function's 

row. (i.e., σȟφ). 

This means that we have not yet reached the optimal solution, 

so we repeat the previous steps as follows: 

Where is versus to the ὼ column, this leads to the fact that the 

variable ὼ should be entered into the basic variables. The 

question now is, which fundamental variable should be 

eliminated? 

To solve this question, perform the following calculation: 

ὥȟὦ ὧȟὨ if ὥ ὧ and ὦ Ὠ. Therefore, 

—ᶰÍÉÎ
τȟφ

σ
ȟ
πȟτ

ρ
ȟ
ρςȟρψ

σ

τȟφ

σ

τ

σ
ȟς 
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which is versus to the slack variable ώ, the pivot element equal 

σ, hence the row versus to ώ should be divided by σ. The 

necessary computations result in the following tables: 

ὦ ὼ ὼ 
 Non-basic var. 

basic var. 

τ

σ
ȟς  

ς

ω
 

ὼ 

τ

σ
ȟς 

ρ

σ
 

τ

ω
 

ώ 

ψȟρς  
ς

σ
 

ώ 

υȟχ 0  1 
ὼ 

ὤ ςωȟφψ ςȟρ φȟρ objective function 

Table No. 6: Final solution table 

We apply the algorithm stopping criterion. We discover that 

the condition has been satisfied, and hence we have arrived at 

the optimal solution. 

The optimal solution for the linear model is: 

ὼᶻᶰυȟχȟὼᶻᶰ
τ

σ
ȟςȟώᶻᶰ

τ

σ
ȟςȟώᶻᶰψȟρςȟώᶻ ώᶻ π 

The value of the objective function corresponds to: 

ÍÁØὤᶰυȟψȢυȟχ σȟφȢ
τ

σ
ȟς ςυȟυφ τȟρς ςωȟφψ 

It is clear from the row of the objective function that all the 

elements are neutrosophic negative numbers, this means that 

we have reached to the optimal solution is: 

ὼᶻᶰυȟχȟὼᶻᶰ
τ

σ
ȟςȟώᶻᶰ

τ

σ
ȟςȟώᶻᶰψȟρςȟώᶻ ώᶻ π 

Substitute the above optimal solution into the objective 

maximum function, the result is: 
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This means that the company must produce the quantity 

ὼᶻᶰυȟχ of product ὃ and quantity ὼᶻᶰ ȟς of product ὄ, 

thereby achieving a maximum profit of: 

ÍÁØὤᶰυȟψȢυȟχ σȟφȢ
τ

σ
ȟς ςυȟυφ τȟρς ςωȟφψ 

To compare between the modified Simplex method and the 

direct Simplex method, we solved the same example using 

the direct Simplex algorithm. Below are the solution tables: 

ὦ ώ ώ ώ ώ ὼ ὼ 
Non-basic var. 

Basic var. 

ρτȟςπ 0 0 0 1 3 2 ώ 

ρπȟρφ 0 0 1 0 1 2 ώ 

ρςȟρψ 0 1 0 0 3 0 ώ 

ρυȟςρ 1 0 0 0 0 3 ώ 

ὤ π 0 0 0 0 σȟφ υȟψ objective function 

Table No. 7: Simplex table according to the direct neutrosophic 

simplex algorithm 

ὦ ώ ώ ώ ώ ὼ ὼ 
Non-basic var. 

Basic var. 

τȟφ 
ς

σ
 0  0  1  0 ώ 

πȟτ 
ς

σ
 0  1 0  1 0 ώ 

ρςȟρψ 0 1 0  0  3  0 ώ 

υȟχ 
ρ

σ
 0  0  0  0  1 ὼ 

ὤ ςυȟυφ 
ψ

σ
ȟ
υ

σ
 0  0  0  σȟφ 0 objective function 

Table No. 8: Table of the first step in searching for the optimal 

solution 
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ὦ ώ ώ ώ ώ ὼ ὼ 
 Non-basic var. 

basic var. 
τ

σ
ȟς 

ς

ω
 0  0  

ρ

σ
 1 0  ὼ 

τ

σ
ȟς 

τ

ω
 0  1 

ρ

σ
 0  0  ώ 

ψȟρς 
ς

σ
 1 0  -1 0  0  ώ 

υȟχ 
ρ

σ
 0  0  0 0  1 ὼ 

ὤ ςωȟφψ 
φ

ω
ȟρ 0  0  [-2, -1] 0  0  objective function 

Table No. 9: Final solution table 

The row of the objective function clearly shows that all of the 

components are either zero or neutrosophic negative values, 

indicating that we have arrived at the optimal solution, which 

is: 

ὼᶻᶰυȟχȟὼᶻᶰ
τ

σ
ȟςȟώᶻᶰ

τ

σ
ȟςȟώᶻᶰψȟρςȟώᶻ ώᶻ π 

Substitute the above optimal solution into the objective 

maximum function: 

ÍÁØὤᶰυȟψȢυȟχ σȟφȢ
τ

σ
ȟς ςυȟυφ τȟρς ςωȟφψ 

Conclusion: 
We are able to observe from the previous study that we 

obtained the same optimal solution as when we used the direct 

simplex method, but with a much smaller number of 

calculations, as shown by comparing the solution tables using 

the modified simplex method, Tables No. (4), No. (5), No. (6), 

with solution tables using the direct simplex method, Tables 

No. (7), No. (8), No. (9). To save time and effort, we 

emphasize the importance of adopting the modified simplex 

approach to identify the best solution for linear models, 

especially when there are a lot of variables and restrictions in 

the model. 
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Chapter VI : Finding a rule solution for linear 

models using artificial variables 

Introduction. 

6-1- Artificial base simplex algorithm. 

6-2- Processing the model and all constraints of type equals. 

6-3- Processing model constraints mixed. 

Conclusion. 
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Chapter VI  

Finding a rule solution for linear models 

using artificial variables 

Introduction:  

In this chapter, we show the simplex approach with 

neutrosophic artificial variables, which is favored for usage in 

linear models when there is no ready-made base to utilize to 

find the best solution.  

As an initial phase in the study, artificial variables are 

introduced to the constraints in a number equal to the number 

of constraints that do not contain a basic variable. Concerning 

the optimal solution, we must eliminate all artificial variables 

and convert them to non-basic variables so that they take the 

value zero and therefore do not impact the linear modelôs 

perfect solution. The following study is used to explain the 

preceding: 

6-1- Artificial base simplex algorithm: 

The end result of solving linear models is to find the optimal 

solution among a collection of acceptable solutions. This is 

accomplished by the use of a basic solution that is enhanced 

using the direct simplex method, and it consists of three main 

phases. 

1. The stage of converting the imposed model into an 

equivalent systematic form.  

2.  The stage of converting the regular form into a basic 

form to obtain the non-negative basic solutions. 
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3. The stage of searching for the ideal solution required 

from among the non-negative basic solutions.  

As a result, the process of searching for the optimal solution 

does not begin until a basic solution is obtained. However, in 

many linear models, obtaining the basic solution is difficult, so 

the simplex method with an artificial base was proposed, in 

which a base is formed consisting of a set of artificial variables 

that are non-negative is added to constraints that do not contain 

a basic variable, thus obtaining the basic solution. Then we use 

the direct simplex technique to refine it till we have the best 

answer. Using neutrosophic principles, we will reformulate the 

simplex method with an artificial basis to discover the best 

solution for linear models when obtaining a basis solution is 

problematic. 

Text of the issue: 

Find the optimal solution for the following neutrosophic 

linear model: 

ὓὥὼὤ ὔὅὼ ὔὅὼ Ễ ὔὅὼ ὔὅ 

Constraints: 

ὥ ὼ ὥ ὼ Ễ ὥ ὼ ‐ ὔὦ
ὥ ὼ ὥ ὼ Ễ ὥ ὼ ‐ ὔὦ
ὥ ὼ ὥ ὼ Ễ ὥ ὼ ‐ ὔὦ
ȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȢȢ
ὥ ὼ ὥ ὼ Ễ ὥ ὼ ‐ ὔὦ

 

           ὼȟὼȟȣȟὼ π 

where: 

ὔὅ ὅ ‐  ȟ    ὔὦ ὦ   ȟ    ὥȟ

Ὦ ρȟςȟȣȟὲ ȟὭ ρȟςȟȣȟά 
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are constants having set or interval values according to the 

nature of the given problem, ὼ are decision variables. It is 

worth noting that the index N subscribes to coefficients with 

neutrosophic values. The objective function coefficients 

ὔὅȟὔὅȟȣȟὔὅ , They are neutrosophic values of the form 

That is, ὔὧɴ ‗ȟ‗ , where ‗ȟ‗  are the upper and the 

lower bounds of the objective variables ὼ respectively, 

Ὦ ρȟςȟȣȟὲ. the right-hand side of the inequality constraints 

ὔὦȟὔὦȟȣȟὔὦ . 

ὔὦᶰ‘ȟ‘ , here, ‘ȟ‘  are the upper and the lower 

bounds of the constraint  Ὥ ρȟςȟȣȟά. 

In the previous model, we note that the number of variables is 

ὲ and the number of constraints is ά, and this model is in the 

standard form.  

We move to the second stage, which is to find a basic solution. 

We apply the simplex method with an artificial basis in this 

case, where is represented by:  

1- We create an artificial basic form from the standard form 

by adding a non-negative artificial variable ‐ to the left 

side of each of the constraint equations. Thus, we form a 

base consisting of the non-negative variables 

‐ȟ‐ȟȣȟ‐  

2- Because the artificial variables are put into constraints 

that were initially linear equations, these variables must 

have the value zero in order for the linear constraints to 

be unaffected. 

3- As a result, we must shift all of them off the base until 

they become non-base variables, and we utilize the direct 

simplex technique to do this. 
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4- We introduce these variables into the objective function 

with the value M (where M is a sufficiently large positive 

number that is at least greater than any ὔὧ) and 

preceded by a minus sign (because the objective function 

is a maximization function) in order to avoid transferring 

them back to the base variables. 

5- We obtain the following basic form of the neutrosophic 

linear model: 

ὓὥὼὤ ὔὅὼ ὔὅὼ Ễ ὔὅὼ ὓ‐ ὓ ‐ Ễ

ὓ ‐ ὔὅ    

Constraints: 

ὥ ὼ ὥ ὼ Ễ ὥ ὼ ‐ ὔὦ
ὥ ὼ ὥ ὼ Ễ ὥ ὼ ‐ ὔὦ
ὥ ὼ ὥ ὼ Ễ ὥ ὼ ‐ ὔὦ
ȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣ

ὥ ὼ ὥ ὼ Ễ ὥ ὼ ‐ ὔὦ

 

ὼ π  ȟ‐ π ȟὔὦ π ȠὮ ρȟςȟȣȟὲ ὥὲὨ Ὥ ρȟςȟȣȟά 

6-  After obtaining the basic solution, we use the direct 

simplex algorithm to improve this solution to reach the 

optimal solution. Therefore, we arrange the previous 

information in a table as follows: 

ὦ ‐  é. ‐ ‐ ὼ é. ὼ ὼ Variables 
Basic  

ὦ π é. π ρ ὥ  é. ὥ  ὥ  ‐ 
ὦ π π ρ π ὥ  é ὥ  ὥ  ‐ 
é é é é é é é é é é. 
ὦ  ρ é π π ὥ  é ὥ  ὥ  ‐  

ὤ ὔὅ ὓ é ὓ ὓ ὔὅ é. ὔὅ ὔὅ Objective 

function 

Table No. (1) General data of the model 
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We eliminate the artificial variables. Here we study the 

constants ὦ corresponding to the artificial variables and select 

the largest of them, let it be ὦ corresponding to the variable ‐ 

and we consider its row to be the pivot row. Then we 

determine the pivot element in it by dividing the elements of 

the objective function row (elements ὔὅ) by the elements of 

the ‐ row and then we take the smallest positive ratio — where: 

— -ÉÎ
ὔὅ

ὥ
π

ὔὅ

ὥ
 

where ὥ π, then the pivot element is ὥ , and we exchange 

the variables ὼ and ‐, according to the direct neutrosophic 

Simplex algorithm instructions. 

We repeat step (7) until all artificial variables are removed and 

a normal basis consisting of the basic variables is obtained. 

After eliminating the artificial variables, we revert to using 

the direct neutrosophic simplex technique. 

6-2- Processing the model and all constraints of type 

equals: 

Using the following example, we show how to use the simplex 

method with a synthetic rule to discover the best solution for 

linear models with all equal constraints: 

Example 1:  

Find the ideal solution for the following linear model: 

ὓὥὼὤ ρςὼ φȟωὼ σὼ  

Constraints: 

ψὼ ὼ τὼ τȟφ 
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φὼ σὼ σὼ ρςȟω 

ὼȟὼȟὼ π  

Solution: 

1- We convert the model to the standard form, multiply the 

second equation by (-1) and we obtain the following 

model: 

Find a rule solution for the following neutrosophic linear 

model: 

ὓὥὼὤ ρςὼ φȟωὼ σὼ 

Constraints: 

ψὼ ὼ τὼ τȟφ 

φὼ σὼ σὼ ωȟρς 

ὼȟὼȟὼ π  

2- We add the artificial variables and enter them into the 

objective function with a capital letter ὓ preceded by a 

minus sign. Here we take ὓ ρυ. 

Find a rule solution for the following neutrosophic linear 

model: 

ὓὥὼὤ ρςὼ φȟωὼ σὼ ρυ‐ ρυ‐ 

Constraints: 

ψὼ ὼ τὼ τȟφ 

φὼ σὼ σὼ ωȟρς 

ὼȟὼȟὼȟ‐ȟ‐ π  
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We arrange the previous information in the following table: 

ὦ ‐ ‐ ὼ ὼ ὼ 
Variables 

Basic 
τȟφ π ρ τ ρ ψ ‐ 
ωȟρς ρ π σ σ φ ‐ 
ὤ π ρυ ρυ σ φȟω ρς Objective 

function 

Table No. (2): Artificial  base table 

Since the rule is artificial, we study the constants ὦ and find 

that the largest of them belongs to the interval ωȟρς 

corresponding to the variable ‐. Therefore, we divide the 

objective function row by the positive elements in the ‐ row 

and calculate the index —, and we find that: 

— -ÉÎ
φȟω

σ

φȟω

σ
 

Thus, the pivot element is (3) corresponding to ὼ. Therefore, 

we replace ὼ with ‐, then the variable ὼ becomes a basice 

variable and ‐ comes out of the base. We perform the 

necessary calculations and obtain the following table: 

ὦ ‐ ‐ ὼ ὼ ὼ Variables 

Basic 
χȟρπ ρ

σ
 ρ σ π φ ‐ 

σȟτ ρ

σ
 π ρ ρ ς ὼ 

ὤ ρψȟσφ ρψȟρχ ρυ ωȟρς π πȟφ Objective 

function 

Table No. (3): The first change table in the base 

Because the artificial variable ‐ remains in the base, we do 

another replacement, this time using the pivot line as the line 

opposite it. We compute the index — to identify the pivot 

column and find: 
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— -ÉÎ
πȟφ

φ
ȟ
ωȟρς

σ
ᶰ
πȟφ

φ
 

Thus, the pivot element is (6) corresponding to ὼ, so we move 

ὼ to the base instead of ‐, so we get the following table: 

ὦ ‐ ‐ ὼ ὼ ὼ Variables 
Basic 

χ

φ
ȟ
ρπ

φ
 ρ

ρψ
 σ

φ
 ρ

ς
 π ρ ὼ 

ρφ

σ
ȟ
ςς

σ
 τ

ω
 ρ

σ
 π ρ π ὼ 

ὤ ρψȟτφ ρψȟ
υπ

σ
 ρψȟρυ ω π π Objective 

function 

Table No. (4): The second change in the base 

We can see from the preceding table that the basis variables 

ὼ and ȟὼ have an initial solution for the linear model, which 

gives us the following rule solution: 

ὼᶰ
χ

φ
ȟ
ρπ

φ
ȟὼᶰ

ρφ

σ
ȟ
ςς

σ
ȟὼ πȟ‐ πȟ‐ π 

But it is clear from the table that this solution is not the ideal 

solution because in the objective function row there is a 

positive value corresponding to the variable ὼ. Therefore, we 

apply the direct simplex algorithm to improve the basic 

solution. We obtain the ideal solution from the following table: 

ὦ ‐ ‐ ὼ ὼ ὼ Variables 
Basic 

χ

σ
ȟ
ρπ

σ
 

ρ

ω
 ρ ρ π ς ὼ 

ρφ

σ
ȟ
ςς

σ
 τ

ω
 ρ

σ
 π ρ π ὼ 

ὤ σωȟχφ ρωȟ
υσ

σ
 ςχȟςτ π π ρψ objective 

function 
Table No. (5): The optimal solution for the model 
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Optimal solution for the linear model: 

ὼ πȟὼᶰ
ρφ

σ
ȟ
ςς

σ
ȟὼᶰ

χ

σ
ȟ
ρπ

σ
ȟ‐ πȟ‐ π 

In this solution, the objective function takes its greatest value, 

which is: 

ὤᶰσωȟχφ 

By transferring the constraints and the objective function 

statement, we can verify the solution. We remark that the 

values in the ideal solution of the preceding linear model are 

neutrosophic values. 

6-3- Processing model constraints mixed: 

Using the following example, we show how to use the simplex 

method with a synthetic rule to discover the best solution for 

linear models with mixed constraints: 

Example 2: 

Find the ideal solution for the following linear model: 

ὓὭὲὤ σὼ ψȟρπὼ πȟφὼ  

Constraints: 

ὼ ςὼ ὼ σȟχ 

τὼ ὼ ςὼ ωȟφ 

ςὼ ὼ ρ 

ὼȟὼȟὼ π  

Converting this model to standard form the problem becomes: 

Find the ideal solution for the following linear model: 

ὓὭὲὤ σὼ ψȟρπὼ πȟφὼ πώ πώ  
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Constraints: 

ὼ ςὼ ὼ ώ σȟχ 

τὼ ὼ ςὼ ώ ωȟφ 

ςὼ ὼ ρ 

ὼȟὼȟὼȟώȟώ π  

The variable ώ in the first constraint is a basic variable, and 

since there are no other basic variables, we add artificial 

variables to the second and third restrictions and enter them 

into the objective function in sufficiently positive times 

because the model is a minimization model, and thus we obtain 

the following basic form: 

Because the variable ώ in the first constraint is a basic 

variable, and there are no other basic variables, we add 

artificial variables to the second and third constraints and enter 

them into the objective function in sufficiently positive times 

because the model is a minimization model, yielding the basic 

form: 

Find the ideal solution for the following linear model: 

ὓὭὲὤ σὼ ψȟρπὼ πȟφὼ πώ πώ ρς‐ ρς‐ 

Constraints: 

ὼ ςὼ ὼ ώ σȟχ 

τὼ ὼ ςὼ ώ ‐ ωȟφ 

ςὼ ὼ ‐ ρ 

ὼȟὼȟὼȟώȟώȟ‐ȟ‐ π  

To insert the basic variables and delete the artificial variables 

from the base, we use the identical procedures as in Example 1. 
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We apply the direct simplex method to determine the best 

solution after acquiring the optimal solution. 

Important Notes: 

1- If the row ‐  does not include a positive element and 

ὦ π, this indicates a conflict of constraints and the 

problem is unsolvable. 

2- If we cannot find a positive ratio , we calculate the 

largest negative ratio — where: 

— ὓὥὼ
ὔὅ

ὥ
π

ὔὅ

ὥ
 

where ὥ π, so ὥ  is the pivot element and it is definitely a 

positive element. 

Conclusion: 

In the previous research, we introduced the synthetic simplex 

method, which is an essential method for determining the 

optimal solution for neutrosophic linear models in the event 

that a rule solution cannot be found. We found that the optimal 

solution that we obtained has neutrosophic values, 

indeterminate values, perfectly defined, belonging to a field 

that represents its minimum. The linear model can reflect the 

maximum value of the objective function, which is 

proportionate to the conditions surrounding the system's 

operational environment. 
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Chapter VII : Neutrosophic Dual Linear 

Models and the Binary  Algorithm  

Introduction. 

7-1- Neutrosophic companion models. 

7-1-1- The matrix form of the neutrosophic dual models. 

7-1-2- Finding neutrosophic dual models using the double 

table. 

7-1-3- Constructing neutrosophic dual linear models using 

tables.  

7-2- Formulation of the binary neutrosophic algorithm. 

7-2-1- Steps of the binary simplex algorithm. 

7-2-2- Binary simplex algorithm for the original and dual 

models. 

7-3- Economic interpretation of the dual models. 

Conclusion. 
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Chapter VII  

Neutrosophic Conjugate Linear Models and 

the Dual Algorithm 

Introduction:  

In our practical life, we encounter many problems that are 

formulated in the form of linear mathematical models 

consisting of an objective function and a set of constraints in 

the form of equations or inequalities .The linear model is stated 

in a number of formulas that differ according to the kind of 

objective function and the form of the constraints. The linear 

model formulas are described in the second chapter of this 

book, and as previously mentioned, each of these formulas has 

a purpose. For example, when we want to find the optimal 

solution for a linear model, we must first put it in the standard 

form. One of the most significant theories in linear 

programming, the dual theory, uses symmetric formulas as we 

previously mentioned. Its basic tenet is that for every linear 

model, there exists a conjugate linear model. This is because 

solving the original linear model yields a solution to the dual 

model, meaning that solving the linear programming model 

actually produces solutions for two linear models. 

In this chapter, we present a study of the neutrosophic dual 

models and the binary simplex algorithm that works to find the 

optimal solution for the two models. The original and the dual 

ones at the same time. This algorithm is significant because it 

is used in numerous operations research fields such as integer 

programming techniques, certain nonlinear programming 

algorithms, and sensitivity analysis in linear programming. 
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7-1- Neutrosophic companion models: 

7-1-1- The matrix form of the neutrosophic conjugate 

models: 

To use matrices to discover the related model for a given 

neutrosophic linear model, we first put the neutrosophic linear 

model in symmetrical form. As we learned in the second 

chapter, the linear model is in the symmetrical form if all 

variables are constrained to be non-negative and if all 

constraints are given in the form of inequalities (and the 

inequalities of the maximization model constraints must be 

written in the form (  less than or equal to), whereas the 

inequalities of the minimization model constraints must be 

written in the form ( greater than or equal to). then the linear 

model is written in one of two cases: 

The first case: The original model is symmetrical and of the 

maximization type: 

Original model:  

Find: 

ὔὤ ὔὅ 8 ὓὥὼ 

Constraints: 

ὔὃ 8 ὔὄ 

8 π 

where: 

 ὔὃ

ὔὥ       ὔὥȣὔὥ
 ὔὥ         ὔὥ  ȣὔὥ
ȣȣȣȣȣȣȣ

ὔὥ        ὔὥ ȣὔὥ

  ὔὄ

ὔὦ
ὔὦ
ȢȢ
ὔὦ

 ὔὅ

ὔὧ
ὔὧ
ȢȢ
ὔὧ

  9

ὼ
ὼ
ȢȢ
ὼ
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The dual linear model: 

Find: 

ὔὒ ὔὄ 9 ὓὭὲ 

Constraints: 

ὔὃ9 ὔὅ 

9 π 

where: 

ὔὃ

ὔὥ      ὔὥ ȣὔὥ
 ὔὥ        ὔὥ ȣὔὥ
ȣȣȣȣȣȣȣ

ὔὥ       ὔὥ ȣὔὥ

 ὔὄ

ὔὦ
ὔὦ
ȢȢ
ὔὦ

ὔὅ

ὔὧ
ὔὧ
ȢȢ
ὔὧ

  9

ώ
ώ
ȢȢ
ώ

 

The second case: The model is symmetrical and 

miniaturized:  

Original model:  

Find: 

ὔὤ ὔὅ 8 ὓὭὲ 

Constraints: 

ὔὃ8 ὔὄ 

8 π 

where: 

   ὔὃ

ὔὥ       ὔὥ ȣὔὥ
 ὔὥ        ὔὥ ȣὔὥ
ȣȣȣȣȣȣȣ

ὔὥ        ὔὥ ȣὔὥ

 ὔὄ

ὔὦ
ὔὦ
ȢȢ
ὔὦ

 ὔὅ

ὔὧ
ὔὧ
ȢȢ
ὔὧ

 8

ὼ
ὼ
ȢȢ
ὼ
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The dual linear model: 

Find: 

ὔὒ ὔὄ 9 ὓὥὼ 

Constraints: 

ὔὃ9 ὔὅ 

9 π 

where: 

ὔὃ

ὔὥ      ὔὥ ȣὔὥ
 ὔὥ        ὔὥ ȣὔὥ
ȣȣȣȣȣȣȣ

ὔὥ       ὔὥ ȣὔὥ

ὔὄ

ὔὦ
ὔὦ
ȢȢ
ὔὦ

 ὔὅ

ὔὧ
ὔὧ
ȢȢ
ὔὧ

  9

ώ
ώ
ȢȢ
ώ

 

We summarize the process of finding neutrosophic dual 

models using matrices in the following steps: 

1. We define a new non-negative variable for each 

constraint of the original model 

2.  We make the wind (cost) vector in the original model a 

column vector of constants in the companion model 

3. We make the constants column vector in the original 

model the cost (profit) vector in the companion model 

4. We transform a matrix of the parsimony of the variables 

of the constraints in the original model into the 

parsimony of the variables in the dual model 

5. We reverse the direction of the constraint inequalities 

6. We reverse the direction of the examples, that is, we 

change the increase to the maximum limit to a decrease 

to the minimum limit, and vice versa. 
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7-1-2- Finding neutrosophic dual models using the double 

table: 

We previously found that we can write linear models in three 

forms: 

The matrix form is as shown in the previous paragraph. 

The following short form: 

ὔὤ ὧ ‐ὼ ὓὥὼ  έὶ  ὓὭὲ 

Constraints: 

ὔὥὼ ὦ Ƞ  Ὥ     ρȟςȟȣȟά 

ὼ π 

The detailed figure follows: 

Find: 

ὔὤ ὔὧὼ ὔὧὼ Ễ ὔὧὼ ὓὥὼ  έὶ  ὓὭὲ 

Constraints: 

ὔὥὼ ὔὥὼ Ễ ὔὥ ὼ ὔὦ    ȠὭ ρȟςȟȣȟά 

ὼȟὼȟȣȟὼ π 

To find the dual model, we put the neutrosophic linear model 

in the symmetrical form, and here we distinguish two cases: 

First case: 

 The original model is symmetrical and of the maximization 

type: 
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ὔὤ ὧ ‐ὼ ὓὥὼ 

Constraints: 

ὔὥὼ ὦ Ƞ  Ὥ     ρȟςȟȣȟά 

ὼ π 

 Second case: 

The model is symmetrical and miniaturized: 

ὔὒ ὧ ‐ὼ ὓὭὲ 

Constraints: 

ὔὥὼ ὦ Ƞ  Ὥ     ρȟςȟȣȟά 

ὼ π 

In both cases, we have ὼ π, which are the decision 

variables, unknown values that we obtain after solving the 

linear model. 

ὔὧ ὧ ‐ and ὔὦ ὦ and ὔὥ   ὥ ‘  , 

where: ( Ὦ ρȟςȟȣȟὲ ȟὭ ρȟςȟȣȟά  are neutrosophic values, 

which are undefined values with a margin of error that are 

determined by the characteristics of the situation as it is 

represented by the linear model. 
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7-1-3- Constructing neutrosophic dual linear models using 

tables:  

The following procedures are followed in order to create a 

double table for the original and dual models in order to 

construct linear neutrosophic models utilizing tables: 

1. The coefficients of the objective function in the original 

model are the constants column in the companion model, 

and the constants column in the original model are the 

coefficients of the objective function in the companion 

model.  

2. We invert the signs of the inequalities of the constraints 

(if they were in the original model of type (=), they 

become in the dual model of type =). 

3. We change the objective from maximizing in the original 

model to minimizing in the dual model. 

4. We place each constraint (row) in the original model 

corresponding to a column in the dual model, meaning 

there is one variable for each constraint in the original 

model. 

5. The variables in the original model and the dual model 

satisfy the non-negative constraints. 

We explain the above using the following two cases: 

First case:  

The original model is symmetrical and of the maximization 

type: 

First case: The original model is symmetrical and of the 

maximization type 

Find: 

ὔὤ ὔὧὼ ὔὧὼ Ễ ὔὧὼ ὓὥὼ 

Constraints: 
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ὔὥὼ ὔὥὼ Ễ .ὥ ὼ ὔὦ 

ὔὥὼ ὔὥὼ Ễ ὔὥὼ ὔὦ 

éȣȣȣȣȣȣȣȣȣȣȣȣȣȣ 

ὔὥ ὼ ὔὥ ὼ Ễ ὔὥ ὼ ὔὦ 

ὼȟὼȟȣȟὼ π 

The binary table for the original model and the dual model 

is as follows: 

 

Original model 

╜╪● 
Constants column 

ὔὧὼ ὔὧὼ Ễ ὔὧὼ objective 

function 

 constants 

ὔὦ  ὔὥὼ ὔὥὼ Ễ ὔὥὼ ρ ώ 

D
u
a

l 
v
ib

ra
b

le
 

ὔὦ  ὔὥὼ ὔὥὼ Ễ ὔὥὼ ς ώ 

ȣ  ȣȣȣȣȣȣȣȣȣȣȣȣȣȣ ȣ ȣ 

ὔὦ   ὔὥ ὼ ὔὥ ὼ Ễ ὔὥ ὼ ά ώ  

π  ὼȟὼȟȣȟὼ Non-negative 
constraints 

Dual model 

╜░▪ 
Constants column 

ὔὦώ ὔὦώ Ễ ὔὦώ  Objective 

function 

constraints 

ὔὧ  ὔὥώ ὔὥώ Ễ ὔὥ ώ  ρ 

ὔὧ  ὔὥώ ὔὥώ Ễ ὔὥ ώ  ς 

ȣ  ȣȣȣȣȣȣȣȣȣȣȣȣȣȣ ȣ 

ὔὧ  ὔὥ ώ ὔὥώ Ễ ὔὥ ώ  ὲ 

π  ώȟώȟȣȟώ  Non-negative 

constraints 

Table No. (1) Objective follower of the maximization type 

The second case: The original model is symmetrical and of 

the reduction type: 

Find: 

ὔὒ ὔὧὼ ὔὧὼ Ễ ὔὧὼ ὓὭὲ 

Constraints: 

ὔὥὼ ὔὥὼ Ễ .ὥ ὼ ὔὦ 
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ὔὥὼ ὔὥὼ Ễ ὔὥὼ ὔὦ 

éȣȣȣȣȣȣȣȣȣȣȣȣȣȣ 

ὔὥ ὼ ὔὥ ὼ Ễ ὔὥ ὼ ὔὦ 

ὼȟὼȟȣȟὼ π 

The binary table for the original model and the dual model 

is as follows: 

Original model 

╜░▪ 
Constants 

column 

ὔὧὼ ὔὧὼ Ễ ὔὧὼ objective 

function 

constants 

ὔὦ  ὔὥὼ ὔὥὼ Ễ ὔὥὼ ρ ώ 

D
u
a

l 
v
ib

ra
b

le
 

ὔὦ  ὔὥὼ ὔὥὼ Ễ ὔὥὼ ς ώ 

ȣ  ȣȣȣȣȣȣȣȣȣȣȣȣȣȣ ȣ ȣ 

ὔὦ   ὔὥ ὼ ὔὥ ὼ Ễ ὔὥ ὼ ά ώ  

π  ὼȟὼȟȣȟὼ Non-negative 

constraints 

Dual model 

╜╪● 
Constants 

column 

ὔὦώ ὔὦώ Ễ ὔὦώ  objective 

function 

constants 

ὔὧ  ὔὥώ ὔὥώ Ễ ὔὥ ώ  ρ 

ὔὧ  ὔὥώ ὔὥώ Ễ ὔὥ ώ  ς 

ȣ  ȣȣȣȣȣȣȣȣȣȣȣȣȣȣ ȣ 

ὔὧ  ὔὥ ώ ὔὥώ Ễ ὔὥ ώ  ὲ 

π  ώȟώȟȣȟώ  Non-negative 

constraints 

  Table No. (2) objective follower in the original model of the reduce type 

 

7-2- Formulation of the binary neutrosophic 

algorithm. 

The binary simplex algorithm is neutrosophic (for both the 

original and dual models). This approach allows us to 

simultaneously identify the two optimal solutions for the dual 
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and original models. The modified simplex algorithm that will 

be used inside each step of the binary algorithm must be 

mentioned before beginning the binary simplex algorithm. 

Modified simplex algorithm: 

In the modified Simplex algorithm, after converting the regular 

linear model to the basic form, we place the coefficients in a 

short table whose first column includes the basic variables and 

whose top row includes the non-basic variables only. We 

define the pivot column, which is the column corresponding to 

the largest positive value in the objective function row if the 

objective function is a maximization function (but if the 

objective function is a minimization function, it is the column 

corresponding to the most negative values). Let this column be 

the column of the variable ὼ. We define the pivot row. The 

pivot row is determined. Through the following indicator: 

ὔ— άὭὲ
ὔὦ

ὔὥ

ὔὦ

ὔὥ
πȠ     ὔὥ πȟὔὦ π 

Let this line be the line of the base variable ώ, then the anchor 

element is the element resulting from the intersection of the 

anchor column and the anchor line, i.e., ὔὥ. Then we 

calculate the new elements corresponding to the anchor line 

and the anchor column as follows: 

1. We put opposite the pivot element ὔὥ  the reciprocal of 

 

2. We calculate the elements of the row corresponding to 

the pivot row (except the pivot element) by dividing the 

elements of the pivot row by the pivot element ὔὥ 

3. We calculate all the elements of the column opposite the 

pivot (except the pivot element) by dividing the elements 
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of the pivot column by the pivot element ὔὥ and then 

multiplying them by )1-(  

4. We calculate the other elements from the following 

relation: 

ὔὦ ὔὦ ὔὦ
ὔὥ

ὔὥ

ὔὦὔὥ ὔὦὔὥ

ὔὥ
 

ὔὥ ὔὥ ὔὥ
ὔὥ

ὔὥ

ὔὥὔὥ ὔὥὔὥ

ὔὥ
 

ὔὧ ὔὧ ὔὧ
ὔὥ

ὔὥ

ὔὧὔὥ ὔὧὔὥ

ὔὥ
 

On the objective function row, we use the stopping criterion of 

the direct Simplex algorithm. If the objective function is of the 

maximum type, the objective function row in the table must not 

contain any positive value. However, if the objective function 

is of the minimization function, the objective function row in 

the new table must not have any negative values. If the 

condition is not fulfilled, we continue the process until the 

stopping criterion is met and the desired ideal solution is 

obtained. 

7-2-1- Steps of the binary simplex algorithm: 

a. We write the two models in basic form by adding or 

subtracting additional variables or using synthetic 

variables and isolating the non-restricting variables. 

Basal form of the original model: 

 Find: 

ὔὤ ὔὧὼ ὔὧὼ Ễ ὔὧὼ πό πό Ễ πό ὓὥὼ 

Constraints: 

ὔὥὼ ὔὥὼ Ễ ὔὥὼ ό ὔὦ 

ὔὥὼ ὔὥὼ Ễ ὔὥὼ ό ὔὦ 
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éȣȣȣȣȣȣȣȣȣȣȣȣȣȣ 

ὔὥ ὼ ὔὥ ὼ Ễ ὔὥ ὼ ό ὔὦ 

ὼ π  ȠÊ ρȟςȟȣȟÎ   

ό π  ȠÉ ρȟςȟȣȟÍ   

Here we do not require that ὔὦ π.  

Basic form of the dual model: 

Find: 

ὔὒ ὔὦώ ὔὦώ Ễ ὔὦώ πὺ πὺ Ễ πὺ ὓὭὲ 

Constraints: 

ὔὥ ώ ὔὥώ Ễ ὔὥ ώ ὺ ὔὧ 

ὔὥώ ὔὥώ Ễ ὔὥ ώ ὺ ὔὧ 

ȣȣȣȣȣȣȣȣȣȣȣȣȣȣ 

ὔὥ ώ ὔὥώ Ễ ὔὥ ώ ὺ ὔὧ 

ώ π  ȠὭ ρȟςȟȣȟά 

ὺ π  ȠÊ ρȟςȟȣȟÎ   

Here we do not require that ὔὧ π. 

The coefficients in both models are the same, and the matrix of 

instances in the dual model is the transpose of the matrix of 

instances in the original model. The two models are written in 

the binary table below: 

 

 

 

 

 

 

 

 

 

 



Neutrosophic linear models and algorithms to find their optimal solution 

- 106 - 
 

 

Original model 

ὓὥὼ 
Constants 

column 

ὔὧὼ ὔὧὼ Ễ ὔὧὼ πό πό

Ễ πό  

objective 

function 

constants 

ὔὦ  ὔὥὼ ὔὥὼ Ễ ὔὥὼ ό ρ ώ 

D
u
a

l 
v
ib

ra
b

le
 

ὔὦ  ὔὥ ὼ ὔὥὼ Ễ ὔὥὼ ό ς ώ 

ȣ  ȣȣȣȣȣȣȣȣȣȣȣȣȣȣ ȣ ȣ 

ὔὦ   ὔὥ ὼ ὔὥ ὼ Ễ ὔὥ ὼ ό  ά ώ  

π  ὼȟὼȟȣȟὼ ȟόȟόȟȣȟό  Non-

negative 

constraints 

Dual model 

╜░▪ 
Constants 

column 

ὔὦώ ὔὦώ Ễ ὔὦώ πὺ πὺ Ễ

πὺ 

objective 

function 

constants 

ὔὧ  ὔὥώ ὔὥώ Ễ ὔὥ ώ ὺ ρ 

ὔὧ  ὔὥ ώ ὔὥώ Ễ ὔὥ ώ ὺ ς 

ȣ  ȣȣȣȣȣȣȣȣȣȣȣȣȣȣ ȣ 

ὔὧ  ὔὥώ ὔὥώ Ễ ὔὥ ώ ὺ ὲ 

π  ώȟώȟȣȟώȟὺȟὺȟȣȟὺ Non-

negative 

constraints 

Table No. (3) Standard format for the original and companion 

models 

b. We place the variables and coefficients of the original 

model in the modified simplex table, and we place the 

variables of the dual model outside the table as follows: 
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basic variables with a (-) sign in 

the dual model 

ὺ ȣ ὺ ὺ 

Follow the 

objective of the 

dual model ὔὄ 

ὼ ȣ ὼ ὼ Non-basic 

vibrable  
basic vibrable 

ὔὦ ὔὥ  ȣ ὔὥ  ὔὥ  ό 
 

ώ 

N
o

n
-b

a
s
ic

 v
ib

ra
b

le
 o

f 

th
e

 d
u
a

l m
o

d
e
l

 

ὔὦ ὔὥ  ȣ ὔὥ  ὔὥ  ό 
 

ώ 

ȣ ȣ ȣ ȣ ȣ ȣ ȣ 

ὔὦ  ὔὥ  ȣ ὔὥ  ὔὥ  ό  
 

ώ  

ὒ πO ὓὭὲ 
ὤ πO ὓὥὼ 

ὔὧ ȣ ὔὧ ὔὧ objective of the 

original model 

Table No. (4): The binary table for the original and dual models according to the 

modified Simplex algorithm 

7-2-2- Binary simplex algorithm for the original and dual 

models: 

From the modified simplex algorithm of the original model, we 

obtain the optimal solution of the original model when all the 

elements are in the last row (the objective function row of the 

original model) ὔὧ π  ȠÊ ρȟςȟȣȟÎ  and at the same time 

all the elements are in the last column (associated objective 

function column) ὔὦ π  ȠὭ ρȟςȟȣȟά and we get the 

optimal solution for the dual model when all elements in the 

last column (associated objective function column) are 

ὔὦ π  ȠὭ ρȟςȟȣȟά and at the same time the last row (the 

objective function row of the original model) 

 ὔὧ π  ȠÊ ρȟςȟȣȟÎȢ  

 (Because it will correspond to ὔὧ ὺ) which are the two 

conditions Same for both models. Therefore, when searching 
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for the optimal solution for both models together, we must 

work to make all elements ὔὦ π  ȠὭ ρȟςȟȣȟά and to 

make all elements ὔὧ π  ȠÊ ρȟςȟȣȟÎ , to achieve this we 

rely on one of the two models, put its variables and coefficients 

in a table, and place the dual model in an external frame of that 

table. In general, we find that the necessity of placing the two 

models in a short table does not allow us to eliminate the 

negative constants on the right side, and therefore the general 

case of the previous binary table can include negative constants 

ὔὦ π  , and the elements of the last row can include positive 

elements ὔὧ π  , so when searching for the optimal solution 

for the two models, we must work to address these elements 

based on one of the two models. 

Depending on the original model, we do this in two stages: 

First stage:  

We make the constant ὔὦ non-negative, which corresponds to 

obtaining a non-negative basic solution for the original model. 

Second stage:  

We make every element of the objective function row non-

positive (maximization in the case of the objective function), 

which corresponds to finding the optimal solution required for 

the original model. 

Based on the dual model, we do this in two stages: 

First stage:  

We must make the elements of the dual model objective 

function column 

 ὔὦ π  ȠÉ ρȟςȟȣȟÍ  . The last row is non-negative. 

 



Neutrosophic linear models and algorithms to find their optimal solution 

- 109 - 
 

The second stage:  

We must make the free constants for the dual model 

ὔὧ  non-positive, and this corresponds to obtaining the 

optimal solution for the dual model. We explain the above 

through the following example: 

Find the optimal solution for both the following neutrosophic 

linear model and its dual using the binary algorithm 

Example 1: 

Find: 

υȟψ ὼ σȟφ ὼ ὓὥὼ 

Constraints: 

ςὼ σὼ ρτȟςπ 

ςὼ ὼ ρπȟρφ 

σὼ ρςȟρψ

σὼ ρυȟςρ
 

ὼ πȟὼ 

 

We form the binary table of the model and the dual model: 
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Original model 

╜╪● 

Constants 

column 

υȟψ ὼ σȟφ ὼ 
objective 

function 

constants 

ρτȟςπ 
 ςὼ σὼ ρ ώ 

D
u
a

l 
v
ib

ra
b

le
 

ρπȟρφ 
 ςὼ ὼ ς ώ 

ρςȟρψ 
 σὼ σ ώ 

ρυȟςρ 
 σὼ τ ώ 

π 
 ὼȟὼ Non-negative 

constraints 

Dual model 

╜░▪ 

Constants 

column 

ρτȟςπώ ρπȟρφώ ρςȟρψώ

ρυȟςρώ 

objective 

function 

constants 

υȟψ 
 ςώ ςώ σώ ρ 

σȟφ 
 σώ ώ σώ ς 

π 
 ώȟώȟώȟώ Non-negative 

constraints 

Table No. (5) The original model and its dual model 

We used standard form to write the two models in the table 

that follows: 
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Original model 

ὓὥὼ 
Constants 

column 

υȟψ ὼ σȟφ ὼ πό πό πό πό objective 

function 

constants 

ρτȟςπ  ςὼ σὼ ό ρ ώ 

D
u
a

l 

v
ib

ra
b
le

 

ρπȟρφ  ςὼ ὼ ό  ς ώ 

ρςȟρψ  σὼ ό  σ ώ 

ρυȟςρ  σὼ ό τ ώ 

π  ὼȟὼȟόȟόȟόȟό Non-negative 

constraints 
Dual model 

ὓὭὲ 
Constants 

column 

ρτȟςπώ ρπȟρφώ ρςȟρψώ ρυȟςρώ
πὺ πὺ 

objective 

function 

constants 

υȟψ  ςώ ςώ σώ ὺ ρ 

σȟφ  σώ ώ σώ ὺ ς 

π  ώȟώȟώȟώȟὺȟὺ Non-negative 

constraints 

Table No. (6) Standard format for the original model and the dual model 

We notice from the table that the standard form of the original 

model includes a ready-made base of additional variables 

όρȟόςȟόσȟότ, but for the dual model there is no ready-made 

base. Therefore, we multiply the two restrictions by (-1) and 

we obtain the basic form of the dual model.  

The following table shows the basic form of the original and 

dual models: 
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Original model 

╜╪● 
Constants 

column 

υȟψ ὼ σȟφ ὼ πό πό πό
πό 

ÏÂÊÅÃÔÉÖÅ 
ÆÕÎÃÔÉÏÎ 
ÃÏÎÓÔÁÎÔÓ 

ρτȟςπ  ςὼ σὼ ό ρ ώ 

D
u
a

l 

v
ib

ra
b
le

 

ρπȟρφ  ςὼ ὼ ό  ς ώ 

ρςȟρψ  σὼ ό  σ ώ 

ρυȟςρ  σὼ ό τ ώ 

π  ὼȟὼȟόȟόȟόȟό Non-negative 

constraints 

Dual model 

╜░▪ 
#ÏÎÓÔÁÎÔÓ 
ÃÏÌÕÍÎ 

ρτȟςπώ ρπȟρφώ ρςȟρψώ
ρυȟςρώ πὺ πὺ 

objective 

function 

constants 

υȟψ  ςώ ςώ σώ ὺ ρ 

σȟφ  σώ ώ σώ ὺ ς 

π  ώȟώȟώȟώȟὺȟὺ Non-negative 

constraints 

Table No. (7): The basic shape of the original model and the dual model 

We put the two models in the modified Simplex algorithm 

table and we get the following table: 
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According to the original model 

○  ○  
objective 

function 
● ● Non-basic 

vibrable  

basic vibrable ὔὄ 

ρτȟςπ σ ς ό 
 

ώ 

N
o

n
-b

a
s
ic

 v
ib

ra
b

le
 D

u
a

l 

m
o

d
e

l
 

ρπȟρφ ρ ς ό 
 

ώ 

ρςȟρψ σ π ό 
 

ώ 

ρυȟςρ π σ ό 
 

ώ 

ὒ π 
ὤ π 

σȟφ υȟψ objective 

function 

╝╬░ 

According to the dual model 

ό ό ό ό 
objective 

function 

Original 

model 

ώ ώ ώ ώ Non-basic 

vibrable 

 basic vibrable 

ὔὧ 

υȟψ σ π ς ς ὺ 
 

 

ὼ 

N
o

n
-b

a
s
ic

 v
ib

ra
b

le
 

σȟφ π σ ρ σ ὺ 
 
 

ὼ 

ὤ π 
ὒ π 

ρυȟςρ ρςȟρψ ρπȟρφ ρτȟςπ objective 

function 

Dual model 

╝║░ 

Table No. (8): The binary table for the original and dual models according 

to the modified Simplex algorithm 
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First stage: 

1- For the original model: 

Since the values in the constantôs column are all positive, we 

study the values in the objective function row and determine 

the largest positive value. We find: 

ÍÁØυȟψȟσȟφ υȟψ ,which is an expression of the 

variable ὼ. This means that it will enter the base. To determine 

the element that will exit from the base, we calculate the index 

ὔ—, where: 

ὔ—ɴ άὭὲ
ρτȟςπ

ς
ȟ
ρπȟρφ

ς
ȟ
ρυȟςρ

σ

ρυȟςρ

σ
υȟχ 

We find that the pivot column is the column of the non-base 

variable ὼ, meaning that the variable ὼ will  enter the base 

instead of the variable ό, and the pivot element is the element 

resulting from the intersection of the pivot row and the pivot 

column, which is (3) 

We perform the switching between variables using a modified 

simplex algorithm. 

2- For the dual model: 

We study the elements of the objective function row. We 

notice that all the values are positive. Therefore, we study the 

elements of the constantôs column. We find that they are all 

negative values. We choose the most negative of them, which 

is υȟψ   which is the row of the base variable ὺ, so its row 

is the pivot row. To determine the pivot column and the pivot 

element, we calculate the index ὔ—where: 

ὔ—ᶰὓὥὼ
ρτȟςπ

ς
ȟ
ρπȟρφ

ς
ȟ
ρυȟςρ

σ

ρυȟςρ

σ
 

So, the column of the non-basic variable ό is the pivot 

column, meaning that the variable ό will enter the base 
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instead of the variable ὺ, and the pivot element is the element 

resulting from the intersection of the pivot row and the pivot 

column, which is (-3). We perform the switching between the 

variables using the modified simplex algorithm, from (1) and 

(2) We get the following double table: 

 

According to the original model 

ὺ ώ 
objective 

function 

Original model 

ὼ ό Non-basic 

vibrable 

 

basic vibrable ὔὄ 

τȟφ σ ς

σ
 

ό 
 

ώ 

N
o

n
-b

a
s
ic

 v
ib

ra
b

le
 

πȟτ ρ ς

σ
 

ό 
 

ώ 

ρςȟρψ σ π ό 
 

ώ 

υȟχ π ρ

σ
 

ὼ ὺ 

ὒ ςυȟυφ 
ὤ ςυȟυφ 

σȟφ ψ

σ
ȟ
υ

σ
 

objective 

function 

ἛἺἱἯἱἶἩἴ ἵἷἬἭἴ 

╝╬░ 

According to the dual model 

ὼ ό ό ό 
objective 

function 

Original model 

ὺ ώ ώ ώ Non-basic 

vibrable 

 basic vibrable 

ὔὧ 

ψ

σ
ȟ
υ

σ
 

ρ

σ
 

π ς

σ
 

ς

σ
 

ώ 
 

 

ό 

N
o

n
-b

a
s
ic

 

v
ib

ra
b
le

 σȟφ π σ ρ σ ὺ 
 

ὼ 

ὤ ςυȟυφ 
ὒ ςυȟυφ 

υȟχ ρςȟρψ πȟτ τȟφ objective 

function 

ἛἺἱἯἱἶἩἴ ἵἷἬἭἴ 

╝╬░ 
Table No. (9): The binary table for the first stage, the solution according to the 

original and dual models 
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Second phase: 

We apply the stopping criterion of the algorithm 

For the original model: 

Since the values in the constantôs column are all positive, we 

study the values in the objective function row. We notice that 

there is a positive value, which is σȟφ, meaning that we have 

not yet reached the optimal solution. Therefore, we specify the 

pivot column, which is the column of the variable ὼ 

corresponding to the only positive value in the objective 

function row. σȟφ to determine the pivot row and the pivot 

element, we calculate the index ὔ—, where: 

ὔ—ɴ ÍÉÎ
τȟφ

σ
ȟ
πȟτ

ρ
ȟ
ρςȟρψ

σ

τȟφ

σ
 

It corresponds to the base element ό, so its row is the pivot 

row and the pivot element is . We swap between the 

variables using the modified simplex algorithm. 

For the dual model: 

We study the elements of the objective function row. We 

notice that all the values are positive. Therefore, we study the 

elements of the constantôs column. We find that there is a 

single negative value, which is σȟφ , which is the line of 

the base variable ὺ, so its row is the pivot row. To determine 

the pivot column and the pivot element, we calculate the index 

ὔ— where: 

ὔ—ᶰὓὥὼ
τȟφ

σ
ȟ
πȟτ

ρ
ȟ
ρςȟρψ

σ

τȟφ

σ
 

So, the column of the non-base variable ώ is the pivot column, 

meaning that the variable  ώ will enter the base instead of the 

variable ὺ, and the pivot element is the element resulting from 
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the intersection of the pivot row and the pivot column, which is 

σ. We perform the switching between the variables using 

the modified simplex algorithm, from (1) and (2). We get the 

following double table: 

 

According to the original model 

ώ ώ 
objective 

function 

Dual model 

ό ό Non-basic 

vibrable 

 

basic vibrable ὔὄ 

τ

σ
ȟς 

ρ

σ
 

ς

ω
 

ὼ 
 

ὺ 

N
o

n
-b

a
s
ic

 v
ib

ra
b

le
 

τ

σ
ȟς 

ρ

σ
 

τ

ω
 

ό 
 

ώ 

ψȟρς ρ ς

σ
 

ό 
 

ώ 

υȟχ π ρ ὼ 
 

ὺ 

ὒ ςωȟφψ 
ὤ ςωȟφψ 

ςȟρ φȟρ objective function 

Original model 

ὔὧ 

According to the dual model 

ὼ ό ό ὼ 
objective function 

Original model 
ὺ ώ ώ ὺ Non-basic 

vibrable 

 basic vibrable ὔὧ 

φȟρ ρ ς

σ
 

τ

ω
 

ς

ω
 

ώ 
 

 

ό 

N
o

n
-b

a
s
ic

 v
ib

ra
b

le
 

ςȟρ π ρ ρ

σ
 

ρ

σ
 

ώ 
 
 

ό 

ὤ ςωȟφψ 
ὒ ςωȟφψ 

υȟχ ψȟρς τ

σ
ȟς 

τ

σ
ȟς 

objective function 

Dual model 

╝║░ 

Table No. (10): The binary algorithm table for the second stage 

We apply the stopping criterion of the algorithm: 
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1- In the original model, we investigate the elements of the 

objective function row until the requirement for ending 

the procedure, which is the lack of any positive element, 

is fulfilled. 

2- We also investigate the elements of the constants column 

for the dual model until the requirement for ending the 

process, which is the lack of any negative element, is 

fulfi lled. 

3- We determine that the condition has been satisfied, and 

hence we have arrived at the optimal solution. 

The optimal solution of the original model is: 

ὼᶻᶰ
τ

σ
ȟς  ȟόᶻᶰ

τ

σ
ȟς  ȟόᶻᶰψȟρς ȟὼᶻᶰυȟχ  ȟόᶻ όᶻ π  

The value of the objective function corresponds to: 

ὔὤᶻ ὓὥὼὔὤɴ ςωȟφψ 

The optimal solution of the dual model is: 

ώᶻᶰρȟς  ȟώᶻᶰρȟφ  ȟὺᶻ ώᶻ ώᶻ ὺᶻ π 

The value of the objective function corresponds to: 

ὔὒᶻ ὓὭὲὔὒɴςωȟρφφ 

We note that: 

ὔὤᶻ ὓὥὼὔὤɴ ςωȟφψ ὔὒᶻ ὓὭὲὔὒɴςωȟρφφ 

This solution is acceptable according to the following 

theory:  

If ὼȟὼȟȣȟὼ  is an acceptable solution to the original model 

of type ὓὥὼ and ώȟώȟȣȟώ  was an acceptable solution for 

the dual model of type ὓὭὲ, so the value of the objective 

function of the original model does not exceed the value of the 
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objective function of the dual model for these two solutions, 

that is, it is 

ὔὧὼ ὔὦώ 

This applies to all appropriate solutions for both models 

(including the optimal solution). 

7-3- Economic interpretation of the dual models: 

The following example illustrates the economic interpretation 

of the dual model: 

Example2: 

A factory wants to move its products as cheaply as possible 

from two warehouses to three retail locations. The data 

supplied by the factory official is shown in the table below: 

Available 

quantities 

ὄ ὄ ὄ Sales centers 

Stores          

σππ πȟσ ςȟτ ρȟσ ὃ 

φππ ρȟυ ρȟτ τȟφ ὃ  

 ωππ  

ωππ 

τππ σππ ςππ Quantities required 

 

The plant manager demanded a low-cost transportation strategy 

so that the distribution centresô requests could be filled from 

the available amounts. 

The previous issue is a balanced transfer issue because 

ὥ ὦ ωππ 
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To formulate the mathematical model 

We assume ὼ  the quantity transported from store Ὥ where 

Ὥ ρȟς, to distribution center Ὦ, where Ὦ ρȟςȟσ. Thus, we 

obtain the following linear model: 

Find: 

ὒɴ ρȟσὼ ςȟτὼ πȟσὼ τȟφὼ ρȟτὼ

ρȟυὼ ὓὭὲ 

Constraints: 

ὼ ὼ ὼ σππ 

ὼ ὼ ὼ φππ 

ὼ ὼ ςππ 

ὼ ὼ σππ 

ὼ ὼ τππ 

ὼ π  Ƞ  É ρȟς  ȟÊ ρȟςȟσ 

We write the model in the following symmetrical form: 

Because the objective function is a minimization function, all 

constraints must be larger than or equal to, hence the model 

takes the symmetric form: 

Find: 

ὒɴ ρȟσὼ ςȟτὼ πȟσὼ τȟφὼ ρȟτὼ

ρȟυὼ ὓὭὲ 

Constraints: 

ὼ ὼ ὼ σππ 

ὼ ὼ ὼ φππ 

ὼ ὼ ςππ 
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ὼ ὼ σππ 

ὼ ὼ τππ 

ὼ π  Ƞ  É ρȟς  ȟÊ ρȟςȟσ 

Forming the dual model, we obtain the following linear model: 

Find: 

ὤ σππώ φππώ ςππώ σππώ τππώ ὓὥὼ 

Constraints: 

ώ ώ ρȟσ 

ώ ώ ςȟτ 

ώ ώ πȟσ 

ώ ώ τȟφ 

ώ ώ ρȟτ 

ώ ώ ρȟυ 

ώȟώȟώȟώȟώ π 

Based on the content of the original problem, we build an 

adequate text for the accompanying model: 

It is clear from the original model that the factory's goal is to 

transport all of its products at the lowest possible cost: 

Text of the issue dual to the attached form: 

A transport company submitted to a factory an offer that it 

would transport the entire quantity in the first warehouse, i.e., 

σππ units, at a price of ώ monetary unit per unit, and transfer 

the entire quantity available in the second warehouse, φππ, at a 

price of ώ monetary units per unit. The business promised to 

supply the three retail outlets with 200, 300, and 400 units, 
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respectively. These units are sold in these centers at a price of 

ώȟώȟώ  monetary units, respectively. So, you can convince 

the factory official that if he accepts your offer, the 

transportation cost in his factory will be less than the cost. 

Using the constraints in the dual model as follows: 

You pay the cost of transporting one unit from the first factory 

to the first sales center, an amount whose value belongs to the 

range ρȟσ, but if you use the transport company, the cost is 

ώ ώ , and we have from the first entry in the 

accompanying model  

ώ ώ ρȟσ 

Here the official in the laboratory will notice that the 

transportation companyôs offer is an appropriate offer. 

In the same way we discuss all the limitations of the dual 

model, the conclusion that the factory official will reach is that 

the cost of transportation on any route if the transportation 

companyôs offer is accepted is less than or equal to the cost that 

he would pay if he himself carried out the transportation 

process. 

The transport company will adopt the values ώȟώȟώȟώȟώ , 

because it will achieve maximum profit through them, as the 

transport companyôs profit is calculated from the relation: 

σππώ φππώ ςππώ σππώ τππώ 

It is the same as the objective function of the dual model, 

meaning that the dual model represents the transportation 

company that is trying to maximize its profits 

The best values of the dual model and the model itself are 

always equivalent, according to the fundamental theorem of 
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association. Although it saves the manufacturer the trouble of 

solving the original model to determine the minimum cost of 

transportation, and because it guarantees the transportation 

company a deal to transport the goods with the maximum 

profit, the manufacturer does not save any money because he 

will pay the transportation company the minimum cost of 

transportation. 

Conclusion: 

The interpretation of the optimal solution for the original 

model is that it gives us the best production plan that makes the 

value of that production as large as possible, within available 

capabilities. Based on the previous study, we arrived at a 

solution for the original and utility models simultaneously, 

which are neutrosophic values from which we know the 

minimum and maximum profit that we can obtain. The 

optimum values for raw material prices are provided by the 

optimal solution for the dual model. If these prices are 

employed efficiently, they also yield the best production plan, 

which maximizes profit. 
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Chapter VIII : Some applications to 

neutrosophic linear models 

 

Introduction. 

8-1- Problem of the composition of mixtures. 

8-2- Problem of product mixture. 

Conclusion. 
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Chapter VIII  

Some applications to neutrosophic linear 

models 

Introduction:  

In the majority of useful domains, one of the most popular 

operations research techniques is linear programming. This 

approach is predicated on turning the problem at hand into a 

linear mathematical model. From there, we use specialized 

algorithms designed for solving linear models to determine the 

best solution. This approach facilitates the process of making 

well-founded, scientifically-based judgments for the decision 

makers in charge of overseeing the system that follows this 

modelThe creation of the linear model, or representing the 

issue under investigation in mathematical relations, is the most 

crucial step in linear programming. To create the linear model, 

the following fundamental components must be present. 

1. Determine the goal quantitatively, and it is expressed by 

the goal function, which is the function for which the 

maximum or minimum value is required. That is, we 

must be able to express the goal quantitatively, such as if 

the goal is to achieve the greatest profit or achieve the 

lowest cost. 

2. Determine the constraints: The constraints that express 

the available resources must be specific, that is, the 

resources must be measurable, and expressed in a 

mathematical formula in the form of inequalities or 

equals. 

3. Identifying the different alternatives: This element 

indicates that the problem should have more than one 
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solution so that linear programming can be applied, 

because if the problem had one solution, there would be 

no need to use linear programming, whose benefit is 

focused on helping to choose the best solution from 

among the acceptable solutions. 

In this chapter, we present some problems that lead to 

neutrosophic linear models, that is, we will take some or all of 

the problem data as neutrosophic values. 

8-1- Problem of the composition of mixtures: 

By mixtures, we mean anything that is installed from a number 

of materials such as diets - medicine - any metal mixture- and 

here the stretch loop is to choose the materials that enter the 

composition of this mixture so that the cost of production is as 

little as possible, the goal of putting forward this model in the 

field of education is that the student can link between 

neutrosophic equations and linear inequations as well as the 

neutrosophic function and problems from real life.   

General text of the problem: 

We want to install a mixture of raw materials ὃȟὃȟȣȟὃand 

the price of one unit of each of them is equal to 

ὔὅȟὔὅȟȣȟὔὅ  respectively, and the meal must include an 

amount of important elements 

ὄȟὄȟȣȟὄ    that the quantity of each element shall not be 

less than ὄȟὄȟȣȟὄ  

ὔὦȟὔὦȟȢȢȟὔὦ    unit in the order required to find the 

necessary amounts of each of the materials 

ὃȟὃȟȣȟὃ   which must be included in the mixture so that its 

cost is as low as possible, knowing that the content of each of 

the materials ὃȟὃȟȢȢȟὃ   of each of the elements 

  ὄȟὄȟȣȟὄ , is shown in the following table:  
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ὔὄ ὃ  ééé ὃ ὃ 
Materials 

Elements 

 
ὔὦ ὥ  ééé. ὥ  ὥ  ὄ 
ὔὦ ὥ  ééé. ὥ  ὥ  ὄ 
 éééé. ééé.. éééé. ééé.. éééééé. 
ὔὦ ὥ  ééé.. ὥ  ὥ  ὄ  

Table No. (1) Raw materials and elements for the problem of 

composition of mixtures 

If and   ὔὧ ὧ ‐   Ὦ ρȟςȟȣȟὲ where ‐   is indefinite and 

can be ‐ ‗   ȟ‗  or  ‐  ‗   ȟ‗    

Also values that express the quantities of elements that must be 

available in the mixture and  ὔὦ ὦ Ὥ    ρȟςȟȣȟά 

where    is indefinite and can be,   ‘   ȟ‘  or 

 ‘      ȟ‘   

Building the Mathematical Model: 

We represent the necessary quantities of every material 

ὃȟὃȟȣȟὃ  by ὼȟὼȟȣȟὼ and put all the information in the 

following table: 

Minimum 

amounts 
═▪ é ═  ═  Materials 

Elements 
ὔὦ ὥ  é ὥ  ὥ  ὄ 
ὔὦ ὥ  é ὥ  ὥ  ὄ 
ééé ééé é éé ééé ééé 
ὔὦ ὥ  é ὥ  ὥ  ὄ  
 ὔὧ é ὔὧ ὔὧ 

Profit per unit 

 

 ὼ é ὼ ὼ Required amounts 

Table No. (2) General data on the issue of composition of mixtures 

What is required in the problem is to determine a value for 

each of the variables ὼȟὼȟȣȟὼ so that, given the constraints, 

the objective function opts for the lowest value. 
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Based on the data of the problem, the objective function is 

written in the following form:  

ὔὒ ὔὧὼ ὔὧὼ Ễ ὔὧὼ 

 We express the terms mathematically and offer the following 

explanation: 

Each unit of the material  ὃ gives us  ὥ   unit  of the element 

ὄ  , and thus we find that  ὼ  unit  gives us ὥ ὼ unit of the 

element ὄ, and so we find for the rest of the materials and 

elements, and therefore the condition related to the element ὄ 

is as follows: 

ὥ ὼ ὥ ὼ Ễ ὥ ὼ ὔὦ 

We proceed in the same manner to obtain the following 

mathematical model for all materials and elements: 

ὓὭὲὔὒὔὧὼ ὔὧὼ Ễ ὔὧὼ 

Constraints: 

ὥ ὼ ὥ ὼ Ễ ὥ ὼ ὔὦ 

ὥ ὼ ὥ ὼ Ễ ὥ ὼ ὔὦ 

ȣȣȣȣȣȣȣȣȣȣȣȣȣ 

ὥ ὼ ὥ ὼ Ễ ὥ ὼ ὔὦ 

ὼȟὼȟȣȟὼ π 

We write in the following abbreviated form: 

-ÉÎὔὒ ὧ ‐ὼ 

Constraints: 
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ὥὼ ὦ ȠὭ   ρȟςȟȣȟά 

ὼ π 

where ὧ ‐  ȟ    ὦ ȟ    ὥȟὮ ρȟςȟȣȟὲ ȟὭ ρȟςȟȣȟά 

Example 1: 

A school wishes to serve four different types of food for 

breakfast to its students: ὃȟὃȟὃȟ and ὃ . The cost of one 

unit of each of these would be ὔὧȟὔὧȟὔὧȟὔὧ. 

Additionally, letôs assume that the meal must include a specific 

quantity of vital nutrients: proteins ὄ, starch ὄ, carbohydrates 

ὄ. In order to ensure that the meal contains at least the 

minimum amount of nutrients required to be provided and that 

the amount of protein in it is not less than ὔὦ unit, and the 

amount of carbohydrates is ὔὦ unit, and the amount of 

carbohydrates is ὔὦ unit, it is necessary to determine the 

necessary amounts of substances that must be included into the 

meal. The following table outlines the requirements for each 

element and the essential nutrients they contain, where: 

   ὔὧ ὧ ‐  and    Ὦ ρȟςȟσȟτ where ‐    is indefinite and 

can be   ‐ ‗   ȟ‗ or ‐  ‗   ȟ‗    

Also values that express the amounts of nutrients  that must be 

available in the meal ὔὦ ὦ and Ὥ     ρȟςȟσ where  it 

is indefinite and can be   ‘  ȟ‘  or    ‘  ȟ‘   

We denote the required amounts of each of the materials 

ὃȟὃȟὃȟὃ  with symbols ὼȟὼȟὼȟὼ respectively put the 

information contained in the text of the problemôs table as 

follows:   
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Minimum 

amounts 
═  ═  ═  ═  Materials 

Elements 
ὔὦ ὥ  ὥ  ὥ  ὥ  ὄ 
ὔὦ ὥ  ὥ  ὥ  ὥ  ὄ 
ὔὦ ὥ  ὥ  ὥ  ὥ  ὄ 

 ὔὧ ὔὧ ὔὧ ὔὧ 
Profit 

 

 ὼ ὼ ὼ ὼ Required amounts 

Table No. (3): Basic data for building the linear model for example 1 

Follow the objective function: 

We find: 

ὔὒ ὔὧὼ ὔὧὼ ὔὧὼ ὔὧὼ 

Nutrient conditions:  

Nutrient protein requirement ὄ 

ὥ ὼ ὥ ὼ ὥ ὼ ὥ ὼ ὔὦ 

Requirement of starch nutrient ὄ 

ὥ ὼ ὥ ὼ ὥ ὼ ὥ ὼ ὔὦ 

Requirement of carbohydrate nutrient ὄ 

ὥ ὼ ὥ ὼ ὥ ὼ ὥ ὼ ὔὦ 

Non-negative condition: 

ὼȟὼȟὼȟὼ π 

The appropriate mathematical model emerges. 

Find: 

ὓὭὲὔὒὔὧὼ ὔὧὼ ὔὧὼ ὔὧὼ 

Constraints: 

ὥ ὼ ὥ ὼ ὥ ὼ ὥ ὼ ὔὦ 

ὥ ὼ ὥ ὼ ὥ ὼ ὥ ὼ ὔὦ 
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ὥ ὼ ὥ ὼ ὥ ὼ ὥ ὼ ὔὦ 

ὼȟὼȟὼȟὼ π 

We apply the neutrosophic simplex approach outlined in the 

research to get the best solution. 

8-2- Problem of product mixture: 

When a product is said to be a mixture of products, it refers to 

one that is produced in all production facilities using a variety 

of raw materials in order to achieve optimal workflow and 

maximum profit. This process is guided by a scientific analysis 

that determines the quantities required to produce each product 

using the best available resources in order to meet market 

demand and turn a profit. This model can be used to 

demonstrate to students the application of linear models. As a 

result, students will learn that the pens, notebooks, benches, 

tables, transportation, and other items they use on a daily basis 

are produced using process research methods that rely on 

developing mathematical models. The optimal solution for 

solving a model is what the institution must undertake. 

General text of the problem: 

A production institution that can produce products 

ὃȟὃȟȣȟὃ  and includes in its composition of raw materials, 

the quantities used of each ὄȟὄȟȣȟὄ  of the raw materials 

in each of the products are shown in the following table: 
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ὔὄ ὃ  ȣ ὃ ὃ 
Materials 

Elements 
ὔὦ ὥ  ȣ ὥ  ὥ  ὄ 
ὔὦ ὥ  ȣ ὥ  ὥ  ὄ 
 ȣ ȣ ȣ ȣ ȣ 
ὔὦ ὥ  ȣ ὥ  ὥ  ὄ  

Table No. (4) Raw materials and elements for the product mix issue 

The quantities available to the institution of these raw materials 

are ὔὦȟὔὦȟȣȟὔὦ   where: 

 ὔὦ ὦ  is indefinite and can be    and  

  ‘   ȟ‘  ÏÒ    ‘   ȟ‘   , Ὥ ρȟςȟȣȟά  

ὔὅȟὔὅȟȣȟὔὅ , is required to find the amount of what must 

be produced from each of the products, knowing that the profit 

returned from one unit of each of the products is respectively 

  ὔὧ ὧ ‐ where ‐ is indeterminate and can be 

‐ ‗   ȟ‗   ‐  ‗   ȟ‗  ; Ὦ ρȟςȟȣȟὲ     

Building the Mathematical Model: 

We code the quantities produced from each of the products 

ὃȟὃȟȣȟὃ  be   ὼȟὼȟȣȟὼ and put all the information in 

the following table: 
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Available 

Quantities 
═▪ ȣ ═  ═  

Products 

 

Materials 
ὔὦ ὥ  ȣ ὥ  ὥ  ὄ 
ὔὦ ὥ  ȣ ὥ  ὥ  ὄ 
ȣ ȣ ȣ ȣ ȣ ȣ 
ὔὦ ὥ  ȣ ὥ  ὥ  ὄ  
 ὔὧ ȣ ὔὧ ὔὧ Profit  

 ὼ ȣ ὼ ὼ 
Quantities 

produced 

Table No. (5) Neutrosophic data for the model 

What is required in the problem is to determine a value for 

each of the variables ὼȟὼȟȣȟὼ  so that the objective 

function takes the greatest value, within the imposed 

conditions.  

Based on the data of the problem, the objective function is 

written in the following form:  

ὔὤ ὔὧὼ ὔὧὼ Ễ ὔὧὼ 

We give the following explanation by mathematically 

formulating the terms: 

To produce one unit of the product  ὃ , we need ὥ  unit of 

the material ὄ, and thus we find that ὼ unit of the product ὃ 

needs ὃὥ  unit of the material ὄ, and so we find for the rest 

of the products and materials, and therefore the condition 

related to the material is as follows: ὄὼὃὥ ὼὄὄ 

ὥ ὼ ὥ ὼ Ễ ὥ ὼ ὔὦ 

Following the same procedure for all goods and materials, we 

obtain the following mathematical model: 

Find the maximum value of the function 

ὓὥὼὔὤὔὧὼ ὔὧὼ Ễ ὔὧὼ 
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Constraints: 

ὥ ὼ ὥ ὼ Ễ ὥ ὼ ὔὦ 

ὥ ὼ ὥ ὼ Ễ ὥ ὼ ὔὦ 

ȣȣȣȣȣȣȣȣȣȣȣȣȣȢ 

ὥ ὼ ὥ ὼ Ễ ὥ ὼ ὔὦ 

ὼȟὼȟȣȟὼ π 

It shall be written in the following abbreviated form: 

-ὥὼὔὤ ὧ ‐ὼ 

Constraints: 

ὥὼ ὦ Ƞ   Ὥ       ρȟςȟσȟȣȟά 

ὼ π 

where ὧ ‐  ȟ    ὦ ȟ    ὥȟὮ ρȟςȟȣȟὲ ȟὭ ρȟςȟȣȟά  

are constants having set or interval values according to the 

nature of the given problem, ὼ are decision variables. 

Example2:  

A factory for manufacturing pens produces four types

1234 ,,, SSSS   and  uses the following raw materials 

123 ,, MMM  for this. The factory management wants to study 

the optimal organization of production during a period of time 

(for example, a month) and determine the monthly production 

of each product to achieve a maximum profit, knowing that the 

profit is directly proportional to the number of units sold of 

products.  We explain the available quantities of raw materials 
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required for each product and the profit returned in the 

following table: 

Available 

Quantities 
╢ ╢ ╢ ╢ Materials 

      Elemants 
ὔά  ὥ  ὥ  ὥ  ὥ  ὓ  
ὔά ὥ  ὥ  ὥ  ὥ  ὓ  
ὔά ὥ  ὥ  ὥ  ὥ  ὓ  

Table No. (6): Data in Example 2 

To construct the mathematical model, we assume x 1 counting 

units produced from Ὓ 

 x2 number of units produced fromὛ 

 x3 number of units produced fromὛ 

4x Number of units produced from Ὓ 

During the productive period (for example, a month) we put 

the information in the following table: 

 

Available 

Quantities 
╢ ╢ ╢ ╢ Matereals  

Elements 
ὔά  ὥ  ὥ  ὥ  ὥ  ὓ  
ὔά ὥ  ὥ  ὥ  ὥ  ὓ  
ὔά ὥ  ὥ  ὥ  ὥ  ὓ  
 ὔὧ ὔὧ ὔὧ ὔὧ Profit 

 ὼ ὼ ὼ ὼ 
Quantities 

produced 

Table No. (7): Basic information for building the mathematical model 

From the table we can see that the primary material condition 

ὓ : 

ὥ ὼ ὥ ὼ ὥ ὼ ὥ ὼ ὔά  

Initial material requirement M2: 
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ὥ ὼ ὥ ὼ ὥ ὼ ὥ ὼ ὔά 

Initial material requirement M3: 

ὥ ὼ ὥ ὼ ὥ ὼ ὥ ὼ ὔά 

In addition, the quantities produced must be non-negative, i.e.: 

ὼȟὼȟὼȟὼ π 

We now define the objective function. If units of the same type 

are produced 1234 ,,, xxxx  respectively, the profit during the 

production period will be: 

ὔὤ ὔὧὼ ὔὧὼ ὔὧὼ ὔὧὼ 

Therefore, the mathematical model of the problem is: 

Find the maximum value of the function  

ὓὥὼὔὤὔὧὼ ὔὧὼ ὔὧὼ ὔὧ 

Within the conditions  

ὥ ὼ ὥ ὼ ὥ ὼ ὥ ὼ ὔά  

ὥ ὼ ὥ ὼ ὥ ὼ ὥ ὼ ὔά 

ὥ ὼ ὥ ὼ ὥ ὼ ὥ ὼ ὔά 

ὼȟὼȟὼȟὼ π 

Using neutrosophic science principles, we shall apply 

the above to a model of optimal agricultural land use. 

We will be employing data that is influenced by the 

environment, i.e., neutrosophic values. 

Text of the issue: 

Let us assume that we have ὲ agricultural areas (plain or 

cultivated), each of which has an area equal to 

ὃȟὃȟỄỄȟὃ . We want to plant it with ά types of 

agricultural crops to secure the communityôs requirements for 

it. Knowing that we need of crop Ὥ the amount ὦ , if the 

average productivity of one area in plain Ὦ of crop Ὥ is equal to 
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ὔὥ tons/ha. where Ὦ ρȟςȟȣȣȟὲ and Ὥ ρȟςȟȣȣȟά, and 

the profit returned from one unit of crop Ὥ  equal to ὔὴ, 

whereὔὴ is a neutrosophic value, an undefined non-specific 

value that designates a perfect and can be any neighbor of the 

value ὥ , also  ὔὴwhich can be any neighbor of ὴ. 

Requirement: 

Ascertain the acreage required for cultivation of each crop in 

each region in order to maximize profit and satisfy societal 

demands. 

Formulation of the mathematical model: 

We represent by ●░▒  the amount of area in area Ὦ that must be 

cultivated with crop, and we place the data for the problem in 

the following table: 

profit amount  
╝▬░ 

Order amount 
╫░ 

ὲ Ễ 2 1 Regions 

Crops 

ὔὴ ὦ ὔὥ  

ὼ  

Ễ ὔὥ   
ὼ  

ὔὥ  

ὼ  

1 

ὔὴ ὦ ὔὥ  

ὼ  

Ễ ὔὥ  

ὼ  

ὔὥ  

ὼ  

2 

Ễ Ễ ỄỄ Ễ Ễ Ễ Ễ 

ὔὴ ὦ  ὔὥ  

ὼ  

Ễ ὔὥ  

ὼ  

ὔὥ  

ὼ  

ά 

  ὥ  Ễ ὥ ὥ Available 

space ╪░ 

Table No. (8) Issue data 

Then we find that the conditions imposed on the variables ὼ  

are: 

1- Space restrictions: 

The total area allocated to various crops in area ἲ must be equal 

to ὥ , that is, it must be: 

ὼ ὼ ỄỄ ὼ ὥ 

ὼ ὼ ỄỄ ὼ ὥ 
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ỄỄỄỄỄỄỄỄỄỄỄ 

ὼ ὼ ỄỄ ὼ ὥ 

2- Conditions for meeting community requirements: 

The total production of crop Ὥ  in all regions must not be less 

than the amount ὦ , that is, it must be: 

ὔὥὼ ὔὥὼ ỄỄ ὔὥὼ ὦ 

ὔὥὼ ὔὥὼ ỄỄ ὔὥὼ ὦ 

ỄỄỄỄỄỄỄỄỄỄỄỄỄỄỄỄ 

ὔὥ ὼ ὔὥ ὼ ỄỄ ὔὥ ὼ ὦ  

Find the objective function:  

We note that the profit resulting from the production of crop Ὥ 

only and from all regions is equal to the product of the profit 

times the quantity, which is:  

ὔὴὔὥὼ ὔὥὼ ỄỄ ὔὥ ὼ  

Thus, we find that the objective function, which expresses the 

total profit resulting from all crops, is equal to: 

ὤ ὔὴ ὔὥ  ὼ ὔὴ ὔὥ  ὼ

ỄỄ ὔὴ ὔὥ   ὼ ᴼὓὥὼ 

From the above we get the following mathematical model: 

Find the maximum value of 

ὤ ὔὴ ὔὥ  ὼ ὔὴ ὔὥ  ὼ ỄỄ

ὔὴ ὔὥ   ὼ ᴼὓὥὼ 
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Constraints: 

ὼ ὼ ỄỄ ὼ ὥ 

ὼ ὼ ỄỄ ὼ ὥ 

ỄỄỄỄỄỄỄỄỄỄỄ 

ὼ ὼ ỄỄ ὼ ὥ 

ὥ ὼ ὥ ὼ ỄỄ ὥ ὼ ὦ 

ὥ ὼ ὥ ὼ ỄỄ ὥ ὼ ὦ 

ỄỄỄỄỄỄỄỄỄỄỄỄỄỄỄỄ 

ὥ ὼ ὥ ὼ ỄỄ ὥ ὼ ὦ  

 

ὼ π   ȠὭ ρȟςȟỄỄȟά ȟὮ ρȟςȟỄỄȟὲ 

Example3: 

Let us assume that we want to exploit four agricultural areas 

ὃ ȟὃȟὃȟὃ , and the area of each of them, respectively, 

is φπȟρυπȟςπȟρπ, by planting them with the following crops: 

wheat, barley, cotton, tobacco, and beet, from which we need 

the following: ψππȟςππȟφππȟρπππȟςυππ. Let us assume that 

the regionsô productivity of these crops and their prices are 

given in the following table: 

 

Price per ton  order ὃ  ὃ  ὃ   ὃ   Regions 

Crops 

 ρτππȟρφππ 2500 6 3 4 τȟφ wheat 

ωππȟρρππ 1000 σȟυ 4 5 7 barley 

τυππȟφπππ 600 5 8 ωȟρρ  4 cotton 

τπππȟυπππ 200 0 0 ςȟτ  6 tobacco 

τππȟχππ 800 6 10 ρπȟρτ 3 beet 

  10 20 150 60 Space 

Table No. (9) Example data 

 

Requirement: 
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Formulate the mathematical model for this problem in a way 

that maximizes the production value. 

To formulate the mathematical model, we extract the following 

linear conditions: 

Space restrictions: 

ὼ ὼ ὼ ὼ ὼ φπ 

ὼ ὼ ὼ ὼ ὼ ρυπ 

ὼ ὼ ὼ ὼ ὼ ςπ 

ὼ ὼ ὼ ὼ ὼ ρπ 

Order restrictions:  

τȟφὼ τὼ σὼ φὼ ςυππ 

χὼ υὼ τὼ σȟυὼ ρπππ 

τὼ ωȟρρ ὼ ψὼ υὼ φππ 

φὼ ςȟτὼ πὼ πὼ ςππ 

σὼ ρπȟρτὼ ρπὼ φὼ ψππ 

Non-Negative restrictions: 

ὼ π  ȠὭ ρȟςȟσȟτȟυ     ὥὲὨ   Ὦ ρȟςȟσȟτ 

Objective function that expresses the value of production 

is: 

ὤ  ρτππȟρφππτȟφὼ τὼ σὼ φὼ

ωππȟρρππχὼ υὼ τὼ

σȟυὼ  

τυππȟφπππτὼ ωȟρρ ὼ ψὼ

υὼ  

τπππȟυπππφὼ ςȟτὼ πὼ

πὼ  τππȟχππσὼ ρπȟρτὼ

ρπὼ φὼ ᴼὓὥὼ 

Mathematical model: 

Find the maximum value of 
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ὤ  ρτππȟρφππτȟφὼ τὼ σὼ φὼ

ωππȟρρππχὼ υὼ τὼ

σȟυὼ  

τυππȟφπππτὼ ωȟρρ ὼ ψὼ

υὼ  

τπππȟυπππφὼ ςȟτὼ πὼ

πὼ  τππȟχππσὼ ρπȟρτὼ

ρπὼ φὼ ᴼὓὥὼ 

Constraints: 

ὼ ὼ ὼ ὼ ὼ φπ 

ὼ ὼ ὼ ὼ ὼ ρυπ 

ὼ ὼ ὼ ὼ ὼ ςπ 

ὼ ὼ ὼ ὼ ὼ ρπ 

τȟφὼ τὼ σὼ φὼ ςυππ 

χὼ υὼ τὼ σȟυὼ ρπππ 

τὼ ωȟρρ ὼ ψὼ υὼ φππ 

φὼ ςȟτὼ πὼ πὼ ςππ 

σὼ ρπȟρτὼ ρπὼ φὼ ψππ 

Ø π  ȠÉ ρȟςȟσȟτȟυ     ÁÎÄ   Ê ρȟςȟσȟτ 

The first issue:   

An operations research expert was consulted by an executive in 

one of the companies to help him find the best way to operate 

warehouses at the lowest possible cost and minimize 

transportation costs. The executive gave the expert information 

that allowed the expert to formulate the following problem: 



Neutrosophic linear models and algorithms to find their optimal solution 

- 142 - 
 

The text of the problem according to the concepts of 

neutrosophic science: A retail company plans to expand its 

activities in a specific area by establishing two new 

warehouses. The following table shows the potential locations, 

the number of customers and the possibility of meeting the 

demand for the sites where ()z has been placed in the event that 

the site can meet the customer's request and put (×) the 

opposite and code ὔὧ The transfer of one unit from location i 

to customer j is shown in the following table: 

 

ὄ ὄ ὄ ὄ 
 Customer 

site              

 z

ὔὧ  

  z

ὔὧ  

 z

ὔὧ 

ὃ 

 z

ὔὧ  

 z

ὔὧ 

 z

ὔὧ 

 z

ὔὧ 

ὃ  

 z

ὔὧ 

 z

ὔὧ 

 z

ὔὧ 

 ὃ  

Ὀ  Ὀ  Ὀ  Ὀ Customer 

orders 

Table (10) Transportation cost in case of location selection 

 We have the following information available for each of the 

candidate locations for warehouses 

 

Site Capacity Initial Invested 
Capital (Monetary 

Unit)  

Operating cost 
per unit 

(monetary unit) 
 

information  

site 

ὃ Ὧ ὔὴ first  

ὃ  Ὧ ὔὴ second 

ὃ  Ὧ ὔὴ third  

Table (11) operation information 



Neutrosophic linear models and algorithms to find their optimal solution 

- 143 - 
 

It is required to choose suitable locations for warehouses that 

make the total costs of investment, operation and transportation 

as small as possible. 

Building the mathematical model:  

The total cost of setting up and running the warehouse is 

therefore a non-linear function of the stored quantity. The 

problem of locating the warehouse can be formulated using 

binary integer variables in a program with integers, where we 

assume that the binary integer variable ♯░ represents the 

decision to choose the site or not. Each site has a fixed capital 

cost independent of the quantity stored in the warehouse 

referred to that site and also has a variable cost proportional to 

the quantity transported: 


ρ                ÉÆ ×Å ÃÈÏÓÅ ÔÈÅ ÓÉÔÅ Ὥ          
π                    ÏÔÈÅÒ×ÉÓÅ                  

 

Suppose that ●░▒ is the quantity transferred from site ░ to 

customer ▒, so the constraint expressing the ability of the first 

site to meet the requests is as follows: 

ὼ ὼ ὼ ὃ 

When  ρ, the first location with capacity ὃ is chosen. The 

quantity transported from the first site cannot exceed the 

capacity of that site ὃ when  π the non-negative variables 

 ὼ ȟὼ ȟὼ π  directly, indicating that it is not possible to 

ship from the first location  

In a similar way, we obtain the following two constraints for 

the second and third signatories.   

Ø Ø Ø Ø !ɿ 

Ø Ø Ø !ɿ 
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To choose exactly two locations, we need the following 

restriction:  

ɿ ɿ ɿ ς 

As  ɿ can take one of the values of 0 or 1 only, the new 

constraint will force two variables from among the three 

variables, ɿ to be equal to one. 

The restrictions for customer requests can be written as 

follows:  

First customer ὼ ὼ Ὀ  

Second customer ὼ ὼ ὼ Ὀ  

Third customer ὼ ὼ Ὀ  

Forth customer ὼ ὼ ὼ Ὀ  

To write the objective function, we note that the total cost of 

investment, operation and transportation for the first site is as 

follows:  

Ὧ ὔὴὼ ὼ ὼ ὔὧὼ ὔὧὼ

ὔὧὼ  

When we do not choose the first site, variable  π And 

that forces the variables 

 ὼ  ̪ὼ  ̪ὼ π 

 In a similar way, the cost functions of the second and third 

sites can be written, and thus the full formulation of the issue 

of assigning the location of the warehouse is reduced to the 

following correct mixed program: Z is meant to be made 

minimal 
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 ὤ Ὧ ὔὴὼ ὼ ὼ ὔὧὼ ὔὧὼ

ὔὧὼ Ὧ ὔὴὼ ὼ ὼ ὼ ὔὧὼ

ὔὧὼ ὔὧὼ ὔὧὼ Ὧ ὔὴὼ ὼ

ὼ ὔὧὼ ὔὧὼ ὔὧὼ  

considering the following restrictions: 

ὼ ὼ ὼ ὃ 

ὼ ὼ ὼ ὼ ὃ 

ὼ ὼ ὼ ὃ 

   ς 

ὼ ὼ Ὀ  

ὼ ὼ ὼ Ὀ  

ὼ ὼ Ὀ  

true variable for Ὥ  ρȟςȟσ 

ὼ π  Ƞ Ὥ ρȟςȟσ  ὥὲὨ Ὦ ρȟςȟσȟτ 

The second problem:  

The executive's second request concerned how to select the 

best projects to carry out the limited capital that the company 

has available among the various projects that have been 

presented. Using the data supplied by the official responsible 

for overseeing the business, the expert developed the following 

problem: 

The issue of the capital budget: A company plans to disburse 

its capital during the Ὕ periods. Where: 

 Ὦ ρȟςȟȣȟÎ, and there isὃA proposed project where: 

 Ὥ ρȟςȟ ȟÍ versus a limited capital ὄ Available for 

investment in period Ὦ and when choosing any project Ὥ 
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becomes in need of a certain capital in each period   Ὦ we 

denote itὔὥ. It is a neutrosophic value, the value of each 

project is measured in terms of the liquidity flow 

corresponding to the project in each period minus the value of 

inflation, and this is called net present value (NPV), we denote 

it ὔὺ Accordingly, the following table can be organized: 

Ὕ ȣ Ὕ Ὕ period 

   project 

ὔὥ  ȣ ὔὥ  ὔὥ  ὃ 

ὔὥ  ȣ ὔὥ  ὔὥ  ὃ  

ȣ ȣ ȣ ȣ ȣ 

ὔὥ  ȣ ὔὥ  ὔὥ  ὃ  

ὄ ȣ ὄ ὄ Limited capital  

Table (12) Return on Investment during Periods 

What is required in this problem is to select the right projects 

that maximize the total value (NPV) of all selected projects. 

Formulation of the mathematical model:  

Here we assume a binary integer variable ὼIt takes the value 

one if the project Ὦ is selected and takes the value zero if the 

project ▒ is not selected 

ὼ
ρ            ÉÆ ×Å ÃÈÏÓÅ ÐÒÏÊÅÃÔ Ὥ             
π                    ÏÔÈÅÒ×ÉÓÅ               

 

Then the objective function is given by the following relation: 

ὤ ὔὺ ὼ 

Then the objective function is given by the following relation: 

ὔὥ ὼ ὄ     ȠὮ ρȟȣȟὲ 

Accordingly, we get the following mathematical model:  
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Find the maximum value of the function: 

ὤ ὔὺ ὼ 

considering the following restrictions:  

ὔὥ ὼ ὄ     ȠὮ ρȟȣȟὲ 

ὼ A binary variable takes one of the values 0 or 1 for all values 

of Ὥ ρȟȣȟά in the previous two issues, we got models with 

integers that have special methods of solution. This research 

cannot be presented and we will present them in later research 

using the concepts of neutrosophic science 

1- Formulation of the problem and the construction of 

mathematical model according to neutrosophic 

values: 

 The study concluded in the research [12] shows us how to 

construct neutrosophic linear models, (the linear model is a 

neutrosophic model if at least one of the likes of variables in 

the objective function or neutrosophic value constraints) 

The text of the issue:  

The company has ὲ rank for inspectors and wants to assign the 

task of quality control to them, and ὑ pieces should be audited 

daily during an Ὓ hour of work per day, in the following table 

we explain the full information about the inspectors and for all 

ranks: 
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The fine paid by the 

company for each 

fault to the 

inspector 

Number of 

inspectors 

Inspector's 

remuneration 

( Monetary Unit 

per Hour ) 

Accuracy 

(percent) 

Number of 

pieces 

checked 

(hour) 

About the 

Inspector 

 

 

Inspector 

rank 

Ὑ ὃ Ὃ ὔὈ  ὔὓ  ρ 
Ὑ ὃ  Ὃ ὔὈ ὔὓ ς 

ȣ ȣ ȣ ȣ ȣ ȣ 

Ὑ ὃ  Ὃ  ὔὈ  ὔὓ ὲ 

Table (13) Information on inspectors using neutrosophic values 

The number of pieces is a neutrosophic  value ὔὓ ὓ ‐ 

where ‐ is the indeterminacy  on the number of pieces, it can 

take one of the shapes ‗ȟ‗  έὶ ‗ȟ‗  or any value close 

to ὓ as well as the precision, neutrosophic values 

ὔὈ Ὀ   

where  is the indeterminacy on the precision that can take one 

of the shapes ‘ ȟ‘  or ‘ ȟ‘   or any value close to ὈȢ 

Requirement: 

Create a suitable mathematical model that will allow us to 

allocate the inspectors with the optimal support, resulting in the 

lowest possible inspection cost. 

Building the neutrosophic mathematical model:  

To build the mathematical model, we impose 

 ὼȟὼȟ ȟὼ the number of inspectors of each rank on 

the order assigned to the inspection task, then the following 

inequality must be met:  

ὼ ὃ    Ƞ   Ὦ ρȟςȟ ȟὲ 
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Since the company needs to audit ὑ piece daily within Ὓ 

working hour per day, the following set of restrictions must be 

met: 

Ὓὔὓ ὼ ὑ     

In order to derive the objective function, we first notice that the 

corporation is responsible for paying the inspector's fee as well 

as the fine for each mistake the inspector makes. Based on this 

information, the target follower writes as follows: 

ὔὤ Ὓ Ὃ ὔὓ Ὑ
ρππὔὈ

ρππ
  ὼ    

Then the mathematical model is written as follows: 

ὔὤ Ὓ Ὃ ὔὓ Ὑ
ρππὔὈ

ρππ
  ὼ O -ÉÎ    

Constraints: 

ὼ ὃ    Ƞ   Ὦ ρȟςȟ ȟὲ 

 

Ὓὔὓ ὼ ὑ     

ὼ π  Ƞ  Ὦ ρȟςȟ ὲ 

Example4: 

The following table explains all the information about the 

inspectors and for all ranks. In this example, we will use the 

number of pieces checked by the inspectors from each rank as 

neutrosophic values. A company wants to assign the task of 

quality control to its inspectors, who have three ranks. The 
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inspectors should audit 1500 pieces every day during eight 

working hours. 

 
The fine paid by 

the company for 

each fault to the 

inspector 

Number of 

inspectors 

Inspector's 

remuneration 

( Monetary Unit per 

Hour )  

Accuracy 

(percent) 

Number of 

pieces 

checked 

(hour) 

About the Inspector 

 

 

Inspector rank 

ς ρπ τ ωυ ρυȟρφ ρ 
ς φ σ ωπ ρπȟρρ ς 
ς ψ υ ωψ ςυȟςφ σ 

Table (14) Information on inspectors using neutrosophic values 

Requirement: 

Create a suitable mathematical model that will allow us to 

assign the best inspection assignments to the inspectors while 

keeping the inspection cost as low as feasible. 

To build the mathematical model, we impose ὼȟὼȟὼ as the 

number of inspectors from the three ranks in the order assigned 

to the inspection task, then the following inequality must be 

met:  

ὼ  ρπ  

ὼ  φ    

ὼ  ψ    

Since the company needs to audit ὑ pieces daily within Ὓ 

working hour per day, the following set of restrictions must be 

met: 

ψὓὼ ρυππ     

That is:  

ψὓὼ ὓὼ ὓὼ ρυππ  
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From it we get the following restriction: 

ψρυȟρφὼ ψρπȟρρὼ ψςυȟςφὼ ρυππ 

To establish the objective function, we observe that the 

company pays two types of expenses throughout the inspection 

process, the inspector's fee and the fine corresponding to the 

inspector's fault committed for each piece, and then the target 

follower writes as follows: 

Then the cost of the inspector is calculated from Ὦ the hourly 

rank through the following relation: 

ὔὅ Ὃ ὔὓ Ὑ
ρππὈ

ρππ
   Ƞ  Ὦ ρȟςȟ ȟὲ 

We get:  

ὔὅ τ ρυȟρφ ς
ρππωυ

ρππ
υȢυȟυȢφ 

ὔὅ σ ρπȟρρ ς
ρππωπ

ρππ
υȟυȢς 

ὔὅ υ ςυȟςφ ς
ρππωψ

ρππ
φȟφȢπτ 

The total costs for all inspectors assigned to the task of quality 

control per hour shall be given by the following relation: 

ὔὝὅ Ὃ ὔὓ Ὑ
ρππὈ

ρππ
 ὼ 

ὔὝὅ υȢυȟυȢφὼ υȟυȢςὼ φȟφȢπτὼ 

substituting the following target phrase: 

ὔὤ Ὓ Ὃ ὔὓ Ὑ
ρππὈ

ρππ
 ὼ    

We get:  

ὔὤ ττȟττȢψὼ τπȟτρȟφὼ τψȟτψȢσςὼ 
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From the above, we can develop the following mathematical 

model: 

We want to find: 

ὓὭὲὔὤ ττȟττȢψὼ τπȟτρȟφὼ τψȟτψȢσςὼ 

Constraints: 

ὼ  ρπ    

ὼ  φ   

ὼ  ψ   

ψρυȟρφὼ ψρπȟρρὼ ψςυȟςφὼ ρυππ 

ὼ π  Ƞ  Ὦ ρȟςȟσ 

Example 5: 

The company has three ranks for inspectors and wants to assign 

the task of quality control to them. 1500 pieces should be 

checked daily during eight working hours per day. For the 

purposes of this example, we will use each inspector's accuracy 

of inspection as a neutrosophic value, with the lowest range 

representing the inspector's level of accuracy and the highest 

range representing the inspector's level of accuracy by rank. 

The following table provides comprehensive information about 

inspectors and all ranks.  

 
The fine paid by 

the company for 

each fault to the 

inspector 

Number of 

inspectors 

Inspector's 

remuneration 

(monetary unit per 

hour) 

Accuracy 

(percent) 

Number of 

pieces 

checked 

(hour) 

About the Inspector 

 

 

Inspector rank 

ς ρπ τ ωυȟωχ ρυ ρ 
ς φ σ ωπȟως ρπ ς 
ς ψ υ ωψȟωωȢυ ςυ σ 

Table (15) Information on inspectors using neutrosophic values 
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Requirement: Formulate a suitable mathematical model that 

will allow to allocate the inspectors in the best feasible way, 

minimizing the inspection cost. 

To build the mathematical model, we impose ὼȟὼȟὼ the 

number of inspectors from the three ranks in the order assigned 

to the inspection task, then the following inequality must be 

met: 

ὼ  ρπ  

ὼ  φ    

ὼ  ψ    

Since the company needs to audit ὑ pieces daily during S hours 

of work each day, the following set of restrictions must be met: 

ψὓὼ ρυππ     

That is:  

ψὓὼ ὓὼ ὓὼ ρυππ  

We get the following entry: 

ρςπὼ ψπὼ ςππὼ ρυππ 

In order to derive the objective function, we first notice that the 

corporation is responsible for paying the inspector's fee as well 

as the fine for each mistake the inspector makes. Based on this 

information, the target follower writes as follows: 

Then the cost of the inspector is calculated from  Ὦ the hourly 

rank through the following relation: 

ὔὅ Ὃ ὓὙ
ρππὔὈ

ρππ
   Ƞ  Ὦ ρȟςȟ ȟὲ 
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We get  

ὔὅ τ ρυς
ρππωυȟωχ

ρππ
τȢωȟυȢυ 

ὔὅ σ ρπς
ρππωπȟως

ρππ
τȢφȟυ 

ὔὅ υ ςυς
ρππωψȟωωȢυ

ρππ
υȢςυȟφ 

The total costs for all inspectors assigned to the task of quality 

control per hour shall be given by the following relation: 

ὔὝὅ Ὃ ὓὙ
ρππ.Ὀ

ρππ
 ὼ 

ὔὝὅ τȢωȟυȢυὼ τȢφȟυὼ υȢςυȟφὼ 

substituting the following target phrase: 

ὔὤ Ὓ Ὃ ὓὙ
ρππὔὈ

ρππ
 ὼ    

We get:  

ὔὤ σωȢςȟττὼ σφȢψȟτπὼ τςȟτψὼ 

From the above, we can develop the following mathematical 

model: 

We want to find: 

ὓὭὲὔὤ σωȢςȟττὼ σφȢψȟτπὼ τςȟτψὼ 

Constraints: 

ὼ  ρπ    

ὼ  φ   

ὼ  ψ   
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ρςπὼ ψπὼ ςππὼ ρυππ 

ὼ π  Ƞ  Ὦ ρȟςȟσ 

In the two examples! and 2 for the optimal solution we use the 

neutrosophic simplex method. 

From the previous model, we notice that ὼ  takes a positive 

value only when  ρ , and in this case, the production of the 

product Ὦ is limited by the quantity Ὠ and the fixed production 

cost ὑ is included in the goal function 

The idea of indeterminacy is the basis of neutrosophic science 

represented here through the use of the binary integer variable 

because the optimal solution depends on the decision to 

produce a product or not to produce it. 

However, given the significant changes in the labor market due 

to price strikes, resource availability or non-availability, and 

other factors, we cannot guarantee the company a safe working 

environment. 

So it was necessary to reformulate this problem using 

neutrosophic values for the sales opportunity Ὠ and the cost of 

producing one unit of each product ὅ and selling price ὖ so 

that the sales opportunity becomes Ὠ ‐ , production cost 

ὅ ‘ and selling price ὖ • where ‐ and ‘ and • are 

the indeterminacy the change in the sales opportunity, cost and 

selling price respectively depending on the conditions of the 

work environment and takes one of the following forms:  

‐ᶰ‗ ȟ‗  Or  ‐ᶰ‗ ȟ‗  é and ‘ᶰ’ ȟ’   or 

 ‘ᶰ’ ȟ’ é and • ᶰ— ȟ—  or   • ᶰ— ȟ—  
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which are values close to the values  Ὠ and  ὅ and can be any 

neighborhood to them. 

Then the text of the problem becomes as follows: 

The text of the problem according to neutrosophic science:  

A company is planning to produce ὔ product where the 

product Ὦ needs a fixed preparation cost or a fixed production 

cost  ὑ independent of the quantity produced, and needs a 

variable cost ὅ ‘ per production unit commensurate with 

the quantity produced, we suppose that each unit of the product 

Ὦ  needs ὥ  a unit of the supplier Ὥ where there is ὓ supplier. 

Assuming that the product Ὦ that has a sales opportunity Ὠ ‐  

is sold at the price of  ὖ • monetary unit per unit and that 

only ὦ unit of the supplier Ὥ is available where  Ὥ ρȟςȟȣȟὓ  

the goal of the problem becomes to determine the optimal 

product mix that makes the net profit as great as possible. 

Formulation of the mathematical model: 

Determination of the cost: 

The problemôs text indicates that the variable cost, which is a 

nonlinear function of the quantity produced, and the fixed cost 

make up the overall cost of production. 

However, the issue may be represented as a linear model with 

integers using binary integer variables . 

It is assumed that the binary integer variable  represents the 

choice of whether or not to generate the product Ὦ.   


ρ      Ὦ  ÉÆ ÐÒÏÄÕÃÔÉÏÎ  ÄÅÃÉÓÉÏÎ ×ÁÓ ÔÁËÅÎ
π                                    ÏÔÈÅÒ×ÉÓÅ               
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Then the cost of producing one unit of the product becomes as 

follows  ὑ ὅ ‘ ὼ, where  ρ if ὼ π and  π  

if  ὼ π  and therefore the goal function becomes as follows: 

ὤ  ὖ • ὼ ὑ ὅ ‘ ὼ  

Restrictions of the problem: 

A restriction on the supplier Ὥ is given in the following relation: 

ὥ ὼ ὦ   ȠὭ ρȟςȟȣȟὓ 

The restriction of the demand for the product  Ὦ is given by the 

following relation: 

ὼ Ὠ ȠὮ    ‐ ρȟςȟȣȟὔ 

Mathematical model: Find the maximum value of the function:  

ὤ  ὖ • ὼ ὑ ὅ ‘ ὼ  

Within Restrictions  

ὥ ὼ ὦ   ȠὭ ρȟςȟȣȟὓ 

ὼ Ὠ ȠὮ    ‐ ρȟςȟȣȟὔ 

ὼ π and  ρ or  π 

And or for all values      

Ὦ ρȟςȟȣȟὔ 

From the previous model, we note that ὼ takes a positive value 

only when  ρ and in this case the production of the product  

Ὦ  is limited by the quantity  Ὠ ‐ and the fixed production 
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cost  ὑ  included in the goal function, by solving  this model 

we get an optimal neutrosophic value for the goal function   

ὔὤᶻ through which we know the profit that the company can 

achieve in the best and worst conditions and enable the 

company to develop appropriate plans for the workflow in it. 

Conclusion: 

In our study, we aim to provide the optimal solution to most of 

the problems that production companies can face by 

formulating the situation under treatment with a problem that 

can be converted into a linear model, the optimal solution of 

which helps decision-makers make optimal decisions for the 

workflow so that the greatest profit is achieved. To find 

solutions with a margin of freedom, we can employ data, 

neutrosophic values, values that account for all of the situations 

that the system represented by the linear model may encounter. 
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