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Aims and Scope 

 

 

The field of neutrosophic set theory and its applications has been rapidly expanding, particularly since 
the introduction of the journal "Neutrosophic Sets and Systems."  

New theories, techniques, and algorithms are being developed at a very high rate.  

One of the most notable trends in neutrosophic theory is its hybridization with other set theories such 
as rough set theory, bipolar set theory, soft set theory, hesitant fuzzy set theory, and more.  

Various hybrid structures like rough neutrosophic sets, neutrosophic soft set, single valued 
neutrosophic hesitant fuzzy sets, among others, have been proposed in a short period.  

Neutrosophic sets have proven to be crucial tools across a wide array of fields including data mining, 
decision making, e-learning, engineering, medical diagnosis, social sciences, and beyond.  

 

The third volume in the series “New Trends in Neutrosophic Theories and Applications” focuses on 
theories, methods, and algorithms for decision making, as well as applications involving neutrosophic 
information.  

Some topics introduce new sets such as the Pythagorean neutrosophic vague soft set, the triangular 
fuzzy penta-partitioned neutrosophic set, interval-valued neutrosophic b-open sets, and interval-
valued neutrosophic b-closed sets.  

Other topics present applications in medical diagnosis, non-preemptive neutrosophic priority queues 
with uneven services (labeled as NM/NM/1), AHP in an interval neutrosophic set environment, 
MAGDM in a triangular fuzzy neutrosophic number environment, MAGDM in a pentapartitioned 
neutrosophic environment, the entropy-ARAS strategy in a single-valued neutrosophic number 
environment, and the MABAC strategy in a rough neutrosophic set environment. 

 

Florentin Smarandache, Surapati Pramanik  
(Editors) 
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Foreword 

 

 

The Neutrosophic Set Theory (NST) originates from Neutrosophy, a novel branch of philosophy 
introduced by Professor Florentin Smarandache in 1998. NST adeptly manages uncertainty, 
indeterminacy, and inconsistent data. NST-based methodologies are ideal for modeling problems 
where human knowledge and evaluation are indispensable, accommodating situations riddled with 
uncertainty, indeterminacy, and inconsistent information. 

NST is very important because it extends the traditional notions of classical sets and fuzzy sets to 
handle indeterminate, imprecise, incomplete, and inconsistent information more effectively. NST has 
garnered significant global attention from researchers and practitioners alike, contributing substantially 
to its evolution and practical applications after the publication of the journal, “Neutrosophic Sets and 
Systems” in 2013. Its fundamental significance spans artificial intelligence and cognitive sciences, 
particularly in domains such as data mining, decision analysis, expert systems, machine learning, 
intelligent systems, and pattern recognition. 

Methods rooted in NST, either independently or in conjunction with complementary approaches, 
have found extensive application in diverse fields. The versatility and adaptability of NST have thus 
enabled its widespread adoption across a broad spectrum of scientific and practical domains, 
facilitating advancements and innovations in each domain. 

The present book starts by proposing the Pythagorean neutrosophic vague soft set, the triangular 
fuzzy penta-partitioned neutrosophic set, interval-valued neutrosophic b-open sets, and interval-
valued neutrosophic b-closed sets in the first, second, and third chapters respectively. It then 
progresses on to topics such as neutrosophic homomorphism in neutrosophic topological spaces, the 
neutrosophic dimension of a neutrosophic vector space, a comprehensive survey of Q-neutrosophic 
soft sets in all possible dimensions of the medical diagnosis system, a method for evaluating the 
performance measures of non-preemptive neutrosophic priority queues with uneven services (labeled 
as NM/NM/1), interval-valued neutrosophic AHP, MAGDM in a pentapartitioned neutrosophic set 
environment, MAGDM in a triangular fuzzy neutrosophic number environment, the single-valued 
neutrosophic entropy ARAS strategy, and the MABAC strategy in a rough neutrosophic numbers 
environment. 

Chapter 1 develops the Pythagorean neutrosophic vague soft set, combining the soft set with the Pythagorean 
neutrosophic vague set. It presents a decision-making technique based on the Pythagorean neutrosophic vague 
soft set with a numerical example. 

Chapter 2 develops the triangular fuzzy penta-partitioned neutrosophic set by combining the triangular fuzzy 
number and the penta-partitioned neutrosophic set. It defines some operations on the triangular fuzzy penta-
partitioned neutrosophic sets, such as union, intersection, and complement, and establishes some fundamental 
properties of the developed sets. 

Chapter 3 introduces two novel concepts: interval-valued neutrosophic b-open sets and interval-valued 
neutrosophic b-closed sets. It delves into the concepts of interval-valued neutrosophic b-interior and interval-
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valued neutrosophic b-closure operators, shedding light on their characteristics and their relationships with 
other operators in this domain. 

Chapter 4 introduces new concepts in Neu-homeomorphism, namely Neugsα∗-homeomorphism and Neuigsα∗-
homeomorphism in Neu-topological spaces. Additionally, it presents the characterizations and properties of 
these functions with already existing Neu-functions. 

Chapter 5 presents the neutrosophic dimension of a neutrosophic vector space using a neutrosophic basis. It 
also discusses some characteristics of these new notions. 

Chapter 6 presents a comprehensive survey of Q-neutrosophic soft sets in all possible dimensions of the 
medical diagnosis system. The survey highlights all possible mathematical frameworks used for medical 
diagnosis, including their limitations, which encompass fuzzy logic, evidential reasoning, and quantum & 
machine learning decisions. A comparative analysis of Q-neutrosophic soft sets is presented alongside other 
mathematical frameworks like neutrosophic soft sets and Q-fuzzy sets. 

Chapter 7 develops a novel strategy for evaluating the performance measures of non-preemptive neutrosophic 
priority queues with uneven services, labeled as NM/NM/1, using the (α, β, γ)-cut approach along with Zadeh’s 
extension principle. The developed strategy comprises a solitary server, where both arrival and service rates are 
expressed in terms of single-valued trapezoidal neutrosophic numbers. The queueing model involves 
exponentially distributed service times, arrivals following a Poisson process, and the presence of only one 
server. The chapter offers a concrete example to elucidate the analytical strategy established within the study. 

Chapter 8 determines the criteria that affect franchisee selection in the global cafe chain business. It investigates 
the franchisee selection problem with interval-valued neutrosophic AHP. In the research, the priorities of the 
criteria and the scoring of the experts were taken into consideration. According to the results of the analysis, 
while location was found to be the most important criterion, personal condition was deemed the least 
important. 

Chapter 9 develops a decision-making strategy to solve multi-attribute group decision-making problems under 
the pentapartitioned neutrosophic number environment. An illustrative example of a multi-attribute group 
decision-making problem is provided to show the applicability of the developed strategy. 

Chapter 10 develops two multi-criteria group decision-making strategies using the proposed Triangular Fuzzy 
Neutrosophic Number Einstein's Ordered Weighted Average (TFNNEOWA) operator and Triangular Fuzzy 
Neutrosophic Number Ordered Weighted Geometric Average (TFNNEOWGA) operator. The chapter uses 
Shannon’s entropy to determine the weights of the criteria and the decision-makers. 

Chapter 11 develops the SVNN-E-ARAS strategy using the arithmetic averaging aggregation operator in single-
valued neutrosophic number settings. It covers the group popularity ranking criteria and provides weight to 
each ranking component individually based on user evaluation using the developed approach. 

Chapter 12 develops the MABAC strategy in a rough neutrosophic numbers environment, termed the RNN-
MABAC strategy. The developed strategy is illustrated by solving an illustrative MADM problem. 

 

Florentin Smarandache, Surapati Pramanik  
(Editors) 
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ABSTRACT 

Decision making problems often involve uncertainty and vagueness, which require effective 

mathematical models to handle these complexities. In recent years, several hybrid fuzzy set 

theories have been proposed to address these challenges, such as Pythagorean fuzzy sets, 

neutrosophic sets, and vague sets. However, each of these theories has its own limitations in 

representing uncertainty and vagueness adequately. To overcome these limitations, this study 

introduces a novel approach called Pythagorean Neutrosophic Vague Soft (PNVS) sets. 

The PNVS sets integrate the concepts of Pythagorean fuzzy sets, neutrosophic sets, and vague 

sets to provide a comprehensive framework for decision making under uncertainty. The 

proposed methodology allows decision makers to express their opinions using three 

membership functions: truth, indeterminacy, and falsity. Moreover, the PNVS sets incorporate 

the notion of vagueness, enabling decision makers to express their uncertainty through vague 

membership degrees. 

To demonstrate the applicability of the PNVS sets, a decision making problem is formulated 

and solved using the proposed methodology. The decision making problem involves evaluating 

potential investment options based on multiple criteria. The PNVS sets are used to model the 

uncertainties and vagueness associated with the criteria and their relative importance. The 

proposed approach provides a systematic and flexible framework for decision making, allowing 

decision makers to consider multiple perspectives and adequately handle uncertainties and 

vagueness in various problem of decision-making systems. 

The experimental results demonstrate the effectiveness of the PNVS approach in capturing the 

uncertainties and vagueness inherent in decision making problems. The proposed methodology 

allows decision makers to make informed decisions by considering multiple criteria and their 

associated uncertainties. The PNVS sets provide a robust and intuitive framework for decision 

making, enhancing the decision-making process in various domains. 

KEYWORDS:  Decision making, Pythagorean neutrosophic vague soft  sets, uncertainty, 

vagueness, fuzzy sets, neutrosophic sets, vague sets. 

1. INTRODUCTION

Pythagorean Neutrosophic Vague Soft Sets (PNVSS) is an extension of the neutrosophic vague 

soft set theory that combines the concepts of neutrosophic sets, vague sets, and soft sets. PNVSS 

provides a flexible and comprehensive framework for dealing with uncertainty, vagueness, and 

indeterminacy in decision-making problems. It incorporates the Pythagorean fuzzy set theory, 

which allows for the representation of membership, non-membership, and indeterminacy degrees 

in a more intuitive and realistic manner. 

9
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The PNVSS model consists of three components: the membership degree, non-membership 

degree, and indeterminacy degree, each represented by a Pythagorean fuzzy number. These 

components can be used to describe the uncertainty associated with the elements of a set, allowing 

decision makers to capture various degrees of belief, disbelief, and uncertainty in a unified 

manner. 

The application of PNVSS in decision-making problems involves the following steps: 

1. Problem formulation: Clearly define the decision problem and identify the criteria and 

alternatives involved. Determine the degree of uncertainty and vagueness associated with 

the problem. 

2. Data collection: Gather the necessary data and information related to the decision problem. 

This may include expert opinions, historical data, or other relevant sources. 

3. Representation: Represent the collected data and information using Pythagorean fuzzy 

numbers to express the membership, non-membership, and indeterminacy degrees 

associated with each element. 

4. Aggregation: The Pythagorean fuzzy numbers should be combined to reflect the decision 

problem as a whole. The Pythagorean weighted average, Pythagorean weighted geometric 

mean, or other appropriate aggregation operators can be used to accomplish this. 

5. Ranking and selection: Use appropriate ranking methods to prioritize the alternatives 

based on their aggregated Pythagorean fuzzy numbers. This can involve comparing the 

membership, non-membership, or indeterminacy degrees of the alternatives. 

6. Decision analysis: Analyze the results obtained from the ranking process and make a 

decision based on the desired criteria. Consider the trade-offs between different factors and 

the decisionmaker's preferences. 

7. Sensitivity analysis: Assess the sensitivity of the decision to changes in the input data and 

aggregation methods. This step helps evaluate the robustness of the decision and identify 

potential risks or uncertainties. 

The application of PNVSS in decision making offers several advantages. It provides a 

comprehensive framework that can handle various types of uncertainty and vagueness 

simultaneously. The Pythagorean fuzzy numbers enable a more flexible and intuitive 

representation of uncertain information. Moreover, the aggregation and ranking methods used in 

PNVSS allow decision-makers to incorporate their preferences and subjective judgments in a 

systematic manner. 

Overall, Pythagorean Neutrosophic Vague Soft Sets offer a promising approach to decision 

making under uncertainty, particularly when dealing with complex and ambiguous situations 

where traditional crisp models may fall short. 

Yager and Abbasov (2013) first proposed the novel idea of Pythagorean fuzzy sets. Gau and 

Buehrer (1993) made the initial proposal for the theory of the vague set. Molodtsov (1999) first 

proposed the idea of a soft set. In this essay, we explore the idea of Pythagorean Neutrosophic 

Vague Soft (PNVS) sets. There have been some proposed definitions and operations. It combines 

Pythagorean neutrosophic vague set and soft set. The following notions have also been used to a 

decision-making dilemma. It could be used with realistic data to apply to real-world issues for 

10
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further research. 

The following describes the format of this study: in section 2, we quickly present some basic 

definitions and findings. Section 3 introduces the concept of PNVS sets. A few definitions and 

conclusions have been established. In section 4, a decision making problem application is 

demonstrated. Numerous researchers have made contributions to this topic. 

Maji (2013) presented the neutrosophic soft set. Shil et al. (2024) presented single-valued 

pentapartitioned neutrosophic soft set. Das, Das, and Pramanik (2022a, 2022b) employed 

neutrosophic sets in developing single valued bipolar pentapartitioned neutrosophic set and single 

valued pentapartitioned neutrosophic graphs respectively. Neutrosophic vague set theory was 

studied by Alkhazaleh (2015). Das et al. (2022) Application of neutrosophic similarity measures 

in Covid-19. Das, Mukherjee, and Tripathy (2022) presented an application of neutrosophic 

similarity measure in COVID-19.  Jansi et al. (2019) studied on correlation measure for 

Pythagorean neutrosophic sets with and as dependent neutrosophic components. Mukherjee 

(2015) presented a generalized rough set and its application. Mukherjee and Das (2020) presented 

the neutrosophic bipolar vague soft set and its application to decision making problems. 

Smarandache (1998), Smarandache (2005) did the most significant work on Neutrosophic Sets 

and Systems and generalized the thoughts. Xu et al. (2013) study the vague soft sets and their 

properties. Zadeh (1965) introduced the Fuzzy sets. So many authors have given significant 

efforts to establishing the neutrosophic idea. Development of neutrosophic theories and their 

applications were depicted in the studies (Broumi et al., 2018; Pramanik et al., 2018; Peng & Dai, 

2020; Pramanik, 2020, 2022; Smarandache, & Pramanik, 2016, 2018; Delcea et al, 2023).  

2 PRELIMINARIES 

We recall some basic notions for future work. 

Definition 2.1 Gau and Buehrer (1993).  Let  be a non-empty set. Let  and  be two VSs in the 

form . Then 

(i)  if and only if  and . 

(ii)  

(iii)  

(iv) . 

Definition 2.2. (Alkhazaleh, 2015).  For any two NVSs  and  the union is a , 

written as  , whose truth, indeterminacy and false-membership functions are 

related to those of  and  given by 

 

and 

 

Definition 2.3. (Alkhazaleh, 2015). For any NVSs  and  the intersection is , 

11
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Known as  , whose membership functions are related to those of  and  

given by 

 

and 

 

Definition 2.4. (Yager & Abbasov, 2013). Consider  be a nonempty set and  the unite interval 

[0,1]. A Pythagorean fuzzy set is an object having the form , where 

the function  and  denote the respectively degree of membership and 

degree of non-membership of each element  to the set  and  

for each . Supposing,  then the degree of indeterminacy of 

 to  is denoted by . 

Definition 2.5. (Yager & Abbasov, 2013). Suppose  be a nonempty Universal set. A 

Pythagorean neutrosophic set with 

truth, falsity an dependent neutrosophic components [PNSet] an a non-empty set  is an object of 

the form  where , 

 for all . Where  is the degree of 

membership,  degree of indeterminacy and,  degree of non-membership. Here  

and  are dependent component and  is independent component. 

Definition 2.6 (Yager, 2013). Let  be a nonempty set and I be the unit interval [0,1]. A 

Pythagorean neutrosophic set with  and  are dependent neutrosophic components  PNSet  

and  of the form  and 

 then 

1.  

2.  

3.  

3. PYTHAGOREAN NEUTROSOPHIC VAGUE (PNV) SET. 

Definition 3.1 Consider X be a nonempty set. A PNVS with  and  are dependent neutrosophic 

components 

 where the definition of the truth, 

indeterminacy, and falsity membership functions is and 

 

Where 1) ,  

2) and  

3) . 

12
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Example 3.2. Let  be a set of universe. Then the PNV set  is as follows 

 , , } satisfies (1), (2) and (3) 

of definition 3.1 

(a) . 

(b) . 

(c) . 

Note: In particular, PNV set  may be as follows 

 

 

Then we have the conditions  and 

. 

Definition 3.3 Let  and  be two  sets of the universal set . If  

1.  

2.  and 

3.  

Then the  sets  is equals to  set , denoted by , where  

Definition 3.4 Let  and  be two  sets of the universal set . If  

1.  

2.  

3.  

Then the  sets  is included in ; denoted by , where  

Definition 3.5   represents the complement of a PNV set , which is defined as 

 and . 

Example 3.6 Take example 3.2 into consideration. 

Then  

 

Note: Under the given conditions, example 3.6 meets the requirements of definition 3.5. 

. 

. 

13
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Definition 3.7. PNVS Set. 

Let  be the universal set and let  be the parameter set. The set of all  sets of  is denoted 

as . The pair  over  is thus referred to as the  set ( set in 

short). in this case is a mapping  set .  set  is the collection of all  

sets over . 

Example 3.8. Let  and . Next, over ,  sets  and  are as 

follows: 

 

. 

, 

 

. 

Definition 3.9.  E and  is the definition of an empty 

 set  in . 

Definition 3.10.  and  is the definition of an 

absolute PNVS set in . 

Example 3.11.  If  and , then  

, 

 is the definition of the 

empty PNVS set  in .   (Page 7) 

   (b)  

 is the definition of 

Absolute PNVS set  in .  

Definition 3.12.   be the Pythagorean neutrosophic 

vague soft set over U, with i=1,2. Afterward, by  defines the  I PNVS sub-set of   in 

the case where  

. 

Example 3.13. According to our definition 3.12, we have the observation  from case 3.8. 

Definition 3.14. Assume that A is a PNVS set over U. Next,  defines s complement, which is 

given by  

 

 

14
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Example 3.15. Let  and  then the PNVS set  is 

, 

 Then the compliment of A is 

defined by  is as follows 

, 

 

Definition 3.16.  :  where  denotes the 

two PNVS sets over U. The union and intersection of A1 and A2 of two PNVS sets are defined as 

follows: 

(a)  where, 

 

 

 

(b)  where, 

 

 

 

Definition 3.17 

Let  be a PNVS set over . Then 

aggregation PNVS operator denoted by  is denoted as 

 

Where  

 

Where  

 

15



New Trends in Neutrosophic Theory and Applications, Vol. III, 2024                                                  

 

 is the cardinality of . 

4. APPLICATION OF PYTHAGOREAN NEUTROSOPHIC VAGUE SOFT (PNVS) SET 

In our daily lives, we face decision-making challenges in the areas of politics, management, the 

economy, education, and technology use. The academic results reflect which college education is 

the best. A range of professional standards are used to evaluate teacher preparation while selecting 

a college teaching curriculum. We identify a factor that is believed to affect parental judgment: 

The campus environment, academic quality, and career opportunities are the three components of 

the academic factor that have been found. We wish to select the finest solution from a range of 

options by comparing expert evaluations with the standards. 

The goal of the parent committee is to select a popular college programmer. In this instance, the 

committee plans to select three institutions, .  Popular Environments, 

 Academic quality,  Career Opportunity  is the expert evaluation score for a college 

education. Algorithm 

1. First, on , we construct the Pythagorean Neutrosophic Soft Set. 

2. A computation is made of the Pythagorean Neutrosophic Soft Set Aggregation Operator. 

3. Calculate  by taking the average of each intervals. (The numerical value) 

4. Determine the optimum value on U. Let  be the set of colleges. These 

colleges can be described by a set of parameters .  

 

(a) The parents committee construct a PNVS set A over  as 

, 

, 

, 

 

(b) Then we find the PNVS set aggregation operator  of A as follows: 

For  

, 

 

For  

16
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, 

 

For  

,  

(c) Each interval's average is calculated i.e 

,  

(d) Then  

(e) Because |Agg| has the highest degree of 0.1333 among the colleges, the family board 

eventually decides on college . To get our outcome in this case, we only need to perform a few 

simple calculations. The validity of this approach is higher than that of earlier research. 

5. FUTURE VISION OF PYTHAGOREAN NEUTROSOPHIC VAGUE SOFT 

Pythagorean Neutrosophic Vague Soft (PNVS) sets can be defined as a framework that unifies 

several vague and uncertain elements. It allows for a more thorough representation and handling 

of uncertainty, ambiguity, and vagueness in decision-making and reasoning processes by 

integrating Pythagorean fuzzy sets, neutrosophic sets, and vague sets. 

It's crucial to remember that, as an AI language model, I am only able to speculate on the future 

and cannot foretell Pythagorean Neutrosophic Vague Soft. Thus, the following vision is entirely 

speculative and ought to be considered an artistic rendering rather than an exact prediction. 

The Pythagorean Neutrosophic Vague Soft framework might see substantial developments and 

applications in a number of fields in the future. The following are some possible developments: 

Decision-Making: By simultaneously taking into account several dimensions of uncertainty, 

ambiguity, and vagueness, PNVS sets can improve decision-making processes. Future work might 

concentrate on creating increasingly complex algorithms and processes for generating decisions in 

PNVS environments, utilizing cutting-edge computational intelligence methods like evolutionary 

computation, deep learning, and machine learning. 

Expert Systems: Multiple sources of uncertainty in expert knowledge can be modelled and 

captured by expert systems using PNVS. These technologies, by taking into account the fuzzy, 

neutrosophic, and ambiguous characteristics of experts' knowledge domains, could help them 

make more informed and nuanced decisions. 

Data Analysis and Mining: When dealing with datasets that contain ambiguity and uncertainty, 

PNVS might be used. It may be possible to manage PNVS data using sophisticated methods and 

algorithms, which would allow for more precise and perceptive examination of complicated and 
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uncertain datasets. 

Artificial Intelligence and Robotics: PNVS may help robots and AI systems become more capable 

of making decisions. Artificial intelligence (AI) systems can more effectively adapt to real-world 

situations and make more informed decisions if they can handle uncertainty, ambiguity, and 

vagueness. 

Risk Assessment and Management: In a variety of industries, including banking, engineering, and 

healthcare, PNVS sets can offer a strong foundation for assessing and managing risks. Effective 

risk mitigation techniques and more accurate forecasts may be provided by PNVS-based risk 

assessment models that incorporate the uncertainty related to risk components. 

Multi-Criteria Decision Analysis: To handle a variety of competing criteria involving fuzzy, 

neutrosophic, and vague information, PNVS sets can be incorporated into multi-criteria decision 

analysis frameworks. Future developments could concentrate on creating effective algorithms for 

prioritizing and rating options in PNVS environments. 

All things considered, Pythagorean Neutrosophic Vague Soft has a bright future ahead of it, with 

possible uses in many different domains where vagueness and uncertainty are present. We may 

anticipate greater developments in theory, methodologies, and real-world applications as this field 

of study develops, which will make it possible to make more thorough and comprehensive 

decision-making in challenging and uncertain environments. 

6. CONCLUSIONS

We propose the Pythagorean neutrosophic vague soft set. It combines the soft set with the 

Pythagorean neutrosophic vague set. In the present article, we develop a decision-making 

technique based on the Pythagorean Neutronic VFS. A numerical example has been presented. 

The Pythagorean neutrosophic vague soft set has been subjected to multiple novel techniques. It 

can be applied to real-world problems for additional study when given realistic data.  
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ABSTRACT 

The main objective of the paper is to hybridize the triangular fuzzy number and the penta-

partitioned neutrosophic set and develop the triangular fuzzy penta-partitioned neutrosophic set. 

The triangular fuzzy number has great potential to express uncertainty systematically. So, the 

combination of the triangular fuzzy number and pentapartitioned neutrosophic set is an 

intelligent mathematical tool that will be a helpful mathematical tool for decision-making. We 

define some operations on the triangular fuzzy penta-partitioned neutrosophic sets such as union, 

intersection, and complement. We establish some fundamental properties of the developed 

triangular fuzzy penta-partitioned neutrosophic sets.  

KEYWORDS: Fuzzy set, triangular fuzzy number, neutrosophic set, pentapartitioned 

neutrosophic set.  

1. INTRODUCTION

NS was first developed by Smarandache (1998) by exploring the properties of   Fuzzy  Set (FS) ( 

Zadeh, 1965)   and Intuitionistic FS (IFS) (Atanassov, 1986) by initiating indeterminacy and 

falsity as independent membership components. Wang et al. ( 2010) defined Single- Valued NS 

(SVNS) by confining the “truth”, “indeterminacy’’ and “falsity’’ membership degrees in the unit 

interval [0, 1].  An overview of SVNS was documented by Pramanik (2022).  Quardripartitioned 

SVNS (QSVNS) was defined by Chatterjee et al. (2016) with the introduction of “truth”, 

“falsity”, “unknown “and “contradiction” as four independent membership functions using four-

valued logic (Belnap, 1977), and refined neutrosophic logic (Smarandache, 2013).  Pramanik 

developed the interval Quardripartitioned NS by exploring interval NS (INS) (Wang et al., 2005) 

and QSVNS (Chatterjee et al., (2016).  Chatterjee and Pramanik (2024) presented the triangular 

fuzzy quardripartitioned neutrosophic sets by combining QSVNS and triangular fuzzy number. 

The theory of PNS was developed by Mallick and Pramanik (2020) by splitting the 

indeterminacy membership component into “contradiction”, “ignorance”, and “unknown”.  

Pramanik (2023) presented the Interval PNS (IPNS) by combining PNS and INS (Wang et al., 
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2005).  PNSs became popular and were employed in  Multi Criteria Decision Making (MCDM) 

(Das et al., 2022a; Shil et al., 2022; Pramanik 2023, Majumder et al., 2023] and graph theory 

(Das et al., 2022b; Broumi et al.,2022). Triangular Fuzzy Number (TFN) (Arora, & Naithani, 

2023) is an important mathematical tool for decision making. Biswas et al. (2016) combined the 

TFN and SVNS and developed the Triangular Fuzzy Neutrosophic Set (TFNS).   TFNSs have 

been utilized in MCDM  and different  MCDM strategies were developed such as the EDAS 

method ( Fan et al., 2020), GRA method (Xie, 2023; Yao and Ran, 2023), cross-entropy strategy 

(Wang et al., 2023). TFNS is an important mathematical tool for decision making. So, the 

combination of TFNS and PNS will be an effective tool for decision-making. TFNS is not 

explored in the PNS environment. 

Research gap: No study combining the TFN and PNS has been reported in the literature.  

Motivation: The research gap motivates us to study by combining the concepts of TFN and 

TFPNS and develop the theory of Triangular Fuzzy Penta-partitioned Neutrosophic Set 

(TFPNS).  

 The TFPNS is a breakthrough in the field of NS. Since the TFPNS is a hybrid structure, it is 

well capable of expressing uncertainty comprehensively and precisely. TFPNS  has more 

advantages for dealing with uncertainty as it can utilize the advantages of TFN and PNS. The 

computational techniques based on  TFN  or PNS alone may not always produce the best results 

but the hybrid structure TFPNS may yield the best result.   

We also investigate some fundamental properties of the newly introduced set. 

 The paper has four sections given as follows: Section 2 is dedicated to presenting some existing 

preliminary concepts of NSs. Section 3 represents the concept of TFPNS and some important 

mathematical operations on TFPNS. Section 4 presents a possible future research direction. 

Section 5  presents a discussion.  Section 6 concludes the study by indicating some future scope 

of research in some emerging fields of study. 

 

2.  PRELIMINARIES  
 

1. Preliminary 

Definition 2.1.  ( Smarandache, 1998)  An NS Ӫ in the “universe of discourse” Ԏ is represented 

as  

{( ,(TT ( ), II ( ), UU ( )) : }
  

 =      where,TT ( ), II ( ),FF ( )
  
   : Ԏ→ [0,1] and we 

have, 

 

0 (TT ( ) II ( ) FF ( )) 3

where TT ( ), II ( ),FF ( )

  

  

  +  +  

   represents Truth worthy membership function (TMF), 

indeterminacy membership function (IMF), Falsehood membership function(FMF). 

 

Definition 2.2.   (Biswas et al., 2016) Assume that   is a definite set. A TFNS a  in   is 

represented as: 
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(l) (m) (u) (l) (m) (u)

a a a a a a

(l) (m) (u)

a a a

(l) (l)

a a a

a {( , ((TT ( ),TT ( ),TT ( )), (II ( ), II ( )( ), II ( )),

(FF ( ),FF ( ),FF ( )))) : }

0 TT ( ) II ( ) FF

     

  

 

 =        

   

  +  + (l) (l) (m) (u)

a a a

( ) ( ) ( )

a a a

( ) 3& 0 TT ( ) TT ( ) TT ( ) 3

&0 TT ( ) II ( ) FF ( ) 3, for l,m,u

   

  

  

        

  +  +    =

 

 

Definition 2.3.   A PNS a in the universe of discourse   (a fixed set) may be expressed as, 

a a a a

a

a {( , (TT ( ),CC ( ), II ( ), UU ( ),

FF ( ))) : }

   



 =     

 
 

 
a a a a a

where,TT ( ),CC ( ), II ( ), UU ( ),FF ( )
    
     express truthworthiness membership 

function (TMF), contradiction membership function (CMF), ignorance Membership function 

(IMF), unknown membership function (UMF), falsihood membership function (FMF) with, 

a a a a a
0 TT ( ) CC ( ) II ( ) UU ( ) FF ( ) 5

    
  +  +  +  +    

a a a a a
And for, ,TT ( ),CC ( ), II ( ), UU ( ),FF ( ) : [0,1]

    
      →  

 
3. THE FUNDAMENTAL THEORY OF TFPNS 

Definition 3.1.   TFPNS   

Assume that  represents a particular set. We define a TFPNS aG over   and is presented by 
(l) (m) (u) (l) (m) (u)

aG aG aG aG aG aG

(l) (m) (u) (l) (m) (u)

aG aG aG aG aG aG

aG {( , ((TT ( ),TT ( ),TT ( )), (CC ( ),CC ( ),CC ( )),

(II ( ), II ( ), II ( )), (UU ( ), UU ( ), UU ( )), (

=       

      (l) (m) (u)

aG aG aG

(l) (l) (l) (l) (l) (m)

aG aG aG aG aG aG

( ) ( )

aG aG aG

FF ( ),FF ( ),FF ( )))) :

where, ,0 TT ( ) CC ( ) II ( ) UU ( ) FF ( ),FF ( ) 5

and,0 TT ( ) CC ( ) II 

   

   +  +  +  +   

  +  + ( ) ( ) ( ) ( )

aG aG aG

aG aG aG aG aG

aG aG aG

( ) UU ( ) FF ( ),FF ( ) 5for, l,m,u

or,aG {( , ((TT ( ),CC ( ), II ( ), UU ( ),FF ( ))) : }, is a TFPNS.

and,TT ( ),CC ( ), II ( ), U

    +  +     =

=       

  
aG aG

U ( ),FF ( ) : [0,1].  →

 

aG aG aG aG aG
where,TT ( ),CC ( ), II ( ), UU ( ),FF ( )represents     TMF,CMF,IMF,UMF,FMF 

respectively with 
(l) (m) (u)

aG aG aG aG
TT ( ) (TT ( ),TT ( ),TT ( )) =    ,

(l) (m) (u)

aG aG aG aG
CC ( ) (CC ( ),CC ( ),CC ( )) =    ,

(l) (m) (u)

aG aG aG aG
II ( ) (II ( ), II ( ), II ( )) =    ,

(l) (m) (u)

aG aG aG aG
UU ( ) (UU ( ), UU ( ), UU ( )) =    ,.

(l) (m) (u)

aG aG aG aG
FF ( ) ((FF ( ), (FF ( ), (FF ( )) =    . 

 

Definition 3.2. We introduce the notion 0̂ and 1̂ as follows:  

0̂ (0,0,0),(0,0,0),(1,1,1),(1,1,1),(1,1,1) and=    1̂ (1,1,1),(1,1,1),(0,0,0),(0,0,0),(0,0,0)=   as 

null and unity of TFPNS triangular fuzzy Penta partitioned neutrosophic set. 

 

Definition 3.3.  Union of  any two TFPNSs 1 2,   is a TFPNS 3  written as 3 1 2 =   ,whose 
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MF of truth, MF of contradiction, MF of ignorance, MF of unknown, MF of falsity are linked 

to corresponding MFs of 1  and 2 by, 

3 1 2 1 2 1 2

3 1 2 1 2 1 1

(l) (l) (m) (m) (u) (u)

(l) (l) (m) (m) (u)

TT ( ) (max(TT ( ),TT ( )),max(TT ( ),TT ( )),max(TT ( ),TT ( )),

CC ( ) (max(CC ( ),CC ( )),max(CC ( ),CC ( )),max(CC ( ),CC

      

      

 =      

 =     

3 1 2 1 2 1 2

3 1 2 1 2 1

(u)

(l) (l) (m) (m) (u) (u)

(l) (l) (m) (m) (u)

( )),

II ( ) (min(II ( ), II ( )),min(II ( ), II ( )),min(II ( ), II ( )),

UU ( ) (min(UU ( ), UU ( )),min(UU ( ), UU ( )),min(UU (

      

     



 =      

 =     
2

3 1 2 1 2 1 2

(u)

(l) (l) (m) (m) (u) (u)

), UU ( )),

FF ( ) (min(FF ( ),FF ( )),min(FF ( ),FF ( )),min(FF ( ),FF ( ))



      



 =       

 

Therefore,
3 3 3 3 33 {( , (TT ,CC , II , UU ,FF )) : }     =    

1 2 1 2 1 2

1 2 1 2 1 1

(l) (l) (m) (m) (u) (u)

(l) (l) (m) (m) (u) (u)

{( , (max(TT ( ),TT ( )),max(TT ( ),TT ( )),max(TT ( ),TT ( )) ,

max(CC ( ),CC ( )),max(CC ( ),CC ( )),max(CC ( ),CC ( )) ,

min

     

     

=         

       


1 2 1 2 1 2 1 2

1 2 1 2

1

(l) (l) (m) (m) (u) (u) (l) (l)

(m) (m) (u) (u)

(l)

(II ( ), II ( )),min(II ( ), II ( )),min(II ( ), II ( ) , min(UU ( ), UU ( )),

min(UU ( ), UU ( )),min(UU ( ), UU ( )) ,

min(FF (

       

   



         

    


2 1 2 1 2

(l) (m) (m) (u) (u)),FF ( )),min(FF ( ),FF ( )),min(FF ( ),FF ( )) ) : }           

  

represents a triangular fuzzy penta partitioned  neutrosophic set. 

 

 

Example 1. Consider two TFPNSs as 

 

1 (0.6,0.6,0.8),(0.4,0.5.0.6),(0.2,0.3,0.4), =  (0.2,0.2,0.2), 

(0.3,0.3,0.3)
1


 2

(0.8,0.7,0.6), (0.5,0.6,0.7), (0.4,0.5,0.6), (0.3,0.3,0.3), (0.2,0.2,0.2)+ 


+

3

(0.7,0.8,0.9), (0.6,0.7,0.8), (0.5,0.6,0.7), (0.4,0.5,0.6), (0.3,0.4,0.5) ,+ 


  

1

2

2 (0.4,0.5,0.6), (0.3,0.4,0.5), (0.3,0.4,0.5), (0.4,0.5,0.6), (0.6,0.7,0.8)

(0.3,0.4,0.5), (0.4,0.5,0.6), (0.3,0.4,0.5), (0.4,0.5,0.6), (0.7,0.8,0.9)

(0.3,0.4,0.5), (0.2,0.3,0.4), (0.4,0.5,0.6), (0.5,0





 =   +

 

+
3

.6,0.7), (0.6,0.7,0.8)



  

So, 
1 

2 =
1

(0.6,0.6,0.8), (0.4,0.5,0.6), (0.2,0.3,0.4), (0.2,0.2,0.2), (0.3,0.3,0.3) 


+ 

2

3

(0.8,0.7,0.6), (0.5,0.6,0.7), (0.3,0.4,0.5), (0.3,0.3,0.3), (0.2,0.2,0.2)

(0.7,0.8,0.9), (0.6,0.7,0.8), (0.4,0.5,0.6), (0.4,0.5,0.6), (0.3,0.4,0.5)





  +

 
 

 

Example of Triangular fuzzy penta-partitioned neutrosophic number: 

Consider a real-world scenario where we just want to express uncertainty and indeterminacy 

associated with the completion time of a project using triangular fuzzy membership functions, 

namely neutrosophic numbers. 

Assume that three executive engineers of a construction company are present in a meeting 

room called by the managing director of the company to discuss a time frame that should be 

required for the completion of a new project. The managing director has raised a question before 

the three engineers, what should be the time frame for an important construction project, that the 
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company will undertake. The objective of the company is to provide the minimum time of 

completion for the project with assured quality of work. The company aims to complete the 

project within the shortest possible time. Three engineers present here constitute the universe of 

discourse.  

Now let us consider about first engineer’s (
1 ) assessment regarding the expected time of 

project completion. He thinks that the time frame of completion as expected by the company is 

correct and he is optimistic about the time frame where everything goes smoothly. This 

constitutes the Truth membership function. He is quite confident in completing the project within 

the desired time and as per him, the time of completion is 6-8 years. In 0-1 scale, truth 

membership function can be presented as (0.6,0,6,0.8) as a TFNN rating.  But at the same time, 

he has some contradiction whether the project can be completed in between 4-6 years taking into 

account potential delays and uncertainties that may come into play. In 0-1 scale, contradiction 

membership function may be expressed as (0.4,0.5,0.6) as a TFNN rating. He is completely 

ignorant about the fact that the project can be completed within most 2-4 years. This constitutes 

the ignorance membership function. In 0-1 scale, ignorance membership function may be 

expressed as (0.2,0.3,0.4) as a TFNN rating. He is completely unknown upon the fact that that 

the project can be completed within 2 years. This constitutes the unknown membership function. 

In 0-1 scale, In 0-1 scale, unknown membership function may be expressed as (0.2,0.2,0.2) as a 

TFNN rating. He never relies upon the fact that the project can be completed within 3 years. This 

constitutes the falsity membership function. In 0-1 scale, falsity membership function may be 

expressed as (0.3,0.3,0.3). So, his overall rating is expressed as a Triangular Fuzzy 

Pentapartitioned Neutrosophic Number (TFPNN) as:  

1
(0.6,0.6,0.8),(0.4,0.5,0.6),(0.2,0.3,0.4),(0.2,0.2,0.2),(0.3,0.3,0.3) .


  Similarly, second 

engineer’s assessment (
2 ) regarding time frame of completion is presented by TFPNN 

2
as (0.8,0.7,0.6),(0.5,0.6,0.7),(0.4,0.5,0.6),(0.3,0.3,0.3),(0.2,0.2,0.2) .


  Third engineer  (

3 ) 

gives his assessment rating regarding probable time of completion of project by a TFPNN rating 

represented 
3

as, (0.7,0.8,0.9), (0.6,0.7,0.8), (0.5,0.6,0.7), (0.4,0.5,0.6), (0.3,0.4,0.5) .


   All these 

three TFPNN ratings are elements of Triangular fuzzy Penta-partitioned Neutrosophic Set 

(TFPNS)  

1
1represented as, (0.6,0.6,0.8), (0.4,0.5.0.6), (0.2,0.3,0.4), (0.2,0.2,0.2), (0.3,0.3,0.3)


 =    

2

3

(0.8,0.7,0.6), (0.5,0.6,0.7), (0,4,0.5,0.6), (0.3,0.3,0.3), (0.2,0.2,0.2) (0.7,0.8,0.9), (0.6,0.7,0.8),

(0.5,0.6,0.7), (0.4,0.5,0.6), (0.3,0.4,0.5) .

+  + 







 Definition 3.4.  Intersection of two TFPNSs 1 2,   is represented as 4 and is expressed as 

4 1 2 =   , such that its truth , contradiction, ignorance, unknown and falsity components are 

presented as, 

4 1 2 1 2 1 2

(l) (l) (m) (m) (u) (u)TT ( ) (min(TT ( ),TT ( )),min(TT ( ),TT ( )),min(TT ( ),TT ( ))       =        

4 1 2 1 2 1 2

(l) (l) (m) (m) (u) (u)CC ( ) (min(CC ( ),CC ( )),min(CC ( ),CC ( )),min(CC ( ),CC ( )),       =      

4 1 2 1 2 1 2

(l) (l) (m) (m) (u) (u)II ( ) max(II ( ), II ( )),max(II ( ), II ( )),max(II ( ), II ( ))       =      

4 1 2 1 2 1 2

(l) (l) (m) (m) (u) (u)UU max(UU ( ), UU ( )),max(UU ( ), UU ( )),max(UU ( ), UU ( ))      =      

4 1 2 1 2 1 2

(l) (l) (m) (m) (u) (u)FF max(FF ( ),FF ( )),max(FF ( ),FF ( )),max(FF ( ),FF ( ))for,      =          
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So, 

4 4 4 4 4

1 2 1 2 1 2

4 1 2

(l) (l) (m) (m) (u) (u)

{( ,TT ( ),CC ( ), II ( ), UU ,FF ) : }

{( , ((min(TT ( ),TT ( )),min(TT ( ),TT ( )),min(TT ( ),TT ( )))

    

     

 =   =     

=       
 

1 2 1 2 1 2

1 2 1 2 1 2

(l) (l) (m) (m) (u) (u)

(l) (l) (m) (m) (u) (u)

(min(CC ( ),CC ( )),min(CC ( ),CC ( )),min(CC ( ), CC ( ))),

(max(II ( ), II ( )),max(II ( ), II ( )),max(II ( ), II ( ))),

(max(UU

     

     



     

     

1 2 1 2 1 2

1 2 1 2 1 2

(l) (l) (m) (m) (u) (u)

(l) (l) (m) (m) (u) (u)

( ), UU ( )),max(UU ( ), UU ( )),max(UU ( ), UU ( ))),

(FF ( ),FF ( )),max(FF ( ),FF ( )),max(FF ( ),FF ( )))) : }

    

     

     

      

 

Example 2. Example of intersection 

 

Consider two TFPNS as 

 
1 (0.6,0.6,0.8),(0.4,0.5.0.6),(0.2,0.3,0.4), =  (0.2,0.2,0.2), 

(0.3,0.3,0.3)
1


 2

(0.8,0.7,0.6), (0.5,0.6,0.7), (0.4,0.5,0.6), (0.3,0.3,0.3), (0.2,0.2,0.2)+ 


+

3

(0.7,0.8,0.9), (0.6,0.7,0.8), (0.5,0.6,0.7), (0.4,0.5,0.6), (0.3,0.4,0.5) ,+ 


  

1

2

2 (0.4,0.5,0.6), (0.3,0.4,0.5), (0.3,0.4,0.5), (0.4,0.5,0.6), (0.6,0.7,0.8)

(0.3,0.4,0.5), (0.4,0.5,0.6), (0.3,0.4,0.5), (0.4,0.5,0.6), (0.7,0.8,0.9)

(0.3,0.4,0.5), (0.2,0.3,0.4), (0.4,0.5,0.6), (0.5,0





 =   +

 

+
3

.6,0.7), (0.6,0.7,0.8)



 

 

1

2

1 2 (0.4,0.5,0.6), (0.3,0.4,0.5), (0.3,0.4,0.5), (0.4,0.5,0.6), (0.6,0.7,0.8)

(0.3,0.4,0.5), (0.4,0.5,0.6), (0.4,0.5,0.6), (0.4,0.5,0.6), (0.7,0.8,0.9)

(0.3,0.4,0.5), (0.2,0.3,0.4), (0.5,0.6,

   ,    So




  =   +

  +


3

0.7), (0.5,0.6,0.7), (0.6,0.7,0.8)



 

 

Definition 3.5. Complement of a TFPNS 

Consider a TFPNS a  with its representation as, 

 

(l) (m) (u) (l) (m) (u)

a a a a a a

(l) (m) (u) (l) (m) (u)

a a a a a a

(l) (m)

a a

a {( , ((TT ( ),TT ( ),TT ( )), (CC ( ),CC ( ),CC ( )),

(II ( ), II ( ), II ( )), (UU ( ), UU ( ), UU ( )),

(FF ( ),FF ( ),

     

     

 

 =       

     

  (u)

a
FF ( )))) : }


 

 

The complement of a TFPNS a  is expressed as (
cmta)  and is represented as, 

cmt (l) (m) (u) (l) (m) (u)

a a a a a a

(l) (m) (u) (l) (m) (u)

a a a a a a

(l)

a

( a) {( , ((FF ( ),FF ( ), FF ( )), (UU ( ), UU ( ), UU ( )),

(1 II ( ),1 II ( ),1 II ( )), (CC ( ),CC ( ),CC ( )),

(TT ( ),T

     

     



 =       

−  −  −    

 (m) (u)

a a
T ( ),TT ( )))) : }
 

  

 

Example 3. Assume a TFPNS of the form:  

1 (0.6,0.6,0.8),(0.4,0.5.0.6),(0.2,0.3,0.4), =  (0.2,0.2,0.2), 
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(0.3,0.3,0.3)  /
1 +

2

3

(0.8,0.7,0.6), (0.5,0.6,0.7), (0.4,0.5,0.6), (0.3,0.3,0.3), (0.2,0.2,0.2) (0.7,0.8,0.9), (0.6,0.7,0.8),

(0.5,0.6,0.7), (0.4,0.5,0.6), (0.3,0.4,0.5) ,





  + 


 

Accordingly, ( 
1 )cmt =  

1

2

(0.3,0.3,0.3), (0.2,0.2,0.2), (0.8,0.7,0.6), (0.4,0.5,0.6), (0.6,0.6,0.8) |

(0.2,0.2,0.2), (0.3,0.3,0.3), (0.6,0.5,0.4), (0.5,0.6,0.7), (0.8,0.7,0.6) |

(0.3,0.4,0.5), (0.4,0.5,0.6), (0.5,0.4,0.3), (0.6,0.

 

+ 

+





3
7,0.8), (0.7,0.8,0.9) |



 

Example 3. Assume a TFPNS 
1  of the form:  

1
1 (0.6,0.6,0.8), (0.4,0.5.0.6), (0.2,0.3,0.4), (0.2,0.2,0.2), (0.3,0.3,0.3) =  


 

2

3

(0.8,0.7,0.6), (0.5,0.6,0.7), (0.4,0.5,0.6), (0.3,0.3,0.3), (0.2,0.2,0.2)

(0.7,0.8,0.9), (0.6,0.7,0.8), (0.5,0.6,0.7), (0.4,0.5,0.6), (0.3,0.4,0.5)

  +

 





 

Accordingly, ( 
1 )cmt =  

1

2

(0.3,0.3,0.3), (0.2,0.2,0.2), (0.8,0.7,0.6), (0.4,0.5,0.6), (0.6,0.6,0.8)

(0.2,0.2,0.2), (0.3,0.3,0.3), (0.6,0.5,0.4), (0.5,0.6,0.7), (0.8,0.7,0.6)

(0.3,0.4,0.5), (0.4,0.5,0.6), (0.5,0.4,0.3), (0.6,0.7,

 

+ 

+





3
0.8), (0.7,0.8,0.9) .



 

Definition 3.6. Containment 

A TFPNS 1a  can be defined to be contained in another TFPNS 2a  and is denoted 

by
1 2a a    

1 2 1 2 1 2

1 2 1 2 1 2

1 2

(l) (l) (m) (m) (u) (u)

a a a a a a

(l) (l) (m) (m) (u) (u)

a a a a a a

(l) (l)

a a

if ,TT ( ) TT ( ),TT ( ) TT ( ),TT ( ) TT ( );

CC ( ) CC ( ),CC ( ) CC ( ),CC ( ) CC ( );

II ( ) II ( ), I

     

     

 

        

        

  
1 2 1 2

1 2 1 2 1 2

1 2 1 2

(m) (m) (u) (u)

a a a a

(l) (l) (m) (m) (u) (u)

a a a a a a

(l) (l) (m) (m)

a a a a

I ( ) II ( ), II ( ) II ( );

UU ( ) UU ( ), UU ( ) UU ( ), UU ( ) UU ( );

FF ( ) FF ( ),FF ( ) FF ( ),FF

   

     

    

     

        

     
1 2

(u) (u)

a a
( ) FF ( );for


   

 

 

Theorem 3.1. 

If a represents a TFPNS, then a) a a a  =         b) a a a  =   

Proof. 
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(l) (l) (m) (m) (u) (u)

a a a a a a

(l) (l) (m) (m) (u)

a a a a a a

a) Now, a a {( , ((max(TT ( ),TT ( )),max(TT ( ),TT ( )),max(TT ( ),TT ( ))),

(max(CC ( ),CC ( )),max(CC ( ),CC ( )),max(CC ( ), CC

     

     

  =       

     (u)

(l) (l) (m) (m) (u) (u)

a a a a a a

(l) (l) (m) (m) (u) (u)

a a a a a a

( ))),

(min(II ( ), II ( )),min(II ( ), II ( )),min(II ( ), II ( )),

(min(UU ( ), UU ( )),min(UU ( ), UU ( )),min(UU ( ), UU ( ))),

(m

     

     



     

     

(l) (l) (m) (m) (u) (u)

a a a a a a

(l) (m) (u) (l) (m) (u)

a a a a a a

(l)

a

in(FF ( ),FF ( )),min(FF ( ),FF ( )),min(FF ( ),FF ( )))) : }

{( , (TT ( ),TT ( ),TT ( )), (CC ( ),CC ( ),CC ( )),

(II ( )

     

     



      

=       

 (m) (u) (l) (m) (u) (l) (m) (u)

a a a a a a a a
, II ( ), II ( )), (UU ( ), UU ( ), UU ( )), (FF ( ),FF ( ), FF ( ))) : }

a

       
        

= 
 

 

(l) (l) (m) (m) (u) (u)

a a a a a a

(l) (l) (m) (m) (u) (u)

a a a a a a

b) a a

{( , ((min(TT ( ),TT ( )),min(TT ( ),TT ( )),min(TT ( ),TT ( ))),

(min(CC ( ),CC ( )),min(CC ( ),CC ( )),min(CC ( ),CC (

     

     

 

=       

    

(l) (l) (m) (m) (u) (u)

a a a a a a

(l) (l) (m) (m) (u) (u)

a a a a a a

))),

(max(II ( ), II ( )),max(II ( ), II ( )),max(II ( ), II ( ))),

(max(UU ( ), UU ( )),max(UU ( ), UU ( )),max(UU ( ), UU ( ))),

     

     



     

     

 

(l) (l) (m) (m) (u) (u)

a a a a a a

(l) (m) (u) (l) (m) (u)

a a a a a a

(l)

a

max(FF ( ),FF ( )),max(FF ( ),FF ( )),max(FF ( ),FF ( ))) : }

{( , (TT ( ),TT ( ),TT ( )), (CC ( ),CC ( ),CC ( )),

(II (

     

     



       

=       

 (m) (u) (l) (m) (u) (l) (m) (u)

a a a a a a a a
), II ( ), II ( )), (UU ( ), UU ( ), UU ( )), (FF ( ),FF ( ),FF ( ))) : }

a

       
        

= 

 

 

Theorem 3.2.  For any two TFPNSs 
1 2a & a    , law of commutation holds:  

Law of commutation 

1 2 2 1a) a a a a  =   

1 2 2 1b) a a a a  = 
 

1 2 1 2 1 2

1 2 1 2

1 2

(l) (l) (m) (m) (u) (u)

a a a a a a

(l) (l) (m) (m)

a a a a

a) Proof .We have , a a

{( , ((max(TT ( ),TT ( )),max(TT ( ),TT ( )),max(TT ( ),TT ( ))),

(max(CC ( ),CC ( )),max(CC ( ),CC ( )),ma

     

   

  =

      

   
1 2

1 2 1 2 1 2

1 2 1 2

(u) (u)

a a

(l) (l) (m) (m) (u) (u)

a a a a a a

(l) (l) (m) (m)

a a a a

x(CC ( ),CC ( ))),
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max(FF ( ),min(FF ( ),FF ( ))),max(FF ( ),min(FF

     

    



      

   
2

1 1 1 1 1 1

1 1 1 1 1

(l)

a

(l) (m) (u) (l) (m) (u)

a a a a a a

(l) (m) (u) (l) (m)

a a a a a

( ),FF ( ))) ) : }

{( , (TT ( ),TT ( ),TT ( )), (CC ( ),CC ( ),CC ( )),

(II ( ), II ( ), II ( )), (UU ( ), UU ( ), UU



     

     

   

=        

    
1 1 1 1

(u) (l) (m) (u)

a a a a

1

( )), (FF ( ),FF ( ),FF ( )))) : }

a

  
    

= 
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1 1 1 1 1 1

1 1 1 1

Cmt Cmt

1 1 1

(l) (m) (u) (l) (m) (u)

1 a a a a a a

(l) (m) (u)

a a a a

T For anyTFPNS a , ( a ) a

Pr oof : a {( , ((TT ( ),TT ( ),TT ( )), (CC ( ),CC ( ),CC ( )),

(II ( ), II ( ), II ( )),

heorem 3.

(UU

6.

     

   

  = 

 =       

  
1 1 1 1 1

1 1 1 1 1 1

(l) (m) (u) (l) (m) (u)

a a a a a

cmt (l) (m) (u) (l) (m) (u)

1 a a a a a a

( ), UU ( ), UU ( )), (FF ( ),FF ( ),FF ( )))) : }

So, ( a ) {( , ((FF ( ),FF ( ),FF ( )), (UU ( ), UU ( ), UU ( )),

(1 II

    

     

      

 =       

−
1 1 1 1 1 1 1 1 1

1 1 1

(l) (m) (u) (l) (m) (u) (l) (m) (u)

a a a a a a a a a

Cmt Cmt (l) (m) (u)

1 a a a

( ),1 II ( ),1 II ( )), (CC ( ),CC ( ),CC ( )), (TT ( ),TT ( ),TT ( )))) : }

( a ) {( , ((TT ( ),TT ( ),TT (

        

  

 −  −        

  =    
1 1 1

1 1 1 1 1 1 1 1 1

(l) (m) (u)

a a a

(l) (m) (u) (l) (m) (u) (l) (m) (u)

a a a a a a a a a

1

)), (CC ( ),CC ( ),CC ( )),

(II ( ), II ( ), II ( )), (UU ( ), UU ( ), UU ( )), (FF ( ), FF ( ),FF ( )))) : }

a

  

        

  

         

= 

 Theorem 3.7. For any TFPNS 
1a ,  represented as , 

1 1 1 1 1 1

1 1 1 1 1 1 1

(l) (m) (u) (l) (m) (u)

1 a a a a a a

(l) (m) (u) (l) (m) (u) (l)

a a a a a a a

a {( , ((TT ( ),TT ( ),TT ( )), (CC ( ),CC ( ),CC ( )),

(II ( ), II ( ), II ( )), (UU ( ), UU ( ), UU ( )), (FF ( )

     

      

 =       

      
1 1

(m) (u)

a a
,FF ( ),FF ( )))) : },

 
  

 

Following relations holds-  

1
ˆ(a) a 0   

1 1 1 1 1 1

1 1 1 1 1

1

(l) (m) (u) (l) (m) (u)

1 a a a a a a

(l) (m) (u) (l) (m)

a a a a a a

ˆ ˆb) a 1 1

ˆPr oof (a) a 0 {( , ((TT ( ),TT ( ),TT ( )), (CC ( ),CC ( ),CC ( )),

(II ( ), II ( ), II ( )), (UU ( ), UU ( ), UU

     

     

  =

  =       

    
1

1 1 1

1 1 1

1

(u)

(l) (m) (u)

a a a

(l) (m) (u)

a a a

(l)

a

( )),

(FF ( ),FF ( ),FF ( )))) : }

{( , (0,0,0), (0,0,0), (1,1,1), (1,1,1), (1,1,1)) : }

{( , ((min(TT ( ),0),min(TT ( ),0),min(TT ( ),0)),

(min(CC (

  

  





   

  

=    

1 1

1 1 1

1 1 1

1

(m) (u)

a a

(l) (m) (u)

a a a

(l) (m) (u)

a a a

(l)

a

),0),min(CC ( ),0),min(CC ( ),0)),

(max(II ( ),1),max(II ( ),1),max(II ( ),1)),

(max(UU ( ),1),max(UU ( ),1),max(UU ( ),1)),

(max(FF ( ),1)

 

  

  



  

  

  


1 1

(m) (u)

a a
,max(FF ( ),1),max(FF ( ),1)))) : }

{( , ((0,0,0), (0.0.0), (1,1,1), (1,1,1), (1,1,1))) : }

0̂

 
  

=  

=
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1 1 1 1 1 1

1 1 1 1 1 1

(l) (m) (u) (l) (m) (m)

1 a a a a a a

(l) (m) (u) (l) (m) (u)

a a a a a a

ˆPr oof .(b) a 1 {( , ((TT ( ),TT ( ),TT ( )), (CC ( ),CC ( ),CC ( )),

(II ( ), II ( ), II ( )), (UU ( ), UU ( ), UU ( )), (F

     

     

  =       

     
1 1 1

1 1 1 1

(l) (m) (u)

a a a

(l) (m) (u) (l)

a a a a

F ( ),FF ( ),FF ( )))) : }

{( , (1,1,1), (1,1,1), (0,0,0), (0,0,0), (0,0,0)) : }

{( , ((max(TT ( ),1),max(TT ( ),1),max(TT ( ),1)), (max(CC ( ),1),

max(C

  

   

   

  

=     

1 1 1 1 1

1 1 1 1

(m) (u) (l) (m) (u)

a a a a a

(l) (m) (u) (l)

a a a a

a

C ( ),1),max(CC ( ),1)), (min(II ( ),0),min(II ( ),0),min(II ( ),0)),

(min(UU ( ),0),min(UU ( ),0),min(UU ( ),0)), (min(FF ( ),0),

min(FF

    

   



    

   

1 1

1

(m) (u)

a

Cmt Cmt Cmt

1 2 1 2 1 2

(l)

1 2 a

( ),0),min(FF ( ),0))) : }

{( , ((1,1,1), (1,1,1), (0,0,0), (0,0,0), (0,0,0))) : }

1̂

Theorem3.8.For any two TFPNSs a & a , ( a a ) a a

( a a ) {( , ((min(TT ( ),T





  

=  

=

    =  

  =  
2 1 2 1 2

1 2 1 1 1 2

1

(l) (m) (m) (u) (u)

a a a a a

(l) (l) (m) (l) (m) (m)

a a a a a a

(l)

a

T ( )),min(TT ( ),TT ( )),min(TT ( ),TT ( ))),

(min(CC ( ),CC ( )),min(CC ( ),CC ( )),min(CC ( ), CC ( ))),

(max(II ( )

    

     



    

     


1 1 2 1 2

1 2 1 2 1 2

1

(l) (m) (m) (u) (u)

a a a a a

(l) (l) (m) (m) (u) (u)

a a a a a a

(l)

a

, II ( )),max(II ( ), II ( )),max(II ( ), II ( ))),

(max(UU ( ), UU ( )),max(UU ( ), UU ( )),max(UU ( ), UU ( ))),

(max(FF (

    

     



    

     

2 1 2 1 2

1 2 1 2

1

(l) (m) (m) (u) (u)

a a a a a

Cmt (l) (l) (m) (m)

1 2 a a a a

(u)

a

),FF ( )),max(FF ( ),FF ( )),max(FF ( ),FF ( )))) : }

so, ( a a ) {( , (max(FF ( ),FF ( )),max(FF ( ),FF ( )),

max(FF ( ),F

    

   



      

  =     


2 1 2

1 2 1 2 1 2

1 2 1

(u) (l) (l)

a a a

(m) (m) (u) (u) (l) (l)

a a a a a a

(m) (m)

a a a

F ( ))), (max(UU ( ), UU ( )),

max(UU ( ), UU ( )),max(UU ( ), UU ( ))), (1 max(II ( ), II ( )),

1 max(II ( ), II ( )),1 max(II

  

     

  

  

    −  

−   −
2 1 2 1 2 1 2

1 2 1 2

(u) (u) (l) (l) (m) (m) (u) (u)

a a a a a a a

(l) (l) (m) (m)

a a a a

( ), II ( ))), (min(CC ( ),CC ( )),min(CC ( ),CC ( )),min(CC ( ),CC ( ))),

(min(TT ( ),TT ( )),min(TT ( ),TT ( )),

min(TT

      

   



       

   

1 2

(u) (u)

a a
( ),TT ( )))) : }..(1)


  

 

1 1 1 1 1 1

1 1 1 1 1

Cmt Cmt (l) (m) (u) (l) (m) (u)

1 2 a a a a a a

(l) (m) (u) (l) (m)

a a a a a a

Again, a a {( , ((FF ( ),FF ( ),FF ( )), (UU ( ), UU ( ), UU ( )),

(1 II ( ),1 II ( ),1 II ( )), (CC ( ),CC ( ),CC

     

     

  =       

−  −  −   
1

1 1 1

(u)

(l) (m) (u)

a a a

( )),

(TT ( ),TT ( ),TT ( )))) : }
  



   


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2 2 2 2 2

2 2 2 2

2 2 2 2

(l) (m) (u) (l) (m)

a a a a a

(u) (l) (m) (u)

a a a a

(l) (m) (u) (l)

a a a a

{( , ((FF ( ),FF ( ),FF ( )), (UU ( ), UU ( ),

UU ( )), (1 II ( ),1 II ( ),1 II ( )),

(CC ( ),CC ( ),CC ( )), (TT (

    

   

   

     

 −  −  − 

   
2 2

1 2 1 2 1 2

1 2 1

(m) (u)

a a

(l) (l) (m) (m) (u) (u)

a a a a a a

(l) (l) (m)

a a a

),TT ( ),TT ( )))) : }

{( , (((max(FF ( ),FF ( )),max(FF ( ),FF ( )),max(FF ( ),FF ( ))),

(max(UU ( ), UU ( )),max(UU ( ), U

 

     

  

  

=       

  
2 1 2

1 2 1 2 1 2

1 2

(m) (u) (u)

a a a

(l) (l) (m) (m) (u) (u)

a a a a a a

(l) (l)

a a

U ( )),max(UU ( ), UU ( ))),

(min(1 II ( ),1 II ( )),min(1 II ( ),1 II ( )),min(1 II ( ),1 II ( ))),

(min(CC ( ),CC ( )),min(C

  

     

 

  

−  −  −  −  −  − 

 
1 2 1 2

1 2 1 2 1 2

(m) (m) (u) (u)

a a a a

(l) (l) (m) (m) (u) (u)

a a a a a a

C ( ),CC ( )),min(CC ( ),CC ( ))),

(min(TT ( ),TT ( )),min(TT ( ),TT ( )),min(TT ( ), TT ( )))) : }..(2)

   

     

   

      

 

We consider the following cases. 

 

1 2

(l) (l)

a a
Case (a). if , II ( ) II ( )

 
  

1 2

(l) (l)

a a
then,1 II ( ) 1 II ( )

 
−   − 

1 2

(l) (l)

a a
Then,min(1 II ( ),1 II ( ))

 
−  − 

1

(l)

a
1 II ( )


= − 

1 2

(l) (l)

a a
1 max(II ( ), II ( ))...(3)

 
= −  

1 2

(m) (m)

a a
if , II ( ) II ( )

 
  

1 2

(m) (m)

a a
then,1 II ( ) 1 II ( )

 
−   − 

 

 1 2

(m) (m)

a a
Then,min(1 II ( ),1 II ( ))

 
−  − 

1

(m)

a
1 II ( )


= − 

1 2

(m) (m)

a a
1 max(II ( ), II ( ))...(4)

 
= −  

 

1 2 1 2

(u) (u) (u) (u)

a a a a
if , II ( ) II ( ) then,1 II ( ) 1 II ( )

   
   −   − 

 
 

1 2

(l) (l)

a a
So,min(1 II ( ),1 II ( ))

 
−  −  =

2

(u )

a
1 II ( )


−  =

1 2

(l) (l)

a a
1 max(II ( ), II ( ))

 
−  

 … (6) 

1 2

(m) (m)

a a
And,if , II ( ) II ( )

 
  

1

(m)

a
we have,1 II ( )


− 

2

(m)

a
1 II ( )


 − 

  

1 2

(m) (m)

a a
So, min(1 II ( ),1 II ( ))

 
−  −  =

2

(m)

a
1 II ( )


− 

1 2

(m) (m)

a a
1 max(II ( ), II ( ))...(7)

 
= −  

 

1 2

(u) (u)

a a
Also, II ( ) II ( ),

 
  

1

(u )

a
we have,1 II ( )


− 

2

(u )

a
1 II ( )


 − 

 

1 2

(u) (u)

a a
So,min(1 II ( ),1 II ( ))

 
−  −  =

 2 1 2

(u) (u) (u)

a a a
1 II ( ) 1 max(II ( ), II ( ))

  
−  = −  

… (8)  

So, we obtain using the above relations 

1 2 1

2 1 2 1 2

1

Cmt Cmt (l) (l) (m)

1 2 a a a

(m) (u) (u) (l) (l)

a a a a a

(m)

a

(3), (4), (5), (6), (7), (8) a a {( , (max(FF ( ),FF ( )),max(FF ( ),

FF ( )),max(FF ( ),FF ( ))), (max(UU ( ), UU ( )),

max(UU ( ), UU

  

    



  =    

    


2 1 1 1 2

1 2 1 2

(m) (u) (u) (l) (l)

a a a a a

(m) (m) (u) (u)

a a a a

( ))max(UU ( ), UU ( ))), (min(1 II ( ),1 II ( )),

min(1 II ( ),1 II ( )),min(1 II ( ),1 II ( ))),

    

   

   −  − 

−  −  −  − 

 

 
1 2 1 2 1 2

(l) (l) (m) (m) (u) (u)

a a a a a a
(min(CC ( ),CC ( )),min(CC ( ),CC ( )),min(CC ( ),CC ( ))),

     
       

1 2 1 2 1 2

(l) (l) (m) (m) (u) (u)

a a a a a a
(min(TT ( ),TT ( )),min(TT ( ),TT ( )),min(TT ( ), TT ( )))) : }

     
        

1 2 1 2 1 2

1 2 1 2 1 2

(l) (l) (m) (m) (u) (u)

a a a a a a

(l) (l) (m) (m) (u) (u

a a a a a a

{( ,(max(FF ( ),FF ( )),max(FF ( ),FF ( )),max(FF ( ),FF ( ))),

(max(UU ( ),UU ( )),max(UU ( ),UU ( )),max(UU ( ), UU

     

     

=       

     ) ( ))),
 

1 2 1 2 1 2

(l) (l) (m) (m) (u) (u)

a a a a a a
((1 max(II ( ), II ( )), (1 max(II ( ), II ( )), (1 max(II ( ), II ( ))),

     
−   −   −    
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1 2 1 2 1 2

(l) (l) (m) (m) (u) (u)

a a a a a a
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Cmt

1 1

(min(TT ( ),TT ( )),min(TT ( ),TT ( )),min(TT ( ), TT ( )))) : }

( a a )

     
      

=    

Theorem 3.9. For any two TFPNS Cmt Cmt Cmt

1 2 1 2 1 2a & a ,( a a ) a a    =   

 

Proof.
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
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2
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a
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
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We consider the following cases. 
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Hence the theorem is proved. 

 

4. DISCUSSION  

 

In this paper, the notion of TFPNS is introduced by combining the  TFN and the PNS to utilize 

the advantages of TFN and PNS.  The significance of introducing the hybrid set structure TFPNS 

is that the computational techniques based on  TFN  or PNS alone may not always produce the 

best results. But a fusion of them may produce better results. We have presented a real-world 

example of which is elegant to express uncertainty by utilizing triangular fuzzy numbers which 

was not possible using PNS alone.  

 

 5. CONCLUSIONS 

In this paper, we have developed a new notional concept of TFPNS and proved its important 

properties like union, intersection, complement, etc. We hope that this treatment will show a 

future scope of development of logical systems in information sciences.  We further hope that 
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TFPNSs will be helpful in decision-making,  information retrieval systems, etc.  In the future, 

aggregation operators and other set-theoretic operations and their important properties will be 

explored. TFPNS is more advantageous than PNS. 
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ABSTRACT 
In this chapter, we delve into the fascinating realm of interval-valued neutrosophic sets by 

introducing two novel concepts: interval-valued neutrosophic b-open sets and interval-valued 

neutrosophic b-closed sets. These sets bring forth intriguing properties which we thoroughly 

explore. Additionally, we delve into the concept of interval-valued neutrosophic b-interior and 

interval-valued neutrosophic b-closure operators, shedding light on their characteristics and 

delving into their relationships with other operators in this domain. 

. 

KEYWORDS:  Interval-valued neutrosophic b-open, neutrosophic b-closure operator, 

neutrosophic b-closure operator, neutrosophic topology. 

1. INTRODUCTION

Interval-Valued Neutrosophic  (IVN) b-open sets are a concept in mathematical set 

theory that combines the notions of IVN Sets (IVNSs) (Wang et al., 2005) and b-open sets 

(Ebenanjar et al., 2018). To understand this term, let's break it down: 

1. IVNS: An IVNS is a mathematical representation that extends classical sets to

accommodate uncertain or indeterminate information. It introduces three components for 

each element: truth, indeterminacy, and falsity membership, each represents an interval. This 

allows for a more nuanced description of uncertainty and vagueness in sets. 

2. b-Open Sets: In topology, a set is called "b-open" (Andrijevic, 996) if it satisfies the

conditions of both openness and closed-ness. This concept generalizes the notion of Open 

Sets (OSs)in topology. 

Combining these two concepts, "IVN b-OSs" likely refer to sets that have properties of 

both IVNSs and b-OSs. These sets would describe elements with uncertain and imprecise 

truth values using interval membership values, while also exhibiting properties of openness 

and closed-ness in the context of a specific Topological Space (TS). 
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An IVN Topological Space (IVNTS) is an extension of the traditional concept of a 

topological space that incorporates interval-valued neutrosophic sets to account for 

uncertainty and indeterminacy. This concept is rooted in both topology and NS theory and 

aims to provide a framework for handling complex and uncertain information within the 

context of open and closed sets. 

 

In mathematics, a TS is a fundamental concept in topology. It consists of a set of points along 

with a collection of open sets, which are subsets of the space satisfying specific properties 

(such as being closed under finite intersections and arbitrary unions). These open sets define 

the concepts of continuity, neighborhood, convergence, and various other important concepts 

in topology. 

 

By combining the concepts of TS and IVNS, an IVNTS is developed which generalizes the 

notion of a TS by incorporating IVNSs as elements. In this context, open sets and closed sets 

are defined using these IVNSs.  

 

Uncertainties are a major part of business, engineering, finance, medical,  and social science 

challenges. Traditional mathematical models have trouble resolving the uncertainties in these 

data. Fuzzy Sets (FSs) (Zadeh, 1965), extensions of FSs that are intuitionistic FSs 

(Atanassov, 1986), rough sets (Pawlak, 1982) are some sets that can be used as mathematical 

tools to get around problems involving unclear data.  However, due to the limitations of 

parametrization tools, all of these approaches have an underlying problem when trying to 

solve issues with uncertainty. Neutrosophic Sets (NSs) were examined by Smarandache 

(1998, 2005)  as a strategy for resolving problems involving unreliable, indeterminate, and 

inconsisitent data. 

Wang et al. (2010) introduced a novel approach called Single Valued NS (SVNS).  IVNSs (Wang 

et al., 2005) are an extension of interval valued FS (Turksen, 1986) and NSs. SVNS was further 

extended to Quadripartitioned NS (QNS) (Chatterjee et al., 2016) and Pentapartitioned NS  

(Mallick, & Pramanik, 2020). Using INS (Wang et al., 2005) and QNS ( Chatterjee et al., 2016), 

Interval QNS (IQNS) was proposed by Pramanik (2022b.  Using IVNS ( Wang et al., 2005) and 

PNS (Mallick, & Pramanik, 2020), Interval  QNS (IPNS)  was developed by Pramanik (2023).  

Theories of NSs and their applications are depicted in the studies (Broumi et al., 2018; Otay, & 

Kahraman, 2019; Pramanik et al., 2018; Peng & Dai, 2020; Pramanik, 2020, 2022a; Smarandache, 

& Pramanik, 2016, 2028; Delcea et al, 2023),  Salama and Alblowi (2012a) introduced the 

Neutrosophic TS (NTS) in 2012.  NTSs were further examined by the studies (Salama, & 

Alblowi, 2012b; Salama et al., 2014; Das & Tripathy, 2020).  

 

 Iswarya and Bageerathi ( 2 0 1 6 )  explored the Neutrosophic SO (NSO)) set and 
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Neutrosophic Semi-Closed (NSC) set. Imran et al. (2017) grounded the NSO in 2017 and 

investigated their basic characteristics. The NSO function was defined by Arokiarani et al. 

(2017). Neutrosophic pre-OSs were first introduced by Rao and Rao (2017).   

Andrijevic (1996) presented  b-open sets. Dutta, & Tripathy (2017) presented the fuzzy b-OS. Das, 

& Pramanik (2020) grounded the generalized neutrosophic b-OSs in NTS. Das, & Tripathy (2020) 

presented the pairwise neutrosophic-b-OS in neutrosophic bi-TSs. 

 

The concept of IVN b-OS via IVNTS combines the ideas of interval-valued membership degrees 

and NSs within the framework of TSs. 

 

 

Research Gap: There hasn't been any new research on interval-valued neutrosophic b-open set and 

interval-valued neutrosophic b-continuous mapping and their properties via IVNTS. 

 

Motivation: We introduce the concept of IVN b-open sets and IVN b-continuous mappings, along 

with their respective properties, to address the existing research gap. 

 

The following parts have been created from the remaining text of this article: 

We reviewed some pertinent definitions and findings on IVNS and IVNTS in the next section. 

Section 3 introduces the idea of IVN b-OS and IVN b-continuous mapping, and proves their 

properties. Section 4 wraps up the paper by outlining avenues for future research.  

 

2.  PRELIMINARIES  

We review some previous definitions and findings about IVNS and IVNTS, which are highly 

beneficial for the presentation of the article's primary findings. For the definition of union, 

intersection, and complement we have used the article (Wang et al., 2005). 

 

Definition 2.1. Consider X    be a set of objects. An IVNS  (Wang et al., 2005)) D in 𝑋 is 

characterized by truth-𝑇D, indeterminacy- 𝐼D and falsity–𝐹D membership functions. For each 

point𝑥𝑋, 𝑇D(𝑥), 𝐼D(𝑥), FD(𝑥) ⊆ [0,1]. 

Example 2.1. Let X={x1, x2} be a fixed set. Then, D={(x1, [0.2, 0.4], [0.4, 0.6], [0.2, 0.3]), (x2, 

[0.4, 0.6], [0.3, 0.5], [0.2, 0.4])} is an IVNS over X. 

Definition2.2 An IVNS (Wang et al., 2005)  Θ  is called as 

(i) null IVN set denoted by 0IVN if for each point𝑥𝑋, inf ΘT  (𝑥) = sup ΘT  (𝑥)= 0, inf ΘI  (𝑥) = sup 

ΘI  (𝑥) = 1, and inf ΘF  (𝑥) = sup ΘF =  0. 

(ii) absolute IVNS denoted by (1IVN) if for each point 𝑥𝑋, 

inf ΘT  (𝑥) = sup ΘT  (𝑥)= 1, inf ΘI  (𝑥) = sup ΘI  (𝑥) = 0, and inf ΘF  (𝑥) = sup ΘF =  1. 

 

Remark 2.2. Suppose that A and B are two IVNSs over X. Then, their union 𝐴𝖴𝐵 is the smallest 
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IVNS containing both 𝐴 and 𝐵. 

Definition 2.3. Let 𝑋 be a non-empty set, and τ IVN
be a family of IVNSs defined over X. Then, 

( , τ )IVNX  is called an IVN Topology (IVNT) if it satisfies the following axioms: 

(i) 0IVN, 1IVN∈ , 

(ii) 𝐴,B∈ τ IVN
⇒𝐴∩𝐵∈ τ IVN

, 

(iii) 𝐴𝑖∈ τ IVN
,∈𝐼⇒𝖴𝑖∈𝐼𝐴𝑖∈ τ IVN

. 

In that case, the pair ( , τ )IVNX  is referred to as an IVNTS. All the members of ( , τ )IVNX are said to 

be an IVN OS (IVNOS], and their complement is said to be an IVN Closed Set (CS) 

(IVNCS). 

Definition 2.4. (Salama & Alblowi, 2012) Let ( , τ )IVNX  be an IVNTS, and U be an IVNS over 

X. Then, the IVN closure and IVN interior of U are defined as follows: 

IVNcl(U)=∩{D:D is an IVNCS in X and U⊆D} 

IVNint(U)=∪{E:E is an IVNOS in X and E⊆U}. 

 

3. B-OPEN SET IN IVNS  

 

The ideas of IVN b-OS and IVN b-CS are here introduced. Their properties are characterized. 

Definition 3.1. Let ( , τ )IVNX  be an IVNTS and U is an IVNS. Then ,  U is called as 

(i) IVN α-OS ( IVN-α-OS) if U ⊆ IVNint(IVNcl(IVNint(U))); 

(ii) IVN Semi-OS ( IVNSOS) if U ⊆ IVNcl(IVNint(U)); 

(iii) IVN Pre-OS ( IVNPOS) if U ⊆ IVNint(IVNcl(U)). 

Remark 3.1.The complement of IVN-α-OS, IVNSOS and IVNPOS in an IVNTS ( , τ )IVNX  are 

called IVN α-CS (IVN-α-CS), IVN Semi-CS (IVNSCS) and IVN Pre-CS(IVNPCS) 

respectively. 

Theorem 3.1. Let ( , τ )IVNX be an IVNTS. Then, 

(i) each IVNOS is an IVNSOS, 

(ii) each IVNOS is an IVNPOS. 

Proof. (i) Let ( , τ )IVNX be an IVNTS. Let A be an IVNOS. Therefore, A=IVNint(A). It is known that  

A IVNcl(A). This implies, A  IVNcl(IVNint(A)). Therefore, A is an IVNSOS in (X, ). 

(ii) Let ( , τ )IVNX  be an IVNTS. Let A be an IVNOS. Therefore, A=IVNint(A). It is known that  

A  IVNcl(A). This implies, IVNint(A)  IVNint(IVNcl(A)) i.e. A = IVNint(A)  IVNint(IVNcl(A)). 

Therefore, A  IVNint(IVNcl(A)). Hence, A is a IVNPOS in ( , τ )IVNX . 

Theorem 3.2. In an IVNTS ( , τ )IVNX , the union of any  two IVNSOSs is an IVNSOS. 

Proof. Let P and Q be two IVNSOSs in an IVNTS ( , τ )IVNX . Therefore, 

         P  IVNcl(IVNint(P))                                                                      (1) 

and Q  IVNcl(IVNint(Q))                                                                       (2) 

Using the relations  (1) and (2), we obtain 
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P  Q  IVNcl(IVNint(P))  IVNcl(IVNint(Q)) 

        =IVNcl(IVNint(P)  IVNint(Q)) 

 IVNcl(IVNint(P  Q)). 

Therefore, P  Q  IVNcl(IVNint(P  Q)). Hence, P  Q is an IVNSOS in ( , τ )IVNX . 

 

Theorem 3.3. In an IVNTS ( , τ )IVNX , the union of any two IVNPOSs is also an IVNPOS. 

Proof. Let P and Q be any two IVNPOSs in an IVNTS ( , τ )IVNX .  

Therefore, 

  P  IVNint(IVNcl(P))                                                                             (3)  

and Q  IVNint(IVNcl(Q))                                                                        (4) 

Using the relations  (3) and (4), we obtain 

P  Q  IVNint(IVNcl(P))  IVNint(IVNcl(Q)) 

 IVNint(IVNcl(P)  IVNcl(Q)) 

        = IVNint(IVNcl(PQ)). 

Therefore, P  Q  IVNint(IVNcl(P  Q)). Hence, P  Q is an IVNPOS in ( , τ )IVNX . 

 

Lemma 3.1. In an IVNTS ( , τ )IVNX , every IVNOS is an IVN-α-OS. 

 

Theorem3.4 In an IVNTS ( , τ )IVNX , 

(i) Every IVN-α-OS is an IVNSOS. 

(ii) Every IVN-α-OS is an IVNSOS. 

Proof. (i) Let Q be an IVN-α-OS in ( , τ )IVNX . Therefore, Q  IVNint(IVNcl(IVNint (Q))). It is known 

that IVNint(IVNcl(IVNint(Q)))  IVNcl(IVNint(Q)). Thus, we have, Q  IVNcl(IVNint(Q)). Hence,  Q is 

an IVNSOS. Therefore, every IVN-α-OS is an IVNSOS. 

(ii) Let ( , τ )IVNX  be an IVNTS. Let Q be an IVN-α-OS in ( , τ )IVNX . Therefore, Q  

IVNint(IVNcl(IVNint(Q))). It is known that IVNint(Q) Q. This implies, IVNcl(IVNint(Q))  IVNcl(Q). 

Which implies IVNint(IVNcl(IVNint(Q)))  IVNint(IVNcl(Q). Therefore, Q  IVNint(IVNcl(Q). Hence, 

Qis an IVNPOS. Therefore, every IVN-α-OS is an IVNPOS in ( , τ )IVNX . 

Definition 3.2. An IVN set U in an IVNTS ( , τ )IVNX  is referred to as an IVN b-open s e t  

[in short IVN-b-OS] if U⊆ IVNint(IVNcl(U)) ∪ IVNcl(IVNint(U)). If U is an IVN-b-OS, 

then UC is said to be an IVN b-closed s e t  [in short IVN-b-CS]. 

 

Remark 3.2. An IVNSU is called IVN-b-CS iff U⊇ IVNint(IVNcl(U))∩IVNcl(IVNint(U)). 

 

Theorem3.5 In an IVNTS ( , τ )IVNX , 

(i) Every IVNPOS is an IVN-b-OS. 

(ii) Every IVNSOS is an IVN-b-OS. 

Proof. Let Q be an IVNPOS in an IVNTS ( , τ )IVNX . Therefore, Q  IVNint(IVNcl(Q)).  
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This implies, Q  IVNint(IVNcl(Q))  IVNcl(IVNint(Q)). Hence, Q is an IVN-b-OS.  

Therefore, every IVNPOS is an IVN-b-OS. 

Similarly, it can be proved that every IVNSOS is an IVN-b-OS. 

 

Theorem 3.6. The union of any two IVN-b-Os in an IVNTS ( , τ )IVNX  is also an IVN-b-OS. 

Proof. Let P and Q be two IVN-b-OSs in an IVNTS ( , τ )IVNX .  

Therefore, P  IVNint(IVNcl(P))  IVNcl(IVNint(P))                                                  (5) 

and Y  IVNint(IVNcl(Q))  IVNcl(IVNint(Q))                                                             (6) 

It is known that, P  P  Q and Y  P  Q. 

Now, P  P  Q 

IVNint(P)  IVNint(P  Q) 

IVNcl(IVNint(P))  IVNcl(IVNint(P  Q))                                                 (7) 

and  P P  Q 

IVNcl(P)  IVNcl(P   Q) 

IVNint(IVNcl(P))  IVNint(IVNcl(P  Q))                                                  (8)  

Similarly, it can be shown that 

IVNcl(IVNint(Q))  IVNcl(IVNint(P  Q))                                                        (9) 

IVNint(IVNcl(Q))  IVNint(IVNcl(PQ))                                                        (10) 

Using, eq. (5) and eq. (6), we obtain, 

P  Q  IVNcl(IVNint(P))  IVNint(IVNcl(P))  IVNcl(IVNint(Q))  IVNint(IVNcl(Q)) 

IVNcl(IVNint(PQ)) IVNint(IVNcl(PQ)) IVNcl(IVNint(PQ)) IVNint(IVNcl(PQ)) 

[ by eqs (7), (8), (9), & (10)] 

        = IVNcl(IVNint(P  Q))  IVNint(IVNcl(P  Q)) 

P  QIVNcl(IVNint(P  Q))  IVNint(IVNcl(P  Q)). 

Therefore,  P  Q is  an IVN-b-OS. 

Hence, the union of two IVN-b-OSs is an IVN-b-OS. 

Theorem 3.7. In an IVNTS  ( , τ )IVNX , the intersection of two IVN-b-CSs is also an IVN-b-CS. 

Proof. Let ( , τ )IVNX  be an IVNTS. Let P and Q be two IVN-b-CSs in ( , τ )IVNX . Therefore, 

IVNint(IVNcl(P))  IVNcl(IVNint(P))  P       (11)  

and IVNint(IVNcl(Q))  IVNcl(IVNint(Q))  Q       (12) 

Since, P  Q  P and PQ Q, so we get 

IVNint(P Q)  IVNint(P) IVNcl(IVNint(P  Q))  IVNcl(IVNint(P));                                (13) 

IVNcl(P Q)  IVNcl(P) IVNint(IVNcl( P Q))  IVNint(IVNcl(P))                                    (14) 

IVNint(P Q)  IVNint(Q) IVNcl(IVNint(P  Q))  IVNcl(IVNint(Q))                                 (15) 

andIVNcl(P  Q)  IVNcl(Q) IVNint(IVNcl(P  Q)) IVNint(IVNcl(Q))                              (16)  

From eq. (11) and eq. (12) we get, 

P  Q IVNint(IVNcl(P))  IVNcl(IVNint(P))  IVNint(IVNcl(Q))  IVNcl(IVNint(Q)) 

IVNint(IVNcl(PQ)) IVNcl(IVNint(PQ))  IVNint(IVNcl(P  Q))  IVNcl(IVNint(P  Q)) 
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[by eqs (13), (14), (15) & (16)] 

= IVNint(IVNcl(P Q)) IVNcl(IVNint(P  Q)) 

P  Q IVNcl(IVNint(P  Q))  IVNint(IVNcl(P  Q)). 

Hence, P  Q is an IVN-b-CS in ( , τ )IVNX . 

Therefore, the intersection of two IVN-b-CSs is again an IVN-b-CS. 

Definition3.3. Let ( , τ )IVNX  be an IVNTS. Let U be an IVNS over X. Then, the 

(i) IVN b-interior of U[in short IVNb-int(U)] is the union of all IVN-b-OSs of X contained in 

U, i.e.,IVNb-int(U)=∪{G:G is an IVN-b-OS in X and G ⊆ U}. 

(ii) IVN b-closure of U[in short IVNb-cl(U)] is the intersection of all IVN-b-CSs of X 

contained in U,i.e.,IVNb-cl(U) = ∩{H:H is an IVN-b-OS in X and K ⊇ U}. 

 

Remark 3.3. From the above definition, it is clear that IVNb-cl(U) is the smallest IVN-b-

CS over X which contains U, and IVNb-int(U) is the largest IVN-b-OS over X which is 

contained in U. 

Theorem 3.8 Assume that U is an IVNS in an IVNTS ( , τ )IVNX . Then, 

(i) (IVNb-int(U))C= IVNb-cl(U
C); 

(ii) (IVNb-cl(U))C= IVNb-int(U
C). 

Proof:(i) Assume that U be an IVNS in an  IV NTS ( , τ )IVNX .Now, IV Nb-int(U) = ∪{D:D is 

an IVN-b-OS in ( , τ )IVNX and D⊆U}. 

Then, (IVNb-int(U))C={∪ {D:D is an IVN-b-OS in ( , τ )IVNX  and  

D⊆U}]C=∩{DC:DC is an IVN-b-CS in ( , τ )IVNX  and UC⊆DC}. Replacing DC by M, we 

obtain (IVNb-int(U))C=∩{M:M is an IVN-b-CS in (X, ) and M⊇UC}. Therefore, 

(IVNb-int(U))C= IVNb-cl((U)C). 

Analogously, we can prove(ii). 

Definition 3.4. Let ( , τ )IVNX  and ( ,δ )IVNY  be any two IVNTSs. Then, a bijective mapping 

( , τ )IVNX )→ ( ,δ )IVNY ) is referred to as 

(i) IVN Continuous (IVN-C) mapping iff -1(L) is an IVNOS in X, whenever L is an IVNOS in Y; 

(ii) IVN Semi-Continuous (IVNS-C) mapping iff -1(L) is an IVNSOS in X, whenever L is an 

IVNOS in Y; 

(iii) IVN Pre-Continuous ( IVNP-C) iff  -1(L) is an IVNPOS in X, whenever L is an IVNOS in Y; 

(iv) IVN b-Continuous  (IVN-b-C) mapping iff -1(L) is an IVN-b-OS in X, whenever L is an 

IVNOS in Y. 

Theorem 3.9. Let ( , τ )IVNX  and ( ,δ )IVNY  any two IVNTSs. Then, every IVN-C mapping from 

( , τ )IVNX  to  ( ,δ )IVNY is an IVNP-C mapping (resp. IVNS-C mapping). 

Proof. Let : ( , τ )IVNX → ( ,δ )IVNY  be an IVN-C mapping. Let L be an IVNOS in ( ,δ )IVNY . Therefore, 

-1(L) is an IVNOS in ( , τ )IVNX . It is known that every IVNOS is an IVNPOS (resp. IVNSOS). 

Therefore, -1(L) is an IVNPOS (resp. IVNSOS) in ( , τ )IVNX . Hence, : ( , τ )IVNX → ( ,δ )IVNY  is an 
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IVNP-C mapping (resp. IVNS-C mapping). 

Theorem 3.8. Let ( , τ )IVNX  and ( ,δ )IVNY  be any two IVNTSs. Then, every IVNS-C mapping (resp. 

IVNP-C mapping) from ( , τ )IVNX  to ( ,δ )IVNY    is an IVN-b-C mapping (resp. IVNS-C mapping). 

Proof. Let : ( , τ )IVNX → ( ,δ )IVNY be an IVNS-C mapping (resp. IVNP-C mapping). Let L be an 

IVNOS in ( ,δ )IVNY .Therefore,-1(L) is an IVNSOS (resp. IVNPOS) in (X, ). It is known that 

every IVNSOS (resp. IVNPOS) is an IVN-b-OS. Therefore, -1(L) is an IVN-b-OS in ( , τ )IVNX . 

Hence, : ( , τ )IVNX → ( ,δ )IVNY  is an IVN-b-C mapping. 

Theorem 3.9.  Assume that Let ( , τ )IVNX and ( ,δ )IVNY  are any two IVNTSs. Then, every IVN-C 

mapping from (X, ) to (Y, ) is an IVN-b-C mapping. 

Proof. Let : ( , τ )IVNX → ( ,δ )IVNY be an IVN-C mapping. Let L be an IVNOS in ( ,δ )IVNY .  

Therefore, -1(L) is an IVNOS in ( , τ )IVNX . It is known that, every IVNOS is also an IVN-b-OS. 

Therefore, -1(L) is an IVN-b-OS in ( , τ )IVNX . Hence, : ( , τ )IVNX → ( ,δ )IVNY   is an IVN-b-C mapping.  

Theorem 3.10. If : ( , τ )IVNX → ( ,δ )IVNY  and : ( ,δ )IVNY → ( ,θ )IVNZ be any two IVN-C mappings, then 

the composition mapping : ( , τ )IVNX → ( ,θ )IVNZ  is also an IVN-C mapping. 

Proof. 

Let : ( , τ )IVNX → ( ,δ )IVNY  and : ( ,δ )IVNY → ( ,θ )IVNZ be two IVN-C-mappings. 

 Let L be an IVNOS in ( ,θ )IVNZ . Since, : ( ,δ )IVNY → ( ,θ )IVNZ is an IVN-C mapping, so -1(L) is an 

IVNOS in Y. Since, : ( , τ )IVNX → ( ,δ )IVNY  is an IVN-C mapping, so -1(-1(L))= ()-1(L) is an 

IVNOS in X. Therefore, ()-1(L) is an IVNOS in X, whenever L is an IVNOS in Z. Hence, 

: ( , τ )IVNX → ( ,θ )IVNZ  is also an IVN-C mapping. 

Theorem 3.11. If : ( , τ )IVNX → ( ,δ )IVNY  is an IVN-b-C mapping and : ( ,δ )IVNY → ( ,θ )IVNZ  ise an IVN-

C mapping, then the composition mapping : ( , τ )IVNX →(Z, ) is an IVN-b-C mapping. 

Proof. Let : ( , τ )IVNX → ( ,δ )IVNY  be an IVN-b-C mapping and : ( ,δ )IVNY → ( ,θ )IVNZ  be an IVN-C 

mapping. Let L be an IVNOS in ( ,θ )IVNZ . Since, : ( ,δ )IVNY → ( ,θ )IVNZ   is an IVN-C mapping, so -

1(L) is an IVNOS in Y. Since, : ( , τ )IVNX → ( ,δ )IVNY  is an IVN-b-C mapping, so -1(-1(L))=()-1(L) 

is an IVN-b-OS in X. Therefore, ()-1(L) is an IVN-b-OS in X, whenever L is an IVNOS in Z. 

Hence, : ( , τ )IVNX → ( ,θ )IVNZ is an IVN-b-C mapping. 

 

4. CONCLUSIONS  

In this paper, the idea of IVN-b-OS and IVN-b-C-mapping has been introduced. Additionally, 

we looked into the concepts of an IVNS's IVN b-closure and b-interior. Additionally, using IVNTS, 

we produced several intriguing conclusions on them in the form of theorems, propositions, lemma, 

etc. 

The idea of different open sets, such as IVNSOS, IVNPOS, IVN-b-OS, etc., in IVNTS is 

hoped to be applied in the future to the direction of IVN supra-topological space, IVN bi-
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topological space, IVN tri-topological space, etc. 
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ABSTRACT 

The main aim of this paper is to introduce a new concept in 𝑁𝑒𝑢 − homeomorphism namely 

𝑁𝑒𝑢𝑔𝑠𝛼∗ − homeomorphism and 𝑁𝑒𝑢𝑖𝑔𝑠𝛼∗ − homeomorphism in 𝑁𝑒𝑢 − Topological

Spaces. In additionally, we discussed the characterizations and properties of these functions 

with already existing 𝑁𝑒𝑢 −  functions.  

KEYWORDS: 𝐍𝐞𝐮𝐠𝐬𝛂∗ − closed set, 𝐍𝐞𝐮𝐠𝐬𝛂∗ − open set, 𝐍𝐞𝐮𝐠𝐬𝛂∗ − continuous,

𝐍𝐞𝐮𝐠𝐬𝛂∗ − irresolute, 𝐍𝐞𝐮𝐠𝐬𝛂∗ − homeomorphism and 𝐍𝐞𝐮𝐢𝐠𝐬𝛂∗ − homeomorphism.

1. INTRODUCTION

As a generalization of Fuzzy Sets (FSs) introduced by Zadeh (1965)] and intuitionistic FSs 

introduced by  Atanassov (1986),  the  Neutrosophic  set  ( shortly, 𝑁𝑒𝑢 − set)  theory was 

introduced by Smarandache (1998, 2010). Overview of 𝑁𝑒𝑢 − sets and their developments. 

extensions and applications are depicted in the studies (Broumi et al., 2018; Otay, & 

Kahraman, 2019; Pramanik et al., 2018; Peng & Dai, 2020; Pramanik, 2020, 2022; 

Smarandache, & Pramanik, 2016, 2028; Delcea et al, 2023). It consists of three components 

namely truth, indeterminacy, and false membership function. Dhavaseelan and Jafari (2018) 

introduced the idea of 𝑁𝑒𝑢𝑔 − 𝐶𝑆 and its continuity. Page and Imran (2020) introduced the 

concept of 𝑁𝑒𝑢𝑔 − ℎ𝑜𝑚. 

The real-life application of 𝑁𝑒𝑢 − topology spans various fields, including information 

systems, applied mathematics, neutrosophic logic, decision-making systems, and more. These 

applications often involve dealing with uncertain, incomplete, or inconsistent information, 

where traditional mathematical tools may fall short.  We introduce some new concepts in 

𝑁𝑒𝑢 − topological spaces such as 𝑁𝑒𝑢𝑔𝑠𝛼∗ − ℎ𝑜𝑚  and  𝑁𝑒𝑢𝑖𝑔𝑠𝛼∗ − ℎ𝑜𝑚 .

2. PRELIMINARIES

Definition 2.1 (Sreeja & Sarankumar, 2018): Let ℙ be a non-empty fixed set. A 𝑁𝑒𝑢 − set Ҥ 

on the universe ℙ is defined as Ҥ= {〈𝓅, (𝑡Ҥ(𝓅), 𝑖Ҥ(𝓅), 𝑓Ҥ(𝓅))〉 ∶ 𝓅 Є ℙ} where

𝑡Ҥ(𝓅), 𝑖Ҥ(𝓅), 𝑓Ҥ(𝓅) represent the degree of membership, indeterminacy, non-membership

function 𝑡Ҥ(𝓅), 𝑖Ҥ(𝓅) and 𝑓Ҥ(𝓅) respectively for each element 𝓅 Є ℙ to the set Ҥ. Also,

𝑡Ҥ ,  𝑖Ҥ ,  𝑓Ҥ : ℙ → ]−0 , 1+[  and  -0 ≤  𝑡Ҥ(𝓅) + 𝑖Ҥ(𝓅) + 𝑓Ҥ(𝓅) ≤ 3+ . Set of all 𝑁𝑒𝑢 − set

over ℙ is denoted by Neu(ℙ) . 
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Definition 2.2 (Sreeja & Sarankumar, 2018):  Let ℙ be a non-empty set. Ⱥ =

{〈 𝓅, (𝑡Ⱥ(𝓅), 𝑖Ⱥ(𝓅), 𝑓Ⱥ(𝓅)) 〉 ∶ 𝓅 Є ℙ} and Ƀ = {〈 𝓅, (𝑡Ƀ(𝓅), 𝑖Ƀ(𝓅), 𝑓Ƀ(𝓅)) 〉 ∶ 𝓅 Є ℙ} are 

𝑁𝑒𝑢 − sets, then  

(i) Ⱥ ⊆ Ƀ if 𝑡Ⱥ(𝓅) ≤ 𝑡Ƀ(𝓅), 𝑖Ⱥ(𝓅) ≤ 𝑖Ƀ(𝓅), 𝑓Ⱥ(𝓅) ≥ 𝑓Ƀ(𝓅) for all  𝓅 Є ℙ . 

(ii) Ⱥ ∩ Ƀ = {〈 𝓅, (min(𝑡Ⱥ(𝓅), 𝑡Ƀ(𝓅)) , min(𝑖Ⱥ(𝓅), 𝑖Ƀ(𝓅)) , max(𝑓Ⱥ(𝓅), 𝑓Ƀ(𝓅))) 〉 ∶ 𝓅 Є ℙ}.    

(iii) Ⱥ ∪ Ƀ = {〈 𝓅, (max(𝑡Ⱥ(𝓅), 𝑡Ƀ(𝓅)) , max(𝑖Ⱥ(𝓅), 𝑖Ƀ(𝓅)) , min(𝑓Ⱥ(𝓅), 𝑓Ƀ(𝓅)))〉 : 𝓅 Є ℙ}.   

(iv) Ⱥ𝑐 = {〈 𝓅, (𝑓Ⱥ(𝓅) , 1 − 𝑖Ⱥ(𝓅) , 𝑡Ⱥ(𝓅)) 〉 :  𝓅 Є ℙ} .  

(v) 0𝑁𝑒𝑢
= {〈 𝓅, (0,0,1)〉 ∶ 𝓅 Є ℙ} and  1𝑁𝑒𝑢

= {〈 𝓅, (1,1,0)〉 ∶ 𝓅 Є ℙ} . 

Definition 2.3 (Sreeja & Sarankumar, 2018):   A 𝑁𝑒𝑢 − topology (NeuT) on a non-empty set 

ℙ is a family 𝜏𝑁𝑒𝑢
 of 𝑁𝑒𝑢 − sets in ℙ satisfying the following axioms, 

     (i) 0𝑁𝑒𝑢
 , 1𝑁𝑒𝑢

 Є  𝜏𝑁𝑒𝑢
 . 

    (ii) Ⱥ1 ∩ Ⱥ2 Є 𝜏𝑁𝑒𝑢
 for any  Ⱥ1 , Ⱥ2 Є 𝜏𝑁𝑒𝑢

 . 

    (iii) ⋃ Ⱥ𝑖  Є 𝜏𝑁𝑒𝑢
 for every family { Ⱥ𝑖  / 𝑖 Є ῼ } ⊆ 𝜏𝑁𝑒𝑢

 . 

In this case, the ordered pair (ℙ, 𝜏𝑁𝑒𝑢
) or simply ℙ is called a neutrosophic topological space 

(𝑁𝑒𝑢TS). The elements of  𝜏𝑁𝑒𝑢
 is neutrosophic open set (𝑁𝑒𝑢 − 𝑂𝑆) and  𝜏𝑁𝑒𝑢

𝑐 is 

neutrosophic closed set (𝑁𝑒𝑢 − 𝐶𝑆)  . 

Definition 2.4 (Rodrigo & Maheswari, 2021a):  A 𝑁𝑒𝑢 − set Ⱥ in a 𝑁𝑒𝑢TS (ℙ, 𝜏𝑁𝑒𝑢
) is called 

a neutrosophic generalized semi-alpha star closed set  (𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆)  if  𝑁𝑒𝑢𝛼 −

𝑖𝑛𝑡(𝑁𝑒𝑢𝛼 − 𝑐𝑙(Ⱥ)) ⊆ 𝑁𝑒𝑢 − 𝑖𝑛𝑡(𝒢), whenever  Ⱥ ⊆ 𝒢  and  𝒢  is  𝑁𝑒𝑢𝛼∗ − 𝑂𝑆.   

Definition 2.5 (Rodrigo & Maheswari, 2021b):  ] A 𝑁𝑒𝑢TS (ℙ, 𝜏𝑁𝑒𝑢
) is called a 𝑁𝑒𝑢𝑔𝑠𝛼∗ −

𝑇1
2⁄  space if every 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆  in (ℙ, 𝜏𝑁𝑒𝑢

) is a 𝑁𝑒𝑢 − 𝐶𝑆 in (ℙ, 𝜏𝑁𝑒𝑢
) . 

Definition 2.6:  A  𝑁𝑒𝑢 −  function  𝑓𝑁  ∶   (ℙ , 𝜏𝑁𝑒𝑢
)  →  (ℚ ,  𝜎𝑁𝑒𝑢

)  is   

         (1) 𝑁𝑒𝑢 − continuous (Blessie &  Shalini, 2019).  if 𝑓𝑁
−1

 of  𝑁𝑒𝑢 − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
) is 

a 𝑁𝑒𝑢 − 𝐶𝑆  in (ℙ, 𝜏𝑁𝑒𝑢
).   

         (2) 𝑁𝑒𝑢𝛼 − continuous (Arokiarani et al., 2017) if 𝑓𝑁
−1

 of  𝑁𝑒𝑢 − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
) is  a  

𝑁𝑒𝑢𝛼 − 𝐶𝑆  in (ℙ, 𝜏𝑁𝑒𝑢
) .  

         (3) 𝑁𝑒𝑢𝑅 − continuous (Nandhini & Vigneshwaran, 2019) if  𝑓𝑁
−1 of 𝑁𝑒𝑢 − 𝐶𝑆 in 

(ℚ ,  𝜎𝑁𝑒𝑢
) is a 𝑁𝑒𝑢𝑅 − 𝐶𝑆  in (ℙ, 𝜏𝑁𝑒𝑢

) .   

         (4) 𝑁𝑒𝑢𝑔𝑠𝛼∗ − continuous (Rodrigo & Maheswari, 2021b) if 𝑓𝑁
−1

 of  𝑁𝑒𝑢 − 𝐶𝑆 in 

(ℚ ,  𝜎𝑁𝑒𝑢
) is a 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆  in (ℙ, 𝜏𝑁𝑒𝑢

) .  
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             (5)  𝑁𝑒𝑢𝑔𝑠𝛼∗ − irresolute map (Rodrigo & Maheswari, 2021b) if 𝑓𝑁
−1

 of 𝑁𝑒𝑢𝑔𝑠𝛼∗ −

𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
) is a 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℙ, 𝜏𝑁𝑒𝑢

) . 

         (6) 𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map (Rodrigo & Maheswari, 2021c) if 𝑓𝑁 of every 𝑁𝑒𝑢 − 𝐶𝑆  in 

(ℙ, 𝜏𝑁𝑒𝑢
) is a 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆  in (ℚ ,  𝜎𝑁𝑒𝑢

) . 

         (7) 𝑁𝑒𝑢𝑔𝑠𝛼∗ − open map (Rodrigo & Maheswari, 2021c)   if 𝑓𝑁 of every 𝑁𝑒𝑢 − 𝑂𝑆  in 

(ℙ, 𝜏𝑁𝑒𝑢
) is a 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑂𝑆  in (ℚ ,  𝜎𝑁𝑒𝑢

) . 

Definition 2.7: A  𝑁𝑒𝑢 − bijection function 𝑓𝑁 ∶  (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) is  

         (1) 𝑁𝑒𝑢 − ℎ𝑜𝑚 (Parimala et al., 2018) if  𝑓𝑁  and  𝑓𝑁
−1

   are 𝑁𝑒𝑢 − continuous. 

         (2) 𝑁𝑒𝑢𝛼 − ℎ𝑜𝑚 (Priya et al.,  2020) if  𝑓𝑁  and  𝑓𝑁
−1

   are 𝑁𝑒𝑢𝛼 − continuous. 

         (3) 𝑁𝑒𝑢𝑅 − ℎ𝑜𝑚  (Savithiri & Janaki, 2021) if  𝑓𝑁  and  𝑓𝑁
−1

 are 𝑁𝑒𝑢𝑅 − continuous.  

 3. NEUTROSOPHIC  𝒈𝒔𝜶∗ − HOMEOMORPHISM 

Definition 3.1: A  𝑁𝑒𝑢 − bijection function 𝑓𝑁 ∶  (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − ℎ𝑜𝑚  

if  𝑓𝑁  and  𝑓𝑁
−1

  are 𝑁𝑒𝑢𝑔𝑠𝛼∗ − continuous.  

Theorem 3.2: Every 𝑁𝑒𝑢 − ℎ𝑜𝑚  is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − ℎ𝑜𝑚  , but not conversely. 

Proof: Let a bijection mapping  𝑓𝑁 ∶  (ℙ, 𝜏𝑁𝑒𝑢
)  →  (ℚ ,  𝜎𝑁𝑒𝑢

) be any 𝑁𝑒𝑢 − function.  Given  

𝑓𝑁  is  𝑁𝑒𝑢 − ℎ𝑜𝑚 , then  𝑓𝑁  and  𝑓𝑁
−1

   are 𝑁𝑒𝑢 − continuous  ⇒  𝑓𝑁  and  𝑓𝑁
−1

  are 

𝑁𝑒𝑢𝑔𝑠𝛼∗ − continuous ⇒ 𝑓𝑁 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − ℎ𝑜𝑚 . 

Example 3.3: Let ℙ ={𝓅} and ℚ ={𝓆} . 𝜏𝑁𝑒𝑢
= {0𝑁𝑒𝑢

, 1𝑁𝑒𝑢
, Ⱥ} and  𝜎𝑁𝑒𝑢

= {0𝑁𝑒𝑢
 , 1𝑁𝑒𝑢

, Ƀ}  

are 𝑁𝑒𝑢TS on (ℙ, 𝜏𝑁𝑒𝑢
) and (ℚ ,  𝜎𝑁𝑒𝑢

) , Ⱥ= {〈𝓅, (0.2,0.5,0.4)〉} and Ƀ = 

{〈𝓆 , (0.4 , 0.2 , 0.7)〉}  are 𝑁𝑒𝑢(ℙ) and  𝑁𝑒𝑢(ℚ) .  Define a map 𝑓𝑁 ∶  (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) 

by 𝑓𝑁(𝓅) = 𝓆 . Let  Ƀ𝑐 = {〈𝓆 , (0.7, 0.8, 0.4)〉}  be a 𝑁𝑒𝑢 − 𝐶𝑆  in (ℚ  ,  𝜎𝑁𝑒𝑢
) . Then  

𝑓𝑁
−1(Ƀ𝑐) = {〈𝓅 , (0.7 , 0.8 , 0.4)〉} . 𝑁𝑒𝑢𝛼∗ −  𝑂𝑆 = 𝑁𝑒𝑢𝛼 –   𝑂𝑆 = {0𝑁𝑒𝑢

 ,  1𝑁𝑒𝑢
, Ⱥ } and  

𝑁𝑒𝑢𝛼 – 𝐶𝑆 =  {0𝑁𝑒𝑢
 ,  1𝑁𝑒𝑢

, Ⱥ𝑐} . 𝑁𝑒𝑢𝛼  −  𝑖𝑛𝑡 (𝑁𝑒𝑢𝛼 − 𝑐𝑙 (𝑓𝑁
−1(Ƀ𝑐))) = 1𝑁𝑒𝑢

⊆ 𝑁𝑒𝑢 −

𝑖𝑛𝑡(1𝑁𝑒𝑢
) = 1𝑁𝑒𝑢

 , whenever  𝑓𝑁
−1(Ƀ𝑐)  ⊆ 1𝑁𝑒𝑢

 ⇒ 𝑓𝑁
−1(Ƀ𝑐)  is a 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℙ, 𝜏𝑁𝑒𝑢

) 

⇒ 𝑓𝑁 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − continuous → ① . Also, let Ⱥ𝑐 = {〈𝓅 , (0.4 , 0.5 , 0.2)〉} be a 𝑁𝑒𝑢 − 𝐶𝑆  

in (ℙ, 𝜏𝑁𝑒𝑢
) . Then 𝑓𝑁(Ⱥ𝑐) = {〈𝓆 , (0.4 , 0.5 , 0.2)〉} . 𝑁𝑒𝑢𝛼∗ − 𝑂𝑆 = 𝑁𝑒𝑢𝛼 – 𝑂𝑆 = 

{0𝑁𝑒𝑢
 ,  1𝑁𝑒𝑢

, Ƀ } and 𝑁𝑒𝑢𝛼 – 𝐶𝑆 = {0𝑁𝑒𝑢
,  1𝑁𝑒𝑢

, Ƀ𝑐} . 𝑁𝑒𝑢𝛼  −  𝑖𝑛𝑡 (𝑁𝑒𝑢𝛼 − 𝑐𝑙(𝑓𝑁(Ⱥ𝑐))) = 

1𝑁𝑒𝑢
⊆ 𝑁𝑒𝑢 − 𝑖𝑛𝑡(1𝑁𝑒𝑢

) = 1𝑁𝑒𝑢
 , whenever 𝑓𝑁(Ⱥ𝑐) ⊆ 1𝑁𝑒𝑢

⇒ 𝑓𝑁(Ⱥ𝑐) is a 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in 

(ℚ ,  𝜎𝑁𝑒𝑢
) ⇒ 𝑓𝑁

−1
 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ −continuous → ② . From ① and ② , 𝑓𝑁 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ −

ℎ𝑜𝑚. But 𝑓 is not 𝑁𝑒𝑢 − ℎ𝑜𝑚 , because 𝑓𝑁  and  𝑓𝑁
−1

 are not 𝑁𝑒𝑢 − continuous,  𝑁𝑒𝑢 −

𝑐𝑙 (𝑓𝑁
−1(Ƀ𝑐)) = 1𝑁𝑒𝑢

≠ 𝑓𝑁
−1(Ƀ𝑐) and  𝑁𝑒𝑢 − 𝑐𝑙(𝑓𝑁(Ⱥ𝑐)) = 1𝑁𝑒𝑢

≠ 𝑓𝑁(Ⱥ𝑐) .  

Theorem 3.4: Every 𝑁𝑒𝑢𝛼 − ℎ𝑜𝑚 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − ℎ𝑜𝑚 , but not conversely. 
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Proof: Let a bijection mapping  𝑓𝑁 ∶  (ℙ, 𝜏𝑁𝑒𝑢
)  →  (ℚ ,  𝜎𝑁𝑒𝑢

) be any 𝑁𝑒𝑢 −  function .  

Given 𝑓𝑁  is 𝑁𝑒𝑢𝛼 − ℎ𝑜𝑚, then  𝑓𝑁  and  𝑓𝑁
−1

  are 𝑁𝑒𝑢𝛼 − continuous  ⇒ 𝑓𝑁  and  𝑓𝑁
−1

  are 

𝑁𝑒𝑢𝑔𝑠𝛼∗ − continuous ⇒ 𝑓𝑁 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − ℎ𝑜𝑚. 

Example 3.5: Let ℙ ={𝓅} and ℚ ={𝓆} . 𝜏𝑁𝑒𝑢
= {0𝑁𝑒𝑢

, 1𝑁𝑒𝑢
, Ⱥ} and  𝜎𝑁𝑒𝑢

= {0𝑁𝑒𝑢
 , 1𝑁𝑒𝑢

, Ƀ}  

are 𝑁𝑒𝑢TS on (ℙ, 𝜏𝑁𝑒𝑢
) and (ℚ ,  𝜎𝑁𝑒𝑢

) , Ⱥ= {〈𝓅, (0.2,0.4,0.8)〉} and Ƀ = 

{〈𝓆 , (0.3 , 0.1 , 0.6)〉}  are 𝑁𝑒𝑢(ℙ) and  𝑁𝑒𝑢(ℚ) .  Define a map 𝑓𝑁: (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) 

by 𝑓𝑁(𝓅) = 𝓆 . Let  Ƀ𝑐 = {〈𝓆 , (0.6 , 0.9, 0.3)〉}  be a 𝑁𝑒𝑢 − 𝐶𝑆  in (ℚ  ,  𝜎𝑁𝑒𝑢
) . Then  

𝑓𝑁
−1(Ƀ𝑐) = {〈𝓅 , (0.6 , 0.9 , 0.3)〉} . 𝑁𝑒𝑢𝛼∗ −  𝑂𝑆 = 𝑁𝑒𝑢𝛼 –   𝑂𝑆 = {0𝑁𝑒𝑢

 ,  1𝑁𝑒𝑢
, Ⱥ } and  

𝑁𝑒𝑢𝛼 – 𝐶𝑆 =  {0𝑁𝑒𝑢
 ,  1𝑁𝑒𝑢

, Ⱥ𝑐} . 𝑁𝑒𝑢𝛼  −  𝑖𝑛𝑡 (𝑁𝑒𝑢𝛼 − 𝑐𝑙 (𝑓𝑁
−1(Ƀ𝑐))) = 1𝑁𝑒𝑢

⊆ 𝑁𝑒𝑢 −

𝑖𝑛𝑡(1𝑁𝑒𝑢
) = 1𝑁𝑒𝑢

 ,  whenever  𝑓𝑁
−1(Ƀ𝑐)  ⊆  1𝑁𝑒𝑢

 ⇒ 𝑓𝑁
−1(Ƀ𝑐)  is a 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in 

(ℙ, 𝜏𝑁𝑒𝑢
) ⇒ 𝑓𝑁 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − continuous → ① . Also, let Ⱥ𝑐 = {〈𝓅 , (0.8 , 0.6 , 0.2)〉} be a 

𝑁𝑒𝑢 − 𝐶𝑆  in (ℙ, 𝜏𝑁𝑒𝑢
). Then 𝑓𝑁(Ⱥ𝑐) = {〈𝓆 , (0.8 , 0.6 , 0.2)〉} . 𝑁𝑒𝑢𝛼∗ −  𝑂𝑆 =

𝑁𝑒𝑢𝛼 –  𝑂𝑆 = {0𝑁𝑒𝑢
 ,  1𝑁𝑒𝑢

, Ƀ } and  𝑁𝑒𝑢𝛼  –  𝐶𝑆 =  {0𝑁𝑒𝑢
 ,  1𝑁𝑒𝑢

 ,  Ƀ𝑐} . 𝑁𝑒𝑢𝛼  −

𝑖𝑛𝑡 (𝑁𝑒𝑢𝛼 −  𝑐𝑙(𝑓𝑁(Ⱥ𝑐))) = 1𝑁𝑒𝑢
⊆ 𝑁𝑒𝑢 − 𝑖𝑛𝑡(1𝑁𝑒𝑢

) = 1𝑁𝑒𝑢
 , whenever 𝑓𝑁(Ⱥ𝑐)  ⊆ 1𝑁𝑒𝑢

 ⇒

𝑓𝑁(Ⱥ𝑐)  is a 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℚ  ,  𝜎𝑁𝑒𝑢
) ⇒ 𝑓𝑁

−1
 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − continuous → ② . From ① 

and ② , 𝑓𝑁 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − ℎ𝑜𝑚. But 𝑓𝑁 is not 𝑁𝑒𝑢𝛼 − ℎ𝑜𝑚, because 𝑓𝑁 and  𝑓𝑁
−1

 are not 

𝑁𝑒𝑢𝛼 − continuous. 𝑁𝑒𝑢  −  𝑐𝑙 (𝑁𝑒𝑢  −  𝑖𝑛𝑡 (𝑁𝑒𝑢  −  𝑐𝑙 (𝑓𝑁
−1(Ƀ𝑐))))  =  1𝑁𝑒𝑢

⊈  𝑓𝑁
−1(Ƀ𝑐)  

and  𝑁𝑒𝑢 − 𝑐𝑙 (𝑁𝑒𝑢 − 𝑖𝑛𝑡 (𝑁𝑒𝑢 − 𝑐𝑙(𝑓𝑁(Ⱥ𝑐)))) = 1𝑁𝑒𝑢
⊈ 𝑓𝑁(Ⱥ𝑐) .  

Theorem 3.6: Every 𝑁𝑒𝑢𝑅 − ℎ𝑜𝑚  is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − ℎ𝑜𝑚 , but not conversely. 

Proof: Let a bijection mapping  𝑓𝑁 ∶  (ℙ, 𝜏𝑁𝑒𝑢
)  →  (ℚ ,  𝜎𝑁𝑒𝑢

) be any 𝑁𝑒𝑢 − function.  Given  

𝑓𝑁  is 𝑁𝑒𝑢𝑅 − ℎ𝑜𝑚 , then  𝑓𝑁  and  𝑓𝑁
−1

  are 𝑁𝑒𝑢𝑅 − continuous  ⇒ 𝑓𝑁   and  𝑓𝑁
−1

  are 

𝑁𝑒𝑢𝑔𝑠𝛼∗ − continuous  ⇒ 𝑓𝑁 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − ℎ𝑜𝑚 . 

Example 3.7: Let ℙ ={𝓅} and ℚ ={𝓆} . 𝜏𝑁𝑒𝑢
= {0𝑁𝑒𝑢

, 1𝑁𝑒𝑢
, Ⱥ} and  𝜎𝑁𝑒𝑢

= {0𝑁𝑒𝑢
 , 1𝑁𝑒𝑢

, Ƀ}  

are 𝑁𝑒𝑢TS on (ℙ, 𝜏𝑁𝑒𝑢
) and (ℚ ,  𝜎𝑁𝑒𝑢

) , Ⱥ= {〈𝓅, (0.1,0.4,0.6)〉} and Ƀ = 

{〈𝓆 , (0.2 , 0.2 , 0.8)〉}  are 𝑁𝑒𝑢(ℙ) and  𝑁𝑒𝑢(ℚ) .  Define a map 𝑓𝑁 ∶  (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) 

by 𝑓𝑁(𝓅) = 𝓆 . Let  Ƀ𝑐 = {〈𝓆 , (0.8 , 0.8, 0.2)〉}  be a 𝑁𝑒𝑢 − 𝐶𝑆  in (ℚ  ,  𝜎𝑁𝑒𝑢
) . Then  

𝑓𝑁
−1(Ƀ𝑐) = {〈𝓅 , (0.8 , 0.8 , 0.2)〉} . 𝑁𝑒𝑢𝛼∗ −  𝑂𝑆 = 𝑁𝑒𝑢𝛼 – 𝑂𝑆 = {0𝑁𝑒𝑢

 ,  1𝑁𝑒𝑢
, Ⱥ } and  

𝑁𝑒𝑢𝛼  –  𝐶𝑆 =  {0𝑁𝑒𝑢
 ,  1𝑁𝑒𝑢

, Ⱥ𝑐} . 𝑁𝑒𝑢𝛼  −  𝑖𝑛𝑡 (𝑁𝑒𝑢𝛼 − 𝑐𝑙 (𝑓𝑁
−1(Ƀ𝑐))) = 1𝑁𝑒𝑢

⊆ 𝑁𝑒𝑢 −

𝑖𝑛𝑡(1𝑁𝑒𝑢
) = 1𝑁𝑒𝑢

 , whenever  𝑓𝑁
−1(Ƀ𝑐)  ⊆ 1𝑁𝑒𝑢

 ⇒ 𝑓𝑁
−1(Ƀ𝑐)  is a 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℙ, 𝜏𝑁𝑒𝑢

) 

⇒ 𝑓𝑁 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − continuous → ① . Also , let Ⱥ𝑐 = {〈𝓅 , (0.6 , 0.6 , 0.1)〉} be a 𝑁𝑒𝑢 − 𝐶𝑆  

in (ℙ, 𝜏𝑁𝑒𝑢
). Then 𝑓𝑁(Ⱥ𝑐) = {〈𝓆 , (0.6 , 0.6 , 0.1)〉} . 𝑁𝑒𝑢𝛼∗ −  𝑂𝑆 = 𝑁𝑒𝑢𝛼 –  𝑂𝑆 = 

{0𝑁𝑒𝑢
 ,  1𝑁𝑒𝑢

, Ƀ } and  𝑁𝑒𝑢𝛼  –  𝐶𝑆  = {0𝑁𝑒𝑢
 ,  1𝑁𝑒𝑢

 , Ƀ𝑐} . 𝑁𝑒𝑢𝛼  −  𝑖𝑛𝑡 (𝑁𝑒𝑢𝛼 −

 𝑐𝑙(𝑓𝑁(Ⱥ𝑐))) = 1𝑁𝑒𝑢
⊆ 𝑁𝑒𝑢 − 𝑖𝑛𝑡(1𝑁𝑒𝑢

) = 1𝑁𝑒𝑢
 , whenever 𝑓𝑁(Ⱥ𝑐)  ⊆ 1𝑁𝑒𝑢

 ⇒ 𝑓𝑁(Ⱥ𝑐)  is a 

𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℚ  ,  𝜎𝑁𝑒𝑢
) ⇒ 𝑓𝑁

−1
 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − continuous → ② . From ① and ② , 𝑓𝑁 

is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − ℎ𝑜𝑚 . But 𝑓𝑁 is not 𝑁𝑒𝑢𝑅 − ℎ𝑜𝑚 , because 𝑓𝑁 and  𝑓𝑁
−1

 are not 𝑁𝑒𝑢𝑅 − 
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continuous .  𝑁𝑒𝑢 − 𝑐𝑙 (𝑁𝑒𝑢 − 𝑖𝑛𝑡 (𝑓𝑁
−1(Ƀ𝑐))) = Ⱥ𝑐 ⊈ 𝑓𝑁

−1(Ƀ𝑐)  and  𝑁𝑒𝑢 − 𝑐𝑙 (𝑁𝑒𝑢 −

𝑖𝑛𝑡(𝑓𝑁(Ⱥ𝑐))) = Ƀ𝑐 ⊈ 𝑓𝑁(Ⱥ𝑐) .  

Remark 3.8: Let  𝑓𝑁 ∶  (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) and  𝑔𝑁 ∶ (ℚ , 𝜎𝑁𝑒𝑢
) → (ℝ ,  𝛾𝑁𝑒𝑢

) be 

𝑁𝑒𝑢𝑔𝑠𝛼∗ − ℎ𝑜𝑚 , then  𝑔𝑁𝑜𝑓𝑁  ∶  (ℙ ,  𝜏𝑁𝑒𝑢
)  →  (ℝ ,  𝛾𝑁𝑒𝑢

)  need  not be  𝑁𝑒𝑢𝑔𝑠𝛼∗ − ℎ𝑜𝑚 .  

Example 3.9: Let ℙ = {𝓅} and ℚ = {𝓆} . 𝜏𝑁𝑒𝑢
= {0𝑁𝑒𝑢

, 1𝑁𝑒𝑢
, Ⱥ} and  𝜎𝑁𝑒𝑢

= {0𝑁𝑒𝑢
 , 1𝑁𝑒𝑢

, Ƀ}  

are 𝑁𝑒𝑢TS on (ℙ, 𝜏𝑁𝑒𝑢
) and (ℚ ,  𝜎𝑁𝑒𝑢

) . Ⱥ = {〈𝓅, (0.4,0.6,0.8)〉} and  Ƀ = {〈𝓆 ,

(0.6, 0.5 , 0.7)〉}  are  𝑁𝑒𝑢(ℙ) and  𝑁𝑒𝑢(ℚ) . Define a map 𝑓𝑁 ∶  (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) by 

𝑓𝑁(𝓅) = 𝓆 − 0.1 ⇒ 𝑓𝑁 is 𝑁𝑒𝑢𝑔𝑠𝛼∗  − ℎ𝑜𝑚 . Let ℝ ={𝓇} and  Ȼ= {〈𝓇, (0.3 , 0.4,0.5)〉} is 

𝑁𝑒𝑢(ℝ) and 𝛾𝑁𝑒𝑢
= {0𝑁𝑒𝑢

 , 1𝑁𝑒𝑢
, Ȼ} is 𝑁𝑒𝑢TS on (ℝ ,  𝛾𝑁𝑒𝑢

) . Define a map 𝑔𝑁: (ℚ ,  𝜎𝑁𝑒𝑢
) →

(ℝ ,  𝛾𝑁𝑒𝑢
) by 𝑔𝑁(𝓆) = 𝓇 ⇒ 𝑔𝑁 is 𝑁𝑒𝑢𝑔𝑠𝛼∗  − ℎ𝑜𝑚 .  Define   a  map  𝑔𝑁𝑜𝑓𝑁 ∶  (ℙ,  𝜏𝑁𝑒𝑢

) →   

(ℝ ,  𝛾𝑁𝑒𝑢
)  by 𝑔𝑁𝑜𝑓𝑁(𝓅) = 𝓇 − 0.1 ⇒ 𝑔𝑁𝑜𝑓𝑁  is  not 𝑁𝑒𝑢𝑔𝑠𝛼∗ − ℎ𝑜𝑚 . 

Theorem 3.10: Let  𝑓𝑁 ∶  (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) and 𝑔𝑁 ∶ (ℚ , 𝜎𝑁𝑒𝑢
) → (ℝ ,  𝛾𝑁𝑒𝑢

) be 

𝑁𝑒𝑢𝑔𝑠𝛼∗ − ℎ𝑜𝑚 . Also , (ℚ , 𝜎𝑁𝑒𝑢
) is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑇1

2⁄  space , then 𝑔𝑁𝑜𝑓𝑁  ∶ (ℙ ,  𝜏𝑁𝑒𝑢
)  →

(ℝ ,  𝛾𝑁𝑒𝑢
) is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − ℎ𝑜𝑚 .  

Proof: Given 𝑓𝑁 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − ℎ𝑜𝑚 , then  𝑓𝑁 and  𝑓𝑁
−1

 are 𝑁𝑒𝑢𝑔𝑠𝛼∗ − continuous. Given 

𝑔𝑁 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − ℎ𝑜𝑚 , then 𝑔𝑁  and  𝑔𝑁
−1

  are  𝑁𝑒𝑢𝑔𝑠𝛼∗ − continuous . Let  Ⱥ be a  𝑁𝑒𝑢  −

𝐶𝑆  in (ℝ ,  𝛾𝑁𝑒𝑢
) . Given 𝑔𝑁 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − continuous , then  𝑔𝑁

−1(Ⱥ)  is a 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in 

(ℚ , 𝜎𝑁𝑒𝑢
) . Given (ℚ , 𝜎𝑁𝑒𝑢

) is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑇1
2⁄  space , then  𝑔𝑁

−1(Ⱥ)  is a 𝑁𝑒𝑢 − 𝐶𝑆 in 

(ℚ , 𝜎𝑁𝑒𝑢
) . Given  𝑓𝑁 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − continuous , then 𝑓𝑁

−1( 𝑔𝑁
−1(Ⱥ)) = (𝑔𝑁𝑜𝑓𝑁)−1(Ⱥ) is a 

𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℙ, 𝜏𝑁𝑒𝑢
) ⇒ 𝑔𝑁𝑜𝑓𝑁 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − continuous → ① . Similarly , let  Ƀ be a  

𝑁𝑒𝑢 − 𝐶𝑆  in (ℙ, 𝜏𝑁𝑒𝑢
) . Given 𝑓𝑁

−1
 is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − continuous , then (𝑓𝑁

−1)
−1

(Ƀ) = 𝑓𝑁(Ƀ)  

is a 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℚ , 𝜎𝑁𝑒𝑢
) . Given (ℚ , 𝜎𝑁𝑒𝑢

)  is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑇1
2⁄  space , then  𝑓𝑁(Ƀ) is 

a 𝑁𝑒𝑢 − 𝐶𝑆 in (ℚ , 𝜎𝑁𝑒𝑢
) . Given 𝑔𝑁

−1 is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − continuous , then (𝑔𝑁
−1)−1(𝑓(Ƀ)) =

𝑔𝑁(𝑓𝑁(Ƀ)) = 𝑔𝑁𝑜𝑓𝑁(Ƀ) is a 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℝ ,  𝛾𝑁𝑒𝑢
) ⇒ (𝑔𝑁𝑜𝑓𝑁)−1 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 

continuous → ② . From ① and ② , 𝑔𝑁𝑜𝑓𝑁 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − ℎ𝑜𝑚 . 

Theorem 3.11: Let  𝑓𝑁: (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) be a bijective mapping . If  𝑓𝑁 is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − 

continuous , then the following statements are equivalent . 

    (1) 𝑓𝑁 is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − open mapping . 

    (2) 𝑓𝑁 is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − ℎ𝑜𝑚 . 

    (3) 𝑓𝑁 is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed mapping . 

Proof: (1) ⇒ (2) , Consider a bijective 𝑁𝑒𝑢𝑔𝑠𝛼∗ − open mapping . Let Ⱥ be a  𝑁𝑒𝑢 − 𝐶𝑆  in 

(ℙ, 𝜏𝑁𝑒𝑢
) .  Then Ⱥ𝑐 is a 𝑁𝑒𝑢 − 𝑂𝑆  in (ℙ, 𝜏𝑁𝑒𝑢

) . Given 𝑓𝑁 is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − open map , then 

𝑓𝑁(Ⱥ𝑐) = (𝑓𝑁(Ⱥ))
𝑐
 is a 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑂𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢

) ⇒ 𝑓𝑁(Ⱥ) is a 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in 

(ℚ , 𝜎𝑁𝑒𝑢
) ⇒ (𝑓𝑁

−1)
−1

(Ⱥ) is a 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
) ⇒ 𝑓𝑁

−1
 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 

continuous. Also , 𝑓𝑁 is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − continuous , then  𝑓𝑁 is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − ℎ𝑜𝑚  . 
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(2) ⇒ (3) , Suppose 𝑓𝑁 is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − ℎ𝑜𝑚  .  Then 𝑓𝑁 and  𝑓𝑁
−1

 are 𝑁𝑒𝑢𝑔𝑠𝛼∗ − continuous .  

Let Ⱥ be a  𝑁𝑒𝑢 − 𝐶𝑆  in (ℙ, 𝜏𝑁𝑒𝑢
) .  Given  𝑓𝑁

−1
 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − continuous , then 

(𝑓𝑁
−1)

−1
(Ⱥ) is a 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢

) ⇒  𝑓𝑁(Ⱥ) is a 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
) ⇒

 𝑓𝑁 is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map . 

(3) ⇒ (1) , Let Ⱥ be a  𝑁𝑒𝑢 − 𝑂𝑆  in (ℙ, 𝜏𝑁𝑒𝑢
) . Then Ⱥ𝑐 is a 𝑁𝑒𝑢 − 𝐶𝑆  in (ℙ, 𝜏𝑁𝑒𝑢

) . Given 

𝑓𝑁 is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed map , then 𝑓𝑁(Ⱥ𝑐) = (𝑓𝑁(Ⱥ))
𝑐
 is a 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢

) ⇒ 

𝑓𝑁(Ⱥ) is a 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑂𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
) ⇒ 𝑓𝑁 is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − open map . 

Theorem 3.12: Let  𝑓𝑁 ∶  (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) be 𝑁𝑒𝑢𝑔𝑠𝛼∗ − ℎ𝑜𝑚  .  Then 𝑓𝑁 is 𝑁𝑒𝑢 − 

ℎ𝑜𝑚 , if  (ℙ, 𝜏𝑁𝑒𝑢
) and  (ℚ ,  𝜎𝑁𝑒𝑢

) are 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑇1
2⁄  space . 

Proof:  Let  Ⱥ    be   a  𝑁𝑒𝑢 − 𝐶𝑆  in (ℚ ,  𝜎𝑁𝑒𝑢
) . Given  𝑓𝑁  is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − ℎ𝑜𝑚 ,  then  𝑓𝑁  is  

𝑁𝑒𝑢𝑔𝑠𝛼∗ − continuous ⇒ 𝑓𝑁
−1(Ⱥ)  is a 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℙ, 𝜏𝑁𝑒𝑢

) . Given (ℙ, 𝜏𝑁𝑒𝑢
) is 

𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑇1
2⁄  space , then  𝑓𝑁

−1(Ⱥ) is a 𝑁𝑒𝑢 − 𝐶𝑆 in (ℙ, 𝜏𝑁𝑒𝑢
) ⇒ 𝑓𝑁 is 𝑁𝑒𝑢 −  continuous 

→ ① . Similarly , let Ⱥ be a 𝑁𝑒𝑢 − 𝐶𝑆  in (ℙ, 𝜏𝑁𝑒𝑢
) . Given 𝑓𝑁 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − ℎ𝑜𝑚 , then 

𝑓𝑁
−1

 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − continuous ⇒ (𝑓𝑁
−1)

−1
(Ⱥ) is a 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢

) .  Given 

(ℚ ,  𝜎𝑁𝑒𝑢
) is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑇1

2⁄  space , then (𝑓𝑁
−1)

−1
(Ⱥ) is a 𝑁𝑒𝑢 − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢

)   ⇒  

𝑓𝑁
−1

 is 𝑁𝑒𝑢 − continuous → ② . From ① and ② , 𝑓𝑁 is 𝑁𝑒𝑢 −  ℎ𝑜𝑚 . 

Theorem 3.13: Let  𝑓𝑁 ∶  (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) be 𝑁𝑒𝑢𝑔𝑠𝛼∗ − ℎ𝑜𝑚  .  Then 𝑓𝑁 is 𝑁𝑒𝑢𝛼 − 

ℎ𝑜𝑚 ,  if  (ℙ, 𝜏𝑁𝑒𝑢
) and  (ℚ ,  𝜎𝑁𝑒𝑢

) are 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑇1
2⁄  space . 

Proof: Let Ⱥ be a  𝑁𝑒𝑢 − 𝐶𝑆  in (ℚ ,  𝜎𝑁𝑒𝑢
) . Given 𝑓𝑁 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − ℎ𝑜𝑚 , then 𝑓𝑁 is 

𝑁𝑒𝑢𝑔𝑠𝛼∗ − continuous ⇒ 𝑓𝑁
−1(Ⱥ)  is a 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℙ, 𝜏𝑁𝑒𝑢

) . Given (ℙ, 𝜏𝑁𝑒𝑢
) is 

𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑇1
2⁄  space , then  𝑓𝑁

−1(Ⱥ)  is a 𝑁𝑒𝑢 − 𝐶𝑆 in (ℙ, 𝜏𝑁𝑒𝑢
) ⇒ 𝑓𝑁

−1(Ⱥ)  is a 𝑁𝑒𝑢𝛼 −

𝐶𝑆 in (ℙ, 𝜏𝑁𝑒𝑢
) ⇒ 𝑓𝑁 is 𝑁𝑒𝑢𝛼 −continuous → ① . Similarly , let Ⱥ be a  𝑁𝑒𝑢 − 𝐶𝑆  in 

(ℙ, 𝜏𝑁𝑒𝑢
) . Given 𝑓𝑁 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − ℎ𝑜𝑚 , then 𝑓𝑁

−1
 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − continuous ⇒ 

(𝑓𝑁
−1)

−1
(Ⱥ) is a 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢

) .  Given (ℚ ,  𝜎𝑁𝑒𝑢
) is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑇1

2⁄  space , 

then (𝑓𝑁
−1)

−1
(Ⱥ) is a 𝑁𝑒𝑢 − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢

)   ⇒ (𝑓𝑁
−1)

−1
(Ⱥ) is a 𝑁𝑒𝑢𝛼 − 𝐶𝑆 in 

(ℚ ,  𝜎𝑁𝑒𝑢
)   ⇒ 𝑓𝑁

−1
 is 𝑁𝑒𝑢𝛼 − continuous → ② . From ① and ②  ,  𝑓𝑁 is a 𝑁𝑒𝑢𝛼 − ℎ𝑜𝑚 . 

Remark 3.14: If we replace 𝑓𝑁 is 𝑁𝑒𝑢𝛼 − ℎ𝑜𝑚 by 𝑁𝑒𝑢𝑅 − ℎ𝑜𝑚  , then the theorem 3.13 is 

true . 

Theorem 3.15: Let  𝑓𝑁 ∶  (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) be 𝑁𝑒𝑢𝑔𝑠𝛼∗ − ℎ𝑜𝑚 iff  𝑓𝑁
−1: (ℚ ,  𝜎𝑁𝑒𝑢

) →

(ℙ, 𝜏𝑁𝑒𝑢
) is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − ℎ𝑜𝑚 .   

Proof: Given 𝑓𝑁 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − ℎ𝑜𝑚 , then 𝑓𝑁 and  𝑓𝑁
−1

 are 𝑁𝑒𝑢𝑔𝑠𝛼∗ − continuous . Let  Ⱥ 

be any 𝑁𝑒𝑢 − 𝐶𝑆 in (ℙ, 𝜏𝑁𝑒𝑢
) . Given 𝑓𝑁

−1
 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − continuous , then 𝑓𝑁(Ⱥ) is a 

𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
) ⇒ (𝑓𝑁

−1)−1(Ⱥ) is a 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
) ⇒ 𝑓𝑁

−1
 is 

𝑁𝑒𝑢𝑔𝑠𝛼∗ − continuous → ① . Let  Ⱥ be any 𝑁𝑒𝑢 − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
) . Given 𝑓𝑁 is 
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𝑁𝑒𝑢𝑔𝑠𝛼∗ − continuous , then 𝑓𝑁
−1(Ⱥ)  is a 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℙ, 𝜏𝑁𝑒𝑢

) ⇒ ((𝑓𝑁
−1)

−1
)

−1

(Ⱥ) 

is a 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℙ, 𝜏𝑁𝑒𝑢
)  ⇒ 𝑓𝑁  is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − continuous → ② .  From ① and ② ,  

𝑓𝑁
−1

 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − ℎ𝑜𝑚 . Converse is similar . 

Section 4. NEUTROSOPHIC  𝒊𝒈𝒔𝜶∗ − HOMEOMORPHISM 

Definition 4.1: A 𝑁𝑒𝑢 − bijection function 𝑓𝑁 ∶  (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) is 𝑁𝑒𝑢𝑖𝑔𝑠𝛼∗ − 

ℎ𝑜𝑚  if  𝑓𝑁  and  𝑓𝑁
−1

 are 𝑁𝑒𝑢𝑔𝑠𝛼∗ − irresolute mappings . 

Theorem 4.2: Every 𝑁𝑒𝑢𝑖𝑔𝑠𝛼∗ − ℎ𝑜𝑚  is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − ℎ𝑜𝑚  , but not conversely . 

Proof: Let a bijection mapping  𝑓𝑁 ∶  (ℙ, 𝜏𝑁𝑒𝑢
)  →  (ℚ ,  𝜎𝑁𝑒𝑢

) be any 𝑁𝑒𝑢 − function .  

Given 𝑓𝑁  is 𝑁𝑒𝑢𝑖𝑔𝑠𝛼∗ − ℎ𝑜𝑚 , then  𝑓𝑁  and  𝑓𝑁
−1

  are 𝑁𝑒𝑢𝑔𝑠𝛼∗ − irresolute mapping ⇒ 𝑓𝑁  

and  𝑓𝑁
−1

  are 𝑁𝑒𝑢𝑔𝑠𝛼∗ − continuous ⇒  𝑓𝑁 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − ℎ𝑜𝑚  . 

Example 4.3: Let ℙ ={𝓅} and ℚ ={𝓆} . 𝜏𝑁𝑒𝑢
= {0𝑁𝑒𝑢

, 1𝑁𝑒𝑢
, Ⱥ} and  𝜎𝑁𝑒𝑢

= {0𝑁𝑒𝑢
 , 1𝑁𝑒𝑢

, Ƀ}  

are 𝑁𝑒𝑢TS on (ℙ, 𝜏𝑁𝑒𝑢
) and (ℚ ,  𝜎𝑁𝑒𝑢

) . Ⱥ= {〈𝓅, (0.3,0.8,0.6)〉} and Ƀ = {〈𝓆 ,

(0.6 , 0.5 , 0.8)〉}  are 𝑁𝑒𝑢(ℙ) and  𝑁𝑒𝑢(ℚ) .  Define a map 𝑓𝑁 ∶  (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) by 

𝑓𝑁(𝓅) = 𝓆 − 0.3 . Let  Ƀ𝑐 = {〈𝓆 , (0.8 , 0.5, 0.6)〉}  be a 𝑁𝑒𝑢 − 𝐶𝑆  in (ℚ  ,  𝜎𝑁𝑒𝑢
) . Then  

𝑓𝑁
−1(Ƀ𝑐) = {〈𝓅 , (0.5 , 0.2 , 0.3)〉} . 𝑁𝑒𝑢𝛼∗ − 𝑂𝑆 = 𝑁𝑒𝑢𝛼 – 𝑂𝑆 = {0𝑁𝑒𝑢

,  1𝑁𝑒𝑢
, Ⱥ , 𝐷 , 𝐸 ,

𝐹 } and  𝑁𝑒𝑢𝛼 – 𝐶𝑆  = {0𝑁𝑒𝑢
 ,  1𝑁𝑒𝑢

,  Ⱥ𝑐 , 𝐿 , 𝑀 , 𝑁} , where 𝐷 = {〈 𝓅 , ([0.6  , 1]  , [0.8 , 1]  ,

[0 , 0.3])〉} , 𝐸 = {〈 𝓅 , ([0.6 , 1] , [0.8 , 1] , [0.4 , 0.6])〉} , 𝐹 = {〈 𝓅 , ([0.3 , 0.5] , [0.8 , 1] ,
[0 , 0.6])〉} , 𝐿 = {〈 𝓅 , ([0 , 0.3] , [0 , 0.2] , [0.6 , 1])〉} , 𝑀 =  {〈 𝓅 , ([0 , 0.6]  , [0 , 0.2] ,

[0.3 , 0.5])〉} , 𝑁 =  {〈 𝓅  , ([0.4 , 0.6]  , [0 , 0.2]  , [0.6 , 1])〉} . Now, 𝑁𝑒𝑢𝛼 − 𝑖𝑛𝑡 (𝑁𝑒𝑢𝛼 −

𝑐𝑙 (𝑓𝑁
−1(Ƀ𝑐)))  =  0𝑁𝑒𝑢

⊆  𝑁𝑒𝑢  −  𝑖𝑛𝑡(𝐷) ,  𝑁𝑒𝑢  −  𝑖𝑛𝑡(𝐽) ,  𝑁𝑒𝑢  −  𝑖𝑛𝑡(1𝑁𝑒𝑢
) =  Ⱥ  , 1𝑁𝑒𝑢

 

whenever 𝑓𝑁
−1(Ƀ𝑐) ⊆  𝐷  ,   𝐽  ,  1𝑁𝑒𝑢

 ⇒ 𝑓𝑁
−1(Ƀ𝑐) is a 𝑁𝑒𝑢𝑔𝑠𝛼∗  −  𝐶𝑆 in (ℙ, 𝜏𝑁𝑒𝑢

) ⇒ 𝑓𝑁 is 

𝑁𝑒𝑢𝑔𝑠𝛼∗ − continuous → ① .  let Ⱥ𝑐 = {〈𝓅 , (0.6 , 0.2 , 0.3)〉} be a 𝑁𝑒𝑢 − 𝐶𝑆  in (ℙ, 𝜏𝑁𝑒𝑢
). 

Then 𝑓𝑁(Ⱥ𝑐) = {〈𝓆 , (0.9 , 0.5 , 0.6)〉} . 𝑁𝑒𝑢𝛼∗ −  𝑂𝑆 = 𝑁𝑒𝑢𝛼 –  𝑂𝑆 = {0𝑁𝑒𝑢
 ,  1𝑁𝑒𝑢

, Ƀ } and  

𝑁𝑒𝑢𝛼  –  𝐶𝑆  =  {0𝑁𝑒𝑢
 ,  1𝑁𝑒𝑢

,  Ƀ𝑐} . Now , 𝑁𝑒𝑢𝛼  −  𝑖𝑛𝑡 (𝑁𝑒𝑢𝛼 −  𝑐𝑙(𝑓𝑁(Ⱥ𝑐))) = 1𝑁𝑒𝑢
⊆

𝑁𝑒𝑢 − 𝑖𝑛𝑡(1𝑁𝑒𝑢
) = 1𝑁𝑒𝑢

 , whenever 𝑓𝑁(Ⱥ𝑐)  ⊆ 1𝑁𝑒𝑢
 ⇒ 𝑓𝑁(Ⱥ𝑐)  is a 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in 

(ℚ  ,  𝜎𝑁𝑒𝑢
) ⇒ 𝑓𝑁

−1
 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − continuous → ② . From ① and ② , 𝑓𝑁 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 

ℎ𝑜𝑚 . Let  Ɇ= {〈𝓅 , (0.2 , 0.1 , 0.7)〉} be any 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℙ, 𝜏𝑁𝑒𝑢
) . Then 𝑓𝑁(Ɇ) =

{〈𝓆 , (0.5 , 0.4 , 1)〉} . 𝑁𝑒𝑢𝛼  −  𝑖𝑛𝑡 (𝑁𝑒𝑢𝛼 − 𝑐𝑙(𝑓𝑁(Ɇ))) = Ƀ ⊆ 𝑁𝑒𝑢 − 𝑖𝑛𝑡(Ƀ) , 𝑁𝑒𝑢 −

𝑖𝑛𝑡(1𝑁𝑒𝑢
) = Ƀ , 1𝑁𝑒𝑢

 , whenever 𝑓𝑁(Ɇ)  ⊆ Ƀ , 1𝑁𝑒𝑢
⇒ 𝑓𝑁(Ɇ)  is a 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℚ  ,  𝜎𝑁𝑒𝑢

) 

⇒ 𝑓𝑁
−1

 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − irresolute →  ③ . Let  Ȼ =  {〈𝓆 , (0.6 , 0.6 , 0.9)〉} be any 𝑁𝑒𝑢𝑔𝑠𝛼∗ −

𝐶𝑆 in (ℚ  ,  𝜎𝑁𝑒𝑢
) .  Then  𝑓𝑁

−1(Ȼ)  =  {〈𝓅 , (0.3, 0.3 , 0.6)〉} .  𝑁𝑒𝑢𝛼  − 𝑖𝑛𝑡 (𝑁𝑒𝑢𝛼 −

𝑐𝑙 (𝑓𝑁
−1(Ȼ))) = 1𝑁𝑒𝑢

 ⊈ 𝑁𝑒𝑢 − 𝑖𝑛𝑡(Ⱥ)  = Ⱥ  , whenever   𝑓𝑁
−1(Ȼ) ⊆ Ⱥ ⇒ 𝑓𝑁

−1(Ȼ)  is not a  

𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℙ, 𝜏𝑁𝑒𝑢
)  ⇒ 𝑓𝑁 is not 𝑁𝑒𝑢𝑔𝑠𝛼∗ − irresolute → ④ . From ③ and ④ , 𝑓𝑁 

is not 𝑁𝑒𝑢𝑖𝑔𝑠𝛼∗ − ℎ𝑜𝑚 . 
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Theorem 4.4: Let 𝑓𝑁 ∶  (ℙ, 𝜏𝑁𝑒𝑢
)  →  (ℚ ,  𝜎𝑁𝑒𝑢

) be  𝑁𝑒𝑢𝑔𝑠𝛼∗ − ℎ𝑜𝑚 and (ℚ ,  𝜎𝑁𝑒𝑢
) is 

𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑇1
2⁄  space , then 𝑓𝑁 is 𝑁𝑒𝑢𝑖𝑔𝑠𝛼∗ − ℎ𝑜𝑚 . 

Proof: Given 𝑓𝑁 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − ℎ𝑜𝑚 , then 𝑓𝑁 and  𝑓𝑁
−1

 are 𝑁𝑒𝑢𝑔𝑠𝛼∗ − continuous . Also , 

(ℚ ,  𝜎𝑁𝑒𝑢
) is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑇1

2⁄  space , then 𝑓𝑁 and  𝑓𝑁
−1

 are 𝑁𝑒𝑢𝑔𝑠𝛼∗ − irresolute ⇒ 𝑓𝑁 is 

𝑁𝑒𝑢𝑖𝑔𝑠𝛼∗ − ℎ𝑜𝑚 . 

Theorem 4.5: Let  𝑓𝑁 ∶  (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) and 𝑔𝑁  ∶ (ℚ , 𝜎𝑁𝑒𝑢
) → (ℝ ,  𝛾𝑁𝑒𝑢

) be 

𝑁𝑒𝑢𝑖𝑔𝑠𝛼∗ − ℎ𝑜𝑚 . Then 𝑔𝑁 𝑜𝑓𝑁   ∶ (ℙ ,  𝜏𝑁𝑒𝑢
)  →  (ℝ ,  𝛾𝑁𝑒𝑢

) is 𝑁𝑒𝑢𝑖𝑔𝑠𝛼∗ − ℎ𝑜𝑚 .  

Proof: Given 𝑔𝑁  is 𝑁𝑒𝑢𝑖𝑔𝑠𝛼∗ − ℎ𝑜𝑚 , then 𝑔𝑁  and  𝑔𝑁 −1 are 𝑁𝑒𝑢𝑔𝑠𝛼∗ − irresolute . Given 

𝑓𝑁  is 𝑁𝑒𝑢𝑖𝑔𝑠𝛼∗ − ℎ𝑜𝑚 , then 𝑓𝑁  and  𝑓𝑁 −1 are 𝑁𝑒𝑢𝑔𝑠𝛼∗ − irresolute . Let Ⱥ be a 

𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℝ ,  𝛾𝑁𝑒𝑢
) . Given 𝑔𝑁 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − irresolute , then 𝑔𝑁

−1(Ⱥ) is a 

𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℚ , 𝜎𝑁𝑒𝑢
) . Given 𝑓𝑁  is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − irresolute , then 𝑓𝑁 −1(𝑔𝑁 −1(Ⱥ)) =

(𝑔𝑁𝑜𝑓𝑁 )−1(Ⱥ) is a 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℙ, 𝜏𝑁𝑒𝑢
) ⇒ 𝑔𝑁𝑜𝑓𝑁  is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − irresolute → ① . 

Let Ƀ be any 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℙ, 𝜏𝑁𝑒𝑢
) . Given 𝑓𝑁 −1 is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − irresolute , then 𝑓𝑁(Ƀ) 

is a 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℚ , 𝜎𝑁𝑒𝑢
) . Given 𝑔𝑁

−1 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − irresolute , then 𝑔𝑁(𝑓𝑁(Ƀ)) =

𝑔𝑁𝑜𝑓𝑁(Ƀ) = ((𝑔𝑁𝑜𝑓𝑁)−1)−1(Ƀ) is a 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℝ ,  𝛾𝑁𝑒𝑢
) ⇒ (𝑔𝑁𝑜𝑓𝑁)−1 is 

𝑁𝑒𝑢𝑔𝑠𝛼∗ − irresolute → ② . From ① and ② , 𝑔𝑁𝑜𝑓𝑁  is 𝑁𝑒𝑢𝑖𝑔𝑠𝛼∗ − ℎ𝑜𝑚 .  

Theorem 4.6: Let  𝑓𝑁 ∶  (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) be 𝑁𝑒𝑢𝑖𝑔𝑠𝛼∗ − ℎ𝑜𝑚 , then 𝑁𝑒𝑢𝑔𝑠𝛼∗ −

𝑐𝑙 (𝑓𝑁
−1(Ⱥ)) = 𝑓𝑁

−1(𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑐𝑙(Ⱥ))  for each  𝑁𝑒𝑢 − set Ⱥ in (ℚ , 𝜎𝑁𝑒𝑢
). 

Proof: Given 𝑓𝑁 is  𝑁𝑒𝑢𝑖𝑔𝑠𝛼∗ − ℎ𝑜𝑚 , then 𝑓𝑁 is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − irresolute . Let Ⱥ be any 𝑁𝑒𝑢 −  

set in (ℚ ,  𝜎𝑁𝑒𝑢
) . Clearly ,  𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑐𝑙(Ⱥ) is a 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆  in (ℚ ,  𝜎𝑁𝑒𝑢

). By 

hypothesis , 𝑓𝑁
−1(𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑐𝑙(Ⱥ)) is a 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆  in (ℙ, 𝜏𝑁𝑒𝑢

) . Given 𝑓𝑁
−1(Ⱥ) ⊆

𝑓𝑁
−1(𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑐𝑙(Ⱥ))  ⇒  𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑐𝑙 (𝑓𝑁

−1(Ⱥ)) ⊆  𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑐𝑙 (𝑓𝑁
−1(𝑁𝑒𝑢𝑔𝑠𝛼∗  −

𝑐𝑙(Ⱥ))) = 𝑓𝑁
−1(𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑐𝑙(Ⱥ))  ⇒ 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑐𝑙 (𝑓𝑁

−1(Ⱥ)) ⊆  𝑓𝑁
−1(𝑁𝑒𝑢𝑔𝑠𝛼∗ −

𝑐𝑙(Ⱥ)) → ① . Given 𝑓𝑁 is 𝑁𝑒𝑢𝑖𝑔𝑠𝛼∗ − ℎ𝑜𝑚 , then 𝑓𝑁
−1

 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − irresolute . Let 

𝑓𝑁
−1(Ⱥ) be any 𝑁𝑒𝑢 −  set in (ℙ, 𝜏𝑁𝑒𝑢

) . Clearly , 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑐𝑙 (𝑓𝑁
−1(Ⱥ)) is a 𝑁𝑒𝑢𝑔𝑠𝛼∗ −

𝐶𝑆 in (ℙ, 𝜏𝑁𝑒𝑢
). By hypothesis , (𝑓𝑁

−1)
−1

(𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑐𝑙 (𝑓𝑁
−1(Ⱥ))) = 𝑓𝑁 (𝑁𝑒𝑢𝑔𝑠𝛼∗ −

𝑐𝑙 (𝑓𝑁
−1(Ⱥ))) → ②  is a 𝑁𝑒𝑢𝑔𝑠𝛼∗  −  𝐶𝑆 in (ℚ  ,  𝜎𝑁𝑒𝑢

) ⇒ Ⱥ =  (𝑓𝑁
−1)

−1
(𝑓𝑁

−1(Ⱥ)) ⊆

 (𝑓𝑁
−1)

−1
(𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑐𝑙 (𝑓𝑁

−1(Ⱥ))) = 𝑓𝑁 (𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑐𝑙 (𝑓𝑁
−1(Ⱥ))) ⇒ 𝑁𝑒𝑢𝑔𝑠𝛼∗ −

𝑐𝑙(Ⱥ) ⊆ 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑐𝑙 (𝑓𝑁 (𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑐𝑙 (𝑓𝑁
−1(Ⱥ)))) = 𝑓𝑁 (𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑐𝑙 (𝑓𝑁

−1(Ⱥ))) 

(by②) ⇒ 𝑓𝑁
−1

 (𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑐𝑙(Ⱥ)) ⊆ 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑐𝑙 (𝑓𝑁
−1(Ⱥ)) → ③ . From ① and ③ , 

𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑐𝑙 (𝑓𝑁
−1(Ⱥ)) = 𝑓𝑁

−1(𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑐𝑙(Ⱥ))  .  

Theorem 4.7: Let  𝑓𝑁 ∶  (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) be  𝑁𝑒𝑢𝑖𝑔𝑠𝛼∗ − ℎ𝑜𝑚 . Then 𝑓𝑁 is  𝑁𝑒𝑢 −

ℎ𝑜𝑚  if  (ℙ, 𝜏𝑁𝑒𝑢
) and  (ℚ ,  𝜎𝑁𝑒𝑢

) are 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑇1
2⁄  space .  
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Proof: Let Ⱥ be any 𝑁𝑒𝑢 − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
) . Then Ⱥ  is a  𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢

) . 

Given 𝑓𝑁 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − irresolute , then 𝑓𝑁
−1(Ⱥ) is a 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℙ, 𝜏𝑁𝑒𝑢

) . Given 

(ℙ, 𝜏𝑁𝑒𝑢
) is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑇1

2⁄  space , then 𝑓𝑁
−1(Ⱥ) is a 𝑁𝑒𝑢 − 𝐶𝑆 in (ℙ, 𝜏𝑁𝑒𝑢

) ⇒ 𝑓𝑁 is 𝑁𝑒𝑢 − 

continuous → ① . Let Ⱥ be any 𝑁𝑒𝑢 − 𝐶𝑆 in (ℙ, 𝜏𝑁𝑒𝑢
) . Then Ⱥ  is a 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in 

(ℙ, 𝜏𝑁𝑒𝑢
) . Given 𝑓𝑁

−1
 is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − irresolute , then 𝑓𝑁(Ⱥ) is a 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in 

(ℚ ,  𝜎𝑁𝑒𝑢
) . Given (ℚ ,  𝜎𝑁𝑒𝑢

) is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑇1
2⁄  space , then 𝑓𝑁(Ⱥ) is a  𝑁𝑒𝑢 − 𝐶𝑆 in 

(ℚ ,  𝜎𝑁𝑒𝑢
) ⇒ 𝑓𝑁

−1
 is 𝑁𝑒𝑢 − continuous →  ② . From ① and ② , 𝑓𝑁 is 𝑁𝑒𝑢 − ℎ𝑜𝑚  . 

Theorem 4.8: Let  𝑓𝑁 ∶  (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) be  𝑁𝑒𝑢𝑖𝑔𝑠𝛼∗ − ℎ𝑜𝑚 , then 𝑁𝑒𝑢𝑔𝑠𝛼∗ −

𝑐𝑙 (𝑓𝑁
−1(Ⱥ)) ⊆ 𝑓𝑁

−1(𝑁𝑒𝑢 − 𝑐𝑙(Ⱥ))  for each  𝑁𝑒𝑢 − set Ⱥ in (ℚ , 𝜎𝑁𝑒𝑢
) . 

Proof: Let Ⱥ be any 𝑁𝑒𝑢 − set in (ℚ ,  𝜎𝑁𝑒𝑢
) . Then 𝑁𝑒𝑢 − 𝑐𝑙(Ⱥ) is a  𝑁𝑒𝑢 − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢

) 

⇒ 𝑁𝑒𝑢 − 𝑐𝑙(Ⱥ)  is a  𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
) . Given  𝑓𝑁 is  𝑁𝑒𝑢𝑔𝑠𝛼∗ − irresolute map , 

then 𝑓𝑁
−1(𝑁𝑒𝑢 − 𝑐𝑙(Ⱥ)) is a 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℙ, 𝜏𝑁𝑒𝑢

) ⇒ 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑐𝑙 (𝑓𝑁
−1(𝑁𝑒𝑢 −

𝑐𝑙(Ⱥ))) = 𝑓𝑁
−1(𝑁𝑒𝑢 − 𝑐𝑙(Ⱥ)) . Given Ⱥ  ⊆ 𝑁𝑒𝑢 − 𝑐𝑙(Ⱥ) ⇒ 𝑓𝑁

−1(Ⱥ) ⊆ 𝑓𝑁
−1(𝑁𝑒𝑢 −

𝑐𝑙(Ⱥ)) ⇒ 𝑁𝑒𝑢𝑔𝑠𝛼∗  −  𝑐𝑙 (𝑓𝑁
−1(Ⱥ))  ⊆  𝑁𝑒𝑢𝑔𝑠𝛼∗  −  𝑐𝑙 (𝑓𝑁

−1(𝑁𝑒𝑢  −  𝑐𝑙(Ⱥ))) ⇒ 𝑁𝑒𝑢𝑔𝑠𝛼∗ 

−𝑐𝑙 (𝑓𝑁
−1(Ⱥ)) ⊆ 𝑓𝑁

−1(𝑁𝑒𝑢 − 𝑐𝑙(Ⱥ))  . 

Theorem 4.9: Let  𝑓𝑁 ∶  (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) be  𝑁𝑒𝑢𝑖𝑔𝑠𝛼∗ − ℎ𝑜𝑚 iff  𝑓𝑁
−1 ∶

(ℚ ,  𝜎𝑁𝑒𝑢
) → (ℙ, 𝜏𝑁𝑒𝑢

) is 𝑁𝑒𝑢𝑖𝑔𝑠𝛼∗ − ℎ𝑜𝑚 .  

Proof: Given  𝑓𝑁  is 𝑁𝑒𝑢𝑖𝑔𝑠𝛼∗ − ℎ𝑜𝑚  , then 𝑓𝑁 and  𝑓𝑁
−1

 are 𝑁𝑒𝑢𝑔𝑠𝛼∗ − irresolute . Let  Ⱥ 

be any 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℙ, 𝜏𝑁𝑒𝑢
) . Given 𝑓𝑁

−1
 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − irresolute , then 𝑓𝑁(Ⱥ) is a 

𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
) ⇒ (𝑓𝑁

−1)−1(Ⱥ) is a 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
) ⇒ 𝑓𝑁

−1
 is 

𝑁𝑒𝑢𝑔𝑠𝛼∗ − irresolute → ① . Let Ⱥ be any 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℚ ,  𝜎𝑁𝑒𝑢
) . Given 𝑓𝑁 is 

𝑁𝑒𝑢𝑔𝑠𝛼∗ − irresolute , then  𝑓𝑁
−1(Ⱥ)  is a 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝐶𝑆 in (ℙ, 𝜏𝑁𝑒𝑢

) ⇒ 𝑓𝑁 is 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 

irresolute → ② .  From ① and ② ,  𝑓𝑁
−1

 is 𝑁𝑒𝑢𝑖𝑔𝑠𝛼∗ − ℎ𝑜𝑚 . Converse is similar . 

Theorem 4.10: Let  𝑓: (ℙ, 𝜏𝑁𝑒𝑢
) → (ℚ ,  𝜎𝑁𝑒𝑢

) be 𝑁𝑒𝑢𝑖𝑔𝑠𝛼∗ − ℎ𝑜𝑚 , then 𝑁𝑒𝑢𝑔𝑠𝛼∗ −

𝑐𝑙(𝑓𝑁(Ⱥ)) = 𝑓𝑁(𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑐𝑙(Ⱥ))  for each 𝑁𝑒𝑢 − set Ⱥ in (ℙ, 𝜏𝑁𝑒𝑢
) . 

Proof: Given 𝑓𝑁  is 𝑁𝑒𝑢𝑖𝑔𝑠𝛼∗ − ℎ𝑜𝑚 , then 𝑓𝑁
−1

 is 𝑁𝑒𝑢𝑖𝑔𝑠𝛼∗ − ℎ𝑜𝑚 . Let Ⱥ be any 𝑁𝑒𝑢 − set 

in (ℙ, 𝜏𝑁𝑒𝑢
) . By theorem 4.6 , 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑐𝑙 ((𝑓𝑁

−1)−1(Ⱥ)) = (𝑓𝑁
−1)−1(𝑁𝑒𝑢𝑔𝑠𝛼∗ −

𝑐𝑙(Ⱥ)) ⇒ 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑐𝑙(𝑓𝑁(Ⱥ)) = 𝑓𝑁(𝑁𝑒𝑢𝑔𝑠𝛼∗ − 𝑐𝑙(Ⱥ)) . 

5. CONCLUSIONS 

We have discussed some new concepts in Neutrosophic Topological spaces. We defined a 

new definition 𝑁𝑒𝑢𝑔𝑠𝛼∗ − closed sets. Especially we discussed about 𝑁𝑒𝑢𝑔𝑠𝛼∗ − 

homeomorphism and 𝑁𝑒𝑢𝑖𝑔𝑠𝛼∗ − homeomorphism in this topological space. Further in the 

future, we will discuss its application in the decision-making domain. 
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ABSTRACT 

In this article, neutrosophic dimension of a neutrosophic vector space has been discussed by 

using neutrosophic basis. Some characteristics of the new notions are discussed. 

KEYWORDS:  Neutrosophic set, neutrosophic vector space, neutrosophic dimension. 

1. INTRODUCTION

One of the sets with a great deal of applications is the neutrosophy concept which was initiated 

by F. Smarandache (Smarandache, 1998, 2005). The notion of neutrosophic vector space 

(Agboola, & Akinleye, 2014) was initiated in 2014. The authors (Broumi et al., 2018; Pramanik, 

2022, Smarandache & Pramanik, 2018) have contributed many articles in neutrosophic sets and 

their applications. In this work, we develop the notion of neutrosophic dimension of a 

neutrosophic vector space, and some properties are interpreted. 

2. PRELIMINARIES

Definition 2.1 (Elrawy, 2022): Neutrosophic vector space is a quaternary 𝑉̅ = (𝑉, 𝜇, 𝛾, 𝜍) where 

𝑉 is a vector space over arbitrary field Κ with 

𝜇: 𝑉 → [0,1], 

𝛾: V → [0,1], 

𝜍: V → [0,1], 

with the following properties 

𝜇(𝑎𝑢 + 𝑏𝑣) ≥ 𝜇(𝑢) ∧ 𝜇(𝑣), 

𝛾(𝑎𝑢 + 𝑏𝑣) ≤ 𝛾(𝑢) ∨ 𝛾(𝑣), 

𝜍(𝑎𝑢 + 𝑏𝑣) ≤ 𝜍(𝑢) ∨ 𝜍(𝑣), 

where 𝑢, 𝑣 ∈ 𝑉 and 𝑎, 𝑏 ∈ Κ 
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Definition 2.2 (Elrawy, 2022): If 𝑉̅ = (𝑉, 𝜇, 𝛾, 𝜍) is a neutrosophic vector space over a field Κ, 

then 

I. 𝜇(𝑎𝑢) = 𝜇(𝑢), ∀ 𝑎 ∈ Κ − {0}, 

II. 𝛾(𝑎𝑢) = 𝛾(𝑢), ∀ 𝑎 ∈ Κ − {0}, 

III. 𝜍(𝑎𝑢) = 𝜍(𝑢), ∀ 𝑎 ∈ Κ − {0}, 

IV. If 𝑢, 𝑣 ∈ 𝑉 and 𝜇(𝑢) > 𝜇(𝑣), 𝑡ℎ𝑒𝑛 𝜇(𝑢 + 𝑣) = 𝜇(𝑣). 
V. If 𝑢, 𝑣 ∈ 𝑉 and 𝜇(𝑢) < 𝜇(𝑣), 𝑡ℎ𝑒𝑛 𝜇(𝑢 + 𝑣) = 𝜇(𝑣). 

VI. If 𝑢, 𝑣 ∈ 𝑉 and 𝜇(𝑢) < 𝜇(𝑣), 𝑡ℎ𝑒𝑛 𝜇(𝑢 + 𝑣) = 𝜇(𝑣). 
 

Definition 2.3 (Elrawy,  2022): Let 𝑊 be a subspace of a vector space 𝑉. Then, 

(𝑊, 𝜇𝑊, 𝛾𝑊, 𝜍𝑊) is called neutrosophic subspace of a neutrosophic vector (𝑉, 𝜇, 𝛾, 𝜍) if the 

following conditions are satisfied: 

I. 𝜇𝑤(𝑥 − 𝑦) ≥ 𝜇𝑤(𝑥) ∧ 𝜇𝑤(𝑦)  

II. 𝜇𝑤(𝑐𝑥) = 𝜇𝑤(𝑥)  

III. 𝛾𝑤(𝑥 − 𝑦) ≤ γw(x) ∨ 𝛾𝑤(𝑦)  

IV. 𝛾𝑤(𝑐𝑥) = 𝛾𝑤(𝑥)  

V. 𝜍𝑤(𝑥 − 𝑦) ≤ 𝜍w(x) ∨ 𝜍𝑤(𝑦)  

VI. 𝜍𝑤(𝑐𝑥) = 𝜍𝑤(𝑥)  

 

Definition 2.4 (Elrawy,  2022): Let  𝑉1̅ = (𝑉, 𝜇1, 𝛾1, 𝜍1) and 𝑉2̅ = (𝑉, 𝜇2, 𝛾2, 𝜍2) be two 

neutrosophic vector spaces over Κ, then 

The intersection of 𝑉1̅ and 𝑉2̅ define as follows: 𝑉1̅ ∩ 𝑉2̅ = (𝑉, 𝜇1 ∧ 𝜇2,𝛾1 ∨ 𝛾2,𝜍1 ∨ 𝜍2)  

The sum of 𝑉1̅ and 𝑉2̅ define as follows: 𝑉1̅ + 𝑉2̅ = (𝑉, 𝜇1 + 𝜇2,𝛾1 +∨ 𝛾2,𝜍1 + 𝜍2),  where  

(𝜇1 + 𝜇2)(𝑎) = 𝑠𝑢𝑝{𝜇1(𝑎) ∧ 𝜇2(𝑎 − 𝑣)}, (𝛾1 + 𝛾2)(𝑎) = 𝑖𝑛𝑓{𝛾1(𝑎) ∨ 𝛾2(𝑎 − 𝑣)},   

(𝜍1 + 𝜍2)(𝑎) = 𝑖𝑛𝑓{𝜍1(𝑎) ∨ 𝜍2(𝑎 − 𝑣)} and 𝑎 = 𝑢 + 𝑣 

 

3. NEUTROSOPHIC DIMENSION OF A NEUROSOPHIC VECTOR SPACE 

 

Definition 3.1: For a neutrosophic set (NS in short) 𝐴̂ ⊆ 𝑋̂. Then for 𝛿, 𝜌, 𝜎 ∈ [0,1] with 𝛿 +

𝜌 + 𝜎 ≤ 1, the set 𝐴̂[𝛿,𝜌,𝜎] = {𝑥 ∈ 𝑋: 𝜇𝐴̂(𝑥) ≥ 𝛿, 𝛾𝐴̂(𝑥) ≥ 𝜌, 𝜍𝐴̂(𝑥) ≤ 𝜎} is called 

(𝛿, 𝜌, 𝜎) −level subset of 𝐴̂. 

Definition 3.2: For a NS 𝐴̂ ⊆ 𝑋̂ and (𝛿1, 𝜌1, 𝜎1), (𝛿2, 𝜌2, 𝜎2) ∈ 𝐼𝑚(𝐴̂), If 𝛿1 ≥ 𝛿2, 𝜌1 ≥ 𝜌2,

𝜎1 ≤ 𝜎2, then 𝐴̂[𝛿1,𝜌1,𝜎1] ⊇ 𝐴̂[𝛿2,𝜌2,𝜎2].  

Definition 3.3: For a NS 𝐴̂ ⊆ 𝑋̂, define a map |𝐴̂|: ℕ → [0,1]*[0,1] ∀ 𝑛 ∈ ℕ,  
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𝜇|𝐴̂|(𝑛) =∨ {𝑝: (𝛿, 𝜌, 𝜎) ∈ [0,1] × [0,1] × [0,1]\{[0,1]} with 𝛿 + 𝜌 + 𝜎 ≤ 1  and |𝐴̂
[𝛿,𝜌,𝜎]

| ≥ 𝑛},         

𝛾𝐴̂(𝑛) =∨ {𝑞: (𝛿, 𝜌, 𝜎) ∈ [0,1] × [0,1] × [0,1]\{[0,1]} with 𝛿 + 𝜌 + 𝜎 ≤ 1  and |𝐴̂
[𝛿,𝜌,𝜎]

| ≥ 𝑛}, 

𝜍|𝐴̂|(𝑛) =∧ {𝑟: (𝛿, 𝜌, 𝜎) ∈ [0,1] × [0,1] × [0,1]\{[0,1]} with 𝛿 + 𝜌 + 𝜎 ≤ 1  and |𝐴̂
[𝛿,𝜌,𝜎]

| ≥ 𝑛} 

Then, |𝐴̂| is called as a Neutrosophic set over ℕ where |𝐴̂| is the cardinality of 𝐴̂.           

Definition 3.4: For two NSs 𝐴̂ and 𝐵̂, the addition of the cardinalities is defined as for any 

𝑛 ∈ ℕ,  

𝜇(|𝐴̂|+|𝐵̂|)(𝑛) = ⋁ (𝜇|𝐴̂|(𝑛1) ∧ 𝜇|𝐵̂|(𝑛2))𝑛1+𝑛2=𝑛   

𝛾(|𝐴̂|+|𝐵̂|)(𝑛) =∨𝑛1+𝑛2=𝑛 (𝛾|𝐴̂|(𝑛1) ∧ 𝛾|𝐵̂|(𝑛2)) 

𝜍(|𝐴̂|+|𝐵̂|)(𝑛) =∧𝑛1+𝑛2=𝑛 (𝜍|𝐴̂|(𝑛1) ∨ 𝜍|𝐵̂|(𝑛2)) 

Preposition 3.5: For two NSs  𝐴̂ and 𝐵̂ over ℕ, for any (𝛿, 𝜌, 𝜎) ∈ [0,1] × [0,1] × [0,1] with 

𝛿 + 𝜌 + 𝜎 ≤ 1, 

𝜇(|𝐴̂|+|𝐵̂|)(𝑛) = 𝜇|𝐴̂|
[𝛿]

+ 𝜇|𝐵̂|
[𝛿]

 

𝛾(|𝐴̂|+|𝐵̂|)(𝑛) = 𝛾|𝐴̂|
[𝛿]

+ 𝛾|𝐵̂|
[𝛿]

 

𝜍(|𝐴̂|+|𝐵̂|)(𝑛) = 𝜍|𝐴̂|
[𝛿]

+ 𝜍|𝐵̂|
[𝛿]

 

Proof: 

Suppose 𝑛 ∈ 𝜇|𝐴̂|
[𝛿]

+ 𝜇|𝐵̂|
[𝛿]

, then there exist 𝑛1, 𝑛2 with  𝑛1 + 𝑛2 = 𝑛 with 𝑛1 ∈ 𝜇|𝐴̂|
[𝛿]

, 𝑛2 ∈ 𝜇|𝐵̂|
[𝛿]

.   

Then, 𝜇|𝐴̂|
[𝛿]

≥ 𝛿, 𝜇|𝐵̂|
[𝛿]

≥ 𝛿. By definition, 𝜇(|𝐴̂|+|𝐵̂|)(𝑛) = ⋁ (𝜇|𝐴̂|(𝑛1) ∧ 𝜇|𝐵̂|(𝑛2))𝑛1+𝑛2=𝑛 ≥ 𝛿. 

 Therefore, 𝑛 ∈ 𝜇(|𝐴̂|+|𝐵̂|)
[𝛿]

. Hence, 𝜇|𝐴̂|
[𝛿]

+ 𝜇|𝐵̂|
[𝛿]

⊆ 𝜇(|𝐴̂|+|𝐵̂|)
[𝛿]

.  

Conversely, let 𝑛 ∈ 𝜇(|𝐴̂|+|𝐵̂|)
[𝛿]

. Then 𝜇(|𝐴̂|+|𝐵̂|)(𝑛) = ⋁ (𝜇|𝐴̂|(𝑛1) ∧ 𝜇|𝐵̂|(𝑛2))𝑛1+𝑛2=𝑛 ≥ 𝛿. 

Hence, one can find 𝑛1, 𝑛2 with 𝑛1 + 𝑛2 = 𝑛, and 𝜇|𝐴̂|(𝑛1) ∧ 𝜇|𝐵̂|(𝑛2) ≥ 𝛿. Then, 𝑛1 ∈ 𝜇|𝐴|
[𝛿]

, 𝑛2 ∈

𝜇|𝐵̂|
[𝛿]

, 

that is, 𝑛 = 𝑛1 + 𝑛2 ∈ 𝜇|𝐴̂|
[𝛿]

+ 𝜇|𝐵̂|
[𝛿]

. Thus, 𝜇(|𝐴̂|+|𝐵̂|)
[𝛿]

⊆ 𝜇|𝐴̂|
[𝛿]

+ 𝜇|𝐵̂|
[𝛿]

.  

Definition 3.6: Let 𝑉̂ ∈ 𝑁(𝑋̂) with a neutrosophic basis 𝐵̂. Then D(𝑉̂) is the neutrosophic 

dimension of  𝑉̂. 

Preposition 3.7: Let 𝐵̂ and 𝐵̂′ be two neutrosophic bases of a neutrosophic vector space 𝑉̂ ∈
𝑁(𝑋̂). Then, |𝐵̂| = |𝐵̂′|. 
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Proof:  

Both  𝐵̂[𝛿,𝜌,𝜎]  and 𝐵̂[𝛿,𝜌,𝜎] are bases of 𝑉̂[𝛿,𝜌,𝜎] for 𝑎 ∈ (0,1], 𝑏 ∈ (0,1], 𝑐 ∈ (0,1] with 𝛿 + 𝜌 + 𝜎 ≤
1.  

Therefore, |𝐵̂[𝛿,𝜌,𝜎]| = |𝐵̂′[𝛿,𝜌,𝜎]|.   Hence  

𝜇|𝐵̂|(𝑛) =∨ {𝑝: (𝛿, 𝜌, 𝜎) ∈ [0,1] × [0,1] × [0,1]\{[0,1]} with 𝛿 + 𝜌 + 𝜎 ≤ 1  and |𝐵̂𝛿,𝜌,𝜎]| ≥ 𝑛} 

              =∨ {𝑝: (𝛿, 𝜌, 𝜎) ∈ [0,1] × [0,1] × [0,1]\{[0,1]} with 𝛿 + 𝜌 + 𝜎 ≤ 1  and |𝐵̂′[𝛿,𝜌,𝜎]| ≥ 𝑛} 

             = 𝜇|𝐵̂′|(𝑛). 

Similarly,  𝛾|𝐵̂|(𝑛) = 𝛾|𝐵̂′|(𝑛), 𝜍|𝐵̂|(𝑛) = 𝜍|𝐵̂′|(𝑛) holds.   

Preposition 3.8: Let 𝑋̂ be a vector space with 𝐷( 𝑋̂) = 𝑚 and 𝑉̂ ∈ 𝑁(𝑋̂). Then, for any 𝛿, 𝜌, 𝜎 ∈

[0,1] × [0,1] × [0,1] with 𝛿 + 𝜌 + 𝜎 ≤ 2, and 𝑛 ∈ ℕ, 𝑛 ∈ 𝜇
𝐷(𝑉)
[𝛿]

⇔ 𝑛 ≤ 𝐷 (𝜇
𝑉

[𝛿]
) and 𝑛 ∈

𝜇
𝐷(𝑉)
[𝜌]

⇔ 𝑛 ≤ 𝐷 (𝜇
𝑉

[𝜌]
).  

Proof: Suppose that 𝐼𝑚(𝑉̂) = {(𝑝0, 𝑞0, 𝑟0), (𝑝1, 𝑞1, 𝑟1), … , (𝑝𝑘, 𝑞𝑘, 𝑟𝑘)}, 𝑘 ≤ 𝑚 such that 

(1,1,0) ≥ (𝑝0, 𝑞0, 𝑟0) > (𝑝1, 𝑞1, 𝑟1) … . > (𝑝𝑘, 𝑞𝑘, 𝑟𝑘) ≥ (0,0,1). Then there exists a nested 

collection of subspaces of 𝑋̂ as {∆} ⊆ 𝑉̂[𝑝0,𝑞0,𝑟0] ⊊ 𝑉̂[𝑝1,𝑞1,𝑟1] ⊊ ⋯ ⊊ 𝑉̂[𝑝𝑘,𝑞𝑘,𝑟𝑘] = 𝑋̂. Let 𝐵̂𝑉𝑖
 be 

the basis of 𝑉̂[𝑝𝑖,𝑞𝑖,𝑟𝑖], 𝑖 = 0,1, … , 𝑘 such that 𝐵̂𝑉0
⊊ 𝐵̂𝑉1

⊊ ⋯ … . . . ⊊ 𝐵̂𝑉𝑘
. 

            Let ℬ be a neutrosophic basis and let 𝑛 ∈ 𝜇
𝐷(𝑉)
[𝛿]

⇒ 𝜇
𝐷(𝑉̂)
(𝑛)

≥ 𝛿 ⇒∨ {𝜎1: (𝛿1, 𝜌1, 𝜎1) ∈

(0,1] × (0,1] × (0,1] 𝑤𝑖𝑡ℎ 𝛿1 + 𝜌1 + 𝜎1 ≤ 2 𝑎𝑛𝑑 |ℬ[𝛿1,𝜌1,𝜎1]| ≥ 𝑛} ≥ 𝛿. Then there exists 

(𝛿1, 𝜌1, 𝜎1) ∈ [0,1] × [0,1] × [0,1]\{(0,1)} with 𝛿1 + 𝜌1 + 𝜎1 ≤ 2 such that 𝛿1 ≥ 𝛿 and 

|ℬ[𝛿1,𝜌1,𝜎1]| ≥ 𝑛. Now, 𝐷 (𝜇
𝑉

[𝛿]
) = |𝜇ℬ

[𝛿]
| ≥ |𝜇ℬ

[𝛿1]
| ≥ |ℬ[𝛿1,𝜌1,𝜎1]| ≥ 𝑛. 

Conversely, suppose that 𝑛 ≤ 𝐷 (𝜇
𝑉

[𝛿]
) = |𝜇ℬ

[𝛿]
|. Now 𝑎 ∈ (𝑝𝑖+1, 𝑝𝑖], for some 𝑖. Hence |𝜇ℬ

[𝛿]
| =

|𝜇ℬ
[𝑝𝑖]

| = |𝐵𝑉𝑖
| = |ℬ[𝛿1,𝑏1,𝜎1]|. Then 𝜇𝐷(𝑉)(𝑛) =∨ {{𝜎1: (𝛿1, 𝜌1, 𝜎1) ∈ (0,1] × (0,1] ×

(0,1] 𝑤𝑖𝑡ℎ 𝛿1 + 𝜌1 + 𝑐1 ≤ 2 𝑎𝑛𝑑 |ℬ[𝛿1,𝜌1,𝜎1]| ≥ 𝑛} ≥ 𝑝𝑖 ≥ 𝛿 ⇒ 𝑛 ∈  𝜇
𝐷(𝑉̂)
[𝛿]

.  Hence 𝑛 ∈  𝜇
𝐷(𝑉)
[𝛿]

 if 

and only if 𝑛 ≤ 𝐷 (𝜇
𝑉

[𝛿]
).  Similarly for, 𝑛 ∈  𝜇

𝐷(𝑉)
[𝜌]

⇔  𝑛 ≤ 𝐷 (𝜇
𝑉

[𝜌]
).  

Preposition 3.9:  Let 𝑋̂ be a vector space with 𝐷( 𝑋̂) = 𝑚 and 𝑉̂1, 𝑉̂2 ∈ 𝑁(𝑋̂).  Then, we have the 

following results: 

A. For all (𝛿, 𝜌, 𝜎) ∈ [0,1] × [0,1] × [0,1] with 𝛿 + 𝜌 + 𝜎 ≤ 2, 𝜇
𝑉1∩𝑉2

[𝛿]
= 𝜇

𝑉1

[𝛿]
∩ 𝜇

𝑉2

[𝛿]
, 

𝛾
𝑉̂1∩𝑉2

[𝜌]
= 𝛾

𝑉1

[𝜌]
∩ 𝛾

𝑉̂2

[𝜌]
  and 𝜍

𝑉1∩𝑉2

[𝜎]
= 𝜍

𝑉1

[𝜎]
∩ 𝜍

𝑉2

[𝜎]
. 

B. For all (𝛿, 𝜌, 𝜎) ∈ [0,1] × [0,1] × [0,1] with 𝛿 + 𝜌 + 𝜎 ≤ 2, 𝜇
𝑉1+𝑉2

[𝛿]
= 𝜇

𝑉1

[𝛿]
+ 𝜇

𝑉2

[𝛿]
,  

𝛾
𝑉̂1+𝑉2

[𝜌]
= 𝛾

𝑉̂1

[𝜌]
+ 𝛾

𝑉̂2

[𝜌]
 and 𝜍

𝑉1+𝑉2

[𝜎]
= 𝜍

𝑉1

[𝜎]
+ 𝜍

𝑉2

[𝜎]
. 
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Proof:   

Proof of (A) is straight forward.   

 (B):  For all (𝛿, 𝜌, 𝜎) ∈ [0,1] × [0,1] × [0,1] with 𝛿 + 𝜌 + 𝜎 ≤ 2, we have 𝑥 ∈ 𝜇
(𝑉̂1+𝑉̂2)

[𝛿]
⇔

{𝜇𝑉̂(𝑥1) ∧ 𝜇𝑉̂(𝑥2)} ≥ 𝛿
𝑥=𝑥1+𝑥2

𝑠𝑢𝑝
 

⇔ there exists 𝑥1, 𝑥2 such that 𝑥1 + 𝑥2 = 𝑥 and 𝜇𝑉̂(𝑥1) ∧ 𝜇𝑉̂(𝑥2) ≥ 𝛿 

⇔ there exists 𝑥1, 𝑥2 such that 𝑥1 + 𝑥2 = 𝑥 and 𝑥1 ∈ 𝜇
𝑉̂1

[𝛿]
 and 𝑥2 ∈ 𝜇

𝑉̂2

[𝛿]
 

The proof for 𝛾
𝑉̂1+𝑉̂2

[𝜌]
= 𝛾

𝑉̂1

[𝜌]
+ 𝛾

𝑉̂2

[𝜌]
 and 𝜍

𝑉̂1+𝑉̂2

[𝜎]
= 𝜍

𝑉̂1

[𝜎]
+ 𝜍

𝑉̂2

[𝜎]
 are similar.  

Preposition 3.10:  Let 𝑋̂ be a vector space with 𝐷(𝑋)̂ = 𝑚 and 𝑉̂1, 𝑉̂2 ∈ 𝑁(𝑋̂).   

Then, 𝐷(𝑉̂1 + 𝑉̂2) + 𝐷(𝑉̂1 ∩ 𝑉̂2) = 𝐷(𝑉̂1) + 𝐷 (𝑉̂2) 

Proof: For all (𝛿, 𝜌, 𝜎) ∈ [0,1] × [0,1] × [0,1] with 𝛿 + 𝜌 + 𝜎 ≤ 2,  let 𝑛 ∈ 𝜇𝐷(𝑉̂1+𝑉̂2)+𝐷(𝑉̂1∩𝑉̂2)
[𝛿]

.  

Then, there exists a 𝑛1, 𝑛2 such that  𝑛 = 𝑛1 + 𝑛2 and 𝑛1 ∈ 𝜇𝐷(𝑉̂1+𝑉̂2)
[𝛿]

 and 𝑛2 ∈ 𝜇𝐷(𝑉̂1∩𝑉̂2)
[𝛿]

.  

Then by preposition 3.6, 𝑛1 ≤ 𝐷 (𝜇(𝑉̂1+𝑉̂2)
[𝛿]

) = 𝐷 (𝜇
𝑉̂1

[𝛿]
+ 𝜇

𝑉̂2

[𝛿]
) and   𝑛2 ≤ 𝐷 (𝜇(𝑉̂1∩𝑉̂2)

[𝑎]
) =

𝐷 (𝜇
𝑉̂1

[𝑎]
∩ 𝜇

𝑉̂2

[𝑎]
).  

Then, 𝑛 ≤ 𝐷 (𝜇
𝑉̂1

[𝛿]
+ 𝜇

𝑉̂2

[𝛿]
) + 𝐷 (𝜇

𝑉̂1

[𝛿]
∩ 𝜇

𝑉̂2

[𝛿]
) = 𝐷 (𝜇

(𝑉̂1)

[𝛿]
) + 𝐷 (𝜇

(𝑉̂2)

[𝛿]
). 

Then there exists 𝑛1
′ and 𝑛2

′  such that 𝑛 = 𝑛1
′ + 𝑛2

′ and 𝑛1
′ ≤ 𝐷 (𝜇

(𝑉̂1)

[𝛿]
) and 𝑛2

′ ≤ 𝐷 (𝜇
(𝑉̂2)

[𝛿]
).  

Now, by preposition 3.6, 𝑛1
′ ≤ 𝜇𝐷(𝑉̂1)

[𝛿]
 and 𝑛2

′ ≤ 𝜇𝐷(𝑉̂2)
[𝛿]

. 

 Therefore, 𝑛 = 𝑛1
′ + 𝑛2

′ ∈ 𝜇𝐷(𝑉̂1)
[𝛿]

+ 𝜇𝐷(𝑉̂2)
[𝛿]

=𝜇𝐷(𝑉̂1+𝑉̂2)
[𝛿]

.  

Thus, 𝜇D(𝑉̂1+𝑉̂2)+D(𝑉̂1∩𝑉̂2)
[𝛿]

⊆ 𝜇𝐷(𝑉̂1)
[𝛿]

+ 𝜇𝐷(𝑉̂2)
[𝛿]

. 

 Similarly,  𝛾
𝐷(𝑉̂1+𝑉̂2)+𝐷(𝑉̂1∩𝑉̂2)
[𝜌]

⊆ 𝛾𝐷(𝑣1)
[𝜌]

+ 𝛾
𝐷(𝑉̂2)
[𝜌]

.  

  Also, the reverse inclusion relationship can be proved.  

Hence, for all (𝛿, 𝜌, 𝜎) ∈ [0,1] × [0,1] × [0,1] with 𝛿 + 𝜌 + 𝜎 ≤ 2, 

 𝜇𝐷(𝑉̂1+𝑉̂2)+𝐷(𝑉̂1∩𝑉̂2)
[𝛿]

= 𝜇𝐷(𝑉̂1)
[𝛿]

+ 𝜇𝐷(𝑉̂2)
[𝛿]

,  𝛾𝐷(𝑉̂1+𝑉̂2)+𝐷(𝑉̂1∩𝑉̂2)
[𝛿]

= 𝛾𝐷(𝑉̂1)
[𝛿]

+ 𝛾𝐷(𝑉̂2)
[𝛿]

 and 

 𝜍
𝐷(𝑉̂1+𝑉̂2)+𝐷(𝑉̂1∩𝑉̂2)
[𝜌]

= 𝜍
𝐷(𝑉̂1)
[𝜌]

+ 𝜍
𝐷(𝑉̂2)
[𝜌]

.   
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Thus, 𝐷(𝑉̂1 + 𝑉̂2) + 𝐷(𝑉̂1 ∩ 𝑉̂2) = 𝐷(𝑉̂1) + 𝐷 (𝑉̂2). 

4. CONCLUSIONS  

In this article, the idea of neutrosophic dimension in a neutrosophic vector space is discussed. 

This idea can be extended by interpreting some examples which will be appended in future work. 
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ABSTRACT 

Neutrosophic Soft Set (NSS) is one of the potential mathematical model for handling parametric 

uncertainties in dynamic environment. Q-NSS is extended version of NSS which incorporates the 

features of both NSS and Q-fuzzy set in handling uncertainty. Nowadays medical diagnosis system 

is prone to varieties of uncertainty in terms of uncertain disease symptoms, processing logic, and 

even uncertain clinical decisions. Handling the uncertainties is important before arriving at 

meaningful inferences. Hence in this chapter a comprehensive survey is carried out towards Q-

NSS in all possible dimensions of medical diagnosis system. The survey highlights all possible 

mathematical frameworks used for medical diagnosis along with their limitations which include 

fuzzy logic, evidential reasoning, and quantum & machine learning decisions. The main focus of 

the paper is to perform early diagnosis of diseases, decision making under uncertainty, solutions 

for multi-attribute decision making problems, arriving at best decisions from several alternatives, 

and many more. A comparative analysis of Q-NSS is carried out with other mathematical 

frameworks like Neutrosophic Soft Set (NSS), and Q-Fuzzy set. It is inferred that the performance 

of Q-NSS is satisfactory towards performance metrics like error rate, throughput, latency, and 

resource utilization.  

  KEYWORDS: Uncertainty, neutrosophic set, neutrosophic soft set, medical diagnosis. 

1. INTRODUCTION
Neutrosophic Soft Set (NSS) is a form of mathematical model that is used to handle parameter

uncertainties by making use of three different types of membership functions. The membership

functions considered are truth membership, false membership function, and indeterminacy

membership function. In many critical real-time applications such as military, medical science,

astrology, and so on, the incomplete input information is handled efficiently using NSS theory

(Evanzalin et al., 2020). The extended version of NSS is Q-NSS which is a hybrid form of NSS

it preserves the characteristics of both NSS and Q-fuzzy set. The characteristics of NSS is useful

in handing the information uncertainty and similarly, characteristics of Q-fuzzy set is useful in

handling the information which is in a two-dimensional format. The Q-NSS extends support for

numerous operators which include union, intersection, OR, and AND operations. The

mathematical definition of Q-NSS is as follows: Consider U as a universal set, the Q is taken as

a nonempty set. Suppose 𝜇′𝑄 − 𝑁𝑆𝑆(𝑈) is the set composed of multiple Q-NSSs on the universal

set U over the pair (Γ𝑄, 𝐴). Where Γ𝑄 = 𝐴 → 𝜇′𝑄 − 𝑁𝑆𝑆(𝑈), such that the Γ𝑄(𝑒) = 𝜙, provided

𝑒 ∉ 𝐴 (Abu Qamar et al., 2019; Dalkılıç & Demirtaş, 2023; Qamar et al.,2020). The comparison
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between NSS, Q-fuzzy set, and Q- NSS is shown in Table 1 (Uluçay, 2021; Abuqamar, & Abd 

Ghafur Ahmad, 2022). 

Table 1: Comparison between Neutrosophic soft set, Q-fuzzy set,  

and Q- Neutrosophic soft set 

Sl. No Neutrosophic soft set Q-fuzzy set Q- Neutrosophic soft set 

1 Applied to universe of 

discourse domain 

Applied to universe of 

discourse domain 

Applied to universe of 

discourse domain 

2 Co-domain of 

application is [0,1]3 

Co-domain of application 

is [0,1] 

Co-domain of application is 

[0,1]3 

3 Truth membership 

function is present 

Truth membership 

function is present 

Truth membership function 

is present 

4 False membership 

function is present 

False membership 

function is not absent 

False membership function 

is present 

5 Inderminacy 

membership function 

is present 

Inderminacy membership 

function is absent 

Inderminacy membership 

function is present 

6 Q-function is absent Q-function is present Q-function is present 

7 Able to handle 

uncertainty in the 

computing domain 

Unable to handle 

uncertainty in the 

computing domain 

Able to handle uncertainty 

in the computing domian 

8 Unable to handle 

information in two-

dimensional format 

Able to handle 

information in two-

dimensional format 

Able to handle information 

in two-dimensional format 

 
Q-NSS is used to in a variety of applications which include game theory, measurement theory, 

logical rules and relationships representation, economics, medical diagnosis, agriculture, 

transportation, analysis of food grain items, pattern recognition, industrial automation, share market 

prediction, and so on. One of the promising application areas of Q-NSS is medical diagnosis, where 

the Q-NSS can handle uncertainty in every stage of diagnosis which includes patient observation, 

data preparation, data categorization, and data planning.  

 

2.  PRELIMINARIES  

2.1.  Fuzzy Logic 
Fuzzy logic is being applied in day-to-day life. It is being used in a variety of applications which 

include aerospace, highway systems, air condition systems, underwater vehicles, transportation, 

radiology diagnosis, modeling neurological findings, crime investigation, and so on.  

 

The literature review of works carried out for performing medical diagnosis using fuzzy logic is 

discussed below.  

Bany Domi presents a fuzzy logic-based framework that is applied for medical diagnosis 

applications.  Fuzzy logic is used in a variety of applications which include Asthma disease 
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diagnosis, metabolic sickness determination, bacterial disease identification, finding irregularities 

in cell development, periodontal disease recognition, and so on. The process followed by the fuzzy 

system includes the following steps that are feeding in the crisp input, fuzzification, feeding of fuzzy 

inputs, evaluation of fuzzy rules, and generation of fuzzy outputs, defuzzification, and crisp output 

generation. The developed fuzzy logic framework is used to identify the risks of heart disease among 

individuals. The framework is tested by experts which represents an accuracy of 94%. The most 

important benefit offered by the framework is any individual patient can self-diagnose himself for 

heart disease without the need for any doctors (Khawla, 2021).  

 

 Bartczuk, and Rutkowska (2019) discussed the type-2 fuzzy decision tree approach for medical 

diagnosis. The decision tree is composed of several attribute values which are categorized using 

type-2 soft set theory. After experimenting, the results obtained are tested using three benchmark 

datasets namely, heart disease, breast cancer disease, and Pima Indian diabetes, which are found to 

be satisfactory. The well-known method for the development of a crisp decision tree is ID3 which 

is combined with fuzzy logic for the classification of medical diagnosis. The decision tree is 

developed by considering an array of decision rules in which every rule represents a leaf node of 

the tree. The reason for using a type-2 soft set over the attribute value is words can give different 

meanings in an expert system. So, associating an expert value with each value helps in arriving at 

exact inferences (Bartczuk, &Rutkowska, 2019).  

 

Ejegwa (2019) described the application of an advanced Pythagorean fuzzy set in the medical 

diagnosis field. Uncertainty plays an important role in medical applications which influences on 

decision making process. Here Pythagorean fuzzy set which is one of the recently developed 

mathematical frameworks is applied for medical diagnosis which helps in quick decision making 

ability. Pythagorean fuzzy set is a generalized form of intuitionistic fuzzy set. The performance of 

Pythagorean fuzzy set overcomes the composite max-min-max relation of Pythagorean fuzzy set. It 

achieves sustainable performance while solving multiple criteria and multiple attribute, and pattern 

recognition decision making problems ( Ejegwa, 2019 ). 

2.2.  Evidential Reasoning 
 

A high-level view of inference drawn using evidential reasoning is shown in Figure 1. Evidential 

reasoning mechanism draws an automated inference from the evidence. Meaningful inferences are 

drawn from several factors like inherent factors, internal controls, analytical procedures, and tests 

of details. It is a generic form of multi-criteria-based decision-making approach that addresses the 

computation problem considering both qualitative and quantitative parameters considering 

randomness and ignorance-related parameters. The recent works carried out for decision making 

using evidential reasoning are given below.  

Chang et al. (2021) presented evidential reasoning based on belief rule mining for diagnosis of 

medical applications.  A set of multiple models consisting of belief rules with varying weights are 

initialized. During the mining of belief rules the reliability and weights of the models are determined 

and a customized set is generated. In this work thyroid disease dataset is considered and the 

correctness of medical decisions are determined. The belief rule mining approach is composed of 

several stages which include optimization of sub-model, calculation of sub-model weight, 

calculation of sub-model reliability, mining of belief rules, and validation of the results obtained. 

Initially, the beliefs generated by the belief rule mining approach are inaccurate but over a period 

of time accuracy improves (Chang et al., 2021).  
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Figure 1: Inference from evidential reasoning 

 

 

Liao et al. (2022) presented an evidential reasoning approach based on linguistic belief for medical 

disease diagnosis. The approach is tested over the lung cancer disease diagnosis. The traditional 

evidential reasoning approach is extended using a linguistic-belief system which allocates hesitancy 

degree-based weights for the experts. It is applied to problems involving multiple criteria and 

multiple expert decision-making problems.  It works in several stages which include an invitation 

for Q-experts to evaluate the alternatives, calculation of hesitancy degree for alternatives, 

calculation of weight vector, combining the belief degree of several alternatives, and rank the 

alternatives to generate utility values  (Liao et al., 2022).  

 

Fu et al. (2021) discussed an evidential reasoning approach based on a driven drive approach driven 

by machine learning algorithms. The advantage of both evidential reasoning and machine learning 

is combined with the interpretability feature for multiple criteria-based decision-making 

applications. The hybrid approach is tested over the thyroid module of the tertiary hospital to 

achieve high-performance results. The proposed method works in several stages which include a 

collection of historical data, a comparison pf performance attained by machine learning algorithms, 

and exploratory decision-making based on evidential reasoning and machine learning algorithms. 

A set of machine learning algorithms is considered, out of which one best machine learning 

algorithm is chosen and is tied up with evidential reasoning to generate accurate exploratory 

solutions for multiple criteria decision-making problems (Fu et al., 2021) 

2.3.  Quantum and Machine Learning decisions 
Quantum machine learning is one of the powerful approaches for decision making which is based 

on data constraints. The efficiency of quantum machine learning improves for episodic kind of tasks 

and decision-making games. A high-level view of decision-making using quantum enriched 

machine-learning approach is shown in Figure 2. The decisions are made using two approaches, 

namely, model-based reinforcement learning, and model-free reinforcement learning. In model-

based reinforcement learning, the model represents the varying dynamic states of the environment. 

Here the agent is enabled with prior knowledge of the real world to develop an exact representation 

of the functional state of the computing environment. Whereas model-free reinforcement learning 

is exactly the opposite of model-based reinforcement learning, which does not use transition 

probability and reward function to solve computation-oriented problems. The recent works carried 
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out for decision-making using quantum enriched machine learning approach are given below.  

 

 
Figure 2: Decision making using quantum enriched machine learning approach 

 

Njafa and Engo (2018) discussed the application of quantum mechanics for medical diagnosis. 

Quantum-enhanced associative memory is useful for untrained medical staff to identify dengue, 

malaria, and many more which exhibit similar kinds of signs and symptoms. The associative 

memory can classify between single infection and poly infection.  A hybrid model is designed that 

combines two algorithms linear quantum retrieving algorithm and non-linear quantum search 

algorithm which perform precise medical diagnosis. The user interface is very much friendly and 

the cost of operation is less (Njafa & Engo, 2018) 

 

 

Solenov et al. (2018) explained the potential features of quantum computing and machine learning 

which enhances the approach of clinical research and medical practice followed in modern days. 

The computational power of quantum computing combined with complexity feature of machine 

learning helps in delivering on time results in real world. Because of the availability of huge amount 

of data models enhanced with the quantum computing power, the medical expert is able to determine 

the therapy suitable for any individual patients. The treatment plan is updated to determine treatment 

response by considering various characteristics of patient including genetic, age, race, gender, and 

so on (Solenov et al., 2018).  

 

 Kumar et al. (2021) detected the chances of heart failure among adolescents using machine learning 

enhanced with quantum computing technology. The features related to heart failure is normalized 

by combining the algorithms min-max, scalar, and pipelining techniques. The comparison is 

performed between quantum random forest, quantum K-Nearest neighbor, quantum decision tree, 

and quantum random forest. The performance of the above quantum-enriched machine learning 

algorithms is found to be better compared to traditional machine learning algorithms. The execution 

time encountered between quantum-enriched machine learning algorithms is very much less, 150 

ms (Kumar et al. (2021) 

 

However, the existing works dealing with the application of fuzzy sets, rough sets, evidential 
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reasoning, quantum decisions, and machine learning have several limitations in decision-making 

for medical diagnosis problems. The limitations observed with the use of fuzzy sets are, namely, 

the loss of valuable information from the available dataset, compromised accuracy of the system, 

the reasoning is not precise, and many more. Limitations with the use of evidential reasoning are, 

namely, rule-based decision-making has practical implementation limitations, decision-making 

becomes difficult under uncertainties, and many more. Limitations while making quantum decisions 

are: quantum systems are highly sensitive to noise and errors, the quality of computation degrades 

over a period of time, the error correction process is tedious, etc. Similarly, limitations of machine 

learning are: high chances of errors in results interpretation, lack of trust over the inference drawn, 

complex and difficult interpretation, and so on.  

3. MAIN FOCUS OF THE ARTICLE 

The main focus of the article is the design and development of Q-NSS framework for medical 

diagnosis application. The medical diagnosis domain is composed of four important components 

planning phase, patient observation and measurement, data interpretation, and data categorization. 

The decision-making under uncertain medical diagnosis problems becomes easier with the use of 

Q-NSS framework, as it involves four important components that are Q-function, false-function, 

truth-function, and indeterminacy-function. A high-level view of Q-NSS and its application in 

medical diagnosis is shown in Figure 3. 

 

 
Figure 3: High level view of Q-NSS and its application in medical diagnosis 

 

3.1. Blurred and Hazed Information: Three different Perspectives of Human 

Disease  
Many times, the decisions taken by clinical experts fail as they fail to handle uncertainty caused 

because of the blurred and hazed information associated with patient records. The hazed information 

in the medical system is broadly classified into five types. They are disciplinary, ontological, 

conceptual, epistemic, and vagueness. The probable reasons for the haziness of medical information 

are medical systems' lacks of precise boundaries, inability to manage indistinct phenomena, 

availability of uncertain knowledge about the diseases, and a wide variety of fact-value interactions 

between the patient and doctor. The blurred and hazed information is obtained because of the three 

perspectives of the human disease diagnosis process which is shown in Figure 2. It is observed from 

Figure 2 that the symptoms exhibited by illness, disease, and sickness are overlapping in nature. 

This creates lot of ambiguity while processing the patient information and arriving at particular 
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clinical decisions.  

 
Figure 2: Three different perspectives of human disease  

 

Comparatively, the overlapping between illness, disease, and sickness is high for chronic diseases 

and critical diseases like diabetes, heart disease, stroke, cancer, variation in blood pressure, asthma, 

and many more. Whereas the overlapping between illness, disease, and sickness is low for non-

chronic diseases like fever, diarrhea, headache, acute illness, gastric, and many more. The inability 

to handle the overlapping characteristics of three different perspectives of human disease leads to 

wrong clinical decisions.  

 

3.2. Uncertainty in Medical Diagnosis System 

Medical diagnosis systems are inherently prone to a variety of uncertainties in the field of 

medicine. There are several sources of uncertainties which include incompleteness in the voice of 

medicine suggested, ambiguity in the symptoms conveyed by the patients, inability to arrive at the 

best decision that works well for the patient, and complexity that arises from collaborative 

communication between multiple clinical hospitals. Out of all sources of uncertainty, uncertainty 

that arises from patient symptoms is the most common. In most of the cases the patient exhibit 

symptoms which cannot be differentiated from one another concerning time. Because of 

undifferentiated symptoms, doctors/clinicians find it difficult to precisely identify the disease and 

give suggest proper medicine. The uncertainty in diagnosis is associated with lot of other diagnostic 

variations which include unnecessary hospitalization of patients, increased treatment cost, conflict 

between patient and clinician, overutilization of healthcare resources, excessive contribution to 

generation of diagnostic errors, and many more. According to a recent survey, it is predicted that 

one among twenty patients suffers from diagnostic error which causes fatal consequences. If the 

diagnostic uncertainties are handled with less care it results in significant effects on both the 

diagnosis system and outcomes generated by the patients. Aggregating multiple QNSSs is found 

to be one of the promising mathematical frameworks to arrive at accurate decisions by handling a 

variety of uncertainties (Alizadehsani et al., 2021). A pictorial representation of decision-making 

framework using QNSS over a patient exhibiting uncertain symptoms is shown in Figure 3. 
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Figure 3: Decision-making framework using QNSS 

Example: One of the useful applications of QNSS in the medical system is decision-making under 

uncertain situations. Consider the situation in which a patient is exhibiting uncertain symptoms, 

then aggregation operation combined with the QNSS is very useful in arriving at exact decisions. 

N observers will be spooled across the patient and each observer will employ a QNSS then 

aggregation operation is employed over the set of QNSS outputs generated by the N observers. 

The QNSS towards all probable diseases from disease-A to disease-N is generated based on the 

similarity matching factor. Further, the diseases are sorted from bigger values to smaller values 

based on their similarity index. Finally, the disease with the biggest similarity is output.  

3.3. Early Detection of Disease 
For chronic diseases like cancer, HIV, tuberculosis, influenza, and heart disease, a special diagnosis 

is required to identify the disease in its early stages even though symptoms are present or absent. 

Early detection of disease offers several advantages in terms of early treatment and intervention, 

improving the quality of life of the patient, longer survival of patients, changing the treatment plans, 

preventing the spread of disease to various parts of the body, saving lives, preventing the 

complications in the disease, and many more. Hence there is a necessity to identify the disease in 

early stage and prevent it from propagation to further parts of the body.  

Nowadays vast amount of medical data is available over the Internet for analysis purposes. Several 

machine learning algorithms are available in the literature which are extensively used for disease 

prediction. However, for properly assessing the available patient’s data, early detection of disease 

is possible. Many mathematical frameworks like probability theory, rough sets, fuzzy sets, and soft 

sets are used to deal with parametric uncertainty. However decision-making system based on Q-

NSS aids in processing huge amounts of available patient data for proper diagnosis and prediction 

of disease. As the Q-NSS offers many advantages in terms of denoising the gathered information, 

proper segmentation of the large volume of preprocessed information, and precise classification of 
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segments (Abbosh et al., 2020).  

3.4. Solving Multi-Attribute Decision-Making Problems 
Developing an ideal decision-making system for the medical field in real-life scenarios is very 

challenging in nature. First, the complex medical form is examined carefully, and all characteristics 

in terms of uncertainty, conflicting objectives set, inappropriate perspectives, and varying interests. 

The multi-attribute decision process is composed of several factors that are different scenarios, 

criteria, actions, and alternatives. These factors are interdependent hence they need to be handled 

with care for choosing the best alternative among the available alternatives of treatments.   

 

The Q-NSS uses truth membership, falsity membership, and Indeterminacy membership functions 

combined with the Q-function to precisely evaluate the group of alternative treatments available for 

the disease. Then select the best treatment that satisfies the requirement exhibited by the multiple 

attributes of disease associated with the patient. The application of Q-NSS aids in proper treatment 

selection because of several advantages which include prioritizing the decision attributes, 

establishing the tradeoff between the conflicting attributes, performing proper decision analysis, 

choosing the appropriate utility function for parameter selection, analysis of the applicability of 

various solutions, and many more (Ullah t al., 2020)   

 

3.5. Prediction of best treatment using Q-NSS 
The Q-NSS is useful in choosing the best treatment action to improve the quality of treatment and 

improve the life expectancy of the patient. The multiple valued Q-NSS are capable enough of 

precisely extracting the inherent rules and useful patterns from the historical data which increases 

the prediction accuracy of the model. The useful information is not lost even when a fluctuating 

pattern appears in the time series model. Even when different neutrosophic sets exhibit the same 

values, a similarity measure is applied over the sets using different distance functions to arrive at a 

meaningful conclusion. The characteristic function of Q-NSS with hyper compositional structures 

expands Newton's mechanics with a neutrosophic set to choose the best course of action among the 

available set of actions (Jamshidi, 2020). 
 

3.6. Performance analysis 
Three different mathematical frameworks are Neutrosophic Soft Set (NSS), Q-Fuzzy Set (QFS), 

and Q-Neutrosophic Soft Set (QNSS) for medical diagnosis purposes. Table 2 provides a 

comparison of performance achieved in handling medical diagnosis uncertainty. The performance 

of QNSS overtakes other two popular mathematical frameworks that are QFS and NSS.  

 

 

Table2: Comparison of performance achieved by three potential mathematical frameworks i.e. 

Neutrosophic soft set, Q-fuzzy set, and Q-Neutrosophic soft set. 

Mathematical 

Frameworks 

Error 

rate  

Throughput Latency Resource 

utilization 

NSS High Medium  High Medium 

QFS High Low Medium Medium 

QNSS Less High Low High 

 

74



New Trends in Neutrosophic Theory and Applications, Vol. III, 2024                                                  

 

4.  FUTURE RESEARCH DIRECTIONS 

In future work, all probable sources causing uncertainty in high computing domains like healthcare 

and the military will be discussed. Further in-depth analysis of all probable applications of QNSS 

to other application areas like transportation, education, academics, and entertainment will be 

carried out. Mathematical modeling of QNSS is performed by considering various performance 

metrics like latency, delay, jitter, and throughput. 

5. CONCLUSION 

This chapter considers the medical diagnosis system as one of the uncertainty-prone applications. Q-

NSS is considered as a potential mathematical framework to handle the uncertainty in the medical 

diagnosis domain. The sources of uncertainties are identified and useful applications of Q-NSS like 

early disease detection, multi-attribute decision-making, and handling hazed information are 

discussed in detail.  
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ABSTRACT 

This chapter presents a practical method for evaluating the performance measures of 

non-preemptive neutrosophic priority queues with uneven services, labeled as 

NM/NM/1. This system comprises a solitary server, where both arrival and service 

rates are expressed using a single-valued trapezoidal neutrosophic number (SVTNN). 

The queueing model involves exponentially distributed service times, arrivals following 

a Poisson process, and the presence of only one server. To simplify the neutrosophic 

queueing model into a more straightforward form, the (α, β, γ)-cut approach along 

with Zadeh’s extension principle are employed, and the results are presented. 

Moreover, a concrete example is offered to elucidate the analytical methodology 

established within this study. 

KEYWORDS: Neutrosophic set, single valued trapezoidal neutrosophic number, 

on-preemptive priority queue with uneven services, queueing models, arrival rate, 

service rate. 

1. INTRODUCTION

Fundamental queuing systems consist of orderly queues where the sequence of 

waiting and the rates of client arrival are carefully managed. However, in real-world 

circumstances, the majority of queueing models involve priority discipline since the 

most important activity must be given preference. The usage of priority queueing 

models is beneficial in many different contexts. In priority queues, clients receive 

service according to the priority of their requests. Customers with the highest priorities 

receive service first, while those with lower priorities receive service with less urgency. 

Priority queues are used in communication, and engineering to examine networks with 

varying levels of service quality. 

Preemptive priority and non-preemptive priority are both common types of 

priority control. Consider a queueing system with two types of customers: when a first- 

class client arrives at the server and discovers that the server is serving a second -class 

customer, he squeezes the customer-in-service out and obtains service at once. 

Customers belonging to the same class follow the FCFS discipline at the same time; this 

method is known as preemptive priority queueing. If a first -class arriving customer 

discovers that the server is serving a second-class customer, he should wait until the 

customer-in -service finishes its service before beginning to receive service; customers 

of the same kind obey the FCFS discipline; this mechanism is known as non-preemptive 

priority queueing. 
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 The inception of queueing theory can be dated back to the early 1900s through the 

examination of the Copenhagen telephone exchange by Agner Kraup Erlang, a Danish 

engineer, statistician, and mathematician. Erlang's thorough investigations into wait 

times in automated telephone services and his suggestions for enhancing network 

efficiency gained widespread acceptance among telephone companies. By 1963, his 

work had led to the exploration of preemptive priority queues involving K-class clients, 

as well as preemptive repeat and preemptive resume techniques. 

 The concept of fuzzy sets (Zadeh, 1965) which makes an element belongs to the 

set partially using the membership function that takes the value in the range [0,1]. The 

applications of M/M/c model are in decision making for  reducing the waiting time for 

the customers in the queue (Zadeh, 1965). 

 Atanassov introduced the concept of intuitionistic fuzzy sets in 1986, which 

expands upon Zadeh's fuzzy set notation. In intuitionistic fuzzy sets, elements are 

characterized by degrees of both membership and non-membership.  

 The notion of neutrosophic probability, set, and logic was pioneered, presenting 

a broader framework beyond fuzzy logic and intuitionistic fuzzy logic, known as 

neutrosophic logic. When the parameters of a queueing system are represented by 

neutrosophic numbers, it qualifies as a neutrosophic queue (Smarandache, 1998). 

  Pardo and De La Fuente (2007) explored the optimization of a priority-

discipline queueing model utilizing fuzzy set theory, incorporating both preemptive 

and non-preemptive priority systems. Additionally, Rashad and Mohamed (2021) 

conducted a case study investigating neutrosophic theory and its utilization across 

different queueing models. 

 In their study, Parimala and Palaniammal (2014) concentrated on the single-

server delayed vacation aspect of the M/M (a, b)/1 queueing system, specifically 

examining the switchover state. They derived steady-state solutions and analyzed the 

system's characteristics, providing numerical illustrations for various parameter values. 

 Smarandache (2016) provided a critical examination of neutrosophic numbers, 

where he introduced the methodologies for subtracting and dividing neutrosophic single-

valued numbers. Furthermore, he elucidated the constraints associated with these 

operations for neutrosophic single-valued numbers, along with those for neutrosophic 

single-valued over numbers, under numbers, and off numbers. 

 Sumathi and Antony Crispin Sweety (2019) introduced a novel method for 

handling differential equations using trapezoidal neutrosophic numbers. Neutrosophic 

Little's formulas played a crucial role in addressing queueing system challenges within 

a neutrosophic framework, as observed in the Erlang service queueing model with 

neutrosophic parameters (Zeina, 2020b).  

Zeina (2020a) presented a neutrosophic event-based queueing model. An interpretation 

of a non-preemptive priority queueing system in a fuzzy environment with 

asymmetrical service rates was presented by (Karupothu et al., 2021). Heba and 

Mohame (2021)] examined the performance metrics of the neutrosophic NM/NM/1, 

NM/NM/s, and NM/NM/1/b queueing systems (Zeina, 2020c).  

  

 In their research, Zeina and Hatip (2021) put forth an extensive characterization 

of neutrosophic random variables, exploring their characteristics and applications 

across various fields like quality control, stochastic modeling, reliability theory, 

queueing theory, decision-making, and electrical engineering, prioritization 
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mechanisms determine the sequence in which tasks or requests are handled. They also 

advanced the concept of linguistic single-valued neutrosophic M/M/1 queues, In this 

context, the rates of arrival and departure are represented using single-valued 

neutrosophic numbers denoted by 𝐴̃ = (T, I, F), with T indicating truth, I representing 

indeterminacy, and F signifying falsity.  

Aarthi et al. (2022) undertook a research endeavor that involved evaluating the 

efficiency of non-preemptive priority queueing systems by examining both fuzzy 

queueing and intuitionistic fuzzy queuing models across a range of service rates. In 

parallel, Suvitha et al. (2023) delved into exploring neutrosophic priority discipline 

within queueing models. 

2.  PRELIMINARIES  

Definition 1 

A neutrosophic set  ( Smarandache, 1998) N is given as N= {r, (TA(r), IA(r), FA(r))/ r ∈ 

r}where TA(r), IA(r), FA(r): r → ]0−,1+[ are the degree of truth value, indeterminacy 

value and falsity value such that0
− ≤ sup TA(r) + sup IA(r) + sup FA(r) ≤ 3+  

Definition 2 

A single valued neutrosophic set (SVNS) ( Wang et al., 2010) N in r is stated as N = {r, 

(TA(r), IA(r), FA(r)) / r ∈ r}, where, TA(r), IA(r), FA(r) ∈ [0,1] and 0 ≤ sup TA(r) + sup 

IA(r) + sup FA(r) ≤ 3. 

Definition 3 

A single valued trapezoidal neutrosophic number (SVTNN) (Sumathi et al., 2019) 

A is defined as  

 where   

 where  . 

 where . 

 

Definition 4 (Sumathi et al., 2019) 
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(α, β, γ)-cut of a SVTNN is defined as follows: 

 

, 

              [ ( +  ( , 

              [ ( +  ( . 

 

Definition 5 (Sumathi et al., 2019) 

Consider two closed and bounded real intervals denoted as [c1, c2] and [c3, 

c4]. If ∗ represents addition, subtraction, multiplication or division, then [c1, c2] ∗ 

[c3, c4] = [α, β]. For division, it is presupposed that the divisor does not belong to 

the closed interval [c3, c4]. Utilizing fundamental operations, the development 

proceeds as follows: 

i.  

ii.  

iii. 

 

iv.  

 

3. NEUTROSOPHIC NON PREEMPTIVE PRIORITY QUEUEING MODEL 

 

 The following section discusses the examination of a single server queue 

with non-preemptive priority within a neutrosophic framework. 

3.1 A standard M/M/1 queue with a non-preemptive priority scheme:  

Take into account a queue with a single server, where non-preemptive priority 

is applied. In this scenario, two distinct client arrival streams are observed: one with 

higher priority and the other with lower priority. These streams adhere to separate 

Poisson processes characterized by parameters and , respectively. A single 

server tends to these clients, and service times follow an exponential distribution 

governed by rates  and . Clients with higher priority are granted immediate 

service precedence over others. The system's capacity is infinite, and a first-come, 

first-served principle is upheld within each priority group. 

Several aspects of system performance measures include: 
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• The mean queue length for higher-priority tasks:  

• Mean queue length for lower priority:  

• Mean waiting duration for the higher priority queue:  

• Mean waiting duration for the lower priority queue:  

where  and traffic intensity , ,   

 

(a) Customers with higher priority being served (b) Customers with low priority being 

served 

Figure 2.1: Priority queue structured as M/M/1 system 

3.2 The construction of an NM/NM/1 queue model with non-

preemptive priority and dynamic service rates  

Consider a non -preemptive priority queueing system with a single server, 

operating under an NM/NM/1 configuration, where service times are uneven. The  

inter-arrival times for units with neutrosophic characteristics, denoted as , n=1,2 

as well as the  service times  , n=1,2 for units with first and second priority ,are 

approximately determined and expressed as follows: 

 

 

where U and V are the universal crisp sets of the neutrosophic inter arrival and 

neutrosophic service times and , are the 

corresponding membership functions. The -cuts of , n=1,2 and , 

n=1,2 are 

 

 

where the  and  are the crisp subsets of U and V 

respectively. By employing -cuts, it's possible to represent neutrosophic 
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interarrivals and service times through various confidence interval levels. 

Consequently neutrosophic queue can be simplified into a series of crisp sets ,each 

with unique -cuts. 

and  

 

In this proposal, a non-preemptive queueing model is introduced where 

both inter-arrival time n=1,2 and service times , n=1,2 are depicted as 

SVTNN. Confidence levels for these parameters are denoted by of  and by 

 and  

 The performance metric, symbolized as ,   can be articulated 

employing Zadeh's extension principle where in membership functions for 

truth, indeterminacy and the falsity of ,  and are defined as follows. 

  

and 

 

and 

 

We can define the lower and upper boundaries of the -cuts of   

as follows: 

 such that  

        (1) 

 such that  

         (2) 

where  and . 

If both  and  are reversible with respect to  then the left 

and right shape functions are  and  

respectively ,the resulting in the the truth membership function (z) as  

is expressed as  
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where  and  for the SVTNN. 

 

where  and  for the SVTNN. 

 

where  and  for the SVTNN. 

By employing the -cut approach, the suggested NM/NM/1 priority queue 

can be simplified to the conventional M/M/1 queue with non-preemptive priority.  

4. NUMERICAL EXAMPLE  

In this section, a practical example is presented to clarify the introduced 

NM/NM/1 queueing concept with non-preemptive priority. The arrival rates and 

service rates of first and second priority are denoted by SVTNN. 

 

 

 

 per hour respectively. 

The -cut of  and  are 

], 

], 

, 

 

The formulation of parametric programming problems to derive the membership 

functions   is based on   equations (1) and (2),  and their 

computation is outlined below. 

The performance metrices of 

i. - The mean length of a higher priority queue.  

ii. - The mean length of the queue for tasks with lower priority. 
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iii. - The average time spent waiting in the queue with higher priority  

iv. - The mean waiting duration in the queue with lower priority is 

determined by the corresponding parametric programs. 

These variations are solely distinguished by their objective functions and are 

outlined as follows: 

 

such that 

                                 

                                 

                  

                  

where .  is found when ,  approaches its lower bounds   

(l. b) and ,  approaches its upper bound (u. b) and  is found 

when ,  approaches its upper bound (u. b) and ,  approaches its lower 

bound (l. b).Therefore the optimal solution for (3) are 

=    and  

=  

 

which is estimated as 

 

 

such that 

                      

                      

(3) 

(4) 
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where .  is found when ,  approaches its lower bounds (l. 

b) and ,  approaches its upper bound (u. b) and  is found when 

,  approaches its upper bound (u. b) and ,  approaches its lower bound 

(l. b).Therefore the optimal solution for (4) are 

=   and 

=  

The indeterminacy membership function is  

 

which is estimated as 

 

 

such that 

                       

                       

                      

                      

where .  is found when ,  approaches its lower bounds (l. 

b) and ,  approaches its upper bound (u. b) and  is found when 

,  approaches its upper bound (u. b) and ,  approaches its lower bound 

(l. b). Therefore the optimal solution for (5) are 

=   and 

(5) 
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=  

The Falsity membership function is  

 

which is estimated as 

 

For different values of , the mean length of queue for higher priority  

 is calculated and shown in table 4.1. Moreover, there is a graphical 

representation that illustrates the concepts of truth, indeterminacy, and falsity 

concerning the mean queue length of higher priority is shown in figure 4.2, 4.3 and 

4.4.  

                                     Table 4.1 -cut for  

α 
𝑙𝐿𝑞1

 𝛼 

× 10−4 

𝑢𝐿𝑞1
(𝛼)

× 10−3 
β 

𝑙𝐿𝑞1
(𝛽)

× 10−5 

𝑢𝐿𝑞1
(𝛽)

× 10−3 
γ 

𝑙𝐿𝑞1
(𝛾)

× 10−5 

𝑢𝐿𝑞
(𝛾)

× 10−3 

0 1.81 1.78 0 30.32 1.24 0 27.00 0.87 

0.1 1.98 1.66 0.1 25.94 1.42 0.1 23.75 0.97 

0.2 2.16 1.55 0.2 22.10 1.62 0.2 20.86 1.09 

0.3 2.35 1.44 0.3 18.71 1.86 0.3 18.26 1.22 

0.4 2.56 1.34 0.4 15.74 2.13 0.4 15.93 1.37 

0.5 2.78 1.25 0.5 13.14 2.44 0.5 13.84 1.53 

0.6 3.02 1.16 0.6 10.90 2.81 0.6 11.96 1.72 

0.7 3.28 1.08 0.7 8.91 3.23 0.7 10.28 1.93 

0.8 3.55 1.01 0.8 7.20 3.73 0.8 8.79 2.16 

0.9 3.84 0.94 0.9 5.73 4.31 0.9 7.45 2.43 

1 4.16 0.87 1 4.46 5.01 1 6.26 2.73 
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Figure 4.1 Truth value for  

 

 

Figure 4.2 Indeterminacy value for  

 

 

                      Figure 4.3 Falsity value for  

 

The performance function of   of α is listed as follows. 

 

 

Equation (6) and (7) with (3) give the following results: 

(6) 

(7) 
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=        and  

=  

 

The performance function of   of β is listed as follows. 

 

                                                  (9) 

Equation (8) and (9) with (4) give the following result: 

=   and  

=  

  

The performance function of   of γ is listed as follows. 

                                          

                                                     (11) 

Equation (10) and (11) with (5) give the following results: 

 

=  and  

=  

(8) 

 

(10) 
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For varying values of , the average length of the queue for tasks 

with lower priority  is determined and shown in table 4.2. Additionally, a 

graphical depiction illustrating the concepts of truth, uncertainty, and falsehood 

concerning the mean  queue length of lower priority is presented in figures 4.4, 

4.5, and 4.6. 

Table 4.2 -cut for  

α 𝑙𝐿𝑞2
 𝛼  𝑢𝐿𝑞2

 𝛼  Β 𝑙𝐿𝑞2
(𝛽) 𝑢𝐿𝑞2

(β) γ 𝑙𝐿𝑞2
(γ) 𝑢𝐿𝑞2

(γ) 

0 0.1354 2.5032 0 0.2132 1.0162 0 0.3501 1.1666 

0.1 0.1481 2.2735 0.1 0.1851 1.2281 0.1 0.3144 1.3457 

0.2 0.1619 2.0777 0.2 0.1609 1.5022 0.2 0.2826 1.5633 

0.3 0.1769 1.9089 0.3 0.1398 1.8656 0.3 0.2543 1.8313 

0.4 0.1933 1.7619 0.4 0.1215 2.3624 0.4 0.2289 2.1670 

0.5 0.2110 1.6328 0.5 0.1055 3.0701 0.5 0.2063 2.5963 

0.6 0.2304 1.5186 0.6 0.0915 4.1374 0.6 0.1859 3.1595 

0.7 0.2515 1.4170 0.7 0.0793 5.8876 0.7 0.1676 3.9229 

0.8 0.2745 1.3260 0.8 0.0685 9.1795 0.8 0.1510 5.0038 

0.9 0.2997 1.2441 0.9 0.0591 17.2781 0.9 0.1361 6.6307 

1 0.3272 1.1701 1 0.0508 63.75 1 0.1226 9.3143 

 
 

 

Figure 4.4 Truth value for  
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Figure 4.5 Indeterminacy value for  

 

Figure 2.7 Falsity value for  

 

The performance function of   of α is listed as follows. 

 

 

Equation (12) and (13) with (3) give the following results: 

=  

and 

=  

(12) 

(13) 
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The performance function of   of β is listed as follows. 

 

 

Equation (14) and (15) with (4) give the following result: 

=   

  

and  

=

 

 

 

The performance function of   of γ is listed as follows. 

 

 

Equation (16) and (17) with (5) give the following results: 

=

and 

=

 

 

(14) 

(15) 

  (16) 

  (17) 
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For varying parameters of , The typical waiting duration in the 

queue with higher priority   is calculated and shown in table 4.3. Moreover, 

there is a graphical depiction illustrating the concepts of truth, uncertainty, and 

falsity regarding the mean waiting time in the queue with higher priority, as 

depicted in figures 4.7, 4.8, and 4.9. 

 

                                                               Table 4.3 -cut for  

α 
𝑙𝑊𝑞1

(𝛼)

× 10−5 

𝑢𝑊𝑞1
(𝛼)

× 10−4 
β 

𝑙𝑊𝑞1
(𝛽)

× 10−5 

𝑢𝑊𝑞1
(𝛽)

× 10−4 
γ 

𝑙𝑊𝑞1
 𝛾  

× 10−5  

𝑢𝑊𝑞1
 𝛾  

× 10−4 

0 3.01 5.95 0 3.78 2.48 0 4.49 2.18 

0.1 3.34 5.37 0.1 3.12 3.02 0.1 3.83 2.57 

0.2 3.71 4.85 0.2 2.56 3.69 0.2 3.25 3.04 

0.3 4.12 4.38 0.3 2.10 4.54 0.3 2.76 3.60 

0.4 4.57 3.96 0.4 1.71 5.61 0.4 2.34 4.29 

0.5 5.05 3.58 0.5 1.38 6.99 0.5 1.97 5.12 

0.6 5.59 3.24 0.6 1.11 8.78 0.6 1.66 6.15 

0.7 6.18 2.94 0.7 0.88 11.15 0.7 1.39 7.43 

0.8 6.82 2.66 0.8 0.69 14.35 0.8 1.15 9.03 

0.9 7.53 2.41 0.9 0.53 18.76 0.9 0.95 11.07 

1 8.31 2.19 1 0.40 25.05 1 0.78 13.69 

 
 

         

Figure 4.7 Truth value for  
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Figure 4.8  Indeterminacy value for  

                                                                                                   

 

Figure 4.9  Falsity value for  

The performance function of   of α is listed as follows. 

 

 

Equation (18) and (19) with (3) give the following results: 

=  

 and  

(18) 

(19) 
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=  

 

 

 The performance function of   of β is listed as follows. 

 

 

Equation (20) and (21) with (4) give the following result: 

=    

and  

=  

 

 

The performance function of   of γ is listed as follows. 

 

 

Equation (22) and (23) with (5) give the following results: 

=  

 and  

=  

 

(20) 

(21) 

(22) 

(23) 
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For varying values of , the mean waiting duration in the queue with 

lower priority queue  is determined and shown in table 4.4. Additionally, there 

is a graphical depiction illustrating the concepts of truth, uncertainty, and falsity 

regarding the mean waiting time in the queue with lower priority, as displayed in 

figures 4.10, 4.11, and 4.12. 

 

 

Table 4.4 -cut for  

α 𝑙𝑊𝑞2
(𝛼) 𝑢𝑊𝑞2

(𝛼) β 𝑙𝑊𝑞2
(𝛽) 𝑢𝑊𝑞2

(𝛽) γ 𝑙𝑊𝑞2
 𝛾  𝑢𝑊𝑞2

 𝛾  

0 0.0193 0.6258 0 0.0426 0.2540 0 0.0500 0.1944 

0.1 0.0214 0.5545 0.1 0.0363 0.3149 0.1 0.0442 0.2280 

0.2 0.0238 0.4947 0.2 0.0309 0.3953 0.2 0.0392 0.2695 

0.3 0.0264 0.4439 0.3 0.0263 0.5042 0.3 0.0348 0.3212 

0.4 0.0292 0.4004 0.4 0.0225 0.6562 0.4 0.0309 0.3869 

0.5 0.0324 0.3628 0.5 0.0191 0.8771 0.5 0.0275 0.4720 

0.6 0.0360 0.3301 0.6 0.0163 1.2169 0.6 0.0244 0.5851 

0.7 0.0399 0.3015 0.7 0.0139 1.7841 0.7 0.0217 0.7401 

0.8 0.0442 0.2762 0.8 0.0118 2.8685 0.8 0.0193 0.9622 

0.9 0.0491 0.2539 0.9 0.0100 5.5736 0.9 0.0172 1.3001 

1 0.0545 0.2340 1 0.0084 21.25 1 0.0153 1.8628 

  

           

                               Figure 4.10 Truth value for  
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 Figure 4.11 Indeterminacy value for  

              

 

 

Figure 4.12 Falsity value for  

4. FUTURE RESEARCH DIRECTIONS 
As a future work, other important performance measures can be analysed. 

Ranking technique could be employed with this proposed work for analysing 

decision -making problem. 

5. CONCLUSIONS 
 

Models of queueing with priority find application in various real-world 

scenarios, including urgency management in hospitals, communication networks, 

and other scenarios. The parameters used in queueing decision models may often 

be uncertain, leading to imprecise system performance measures. This paper 

introduces and outlines a single-server queueing model employing a non-
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preemptive priority discipline. The model's service time and arrival time are 

articulated through a single-valued trapezoidal neutrosophic numbers. An 

illustration is given to demonstrate the efficiency assessment of the proposed 

model, integrating the membership degrees of truth, uncertainty, and falsehood of 

SVTNN. This method illustrates enhanced efficiency. 
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ABSTRACT 
In the changes in the economy and dynamic market environment, franchisee business partnership 

is an important factor in the growth and strengthening of businesses. Technological developments 

and uncertain conditions are increasing this importance.  We are faced with uncertainty in solving 

real life problems. Interval-valued neutrosophic set is an effective method used to solve problems 

with uncertainty and complexity. The aim of this study is to determine the criteria that affect 

franchisee selection in the global cafe chain business. Franchisee selection problem has been 

investigated with interval-valued neutrosophic AHP. In the research, the priorities of the criteria 

and the scoring of the experts were taken into consideration. According to the results of the 

analysis, while the location was found to be the most important criteria, personal condition was 

obtained as the least important one. 

KEYWORDS:  Franchisee selection, cafe chain, ınterval-valued neutrosophic set, ınterval-

valued neutrosophic AHP. 

1. INTRODUCTION

The number of cafe businesses in the service sector is increasing day by day. This increase,

especially in cafe chain businesses, attracts the attention of investors in this direction. Investors

who want to become dealers of chain businesses with the franchisee system become a problem

that needs to be carefully decided in terms of franchisor businesses. Because the right choice of

business partner eliminates the negative monetary and strategic effects on the brand and increases

success. At the same time, franchisee partner selection is an important issue in the growth and

strengthening of businesses.

We have to struggle with many uncertainties in the decision problems we encounter in daily life. 

Scientists have presented theories such as mathematics, probability and fuzzy sets from past to 

present in solving such problems with uncertainty. Fuzzy set theory developed by Zadeh (1965) 

has been frequently used in solving problems involving uncertainty. Zadeh defined a fuzzy set as 

a membership function taking values in the interval [0,1], which is a set different from the empty 

set. Later, fuzzy sets appear in different structures such as intuitionistic fuzzy sets proposed by 

Atanassov (1986) and neutrosophic sets proposed by Smarandache (1998). In intuitionistic fuzzy 

set theory, uncertainty is analysed with membership and non-membership functions. Neutrosophic 

sets are a general version of fuzzy sets. In the case of neutrosophic sets, the uncertainty function is 
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considered a separate term, and each element x is characterized by a truth membership function 

, an uncertainty membership function , and a falsity membership function . 

Wang et al. (2010) defined single-valued neutrosophic sets. Single-valued neutrosophic sets can 

be used feasibly to deal with real world decision problems. Neutrosophic sets were later included 

in the literature with different extensions. One of these extensions is interval valued neutrosophic 

sets. 

The purpose of this article is to present a model for identifying important criteria for franchisors 

to select the most suitable franchisees. Decision makers often have to make their choices under 

the influence of multiple conflicting criteria. In such cases, multi-criteria decision making gives 

the opportunity to choose the best among multiple alternatives. AHP is one of the multi-criteria 

decision making techniques. In this study, interval-valued neutrosophic AHP multi-criteria 

decision making approach is used to analyze the franchisee selection problem. The study was 

conducted in a global cafe chain. The study is structured as follows. The second section includes a 

literature review on franchisee selection. The third section includes the preliminary part consisting 

of fuzzy, intuitionistic fuzzy, neutrosophic, interval-valued neutrosophic sets and the application 

technique interval-valued neutrosophic AHP technique. The fourth part of the study covers the 

analysis of franchisee selection criteria with IVN-AHP. The study concludes with findings and 

conclusion.  

  

2. LITERATURE REVIEW 

Various studies on franchisee selection have been observed in the literature. Franchisee, which 

basically means concession holder, also appears with different words such as dealer and 

distributor in studies. Tatham et al (1972), examined the franchisor and franchisee selection 

processes. It has taken the criteria in the educational background, personality (the ability to meet 

the public and win respect), health, past work experience, credit, or financial standing, the 

franchisee would personally manage operations at the restaurant franchisor's selection. In the 

selection of franchisees, it has taken the franchisor’s capital requirements, franchisor’s training 

program, franchisee agreement’s fairness, franchisor’s reputation and progressiveness, 

franchisor’s demonstrated profitability, recognized demand for the franchisor’s product criteria. 

These criteria were analyzed with testing the hypothesis, Kolmogorov Smirnov One Sample 

Test. Watson et al., (2016) studied franchisee selection theory. Criteria namely franchisee age, 

number of franchisees and sector were examined by hypothesis test. Ramirez-Hurtado et al 

(2011),  identified the franchisee profiles that franchisors prefer. Characteristics related to 

franchisee profile in terms of the review of literature can be stated as follows: shrewdness, self-

esteem, management ability, human relations ability, entrepreneurial character, ethical 

behaviour, creativity, need of achievement, willingness to work hard, communication, age, 

emotional stability, marital status. Brookes and Altınay (2011), determined how different 

selection criteria affect the selection process with data analysis. Ramdhani et al. (2021), analyzed 

the franchisee selection  process, capital, sales points, BEP (Break even point), franchisee fees 

and profit criteria with the smart technique. Traneva and Tranev (2022), considered franchisee 

selection problem by using intuitionistic fuzzy sets. Studies on franchisee selection are 

summarized in Table 1. 
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Table1: Literature on franchisee selection 

 

Besides studies related to MADM in interval neutrosophic set environment can be summarized as 

below: 

Mondal et al. (2018) proposed tangent similarity measure of interval valued neutrosophic sets and 

Year Author(s) Method(s) Objecives Criteria 

2006 Clarkin and 

Swavely 

Statistical analysis Determine the criteria 

for franchisors to 

evaluate franchisees 

Financial net worth, general business 

experience, industry experience, formal 

educations, psychological profile, personal 

interview.  

2008 Hsu and 

Chen 

AHP and 

ENTROPY 

Determine the 

essential criteria 

releated to franchisee 

selection  

Personal location, personal background, 

financial situation,business ability, location 

condition, area, traffic, consumer. 

2011 Faradillah et 

al 

AHP, decision 

support system 

Franchisee outlet 

selection 

Franchisee fee, continuing franchisee fee, 

franchisor size, franchisor reputation 

2011 Sivakumar 

and  
Schoormans 

Social and 

commercial 

franchisee impact 

on franchisee 

selection 

Application analysis 

of commercial 

franchisee selection 

criteria in social 

franchisee selection 

Financial net worth, business experience, 

formal education, local market knowledge, 

personal profile,  

2013 Karaca ELECTRE I, 

TOPSIS 

Dealer selection Prestige, Location, professionalism, potential 

customer, financial status, Service area 

adequacy, Experience in the sector, Land 

situation 

2014 Gaul Literature review 

and proposal 

selection model  

Examined fit between 

franchisor and 

franchisee. 

Internationalization fit, interpersonal fit, 

objective fit 

2020 Urevic DEA, AIM Determine the 

franchisee selection 

criteria for restaurant 

businesses 

Brand name/ reputation, brand age, 

recognition, Franchisee support, training, 

consultancy, call centre availability, scaling, 

geographical suitability, regional agreements, 

growth options, Operational processes, 

quality, monetary conditions 

2020 Kıran et al. Content analysis Determine the factors 

that franchisees take 

into account in the 

selection of the 

franchisor 

Product diversity, bilateral relations, brand, 

company potential, professionalism, product 

and service standard, suitability of investment 

conditions, profitability rate, logistic support 

2020 Metin TOPSIS Determine the models 

and criteria used in 

internationalisation 

Cost, time, support, trust, ease 

2021 Calderon-

Monge, 

Sariz and 

Garcia 

AHP Design a model 

proposal that 

franchisors can 

objectively evaluate 

franchisees in a 

selection process. 

Talent, respect for the customer (friendship), 

good public relation, Behaviour, belief in the 

product concept, motivation, interest in 

healthy lifestyle, Past experience, location, 

commercial vision, sectoral experience, 

management ability, business capacity, 

entrepreneurial spirit. 
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presented a MADM strategy based on this similarity measure namely the selection of a suitable 

sector for money investment of a government employee for a financial year. Dalapati et al. (2017) 

defined a new cross-entropy measure namely IN-cross entropy under the interval neutrosophic set 

environment and developed a novel MAGDM strategy. Dey et al. (2016) examined an extended 

grey relational analysis method for MADM problems under the interval neutrosophic uncertain 

linguistic environment. Pramanik and Mondal (2015) introduced MADM based on interval 

neutrosophic sets and extended the single-valued neutrosophic grey relational analysis to an 

interval neutrosophic environment.  

 

3. PRELIMINARIES  

In this section, we will give basic definitions of fuzzy set, intuitionistic fuzzy set, neutrosophic 

set, single-valued neutrosophic set, interval-valued neutrosophic set, interval valued neutrosophic 

AHP.  

3.1.  Fuzzy set  

Let E be a universal set and let x be a general element in this set. Fuzzy set  defined as:  

                                    (1) 

The degree of the membership function  is also called the degree of accuracy. The degree of 

membership function takes values between 0 and 1 and is defined as : X→[0,1] 

(Bhattacharyya et al. 2018). 

3.2. Intuitionistic fuzzy set  

Let E be a universal set and let x be a general element in this set. Intuitionistic fuzzy set  defined 

as:  

 (2) 

The degree of membership  and the degree of non-membership take values between 0 and 

1 , and they are defined as : : X →[0,1] ve : X →[0,1]. 

3.3. Neutrosophic Set 

Let E be a universal set and let x be a general element in this set. The neutrosophic set A defined 

in E is characterized by truth , indeterminacy  and falsity  membership 

functions.  These membership functions take values : E  →]0−, 1+[, : E  →]0−, 1+[, : E  

→]0−, 1+[  and sum of them ;  . A neutrosophic set is 

defined as:      

    

                                                          (3)                                                                 
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3.4. Single Valued Neutrosophic Set  

Wang et al. (2010) developed single valued neutrosophic sets to be applied to real life problems. 

Single valued neutrosophic set is characterized by, truth-membership function : X→[0,1], 

indeterminacy-membership function :X→[0,1] and falsity-membership function 

:X→[0,1]. There is not restriction on the sum of ,  and ,  

   

The single valued neutrosophic set is defined as:   

                                                           (4)                                                                                           

3.5. Interval Valued Neutrosophic Set  

Let E be a universal set and let x be a general element in this set. The interval-valued 

neutrosophic set A defined in E is characterized by truth , indeterminacy  and 

falsity  membership functions.  Where with the condition; 

,  

,  

 the interval-valued neutrosophic set is defined as:  

               (5) 

 3.6.  Interval Valued Neutrosophic AHP 

Saaty (1998) developed the Analytic Hierarchy Process (AHP) method. It is one of the most 

inclusive methods in solving multi criteria decision making problems. This method deals with 

problems in a hierarchical structure. At the top level of the hierarchy is the goal and at the bottom 

level are the different alternatives that need to be decided (Arquero et al. 2009). The AHP method 

is then used to solve different problems with different structures of fuzzy sets. One of these is the 

interval-valued neutrosophic AHP. 

Interval- valued neutrosophic AHP method is similar to AHP method and is simple to implement. 

In the following the steps of the interval-valued neutrosophic AHP method are presented (Ricardo 

et al., 2021): 

Step 1: The pairwise comprasion matrix ( ) is constructed. To construct the matrix, the linguistic 

terms given in Table 2 were used. 

 

Step 2: ( ) pairwise comparison matrix is converted into the interval -valued neutrosophic 

comparison matrix constructed using Table 2. 

( )=                (6) 
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Table 2: Scale of Interval-Valued Neutrosophic AHP 

       

Linguistic Term       

Absolutely more important 0.9 0.95 0 0.05 0.05 0.15 

Strongly more important 0.8 0.9 0.05 0.1 0.1 0.2 

More important 0.7 0.8 0.15 0.25 0.2 0.3 

Weakly more important 0.6 0.7 0.25 0.35 0.3 0.4 

Equal importance 0.5 0.5 0.5 0.5 0.5 0.5 

Weakly less important 0.4 0.5 0.55 0.65 0.5 0.6 

Less important 0.3 0.4 0.65 0.75 0.6 0.7 

Strongly less important 0.2 0.3 0.75 0.85 0.7 0.8 

Absolutely less important 0.1 0.2 0.9 0.95 0.8 0.9 

 
 

Step 3:  is deneutrosophicated to check for consistency. The neutrosophic matrix is evaluated as 

consistent only if the deneutrosophicated matrix is determined to be consistent.  

 is deneutrosophicated as below (Bolturk and Kahraman, 2018): 

  

Đ( )=             (7) 

Step 4: The criteria weights are normalised . 

,                    (8) 

Where n indicates the number of criteria. 

 

Step 5: The neutrosophic weight vector ( ) is determined by taking the mean of each row.   

 

(9) 

Step 6: The criteria weights are determined as given in Equation 7. 

Step 7: The weights are normalized to determine final weights. 
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4. CASE STUDY 
 

Main criteria and sub-criteria that are considered for this study are shown in Table 3. 

Table 3: Main criteria and sub-criteria 

Main 

criteria 

Code References Sub-criteria Code References 

 

Financial 

Condition 

 

     C1 

Tatham et al. 1972; 

Karaman and 

Yıldız, 2021; 

Valeri, 2020; Hsu 

and Chen, 2008 

Size of the store C11 Hsu and Chen, 2008 

Targeted profitability C12 Valeri, 2020 

Covering the 

franchisee fee 

C13 Valeri, 2020 

 

Location 

 

     C2 

Hsu and Chen, 

2008; Calderon-

Monge, Sariz and 

Garcia, 2021 

Accessibility C21 Valeri, 2020 

Geographical 

suitability 

C22 Valeri, 2020 

Closeness to center C23 Karaman and Yıldız, 

2021 

 

Personnel 

 

     C3 

Sivakumar and 

Schoormans, 2011; 

Hsu and Chen, 

2008 

Education C31 Hsu and Chen,2008 

Knowledge C32 Hsu and Chen,2008 

Social relationship C33 Hsu and Chen,2008 

 

Reputation 

 

     C4 

Valeri, 2020 Awareness C41 Valeri, 2020 

Trustworthiness C42 Metin, 2020 

 

Personal 

condition 

 

 

      

     C5 

Hsu and Chen, 

2008 

Fiscal status C51 Hsu and Chen,2008 

Famousness C52 Valeri,2020 

Education level C53 Hsu and Chen, 2008; 

Gaul, 2014; Valeri, 

2020 

Experience C54 Hsu and Chen, 2008; 

Caldeon-Monge, Sariz 

and Garcia, 2021 

 

Pairwise comparison of main criteria for DM1 are given in Table 4. 

Table4: Pairwise comparison of main criteria for DM1 

DM1 C1 C2 C3 C4 C5 

C1 EI WLI WMI WMI MI 

C2 WMI EI WMI MI MI 

C3 WLI WLI EI WLI MI 

C4 WLI LI WMI EI WMI 

C5 LI LI LI WLI EI 

 

Similarly, pairwise comparisons of the main criteria for other DMs are given in the following 

tables. 
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Table 5: Pairwise comparison of main criteria for DM2 

DM2 C1 C2 C3 C4 C5 

C1 EI LI MI WMI SMI 

C2 MI EI MI SMI SMI 

C3 LI LI EI WMI SMI 

C4 WLI SLI WLI EI MI 

C5 SLI SLI SLI LI EI 

 

Table6: Pairwise comparison of main criteria for DM3 

DM3 C1 C2 C3 C4 C5 

C1 EI WLI WMI WLI WMI 

C2 WMI EI SMI EI AMI 

C3 WLI SLI EI LI WMI 

C4 WMI EI MI EI SMI 

C5 WLI ALI WLI SLI EI 

 

All CR values are smaller than the threshold so consistency of pairwise comparisons related to 

main criteria is consistent. Following to that interval valued neutrosophic evaluation matrix by 

taking linguistic terms given in Table 2 into the account. Interval valued neutrosophic evaluation 

matrix of  main criteria for DM1,DM2 and DM3 are given in Tables 7,8 and 9 respectively. 

Table7: Interval valued neutrosophic evaluation matrix of main criteria for DM1 

DM1 C1 C2 C3 C4 C5 

C1 

     
C2 

     
C3 

     
C4 

     
C5 
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Table 8: Interval valued neutrosophic evaluation matrix of main criteria for DM2 

DM2 C1 C2 C3 C4 C5 

C1 

     
C2 

     
C3 

     
C4 

     
C5 

     
 

Table9: Interval valued neutrosophic evaluation matrix of main criteria for DM3 

DM3 C1 C2 C3 C4 C5 

C1 

     
C2 

     
C3 

     
C4 

     
C5 

     
 

After that normalization process is applied for main criteria. The normalized pairwise comparison 

matrix for main criteria in terms of DM1,DM2 and DM3 are given in Tables 10,11 and 12 

respectively 

107



New Trends in Neutrosophic Theory and Applications, Vol. III, 2024                                                  

 

 

 

Table10: The normalized pairwise comparison matrix for main criteria in terms of DM1 

DM1 C1 C2 C3 C4 C5 

C1 

     
C2 

     
C3 

     
C4 

     
C5 

     
 

Table11: The normalized pairwise comparison matrix for main criteria in terms of DM2 

DM2 C1 C2 C3 C4 C5 

C1 

     
C2 

     
C3 

     
C4 

     
C5 
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Table 12: The normalized pairwise comparison matrix for main criteria in terms of DM3 

DM3 C1 C2 C3 C4 C5 

C1 

     
C2 

     
C3 

     
C4 

     
C5 

     
 

The neutrosophic importance weights related to main criteria in terms of DM1,DM2 and DM3 are 

computed and given in Tables 13, 14 and 15 respectively. 

Table13: IVN importance weights for main criteria in terms of DM1 

DM1       
C1 0.19213 0.21971 0.12913 0.16472 0.14019 0.17442 

C2 0.21518 0.24176 0.10053 0.13695 0.11757 0.15249 

C3 0.16444 0.19305 0.17932 0.21311 0.17352 0.20656 

C4 0.16352 0.19213 0.17198 0.20613 0.17442 0.20746 

C5 0.12360 0.15333 0.24907 0.27906 0.22878 0.25905 

 

Table14: IVN importance weights for main criteria in terms of DM2 

DM2       
C1 0.19735 0.22602 0.11438 0.14706 0.12632 0.16341 

C2 0.24690 0.27305 0.06342 0.09249 0.08174 0.12001 

C3 0.16756 0.19733 0.15238 0.18373 0.15722 0.19321 

C4 0.14688 0.17731 0.19855 0.23767 0.18850 0.22340 

C5 0.09459 0.12626 0.30919 0.33902 0.27025 0.29995 
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Table15:IVN importance weights for main criteria in terms of DM3 

DM3       
C1 0.17814 0.20844 0.16979 0.20737 0.16892 0.20355 

C2 0.23189 0.24733 0.08516 0.10597 0.10262 0.13274 

C3 0.13627 0.16759 0.21856 0.25333 0.20749 0.24013 

C4 0.22067 0.23878 0.10337 0.12959 0.11868 0.14880 

C5 0.10596 0.13783 0.27586 0.30372 0.24425 0.27476 

Crisp weights for main criteria in terms of DM1, DM2 and DM3  are obtained via Eq.(7) and 

shown as Table 16. The main criteria weights for all DMs are aggregated via geometric mean. 

Then normalization process is applied and final weights related to main criteria are computed. 

Table16: The weights related to main criteria 

Main criteria  DM1 DM2 DM3 Final weight 

C1 0.216579 0.218336 0.213228 0.215966 

C2 0.234731 0.256496 0.233400 0.241236 

C3 0.199254 0.193943 0.175422 0.189196 

C4 0.193661 0.187992 0.230392 0.203114 

C5 0.163108 0.139990 0.149402 0.150487 

 

According to Table 16 while location (C2) was found as the most important criterion having with 

the value of 0.241236, personal condition (C5) was acquired as the least important one with the 

value of 0.150487.  

Similarly, all the above steps  are applied for each sub-criteria and crisp weights related to sub-

criteria in terms of DM1, DM2 and DM3 are given in Table 17. 

Table17: The weights related to sub-criteria 

Sub-criteria       DM1 DM2 DM3 Final weight 

C11 0.308890 0.290151 0.310343 0.311659 

C12 0.247932 0.261562 0.397909 0.303963 

C13 0.426989 0.427536 0.285838 0.384379 

C21 0.398004 0.344704 0.308992 0.351303 

C22 0.262654 0.344704 0.379211 0.327461 

C23 0.334149 0.313920 0.308992 0.321236 

C31 0.318410 0.310343 0.308992 0.315105 

C32 0.265964 0.285838 0.308992 0.285437 

C33 0.412249 0.397909 0.379211 0.399458 

C41 0.452750 0.500000 0.400738 0.452362 

C42 0.545238 0.500000 0.590415 0.547638 

C51 0.245700 0.231712 0.244616 0.240362 

C52 0.245700 0.236291 0.244616 0.241935 

C53 0.291011 0.280958 0.233130 0.266871 

C54 0.220591 0.254794 0.281586 0.250832 
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After that local and global importance weights of criteria/sub-criteria are obtained and shown in 

Table 18. 

   Table18: Local and global weights of criteria/sub-criteria 

Main 

criteria 

Weight Sub-

criteria 

Local 

weight 

Sub-

criteria 

Global 

weight 

Rank 

 

 

C1 

 

 

0.215966 

C11 0.311659 C11 0.067308 8 

C12 0.303963 C12 0.065646 9 

C13 0.384379 C13 0.083013 4 

 

 

C2 

 

 

0.241236 

C21 0.351303 C21 0.084747 3 

C22 0.327461 C22 0.078995 5 

C23 0.321236 C23 0.077494 6 

 

 

C3 

 

 

0.189196 

C31 0.315105 C31 0.059617 10 

C32 0.285437 C32 0.054004 11 

C33 0.399458 C33 0.075576 7 

 

 

C4 

 

 

0.203114 

C41 0.452362 C41 0.091881 2 

C42 0.547638 C42 0.111233 1 

 

 

C5 

 

 

0.150487 

C51 0.240362 C51 0.036171 15 

C52 0.241935 C52 0.036408 14 

C53 0.266871 C53 0.040161 12 

C54 0.250832 C54 0.037747 13 

 

According to Table 18 while trustworthiness (C42) was found as the most important sub-criterion 

with a value of 0.111233, fiscal status (C51) was acquired as the least important one having a 

value of 0.036171. The ranking of other sub-criteria can be stated as: 

 C41> C21 > C13 > C22 > C23 > C33 > C11 > C12 > C31 > C32 > C53 > C54 > C52. 

5. CONCLUSIONS  

As explained earlier, the purpose of this study is to provide a perspective on the criteria that are 

important in franchisee selection. The study presents the criteria that are important in the selection 

of franchisees of a global cafe chain business by taking into account the criteria in the context of 

the studies in the literature.  

 

The study has three specific purposes: 1-to identify the criteria for franchisors to evaluate the 

franchisee, 2-to rank the importance of the criteria considered by the franchisors, 3-to demonstrate 

the use of the IVN-AHP technique in determining the selection criteria. In the analysis, it is 

concluded that location (C2) is the most important criterion for decision makers in franchisee 

selection. The second most important criterion is financial condition (C1). These criteria are 

followed by reputation (C4), personnel (C3), and personal condition (C5). 

 

The analysis of this study is limited to the franchisee selection of a global cafe chain business. 

However, the study reveals that other criteria apart from the financial criteria are taken into 

account in the selection criteria as in the studies of Valeri (2020), Hsu and Chen (2008) etc. 
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Franchisors' selection of franchisees based on these and similar criteria will allow them to avoid 

future problems and make a quality selection. 

  

Researchers and decision makers can consider the selection criteria in more detail in their future 

studies and determine the selection criteria in different sectors and fields. In addition, IVN-AHP 

and other multi-criteria decision analysis methods can be used effectively in similar and different 

selection problems. In the future, researches specific to different businesses that examine 

subgroups of the service sector can also be conducted. 
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ABSTRACT 

In this paper, we define pentapartitioned number and the geometric aggregation operator. Some of 

their basic properties are established. Then, we develop a decision making strategy to solve multi-

attribute group decision making under the  pentapartitioned neutrosophic number environment. An 

illustrative example of multi attribute group decision making problem is solved to show the 

applicability of the developed strategy. 

KEYWORDS:  Neutrosophic set, Single valued neutrosophic set, pentapartitioned neutrosophic set, 

pentapartitioned neutrosophic number, geometric aggregative operator. 

1. INTRODUCTION

Smarandache (1998)  defined the Neutrosophic Set (NS) by extending the Fuzzy Set (FS)

(Zadeh, 1965)  and the Intuitionistic FS (IFS) (Atanassov, 1986).  Single Valued NS (SVNS) ( 

Wang et al., 2010) was proposed as a simple form of NS.  Based on our-valued logic (Belnap, 

1977) and multi-valued refined neutrosophic logic (Smarandache, 2013), Quadripartition SVNS 

(QSVNS) ( Chatterjee et al., 2016) was introduced.  Pramanik (2022)  presented the Interval 

Quardiparitioned NS (IQNS).  In 2020, Mallick and Pramanik (2020)  defined the 

Pentapartitioned Neutrosophic Set (PNS) using multi-valued logic (Smarandache, 2013) by 

replacing indeterminacy with three independent components.  Pentapartitioned neutrosophic graph 

was developed by  Das et al. (2022) and Quek et al. (2022). Pramanik (2023a) developed interval 

PNS (IPNS) using PNS and Interval NS (INS) (Wang et al., 2005).  Broumi et al. (2018), 

Pramanik (2020), and Pramanik (2022) presented an overview of NS, rough NS, and SVNS 

respectively.  Ye (2014) developed the Single-Valued Neutrosophic (SVN) Weighted Averaging 

(SVNWA) and SVN Weighted Geometric (SVNWG) operators. Liu et al. (2014) developed the 

SVN Hamacher weighted averaging (SVNHWA), SVN Hamacher ordered weighted averaging 

(SVNHOWA), SVN Hamacher weighted geometric (SVNHWG) and SVN Hamacher ordered 

weighted geometric (SVNHOWG).  Peng et al. (2016) characterized the operations of SVN Set 

(SVNS) and developed the SVN Ordered Weighted Average (SVNOWA) and SVN Ordered 

Weighted Geometric (SVNOWG) operators. Nancy and Garg (2016) proposed the Frank norm-

based weighted averaging and geometric operators namely, SVN Frank weighted averaging and 
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geometric operators denoted by SVNFWA and SVNFWG respectively. Pramanik (2023) 

developed  pentapartitioned neutrosophic average operating operator.  

Multi-Attribute Decision Making (MADM) (Ye, 2013; Dey, Pramanik, & Giri, 2015; 

Pramanik, Dalapati, Alam, & Roy, 2018; Pramanik, Dalapati, Alam, Smarandache,  & Roy, 2018, 

Mondal, Pramanik, & Giri, 2018a, 2018b;  Pramanik, Dey,  Smarandache, & Ye, 2018; Mallick & 

Pramanik, 2019, 2020, 2021a, 2021b, Pramanik & Mallick, 2018, 2019; Pramanik & Mondal, 

2015b; Smarandache & Pramanik, 2016, 2018) is a branch of operational research that deals with 

the structure of decision making involving conflicting criteria and chooses the best alternative 

from a set of feasible alternatives. To deal with group decision making, MADM is extended to 

Multi-Attribute Group Decision Making (MAGDM). There exists a vast literature on MAGDM 

(Pramanik, Banerjee, & Giri, 2016; Dalapati, Pramanik, Alam, Smarandache, & Roy, 2017; 

Mondal, Pramanik, & Giri, 2018c; Pramanik, & Dalapati, 2018).) in neutrosophic environments. 

Different weighted average operators were defined in different fuzzy and neutrosophic 

environments to solve the MAGDM problems.  PNS ( Mallick & Pramanik, 2020) is a newly 

developed set and its number, and aggregation operators are to be developed. Das, Shil, and 

Pramanik (2021) developed the Grey Relational Analysis  (GRA) based MADM strategy in the 

Pentapartitioned Neutrosophic Number (PNN) environment by extending the GRA (Biswas et al., 

2014a, 2014b) based MADM strategy in the SVNS environment. Das, Shil, and Tripathy (2021) 

presented the tangent similarity based MADM strategy in the PNN environment by extending the 

work of Pramanik and Mondal (2015a). Saha et al. (2022) presented the Dice similarity-based 

MADM strategy in the PNN environment. Das, Shil, and Pramanik (2022) developed the 

hyperbolic sine similarity measure based MADM strategy in the PNN environment. Majumderet 

al. (2023) presented the hyperbolic tangent similarity measure based MADM strategy. Pramanik 

(2023b) presented the ARAS strategy based on the PNN weighted averaging operator in the PNN 

environment.  

Research gap:   PN Geometric Average ( PNWGA) operator is not proposed in the literature and   

MAGDM strategy based on the PNWGA operator is not developed .  

Motivation: To fill the research gap, we initiate to study the MAGDM strategy using PNNWGA 

operator. 

The main contributions of this work are outlined as follows: 

(1) Pentapartitioned Neutrosophic Number (PNN) is introduced using five independent

components.

(2) PNN geometric average operator is introduced and its desirable properties are established.

(3) MAGDM strategy using the PNWGA operator with PNNs is developed.

(4) Applicability of the developed strategy is shown by solving a green supplier selection

problem.

The remainder of this paper unfolds as follows: Section 2 presents the PNN, operation laws for 

PNNs. Section 3 presents the PNGWA operator and their basic properties and proofs of the 

related theorems.  Section 4 develops a MAGDM  strategy based on the PNGWA operator under 

PNN environment. In Section 5, a green supplier selection problem is solved. Section 6 presents  

the future scope of research band concluding remarks.    
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2.  PENTAPARTITIONED NEUTROSOPHIC NUMBERS  
 

We introduce the notion of PNN and study some of their properties.  

A pentapartitioned neutrosophic number is defined as follows: 

Definition 1: An element of  
5

0,1 , denoted by , , , ,t c g u f     = , where t denotes the truth -

membership degree of  , c  denotes contradiction membership degree, g denotes an ignorance 

membership degree, u denotes unknown membership  degree and f denotes a falsity membership 

degree such that for each ,p P , , , , [0,1]t c g u f       and ( ) ( ) ( )0 ( ) ( ) 5t p c p g p u p f p     + + + +  . 

This collection of elements is said to be Pentapartitioned Neutrosophic Number (PNNs). 

Definition 2: Assume that 
1 2, PNN   . Then the addition and multiplication of two PNNs are 

defined as follows: 

( )
1 2 1 2 1 2 1 2 1 2 1 2 1 21 2 . , . , . , . , . 1t t t t c c c c g g u u f f              + = + − + −  

( )
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 21 2. . , . , . , . , . 2t t c c g g g g u u u u f f f f                 = + − + − + −  

 

Proposition 1: For any 1 2 3, , PNN    , the following operations hold: 

i. 1 2 2 1+ = +     

ii. ( ) ( )1 2 3 1 2 3+ + = + +       

iii. 1 2 2 1. .   =  

iv. ( ) ( )1 2 3 1 2 3. .     =  

v. 1 (1 ) ,1 (1 ) ,( ) ,( ) ,( ) ,s s s s ss t c g u f c N     = − − − −   

vi. ( ) ,( ) ,1 (1 ) ,1 (1 ) ,1 (1 ) ,s s s s s st c g u f s N     = − − − − − −   

vii. ( )1 2 2 2 ,s s s s N   + = +   

viii. ( )1 2 1 2 1 2, ,s s s s s s N  + = +   

Proof:  Assume that,  
1 1 1 1 11 , , , ,t c g u f     = , 

2 2 2 2 22 , , , ,t c g u f     = and 
3 3 3 3 33 , , , ,t c g u f     =  

 

( )

1 2 1 2 1 2 1 2 1 2 1 2 1 2

2 1 2 1 2 1 2 1 2 1 2 1 2 1

1 2

2 1

1 2 2 1

. , . , . , . , .

. , . , . , . , .

( )

i

t t t t c c c c g g u u f f

t t t t c c c c g g u u f f

proved

             

             

 

 

   

+

= + − + −

= + − + −

= +

+ = +

 

( ) ( ) ( ) ( )

( ) ( )

1 2 1 2 1 2 1 2 1 2 1 2 1 2 3 3 3 3 3

1 2 1 2 3 1 2 1 2 3 1 2 1 2 3 1 2 1 2 3

1 2 3 1 2 3 1

1 2 3( )( )

. , . , . , . , . , , , ,

. . . , . . . ,

. . , . . , .

ii

t t t t c c c c g g u u f f t c g u f

t t t t t t t t t t c c c c c c c c c c

g g g u u u f f

                  

                   

      

  + +

= + − + − +

+ − + − + − + − + − + −
=

( )
2 3

1 2 3 1 2 1 3 2 3 1 2 3 1 2 3 1 2 1 3 2 3 1 2 3

1 2 3 1 2 3 1 2 3

1 2 3 1 2 2 3 3 1 1 2 3 1 2 3

.

. . . . . , . . . . . ,

. . , . . , . .

. . . . . ,

f

t t t t t t t t t t t t c c c c c c c c c c c c

g g g u u u f f f

t t t t t t t t t t t t c c c c

 

                       

        

              

+ + − − − + + + − − − +
=

+ + − − − + + + −
=

1 2 2 3 3 1 1 2 3

1 2 3 1 2 3 1 2 3

. . . . . ,
(3)

. . , . . , . .

c c c c c c c c

g g g u u u f f f

        

        

− − +
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( ) ( ) ( ) ( )

( ) ( )

1 1 1 1 1 2 3 2 3 2 3 2 3 2 3 2 3 2 3

1 2 3 2 3 1 2 3 2 3 1 2 3 2 3 1 2 3 2 3

1 2 3 1 2 3 1 2

1 2 3( )

, , , , . , . , . , . , .

. . . , . . . ,

. . , . . , . .

t c g u f t t t t c c c c g g u u f f

t t t t t t t t t t c c c c c c c c c c

g g g u u u f f f

                  

                   

       

  + +

= + + − + −

+ + − − + − + + − − + −
=

( )
3

1 2 3 2 3 1 2 1 3 1 2 3 1 2 3 2 3 1 2 1 3 1 2 3

1 2 3 1 2 3 1 2 3

1 2 3 1 2 2 3 3 1 1 2 3 1 2 3 1

. . . . . , . . . . . ,

. . , . . , . .

. . . . . , .

t t t t t t t t t t t t c c c c c c c c c c c c

g g g u u u f f f

t t t t t t t t t t t t c c c c c



                       

        

               

+ + − − − + + + − − − +
=

+ + − − − + + + −
=

2 2 3 3 1 1 2 3

1 2 3 1 2 3 1 2 3

. . . . ,
(4)

. . , . . , . .

c c c c c c c

g g g u u u f f f

       

        

− − +

 

Therefore, from (3) and (4), 
1 2 3 1 2 3( ) ( )( )proved+ + = + +       

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1

1 2

2 1

1 2 2 1

( ) . . , . , . , . , .

. , . , . , . , .

.

. . ( )

iii t t c c g g g g u u u u f f f f

t t c c g g g g u u u u f f f f

proved

               

               

 

 

   

= + − + − + −

= + − + − + −

=

 =

 

( )

( ) ( ) ( ) ( )

( ) ( )

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 3 3 3 3 3

1 2 3 1 2 3 1 2 1 2 3 1 2 1 2 3

1 2 1 2 3 1 2 1 2 3

1 2 3( . ). . , . , . , . , . . , , , ,

. . , . . , . . . ,

. . .

iv t t c c g g g g u u u u f f f f t c g u f

t t t c c c g g g g g g g g g g

u u u u u u u u u u

= + − + − + −

+ − + − + −
=

+ − + − + −

                    

               

         

  

( ) ( )
1 2 1 2 3 1 2 1 2 3

1 2 3 1 2 3 1 2 3 1 2 1 3 2 3 1 2 3

1 2 3 1 2 1 3 2 3 1 2 3

1 2 3 1 2 1 3 2 3 1

, . . .

. . , . . , . . . . . ,

. . . . .

, . . .

f f f f f f f f f f

t t t c c c g g g g g g g g g g g g

u u u u u u u u u u u u

f f f f f f f f f f

+ − + − + −

+ + − − − +

= + + − − − +

+ + − − + +

         

                 

           

          2 3

1 2 3 1 2 3 1 2 3 1 2 2 3 3 1 1 2 3

1 2 3 1 2 2 3 3 1 1 2 3

1 2 3 1 2 2 3 3 1 1 2 3

1 1

1 2 3

. .

. . , . . , . . . . . . ,

. . . . . (5)

, . . . . .

.( . )

, ,

f f

t t t c c c g g g g g g g g g g g g

u u u u u u u u u u u u

f f f f f f f f f f f f

t c g

+ + − − − +

+ + − − − +

+ + − − − +

=

 

                 

           

           

  

  

( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3

1 2 3 1 2 3 1 2 3 2 3 1 2 3 2 3

1 2 3 2 3 1 2 3 2 3 1 2 3 2 3

, , . . , . , . , . , .

. . , . . , . . . ,

. . . , .

u f t t c c g g g g u u u u f f f f

t t t c c c g g g g g g g g g g

u u u u u u u u u u f f f f f f

+ − + − + −

+ + − − + −
=

+ + − − + − + + − −

                 

               

                ( )
1 2 3 2 3

1 2 3 1 2 3 1 2 3 1 2 2 3 3 1 1 2 3

1 2 3 1 2 2 3 3 1 1 2 3 1 2 3 1 2 2 3 3 1 1 2 3

. .

. . , . . , . . . . . . ,
(6)

. . . . . , . . . . .

f f f f

t t t c c c g g g g g g g g g g g g

u u u u u u u u u u u u f f f f f f f f f f f f

+ −

+ + − − − +
=

+ + − − − + + + − − − +

   

                 

                       
 

 

Therefore from (5) and (6), ( )1 2 3 1 2 3( . ). .( . ) proved=       

( )Let , , , ,v t c g u f PNN     =   

By definition, 
1 1 1 1 11 1 (1 ) ,1 (1 ) ,( ) ,( ) ,( )t c g u f     = − − − −  

Suppose that the result holds for ,s k k N=  . Therefore, 
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( )

       
1

1 (1 ) ,1 (1 ) , ( ) , ( ) , ( ) (7)

1

1 (1 ) ,1 (1 ) , ( ) , ( ) , ( ) , , , ,

1 (1 ) 1 (1 ) , 1 (1 ) 1 (1 ) , ( ) . , ( ) . , ( ) .

1 (1 ) ,1 (1

k k k k k

k k k k k

k k k k k k k

k

k t c g u f

k k

t c g u f t c g u f

t t t t c c c c g g u u f f

t +

= − − − −

 + = +

= − − − − +

= + − − − − − + − − − − −

= − − −

    

         

             





  

1 1 1 1) , ( ) , ( ) , ( ) (8)k k k kc g u f+ + + +−    

 

Thus, from equation (7) and (8), by principal of mathematical induction, 

1 (1 ) ,1 (1 ) ,( ) ,( ) ,( ) ,s s s s ss t c g u f c N     = − − − −    

( )Let , , , ,v t c g u f PNN     =   

By definition, 
1 1 1 1 1 1( ) ,( ) ,1 (1 ) ,1 (1 ) ,1 (1 )t c g u f     = − − − − − −  

Suppose that the result holds for ,k k N =  . Therefore, 

1

1 1

( ) , ( ) ,1 (1 ) ,1 (1 ) ,1 (1 ) (9)

.

( ) , ( ) ,1 (1 ) ,1 (1 ) ,1 (1 ) . , , , ,

( ) , ( ) ,1 (1 ) (1 (1 ) ). ,1 (1 ) (1 (1 ) ). ,1 (1 )

k k k k k k

k k

k k k k k

k k k k k k k

t c g u f

t c g u f t c g u f

t c g g g g u u u u f f

+

+ +

= − − − − − −

 =

= − − − − − −

= − − + − − − − − + − − − − − + −

    

         

           



  

( )

( )1 1 1 1 1

1 (1 ) .

( ) , ( ) ,1 (1 ) ,1 (1 ) ,1 (1 ) 10

k

k k k k k

f f

t c g u f+ + + + +

− −

== − − − − − −

 

    

 

Thus, from equation (9) and (10), by principal of mathematical induction, 

( ) ,( ) ,1 (1 ) ,1 (1 ) ,1 (1 ) ,s s s s s st c g u f s N     = − − − − − −   

(vii) 
1 2 1 2 1 2 1 2 1 2 1 2 1 21 2 . , . , . , . , .t t t t c c c c g g u u f f              + = + − + −  

( )  ( )  ( ) ( ) ( ) ( )
1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2

. .

( )

1 1 . ,1 1 . , . , . , . 7
s s s s s

L H S

s

t t t t c c c c g g u u f f             

 +

= − − + − − − + −

 

R.H.S 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )  ( )  ( ) ( )

( )  ( )  ( ) ( ) ( ) ( ) ( ) ( )
( )

1 1 1 1 1 2 2 2 2 2

1 2 1 2 1 2

2 1 1 2 1 2 1 2

2 1

1 1 ,1 1 , , , 1 1 ,1 1 , , ,

1 1 1 1 1 1 1 1 ,1 1 1 1

11

1 1 1 1 , . , . , .

s s s s s s s s s s

s s s s s s

s s s s s s s s

s s

t c g u f t c g u f

t t t t c c

c c g g u u f f

+

= − − − − + − − − −

− − + − − − − − − − − − + − −

=

− − − − −

         

     

       

 

 

Now,  

( ) ( ) ( )  ( ) 
( ) ( ) ( ) ( ) ( ) ( ) 
( ) ( ) ( ) ( ) ( ) 

( ) 

1 2 1 2

1 2 1 2 1 2

1 2 1 2 2 1 1 2

2 1 1 2

1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1

2 1 1 1 1 1 1

1 1

s s s s

s s s s s s

ss s s s

s

t t t t

t t t t t t

t t t t t t t t

t t t t

   

     

       

   

− − + − − − − − − −

= − − − − − − − − − + − −

= − − − − − + − + − − − + −

= − − + −

 

Similarly, 
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( ) ( ) ( )  ( ) 
( ) ( ) ( ) ( ) ( ) ( ) 
( ) ( ) ( ) ( )  

 

1 2 2 1

1 2 1 2 1 2

1 2 1 2 2 1 1 2

2 1 1 2

1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1

2 1 1 1 1 1 1 ( . )

1 1 ( . )

s s s s

s s s s s s

s s s s s

s

c c c c

c c c c c c

c c c c c c c c

c c c c

   

     

       

   

− − + − − − − − − −

= − − − − − − − − − + − −

= − − − − − + − + − − − + −

= − − + −

 

R.H.S 

( )    ( ) ( ) ( )
2 1 1 2 2 1 1 2 1 2 1 2 1 2

1 1 ,1 1 ( . ) , , ,

L.H.S

s s s s s

t t t t c c c c g g u u f f             − − + − − − + −

=

 

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )  ( )  ( ) ( )

( )  ( )  ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1 1 1 1 1 2 2 2 2 2

1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2

1 2

. .

1 1 ,1 1 , , , 1 1 ,1 1 , , ,

1 1 1 1 1 1 . 1 1 ,1 1 1 1

1 1 1 1 , , ,

1 1 ,1 1

s s s s s s s s s s

s s s s s s

s s s s s s s s

s s s

n

viii R H S

s s

t c g u f t c g u f

t t t t c c

c c g g u u f f

t c

         

     

       



 

+

+

= − − − − + − − − −

− − + − − − − − − − − − + − −

=

− − − − −

= − − − − ( ) ( ) ( )

( )

1 2 1 2 1 21 2

1 2

, , ,

. .

s s s s s ss
g u f

s s

L H S

  



+ + ++

= +

=

 

 

3. PENTAPARTITIONED NEUTROSOPHIC NUMBER WEIGHTED  

GEOMETRIC AGGREGATIVE OPERATOR 

 
Definition 3.1. Let ( ), , , , 1,2,.....

i i i i ii t c g u f i m     = =  be a collection of PNNs. A Pentapartitioned 

Neutrosophic Weighted Geometric Aggregation (PNWGA)  operator is defined by: 

( ) ( ) ( )1 2

1

, ,...., 12i

m
w

m i

i

PNWGA
=

=     

where ( )1 2, ,....,
T

mw w w w= is the weight of ( )1,2,....,i i m = with 0 1iw   and 
1

1
n

i

i

w
=

=  

 

Theorem 1: Assume that ( ), , , , 1,2,.....
i i i i ii t c g u f i m     = = is a collection of PNNs and 

( )1 2, ,....,
T

mw w w w= is the weight vector, where 0 1iw  and 
1

1
n

i

i

w
=

= . Then 

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 2

1 2

1

1 2

1 1 1 1 1

, ,....,

....

, ,1 1 ,1 1 ,1 1 13

i

m

i i i i i

i i i i i

m
w

m i

i

w w w

m

m m m m mw w w w w

i i i i i

PNWGA

t c g u f

=

= = = = =

=

=   

= − − − − − −



        

   

    

Proof: By definition, for 1w w and 1 PNN   

( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1 11

1 1 1 1 11 , ,1 1 ,1 1 ,1 1
w w w w ww

t c g u f= − − − − − −       
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Thus, the expression trivially holds for n=1. Similarly, for 2w w and 2 PNN   

( )

( ) ( ) ( ) ( ) ( )

2

2 2 2 2 2

2 2 2 2 2

2

, ,1 1 ,1 1 ,1 1

w

w w w w w

t c g u f    



= − − − − − −
 

Therefore, we can write,  

( ) ( )

( ) ( )  ( ) ( )  ( )  ( )  ( )  ( )  ( ) 
( )  ( )  ( )  ( )  ( )  ( )  ( ) 

( ) ( )  ( ) ( )  ( ) ( )

1 2

1 2 1 2 1 2 1 2 1

1 2 1 2 1 2 1 2 1

2 1 2 1 2 1 2

2 1 2 1 2 1 2

1 2 1 2 1

1 2 1 2 1 2

1 2 1 2( , )

, , 1 1 1 1 1 1 1 1 , 1 1

1 1 1 1 1 1 , 1 1 1 1 1 1 1 1

, , 1 1 1

w w

w w w w w w w w w

w w w w w w w

w w w w w

PNNWGA

t t c c g g g g u

u u u f f f f

t t c c g g

= 

− − + − − − − − − − − −

=

+ − − − − − − − − − + − − − − − + − −

− − −

=

        

      

     

   

  ( ) ( ) 
( ) ( )  ( ) ( ) 

( )

2 1 2

1 2

1 2 1 2

1 2 1 2

, 1 1 1 ,

14

1 1 1 , 1 1 1

w w w

w w w w

u u

u u f f

− − −

− − − − − −

 

   

 

Thus, the expression holds true for n = 1, 2. Further suppose that the expression holds for n = k , 

k N . Then it follows that, 

( )

( ) ( ) ( ) ( ) ( ) ( )

1 2

1 1 1 1 1

, ,....,

, ,1 1 ,1 1 ,1 1 15
i i i i i

i i i i i

k

k k k k kw w w w w

i i i i i

PNWGA

t c g u f
= = = = =

= − − − − − −        

  

 

Now, for n = k+1, we obtain, 

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1

1 1 1 1 1

1 1 1 1 1

1

1 2 1

1

1

1

1 1 1 1 1

, ,...., ,

, ,1 1 ,1 1 ,1 1

, ,1 1 ,1 1 ,1 1

i

i k

i i i i i

i i i i i

k k k k k

k k k k k

k
w

k k i

i

k
w w

i k

i

k k k k kw w w w w

i i i i i

w w w w w

PNWGA

t c g u f

t c g u f

+

+ + + + +

+ + + + +

+

+

=

+

=

= = = = =

=

= 

= − − − − − −

+ − − − − − −





        

    

    

 

 

( ) ( )  ( ) ( )  ( )

( )  ( ) ( ) 

( ) ( )  ( ) ( ) 

( )

1 1

1 1

1 1

1 1

1 1

1 1

1 1 1

1

1 1

, , 1 1

1 1 1 1 1 1 ,

1 1 1 1 1 1 1 1 ,

1 1

i k i k i

i k i k i

k i k

k i k

i k i k

i k i k

i

i

n n nw w w w w

i i i

nw w w

i

n nw w w w

i i

w

t t c c g

g g g

u u u u

f

+ +

+ +

+ +

+ +

+ +

+ +

= = =

=

= =

     
− −     

     

 
+ − − − − − − − 

 
=

   
− − + − − − − − − −   

   

− −

  



 

    

  

   

 ( )  ( ) ( ) 

( ) ( ) ( ) ( ) ( ) ( )

1 1

1 1

1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1 1

, ,1 1 ,1 1 , 1 1 16

k i k

k i k

i i i i i

i i i i i

n nw w w

i i

k k k k kw w w w w

i i i i i

f f f

t c g u f

+ +

+ +

= =

+ + + + +

= = = = =

   
+ − − − − − − −   

   

= − − − − − −

 

    

  

    

 

Hence, in general, by mathematical induction,  the expression 

( )

( ) ( ) ( ) ( ) ( ) ( )

1 2

1 1 1 1 1

, ,....,

, ,1 1 ,1 1 ,1 1 17
i i i i i

i i i i i

m

m m m m mw w w w w

i i i i i

PNWGA

t c g u f
= = = = =

= − − − − − −        

  

 

holds true n N  . 
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This completes the proof. 

Theorem 2. The PNWGA operator satisfies the following properties: 

i. Consistency: ( )1 2, ,....., mPNWGA PNN    

ii. Idempotency: ( ), ,.....,PNWGA    =  

iii. ( ) ( )1 2 1 1, ,....., , ,.....,m m mPNWGA PNWGA −=       

iv. Let  be the permutation on (1, 2…., m) then  

( ) ( )(1) (2) ( ) 1 2, ,....., , ,.....,m mPNWGA PNWGA=         

Proof: Proof: (i) Assume that ( ), , , , 1,2,.....
i i i i ii t c g u f i m PNN     = =   

Since 

( )

( ) ( ) ( ) ( ) ( )

1 2

1 1 1 1 1

, ,....,

, ,1 1 ,1 1 ,1 1
i i i i i

i i i i i

m

n n n n nw w w w w

i i i i i

PNWGA

t c g u f    

  

= = = = =

= − − − − − −    
 

Obviously ( )1 2, ,....., mPNWGA PNN    

 

(ii) 

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 2

1 1 1 1 1

1

1 1 1 1 1

, ,..., ...

, ,1 1 ,1 1 ,1 1

, ,1 1 ,1 1 ,1 1

, , , , ,  Sin

, ,...,

i m

i i i i i

m m m m m

i i i i i

i i i i i

m
w w w w

i

m m m m m
w w w w w

i i i i i

w w w w w

P

PNWGA

t c g u f

t c g u f

t

A

c g u f

NWG

= = = = =

=

= = = = =

= =   

= − − − − − −

    
= − − − − − −

=

=



        

    

    



 

    







1

ce 1
m

i

i

w
=

=

=





 

 

(iii)Since 

 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

11 2 1

1 2

1

1 2

1 1

1 1

, ,...,

... ...

, ,...,

i

m mm

m
w

m i

i

w ww w w w

m

m

p

m

p

P

PNWGA

NWGA

−

−

=

−

=

=   + =   

=

   

 







 



  

(iv) Suppose that  is a permutation on (1,2, …., m). Then, 

( ) ( )
( )

( )
( )

( )
( )

( )
( )

( ) ( ) ( ) ( )( )

( )

1 (1) 2 ( 2) ( )

1 2

(1) (2) ( ) ( )

1

(1) (2) ( )

1 2

1 2

, ,...,

...

... using proposition1

( , ,..., )

i i

p m

m

m
w

mp i

i

w w w

m

w w w

m

m

PNWAA

vi of

PNWGA

=

=

=   

=   

=




  



   

  

  

   

  

  

  

 

This completes the proof. 

Theorem 3. (Monotonicity) Consider sequence of PNNs 1 2( , ,...., )m   and ( )1 2, ,...., m   such that 

, , ,
i i i i i i i i

t t c c g g u u           and ( )1,2,...,
i i

f f i i m  =  . Then,  

( )11 2 2( , ,...., ) , ,...., mmPNWGA PNWGA     . 
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Proof: We know 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2

1 1 1 1 1

, ,...., , ,1 1 ,1 1 ,1 1 18
i i i i i

i i i i i

m m m m mw w w w w

m

i i i i i

PNWGA t c g u f
= = = = =

= − − − − − −            

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2

1 1 1 1 1

, ,...., , ,1 1 ,1 1 ,1 1 19
i i i i i

i i i i i

m m m m mw w w w w

m

i i i i i

PNWGA t c g u f
= = = = =

= − − − − − −            

Case 1: Suppose that , , ,
i i i i i i i i

t t c c g g u u           and 
i i

f f   

Then 

( ) ( ) ( )

( ) ( ) ( )

1 1

1 1

20

21

i i

i i

i i

i i

w wp p

i i

w wp p

i i

t t

c c

= =

= =

 

 

 

 

 

 

( ) ( ) ( )
1 1

,1 1

,1 1 1 1 22

i i

i i

i i

i i

m mw w

i i

g g

or g g

or g g
= =



−  −

− −  − − 

 

 

 

 

Similarly, one obtains,  

( ) ( ) ( )
1 1

1 1 1 1 23
i i

i i

m mw w

i i

u u
= =

− −  − −  
 

( ) ( ) ( )
1 1

1 1 1 1 24
i i

i i

m mw w

i i

f f
= =

− −  − −  
 

From (15), 

( )( )

( ) ( ) ( ) ( ) ( ) ( )

1 2

1 1 1 1 1

, ,....,

, ,1 1 ,1 1 ,1 1 25
i i i i i

i i i i i

m

m m m m m
w w w w w

i i i i i

Sc PNWGA

Sc t c g u f
= = = = =

 
= − − − − − − 

 
        

  

 

and  

( )( )

( ) ( ) ( ) ( ) ( ) ( )

1 2

1 1 1 1 1

, ,....,

, ,1 1 ,1 1 ,1 1 26
i i i i i

i i i i i

m

m m m m m
w w w w w

i i i i i

Sc PNWGA

Sc t c g u f
= = = = =

 
= − − − − − − 

 
        

  

 

From equation (18)-(25), we obtain, 

( )( ) ( )( ) ( )1 2 1 2, ,...., , ,...., 27m mSc PNWAA Sc PNWAA       

Finally, from equation (27), we obtain 

( ) ( ) ( )1 2 1 2, ,...., , ,...., 28m mPNWAA PNWAA       

Case 2: Assume that, , , ,
i i i i i i i i

t t c c g g u u       = = = = and 
i i

f f = . 

Therefore, 
i i

t t  , for each i, 

( ) ( ) ( )
1 1

29
i i

i i

m mw w

i i

t t
= =

=  
 

Similarly, 

( ) ( ) ( )
1 1

30
i i

i i

m mw w

i i

c c
= =

=  
 

and 
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1

1 1

1 1

1 1 1 1 31

1 1 1 1 32

1 1 1 1 33

i i

i i

i i

i i

i i

i i

w wm m

i i

w wm m

i i

w wm m

i i

g g

u u

f f

= =

= =

= =

− − = − − 

− − = − − 

− − = − − 

 

 

 

 

From equation (29) and (33), 

( ) ( ) ( )1 2 1 2, ,...., , ,...., 34m mPNWGA PNWGA=       

Therefore, finally, we obtain from equation (27) and (34) 

( )11 2 2( , ,...., ) , ,...., mmPNWGA PNWGA      

This completes the proof. 

Theorem 8 (Boundedness) Consider sequence of PNNs ( )1 2( , ,..., ) 1,2,...,m i m=   then 

1 2( , ,..., )mPNWGA       

where, 

( ) ( ) ( ) ( ) ( )min ,min ,max ,max max
i i i i ii i i i i

t c g u f     = and  

( ) ( ) ( ) ( ) ( )max ,max ,min ,min min
i i i i ii i ii i

t c g u f     =  

Proof:  

 By definition 1,2,...,i m =  

, , ,
i i i i

t t c c g g u u           and 
i

f f  and 

, , ,
i i i i

t t c c g g u u            and 
i

f f   

1 2

1 2

( , ,...., ) ( , ,...., ) ( , ,...., )

( , ,...., )

p

m

PNWGA PNWGA PNWGA

PNWGA







 

        

   
 

 

4. MAGDM STRATEGY FOR SELECTION OF THE MOST SUITABLE 

ALTERNATIVE USING PENTAPARTITIONED NEUTROSOPHIC 

WEIGHTED GEOMETRIC AGGREGATION (PNWGA) OPERATOR 

Let,  1 2, ,...., lT T T T= and  1 2, ,...., mC C C C= be a set of l alternatives and m attributes. Suppose that the 

“l” alternatives are subjected to the judgement of m number of decision makers based on the 

prefixed judging parameters. The weight vector of the decision makers  1 2, ,....., lv v v v=  Further 

suppose that the weight vector assigned to the attributes is ( )  0,1w C  and ( )
1

1
l

i
i

w C
=

= . 

Step-1: Define the decision matrix. 

Suppose that ( )p p

rs l mA a = is the p-th decision matrix where information about the alternative rT  is 

provided by the p-th decision maker with respect to the attribute sC . The p-th decision matrix is 

defined as follows: 

111 12

21 22 2

1 2

( ) (35)

pp p

m

p p p

m

p p

rs l m

p p p

l l lm

aa a

a a a

A a

a a a



 
 
 
 = =
 
 
 
 
 
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where p = 1, 2, …P. 

Step- 2: Standardize the decision matrix. 

Assume that in the neutrosophic decision matrix (35), ( ), , , , 1,2,.....
i i i i ii t c g u f i m     = =  is the 

rating value of alternative 
rL  provided by the p-th decision maker with respect to attribute 

sE  such 

that 0 1,0 1, 0 1,0 3p p p p p p
rs rs rs rs rs rsn n n n n n

c d e c c c       + +    

To remove the effects derived from different physical dimensions, the decision matrix ( )p
rs y zn  is 

standardized. To obtain the standardized decision matrix ( )p p
rs y zX x = , in which the component p

rsx  

of the entry ( ), , , , 1,2,.....
i i i i ii t c g u f i m     = = in the matrix pX  is considered as: 

i. For benefit criterion 

( ) ( ), , , , 1,2,..... 36
i i i i ii t c g u f i m= =      

ii. For cost criterion 

( ) ( ), , , , 1,2,..... 37
i i i i ii f u g c t i m= =      

Here 4max{ 1,2,...., }p
s rsk n r y+ = =  and 1min{ 1,2,...., }p

s rsk n r y− = =  for s =1, 2, …, z. 

Then we obtain the following standardized decision matrix: 

111 12

21 22 2

1 2

( ) (38)

pp p

m

p p p

m

p p

rs l m

p p p

l l lm



 
 
 
 = =
 
 
 
 
 

 

  

 

  

 

Step-3: Aggregate the decision matrix using the weights of the decision makers 

( )

( ) ( ) ( ) ( ) ( ) ( )

1 2

1 1 1 1 1

, ,....,

, ,1 1 ,1 1 ,1 1 39
i i i i i

i i i i i

l

m m m m mv v v v v

i i i i i

PNWGA

t c g u f
= = = = =

= − − − − − −        

  

  

The decision matrix reduces to 
** *

111 12

* * *

21 22 2

* *

* * *

1 2

( ) (40)

pp p

m

p p p

m

p p

rs l m

p p p

l l lm



 
 
 
 = =
 
 
 
 
 

 

  

 

  

 

Step-4: Construct the final decision matrix using weights of the attributes 

( )

( ) ( ) ( ) ( ) ( ) ( )

* * *

1 2

1 1 1 1 1

, ,....,

, ,1 1 ,1 1 ,1 1 41
i i i i i

i i i i i

l

m m m m m
w w w w w

i i i i i

PNWGA

t c g u f
= = = = =

= − − − − − −        

  
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111 12

21 22 2

1 2

( ) (42)

pp p

m

p p p

m

p p

rs l m

p p p

l l lm

nn n

n n n

n n

n n n



 
 
 
 = =
 
 
 
 
 

 

Step-5: Calculate the score value and accuracy  ( Pramanik, in press) value of the final decision 

matrix. 

( ) ( )
2 2 2 2 22 43

2 3

n n n n n
t c g u f

Sc n
+ + +

= +  

( ) ( )
2 2 2 2 22 44

2

n n n n n
t c g u f

Ac n
+ + − −

=  

Step-6: Rank the alternative using the score value and accuracy value of the alternatives. 

Step-7: End. 
 

 

 

5. ILLUSTRATIVE EXAMPLE OF SUPPLIER SELECTION PROBLEM 

 

This section uses a green supplier selection problem adapted from (Wan  & Dong , 2015)  to 

demonstrate the applicability of the proposed method. Shanghai General Motors Company 

Limited (SGM) is planning to incorporate environmentally friendly features into the product 

design stage to protect the environment and achieve sustainable development of the social 

economy. For this reason, SGM wishes to select the most appropriate green supplier for one of the 

key elements in its manufacturing process. After pre-evaluation, four suppliers remain as 

candidates for further evaluation. They are Howden Hua Engineering Company ( )1T , Sino Trunk 

( )2T , Taikai Electric Group Company Limited ( )3T , and Shantui Construction Machinery 

Company Limited ( )4T . SGM employs four experts to form a group of DMs coming from four 

consultancy departments: DM ( )1P  is from the production department; DM ( )2P  is from the 

purchasing department; DM ( )3P  is from the quality inspection department; DM ( )4P  is from the 

engineering department. The attributes for evaluating suppliers are important because they 

obviously influence the selection result. Utilizing principal component analysis, the experts 

choose the following three independent criteria as evaluation principles: product quality ( )1C , 

pollution control ( )2C , and environment management ( )3 .C  According to historical data, the 

weight vector of the three criteria is ( )0.4,0.35,0.25w =  and weight of the decision maker is 

( )0.38,0.30,0.32v = . 

Step 1: Decision matrix  

1 2 3

1

1

2

3

0.580,0.320,0.450,0.210,0.370 0.430,0.520,0.480,0.560,0.340 0.840,0.750,0.560,0.450,0.230

0.740,0.520,0.420,0.470,0.280 0.450,0.320,0.710,0.580,0.290 0.540,0.750,0.560,0.480,0.310

0.710,0.530

C C C

T

TA

T

=

4

,0.800,0.670,0.750 0.730,0.450,0.750,0.580,0.590 0.740,0.527,0.621,0.320,0.480

0.410,0.570,0.640,0.520,0.480 0.620,0.450,0.620,0.710,0.550 0.870,0.425,0.358,0.690,0.340T

 
 
 
 
 
 
 
 
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1 2 3

1

2

2

3

0.680,0.720,0.350,0.410,0.360 0.450,0.720,0.520,0.620,0.240 0.640,0.820,0.920,0.550,0.430

0.640,0.480,0.580,0.750,0.280 0.850,0.620,0.820,0.520,0.390 0.740,0.550,0.850,0.230,0.410

0.610,0.870

C C C

T

TA

T

=

4

,0.580,0.370,0.350 0.360,0.710,0.420,0.580,0.400 0.740,0.553,0.560,0.420,0.260

0.520,0.620,0.440,0.890,0.250 0.820,0.560,0.780,0.500,0.320 0.650,0.560,0.348,0.230,0.340T

 
 
 
 
 
 
 
 

1 2 3

1

3

2

3

0.780,0.650,0.450,0.310,0.270 0.530,0.620,0.430,0.260,0.320 0.740,0.820,0.420,0.250,0.330

0.840,0.560,0.250,0.370,0.380 0.850,0.520,0.210,0.380,0.390 0.840,0.650,0.560,0.380,0.310

0.810,0.620

C C C

T

TA

T

=

4

,0.560,0.270,0.350 0.530,0.650,0.330,0.380,0.290 0.640,0.827,0.521,0.320,0.280

0.610,0.770,0.240,0.320,0.220 0.920,0.750,0.520,0.410,0.250 0.670,0.725,0.458,0.290,0.340T

 
 
 
 
 
 
 
 

 

Step-2: Because all the criteria are of the benefit type, the decision information does not need to 

be normalized 

Step-3: Evaluating decision matrix using PNWGA equation (69) 

1 2 3

1

*2

2

0.6688,0.5120,0.4217,0.3069,0.3364 0.4661,0.6065,0.4772,0.5027,0.3048 0.7434,0.7927,0.7118,0.4281,0.3271

0.7378,0.5198,0.4284,0.5529,0.3136 0.6675,0.4558,0.6536,0.5048,0.3538 0.6837,0.6528,0.

C C C

T

T =

3

4

6814,0.3811,0.3417

0.5330,,0.6466,0.6784,0.4835,0.5479 0.5330,0.5804,0.5588,0.5242,0.4521 0.7064,0.6176,0.5728,0.3517,0.3585

0.5000,0.6436,0.4780,0.6551,0.3392 0.7650,0.5658,0.6524,0.5714,0.4002 0.7332,

T

T 0.5477,0.3890,0.4690,0.34

 
 
 
 
 
 
 
 

 

Step-4: Construct the decision matrix using attribute weights. By equation (71) the decision matrix 

is 

1

22

3

4

0.6052,0.6060,0.5310,0.4119,0.3232

0.6990,0.5256,0.5855,0.4973,0.3349

0.5718,0.6155,0.6144,0.4688,0.4722

0.6385,0.5909,0.5290,0.5854,0.3614

T

T
n

T

T

 
 
 =
 
 
 
 

 

Step-5: Evaluated score value and accuracy value using equation (73) and (74) 

 

1

22

3

4

1.0276

1.0849
( )

1.1122

1.1067

T

T
Sc n

T

T

 
 
 =
 
 
 

1

22

3

4

0.2014

0.1955
( )

0.1721

0.1623

T

T
Ac n

T

T

 
 
 =
 
 
 

 

Step-6: Ranking of the alternative 

3 4 2 1T T T T    

Therefore 3rd alternative is the best option. 

Step-7: End. 

Table 1.Comparison between the results that are obtained from two strategies 

 

Operator Name Rank of the alternative 

PNWAA operator (Pramanik, 2023b) 3 2 4 1T T T T    

PNWAG operator ( proposed)  3 4 2 1T T T T    

 

Ranking order of the alternatives are different for these two operators ( see Table 1). Best 

alternative is same for both the operator. Using PNWAA operator the best alternative is 3rd 

alternative and using PNWAG operator the best alternative is also 3rd.  
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6. CONCLUSIONS 
In this paper, we have defined pentapartitioned neutrosophic number and aggregated operator. A 

decision making strategy is developed to solve MCGDM  in PNN environment. A green supplier 

selection problem is solved to show the applicability of the strategy. Though the green supplier 

selection example is used to illustrate the application and validation of the proposed methods. 

The proposed method is are very suitable for the decision-making problems in many areas, 

especially in situations where the problems involve multiple different attributes with different 

dimensions and neutrosophic information. It is expected that the developed strategy is applicable 

to the water resource assessment, risk investment, performance evaluation of military system, 

engineering management,  library and information science (Sahoo, Panigrahi, & Pramanik, 2023;  

2023, Sahoo, Pramanik&  Panigrahi, 2023), etc.  

. 
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ABSTRACT 

This paper aims to develop an aggregation operator in the triangular fuzzy neutrosophic number 

environment as a breakthrough in aggregation operators by utilizing Einstein operations. This 

paper proposes the Triangular Fuzzy Neutrosophic Number Einstein's Ordered Weighted Average 

(TFNNEOWA) operator and Triangular Fuzzy Neutrosophic Number Ordered  Weighted 

Geometric Average (TFNNEOWGA) operator and we prove some basic interesting properties of 

the proposed aggregation operators. Using Shanon’s entropy, the weights of the criteria and 

decision makers are determined. We develop two Multi-Criteria Group Decision-Making 

(MCGDM) strategies using the TFNNEOWA and TFNNEOWGA operators. Lastly, by utilizing 

the newly introduced aggregation operators, a sales manager selection problem is solved.  

KEYWORDS:  Entropy, fuzzy set, neutrosophic set, triangular fuzzy neutrosophic number,  

multi-criteria group decision making, triangular fuzzy neutrosophic Einstein’s ordered 

weighted arithmetic operator, triangular fuzzy neutrosophic Einstein’s ordered weighted, 

geometric operator. 

1. INTRODUCTION

Smarandache (1998) grounded indeterminacy as an independent membership function and 

grounded the Neutrosophic Set (NS) by extending the Fuzzy Set (FS) (Zadeh, 1965) and 

Intuitionistic FS (Atanassov, 1986). To easily understand NS, Single-Valued NS (SVNS) (Wang 

et al., 2010) was proposed. The development of NSs and their extensions and applications have 

been depicted in  (El-Hefenawy, 2016; Smarandache & Pramanik, 2016, 2018; Pramanik, 

Mallick & Dasgupta, 2018; Broumi et al., 2018; Nguyen et al., 2019; Pramanik, 2020, 2022; 

Peng & Dai, 2020). NSs and their extensions have a huge contribution to several research topics 

like medical diagnosis (Ye & Ye, 2014; Ye, 2015),  Multi-Criteria Decision Making (MCDM) 

and Multi-Criteria Group Decision Making(MCGDM) (Ye, 2013, 2014a, 2014b; Biswas et al., 

2014a, 2014b, 2015, 2016a, 2016b, 2016c, 2016d, 2016e, 2018a, 2018b, 2019a, 2019b; 

Majumder, Paul, & Pramanik, 2023; Mondal & Pramanik, 2014, 2015a, 2015b, 2015c, 2015d, 

2015e, 2015f;  Mondal, Pramanik, & Giri, 2018a, 2018b, 2018c, 2018d; Mondal, Pramanik, & 

Smarandache,2016a, 2016b, 2016c, 2016d, 2018; Mallick & Pramanik, 2019, 2021a, 2021b; 

Mallick & Pramanik, & Giri (2023,in press); Sodenkamp et al., 2018; Liu &Wang,2014; 

Kharal,2014; Sahin & Liu, 2015; Das, Shil, & Pramanik, 2021, 2022, Das, Das, & Pramanik, 

2022; Dey et al. (2015a, 2015b, 2015b, 2016a, 2016b, 2016c, 2016d, 2016e; Banerjee  et al., 
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2017; Pramanik, Biswas, & Giri, 2017;  Pramanik, Roy, Roy & Smarandache, 2017, 2018a, 

2018b; Pramanik et al., 2018a, 2018b; Deli & Subas, 2017, Zavadskas et al., 2020;  Stanujkić et 

al., 2021; Pramanik & Dalapati, 2023; Pramanik, Das, Das, & Tripathy, 2023a, 2023b; Pramanik 

& Mallick, 2018, 2019, 2020a, 2020b), conflict resolution (Pramanik and Roy, 2014), education 

(Pramanik, 2013, 2023a, 2023b), etc.   

In dealing with practical problems, the aggregation of different scores presented in terms of 

Neutrosophic Numbers (NNs) is very important for MCGDM. Ye (2014a) presented the strategic 

conception of the “weighted arithmetic mean operator” along with the “weighted geometric mean 

operator” under the Single-Valued NN (SVNN) environment. Later some important simplified 

neutrosophic aggregation operators like “simplified neutrosophic number weighted geometric 

averaging operator”, “simplified neutrosophic number ordered weighted arithmetic averaging 

operator” and the important hybrid operator “hybrid arithmetic ordered weighted operator” were 

introduced (Peng et al., 2016). In some critical neutrosophic MCGDM problems, DMs may not be 

able to express their ratings using SVNNs. To deal with the issue, the combination of triangular 

fuzzy numbers with SVNS is a great help.  Biswas et al. (2016b) developed the aggregation 

operators for the Triangular Fuzzy NNs (TFNNs) and employed them to solve an MCGDM 

problem.  

Wang and Liu (2012) introduced Einstein's aggregation operators for aggregating triangular IFS  

information.  Li et al. (2018) presented Einstein's operators and investigated the properties of 

these operators for SVNNs. Different decision-making strategies have valuable contributions to 

MCGDM problems. MCGDM problem tackles the problems of logically selecting the best 

alternative in the prevailing environment of many conflicting criteria. Extensive research in the 

domain of MCGDM in the NS environments has been done. Jana et al. (2021) presented Dombi 

aggregation operators for the MCDM strategy using  Single Valued Trapezoidal Neutrosophic 

Numbers (SVTrNNs). Several important types of research have been conducted by several 

researchers in MCDM fields exploring several operators in the domain with the introduction of 

different methods like entropy (Biswas, Pramanik, & Giri, 2014a), cross-entropy (Pramanik et 

al., 2018), similarity measures (Pramanik, Biswas, & Giri, 2017), etc. Sahin et al. (2018) 

explored the generalized single valued TFNNs and applied them to solve MCDM problems. Fan, 

Jia, and Wu (2019) used Dombi prioritized Bonferroni mean operator with TFNNs for green 

supplier selection. Irvanizam et al. (2020) investigated the extended MABAC method based on 

TFNNs for MCGDM problems. Meng et al. (2020) presented the TFNN preference relations and 

utilized it software selection problems. Fan,  Jia, and Wu  (2020) solved a new MCGDM model 

based on TFNNs and the EDAS method. Zhang, Zhou, Pan,  and  Wei (2022) investigated the 

MCDM method with TFNNs based on regret theory and the catastrophe progression method. 

Yao  and Ran  (2023) studied the operational efficiency evaluation of Urban and rural residents’ 

basic pension insurance system based on the triangular fuzzy neutrosophic Grey Relational 

Analysis (GRA) strategy. Xie (2023) presented the modified GRA strategy under the TFNN 

environment for blended teaching effect evaluation of college English courses. Wang, Yan, 

Wang, and Ouyang (2023) presented the cross-entropy strategy for MADM under the TFNN 

environment. 

  

Research gap:  

However, no such strategy to solve MCGDM problems using Einstein’s operations in the TFNN 

environment is reported. We find a research gap in with dealing MCGDM problems in the TFNN 

environment, especially under Einstein’s operations. In this chapter, we have proposed Triangular 

Fuzzy   Neutrosophic   Einstein's Ordered Weighted Arithmetic (TFNEOWA) operator and 

Triangular Fuzzy Neutrosophic Einstein’s Ordered Weighted Geometric (TFNEOWG) operator to 

aggregate information expressed in TFNNs to deal with MCGDM problems.  

The objectives of the study include:  
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1) to present the aggregation operators namely, TFNEOWA operator and TFNEOWG operator. 

2) to prove some of the basic properties of the TFNEOWA Operator and TFNEOWG operator. 

3) to develop two MCGDM strategies based on TFNEOWA operator and TFNEOWG operator 

4)  to discuss the developed strategies for solving MCGDM problems with illustrative examples. 

The rest of the chapter is organized as follows: Section 2 presents the preliminaries regarding 

TFNSs.  Section 3 presents the formulation of TFNEOWA and TFNEOWG operators. Section 4 

presents the entropy formulation for TFNNs. Section 5 deals with MCGDM strategy based on 

TFNEOWA and TFNEOWG Operators. Section 6 presents a numerical example of MCGDM 

strategy of sales manager selection in a pharmaceutical company. Section 7 includes the chapter. 

2.  PRELIMINARIES  

 

 Vital definitions of TFNS with their basic operational underlying principles are elaborately 

discussed in this section. Some basic Einstein principles of operations are also mentioned. 

2 .1 TFNSs ( Biswas, Pramanik, & Giri, 2016b) 

Definition 2.1. Let Ψ be a finite domain of definition (a fixed set) and  [0,1] is a set of all 

TFNNs on [0, 1]. A TFNS   in the set of real numbers is expressed as: 

 = {  ,( ( ) 


, ( ) 


, ( ) 


)|  Є  Ψ }   

where ( ) 


:  Ψ →  [0,1], ( ) 


 :  Ψ →  [0,1], 

( ) 


:   Ψ →  [0,1],  where ( ) 


 = ( (1) ( ) 


, (2) ( ) 


 , (3) ( ) 


) 

( ) 


= ( (1)( ) 


, (2)( ) 


, (3)( ) 


), 

where (1) ( ) 


,  (2) ( ) 


, (3) ( ) 


 respectively represents the “degree of truth”, “ degree of 

indeterminacy” and “degree of falsity” and  0 ≤ (1) ( ) 


+ (1)( ) 


+ (1) ( ) 


≤ 3.  For other membership 

degrees, we have similar results.          

For symbolical convenience, we take ( (1) ( ) 


, (2) ( ) 


 , (3) ( ) 


) = 1 2 3( , , )    

( (1)( ) 


, (2)( ) 


, (3)( )


  ) = ( 1 2 3, ,   ) and ( (1) ( ) 


,  (2) ( ) 


, (3) ( ) 


))   = (
1 2 3, ,   ) 

So  = ( 1 2 3( , , )   , ( 1 2 3, ,   ), ( 1 2 3, ,   ))  is a TFNN. 

Definition 2.2.  Hamming distance between two TFNNs (Wang, Yan, Wang, & Ouyang (2023) 

Let 
(1)A  and 

(2)A  be two TFNNs presented as 
(1)A =

1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2(pa ,pb ,pc ), (pe ,pf ,pg ), (pr ,ps ,pt ) & A (pa ,pb ,pc ), (pe ,pf ,pg ), (pr ,ps ,pt )=   =   . 

 The “normalized Hamming distance” (Wang, Wei, & Lu, 2018) is presented as:  

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

N

1
(A ,A ) [ pa pa pb pb pc pc pe pe pf pf pg pg pr pr ps ps pt pt ] (1)

9
 = − + − + − + − + − + − + − + − + −

                      

3. TFNEOWA AND TFNEOWG OPERATORS 

In this part, we define Einstein’s operations for TFNN. We formulate two operators namely, 
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TFNEOWA and TFNEOWG operators and establish some of their necessary properties. 

Definition 3.1. Let  1 1 1 1( , , ) =     and 2 2 2 2( , , ) =     be any two SVNNs. λ>0.   Einstein 

operations (Li et al., 2018) are defined as follows: 

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2

2

1 2

1 2

1 2

1 2 1 1 2

1

)

. . .
, , ) (2)

1 (1 )(1 ) 1 . 1 .

. .
( , , ) (3
1 . 1 (1 )(1 )

)
1 (1 )(

)  (

2
1 )

 





    


+ − − +   +  

 +    
 =

+  + − −



+ −

=

− 






                                         

1 1 1 1

1

1 1 1 1 1 1

~ 1 1 1 1 1

1

1 1 1 1 1 1

(1 ) (1 ) 2( ) 2( )
3) ( , , ), (4)

(1 ) (1 ) (2 ) ( ) (2 ) ( )
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0

1 )

 

1 )

   

     

    


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Let / / / / / / / / /

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3A ( , , ),( , , ), ( , , ) ,B (( , , ), ( , , ), ( , , ))=           =           be two TFNNs.  Then, 

we define the following, mathematical operations  with the equivalence symbolic representation 

as: 1 2 3( , , )   =
1 1 1(pa ,pb ,pc ) ,(

1 2 3, ,   )=
1 1 1(pe ,pf ,pg ) ,(

1 2 3, ,   )=
1 1 1(pr ,ps ,pt ) , 

/ / / / / / / / /
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 

   

   

       

− + − +


− + + − + + − + + − + +

 

1 1 1 1 1 1 1
1

1 1 1 1 1 11 1 1 1

1 1

1

8
2(pa ) 2(pb ) 2(pc ) (1 pe ) (1 pe ) (1 pf ) (1 pf )

).(A ) ( , , ),( , ,
(2 pa ) (pa ) (2 pc ) (pc ) (1 pe ) (1 pe )(2 pb ) (pb ) (1 pf ) (1 pf )

(1 pg ) (1 pg )

(1 pg ) (

      


        

 



+ − − + − −
= 

− + − + + + −− + + + −
+ − −

+ +
1 1 1 1 1 1

1 1 1 1 1 1

(1 pr ) (1 pr ) (1 ps ) (1 ps ) (1 pt ) (1 pt )
),( , , ) , 0. (9)

1 pg ) (1 pr ) (1 pr ) (1 ps ) (1 ps) (1 pt ) (1 pt )

     

      

+ − + + − − + − −
  

− + + − + + − + + −

 

 

Definition 3.2. ‘Score Function’ and ‘Accuracy function’ of TFNN 

 

Let 
1 2 3 1 2 3 1 2 3A ( , , ),( , . ), ( , , )=            be a TFNN. Its score function Scr ( A ) is defined as: 

1 2 3 1 2 3 1 2 3

1
Scr(A) [6 ( ) ( ) ( )] (10)

9
= +  + + −  +  +  −  +  +   

and Scr(A) [0,1] . 

3.1. Some properties of score function and accuracy function 

 

3.1.1. Boundedness. 

Max  value of Scr(A) = 1 2 3 1 2 3 1 2 3

1
[6 max( ) min( ) min( )]

9
+  + + −  +  +  −  +  +   
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1
[6 3 0 0]

9
1

= + − −

=

 

Similarly, Min of ~Scr(A )
1 2 3 1 2 3 1 2 3

1
[6 min( ) max( ) max( )]

9
= +  + + −  +  +  −  +  +    

1
[6 0 3 3]

9
0

= + − −

=

 

So, Scr(A) [0,1]  i.e.  boundedness property of the Scr(A) is proved. 

 Accuracy function of TFNN is denoted as H ( A ) and is presented as: 

H ( A ) =
1 2 3 1 2 3

1
[( ) ( )] (11)

3
 + + −  +  +   

and H ( A ) Є [-1, +1] 

Maximum value of H ( A )= 

1 2 3 1 2 3

1
[max( ) min( )]

3
1

[3 0]
3
1

 + + −  +  + 

= −

=

 

Similarly, minimum value of H ( A )=
1 2 3 1 2 3

1
[min( ) max( )]

3
 + + −  +  +   

1
[0 3]

3
1.

= −

= −

 

H ( A ) Є [-1, +1] 

So, the boundedness property of H ( A ) is also proved. 

 

3.1.2 Monotonicity  

Let  
(1) (1) (2) (3) (1) (2) (3) (1) (2) (3)

(2) / (1) / (2) / (3) / (1) / (2) / (3) / (1) / (2) / (3)

A ( , , ), ( , , ), ( , , )
A ( , , ), ( , , ), ( , , )

=           
=           

 

If, (1)A  (2)A , we have (1)  / (1) , (2)  / (2) , (3)  / (3)  
(1)  / (1) , (2)  / (2) , (3)  / (3) and, (1)  / (1) , (2)  /(2) , (3)  /(3)  

So, Scr ( (1)A )= (1) (2) (3) (1) (2) (3) (1) (2) (3)

1 2 3 1 2 3 1 2 3

1
[6 ( ) ( ) ( )]

9
+  + + −  +  +  −  +  +   

 (1) / (2) / (3) / (1) / (2) / (3) / (1) / (2) / (3)

1 2 3 1 2 3 1 2 3

1
[6 ( ) ( ) ( )]

9
+  + + −  +  +  −  +  +   

= Scr ( (2)A ) 

Scr ( (1)A )  Scr ( (2)A ) .  

So, monotonicity of Scr(A) is proved. 

Similarly, H ( A
(1)) = (1) (2) (3) (1) (2) (3)

1 2 3 1 2 3

1
[( ) ( )]

3
 + + −  +  +   

 / (1) / (2) / (3) / (1) / (2) / (3)

1 2 3 1 2 3

1
[( ) ( )]

3
 + + −  +  +   

= H ( A
(2)) 

 H ( (1)(A )   H (2)(A )  

So, monotonicity property for the H ( A ) is proved. 

3.2. Aggregation of TFNNs 

We first remind few important definitions of Arithmetic Operations (AOs)  applicable for “real 

numbers”. The weighted averaging operator of a “collection of real n umbers” ipa (i=1, 2, …, n-1, 
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n) is defined as: WAi ( 1 2 3 npa ,pa ,pa ,..., pa )
i

i n

w i
i 1

ˆp pa
=

=

=                        (12) 

Here, 
iw

ˆp =
1 2 3 n

T

w w w w
ˆ ˆ ˆ ˆ(p ,p ,p ,...,p )     represents the” weight vector” of pai, 

iw
ˆp  Є [0,1] 

and
i

n

w
i 1

ˆp 1
=

 = . In similar way, assuming  
iw

ˆp  : (Re)n →Re and for an assemblage of real numbers 

pai (i=1, 2, …, n-1, n), we can define the weighted geometric operator WTGn as 

 WTGn ( 1 2 3 npa ,pa ,pa ,..., pa ) wi

n ˆp

i
i 1

(pa )


=

=                 (13) 

3.3. TFNEOWA 

 Let 
iA =˂

i i i i i i i i i(pa ,pb ,pc ),(pe ,pf ,pg ),(pr ,ps ,pt )  ˃ (i=1, 2, …, n-1, n) be an ordered collection of 

TFNNs in the fixed set or well-defined accumulation of “real numbers”. Then TFNEOWA 

(
1 2 3 n 1 nA ,A ,A ,...,A ,A−

) is defined in the following way: 

 TFNEOWA( 
1 2 n 1 nA ,A ,...,A ,A−

)  =
1 2 3 n i

i n

w 1 w 2 w 3 w n w i
i 1

ˆ ˆ ˆ ˆ ˆ(p )A (p )A (p )A ... (p )A (p A )
=

=
        =           (14)  

where 
iw

ˆp [0,1]   is regarded as “weight vector “of  
iA and 

i

i n

w
i 1

ˆp 1
=

=

 =   

Theorem 3.3.1. Let 
iA = ˂

i i i i i i i i i(pa ,pb ,pc ),(pe ,pf ,pg ),(pr ,ps ,pt ) ˃ (i=1, 2, 3…n-1, n) be an ordered 

collection of TFNNs in the well-defined accumulation of “real numbers”. Then TFNEOWA 

( 1 2 nA ,A ,...,A )  can be written in the following way: 

TFNEOWA (
1 2 3 nA ,A ,A ...,A )  =

i n

1 1 2 2 3 3 n n n i
i 1

pw A pw A pw A ... pw A (pw A )
=

=
    =    (15) 

 

 

i i i i i i

i i i i i i

n n n n n n
pw pw pw pw pw pw

i i i i i i
i 1 i 1 i 1 i 1 i 1 i 1

n n n n n
pw pw pw pw pw pw

i i i i i i
i 1 i 1 i 1 i i 1 i 1

(pa 1) (1 pa ) (pb 1) (1 pb ) (pc 1) (1 pc )

( , ,

(pa 1) (1 pa ) (pb 1) (1 pb ) (pc 1) (1 pc )

= = = = = =

= = = = = =

+ − − + − − + − −     
=

+ + − + + − + + −    

i i i

i i i i i i

i

i i

n

n n n
pw pw pw

i i i
i 1 1 i 1

n n n n n n
pw pw pw pw pw pw

i i i i i i
i 1 i 1 i 1 i 1 i 1 i 1

i n
pw

i
i 1

n n
pw pw

i i
i 1 i 1

),

2 (pe ) 2 (pf ) 2 (pg )

( , , ),

(2 pe ) (pe ) (2 pf ) (pf ) (2 pg ) (pg )

2 (pr ) 2 (ps

( ,

(2 pr ) (pr )

= =

= = = = = =
=

=

= =



  

− + − + − +     



− + 

i i

i i i i

n n
pw pw

i i
i 1 i 1

n n n n
pw pw pw pw

i i i i
i i 1 i 1 i 1

) 2 (pt )

, ) , (16)

(2 ps ) (ps ) (2 pt ) (pt )

= =

= = = =

 


− + − +   

 

where for symbolical simplicity for representation, we represent the “weight vector” as follows: 

1 2 3 iw 1 w 2 w 3 w i
ˆ ˆ ˆ ˆp pw ,p pw ,p pw ,...,p pw =  =  =  =  

Proof: We make use of the mathematical induction method to prove the theorem  

1. Take n = 1, the case is trivial. 

TFNEOWA (
1A )=  
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i i i i i i

i i i i i i

1 1 1 1 1 1
pw pw pw pw pw pw

i i i i i i
i 1 i 1 i 1 i 1 i 1 i 1

1 1 1 1 1
pw pw pw pw pw pw

i i i i i i
i 1 i 1 i 1 i 1 i 1 i 1

(pa 1) (1 pa ) (pb 1) (1 pb ) (pc 1) (1 pc )

( , ,

(pa 1) (1 pa ) (pb 1) (1 pb ) (pc 1) (1 pc )

= = = = = =

= = = = = =

+ − − + − − + − −     


+ + − + + − + + −    

i i i

i i i i i i

i

i i

1

1 1 1
pw pw pw

i i i
i 1 i 1 i 1

n n n n n n
pw pw pw pw pw pw

i i i i i i
i 1 i 1 i 1 i 1 i 1 i 1

i 1
pw

i
i 1

1 1
pw pw

i i
i 1 i 1

),

2 (pe ) 2 (pf ) 2 (pg )

( , , ),

(2 pe ) (pe ) (2 pf ) (pf ) (2 pg ) (pg )

2 (pr ) 2 (p

( ,

(2 pr ) (pr )

= = =

= = = = = =
=

=

= =



  

− + − + − +     



− + 

i i

i i i i

1 1
pw pw

i i
i 1 i 1

1 1 1 1
pw pw pw pw

i i i i
i 1 i 1 i 1 i 1

1 1

s ) 2 (pt )

, ) ,

(2 ps ) (ps ) (2 pt ) (pt )

pw A (16)

= =

= = = =

 


− + − +   

=

   

2. For n = 2, then we have 

1 1 1 1 1 1

1 1 1 11 1

1

i 2

i i 1 1 2 2
i 1

pw pw pw pw pw pw

1 1 1 1 1 2

1 1 pw pw pw pwpw pw

1 1 1 11 1
pw

1

p

1

(pw A ) pw A pw A

(1 pa ) (1 pa ) (1 pb ) (1 pb ) (1 pc ) (1 pc )
pw A ( , , ),

(1 pa ) (1 pa ) (1 pc ) (1 pc )(1 pb ) (1 pb )

2(pe )
(
(2 pe )

=

=
 = 

+ − − + − − + − −
= 

+ + − + + −+ + −

−

1 1

1 1 1 11 1

1 1 1

1 1 1 1 1 1

pw pw

1 1

w pw pw pwpw pw

1 1 11 1
pw pw pw

1 1 1

pw pw pw pw pw pw

1 1 1 1 1 1

2(pf ) 2(pg )
, , ),

(pe ) (2 pg ) (pg )(2 pf ) (pf )

2(pr ) 2(ps ) 2(pt )
( , , )
(2 pr ) (pr ) (2 ps ) (ps ) (2 pt ) (pt )

+ − +− +


− + − + − +

 

2 2 2 2 2 2

2 2 2 22 2

2 2

2 2

pw pw pw pw pw pw

~ 2 2 1 1 1 1

2 2 pw pw pw pwpw pw

2 2 1 11 1
pw pw

2 2

pw pw

2 2

(1 pa ) (1 pa ) (1 pb ) (1 pb ) (1 pc ) (1 pc )
pw A ( , , ),

((1 pa ) (1 pa ) (1 pc ) (1 pc )(1 pb ) (1 pb )

2(pe ) 2(pf )
( ,
(2 pe ) (pe ) (2 p

+ − − + − − + − −
= 

+ + − + − −+ + −

− + −

2

1 11 2

2 2 2

1 1 2 2 2 2

pw

2

pw pwpw pw

2 22 2
pw pw pw

2 2 2

pw pw pw pw pw pw

2 2 2 2 2 2

2(pg )
, ),
(2 pg ) (pg )f ) (pf )

2(pr ) 2(ps ) 2(pt )
( , , )
(2 pr ) (pr ) (2 ps ) (ps ) (2 pt ) (pt )

− ++


− + − + − +

 

,
1 1 1 1 1 1

1 1 1 11 1

1

1 1

pw pw pw pw pw pw

1 1 1 1 1 1

1 1 2 2 pw pw pw pwpw pw

1 1 1 11 1
pw pw

1 1

pw pw

1 1

(1 pa ) (1 pa ) (1 pb ) (1 pb ) (1 pc ) (1 pc )
pw A pw A ( , , ),

(1 pa ) (1 pa ) (1 pc ) (1 pc )(1 pb ) (1 pb )

2(pe ) 2(pf )
( ,
(2 pe ) (pe )

+ − − + − − + − −
 = 

+ + − + + −+ + −

− +

1 1

1 11 1

1 1 1

1 1 1 1 1 1

2 2

2

pw

1

pw pwpw pw

1 11 1
pw pw pw

1 1 1

pw pw pw pw pw pw

1 1 1 1 1 1
pw pw

2 2

pw

2 2

2(pg )
, ),
(2 pg ) (pg )(2 pf ) (pf )

2(pr ) 2(ps ) 2(pt )
( , , )
(2 pr ) (pr ) (2 ps ) (ps ) (2 pt ) (pt )

(1 pa ) (1 pa )
(
(1 pa ) (1 pa )

− +− +

 
− + − + − +

+ − −


+ + −

2 2 2 2

2 2 22 2

2 2 2

2 2 2 2 2 2

pw pw pw pw

2 2 2 2

pw pw pwpw pw

2 22 2
pw pw pw

2 2 2

pw pw pwpw pw pw
2 2 2 2 2 2

(1 pb ) (1 pb ) (1 pc ) (1 pc )
, , ),

(1 pc ) (1 pc )(1 pb ) (1 pb )

2(pe ) 2(pf ) 2(pg )
( , , ), (17
(2 pe ) (pe ) (2 pf ) (pf ) (2 pg ) (pg )

+ − − + − −

+ + −+ + −

− + − + − +
2 2 2

2 2 2 2 2 2

pw pw pw

2 2 2

pw pw pw pw pw pw

2 2 2 2 2 2

)

2(pr ) 2(ps ) 2(pt )
( , , )
(2 pr ) (pr ) (2 ps ) (ps ) (2 pt ) (pt )


− + − + − +

 

 We use the following abbreviations. 
1 1 2 2 1 1 1

1 1 2 2 1 1 1

pw pw pw pw pw pw pw/ /
1 1 1 1 2 1 2 1 2 1 1 2 1 3

w pw pw pw pw pw pw/ / / /
1 1 1 1 2 2 1 1 1 2 1

(1 pa ) ,( pa 1) ,(pa 1) ,( pa 1) ,(pr ) ,(ps ) ,(pt )

(1 pb ) ,(1 pb ) ,(1 pb ) ,(1 pb ) ,(pe ) ,(pf ) ,(pg )

+ =  − + =  + =  − + =  =  =  = 

+ =  − =  + =  − =  =  =  = 
1 1 2 2 1 1

1 1 1 1 2 2

2

/
3

pw pw pw pw pw pw/ / /
1 1 1 1 2 2 1 1

pw pw pw pw pw pw/ / / / / / /
1 1 1 1 2 1 2 2

pw /
2 3

(1 pc ) ,(1 pc ) ,(1 pc ) ,(1 pc ) ,(2 pe ) ,(2 pf )

(2 pg ) ,(2 pr ) ,(2 ps ) ,(2 pt ) ,(2 pe ) ,(2 pf )

(2 pg ) ,(2

+ =  − =  + =  − =  − =  − = 

− =  − =  − =  − =  − =  − = 

− =  2 2 2 2 2 2

2 2 2

pw pw pw pw pw w/ / /
2 1 2 1 2 1 2 1 2 2 2 3

w w w

2 1 2 2 2 3
// / / / /
31 1 1 1 1 1 1 2

1 1 2 2 / / / / / /
1 1 1 1 1 1 1 2

)pr ) ,(2 ps ) ,(2 pt ) ,(pe ) ,(pf ) ,(pg
(pr ) ,(ps ) ,(pt )

22 2
w A w A ( , , ),( , ,

− =  − =  − =  =  =  = 
=  =  = 

 −  −  −   
  = 

 +  +  +   +  + 
31 2

/ / / / / /
13 2 3

/ / /
3 31 1 1 2 1 2

/ / / / / / / / /
1 11 1 1 1 2 2 3 3 1 2 1 3

22 2
),( , , )

2 22 2 2 2
( , , ),( , , ),( , , )

 


++  +  +
  −    − −

 
 +  +  + +  +  +  +  +   + 
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/ / / // /

1 1 1 1 1 1 1 1

/ / / / / /

1 1 1 1 1 1 1 1

/ / / // /

1 1 1 1 1 1 1 1

/ / / / / /

1 1 1 1 1 1 1 1
/

1 1

/ /

1 1 1

/

1 1

/ /

1 1 1

( , , ),

1 ( ) 1 ( ) 1 ( )

2 2 2
.

( ,
2 2

1 (1 )(1 )

 −  −  −  −  −  −
+ + +

 +  +   +  +   +   + 
= 

 −  −  −  −  −  −
+ + +

 +  +   +  +   +   + 

 

 +   + 

 
+ − −

 +   + 

//

3 32 2

/ / / // / /

3 3 32 2 2

/ /

2 2 3 3

/ / / / / / /

2 2 2 3 3 3

2 22
..

, ),
2 2 2 2

1 (1 )(1 ) 1 (1 )(1 )

  

 +   +  +   + 

   
+ − − + − −

 +   +   +   + 

 

(

3 32 21 1

/ / / // /

3 1 31 1 1 1 2 1 2

1 1 2 2 3 3

/ / / / / /

1 1 1 1 2 1 2 3 1 3

2 22 22 2
...

, , )
2 2 2 2 2 2

1 (1 )(1 ) 1 (1 )(1 ) 1 (1 )(1 )



 

  

  



 +  +  +  +   +  + 

  
+ − − + − − + − −

 +  +   +  +   +  + 

 > 

// / / / / / / /

3 31 1 1 1 1 1 1 1 1 1 2 2

/ / / / / / / / / / / / / / /

1 1 1 1 1 1 1 1 1 1 1 2 2 2 3 3 3

3 31 1 2 2

/ / / / / /

1 1 1 1 2 2 1 3 3

22 2
( , , ), ( , , ),

22 2
( , , )

   −   −   −      
= 

  +   +   +    +    +    + 

    


 +    +    + 
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Assume that the result is valid for i= n, i.e. 
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Then, for i= n+1, we have, 
~

1 2 3 n 1 1 1 2 2 n 1 n 1

1 2 3 n n 1 n 1

TFNEWA(A ,A ,A ,...,A ) (pw A ) (pw A ) ... (pw A )

TFNEWA(A ,A ,A ,...,A ) pw A

+ + +

+ +

=   

= 
 

i i i i

i i i i

i i

i i

n n n n
pw pw pw pw

i i i i
i 1 i 1 i 1 i 1

n n n n
pw pw pw pw

i i i i
i 1 i 1 i 1 i 1

n n
pw pw

i i
i 1 i 1

n
pw pw

i i
i i 1

(1 pa ) (1 pa ) (1 pb ) ( pb 1)

( ,

(1 pa ) (1 pa ) (1 pb ) ( pb 1)

(1 pc ) (1 pc )

(1 pc ) (1 pc )

= = = =

= = = =

= =

=

+ − − + − − +   
= 

+ + − + + − +   

+ − − 

+ + −

i i i

i i i i i i

i

i i

n n n
pw pw pw

i i i
i 1 i 1 i 1

n n n n n n n
pw pw pw pw pw pw

i i i i i i
1 i 1 i 1 i 1 i 1 i 1 i 1

n
pw

i
i 1

n n
pw pw

i i
i 1 i 1

2 (pe ) 2 (pf ) 2 (pg )

), ( , , ),

(2 pe ) (pe ) (2 pf ) (pf ) (2 pg ) (pg )

2 (pr ) 2 (

( ,

( pr 2) (pr )

= = =

= = = = = = =

=

= =

  

− + − + − +      



− + + 

i i

i i i i

n n
pw pw

i i
i 1 i 1

n n n n
pw pw pw pw

i i i i
i 1 i 1 i 1 i 1

ps ) 2 (pt )

, )

( ps 2) (ps ) ( pt 2) (pt )

= =

= = = =

 


− + + − + +   

n 1 n 1 n 1 n 1 n 1 n 1

n 1 n 1 n 1 n 1n 1 n 1

pw pw pw pw pw pw

n 1 n 1 n 1 n 1 n 1 n 1
pw pw pw pwpw pw

n 1 n 1 n 1 n 1n 1 n 1

n

(1 pa ) (1 pa ) (1 pb ) (1 pb ) (1 pc ) (1 pc )
( , , ),
(1 pa ) (1 pa ) (1 pc ) (1 pc )(1 pb ) (1 pb )

2(pe
(

+ + + + + +

+ + + ++ +

+ + + + + +

+ + + ++ +


+ − − + − − + − −


+ + − + + −+ + −

n 1

n 1 n 1

n 1 n 1 n 1 n 1

n 1 n 1 n 1 n 1 nn 1 n 1

pw

1
pw pw

n 1 n 1
pw pw pw pw

n 1 n 1 n 1 n 1
pw pw pw pw pwpw pw~

n 1 n 1 n 1 n 1 n 1n 1 n 1

,
)

(2 pe ) (pe )

2(pf ) 2(pg ) 2(pr ) 2(ps )
, ),( ,
(2 pg ) (pg ) (2 pr ) (pr ) (2 ps )(2 pf ) (pf )

+

+ +

+ + + +

+ + + + ++ +

+

+ +

+ + + +

+ + + + ++ +

− +

− + − + −− + 1 n 1

n 1

n 1 n 1

pw

n 1
pw

n 1
pw pw

n 1 n 1

,

(20)

(ps )

2(pt )
)

(2 pt ) (pt )

+

+

+ +

+

+

+ +

+


− +

 

Therefore, the theorem stands valid for i= n+1, when it is assumed that the theorem is true for n= 

m.                              

Therefore, by mathematical induction, the theorem is proved. 

 

3.4.  Some properties of TFNEOWA operator 

Property 3.4.1.  TFNEOWA ~ ~ ~ ~

1 2 3 n(A , A , A ,..., A )  is a TFNN. 

Proof:  
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Therefore, TFNEOWA ( ~ ~

1 2 3 n(A ,A ,A ,...,A )  is definitely  a TFNN. 
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Property 3.4.2. Idempotency 
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which is a TFNN. 

 

 Hence property of idempotency is proved. 

Property 3.4.3.  Boundedness 
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Proof:  We  already have 
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 Same type of proof of  inequalities can be shown for other falsity components also. 

Combining the results (24)-(28), it follows, 
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Scr(A ) [6 (min (pa ) min (pb ) min (pc )) (max (pe ) max (pf ) max (pg )

9
(max (pr ) max (ps ) max (pt ))]

−= = + + + − + +

− + +

 

i i i i i i i i i i i i i i i i

i

1
[6 (pa pb pc) (pe pf pg) (pr ps pt)]

9
1

[(max (pa ) max (pb ) max (pc )) (min (pe ) min (pf ) min (pg )) (min (r ) min (s )
9
min(t )) 6]

 + + + − + + − + +

 + + − + + − + +

+ +

 

So, ( ) ( )Scr(A ) Scr(A) Scr(A )− +   

 

Property 3.4.4.  Monotonicity 

 Let (1)

iA   and (2)

iA  be two TFNNs in the defined set of “real numbers” and  

(1) (2)

i iA A for, i n,n 1,n 2,...,3,2,1  = − − . 

Then we have, (1) (1) (1) (1) (2) (2) (2) (2)

1 2 3 n 1 2 3 nTFNEOWA(A ,A ,A ,...,A ) TFNEOWA(A ,A ,A ,...,A )  

Proof: 
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

i i i i i i i i i i
(2) (2) (2) (2) (2) (2) (2) (2) (2) (3)

i i i i i i i i i i
(1) (2)

i i

Let,A (pa ,pb ,pc ), (pe ,pf ,pg ),(pr ,ps ,pt )

A (pa ,pb ,pc ), (pe ,pf ,pg ),(pr ,ps ,pt )

for,A A

=  

=  



 

We assume   (1) (2) (1) (2) (1) (2)

i i i i i ia a ,e e , r r    for, i n, n 1,...,3, 2,1= −          (29) 

i i

i i

n n
pw pw(1) (2)

i i
i 1 i 1

n n
pw pw(1) (2)

i i
i 1 i 1

(1 pa ) (1 pa )

& (1 pa ) (1 pa ) , i n,n 1,n 2,...,3,2,1

= =

= =

+  + 

−  −  = − − 
 

And i i i i

n n n n
pw pw pw pw(2) (1) (1) (2)

i i i i
i 1 i 1 i 1 i 1

(1 pa ) (1 pa ) (1 pa ) (1 pa ) , i 1,2,4,..., n
= = = =

+  +  −  −  =     

n n

ii i

i 1 i 1

i

i

i

n
pwpw pw

i 1
i

i i i i

i i i i

n
pw

i 1
i

n
pw

i
i 1

i i i in
pw

i
i 1

i

i i

1 1 1
or,

2
2 2( 1) 1

( 1) 1 ( 1) 1pe
min (pe ) max (pe )

min (pe ) max (pe )1
or,

22 2
( 1) 1
pe

2 (pe )

or,min (pe ) max (pe )

(2 pe ) 1

2 (pe )

min (pe )

= =
=

=

=

=

 
 − +

− + − +

 

− +


 

− +



i

i

n
pw

i 1

i in
pw

i
i 1

max (pe )

(2 pe ) 1

=

=




− +
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i i i i

i i i i

n n n n
pw pw pw pw(2) (2) (1) (1)

i i i i
i 1 i 1 i 1 i 1

n n n n
pw pw pw pw(2) (2) (1) (1)

i i i i
i 1 i 1 i 1 i 1

and, (1 pa ) (1 pa ) (1 pa ) (1 pa )

also, (1 pa ) (1 pa ) (1 pa ) (1 pa )

= = = =

= = = =

+ − −  + − −   

+ + −  + + −   
  

i i i i

i i i i

n n n n
pw pw pw pw(2) (2) (1) (1)

i i i i
i 1 i 1 i 1 i 1

n n n n
pw pw pw pw(2) (2) (1) (1)

i i i i
i 1 i 1 i 1 i 1

(1 pa ) (1 pa ) (1 pa ) (1 pa )

(1 pa ) (1 pa ) (1 pa ) (1 pa )

= = = =

= = = =

+ − − + − −   


+ + − + + −   

 

i i

i i

(1) (2)

i i (1) (2)

i i
n n

pw pw

(1) (2)
i 1 i 1

i i
n n

pw pw

(1) (2)
i 1 i 1

i i

2 2
now,pe pe

pe pe
2 2

or, ( 1) ( 1)
pe pe

2 2
or,1 ( 1) 1 ( 1)

pe pe

= =

= =

 → 

−  − 

+ −  + − 

 

i i

i i

i i i i

n n
pw pw

(1) (2)
i 1 i 1

i i
n n

pw pw(1) (2)

i i
i 1 i 1

n n n n
pw pw pw pw(1) (1) (2) (2)

i i i i
i 1 i 1 i 1 i 1

1 1
or,

2 2
1 ( 1) 1 ( 1)

pe pe

2 (pe ) 2 (pe )

or,

(pe ) (2 pe ) (pe ) (2 pe )

= =

= =

= = = =



+ − + − 

 


+ − + −   

 

Similarly, for (1) (2)

i ipr pr  

i i

i i i i

n n
pw pw(1) (2)

i i
i 1 i 1

n n n n
pw pw pw pw(1) (1) (2) (2)

i i i i
i 1 i 1 i 1 i 1

2 (pr ) 2 (pr )

(pr ) (2 pr ) (pr ) (2 pr )

= =

= = = =

 
 

+ − + −   

. 

Now, let ( j) ( j) ( j) ( j) ( j) (J) (J) (J) (J) (J) (J) (J) (J) (J)

1 2 3 nA TFNEOWA(A ,A ,A ....,A ) (pa ,pb ,pc ),(pe ,pf ,pg ),(pr ,ps ,pt )= =    

i i i

i i i i

n n n
pw pw pw(J) (J) (J)

( j) (J)i 1 i 1 i 1

n n n n
pw pw pw pw(J) (J) (J) (J)

i 1 i 1 i 1 i 1

(1 pa ) (1 pa ) 2 (pe )

where,pa ,pe , i 1,2,3,.., n

(1 pa ) (1 pa ) (pe ) (2 pe )

= = =

= = = =

+ − −  
= =  =

+ + − + −   

 

Now score function value of two aggregated TFNNs 
(1)A  and

(2)A  are computed. 

Using relations eqn (29), we redefine { (1) (1) (2) (3) (1) (2) (3) (1) (2) (3)A ( , , ), ( , , ), ( , , )=            } 
(2) / (1) / (2) / (3) / (1) / (2) / (3) / (1) / (2) / (3)A ( , , ), ( , , ), ( , , )=             

(1) (1) (2) (3) (1) (2) (3) (1) (2) (3)

(2) / (1) / (2) / (3) / (1) / (2) / (3) / (1) / (2) / (3)

1
Scr(A ) [6 ( ) ( ) ( )],

9
1

Scr(A ) [6 ( ) ( ) ( )]
9

= +  + + −  +  +  −  + +

= +  + + −  +  +  −  + +

 

(1) (1) (2) (3) (1) (2) (3) (1) (2) (3)

/ (1) / (2) / (3) / (1) / (2) / (3) / (1) / (2) / (3) (2)

1
and,Scr(A ) [6 ( ) ( ) ( )]

9
1

[6 ( ) ( ) ( )] scr(A )
9

= +  + + −  +  +  −  + + 

+  + + −  +  +  −  + + =

 

If (1) (2)Scr(A ) Scr(A )  ,we intend to prove  
(1) (1) (1) (1) (1) (2) (2) (2) (2) (2)

1 2 3 4 n 1 2 3 4 nTFNEOWA(A ,A ,A ,A ,...,A ) TFNEOWA(A ,A ,A ,A ,...,A )  

 The following cases are considered.  

Case 1: If (1) (2)Scr(A ) Scr(A )=  then it follows, 

(1) (2) (3) (1) (2) (3) (1) (2) (3)

/ (1) / (2) / (3) / (1) / (2) / (3) / (1) / (2) / (3)

(1) (2) (3) / (1) / (2) / (3) (1) (2) (3) / (1) / (2) / (3)

1
[6 ( ) ( ) ( )]

9
1

[6 ( ) ( ) ( )
9

so,( ) ( ), ( ) ( ),
(

+  + + −  +  +  −  +  + 

= +  + + −  +  +  −  +  + 

 + + =  + +  +  +  =  +  + 
 / (1) / (2) / (3) / (1) / (2) / (3)) ( )+  +  =  +  + 

 

Now for accuracy function of 
(1)A  , we 
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have, (1) (1) (2) (3) (1) (2) (3) / (1) / (2) / (3) / (1) / (2 ) / (3) (2)1 1
H(A ) [( ) ( )] [( ) ( )] H(A )

3 3
=  +  +  −  +  +  =  +  +  −  +  +  =  

Therefore, (1) (1) (1) (1) (2) (2) (2) (2)

1 2 3 n 1 2 3 nTFNEOWA(A ,A ,A ...,A ) TFNEOWA(A ,A ,A ...,A )=            (30) 

Case2: (1) (2)if Scr(A ) Scr(A ), we have 

(1) (2) (3) (1) (2) (3) (1) (2) (3)

/ (1) / (2) / (3) / (1) / (2) / (3) / (1) / (2) / (3)

1
[6 ( ) ( ) ( )]

9
1

[6 ( ) ( ) ( )]
9

+  + + −  +  +  −  + +

 +  + + −  +  +  −  + +

 

Or, (1) / (1) (2) / (2) (3) / (3) (1) / (1) (2) / (2)

i i i i i i i i i i, , , , ...etc, for i 1,2,3,4..., n 1,n                = −  

So,

(1) (2)

(1) (2)

i i
(1) (1) (1) (1) (1) (2) (2) (2) (2) (1)

1 2 3 4 n 1 2 3 4 n

H(A ) H(A )

TFNEOWA(A ) TFNEOWA(A )for, i 1,2,3,4,...., n 1,n

or,TFNEOWA(A ,A ,A ,A ,...,A ) TFNEOWA(A ,A ,A ,A ,..,A )



  = −



 

So, we have  

 (1) (1) (1) (1) (1) (2) (2) (2) (2) (2)

1 2 3 4 n 1 2 3 4 nTFNEOWA(A ,A ,A ,A ,...A ) TFNEOWA(A ,A ,A ,A ,.., A )                (31) 

So, monotonicity is proved.  

 

Theorem 3.4. 1.  TFNEOWGA 1 2 npw pw pw

1 2 3 4 n 1 2 n(A ,A ,A ,A ,..,A ) A A ... A=      (32) 

 

 

i i i i i

i i i i i i i i

n n n n n
w pw pw pw pw

i i i i i
i 1 i 1 i 1 i 1 i 1

n n n n n n
w w pw pw pw pw pw pw

i i i i i i i i
i 1 i 1 i 1 i 1 i 1 i 1 i

2 (pa ) 2 (pb ) 2 (pc ) (1 pe ) (1 pe )

( , , ), (

(2 pa ) (pa ) (2 pb ) (pb ) (2 pc ) (pc ) (1 pe ) (1 pe )

= = = = =

= = = = = =

+ − −    
=

− + − + − + + + −     

i i i i i i

i i i i i i

n n

i 1 1
n n n n n n

w w pw pw pw pw

i i i i i i
i 1 i 1 i 1 i 1 i 1 i 1

n n n n
w w pw pw pw pw

i i i i i i
i 1 i 1 i 1 i 1 i

,

(1 pf ) (1 pf ) (1 pg ) (1 pg ) (1 pr ) (1 pr )

, ), (

(1 pf ) (1 pf ) (1 pg ) (1 pg ) (1 pr ) (1 pr )

= =

= = = = = =

= = = = =

 

+ − − + − − + − −     

+ + − + + − + + −   

i i i i

i i i i

n n n n
pw pw pw pw

i i i i
i 1 i 1 1 1

n n n n n n
pw pw pw pw

i i i i
i 1 1 i 1 i 1 1 1

(1 ps ) (1 ps ) (1 pt ) (1 pt )

, ,

(1 ps ) (1 ps ) (1 pt ) (1 pt )

)= =

= = =

+ − − + − −   

+ + − + + −     



 

Proof:  Mathematical inductive method is used to present the proof of the theorem. 

Case1. For i=1 

 

TFNEOWGA
1(A ) =

i i i i i

i i i i i i i i

1 1 1 1 1
w w w pw pw

i i i i i
i 1 i 1 i 1 i 1 i 1

1 1 1 1 1 1
w w pw pw pw pw pw pw

i i i i i i i i
i 1 i 1 i 1 i 1 i 1 i 1 i 1

2 (pa ) 2 (pb ) 2 (pc ) (1 pe ) (1 pe )

( , , ), (

(2 pa ) (pa ) (2 pb ) (pb ) (2 pc ) (pc ) (1 pe ) (1 pe )

= = = = =

= = = = = = =

+ − −    
=

− + − + − + + + −     

i i i i i i

i i i i i i

1 1

i 1
1 1 1 1 1 1

w w pw pw pw pw

i i i i i i
i 1 i 1 i 1 i 1 i 1 i 1

1 1 1 1 1
w w pw pw pw pw

i i i i i i
i 1 i 1 i 1 i 1 i 1

,

(1 pf ) (1 pf ) (1 pg ) (1 pg ) (1 pr ) (1 pr )

, ), (

(1 pf ) (1 pf ) (1 pg ) (1 pg ) (1 pr ) (1 pr )

=

= = = = = =

= = = = =

 

+ − − + − − + − −     

+ + − + + − + + −   

i i i i

i i i i

1 1 1 1
pw pw pw pw

i i i i
i 1 i 1 i 1 i 1

1 1 1 1 1
pw pw pw pw

i i i i
i 1 i 1 i 1 i 1 i 1

(1 ps ) (1 ps ) (1 pt ) (1 pt )

, ,

(1 ps ) (1 ps ) (1 pt ) (1 pt )

)= = = =

= = = = =

+ − − + − −   

+ + − + + −     



 

= 1pw

1pA  

Case2. For i= 2, we have, 

 TFNEOWGA 

( ( )1 2A , A
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1 1 1 1 1

1 2

1 1 1 1 1 11 1

1 1

1

pw pw pw pw pw

pw pw 1 1 1 1 1

1 2 pw pw pw pw pw pww w

1 1 1 1 1 11 1
pw pw

1 1

pw

1

2(pa ) 2(pb ) 2(pc ) (1 pe ) (1 pe )
A A ( , , ), ( ,

(2 pa ) (pa ) (2 pc ) (pc ) (1 pe ) (1 pe )(2 pb ) (pb )

(1 pf ) (1 pf )

(1 pf ) (1 pf

+ − −
 =

− + − + + + −− +

+ − −

+ + −

1 1

1 11

1 1 1 1 1 1

1 1 1 1 1 1

pw pw

1 1

pw pwpw

1 11
pw pw pw pw pw pw

1 1 1 1 1 1

pw pw pw pw pw pw

1 1 1 1 1 1

(1 pg ) (1 pg )
, ),

(1 g ) (1 g ))

(1 pr ) (1 pr ) (1 ps ) (1 ps ) (1 pt ) (1 pt )
( , , )
(1 pr ) (1 pr ) (1 ps ) (1 ps ) (1 pt ) (1 pt )

2(
(

+ − −

+ + −

+ − − + − − + − −


+ + − + + − + + −

 
2 2 2 2 2

2 2 2 2 2 22 2

1 1 1

1 1

pw pw pw pw pw

2 2 2 2 2

pw pw pw pw w wpw pw

2 2 2 2 2 22 2
pw pw pw

2 2 2

pw pw

2 2

pa ) 2(pb ) 2(pc ) (1 pe ) (1 pe )
, , ), ( ,

(2 pa ) (pa ) (2 pc ) (pc ) (1 pe ) (1 pe )(2 pb ) (pb )

(1 pf ) (1 pf ) (1 pg )
,

(1 pf ) (1 pf )

+ − −

− + − + + + −− +

+ − − + −

+ + −

1

1 1

2 2 2 2 2 2

2 2 2 2 2 2

pw

2

pw pw

2 2
pw pw pw pw pw pw

2 2 2 2 2 2

pw pw pw pw pw pw

2 2 2 2 2 2

(1 pg )
),

(1 pg ) (1 pg )

(1 pr ) (1 pr ) (1 ps ) (1 ps ) (1 pt ) (1 pt )
( , , )
(1 pr ) (1 pr ) (1 ps ) (1 ps ) (1 pt ) (1 pt )

−

+ + −

+ − − + − − + − −


+ + − + + − + + −

 

2 2 1 2

1 2 2 2 1 2 1 2

1 2

1 2 1 2

1

pw pw pw pw

1 2 1 2

pw pw pw pw pw pw pw pw

1 2 1 2 1 2 1 2
pw pw

1 2

pw pw pw pw

1 2 1 2
pw

1

2(pa ) (pa ) 2(pb ) (pb )
( , ,
(2 pa ) (2 pa ) (pa ) (pa ) (2 pb ) (2 pb ) (pb ) (pb )

2(pc ) (pc )
),

(2 pc ) (2 pc ) (pc ) (pc )

(1 pe ) (
(

=
− − + − − +

− − +

+ 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2

pw pw pw pw pw pw pw

2 1 2 1 2 1 2

pw pw pw pw pw pw pw pw

1 2 1 2 1 2 1 2
pw pw

1 2 1

1 pe ) (1 pe ) (1 pe ) (1 pf ) (1 pf ) (1 pf ) (1 pf )
, ,

(1 pe ) (1 pe ) (1 pe ) (1 pe ) (1 pf ) (1 pf ) (1 pf ) (1 pf )

(1 pg ) (1 pg ) (1 pg

+ − − − + + − − −

+ + + − − + + + − −

+ + − − 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2

pw pw pw pw pw pw

2 1 2 1 2

pw pw pw pw pw pw pw pw

1 2 1 2 1 2 1 2
pw pw pw pw

1 2 1 2

) (1 pg ) (1 pr ) (1 pr ) (1 pr ) (1 pr )
), ( ,

(1 pg ) (1 pg ) (1 pg ) (1 pg ) (1 pr ) (1 pr ) (1 pr ) (1 pr )

(1 ps ) (1 ps ) (1 ps ) (1 ps )

(

− + + − − −

+ + + − − + + + − −

+ + − − − 1 2 1 2

1 2 1 2 1 2 1 2

pw pw pw pw

1 2 1 2

pw pw pw pw pw pw pw pw

1 2 1 2 1 2 1 2

(1 pt ) (1 pt ) (1 pt ) (1 pt )
, )

1 ps ) (1 ps ) (1 ps ) (1 ps ) (1 pt ) (1 pt ) (1 pt ) (1 pt )

+ + − − −


+ + + − − + + + − −

 

i i i i i

i i i i i i i

2 2 2 2 2
pw pw pw pw pw

i i i i i
i 1 i 1 i 1 i 1 i 1

2 2 2 2 2 2
w pw pw pw pw pw pw pw

i i i i i i i i
i 1 i 1 i 1 i 1 i 1 i 1

2 (pa ) 2 (pb ) 2 (pc ) (1 pe ) (1 pe )

( , , ), (

(2 pa ) (pa ) (2 pb ) (pb ) (2 pc ) (pc ) (1 pe ) (1 pe )

= = = = =

= = = = = =

+ − −    
=

− + − + − + + + −      i

i i i i i i

i i i i i

2 2

i 1 i 1
2 2 2 2 2 2

pw pw pw pw pw pw

i i i i i i
i 1 i 1 i 1 i 1 i 1 i 1

2 2 2 2
pw pw pw pw pw

i i i i i i
i 1 i 1 i 1 i 1

,

(1 pf ) (1 pf ) (1 pg ) (1 pg ) (1 pr ) (1 pr )

, ), (

(1 pf ) (1 pf ) (1 pg ) (1 pg ) (1 pr ) (1 pr

= =

= = = = = =

= = = =

 

+ − − + − − + − −     

+ + − + + − + + −    i

i i i i

i i i i

2 2
pw

i 1 i 1
2 2 2 2

pw pw pw pw

i i i i
i 1 i 1 i 1 i 1

2 2 2 2
pw pw pw pw

i i i i
i 1 i 1 i 1 i 1

)

(1 ps ) (1 ps ) (1 pt ) (1 pt )

, ) (33)

(1 ps ) (1 ps ) (1 pt ) (1 pt )
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For i = n+1. we have 
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So, the theorem is true for i = n+1.  

Therefore, by mathematical induction, the theorem is proved for any positive integer n. 

3.5. Some properties of TFNEOWG operator 

Property 3.5.1.  TFNEOWG operator is a TFNN 
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Similarly, for other truth, indeterminacy and falsity components, we can show similar inequality 

relations hold. So, TFNEOWG operator is a TFNN. 

Property 3.5.2.  Idempotency 
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So, property of idempotency is completely proved. 

 

Property 3.5.3. Boundedness 
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i i i

n n n
pw pw pw

i i i
iii 1 i 1 i 1

(1 max(pe )) (1 pe ) (1 min(pe ))
= = =

 −  −  −    

i i i

i i i i i i

n n n
pw pw pw

i i i
iii 1 i 1 i 1

n n n n n n
pw pw pw pw pw pw

i i i i i i
i ii ii 1 i 1 i 1 i 1 i 1 i 1

also, ( max(pe ) 1) (1 pe ) (min(pe ) 1)

so,{ (1 max(pe )) (1 max(pe )) } { (1 pe ) (1 pe ) } { (1 min(pe )) (1 min(pe ))

= = =

= = = = = =

+  +  +  

− + +  − + +  − + +     

i i i i i i

i i

n n n n n n
pw pw pw pw pw pw

i i i i i i
i ii ii 1 i 1 i 1 i 1 i 1 i 1

n n
pw pw

i i
i ii 1 i 1

n

i
ii 1

}

and,{ (1 max(pe )) (1 max(pe )) } { (1 pe ) (1 pe ) } { (1 min(pe )) (1 min(pe )) }

(1 max(pe )) (1 max(pe ))

(1 max(pe ))

= = = = = =

= =

=

+ − −  + − −  + − −     

+ − − 

+

i i i i

i i i i i i

n n n n
pw pw pw pw

i i i i
i ii 1 i 1 i 1 i 1

n n n n n
pw pw pw pw pw pw

i i i i i
i iii 1 i 1 i 1 i 1 i 1

i
i

(1 pe ) (1 pe ) (min(pe ) ) (1 min(pe ))

( max(pe ) 1) (pe ) (1 pe ) (min(pe ) ) (1 min(pe ))

1

1 1

(1 max(pe
or,

= = = =

= = = = =

+ − − − −   

 

+ − + + − + −    

+

+ +

+

nn n

i ii i
i i i 1 i 1i 1 i 1

n n

i ii i

i 1 i 1

pw pwpw pw n n n n
pw pw

i i i ii i ii i 1 i 1 i 1 i 1

n n
pw pwpw pw

i i
i 1 i 1i i

i i

(1 pe ) (1 pe ) (1 min(pe )) (1 min(pe )))) (1 max(pe ))

(pe 1) (1 pe )
(max(pe ) 1) ( max(pe ) 1)

= == =

= =

= = = =

= =

 
+ − − + − −   − −

 
  + + − 

+ + − +

n

n n

i i

i 1 i 1

pw pwn n

i i
i ii 1 i 1

n

i
i 1

(1 min(pe )) (1 min(pe ))

as, pw 1

= =

= =

=



 
+ + − 

=

 

 

So  

i i

i i

n n
pw pw

i ii i i i
i i i 1 i 1 i i

n n
pw pw

i i i i
i ii i i i

i 1 i 1

i
i

(1 pe ) (1 pe )(1 max(pe )) (1 max(pe )) (1 min(pe )) (1 min(pe ))

(1 max(pe )) (1 max(pe )) (1 min(pe )) (1 min(pe ))(1 pe ) (1 pe )

(p

or,max(pe )

= =

= =

+ − − + − − + − −
 

+ + − + + −+ + − 



i i

i i

i i

i i

i

n n
pw pw

i i
i 1 i 1

in n ipw pw

i i
i 1 i 1

n n
pw pw

i i
i 1 i 1

i in n ii pw pw

i i
i 1 i 1

pw

i
i 1

i
i

e 1) (1 pe )

min(pe )

(pe 1) (1 pe )

(pf 1) (1 pf )

similarly,max(pf ) min(pf ) &

(pf 1) (1 pf )

(pg 1)

max(pg )

= =

= =

= =

= =

=

+ − − 


+ + − 

+ − − 
 

+ + − 

+ −



i

i i

n n
pw

i
i 1

in n ipw pw

i i
i 1 i 1

(1 pg )

min(pg )

(pg 1) (1 pg )

=

= =

− 


+ + − 

 

 Similarly, we can show,

i i

i i

n n
pw pw

i i
i 1 i 1

i in n ipw pwi
i i

i 1 i 1

(1 pr ) (1 pr )

max(pr ) min(pr )

(1 pr ) (1 pr )

= =

= =

+ − + 
 

+ + + 

 and same type of inequality is 

valid for other falsity components also, for all values of i=1,2, 3..., n. 

So, we conclude that ( ) ( )

1 1 1 1A TFNEOWGA(A ,A ,A ,..,A ) A− +                     (38) 

So, the operator is bounded. 

To reconfirm the result of eqn(38), we  consider the  inequalities between ( )
Scr(A )

+ , ( )
Scr(A )

− , 

Scr(A) . and corresponding accuracy functions. 

We have already defined “score function” ( see eqn (10) and   “accuracy function”  (see eqn (11) 

which are presented as: 

i i i i i i i i i i

(max) (min)

1
Scr(A ) [6 (pa pb pc ) (pe pf pg ) (pr ps pt )]

9
Scr (A) 1&Scr (A) 0 Scr [0,1], i (1,2,3,...,n)

= + + + − + + − + +

 = =    =

 

 
1

H(A) [(pa pb pc) (pr ps pt)]& H(A) [ 1,1]
3

= + + − + +  −  

Now,
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( )

i i i i i i i i i
i i i i i ii i i

i i i i i i i i i

1
Scr(A ) [(Max(pa ) M ax(pb ) M ax(pc ) (Min(pe ) Min(pf ) Min(pg )) (Min(pr ) Min(ps ) Min(pt )) 6]

9
1

[(pa pb pc ) (pe pf pg ) (pr ps pt ) 6] scr(A)
9

similarly,Scr(

+
= + + − + + − + + +

 + + − + + − + + + =

( )

i i i i i i
i i i i i

i

i i i
i i

i

i i i i i i i i i

1
A ) [(Min(pa ) Min(pb ) Min(pc )) (Max(pe ) M ax(pf ) M ax(pg ))

9
(M ax(pr ) M ax(ps ) M ax(pt ) 6]

1
[(pa pb pc ) (pe pf pg ) (pr ps pt ) 6]

9
Scr(A)

−
= + + − + + −

+ + +

 + + − + + − + + +

=

 

( ) ( )Scr(A ) Scr(A) Scr(A )− +                  (39) 

Now we consider  the two cases: 

Case 1. If ( ) ( )Scr(A) Scr(A ) &Scr(A) Scr(A )+ −= =  

Then, 
( )

i i i i i i i i i i i i i i i
i ii i

i i

i i i
i i

i

Scr(A) Scr(A )
1 1

[6 (pa pb pc ) (pe pf pg ) (pr ps pt )] [6 (Max (pa ) Max (pb ) Max (pc )) (Min (pe ) Min (pf ) Min (pg )
9 9

(Min (pr ) Min (ps ) Min (pt )]

+
= 

+ + + − + + − + + = + + + − + +

− + +

 

So, we have, 

i i i i i i i i i i i i
i i ii i i

i i i i i i
i ii

pa pb pc (Max(pa ) Max(pb ) Max(pc )) & (pe pf pg ) (Min (pe ) Min (pf ) Min (pg )

&pr ps pt (Min (pr ) Min (ps ) Min (pt )

+ + = + + + + = + +

+ + = + +
 

Therefore, 

i i i i i i i i i i i i
i i ii i i

( )

1
[(pa pb pc ) (pr ps pt )] [(Max(pa ) (Max(pb ) (Max(pc )) (Min(pr ) (Min(ps ) (Min(pt ))]

3

H(A )

1
H(A)

3
+

+ + − + + = + + − + +

=

=
 

Similarly, taking ( )Scr(A ) Scr(A)− = , we have H(A) =
( )

H(A )
−  

Case 2.Similarly from ( ) ( )Scr(A ) Scr(A) Scr(A )− + , we obtain ( ) ( )H(A ) H(A) H(A )− +  

So, we have ( ) ( )H(A ) H(A) H(A )− +   

So,  we have  ( ) ( )

1 2 3 nA TFNEOWGA(A ,A ,A ,...,A ) A− +  . 

Property 3.5.4. Monotonicity 

 Assume that 
(1) (2)

i iA &A  are any  two TFNNs such that (1) (2)

i iA A  for,i=1, 2, …, n. 

Then, (1) (1) (1) (1) (2) (2) (2) (2)

1 2 3 n 1 2 3 nTFNEOWGA(A ,A ,A ,..,A ) TFNEOWGA(A ,A ,A ,...,A )  

Now 

for, (1) 1 1 1 1 1 1 1 1 1 (2) 2 2 2 2 2 2 2 2 2

i i i i i i i i i i i i i i i i i i i iA (pa ,pb ,pc ),(pe ,pf ,pg ),(pr ,ps ,pt ) &A (pa ,pb ,pc ),(pe ,pf ,pg ),(pr ,ps ,pt )=  =   

We consider 1 1 1

i i ipc , pg , pt of  1 2 2 2

i i i iA & pc ,pg ,pt of 2 1 2

i i iA for,A A (i 1,2,3,...,n) =  

i i

i i i i

1 2

i i
1 2

i i

1 2 1 2

i i i i

pw pw

1 2

i i
n n n n

pw pw pw pw

1 2 1 2
i 1 i 1 i 1 i 1

i i i i

0 pc 1& 0 pc 1

also,pc pc
2 2 2 2

so, ( 1) ( 1),
pc pc pc pc

2 2
or, ( 1) ( 1) ,

pc pc
2 2 2 2

or, ( 1) ( 1) { ( 1) } 1 { ( 1) } 1
pc pc pc pc= = = =

   



  −  −

−  −

−  −  − +  − +   

 

i i

n n
pw pw

1 2
i 1 1

i i

1 1
or,

2 2
( 1) 1 ( 1) 1
pc pc=



− + − + 
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i i

i i i i

i i

i i i i

n n
pw pw1 2

i i
i 1 i 1

n n n n
pw pw pw pw1 1 2 2

i i i i
i 1 i 1 i 1 i 1

n n
pw pw1 2

i i
i 1 i 1

n n n
pw pw pw pw1 1 2 2

i i i i
i 1 i 1 i 1 i

(pc ) (pc )

or,

(pc ) (2 pc ) (pc ) (2 pc )

2 (pc ) 2 (pc )p

or,

(pc ) (2 pc ) (pc ) (2 pc )

= =

= = = =

= =

= = = =

 


+ − + −   

 


+ − + −  

i i

i i i i

i i

i i i

n

1
n n

pw pw1 2

i i
i 1 i 1

n n n n
pw pw pw pw1 1 2 2

i i i i
i 1 i 1 i 1 i 1

n n
pw pw1 2

i i
i 1 i 1

n n n
pw pw pw1 1 2

i i i
i 1 i 1 i 1

2 (pa ) 2 (pa )

similarly, &

(pa ) (2 pa ) (pa ) (2 pa )

2 (pb ) 2 (pb )

(pb ) (2 pb ) (pb ) (2 p

= =

= = = =

= =

= = =



 


+ − + −   

 


+ − + −   i

n
pw2

i
i 1

b )
=



 

i i i i

1 2 1 2
i i i i

n n n n
pw pw pw pw1 2 1 2

i i i i
i 1 i 1 i 1 i 1

for,pt pt (1 pt ) (1 pt )

or, (pt 1) (pt 1) , (1 pt ) (1 pt ) for,i (1,2,3,....,n)
= = = =

  +  +

+  + −  − =   
 

i i i i i

i i i i

n n n n n
pw pw pw pw pw2 1 1 2 1

i i i i i
i 1 i 1 i 1 i 1 i 1

n n n n
pw pw pw pw1 2 2 1

i i i i
i 1 i 1 i 1 i 1

also, (pt 1) (1 pt ) (pt 1) (pt 1) (1 pt )

& (pt 1) (pt 1) (1 pt ) (1 pt )

= = = = =

= = = =

+  −  +  +  −    

+  +  −  −   
 

i i i i

i i i i

n n n n
pw pw pw pw1 1 2 2

i i i i
i 1 i 1 i 1 i 1

n n n n
pw pw pw pw1 1 2 2

i i i i
i 1 i 1 i 1 i 1

so, (pt 1) (1 pt ) (pt 1) (1 pt )

& (pt 1) (1 pt ) (pt 1) (1 pt )

= = = =

= = = =

+ − −  + − −   

+ + −  + + −   
 

i i i i

i i i i

n n n n
pw pw pw pw1 1 2 2

i i i i
i 1 i 1 i 1 i 1

n n n n
pw pw pw pw1 1 2 2

i i i i
i 1 i 1 i 1 i 1

(pt 1) (1 pt ) (pt 1) (1 pt )

so,

(pt 1) (1 pt ) (pt 1) (1 pt )

= = = =

= = = =

+ − − + − −   


+ + − + + −   

 

For, 1 2

i ipg pg  we can show, 

i i i i

i i i i

i i

n n n n
pw pw pw pw1 2 2

i i i
i 1 i 1 i 1 i 1

n n n n
pw pw pw pw1 1 2 2

i i i i
i 1 i 1 i 1 i 1
n n

pw pw1 1

i i
i 1 i 1

1

i
i

{ (1 pg) (1 pg ) } { (1 pg ) (1 pg ) }

& (40)

{ (1 pg ) (1 pg ) } { (1 pg ) (1 pg ) }

{ (1 pe ) (1 pe ) }

{ (1 pe

= = = =

= = = =

= =

=

+ − − + − −   


+ + − + + −   

+ − − 

+

i i

i i i i

n n
pw pw2 2

i i
i 1 i 1

n n n n
pw pw pw pw1 2 2

i i i
1 i 1 i 1 i 1

{ (1 pe ) (1 pe ) }

(41)

) (1 pe ) } { (1 pe ) (1 pe ) }

= =

= = =

+ − − 


+ − + + −   

 

Similarly, we can show that  

i i i i

i i i i

i i

n n n n
pw pw pw pw1 1 2 2

i i i i
i 1 i 1 i 1 i 1

n n n n
pw pw pw pw1 1 2 2

i i i i
i 1 i 1 i 1 i 1
n n

pw pw1 1

i i
i 1 i 1

n
1

i
i 1

{ (1 pr ) (1 pr ) } { (1 pr ) (1 pr ) }

&

{ (1 pr ) (1 pr ) } { (1 pr ) (1 pr ) }

{ (1 ps ) (1 ps ) }

{ (1 ps

= = = =

= = = =

= =

=

+ − − + − −   


+ + − + + −   

+ − − 

+

i i

i i i i

n n
pw pw2 2

i i
i 1 i 1

n n n
pw pw pw pw1 2 2

i i i
i 1 i 1 i 1

{ (1 ps ) (1 ps ) }

) (1 ps ) } { (1 ps ) (1 ps ) }

= =

= = =

+ − − 


+ − + + −   
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i i

i i i

j j j j j j j j j j j j j j

i 1 2 3 n
n n

pw pwj j

i i
j ji 1 i 1

n n n
pw pw pwj j j j

i i i i
i 1 i 1 i 1

let, A TFNEOWGA(A , A , A ,.., A ) (pa , pb , pc ), (pe , pf , pg ), (pr , ps , pt )

2 (pa ) 2 (pb )

where, pa , pb

(pa ) (2 pa ) (pb ) (2 pb

= =

= = =

= = 

 

= =

+ − + −  

i

i i i

i i i i

i i i

n
pwj

i
j i 1

n n n
pw pw pwj j

i i
i 1 i 1 i 1

n n n n
pw pw pw pwj j j j

i i i i
j ji 1 i 1 i 1 i 1

n n n
pw pw pwj j j

i i i
i 1 i 1 i 1

2 (pc )

, pc

) (pc ) (2 pc )

(1 pe ) (1 pe ) (1 pf ) (1 pf )

&pe , pf

(1 pe ) (1 pe ) (1 pf ) (

=

= = =

= = = =

= = =



=

+ −  

+ − − + − −   

= =

+ + − + +  

i i

i i i

i i i

i i

n n
pw pwj j

i i
j i 1 i 1

n n n
pw pw pwj j j

i i i
i 1 i 1 i 1

n n n
pw pw pwj j j j

i i i i
j ji 1 i 1 i 1

n n
pw pwj j

i i
i 1 i 1

(1 pg ) (1 pg )

, pg

1 pf ) (1 pg ) (1 pg )

(1 pr ) (1 pr ) (1 ps ) (1 ps )

pr , ps

(1 pr ) (1 pr )

= =

= = =

= = =

= =

+ − − 

=

− + + −  

+ − − + − −  

= =

+ + − 

i i i

i i i i

n n n
pw pw pwj j

i i
ji 1 i 1 i 1

n n n n
pw pw pw pwj j j j

i i i i
i 1 i 1 i 1 i 1

(1 pt ) (1 pt )

, pt

(1 ps ) (1 ps ) (1 pt ) (1 pt )

,= = =

= = = =

+ − −  

=

+ + − + + −   

 

Now   we consider score function of 
(1)A  

1 1 1 1 1 1 1 1 1 11
scr(A ) [6 (pa pb pc ) (pe pf pg ) (pr ps pt )]

9
= + + + − + + − + +  

We assume, 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1 2 3 nA TFNEOWGA(A ,A ,A ,....,A ) (pa ,b ,c ),(pe ,pf ,pg ),(pr ,ps ,pt )= =   

2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1

2 1 2 1 2 1 2 1

1
&scr(A ) [6 (pa pb pc ) (pe pf pg ) (pr ps pt )]

9
1

[6 (pa pb pc ) (pe pf pg ) (pr ps pt )] scr(A )
9
[as,A A pa pa ,....& pe pe ,...., pr pr ,etc.] (42)

= + + + − + + − + + 

+ + + − + + − + + =

    

 

We consider the following cases:  

Case1. 1 2scr(A ) scr(A )  

Then, 1 1 1 1 2 2 2 2

1 2 3 n 1 2 3 nTFNEOWGA(A .A .A ,...,A ) TFNEOWGA(A .A .A ...,A )  

Case 2: If 1 2scr(A ) scr(A )= then, 

1 1 1 1 1 1 1 1 11
[6 (pa pb pc ) (pe pf pg ) (pr ps pt )]

9
+ + + − + + − + + =

2 2 2 2 2 2 2 2 21
[6 (pa pb pc ) (pe pf pg ) (pr ps pt )]

9
+ + + − + + − + +  

Or, 1 2 1 2 1 2 1 2 1 2pa pa ,pb pb ,pc pc &pe pe ,pf pf ,= = = = =
1 2 1 2 1 2 1 2pg pg & pr pr ,ps ps ,pt pt= = = =  

 Now, for accuracy function of
1A ,we have, 

1 1 1 1 1 1 1 2 2 2 2 2 2 21 1
H(A ) [(pa pb pc ) (pr ps pt )] [(pa pb pc ) (pr ps pt )] H(A )

3 3
= + + − + + = + + − + + =  

So, we have, 1 1 1 1 2 2 2 2

1 2 3 n 1 2 3 nTFNEOWGA(A ,A A ,...,A ) TFNEOWGA(A ,A A ,...,A )=  

Finally, 1 1 1 1 2 2 2 2

1 2 3 n 1 2 3 nTFNEOWG(A ,A A ,..,A ) TFNEOWG(A ,A A ,...,A )    (43) 

So, monotonicity property is proved. 

4. ENTROPY FOR TFNNS 

Assume that k-th decision matrix k
mn M N

(D )
  is constructed based on the rating values of k-th 

Decision Maker (DM) as follows:  
k k k

11 12 1N

k k

M1 MN

k
mn M N

x x x

x x

(D )


 
 

=  
 
 

 

k k k k k k k k k k
mn mn mn mn mn mn mn mn mn mnwhere,x (pa ,pb ,pc ),(pe ,pf ,pg ),(pr ,ps ,pt )=  represents rating value 

provided by the k-th DM in terms of TFNN. 

Consider j-th criterion or attribute. Its average rating value is presented by  
M

k k
ij ij

i 1

1
x (x )

M =
=           (44) 
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Entropy of a particular criterion:  Let there be m alternatives. The Hamming distances of the 

different TFNN ratings under the same criterion from average TFNN rating are calculated. 

Let k k*
mj ij

ˆ(x ,x )  be difference rating of the TFNN rating of m-th alternative under j-th criterion 

from the average rating. 

The Hamming distance of the j-th criterion is calculated as follows: - 

k k* k k* k k*
ij 1j ij 2j ij mj ij

1 ˆ ˆ ˆĤ (x ,x ) (x ,x ) ... (x ,x )
9

=  + + +     (45)  

The normalized Hamming distance is 
ij

ij

ij

Ĥ
Ĥ

ˆmax(H )
=  

Entropy of the j-th criterion is presented by
M

ij ij

j N N
i 1

ij ij
i 1 i 1

ˆ ˆH H1
( ) ln( )

ln(M) ˆ ˆH H=

= =

= − 

 

    (46) 

Dispersion associated with the j-th criterion is given by j jd (1 )= −  .  

So, the weight of j-th criterion is given by j

j N

j
j 1

(1 )
w

(1 )
=

−
=

−

     (47) 

Entropy function j(x)  satisfies the following properties: 

1. j (x, x) 0= , if x  is a crisp set. 

2.
j 11 j 12 11 12(x,x ) (x,x )if , x x     

M M

jN N N N
i 1 i 1

i 1 i 1 i 1 i 1

M
i1 i1

N N N
i 1 i

i1 i1
i 1 i 1 i 1

i1 i1 i2 i2
11 12j

i1 i1 i2 i2

i2

i2

ˆ ˆ ˆ ˆH H H H1 1
(x, x ) ( ) ln( ) & (x, x ) ( ) ln( )

ln(M) ln(M)ˆ ˆ ˆ ˆH H H H

ˆˆ ˆ HH H1 1
as, ( ) ln( ) (

ln(M) ln(M)ˆ ˆ ˆH H H

= =

= = = =

= =

= = =

= − = − 

   



  

 

M
i2 i2 i1

N N N
1

i2 i2 i1
i 1 i 1 i 1

M M
i1 i1 i2

N N N N
i 1 i 1

i1 i1 i2
i 1 i 1 i 1 i 1

12 11

i2

i2

12j j

ˆ ˆ ˆH H H
) ln( )[ x x (( ) ( )) & m 1]

ˆ ˆ ˆH H H

ˆˆ ˆ ˆHH H H1 1
or, ( ) ln( ) ( ) ln( )

ln(m) ln(m)ˆ ˆ ˆ ˆH H H H

or (x, x ) (x

= = =

= =

= = = =

   

  

−  − 

   

  11, x )

c c

j 11 13 j 11 13(x ,x ) (x ,x )3. =           

Where 
(1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)

1 1 1 1 1 1 13 3 3 3 3 3 3 3 3 3
c (1) (2) (3) (1) (2) (3) (1) (2) (3)

13 3 3 3 3 3 3 3 3 3

(1) (2) (3)
11 1 1 1 , , ), ( , , ) &X ( , , ), ( , , ), ( , , )

X ( , , ), ( , , ), ( , , )

X ( , , ),(       =          

=          

=    
c (1) (2) (3) (1) (2) (3) (1) (2) (3)

11 1 1 1 1 1 1 1 1 1&X ( , , ), ( , , ), ( , , )=          
 

 

c c

N 11 13 N 11 13
c c

j 11 13 j 11 13

d (X ,X ) d (X ,X )

so, (X ,X ) (X ,X )

=

=   also holds. 

Weight of the DM:  Weight of a DM is calculated using the formula:  
M

j
j 1(D)

w

w
M
=


=         (48) 

4.1 Determination of the weight of the criteria and DM by Shannon’s entropy  method 

(Liang, 2013) 

Step 1: Construct the decision matrices  

Let there be U number of decision- makers. 

Assume that  k
mn M N

(D )
  is the decision matrix from the thk  DM , where (

k
mnx ) represents 

the TFNN rating of the alternative m  over the attribute n  provided by thk  DM  in terms of 
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TFNNs. Then we get, k
mn M N

(D )


=

k k
11 1N

k k
MNM1

x x

x x

 
 
 
 
 
 
 

 

Step2: Calculate the  average TFNN rating for each attribute under a decision- matrix 

 using the formula 

M

m 1

k
mnk

mn ) ,n 1,2,..., N
M

x
(x =


= = ; m=1,2,…,M; k=1, 2,…,U               (49)                                             

Step 3: Average Hamming distance for each criterion 

 Hamming distance of j-th criterion is calculated by the formula 

K K K

j j j

k k k
ij 1j 2j mj

1 ˆ ˆ ˆĤ (x ,x ) (x ,x ) ... (x ,x )
9

=  + + +                                     (50) 

where  ˆ( , )K

j

k
mjx x = Hamming distance of m-th TFNN rating under k-th decision matrix, m=1,2, 

3…, M is presented by k

mj

K k K k K

j mj j mj j
ˆ(x , x )

1
[(pa pa ) ... (pr pr )]

9
 − + + −=     (51) 

 Average normalized Hamming distance is calculated using  ij

ij

ij

Ĥ
Ĥ

ˆmax(H )
=           (52) 

Entropy of j-th criteria is calculated using  
m ij ij

j n n
i 1

ij ij
i 1 i 1

ˆ ˆH H1
( )ln( )

ln(m) ˆ ˆH H=

= =

= − 
 

              (53) 

Weight of j-th criteria is calculated using  j

j n

j
j 1

(1 )
w

(1 )
=

−
=

−

     (54) 

Average weight of j-th criteria is calculated using the formula  

U

j
j 1

j

w

w
U

=



=                (55) 

 U= Number of DMs. 

Step 4:  DM’s weight is calculated taking average value of weights of all the criteria under the 

decision matrix using 

N

j
j 1(D)

k

w

w
N

=



=                                (56)  

5. MCGDM STRATEGY UNDER TFNN ENVIRONMENT USING TFNEOWA AND 

TFNEOWG OPERATOR 

5.1 MCGDM Strategy under TFNN Environment Using TFNEOWA 

Assume that 1 2 N{ , ,..., } =     is a set of N attributes and 1 2 M{ , ,..., } =     is the set of M 

alternatives, and pw= T

1 2 U{pw ,pw ,...,pw } represents the weight vector of U DMs satisfying  

i0 pw 1   and 
U

i
i 1

pw 1
=

= . Furthermore, let ( )w n  be the weight assigned to the attribute n  with 

w n0 ( ) 1     and 
N

w n
1

( ) 1 = . The proposed MCGDM strategy is developed using the following 

steps. 

Step 1: Construct the decision matrices 

 Consider that  k

mn M N( )D   is the decision matrix from the thk  DM , where ( k
mnx ) represents 

the TFNN rating of the alternative m  over the attribute n  provided by 
thk  DM  in terms of 
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TFNNs. Then we obtain, k

mn M N( )D   =

k k

11 1N

k k

M1 MN

x x

x x

 
 
 
 
 
 

     

Where k k k k k k k k k
mn mn mn mn mn mn mn mn mn

k
mn ,pb ,pc ), ,pf ,pg ), ,ps ,pt )x (pa (pe (pr = where n=1, 2…, N; m=1, 

2,…,M;  k=1, 2,…,U.                                                                                                 (57) 

Step 2: Standardize the decision matrices  

We remove the effect of different types of physical dimensions and corresponding measurements 

by standardizing the decision matrices k
mn M N(x ) 

 in the following way. For the TFNN entry 

k k k k k k k k k
mn mn mn mn mn mn mn mn mn

k
mn ,pb ,pc ), ,pf ,pg ), ,ps ,pt )x (pa (pe (pr =  in the decision matrix k

mn M N( )D  is 

implemented as, 

1. If the criterion is of benefit type, then there will be no change in TFNN rating. 
k k k k k k k k k
mn mn mn mn mn mn mn mn mn

k
mn ,pb ,pc ), ,pf ,pg ), ,ps ,pt )x (pa (pe (pr =    (58) 

2. If the criterion is of cost type, complement of the TFNN is considered. 

                k
mnx   = k k k k k k k k k

mn mn mn mn mn mn mn mn mn(pr ,ps ,pt ),(pe ,pf ,pg ),(pa ,pb ,pc )   

With n=1, 2,…,N; m=1, 2,…,M; k=1, 2,…,U.                                                                       (59) 

Then the standardized  decision matrix is given by 

k

mn M N( )D  =

k k

11 1N

k k

M1 MN

x x

x x

 
 
 
 
 
 
 

                     (60)  

Step 3: Determine of the weights of the criteria and the DMs 

Weights of the criteria and DMs are calculated using eqn (55) and eqn (56).  

 Step 4: Aggregate the decision matrices 

The decision matrices are fused into a single decision matrix using DMs weights using eqn (62). 

 The Aggregated Decision Matrix (ADM) mn M N
( )


  is constructed using TFNEOWA operator 

TFNEOWA ( 1 2 U

mn mn mn) , ) ,..., )(x (x (x )   

U
k

k mn
k 1

pw )(x
=

=           (61) 

1 2 U

1 mn 2 mn k mnpw ) pw ) ... pw )(x (x (x=     

 

i i i i i i

i i i i i i

U U U U U U
pw pw pw pw pw pw~

i i i i i i
i 1 i 1 i 1 i 1 i 1 i 1

U U U U U
pw pw pw pw pw pw~

i i i i i i
i 1 i 1 i 1 i 1 i i 1

(pa 1) (1 pa ) (pb 1) (1 pb ) (pc 1) (1 pc )

( , ,

(pa 1) (1 pa ) (pb 1) (1 pb ) (pc 1) (1 pc )

= = = = = =

= = = = = =

+ − − + − − + − −     
=

+ + − + + − + + −    

i i i

i i i i i i

i

i i

U

1
U U U

pw pw pw

i i i
i 1 1 i 1

U U U U U U
pw pw pw pw pw pw

i i i i i i
i 1 i 1 i 1 i 1 i 1 i 1

U
pw

i i
i 1

U U
pw pw

i i
i 1 i 1

),

2 (pe ) 2 (pf ) 2 (pg )

( , , ),

(2 pe ) (pe ) (2 pf ) (pf ) (2 pg ) (pg )

2 (pr ) 2 (ps

( ,

(2 pr ) (pr )

= =

= = = = = =

=

= =



  

− + − + − +     



− + 

i i

i i i i

U U
pw pw

i
i 1 i 1

U U U U
pw pw pw pw

i i i i
i 1 i 1 i 1 i 1

) 2 (pt )

, ) (62)

(2 ps ) (ps ) (2 pt ) (pt )

= =

= = = =

 


− + − +   

 

Then we obtain mn M N
( )


 = 

11 1N

M1 MN

  
 
 
   
 

                 (63) 
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Step 5: We now calculate aggregated TFNN rating against each alternative using criteria weights 

using eqn (62). Let the aggregated TFNN rating be represented 

by
mn mn mn mn mn mn mn mn mn mnx (pa ,pb ,pc ),(pe ,pf ,pg ),(pr ,ps ,pt )  =    

 

Step 6: Calculate the 
mnScr( )x and H (

mnx ) value of the aggregated TFNNV of each alternative 

using eqn (64) and eqn (65)  

mn mn mn mn mn mn mn mn mn mn

1
Scr( ) [6 (pa pb pc ) (pe pf pg ) (pr ps pt )]

9
x = + + + − + + − + +    (64) 

H (
mnx ) =

mn mn mn mn mn mn

1
[(pa pb pc ) (pr ps pt )]

3
+ + − + +       (65) 

Step 7: Rank of the alternatives 

Ranking is made on the basis of the descending value of 
mnScr( )x and H (

mnx ).  

 

5.2 MCGDM Strategy under TFNN Environment Using TFNEOWG 

Step 1 -Step 3 are same as that of 5.1 

Step 4: The aggregated decision matrix (ADM) mn M N( )   is constructed using TFNEOWG 

operator presented as:  

TFNEOWG U1 2 pwpw pw1 2 k 1 2 k

mn mn mn mn mn mn((x ) ,(x ) ,..., (x ) ) {(x ) } {(x ) } ... {(x ) }=             (66) 

i i i i i

i i i i i i i

U U U U U
pw pw pw pw pw

i i i i i

i 1 i 1 i 1 i 1 i 1

U U U U U U
pw pw pw pw pw pw pw p

i i i i i i i i

i 1 i 1 i 1 i 1 i 1 i 1

2 (pa ) 2 (pb ) 2 (pc ) (1 pe ) (1 pe )

( , , ), (

(2 pa ) (pa ) (2 pb ) (pb ) (2 pc ) (pc ) (1 pe ) (1 pe )

= = = = =

= = = = = =

+ − −



− + − + − + + + −

=
    

      i

i i i i i i

i i i i i

U U
w

i 1 i 1
U U U U U U

pw pw pw pw pw pw

i i i i i i

i 1 i 1 i 1 i 1 i 1 i 1

U U U U
pw pw pw pw pw

i i i i i

i 1 i 1 i 1 i 1

,

(1 pf ) (1 pf ) (1 pg ) (1 pg ) (1 pr ) (1 pr )

, ), (

(1 pf ) (1 pf ) (1 pg ) (1 pg ) (1 pr ) (1 pr

= =

= = = = = =

= = = =

+ − − + − − + − −

+ + − + + − + + −

 

     

   

i i i i

i i i i i

U U U U
pw pw pw pw

i i i i

i 1 i 1 i 1 i 1

U U U U U U
pw pw pw pw pw

i i i i i

i 1 i 1 i 1 i 1 i 1 i 1

(1 ps ) (1 ps ) (1 pt ) (1 pt )

, ,

) (1 ps ) (1 ps ) (1 pt ) (1 pt )

) (67)= = = =

= = = = = =

+ − − + − −

+ + + + + −


   

     

 

Then, we obtain mn M N( )  = 
11 12

M1 MN

  
 
 
   
 

                       (68) 

Step 5:  We now calculate aggregated TFNN rating against each alternative using criteria weights 

using formula (66). Let the aggregated TFNN rating be represented as: 

mn mn mn mn mn mn mn mn mn mnx (pa ,pb ,pc ), (pe ,pf ,pg ),(pr ,ps ,pt )  =    

Step 6:   Calculate the 
mnScr( )x and mn )H(x value of the aggregated TFNNV of each alternative 

using 

mn mn mn mn mn mn mn mn mn mn

mn mn mn mn mn mn mn

1
Scr( ) [6 (pa pb pc ) (pe pf pg ) (pr ps pt )] (69)

9
1

) [(pa pb pc ) (pr ps pt )] (70)
3

x

H(x

= + + + − + + − + +

= + + − + +

 

 Step 7: Rank of the alternatives 

Ranking is made on the basis of the descending value of score function and accuracy function. 

 

6. A NUMERICAL EXAMPLE OF MCGDM STRATEGY OF SALES MANAGER 

SELECTION IN A PHARMACEUTICAL COMPANY 
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This section presents an illustrative numerical example of selection of a sales manager in a 

pharmaceutical company reflecting the relevancy of the proposed MCGDM strategy. Selecting an 

effective sales manager in a pharmaceutical company is crucial because they play a key role in 

drawing revenue and ensuring compliance with industry regulations. A skilled sales manager can 

lead and motivate the sales team, navigate complex healthcare environments, and can maintain 

ethical standards in promoting pharmaceutical products. Their strategic decisions impact sales 

performance, market share, and overall success in the reputed and competitive industry. The 

pharmaceutical company appoints four DMs as eminent experts in the pharmaceutical field. After 

primary detailed scrutiny four candidates ( 1,2,3,&4)i i = (four alternatives) are selected for 

further assessment under five criteria ( 1,2,3,4,&5)m m =  namely,  

1.Verbal interaction skill (  1) 

2.Past field work experience ( 2 )  

3. General aptitude ( 3 )  

4. Willingness of hard labor (
4 )    

5. Self-determination and instant decisive capacity (
5 ) 

The criteria are very much crucial, judging upon which best alternative is to be chosen. 

As example, verbal interaction skills are crucial for a sales manager in a pharmaceutical company 

due to nature of the role.  Effective communication enables sales manager to articulate complex 

information, build relationships with healthcare professionals and convey the value of 

pharmaceutical products. Past field work experience  and general aptitude are crucial and 

important for a pharmaceutical sales manager as they offer practical insights into the dynamics of 

industry. Willingness of hard labour is very important for all round growth of the company. Self- 

determination and instant decisive capacity are crucial for human resource development and 

financial growth of the company. 

Step 1: Construct the decision matrices 

Four decision matrices are shown in Table 1-Table 4. 
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Step 2:     Standardization of decision matrices 

All the criteria are of benefit type, so there is no need to standardize them. 

Step 3: Calculate the weights of criteria and DMs 

Average TFNN rating of criteria under DM-1 is shown in table 5. Entropy of criteria under DM-1 

shown in table 6, weights of criteria under DM-1 is shown in table 7, average TFNN ratings of 

criteria under DM-2 is shown in table 8. Entropy of criteria under DM-2 is shown in table 9, 

weights of criteria under DM-2 and weight of DM-2 are shown in table 10, average TFNN ratings 

of criteria under DM-3 are shown in table 11. Entropy of criteria under DM-3 is shown in table 
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12, weights of criteria under DM-3 and weight of DM-3 are shown in table 13, average TFNN 

ratings of criteria under DM-4 is shown in table 14. Entropy of criteria under DM-4 is shown in 

table 15, weights of criteria under DM-4 and weight of DM-4 are shown in table 16. Weights of 

all the DMa are listed in table 17. Average weights and entropy of all criteria are represented in 

table 18. 
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Step 4: Fusion of decision matrices by TFNEOWA operator 

Decision matrices, DM-1, DM-2, DM-3, DM-4 are fused or aggregated using eqn (62) shown in 

table 19. 
 

 

Step 5. Calculation of aggregated TFNN rating against each alternative. 

We now calculate aggregated TFNN rating against each alternative using criteria weights using 

equation (61). The aggregated TFNN ratings are shown in table 20. 

 

 

 
Step 6: Calculation of score and accuracy values of different alternatives 

Score and accuracy values of different alternatives are calculated using eqn (69), eqn (70) and the 

results are listed in table 21.  

Step 7: Ranking of the alternatives 

Ranking of the alternatives on the basis of accuracy value and score value is shown in table 21 
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Step 8:   Fusion of decision matrices by TFNEOWG operator Decision matrices, DM-1, DM-2, 

DM-3, DM-4 are fused or aggregated using eqn (67) shown in    Table 22.    

             
 

Step 9: Calculation of aggregated TFNN rating against each alternative  

 We now calculate aggregated TFNN rating against each alternative using criteria weights using 

eqn (67). The aggregated TFNN ratings are shown in table 23. 

 

 
 

Step 10: Calculation of score and accuracy values of different alternatives 

Score and accuracy values of different alternatives are calculated using eqn (68) and eqn (69) and 

results are presented in table 24. 
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Step 11: Ranking of the alternatives 

Ranking of the alternatives on the basis of accuracy values and score value is shown in table 24 

 
So, using both TFNEOWA and TFNEOWGA operator, we conclude that alternative-2 is the best 

alternative 

 

7. CONCLUSIONS 
 

MCDM and MCGDM related problems are generally observed in quite complex environments 

and are mostly linked with incomplete and uncertain information. TFNNs are very useful tools to 

tackle the incompleteness and inaccuracy of DMs assessments for the selection of best alternatives 

among the group of alternatives on the basis of different criteria involved. We have defined the 

score function and accuracy function for TFNNs and established some of their basic properties. 

We have also introduced two operators namely TFNEOWA and TFNEOWGA operators and 

proved some of their basic properties.  Finally, two numerical examples regarding sales manager 

selection in a pharmaceutical company have been provided to reflect the applicability of the 

developed strategies. We hope that the developed strategies will help deal with other MCDM 

problems such as the library and information system (Sahoo, Panigrahi, & Pramanik, 2023, Sahoo, 

Pramanik, Panigrahi, 2023), supplier selection (Abdel-Baset et al., 2019), diagnosing COVID-19 

cases (Alsattar et al., 2024), COVID-19 vaccine selection (Mallick, Pramanik, Giri, 2024), sustain 

route selection of petroleum transportation (Simić et al, 2023), tourist destination choice problems 

(Lan et al., 2023), etc. 
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ABSTRACT 

Mostly library and information systems fail to provide satisfactory search results, and exhibit poor 

performance regarding ranking factors, and do not use user-centered searching approaches. As a 

result, getting information through such a library and information system needs improvement to 

get satisfactory results. Six categories of ranking factors—"Text Statistics, Popularity, Freshness, 

Locality and Availability, Content Properties, and User Background"—are used to determine 

rankings. To rank search results using Single Valued Neutrosophic Numbers (SVNNs), the study 

aims to provide the elements influencing the ranking of search results in library and information 

systems, assigning weight to the major broad attributes of the popularity group according to the 

opinions of experts.  The literature study shows that no studies have ever used the entropy- 

Additive Ratio Assessment (ARAS) and ordered search results taking popularity ranking 

variables. The study is innovative in all these ways as well as the elements and weighting strategy 

help in developing Web-scale Discovery Tools (DTs), Integrated Library Management Systems 

(ILMSs), and any other Information Retrieval (IR) system. 

KEYWORDS:  Information retrieval, relevance ranking, OPAC, ranking factors, single 

valued neutrosophic number, MCGDM, ARAS, entropy, search result. 

1. INTRODUCTION

The software assists us in locating a library's collection using its Online Public Access Catalogue 

(OPAC), or its web version known as Web-OPAC. There exists a tonne of Integrated Library 

Management Systems (ILMSs) that are open-source and free, as well as numerous paid options. 

However, due to a lack of user-centeredness and presentational sophistication, the OPAC search 

results have several drawbacks (Lewandowski, 2010). To produce their search results in a relevant 

order, today's library and information systems take into account a meagre number of criteria, as 

well as weak principles and tactics, which is why they provide such subpar results. Additionally, 

users' preferences are not taken into account, which is more important now than ever. 

Due to its lack of user-centeredness and consideration for a wide range of elements, Discovery 

tools are also unable to satisfy users (Sahoo & Panigrahi, 2022). To satisfy consumers and keep 

the search results ordered while retaining relevance, the best search results in a ranking carried out 

by web search engines may be notable examples for any other information systems like a Library 
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and Information System (LIS). To meet consumers' expectations for information search and 

discovery, search engine technologies have been deployed (Breeding, 2006; Antelman, Lynema, 

& Pace, 2006; Niu & Hemminger, 2011; Connaway & Dickey, 2010). 

Behnert & Lewandowski, (2015) categorized the Ranking Factors ( RFs) into six groups: i. "text 

statistics”, ii. “popularity”, iii. “freshness”, iv.  “locality and availability”, v. “content properties” 

and vi. “user background”. Various elements can be taken into account under each group to rank 

library items while keeping the relevant order of search results. Only a few criteria are used by 

LIS in their system, but we need to strive to add more for better outcomes. Many popularity 

criteria are appropriate for LIS, but in this case, we have simply taken ten (10) large sub-groups 

under group popularity to demonstrate how to implement them in the system (Sahoo, Pramanik, & 

Panigrahi, 2023).  

Real-life problems are mostly uncertain. Uncertainty, indeterminacy, and inconsistent results are 

fundamental characteristics of ranking factors.  Zadeh (1965) proposed the Fuzzy Sets (FSs) to 

deal with uncertainty. The Neutrosophic Set (NS) (Smarandache, 1998), which is an extension of 

various FSs and Intuitionistic FSs (IFSs) (Atanossov,1986), is competent to deal with uncertainty 

comprehensively. A truth Membership Function (MF), an indeterminacy MF, and a falsity MF are 

independent components of an NS (Smarandache, 1998). As a subclass of NS that is more 

common in MCDM situations, Single-Valued NS (SVNS) (Wang, Smarandache, Zhang, 

&Sunderraman (2010)) was introduced.  SVNS is further extended to the quadripartitioned NS ( 

Chatterjee et al.(2016),  interval quadripartitioned NS (Pramanik, 2022b), Pentapartitioned  NS 

(PNS) (Mallick & Pramanik, 2020), and interval PNS ( Pramanik, 2023a). The studies  (Peng & 

Dai, 2020, Pramanik 2020, 2022a; Broumi et al., 2018; Smarandache & Pramanik 2016, 2018;  

Pramanik, Mallick, & Dasgupta, 2018) provide specifics on the evolution of neutrosophic theories 

and implementations. 

For the current study, we opt for the SVNN environment. We refer to the hybrid approach in this 

environment as the SVNN-E -ARAS strategy as a combination of the entropy strategy and group 

decision-making utilizing Additive Ratio ASsessment (ARAS). Based on the recommendations of 

the domain experts, the factors are given weights using the entropy technique.  

In the actual world, Decision-Makers (DMs) prefer to use linguistic variables to evaluate the 

significance of traits in a flexible manner. This is due to a variety of factors, including incomplete 

knowledge of the attributes or criteria, a lack of information processing skills in the field, the 

presence of specialists, and more (Sahoo, Panigrahi, & Pramanik, 2023). Our framework is 

developed using a user-centered approach and the SVNS theory, which is more suited to reflect 

reality than the conventional approach. 

Research gap: No research work has been developed using an entropy technique with ARAS 

method for information retrieval in an SVNS environment to incorporate RFs considered for the 

relevance ranking of search results in LIS. 

Motivation: To fill the research gap, we initiate to develop a new strategy, namely SVNN-E-

ARAS in the SVNS environment. 

 

2.  LITERATURE REVIEW 

We present a literature search on library materials ranking factors, popularity group 

ranking factors, SVNS, the process of assigning weights to the criteria, the entropy strategy, 

and the ARAS strategy. Freshness was the most-used ranking criterion (Lewandowski, 2009) 

in catalogues. For a real ranking (Dellit & Boston, 2007), OPACs usually employ only 
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standard text matching. There are some ideas to improve the relevance ranking that goes 

beyond unblended text matching. Flimm (2007) proposed the popularity RFs in catalogues for 

relevance ranking. According to Mercun & Zumer (2008) and Sadeh (2007) ranking search 

results in the LIS include “circulation statistics, book review data, the number of downloads, 

and the number of print copies owned by the institutions”. 

It may happen that users are not interested or they are not able to look through the whole 

result sets. So quality ranking reduces to a crucial factor (Lewandowski, 2009). Behnert and 

Lewandowski (2015) categorized all RFs into six (6) groups. Plassmeier et.al. (2015) stated in 

their study “Catalogues rank usually search results based on the date of publication but the 

additional inclusion of popularity-based factors was highly promiiswassing to yield valuable 

benefits” and “popularity-based relevance ranking can be determined by citation counts, 

author metrics, and usage data, while we also consider other popularity data in our complete 

relevance model”. Bornmann, Mutz, and Daniel (2008) mentioned that the h-index and m-

index were more important to reflect the impact of the work of a researcher. Glanzel and 

Schubert (1988) introduced the Characteristic Scores and Scales (CSS) technique which helps 

in finding the characteristic partitions for citation distributions of papers that are interpreted as 

“poorly cited”, “fairly cited”’ “remarkably cited”, or “outstandingly cited”. Plassmeier et al. 

(2015) stated that “the effectiveness of CSS scores as utilities in the overall relevance model 

must still be evaluated in user studies”.   

 There are many established criterion weighting procedures found in the literature (Peng, 

2019) for the MCDM process such as CRiteria Importance Through Intercriteria Correlation ( 

CRITIC) method (Diakoulaki et al., 1995), entropy method (Majumder & Samanta, 2014), 

maximizing deviation method (Wu & Chen, 2007), optimization method (Wang & Zhang, 

2009; Biswas, Pramanik & Giri, 2014b). The information entropy method was used by 

Biswas, Pramanik, and Giri (2014a) to determine the unknown attribute weights in the SVNN 

environment.  

Zavadskas and Turskis (2010) developed the ARAS strategy to deal with MCDM 

problems. Stanujkic (2015) developed the ARAS strategy for Multi-Criteria Group Decision 

Making (MCGDM) using linguistic variables.  Koçak, Kazaz, and Ulubeyli (2018) used the 

ARAS strategy in the subcontractor selection problem. Büyüközkan, and Göçer (2018) 

presented the ARAS strategy in an interval-valued IFS environment. Ghram and Frikha (2019) 

presented the hierarchical ARAS strategy to rank the websites of tourist destination brands. 

Liu and Cheng (2019) developed the ARAS strategy under a probability multi-valued NS 

environment.  Mallick and Pramanik (2021) presented the ARAS strategy for MCGDM in the 

trapezoidal NS environment. Adali et al. (2023) presented the ARAS strategy using CRITIC  

in the SVNN settings. Pramanik (2023b) developed the SVPNN- ARAS strategy for the 

MCGDM in the PNS environment. An overview of the ARAS strategy was documented by 

Liu and Xu (2021). 

No research work has been developed to use the entropy-ARAS strategy for information 

retrieval in the SVNS environment to incorporate RFs considered for the relevance ranking of 

search results in LIS.  

  

3. OBJECTIVES OF THE STUDY 
The primary goals are listed below. 

i. To determine the group ranking criteria 

ii. To develop a unique entropy-ARAS strategy for MCGDM in the SVNN environment, 
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which we refer to as the SVNN-E-ARAS strategy.  

iii. To develop a framework using the developed SVNN-E-ARAS technique that incorporates 

a few ranking elements of the group popularity for the relevancy order of search results in LIS. 

4. METHODOLOGY 
  

All the data used here were collected from the research of Sahoo, Pramanik, & Panigrahi 

(2023). A new MCGDM strategy is developed by incorporating SVNNs, Entropy, and ARAS 

for the study which is shown in section 5.  

5. A NEW INTEGRATED SVNN MCGDM METHODOLOGY : SVNN-

ENTROPY ARAS (SVNN-E-ARAS) STRATEGY FOR MCGDM IN SVNN 

ENVIRONMENT 

 Using the following steps, the proposed MCGDM strategy (refer to Figure 1) is developed. 

Step 1: Construct the DM ( Expert) Committee 

                    Formulate a committee of  P (≥ 2) DMs.  

Step 2: Define the objective, criteria, and alternatives 

P DMs evaluate the alternative Ar (r= 1, 2, …, m), (m≥ 2) with respect to n criteria 

Fs (s=1, 2, …, n), (n ≥ 2) 

Step 3:  Define the linguistic terms (LT scales to weigh DMs and criteria)  

 

The weights of the DMs and criteria are presented in linguistic terms and the conversion 
formulae between linguistic terms and SVNNs are shown in Table 1.  

 

Table 1:  Conversion between LT and SVNN for weighting of attributes and DMs 

(Biswas, Pramanik, & Giri, 2016) 

 

LTs SVNNs 

Extremely Important (EI) 0.90,0.10,0.10  

Very Important (VI) 0.80,0.20,0.15  

Important (I) 0.50,0.40,0.45  

Very Unimportant (VU) 0.35,0.60,0.70  

Extremely Unimportant (EU), 0.10,0.80,0.90  

 

Step 4: Formulate the Single Valued Neutrosophic Decision Matrices (SVNDMs) 

We assume that the rating of alternative Ar  (r= 1, 2, …, m) concerning criterion Fs 

(s=1, 2, …,n ) offered by the p-th DM  is a linguistic term 
p
rs that can be expressed by 

SVNN ( Biswas, Pramanik, & Giri, 2016) ( See Table 1). 

 

Then  the p-th decision matrix is constructed as: 
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11 12 1n

21 22 2n

m1

p p p

p p p

p p

rs m n

p p p

m2 mn

( )
...



   
 
   

 =  =  
 
         

(1) 

 

After converting the LTs into SVNNs, the p-th SVNDM reduces to

  

 

 

11 12 1n

21 22 2n

m1

p p p

p p p

p p

rs m n

p p p

m2 mn

g g g

g g g
G (g )

...

g g g



 
 
 

= =  
 
 
 

            (2) 

where p p p p

rs rs rs rsg a ,b ,c=  

where p =1, 2, … P, r = 1, 2, …, m and s = 1, 2, …, n 

 

Step 5: Normalize individual SVNDMs 

Normalization is done using the following rule ((Biswas et al., 2016)  

 
p

p rs
prs
rs

g ,for benefit critrion
d

(g ) , for cos t criterion


=  

      (3) 

and the matrix pG is converted into the matrix 


=
p p

rs rs m n
D (d )  

where p ' p p p

rs rs rs rs(g ) (c ,1 b ,a )= − is the complement of SVNN p p p p

rs rs rs rsg a ,b ,c= .  

Then the normalized SVNDM appears as: 

 

11 12 1n

21 22 2n

m1

p p p

p p p

p

p p p

m2 mn

d d d

d d d
D

d d d

 
 
 

=  
 
 
 

, p= 1, 2, ..., P.     (4) 

Step 6:  Determine the weights of the DMs 

Assume that p p p pT ( ), I ( ),F ( ) =    is rating for the p-th DM. Then, P , weight 

of the pth DM =
 

 

2 2 2

p p p

P
2 2 2

p p p
p 1

1 (1 T ( )) (I ( )) (F ( )) / 3

(1 (1 T ( )) (I ( )) (F ( )) / 3)
=

− −  +  + 

− −  +  + 

   (5) 

and        
P

p
p 1

1
=

 =                         (6)  

 Step 7: Aggregate the SVNDMs using the weights of the DMs 

Utilizing 


=
p p

rs rs m n
D (d ) , T

1 2 P( , ,..., )=    , 
p [0,1]   and 

P

p
p 1

1
=

 = , the 

aggregated SVNDM is formed by employing the Single- Valued Neutrosophic Weighted 
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Arithmetic Averaging Aggregation  (SVNWAAA) operator (Ye, 2014) as follows: 

p p p

1 2 P

rs rs rs
1 2 P

1 rs 2 rs P rs
P P P

(p) (p) (p)

rs rs rs
p 1 p p

SVNWAAA (d ,d ,...,d )

d d ... d

1 (1 T ) , (I ) , (F )



  

= = =

=    

= − −  

     (7) 

Then the aggregated SVNDM is obtained as: 

( )

11 12 1

21 22 2

1 2

rs m n

n

n

m m mm

D d

d d d

d d d

d d d


 = =

   
   
 =
 
 

   

       (8) 

               where , ,rs rs rs rsd T I F   = .                                                                                (9) 

Step 8: Determine the weights of the attributes 

The entropy value (Majumder &Samanta, 2014) Es of the th attribute Fs (s=1, 2, …, 

n), is obtained using the formula 

1

1
1

m

s rs rs rs rs
r

E (T F )( I I )
n =

  = − + −        (10) 

For r =1, 2, …, m; s =1, 2, …, n. 

The entropy weight (Hwang &Yoon, 1981; Wang & Zhang, 2009)  s of the s-th attribute 

Fs is presented by 

( )
1

1

1

s

s n

s
s

E

E
=

−
 =

−

       (11)  

We obtain the weight vector ( )1 2
 =   n, ,,,  with   0 1 s ,  and  

1

1
=

 =
n

s
s

.  

  Step 9: Formulate the weighted aggregated SVNDM 

The weighted aggregated SVNDM is presented as follows:   

  

11 12 1

21 22 2

1 2

 
 
 =
 
 
 

n

n

rs

m m mn

  

  


  

 

where * ,rs rs sd =   r =1, 2,…, m; s=1, 2,…, n    (12) 

s  refers to the weight of the attribute Fs and 
1

1
n

s

s=

= . 

Step 10: Determine the optimal function values 

To calculate the optimal values of the weighted aggregated SVNDM, we can use 

the equation (13).  

r r1 r2 rn
n n n

rs rs rs
s 1 s 1 s 1

...

1 (1 T ), (I ), (F )
= = =

 =    

  = − −  
  where r = 1, 2, …, m               (13) 
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Step 11: Deneutrosophication  

We calculate the score values of the elements of (13) using the formula of score function 

rs rs rs
r

2 T I F
Sc( )

3

  + − −
 =                   (14) 

Step 12: Evaluate the alternative utility degree 

The degree of alternative utility determined by contrasting the score value ( )rSc S  with the 

best suited S . The alternative’s utility degree of  r  is given below. 

( )
; 1,2,..., .r

r

Sc
r m



 
 = =    (15) 

Step 13: Rank the alternatives 

The descending order of can be used to identify the relative priority of workable 

alternatives r . That is the alternative with the highest value of r  is the best choice. 
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Fig.1: Flowchart of the SVNN-E-ARAS strategy for MCGDM 
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6. DATA, CALCULATIONS AND RESULTS 

. The following steps of SVNN-E-ARAS are used to resolve the problem under consideration 

based on the suggested strategy discussed: 

 Step 1: Construct the DM Committee 

 We have considered five experts cum users as DMs (DM1, DM2 , DM3 , DM4, DM5) in the study.                    

Step 2: Define the objective, criteria, and alternatives 

At first, we elaborately define the objectives of the study to the experts. Then briefly explained the 

definition, scope and coverage of all criteria. A group of five DMs (DM1, DM2 , DM3 , DM4, DM5) 

has provided their opinions about the importance of each particular ranking factors under the 

group popularity mentioned in the questionnaire on the basis of five-point Likert scale. The 

factors are Subject (F1), Circulation (F2), Language (F3), Number of published edition (F4), 

Number of Copies (F5), Bibliometric Methods (F6), Publisher Authority (F7), Purchasing 

Behaviour (F8), Ratings (F9) and Enriched Metadata (F10). The factors are related to the 

documents denoted as A1 , A2 , A3, A4  and we want to design a framework to order the documents 

according to their relevancy. 

Step 3:  Define the linguistic terms for the weights DMs and the criteria 

Depending on their position, the five DMs may not be equally important. Table 1 represents 

the importance of the DMs  Table 2 displays the significance of each DM as indicated by the 

LTs.  

Table 2: Importance of DMs and Criteria  

DM DM1 DM2 DM3 DM4 DM5 

LT EI VI VI EI EI 

SVNN 0.90,0.10,0.10

 

0.80,0.20,0.15  0.80,0.20,0.15

 

0.90,0.10,0.10

 

0.90,0.10,0.10

 

 

Step4: Construction of the decision matrices 

Based on the rating values in terms of linguistic terms, the decision matrices are formed    

(see Table 3, Table 4, Table 5, Table 6, Table 7), 

Table 3: Decision matrix P(1) 

Ai F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

A1 VI VI VI VI VI VI VI VI EI EI 

A2 EI VI I EI VI VI VI EI I VU 

A3 VI VI VI VU VI VU I I I I 

A4 VI VI VI VI VI VI VU VU I I 
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Table 4: Decision matrix P(2) 

Ai F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

A1 VI VU I I I I EI I EI VI 

A2 VI I VU I VI VI VI I VI VI 

A3 I I I VI VI I I VU I VI 

A4 VI VI VI VU VU VU VU VI VU I 

 

 

Table 5: Decision matrix P(3) 

Ai F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

A1 VI I VU I I I VI I VI VI 

A2 VI VI VI I VI I I VI VI VI 

A3 I VI VI VI VI VI I I I I 

A4 VI I I VU I VI VU I I VI 

 

Table 6: Decision matrix P(4) 

Ai F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

A1 VI VI VI VI I VI VI I EI EI 

A2 I I VI EI VI I I VI VI VI 

A3 VI VI I I I I VI EI I I 

A4 I VI VI I EI VI I I EI I 

 

Table 7: Decision matrix P(5) 

 

 The decision matrices are converted into SVNDMs P(i) ( i= 1, 2, 3, 4, 5). 

P(1)=

1

2

3

4

0.80,0.20,0.15 0.80,0.20,0.15 0.80,0.20,0.15 0.80,0.20,0.15 0.80,0.20,0.15 0.80,0.20,0.15 0.80,0.20,0.15 0.80,0.20,0.15 0.90,0.10,0.10 0.90,0.10,0.10A

0.90,0.10,0.10, 0.80,0.20,0.15 0.50,0.40,0.45 0.90,0.10A

A

A

,0.10 0.80,0.20,0.15 0.80,0.20,0.15 0.80,0.20,0.15 0.90,0.10,0.10 0.50,0.40,0.45 0.35,0.60,0.70

0.80,0.20,0.15 0.80,0.20,0.15 0.80,0.20,0.15 0.35,0.60,0.70 0.80,0.20,0.15 0.35,0.60,0.70 0.50,0.40,0.45 0.50,0.40,0.4
(16)

5 0.50,0.40,0.45 0.50,0.40,0.45

0.80,0.20,0.15 0.80,0.20,0.15 0.80,0.20,0.15 0.80,0.20,0.15 0.80,0.20,0.15 0.80,0.20,0.15 0.35,0.60,0.70 0.50,0.40,0.45 0.50,0.40,0.45 0.50,0.40,0.45

 
 
 
 
 
 
 

 P(2)= 

1

2

3

4

0.80,0.20,0.15 0.35,0.60,0.70 0.50,0.40,0.45 0.50,0.40,0.45 0.50,0.40,0.45 0.50,0.40,0.45 0.90,0.10,0.10 0.50,0.40,0.45 0.90,0.10,0.10 0.80,0.20,0.15A

0.80,0.20,0.15, 0.50,0.40,0.45 0.35,0.60,0.70 0.50,0.40A

A

A

,0.45 0.80,0.20,0.15 0.80,0.20,0.15 0.80,0.20,0.15 0.50,0.40,0.45 0.80,0.20,0.15 0.80,0.20,0.15

0.50,0.40,0.45 0.50,0.40,0.45 0.50,0.40,0.45 0.80,0.20,0.15 0.80,0.20,0.15 0.50,0.40,0.45 0.50,0.40,0.45 0.35,0.60,0.7
(17)

0 0.50,0.40,0.45 0.80,0.20,0.15

0.80,0.20,0.15 0.80,0.20,0.15 0.80,0.20,0.15 0.35,0.60,0.70 0.35,0.60,0.70 0.35,0.60,0.70 0.35,0.60,0.70 0.80,0.20,0.15 0.35,0.60,0.70 0.50,0.40,0.45

 
 
 
 
 
 
 

 P(3)= 

Ai F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

A1 VI I VI VU VI VI I EI I VI 

A2 I VI VU I VI VU VU I VI I 

A3 I I I I I I I I I I 

A4 VI VI VI VI VI VI VI VI VU VU 
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1

2

3

4

0.80,0.20,0.15 0.50,0.40,0.45 0.35,0.60,0.70 0.50,0.40,0.45 0.50,0.40,0.45 0.50,0.40,0.45 0.80,0.20,0.15 0.50,0.40,0.45 0.80,0.20,0.15 0.80,0.20,0.15A

0.80,0.20,0.15 0.80,0.20,0.15 0.80,0.20,0.15 0.50,0.40,A

A

A

0.45 0.80,0.20,0.15 0.50,0.40,0.45 0.50,0.40,0.45 0.80,0.20,0.15 0.80,0.20,0.15 0.80,0.20,0.15

0.50,0.40,0.45 0.80,0.20,0.15 0.80,0.20,0.15 0.80,0.20,0.15 0.80,0.20,0.15 0.80,0.20,0.15 0.50,0.40,0.45 0.50,0.40,0.45
(18)

0.50,0.40,0.45 0.50,0.40,0.45

0.80,0.20,0.15 0.50,0.40,0.45 0.50,0.40,0.45 0.35,0.60,0.70 0.50,0.40,0.45 0.80,0.20,0.15 0.35,0.60,0.70 0.50,0.40,0.45 0.50,0.40,0.45 0.80,0.20,0.15

 
 
 
 
 
 
 

 P(4)= 
1

2

3

4

0.80,0.20,0.15 0.80,0.20,0.15 0.80,0.20,0.15 0.80,0.20,0.15 0.50,0.40,0.45 0.80,0.20,0.15 0.80,0.20,0.15 0.50,0.40,0.45 0.90,0.10,0.10 0.90,0.10,0.10A

0.50,0.40,0.45 0.50,0.40,0.45 0.80,0.20,0.15 0.90,0.10,A

A

A

0.10 0.80,0.20,0.15 0.50,0.40,0.45 0.50,0.40,0.45 0.80,0.20,0.15 0.80,0.20,0.15 0.80,0.20,0.15

0.80,0.20,0.15 0.80,0.20,0.15 0.50,0.40,0.45 0.50,0.40,0.45 0.50,0.40,0.45 0.50,0.40,0.45 0.80,0.20,0.15 0.90,0.10,0.10
(19)

0.50,0.40,0.45 0.50,0.40,0.45

0.50,0.40,0.45 0.80,0.20,0.15 0.80,0.20,0.15 0.50,0.40,0.45 0.90,0.10,0.10 0.80,0.20,0.15 0.50,0.40,0.45 0.50,0.40,0.45 0.90,0.10,0.10 0.50,0.40,0.45

 
 
 
 
 
 
 

 

P(5)=

 
1

2

3

4

0.80,0.20,0.15 0.50,0.40,0.45 0.80,0.20,0.15 0.35,0.60,0.70 0.80,0.20,0.15 0.80,0.20,0.15 0.50,0.40,0.45 0.90,0.10,0.10 0.50,0.40,0.45 0.80,0.20,0.15A

0.50,0.40,0.45 0.80,0.20,0.15 0.35,0.60,0.70 0.50,0.40,A

A

A

0.45 0.80,0.20,0.15 0.35,0.60,0.70 0.35,0.60,0.70 0.50,0.40,0.45 0.80,0.20,0.15 0.50,0.40,0.45

0.50,0.40,0.45 0.50,0.40,0.45 0.50,0.40,0.45 0.50,0.40,0.45 0.50,0.40,0.45 0.50,0.40,0.45 0.50,0.40,0.45 0.50,0.40,0.45
(20)

0.50,0.40,0.45 0.50,0.40,0.45

0.80,0.20,0.15 0.80,0.20,0.15 0.80,0.20,0.15 0.80,0.20,0.15 0.80,0.20,0.15 0.80,0.20,0.15 0.80,0.20,0.15 0.80,0.20,0.15 0.35,0.60,0.70 0.35,0.60,0.70

 
 
 
 
 
 
 

 
Step 5: Normalize the SVNDMs  

The considered criteria are benefit type. So, no normalization technique is required. 

Step 6: Determine the weights of the DMs 

Using the formula described in eq. (5), we obtain the weights of the DMs ( see Table 8). 

Table 8: Weight of the DMs 

DM      
Weight  0.207837 0.188244 0.188244 0.207837 0.207837 

 
Step 7: Construction of the aggregated SVNDM  

Using the formula (eq. (7)) and decision matrices (see  eq. (16), eq. (17),  eq. (18), eq. 

(19), and eq. (20)), we obtain the aggregated SVNDM  (see eq. (21)). 

1

2

3

4

0.80,0.20,0.15 0.64,0.32,0.31 0.7,0.28,0.25 0.64,0.33,0.31 0.66,0.3,0.29 0.72,0.26,0.23 0.79,0.2,0.17 0.7,0.26,0.26 0.84,0.15,0.15 0.85,0.15,0.13A

0.75,0.23,0.22 0.71,0.26,0.23 0.61,0.36,0.35 0.74,0.23,0.24A

A

A

0.8,0.2,0.15 0.63,0.33,0.32 0.63,0.33,0.32 0.75,0.23,0.21 0.76,0.23,0.19 0.69,0.29,0.26

0.66,0.3,0.29 0.71,0.26,0.23 0.65,0.31,0.29 0.63,0.34,0.33 0.71,0.27,0.24 0.56,0.38,0.4 0.59,0.35,0.36 0.62,0.32,0.36 0.5,0.4,
(21)

0.45 0.58,0.35,0.37

0.76,0.23,0.19 0.76,0.23,0.18 0.76,0.23,0.18 0.62,0.35,0.34 0.74,0.24,0.23 0.75,0.25, 0.2 0.52,0.44,0.46 0.65,0.3,0.29 0.6,0.35,0.39 0.56,0.38,0.4

 
 
 
 
 
 
 

  
Step 8: Determine the weights of the attributes 

To determine the weights of the 10 attributes, we have calculated the entropy value of each 

attribute using eq. (10) . The obtained entropy values are tabulated in the Table 9. 

Table 9: Entropy value for the attributes 

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 

0.8013 

 

0.8248 

 

0.8448 

 

0.8553 

 

0.8109 

 

0.8516 

 

0.8698 

 

0.8292 

 

0.8307 

 

0.8400 

  
After the calculation of the entropy values of all ten attributes, we calculate the weight of each 

attribute (see Table 10) using eq. (11). 
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Table 10: Weights  of the attributes 

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 

0.1210 

 

0.1067 

 

0.0945 

 

0.0882 

 

0.1152 

 

0.0904 

 

0.0793 

 

0.1040 

 

0.1031 

 

0.0975 

 

Step 9: Construct the weighted aggregated SVNDM 

Using the formula (see eq. (12)), the weighted aggregated SVNDM  (see eq. (22)). is constructed.  

1

2

3

4

0.18,0.82,0.79 0.1,0.86,0.88 0.12,0.89,0.88 0.09,0.91,0.9 0.12,0.87,0.87 0.12,0.89,0.88 0.12,0.88,0.87 0.12,0.87,0.87 0.17,0.82,0.82 0.17,0.83,0.82A

0.15,0.84,0.83 0.12,0.87,0.85 0.09,0.91,0.91 0.11,0.88,0.A

A

A

88 0.17,0.83,0.8 0.09,0.9,0.9 0.08,0.92,0.92 0.13,0.86,0.85 0.14,0.86,0.84 0.12,0.89,0.88

0.12,0.86,0.86 0.12,0.87,0.85 0.09,0.9,0.89 0.08,0.91,0.91 0.13,0.86,0.85 0.07,0.92,0.92 0.07,0.92,0.92 0.1,0.89,0.9 0.07,0.9
(22)

1,0.92 0.08,0.9,0.91

0.16,0.84,0.82 0.14,0.85,0.83 0.13,0.87,0.85 0.08,0.91,0.91 0.14,0.85,0.84 0.12,0.88,0.86 0.06,0.94,0.94 0.1,0.88,0.88 0.09,0.9,0.91 0.08,0.91,0.91

 
 
 
 
 
 
 

  
Step 10: Determine the optimal function values 

Using eq. (13), we obtain the optimal function values (see eq. (23)). 

 

1

2

3

4

0.7459,0.2361,0.2145A

0.7184,0.2602,0.2364A
(23)

0.6298,0.3223,0.3213A

0.6889,0.28680.2637A

 
 
 
 
 
 
 

 

Step 11: Deneutrosophication  

We calculate the score values  ( see Table 11) using the formula ( see eq. (14)). 

Table 11: Score values of the alternatives 

Alternatives  Sc1 Sc2 Sc3 Sc4 

Values 0.7651 0.7406 0.6621 0.7128 

 
Step 12: Evaluate alternative utility degree 

The values of the alternative utility degree r  are  shown in Table 12. 

Table 12: Utility degree of the alternatives 

Alternatives  
1  2  3  4  

Utility degree 1 0.9680 0.8653 0.9316 

Relevancy Position 1st 2nd 4th 3rd 

 

Step13: Rank the alternatives 

The ranking order is done in descending order of utility degree. The final relevancy 

ranking order is A1>A2>A4>A3. 

7. CONCLUSIONS 

This chapter develops the SVNN-E-ARAS strategy using the SVNNWAAA operator in SVNN 

settings. The developed strategy has the advantage of handling uncertainty using neutrosophic 

number with respect to other methods.  

The chapter covers the group popularity ranking criteria and weights each ranking 

component individually based on user evaluation using the developed approach. The alternatives, 

185



New Trends in Neutrosophic Theory and Applications, Vol. III, 2024                                                  

 

 

or documents, were ranked using the ARAS methodology. Here, we have taken into account the 

popularity-related ranking variables and created a framework to include the components after 

determining weights. This is the first information retrieval strategy to take into account an SVNN 

environment using contemporary techniques and a created Entropy-ARAS strategy. For better and 

more precise results in the future, more RFs can be added. Additionally, it is useful for creating 

discovery tools, coming up with a ranking model for a library and information system, or 

conversing with ILMS vendors.   
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ABSTRACT 

The Rough Neutrosophic Set (RNS) has emerged as a hybrid structure to deal with decision-

making involving uncertainty. The MABAC (Multi-Attributive Border Approximation Area 

Comparison) strategy deals with decision-making issues by utilizing the distance between each 

alternative and the Border Approximation Area (BAA). In the article, the MABAC strategy has 

been developed using rough neutrosophic numbers (RNNs) which we call RNN-MABAC 

strategy. The developed strategy is illustrated by solving a numerical example of MADM 

problem.  

KEYWORDS:  Fuzzy set, neutrosophic set, rough set, rough neutrosophic number, MADM  

MABAC. 

1. INTRODUCTION

Smarandache (1998) introduced Neutrosophic Sets (NS), which extend the foundational ideas of 

Fuzzy Set (FSs)  by Zadeh (1965) and Intuitionistic FSs by Atanassov (1986) to encompass a 

more comprehensive treatment of uncertainty. Subsequently, Wang et al. (2010) developed 

Single-Valued Neutrosophic Set (SVNS) as a specific subclass of NS tailored for practical 

applications. Theoretical improvements and various applications of NSs have been depicted by 

several studies  (Broumi et al., 2018; Pramanik et al., 2018; Otay, & Kahraman, 2019; Peng & 

Dai, 2020; Pramanik, 2020, 2022; Smarandache, & Pramanik, 2016, 2028; Delcea et al, 2023). 

Pawlak ( 1982) introduced the Rough Set (RS) to handle uncertain and incomplete information. 

Rough NS (RNS)  (Broumi, Smarandache, & Dhar, 2014) was proposed by combining the RS and 

NS to handle incompleteness and uncertainty. An overview of RNSs has been documented in the 

studies ( Pramanik, 2020; Zhang et al., 2020).  

Multi-Attribute Decision Making (MADM)  strategy selects the best option or makes a preference 

list of options subject to a list of conflicting criteria. Several  MADM strategies have been 

developed in the Rough Neutrosophic Number (RNN) environment.  Mondal and Pramanik 

(2015) developed a grey relational analysis (Deng, 1989) based MADM strategy in the RNN 

environment. Several similarity measures (Mondal, Pramanik, & Smarandache, 2016a) in RNN 

environments were investigated. and their properties were established. Mondal, Pramanik, and 
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Smarandache (2016b) developed the TOPSIS strategy in the RNS environment. Pramanik, Roy, 

Roy, and Smarandache (2017) developed a MADM strategy in the RNS environment using the 

correlation coefficient measure in the RNS setting. Pramanik, Roy, and Roy 2018) developed the 

projection and bidirectional measured-based MADM strategy in the RNN environments. Mondal, 

Pramanik, and Giri (2018) developed four MADM strategies using arithmetic and geometric mean 

operators.   

In 2015, Pamucar and Ćirović (2015) developed the Multi-attributive Border Approximation Area 

Comparison (MABAC) strategy for MADM in a crisp environment.  In 2016, Peng and Yang 

(2016) presented the MABAC strategy in the Pythagorean FS environment using Choquet 

integral.  Jia et al. (2019) presented MABAC strategy under the intuitionistic fuzzy rough number 

setting.  Gigović  et al. (2017) presented an application of MABAC strategy in locating wind 

farms The BMW and MABAC in modified form were presented in the study (Pamučar, Petrović, 

& Ćirović, 2018). The interval rough AHP and MABAC strategies were integrated in  the study 

(Pamučar, Stević, & Zavadskas, 2018). Peng, and Dai (2018)  presented the MABAC strategy in 

the SVNN environment. In 2022, Jiang et al. (2022) presented MABAC strategy in the picture FS 

setting.  Tan et al. (2023) presented MABAC strategy based on prospect theory in Fermatean FS 

environment. In 2023,  a literature review of MABAC strategy was documented by Torkayesh et 

al. (2023). 

Research gap: No studies have been proposed using the MABAC strategy in the RNN settings. 

Motivation:   The gap in research motivates us to explore the RNN-MABAC strategy. 

Objectives: To present the MABAC  strategy in the RNN settings which we name the RNN-

MABAC strategy.  

The rest of the paper is presented as follows. Preliminaries of the SVNSs and RNSs are presented 

in Section 2. RNN-MABAC strategy is developed in Section 3. A numerical example of a MADM 

is solved using the RNN-MABAC strategy.  Section 5 provides insights into future research 

directions, summarizing the paper's conclusions.  

2.  PRELIMINARIES  

An SVNS ( Wang et al., 2010)   in a universal set   is characterized by a truth-MF ( )  , an 

indeterminacy-MF ( )  , and a falsity-MF ( )  with  ( ) ( ) ( ), , [0,1],
  
         .  

When   is continuous, an SNVS   can be presented as: 

( ) ( ) ( ), , ,
  



       =                     

and when   is discrete, an SVNS   can be presented as: 

( ) ( ) ( ), , ,         =    

with  ( ) ( ) ( )0 sup 3,sup  
     + +  

    
                                                                                            

An SVNS    is also presented as: 

, ( ), ( ), ( ) /,   =          , where ( ), ( ), ( )        [0, 1], for each   in  . Therefore,  

0 sup ( ) sup ( ) sup ( ) 3     +   +    . 

The triplet ( )( ), ( ), ( )        is termed as the Single-Valued Neutrosophic Number (SVNN) and 
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presented as ( ), ,     . 

2.1.1 Let 1 1 1 1( , , )   =  and 2 2 2 2( , , )   = be any two SVNNs with  1 1 1 2 2 2, , , , , [0,1]       , 

1 1 1( ) [0,3]  + +  and 2 2 2( ) [0,3]  + +   

Then, some selected operations involving SVNNs (Peng & Dai, 2018) are stated as follows; 

i. 1 2 1 2 1 2 1 2 1 2( , , , )          = + − [Summation]                                   (1) 

ii. 1 2 1 2 1 2 1 2 1 2 1 2( , , )            = + − + −  [Multiplication]         (2) 

iii. 
1 11 11 (1 ) , )( ,     − −= , 0  [ Scalar multiplication]           (3) 

iv. 
11 1 11 (1 ) ,1 (1 ), ) ,( ) 0     − − − − =           (4) 

 

2.2. Euclidean distance function. Euclidean distance Biswas et al., 20[16]  between 1 1 1 1( , , )   =  and  

2 2 2 2( , , )   = is defined as: 

 
1

2
2 2 2

1 2 1 2 1 2

1
( ) ( ) ( ) )

3
ed

 
= − + − + − 
 

                                                            (5) 

2.4 Score function. 

 

Score function  (Peng & Dai, 2018) denoted by 1( )Sc n  of an SVNN 1 1 2 3( , , )n =      is defined 

as 1 1 2 3( ) (2 0.3 0.4 ) / 3Sc n = + −  −                     (6) 

.  

Definition 2.5 ( Broumi, Smarandache, & Dhar, 2014) 

Assume that Θ  is a nonvoid set. Assume that  R  is an equivalence relation on Θ . Let Φ  be an 

NS in Θ with the truth  Membership Function (MF) 
Φ

T , indeterminacy MF
Φ

I , and falsity MF
Φ

F . 

The lower and the upper approximations of Φ  in the approximation (Θ , R ) presented by ( )ν Φ  

and ( )ν Φ   are presented as: 

( )ν Φ =
ν(Φ) ν(Φ) ν(Φ)

θ,δ (θ),ε (θ),φ (θ) / ζ [θ] ,θ Θ
R

   
                                  

(7)
  

 

( )ν Φ =
ν(Φ) ν(Φ) ν(Φ)

θ,δ (θ),ε (θ), φ (θ) / ζ [θ] ,θ Θ
R

   

                                   

(8)
  

 
ν(Φ) Φζ

δ (θ) [θ] δ (ζ)
R

=  ,
ν(Φ) Φζ

ε (θ) [θ] ε (ζ)
R

=  , 
ν(Φ) Φζ

φ (θ) [θ] φ (ζ)
R

=   

Φζν(Φ)
δ (θ) [θ] δ (ζ)

R
=  ,

Φζν(Φ)
ε (θ) [θ] ε (ζ)

R
=  , 

Φζν(Φ)
φ (θ) [θ] φ (ζ)

R
=   

So,
ν(Φ) ν(Φ) ν(Φ)

0 δ (θ) ε (θ) φ (θ) 3 + +   

ν(Φ) ν(Φ) ν(Φ)
0 δ (θ) ε (θ) φ (θ) 3 + +  . 

Here,   and    present respectively the max and “min’’ operator. 
Φ Φ

δ (ζ),ε (ζ) ,and
Φ

φ (ζ) are the 

truth MF, indeterminacy MF, and falsity MF  of ζ w.r.t. Φ . Here, ν(Φ) and ν(Φ) are NSs in Φ . 

The NS mapping ( )ν, ν : ν Φ ν(Φ)→ denote as the lower and upper RNS approximation operators. 

The pair ( ) ( )(ν Φ ,ν Φ ) is called the RNS in (Θ,R ). 
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 3. RNN-MABAC STRATEGY IN RNN SETTINGS 

Consider a MADM problem having n attributes, 1 2, ,..., nC C C C  =  and m alternatives 

1 2, ,..., mA A A A  = .  The weight 
jw  ( j= 1, 2, …, n) is assigned to

jC  such that 

0,jw and 1 1.n
j jw=

=  
 

 

Utilizing the following steps, the  RNN-MABAC strategy is developed (see Fig. 1): 
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Step 1.  Formulate the decision matrix 

 

Decision matrix D is formulated using the RNN rating values of the alternatives provided by the 

decision maker (DM).
   

1 2

1 11 11 12 12 1 1

2 21 21 22 22 2 2

1 1 2 2

ij ij m n

''' ''' '''

n
'''

n n

'''

n n

'''

m m m m m mn mn

D x ,x

C C C

A x ,x x ,x ... x ,x

A x ,x x ,x ... x ,x

... ... ... ... ...

A x ,x x ,x ... x ,x

= =

                                                  (9)

 

Here,  ij ij ijij ij ij ij ij
x ,x , , , , ,=       denotes the RNN rating value of '''

iA w.r.t. '''

jc  

provided by the DM. 

 

Step 2.  Convert the decision matrix into a neutrosophic decision matrix using the 

Accumulated Geometric Operator (AGO).
                       

We convert the RNN to SVNN by the AGO (Mondal & Pramanik, 2015) as follows:   

( ) ( ) ( )
0

0 5 0 5 0 5

ij ijij ijij ij ij ijAGO
AG

. . .
ij ijij ijij ij

' ' '

ij ij ij

x ,x , , , , ,

. , . , .

, ,

=      

=      

=   

                (10)               

The decision matrix is transformed to neutrosophic decision matrix 
N

d   

 

1 2

1 11 11 11 12 12 12 1 1 1

2 21 21 21 22 22 22 2 2 2

' ' '

ij ij ijN

''' ''' '''

n
''' ' ' ' ' ' ' ' ' '

n n n

''' ' ' ' ' ' ' ' ' '

n n n

d , ,

C C ... C

A , , ... ,

A , , ... ,

. ..

=   

        

        

=

1 1 1 2 2 2

''' ' ' ' ' ' ' ' ' '

m m m m m m m mn mn mn

. ... ... ...
. ... ... ...

...
. ... ... ...

A , , ... ,        

                         
(11)

 

Step 3.   Standardize the decision matrix  

Since criteria are two types, namely, benefit or cost, then there is a need to 

standardize them using  formula  (12) (Biswas et al., 2016)  
' ' ' '''

' ' ' '''

τ , ι ,φ , isa benefit critrion

φ , 1 ι , τ , isa cost critrion

ij ij ij j

ij

ij ij ij j

C
D

C


= 

−

                              (12) 
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Then the standardized decision matrix  appears in the form: 
'' '' ''

ij ij ij m nN
d , =            (13) 

 

Step 4 . Construct the weighted decision matrix    

( )1 1 1 1 1
''' ''' '''
j j j''' ''' ''' ''' '' '' '' '' '' ''

ij m m m j ij ij ij ij iijj iijjY , , , , .
   

=    =      = − −    
 

                       (14) 

Step 5. Compute the RNN BAA (RNN-BAA) matrix G obtained by formula (15). 

( ) ( ) ( )( ) ( )( )( )1 1 11

1 1 1 11 1
/ m / m / m/ m

''' ''' '''m m m m
i i i ij ij ij ij ijy Y , ,= = = == =  −  −          (15) 

Step 6.  Determine the distance of each alternative from BAA. Reckon the distance matrix 

( )ij m n
p


 =  by the formula (16) 

( )

( )

0

e ij j ij j

ij ij j

e ij j ij j

Y ,n ,if Y y

p ,if Y y

Y , y ,if Y y

 


= =

− 

                                                                  (16) 

 

where  Euclidean distance measure ( )e ij jY ,y  means the distance from 
ijY to 

jy . It is defined by 

the formula  (5). 

Particular case: Alternative '''

mA  will pertain to BAA (G) if 
ijp = 0, upper Approximation Area  

(AA) (G+), if 
ijp >0, and lower AA (G-) if 

ijp <0 .   

The upper  AA (G+) refers to the area that includes the ideal alternative (A+ ). The lower AA (G-) 

refers to the area that includes the anti-ideal alternative (A-) (see Fig.2.) (Pamučar, Petrović, & 

Ćirović, 2018). To select '''

iA as the best alternative, it is requisite for it to have as many attributes 

as possible pertaining to the upper AA (G+).  
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Step 7. Sort the alternatives  by the descending order of the sum of each alternative’s distance 
from BAA 
Calculate the sum of the elements of matrix   by row. The final evaluating value Si of alternative 

'''

iA can be obtained by the formula (17). 

1

1 2
n

i ij
j

S p ,i , ,...,m
=

= = ; j = 1, 2, …, n.                                     (17) 

 
The ranking of alternatives is done according to the descending order of Si. The highest 
value of Si corresponds to the most desired alternative.  
 

Step 8. End. 

 

4.  ILLUSTRATIVE EXAMPLE 
Assume that an expert intends to buy the most suitable smartphone from the initially selected  

smartphones ( 1 2 3α ,α ,α ).  The attributes are: 

I. Features 1χ ,  

II. price 2χ ,  

III. customer support 3χ  and 

IV.  risk  factor 4χ .   
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Weights of the four attributes are considered as 0.3, .03, 0.3, 0.1 respectively. Based on the 

developed RNN-MABAC strategy,  the problem is solved as follows: 

Step 1.  

The RNN decision matrix (see Table 1) is formulated based on the rating value of the alternative 

over the criterion.  

Table 1. RNN decision matrix 

( )

( )

( )

( )

( )

( )

( )

( )
( )

( )

( )

( )

( )

1 2 3 4

1

2

χ χ χ χ
cos cos

.6,.3,.3 , .6,.4,.4 , .6,.4,.4 , .7,.4,.7 ,
α

0.8,0.1,0.1 0.8,0.2,0.2 0.8,0.2,0.4 0.9,0.2,0.1

0.7,0.3,0.3 , 0.6,0.3,0.3 , 0.6,0.2,0.2 ,
α

0.9,0.1,0.3 0.8,0.3,0.3 0.8,0.

benefit type t type benefit type t type

( )

( )

( )
( )

( )

( )

( )

( )

( )

( )

( )
3

0.7,0.3,0.2 ,

4,0.2 0.9,0.3,0.3

0.6,0.2,0.2 , 0.7,0.3,0.2 , 0.7,0.4,0.6 , 0.6,0.3,0.2 ,
α

0.8,0.0,0.2 0.9,0.1,0.1 0.9,0.2,0.4 0.8,0.1,0.1

 

 

 

Step 2. 
 

Using the formula  (10), the RNN decision matrix is converted to the SVNN decision matrix.                 

 

Table 2. SVNN decision matrix   

1 2 3 4

1

2

0 69282 0 1732051 0 173205 0 69282 0 282843 0 282843 0 69282 0 282843 0 4 0 793725 0 282843 0 264575

0 793725 0 1732051 0 244949 0 69282 0 3 0 3 0 692

. , . , . . , . , . . , .
ep

, . . ,
benefit type cos

.
t

, .

. , . , .

ty e ben fit type cos y

. . , , . .

t t pe
   





3

82 0 282843 0 2 0 793725 0 3 0 244949

0 69282 0 0 2 0 793725 0 173205 0 141421 0 793725 0 282843 0 489898 0 69282 0 173205 0 141421

, . , . . , . , .

. , , . . , . , . . , . , . . , . , .

 
Step 3.    

 

The SVNN decision matrix is standardized ( see Table 3)  using the formula (12) 

 

 

Table 3. Standardized decision matrix 

1 2 3 4

1

2

0 69282 0 1732051 0 173205 0 282843 0 717157 0 69282 0 69282 0 282843 0 4 0 264575 0 717157 0 793725

0 793725 0 1732051 0 244949 0 3 0 7 0 69282 0 69282 0 2

. , . , . . . . . , . , . .
ee

. .

. , . , .

benefit type cost t

.

y

.

p b y

. . , .

en fit t pe cost type
   





3

82843 0 2 0 264575 0 717157 0 793725

0 69282 0 0 2 0 141421 0 826795 0 793725 0 793725 0 282843 0 489898 0 141421 0 826795 0 69282

, . . . .

. , , . . . . . , . , . . . .

 

Step 4.  

Using the formula (12),  and standardized matrix, the weighted decision matrix is formulated 

(see table 4). 

Table 4. Weighted decision matrix 
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1 2 3 4

1

2

0 298192922 0 590974 0 590974 0 094925509 0 905074 0 895749 0 298193 0 684642 0 759658 0 030263 0 967301 0 977163

0 377221329 0 590974 0 655726 0 101476558 0 89

. . . . . .
e

. . . .
benefit type cost typ b

.

enefi o
.

t type c st ty e
.

. . . .

p
   





3

8523 0 895749 0 298193 0 684642 0 617034 0 027706 0 964961 0 977163

0 298192922 0 0 617034 0 044712655 0 944538 0 933042 0 377221 0 684642 0 807294 0 015132 0 98116 0 963967

. . . . . . .

. . . . . . . . . . .

 

 

Step 5.  

 The values of  BAA are shown in the BAA matrix (Ζ )=
1 4j 

   ( See Table 5) 

 

       Table 5.  Computed values of BAA 

 

 

   

1

2

3

4

0 322500432 0 322500432 0 622191

0 075519605 0 918857 0 910053

0 322500432 0 684642 0 739207

0 023323601 0 972156 0 973414

. , . , .

. , . , .

. , . , .

. , . , .









 

 

 

Step 6. Reckon the distance matrix 

Compute the distance matrix (see Table 6) using the formula (16), and score function (6). 

For example:  

Sc(0.298192922, 0.590974, 0.590974)= 0.62817 
Sc(g1)= 0.64631 

Since Sc(g1)> Sc(ηij
),  so 1 11g   ,  and  11 = -0.0851 

 

Table 6. 

1 2 3 4

1

2

3

0 085103 0 016033 0 01834 0 005348
0 089965 0 020751 0 071919 0 005324
0 259615 0 02669 0 050432 0 008896

benefit type cost type
.

b
. . .

. . . .

.

tenefit ty p

. . .

pe cos ty e
− − −



−

  





 

 

        

Step 7.  Sort the alternatives 

The sum of values of each alternative’s   
ij is calculated by the formula (17). 

( ) ( )

4

1 1
1

11 12 13 14

0 0851 0 016033 0 01834 0 005348

0 08206

1 2 3 4j
j

S

.

j , , ,

. . .

.

=

− + +

+

− +

= −

=  =

=   + + 

=

 

Similarly, we derive the other computing results and obtain  

S2=0.18796, S3=0.283357 

So, S3> S2>S1 

Hence, 3 2 1α α α  
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So,  3rd alternative is the most suitable smartphone.  

 
 

5. CONCLUSIONS 

In this paper, the RNN-MABAC strategy in the RNN environment is developed. The developed 

RNN-MABAC strategy can be effectively used to solve real-world MADM problems with 

inconsistent and incomplete information. We hope that this paper will inspire researchers to 

conduct research in the field of MADM. The developed RNN- MABAC strategy can be explored 

for group decision-making strategy using a suitable aggregation operator which we shall do in 

the future.  

The developed RNN-MABAC can be used to solve other MADM problems such as E-commerce 

site selection (Mallick, Pramanik, & Giri, 2024a), COVID-19 vaccine selection (Mallick, 

Pramanik, & Giri, 2024b), green supplier selection problem (Pramanik, 2023), etc. 
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The field of neutrosophic set theory and its applications has been rapidly 
expanding, particularly since the introduction of the journal "Neutrosophic Sets 
and Systems." New theories, techniques, and algorithms are being developed at a 
very high rate. One of the most notable trends in neutrosophic theory is its 
hybridization with other set theories such as rough set theory, bipolar set theory, 
soft set theory, hesitant fuzzy set theory, and more. Various hybrid structures like 
rough neutrosophic sets, neutrosophic soft set, single valued neutrosophic 
hesitant fuzzy sets, among others, have been proposed in a short period. 
Neutrosophic sets have proven to be crucial tools across a wide array of fields 
including data mining, decision making, e-learning, engineering, medical 
diagnosis, social sciences, and beyond.  

The third volume in the series “New Trends in Neutrosophic 
Theories and Applications” focuses on theories, methods, 
and algorithms for decision making, as well as applications 
involving neutrosophic information.  

Some topics introduce new sets such as the Pythagorean 
neutrosophic vague soft set, the triangular fuzzy penta-
partitioned neutrosophic set, interval-valued neutrosophic b-
open sets, and interval-valued neutrosophic b-closed sets.  

Other topics present applications in medical diagnosis, non-
preemptive neutrosophic priority queues with uneven 
services (labeled as NM/NM/1), AHP in an interval 
neutrosophic set environment, MAGDM in a triangular fuzzy 
neutrosophic number environment, MAGDM in a 
pentapartitioned neutrosophic environment, the entropy-
ARAS strategy in a single-valued neutrosophic number 
environment, and the MABAC strategy in a rough 
neutrosophic set environment. 
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