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PREFACE 

Neutrosophic Perspectives 

This book is part of the book-series dedicated 

to the advances of neutrosophic theories and their 

applications, started by the author in 1998. 

Its aim is to present the last developments in 

the field. For the first time, we now introduce: 

— Neutrosophic Duplets and the Neutrosophic 

Duplet Structures; 

— Neutrosophic Multisets (as an extension of 

the classical multisets); 

— Neutrosophic Spherical Numbers; 

— Neutrosophic Overnumbers / Undernumbers 

/ Offnumbers;  

— Neutrosophic Indeterminacy of Second Type; 

— Neutrosophic Hybrid Operators (where the 

heterogeneous t-norms and t-conorms may be 

used in designing neutrosophic aggregations); 

— Neutrosophic Triplet Weak Set (and con-

sequently we have renamed the previous Neutros-

ophic Triplet Set (2014-2016) as Neutrosophic 

Triplet Strong Set in order to distinguish them); 
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— Neutrosophic Perfect Triplet; 

— Neutrosophic Imperfect Triplet; 

— Neutrosophic triplet relation of equivalence; 

— Two Neutrosophic Friends; 

— n Neutrosophic Friends; 

— Neutrosophic Triplet Loop; 

— Neutrosophic Triplet Function; 

— Neutrosophic Modal Logic; 

— and Neutrosophic Hedge Algebras. 

The Refined Neutrosophic Set / Logic / Prob-

ability were introduced in 2013 by F. Smaran-

dache. Since year 2016 a new interest has been 

manifested by researchers for the Neutrosophic 

Triplets and their corresponding Neutrosophic 

Triplet Algebraic Structures (introduced by F. 

Smarandache & M. Ali). Subtraction and Division 

of Neutrosophic Numbers were introduced by F. 

Smarandache - 2016, and Jun Ye – 2017. We also 

present various new applications (except the first 

one) in: neutrosophic multi-criteria decision-

making, neutrosophic psychol-ogy, neutrosophic 

geographical function (the equatorial virtual line), 

neutrosophic probability in target identification, 
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neutrosophic dynamic systems, neutrosophic 

quantum computers, neut-rosophic theory of 

evolution, and neutrosophic triplet structures in 

our everyday life. In this version, we make a 

distinction between 'neutrosophic triplet strong 

set' together with the algebraic structures defined 

on it, and 'neutrosophic triplet weak set' together 

with the algebraic structures defined on it. 

The Author 
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CHAPTER I 

I.1. Positively or Negatively Qualitative 

Neutrosophic Components 

Here it is the general picture on the neutros-

ophic components T, I, F : 

- the T is considered a positively (good) 

qualitative component; 

- while I and F are considered the opposite, i.e. 

negatively (bad) qualitative components. 

When we apply neutrosophic operators, for T 

we apply one type, while for I and F we apply an 

opposite type. 

Let's see examples: 

- neutrosophic conjunction: 

〈𝑡1, 𝑖1, 𝑓1〉 ∧ 〈𝑡2, 𝑖2, 𝑓2〉 =< 𝑡1 ∧ 𝑡2, 𝑖1 ∨ 𝑖2, 𝑓1 ∨ 𝑓2 >; (1)

as you reader see we have t-norm for 𝑡1 and 𝑡2, but

t-conorm for 𝑖1 and 𝑖2, as well as for 𝑓1 and 𝑓2;

- neutrosophic disjunction: 

〈𝑡1, 𝑖1, 𝑓1〉 ∨ 〈𝑡2, 𝑖2, 𝑓2〉 =< 𝑡1 ∨ 𝑡2, 𝑖1 ∧ 𝑖2, 𝑓1 ∧ 𝑓2 >; (2)

Etc. 
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I.2. The Average Positive Qualitative 

Neutrosophic Function and The 

Average Negative Qualitative 

Neutrosophic Function 

The Average Positive Quality Neutrosophic 

Function (also known as Neutrosophic Score 

Function, which means expected/average value) of 

a neutrosophic number. 

Let (t, i, f) be a single-valued neutrosophic 

number, where t, i, f ∈ [0, 1].

The component t (truth) is considered as a 

positive quality, while i (indeterminacy) and f 

(falsehood) are considered negative qualities. 

Contrarily, 1-t is considered a negative quality, 

while 1-i and 1-f are considered positive qualities. 

Then, the average positive quality function of a 

neutrosophic number is defined as: (1) 

3 (1 ) (1 ) 2: [0,1] [0,1], ( , , )
3 3

t i f t i fs s t i f        
   .

We now introduce for the first time the Average 

Negative Quality Neutrosophic Function of a 

neutrosophic number, defined as: (2) 
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3 (1 ) 1: [0,1] [0,1], ( , , ) .
3 3

t i f t i fs s t i f       
    

Theorem I.2.1. 

The average positive quality neutrosophic 

function and the average negative quality 

neutrosophic function are complementary to each 

other, or 

( , , ) ( , , ) 1.s t i f s t i f       (3) 

Proof. 

2 1( , , ) ( , , ) 1.
3 3

t i f t i fs t i f s t i f       
     

       (4) 

The Neutrosophic Accuracy Function has been 

defined by: 

h: [0, 1]3  [-1, 1], h(t, i, f) = t - f.  (5) 

We introduce now for the first time the 

Extended Accuracy Neutrosophic Function, defined 

as follows: 

he: [0, 1]
3

  [-2, 1], he(t, i, f) = t – i – f, (6) 

which varies on a range: from the worst negative 

quality (-2) [or minimum value], to the best 

positive quality [or maximum value].  

The Neutrosophic Certainty Function is: 
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c: [0, 1]
3

  [0, 1], c(t, i, f) = t.   (7) 

Generalization. 

The above functions can be extended for the 

case when the neutrosophic components t, i, f are 

intervals (or, even more general, subsets) of the 

unit interval [0, 1]. 

Total Order. 

Using three functions from above: neutros-

ophic score function, neutrosophic accuracy func-

tion, and neutrosophic certainty function, one can 

define a total order on the set of neutrosophic 

numbers. 

In the following way: 

Let (t1, i1, f1) and (t2, i2, f2), where t1, i1, f1, t2, i2, f2 

∈ [0, 1], be two single-valued neutrosophic 

numbers. Then: 

– 1. If s
+

(t1, i1, f1) > s
+

( t2, i2, f2), then (t1, i1, f1) 

>N (t2, i2, f2); 

– 2. If s
+

(t1, i1, f1) = s
+

( t2, i2, f2) and h(t1, i1, f1) 

> h( t2, i2, f2), then (t1, i1, f1) >N (t2, i2, f2);  

– 3. If s
+

(t1, i1, f1) = s
+

( t2, i2, f2) and h(t1, i1, f1) 

= h( t2, i2, f2) and c(t1, i1, f1) > c( t2, i2, f2), 

then (t1, i1, f1) >N (t2, i2, f2); 
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– 4. If s
+

(t1, i1, f1) = s
+

( t2, i2, f2) and h(t1, i1, f1) 

= h( t2, i2, f2) and c(t1, i1, f1) = c( t2, i2, f2), 

then (t1, i1, f1) = (t2, i2, f2). 

Applications. 

All the above functions are used in the ranking 

(comparison) of two neutrosophic numbers in 

multi-criteria decision making. 

Example of Comparison of Single-Valued 

Neutrosophic Numbers. 

Let's consider two single-valued neutrosophic 

numbers: <0.6, 0.1, 0.4> and <0.5, 0.1, 0.3>. 

The neutrosophic score functions is: 

s
+

(0.6, 0.1, 0.4) = (2 + 0.6 - 0.1 - 0.4) / 3 = 

= 2.1 / 3 = 0.7; 

s
+

(0.5, 0.1, 0.3) = (2 + 0.5 - 0.1 - 0.3) / 3 = 

= 2.1 / 3 = 0.7; 

Since s
+

(0.6, 0.1, 0.4) = s
+

(0.5, 0.1, 0.3), we need 

to compute the neutrosophic accuracy functions: 

a(0.6, 0.1, 0.4) = 0.6 – 0.4 = 0.2; 

a(0.5, 0.1, 0.3) = 0.5 – 0.3 = 0.2. 

Since a(0.6, 0.1, 0.4) = a(0.5, 0.1, 0.3), we need 

to compute the neutrosophic certainty functions: 

c(0.6, 0.1, 0.4) = 0.6; 
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c(0.5, 0.1, 0.3) = 0.5. 

Because c(0.6, 0.1, 0.4) > c(0.5, 0.1, 0.3), we 

eventually conclude that the first neutrosophic 

number is greater than the second neutrosophic 

number, or: 

(0.6, 0.1, 0.4) >N (0.5, 0.1, 0.3). 

So, we need three functions in order to make a 

total order on the set of neutrosophic numbers. 

References 

1. Hong-yu Zhang, Jian-qiang Wang, and Xiao-hong 

Chen, Interval Neutrosophic Sets and Their Application 

in Multicriteria Decision Making Problems, Hindawi 

Publishing Corporation, The Scientific World Journal, 

Volume 2014, 15 p., 

http://dx.doi.org/10.1155/2014/64595 

2. Jiqian Chen and Jun Ye, Some Single-Valued 

Neutrosophic Dombi Weighted Aggregation Operators 

for Multiple Attribute Decision-Making, Licensee MDPI, 

Basel, Switzerland, Symmetry, 9, 82, 2017;  

DOI:10.3390/sym9060082 

   



Florentin Smarandache 

Neutrosophic Perspectives 

25 

CHAPTER II 

II.1. Neutrosophic Overnumbers / 

Undernumbers / Offnumbers 

II.1.1. Single-Valued Neutrosophic 

Overnumbers / Undernumbers / 

Offnumbers 

In 2007, we have introduced the Neutrosophic 

Over/Under/Off-Set and Logic [1, 2] that were 

totally different from other sets/logics. 

The Neutrosophic Set was extended to 

Neutrosophic Overset (when some neutrosophic 

component is > 1), and to Neutrosophic Underset 

(when some neutrosophic component is < 0), and 

to Neutrosophic Offset (when some neutrosophic 

components are off the interval [0, 1], i.e. some 

neutrosophic component > 1 and some neutros-

ophic component < 0). 

All such single-valued neutrosophic triplets (t, 

i, f), where t, i, f are single-value real numbers, 

with some t, i, or f > 1 were called single-valued 

neutrosophic overnumbers, while with some t, i, 
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or f < 0 were called single-valued neutrosophic 

undernumbers, and with some t, i, f > 1 and other 

< 0 were called single-valued neutrosophic off-

numbers. 

II.1.2. Interval-Valued Neutrosophic 

Overnumbers / Undernumbers / 

Offnumbers 

The interval-valued neutrosophic triplets (T, I, 

F), where T, I, F are real intervals, with some T, I, 

or F intervals getting over 1, were called interval-

valued neutrosophic overnumbers, while with 

some T, I, or F intervals getting under 0, were 

called interval-valued neutrosophic under-

numbers, and with some T, I, F intervals getting 

over 1 while others getting under 0, were called 

interval-valued neutrosophic offnumbers. 

II.1.3. Subset-Valued Neutrosophic 

Overnumbers / Undernumbers / 

Offnumbers 

The subset-valued neutrosophic triplets (T, I, F), 

where T, I, F are real subsets {not necessarily 
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intervals}, with some T, I, or F subsets getting over 

1, were called subset-valued neutrosophic 

overnumbers, while with some T, I, or F subsets 

getting under 0, were called subset-valued 

neutrosophic undernumbers, and with some T, I, 

F subsets getting over 1 while others getting under 

0, were called subsets-valued neutrosophic 

offnumbers. 
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II.2. Spherical Neutrosophic Numbers 

II.2.1. Single-Valued Spherical

Neutrosophic Numbers 

As a particular case of single-valued neutros-

ophic overnumbers, we present now for the first 

time the single-valued spherical neutrosophic 

numbers, which have the form (t, i, f): 

where the real single-values 

, , [0, 3],t i f 

and  (1) 

2 2 2 3.t i f  

They are generalization of Single-Valued 

Pythagorean Fuzzy Numbers (t, f): 

with t, f ∈ [0,   2] 

and t
2

 + f2

 ≤ 2. (2) 

II.2.2. Interval-Valued Spherical

Neutrosophic Numbers 

As a particular case of interval-valued neutros-

ophic overnumbers, we present now for the first 
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time the interval-valued spherical neutrosophic 

numbers, which have the form (T, I, F):  

where the real intervals 

, , [0, 3],T I F   

and        (3) 

2 2 2 [0,3].T I F  
 

II.2.3. Subset-Valued Spherical 

Neutrosophic Numbers 

As a particular case of subset-valued neutros-

ophic overnumbers, we present now for the first 

time the subset-valued spherical neutrosophic 

numbers, which have the form (T, I, F):  

where the real subsets , , [0, 3],T I F   

and        (4) 

2 2 2 [0,3].T I F  
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CHAPTER III 

III.1. Neutrosophic Indeterminacy of 

Second Type 

There are two types of neutrosophic indeter-

minacies: 

III.1.1. Literal Indeterminacy (I) of first order 

Example: 2 + 3𝐼, where I
2

 = I, and I is a letter that 

does not represent a number. 

III.1.2. Numerical Indeterminacy of first order 

Example: the element 𝑥(0.6,0.3,0.4) ∈ 𝐴, 

meaning that x’s indeterminate-membership = 

0.3. 

Or the functions f(.) defined as:  𝑓(6) = 7 or 9, or 

𝑓(0 𝑜𝑟 1) = 5, or 𝑓(𝑥) = [0.2, 0.3]𝑥2 etc. 

Let’s compute some neutrosophic limits (with 

numerical indeterminacies): 

lim
𝑥→0+

[2.1, 2.5]

1
ln 𝑥

=
[2.1, 2.5]

1
ln 0

=
[2.1, 2.5]

1
−∞

=
[2.1, 2.5]

−0

= [
2.1

−0
,
2.5

−0
] = (−∞,−∞) = −∞. 

Herein [2.1, 2.5]  is a numerical indeterminacy, 

not a literal indeterminacy. 
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lim
𝑥→[9,11]

[3.5, 5.9] 𝑥[1,2] = [3.5, 5.9] · [9, 11][1,2] =

[3.5, 5.9] · [91, 112] = [3.5, 5.9] · [9, 121] =

[3.5(9), 5.9(121)] = [31.5, 713.9]. 

lim
𝑥→∞

[3.5, 5.9]𝑥[1,2] = [3.5, 5.9] · ∞[1,2] = [3.5, 5.9] · ∞

= [3.5(∞), 5.9(∞)] = [∞,∞] = ∞. 

III.1.3. Radical of Literal Indeterminacy 

√𝐼 = 𝑥 + 𝑦𝐼   

We need to find x and y by coefficient-iden-

tification method. After raising to the second 

power both sides we get: 

0 + 1 · 𝐼 = 𝑥2 + (2𝑥𝑦 + 𝑦2)𝐼  

𝑥 = 0, 𝑦 = ±1, 

so √𝐼 = ±𝐼. 

√𝐼
3

=x+yI 

We raise to the cube both sides: 

0 + 1 · 𝐼 = 𝑥3 + 3𝑥2𝑦 + 3𝑥𝑦2𝐼2 + 𝑦3𝐼3 = 𝑥3 + (3𝑥2𝑦 +

3𝑥𝑦2 + 𝑦3)𝐼 

Then we get: 

𝑥 = 0, 𝑦 = 1,  

so √𝐼
3
= 𝐼. 

In general: √𝐼
2𝑘

= ±𝐼 and 

√𝐼
2𝑘+1

= 𝐼. 
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III.1.4. Literal Indeterminacies of second order 

𝐼0, 𝐼−𝑛 for 𝑛 > 0, 0𝐼 ,
𝐼

0
, 𝐼 · ∞,

𝐼

∞
,
∞

𝐼
,∞𝐼 , 𝐼∞,  

 𝐼𝐼 , 𝑎𝐼(𝑎 ∈ ℝ),∞ ± 𝑎 · 𝐼   

are literal indeterminacies of second order. 
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CHAPTER IV 

IV.1. n-Refined Neutrosophic Set and 

Logic and Its Applications to Physics 

Abstract 

In this paper, we present a short history of 

logics: from particular cases of 2-symbol or 

numerical valued logic to the general case of n-

symbol or numerical valued logic.  

We show generalizations of 2-valued Boolean 

logic to fuzzy logic, also from the Kleene’s and 

Lukasiewicz’ 3-symbol valued logics or Belnap’s 4-

symbol valued logic to the most general n-symbol 

or numerical valued refined neutrosophic logic.  

Two classes of neutrosophic norm (n-norm) and 

neutrosophic conorm (n-conorm) are defined.  

Examples of applications of neutrosophic logic 

to physics are listed in the last section.  

Similar generalizations can be done for n-

Valued Refined Neutrosophic Set, and respectively 

n-Valued Refined Neutrosophic Probability. 
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IV.1.1. Two-Valued Logic 

IV.1.1.1. The Two Symbol-Valued Logic 

It is the Chinese philosophy: Yin and Yang (or 

Femininity and Masculinity) as contraries: 

 

Fig. 1: Ying and Yang 

It is also the Classical or Boolean Logic, which 

has two symbol-values: truth T and falsity F. 

IV.1.1.2. The Two Numerical-Valued Logic 

It is also the Classical or Boolean Logic, which 

has two numerical-values: truth 1 and falsity 0. 

More general it is the Fuzzy Logic, where the truth 

(T) and the falsity (F) can be any numbers in [0,1] 

such that T + F = 1. 

Even more general, T and F can be subsets of 

[0,1]. 

IV.1.2. Three-Valued Logic 

IV.1.2.11 The Three Symbol-Valued Logics 

1. Lukasiewicz’s Logic: True, False, and 

Possible. 
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2. Kleene’s Logic: True, False, Unknown (or 

Undefined). 

3. Chinese philosophy extended to: Yin, Yang, 

and Neuter (or Femininity, Masculinity, and 

Neutrality) - as in Neutrosophy. 

Neutrosophy philosophy was born from 

neutrality between various philosophies. Con-

nected with Extenics (Prof. Cai Wen, 1983), and 

Paradoxism (F. Smarandache, 1980). Neutrosophy 

is a new branch of philosophy that studies the 

origin, nature, and scope of neutralities, as well as 

their interactions with different ideational 

spectra. This theory considers every notion or 

idea <A> together with its opposite or negation 

<antiA> and with their spectrum of neutralities 

<neutA> in between them (i.e. notions or ideas 

supporting neither <A> nor <antiA>). The <neutA> 

and <antiA> ideas together are referred to as 

nonA. Neutrosophy is a generalization of Hegel’s 

dialectics (the last one is based on <A> and 

<antiA> only). According to neutrosophy every 

idea <A> tends to be neutralized and balanced by 

<antiA> and <neutA> ideas - as a state of 
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equilibrium. In a classical way <A>, <neutA>, 

<antiA> are disjoint two by two. But, since in many 

cases the borders between notions are vague, 

imprecise, Sorites, it is possible that <A>, 

<neutA>, <antiA> (and <nonA> of course, where 

<nonA> = <neutA><antiA>) have common parts 

two by two, or even all three of them as well. Such 

contradictions involve Extenics. Neutrosophy is the 

base of all neutrosophics and it is used in 

engineering applications (especially for software 

and information fusion), medicine, military, 

airspace, cybernetics, physics. 

IV.1.2.2. The Three Numerical-Valued Logic 

1. Kleene’s Logic: True (1), False (0), Unknown 

(or Undefined) (1/2), and uses “min” for ∧, “max” 

for ∨, and “1-” for negation. 

2. More general is the Neutrosophic Logic 

[Smarandache, 1995], where the truth (T) and the 

falsity (F) and the indeterminacy (I) can be any 

numbers in [0, 1], then 0 ≤ 𝑇 + 𝐼 + 𝐹 ≤ 3 . More 

general: Truth (T), Falsity (F), and Indeterminacy 

(I) are standard or nonstandard subsets of the 

nonstandard interval ]−0, 1+[. 
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IV.1.3. Four-Valued Logic 

IV.1.3.1. The Four Symbol-Valued Logic 

1. It is Belnap’s Logic: True (T), False (F), 

Unknown (U), and Contradiction (C), where T, F, U, 

C are symbols, not numbers. Below is the Belnap’s 

conjunction operator table: 

 

Restricted to T, F, U, and to T, F, C, the Belnap 

connectives coincide with the connectives in 

Kleene’s logic. 

2. Let G = Ignorance. We can also propose the 

following two 4-Symbol Valued Logics: (T, F, U, G), 

and (T, F, C, G). 

3. Absolute-Relative 2-, 3-, 4-, 5-, or 6-Symbol 

Valued Logics [Smarandache, 1995]. Let TA be truth 

in all possible worlds (according to Leibniz’s 

definition); TR be truth in at least one world but 

not in all worlds; and similarly let IA be 

indeterminacy in all possible worlds; IR be 
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indeterminacy in at least one world but not in all 

worlds; also let FA be falsity in all possible worlds; 

FR be falsity in at least one world but not in all 

worlds. Then we can form several Absolute-

Relative 2-, 3-, 4-, 5-, or 6-Symbol Valued Logics 

just taking combinations of the symbols TA, TR, IA, 

IR, FA, and FR. As particular cases, very interesting 

would be to study the Absolute- Relative 4-Symbol 

Valued Logic (TA, TR, FA, FR), as well as the Absolute-

Relative 6-Symbol Valued Logic (TA, TR, IA, IR, FA, FR). 

IV.1.3.2. Four Numerical-Valued Neutrosophic 

Logic 

Indeterminacy I is refined (split) as U = 

Unknown, and C = contradiction. T, F, U, C are 

subsets of [0, 1], instead of symbols. This logic 

generalizes Belnap’s logic since one gets a degree 

of truth, a degree of falsity, a degree of unknown, 

and a degree of contradiction. Since 𝐶 = 𝑇 ∧ 𝐹, this 

logic involves the Extenics. 

IV.1.4. Five-Valued Logic 

1. Five Symbol-Valued Neutrosophic Logic 

[Smarandache, 1995]: Indeterminacy I is refined 
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(split) as U = Unknown, C = contradiction, and G = 

ignorance; where the symbols represent: 

T = truth; 

F = falsity; 

U = neither T nor F (undefined);  

𝐶 = 𝑇 ∧ 𝐹, which involves the Extenics; 

𝐺 = 𝑇 ∨ 𝐹. 

2. If T, F, U, C, G are subsets of [0, 1] then we 

get a Five Numerical-Valued Neutrosophic Logic. 

IV.1.5. Seven-Valued Logic 

A. Seven Symbol-Valued Neutrosophic Logic 

[Smarandache, 1995]: 

I is refined (split) as U, C, G, but T also is refined 

as TA = absolute truth and TR= relative truth, and F 

is refined as FA= absolute falsity and FR= relative 

falsity. Where: U = neither (TA or TR) nor (FA or FR) 

(i.e. undefined); C = (TA or TR) ∧ (FA or FR) (i.e. 

Contradiction), which involves the Extenics; G = 

(TA or TR)∨(FA or FR) (i.e. Ignorance). All are symbols. 

B. But if TA, TR, FA, FR, U, C, G are subsets of [0, 

1], then we get a Seven Numerical-Valued 

Neutrosophic Logic. 
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IV.1.6. n-Valued Logic 

A. The n-Symbol-Valued Refined Neutrosophic 

Logic [Smarandache, 1995].  

In general: 

T can be split into many types of truths: 

T1, T2, ..., Tp, 

and I into many types of indeterminacies: 

I1, I2, ..., Ir, 

and F into many types of falsities: 

F1, F2, ..., Fs, where 

all 𝑝, 𝑟, 𝑠 ≥ 1 are integers, and 𝑝 + 𝑟 + 𝑠 = 𝑛. 

All subcomponents Tj, Ik, Fl are symbols for 𝑗 ∈

{1, 2, … , 𝑝}, 𝑘 ∈ {1, 2, … , 𝑟}, and 𝑙 ∈ {1, 2, … , 𝑠}. 

If at least one Ik = Tj ∧ Fl = contradiction, we get 

again the Extenics. 

B. The n-Numerical-Valued Refined Neutrosophic 

Logic. 

In the same way, but all subcomponents Tj, Ik, Fl 

are not symbols, but subsets of [0,1], for all 𝑗 ∈

{1, 2, … , 𝑝}, all 𝑘 ∈ {1, 2, … , 𝑟}, and all 𝑙 ∈ {1, 2, … , 𝑠}. 

If all sources of information that separately 

provide neutrosophic values for a specific sub-

component are independent sources, then in the 
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general case we consider that each of the sub-

components Tj, Ik, Fl is independent with respect 

to the others and it is in the non-standard set 

]−0, 1+[ . Therefore, per total we have for crisp 

neutrosophic value subcomponents Tj, Ik, Fl that: 

—0 ≤ ∑ 𝑇𝑗
𝑝
𝑗=1 + ∑ 𝐼𝑘

𝑟
𝑘=1 + ∑ 𝐹𝑙

𝑠
𝑙=1 ≤ 𝑛+  (1) 

where of course 𝑛 = 𝑝 + 𝑟 + 𝑠 as above. If there are 

some dependent sources (or respectively some 

dependent subcomponents), we can treat those 

dependent subcomponents together. For example, 

if T2 and I3 are dependent, we put them together 

as 
—0 ≤ 𝑇2 + 𝐼3 ≤ 1

+
. 

The non-standard unit interval ]−0, 1+[., used to 

make a distinction between absolute and relative 

truth / indeterminacy / falsehood in philosophical 

applications, is replace for simplicity with the 

standard (classical) unit interval [0,1] for technical 

applications. 

For at least one Ik=Tj ∧ Fl= contradiction, we get 

again the Extenics. 



Florentin Smarandache 

Neutrosophic Perspectives 

42 

IV.1.7. n-Valued Neutrosophic Logic 

Connectors 

1. n-Norm and n-Conorm defined on combinations 

of t-Norm and t-Conorm  

The n-norm is actually the neutrosophic 

conjunction operator, NEUTROSOPHIC AND (∧𝑛 ); 

while the n-conorm is the neutrosophic dis-

junction operator, NEUTROSOPHIC OR (∨𝑛). 

One can use the t-norm and t-conorm operators 

from the fuzzy logic in order to define the n-norm 

and respectively n-conorm in neutrosophic logic:  

𝑛 − 𝑛𝑜𝑟𝑚 ((𝑇𝑗)𝑗={1,2,…,𝑝}
, (𝐼𝑘)𝑘={1,2,…,𝑟}, (𝐹𝑙)𝑙={1,2,…,𝑠}) =

(

[𝑡 − 𝑛𝑜𝑟𝑚(𝑇𝑗)]𝑗={1,2,…,𝑝}
,

[𝑡 − 𝑐𝑜𝑛𝑜𝑟𝑚(𝐼𝑘)]𝑘={1,2,…,𝑟},

[𝑡 − 𝑐𝑜𝑛𝑜𝑟𝑚(𝐹𝑙)]𝑙={1,2,…,𝑠}

)    (2) 

and 

𝑛 − 𝑐𝑜𝑛𝑜𝑟𝑚 ((𝑇𝑗)𝑗={1,2,…,𝑝}
, (𝐼𝑘)𝑘={1,2,…,𝑟}, (𝐹𝑙)𝑙={1,2,…,𝑠}) =

(

[𝑡 − 𝑐𝑜𝑛𝑜𝑟𝑚(𝑇𝑗)]𝑗={1,2,…,𝑝}
,

[𝑡 − 𝑛𝑜𝑟𝑚(𝐼𝑘)]𝑘={1,2,…,𝑟},

[𝑡 − 𝑛𝑜𝑟𝑚(𝐹𝑙)]𝑙={1,2,…,𝑠}

)     (3) 

and then one normalizes if needed. 
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Since the n-norms/n-conorms, alike t-norms/t-

conorms, can only approximate the inter-con-

nectivity between two n-Valued Neutrosophic 

Propositions, there are many versions of these 

approximations. 

For example, for the n-norm: the indeterminate 

(sub)components Ik alone can be combined with 

the t-conorm in a pessimistic way [i.e. lower 

bound], or with the t-norm in an optimistic way 

[upper bound]; while for the n-conorm: the 

indeterminate (sub)components Ik alone can be 

combined with the t-norm in a pessimistic way 

[i.e. lower bound], or with the t-conorm in an 

optimistic way [upper bound]. 

In general, if one uses in defining an n-norm/n-

conorm for example the t-norm 𝑚𝑖𝑛(𝑥, 𝑦) then it is 

indicated that the corresponding t-conorm used 

be 𝑚𝑎𝑥(𝑥, 𝑦); or if the t-norm used is the product 

𝑥 ∙ 𝑦 then the corresponding t-conorm should be 

𝑥 + 𝑦 − 𝑥 ∙ 𝑦 , and similarly if the t-norm used is 

𝑚𝑎𝑥{0, 𝑥 + 𝑦 − 1} then the corresponding t-conorm 

should be 𝑚𝑖𝑛{𝑥 + 𝑦, 1}, and so on. 
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Yet, it is still possible to define the n-norm and 

n-conorm using different types of t-norms and t-

conorms. 

2. N-norm and n-conorm based on priorities 

For the n-norm we can consider the priority: 

𝑇 < 𝐼 < 𝐹,  

where the subcomponents are supposed to 

conform with similar priorities, i.e.  

𝑇1 < 𝑇2 < ⋯ < 𝑇𝑝 < 𝐼1 < 𝐼2 < ⋯ < 𝐼𝑟 

< 𝐹1 < 𝐹2 < ⋯ < 𝐹𝑠     (4)  

While for the n-conorm one has the opposite 

priorities: 

𝑇 > 𝐼 > 𝐹, or for the refined case:  

𝑇1 > 𝑇2 > ⋯ > 𝑇𝑝 > 𝐼1 > 𝐼2 > ⋯ > 𝐼𝑟 

> 𝐹1 > 𝐹2 > ⋯ > 𝐹𝑠     (5) 

By definition 𝐴 < 𝐵  means that all products 

between A and B go to B (the bigger). 

Let’s say, one has two neutrosophic values in 

simple (nonrefined case):  

(𝑇𝑥 , 𝐼𝑥 , 𝐹𝑥)      (6) 

and  

(𝑇𝑦, 𝐼𝑦 , 𝐹𝑦)       (7) 
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Applying the n-norm to both of them, with 

priorities 𝑇 < 𝐼 < 𝐹, we get:  

(𝑇𝑥 , 𝐼𝑥 , 𝐹𝑥) ∧𝑛 (𝑇𝑦 , 𝐼𝑦 , 𝐹𝑦) =

(
𝑇𝑥𝑇𝑦, 𝑇𝑥𝐼𝑦 + 𝑇𝑦𝐼𝑥 +

𝐼𝑥𝐼𝑦 , 𝑇𝑥𝐹𝑦 + 𝑇𝑦𝐹𝑥 + 𝐼𝑥𝐹𝑦 + 𝐼𝑦𝐹𝑥 + 𝐹𝑥𝐹𝑦
).  (8) 

Applying the n-conorm to both of them, with 

priorities 𝑇 > 𝐼 > 𝐹, we get:  

(𝑇𝑥 , 𝐼𝑥 , 𝐹𝑥) ∨𝑛 (𝑇𝑦 , 𝐼𝑦 , 𝐹𝑦) =

(
𝑇𝑥𝑇𝑦 + 𝑇𝑥𝐼𝑦 + 𝑇𝑦𝐼𝑥 +

 𝑇𝑥𝐹𝑦 + 𝑇𝑦𝐹𝑥 + 𝐼𝑥𝐼𝑦 + 𝐼𝑥𝐹𝑦 + 𝐼𝑦𝐹𝑥 , 𝐹𝑥𝐹𝑦
).   (9) 

In a lower bound (pessimistic) n-norm one 

considers the priorities 𝑇 < 𝐼 < 𝐹 , while in an 

upper bound (optimistic) n-norm one considers 

the priorities 𝐼 < 𝑇 < 𝐹. 

Whereas, in an upper bound (optimistic) n-

conorm one considers 𝑇 > 𝐼 > 𝐹, while in a lower 

bound (pessimistic) n-conorm one considers the 

priorities 𝑇 > 𝐹 > 𝐼. 

Various priorities can be employed by other 

researchers depending on each particular ap-

plication. 
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IV.1.8. Particular Cases 

If in 6a) and b) one has all 𝐼𝑘 = 0, 𝑘 = 1, 2, … , 𝑟, we 

get the n-Valued Refined Fuzzy Logic. 

If in 6a) and b) one has only one type of 

indeterminacy, i.e. 𝑘 = 1, hence 𝐼1 = 𝐼 > 0, we get 

the n-Valued Refined Intuitionistic Fuzzy Logic. 

IV.1.9. Distinction between Neutrosophic 

Physics and Paradoxist Physics 

Firstly, we make a distinction between Neutros-

ophic Physics and Paradoxist Physics. 

IV.1.9.1. Neutrosophic Physics 

Let <A> be a physical entity (i.e. concept, 

notion, object, space, field, idea, law, property, 

state, attribute, theorem, theory, etc.), <antiA> be 

the opposite of <A>, and <neutA> be their neutral 

(i.e. neither <A> nor <antiA>, but in between). 

Neutrosophic Physics is a mixture of two or 

three of these entities <A>, <antiA>, and <neutA> 

that hold together. 

Therefore, we can have neutrosophic fields, 

and neutrosophic objects, neutrosophic states, 

etc. 
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IV.1.9.2. Paradoxist Physics 

Neutrosophic Physics is an extension of Par-

adoxist Physics, since Paradoxist Physics is a 

combination of physical contradictories <A> and 

<antiA> only that hold together, without referring 

to their neutrality <neutA>. Paradoxist Physics 

describes collections of objects or states that are 

individually characterized by contradictory pro-

perties, or are characterized neither by a property 

nor by the opposite of that property, or are 

composed of contradictory sub-elements. Such 

objects or states are called paradoxist entities. 

These domains of research were set up in the 

1995 within the frame of neutrosophy, neutros-

ophic logic/ set/probability/statistics.  

IV.1.10. n-Valued Refined Neutrosophic 

Logic Applied to Physics 

There are many cases in the scientific (and also 

in humanistic) fields that two or three of these 

items <A>, <antiA>, and <neutA> simultaneously 

coexist.  
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Several Examples of paradoxist and neutros-

ophic entities:  

— anions in two spatial dimensions are 

arbitrary spin particles that are neither bosons 

(integer spin) nor fermions (half integer spin); 

— among possible Dark Matter candidates there 

may be exotic particles that are neither Dirac nor 

Majorana fermions; 

— mercury (Hg) is a state that is neither liquid 

nor solid under normal conditions at room 

temperature; 

— non-magnetic materials are neither fer-

romagnetic nor anti-ferromagnetic; 

— quark gluon plasma (QGP) is a phase formed 

by quasifree quarks and gluons that behaves 

neither like a conventional plasma nor as an 

ordinary liquid; 

— unmatter, which is formed by matter and 

antimatter that bind together (F. Smarandache, 

2004); 

— neutral kaon, which is a pion and anti-pion 

composite (R. M. Santilli, 1978) and thus a form of 

unmatter; 

— neutrosophic methods in General Relativity 

(D. Rabounski, F. Smarandache, L. Borissova, 

2005); 

— neutrosophic cosmological model (D. 

Rabounski, L. Borissova, 2011); 

— neutrosophic gravitation (D. Rabounski); 
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— qubit and generally quantum superposition 

of states; 

— semiconductors are neither conductors nor 

isolators; 

— semi-transparent optical components are 

neither opaque nor perfectly transparent to light; 

— quantum states are metastable (neither 

perfectly stable, nor unstable); 

— neutrino-photon doublet (E. Goldfain); 

— the “multiplet” of elementary particles is a 

kind of “neutrosophic field” with two or more 

values (E. Goldfain, 2011); 

— a “neutrosophic field” can be generalized to 

that of operators whose action is selective. The 

effect of the neutrosophic field is somehow 

equivalent with the “tunneling” from the solid 

physics, or with the “spontaneous symmetry 

breaking” (SSB) where there is an internal 

symmetry which is broken by a particular 

selection of the vacuum state (E. Goldfain). Etc. 

Many types of logics have been presented 

above. For the most general logic, the n-valued 

refined neutrosophic logic, we presented two 

classes of neutrosophic operators to be used in 

combinations of neutrosophic valued propos-

itions in physics. 
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Similar generalizations are done for n-Valued 

Refined Neutrosophic Set, and respectively n-

Valued Refined Neutrosophic Probability. 
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CHAPTER V 

V.1. Operations with Neutrosophic 

Numbers 

Let ˂𝑡₁, 𝑖₁, 𝑓₁˃ and ˂𝑡₂, 𝑖₂, 𝑓₂˃ be two neutrosophic 

numbers, and 𝛼 ∊ ℝ be a real scalar number. Then 

one has:  

V.1.1. Addition of Neutrosophic Numbers 

˂𝑡₁, 𝑖₁, 𝑓₁˃⨁˂𝑡₂, 𝑖₂, 𝑓₂˃ = ˂𝑡₁ + 𝑡₂ − 𝑡₁𝑡₂, 𝑖₁𝑖₂, 𝑓₁𝑓₂˃  (1) 

V.1.2. Subtraction of Neutrosophic 

Numbers (Smarandache 2016, Ye 2017) 

˂𝑡₁, 𝑖₁, 𝑓₁˃ ⊝ ˂𝑡₂, 𝑖₂, 𝑓₂˃ = ˂
𝑡₁−𝑡₂

1−𝑡₂
,
𝑖₁

𝑖₂,
,
𝑓₁

𝑓₂
˃ ,  (2) 

where  

𝑡₁−𝑡₂

1−𝑡₂
= {

0, if 𝑡₁˂𝑡₂, or 𝑡₁ = 𝑡₂;
𝑡₁−𝑡₂

1−𝑡₂
, if 

𝑡₁−𝑡₂

1−𝑡₂
∊ [0,1];

   (3) 

𝑖₁

𝑖₂ 
= {

𝑖₁

𝑖₂ 
, if

𝑖₁

𝑖₂ 
∈ [0,1];
 

1, if  
𝑖₁

𝑖₂ 
> 1, or 𝑖₂ = 0;

   (4) 

𝑓₁

𝑓₂
= {

𝑓₁

𝑓₂
, if 

𝑓₁

𝑓₂
∊  [0,1];

1, if  
𝑓₁

𝑓₂
˃1, or 𝑓₂ = 0.

   (5) 
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V.1.3. Multiplication of Neutrosophic 

Numbers 

 ˂𝑡₁, 𝑖₁, 𝑓₁˃⊙ ˂𝑡₂, 𝑖₂, 𝑓₂˃= 

= 〈𝑡₁𝑡₂, 𝑖₁ + 𝑖₂ −  𝑖₁𝑖₂, 𝑓₁ + 𝑓₂ − 𝑓₁𝑓₂〉  (6) 

V.1.4. Division of Neutrosophic Numbers 

(Smarandache 2016, Ye 2017) 

〈𝑡₁, 𝑖₁, 𝑓₁〉⨸〈𝑡₂, 𝑖₂, 𝑓₂〉 = 〈
𝑡₁

𝑡2
,
𝑖₁−𝑖₂

1−𝑖₂
 ,
𝑓₁−𝑓₂

1−𝑓₂
 〉  (7) 

where 

𝑡₁

𝑡₂ 
= {

𝑡₁

𝑡₂ 
, if

𝑡₁

𝑡₂ 
∊ [0,1];

1, if
𝑡₁

𝑡₂ 
˃1, or 𝑡2 = 0;

   (8) 

𝑖₁−𝑖₂

1−𝑖₂
= {

0, if 𝑖₁˂𝑖₂, or 𝑖₁ = 𝑖₂;
𝑖₁−𝑖₂

1−𝑖₂
, if 

𝑖₁−𝑖₂

1−𝑖₂
∊ [0,1];

   (9) 

𝑓₁−𝑓₂

1−𝑓₂
= {
0, if 𝑓₁˂𝑓₂, or 𝑓₁ = 𝑓₂;
𝑓₁−𝑓₂

1−𝑓₂
, if 

𝑓₁−𝑓₂

1−𝑓₂
∊ [0,1].

  (10) 

V.1.5. Scalar Multiplication of 

Neutrosophic Numbers 

For 𝜆 > 0, 𝛼 ⊙ 〈𝑡₁, 𝑖₁, 𝑓₁〉 = 〈𝑡₁, 𝑖₁, 𝑓₁〉 ⊙ 𝛼 = 

= 〈1 − (1 − 𝑡1)
𝜆, 𝑖1

𝜆, 𝑓1
𝜆〉.    (11) 
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V.1.6. Power of Neutrosophic Numbers 

For 𝜆 > 0, 〈𝑡₁, 𝑖₁, 𝑓₁〉𝜆 = 

= 〈𝑡1
𝜆, 1 − (1 − 𝑖1)

𝜆, 1 − (1 − 𝑓1)
𝜆〉.  (12) 
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V.2. Addition of Multiple Single-Valued 

Neutrosophic Numbers  

For h ∈ {1, 2, …, m}, let Nh = (th, ih, fh) be single-

valued neutrosophic numbers, with all  

th, ih, fh ∈ [0, 1]. 

N1 N2 … Nm = < t1   t2 …   tm, i1   i2  

…   im, f1   f2 …   fm >.  (1) 

For t1, t2, …, tn as neutrosophic truth com-

ponents of neutrosophic numbers, one has: 

t1   t2 = t1 + t2 - t1t2 = {t1 + t2} – {t1t2} = S1 – S2. (2) 

(t1   t2)   t3 = (t1 + t2 - t1t2) t3 = t1 + t2 + t3 - t1t2 - 

t1t3 - t2t3 + t1t2t3  

= {t1 + t2 + t3} – {t1t2 + t2t3 + t3t1} + {t1t2t3} = 

= S1 - S2 + S3.     (3) 

(t1   t2   t3)   t4 = (t1 + t2 + t3 - t1t2 - t1t3 - t2t3 + 

t1t2t3)   t4 = t1 + t2 + t3 + t4 – t1t2 - t1t3 - t2t3 - t1t4 - t2t4 

- t3t4 + t1t2t3 + t1t2t4 + t1t3t4 + t2t3t4 - t1t2t3t4 

= {t1 + t2 + t3 + t4} – {t1t2 - t1t3 - t2t3 - t1t4 - t2t4 - t3t4} + 

{t1t2t3 + t1t2t4 + t1t3t4 + t2t3t4

}

 – {t1t2t3t4} 

= S1 - S2 + S3 - S4.     (4) 

And in general:     (5) 

t1 t2  ... tm = S1 - S2 + ... + (-1)
k+1

Sk + …  



Florentin Smarandache 

Neutrosophic Perspectives 

56 

+ (-1)
m+1

Sm =
1 2

1 2

1 1

1 1 { , ,..., }
( 1) ( 1) ...

k
k

m m
k k

k j j j
k k j j j

S t t t 

 

      

and, for 1 ≤ k ≤ m, one has Sk =
1 2

1 2{ , ,..., }
...

k

k

j j j
j j j

t t t , 

where 1 2{ , , ..., }kj j j  are permutations of m elements 

{1, 2, …, m} taken by groups of k elements. 

For i1, i2, …, in as neutrosophic indeterminacy 

components of neutrosophic numbers, one 

simply has: 

i1 i2  ... im = i1i2·...·im.   (6) 

And similarly, for f1, f2, …, fn as neutrosophic 

falsehood components of neutrosophic numbers, 

one simply has: 

f1 f2  ... fm = f1f2·...·fm.   (7) 

Whence, putting all three neutrosophic com-

ponents together, we get the general formula: 

N1  N2 …  Nm = < 
1 2

1 2

1

1 { , ,..., }
( 1) ... ,

k
k

m
k

j j j
k j j j

t t t



   

i1i2·...·im,  f1f2·...·fm >,    (8) 

where 1 2{ , , ..., }kj j j  are permutations of m elements 

{1, 2, …, m} taken by groups of k elements. 
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V.3. Interval-Valued Neutrosophic 

Number Operations 

We first define the following Operators for 

Interval-Valued Neutrosophic Numbers. 

Let S1 and S2 be two intervals included in [0, 1]. 

Below “inf” means infimum and “sup” means 

supremum, while [ , ] or [ , ) or ( , ], or ( , ) mean 

interval. 

V.3.1. Addition of Intervals 

S1 + S2 = [a, b],     (1) 

where a = inf(S1) + inf(S2), and b = sup(S1) + sup(S2). 

V.3.2. Multiplication of Intervals 

S1   S2 = [c, d]     (2) 

where c = inf(S1)   inf(S2), and d = sup(S1)   

sup(S2). 

V.3.3. Subtraction of Intervals 

S1 - S2 = [α, β],      (3) 

where 

1 2 1 2inf( ) sup( ), inf( ) sup( );
0, .

S S S S
otherwise


 

 

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1 2 1 2sup( ) inf( ),sup( ) inf( );
0, .

S S S S
otherwise


 

 


 

V.3.4. Division of Intervals 

S1 / S2 = [γ, δ],      (4) 

where 

1
1 2

2

1
1 2

2

inf( ) , inf( ) sup( );
sup( )

1, .

sup( ) , sup( ) inf( );
inf( )

1, .

S S S
S

otherwise

S S S
S

otherwise



















 

We can now straightforwardly generalize the 

single-valued neutrosophic number operations to 

interval-valued neutrosophic number operations. 

Let A(T1, I1, F1) and B(T2, I2, F2) be two interval-

valued neutrosophic numbers of the universe of 

discourse U, where their neutrosophic com-

ponents T1, I1, F1, T2, I2, F2 are intervals included in 

the interval [0, 1]. 

All the below operations involving T1, I1, F1, T2, 

I2, F2 are additions, subtractions, multiplications, 

or divisions of intervals as defined above: 
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V.3.5. Addition of Interval-Valued 

Neutrosophic Numbers  

(which is actually like neutrosophic union): 

A + B = (T1, I1, T1) + (T2, I2, F2) = 

= (T1 + T2 - T1T2, I1I2, F1F2).   (5) 

V.3.6. Multiplication of Interval-Valued 

Neutrosophic Numbers  

(which is actually like neutrosophic intersection): 

A  B = (T1, I1, T1)   (T2, I2, F2) = 

= (T1T2, I1 + I2 - I1I2, F1 + F2 - F1F2).   (6) 

V.3.7. Subtraction of Interval-Valued 

Neutrosophic Numbers: 

A - B = (T1, I1, T1) - (T2, I2, F2) = 

= ((T1 - T2)/(1 - T2), I1/I2, F1/F2).  (7) 

V.3.8. Division of Interval-Valued 

Neutrosophic Numbers: 

A / B = (T1, I1, F1) / (T2, I2, F2) = 

= (T1/T2, (I1-I2)/(1-I2), (F1-F2)/(1-F2)).  (8) 

Remark: The operations can straightforwardedly 

be extended from interval-valued to subunitary 

subset-valued neutrosophic components. 
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V.4. Operations with (t, i, f)-

Neutrosophic Matrices 

One uses the previous operations with neutros-

ophic numbers in defining the operations with 

(𝑡, 𝑖, 𝑓)-neutrosophic matrices. Let   A = [𝑎𝑗𝑘]𝑗𝑘  and 

B = [𝑏𝑗𝑘]𝑗𝑘, j∊{1, 2, ..., m}, k∊{1, 2, ..., n}, for 𝑚, 𝑛 ≥ 1 

be two (𝑡, 𝑖, 𝑓, )-neutrosophic matrices of m×n size.  

Let C = [𝑐𝑘𝑙]𝑘𝑙, l∊{1, 2, ..., p}, for 𝑝 ≥ 1, be another 

matrix of n × 𝑝  size. All elements 𝑎𝑗𝑘  are 

neutrosophic numbers, of the form: 

𝑎𝑗𝑘 = ⟨  𝑡𝑗𝑘𝑎 , 𝑖𝑗𝑘𝑎 , 𝑓𝑗𝑘𝑎 ⟩, 

and similarly  

𝑏𝑗𝑘=⟨𝑡𝑗𝑘𝑏 , 𝑖𝑗𝑘𝑏 , 𝑓𝑗𝑘𝑏 ⟩, 𝑐𝑘𝑙 = ⟨𝑡𝑘𝑙𝑐 , 𝑖𝑘𝑙𝑐 , 𝑓𝑘𝑙𝑐 ⟩. 

V.4.1. Addition of (𝑡, 𝑖, 𝑓)-Neutrosophic 

Matrices 

𝐴⨁𝐵 = [𝑎𝑗𝑘⨁𝑏𝑗𝑘]𝑗𝑘.    (1) 

V.4.1.1. A More General Definition of Addition 

of (𝑡, 𝑖, 𝑓)-Neutrosophic Matrices 

𝐴⨁𝐵 = [𝑎𝑗𝑘
∨
𝑁
 𝑏𝑗𝑘 ]𝑗𝑘.    (2) 
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where 
∨
𝑁

 is any neutrosophic disjunction operator. 

V.4.2. Substraction of (𝑡, 𝑖, 𝑓)-Neutrosophic 

Matrices     

𝐴⊝𝐵 = [𝑎𝑗𝑘⊝𝑏𝑗𝑘]𝑗𝑘.    (3) 

V.4.3. Scalar Multiplication of (𝑡, 𝑖, 𝑓)-

Neutrosophic Matrices 

𝛼 ⊙ 𝐴 = [𝛼 ⊙ 𝑎𝑗𝑘]𝑗𝑘.    (4) 

V.4.4. Multiplication of (𝑡, 𝑖, 𝑓)-

Neutrosophic Matrices 

𝐴⊗ 𝐶 = 
𝑛
⨁

𝑘 = 1
[𝑎𝑗𝑘⊗ 𝑐𝑘𝑙]𝑗𝑙,   (5) 

which is a matrix of size m × 𝑝. 

V.4.4.1. A More General Definition of 

Multiplication of (𝑡, 𝑖, 𝑓)-Neutrosophic Matrices 

𝐴⊗ 𝐶 = ⋁ ∨𝑁
𝑛
𝑘=1 [𝑎𝑗𝑘 ⋀ 𝑐𝑗𝑘𝑁 ]

𝑗𝑙
,   (6) 

where 
∧
𝑁

 is any neutrosophic conjunction operator 

and 
∨
𝑁

 any neutrosophic disjunction operator that 

is applied n times, upon the summation index k 

taken values from 1 to n. 
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V.4.4.2. Remark 

For the general definitions of addition and 

multiplication of (𝑡, 𝑖, 𝑓) -neutrosophic matrices, 

the neutrosophic operators 
∧
𝑁

 and 
∨
𝑁

 can be 

associated correspondingly, which is the most 

indicated procedure, i.e.: 

∧
𝑁

          ∨
𝑁

 

min/max/max with   max/min/min 

𝑥 ∙ 𝑦 (product) with  𝑥 + 𝑦 − 𝑥𝑦 (sum) 

Łukasiewicz    Łukasiewicz 
max/min/min  with       min/max/max 

other t-norm              with                  other t-conorm 

or randomly, as hybrid neutrosophic operators, for 

example: 

∧
𝑁

         ∨
𝑁

 

min/max/max with 𝑥 + 𝑦 − 𝑥𝑦 (sum) 

𝑥 ∙ 𝑦 (product)  with max/min/min 

Łukasiewicz max/min/min   

with  max/min/min 

min/max/max  

with Łukasiewicz 

 min/max/max 
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and in general, any neutrosophic operator from 

the leftt column, with another operator from the 

right column. 

V.5. Examples 

Let's have two (𝑡, 𝑖, 𝑓)-neutrosophic matrices: 

𝐴 = [
< 0.1, 0.6, 0.3 > < 0.2, 0.4, 0.5 >
< 0.7, 0.1, 0.1 > < 0.6, 0.2, 0.8 >

] and 

𝐵 = [
< 0.9, 0.2, 0.1 > < 0.5, 0.5, 0.4 >
< 0.6,0.3,0.1 > < 0.7, 0.2, 0.2 >

]  

a)  

V.5.1. Addition  

Let's compute 

𝐴⨁𝐵 = [
𝑑11 𝑑₁₂
𝑑₂₁ 𝑑₂₂

] =

[
< 0.91, 0.12, 0.03 > < 0.60, 0.20, 0.20.>
< 0.88, 0.03, 0.01 > < 0.88, 0.04, 0.16 >

]; 

𝑑11 =< 0.1, 0.6, 0.3 > ⨁ < 0.9, 0.2, 0.1 >=

< 0.1 + 0.9 − 0.1(0.9), 0.6(0.2),0.3(0.1)

>=< 0.91, 0.12,0.03 >, 

and similary one computs 𝑑₁₂, 𝑑₂₁ and 𝑑₂₂ . 

V.5.2. Multiplication 

𝐴⊗𝐵 = [
𝑔11 𝑔12

𝑔21 𝑔22
] = 
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= [
< 0.1020, 0.3944, 0.703 > < 0.1830, 0.4160, 0.3944 >
< 0.7632, 0.1012, 0.1538 > < 0.6230, 0.1980, 0.3864 >

] 

𝑔11=<0.1,0.6,0.3>⊗<0.9,0.2,0.1>⨁<0.2,0.4,0.5>⊗ 

<0.6,0.3,0.1> = <0.1(0.9),0.6+0.2-0.6(0.2),0.3+ 

0.1-0.3(0.1)>⨁<0.2(0.6),0.4+0.3-0.4(0.3),0.1+ 

0.1-0.1(0.1)>=<0.09,0.68,0.37>⨁<0.12,0.58,0.19> 

=<0.09+0.12-0.09(0.12),0.68(0.58),0.37(0.19)> 

=<0.1020,0.3944,0.0703>; 

g₁₂=<0.1,0.6,0.3>⊗<0.5,0.5,0.4>⨁<0.2,0.4,0.6>⊗ 

<0.7,0.2,0.2>=<0.05,0.80,0.58>⨁<0.14,0.52,0.68> 

=<0.1830,0.4160,0.3944>; 

g₂₁=<0.7,0.1,0.1>⊗<0.9,0.2,0.1>⨁<0.6,0.2,0.8> 

⊗<0.6,0.3,0.1>=<0.63,0.28,0.19>⨁<0.36,0.44,0.82> 

=<0.7632,0.1012,0.1558>; 

g₂₂=<0.7,0.1,0.1>⊗<0.5,0.5,0.4>⨁<0.6,0.2,0.8> 

⊗<0.7,0.2,0.2>=<0.35,0.55,0.46>⨁<0.42,0.36,0.84> 

=<0.6230,0.1980,0.3864>. 

b) Let's do the addition and multiplication of 

(𝑡, 𝑖, 𝑓)-neutrosophic matrices using max/min for 
∧
𝑁

 

and 
∨
𝑁

 operators: 

<t₁,i₁,f₁>∨
𝑁

 <t₂,i₂,f₂>= 
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=<max{t₁,t₂}, min{i₁,i₂}, min{f₁,f₂}> 

and 

<t₁,i₁,f₁>∧
𝑁

<t₂,i₂,f₂>= 

=<min{t₁,t₂}, max{i₁,i₂}, max{f₁,f₂}> 

V.5.3. Addition 

𝐴⨁𝐵 = [
𝑟₁₁ 𝑟₁₂
𝑟₂₁ 𝑟₂₂]

= [
< 0.9,0.2,0.1 > < 0.5,0.4,0.4 >
< 0.7,0.1,0.1 > < 0.7,0.2,0.2 >

] ; 

r₁₁ = <0.1,0.6,0.3>∨
𝑁

<0.9,0.2,0.1>= 

=<max{0.1,0.9}, min{0.6,0.2}, min{0.3,0.1}>  

= <0.9,0.2,0.1>; 

similary for 𝑟₁₂, 𝑟₂₁ and 𝑟₂₂. 

V.5.4. Multiplication 

𝐴⊗ 𝐵 = [
ℎ₁₁ ℎ₁₂
ℎ₂₁ ℎ₂₂

]

= [
< 0.2,0.4,0.3 > < 0.2,0.4,0.4 >
< 0.7,0.2,0.1 > < 0.7,0.2,0.5 >

] ; 

ℎ₁₁ = <0.1,0.6,0.3>∧
𝑁

<0.9,0.2,0.1>∨
𝑁

 

<0.2,0.4,0.5>∧
𝑁

<0.6,0.3,0.1>= 

=<min{0.1,0.9, max{0.6,0.2}, max{0.3,0.1}>∨
𝑁

 

<min{0.2,0.6}, max{0.4,0.3}, max{0.5,0.1}>= 
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=<0.1,0.6,0.3>∨
𝑁

<0.2,0.4,0.5>=<max{0.1,0.2}, 

min{0.6,0.4}, min{0.3,0.5}>=<0.2,0.4,0.3>; 

ℎ₁₂ = <0.1,0.6,0.3>∧
𝑁

<0.5,0.5,0.4> 

∨
𝑁

<0.2,0.4,0.5>∧
𝑁

<<0.7,0.2,0.2> =  

= <0.1,0.6,0.4>∨
𝑁

<0.2,0.4,0.5>=<0.2,0.4,0.4>; 

ℎ₂₁ = <0.7,0.1,0.1>∧
𝑁

<0.9,0.2,0.1> 

∨
𝑁

<0.6,0.2,0.8>∧
𝑁

<0.6,0.3,0.1> = 

 <0.7,0.2,0.1>∨
𝑁

<0.6,0.3,0.8> = <0.7,0.2,0.1>; 

ℎ₂₂ = <0.7,0.1,0.1>∧
𝑁

<0.5,0.5,0.4> 

∨
𝑁

<0.6,0.2,0.8>∧
𝑁

<0.7,0.2,0.2> =  

= <0.5,0.5,0.5>∨
𝑁

<0.7,0.2,0.8> = <0.7,0.2,0.5>. 

c) Let's do the addition and multiplication of 

(𝑡, 𝑖, 𝑓) -neutrosophic matrices using Łukasiewicz 

operators, which is very rough: 

<t₁,i₁,f₁>∨
𝑁

<t₂,i₂,f₂>=<min{t₁+t₂,1},  

max{i₁+i₂-1,0}, max{f₁+f₂-1,0}>; 

<t₁,i₁,f₁>∧
𝑁

<t₂,i₂,f₂>=<max{t₁+t₂-1,0},  
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min{i₁+i₂,1}, min{f₁+f₂,1}>. 

V.5.4. Addition 

𝐴⨁𝐵 = [
𝑠₁₁ 𝑠₁₂
𝑠₂₁ 𝑠₂₂] = [

< 1, 0, 0 > < 0.7, 0, 0 >
< 1, 0, 0 > < 1, 0, 0 >

] ; 

𝑠₁₁ = <0.1,0.6,0.3>∨
𝑁

<<0.9,0.2,0.1> = 

 <min{0.1+0.9,1}, max{0.6+0.2-1,0},  

max{0.3+0.1-1,0}> = <1, 0, 0>; 

similary for 𝑠12, 𝑠₂₁ and 𝑠₂₂ . 

V.5.5. Multiplication 

𝐴⊗𝐵 = [
𝑢₁₁ 𝑢₁₂
𝑢₂₁ 𝑢₂₂]

= [
< 0, 0.5, 0 > < 0, 0.6, 0.4 >
< 0.2,0,0.1 > < 0.7,0,0.57 >

] ; 

u₁₁ = <0.1,0.6,0.3>∧
𝑁

<0.9,0.2,0.1>∨
𝑁

<0.2,0.4,0.5> 

∧
𝑁

<0.6,0.3,0.1> = <max{0.1+0.9-1,0},  

min{0.6+0.2,1}, min{0.3+0.1,1}>∨
𝑁

 

<max{0.2+0.6-1,0}, min{0.4+0.3,1}, 

 min{0.5+0.1,1}> = <0,0.8, 0.4 

>∨
𝑁

<0,0.7,0.6>=<min{0+0,1},  

max{0.8+0.7-1,0}, max{0.4+0.6-1,0}> = <0,0.5,0>; 
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u₁₂ = <0.1,0.6,0.3>∧
𝑁

<0.5,0.5,0.4> 

∨
𝑁

<0.2,0.4,0.5>∧
𝑁

<0.7,0.2,0.2> =  

= <0,1,0.7>∨
𝑁

<0,0.6,0.7>=<0,0.6,0.4>; 

u₂₁ = <0.7,0.1,0.1>∧
𝑁

<0.9,0.2,0.1>∨
𝑁

 

<0.6,0.2,0.8>∧
𝑁

<0.6,0.3,0.1> =  

<0.6,0.3,0.2>∨
𝑁

<0.2,0.5,0.9> = <0.8,0,0.1>; 

u₂₂ = <0.7,0.1,0.1>∧
𝑁

<0.5,0.5,0.4>∧
𝑁

 

<0.6,0.2,0.8>∧
𝑁

<0.7,0.2,0.2> = 

= <0.2,0.6,0.5>∧
𝑁

<0.3,0.4,1> = <0.7,0,0.5>. 
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CHAPTER VI 

VI.1. Neutrosophic Hybrid Operators 

The neutrosophic operators, based on single-

value fuzzy t-norm 
∧
𝐹

 and fuzzy t-conorm 
∨
𝐹

 may 

be diversified in a hybrid way. 

By 
∧
𝐹

 and 
∨
𝐹

 we mean fuzzy intersection and 

fuzzy union, while by 
∧
𝑁

 and 
∨
𝑁

 of course we mean 

neutrosophic intersection and neutrosophic 

union respectively. 

Let's list on two columns 
∧
𝐹

 and 
∨
𝐹

 below the 

most common ones: 

Fuzzy t-norm (
∧
𝐹
)  Fuzzy t-conorm (

∨
𝐹
) 

x
∧1
𝐹

y=min{𝑥, 𝑦}  x
∨1
𝐹

y=max{𝑥, 𝑦} 

x
∧2
𝐹

y= 𝑥 ∙ 𝑦   x
∨2
𝐹

y= 𝑥 + 𝑦 − 𝑥𝑦 

x
∧3
𝐹

y=max{𝑥 + 𝑦 − 1, 0} x
∨3
𝐹

y=min{𝑥 + 𝑦, 1}  

Others    Others 

The most used others single-valued neutros-

ophic operators, based on these, are: 

<t₁,i₁,f₁>∧
𝑁

<t₂,i₂,f₂> = <t₁∧
𝐹

t₂,i₁∨
𝐹
 i₂,f₁∨

𝐹
 f₂>, (1) 
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<t₁,i₁,f₁> ∨
𝑁

<t₂,i₂,f₂> = <t₁∨
𝐹

t₂,i₁∧
𝐹

i₂,f₁∧
𝐹

f₂>. (2) 

The neutrosophic implication A
𝑁
→B, where 𝐴 <

𝑡₁, 𝑖₁, 𝑓₁ > and 𝐵 < 𝑡₂, 𝑖₂, 𝑓₂ >, can be transformed, as 

in classical logic, to (𝑁⅂𝐴)
∨
𝑁
𝐵 , where N ⅂  is the 

neutrosophic negation, and, similary, the 

neutrosophic equivalence A
𝑁
↔B  transformed as in 

classical logic again into two neutrosophic 

implications: (A
𝑁
→B) 

∧
𝑁

 ( B
𝑁
→A), which becomes: 

[(𝑁⅂𝐴)
∨
𝑁
  𝐵]

∧
𝑁
 [(𝑁⅂𝐵)

∨
𝑁
  𝐴]   (3) 

that is an expression depending on 
∧
𝑁
  and  

∨
𝑁
  

mostly (besides the neutrosophic negation N⅂). 

VI.1.1. Neutrosophic Hybrid Intersection 

< 𝑡1, 𝑖1, 𝑓1 >
𝐻
∧
𝑁
< 𝑡2, 𝑖2, 𝑓2 > = 

= < 𝑡1
∧𝑗
𝐹
𝑡2, 𝑖1

∨𝑘
𝐹 𝑖2, 𝑓1

∨𝑙
𝐹 𝑓2 >,   (4) 

where 𝑗, 𝑘, 𝑙 ∊ {1, 2, 3} . «H» stands for «hybrid». 

There are 3 ⨯ 3 ⨯ 3 = 27 possibilites; among them 

26 neutrosophic hybrid intersection operators. 
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That means, one can take any fuzzy inter-

section operator, from the first column, for the 

first neutrosophic component 𝑡1
∧
𝐹 
𝑡2 ; and any 

fuzzy union operator, from the second column, 

for the neutrosophic component 𝑖1
∨𝑘
𝐹
𝑖2 ; and 

similary, any fuzzy union operator, from the 

second column, for the third neutrosophic 

component 𝑓1
∨𝑙
𝐹
𝑓2.  

Let's see an example: 

< 𝑡1, 𝑖1, 𝑓1 >
𝐻
∧
𝑁
< 𝑡2, 𝑖2, 𝑓2 > = 

 <t₁∨2
𝐹

 t₂,  i₁∨3
𝐹
 i₂ , f₁∨2

𝐹
 f₂> =  

<𝑡₁ ∙ 𝑡₂, min{𝑥 + 𝑦, 1}, 𝑓₁ + 𝑓₂ − 𝑓₁𝑓₂ >.  (5) 

VI.1.2. Neutrosophic Hybrid Union  

< 𝑡1, 𝑖1, 𝑓1 >
𝐻
∨
𝑁
< 𝑡2, 𝑖2, 𝑓2 > =  

< 𝑡₁ 
∨𝑗
𝐹
𝑡₂, 𝑖₁

∧𝑘
𝐹
𝑖₂ , 𝑓₁

∧𝑙
𝐹
𝑓₂ >,   (6) 

where 𝑗, 𝑘, 𝑙 ∊ {1, 2, 3}, and in the same way there are 

27 possibilities, among them 26 neutrosophic 

hybrid union operators. 
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An example: 

< 𝑡1, 𝑖1, 𝑓1 >
𝐻
∨
𝑁
< 𝑡2, 𝑖2, 𝑓2 ≥ 

< 𝑡₁ 
∨1
𝐹
𝑡₂, 𝑖₁ 

∧1
𝐹
𝑖₂ , 𝑓₁

∧3
𝐹
𝑓₂ >=

〈max{𝑡₁, 𝑡₂},min{𝑖₁, 𝑖₂},max{𝑓₁ + 𝑓₂ − 1, 0}〉. (7) 

VI.1.3. Neutrosophic Hybrid Implication 

Just replacing 
∨
𝑁

 by 

𝐻
∨
𝑁

 into its formula, and we 

get: 

(𝑁⅂𝐴) 
𝐻
∨
𝑁
 𝐵     (8) 

or  

(𝑁⅂ < 𝑡₁, 𝑖₁, 𝑓₁ >)
𝐻
∨
𝑁
 < 𝑡₂, 𝑖₂, 𝑓₂ >.  (9) 

The same number of possibilities (27), and 

same number of neutrosophic hybrid implication 

operators (26). 

VI.1.4. Neutrosophic Hybrid Equivalence 

It has the formula: 

[(𝑁⅂𝐴)
𝐻
∨
𝑁
 𝐵]

𝐻
∧
𝑁
[(𝑁⅂𝐵)

𝐻
∨
𝑁
 𝐴]   (10) 
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or  

[(𝑁⅂ < 𝑡₁, 𝑖₁, 𝑓₁ >)
𝐻
∨
𝑁
< 𝑡₂, 𝑖₂, 𝑓₂ >]

𝐻
∧
𝑁

 

[(𝑁⅂ < 𝑡₂, 𝑖₂, 𝑓₂ >)
𝐻
∨
𝑁
< 𝑡₁, 𝑖₁, 𝑓₁ >].  (11) 

There are 27³ =19,683 possibilities, only one 

being non-hybrid. 

However, if we take the two 

𝐻
∨
𝑁

 defined in the 

same way, then there are 27² = 729 possibilities. 
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CHAPTER VII 

VII.1. Neutrophic Triplets 

Let 𝒰 be a universe of discourse, and (𝑁, ∗) a 

set from 𝒰, endowed with a well-defined binary 

law ∗ (groupoid). 

VII.1.1. Definition of Neutrosophic Triplet 

An element 𝑎 ∈ 𝑁 forms a neutrophic triplet if 

there exist some neutral element(s) of 𝑎, denoted 

𝑛𝑒𝑢𝑡(𝑎) ∈ 𝑁 , where 𝑛𝑒𝑢𝑡(𝑎)  is different from the 

classical unitary element of 𝑁 with respect to the 

law ∗ (if any), such that 

 𝑎 ∗ 𝑛𝑒𝑢𝑡(𝑎) = 𝑛𝑒𝑢𝑡(𝑎) ∗ 𝑎 = 𝑎   (1) 

and if there exist some opposite element(s) of 𝑎, 

denoted 𝑎𝑛𝑡𝑖(𝑎) ∈ 𝑁, such that  

𝑎 ∗ 𝑎𝑛𝑡𝑖(𝑎) = 𝑎𝑛𝑡𝑖(𝑎) ∗ 𝑎 = 𝑛𝑒𝑢𝑡(𝑎).  (2) 

The triplet < 𝑎, 𝑛𝑒𝑢𝑡(𝑎), 𝑎𝑛𝑡𝑖(𝑎) >  is called a 

neutrosophic triplet. 

VII.1.2. Example of Neutrosophic Triplet 

neut(a) has to be different from the classical 

unit element when we select the neutrals, which 
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means that among the neut(a)'s we take all except 

the classical unit element. 

*   1   2 

1   1   2 

2   2   2 

The set ( {1, 2}, * ) is a groupoid with classical 

unit element "1". Then (2, 2, 2) is the only 

neutrosophic triplet herein. 

We do not take (1, 1, 1) as a neutrosophic 

triplet, since “1” is a classical groupoid unit. 

VII.1.3. Definition of Neutrosophic Triplet 

Strong Set (or Neutrosophic Triplet Set) 

The groupoid (N, *) is called a neutrosophic 

triplet set if for any a ∈ N there exist some neutral 

of a, denoted neut(a) ∈  N, different from the 

classical algebraic unitary element (if any), and 

some opposite of a, called anti(a) ∈  N. 

VII.1.4. Example of Neutrosophic Triplet 

Strong Set 

*   1   2 

1   2   1 

2   1   1 
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The set ( {1,2}, * ) is a groupoid without classical 

unit element. 

Then <1, 2, 1> and <2, 1, 2> are neutrosophic 

triplets. 

The neutrosophic triplet strong set is N = {1, 2}. 

VII.1.5. Definition of Neutrosophic Triplet 

Weak Set  

The groupoid (N, *) is called a neutrosophic 

triplet weak set if for any a ∈ N there exist a 

neutrosophic triplet set <b, neut(b), anti(b)> 

included in N such that: a = b or a = neut(b) or a = 

anti(b). 

VII.1.6. Theorem 

Any neutrosophic triplet strong set is a 

neutrosophic triplet weak set, but not conversely. 

Proof. 

Let (N, *) be a neutrosophic triplet strong set. If 

a ∈ N, then <a, neut(a), anti(a)> is also included in 

N, therefore there exists a neutrosophic triplet in 

N that includes a, whence N is a neutrosophic 

triplet weak set. 
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Conversely we prove by using a counter-

example. 

Let Z3 = {0, 1, 2}, embedded with the 

multiplication   modulo 3, which is a well-

defined law.  

The classical unitary element in Z3 is 1. 

(Z3,  ) is a neutrosophic triplet weak set, since 

the neutrosophic triplets formed in Z3 with 

respect to the law  contain all elements 0, 1, 2:  

<0, 0, 0>,  <0, 0, 1>, and <0, 0, 2>. 

But (Z3,  ) is not a neutrosophic triplet strong 

set, since, for example, for 2 ∈ Z3 there is no 

neut(2)  1 and no anti(2). 

VII.1.7. Definition of Neutrosophic Triplet 

Strong Group (or Neutrosophic Triplet 

Group) 

Let (N, *) be a neutrosophic triplet strong set. 

Then (N, *) is called a neutrosophic triplet strong 

group (or neutrosophic triplet group), if the 

following classical axioms are satisfied. 

1) (N, *) is well-defined, i.e. for any x, y ∈ N one 

has x*y ∈  N. 
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2) (N, *) is associative, i.e.  for any x, y, z ∈  N 

one has x*(y*z) = (x*y)*z. 

NTSG, in general, is not a group in the classical 

way, because it may not have a classical unitary 

element, nor classical inverse elements. The 

neutrosophic neutrals replace the classical 

unitary element, and the neutrosophic opposites 

replace the classical inverse elements. 

VII.1.8. Example of Neutrosophic Triplet 

Strong Group 

Let (N, *) be a neutrosophic triplet group, 

defined by a Cayley Table: 

 

*      a    b 

a      a    a 

b      a    b 

 

which has the following neutrosophic triplets:  

<a, a, a>, <a, a, b>, <b, b, b>. Therefore, if a = 

neut(a), one has anti(a) = a but also anti(a) = b. 
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VII.1.9. Proposition 

A neutrosophic triplet weak group does not exist, 

since there are elements that do not have neutrals 

or opposites. 

VII.1.10. Definition of Neutrosophic 

Perfect Triplet 

A neutrosophic triplet < 𝑎, 𝑏, 𝑐 >, for 𝑎, 𝑏, 𝑐 ∈ ℕ, is 

called a neutrosophic perfect triplet if both  

< 𝑐, 𝑏, 𝑎 >  and < 𝑏, 𝑏, 𝑏 >  are also neutrosophic 

triplets. 

VII.1.11. Definition of Neutrosophic 

Imperfect Triplet  

A neutrosophic triplet < 𝑎, 𝑏, 𝑐 >, for 𝑎, 𝑏, 𝑐 ∈ ℕ, is 

called a neutrosophic imperfect triplet if at least 

one of < 𝑐, 𝑏, 𝑎 > or < 𝑏, 𝑏, 𝑏 > is not a neutrosophic 

triplet(s). 

VII.1.12. Examples of Neutrosophic Perfect 

and Imperfect Triplets 

Let 𝐴 = {0, 1, 2, . . . , 9}, endowed with the classical 

multiplication law (⨯) modulo 10, which is well-
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defined on 𝐴, with classical unitary element 1. A 

is a neutrosophic triplet weak commutative set. 

B = {4, 6} is a neutrosophic triplet strong subset 

of A, since B ⊂ A, and also a neutrosophic triplet 

strong group, whose neutrosophic triplets in B are 

<4, 6, 4> and <6, 6, 6>. B is generated by {4}, since 

 4
1

 = 4, 4
2

 = 6, 4
3

 = 4, and so on modulo 10, 

therefore B is a neutro-cyclic triplet strong group. 

Similarly C = {6} is a neutro-cyclic triplet strong 

subgroup of B, since C ⊂ B, generated by 6, whose 

single neutrosophic triplet is <6, 6, 6>. 

We have the following 23 neutrosophic triplets 

in A: 

 

6 Neutrosophic 

Perfect Triplets 

17 Neutrosophic Imperfect 

Triplets 

<0,0,0> <0,0,1>, <0,0,2>, ..., <0,0,9>; 

<5,5,5> <5,5,1>, <5,5,3>, <5,5,7>, 

<5,5,9>; 

<6,6,6> <6,6,1>; 

<2,6,8> <2,6,3>; 

<4,6,4> <4,6,9>; 

<8,6,2> <8,6,7>. 
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Let's show the computation of several of them. 

We take a perfect one < 2,6,8 >, 𝑎 = 2, and show 

that 𝑛𝑒𝑢𝑡(2) = 6 and 𝑎𝑛𝑡𝑖(2) = 8. 

Proof 

2 ∗ 𝑛𝑒𝑢𝑡(2) = 𝑛𝑒𝑢𝑡(2) ∗ 2 = 2  means that 2 ⨯ 6 =

6 ⨯ 2 = 12 = 2 (𝑚𝑜𝑑10); 

and 2 ∗ 𝑎𝑛𝑡𝑖(2) = 𝑎𝑛𝑡𝑖(2) ∗ 2 = 𝑛𝑒𝑢𝑡(2)  means that 

2 ⨯ 8 = 8 ⨯ 2 = 16 = 6 (𝑚𝑜𝑑10). 

Its reciprocal < 8,6,2 >  and < 6,6,6 >  are also 

neutrosophic triplets. 

 

Let's take an imperfect triplet < 4,6,9 >, with 𝑎 =

4, and show that 𝑛𝑒𝑢𝑡(4) = 6, 𝑎𝑛𝑡𝑖(4) = 9. 

Proof 

4 ∗ 𝑛𝑒𝑢𝑡(4) = 𝑛𝑒𝑢𝑡(4) ∗ 4 = 4  means that 4 ⨯ 6 =

6 ⨯ 4 = 24 = 4 (𝑚𝑜𝑑10); 

and 4 ⨯ 𝑎𝑛𝑡𝑖(4) = 𝑎𝑛𝑡𝑖(4) ⨯ 4 = 𝑛𝑒𝑢𝑡(4) means that 

4 ⨯ 9 = 9 ⨯ 4 = 36 = 6 (𝑚𝑜𝑑10). 

Its reciprocal < 9,6,4 >  is not a neutrosophic 

triplet, because 

9 ⨯ 6 = 6 ⨯ 9 = 54 = 4 ≠ 9 (𝑚𝑜𝑑10),  

hence 𝑛𝑒𝑢𝑡(9) ≠ 6;  
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but < 6,6,6 > is a neutrosophic triplet. 

The other neutrosophic triplets can be checked 

in the same way. 

It should be remarked that the below four 

triplets: 

< 1,①, 1 >< 3,①, 7 >< 7,①, 3 >< 9,①, 9 >, 

although they verify the neut-axiom and anti-

axiom, are excluded from the neutrosophic 

triplets since their neutral (1) is the same as the 

set's classical unitary element (1). 

VII.1.13. Definition of Neutrosophic Triplet 

Relationship of Equivalence 

A neutrosophic triplet relationship of 

equivalence on a neutrosophic triplet (strong or 

weak) set (N, *) is a relationship  ℰ  defined as 

follows. 

∀ 𝑎, 𝑏, 𝑐 ∈ 𝑁, one has the following axioms: 

1) 𝑎ℰ𝑎; 

2) if  𝑎ℰ𝑏 then 𝑏ℰ𝑎; 

3) if 𝑎ℰ𝑏 and  𝑏ℰ𝑐, then 𝑎ℰ𝑐. 
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VII.1.14. Example of Neutrosophic Triplet 

Relationship of Equivalence 

Let ℰ be a neutrosophic triplet relationship of 

equivalence on a neutrosophic triplet (strong or 

weak) set (N, *), defined as: 

∀ 𝑎, 𝑏 ∈ 𝑁, 𝑎ℰ𝑏 ⇔ 𝑛𝑒𝑢𝑡(𝑎) = 𝑛𝑒𝑢𝑡(𝑏). 

It can be easily proven that ℰ is an equivalence, 

since: 

4) 𝑎ℰ𝑎 ⇔ 𝑛𝑒𝑢𝑡(𝑎) = 𝑛𝑒𝑢𝑡(𝑎); 

5) If  𝑎ℰ𝑏  then 𝑏ℰ𝑎 , or if 𝑛𝑒𝑢𝑡(𝑎) = 𝑛𝑒𝑢𝑡(𝑏) 

then 𝑛𝑒𝑢𝑡(𝑏) = 𝑛𝑒𝑢𝑡(𝑎); 

6) If 𝑎ℰ𝑏  and 𝑏ℰ𝑐 , then 𝑎ℰ𝑐 , or if 𝑛𝑒𝑢𝑡(𝑎) =

𝑛𝑒𝑢𝑡(𝑏) and 𝑛𝑒𝑢𝑡(𝑏) = 𝑛𝑒𝑢𝑡(𝑐),  

then 𝑛𝑒𝑢𝑡(𝑎) = 𝑛𝑒𝑢𝑡(𝑐). 

The number of neutrosophic triplet classes of 

equivalence, with respect to ℰ on the previous (A, 

*) neutrosophic triplet weak set, is three: 

{0̂} = {< 0,0,0 >,< 0,0,1 >,< 0,0,2 >, . . . , < 0,0,9 >}; 

{5̂} = {< 5,5,5 >,< 5,5,1 >,< 5,5,3 >,< 5,5,7 >,  

< 5,5,9 >}; 

 and  

{6̂} = {< 2,6,8 >,< 2,6,3 >,< 4,6,4 >,< 4,6,9 >,  

< 6,6,6 >,< 6,6,1 >, < 8,6,2 >,< 8,6,7 >}. 
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VII.1.15. Example of Neutrosophic Perfect 

and Imperfect Triplets 

ℤ₄ = {0,1,2,3} , with the classical multiplication 

(⨯) 𝑚𝑜𝑑𝑢𝑙𝑜 4 ; classical unitary element 1.  ℤ₄  is a 

neutrosophic triplet commutative weak set. 

 

Neutrosophic Perfect 

Triplet  

Neutrosophic Imperfect 

Triplets 

<0,0,0> <0,0,1>, <0,0,2>, <0,0,3>. 

  

VII.1.16. Example of Neutrosophic Perfect 

and Imperfect Triplets 

ℤ₆ = {0, 1, 2, 3, 4, 5}, with classical multiplication 

(⨯) 𝑚𝑜𝑑𝑢𝑙𝑜 6; classical unitary element 1. ℤ₆ is a 

neutrosophic triplet commutative weak set. 

Neutrosophic Perfect 

Triplet  

Neutrosophic Imperfect 

Triplets 

<0,0,0> <0,0,1>, ..., <0,0,5>; 

<2,4,2> <2,4,5>; 

<3,3,3> <3,3,1>, <3,3,5>; 

<4,4,4> <4,4,1>. 
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VII.1.17. Example of Non-Associative Law 

Let ℤ₅ ={0, 1, 2, 3, 4} endowed with the law ∗

 defined by 𝑎 ∗ 𝑏 = 2a + 2b (mod 5), for any 𝑎, 𝑏 ∊ ℤ₅. 

This law is well-defined, non-associative, 

commutative, non-unitary, with zero-divisors. 

For a neutrosophic triplet < 𝑎, 𝑛𝑒𝑢𝑡(𝑎), 𝑎𝑛𝑡𝑖(𝑎) > 

to exist, it is necessary that 𝑛𝑒𝑢𝑡(𝑎) depends on 

«𝑎», because if 𝑛𝑒𝑢𝑡(𝑎) was independent of «𝑎», 

then it would be the classical unitary element. 

Whence: 

𝑎 ∗ 𝑛𝑒𝑢𝑡(𝑎) = 2𝑎 + 2𝑛𝑒𝑢𝑡(𝑎) = 𝑎 (mod 5)  (3) 

or  

2 ∙ 𝑛𝑒𝑢𝑡(𝑎) = −𝑎 (mod5),     (4) 

or 

𝑛𝑒𝑢𝑡(𝑎) = 2−1(−𝑎) = −3𝑎 = 2𝑎 (mod 5). (5)

 We do not need to check 𝑛𝑒𝑢𝑡(𝑎) ∗ 𝑎  any 

further, since the law is commutative. 

Therefore 𝑛𝑒𝑢𝑡(𝑎) = 2𝑎 (mod 5) for any a ∊ ℤ₅. 

Let's find the 𝑎𝑛𝑡𝑖(𝑎): 

𝑎 ∗ 𝑎𝑛𝑡𝑖(𝑎) = 𝑛𝑒𝑢𝑡(𝑎)    (6) 

or  

𝑎 ∗ 𝑎𝑛𝑡𝑖(𝑎) = 2𝑎     (7) 

or 
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     2𝑎 + 2 ∙ 𝑎𝑛𝑡𝑖(𝑎) = 2𝑎 (mod 5)  (8) 

or 

2 ∙ 𝑎𝑛𝑡𝑖(𝑎) = 0 (mod 5)    (9) 

or  

𝑎𝑛𝑡𝑖(𝑎) = 0 (mod 5),    (10) 

since 2 and 5 are relatively prime,  

or  

𝑎𝑛𝑡𝑖(𝑎) = 0,      (11) 

because 𝑎𝑛𝑡𝑖(𝑎) ∊ ℤ₅. 

The general neutrosophic triplets are: 

< 𝑎, 2𝑎, 0 >  (mod 5), 

where 𝑎 ∊ {0,1,2,3,4}, whence one has the following 

neutrosophic imperfect triplets: 

<0,0,0>, for a = 0; 

<1,2,0>, for a = 1; 

<2,4,0>, for a = 2; 

<3,1,0>, for a = 3; 

<4,3,0>, for a = 4. 

Since the law is not associative, then if < 𝑎, 𝑏, 𝑐 > 

is a neutrosophic triplet it does not involve, in 

general, that < 𝑐, 𝑏, 𝑎 >  or < 𝑏, 𝑏, 𝑏 >  are neutros-

ophic triplets.  
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Also, because the law is commutative, we need 

to verify only one part of the axioms of 𝑛𝑒𝑢𝑡(𝑎) 

and 𝑎𝑛𝑡𝑖(𝑎), respectively. 

VII.1.18. Definition of Neutrosophic Enemy 

of Itself 

Let (N, *) be a neutrosophic triplet (strong or 

weak) set. We say that the elements a ∈ N is a 

neutrosophic enemy of itself if a ∈ {anti(a)}. 

VII.1.19. Definition of Two Neutrosophic 

Friends 

Let (N, *) be a neutrosophic triplet (strong or 

weak) set. 

We say that the elements a1, a2 ∈ N are 

neutrosophic friends, if: 

1) There exist {anti(a1)} ≠ ∅ and {anti(a2)} ≠ ∅ in 

the case when N is a neutrosophic triplet 

weak set [because in the case of 

neutrosophic triplet strong set they exist by 

definition], such that: 

{anti(a1)}  {anti(a2)} ≠ ∅, 

i.e. a1, a2 have common enemies;  

    2) Also, a1 {anti(a2)} and a2 {anti(a1)}, 
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i.e. a1 is not among the enemies of a2, and 

reciprocally a2 is not among the enemies of a1. 

      3) Neither a1 nor a2  is an enemy of itself. 

Since 𝑎𝑛𝑡𝑖(𝑎ᵢ)  are in general subsets (i.e. the 

element 𝑎ᵢ  has one or more enemies), we used 

braces: writing {𝑎𝑛𝑡𝑖(𝑎ᵢ)}. 

VII.1.20. Definition of n≥2 Neutrosophic 

Friends 

As an extension of the previous definition, let 

(N, *) be a neutrosophic triplet (strong or weak) 

set, such that: 

< 𝑎1, 𝑛𝑒𝑢𝑡(𝑎1), 𝑎𝑛𝑡𝑖(𝑎1) >,  

< 𝑎₂, 𝑛𝑒𝑢𝑡(𝑎₂), 𝑎𝑛𝑡𝑖(𝑎₂) > ,  

...,  

< 𝑎𝑛, 𝑛𝑒𝑢𝑡(𝑎𝑛), 𝑎𝑛𝑡𝑖(𝑎𝑛) >,  

for 𝑛 ≥ 2, be 𝑛 neutrosophic triplets. 

We say that 𝑎₁, 𝑎₂, . . . , 𝑎𝑛 are neutrosophic friends  

and we write F =  {𝑎1, 𝑎2, . . . , 𝑎𝑛}, if they all have 

common enemies (denoted by E) 

 E = ⋂ {𝑎𝑛𝑡𝑖(𝑎ᵢ)}𝑛
𝑖=1 ≠ ∅,   

and none of them is an enemy of another, or an 

enemy of itself: 
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          ai {anti(aj)}, for any i, j ∈ {1, 2, …, n}.   

{ This last relation comprises both: none of them 

is enemy of the other ( for i ≠ j ), and none of them 

is an enemy of itself ( for i = j). } 

VII.1.21. Proposition 

A neutrosophic enemy of itself has no 

neutrosophic friend. 

VII.1.22. Example of Neutrosophic Friends 

If we consider the previous example,  

ℤ₅ ={0, 1, 2, 3, 4}, endowed with the law ∗ defined 

by 𝑎 ∗ 𝑏 = 2a + 2b (mod 5) , for any 𝑎, 𝑏 ∊ ℤ₅ , whose 

neutrosophic triplets are:  

<0,0,0>, <1,2,0>, <2,4,0>, <3,1,0>, and <4,3,0>, 

then F = {1, 2, 3, 4} are friends, since they have the 

same enemy: 𝑎𝑛𝑡𝑖(1) = 𝑎𝑛𝑡𝑖(2) = 𝑎𝑛𝑡𝑖(3) = 𝑎𝑛𝑡𝑖(4) =

0, while 0 was excluded, since 0 is an enemy to 

itself: 𝑎𝑛𝑡𝑖(0) = 0. 
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VII.2. Neutrosophic Triplet Function 

Question from Hur Kul: 

Recently, we had to select only one president 

from many candidatures. 

Then at present about 30 % of the total electors 

is movable electors, i.e., neutrals. 

Thus, it is very important for them to select 

whom. But we think that <A>, <neut A>, <anti A> 

can select partially another candidate, 

respectively at voting date. So, the final selection 

is dependent on: <A>, <neut A>, <anti A>. Of 

course, it is strong dependent to <neut A>. 

Hence, we would like to consider (<A>, <neut 

A>, <anti A>), <f(<A>, <neut A>, <anti A>) in order 

to analyze the real world. 

Your opinion? 

Answer:  

We can define a neutrosophic triplet function: 

𝑓( < 𝐴 >,< 𝑛𝑒𝑢𝑡𝐴 >,< 𝑎𝑛𝑡𝑖𝐴 > )  = 

= ( 𝑓1(< 𝐴 >), 𝑓2(< 𝑛𝑒𝑢𝑡𝐴 >), 𝑓3(< 𝑎𝑛𝑡𝑖𝐴 >) ), 

alike a classical vector function of three variables. 
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VII.3. Theorems on Neutrosophic 

Triplets
*

 

Firstly, let’s recall three definitions that will be 

used in the next theorems. 

VII.3.1 Definition 1 

Let (G, *) be a groupoid. An element a ∈ G is 

called left-cancellative (or has the left cancellation 

property) if for any b and c in M, from a ∗ b = a ∗ c 

one always gets that b = c. 

VII.3.2 Definition 2 

And a ∈ G is called right-cancellative (or has the 

right cancellation property) if for any b and c in M, 

from b ∗ a = c ∗ a one always gets that b = c. 

VII.3.3 Definition 3 

Also, a ∈ G is called cancellative (or has the two-

sided cancellation property) if a is both left-

cancellative and right-cancellative. 

                                           

*

 In collab. with Mumtaz Ali. 
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VII.3.4 Definition 4 

A groupoid (G, ∗) is left-cancellative (has the left-

cancellation property) if all a ∈ G are left-

cancellative; 

and similar definitions for the right-

cancellative, or two-sided cancellative. 

VII.3.5. Theorem 1 

{Improvement of Theorem 3.6 from [1]} 

Let ℤ𝑝 = {0,1,2, . . . , 𝑝 − 1} , where  𝑝 is a positive 

prime number, endowed with the multiplication × 

of integers, modulo 𝑝 , with classical unitary 

element 1. 

There exists only one trivial neutrosophic 

perfect triplet < 0,0,0 > , and 𝑝 − 1  neutrosophic 

imperfect triplets: < 0,0,1 >,< 0,0,2 >, . . . , < 0,0, 𝑝 −

1 >. 

(ℤ𝑝, ×) , modulo p, is a neutrosophic triplet 

weak set, and it is not a neutrosophic triplet 

group. 

Proof 

Let's show that < 0,0, 𝑖 >, for 𝑖 ∊ {0,1,2, . . . , 𝑝 − 1}, 

are neutrosophic triplets. 
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0 ⨯  𝑛𝑒𝑢𝑡(0) = 𝑛𝑒𝑢𝑡(0) ⨯ 0 = 0, means that  

0 ⨯ 0 = 0 ⨯ 0 = 0, therefore 𝑛𝑒𝑢𝑡(0) = 0; 

and  

0 ⨯ 𝑎𝑛𝑡𝑖(0) = 𝑎𝑛𝑡𝑖(0) ⨯ 0 = 𝑛𝑒𝑢𝑡(0) means that  

0 ⨯ 𝑖 = 𝑖 ⨯ 0 = 0 or 0 = 0, therefore 𝑎𝑛𝑡𝑖(0) = 𝑖. 

Let's prove that there are no other neutrosophic 

triplets. 

Suppose there is 𝑎 ≠ 0 , or 𝑎 ∊ {1,2,3, . . . , 𝑝 − 1} 

such that 

< 𝑎, 𝑛𝑒𝑢𝑡(𝑎), 𝑎𝑛𝑡𝑖(𝑎) > 

is a neutrosophic triplet, where 𝑛𝑒𝑢𝑡(𝑎) ∊ ℤ𝑝 ∖ {1} 

and 𝑎𝑛𝑡𝑖(𝑎) ∊ ℤ𝑝. 

Let's denote 𝑛𝑒𝑢𝑡(𝑎) = 𝑥, that we need to find 

out, when 𝑥 ≠ 1 and 𝑥 ∊ ℤ𝑝. 

Since the multiplication is commutative, we 

need to only check: 

𝑎 ⨯ 𝑛𝑒𝑢𝑡(𝑎) = 𝑎,  

or 𝑎𝑥 = 𝑎 (mod p),  

or 𝑎(𝑥 − 1) = 0 (mod p). 

Since 𝑎 ≠ 0  and 𝑎 < 𝑝 , one has (𝑎, 𝑝) = 1 , i.e. 𝑎 

and 𝑝 are relatively prime. 

There one needs 𝑥 − 1 = 0  (mod p), meaning 

that 𝑥 = 1, 𝑝 + 1,2𝑝 + 1,3𝑝 + 1,… . 
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Yet 𝑥 ≠ 1  (not allowed to be equal to the 

classical unitary element) and 𝑥 < 𝑝 since 𝑥 ∊ ℤ𝑝 . 

Therefore, these is no such 𝑥 , i.e. there is no 

𝑛𝑒𝑢𝑡(𝑎) for all 𝑎 ≠ 0.  

In consequence, there is no 𝑎𝑛𝑡𝑖(𝑎) either, for 

all 𝑎 ≠ 0. 

VII.3.6. Theorem 2 

{Improvement of Theorem 2.5 from [1]} 

Let (𝑁,∗)  be a neutrosophic triplet (strong) 

group.  

Let < 𝑎, 𝑛𝑒𝑢𝑡(𝑎), 𝑎𝑛𝑡𝑖(𝑎) >  be a neutrosophic 

triplet from 𝑁.  

If a is left- and right-cancellable, then   

< 𝑎𝑛𝑡𝑖(𝑎), 𝑛𝑒𝑢𝑡(𝑎), 𝑎 >  

and  

< 𝑛𝑒𝑢𝑡(𝑎), 𝑛𝑒𝑢𝑡(𝑎), 𝑛𝑒𝑢𝑡(𝑎) >  

are also neutrosophic triplets. 

Proof 

In order to show that < 𝑎𝑛𝑡𝑖(𝑎), 𝑛𝑒𝑢𝑡(𝑎), 𝑎 > is a 

neutrosophic triplet, we only need to show that 

𝑛𝑒𝑢𝑡(𝑎) is a neutral for 𝑎𝑛𝑡𝑖(𝑎) too: 

𝑛𝑒𝑢𝑡(𝑎) ∗ 𝑎𝑛𝑡𝑖(𝑎) = 𝑎𝑛𝑡𝑖(𝑎) becomes 

[𝑛𝑒𝑢𝑡(𝑎) ∗ 𝑎𝑛𝑡𝑖(𝑎)] = 𝑎𝑛𝑡𝑖(𝑎)  
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𝑎 ∗ [𝑛𝑒𝑢𝑡(𝑎) ∗ 𝑎𝑛𝑡𝑖(𝑎)] = 𝑎 ∗ 𝑎𝑛𝑡𝑖(𝑎), 

by applying « 𝑎 » to the left, since a is left-

cancellable (so 𝑎 ≠ 0, and a is not a zero-divisor), 

or [𝑎 ∗ 𝑛𝑒𝑢𝑡(𝑎)] ∗ 𝑎𝑛𝑡𝑖(𝑎) = 𝑎 ∗ 𝑎𝑛𝑡𝑖(𝑎) (associativity), 

or 𝑎 ∗ 𝑎𝑛𝑡𝑖(𝑎) = 𝑎 ∗ 𝑎𝑛𝑡𝑖(𝑎), which is true; 

we used 𝑎 ∗ 𝑛𝑒𝑢𝑡(𝑎) = 𝑎 because  

< 𝑎, 𝑛𝑒𝑢𝑡(𝑎), 𝑎𝑛𝑡𝑖(𝑎) > is a neutrosophic triplet. 

Let’s also prove that: 

𝑎𝑛𝑡𝑖(𝑎) ∗ 𝑛𝑒𝑢𝑡(𝑎) = 𝑎𝑛𝑡𝑖(𝑎), which becomes 

[𝑎𝑛𝑡𝑖(𝑎) ∗ 𝑛𝑒𝑢𝑡(𝑎)] = 𝑎𝑛𝑡𝑖(𝑎)  

[𝑎𝑛𝑡𝑖(𝑎) ∗ 𝑛𝑒𝑢𝑡(𝑎)] ∗ 𝑎 = 𝑎𝑛𝑡𝑖(𝑎) ∗ 𝑎  

by applying «𝑎» to the right, since a is right-

cancellable (so 𝑎 ≠ 0, and a is not a zero-divisor), 

or anti(a)*[neut(a)*a] = anti(a)*a   {associativity} 

or anti(a) * a = anti(a) * a that is true. 

Since a is right-cancellable, there was no risk of 

altering the equality by applying “a” to the right 

in both sides. 

Similarly, to show that  

< 𝑛𝑒𝑢𝑡(𝑎), 𝑛𝑒𝑢𝑡(𝑎), 𝑛𝑒𝑢𝑡(𝑎) >  

is a neutrosophic triplet, we only need to show 

that: 

𝑛𝑒𝑢𝑡(𝑎) ∗ 𝑛𝑒𝑢𝑡(𝑎) = 𝑛𝑒𝑢𝑡(𝑎). 
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Apply “𝑎” to the left, since a is left-cancellable 

(so in particular 𝑎 ≠ 0 and a is not a zero-divisor), 

therefore there is no risk to alter the equality: 

𝑎 ∗ [𝑛𝑒𝑢𝑡(𝑎) ∗ 𝑛𝑒𝑢𝑡(𝑎)] = 𝑎 ∗ 𝑛𝑒𝑢𝑡(𝑎), 

or  

[𝑎 ∗ 𝑛𝑒𝑢𝑡(𝑎)] ∗ 𝑛𝑒𝑢𝑡(𝑎) = 𝑎 ∗ 𝑛𝑒𝑢𝑡(𝑎)  

(associativity), 

𝑎 ∗ 𝑛𝑒𝑢𝑡(𝑎) = 𝑎 ∗ 𝑛𝑒𝑢𝑡(𝑎), 

or 𝑎 = 𝑎 that is true. 

VII.3.7. Counter-Example 1 

In a neutrosophic triplet group (𝑁𝑇𝐺, ∗), where 

𝑎 is not left-cancellable (for example a is zero, or 

a is a zero-divisor, etc.), if (𝑎, 𝑛𝑒𝑢𝑡(𝑎), 𝑎𝑛𝑡𝑖(𝑎)) is a 

neutrosophic triplet, then it may arise that 

(𝑎𝑛𝑡𝑖(𝑎), 𝑛𝑒𝑢𝑡(𝑎), 𝑎) or (neut(a), neut(a), neut(a)) are  

neutrosophic triplets in some cases, and in other 

cases they may not be neutrosophic triplets. 

Let ℤ10 = {0, 1, 2, … ,9},  with the integer 

multiplication modulo 10, which is a neutrosophic 

triplet commutative weak set, whose classical unit 

element is 1. 
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Then (2, 6, 8), where 2 is not left-cancellable, is 

a neutrosophic triplet, and (8, 6, 2), (6, 6, 6) are also 

neutrosophic triplets. 

Now, (2, 6, 3), where 2 is not left-cancellable, is a 

neutrosophic triplet, however (3, 6, 2)  is not a 

neutrosophic triplet, because 3 ∗ 6 = 6 ∗ 3 = 8 ≠ 3 , 

while (6, 6, 6) is a neutrosophic triplet. 

Analogously, (0, 0, 𝑖), where 𝑎 = 0 and 𝑛𝑒𝑢𝑡(𝑎) =

0, 𝑎𝑛𝑡𝑖(𝑎) = 𝑖, for 𝑖 ∈ {1, 2, … ,9} , are neutrosophic 

triplets, while <i, 0, 0> are not neutrosophic 

triplets since 𝑖 ∗ 0 = 0 ∗ 𝑖 ≠ 𝑖,  while (0, 0, 0)  is a 

neutrosophic triplet. 

VII.3.8. Theorem 3 

{Improvement of Theorem 3.21 from [1]} 

In a neutrosophic triplet group (𝑁𝑇𝐺,∗), where 𝑎 

is left-concellative or right-concellative, one has: 

𝑛𝑒𝑢𝑡(𝑎) ∗ 𝑛𝑒𝑢𝑡(𝑎) = 𝑛𝑒𝑢𝑡(𝑎),   (1) 

and, in general,  

𝑛𝑒𝑢𝑡(𝑎)𝑛 = 𝑛𝑒𝑢𝑡(𝑎𝑛), for 𝑛 ≥ 1;   (2) 

and also:       (3) 

𝑛𝑒𝑢𝑡(𝑎) ∗ 𝑎𝑛𝑡𝑖(𝑎) = 𝑎𝑛𝑡𝑖(𝑎) ∗ 𝑛𝑒𝑢𝑡(𝑎) = 𝑎𝑛𝑡𝑖(𝑎), 

and in general:     (4) 

𝑛𝑒𝑢𝑡(𝑎) ∗ 𝑎𝑛𝑡𝑖(𝑎)𝑛 = 𝑎𝑛𝑡𝑖(𝑎)𝑛 ∗ 𝑛𝑒𝑢𝑡(𝑎) = 𝑎𝑛𝑡𝑖(𝑎)𝑛. 
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Proof 

Multiply each equality to the left or to the right 

with 𝑎, which is different from 0 and from zero-

divisor since a is left-concellative or respectively 

right-concellative. 

VII.3.9 Definition of Neutro-

Homomorphism. 

{Improvement of Definition 4.1 from [1]} 

Let (N1, *1) and (N2, *2) be two neutrosophic 

triplet groups. A mapping: 

f: N1  N2 

is called a neutro-homomorphism if: 

1) for any a, b ∈N1, we have:  

f(a *1 b) = f(a) *2 f(b); 

2) if <a, neut(a), anti(a)> is a 

neutrosophic triplet from N1, then 

f(neut(a)) = neut(f(a)) and f(anti(a)) = 

anti(f(a)). 

In other words, if <a, neut(a), anti(a)> is a 

neutrosophic triplet from N1, then  
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<f(a), f(neut(a)), f(anti(a))> is a 

neutrosophic triplet from N2 that is equal 

to <f(a), neut(f(a)), anti(f(a))>. 

VII.3.10. Example  

Let 1N  be a neutrosophic triplet group with 

respect to multiplication modulo 6  in (𝑍6,×) , 

where 

1 {0,2,4}N 
 

and let 2N  be another neutrosophic triplet group 

with respect to multiplication modulo 10 in 

(𝑍10,×), where 

2 {0,2,4,6,8}N 
. 

Let 

1 2:f N N
 

be a mapping defined as 

(0) 0, (2) 4, (4) 6f f f  
. 

Then clearly f  is a neutro-homomorphism 

because conditions (1) and (2) are satisfied easily. 

    The neutrosophic triplets in N1 are <0,0,0>, 

<2,4,2>, and <4,4,4>. Then <f(0),f(0),f(0)> = 

<0,0,0> and <f(2),f(4),f(2)> = <4,6,4> and 
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<f(4),f(4),f(4)> = <6,6,6> are neutrosophic triplets 

in N2. 

VII.3.11. Definition 6 

A neutro-homomorphism is called neutro-

isomorphism if it is one-one and onto. 

VII.3.12. Proposition 1 

Every neutro-homomorphism is a classical 

homomorphism by neglecting the classical unity 

element in classical homomorphism. 

Proof. 

First, we neglect the classical unity element that 

classical homomorphism maps unity element to 

the corresponding unity element.  Now suppose 

that f  is a neutro-homomorphism from a 

neutrosophic triplet group 1N  to a neutrosophic 

triplet group 2N . Then by condition (1) , it follows 

that f  is a classical homomorphism. 

VII.3.13. Proposition 2 

{Improvement of Proposition 3.11 from [1]} 

Let (N, *) be e neutrosophic triplet group, and 

let a, b, c ∈ N. 



Florentin Smarandache 

Neutrosophic Perspectives 

101 

1) If a and anti(a) are left-cancellable, then: 

a*b =a*c if and only if neut(a)*b = 

neut(a)*c. 

Proof: multiply with anti(a) to the left the first 

equality; conversably multiply by a the second 

equality. 

2) If a and anti(a) are right-concellable, then: 

b*a = c*a if and only if b*neut(a) = 

c*neut(a). 

Similar proof. 

{These (1) and (2) are improvements of 

Proposition 3.11 from [1].} 

3) Let a be left-cancellable; if  

anti(a)*b = anti(a)*c then neut(a)*b = 

neut(a)*c. 

Proof: multiply the first equality with a to 

the left. 

4) Let a be right-cancellable; if 

b*anti(a) = c*anti(b), then b*neut(a) = 

c*neut(a). 

Proof: multiply the first equality by a to 

the right side. 
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{These (3) and (4) are improvements of 

Proposition 3.12 from [1].}  

VII.3.14. Theorem 4 

{Combination of Theorems 3.13 & 3.14 from [1]} 

In a neutrosophic triplet commutative group, if  

〈𝑎, 𝑛𝑒𝑢𝑡(𝑎), 𝑎𝑛𝑡𝑖(𝑎)〉   

and  

〈𝑏, 𝑛𝑒𝑢𝑡(𝑏), 𝑎𝑛𝑡𝑖(𝑏)〉  

are two neutrosophic triplets, then  

〈𝑎 ∗ 𝑏, 𝑛𝑒𝑢𝑡(𝑎) ∗ 𝑛𝑒𝑢𝑡(𝑏), 𝑎𝑛𝑡𝑖(𝑎) ∗ 𝑎𝑛𝑡𝑖(𝑏)〉 

is also a neutrosophic triplet; 

and the later neutrosophic triplet is equal to 

〈𝑎 ∗ 𝑏, 𝑛𝑒𝑢𝑡(𝑎 ∗ 𝑏), 𝑎𝑛𝑡𝑖(𝑎 ∗ 𝑏)〉. 

Improved Proofs of 3.13 & 3.14 from [1]: 

[𝑎 ∗ 𝑏] ∗ [𝑛𝑒𝑢𝑡(𝑎) ∗ 𝑛𝑒𝑢𝑡(𝑏)] = 

= [𝑎 ∗ 𝑛𝑒𝑢𝑡(𝑎)] ∗ [𝑏 ∗ 𝑛𝑒𝑢𝑡(𝑏)] = 𝑎 ∗ 𝑏,  (5) 

and  

[𝑛𝑒𝑢𝑡(𝑎) ∗ 𝑛𝑒𝑢𝑡(𝑏)] ∗ [𝑎 ∗ 𝑏] = 

= [𝑛𝑒𝑢𝑡(𝑎) ∗ 𝑎] ∗ [𝑛𝑒𝑢𝑡(𝑏) ∗ 𝑏] = 𝑎 ∗ 𝑏.  (6) 

That means:  

𝑛𝑒𝑢𝑡(𝑎) ∗ 𝑛𝑒𝑢𝑡(𝑏) = 𝑛𝑒𝑢𝑡(𝑎 ∗ 𝑏).  (7) 

Similarly, [𝑎 ∗ 𝑏] ∗ [𝑎𝑛𝑡𝑖(𝑎) ∗ 𝑎𝑛𝑡𝑖(𝑏)] = 

= [𝑎 ∗ 𝑎𝑛𝑡𝑖(𝑎)] ∗ [𝑏 ∗ 𝑎𝑛𝑡𝑖(𝑏)] = 
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= 𝑛𝑒𝑢𝑡(𝑎) ∗ 𝑛𝑒𝑢𝑡(𝑏) = 𝑛𝑒𝑢𝑡(𝑎 ∗ 𝑏),  (8) 

and  

[𝑎𝑛𝑡𝑖(𝑎) ∗ 𝑎𝑛𝑡𝑖(𝑏)] ∗ [𝑎 ∗ 𝑏] = 

= [𝑎𝑛𝑡𝑖(𝑎) ∗ 𝑎] ∗ [𝑎𝑛𝑡𝑖(𝑏) ∗ 𝑏] = 

= 𝑛𝑒𝑢𝑡(𝑎) ∗ 𝑛𝑒𝑢𝑡(𝑏) = 𝑛𝑒𝑢𝑡(𝑎 ∗ 𝑏),  (9) 

which means: 

𝑎𝑛𝑡𝑖(𝑎) ∗ 𝑎𝑛𝑡𝑖(𝑏) = 𝑎𝑛𝑡𝑖(𝑎 ∗ 𝑏).  (10) 

This can be generalized to the following: 

VII.3.15. Theorem 5 

In a neutrosophic triplet commutative group, if 

〈𝑎𝑖 , 𝑛𝑒𝑢𝑡(𝑎𝑖), 𝑎𝑛𝑡𝑖(𝑎𝑖)〉 , for 1 ≤ 𝑖 ≤ 𝑛,  and 𝑛 ≥ 2,  are 

neutrosophic triplets, then: 

〈
𝑎1 ∗ 𝑎2 ∗ … ∗ 𝑎𝑛, 𝑛𝑒𝑢𝑡(𝑎1) ∗ 𝑛𝑒𝑢𝑡(𝑎2) ∗ … ∗ 𝑛𝑒𝑢𝑡(𝑎𝑛),

𝑎𝑛𝑡𝑖(𝑎1) ∗ 𝑎𝑛𝑡𝑖(𝑎2) ∗ … ∗ 𝑎𝑛𝑡𝑖(𝑎𝑛)
〉 

is also a neutrosophic triplet, which is equal to: 

〈
𝑎1 ∗ 𝑎2 ∗ … ∗ 𝑎𝑛, 𝑛𝑒𝑢𝑡(𝑎1 ∗ 𝑎2 ∗ … ∗ 𝑎𝑛),

𝑎𝑛𝑡𝑖(𝑎1 ∗ 𝑎2 ∗ … ∗ 𝑎𝑛)
〉. 

Proof 

By mathematical induction, using the previous 

theorem. 

Consequence 

In a neutrosophic triplet commutative group, if 

〈𝑎, 𝑛𝑒𝑢𝑡(𝑎), 𝑎𝑛𝑡𝑖(𝑎)〉 is a neutrosophic triplet,  
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and 𝑛 ≥ 2, then: 

〈𝑎𝑛, 𝑛𝑒𝑢𝑡(𝑎𝑛), 𝑎𝑛𝑡𝑖(𝑎𝑛)〉  

is also a neutrosophic triplet, where  

𝑎𝑛 = 𝑎 ∗ 𝑎 ∗ …∗ 𝑎⏟        
𝑛 𝑡𝑖𝑚𝑒𝑠

. 

Proof 

In the previous theorem we just set  

𝑎1 = 𝑎2 = ⋯ = 𝑎𝑛. 

VII.3.16. Theorem 6 

{Proposition 3.18 from [1]} 

Let (N,*) be a neutrosophic triplet group. A 

subset H of N is a neutrosophic triplet subgroup 

of N if and only if: 

For any a, b ∈ H, a*b ∈ H; 

And for each a ∈ H, the exist neut(a) ∈ H and 

anti(a) ∈ H. 

Reference 

1. Florentin Smarandache, Mumtaz Ali, Neutrosophic 

Triplet Group, Neural Computing and Appl., Springer, 

1-7, 2016; 

https://link.springer.com/article/10.1007/s00521-016-

2535-x; DOI: 10.1007/s00521-016-2535-x. 

  

https://link.springer.com/article/10.1007/s00521-016-2535-x
https://link.springer.com/article/10.1007/s00521-016-2535-x
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VII.4. Neutrosophic Triplet Group vs. 

Generalized Group. 

The distinctions between Molaei’s [7] 

Generalized Group (GG) and Neutrosophic Triplet 

Group (NTG) is that in NTG for each x there may 

exist more neut(x)'s and/or more anti(x)'s, while in 

the GG for each x there is only one neutral and 

only one inverse for each x. 

Another distinction is that a commutative GG is 

a commutative classical group [i.e. the 

commutative GG has the same neutral for all of its 

elements – as in the classical group], making the 

GG less interesting, while a commutative NTG is 

not reduced to a classical group. 

For example: 

The neutrosophic triplet strong set (N, *),  

N = {a, b} defined by: 

*  a  b  

a  a  b 

b  b  b 
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is a commutative neutrosophic triplet strong 

group, with neutrosophic triplets <a,a,a> and 

<b,b,b>, but their neutrals are different: 

neut(a) = a ≠ b = neut(b), 

therefore (N, *) is not a classical group: since it 

does not have a unitary element, nor inverse 

elements. 

Similarity between the non-commutative GG 

and the NTG is that the neutral is different from 

an element to another, unlike in the classical 

group where there is a single neutral, the same, 

for all elements x into the classical group. 

VII.4.1. Example  

Below, an example of Neutrosophic Triplet 

Strong Set (not necessarily group, since the law * 

is non-associative). Let the set L = {a, b, c, d}, 

endowed with the law * defined according to the 

Cayley Table below: 

 

*     a    b    c    d 

a     a    a     b    b 

b     a    d    b    c 
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c     b    b    c    d 

d     b    c    d    c 

with the following neutrosophic triplets: 

<a, a, a>, <a, b, c>, <a, b, d> {therefore "a" has 2 

neutrals: a, b; and 3 anti's: a, c, d}; 

<b, c, d>; 

<c, c, c>; 

<d, c, b>, <d, c, d> {therefore "d" has 2 anti's}. 

VII.4.2. Example  

Another example, of Neutrosophic triplet Weak 

Set, where the law is associative and commutative, 

but an element x has many anti(x)'s.  

In Z10 = {0, 1, 2, ..., 9}, with the classical 

multiplication modulo 10 (*), one has: 

<0, 0, 0>, <0, 0, 1>, <0, 0, 2>, ..., <0, 0, 9> 

so for 0 one has: 

neut(0) = 0, but ten anti(0)’s = 0, 1, 2, ..., 9; 

<2, 6, 3>, <2, 6, 8>; so two anti(2)'s = 3, 8; 

<4, 6, 4>, <4, 6, 9>; so two anti(4)'s = 4, 9; 

<5, 5, 1>, <5, 5, 3>, <5, 5, 5>, <5, 5, 7>, <5, 5, 

9>, so four anti(5)'s = 1, 3, 5, 7, 9; 

<6, 6, 1>, <6, 6, 6>, so two anti(6)'s = 1, 6; 

<8, 6, 2>, <8, 6, 7>, so two anti(8)'s = 2, 7. 
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Reference: 

[1] Molaei M.R. (1999). Generalized groups. Bul. Inst. 

Politehn. Iasi, Sect I 45(49): 21–24.  
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VII.5. Neutrosophic Triplet Multiple 

Order
*

 

In general, an element a may have many 

neut(a)’s. So, when one defines the neutrosophic 

triplet order of a, denoted as nto(a), this is defined 

with respect to a specific neut(a).  

Therefore, let’s say that neut(a) = {b1, b2}.  

Then, the neutrosophic triplet order of a with 

respect to neut(a) = b1 may be n1, which means that 

n1 is the smallest positive integer ≥ 1 such that  

a
n1

 = b1;  

while the neutrosophic triplet order of a with 

respect to neut(a) = b2 may be n2, which means that 

n2 is the smallest positive integer ≥ 1 such that  

a
n2

 = b2;  

with n1 in general different from n2.  

This definition is an improvement of the 

Definition 3.19, from [1].  

 

                                           

*

 An answer to J. Kim, K. Hur, P.K. Lim, J.G. Lee. In 

collaboration with Mumtaz Ali. 
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CHAPTER VIII 

VIII.1. Neutrosophic Triplet Ring
*

 

VIII.1.1. Definition of Neutrosophic Triplet 

Ring 

The Neutrosophic Triplet Ring (NTR) is a set 

endowed with two binary laws (M, *, #), such that: 

a) (M, *) is a commutative neutrosophic triplet 

group; which means that: 

- M is a strong set of neutrosophic triplets with 

respect to the law * (i.e. if x belongs to M, then 

neut(x) and anti(x), defined with respect to the law 

*, also belong to M); 

- the law ∗  is well-defined, associative, and 

commutative on M (as in the classical sense); 

b) (M, #) is a set such that the law # on M is well-

defined and associative (as in the classical sense); 

c) the law # is distributive with respect to the 

law ∗ (as in the classical sense). 

 

 

                                           

*

 In collaboration with Mumtaz Ali. 
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Remarks 

a) The Neutrosophic Triplet Ring is defined on 

the steps of the classical ring, the only two 

distinctions are that: 

- the classical unit element with respect to the 

law ∗ is replaced by neut(x) with respect to the law 

∗ for each x in M into the NTR; 

- in the same way, the classical inverse element 

of an element x in M, with respect to the law ∗, is 

replaced by anti(x) with respect to the law ∗ in M. 

b) A Neutrosophic Triplet Ring, in general, is 

different from a classical ring. 
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VIII.2. Hybrid Neutrosophic Triplet Ring 

VIII.2.1. Definition  

The Hybrid Neutrosophic Triplet Ring of First 

Type (HNTR1) is a set endowed with two binary 

laws (𝑀,∗, #), such that: 

a) (𝑀,∗) is a commutative neutrosophic triplet 

group; which means that: 

- M is a strong set of neutrosophic triplets with 

respect to the law ∗ (i.e. if x belongs to M, then 

neut(x) and anti(x), defined with respect to the law 

∗, also belong to M); 

- the law ∗  is well-defined, associative, and 

commutative on M (as in the classical sense); 

b) (𝑀, #)  is a neutrosophic triplet strong set 

with respect to the law # (i.e. if x belongs to M, 

then neut(x) and anti(x), defined with respect to 

the law #, also belong to M);  

- the law # is well-defined and non-associative 

on M (as in the classical sense); 

c) the law # is distributive with respect to the 

law ∗ (as in the classical sense). 
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Remarks 

a) A Hybrid Neutrosophic Triplet Ring of First 

Type (HNTR1) is a neutrosophic triplet field (𝐹,∗, #) 

from which there has been removed the 

associativity of the second law #. 

b) Or, Hybrid Neutrosophic Triplet Ring of First 

(HNTR1) is a set (𝐹,∗, #) , such that (𝐹,∗)  is a 

commutative neutrosophic triplet group, and 

(𝐹, #) is a neutrosophic triplet loop, and the law # 

is distributive with respect to the law ∗ (as in the 

classical sense). 
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VIII.3. Hybrid Neutrosophic Triplet Ring 

of Second Type 

VIII.3.1. Definition  

The Hybrid Neutrosophic Triplet Ring of 

Second Type (HNTR2) is a set endowed with two 

binary laws (𝑀,∗, #), such that: 

a) (𝑀,∗) is a commutative neutrosophic triplet 

group; which means that: 

- M is a strong set of neutrosophic triplets with 

respect to the law ∗ (i.e. if x belongs to M, then 

neut(x) and anti(x), defined with respect to the law 

∗, also belong to M); 

- the law ∗  is well-defined, associative, and 

commutative on M (as in the classical sense); 

b) (𝑀, #) is a neutrosophic triplet weak set with 

respect to the law # { i.e. if x belongs to M, then 

there exist a neutrosophic triplet in M with respect 

to the law #, <y, neut(y) and anti(y), such that x = 

y or x = neut(y) or x = anti(y) };  

- the law # is well-defined and associative on M 

(as in the classical sense); 
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c) the law # is distributive with respect to the 

law ∗ (as in the classical sense). 

Remarks 

a) A Hybrid Neutrosophic Triplet Ring of Second 

Type (HNTR2) is a neutrosophic triplet field (𝐹,∗, #) 

from which there has been removed the existence 

of neutrals and opposites with respect to the 

second law #. 

b) Or, Hybrid Neutrosophic Triplet Ring of 

Second Type (HNTR2) is a set (𝐹,∗, #), such that 

 (𝐹,∗)  is a commutative neutrosophic triplet 

stromg group, and (𝐹, #) is a neutrosophic triplet 

weak group, and the law #  is distributive with 

respect to the law ∗ (as in the classical sense). 
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VIII.4. Neutrosophic Triplet Field
*

 

VIII.4.1. Definition  

Neutrosophic Triplet Field (NTF) is a set 

endowed with two binary laws (M, *, #), such that: 

a) (M, *) is a commutative neutrosophic triplet 

group; which means that: 

- M is a strong set of neutrosophic triplets with 

respect to the law * (i.e. if x belongs to M, then 

neut(x) and anti(x), defined with respect to the law 

*, also both belong to M); 

- the law * is well-defined, associative, and 

commutative on M (as in the classical sense); 

b) (M, #) is a neutrosophic triplet strong group; 

which means that: 

- M is a strong set of neutrosophic triplets with 

respect to the law # (i.e. if x belongs to M, then 

neut(x) and anti(x), defined with respect to the law 

#, also both belong to M); 

- the law # is well-defined and associative on M 

(as in the classical sense); 

                                           

*

 In collaboration with Mumtaz Ali. 
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c) the law # is distributive with respect to the 

law * (as in the classical sense). 

Remarks 

1) The Neutrosophic Triplet Field is defined on 

the steps of the classical field, the only four 

distinctions are that: 

- the classical unit element with respect to the 

first law * is replaced by neut(x) with respect to 

the first law * for each x in M into the NTF; 

- in the same way, the classical inverse element 

of an element x in M, with respect to the first law 

*, is replaced by anti(x) with respect to the first 

law * in M; 

- and the classical unit element with respect to 

the second law # is replaced by neut(x) with 

respect to the second law # for each x in M into 

the NTF; 

- in the same way, the classical inverse element 

of an element x in M, with respect to the second 

law #, is replaced by anti(x) with respect to the 

second law # in M; 

2) A Neutrosophic Triplet Field, in general, is 

different from a classical field. 
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VIII.4.2. Example of Neutrosophic Triplet Ring 

which is not a Neutrosophic Triplet Field. 

Let (𝑁,∗) = {𝑎, 𝑏, 𝑐}, defined as in the table below: 

* a b c 

a b c a 

b c a b 

c a b c 

Neutrosophic Triplets are: 

(a, c, b) since  ac = ca = a 

  and  ab = ba = b 

also  bc = cb = b 

(b, c, a) since bc = cb = b 

and ab = ba = c 

also ac = ca = c 

(c, c, c) since cc = c 

Let (𝑁, #) = {𝑎, 𝑏, 𝑐} , defined as in the table 

below: 

# a b c 

a c a c 

b a a b 

c c b c 
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(𝑎, 𝑏, ∄), 

(𝑏, 𝑐, ∄), 

(𝑐, 𝑎, ∄). 

For 𝑎 ∈ (𝑁, #), there is 𝑛𝑒𝑢𝑡(𝑎) = 𝑏, but there is 

no 𝑎𝑛𝑡𝑖(𝑎). 

For 𝑏 ∈ (𝑁, #), there is 𝑛𝑒𝑢𝑡(𝑏) = 𝑐, but there is no 

𝑎𝑛𝑡𝑖(𝑏). 

For 𝑐 ∈ (𝑁, #), there is 𝑛𝑒𝑢𝑡(𝑐) = 𝑎, but there is no 

𝑎𝑛𝑡𝑖(𝑐). 

Hence (𝑁,∗, #) is a neutrosophic triplet ring, but 

it is not a neutrosophic triplet field. 
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VIII.5. Hybrid Neutrosophic Triplet 

Field
*

 

VIII.5.1. Hybrid Neutrosophic Triplet Field of 

Type 1. 

It is a set F endowed with two laws * and # such 

that: 

1: (F, *) is a commutative neutrosophic triplet 

strong group; 

2: (F, #) is a classical group; 

3: The law # is distributive over the law *. 

  
VIII.5.2. Hybrid Neutrosophic Triplet Field of 

Type 2. 

It is a set F endowed with two laws * and # such 

that: 

1: (F, *) is a classical commutative group; 

2: (F, #) is a neutrosophic triplet strong group;  

3: The law # is distributive over the law *. 

 

 

                                           

* In collaboration with Mumtaz Ali. 
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VIII.6. Neutrosophic Triplet Loop 

We define the Neutrosophic Triplet Loop in the 

following way: 

A set (𝐿,∗) such that: 

1) the law * is well defined; 

2) for each element a in L, there exists a neut(a) 

in L, such that: 

𝑎 ∗ 𝑛𝑒𝑢𝑡(𝑎)  =  𝑛𝑒𝑢𝑡(𝑎) ∗ 𝑎 =  𝑎;   (1) 

3) for each element a in L, there exists an anti(a) 

in L, such that: 

𝑎 ∗ 𝑎𝑛𝑡𝑖(𝑎)  =  𝑎𝑛𝑡𝑖(𝑎) ∗ 𝑎 =  𝑛𝑒𝑢𝑡(𝑎).  (2) 

{The law * may be non-associative.} 

 

Let's see an example. 

In (ℤ10, *), the set of integers modulo 10, where 

for any x, y in ℤ10, 𝑥 ∗ 𝑦 =  2𝑥 +  2𝑦 (𝑚𝑜𝑑 10). 

The law is non-associative, since: 

(𝑥 ∗ 𝑦) ∗ 𝑧 =  𝑥 ∗ (𝑦 ∗ 𝑧)     (3) 

produces: 

(2𝑥 + 2𝑦) ∗ 𝑧 =  𝑥 ∗ (2𝑦 + 2𝑧),    (4) 

or 

4𝑥 + 4𝑦 + 2𝑧 =  2𝑥 + 4𝑦 + 4𝑧,    (5) 
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which in general is false. 

The law * has no unit element e in the classical 

sense, since 

𝑥 ∗ 𝑒 =  2𝑥 + 2𝑒 =  𝑥,    (6) 

or 

2𝑒 =  −𝑥,      (7) 

so e depends on x, which doesn't work. 

One finds the following neutrosophic triplets: 

(0, 0, 0), (0, 0, 5), (2, 4, 0), (2, 4, 5), (4, 8, 0),  

(4, 8, 5), (6, 2, 0), (6, 2, 5), (8, 6, 0), (8, 6, 5). 

Thus, the set: 

L = {0, 2, 4, 5, 6, 8},  

with the non-associative law  

𝑥 ∗ 𝑦 =  2𝑥 +  2𝑦,      (8) 

is a neutrosophic triplet loop. 
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VIII.7. Neutrosophic Triplet Structures 

The neutrosophic triplets and their algebraic 

structures were first time introduced by Florentin 

Smarandache and Mumtaz Ali in 2014 - 2016 [1,2]. 

They are derived from neutrosophy [4], 

founded in 1995, which is a generalization of 

dialectics, and it is a new branch of philosophy 

that studies the origin, nature, and scope of 

neutralities, as well as their interactions with 

different ideational spectra. Neutrosophy is also 

the basis of neutrosophic logic, neutrosophic 

probability, neutrosophic set, neutrosophic stat-

istics, neutrosophic algebraic structures and so 

on. Neutrosophy and its neutrosophic derivatives 

are based on triads of the form (<A>, <neutA>, 

<antiA>), where <A> is an entity, <antiA> is the 

opposite of <A>, while <neutA> is the neutral 

between <A> and <antiA>. 

The set of neutrosophic triplets, embedded 

with a well-defined law * that satisfies some 

axioms, form the neutrosophic triplet algebraic 

structures. 
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The first studied structure was the neutros-

ophic triplet group [1]. The neutrosophic triplet 

algebraic structures follow on the steps of 

classical algebraic structures, with two distinc-

tions: 

- the classical unit element is replaced by the 

neutrosophic neut(a)'s; 

- and the classical inverse element is replaced 

by the neutrosophic anti(a)'s. 
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CHAPTER IX 

IX.1. Neutrosophic Duplets 

The Neutrosophic Duplets and their algebraic 

structures were first introduced by the author in 

[1]. 

IX.1.1. Definition of Neutrosophic Duplet. 

Let 𝒰 be a universe of discourse, and a set  

𝐴 ⊂ 𝒰, endowed with a well-defined law ∗. 

We say that < 𝑎, 𝑛𝑒𝑢𝑡(𝑎) >, where 𝑎, 𝑛𝑒𝑢𝑡(𝑎) ∈ 𝐴 is 

a neutrosophic duplet if: 

1) 𝑛𝑒𝑢𝑡(𝑎) is different from the unit element of 

𝐴 with respect to the law * (if any); 

2) 𝑎 ∗ 𝑛𝑒𝑢𝑡(𝑎) = 𝑛𝑒𝑢𝑡(𝑎) ∗ 𝑎 = 𝑎; 

3) there is no 𝑎𝑛𝑡𝑖(𝑎) ∈ 𝐴 such that  

𝑎 ∗ 𝑎𝑛𝑡𝑖(𝑎) = 𝑎𝑛𝑡𝑖(𝑎) ∗ 𝑎 = 𝑛𝑒𝑢𝑡(𝑎). 

IX.1.2. Example of Neutrosophic Duplets. 

In (ℤ₈,∗) , the set of integers modulo 8; with 

respect to the regular multiplication ∗ one has the 

following neutrosophic duplets: 

< 2, 5 >,< 4, 3 >,< 4, 5 >,< 4, 7 >,< 6, 5 >. 
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Proof 

ℤ₈ = {0, 1, 2, 3, . . . , 7}, with unitary element 1 for 

the multiplication * modulo 8. 

2 ⨯ 5 = 5 ⨯ 2 = 10 = 2 (mod 8); 

so 𝑛𝑒𝑢𝑡(2) = 5 ≠ 1. 

There is no anti(2) ∈ ℤ₈, because:  

2 ⨯ 𝑎𝑛𝑡𝑖(2) = 5 (mod 8), 

or 2𝑦 = 5  (mod 8) by denoting 𝑎𝑛𝑡𝑖(2) = 𝑦 , is 

equivalent to:  

2𝑦 − 5 = ℳ₈ {multiple of 8}, or 2𝑦 − 5 = 8𝑘, where 

𝑘 is an integer, or 

2(𝑦 − 4𝑘) = 5, where both 𝑦, 𝑘 are integers, or:  

even number = odd number, 

which is impossible. 

Therefore, we proved that <2, 5> is a 

neutrosophic duplet.  

Similarly for <4, 5>, <4, 3>, <4, 7>, <6, 5>.  

A counter-example: <0, 0> is not a neutrosophic 

duplet, because it is a neutrosophic triplet:  

<0, 0, 0>, where there exists an 𝑎𝑛𝑡𝑖(0) = 0. 
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IX.2. Neutrosophic Duplet Set and 

Neutrosophic Duplet Structures 

IX.2.1. Definition of Neutrosophic Duplet 

Strong Set 

A Neutrosophic Duplet Strong Set, (𝐷,∗), is a set 

𝐷 , endowed with aa well-defined binary law ∗ , 

such that ∀𝑎 ∈ 𝐷, ∃ neut(a) ∈ 𝐷. 

Therefore, any element a from D forms a 

neutrosophic duplet <a, neut(a)> in D. 

 

IX.2.2. Definition of Neutrosophic Duplet 

Weak Set 

A Neutrosophic Duplet Weak Set, (𝐷,∗), is a set 𝐷, 

endowed with a well-defined binary law ∗, such 

that ∀𝑎 ∈ 𝐷 , there exist a neutrosophic duplet 

〈𝑏, 𝑛𝑒𝑢𝑡(𝑏)〉  such that 〈𝑏, 𝑛𝑒𝑢𝑡(𝑏)〉 ⊆ 𝐷  and 𝑎 = 𝑏  or 

𝑎 = 𝑛𝑒𝑢𝑡(𝑏). 

Therefore, any element from D belongs to at 

least a neutrosophic duplet. 
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IX.2.3. Proposition.

Any neutrosophic duplet strong set is also a 

neutrosophic duplet weak set, but not conversely. 

IX.2.4. Theorem

The richest possible structure  is the Neutrosophic

Duplet Commutative Strong Semigroup with 

Neutrosophic Neutrals, i.e. 

(1) ∀𝑎, 𝑏 ∈ 𝐷, 𝑎 ∗ 𝑏 ∈ 𝐷;

(2) ∀𝑎, 𝑏, 𝑐 ∈ 𝐷, 𝑎 ∗ (𝑏 ∗ 𝑐) = (𝑎 ∗ 𝑏) ∗ 𝑐;

(3) ∀𝑎, 𝑏 ∈ 𝐷, 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎;

(4) ∀𝑎 ∈ 𝐷 , ∃ 𝑛𝑒𝑢𝑡(𝑎) ∈ 𝐷 , such that 𝑎 ∗ 𝑛𝑒𝑢𝑡(𝑎) =

𝑛𝑒𝑢𝑡(𝑎) ∗ 𝑎 = 𝑎;

(5) ∀𝑎 ∈ 𝐷 , ∄ 𝑎𝑛𝑡𝑖(𝑎) ∈ 𝐷 , such that 𝑎 ∗ 𝑎𝑛𝑡𝑖(𝑎) =

𝑎𝑛𝑡𝑖(𝑎) ∗ 𝑎 = 𝑎.

In other words, the Neutrosophic Duplet Strong 

Set can be defined as follows: 

— for any x in D, there is a neut(x) in D, such 

that 

x * neut(x) = neut(x) * x = x, (1) 

— and there is no anti(x) in D for which 

x * anti(x) = neut(x) or anti(x) * x = x. (2) 
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IX.2.5. Example of Neutrosophic Duplet 

Strong Set 

Let ND = {a, b, c} be a set endowed with the law * 

as defined in the below Cayley Table: 

 

* a b c 

a c a c 

b a a b 

c c b b 

 

The law * is well-defined (according to the above 

table), commutative, since the table’s matrix 

 

c a c 

a a b 

c b b 

 

is symmetric with respect to its main diagonal, 

but it is not associative since, for example: 

(a*b)*c = a*(b*c)     (3) 

produces a*c = a* b or c = a, which is false. 

The neutrosophic duplets are: <a, b>, <b, c>, and 

<c, a>. 
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For each element x in ND there exists a 

neutrosophic neutral and no neutrosophic 

inverse: 

neut(a) = b, and anti(a) does not exist since  

a*x ≠ b for any x ∈ ND;  

neut(b) = c, and anti(b) does not exist since  

b*x ≠ c for any x ∈ ND;  

neut(c) = a, and anti(c) does not exist since  

c*x ≠ a for any x ∈ ND. 

The neutrosophic duplets have the general 

form <x, neut(x), no anti(x)> with respect to the 

neutrosophic triplet form and with neutrosophy, 

and as applications of neutrosophic duplets there 

are items x that have no opposites. For example, 

several species of animals and plants in Galapagos 

Archipelago that have no predators. 

 

Further: we can develop a new type of 

structures: Neutrosophic Duplet Structures, which 

are structures defined on the strong or weak sets 

of neutrosophic duplets. 
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CHAPTER X 

X.1. Neutrosophic Multiset  

Let 𝒰 be a universe of discourse, and 𝑀 ⊂ 𝒰. 

X.1.1. Definition  

A Neutrosophic Multiset 𝑀 is a neutrosophic set 

where one or more elements are repeated with the 

same neutrosophic components, or with different 

neutrosophic components. 

X.1.2. Examples 

𝐴 = {𝑎(0.6, 0.3, 0.1), 𝑏(0.8, 0.4, 0.2), 𝑐(0.5, 0.1, 0.3)} 

is a neutrosophic set (not multiset).  

But 

𝐵 = {𝑎(0.6, 0.3, 0.1), 𝑎(0.6, 0.3, 0.1), 𝑏(0.8, 0.4, 0.2)} 

is a neutrosophic multiset, since the element a is 

repeated; we say that the element a has 

neutrosophic multiplicity 2 with the same 

neutrosophic components. 

While 

𝐶 = {
𝑎(0.6, 0.3, 0.1), 𝑎(0.7, 0.1, 0.2),
𝑎(0.5, 0.4, 0.3), 𝑐(0.5, 0.1, 0.3)

} 

is also a neutrosophic multiset, since the element 

a is repeated (it has neutrosophic multiplicity 3), 
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but with different neutrosophic components, 

since, for example, during the time, the 

neutrosophic membership of an element may 

change. 

If the element 𝑎 is repeated 𝑘 times keeping the 

same neutrosophic components (𝑡𝑎 , 𝑖𝑎, 𝑓𝑎), we say 

that a has multiplicity 𝑘. 

But if there is some change in the neutrosophic 

components of a, we say that a has the 

neutrosophic multiplicity 𝑘. 

Therefore, we define in general the Neutros-

ophic Multiplicity Function: 

𝑛𝑚:𝒰 → ℕ, 

where ℕ = {1, 2, 3, … ,∞}, 

and for any 𝑎 ∈ 𝐴 one has    (1) 

𝑛𝑚(𝑎)

= {(𝑘1, 〈𝑡1, 𝑖1, 𝑓1〉), (𝑘2, 〈𝑡2, 𝑖2, 𝑓2〉), … , (𝑘𝑗 , 〈𝑡𝑗 , 𝑖𝑗 , 𝑓𝑗〉), … } 

which means that a is repeated 𝑘1 times with the 

neutrosophic components 〈𝑡1, 𝑖1, 𝑓1〉; a is repeated 

𝑘2  times with the neutrosophic components 

〈𝑡2, 𝑖2, 𝑓2〉 , ..., a is repeated 𝑘𝑗  times with the 

neutrosophic components 〈𝑡𝑗 , 𝑖𝑗 , 𝑓𝑗〉, ..., and so on. 
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Of course, all 𝑘1, 𝑘2, … , 𝑘𝑗 , … ∈ ℕ , and 〈𝑡𝑝, 𝑖𝑝, 𝑓𝑝〉 ≠

〈𝑡𝑟 , 𝑖𝑟 , 𝑓𝑟〉, for 𝑝 ≠ 𝑟, with 𝑝, 𝑟 ∈ ℕ. 

Also, all neutrosophic components are with 

respect to the set 𝐴. Then, a neutrosophic multiset 

A can be written as: 

(𝐴, 𝑛𝑚(𝑎)) 

or {(𝑎, 𝑛𝑚(𝑎), for 𝑎 ∈ 𝐴)}. 

X.1.3. Examples of operations with 

neutrosophic multisets.  

Let's have: 

𝐴 = {5〈0.6,0.3,0.2〉, 5〈0.6,0.3,0.2〉, 5〈0.4,0.1,0.3〉, 6〈0.2,0.7,0.0〉} 

𝐵 = {5〈0.6,0.3,0.2〉, 5〈0.8,0.1,0.1〉, 6〈0.9,0.0,0.0〉} 

𝐶 = {5〈0.6,0.3,0.2〉, 5〈0.6,0.3,0.2〉}. 

Then: 

X.1.3.1. Intersection of Neutrosophic 

Multisets. 

𝐴 ∩ 𝐵 = {5〈0.6,0.3,0.2〉}. 

X.1.3.2. Union of Neutrosophic Multisets. 

𝐴 ∪ 𝐵 = {
5〈0.6,0.3,0.2〉, 5〈0.6,0.3,0.2〉, 5〈0.4,0.1,0.3〉, 5〈0.8,0.1,0.1〉,

  6〈0.2,0.7,0.0〉, 6〈0.9,0.0,0.0〉
}. 

X.1.3.3. Inclusion of Neutrosophic Multisets. 

𝐶 ⊂ 𝐴, but 𝐶 ⊄ 𝐵 
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X.1.3.4. Cardinality of Neutrosophic Multisets. 

𝐶𝑎𝑟𝑑(𝐴) = 4 , and 𝐶𝑎𝑟𝑑(𝐵) = 3, where 𝐶𝑎𝑟𝑑(∙) 

means cardinal. 

X.1.3.5. Cartesian Product of Neutrosophic 

Multisets. 

𝐵 × 𝐶

=

{
 
 

 
 (5〈0.6,0.3,0.2〉, 5〈0.6,0.3,0.2〉), (5〈0.6,0.3,0.2〉, 5〈0.6,0.3,0.2〉),

(5〈0.8,0.1,0.1〉, 5〈0.6,0.3,0.2〉), (5〈0.8,0.1,0.1〉, 5〈0.6,0.3,0.2〉),

(6〈0.9,0.0,0.0〉, 5〈0.6,0.3,0.2〉), (6〈0.9,0.0,0.0〉, 5〈0.6,0.3,0.2〉)
 }

 
 

 
 

. 

X.1.3.6. Difference of Neutrosophic Multisets. 

𝐴 − 𝐵 = {5〈0.6,0.3,0.2〉, 5〈0.4,0.1,0.3〉, 6〈0.2,0.7,0.0〉} 

𝐴 − 𝐶 = {5〈0.4,0.1,0.3〉, 6〈0.2,0.7,0.0〉} 

𝐶 − 𝐵 = {5〈0.6,0.3,0.2〉} 

X.1.3.7. Sum of Neutrosophic Multisets. 

𝐴⨄𝐵

= {
5〈0.6,0.3,0.2〉, 5〈0.6,0.3,0.2〉, 5〈0.6,0.3,0.2〉, 5〈0.4,0.1,0.3〉, 5〈0.8,0.1,0.1〉,

  6〈0.2,0.7,0.9〉, 6〈0.9,0.0,0.0〉
} 

𝐵⨄𝐵 = {
5〈0.6,0.3,0.2〉, 5〈0.6,0.3,0.2〉, 5〈0.8,0.1,0.1〉, 5〈0.8,0.1,0.1〉,

 6〈0.9,0.0,0.0〉, 6〈0.9,0.0,0.0〉
}. 

Let's compute the neutrosophic multiplicity 

function, with respect to several of the previous 

neutrosophic multisets. 

𝑛𝑚𝐴: 𝐴 → ℕ 
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𝑛𝑚𝐴(5) = {(2, 〈0.6, 0.3,0.2〉), (1, 〈0.4, 0.1, 0.3〉)} 

𝑛𝑚𝐴(6) = {(1, 〈0.2, 0.7, 0.0〉)}. 

𝑛𝑚𝐵: 𝐵 → ℕ 

𝑛𝑚𝐵(5) = {(1, 〈0.6, 0.3,0.2〉), (1, 〈0.8, 0.1, 0.1〉)} 

𝑛𝐵(6) = {(1, 〈0.2, 0.7, 0.0〉)}. 

𝑛𝑚𝐶: 𝐶 → ℕ 

𝑛𝑚𝐶(5) = {(2, 〈0.6, 0.3,0.2〉)} 
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X.2. Neutrosophic Multiset Applied in 

Physical Processes 

Let U be a universe of discourse and a set M ⊆ 

U. The Neutrosophic Multiset M is defined as a 

neutrosophic set with the property that one or 

more elements are repeated either with the same 

neutrosophic components, or with different 

neutrosophic components. 

For example, Q = {a(0.6,0.3,0.2), a(0.6,0.3,0.2), 

a(0.5,0.4,0.1), b(0.7,0.1,0.1)} is a neutrosophic 

multiset. 

The Neutrosophic Multiplicity Function is 

defined as: 

𝑛𝑚: 𝑈  𝑁 =  {1, 2, 3, … }, 

and for each x∈M one has  

𝑛𝑚(𝑥)  =  {(𝑘1, < 𝑡1, 𝑖1, 𝑓1 >, ),  

(𝑘2, < 𝑡2, 𝑖2, 𝑓2 >),… , (𝑘𝑗 , < 𝑡𝑗 , 𝑖𝑗 , 𝑓𝑗 >),… }, (1) 

which means that in the set M the element x is 

repeated k1 times with the neutrosophic 

components <t1,i1,f1>, and k2 times with the 

neutrosophic components <t2,i2,f2>), …, kj times 
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with the neutrosophic components <tj,ij,fj>), … 

and so on. Of course, <tp,ip,fp>) ≠ <tr,ir,fr> for p ≠ r. 

For example, with respect to the above neutros-

ophic multiset Q,  

nm(a) = {(2, <0.6,0.3,0.2>), (1, <0.5,0.4,0.1>)}. 

Neutrosophic multiset is used in time series, 

and in representing instances of the physical 

process at different times, since its neutrosophic 

components change in time. 
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X.3. Neutrosophic Complex Multiset  

Let 𝒰 be a universe of discourse, and 𝒮 ⊂ 𝒰. 

A Neutrosophic Complex Multiset 𝒮 is a neutros-

ophic complex set, which has one or more 

elements that repeat either with the same complex 

neutrosophic components, or with different other 

complex neutrosophic components. 

Example of Neutrosophic Complex Set. 

𝐵1 = {
𝑎(0.3𝑒𝑗(0.2), 0.1𝑒𝑗(0.1), 0.8𝑒𝑗(0.5)),

𝑏(0.5𝑒𝑗(0.4), 0.2𝑒𝑗(0.3), 0.1𝑒𝑗(0.2))
} 

is a neutrosophic complex set. 

Examples of Neutrosophic Complex Multiset. 

𝐵2 = {
𝑎(0.3𝑒𝑗(0.2), 0.1𝑒𝑗(0.1), 0.8𝑒𝑗(0.5)),

𝑎(0.3𝑒𝑗(0.2), 0.1𝑒𝑗(0.1), 0.8𝑒𝑗(0.5))
} 

is a neutrosophic complex multiset because the 

element a repeats with the same neutrosophic 

complex components. 

𝐵3 = {

𝑎(0.3𝑒𝑗(0.2), 0.1𝑒𝑗(0.1), 0.8𝑒𝑗(0.5)),

  𝑎(0.4𝑒𝑗(0.3), 0.2𝑒𝑗(0.1), 0.7𝑒𝑗(0.4)),

𝑏(0.5𝑒𝑗(0.4), 0.2𝑒𝑗(0.3), 0.1𝑒𝑗(0.2))

}. 
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is a neutrosophic complex multiset because the 

element a repeats, but with different neutros-

ophic complex components. 

𝐵4 =

{
 
 

 
 
𝑎(0.3𝑒𝑗(0.2), 0.1𝑒𝑗(0.1), 0.8𝑒𝑗(0.5)),

𝑎(0.3𝑒𝑗(0.2), 0.1𝑒𝑗(0.1), 0.8𝑒𝑗(0.5)),

 𝑎(0.7𝑒𝑗(0.6), 0.2𝑒𝑗(0.1), 0.1𝑒𝑗(0.0)),

𝑏(0.7𝑒𝑗(0.2), 0.0𝑒𝑗(0.3), 0.4𝑒𝑗(0.2)) }
 
 

 
 

. 

is a neutrosophic complex multiset because the 

element "a" repeats once with the same neutros-

ophic components, and afterwards with different 

neutrosophic components. 

Similarly, we define the Neutrosophic Complex 

Multiplicity Function: 

𝑛𝑐𝑚:𝒰 → 𝑁 = {1, 2, 3, … } 

for 𝑎 ∈ 𝒮 one has 

𝑛𝑐𝑚(𝑎): {(𝑘1, < 𝑡1𝑒𝑗𝛼1 , 𝑖1𝑒𝑗𝛽1 , 𝑓1𝑒𝑗𝛾1 >), (𝑘2,

< 𝑡2𝑒𝑗𝛼2 , 𝑖2𝑒𝑗𝛽2 , 𝑓2𝑒𝑗𝛾2 >),… , (𝑘𝑛,

< 𝑡𝑛𝑒𝑗𝛼𝑛 , 𝑖𝑛𝑒𝑗𝛽𝑛 , 𝑓𝑛𝑒𝑗𝛾𝑛 >) , … }. 

Whence, a neutrosophic complex multiset 𝒮 can 

be written as (𝒮, 𝑛𝑐𝑚(𝑎)) or {(𝑎, 𝑛𝑐𝑚(𝑎)), for 𝑎 ∈ 𝒮 }. 
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CHAPTER XI 

XI.1. Classical Logic and Neutrosophic 

Logic. Answers to K. Georgiev. 

Abstract. 

In this paper, we make distinctions between 

Classical Logic (where the propositions are 100% 

true, or 100% false) and the Neutrosophic Logic 

(where one deals with partially true, partially 

indeterminate and partially false propositions) in 

order to respond to K. Georgiev [1]’s criticism. We 

recall that if an axiom is true in a classical logic 

system, it is not necessarily that the axiom be 

valid in a modern (fuzzy, intuitionistic fuzzy, 

neutrosophic etc.) logic system. 

XI.1.1. Single Valued Neutrosophic Set. 

We read with interest the paper [1] by K. 

Georgiev. The author asserts that he proposes “a 

general simplification of the Neutrosophic Sets a 

subclass of theirs, comprising of elements of R
3

”, 

but this was actually done before, since the first 

world publication on neutrosophics [2].  
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The simplification that Georgiev considers, is 

called single-valued neutrosophic set. 

The single valued neutrosophic set was 

introduced for the first time by us [Smarandache, 

[2], 1998]. 

Let 𝑛 =  𝑡 +  𝑖 +  𝑓.    (1) 

In Section 3.7, “Generalizations and Com-

ments”, [pp. 129, last edition online], from this 

book [2], we wrote: 

“Hence, the neutrosophic set generalizes: 

- the intuitionistic set, which supports 

incomplete set theories (for 0 < n < 1; 0 ≤ t, i, f ≤ 

1) and incomplete known elements belonging to 

a set; 

- the fuzzy set (for n = 1 and i = 0, and 0 ≤ t, 

i, f ≤ 1); 

- the classical set (for n = 1 and i = 0, with t, f 

either 0 or 1); 

- the paraconsistent set (for n > 1, with all t, i, 

f < 1); 

- the faillibilist set (i > 0); 

- the dialetheist set, a set M whose at least one 

of its elements also belongs to its complement 
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C(M); thus, the intersection of some disjoint sets 

is not empty; 

- the paradoxist set (t = f = 1); 

- the pseudoparadoxist set (0 < i < 1; t =1 and 

f > 0 or t > 0 and f = 1); 

- the tautological set (i, f < 0).” 

It is clear that we have worked with single-

valued neutrosophic sets, we mean that t, i, f were 

explicitly real numbers from [0, 1]. 

See also (Smarandache, [3], 2002, p. 426). 

More generally, we have considered that: t 

varies in the set T, i varies in the set I, and f varies 

in the set F, but in the same way taking crisp 

numbers n = t + i + f, where all t, i, f are single 

(crisp) real numbers in the interval [0, 1]. See [2] 

pp. 123-124, and [4] pp. 418-419. 

Similarly in The Free Online Dictionary of 

Computing [FOLDOC], 1998, updated in 1999, 

edited by Denis Howe [3].  

Unfortunately, Dr. Georgiev in 2005 took into 

consideration only the neutrosophic publication 

[6] from year 2003, and he was not aware of 
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previous publications [2, 3, 4] on the neutros-

ophics from the years 1998 - 2002. 

The misunderstanding was propagated to other 

authors on neutrosophic set and logic, which have 

considered that Haibin Wang, Florentin Smaran-

dache, Yanqing Zhang, Rajshekhar Sunderraman 

(2010, [5]) have defined the single valued 

neutrosophic set. 

XI.1.2. Standard and Non-Standard Real 

Subsets. 

Section 3 of paper [1] by Georgiev is called 

“Reducing Neutrosophic Sets to Subsets of R
3

”. But 

this was done already since 1998. In our Section 

0.2, [2], p. 12, we wrote: 

 “Let T, I, F be standard or non-standard real 

subsets…”. 

“Standard real subsets”, which we talked about 

above, mean just the classical real subsets. 

We have taken into consideration the non-

standard analysis in our attempt to be able to 

describe the absolute truth as well [i.e. truth in all 

possible worlds, according to Leibniz’s denom-

ination, whose neutrosophic truth value is equal 
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to 1
+

= 1+ε, where ε is a tiny number > 0 ], and 

relative truth [i.e. truth in at least one world, 

whose truth value is equal to 1]. Similarly for 

absolute / relative indeterminacy and absolute / 

relative falsehood. 

We tried to get a definition as general as 

possible for the neutrosophic logic (and 

neutrosophic set respectively), including the 

propositions from a philosophical point of 

[absolute or relative] view. 

Of course, in technical and scientific 

applications we do not consider non-standard 

things, we take the classical unit interval [0, 1] 

only, while T, I, F are classical real subsets of it. 

In Section 0.2, Definition of Neutrosophic 

Components [2], 1998, p. 12, we wrote: 

“The sets T, I, F are not necessarily intervals, 

but may be any real sub-unitary subsets: 

discrete or continuous; single-element, finite, or 

(countable or uncountable) infinite; union or 

intersection of various subsets; etc. 

They may also overlap. The real subsets could 

represent the relative errors in determining t, i, 
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f (in the case when the subsets T, I, F are reduced 

to points).” 

So, we have mentioned many possible real 

values for T, I, F. Such as: each of T, I, F can be 

“single-element” {as Georgiev proposes in paper 

[1]}, “interval” {developed later in [7], 2005, and 

called interval-neutrosophic set and interval-

neutrosophic logic respectively}, “discrete” 

[called hesitant neutrosophic set and hesitant 

neutrosophic logic respectively] etc. 

XI.1.3. Degrees of Membership > 1 or < 0 

of the Elements. 

In Section 4 of paper [1], Georgiev says that: 

“Smarandache has adopted Leibniz’s ‘worlds’ in 

his work, but it seems to be more like a game of 

words.” 

As we have explained above, “Leibniz’s worlds” 

are not simply a game of words, but they help 

making a distinction in philosophy between 

absolute and relative truth / indeterminacy / 

falsehood respectively. {In technics and science 

yes they are not needed.} 
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Besides absolute and relative, the non-standard 

values or hyper monads (
-

0 and 1
+

) have permitted 

us to introduce, study and show applications of 

the neutrosophic overset (when there are 

elements into a set whose real (standard) degree 

of membership is > 1), neutrosophic underset 

(when there are elements into a set whose real 

degree of membership is < 0), and neutrosophic 

offset (when there are both elements whose real 

degree of membership is > 1 and other elements 

whose real degree of membership is < 0). Check 

the references [8-11]. 

XI.1.4. Neutrosophic Logic Negations. 

In Section 4 of the same paper [1], Georgiev 

asserts that “according to the neutrosophic 

operations we have 

A A        (2) 

and since  

A A        (3) 

is just the assumption that has brought 

intuitionism to life, the neutrosophic logic could 

not be a generalization of any Intuitionistic logic.” 
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First of all, Georgiev’s above assertation is 

partially true, partially false, and partially 

indeterminate (as in the neutrosophic logic). 

In neutrosophic logic, there is a class of 

neutrosophic negation operators, not only one. 

For some neutrosophic negations the equality (2) 

holds, for others it is invalid, or indeterminate. 

Let A(t, i, f) be a neutrosophic proposition A 

whose neutrosophic truth value is (t, i, f), where t, 

i, f are single real numbers of [0, 1]. We consider 

the easiest case. 

a) For examples, if the neutrosophic truth 

value of A , the negation of A, is defined 

as: 

(1-t, 1-i, 1-f) or (f, i, t) or (f, 1-i, t)  (4) 

then the equality (2) is valid. 

b) Other examples, if the neutrosophic 

truth value of A , the negation of A, is 

defined as: 

(f, (t+i+f)/3, t) or (1-t, (t+i+f)/3, 1-f)  (5) 

then the equality (2) is invalid, as in intuitionistic 

fuzzy logic, and as a consequence the inequality 

(3) holds. 
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c) For the future new to be designed / 

invented neutrosophic negations 

(needed / adjusted for new applications) 

we do not know {so (2) has also a 

percentage of indeterminacy}. 

XI.1.5. Degree of Dependence and 

Independence between (Sub)Components. 

In Section 4 of [1], Georgiev also asserts that 

“The neutrosophic logic is not capable of 

maintaining modal operators, since there is no 

normalization rule for the components T, I, F”. 

This is also partially true, and partially false. 

In our paper [12] about the dependence / 

independence between components, we wrote 

that: 

“For single valued neutrosophic logic, the sum of 

the components t+i+f is: 

0 ≤ t+i+f ≤ 3 when all three components are 

100% independent; 

0 ≤ t+i+f ≤ 2 when two components are 100% 

dependent, while the third one is 100% 

independent from them; 
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0 ≤ t+i+f ≤ 1 when all three components are 

100% dependent. 

When three or two of the components t, i, f are 

100% independent, one leaves room for 

incomplete information (therefore the sum t+i +f 

< 1), paraconsistent and contradictory infor-

mation (t+i+f > 1), or complete information 

(t+i+f = 1).  

If all three components t, i, f are 100% 

dependent, then similarly one leaves room for 

incomplete information (t+i+f < 1), or complete 

information (t+i+f = 1).”  

Therefore, for complete information the 

normalization to 1, 2, 3 or so respectively {see our 

paper [12] for the case when one has degrees of 

dependence between components or between 

subcomponents (for refined neutrosophic set 

respectively) which are different from 100% or 0%} 

is done. 

But, for incomplete information and para-

consistent information, in general, the norm-

alization is not done. 
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Neutrosophic logic is capable of maintaining 

modal operators. The connection between Neut-

rosophic Logic and Modal Logic will be shown in a 

separate paper, since it is much longer, called 

Neutrosophic Modal Logic (under press). 

XI.1.6. Definition of Neutrosophic Logic. 

In Section 5, paper [1], it is said: “Apparently 

there isn’t a clear definition of truth value of the 

neutrosophic formulas.” The author is right that 

“apparently”, but in reality, the definition of 

neutrosophic logic is very simple and common 

sense: 

In neutrosophic logic a proposition P has a 

degree of truth (T); a degree of indeterminacy (I) 

that means neither true nor false, or both true and 

false, or unknown, indeterminate; and a degree of 

falsehood (F); where T, I, F are subsets (either real 

numbers, or intervals, or any subsets) of the 

interval [0, 1]. 

What is unclear herein? 

In a soccer game, as an easy example, between 

two teams, Bulgaria and Romania, there is a 

degree of truth about Bulgaria winning, degree of 
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indeterminacy (or neutrality) of tie game, and 

degree of falsehood about Bulgaria being 

defeated. 

XI.1.7. Neutrosophic Logical Systems. 

a) Next sentence of Georgiev is “in every 

meaningful logical system if A and B are sets 

(formulas) such that A ⊆ B then B ‘ A, i.e. when B 

is true then A is true.”    (6)  

In other words, when B  A (B implies A), and B 

is true, then A is true.  

This is true for the Boolean logic where one 

deals with 100% truths, but in modern logics we 

work with partial truths.  

If an axiom is true in the classical logic, it does 

not mean that that axiom has to be true in the 

modern logical system. Such counter-example has 

been provided by Georgiev himself, who pointed 

out that the law of double negation {equation (2)}, 

which is valid in the classical logic, is not valid 

any longer in intuitionistic fuzzy logic. 

A similar response we have with respect to his 

above statement on the logical system axiom (6): 

it is partially true, partially false, and partially 
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indeterminate. All depend on the types of chosen 

neutrosophic implication operators. 

In neutrosophic logic, let’s consider the 

neutrosophic propositions A(tA, iA, fA) and B(tB, iB, 

fB), and the neutrosophic implication: 

B(tB, iB, fB)  A(tA, iA, fA),    (7) 

that has the neutrosophic truth value  

(BA)(tBA, iBA, fBA).    (8) 

Again, we have a class of many neutrosophic 

implication operators, not only one; see our 

publication [13], 2015, pp. 79-81. 

Let’s consider one such neutrosophic 

implication for single valued neutrosophic logic:  

(BA)(tBA, iBA, fBA) is equivalent to B(tB, iB, fB)  

A(tA, iA, fA)  

which is equivalent to B(fB, 1-iB, tB)A(tA, iA, fA) 

which is equivalent to ( BA)(max{fB, tA}, min{1-

iB, iA}, min{tB, fA}).     (9) 

Or: (tBA, iBA, fBA) = (max{fB, tA}, min{1-iB, iA}, 

min{tB, fA}).      (10) 

Now, a question arises: what does “(B ) A is 

true” mean in fuzzy logic, intuitionistic fuzzy 

logic, and respectively in neutrosophic logic? 



Florentin Smarandache 

Neutrosophic Perspectives 

157 

Similarly for the “B is true”, what does it mean 

in these modern logics? Since in these logics we 

have infinitely many truth values t(B) ∈ (0, 1); {we 

made abstraction of the truth values 0 and 1, 

which represent the classical logic}. 

b) Theorem 1, by Georgiev, “Either A H k(A) [i.e. 

A is true if and only if k(A) is true] or the 

neutrosophic logic is contradictory.” 

We prove that his theorem is a nonsense. 

First at all, the author forgets that when he talks 

about neutrosophic logic he is referring to a 

modern logic, not to the classical (Boolean) logic. 

The logical propositions in neutrosophic logic are 

partially true, in the form of (t, i, f), not totally 

100% true or (1, 0, 0). Similarly for the 

implications and equivalences, they are not 

classical (i.e. 100% true), but partially true {i.e. 

their neutrosophic truth values are in the form of 

(t, i, f) too}. 

- The author starts using the previous 

classical logical system axiom (6), i.e.  

“since k(A) ⊆ A we have A ‘ k(A) ” meaning that  

A k(A) and when A is true, then k(A) is true. 
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- Next Georgiev’s sentence: “Let assume 

k(A) be true and assume that A is not 

true”. 

The same comments as above: 

What does it mean in fuzzy logic, intuitionistic 

fuzzy logic, and neutrosophic logic that a 

proposition is true? Since in these modern logics 

we have infinitely many values for the truth value 

of a given proposition. Does, for example, t(k(A)) 

= 0.8 {i.e. the truth value of k(A) is equal to 0.8}, 

mean that k(A) is true? 

If one takes t(k(A)) = 1, then one falls in the 

classical logic. 

Similarly, what does it mean that proposition A 

is not true? Does it mean that its truth value  

t(A) = 0.1 or in general t(A) < 1 ? Since, if one 

takes t(A) = 0, then again we fall into the classical 

logic. 

The author confuses the classical logic with 

modern logics. 

- In his “proof” he states that “since the 

Neutrosophic logic is not an 

intuitionistic one,  A should be true 
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leading to the conclusion that k(A)   = 

k(A) is true”. 

For the author an “intuitionistic logic” means a 

logic that invalidates the double negation law 

{equation (3)}. But we have proved before in 

Section 4, of this paper, that depending on the 

type of neutrosophic negation operator used, one 

has cases when neutrosophic logic invalidates the 

double negation law [hence it is “intuitionistic” in 

his words], cases when the neutrosophic logic 

does not invalidate the double negation law 

{formula (2)}, and indeterminate cases {depending 

on the new possible neutrosophic negation 

operators to be design in the future}. 

- The author continues with “We found 

that k(A)  k(A) is true which means that 

the simplified neutrosophic logic is 

contradictory.” 

Georgiev messes up the classical logic with 

modern logic. In classical logic, indeed k(A)  

k(A) is false, being a contradiction. 

But we are surprised that Georgiev does not 

know that in modern logic we may have k(A) 
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k(A) that is not contradictory, but partially true 

and partially false. 

For example, in fuzzy logic, let’s say that the 

truth value (t) of k(A) is t(k(A)) = 0.4, then the truth 

value of its negation,  k(A), is t( k(A)) = 1 – 0.4 

= 0.6. 

Now, we apply the t-norm “min” in order to do 

the fuzzy conjunction, and we obtain: 

t(k(A)  k(A)) = min{0.4, 0.6} = 0.4 ≠ 0. 

Hence, k(A)  k(A) is not a contradiction, since 

its truth value is 0.4, not 0. 

Similarly in intuitionistic fuzzy logic. 

The same in neutrosophic logic, for example: 

Let the neutrosophic truth value of k(A) be (0.5, 

0.4, 0.2), that we denote as: 

k(A)(0.5, 0.4, 0.2), then its negation  k(A) will 

have the neutrosophic truth value: 

 k(A)(0.2, 1-0.4, 0.5) =  k(A)(0.2, 0.6, 0.5). 

Let’s do now the neutrosophic conjunction: 

k(A)(0.5, 0.4, 0.2)  k(A)(0.2, 0.6, 0.5) = (k(A) 

k(A))(min{0.5, 0.2}, max{0.4, 0.6}, max{0.2, 0.5}) = 

(k(A) k(A))(0.2, 0.6, 0.5). 
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In the same way, k(A)  k(A) is not a contradic-

tion in neutrosophic logic, since its neutrosophic 

truth value is (0.2, 0.6, 0.5), which is different 

from (0, 0, 1) or from (0, 1, 1). 

Therefore, Georgiev’s “proof” that the 

simplified neutrosophic logic [ = single valued 

neutrosophic logic] is a contradiction has been 

disproved! 

His following sentence, “But since the 

simplified neutrosophic logic is only a subclass of 

the neutrosophic logic, then the neutrosophic 

logic is a contradiction” is false. Simplified 

neutrosophic logic is indeed a subclass of the 

neutrosophic logic, but he did not prove that the 

so-called simplified neutrosophic logic is 

contradictory (we have showed above that his 

“proof” was wrong). 

XI.1.8. Conclusion. 

We have showed in this paper that Georgiev’s 

critics on the neutrosophic logic are not founded. 

We made distinctions between the Boolean logic 

systems and the neutrosophic logic systems.  
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Neutrosophic logic is developing as a separate 

entity with its specific neutrosophic logical 

systems, neutrosophic proof theory and their 

applications. 
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XI.2. Neutrosophic Tautological, 

Contradictional, and Provability 

Tresholds, and Neutrosophic 

Completeness. Answers to U. Rivieccio 

First, I'd like to thank Dr. Rivieccio for his 

detailed study on neutrosophic logic and related 

topics [1]. 

XI.2.1. Belnap's logic system 

Belnap's logic system of four values: (1,0) 

corresponding to truth, (0,1) corresponding to 

falsehood, (0,0) corresponding to unknown, (1,1) 

corresponding to contradiction are actually a 

particular case of the Refined Neutrosophic Logic 

(2013), where the neutrosophic components (𝑡, 𝑖, 𝑓), 

with t = true, i = indeterminacy, and f = false, can 

be refined [6] as follows: 

(𝑡1, 𝑡2, … , 𝑡𝑝; 𝑖1, 𝑖2, … , 𝑖𝑟; 𝑓1, 𝑓2, … , 𝑓𝑠) 

where p, r, s are integers ≥1, and  

𝑡𝑗, 1≤ 𝑗 ≤ 𝑝, is a sub-truth, 

𝑖𝑘 , 1 ≤ 𝑘 ≤ 𝑟, is a sub-indeterminacy, and 

𝑓𝑙 , 1 ≤ 𝑙 ≤ 𝑠, is a sub-falsehood. 
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Taking the simple case, when the neutrosophic 

components (𝑡, 𝑖, 𝑓)  and the neutrosophic 

subcomponents 

({𝑡𝑗}𝑗∈{1,2,…,𝑝}, {𝑖}𝑘∈{1,2,…,𝑟}, {𝑓𝑙}𝑙∈{1,2,…,𝑠}) 

are single-valued numbers in [0,1] , one has that: 

0 ≤ 𝑡 + 𝑖 + 𝑓 ≤ 3    (1) 

while:       (2) 

0 ≤∑𝑡𝑗

𝑝

𝑗=1

+∑ 𝑖𝑘

𝑟

𝑘=1

+∑𝑓𝑙

𝑠

𝑙=1

≤ 𝑝 + 𝑟 + 𝑠. 

Therefore, Belnap's logic system is a refined 

neutrosophic logic of the form: (𝑡, 𝑖1, 𝑖2, 𝑓), where t 

= truth, f = falsehood, 𝑖1= unknown (or first sub-

indeterminacy), and 𝑖2= contradiction (or second 

sub-indeterminacy). 

XI.2.2. Kleene's three-valued logic,  

Kleene's three-valued logic with (0,0)  as 

undefined, (0,1) as falsehood, and (1,0) as truth, is 

also a neutrosophic logic (t, i, f), where the 

indeterminacy i is perceived as undefined. 

XI.2.3. Paraconsistent Logics 

As Rivieccio has observed, the neutrosophic 

logic can catch the paraconsistent logics, since  
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𝑡 + 𝑖 + 𝑓 may be > 1, 

so, we may have conflicting information. 

Neither fuzzy logic, nor Atanassov's intui-

tionistic fuzzy logic allowed the sum of 

components to exceed 1. 

In fuzzy logic: 𝑡 + 𝑓 = 1 , and in intuitionistic 

fuzzy logic: 𝑡 + 𝑓 ≤ 1 , leaving room for some 

hesitancy: 1 − (𝑡 + 𝑓) , which is denoted as 

indeterminacy in neutrosophic logic. 

XI.2.4. Incomplete Logics 

Even more, the neutrosophic logic allowed the 

sum of the components to be strictly less than 1, 

𝑡 + 𝑖 + 𝑓 < 1 

for incomplete logics, i.e. logics where there is 

missing or incomplete information. 

Again, neither fuzzy logic nor intuitionistic 

fuzzy logic allowed the sum of the components to 

be strictly less than 1.  

XI.2.5. Set-Valued Neutrosophic Logic 

While both fuzzy logic and intuitionistic fuzzy 

logic have extended their fields from "crisp 

values" to "interval values" assigned to their 
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components, defining the interval-valued fuzzy 

logic and respectively interval-valued intuition-

istic fuzzy logic, neutrosophic logic went further 

and considered set-valued neutrosophic logic, 

where the components t, i, f are not necessarily 

intervals, but in general subsets of the unit 

interval [0,1]. 

XI.2.6. Non-standard Set-Valued 

Neutrosophic Logic  

Even more, and not done in fuzzy logic nor in 

intuitionistic fuzzy logic, from a philosophical 

point of view the neutrosophic logic can dis-

tinguish between an absolute truth, which is a 

truth in all possible worlds (according to Leibniz), 

whose neutrosophic value is denoted by 

1+ = 1 + ℇ, 

where ℇ > 0 is a tinny number, and relative truth, 

which is truth in at least one world, whose 

neutrosophic value is denoted by 1. 

Similarly, for absolute/ relative indeterminacy 

and respectively falsehood. 
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XI.2.7. Regarding the interpretations of 〈1,0,0〉 

as truth, 〈0,1,1〉  as contradiction, and 〈1,1,1〉  as 

paradox in the book [2], Rivieccio writes that "this 

does not seem quite convincing, since intuitively 

it is not clear why for instance 〈0,1,1〉 should be 

contradiction more than 〈0,0,1〉." 

If we consider t, i, f as singletons, then the 

interpretations are the following, as in refined 

neutrosophic logic 

〈𝑡, 𝑖1, 𝑖2, 𝑖3, 𝑖4, 𝑖5, 𝑓〉: 

𝑡 = 〈1,0,0〉  truth; 

𝑖1 = 〈0,1,0〉

𝑖2 = 〈1,1,0〉

𝑖3 = 〈1,0,1〉

𝑖4 = 〈0,1,1〉

𝑖5 = 〈1,1,1〉}
 
 

 
 

  sub-indeterminacies 

𝑓 = 〈0,0,1〉  falsehood; 

where  

𝑖1 = pure indeterminacy; 

𝑖2 = truth-indeterminacy confusion; 

𝑖3 = contradiction (true & false simultaneously); 

𝑖4 = indeterminacy-falsehood confusion; 

𝑖5 =  paradox (true & false & indeterminate 

simultaneously). 
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Rivieccio continues: "We would suggest a more 

cautious interpretation, i.e. to consider the 

indeterminacy degree as a measure of the 

reliability (conversely, the imprecision, error, etc.) 

of a certain source of information." We fully agree 

with his suggestion, that's how is in our previous 

refined neutrosophic logic the indeterminacy, and 

we split it into types of sub-indeterminacies, 

explicitly described. 

In general, we can split the indeterminacy 

degree into: degree of vagueness, degree of 

imprecision, degree of error, degree of 

conflicting, degree of incompleteness, and so on – 

depending on the needed application (or problem) 

to solve. 

XI.2.8. Neutrosophic Negation Operator 

We agree with Rivieccio that the first 

neutrosophic negation operator [4] that we 

proposed starting from 1995, defined as:  

¬
𝑁
(𝑡, 𝑖, 𝑓) = (1 − 𝑡, 1 − 𝑖, 1 − 𝑓)   (3) 
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is not the best, although a straightforward 

extension of the most common fuzzy logic 

negation operator.  

In the meantime, more neutrosophic negation 

operators have been proposed by various authors 

and us, forming a class of neutrosophic negation 

operators.  

We agree that  

¬(𝑡, 𝑖, 𝑓) = (𝑓, 𝑖, 𝑡)    (4) 

is the best neutrosophic negation operator 

(Ashbacher), [3] so far. 

XI.2.9. Neutrosophic Conjunction Operator 

Similarly, our first neutrosophic conjunction 

[4] 

(c1) 〈𝑡1, 𝑖1, 𝑓1〉
∧
𝑁
〈𝑡2, 𝑖2, 𝑓2〉 = 〈𝑡1𝑡2, 𝑖1𝑖2, 𝑓1𝑓2〉  (5) 

is less accurate (we agree with Rivieccio), than: 

(c2) 〈𝑡1, 𝑖1, 𝑓1〉
∧
𝑁
〈𝑡2, 𝑖2, 𝑓2〉 = 

〈𝑚𝑖𝑛{𝑡1, 𝑡2}, 𝑚𝑖𝑛{𝑖1, 𝑖2},𝑚𝑎𝑥{𝑓1, 𝑓2}〉   (6) 

or (c3) 〈𝑡1, 𝑖1, 𝑓1〉
∧
𝑁
〈𝑡2, 𝑖2, 𝑓2〉 = 

〈𝑚𝑖𝑛{𝑡1, 𝑡2}, 𝑚𝑎𝑥{𝑖1, 𝑖2},𝑚𝑎𝑥{𝑓1, 𝑓2}〉  (7) 

as defined by Ashbacher [3]. 
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As the truth (t) is considered a positive quality, 

while the indeterminacy (i) and the falsehood (f) 

are negative qualities, whatever operation we do 

to 𝑡1 and 𝑡2 we have to do the opposite to 𝑖1, 𝑖2 and 

respectively to 𝑓1, 𝑓2. 

Therefore (𝑐3) is the best. 

However, today (June 2017) the most general 

classes of neutrosophic conjunction operators 

have the forms: 

〈𝑡1, 𝑖1, 𝑓1〉
∧
𝑁
〈𝑡2, 𝑖2, 𝑓2〉 = 〈𝑡1

∧
𝐹
𝑡2, 𝑖1

∨
𝐹
𝑖2, 𝑓1

∨
𝐹
𝑓2〉 (8) 

or  

〈𝑡1, 𝑖1, 𝑓1〉
∧
𝑁
〈𝑡2, 𝑖2, 𝑓2〉 = 〈𝑡1

∧
𝐹
𝑡2, 𝑖1

∧
𝐹
𝑖2, 𝑓1

∨
𝐹
𝑓2〉 (9) 

where 
∧
𝐹

 is a fuzzy t-norm, for examples:  

𝑎
∧
𝐹
𝑏 = 𝑎 ∙ 𝑏;      (10) 

or 

𝑎
∧
𝐹
𝑏 = 𝑚𝑖𝑛{𝑎, 𝑏};      (11) 

or 

𝑎
∧
𝐹
𝑏 = 𝑚𝑎𝑥{𝑎 + 𝑏 − 1, 0},     (12) 

or others; 

while 
∨
𝐹

 is a fuzzy t-conorm, for examples: 
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𝑎
∨
𝐹
𝑏 = 𝑎 + 𝑏 − 𝑎𝑏;      (13) 

or  

𝑎
∨
𝐹
𝑏 = 𝑚𝑎𝑥{𝑎, 𝑏};     (14) 

or   

𝑎
∨
𝐹
𝑏 = 𝑚𝑖𝑛{𝑎 + 𝑏, 1},     (15) 

or others. 

XI.2.10. Neutrosophic Disjunction 

Operator 

In the same way as we responded for the 

neutrosophic negation and conjunction operators, 

our first neutrosophic disjunction operator (1995) 

in [4]: 

(𝐷1) 〈𝑡1, 𝑖1, 𝑓1〉
∨
𝑁
〈𝑡2, 𝑖2, 𝑓2〉 = 

〈𝑡1 + 𝑡2 − 𝑡1𝑡2, 𝑖1 + 𝑖2 − 𝑖1𝑖2, 𝑓1+𝑓2 − 𝑓1𝑓2〉 (16) 

is less accurate, since indeed "should not treat the 

truth, indeterminacy and falsity components in 

the same way" [Rivieccio] is right.  

In a pessimistic way, we had proposed later on 

to treat the indeterminacy and falsity components 

in the same way (as qualitatively negative com-

ponents), while the truth component in an 
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opposite was (as qualitatively positive comp-

onents). 

But in an optimistic way, the truth and 

indeterminacy can be considered in the same way, 

while the falsity is an opposite way. 

The definitions by Ashbacher (2002) are more 

accurate: 

(𝐷2) 〈𝑡1, 𝑖1, 𝑓1〉
∨
𝑁
〈𝑡2, 𝑖2, 𝑓2〉 =

〈𝑚𝑎𝑥{𝑡1, 𝑡2}, 𝑚𝑎𝑥{𝑖1, 𝑖2},𝑚𝑖𝑛{𝑓1, 𝑓2}〉       (17) 

 (𝐷3) 〈𝑡1, 𝑖1, 𝑓1〉
∨
𝑁
〈𝑡2, 𝑖2, 𝑓2〉 =

〈𝑚𝑎𝑥{𝑡1, 𝑡2}, 𝑚𝑖𝑛{𝑖1, 𝑖2},𝑚𝑖𝑛{𝑓1, 𝑓2}〉       (18) 

However, today (June 2017) the most general 

classes of neutrosophic disjunction operators 

have the forms (dualistic to the neutrosophic 

conjunction operators): 

〈𝑡1, 𝑖1, 𝑓1〉
∨
𝑁
〈𝑡2, 𝑖2, 𝑓2〉 = 〈𝑡1

∨
𝐹
𝑡2, 𝑖1

∧
𝐹
𝑖2, 𝑓1

∧
𝐹
𝑓2〉 (19) 

or  

〈𝑡1, 𝑖1, 𝑓1〉
∨
𝑁
〈𝑡2, 𝑖2, 𝑓2〉 = 〈𝑡1

∨
𝐹
𝑡2, 𝑖1

∨
𝐹
𝑖2, 𝑓1

∧
𝐹
𝑓2〉.  (20) 

XI.2.11. Incomplete Neutrosophic Logic 

The neutrosophic logic where the sum of the 

components t + i + f ≤ 1  should be called incom-
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plete neutrosophic logic, not intuitionistic neutros-

ophic logic (Ashbacher, [3]), in order to avoid the 

confusion of meaning of the word "intuitionistic". 

XI.2.12. Neutrosophic Implication 

We have defined a class of neutrosophic 

implication connectives 

〈𝑡1, 𝑖1, 𝑓1〉
𝑁
→ 〈𝑡2, 𝑖2, 𝑓2〉,     (21) 

in {Smarandache [7], pp. 79-81} as an adaptation 

from the classical logic implication, and from 

fuzzy logic (S-implication): 

(𝐼1)  ¬𝑁〈𝑡1, 𝑖1, 𝑓1〉
∨
𝑁
〈𝑡2, 𝑖2, 𝑓2〉.    (22) 

Rivieccio presents the below neutrosophic 

implication: 

(𝐼2) 〈
𝑚𝑖𝑛{1,1 − 𝑡1 + 𝑡2},𝑚𝑎𝑥{0, 𝑖2 − 𝑖1},

𝑚𝑎𝑥{0, 𝑓2 − 𝑓1}
〉  (23) 

as an extension of Lukasiewicz logic's implication 

connective. 

He criticizes Ashbacher's neutrosophic system 

for having no "tautologies", meaning that "there is 

no sentence p such that 𝑣(𝑝) = 〈1, 0, 0〉  for every 

neutrosophic valuation v".  
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First of all, a neutrosophic valuation is an 

approximation of the neutrosophic truth value of 

a proposition p. A source A approximates in one 

way, 𝑣𝐴(𝑝) = 〈𝑡𝐴, 𝑖𝐴, 𝑓𝐴〉 while another source B 

approximates in a different way, 𝑣𝐵(𝑝) = 〈𝑡𝐵 , 𝑖𝐵 , 𝑓𝐵〉 . 

In fuzzy, intuitionistic fuzzy, and neutrosophic 

logics, we deal with estimations, approximations, 

and subjectivity. The aggregations / connectives / 

rules of inference do approximate calculations. 

The indeterminacy makes a difference in the 

multiple-valued logic laws. 

XI.2.13. Neutrosophic "Tautology" 

We have tautologies (propositions whose truth-

value is 1) in classical (Boolean) logic. 

But what is "tautology" in fuzzy, intuitionistic 

fuzzy, and neutrosophic logics, where we work 

with partial truth (0 < 𝑡 < 1) ? 

Can we say that a proposition p, whose truth-

value is 0.8, is a tautology or not? 

An idea would be to consider a neutrosophic 

tautological threshold 𝜏(𝑡𝜏 , 𝑖𝜏, 𝑓𝜏),  and each 

proposition p that is equal or above this 

neutrosophic tautological threshold should be 
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considered a neutrosophic tautology, while if it is 

below it should be not. 

How to establish such threshold? 

Of course, this should be handled by experts 

upon the application or problem they need to 

solve. 

The two neutrosophic relationships ≤𝑁1  and 

≤𝑁2  presented in Rivieccio's paper are partial 

order relationships:    (24-25) 

(𝑁1) (𝑡1, 𝑖1, 𝑓1) ≤𝑁1 (𝑡2, 𝑖2, 𝑓2) iff 𝑡1 ≤ 𝑡2, 𝑖1 ≤ 𝑖2, 𝑓1 ≥ 𝑓2; 

(𝑁2) (𝑡1, 𝑖1, 𝑓1) ≤𝑁2 (𝑡2, 𝑖2, 𝑓2) iff 𝑡1 ≤ 𝑡2, 𝑖1 ≥ 𝑖2, 𝑓1 ≥ 𝑓2.  

We prefer to use (𝑁2) , since the sense 

inequalities, for (𝑖) and for (𝑓) should be the same 

(≥), while that for (𝑡) should be the opposite (≤). 

We'll further denote it simply by ≤𝑁. 

XI.2.14. Neutrosophic Propositional Logic 

Let 𝜆 be the set of all neutrosophic propositions 

P, where the neutrosophic validation (truth-value) 

of P is (𝑡𝑃 , 𝑖𝑃, 𝑓𝑃), with 𝑡𝑃, 𝑖𝑃, 𝑓𝑃 ∈ [0,1]. 

We consider the simplest case, when the neut-

rosophic components are single-valued numbers. 
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The cases when 𝑡𝑃 , 𝑖𝑃, 𝑓𝑃  are intervals or in 

general subsets of [0,1]  are straight-forwarded 

generalizations of single-valued neutrosophic 

components. 

Let the neutrosophic tautological threshold be 

𝜏(𝑡𝜏 , 𝑖𝜏, 𝑓𝜏), determined by the neutrosophic experts 

with respect to an application to solve, where 

𝑡𝜏 , 𝑖𝜏, 𝑓𝜏 ∈ [0,1]. 

The neutrosophic validation function: 

𝑣𝑁: 𝜆 → [0,1]3, with 𝑣𝑁(𝑃) = (𝑡𝑃, 𝑖𝑃 , 𝑓𝑃)   (26) 

and       (27) 

𝜆 = {
𝑃,where 𝑃 𝑖𝑠 𝑎 neutrosophic proposition,

𝑣𝑁(𝑃) = (𝑡𝑃, 𝑖𝑃, 𝑓𝑃) ∈ [0,1]
3 }. 

The set 𝜆 is split into three subsets: 

a) The set of neutrosophic tautologies (or 

neutrosophically true propositions with respect to 

neutrosophic tautological threshold 𝜏): 

𝑇𝑎𝑢𝑡 = {𝑃 ∈ 𝜆, 𝑣𝑁(𝑃) ≥ 𝑣𝑁(𝜏)}.   (28) 

b) The set of neutrosophic non-tautologies (or 

neutrosophically false propositions with respect 

to the neutrosophic tautological threshold 𝜏): 

𝑁𝑜𝑛𝑇𝑎𝑢𝑡 = {𝑃 ∈ 𝜆, 𝑣𝑁(𝑃) <𝑁 𝑣𝑁(𝜏)}  (29) 
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c) The set of neutrosophic undecided 

propositions (or neutrosophically neither true nor 

false propositions with respect to the neutros-

ophic tautological threshold 𝜏):   (30) 

𝑈𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑 = {𝑃 ∈ 𝜆, 𝑣𝑁(𝑃)𝑁
≱𝑣(𝜏) 𝑎𝑛𝑑 𝑣𝑁 ≮𝑁 𝑣(𝜏)}. 

Since the neutrosophic inequality ≤𝑁 

establishes only a partial order on 𝜆, therefore 𝜆 is 

a neutrosophic poset (partial ordered set), one has 

in 𝜆 neutrosophic propositions, let's say 𝑃1 and 𝑃2, 

such that neiter 𝑣𝑁(𝑃1) ≤𝑁 𝑣(𝑃2), nor 𝑣𝑛(𝑃1)𝑁
>𝑣𝑁(𝑃). 

XI.2.15. Neutrosophic "Completeness" 

Many definitions of completeness exist, with 

respect to various fields of knowledge. 

a) In classical logic, if a proposition P cannot be 

derived from the system's axioms, it gives rise to 

a contradiction. 

But what is a "contradiction" in fuzzy, intuition-

istic fuzzy, or neutrosophic logics? 

If P is such that its fuzzy validation (𝑣𝐹) is  

𝑣𝐹(𝑃) = 0.5, 

then 𝑣𝐹(𝐹¬𝑃) = 1 − 0.5 = 0.5, 
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and 𝑣𝐹 (𝑃∧
𝐹
(𝐹¬𝑃)) = 0.5, so 𝑃∧

𝐹
(𝐹¬𝑃) is not a fuzzy 

contradiction. 

Similarly, if the intuitionistic fuzzy logic 

validation (𝑣𝐼𝐹) of P is, for example, 

 𝑣𝐼𝐹(𝑃) = (0.5, 0.5),  

then 𝑣𝐼𝐹(𝐼𝐹¬𝑃) = (0.5, 0.5),  

and 𝑣𝐼𝐹 (𝑃 ∧
𝐼𝐹
(𝐼𝐹¬𝑃)) = (0.5, 0.5),  

so  𝑃 ∧
𝐼𝐹
(𝐼𝐹¬𝑃)  is not an intuitionistic fuzzy 

contradiction. 

And if 𝑣𝑁(𝑃) = (0.5, 0.5, 0.5) in neutrosophic logic, 

also 𝑣𝑁(𝑁¬𝑃) = (0.5, 0.5, 0.5) , so 𝑃∧
𝑁
(𝑁¬𝑃)  is not a 

neutrosophic contradiction. 

Many other examples can be constructed, of 

propositions whose degrees of their fuzzy, 

intuitionistic fuzzy, or neutrosophic components 

belong to (0,1). 

A definition has to be introduced, for example 

in the neutrosophic logic. 

A neutrosophic contradiction threshold should 

be established by the experts in respect to the 
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application or problem to solve: 𝐶(𝑡𝐶 , 𝑖𝐶 , 𝑓𝐶), with 

𝑡𝐶 , 𝑖𝐶 , 𝑓𝐶 single-valued numbers in [0,1]. 

Then, if a proposition 𝑃(𝑡𝑃, 𝑖𝑃, 𝑓𝑃), is such that 

(𝑡𝑃, 𝑖𝑃 , 𝑓𝑃) ≤𝑁 (𝑡𝐶 , 𝑖𝐶 , 𝑓𝐶),    (31) 

then P is a neutrosophic contradiction. 

If (𝑡𝑃 , 𝑖𝑃, 𝑓𝑃) 𝑁 > (𝑡𝐶 , 𝑖𝐶 , 𝑓𝐶) , then P is not a 

neutrosophic contradiction. 

While, if (𝑡𝑃 , 𝑖𝑃, 𝑓𝑃)  is neiter ≤𝑁 (𝑡𝐶 , 𝑖𝐶 , 𝑓𝐶)  nor 

(𝑁
> 𝑡𝐶 , 𝑖𝐶 , 𝑓𝐶) , then P is neither a neutrosophic 

contradiction, nor a neutrosophic non-contradic-

tion. We talk about neutrosophic undecidability. 

b) Another definition of completeness in 

classical proof theory is that in a given formal 

system, either every closed sentence is provable 

or its negation is provable. 

But, again in fuzzy, intuitionistic fuzzy, and 

neutrosophic logic systems, we deal with partial 

provability, since an implication 𝐴
𝐹
→𝐵 or 𝐴

𝐼𝐹
→𝐵 or 

respectively 𝐴
𝑁
→𝐵  have, in general, a partial 

degree of truth (provability), not a 100% truth. 

Therefore, again in neutrosophic logic the 

experts need to establish a neutrosophic prov-

ability threshold 𝜋(𝑡𝜋, 𝑖𝜋, 𝑓𝜋), with 𝑡𝜋 , 𝑖𝜋, 𝑓𝜋 ∈ [0,1]. 
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Then: a proposition B is neutrosophically 

provable into the system if there exists a 

proposition A, neutrosophically proven into the 

system, such that: 

𝑣𝑁(𝐴
𝑁
→𝐵)𝑁 ≥ (𝑡𝜋, 𝑖𝜋, 𝑓𝜋).    (32) 

If  

𝑣𝑁(𝐷
𝑁
→𝐵) <𝑁 (𝑡𝜋, 𝑖𝜋, 𝑓𝜋)   (33) 

for any neutrosophic provable proposition D into 

the system, then B is neutrosophically unproven. 

c) From a syntactical completeness point of 

view, in a classical formal system, given a closed 

formula 𝜓 , either 𝜓  or ¬𝜓  is a theorem of the 

system. 

Again, we provide the same answer as at point 

15.a), we mean that both 𝜓  and ¬𝜓  may be 

partially true theorems in fuzzy, intuitionistic 

fuzzy, and neutrosophic systems. 

d) Completeness with respect to a given 

property, in classical metalogic, is referred to the 

fact that: in a formal system, any formula 𝜓, that 

has the property, can be derived. 

Again, we provide an answer similar to that at 

point 15.b), we mean that any formula 𝜓 in the 
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system, can be partially derived in fuzzy, 

intuitionistic fuzzy, and neutrosophic systems. 

Sections 12-15 showed that a neutrosophic 

tautology (q) does not necessarily have the 

neutrosophic valuation 𝑣𝑛(𝑞) = (1, 0, 0),  as 

supposed by Rivieccio, but 𝑣𝑛(𝑞)𝑁 ≥ 𝑣𝑛(𝜏)  or the 

valuation of q has to be greater than or equal to 

the valuation of the neutrosophic tautological 

threshold. 

Rivieccio proves that Ashbacher's Paracon-

sistent Neutrosophic Logic, in the particular case 

when i = 0, t = 0 or 1, and f = 0 or 1, with the 

connectives (𝑁2), (𝐶3), and (𝐷1) , yields the exact 

truth table of Belnap. 

In general, Neutrosophic Logic based on the 

triplet (t, i, f) is more complex than Belnap's four-

valued logic, while its extension, called Refined 

Neutrosophic Logic [6], refines each neutrosophic 

component: 

t as 𝑡1, 𝑡2, … , 𝑡𝑝, for 𝑝 ≥ 1; 

i as 𝑖1, 𝑖2, … , 𝑖𝑟  , for 𝑟 ≥ 1; 

and f as 𝑓1, 𝑓2, … , 𝑓𝑠, for 𝑠 ≥ 1; 
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while in Belnap's logic there are only two (sub)in-

determinacies: contradiction, and unknown. 

Neutrosophic Logic is more flexible, adjustable 

to each practical application, having each 

neutrosophic component split in as many sub-

components as needed to solve the problem. 

Belnap's Logic is mostly a theoretical approach. 

XI.2.16. Laws of Classical Logic That Do 

Not Hold in The Interval Neutrosophic 

Logic 

Rivieccio lists several laws of classical logic 

that do not hold in the Interval Neutrosophic Logic 

[8], such as: excluded middle, non-contradiction, 

contraposition, and Pseudo Scotus. 

This should be normal, in our opinion, that 

when passing from a classical [logic, set, and 

probability] theory in this case, many classical 

laws, properties, rules, theorems would not work, 

since in classical theory one deals with full-truths 

(t = 1), while in modern theories with partial-

truths (0 < 𝑡 < 1) in general. 
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17) "Another rather straightforward extension 

would be to let T, I, F be subsets of some partially 

or linearly ordered lattice L instead of the real unit 

interval [0,1]" (Rivieccio, p. 1867). 

We have extended the T, I, F single-valued or 

subset-valued neutrosophic components above 1 

(one) [that we called: neutrosophic overset / 

overlogic / overprobability, and so on], and below 

0 (zero) [that we have called: neutrosophic 

underset / underlogic / underprobability and so 

on]. See Smarandache, 2016 [9-11]. 

And we combined both over- and under- in 

order to get T, I, F below 0 (zero) and above 1 (one) 

in what we have called: neutrosophic offset /  

offlogic / offprobability, and so on.  

Another extension of T, I, F was done in the 

frame of Complex Neutrosophic Set, as follows 

{see M. Ali & F. Smarandache, 2017 [12]}:  (34) 

𝑇 = 𝑡1𝑒
𝑗𝑡2 , 𝐼 = 𝑖1𝑒

𝑗𝑖2, 𝐹 = 𝑓1𝑒
𝑗𝑓2 , with 𝑗 = √−1; 

where the amplitudes 𝑡1, 𝑖1
𝑒

, 𝑓1 are subsets of [0,1], 

together with their corresponding phases 𝑡2, 𝑖2, 𝑓2 

as angles between [0, 2𝜋] , are parts of the unit 

circle. 
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Even more, we extended to bipolar / tripolar / 

multipolar neutrosophic set, and respectively 

bipolar / tripolar / multipolar complex neutros-

ophic set {[9], pp. 144-147}. 

The next step will be to consider, as Rivieccio 

has suggested, a partially (if possible totally) 

ordered neutrosophic lattice. 

XI.2.18. Modal Contexts 

"... the possibility to deal with modal contexts" 

(Rivieccio, p. 1867). 

We have defined several types of neutrosophic 

modal logic. See our paper Neutrosophic Modal 

Logic, in this book. 

XI.2.19. Neutrosophic Score Function 

"... it would be very useful to define suitable 

order relations on the set of neutrosophic truth 

values" (Rivieccio, p. 1867). 

Indeed, the neutrosophic order relationships 

(N1) and (N2) defined previously are partial 

orders, and they leave room for neutrosophic 

propositions that are neither neutrosophic 

tautologies, nor neutrosophic nontautologies, 
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neither neutrosophic contradictions, nor non-

contradictions, and so on. 

Since 2008, new neutrosophic ordering 

relationships have been designed, such as 

neutrosophic score function (s), neutrosophic 

accuracy function (a), and neutrosophic certainty 

function (c). Applying all three of them, one after 

the other in this order (s), then (a), and afterwards 

(c), we are able to get a total order relationship 

between the neutrosophic numbers. Yet, better 

ordering realtionships can be designed. 

See also The Average Positive Qualitative 

Neutrosophic Function and The Average Negative 

Qualitative Neutrosophic Function above, pp. 9-13. 

Applications. 

They have been successfully applied in multi-

criteria decision making for comparing single-

valued and interval-valued neutrosophic numbers 

in selecting the optimum alternative. 

XI.2.20. In search for a neutrosophic total 

order on the set of single-valued neutrosophic 

triplets, another idea would be to compare 

(𝑡1, 𝑖1, 𝑓1)  with (𝑡2, 𝑖2, 𝑓2)  by computing their 
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similarity measures with respect to the ideal 

neutrosophic number (1, 0, 0)  : the closer, the 

bigger is. 

If 𝑠((1, 0, 0), (𝑡1, 𝑖1, 𝑓1)) > 𝑠((1, 0, 0), (𝑡2, 𝑖2, 𝑓2)) , then 

(𝑡1, 𝑖1, 𝑓1)𝑁 > (𝑡2, 𝑖2, 𝑓2) , and if their similarity 

measures are equal, either to consider (𝑡1, 𝑖1, 𝑓1) =

(𝑡2, 𝑖2, 𝑓2), or use another criterion to order them. 

But, because there are many neutrosophic 

similarity measures (e.g. cosine, tangent, dice, 

and others based on the distance between 

triplets), the big question is: which one to use? 

XI.2.21. Neutrosophic Lattices 

Theorem XI.2.21.1. 

The set of neutrosophic tautologies, Taut, 

endowed with the binary operations defined as: 

for any 𝑃1(𝑡1, 𝑖1, 𝑓1) and 𝑃1(𝑡2𝑖2𝑓2) ∈ 𝑇𝑎𝑢𝑡,  

𝑃1
∧
𝑁
𝑃2 = 𝑄(𝑚𝑖𝑛{𝑡1, 𝑡2},𝑚𝑎𝑥{𝑖1, 𝑖2},𝑚𝑎𝑥{𝑓1, 𝑓2})  (35) 

and 𝑃1
∨
𝑁
 𝑃2 = 𝑆(𝑚𝑎𝑥{𝑡1, 𝑡2},𝑚𝑖𝑛{𝑖1, 𝑖2},𝑚𝑖𝑛{𝑓1, 𝑓2})  (36) 

forms a neutrosophic lattice. 

Proof: 

If 𝑃1 ∈ 𝑇𝑎𝑢𝑡, then 𝑡1 ≥ 𝑡𝜏 , 𝑖1 ≤ 𝑖𝜏,   𝑓1 ≤ 𝑓𝜏; 
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if 𝑃2 ∈ 𝑇𝑎𝑢𝑡, then 𝑡2 ≥ 𝑡𝜏, 𝑖2 ≤ 𝑖𝜏 , 𝑓2 ≤ 𝑓𝜏. 

Then: 

  𝑃1
∧
𝑁
𝑃2 = 𝑄(𝑚𝑖𝑛{𝑡1, 𝑡2},𝑚𝑎𝑥{𝑖1, 𝑖2},𝑚𝑎𝑥{𝑓1, 𝑓2}),  (37) 

but       (38) 

𝑚𝑖𝑛{𝑡1, 𝑡2} ≥ 𝑡𝜏, 𝑚𝑎𝑥 {𝑖1, 𝑖2} ≤ 𝑖𝜏, and 𝑚𝑎𝑥{𝑓1, 𝑓2} ≤ 𝑓𝜏. 

Therefore 
∧
𝑁

 is well-defined on Taut. 

Similarly, 
∨
𝑁

 is well-defined on Taut, because: 

𝑃1
∨
𝑁
𝑃2 = 𝑆(𝑚𝑎𝑥{𝑡1, 𝑡2},𝑚𝑖𝑛{𝑖1, 𝑖2},𝑚𝑖𝑛{𝑓1, 𝑓2})  (39) 

and 𝑚𝑎𝑥{𝑡1, 𝑡2} ≥ 𝑡𝜏, 𝑚𝑖𝑛{𝑖1, 𝑖2} ≤ 𝑖𝜏,  

and 𝑚𝑖𝑛{𝑓1, 𝑓2} ≤ 𝑓𝜏. 

It is easly proved that: 

𝑃1
∧
𝑁
𝑃1 = 𝑃1      (40) 

because 𝑚𝑖𝑛{𝑡1, 𝑡1} = 𝑡1, 𝑚𝑎𝑥{𝑖1, 𝑖1} = 𝑖1  

and 𝑚𝑎𝑥{𝑓1, 𝑓1} = 𝑓1  {symmetry}. 

Similarly,  

𝑃1
∨
𝑁
𝑃1 = 𝑃1      (41) 

because 𝑚𝑎𝑥{𝑡1, 𝑡1} = 𝑡1, 𝑚𝑖𝑛{𝑖1, 𝑖1} = 𝑖1  

and 𝑚𝑖𝑛 {𝑓1, 𝑓1} = 𝑓1 {symmetry}. 

Also, 
∧
𝑁

 and 
∨
𝑁

 are associative, since: 

𝑃1
∧
𝑁
(𝑃1

∨
𝑁
𝑃2) = 𝑃1

∨
𝑁
(𝑃1

∧
𝑁
𝑃2) = 𝑃1   (42) 



Florentin Smarandache 

Neutrosophic Perspectives 

190 

because 

𝑃1
∧
𝑁
(𝑃1

∨
𝑁
𝑃2) has the neutrosophic valuation: 

(𝑡1, 𝑖1, 𝑓1)
∧
𝑁
(𝑚𝑎𝑥{𝑡1, 𝑡2},𝑚𝑖𝑛{𝑖1, 𝑖2},𝑚𝑖𝑛{𝑓1, 𝑓2}) =

(𝑚𝑖𝑛{𝑡1, 𝑚𝑎𝑥{𝑡1, 𝑡2}}, 𝑚𝑎𝑥{𝑖1, 𝑚𝑖𝑛{𝑖1, 𝑖2}},𝑚𝑎𝑥{𝑓1, 𝑚𝑖𝑛{𝑓1, 𝑓2}}) =

(𝑡1, 𝑖1, 𝑓1).      (43) 

And in a similar way: 

𝑃1
∨
𝑁
(𝑃1

∧
𝑁
𝑃2)     (44) 

has the neutrosophic valuation: 

(𝑡1, 𝑖1, 𝑓1)
∨
𝑁
(𝑚𝑖𝑛{𝑡1, 𝑡2},𝑚𝑎𝑥{𝑖1, 𝑖2},𝑚𝑎𝑥{𝑓1, 𝑓2}) =

(𝑚𝑎𝑥{𝑡1, 𝑚𝑖𝑛{𝑡1, 𝑡2}}, 𝑚𝑖𝑛{𝑖1, 𝑚𝑎𝑥{𝑖1, 𝑖2}},𝑚𝑖𝑛{𝑓1, 𝑚𝑎𝑥{𝑓1, 𝑓2}}) =

(𝑡1, 𝑖1, 𝑓1).      (45) 

The minimum element in the neutrosophic 

tautological lattice Taut is  

𝜏(𝑡𝜏, 𝑖𝜏 , 𝑓𝜏) 

and the maximum element is 1(1, 0, 0). 

Theorem XI.2.21.2. 

The set of neutrosophic non-tautologies, 

NonTaut, with respect to the same binary 

operations 
∧
𝑁

 and 
∨
𝑁

, also forms a neutrosophic 
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lattice, whose minimum element is 0(0, 1, 1) , and 

its supremum element is 𝜏(𝑡𝜏 , 𝑖𝜏, 𝑓𝜏). 

Theorem XI.2.21.3. 

The set of all neutrosophic contradictions, 

endowed with the same binary operations  
∧
𝑁

 and 

∨
𝑁

, is a neutrosophic lattice, whose minimum 

element is 0(0,1,1) and maximum element is the 

neutrosophic contradiction threshold 𝐶(𝑡𝑐 , 𝑖𝑐 , 𝑓𝑐). 

Same style of proof. 

Conclusion 

K.T. Atanassov, C. Cornelis and E.E. Kerre [6] 

said about neutrosophy the following: "these 

ideas, once properly formalized, will have a 

profound impact on our future dealings with 

imprecision." 

Then Dr. Umberto Rivieccio concludes his 

paper: "We share their opinion, and hope that this 

paper will encourage others to pursue deeper 

investigations that may lead to such proper 

formalization". 
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CHAPTER XII 

XII.1. Neutrosophic Predicate Logic 

XII.1.1. Neutrosophic Propositional Logic deals 

with propositions 𝒫 that have a degree of truth 

(T), a degree of indeterminacy (I), and a degree of 

falsehood (F), where in the most general case T, I, 

F, are subsets of the interval [0,1]. 

Particular cases have been studied so far, such 

as: when T, I, F are single values in [0,1], or T, I, F 

are interval-valued in [0,1], or T, I, F as discrete 

subsets of [0,1], and so on. 

XII.1.2. Neutrosophic Predicate Logic (or Neut-

rosophic First-Order Logic, or Neutrosophic 

Quantified Logic) is a generalization of Neutros-

ophic Propositional Logic and of Classical 

Predicate Logic. As a neutrosophic formal 

language, Neutrosophical Predicate Logic deals 

with neutrosophic predi-cates, neutrosophic 

variables, and neutrosophic quantifiers, which are 

predicates / variables / and quantifiers respec-

tively that deal with indeterminacy. It is used in 
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neutrosophic expert systems for automatic 

reasoning with the help of computer programs. 

XII.1.3. Neutrosophic Predicate is a gener-

alization of the Neutrosophic Relation. 

A neutrosophic predicate with one argument is 

referred to as neutrosophic monoadic, with two 

arguments is referred to as neutrosophic dyadic, 

and in general with n arguments, for integer n ≥1, 

is referred to as neutrosophic n-adic. 

The neutrosophic predicate is also a gener-

alization a neutrosophic propositional variable, 

since a neutrosophic propositional variable can be 

treated as a neutrosophic predicate with zero 

arguments. 

Examples. 

Let's consider the proposition: 

𝒫 = “John is a logician”. 

In classical logic, proposition 𝒫 is either true 

(1), or false (0). 

In neutrosophic logic (NL) proposition 𝒫  may 

be partially true (let's say T = 0.4), partially false 

(since John also does research in other fields, such 

as non-Euclidean geometry and algebraic struc-



Florentin Smarandache 

Neutrosophic Perspectives 

198 

tures for example; let's say F = 0.5), and partially 

indeterminate (since John does in secret un-

known research in another field; let's say I = 0.2). 

Therefore NL(𝒫) = (0.4, 0.2, 0.5) in neutrosophic 

propositional logic. 

Let's extend this example to the neutrosophic 

predicate: 

𝒫(X) = “X is a neutrosophic logician”, 

where X is a human being from our planet. 

The neutrosophic truth-value of 𝒫(X) is (tx, ix, fx), 

where tx, ix, fx are subsets of the interval [0,1]. 

The universe of discourse is formed by all 

human beings from Earth. 

The predicate “is a neutrosophic logician” takes 

one variable, “X”. We can extend it to n-variables, 

n ≥ 2: 

A(X1, X2, …, Xn) = “X1, and X2, and … and Xn are 

logicians”, whose neutrosophic truth-value is  

1 2 1 2 1 2, ,..., , ,..., , ,...,( , , ) [0,1] [0,1] [0,1]
n n nX X X X X X X X Xt i f    . 
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XII.1.4. Neutrosophic Quantifiers 

XII.1.4.1. Neutrosophic Existential Quantifier. 

Let 𝒰  be the universal set, representing all 

faculty from the University Alpha. 

∃𝑥𝒫(𝑋) = “There exists a faculty 𝑥 ∈ 𝒰 such that 

X is a neutrosophic logician”. 

But at the University Alpha there may be faculty 

that work part-time, full-time, or even over-time. 

Thus, the neutrosophic truth-value of the 

variable proposition “∃𝑥𝒫(𝑋)” may be <1, or >1, 

with respect to some of its neutrosophic 

components 𝑡∃𝑥 , 𝑖∃𝑥 , 𝑓∃𝑓. 

XII.1.4.2. Neutrosophic Universal Quantifier. 

∀𝑥𝒫(𝑥) = “Any faculty 𝑥 ∈ 𝒰  is a neutrosophic 

logician”. 

Similarly, the neutrosophic truth-value of the 

variable proposition “∀𝑥𝒫(𝑥)” is (𝑡∀𝑥 , 𝑖∀𝑥 , 𝑓∀𝑥), where 

each component may be above 1, equal to 1, or 

below 1. 
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XII.2. Neutrosophic Decidability System 

An incomplete system of axioms gives birth to 

a partial theory. 

But, if we introduce two contradictory axioms 

into an axiomatic system, we get a contradictory 

system.  

A neutrosophic axiomatic system is a system 

that contains at least a (𝑡, 𝑖, 𝑓) ≠ (1, 0, 0)  axiom, 

meaning an axiom that is not 100% true, or at least 

two axioms that have a non-null degree of 

contradiction. 

A proposition in a neutrosophic axiomatic 

system has some degree of decidability (d), some 

degree of indeterminate-decidability (i), and some 

degree of undecidability (u), i.e. it is a (𝑑, 𝑖, 𝑢) -

decidable proposition, where d, i, u ⊆ [0, 1]. 

We can introduce tresholds for decidability 

( 𝑡𝑟𝑒𝑠𝑑 ), indeterminate-decidability ( 𝑡𝑟𝑒𝑠𝑖 ), and 

undecidability (𝑡𝑟𝑒𝑠𝑢) respectively, or 𝑑 ≥ 𝑡𝑟𝑒𝑠𝑑, 𝑖 ≤

𝑡𝑟𝑒𝑠𝑖 , and 𝑢 ≤ 𝑡𝑟𝑒𝑠𝑢  respectively {when 𝑑, 𝑖, 𝑢  are 

crisp numbers in [0, 1]}; but if d, i, u are subsets 

of [0, 1], we may consider either sup(d), sup(i), 
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sup(u), or mid(d), mid(i), mid(u), with mid(.) being 

the midpoint of the set, or other function-values, 

as 𝑓(𝑑), 𝑓(𝑖), 𝑓(𝑢)  respectively, depending on the 

application, where 𝑓:𝒫([0, 1]) → [0, 1],  and  𝒫([0, 1]) 

is the set of all subsets of [0, 1]. 
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XII.3. Neutrosophic Modal Logic 

Abstract.  

We introduce now for the first time the 

neutrosophic modal logic. The Neutrosophic 

Modal Logic includes the neutrosophic operators 

that express the modalities. It is an extension of 

neutrosophic predicate logic and of neutrosophic 

propositional logic. 

XII.3.1. Introduction. 

The paper extends the fuzzy modal logic [1, 2, 

and 4], fuzzy environment [3] and neutrosophic 

sets, numbers and operators [5 – 12], together 

with the last developments of the neutrosophic 

environment {including (t,i,f)-neutrosophic algeb-

raic structures, neutrosophic triplet structures, 

and neutrosophic overset / underset / offset} [13 

- 15] passing through the symbolic neutrosophic 

logic [16], ultimately to neutrosophic modal logic. 

This paper also answers Rivieccio’s question on 

neutrosophic modalities. 

All definitions, sections, and notions in-

troduced in this paper were never done before, 
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neither in my previous work nor in other 

researchers’. 

Therefore, we introduce now the Neutrosophic 

Modal Logic and the Refined Neutrosophic Modal 

Logic. Then we can extend them to Symbolic 

Neutrosophic Modal Logic and Refined Symbolic 

Neutrosophic Modal Logic, using labels instead of 

numerical values. 

There is a large variety of neutrosophic modal 

logics, as actually happens in classical modal logic 

too. Similarly, the neutrosophic accessibility 

relation and possible neutrosophic worlds have 

many interpretations, depending on each par-

ticular application. Several neutrosophic modal 

applications are also listed. 

Due to numerous applications of neutrosophic 

modal logic (see the examples throughout the 

paper), the introduction of the neutrosophic 

modal logic was needed. 

Neutrosophic Modal Logic is a logic where some 

neutrosophic modalities have been included. 

Let 𝒫 be a neutrosophic proposition. We have 

the following types of neutrosophic modalities: 
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I. Neutrosophic Alethic Modalities 

(related to truth) has three neutros-

ophic operators: 

Neutrosophic Possibility: It is neutros-

ophically possible that 𝒫. 

Neutrosophic Necessity: It is neutros-

ophically necessary that 𝒫. 

Neutrosophic Impossibility: It is neutros-

ophically impossible that 𝒫. 

II. Neutrosophic Temporal Modalities 

(related to time) 

It was the neutrosophic case that 𝒫. 

It will neutrosophically be that 𝒫. 

And similarly: 

It has always neutrosophically been that 

𝒫. 

It will always neutrosophically be that 𝒫. 

III. Neutrosophic Epistemic Modalities 

(related to knowledge): 

It is neutrosophically known that 𝒫. 

IV. Neutrosophic Doxastic Modalities 

(related to belief): 

It is neutrosophically believed that 𝒫. 
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V. Neutrosophic Deontic Modalities: 

It is neutrosophically obligatory that 𝒫. 

It is neutrosophically permissible that 𝒫. 

XII.3.2. Neutrosophic Alethic Modal 

Operators 

The modalities used in classical (alethic) modal 

logic can be neutrosophicated by inserting the 

indeterminacy. 

We insert the degrees of possibility and degrees 

of necessity, as refinement of classical modal 

operators. 

XII.3.3. Neutrosophic Possibility Operator. 

The classical Possibility Modal Operator «◊ 𝑃» 

meaning «It is possible that P» is extended to 

Neutrosophic Possibility Operator: ◊𝑁 𝒫  meaning 

«It is (t, i, f)-possible that 𝒫 », using Neutrosophic 

Probability, where «(t, i, f)-possible» means t % 

possible (chance that 𝒫 occurs), i % indeterminate 

(indeterminate-chance that 𝒫  occurs), and f % 

impossible (chance that 𝒫 does not occur). 

If 𝒫(𝑡𝑝, 𝑖𝑝, 𝑓𝑝) is a neutrosophic proposition, with 

𝑡𝑝, 𝑖𝑝, 𝑓𝑝  subsets of [0, 1], then the neutrosophic 
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truth-value of the neutrosophic possibility 

operator is: 

◊𝑁 𝒫 = (sup(𝑡𝑝), inf(𝑖𝑝), inf(𝑓𝑝)),   (1) 

which means that if a proposition P is 𝑡𝑝 true, 𝑖𝑝 

indeterminate, and 𝑓𝑝 false, then the value of the 

neutrosophic possibility operator ◊𝑁 𝒫  is: sup(𝑡𝑝) 

possibility, inf(𝑖𝑝)  indeterminate-possibility, and 

inf(𝑓𝑝) impossibility. 

For example. 

Let P = «It will be snowing tomorrow». 

According to the meteorological center, the 

neutrosophic truth-value of 𝒫 is: 

𝒫([0.5, 0.6], (0.2, 0.4), {0.3, 0.5}),  

i.e. [0.5, 0.6]  true, (0.2, 0.4)  indeterminate, and 

{0.3, 0.5} false. 

Then the neutrosophic possibility operator is: 

◊𝑁 𝒫 = (sup[0.5, 0.6], inf(0.2, 0.4), inf{0.3, 0.5}) =

(0.6, 0.2, 0.3), 

i.e. 0.6 possible, 0.2 indeterminate-possibility, 

and 0.3 impossible. 
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XII.3.4. Neutrosophic Necessity Operator 

The classical Necessity Modal Operator «□𝑃» 

meaning «It is necessary that P» is extended to 

Neutrosophic Necessity Operator: □𝑁𝒫 meaning «It 

is (t, i, f)-necessary that 𝒫  », using again the 

Neutrosophic Probability, where similarly «(t, i, f)-

necessity» means t % necessary (surety that 𝒫 

occurs), i % indeterminate (indeterminate-surety 

that 𝒫 occurs), and f % unnecessary (unsurely that 

𝒫 occurs). 

If 𝒫(𝑡𝑝, 𝑖𝑝, 𝑓𝑝) is a neutrosophic proposition, with 

𝑡𝑝, 𝑖𝑝, 𝑓𝑝  subsets of [0, 1], then the neutrosophic 

truth value of the neutrosophic necessity operator 

is: 

□𝑁𝒫 = (inf(𝑡𝑝), sup(𝑖𝑝), sup(𝑓𝑝)),   (2) 

which means that if a proposition 𝒫 is 𝑡𝑝 true, 𝑖𝑝 

indeterminate, and 𝑓𝑝 false, then the value of the 

neutrosophic necessity operator □𝑁𝒫  is: inf(𝑡𝑝) 

necessary, sup(𝑖𝑝)  indeterminate-necessity, and 

sup(𝑓𝑝) unnecessary. 

Taking the previous example: 
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𝒫  = «It will be snowing tomorrow», with 

𝒫([0.5, 0.6], (0.2, 0.4), {0.3, 0.5}),  

then the neutrosophic necessity operator is: 

□𝑁𝒫 = (inf[0.5, 0.6], sup(0.2, 0.4), sup{0.3, 0.5}) =

(0.5, 0.4, 0.5), 

i.e. 0.5 necessary, 0.4 indeterminate-necessity, 

and 0.5 unnecessary. 

XII.3.5. Other Possibility and Necessity 

Operators 

The previously defined neutrosophic pos-

sibility and respectively neutrosophic necessity 

operators, for 𝒫(𝑡𝑝, 𝑖𝑝, 𝑓𝑝) a neutrosophic propos-

ition, with 𝑡𝑝, 𝑖𝑝, 𝑓𝑝 subset-valued included in [0, 1], 

 ◊𝑁𝒫 = (sup(𝑡𝑝), inf(𝑖𝑝), inf(𝑓𝑝)), 

          □𝑁𝒫 = (inf(𝑡𝑝), sup(𝑖𝑝), sup(𝑓𝑝)),  

work quite well for subset-valued (including 

interval-valued) neutrosophic components, but 

they fail for single-valued neutrosophic com-

ponents because one gets ◊𝑁𝒫 = □𝑁𝒫. 

Depending on the applications, more 

possibility and necessity operators may be 

defined. 



Florentin Smarandache 

Neutrosophic Perspectives 

209 

Their definitions may work, mostly based on 

max / min / min for possibility operator and min 

/ max / max for necessity operator ( when dealing 

with single-valued neutrosophic components in 

[0, 1] ), or based on sup / inf / inf for possibility 

operator and inf / sup / sup for necessity operator 

( when dealing with interval-valued or more 

general with subset-valued of neutrosophic 

components included in [0, 1] ): 

For examples. 

Let 𝒫(𝑡𝑝, 𝑖𝑝, 𝑓𝑝) be a neutrosophic proposition, 

with 𝑡𝑝, 𝑖𝑝, 𝑓𝑝 single-valued of [0, 1], then the 

neutrosophic truth-value of the neutrosophic 

possibility operator is: 

◊𝑁 𝒫 = ( max{𝑡𝑝, 1-𝑓𝑝}, min{𝑖𝑝, 1-𝑖𝑝}, min{𝑓𝑝, 1- 𝑡𝑝} ) 

or 

◊𝑁 𝒫 = ( max{𝑡𝑝, 1-𝑡𝑝}, min{𝑖𝑝, 1-𝑖𝑝}, min{𝑓𝑝, 1- 𝑓𝑝} ) 

or  

◊𝑁 𝒫 = (1- 𝑓𝑝, 𝑖𝑝, 𝑓𝑝)  

{defined by Anas Al-Masarwah}. 

Let 𝒫(𝑡𝑝, 𝑖𝑝, 𝑓𝑝)  be a neutrosophic proposition, 

with 𝑡𝑝, 𝑖𝑝, 𝑓𝑝  single-valued of [0, 1], then the 

https://www.researchgate.net/profile/Anas_Al-Masarwah
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neutrosophic truth-value of the neutrosophic 

necessity operator is: 

□𝑁𝒫 = ( min{𝑡𝑝, 1-𝑓𝑝}, max{𝑖𝑝, 1-𝑖𝑝}, max{𝑓𝑝, 1- 𝑡𝑝} ) 

or 

 □𝑁𝒫 = ( min{𝑡𝑝, 1-𝑡𝑝}, max{𝑖𝑝, 1-𝑖𝑝}, max{𝑓𝑝, 1- 𝑓𝑝} ) 

or 

 □𝑁𝒫 = (𝑡𝑝, 𝑖𝑝, 1 − 𝑡𝑝)  

{defined by Anas Al-Masarwah}. 

The above six defined operators may be 

extended from single-valued numbers of [0, 1] to 

interval and subsets of [0, 1], by simply replacing 

the subtractions of numbers by subtractions of 

intervals or subsets, and “min” by “inf”, while 

“max” by “sup”. 

XII.3.6. Connection between Neutrosophic 

Possibility Operator and Neutrosophic 

Necessity Operator. 

In classical modal logic, a modal operator is 

equivalent to the negation of the other: 

◊ 𝑃 ↔ ¬□¬𝑃,     (3) 

□𝑃 ↔ ¬ ◊ ¬𝑃.     (4) 

https://www.researchgate.net/profile/Anas_Al-Masarwah
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In neutrosophic logic one has a class of 

neutrosophic negation operators. The most used 

one is: 

¬
𝑁𝑃
(𝑡, 𝑖, 𝑓) = 𝑃̅(𝑓, 1 − 𝑖, 𝑡),    (5) 

where t, i, f are real subsets of the interval [0, 1]. 

Let’s check what’s happening in the neutros-

ophic modal logic, using the previous example. 

One had:  

𝒫([0.5, 0.6], (0.2, 0.4), {0.3, 0.5}),  

then  

¬
𝑁𝒫 = 𝒫̅

({0.3, 0.5}, 1 − (0.2, 0.4), [0.5, 0.6]) = 

𝒫̅({0.3, 0.5}, 1 − (0.2, 0.4), [0.5, 0.6]) = 

𝒫̅({0.3, 0.5}, (0.6, 0.8), [0.5, 0.6]). 

Therefore, denoting by 
↔
𝑁

 the neutrosophic 

equivalence, one has: 

¬
𝑁
□
𝑁

¬
𝑁𝒫

([0.5, 0.6], (0.2, 0.4), {0.3, 0.5})
↔
𝑁

 

↔
𝑁

 It is not neutrosophically necessary that «It 

will not be snowing tomorrow» 

↔
𝑁

 It is not neutrosophically necessary that 

𝒫̅({0.3, 0.5}, (0.6, 0.8), [0.5, 0.6]) 
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↔
𝑁

 It is neutrosophically possible that 

¬
𝑁𝒫̅

({0.3, 0.5}, (0.6, 0.8), [0.5, 0.6]) 

↔
𝑁

 It is neutrosophically possible that 

𝒫([0.5, 0.6], 1 − (0.6, 0.8), {0.3, 0.5}) 

↔
𝑁

 It is neutrosophically possible that 

𝒫([0.5, 0.6], (0.2, 0.4), {0.3, 0.5}) 

↔
𝑁
◊
𝑁
𝒫([0.5, 0.6], (0.2, 0.4), {0.3, 0.5}) = (0.6, 0.2, 0.3). 

Let’s check the second neutrosophic equiv-

alence. 

¬
𝑁
◊
𝑁

¬
𝑁𝒫

([0.5, 0.6], (0.2, 0.4), {0.3, 0.5})
↔
𝑁

 

↔
𝑁

 It is not neutrosophically possible that «It 

will not be snowing tomorrow» 

↔
𝑁

 It is not neutrosophically possible that 

𝒫̅({0.3, 0.5}, (0.6, 0.8), [0.5, 0.6]) 

↔
𝑁

 It is neutrosophically necessary that 

¬
𝑁𝒫̅

({0.3, 0.5}, (0.6, 0.8), [0.5, 0.6]) 

↔
𝑁

 It is neutrosophically necessary that 

𝒫([0.5, 0.6], 1 − (0.6, 0.8), {0.3, 0.5}) 



Florentin Smarandache 

Neutrosophic Perspectives 

213 

↔
𝑁

 It is neutrosophically necessary that 

𝒫([0.5, 0.6], (0.2, 0.4), {0.3, 0.5}) 

↔
𝑁
□
𝑁
𝒫([0.5, 0.6], (0.2, 0.4), {0.3, 0.5}) = (0.6, 0.2, 0.3). 

XII.3.7. Neutrosophic Modal Equivalences  

Neutrosophic Modal Equivalences hold within a 

certain accuracy, depending on the definitions of 

neutrosophic possibility operator and neutros-

ophic necessity operator, as well as on the 

definition of the neutrosophic negation – emp-

loyed by the experts depending on each 

application. Under these conditions, one may 

have the following neutrosophic modal equiv-

alences: 

◊𝑁 𝒫(𝑡𝑝, 𝑖𝑝, 𝑓𝑝)
↔
𝑁

¬
𝑁
□
𝑁

¬
𝑁𝒫(𝑡𝑝, 𝑖𝑝, 𝑓𝑝)  (6) 

□𝑁𝒫(𝑡𝑝, 𝑖𝑝, 𝑓𝑝)
↔
𝑁

¬
𝑁
◊
𝑁

¬
𝑁𝒫(𝑡𝑝, 𝑖𝑝, 𝑓𝑝)  (7) 

For example, other definitions for the neutros-

ophic modal operators may be: 

◊𝑁 𝒫(𝑡𝑝, 𝑖𝑝, 𝑓𝑝) = (sup(𝑡𝑝), sup(𝑖𝑝), inf(𝑓𝑝)),  (8) 

or 

◊𝑁 𝒫(𝑡𝑝, 𝑖𝑝, 𝑓𝑝) = (sup(𝑡𝑝),
𝑖𝑝

2
, inf(𝑓𝑝)) etc.,  (9) 
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while 

□𝑁𝒫(𝑡𝑝, 𝑖𝑝, 𝑓𝑝) = (inf(𝑡𝑝), inf(𝑖𝑝), sup(𝑓𝑝)),  (10) 

or 

□𝑁𝒫(𝑡𝑝, 𝑖𝑝, 𝑓𝑝) = (inf(𝑡𝑝), 2𝑖𝑝 ∩ [0,1], sup(𝑓𝑝))  (11) 

etc. 

XII.3.8. Neutrosophic Truth Threshold 

In neutrosophic logic, first we have to 

introduce a neutrosophic truth threshold, 𝑇𝐻 =

〈𝑇𝑡ℎ , 𝐼𝑡ℎ , 𝐹𝑡ℎ〉, where 𝑇𝑡ℎ , 𝐼𝑡ℎ , 𝐹𝑡ℎ are subsets of [0, 1]. 

We use upper-case letters (T, I, F) in order to 

distinguish the neutrosophic components of the 

threshold from those of a proposition in general. 

We can say that the proposition 𝒫(𝑡𝑝, 𝑖𝑝, 𝑓𝑝) is 

neutrosophically true if: 

inf(𝑡𝑝) ≥ inf(𝑇𝑡ℎ) and sup(𝑡𝑝) ≥ sup(𝑇𝑡ℎ); (12) 

inf(𝑖𝑝) ≤ inf(𝐼𝑡ℎ) and sup(𝑡𝑝) ≤ sup(𝐼𝑡ℎ);  (13) 

inf(𝑓𝑝) ≤ inf(𝐹𝑡ℎ) and sup(𝑓𝑝) ≤ sup(𝐹𝑡ℎ).  (14) 

For the particular case when all 𝑇𝑡ℎ , 𝐼𝑡ℎ , 𝐹𝑡ℎ and 

𝑡𝑝, 𝑖𝑝, 𝑓𝑝  are single-valued numbers from the 

interval [0, 1], then one has: 
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The proposition 𝒫(𝑡𝑝, 𝑖𝑝, 𝑓𝑝)  is neutrosophically 

true if: 

𝑡𝑝 ≥ 𝑇𝑡ℎ; 

𝑖𝑝 ≤ 𝐼𝑡ℎ; 

𝑓𝑝 ≤ 𝐹𝑡ℎ. 

The neutrosophic truth threshold is established 

by experts in accordance to each application. 

XII.3.9. Neutrosophic Semantics. 

Neutrosophic Semantics of the Neutrosophic 

Modal Logic is formed by a neutrosophic frame 𝐺𝑁, 

which is a non-empty neutrosophic set, whose 

elements are called possible neutrosophic worlds, 

and a neutrosophic binary relation ℛ𝑁 , called 

neutrosophic accesibility relation, between the 

possible neutrosophic worlds. By notation, one 

has: 

〈𝐺𝑁 , ℛ𝑁〉. 

A neutrosophic world 𝑤′𝑁  that is neutros-

ophically accessible from the neutrosophic world 

𝑤𝑁 is symbolized as: 

𝑤𝑁ℛ𝑁𝑤′𝑁 . 
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In a neutrosophic model each neutrosophic 

proposition 𝒫  has a neutrosophic truth-value 

(𝑡𝑤𝑁 , 𝑖𝑤𝑁 , 𝑓𝑤𝑁)  respectively to each neutrosophic 

world 𝑤𝑁 ∈ 𝐺𝑁, where 𝑡𝑤𝑁 , 𝑖𝑤𝑁 , 𝑓𝑤𝑁 are subsets of [0, 

1]. 

A neutrosophic actual world can be similarly 

noted as in classical modal logic as 𝑤𝑁 ∗ . 

Formalization 

Let 𝑆𝑁  be a set of neutrosophic propositional 

variables. 

XII.3.10. Neutrosophic Formulas. 

1. Every neutrosophic propositional variable 

𝒫 ∈ 𝑆𝑁 is a neutrosophic formula. 

2. If A, B are neutrosophic formulas, then 

¬
𝑁𝐴, 

𝐴
∧
𝑁
𝐵 , 𝐴

∨
𝑁
𝐵 , 𝐴

→
𝑁
𝐵 , 𝐴

↔
𝑁
𝐵 , and 

◊
𝑁
𝐴 , 

□
𝑁
𝐴 , are also 

neutrosophic formulas, where 

¬
𝑁, 

∧
𝑁

, 
∨
𝑁

, 
→
𝑁

, 
↔
𝑁

, and 

◊
𝑁

, 
□
𝑁

represent the neutrosophic negation, neutros-

ophic intersection, neutrosophic union, neutros-

ophic implication, neutrosophic equivalence, and 

neutrosophic possibility operator, neutrosophic 

necessity operator respectively. 
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XII.3.11. Accesibility Relation in a 

Neutrosophic Theory. 

Let 𝐺𝑁 be a set of neutrosophic worlds 𝑤𝑁 such 

that each 𝑤𝑁  chracterizes the propositions 

(formulas) of a given neutrosophic theory 𝜏. 

We say that the neutrosophic world 𝑤′𝑁  is 

accesible from the neutrosophic world 𝑤𝑁, and we 

write: 𝑤𝑁ℛ𝑁𝑤′𝑁  or ℛ𝑁(𝑤𝑁 , 𝑤′𝑁), if for any propos-

ition (formula) 𝒫 ∈ 𝑤𝑁, meaning the neutrosophic 

truth-value of 𝒫 with respect to 𝑤𝑁 is 

𝒫(𝑡𝑝
𝑤𝑁 , 𝑖𝑝

𝑤𝑁 , 𝑓𝑝
𝑤𝑁), 

one has the neutrophic truth-value of 𝒫  with 

respect to 𝑤′𝑁 

𝒫(𝑡𝑝
𝑤′𝑁 , 𝑖𝑝

𝑤′𝑁 , 𝑓𝑝
𝑤′𝑁), 

where 

inf(𝑡𝑝
𝑤′𝑁) ≥ inf(𝑡𝑝

𝑤𝑁) and sup(𝑡𝑝
𝑤′𝑁) ≥ sup(𝑡𝑝

𝑤𝑁);  (15) 

inf(𝑖𝑝
𝑤′𝑁) ≤ inf(𝑖𝑝

𝑤𝑁) and sup(𝑖𝑝
𝑤′𝑁) ≤ sup(𝑖𝑝

𝑤𝑁);  (16) 

inf(𝑓𝑝
𝑤′𝑁) ≤ inf(𝑓𝑝

𝑤𝑁) and sup(𝑓𝑝
𝑤′𝑁) ≤ sup(𝑓𝑝

𝑤𝑁) (17) 

(in the general case when 𝑡𝑝
𝑤𝑁 , 𝑖𝑝

𝑤𝑁 , 𝑓𝑝
𝑤𝑁  and 

𝑡𝑝
𝑤′𝑁 , 𝑖𝑝

𝑤′𝑁 , 𝑓𝑝
𝑤′𝑁  are subsets of the interval [0, 1]). 
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But in the instant of 𝑡𝑝
𝑤𝑁 , 𝑖𝑝

𝑤𝑁 , 𝑓𝑝
𝑤𝑁  and 

𝑡𝑝
𝑤′𝑁 , 𝑖𝑝

𝑤′𝑁 , 𝑓𝑝
𝑤′𝑁  as single-values in [0, 1], the above 

inequalities become: 

𝑡𝑝
𝑤′𝑁 ≥ 𝑡𝑝

𝑤𝑁 ,      (18) 

𝑖𝑝
𝑤′𝑁 ≤ 𝑖𝑝

𝑤𝑁 ,      (19) 

𝑓𝑝
𝑤′𝑁 ≤ 𝑓𝑝

𝑤𝑁 .     (20) 

XII.3.12. Applications. 

If the neutrosophic theory 𝜏  is the Neutros-

ophic Mereology, or Neutrosophic Gnosisology, or 

Neutrosophic Epistemology etc., the neutrosophic 

accesibility relation is defined as above. 

XII.3.13. Neutrosophic n-ary Accesibility 

Relation. 

We can also extend the classical binary 

accesibility relation ℛ  to a neutrosophic n-ary 

accesibility relation 

ℛ𝑁
(𝑛)

, for n integer ≥ 2. 

Instead of the classical 𝑅(𝑤,𝑤′), which means 

that the world 𝑤′ is accesible from the world 𝑤, we 

generalize it to: 

ℛ𝑁
(𝑛)
(𝑤1𝑁 , 𝑤2𝑁 , … , 𝑤𝑛𝑁; 𝑤𝑁

′ ), 
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which means that the neutrosophic world 𝑤𝑁
′
 is 

accesible from the neutrosophic worlds 

𝑤1𝑁 , 𝑤2𝑁 , … , 𝑤𝑛𝑁 all together. 

XII.3.14. Neutrosophic Kripke Frame. 

𝑘𝑁 = 〈𝐺𝑁 , 𝑅𝑁〉  is a neutrosophic Kripke frame, 

since: 

𝑖. 𝐺𝑁 is an arbitrary non-empty neutrosophic set 

of neutrosophic worlds, or neutrosophic states, or 

neutrosophic situations. 

𝑖𝑖. 𝑅𝑁 ⊆ 𝐺𝑁 × 𝐺𝑁  is a neutrosophic accesibility 

relation of the neutrosophic Kripke frame. 

Actually, one has a degree of accessibility, degree 

of indeterminacy, and a degree of non-acces-

sibility. 

XII.3.15. Neutrosophic (t, i, f)-Assignement. 

The Neutrosophic (t, i, f)-Assignement is a 

neutrosophic mapping 

𝑣𝑁: 𝑆𝑁 × 𝐺𝑁 → [0,1] ⨯ [0,1] ⨯ [0,1]   (21) 

where, for any neutrosophic proposition 𝒫 ∈ 𝑆𝑁 

and for any neutrosophic world 𝑤𝑁 , one defines:  

𝑣𝑁(𝑃,  𝑤𝑁) = (𝑡𝑝
𝑤𝑁 , 𝑖𝑝

𝑤𝑁 , 𝑓𝑝
𝑤𝑁) ∈ [0,1] ⨯ [0,1] ⨯ [0,1] (22) 
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which is the neutrosophical logical truth value of 

the neutrosophic proposition 𝒫  in the neutros-

ophic world 𝑤𝑁. 

XII.3.16. Neutrosophic Deducibility. 

We say that the neutrosophic formula 𝒫  is 

neutrosophically deducible from the neutros-

ophic Kripke frame 𝑘𝑁, the neutrosophic (t, i, f) – 

assignment 𝑣𝑁 , and the neutrosophic world 𝑤𝑁 , 

and we write as: 

𝑘𝑁 , 𝑣𝑁 , 𝑤𝑁 
⊨
𝑁
 𝒫.     (23) 

Let’s make the notation: 

𝛼𝑁(𝒫; 𝑘𝑁 , 𝑣𝑁 , 𝑤𝑁) 

that denotes the neutrosophic logical value that 

the formula 𝒫  takes with respect to the 

neutrosophic Kripke frame 𝑘𝑁 , the neutrosophic 

(t, i, f)-assignment 𝑣𝑁, and the neutrosphic world 

𝑤𝑁. 

We define 𝛼𝑁 by neutrosophic induction: 

1. 𝛼𝑁(𝒫; 𝑘𝑁 , 𝑣𝑁 , 𝑤𝑁) 
𝑑𝑒𝑓
=
 𝑣𝑁(𝒫,𝑤𝑁)  if 𝒫 ∈ 𝑆𝑁  and 

𝑤𝑁 ∈ 𝐺𝑁. 

2. 𝛼𝑁 (
¬
𝑁𝒫; 𝑘𝑁 , 𝑣𝑁 , 𝑤𝑁)

𝑑𝑒𝑓
=
 
¬
𝑁
[𝛼𝑁(𝒫; 𝑘𝑁 , 𝑣𝑁 , 𝑤𝑁)]. 
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3. 𝛼𝑁 (𝒫
∧
𝑁
𝑄; 𝑘𝑁 , 𝑣𝑁 , 𝑤𝑁) 

𝑑𝑒𝑓
=
 [𝛼𝑁(𝒫; 𝑘𝑁 , 𝑣𝑁 , 𝑤𝑁)]

∧
𝑁

 

[𝛼𝑁(𝑄; 𝑘𝑁 , 𝑣𝑁 , 𝑤𝑁)] 

4. 𝛼𝑁 (𝒫
∨
𝑁
𝑄; 𝑘𝑁 , 𝑣𝑁 , 𝑤𝑁) 

𝑑𝑒𝑓
=
 [𝛼𝑁(𝒫; 𝑘𝑁 , 𝑣𝑁 , 𝑤𝑁)]

∨
𝑁

 

[𝛼𝑁(𝑄; 𝑘𝑁 , 𝑣𝑁 , 𝑤𝑁)] 

5. 𝛼𝑁 (𝒫
→
𝑁
𝑄; 𝑘𝑁 , 𝑣𝑁 , 𝑤𝑁) 

𝑑𝑒𝑓
=
 [𝛼𝑁(𝒫; 𝑘𝑁 , 𝑣𝑁 , 𝑤𝑁)]

→
𝑁

 

[𝛼𝑁(𝑄; 𝑘𝑁 , 𝑣𝑁 , 𝑤𝑁)] 

6. 𝛼𝑁 (
◊
𝑁
𝒫; 𝑘𝑁 , 𝑣𝑁 , 𝑤𝑁) 

𝑑𝑒𝑓
=
 〈sup, inf, inf〉{𝛼𝑁(𝒫; 𝑘𝑁 , 𝑣𝑁 , 𝑤

′
𝑁),

𝑤′ ∈ 𝐺𝑁 and 𝑤𝑁𝑅𝑁𝑤′𝑁}. 

7. 𝛼𝑁 (
□
𝑁
𝒫; 𝑘𝑁 , 𝑣𝑁 , 𝑤𝑁)

𝑑𝑒𝑓
=
〈inf, sup, sup〉{𝛼𝑁(𝒫; 𝑘𝑁 , 𝑣𝑁 , 𝑤

′
𝑁),

𝑤𝑁
′ ∈ 𝐺𝑁 and 𝑤𝑁𝑅𝑁𝑤′𝑁}. 

8. ⊨
𝑁
𝒫  if and only if 𝑤𝑁 ∗⊨ 𝒫  (a formula 𝒫  is 

neutrosophically deducible if and only if 𝒫 

is neutrosophically deducible in the actual 

neutrosophic world). 

We should remark that 𝛼𝑁 has a degree of truth 

(𝑡𝛼𝑁) , a degree of indeterminacy (𝑖𝛼𝑁) , and a 
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degree of falsehood (𝑓𝛼𝑁), which are in the general 

case subsets of the interval [0, 1]. 

Applying 〈sup, inf, inf〉  to 𝛼𝑁  is equivalent to 

calculating: 

〈sup(𝑡𝛼𝑁), inf(𝑖𝛼𝑁), inf(𝑓𝛼𝑁)〉, 

and similarly  

〈inf, sup, sup〉𝛼𝑁 = 〈inf(𝑡𝛼𝑁), sup(𝑖𝛼𝑁), sup(𝑓𝛼𝑁)〉. 

XII.3.17. Refined Neutrosophic Modal 

Single-Valued Logic 

Using neutrosophic (t, i, f) - thresholds, we 

refine for the first time the neutrosophic modal 

logic as: 

XII.3.17.1. Refined Neutrosophic Possibility 

Operator. 

◊1
𝑁
𝒫(𝑡,𝑖,𝑓) = «It is very little possible (degree of 

possibility 𝑡1)  that  𝒫 », corresponding to the 

threshold (𝑡1, 𝑖1, 𝑓1), i.e. 0 ≤ 𝑡 ≤ 𝑡1, 𝑖 ≥ 𝑖1, 𝑓 ≥ 𝑓1, for 

𝑡1 a very little number in [0, 1]; 

◊2
𝑁
𝒫(𝑡,𝑖,𝑓) =  «It is little possible (degree of pos-

sibility 𝑡2) that 𝒫», corresponding to the threshold 

(𝑡2, 𝑖2, 𝑓2), i.e. 𝑡1 < 𝑡 ≤ 𝑡2, 𝑖 ≥ 𝑖2 > 𝑖1, 𝑓 ≥ 𝑓2 > 𝑓1; 
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… … …  

and so on; 

◊𝑚
𝑁
𝒫(𝑡,𝑖,𝑓) =  «It is possible (with a degree of 

possibility 𝑡𝑚)  that  𝒫 », corresponding to the 

threshold (𝑡𝑚, 𝑖𝑚, 𝑓𝑚), i.e. 𝑡𝑚−1 < 𝑡 ≤ 𝑡𝑚 , 𝑖 ≥ 𝑖𝑚 > 𝑖𝑚−1 , 

𝑓 ≥ 𝑓𝑚 > 𝑓𝑚−1. 

XII.3.17.2. Refined Neutrosophic Necessity 

Operator. 

□1
𝑁
𝒫(𝑡,𝑖,𝑓) =  «It is a small necessity (degree of 

necessity 𝑡𝑚+1) that 𝒫», i.e. 𝑡𝑚 < 𝑡 ≤ 𝑡𝑚+1, 𝑖 ≥ 𝑖𝑚+1 ≥

𝑖𝑚, 𝑓 ≥ 𝑓𝑚+1 > 𝑓𝑚; 
□2
𝑁
𝒫(𝑡,𝑖,𝑓) = «It is a little bigger necessity (degree 

of necessity 𝑡𝑚+2) that  𝒫», i.e. 𝑡𝑚+1 < 𝑡 ≤ 𝑡𝑚+2 , 𝑖 ≥

𝑖𝑚+2 > 𝑖𝑚+1, 𝑓 ≥ 𝑓𝑚+2 > 𝑓𝑚+1; 

… … …  

and so on; 

□𝑘
𝑁
𝒫(𝑡,𝑖,𝑓) = «It is a very high necessity (degree of 

necessity 𝑡𝑚+𝑘)  that  𝒫», i.e. 𝑡𝑚+𝑘−1 < 𝑡 ≤ 𝑡𝑚+𝑘 = 1 , 

𝑖 ≥ 𝑖𝑚+𝑘 > 𝑖𝑚+𝑘−1, 𝑓 ≥ 𝑓𝑚+𝑘 > 𝑓𝑚+𝑘−1. 
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XII.3.18. Application of the Neutrosophic 

Threshold. 

We have introduced the term of (t, i, f)-physical 

law, meaning that a physical law has a degree of 

truth (t), a degree of indeterminacy (i), and a 

degree of falsehood (f). A physical law is 100% 

true, 0% indeterminate, and 0% false in perfect 

(ideal) conditions only, maybe in laboratory. 

But our actual world (𝑤𝑁 ∗) is not perfect and 

not steady, but continously changing, varying, 

fluctuating. 

For example, there are physicists that have 

proved a universal constant (c) is not quite 

universal (i.e. there are special conditions where 

it does not apply, or its value varies between (𝑐 −

𝜀, 𝑐 + 𝜀), for 𝜀 > 0 that can be a tiny or even a bigger 

number). 

Thus, we can say that a proposition 𝒫 is neut-

rosophically nomological necessary, if 𝒫  is 

neutrosophically true at all possible neutrosophic 

worlds that obey the (t, i, f)-physical laws of the 

actual neutrosophic world 𝑤𝑁 ∗. 
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In other words, at each possible neutrosophic 

world 𝑤𝑁 ,  neutrosophically accesible from 𝑤𝑁 ∗ , 

one has: 

𝒫(𝑡𝑝
𝑤𝑁 , 𝑖𝑝

𝑤𝑁 , 𝑓𝑝
𝑤𝑁) ≥ 𝑇𝐻(𝑇𝑡ℎ , 𝐼𝑡ℎ , 𝐹𝑡ℎ),  (24) 

i.e. 𝑡𝑝
𝑤𝑁 ≥ 𝑇𝑡ℎ, 𝑖𝑝

𝑤𝑁 ≤ 𝐼𝑡ℎ, and 𝑓𝑝
𝑤𝑁 ≥ 𝐹𝑡ℎ.  (25) 

XII.3.19. Neutrosophic Mereology 

Neutrosophic Mereology means the theory of 

the neutrosophic relations among the parts of a 

whole, and the neutrosophic relations between 

the parts and the whole. 

A neutrosophic relation between two parts, and 

similarly a neutrosophic relation between a part 

and the whole, has a degree of connectibility (t), a 

degree of indeterminacy (i), and a degree of 

disconnectibility (f). 

XII.3.20. Neutrosophic Mereological 

Threshold 

Neutrosophic Mereological Threshold is def-

ined as: 

(min( ),max( ),max( ))M M M MTH t i f   (26) 
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where 𝑡𝑀 is the set of all degrees of con-nectibility 

between the parts, and between the parts and the 

whole; 

𝑖𝑀  is the set of all degrees of indeterminacy 

between the parts, and between the parts and the 

whole; 

𝑓𝑀 is the set of all degrees of disconnectibility 

between the parts, and between the parts and the 

whole. 

We have considered all degrees as single-valued 

numbers. 

XII.3.21. Neutrosophic Gnosisology   

Neutrosophic Gnosisology is the theory of (t, i, 

f)-knowledge, because in many cases we are not 

able to completely (100%) find whole knowledge, 

but only a part of it (t %), another part remaining 

unknown (f %), and a third part indeterminate 

(unclear, vague, contradictory) (i %), where t, i, f 

are subsets of the interval [0, 1]. 
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XII.3.22. Neutrosophic Gnosisological 

Threshold 

Neutrosophic Gnosisological Threshold is 

defined, similarly, as: 

(min( ),max( ),max( ))G G G GTH t i f
  (27) 

where 𝑡𝐺 is the set of all degrees of knowledge of 

all theories, ideas, propositions etc., 

𝑖𝐺  is the set of all degrees of indeterminate-

knowledge of all theories, ideas, propositions etc., 

𝑓𝐺 is the set of all degrees of non-knowledge of 

all theories, ideas, propositions etc. 

We have considered all degrees as single-valued 

numbers. 

XII.3.23. Neutrosophic Epistemology 

And Neutrosophic Epistemology, as part of the 

Neutrosophic Gnosisology, is the theory of (t, i, f)-

scientific knowledge. Science is infinite. We know 

only a small part of it (t%), another big part is yet 

to be discovered (f%), and a third part 

indeterminate (unclear, vague, contradictory) (i%). 

Of course, t, i, f are subsets of [0, 1]. 
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XII.3.24. Neutrosophic Epistemological 

Threshold 

Neutrosophic Epistemological Threshold is 

defined as: 

(min( ),max( ),max( ))E E E ETH t i f   (28) 

where 𝑡𝐸  is the set of all degrees of scientific 

knowledge of all scientific theories, ideas, 

propositions etc., 

𝑖𝐸  is the set of all degrees of indeterminate 

scientific knowledge of all scientific theories, 

ideas, propositions etc., 

𝑓𝐸  is the set of all degrees of non-scientific 

knowledge of all scientific theories, ideas, 

propositions etc. 

We have considered all degrees as single-valued 

numbers. 

XII.3.25. Conclusions. 

We have introduced for the first time the 

Neutrosophic Modal Logic and the Refined 

Neutrosophic Modal Logic.  

Symbolic Neutrosophic Logic can be connected 

to the neutrosophic modal logic too, where 
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instead of numbers we may use labels, or instead 

of quantitative neutrosophic logic we may have a 

quantitative neutrosophic logic. As an extension, 

we may introduce Symbolic Neutrosophic Modal 

Logic and Refined Symbolic Neutrosophic Modal 

Logic, where the symbolic neutrosophic modal 

operators (and the symbolic neutrosophic 

accessibility relation) have qualitative values 

(labels) instead on numerical values (subsets of 

the interval [0, 1]). 

Applications of neutrosophic modal logic are to 

neutrosophic modal metaphysics. Similarly to 

classical modal logic, there is a plethora of 

neutrosophic modal logics. Neutrosophic modal 

logics is governed by a set of neutrosophic axioms 

and neutrosophic rules. The neutrosophic 

accessibility relation has various interpretations, 

depending on the applications. Similarly, the 

notion of possible neutrosophic worlds has many 

interpretations, as part of possible neutrosophic 

semantics. 
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XII.4. Neutrosophic Hedge Algebras 

Abstract 

We introduce now for the first time the 

neutrosophic hedge algebras as an extension of 

classical hedge algebras, together with an 

application of neutrosophic hedge algebras. 

XII.4.1. Introduction 

The classical hedge algebras deal with 

linguistic variables. In neutrosophic environment 

we have introduced the neutrosophic linguistic 

variables. We have defined neutrosophic partial 

relationships between single-valued neutrosophic 

numbers. Neutrosophic operations are used in 

order to aggregate the neutrosophic linguistic 

values. 

XII.4.2. Materials and Methods  

We introduce now, for the first time, the 

Neutrosophic Hedge Algebras, as extension of 

classical Hedge Algebras. 

Let's consider a Linguistic Variable: 
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with 𝐷𝑜𝑚(𝑥) as the word domain of 𝑥, whose each 

element is a word (label), or string of words. 

Let 𝒜 be an attribute that describes the value of 

each element 𝑥 ∈ 𝐷𝑜𝑚(𝑥), as follows: 

𝒜:𝐷𝑜𝑚(𝑥) → [0, 1]3.    (1) 

𝒜(𝑥) is the neutrosophic value of 𝑥 with respect 

to this attribute: 

𝐴(𝑥) = 〈𝑡𝑥 , 𝑖𝑥 , 𝑓𝑥〉,      (2) 

where 𝑡𝑥 , 𝑖𝑥 , 𝑓𝑥 ∈ [0, 1], such that 

– 𝑡𝑥 means the degree of value of 𝑥; 

– 𝑖𝑥 means the indeterminate degree of 

value of 𝑥; 

– 𝑓𝑥 means the degree of non-value of 𝑥. 

We may also use the notation: 𝑥〈𝑡𝑥 , 𝑖𝑥 , 𝑓𝑥〉. 

A neutrosophic partial relationship ≤𝑁  on 

𝐷𝑜𝑚(𝑥), defined as follows: 

𝑥〈𝑡𝑥 , 𝑖𝑥 , 𝑓𝑥〉 ≤𝑁 𝑦〈𝑡𝑦 , 𝑖𝑦, 𝑓𝑦〉,    (3) 

if and only if 𝑡𝑥 ≤ 𝑡𝑦, and 𝑖𝑥 ≥ 𝑖𝑦, 𝑓𝑥 ≥ 𝑓𝑦. 

Therefore, (𝐷𝑜𝑚(𝑥), ≤𝑁)  becomes a neutros-

ophic partial order set (or neutrosophic poset), 

and ≤𝑁 is called a neutrosophic inequality. 

Let 𝐶 = {0,𝑤, 1}  be a set of constants, 𝐶 ⊂

𝐷𝑜𝑚(𝑥), where: 
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– 0 = the least element, or 0〈0,1,1〉; 

– w = the neutral (middle) element, or 

𝑤〈0.5,0.5,0.5〉; 

– and 1 = the greatest element, or 1〈1,0,0〉. 

Let 𝐺  be a word-set of two neutrosophic 

generators, 𝐺 ⊂ 𝐷𝑜𝑚(𝑥) , qualitatively a negative 

primary neutrosophic term (denoted 𝑔−), and the 

other one that is qualitatively a positive primary 

neutrosophic term (denoted 𝑔+), such that: 

0 ≤𝑁 𝑔
− ≤𝑁 𝑤 ≤𝑁 𝑔

+ ≤𝑁 1,   (4) 

or transcribed using the neutrosophic com-

ponents: 

0〈0,1,1〉 ≤𝑁 𝑔
−
〈𝑡𝑔− ,𝑖𝑔− ,𝑓𝑔−〉

≤𝑁 𝑤〈0.5,0.5,0.5〉 

≤𝑁 𝑔
+
〈𝑡
𝑔+
,𝑖
𝑔+
,𝑓
𝑔+
〉 ≤𝑁 1〈1,0,0〉, 

where 

– 0 ≤ 𝑡𝑔− ≤ 0.5 ≤ 𝑡𝑔+ ≤ 1  (here there are 

classical inequalities) 

– 1 ≥ 𝑖𝑔− ≥ 0.5 ≥ 𝑖𝑔+ ≥ 0, and 

– 1 ≥ 𝑓𝑔− ≥ 0.5 ≥ 𝑓𝑔+ ≥ 0. 

Let 𝐻 ⊂ 𝐷𝑜𝑚(𝑥)  be the set of neutrosophic 

hedges, regarded as unary operations. Each hedge 

ℎ ∈ 𝐻  is a functor, or comparative particle for 
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adjectives and adverbs as in the natural language 

(English). 

ℎ: 𝐷𝑜𝑚(𝑥) → 𝐷𝑜𝑚(𝑥)  

𝑥 → ℎ(𝑥).      (5) 

Instead of ℎ(𝑥) one easily writes ℎ𝑥 to be closer 

to the natural language. 

By associating the neutrosophic components, 

one has: 

ℎ〈𝑡ℎ,𝑖ℎ,𝑓ℎ〉𝑥〈𝑡𝑥,𝑖𝑥,𝑓𝑥〉. 

A hedge applied to 𝑥 may increase, decrease, or 

approximate the neutrosophic value of the 

element 𝑥. 

There also exists a neutrosophic identity 𝐼 ∈

𝐷𝑜𝑚(𝑥), denoted 𝐼〈0,0,0〉 that does not hange on the 

elements: 

𝐼〈0,0,0〉𝑥〈𝑡𝑥,𝑖𝑥,𝑓𝑥〉. 

In most cases, if a hedge increases / decreases 

the neutrosophic value of an element 𝑥 situated 

above the neutral element 𝑤, the same hedge does 

the opposite, decreases / increases the 

neutrosophic value of an element 𝑦  situated 

below the neutral element 𝑤. 

And reciprocally. 
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If a hedge approximates the neutrosophic 

value, by diminishing it, of an element 𝑥 situated 

above the neutral element 𝑤, then it approximates 

the neutrosophic value, by enlarging it, of an 

element 𝑦 situated below the neutral element 𝑤. 

Let's refer the hedges with respect to the upper 

part (⊔), above the neutral element, since for the 

lower part (L) it will automatically be the opposite 

effect. 

We split de set of hedges into three disjoint 

subsets: 

– 𝐻⊔
+

 = the hedges that increase the 

neutrosophic value of the upper 

elements; 

– 𝐻⊔
−

 = the hedges that decrease the 

neutrosophic value of the upper 

elements; 

– 𝐻⊔
∼
 = the hedges that approximate the 

neutrosophic value of the upper 

elements. 

Notations: Let 𝑥 = 𝑥⊔ ∪ 𝑤 ∪ 𝑥𝐿 , where 𝑥⊔  cons-

titutes the upper element set, while 𝑥𝐿  the lower 

element subset, 𝑤 the neutral element. 𝑥⊔ and 𝑥𝐿 are 

disjoint two by two. 
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XII.4.3. Operations on Neutrosophic 

Components 

Let 〈𝑡1, 𝑖1, 𝑓1〉, 〈𝑡2, 𝑖2, 𝑓2〉 neutrosophic numbers. 

Then: 

𝑡1 + 𝑡2 = {
𝑡1 + 𝑡2, if 𝑡1 + 𝑡2 ≤ 1; 
1, if 𝑡1 + 𝑡2 > 1;

    (6) 

and  

𝑡1 − 𝑡2 = {
0, if 𝑡1 − 𝑡2 < 0; 

𝑡1 − 𝑡2, if 𝑡1 − 𝑡2 ≥ 0.
    (7) 

Similarly for 𝑖1 and 𝑓1: 

𝑖1 + 𝑖2 = {
𝑖1 + 𝑖2, if 𝑖1 + 𝑖2 ≤ 1; 
1, if 𝑖1 + 𝑖2 > 1;

    (8) 

𝑖1 − 𝑖2 = {
0, if 𝑖1 − 𝑖2 < 0; 

𝑖1 − 𝑖2, if 𝑖1 − 𝑖2 ≥ 0.
    (9) 

and  

𝑓1 + 𝑓2 = {
𝑓1 + 𝑓2, if 𝑓1 + 𝑓2 ≤ 1; 
1, if 𝑓1 + 𝑓2 > 1;

    (10) 

𝑓1 − 𝑓2 = {
0, if 𝑓1 − 𝑓2 < 0; 

𝑓1 − 𝑓2, if 𝑓1 − 𝑓2 ≥ 0.
    (11) 

XII.4.4. Neutrosophic Hedge-Element 

Operators 

We define the following operators: 

XII.4.4.1. Neutrosophic Increment 

Hedge ↑  Element = 〈𝑡1, 𝑖1, 𝑓1〉 ↑ 〈𝑡2, 𝑖2, 𝑓2〉 = 〈𝑡2 +

𝑡1, 𝑖2 − 𝑖1, 𝑓2 − 𝑓1〉,      (12) 
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meaning that the first triplet increases the second. 

XII.4.4.2. Neutrosophic Decrement 

Hedge ↓  Element = 〈𝑡1, 𝑖1, 𝑓1〉 ↓ 〈𝑡2, 𝑖2, 𝑓2〉 = 〈𝑡2 −

𝑡1, 𝑖2 + 𝑖1, 𝑓2 + 𝑓1〉,      (13) 

meaning that the first triplet decreases the 

second. 

XII.4.4.3. Theorem 1 

The neutrosophic increment and decrement 

operators are non-commutattive. 

XII.4.5. Neutrosophic Hedge-Hedge 

Operators 

Hedge ↑  Hedge = 〈𝑡1, 𝑖1, 𝑓1〉 ↑ 〈𝑡2, 𝑖2, 𝑓2〉 = 〈𝑡1 +

𝑡2, 𝑖1 + 𝑖2, 𝑓1 + 𝑓2〉     (14) 

Hedge ↓  Hedge = 〈𝑡1, 𝑖1, 𝑓1〉 ↓ 〈𝑡2, 𝑖2, 𝑓2〉 = 〈𝑡1 −

𝑡2, 𝑖1 − 𝑖2, 𝑓1 − 𝑓2〉     (15) 

XII.4.6. Neutrosophic Hedge Operators 

Let 𝑥⊔〈𝑡𝑥⊔ , 𝑖𝑥⊔ , 𝑓𝑥⊔〉 ∈ 𝐷𝑜𝑚(𝑥)  i.e. 𝑥⊔  is an upper 

element of 𝐷𝑜𝑚(𝑥), and 

– ℎ⊔
+〈𝑡ℎ⊔+ , 𝑖ℎ⊔+ , 𝑓ℎ⊔+〉 ∈ 𝐻⊔

+
,  

– ℎ⊔
−〈𝑡ℎ⊔− , 𝑖ℎ⊔− , 𝑓ℎ⊔−〉 ∈ 𝐻⊔

−
,  

– ℎ⊔
∽〈𝑡ℎ⊔∽ , 𝑖ℎ⊔∽ , 𝑓ℎ⊔∽〉 ∈ 𝐻⊔

∽
, 

then ℎ⊔
+
 applied to 𝑥⊔ gives  
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(ℎ⊔
+𝑥⊔)〈𝑡𝑥⊔ , 𝑖𝑥⊔ , 𝑓𝑥⊔〉 ↑ 〈𝑡ℎ⊔+ , 𝑖ℎ⊔+ , 𝑓ℎ⊔+〉, 

and ℎ⊔
−
 applied to 𝑥⊔ gives  

(ℎ⊔
−𝑥⊔)〈𝑡𝑥⊔ , 𝑖𝑥⊔ , 𝑓𝑥⊔〉 ↓ 〈𝑡ℎ⊔− , 𝑖ℎ⊔− , 𝑓ℎ⊔−〉, 

and ℎ⊔
∽
 applied to 𝑥⊔ gives  

(ℎ⊔
∼𝑥⊔)〈𝑡𝑥⊔ , 𝑖𝑥⊔ , 𝑓𝑥⊔〉 ↓ 〈𝑡ℎ⊔∼ , 𝑖ℎ⊔∼ , 𝑓ℎ⊔∼〉. 

Now, let 𝑥𝐿〈𝑡𝑥𝐿 , 𝑖𝑥𝐿 , 𝑓𝑥𝐿〉 ∈ 𝐷𝑜𝑚(𝑥𝐿), i.e. 𝑥𝐿 is a lower 

element of 𝐷𝑜𝑚(𝑥). Then, ℎ⊔
+
 applied to 𝑥𝐿 gives: 

ℎ⊔
+𝑥𝐿〈𝑡𝑥𝐿 , 𝑖𝑥𝐿 , 𝑓𝑥𝐿〉 ↓ 〈𝑡ℎ⊔+ , 𝑖ℎ⊔+ , 𝑓ℎ⊔+〉, 

and ℎ⊔
−
 applied to 𝑥𝐿 gives: 

ℎ⊔
−𝑥𝐿〈𝑡𝑥𝐿 , 𝑖𝑥𝐿 , 𝑓𝑥𝐿〉 ↑ 〈𝑡ℎ⊔− , 𝑖ℎ⊔− , 𝑓ℎ⊔−〉, 

and ℎ⊔
∽
 applied to 𝑥𝐿 gives: 

ℎ⊔
∽𝑥𝐿〈𝑡𝑥𝐿 , 𝑖𝑥𝐿 , 𝑓𝑥𝐿〉 ↑ 〈𝑡ℎ⊔∽ , 𝑖ℎ⊔∽ , 𝑓ℎ⊔∽〉. 

In the same way, we may apply many 

increasing, decreasing, approximate or other type 

of hedges to the same upper or lower element  

ℎ⊔𝑛
+ ℎ⊔𝑛−1

− ℎ⊔
𝑣 …ℎ⊔1

+ 𝑥, 

generating new elements in 𝐷𝑜𝑚(𝑥). 

The hedges may be applied to the constants as 

well. 

XII.4.6.1. Theorem 2 

A hedge applied to another hedge wekeans or 

stengthens or approximates it. 
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XII.4.6.2. Theorem 3 

If ℎ⊔+ ∈ 𝐻⊔+ and 𝑥⊔ ∈ 𝐷𝑜𝑚(𝑥⊔), then ℎ⊔+𝑥⊔ ≥ 𝑥⊔. 

If ℎ⊔− ∈ 𝐻⊔− and 𝑥⊔ ∈ 𝐷𝑜𝑚(𝑥⊔), then ℎ⊔−𝑥⊔ ≥ 𝑥⊔. 

If ℎ⊔+ ∈ 𝐻⊔+ and 𝑥𝐿 ∈ 𝐷𝑜𝑚(𝑥𝐿), then ℎ⊔+𝑥𝐿 ≤𝑁 𝑥𝐿. 

If ℎ⊔− ∈ 𝐻⊔− and 𝑥𝐿 ∈ 𝐷𝑜𝑚(𝑥𝐿), then ℎ⊔−𝑥𝐿 ≥𝑁 𝑥𝐿. 

XII.4.6.3. Converse Hedges 

Two hedges ℎ1 and ℎ2 ∈ 𝐻 are converse to each 

other, if ∀𝑥 ∈ 𝐷𝑜𝑚(𝑥) , ℎ1𝑥 ≤𝑁 𝑥  is equivalent to 

ℎ2𝑥 ≥𝑁 𝑥. 

XII.4.6.4. Compatible Hedges 

Two hedges ℎ1  and ℎ2 ∈ 𝐻  are compatible, if 

∀𝑥 ∈ 𝐷𝑜𝑚(𝑥), ℎ1𝑥 ≤𝑁 𝑥 is equivalent to ℎ2𝑥 ≤𝑁 𝑥. 

XII.4.6.5. Commutative Hedges 

Two hedges ℎ1  and ℎ2 ∈ 𝐻  are commutative, if 

∀𝑥 ∈ 𝐷𝑜𝑚(𝑥) , ℎ1ℎ2𝑥 = ℎ2ℎ1𝑥 . Otherwise they are 

called non-commutative. 

XII.4.6.6. Cumulative Hedges 

If ℎ1⊔
+

 and ℎ2⊔
+ ∈ 𝐻+ , then two neutrosophic 

edges can be cumulated into one: 

ℎ1⊔
+ 〈𝑡ℎ1⊔

+ , 𝑖ℎ1⊔
+ , 𝑓ℎ1⊔

+ 〉 ℎ2⊔
+ 〈𝑡ℎ2⊔

+ , 𝑖ℎ2⊔
+ , 𝑓ℎ2⊔

+ 〉 =

ℎ12⊔
+ 〈𝑡ℎ1⊔

+ , 𝑖ℎ1⊔
+ , 𝑓ℎ1⊔

+ 〉 ↑ 〈𝑡ℎ2⊔
+ , 𝑖ℎ2⊔

+ , 𝑓ℎ2⊔
+ 〉.   (16) 
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Similarly, if ℎ1⊔
−

 and ℎ2⊔
− ∈ 𝐻− , then we can 

cumulate them into one: 

ℎ1⊔
− 〈𝑡ℎ1⊔

− , 𝑖ℎ1⊔
− , 𝑓ℎ1⊔

− 〉 ℎ2⊔
− 〈𝑡ℎ2⊔

− , 𝑖ℎ2⊔
− , 𝑓ℎ2⊔

− 〉 =

ℎ12⊔
− 〈𝑡ℎ1⊔

− , 𝑖ℎ1⊔
− , 𝑓ℎ1⊔

− 〉 ↑ 〈𝑡ℎ2⊔
− , 𝑖ℎ2⊔

− , 𝑓ℎ2⊔
− 〉.  (17) 

Now, if the two hedges are converse, ℎ1⊔
+

 and 

ℎ1⊔
−

, but the neutrosophic components of the first 

(which is actually a neutrosophic number) are 

greater than the second, we cumulate them into 

one as follows:     (18) 

ℎ3⊔
+ = (ℎ1⊔

+ ℎ2⊔
− ) 〈𝑡ℎ1⊔

+ , 𝑖ℎ1⊔
+ , 𝑓ℎ1⊔

+ 〉 ↓ 〈𝑡ℎ2⊔
− , 𝑖ℎ2⊔

− , 𝑓ℎ2⊔
− 〉. 

But, if the neutrosophic components of the 

second are greater, and the hedges are com-

mutative, we cumulate them into one as follows: 

ℎ3⊔
+ = (ℎ1⊔

+ ℎ2⊔
− ) 〈𝑡ℎ2⊔

− , 𝑖ℎ2⊔
− , 𝑓ℎ2⊔

− 〉 ↓ 〈𝑡ℎ1⊔
+ , 𝑖ℎ1⊔

+ , 𝑓ℎ1⊔
+ 〉 

(19) 

XII.4.7. Neutrosophic Hedge Algebra 

𝑁𝐻𝐴 = (𝑥, 𝐺, 𝐶, 𝐻 ∪ 𝐼, ≤𝑁)  constitutes an abstract 

algebra, called Neutrosophic Hedge Algebra. 

XII.4.7.1. Example of a Neutrosophic Hedge 

Algebra 𝜏 

Let 𝐺 = {𝑆𝑚𝑎𝑙𝑙, 𝐵𝑖𝑔} the set of generators, repres-

ented as neutrosophic generators as follows: 
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𝑆𝑚𝑎𝑙𝑙〈0.3,0.6,0.7〉, 𝐵𝑖𝑔〈0.7,0.2,0.3〉. 

Let 𝐻 = {𝑉𝑒𝑟𝑦, 𝐿𝑒𝑠𝑠}  the set of hedges, repres-

ented as neutrosophic hedges as follows: 

𝑉𝑒𝑟𝑦〈0.1,0.1,0.1〉, 𝐿𝑒𝑠𝑠〈0.1,0.2,0.3〉, 

where 𝑉𝑒𝑟𝑦 ∈ 𝐻⊔
+
 and 𝐿𝑒𝑠𝑠 ∈ 𝐻⊔

−
. 

𝑥  is a neutrosophic linguistic variable whose 

domain is 𝐺  at the beginning, but extended by 

generators. 

The neutrosophic constants are 

𝐶 = {0〈0,1,1〉, 𝑀𝑒𝑑𝑖𝑢𝑚〈0.5,0.5,0.5〉, 1〈1,0,0〉}. 

The neutrosophic identity is 𝐼〈0,0,0〉. 

We use the neutrosophic inequality ≤𝑁, and the 

neutrosophic increment / decrement operators 

previously defined. 

Let's apply the neutrosophic hedges in order to 

generate new neutrosophic elements of the 

neutrosophic linguistic variable 𝑥. 

𝑉𝑒𝑟𝑦  applied to 𝐵𝑖𝑔  [upper element] has a 

positive effect: 

𝑉𝑒𝑟𝑦〈0.1,0.1,0.1〉𝐵𝑖𝑔〈0.7,0.2,0.3〉 =

(𝑉𝑒𝑟𝑦 𝐵𝑖𝑔)〈0.7+0.1,0.2−0.1,0.3−0.1〉 = (𝑉𝑒𝑟𝑦 𝐵𝑖𝑔)〈0.8,0.1,0.2〉. 

Then: 
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𝑉𝑒𝑟𝑦〈0.1,0.1,0.1〉(𝑉𝑒𝑟𝑦 𝐵𝑖𝑔)〈0.9,0.1,0.2〉 =

(𝑉𝑒𝑟𝑦 𝑉𝑒𝑟𝑦 𝐵𝑖𝑔)〈0.9,0,0.1〉. 

𝑉𝑒𝑟𝑦  applied to 𝑆𝑚𝑎𝑙𝑙  [lower element] has a 

negative effect: 

𝑉𝑒𝑟𝑦〈0.1,0.1,0.1〉𝑆𝑚𝑎𝑙𝑙〈0.3,0.6,0.7〉 =

(𝑉𝑒𝑟𝑦 𝑆𝑚𝑎𝑙𝑙)〈0.3−0.1,0.6+0.1,0.7+0.1〉 =

(𝑉𝑒𝑟𝑦 𝑆𝑚𝑎𝑙𝑙)〈0.2,0.7,0.8〉. 

If we compute (𝑉𝑒𝑟𝑦 𝑉𝑒𝑟𝑦)  first, which is a 

neutrosophic hedge-hedge operator: 

𝑉𝑒𝑟𝑦〈0.1,0.1,0.1〉𝑉𝑒𝑟𝑦〈0.1,0.1,0.1〉 =

(𝑉𝑒𝑟𝑦 𝑉𝑒𝑟𝑦) 〈0.1+0.1,0.1+0.1,0.1+0.1〉 = (𝑉𝑒𝑟𝑦 𝑉𝑒𝑟𝑦)〈0.2,0.2,0.2〉,  

and we apply it to Big, we get: 

(𝑉𝑒𝑟𝑦 𝑉𝑒𝑟𝑦)〈0.2,0.2,0.2〉𝐵𝑖𝑔〈0.7,0.2,0.3〉

= (𝑉𝑒𝑟𝑦 𝑉𝑒𝑟𝑦 𝐵𝑖𝑔)〈0.7+0.2,0.2−0.2,0.3−0.2〉

= (𝑉𝑒𝑟𝑦 𝑉𝑒𝑟𝑦 𝐵𝑖𝑔)〈0.9,0,0.1〉, 

so, we get the same result. 

𝐿𝑒𝑠𝑠 applied to 𝐵𝑖𝑔 has a negative effect: 

𝐿𝑒𝑠𝑠〈0.1,0.2,0.3〉𝐵𝑖𝑔〈0.7,0.2,0.3〉 =

(𝐿𝑒𝑠𝑠 𝐵𝑖𝑔)〈0.7−0.1,0.2+0.2,0.3〉 = (𝐿𝑒𝑠𝑠 𝐵𝑖𝑔)〈0.6,0.4,0.6〉. 

𝐿𝑒𝑠𝑠 applied to 𝑆𝑚𝑎𝑙𝑙 has a positive effect: 

𝐿𝑒𝑠𝑠〈0.1,0.2,0.3〉𝑆𝑚𝑎𝑙𝑙〈0.3,0.6,0.7〉 =

(𝐿𝑒𝑠𝑠 𝑆𝑚𝑎𝑙𝑙)〈0.1+0.3,0.6−0.2,0.7−0.3〉 = (𝐿𝑒𝑠𝑠 𝑆𝑚𝑎𝑙𝑙)〈0.4,0.4,0.4〉. 
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The set of neutrosophic hedges H is enriched 

through the generation of new neutrosophic 

hedges by combining a hedge with another one 

using the neutrosophic hedge-hedge operators. 

Further, the newly generated neutrosophic 

hedges are applied to the elements of the 

linguistic variable, and more new elements are 

generated. 

Let's compute more neutrosophic elements: 

𝑉𝐿𝐵 = 𝑉𝑒𝑟𝑦〈0.1,0.1,0.1〉𝐿𝑒𝑠𝑠〈0.1,0.2,0.3〉𝐵𝑖𝑔〈0.7,0.2,0.3〉

= (𝑉𝑒𝑟𝑦 𝐿𝑒𝑠𝑠 𝐵𝑖𝑔)
[〈0.1,0.1,0.1〉 ↑

ℎ
〈0.1,0.2,0.3〉] ↓ 〈0.7,0.2,0.3〉

= (𝑉𝑒𝑟𝑦 𝐿𝑒𝑠𝑠 𝐵𝑖𝑔)〈0.1+0.1,0.1+0.2,0.1+0.3〉 ↓ 〈0.7,0.2,0.3〉

= (𝑉𝑒𝑟𝑦 𝐿𝑒𝑠𝑠 𝐵𝑖𝑔)〈0.7−0.2,0.2−0.3,0.3−0.4〉

= (𝑉𝑒𝑟𝑦 𝐿𝑒𝑠𝑠 𝐵𝑖𝑔)〈0.5,0,0〉 
𝑉𝑀 = 𝑉𝑒𝑟𝑦〈0.1,0.1,0.1〉𝑀𝑒𝑑𝑖𝑢𝑚〈0.5,0.5,0.5〉

= (𝑉𝑒𝑟𝑦 𝑀𝑒𝑑𝑖𝑢𝑚)〈0.1,0.1,0.1〉 ↑ 〈0.5,0.5,0.5〉

= (𝑉𝑒𝑟𝑦 𝑀𝑒𝑑𝑖𝑢𝑚)〈0.6,0.4,0.4〉 

𝐿𝑀 = 𝐿𝑒𝑠𝑠〈0.1,0.2,0.3〉𝑀𝑒𝑑𝑖𝑢𝑚〈0.5,0.5,0.5〉

= (𝐿𝑒𝑠𝑠 𝑀𝑒𝑑𝑖𝑢𝑚)〈0.1,0.2,0.3〉 ↓ 〈0.5,0.5,0.5〉

= (𝐿𝑒𝑠𝑠 𝑀𝑒𝑑𝑖𝑢𝑚)〈0.4,0.7,0.8〉 

𝑉𝑉𝑆 = 𝑉𝑒𝑟𝑦〈0.1,0.1,0.1〉𝑉𝑒𝑟𝑦〈0.1,0.1,0.1〉𝑆𝑚𝑎𝑙𝑙〈0.3,0.6,0.7〉

= (𝑉𝑒𝑟𝑦 𝑉𝑒𝑟𝑦)〈0.2,0.2,0.2〉𝑆𝑚𝑎𝑙𝑙〈0.3,0.6,0.7〉

= (𝑉𝑒𝑟𝑦 𝑉𝑒𝑟𝑦 𝑆𝑚𝑎𝑙𝑙)〈0.1,0.8,0.9〉 
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𝑉𝐿𝑆 = 𝑉𝑒𝑟𝑦〈0.1,0.1,0.1〉𝐿𝑒𝑠𝑠〈0.1,0.2,0.3〉𝑆𝑚𝑎𝑙𝑙〈0.3,0.6,0.7〉

= 𝑉𝑒𝑟𝑦〈0.1,0.1,0.1〉(𝐿𝑒𝑠𝑠 𝑆𝑚𝑎𝑙𝑙)〈0.4,0.4,0.4〉

= (𝑉𝑒𝑟𝑦 𝐿𝑒𝑠𝑠 𝑆𝑚𝑎𝑙𝑙)〈0.5,0.3,0.3〉 

𝐿𝐴𝑀𝑎𝑥 = 𝐿𝑒𝑠𝑠〈0.1,0.2,0.3〉𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑀𝑎𝑥𝑖𝑚𝑢𝑚〈1,0,0〉

= (𝐿𝑒𝑠𝑠 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑀𝑎𝑥𝑖𝑚𝑢𝑚)〈0.1,0.2,0.3〉 ↓ 〈1,0,0〉

= (𝐿𝑒𝑠𝑠 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑀𝑎𝑥𝑖𝑚𝑢𝑚)〈0.9,0.2,0.3〉 

𝐿𝐴𝑀𝑖𝑛 = 𝐿𝑒𝑠𝑠〈0.1,0.2,0.3〉𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑀𝑖𝑛𝑖𝑚𝑢𝑚〈0,1,1〉

= (𝐿𝑒𝑠𝑠 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑀𝑖𝑛𝑖𝑚𝑢𝑚)〈0.1,0.2,0.3〉 ↑ 〈0,1,1〉

= (𝐿𝑒𝑠𝑠 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑀𝑎𝑥𝑖𝑚𝑢𝑚)〈0.1,0.8,0.7〉 

XII.4.7.2. Theorem 4 

Any increasing hedge ℎ〈𝑡,𝑖,𝑓〉  applied to the 

absolute maximum cannot overpass the absolute 

maximum. 

Proof:  

ℎ〈𝑡,𝑖,𝑓〉 ↑ 1〈1,0,0〉 = (ℎ1)〈1+𝑡,0−𝑖,0−𝑓〉 

= (ℎ1)〈1,0,0〉 = 1〈1,0,0〉. 
XII.4.7.3. Theorem 5 

Any decreasing hedge ℎ〈𝑡,𝑖,𝑓〉  applied to the 

absolute minimum cannot pass below the 

absolute minimum. 

Proof:  

ℎ〈𝑡,𝑖,𝑓〉 ↓ 0〈0,1,1〉 = (ℎ𝑜)〈0−𝑡,1+𝑖,1+𝑓〉 
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= (ℎ𝑜)〈0,1,1〉 = 0〈0,1,1〉. 

XII.4.8. Diagram of the Neutrosophic 

Hedge Algebra τ 

 

1〈1,0,0〉  ABSOLUTE MAXIMUM 

 

𝑉𝑉𝐵〈0.9,0,0.1〉  Very Very Big 

𝐿𝐴𝑀〈0.9,0.2,0.3〉 Less Absolute Maximum 

𝑉𝐵〈0.8,0.1,0.2〉  Very Big 

 

𝐵𝑖𝑔〈0.7,0.2,0.3〉  

𝑉𝑀〈0.6,0.4,0.4〉 Very Medium 

𝐿𝑉〈0.5,0.4,0.6〉  Less Big 

 

𝑉𝐿𝐵〈0.5,0,0〉  Very Less Big 

𝑉𝐿𝑆〈0.5,0.3,0.3〉 Very Less Small 

𝑀〈0.5,0.5,0.5〉  MEDIUM 

𝐿𝑀〈0.4,0.7,0.8〉 Less Medium 

 

𝐿𝑆〈0.4,0.4,0.4〉  Less Small 

𝑆𝑚𝑎𝑙𝑙〈0.3,0.6,0.7〉   

𝑉𝑆〈0.2,0.7,0.8〉  Very Small 

𝐿𝐴𝑀𝑖𝑛〈0.1,0.8,0.7〉 Less Absolute Minimum 

𝑉𝑉𝑆〈0.1,0.8,0.9〉 Very Very Small 

 

0〈0,1,1〉  ABSOLUTE MINIMUM 
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XII.4.9. Conclusions 

In this paper, the classical hedge algebras have 

been extended for the first time to neutrosophic 

hedge algebras. With respect to an attribute, we 

have inserted the neutrosophic degrees of 

membership / indeterminacy / nonmembership of 

each generator, hedge, and constant. More than in 

the classical hedge algebras, we have introduced 

several numerical hedge operators: for hedge 

applied to element, and for hedge combined with 

hedge. An extensive example of a neutrosophic 

hedge algebra is given, and important properties 

related to it are presented. 
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CHAPTER XIII: APPLICATIONS 

XIII.1. Neutrosophic MCDM 

In neutrosophic multi-criteria decision making, 

instead of having crisp (positive number) values 

for the weights of the criteria, we have triplets  

(t, i, f)-values for the weights, where t is the degree 

of positive (in the qualitative sense, not in a 

numerical sense) value of a criterion weight, i is 

the degree of indeterminate value, and f is the 

degree of negative (in the qualitative sense) value 

of a criterion weight. 

Of course, t, i, f are numbers (and in general 

subsets) of the interval [0, 1]. 

Similar for the neutrosophic alternatives, 

whose values are not crisp, but (t, i, f)-values. 
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XIII.2 Neutrosophic Psychology 

Neutrosophic Psychology means indeterminacy 

studied in psychology, and connection of op-

posite theories and their neutral theories 

together. 

If a scale weights are, for example, 1, 2, 3, 4, 5, 

6, 7, we can refine in many way, for example: 

– pessimistically as T, I1, I2, I3, I4, I5, F; 

– optimistically as T1, T2, I1, I2, I3, F1, F2; 

– more optimistically T1, T2, T3, I, F1, F2, 

F3; 

etc.  

Surely, many ideas can be developed on the 

refined neutrosophic set. 
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XIII.3. Neutrosophic Function as The 

Equatorial Virtual Line 

There is an application of neutrosophic 

mathematical analysis (neutrosophic calculus) of 

which I would not have known without visiting 

Ecuador.  

Equatorial imaginary line is actually a curve 

that circles the globe in the middle, called 

circumference, but it is not fixed, so it has a 

degree of indeterminacy, this curve ranging 

within a band (surface) with the width of 5 km 

surrounding the globe in the middle. Therefore, 

the equatorial line is a neutrosophic curve and 

analogously the Earth's circumference is a 

neutrosophic circumference. On a stretch of 5 km, 

it constantly varies due to changes in the physical 

forces of rotation, translation and mutation 

(periodic oscillation, inclination) of the Earth. As 

in neutrosophic logic, where the precise ... can be 

partially imprecise! 
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XIII.4. PCR5 and Neutrosophic 

Probability in Target Identification
*

 

Abstract 

In this paper, we use PCR5 in order to fusion 

the information of two sources providing sub-

jective probabilities of an event A to occur in the 

following form: chance that A occurs, indeter-

minate chance of occurrence of A, chance that A 

does not occur. 

XIII.4.1. Introduction 

Neutrosophic Probability [1] was defined in 

1995 and published in 1998, together with 

neutrosophic set, neutrosophic logic, and 

neutrosophic probability. 

The words “neutrosophy” and “neutrosophic” 

were introduced also in [1]. Etymologically, 

“neutrosophy” (noun) [French neutre < Latin 

neuter, neutral, and Greek sophia, skill/wisdom] 

                                           

* In collab. with Nassim Abbas, Youcef Chibani, Bilal 

Hadjadji, Zayen Azzouz Omar from the University of 

Science and Technology, Algiers, Algeria. 
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means knowledge of neutral thought. While 

“neutrosophic” (adjective), means having the 

nature of, or having the characteristic of 

Neutrosophy. 

Neutrosophy is a new branch of philosophy 

which studies the origin, nature, and scope of 

neutralities, as well as their interactions with 

different ideational spectra. 

Zadeh introduced the degree of membership / 

truth (t) in 1965 and defined the fuzzy set.  

Atanassov introduced the degree of nonmem-

bership / falsehood (f) in 1986 and defined the 

intuitionistic fuzzy set.  

Smarandache introduced the degree of 

indeterminacy/neutrality (i) as independent 

component in 1995 (published in 1998) and 

defined the neutrosophic set. In 2013, he refined 

/ split the neutrosophic set to n components: t1, 

t2, …tj; i1, i2, …, ik; f1, f2, …, fl, with j+k+l = n > 3. 

And, as particular cases of refined neutrosophic 

set, he split the fuzzy set truth into t1, t2, …; and 

the intuitionistic fuzzy set into t1, t2, … and f1, f2, 

… .  
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See: http://fs.gallup.unm.edu/neutrosophy.htm. 

For single valued neutrosophic logic, the sum 

of the components is: 

– 0 ≤ t+i+f ≤ 3 when all three com-

ponents are independent; 

– 0 ≤ t+i+f ≤ 2 when two components are 

dependent, while the third one is 

independent from them; 

– 0 ≤ t+i+f ≤ 1 when all three com-

ponents are dependent. 

When three or two of the components T, I, F are 

independent, one leaves room for incomplete 

information (sum < 1), paraconsistent and 

contradictory information (sum > 1), or complete 

information (sum = 1).  

If all three components T, I, F are dependent, 

then similarly one leaves room for incomplete 

information (sum < 1), or complete information 

(sum = 1).  

XIII.4.2. Definition of Neutrosophic 

Measure 

A neutrosophic space is a set which has some 

indeterminacy with respect to its elements. 

http://fs.gallup.unm.edu/neutrosophy.htm
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Let X  be a neutrosophic space, and   a 

𝜎 −neutrosophic algebra over X . A neutrosophic 

measure 𝜈  is defined by for neutrosophic set 

A  by 

3: X R  , 

   A = m(A), m(neutA),m(antiA) ,   (1) 

with antiA = the opposite of A, and neutA = the 

neutral (indeterminacy), neither A nor antiA (as 

defined above); for any A X  and A , 

– m(A) means measure of the deter-

minate part of A; 

– m(neutA) means measure of indeter-

minate part of A; 

– and m(antiA) means measure of the 

determinate part of antiA; 

where   is a function that satisfies the following 

two properties: 

Null empty set:    0 0 0, ,   .  

Countable additivity (or σ-additivity): for all 

countable collections  n n LA


 of disjoint neutros-

ophic sets in  , one has:  
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 1n n n n
n L n L n Ln L

A m( A ), m( neutA ), m( antiA ) ( n )m( X )
  

   
     
  
  

 (2) 

where X is the whole neutrosophic space, and 

1n n nn Ln L n L
m( antiA ) ( n )m( X ) m( X ) m( A ) m( antiA ).


 

      
(3) 

A neutrosophic measure space is a triplet 

 X , , . 

XIII.4.3. Normalized Neutrosophic 

Measure 

A neutrosophic measure is called normalized if  

   1 2 3X ( m( X ),m( neutX ),m( antiX )) x ,x ,x   ,  (4) 

with 1 2 3 1x x x   , and 1 2 30 0 0x ,x ,x   , where, of 

course, X is the whole neutrosophic measure 

space. 

As a particular case of neutrosophic measure   

is the neutrosophic probability measure, i.e. a 

neutrosophic measure that measures 

probable/possible propositions 

 0 3X  ,  

where X is the whole neutrosophic probability 

sample space.  
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For single valued neutrosophic logic, the sum 

of the components is: 

– 0 ≤ x1+x2+x3 ≤ 3 when all three 

components are independent; 

– 0 ≤ x1+x2+x3 ≤ 2 when two components 

are dependent, while the third one is 

independent from them; 

– 0 ≤ x1+x2+x3 ≤ 1 when all three 

components are dependent. 

When three or two of the components x1, x2, x3 

are independent, one leaves room for incomplete 

information (sum < 1), paraconsistent and 

contradictory information (sum > 1), or complete 

information (sum = 1).  

If all three components x1, x2, x3 are dependent, 

then similarly one leaves room for incomplete 

information (sum < 1), or complete information 

(sum = 1).  

XIII.4.4. Normalized Probability 

We consider the case when the sum of the 

components m(A) + m(neutA) + m(antiA) =1. 

We may denote the normalized neutrosophic 

probability of an event A as 𝑁𝑃(𝒜) = (𝑡, 𝑖, 𝑓), where 
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t is the chance that 𝒜 occurs, i is indeterminate 

chance of occurrence of 𝒜, and f is the chance 

that 𝒜 does not occur. 

XIII.4.5. The PCR5 Formula 

Let the frame of discernment 1 2{ , ,..., }, 2.n n      

Let ( , , , )G C     be the super-power set, which is 

Θ closed under union, intersection, and 

respectively complement. 

Let’s consider two masses provided by 2 

sources: 

m1, m2 : G  [0, 1]. 

The conjunctive rule is defined as 

1 2

12 1 1 2 2
,

( ) ( ) ( )
X X G

m X m X m X


  .    (5) 

Then the Proportional Conflict Redistribution 

Rule (PCR) #5 formula for 2 sources of information 

is defined as follows: 

\ { }X G   ,  

2 2
1 2 2 1

5 12
\{ } 1 2 1 2

( ) ( ) ( ) ( )( ) ( ) [ ]
( ) ( ) ( ) ( )PCR

Y G X

m X m Y m X m Ym X m X
m X m Y m X m Y

  
 



       (6) 

where all denominators are different from zero.  

If a denominator is zero, that fraction is 

discarded. 
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XIII.4.6. Application in Information Fusion 

Suppose an airplane 𝐴 is detected by the radar. 

What is the chance that 𝐴  is friend, neutral, or 

enemy? 

Let’s have two sources that provide the 

following information: 

𝑁𝑃1
(𝐴)
(𝑡1, 𝑖1, 𝑓1), and 𝑁𝑃2

(𝐴)
(𝑡2, 𝑖2, 𝑓2).   

Then: 

[𝑁𝑃1⨁𝑁𝑃2](𝑡) = 𝑡1𝑡2 + (
𝑡1
2𝑖2

𝑡1+𝑖2
+

𝑡2
2𝑖1

𝑡2+𝑖1
) + (

𝑡1
2𝑓2

𝑡1+𝑓2
+

𝑡2
2𝑓1

𝑡2+𝑓1
) 

       (7) 

Because: 𝑡1𝑖2 is redistributed back to the truth 

(t) and indeterminacy proportionally with respect 

to 𝑡1 and respectively 𝑖2: 

𝑥1

𝑡1
=
𝑦1

𝑖2
=

𝑡1𝑖2

𝑡1+𝑖2
 ,     (8) 

whence 

𝑥1 =
𝑡1
2𝑖2

𝑡1+𝑖2
 , 𝑦1 =

𝑡1𝑖2
2

𝑡1+𝑖2
 .    (9) 

Similarly, 𝑡2𝑖1  is redistributed back to 𝑡  and 𝑖 

proportionally with respect to 𝑡2 and respectively 

𝑖1: 

𝑥2

𝑡2
=
𝑦2

𝑖1
=

𝑡2𝑖1

𝑡2+𝑖1
 ,     (10) 

whence 
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𝑥2 =
𝑡2
2𝑖1

𝑡2+𝑖1
 , 𝑦2 =

𝑡2𝑖1
2

𝑡2+𝑖1
 .    (11) 

Similarly, 𝑡1𝑓2  is redistributed back to 𝑡  and 𝑓 

(falsehood) proportionally with respect to 𝑡1 and 

respectively 𝑓2: 

𝑥3

𝑡1
=
𝑍1

𝑓2
=

𝑡1𝑓2

𝑡1+𝑓2
 ,     (12) 

whence  

𝑥3 =
𝑡1
2𝑓2

𝑡1+𝑓2
 , 𝑧1 =

𝑡1𝑓2
2

𝑡1+𝑓2
 .     (13) 

Again, similarly 𝑡2𝑓1  is redistributed back to 𝑡 

and 𝑓  proportionally with respect to 𝑡2  and 

respectively 𝑓1: 

𝑥4

𝑡2
=
𝑍2

𝑓1
=

𝑡2𝑓1

𝑡2+𝑓1
 ,      (14) 

whence  

𝑥4 =
𝑡2
2𝑓1

𝑡2+𝑓1
 , 𝑧2 =

𝑡2𝑓1
2

𝑡2+𝑓1
 .     (15) 

In the same way, 𝑖1𝑓2 is redistributed back to 𝑖 

and 𝑓  proportionally with respect to 𝑖1  and 

respectively 𝑓2: 

𝑦3

𝑖1
=
𝑍3

𝑓2
=

𝑖1𝑓2

𝑖1+𝑓2
 ,     (16) 

whence  

𝑦3 =
𝑖1
2𝑓2

𝑖1+𝑓2
 , 𝑧3 =

𝑖1𝑓2
2

𝑖1+𝑓2
 .    (17) 
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While 𝑖2𝑓1  is redistributed back to 𝑖  and 𝑡 

proportionally with respect to 𝑖2 and respectively 

𝑓1: 

𝑦4

𝑖2
=
𝑍4

𝑓1
=

𝑖2𝑓1

𝑖2+𝑓1
 ,     (18) 

whence  

𝑦4 =
𝑖2
2𝑓1

𝑖2+𝑓1
 , 𝑧4 =

𝑖2𝑓1
2

𝑖2+𝑓1
 .       (19) 

Then 

[𝑁𝑃1⊕𝑁𝑃2](𝑖) 

= 𝑖1𝑖2 + (
𝑖1
2𝑡2

𝑖11+𝑡2
+

𝑖2
2𝑡1

𝑖2+𝑡1
) + (

𝑖1
2𝑓2

𝑖1+𝑓2
+

𝑖2
2𝑓1

𝑖2+𝑓1
),  (20) 

and  

[𝑁𝑃1⊕𝑁𝑃2](𝑓) 

= 𝑓1𝑓2 + (
𝑓1
2𝑡2

𝑓1+𝑡2
+

𝑓2
2𝑡1

𝑓2+𝑡1
) + (

𝑓1
2𝑖2

𝑓1+𝑖2
+

𝑓2
2𝑖1

𝑓2+𝑖1
).  (21) 

XIII.4.7. Example 

Let’s compute: 

(0.6, 0.1, 0.3) ∧𝑁 (0.2, 0.3, 0.5). 

𝑡1 = 0.6, 𝑖1 = 0.1, 𝑓1 = 0.3,  and 

𝑡2 = 0.2, 𝑖2 = 0.3, 𝑓2 = 0.5,   

are replaced into the three previous neutrosophic 

logic formulas: 

(using PCR5 rule) 
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[𝑁𝑃1⨁𝑛𝑚2](𝑡) = 0.6(0.2) + (
0.62(0.3)

0.6+0.3
+
0.22(0.1)

0.2+0.1
) +

(
0.62(0.5)

0.6+0.5
+
0.22(0.3)

0.2+0.3
) ≃ 0.44097. 

[𝑁𝑃1⨁𝑁𝑃2](𝑖) = 0.1(0.3) + (
0.12(0.2)

0.1+0.2
+
0.32(0.6)

0.3+0.6
) +

(
0.12(0.5)

0.1+0.5
+
0.32(0.3)

0.3+0.3
) ≃ 0.15000. 

[𝑁𝑃1⨁𝑁𝑃2](𝑓) = 0.3(0.5) + (
0.32(0.2)

0.3+0.2
+
0.52(0.6)

0.5+0.6
) +

(
0.32(0.3)

0.3+0.3
+
0.52(0.1)

0.5+0.1
) ≃ 0.40903. 

(using Dempster’s Rule) 

Conjunctive Rule:  

0.12 0.03 0.15 

Dempster’s Rule: 

0.40 0.10 0.50 

 

This is actually a PCR5 formula for a frame of 

discernment Ω = {𝜃1, 𝜃2, 𝜃3} whose all intersections 

are empty. 

We can design a PCR6 formula too for the same 

frame. 

Another method will be to use the neutrosophic 

𝑁 − 𝑛𝑜𝑟𝑚, which is a generalization of fuzzy 𝑇 −

𝑛𝑜𝑟𝑚. 

If we have two neutrosophic probabilities 
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 Friend Neutral Enemy 

𝑁𝑃1 𝑡1 𝑖1 𝑓1 

𝑁𝑃2 𝑡2 𝑖2 𝑓2 

 

then 

𝑁𝑃1⊕𝑁𝑃2 = (𝑡1 + 𝑖1 + 𝑓1) ⋅ (𝑡2 + 𝑖2 + 𝑓2)= 

𝑡1𝑡2 + 𝑡1𝑖2 + 𝑡2𝑖1 + 𝑖1𝑖2 + 𝑡1𝑓1 + 

𝑡1𝑓2 + 𝑡2𝑓1 + 𝑖1𝑓2 + 𝑖2𝑓1 + 𝑓1𝑓2 

Of course, the quantity of 𝑡1𝑡2 will go to Friend, 

the quantity of 𝑖1𝑖2  will go to Neutral, and the 

quantity of 𝑓1𝑓2 will go to Enemy.  

The other quantities will go depending on the 

pessimistic or optimistic way: 

In the pessimistic way (lower bound) 𝑡1𝑖2 + 𝑡2𝑖1 

will go to Neutral, and 𝑡1𝑓2 + 𝑡2𝑓1 + 𝑖1𝑓2 + 𝑖2𝑓1  to 

Enemy. 

In the optimistic way (upper bound) 𝑡1𝑖2 + 𝑡2𝑖1 

will go to Friend, and 𝑡1𝑓2 + 𝑡2𝑓1 + 𝑖1𝑓2 + 𝑖2𝑓1  to 

Neutral. 

About 𝑡1𝑓2 + 𝑡2𝑓1 , we can split it half-half to 

Friend and respectively Enemy. 
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We afterwards put together the pessimistic and 

optimistic ways as an interval neutrosophic 

probability. 

Of course, the reader or expert can use dif-

ferent transfers of intermediate mixed quantities 

𝑡1𝑖2 + 𝑡2𝑖1, and respectively 𝑡1𝑓2 + 𝑡2𝑓1 + 𝑖1𝑓2 + 𝑖2𝑓1 to 

Friend, Neutral, and Enemy. 

XIII.4.8. Conclusion  

We have introduced the application of 

neutrosophic probability into information fusion, 

using the combination of information provided by 

two sources using the PCR5.  

Other approaches can be done, for example the 

combination of the information could be done 

using the N-norm and N-conorm, which are 

generalizations of the T-norm and T-conorm from 

the fuzzy theory to the neutrosophic theory.  

More research is needed to be done in this 

direction. 
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XIII.5. Easier to Break a Dynamic 

System from Inside than from Outside
*

 

Almost all closed or open dynamic systems 

from our real world are closed or open neutros-

ophic dynamic systems, since they have indeter-

minacies – except the abstract or idealistic 

dynamic systems created as imaginary in pure 

theories.  

A dynamic system, in general, is formed by a 

space, that comprises many elements and in 

between the elements there are some relation-

ships. 

There may be binary relationships (the most 

studied particular case), meaning relationships 

between only two elements, or in general n-ary 

relationships, for 𝑛 ≥ 1, which are called hyper-

relationships, comprising all of them: relation-

ships between an element and itself (for 𝑛 = 1), 

binary relationships (for 𝑛 = 2), ternary relation-

ships (for 𝑛 = 3), and so on.  

                                           

*

 In collab. with Andrusa R. Vatuiu. 
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If the dynamic system is open, then there also 

are (hyper)relationships between some inside 

elements with some outside elements. Almost all 

dynamic systems are open in some degree, since 

only theoretical dynamic systems can be con-

sidered as completely isolated from their environ-

ments. 

The hyperrelationships are relationships of 

group, meaning that all elements into the group 

act together as a whole body.  

If at least one of the space, elements, or hyper-

relationships have some indeterminacy, we deal 

with a neutrosophic dynamic system.  

Since the system is linearly or non-linearly 

dynamic, there are permanently changes with 

respect to the space (which may get bigger or 

smaller or may change its shape and position), 

with respect to its elements (which may partially 

belong, partially not belonging, and partially their 

belongness being indeterminate – and these 

belong-ness / non-belong-ness / indeterminacy 

may vary in time such that some elements may 

completely leave the system, while new elements 
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may enter into the system), and similarly the 

degrees of (hyper)relationships between interior 

elements among themselves, and the degrees of 

(hyper)relationships between interior and exterior 

elements may change too.  

Let 𝒰  be a universe of discourse. Let 𝛺  be a 

space, 𝛺 ⊂ 𝒰, that comprises the elements:  

{𝑥1(𝑇1, 𝐼1, 𝐹1), 𝑥2(𝑇2, 𝐼2, 𝐹2), … , 𝑥𝑛(𝑇𝑛, 𝐼𝑛 , 𝐹𝑛)}, 

for 𝑛 ≥ 1, and 𝑇𝑖 , 𝐼𝑖 , 𝐹𝑖 ⊆ [0, 1], for 𝑖 ∈ {1, 2, … , 𝑛}, 

where: 

 𝑇𝑖 represents the degree of membership of the 

element 𝑥𝑖 with respect to the space 𝛺; 

𝐼𝑖  represents the degree of indeterminate-

appurtenance of the element 𝑥𝑖 with respect to the 

space 𝛺; and  

𝐹𝑖 represents the degree of nonmembership of 

the element 𝑥𝑖 with respect to the space 𝛺.  

Hence 𝛺 is a neutrosophic space (set).  

Let a neutrosophic open/closed hyperrelation-

ship be defined as:  

ℛ𝐻𝑅: Ω
𝑘 × 𝒞(Ω)𝑙 → 𝒫([0, 1])3    (1) 

ℛ𝐻𝑅(𝑥𝑖1 , 𝑥𝑖2 , … , 𝑥𝑖𝑘 , 𝑦𝑗1 , 𝑦𝑗2 , … , 𝑦𝑗𝑙) = (𝑇ℛ , 𝐼ℛ , 𝐹ℛ), 
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which means that the open hyperrelationship 

between the inside elements 𝑥𝑖1 , 𝑥𝑖2 , … , 𝑥𝑖𝑘 ∈ Ω, and 

outside elements 𝑦𝑗1 , 𝑦𝑗2 , … , 𝑦𝑗𝑙 ∈ 𝒞(Ω), where 𝒞(Ω) is 

the neutrosophic complement of Ω with respect to 

the universe of discourse 𝒰, has the neutrosophic 

truth-value (𝑇ℛ , 𝐼ℛ , 𝐹ℛ), where 𝑇ℛ , 𝐼ℛ , 𝐹ℛ ⊆ [0, 1]; and 𝑘 

may vary between 1  and 𝑛 , also 𝑙  may vary 

between 0 and 𝑐𝑎𝑟𝑑(𝒞(Ω)), i.e. cardinal (number of 

elements) of 𝒞(Ω) . When 𝑙 = 0  we have only 

interior (inside) hyperrelationship, and the 

system is considered closed. If 𝑙 ≥ 1 , we have 

exterior (outside) hyper-relationship, and the 

system is considered open.  

Therefore:  

𝐷𝑁 = (Ω, {𝑥𝑖(𝑇𝑖 , 𝐼𝑖 , 𝐹𝑖), 𝑖 ∈ {1, 2, … , 𝑛}}, ℛ𝐻𝑅 , 𝐻𝑅 ⊂ 𝐿) 

where L is the set of all possible neutrosophic 

open/closed hyperrelationships on  Ω  , is a 

neutrosophic complex dynamic system.  

XIII.5.1. Modeling Methodology. 

A real world open dynamic system is abstracted 

to a mathematical model. The unity and dis-unity 

of the open dynamic system changes over time, 
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and this influences the stability and the instability 

of the system.  

This is an analytical model that tries to 

approximately replicate the mechanism of the 

open dynamic system, using ODEs (ordinary 

differential equations).  

We make the following assumptions: 

– All the initial values (parameters) are 

positive constants. 

– The interactions (hyperrelationships) 

among inside elements of the system, or 

among inside and outside elements occur 

in a homogeneous way.  

– The inside elements have neutrosophic 

degrees (𝑇, 𝐼, 𝐹)  of appurtenance to the 

system (population).  

– Similarly, the outside elements have 

neutrosophic degrees of appurtenance to 

the complement of the system (the 

outside world).  

– At the start (when time 𝑡 = 0), the open 

dynamic system is considered in 

equilibrium (or stable). 
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– The system is not directly attacked from 

outside.  

XIII.5.2. Model of Breaking a Neutrosophic 

Complex Dynamic System  

Similar to modeling the Biological Immune 

Dynamic System in response to the pathogen 

organisms, or to the Prey-Predator Dynamic 

System, or to the Computer Network Dynamic 

System in response to the propagation of worms, 

viruses, Trojans and Backdoors, we propose a 

model to simulate the breaking up of neutros-

ophic complex dynamic system using Ordinary 

Differential Equations (ODE).  

Agent-Based Models and Cellular Automata can 

also be proposed to simulate the breaking up of a 

(neutrosophic) complex dynamic system.  

We use variables to describe, as functions of 

time (t), specific attributes of the population 

(totality of elements) of the space 𝛺.  

We also use parameters to describe initial 

quantities, rates, and constants with respect to 

the population.  
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1) Let 𝐴  be the total initial number of inside 

individuals (elements) 𝑥𝑖(𝑇𝑖
Ω, 𝐼𝑖

Ω, 𝐹𝑖
Ω) ∈ Ω  such that 

sup𝑇𝑖 > 0 , meaning that 𝑥𝑖  has some non-zero 

positive degree of membership with respect to 𝛺, 

where (𝑇𝑖
Ω, 𝐼𝑖

Ω, 𝐹𝑖
Ω) is the neutrosophic truth-value 

of 𝑥𝑖 with respect to 𝛺.  

Let 𝛼(𝑡)  be the variable that describes the 

population at time t. Let 𝑎1be the constant rate at 

which new individuals not in hyperrelationships 

with outsiders are partially or totally added to the 

system. And let 𝑎2 be the constant rate at which 

individuals not in hyperrelationships with 

outsiders leave the system. 

«Partially or totally» means that the 

neutrosophic membership degree (𝑇, 𝐼, 𝐹) , with 

respect to the system, has sup𝑇 > 0. «Leaving the 

system» means that the neutrosophic member-

ship degree (𝑇, 𝐼, 𝐹), with respect to the system, 

has sup𝑇 = 0. 

2) Let 𝐵 be the total initial number of outside 

individuals 𝑦𝑗(𝑇𝑗
𝒞 , 𝐼𝑗

𝒞 , 𝐹𝑗
𝒞) ∈ 𝒞(Ω) , with sup𝑇𝑗 > 0 , 

where (𝑇𝑗
𝒞 , 𝐼𝑗

𝒞 , 𝐹𝑗
𝒞)  is the neutrosophic truth-value 
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of 𝑦𝑗  with respect to 𝒞(Ω) , such that 

ℛ𝐻(… 𝑥𝑖 …𝑦𝑗 …) = (𝑇ℛ , 𝐼ℛ , 𝐹ℛ) , with 𝑠𝑢𝑝𝑇ℛ > 0 . These 

are outside individuals that have some neutros-

ophic hyperrelationships with inside individuals. 

Let 𝛽(𝑡)  be the variable that describes the 

number of outside individuals that have some 

neutrosophic hyperrelationships with inside 

individuals. 

Let 𝑏1 be the constant rate at which new outside 

individuals partially or totally get into 

neutrosophic hyperrelationships with insiders, 

while 𝑏2  be the constant rate at which new old 

outsiders leave the neutrosophic hyper-

relationships with insiders.  

Let 𝑏3 be the constant rate at which new inside 

individuals partially or totally get into 

neutrosophic hyperrelationships with outsiders, 

while 𝑏4  be the constant rate at which new old 

insiders leave the neutrosophic hyperrelation-

ships with outsiders. 

3) Let 𝐶 be the total initial number of outside 

individuals not involved in open hyper-

relationships. An individual (element) 𝑦𝑗(𝑇𝑗
𝒞 , 𝐼𝑗

𝒞 , 𝐹𝑗
𝒞) 
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is considered outside of the 𝐷𝑁 if its membership 

𝑇𝑗
𝒞

 with respect to 𝒞(Ω)  has sup𝑇𝑗
𝒞 > 0 ,while its 

membership 𝑇𝑗
Ω
, with respect to 𝛺, has sup𝑇𝑗

Ω = 0, 

where 𝑦𝑗(𝑇𝑗
Ω, 𝐼𝑗

Ω, 𝐹𝑗
Ω)  is its neutrosophic truth-

degree with respect to 𝛺.  

Let 𝛾(𝑡)  be the variable that describes the 

number of outside individuals, not involved in 

open hyper-relations with inside individuals. Let 

𝑐1 be the constant rate at which new outside 

individuals, not involved in open hyperrelation-

ships with inside individuals, are added to 𝒞(Ω); 

while 𝑐2 be the constant rate at which old outside 

individuals, not involved in open hyperrelation-

ships with inside individuals, leave the 𝒞(Ω). 

4) Let 𝐷  be the initial number of the inside 

individuals of the system, not involved in open 

hyperrelationships, that act as sneaks / spies / 

boycotters for the enemy.  

Let 𝛿(𝑡) be the variable describing the number 

of inside individuals not involved in open hyper-

relationships turned to sneaks / spies / boy-

cotters for the enemy. 
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Let 𝑑1  be the constant rate at which new 

insiders not involved in open relationships are 

recruiting as sneaks / spies / boycotters for the 

enemy. 

Let 𝑑2 be the constant rate at which old sneaks 

/ spies / boycotters not involved in hyper-

relationships cease to be sneaks / spies / boy-

cotters for the enemy.  

5) Let 𝐸 be the total initial number of outside 

enemy intruders, e.g. hostile individuals, 

corporations, societies, companies, publications, 

mass-media(tors), ideology, enemy politics, lin-

guistics, invasive culture / traditions, influence 

agents, etc., acting as spies, boycotters, denig-

rators (not involved in hyperrelationships), acting 

partially or totally against the system.  

 Let 𝜂(𝑡) be the variable describing the number 

of enemy intruders (not involved in open hyper-

relationships) at time 𝑡  acting as spies or 

boycotters.  

Let 𝑒1 be the constant rate at which new enemy 

intruders are partially or totally added to the 

system, acting as spies or boycotters. 
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Let 𝑒2 be the constant rate at which new enemy 

intruders (not involved in open hyperrelation-

ships) cease to be sneaks, spies, boycotters of the 

system.  

 

Universe of Discourse 

 

 

 

 

 

 

 

 

 

 

 

 

Diagram 1 of Breaking a Neutrosophic Open 

Complex System 

 

6) Let 𝐺  be total initial number of outside 

enemy intruders involved in open hyper-
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relationships acting as sneaks / spies / boycotters 

against the system. Let 𝜇(𝑡)  be the variable 

describing the number of outside individuals, 

involved in open hyperrelationships, that act as 

sneaks / spies / boycotters against the system.  

Let 𝑔1 be the constant rate at which new outside 

enemy intruders involved in open hyper-

relationships acting as sneaks / spies / boycotters 

are added, and 𝑔2 be the constant rate at which 

old outside enemy intruders involved in open 

hyperrelationships cease to be sneaks / spies / 

boycotters against the system. 

7) Let 𝐻  be total initial number of inside 

individuals, involved in open hyperrelationships, 

acting as sneaks / spies / boycotters against the 

system.  

Let 𝜈(𝑡) be the variable describing the number 

of inside individuals, involved in open hyper-

relationships, that act as sneaks / spies / 

boycotters against the system. 

Let ℎ1 the constant rate at which new inside 

individuals, involved in open hyperrelationships, 

act as sneaks / spies / boycotters against the 
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system, and ℎ2 be the constant rate at which old 

inside individuals, involved in open hypper-

relationships, cease to act as sneaks / spies / 

boycotters against the system.  

8) Neutrosophic Probabilities defined on the 

Neutrosophic Open Complex Dynamic System. 

In order to better describe the behavior of a 

neutrosophic open complex dynamic system, let’s 

provide the following definition: 

The neutrosophic probability of an event 𝐸 in 

general is 𝑃(𝐸) = (𝐶ℎ(𝐸)), 𝐼𝑛𝑑(𝐸), 𝑁𝑜𝑛𝐶ℎ(𝐸)), with: 

𝐶ℎ(𝐸) = chance that event 𝐸 occurs; 

𝐼𝑛𝑑(𝐸) =  indeterminate-chance that event 𝐸 

occurs = 𝐶ℎ(𝑛𝑒𝑢𝑡𝐸); 

𝑁𝑜𝑛𝐶ℎ(𝐸) = chance that event 𝐸 does not occur 

= 𝐶ℎ(𝑎𝑛𝑡𝑖𝐸). 

One may also write:  

𝑃(𝐸) = (𝐶ℎ(𝐸)), 𝐶ℎ(𝑛𝑒𝑢𝑡𝐸), 𝐶ℎ(𝑎𝑛𝑡𝑖𝐸)) 

with 𝐶ℎ(𝐸), 𝐶ℎ(𝑛𝑒𝑢𝑡𝐸), 𝐶ℎ(𝑎𝑛𝑡𝑖𝐸) ⊆ [0, 1]. 

In this paper, we consider the particular case 

when 𝐶ℎ(𝐸) , 𝐶ℎ(𝑛𝑒𝑢𝑡𝐸) , and 𝐶ℎ(𝑎𝑛𝑡𝑖𝐸)  ∈ [0, 1] , i.e. 

we use the single-valued neutrosophic prob-

ability.  
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Let 𝑝1  be the neutrosophic probability of 

recruiting sneaks / spies / boycotters from the 

new 𝑎1  inside individuals, not involved in open 

hyperrelationships. And 𝑝2  the neutrosophic 

probability that among the old 𝑎2  inside indiv-

iduals not involved in open hyperrelationships 

that left were sneaks / spies / boycotters.  

Let 𝑝3  be the neutrosophic probability of 

recruiting sneaks / spies / boycotters from the 

new 𝑏3  inside individuals that are involved in 

open hyper-relationships. And 𝑝4  the neutros-

ophic probability that from the old 𝑏4  inside 

individuals, involved in open hyperrelationships, 

were sneaks / spies / boycotters.   

Let 𝑝5  be the neutrosophic probability of 

recruiting sneaks / spies / boycotters from the 

new 𝑏1  outside individuals, involved in open 

hyperrelationships. And let 𝑝6  be the neutros-

ophic probability that from the old outside 

individuals, involved in open hyper-relationships, 

there were sneaks / spies / boycotters.  

Let 𝑝7  be the neutrosophic probability of 

recruiting sneaks / spies / boycotters from the 
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new 𝑐1  inside individuals, not involved in open 

hyperrelationships. And let 𝑝8  be the neutros-

ophic probability that from the old 𝑐2  outside 

individuals, not involved in open hyper-

relationships, were sneaks / spies / boycotters.  

9) Spying/ Boycotting (Anti-System) Variables. 

The independent variable is time (t). All other 

variables are dependent on t. They are: 𝛼(𝑡), 𝛽(𝑡), 

𝛾(𝑡), 𝛿(𝑡), 𝜂(𝑡), 𝜇(𝑡), 𝜈(𝑡), defined previously, and 

three more dependent variables defined below: 

𝑆1(𝑡), 𝑆2(𝑡) and 𝑆(𝑡). 

Let 𝑆1(𝑡) represent the variable describing the 

total number of inside sneaks / spies / boycotters:  

𝑆1(𝑡) = 𝛿(𝑡) + 𝜈(𝑡),    (2) 

with the initial value  

𝑆1(0) = 𝛿(0) + 𝜈(0) = 𝐷 + 𝐻.    (3) 

Let 𝑆2(𝑡)  be the variable describing the total 

number of outside spies / boycotters intruded 

into the system:  

𝑆2(𝑡) =  𝜇(𝑡) + 𝜂(𝑡),    (4) 

with initial value  

𝑆2(0) = 𝜇(0) + 𝜂(0) = 𝐺 + 𝐸.    (5) 
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Let 𝑆(𝑡)  represent the variable describing the 

total number of inside and outside intruders / 

spies / boycotters, together with their actions 

(hyper-relationships) against the system:  

𝑆(𝑡) = 𝑆1(𝑡) + 𝑆2(𝑡) = 𝛿(𝑡) + 𝜈(𝑡) +  𝜇(𝑡) + 𝜂(𝑡), (6) 

with initial value  

𝑆(0) = 𝑆1(𝑡) + 𝑆2(0) = 𝐷 + 𝐻 + 𝐺 + 𝐸.   (7) 

XIII.5.3. Ordinary Differential Equations 

Model 

We propose a system of ordinary differential 

equations. 

𝑑𝑆1

𝑑𝑡
=
𝑑𝛿

𝑑𝑡
+
𝑑𝜈

𝑑𝑡
= [𝑑1 ∙ 𝛿(𝑡) − 𝑑2 ∙ 𝛿(𝑡) + 𝑝1𝑎1 ∙ 𝛼(𝑡) −

𝑝2𝑎2 ∙ 𝛼(𝑡)] + [ℎ1 ∙ 𝜈(𝑡) − ℎ2 ∙ 𝜈(𝑡) + 𝑝3𝑏3𝛽(𝑡) −

𝑝4𝑏4𝛽(𝑡)] = (𝑑1 − 𝑑2) ∙ 𝛿(𝑡) + (ℎ1 − ℎ2) ∙ 𝜈(𝑡) + (𝑝1𝑎1 −

𝑝2𝑎2) ∙ 𝛼(𝑡) + (𝑝3𝑏3 − 𝑝4𝑏4) ∙ 𝛽(𝑡),  

with 𝑆1(0) = 𝐷 + 𝐻.     (8) 

𝑑𝑆2

𝑑𝑡
=
𝑑𝜇

𝑑𝑡
+
𝑑𝜂

𝑑𝑡
= [𝑔1 ∙ 𝜇(𝑡) − 𝑔2 ∙ 𝜇(𝑡) + 𝑝5 ∙ 𝑏1 ∙ 𝛽(𝑡) −

𝑝6 ∙ 𝑏2 ∙ 𝛽(𝑡)] + [𝑒1 ∙ 𝜂(𝑡) − 𝑒2 ∙ 𝜂(𝑡) + 𝑝7 ∙ 𝑐1 ∙ 𝛾(𝑡) − 𝑝8 ∙

𝑐2 ∙ 𝛾(𝑡)] = (𝑔1 − 𝑔2) ∙ 𝜇(𝑡) + (𝑒1 − 𝑒2) ∙ 𝜂(𝑡) + (𝑝5𝑏1 −

𝑝6𝑏2) ∙ 𝛽(𝑡) + (𝑝7 ∙ 𝑐1 − 𝑝8 ∙ 𝑐2) ∙ 𝛾(𝑡),  

with 𝑆2(0) = 𝐺 + 𝐸.     (9) 
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Hence:  
𝑑𝑆

𝑑𝑡
=
𝑑𝑆1

𝑑𝑡
+
𝑑𝑆2

𝑑𝑡
= (𝑑1 − 𝑑2) ∙ 𝛿(𝑡) + (ℎ1 − ℎ2) ∙

𝜈(𝑡) + (𝑔1 − 𝑔2) ∙ 𝜇(𝑡) + (𝑒1 − 𝑒2) ∙ 𝜂(𝑡) + (𝑝1𝑎1 − 𝑝2𝑎2) ∙

𝛼(𝑡) + (𝑝3𝑏3 − 𝑝4𝑏4 + 𝑝5𝑏1 − 𝑝6𝑏2) ∙ 𝛽(𝑡) + (𝑝7𝑐1 −

𝑝8𝑐2) ∙ 𝛾(𝑡),  

with 𝑆(0) = 𝐷 + 𝐻 + 𝐺 + 𝐸.    (10) 

XIII.5.4. Operations with Single-Valued 

Neutrosophic Probabilities 

Since 𝑝𝑖 , for 1 ≤ 𝑖 ≤ 8, are vectors of the form  

𝑝𝑖 = (𝐶ℎ(𝐸𝑖), 𝐶ℎ(𝑛𝑒𝑢𝑡𝐸𝑖), 𝐶ℎ(𝑎𝑛𝑡𝑖𝐸𝑖)),  (11) 

where 𝐸𝑖  are events, and 𝐶ℎ(𝐸𝑖),   𝐶ℎ(𝑛𝑒𝑢𝑡𝐸𝑖), 

𝐶ℎ(𝑎𝑛𝑡𝑖𝐸𝑖) are single-valued numbers in [0, 1], we 

use the following operations with such triads: for 

all 𝜓, 𝑢1, 𝑣1, 𝑤1, 𝑢2, 𝑣2, 𝑤2 ∈ ℝ, one has 

(𝑢1, 𝑣1, 𝑤1) + (𝑢2, 𝑣2, 𝑤2) = (𝑢1 + 𝑢2, 𝑣1 + 𝑣2, 𝑤1 + 𝑤2)

       (12) 

(𝑢1, 𝑣1, 𝑤1) − (𝑢2, 𝑣2, 𝑤2) = (𝑢1 − 𝑢2, 𝑣1 − 𝑣2, 𝑤1 − 𝑤2)

       (13) 

𝜓 · (𝑢1, 𝑣1, 𝑤1) = (𝜓𝑢1, 𝜓𝑣1, 𝜓𝑤1)  (14) 

𝜓 + (𝑢1, 𝑣1, 𝑤1) = 𝜓 · (1, 0, 0) + (𝑢1, 𝑣1, 𝑤1) =

(𝜓, 0, 0) + (𝑢1, 𝑣1, 𝑤1) = (𝜓 + 𝑢1, 𝑣1, 𝑤1).    (15) 
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XIII.5.5. Operations with Subset-Valued 

Neutrosophic Probabilities  

In the case when the above 𝑢1, 𝑣1, 𝑤1, 𝑢2, 𝑣2, 𝑤2 are 

subsets of [0, 1] one has: 

(𝑢1, 𝑣1, 𝑤1) ⊕ (𝑢2, 𝑣2, 𝑤2) = (𝑢1⊕𝑢2, 𝑣1⊕𝑣2, 𝑤1⊕𝑤2)

       (16) 

(𝑢1, 𝑣1, 𝑤1) ⊖ (𝑢2, 𝑣2, 𝑤2) = (𝑢1⊖𝑢2, 𝑣1⊖𝑣2, 𝑤1⊖𝑤2)

       (17) 

𝜓⊙ (𝑢1, 𝑣1, 𝑤1) = (𝜓⊙ 𝑢1, 𝜓 ⊙ 𝑣1, 𝜓 ⊙ 𝑤1) (18) 

where 𝜓 ∈ ℝ 

𝜓⊕ (𝑢1, 𝑣1, 𝑤1) = 𝜓 · (1, 0, 0) ⊕ (𝑢1, 𝑣1, 𝑤1) =

(𝜓, 0, 0) ⊕ (𝑢1, 𝑣1, 𝑤1) = (𝜓⊕ 𝑢1, 𝑣1, 𝑤1)  (19) 

And, of course:  

𝑢1⊕𝑢2 = {𝑥 + 𝑦|𝑥 ∈ 𝑢1, 𝑦 ∈ 𝑢2}  (20) 

𝑢1⊖𝑢2 = {𝑥 − 𝑦|𝑥 ∈ 𝑢1, 𝑦 ∈ 𝑢2}  (21) 

𝜓⊙ 𝑢1 = {𝜓 ∙ 𝑥|𝑥 ∈ 𝑢1}    (22) 

𝜓⊕ 𝑢1 = {𝜓 + 𝑥|𝑥 ∈ 𝑢1}   (23) 

which are: addition of subsets, subtraction of 

subsets, multiplication with a scalar of a subset, 

and addition of a scalar to a subset respectively. 

For 𝑣1, 𝑣2, 𝑤1, 𝑤2, the same operations. 
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Of course, we restrict all operations’ results to 

the interval [0, 1]. If a result is < 0, we write 0 

instead, and if the result is > 1, we write 1 instead. 

XIII.5.6. Whole Neutrosophic 

Hyperrelationships 

Let ℛ𝑛𝑜𝑛𝑆  be the whole neutrosophic hyper-

relationship of the 𝛺  neutrosophic space (only 

inside individuals that are not sneaks, spies, 

boycotters for the enemy of the system), together 

with the outside individuals that are in open 

hyperrelationships with insiders, and such out-

siders that are not sneaks, spies, boycotters 

against the system. “nonS” means “non-spies, 

non-boycotters etc.”. 

This hyperrelationship represents the cumul-

ated power of all positive elements (individuals) 

of the population of 𝛺, together with all positive 

(qualitatively) outside individuals, and all of their 

connections or hyperrelationships as the edges or 

hyperedges in the following neutrosophic hyper-

graph representing our neutrosophic complex 

dynamic system:  
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Diagram 2 of ℛ𝑛𝑜𝑛𝑆 

 

where the hyperrelationship between nodes 

(individuals) is of neutrosophic form:  

ℛ (𝑥𝑗1 , 𝑥𝑗2 , … , 𝑥𝑗𝑝 , 𝑥𝑗𝑟 , 𝑥𝑗𝑠 , 𝑦𝑘1 , 𝑦𝑘2 , … , 𝑦𝑘𝑙) = 

= (𝑡𝑗1…𝑗𝑠𝑘1…𝑘𝑙 , 𝑖𝑗1…𝑗𝑠𝑘1…𝑘𝑙 , 𝑓𝑗1…𝑗𝑠𝑘1…𝑘𝑙) 

⊆ ([0, 1], [0, 1], [0, 1])     (24) 

for all 𝑥𝑗1 , 𝑥𝑗2 , … , 𝑥𝑗𝑝 , 𝑥𝑗𝑟 , 𝑥𝑗𝑠 ∈ {𝑥1, 𝑥2, … , 𝑥𝑛} ⊆ Ω, and all 

𝑦𝑘1 , 𝑦𝑘2 , … , 𝑦𝑘𝑙 ∈ 𝒞(Ω). 

The ℛ𝑛𝑜𝑛𝑆  represents the maximum possible 

power (militarily, economically, financially, 

𝑦𝑘1 𝑦𝑘2 

𝑦𝑘𝑙 

𝑥𝑗𝑠 
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𝑥𝑗𝑟 𝑥𝑗3 𝑥𝑗5 
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adminis-tratively, politically, ideologically, etc.) 

of the neutrosophic dynamic system.  

This occurs when it is a perfect unity among 

insiders themselves and perfect unity in the open 

hyperrelationships between insiders and 

outsiders.  

Let’s denote this maximum power by 𝓂𝑛𝑜𝑛𝑆.  

Consequently, one has an obvious:  

XIII.5.7. Theorem 

To destroy, or conquer, or break a neutrosophic 

dynamic system from outside, another neutros-

ophic dynamic system is needed whose maximum 

power is greater than 𝓂𝑛𝑜𝑛𝑆.  

* 

Unfortunately, in practice, such perfect unities 

are unrealistic in our world. 

Let ℛ𝐷𝑁  be the whole neutrosophic hyper-

relationship of the whole 𝛺  neutrosophic space 

(all inside individuals, which are or which are not 

sneaks, spies, boycotters on behalf of the enemy), 

together with the outside individuals being in 

open hyper-reationships with inside individuals 
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(that are or that are not sneaks, spies, boycotters 

on behalf of the enemy).  

The open hyperrelationship leave higher 

chances for outsiders and insiders for making 

system backdoors that help breaking the system 

from inside.  

Obviously, the maximum possible power of 

ℛ𝐷𝑁, denoted by 𝓂𝐷𝑁, is strictly smaller than the 

previous one:  

𝓂𝐷𝑁 < 𝓂𝑛𝑜𝑛𝑆, 

since the inside and outside spies work against 

the system, diminishing its power.  

Unity means power, and split-ness means 

weakness. As in the well-knows Latin aphorism: 

Divide et impera. 

XIII.5.8. Breaking Point Equilibrium 

Threshold 

The variable S(t) describes the total number of 

inside and outside individual that are sneaks, 

spies, boycotters, together with their actions 

(hyper-relationships) against the system, at time 

𝑡 ≥ 0.  
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These individuals and their actions constitute 

the negative qualitatively power against the 

system. Let’s denote it by 𝓂𝑆.  

Therefore: 

𝓂𝐷𝑁 = 𝓂𝑛𝑜𝑛𝑆 −𝓂𝑆.    (25) 

For each neutrosophic dynamic system 𝐷𝑁 

there is a Breaking Point or Equilibrium Threshold, 

𝜏𝐷𝑁, where the system breaks down (collapses) if 

𝓂𝑆 > 𝜏𝐷𝑁  or the negative qualitatively power 

against the system overpasses the equilibrium 

threshold.  

One has the following situations (when no 

direct attack from outside occurs):  

If 𝓂𝑆 < 𝜏𝐷𝑁  the system is in equilibrium (it is 

stable); 

If 𝓂𝑆 = 𝜏𝐷𝑁 the system is on the edge (between 

stability and instability); 

If 𝓂𝑆 > 𝜏𝐷𝑁 the system is breaking down from 

inside (it got instable).  

An outside power 𝓂𝑜𝑢𝑡 > 𝓂𝐷𝑁  is needed to be 

able to break the system from outside. 𝜏𝐷𝑁 

depends on the type of dynamic system, its 
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structure and hyperrelationships (functionality), 

alike a construction scaffolding that may fell 

down when some key-links are broken… 

 

 

 

 

 

 

 

 

 

Diagram 3 of A Dynamic System Breaking from 

Inside or from Outside. 

 

While only this inside power 𝓂𝑖𝑛 ∈ (𝜏𝐷𝑁𝓂𝐷𝑁] is 

needed to break the system from inside. 

Therefore:  

𝓂𝑖𝑛 ≤ 𝓂𝐷𝑁 < 𝓂𝑜𝑢𝑡. 

Therefore, it is easier to break a system from 

inside, than from outside. In order to do this, the 

inside force has to exceed a critical value (the 
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Equilibrium Threshold) to rich the system’s 

dysfunctionality.  

The smallest force needed to break down from 

outside a neutrosophic complex dynamic system 

is greater than the biggest force needed to break 

it down from inside.  

In practice, the needed force from inside (by 

defectors, intruders, detractors, paid foreign 

agents, spies, instigators, and in general anti-

system individuals) is much smaller than the 

needed force from outside used to destroy the 

system.  

The percentage of anti-system inside pop-

ulation and the intensity of their anti-system 

actions count towards the breaking of the system 

from inside. In general, a system is broken by 

simultaneous attacks from both inside and 

outside the system. 

The attack from inside helps lightening the 

attack from outside.  

Breaking (or Attacking) from inside a 

neutrosophic complex linear or non-linear 

dynamic system, in general, is similar (in a 
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particular case), to a Cyber War: penetrating and 

destroying a computer network with worms 

(malicious codes which infect the computer 

system), viruses (which self-replicate), and mostly 

with Trojan Horses (which are programs that 

preform secretive operations (i.e. data being 

changed, stolen, deleted, or fake data included, or 

destructive executables added to the computer 

operation system), secretive operations under the 

mask of a legitim program), or creating Backdoors 

(where the inside and outside attacks can go 

through.  

No neutrosophic dynamic system is 100% 

percent immune to intruders and boycotters, 

since such system has some indeterminacy, where 

there may be set up Backdoors. 

We may see cyber-assaults, cyber-crimes, and 

global cyber-shocks from outside and from inside 

the system. If the anomaly into the system has 

very little impact, it is hard to detect. Abnormal 

and suspicious activities should be checked. The 

risk management is necessary in order to estimate 
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the digital threats, and to detect them as soon as 

possible.  

A neutrosophic dynamic system has a degree of 

vulnerability, a degree of invulnerability (im-

munity), and degree of indeterminacy (unsurety if 

it’s vulnerability or invulnerability). It functions 

under a certain risk tolerance level. Any neutros-

ophic dynamic system can be infiltrated. The 

more and more porous become the system’s 

boundaries, the easier, faster, and more massive 

it can be infiltrated. Lone-wolf attacker is more 

difficult to detect.  

XIII.5.9. Examples of Complex Dynamic 

System 

 A complex dynamic system may be any assoc-

iation, organization, company, corporation, firm, 

farm, factory, team, country, empire, geographic 

area, digital or non-digital network, and so on.  

XIII.5.10. Methods Used for Breaking from 

Inside a Complex Dynamic System 

– Interpreting what is good as bad, and 

praising what is bad; 
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– Reversing the value scale; 

– Promoting within the system the non-

values; 

– Favoring the counter-selection for the 

all sectors of activities; 

– Installing puppet leaders and puppet 

associates; 

– Creating conspiracies and coups 

d’états; 

– Using lone-wolf attackers that are 

harder to detect; 

– Setting all individuals against each 

other within the system; 

– Promotion for political reasons; 

– Encouraging the incompetence and 

persecuting the competence; 

– Encouraging self-disorganization; 

– Making individuals hate themselves 

and their origin; 

– Promoting the apathy of individuals 

with respect to extraneous intrusion; 

– Using subservient media for anti-

system propaganda; 
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– Boycotting everything positive within 

the system in economy, finance, 

administration; 

– Making regulation that ignore or 

undermine and ridicule local 

tradition, culture, religion, education, 

health; 

– Using disinformation and fake infor-

mation; 

– Transforming the system into a rigid 

(not flexible) one: not self-learning, 

nor self-adopting to environment; 

– Increasing the system vulnerability 

and decrease its immunity; 

– Obscuring the distinction between 

system normal behavior and mis-

behavior; 

– Making the system unprepared for 

defense by depraving and annihilating 

its defense; 

– Exaggerating the system's negations 

and diminishing or ignoring its 

positives; 
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– Biased predictions and fake statistics; 

– Fraudulent elections; 

– Any neutrosophic dynamic system has 

a degree of openness to outside, a 

degree to closeness; and a degree of 

indeterminate openness-closeness; 

the more open is the system to 

outside, the easier is to break it;  

– The more the insiders are connected 

to the outsiders, the easier to break 

the system; 

– The attackers should change all the 

times their breaking strategies; 

– Using outside attack from within; 

– Recompensing and rewarding null 

persons, system defectors, spies, 

sneaks, and the anti-system in-

dividuals; 

– Imprisoning or denigrating pro-

system individuals; 

– Discouraging the order, promoting the 

anarchy;  
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– Making the system’s boundaries 

between inside and outside vaguer 

and vaguer, so it can be better pen-

etrated; 

– Extending the system’s insecurity 

zone; 

– Creating hidden holes in the system’s 

defense wall; 

– Open gaps into the system; 

– Spreading anti-system feelings, anti-

socially engineered events, chaotic 

phenomena, dis-structure; 

– To real problems bringing anti-

solutions; 

– Using the paradoxism into the system: 

what is 〈𝐴〉,  where 〈𝐴〉  represents an 

entity (idea, notion, activity, attribute, 

etc.), should be interpreted as its 

opposite 〈𝑎𝑛𝑡𝑖𝐴〉, and reciprocally;  

– Even more general, use neutros-

ophism into the system: what is 〈𝐴〉 

interpret as 〈𝑛𝑒𝑢𝑡𝐴〉  or 〈𝑎𝑛𝑡𝑖𝐴〉 , where 
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〈𝑛𝑒𝑢𝑡𝐴〉 is the neutral: neither 〈𝐴〉, nor 

〈𝑎𝑛𝑡𝑖𝐴〉;  

– and reciprocally, what is 〈𝑎𝑛𝑡𝑖𝐴〉 

should be interpreted as 〈𝑛𝑒𝑢𝑡𝐴〉 or 〈𝐴〉;  

– for example: ignore [i.e. 〈𝑛𝑒𝑢𝑡𝐴〉]  the 

worthy local personalities [𝑖. 𝑒. 〈𝐴〉],  or 

discredit [𝑖. 𝑒. 〈𝑎𝑛𝑡𝑖𝐴〉] them. 

– The paradoxism and neutrosophism 

are abstractizations and gener-

alizations of Sun Tzu’s ideas. 

XIII.5.11. Extension of the Model 

The accuracy of the system can be increased if 

the mathematical constants, used into the model 

below, are extended to functions of time, i.e.: 

𝑎1 → 𝑎1(𝑡), 𝑎2 → 𝑎2(𝑡); 

𝑏1 → 𝑏1(𝑡), 𝑏2 → 𝑏2(𝑡), 𝑏3 → 𝑏3(𝑡), 𝑏4 → 𝑏4(𝑡); 

𝑐1 → 𝑐1(𝑡), 𝑐2 → 𝑐2(𝑡); 

𝑑1 → 𝑑1(𝑡), 𝑑2 → 𝑑2(𝑡); 

𝑒1 → 𝑒1(𝑡), 𝑒2 → 𝑒2(𝑡); 

𝑔1 → 𝑔1(𝑡), 𝑔2 → 𝑔2(𝑡); 

ℎ1 → ℎ1(𝑡), ℎ2 → ℎ2(𝑡). 
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XIII.5.12. Equilibrium Points 

Are points where the derivatives of the 

variables are equal to zero, therefore, the 

variables do not change with respect to time: 

 
𝑑𝛼

𝑑𝑡
= 0,

𝑑𝛽

𝑑𝑡
= 0, 

𝑑𝛾

𝑑𝑡
= 0, 

𝑑𝛿

𝑑𝑡
= 0, 

𝑑𝜂

𝑑𝑡
= 0, 

𝑑𝜇

𝑑𝑡
= 0, 

 
𝑑𝜈

𝑑𝑡
= 0, 

𝑑𝑆1

𝑑𝑡
= 0, 

𝑑𝑆2

𝑑𝑡
= 0, and 

𝑑𝑆

𝑑𝑡
= 0. 

XIII.5.13. Comments on the Model 

‒ If the entry constants are correspondingly 

equal to their exit constants (or 𝑎1 = 𝑎2 , 𝑏1 = 𝑏2 , 

𝑐1 = 𝑐2 , 𝑑1 = 𝑑2 , 𝑒1 = 𝑒2 , 𝑔1 = 𝑔2 , and ℎ1 = ℎ2 ) and 

their corresponding neutrosophic probabilities of 

containing antisystem individuals (or 𝑝1 = 𝑝2, 𝑝3 =

𝑝4 , 𝑝5 = 𝑝6 , and 𝑝7 = 𝑝8 ) then 
𝑑𝑆

𝑑𝑡
= 0 and the dyn-

amic system is in equilibrium. 

‒ If 
𝑑𝑆

𝑑𝑡
< 𝜏𝐷𝑁, the system remains resistant to the 

attack from inside, and in equilibrium.  

‒ If 
𝑑𝑆

𝑑𝑡
= 𝜏𝐷𝑁 , the system riches the breaking 

point. 

‒ If 
𝑑𝑆

𝑑𝑡
> 𝜏𝐷𝑁, the system is broken from inside, 

and gets in disequilibrium (instability). 
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‒ If lim
𝑡→∞

(
𝑑𝑆

𝑑𝑡
) = 0, the system is in global asymp-

totical stability.  

XIII.5.14. Conclusion 

This paper defines a neutrosophic mathem-

atical model using a system of ordinary dif-

ferential equations and the neutrosophic probab-

ility in order to approximate the process of 

breaking from inside a neutrosophic complex 

dynamic system. It shows that for breaking from 

inside it is needed a smaller force than for 

breaking from outside the neutrosophic complex 

dynamic system. Methods that have been used in 

the past for breaking from inside are listed. 

Simulation and animation of this neutrosophic 

dynamical system are needed for the future since, 

by changing certain parameters, various types of 

breaking from inside may be simulated. 
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XIII.6. Neutrosophic Quantum 

Computer 

Abstract. 

This paper is a theoretical approach for a 

potential neutrosophic quantum computer to be 

built in the future, which is an extension of the 

classical theoretical quantum computer, into 

which the indeterminacy is inserted. 

 

XIII.6.1. Introduction. 

Neutrosophic quantum communication is 

facilitated by the neutrosophic polarization, that 

favors the use the neutrosophic superposition and 

neutrosophic entanglement. 

The neutrosophic superposition can be linear 

or non-linear. While into the classical presumptive 

quantum computers there are employed only the 

coherent superpositions of two states (0 and 1), in 

the neutrosophic quantum computers one 

supposes the possibilities of using coherent 

superpositions amongst three states (0, 1, and I = 
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indeterminacy) and one explores the possibility of 

using the decoherent superpositions as well. 

XIII.6.2. Neutrosophic Polarization. 

The neutrosophic polarization of a photon is 

referred to as orientation of the oscillation of the 

photon: oscillation in one direction is interpreted 

as 0, oscillation in opposite direction is 

interpreted as 1, while the ambiguous or unknown 

or vague or fluctuating back and forth direction as 

I (indeterminate). 

Thus, the neutrosophic polarization of a 

photon is 0, 1, or I. Since indeterminacy (I) does 

exist independently from 0 and 1, we cannot use 

fuzzy nor intuitionistic fuzzy logic / set, but 

neutrosophic logic / set. 

These three neutrosophic values are used for 

neutrosophically encoding the data. 

XIII.6.3. Refined Neutrosophic 

Polarization. 

In a more detailed development, one may 

consider the refined neutrosophic polarization, 

where we refine for example I as I1 (ambiguous 
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direction), I2 (unknown direction), I3 (fluctuating 

direction), etc. 

Or we may refine 0 as 01 (oscillation in one 

direction at a high angular speed), 02 (oscillation 

in the same direction at a lower angular speed), 

etc. 

Or we may refine 1 as 11 (oscillation in opposite 

direction at a high angular speed), 12 (oscillation 

in the same opposite direction at a lower angular 

speed), etc. 

The refinement of the neutrosophic polar-

ization may be given by one or more parameters 

that influence the oscillation of the photon. 

XIII.6.4. Neutrosophic Quantum 

Computer. 

A Neutrosophic Quantum Computer uses 

phenomena of Neutrosophic Quantum Mechanics, 

such as neutrosophic superposition and neutros-

ophic entanglement for neutrosophic data 

operations. 
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XIII.6.5. Neutrosophic Particle. 

A particle is considered neutrosophic if it has 

some indeterminacy with respect to at least one 

of its attributes (direction of spinning, speed, 

charge, etc.). 

XIII.6.6. Entangled Neutrosophic Particle. 

Two neutrosophic particles are entangled if 

measuring the indeterminacy of one of them, the 

other one will automatically have the same 

indeterminacy. 

XIII.6.7. Neutrosophic Data. 

Neutrosophic Data is data with some 

indeterminacy. 

XIII.6.8. Neutrosophic Superposition.  

Neutrosophic Superposition, that we introduce 

now for the first time, means superpositions only 

of 0 and 1 as in qubit (=quantum bit), but also 

involving indeterminacy (I), as in neutrosophic 

set, neutrosophic logic, neutrosophic probability, 

neutrosophic measure, and so on. 
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XIII.6.9. Indeterminate Bit.  

An indeterminate bit, that we introduce now for 

the first time, is a bit that one does not know if it 

is 0 or 1, so we note it by I (= indeterminacy). 

Therefore, neutrosophic superposition means 

coherent superposition of 0 and I, 1 and I, or 0 and 

1 and I: 

(
0
𝐼
) , (

1
𝐼
), or (

0
1
𝐼
), 

or decoherent superposition of classical bits 0 and 

1, or decoherence between 0, 1, I, such as: 

(
0
1
)
𝑑𝑒𝑐

, (0
𝐼
)
𝑑𝑒𝑐

, (1
𝐼
)
𝑑𝑒𝑐

, (
0
1
𝐼
)

𝑑𝑒𝑐

. 

XIII.6.10. Neutrobit. 

A neutrosophic bit (or “neutrobit”), that we also 

introduce for the first time, is any of the above 

neutrosophic superpositions: 

(
0
𝐼
) , (

1
𝐼
), (

0
1
𝐼
), or (0

1
)
𝑑𝑒𝑐

. 

A neutrosobit acts in two or three universes. A 

neutrobit can exist with, of course, a (t, i, f) 
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neutrosophic probability, simultaneously as 0 and 

I, or 1 and I, or 0, 1, and I, where t = percentage of 

truth, i = percentage of indeterminacy, and f = 

percentage of falsehood. 

XIII.6.11. Refined Neutrosophic Quantum 

Computer. 

Thus, we extend the neutrosophic quantum 

computers to refined neutrosophic quantum 

computers. 

XIII.6.12. Neutrosophic Filter Polarization. 

The neutrosophic filter polarization of the 

receiver must match the neutrosophic polar-

ization of the transmitter, of course. 

XIII.6.13. Neutrosophic Quantum 

Parallelism. 

The neutrosophic quantum parallelism is 

referring to the simultaneously calculations done 

in each universe, but some universe may contain 

indeterminate bits, or there might be some 

decoherence superpositions. 
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XIII.6.14. n-Neutrobit Quantum Computer. 

Thus, an n-neutrobit quantum computer, whose 

register has n neutrobits, requires 3
n 

- 1 numbers 

created from the digits 0, 1, and I (where I is 

considered as an indeterminate digit).  

A register of n classical bits represents any 

number from 0 to 2
n 

- 1. A register of n qubits such 

that each bit is in superposition or coherent state, 

can represent simultaneously all numbers from 0 

to 2
n 

- 1. 

Being in neutrosophic superposition, a neutros-

ophic quantum computer can simultaneously act 

on all its possible states. 

XIII.6.15. Neutrosophic Quantum Gates. 

Moving towards neutrosophic quantum gates 

involves experiments in which one observes 

quantum phenomena with indeterminacy. 

XIII.6.16. Remarks. 

Building a Neutrosophic Quantum Computer 

requires a neutrosophic technology that enables 

the “neutrobits”, either with coherent super-
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positions involving I, or with decoherent super-

positions. 

Since neither classical quantum computers 

have been built yet, neutrosophic quantum 

computers would be as today even more difficult 

to construct. 

But we are optimistic that they will gather 

momentum in practice one time in the future. 

XIII.6.17. Reversibility of a Neutrosophic 

Quantum Computer. 

The reversibility of a neutrosophic quantum 

computer is more problematic than that of a 

classical quantum computer, since amongst its 

neutrosophic inputs that must be entirely 

deducible from its neutrosophic outputs, there 

exists I (indeterminacy). 

This becomes even more complex when one 

deals with refined neutrosophic polarisations, 

such as sub-indeterminacies (I1, I2) and sub-

oscillations in one direction, or in another 

direction. 

A loss of neutrosophic information (i.e. 

information with indeterminacy) results from 
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irreversible neutrosophic quantum computers 

(when its inputs are not entirely deducible from 

its outputs). The loss of information, which comes 

from the loss of heat of the photons, means loss 

of bits, or qubits, or neutrobits. 

XIII.6.18. Neutrosophic Dynamical System. 

Any classical dynamical system is, in some 

degree neutrosophic, since any dynamical system 

has some indeterminacy because a dynamic 

system is interconnected with its environment, 

hence interconnected with other dynamical 

systems. 

We can, in general, take any neutrosophic 

dynamical system, as a neutrosophic quantum 

computer, and its dynamicity as a neutrosophic 

computation. 

XIII.6.19. Neutrosophic Turing Machine & 

Neutrosophic Church-Turing Principle. 

We may talk about a Neutrosophic Turing 

Machine, which is a Turing Machine which works 

approximately (hence it has some indeterminacy), 

and about a Neutrosophic Church-Turing Principle, 
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which deviates and extends the classical Church-

Turing Principle to: 

“There exists or can be built a universal 

'neutrosophic quantum' [NB: our inserted words] 

that can be programmed to perform any com-

putational task that can be performed by any 

physical object.” 

XIII.6.20. Human Brain as an example of 

Neutrosophic Quantum Computer. 

As a particular case, the human brain is a 

neutrosophic quantum computer (the neutros-

ophic hardware), since it works with indeter-

minacy, vagueness, unknown, incomplete and 

conflicting information from our-world. And 

because it processes simultaneously information 

in conscience and sub-conscience (hence netros-

ophic parallelism). The human mind is neutros-

ophic software, since works with approximations 

and indeterminacy. 

XIII.6.21. Neutrosophic Quantum Dot. 

In the classical theoretical quantum computers, 

a quantum dot is represented by one electron 
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contained into a cage of atoms. The electron at the 

ground state is considered the 0 state of the 

classical qubit, while the electron at the excited 

(that is caused by a laser light pulse of a precise 

duration and wavelength) is considered the 1 state 

of the classical qubit. 

When the laser light pulse that excites the 

electron is only half of the precise duration, the 

electron gets in a classical superposition of 0 and 

1 states simultaneously. 

A right duration-and-wavelength laser light 

pulse knocks the electron from 0 to 1, or from 1 

to 0. But, when the laser light pulse is only a 

fraction of the right duration, then the electron is 

placed in between the ground state (0) and the 

excited state (1), i.e. the electron is placed in 

indeterminate state (I). We denote the 

indeterminate state by “I”, as in neeutrosophic 

logic, and of course 𝐼 ∈ (0, 1) in this case. 

Hence, one has a refined neutrosophic logic, 

where the indeterminacy is refined infinitely 

many times, whose values are in the open interval 

(0, 1). Such as 



Florentin Smarandache 

Neutrosophic Perspectives 

313 

 

 

 

This is a neutrosophication process. 

XIII.6.22. Neutrosophic NOT Function. 

The controlled neutrosophic NOT function is 

defined by the laser-light application: 

𝑁𝑂𝑇𝑁: [0, 1] → [0, 1]. 

𝑁𝑂𝑇𝑁(𝑥) = 1 − 𝑥, where 𝑥 ∈ [0, 1]. 

Therefore:  

𝑁𝑂𝑇𝑁(0) = 1, 𝑁𝑂𝑇𝑁(1) = 0, 

and  

𝑁𝑂𝑇𝑁(𝐼) = 1 − 𝐼. 

For example, if indeterminacy 𝐼 = 0.3, then 

𝑁𝑂𝑇𝑁(0.3) = 1 − 0.3 = 0.7. 

Hence 𝑁𝑂𝑇𝑁 (indeterminacy) = indeterminacy. 

XIII.6.23. Neutrosophic AND Function. 

The neutrosophic AND function is defined as: 

𝐴𝑁𝐷𝑁: [0, 1] × [0, 1] → [0, 1]. 

𝐴𝑁𝐷𝑁(𝑥, 𝑦) = 𝑚𝑖𝑛{𝑥, 𝑦}, for all 𝑥, 𝑦 ∈ [0, 1]. 

Therefore: 

𝐴𝑁𝐷𝑁(0, 0) = 0, 𝐴𝑁𝐷𝑁(1, 1) = 1, 

1 

 

I 

0 
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𝐴𝑁𝐷𝑁(0, 1) = 𝐴𝑁𝐷𝑁(1, 0) = 0. 

For indeterminacy, 

𝐴𝑁𝐷𝑁(0, 𝐼) = 0, and 𝐴𝑁𝐷𝑁(1, 𝐼) = 𝐼. 

Let 𝐼 = 0.4, then: 

𝐴𝑁𝐷𝑁(0, 0.4) = 0, 𝐴𝑁𝐷𝑁(1, 0.4) = 0.4. 

Another example with indeterminacies. 

𝐴𝑁𝐷𝑁(0.4, 0.6) = 0.4. 

XIII.6.24. Neutrosophic OR Function.  

The neutrosophic OR function is defined as: 

𝑂𝑅𝑁: [0, 1] × [0, 1] → [0, 1]. 

𝑂𝑅𝑁(𝑥, 𝑦) = 𝑚𝑎𝑥{𝑥, 𝑦}, for all 𝑥, 𝑦 ∈ [0, 1]. 

Therefore: 

𝑂𝑅𝑁(0, 0) = 0, 𝑂𝑅𝑁(1, 1) = 1, 

𝑂𝑅𝑁(0, 1) = 𝑂, 𝑅𝑁(1, 0) = 0. 

For indeterminacy, 

𝑂𝑅𝑁(0, 𝐼) = 𝐼, and 𝑂𝑅𝑁(1, 𝐼) = 1. 

If 𝐼 = 0.2, then 𝑂𝑅𝑁(0, 0.2) = 0.2, and 𝑂𝑅𝑁(1, 0.2) =

0.2. 

XIII.6.25. Neutrosophic IFTHEN Function. 

The neutrosophic 𝐼𝐹𝑇𝐻𝐸𝑁𝑁 function is defined 

as: 

𝐼𝐹𝑇𝐻𝐸𝑁𝑁: [0, 1] × [0, 1] → [0, 1]. 
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𝐼𝐹𝑇𝐻𝐸𝑁𝑁(x, y) = 𝑚𝑎𝑥{1 − 𝑥, 𝑦}, for all 𝑥, 𝑦 ∈ [0, 1]. 

𝐼𝐹𝑇𝐻𝐸𝑁𝑁  is equivalent to 𝑂𝑅𝑁(𝑁𝑂𝑇𝑁(𝑥), 𝑦) , 

similar to the Boolean logic: 

𝐴 → 𝐵 is equivalent to 𝑛𝑜𝑛(𝐴) or 𝐵. 

Therefore: 

𝐼𝐹𝑇𝐻𝐸𝑁𝑁(0, 0) = 1, 𝐼𝐹𝑇𝐻𝐸𝑁𝑁  (1, 1) = 1, 

𝐼𝐹𝑇𝐻𝐸𝑁𝑁(1, 0) = 0, 𝐼𝐹𝑇𝐻𝐸𝑁𝑁(0, 1) = 1. 

Its neutrosophic value table is: 

 

𝐼𝐹𝑇𝐻𝐸𝑁𝑁 

    x 

y 

0 Iα Iβ 1 

0 1 1- Iα 1- Iβ 0 

Iα 1 max{1- Iα, Iα} max{1- Iβ, Iα} Iα 

Iβ 1 max{1- Iα, Iβ} max{1- Iβ, Iβ} Iβ 

1 1 1 1 1 

where 𝐼𝛼, 𝐼𝛽 are indeterminacies and they belong 

to (0, 1). 
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𝐼𝛼, 𝐼𝛽 can be crisp numbers, interval-valued, or 

in general subsets of [0, 1]. 

XIII.6.16. Neutrosophic Quantum Liquids. 

In classical theoretical quantum computers, 

there also are used computing liquids. In order to 

store the information, one employs a soup of 

complex molecules, i.e. molecules with many 

nuclei. If a molecule is sunk into a magnetic field, 

each of its nuclei spins either downward (which 

means state 0), or upward (which means state 1).  

Precise radio waves bursts change the nuclei 

spinning from 0 to 1, and reciprocally. If the radio 

waves are not at a right amplitude, length and 

frequency, then the nuclei state is perturbed 

(which means neither 0 nor 1, but I = 

indeterminacy). Similarly, this is a neutros-

ophication process.  

These spin states (0, 1, or I) can be detected 

with the techniques of NNMR (Neutrosophic 

Nuclear Magnetic Resonance). 

The deneutrosophication means getting rid of 

indeterminacy (noise), or at least diminish it as 

much as possible. 
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XIII.6.27. Conclusion. 

This is a theoretical approach and investigation 

about the possibility of building a quantum 

computer based on neutrosophic logic. Future 

research in this direction is required. 
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XIII.7. Theory of Neutrosophic 

Evolution: Degrees of Evolution, 

Indeterminacy, and Involution 

Abstract  

During the process of adaptation of a being 

(plant, animal, or human), to a new environment 

or conditions, the being partially evolves, partially 

devolves (degenerates), and partially is indeter-

minate {i.e. neither evolving nor devolving, 

therefore unchanged (neutral), or the change is 

unclear, ambiguous, vague}, as in neutrosophic 

logic. Thank to adaptation, one therefore has: 

evolution, involution, and indeterminacy (or 

neutrality), each one of these three neutrosophic 

components in some degree. 

The degrees of evolution / indeterminacy / 

involution are referred to both: the structure of 

the being (its body parts), and functionality of the 

being (functionality of each part, or inter-

functionality of the parts among each other, or 

functionality of the being as a whole).  
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We therefore introduce now for the first time 

the Neutrosophic Theory of Evolution, Involution, 

and Indeterminacy (or Neutrality).  

XIII.7.1. Introduction. 

During the 2016-2017 winter, in December-

January, I went to a cultural and scientific trip to 

Galápagos Archipelago, Ecuador, in the Pacific 

Ocean, and visited seven islands and islets:  

Mosquera, Isabela, Fernandina, Santiago, Som-

brero Chino, Santa Cruz, and Rabida, in a cruise 

with Golondrina Ship. I had extensive discussions 

with our likeable guide, señor Milton Ulloa, about 

natural habitats and their transformations.  

After seeing many animals and plants, that 

evolved differently from their ancestors that came 

from the continental land, I consulted, returning 

back to my University of New Mexico, various 

scientific literature about the life of animals and 

plants, their reproductions, and about multiple 

theories of evolutions. I used the online scientific 

databases that UNM Library [25] has subscribed 

to, such as: MathSciNet, Web of Science, EBSCO, 

Thomson Gale (Cengage), ProQuest, IEEE/IET 
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Electronic Library, IEEE Xplore Digital Library etc., 

and DOAJ, Amazon Kindle, Google Play Books as 

well, doing searches for keywords related to 

origins of life, species, evolution, controversial 

ideas about evolution, adaptation and inadap-

tation, life curiosities, mutations, genetics, 

embryology, and so on. 

My general conclusion was that each evolution 

theory had some degree of truth, some degree of 

indeterminacy, and some degree of untruth (as in 

neutrosophic logic), depending on the types of 

species, environment, timespan, and other hidden 

parameters that may exist. 

And all these degrees are different from a 

species to another species, from an environment 

to another environment, from a timespan to 

another timespan, and in general from a 

parameter to another parameter. 

By environment, one understands: geography, 

climate, prays and predators of that species, i.e. 

the whole ecosystem. 

I have observed that the animals and plants 

(and even human beings) not only evolve, but also 
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devolve (i.e. involve back, decline, atrophy, pass 

down, regress, degenerate). Some treats increase, 

other treats decrease, while others remains 

unchanged (neutrality). 

One also sees: adaptation by physical or 

functional evolution of a body part, and physical 

or functional involution of another body part, 

while other body parts and functions remain 

unchanged. After evolution, a new process starts, 

re-evaluation, and so on.  

In the society, it looks that the most 

opportunistic (which is the fittest!) succeeds, not 

the smartest. And professional deformation 

signifies evolution (specialization in a narrow 

field), and involution (incapability of doing things 

in another field). 

The paper is organized as follows: some 

information on taxonomy, species, a short list of 

theories of origin of life, another list of theories 

and ideas about evolution. Afterwards the main 

contribution of this paper, the theory of 

neutrosophic evolution, the dynamicity of species, 

several examples of evolution, involution, and 
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indeterminacy (neutrality), neutrosophic selec-

tion, refined neutrosophic theory of evolution, 

and the paper ends with open questions on 

evolution / neutrality / involution. 

XIII.7.2. Taxonomy. 

Let's recall several notions from classical 

biology. 

The taxonomy is a classification, from a 

scientifically point of view, of the living things, 

and it classifies them into three categories: 

species, genus, and family. 

XIII.7.3. Species. 

A species means a group of organisms, living in 

a specific area, sharing many characteristics, and 

able to reproduce with each other. 

In some cases, the distinction between a 

population subgroup to be a different species, or 

not, is unclear, as in the Sorites Paradoxes in the 

frame of neutrosophy: the frontier between ˂A˃ 

(where ˂A˃ can be a species, a genus, or a family), 

and ˂nonA˃ (which means that is not ˂A˃) is 
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vague, incomplete, ambiguous. Similarly, for the 

distinction between a series and its subseries. 

XIII.7.4. Theories of Origin of Life. 

Louis Pasteur (1822-1895) developed in 1860 

the theory of precellular (prebiotic) evolution, 

which says that life evolved from non-living 

chemical combinations that, over long time, arose 

spontaneously. 

In the late 19
th

 century a theory, called 

abiogenesis, promulgated that the living 

organisms originated from lifeless matter 

spontaneously, without any living parents’ action. 

Carl R. Woese (b. 1928) has proposed in 1970’s 

that the progenotes were the very first living cells, 

but their biological specificity was small. The 

genes were considered probable (rather than 

identical) proteins. 

John Burdon Sanderson Haldane (1872-1964) 

proposed in 1929 the theory that the viruses were 

precursors to the living cells [1]. 

John Bernal and A. G. Cairns-Smith stated in 

1966 the mineral theory: that life evolved from 
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inorganic crystals found in the clay, by natural 

selection [2]. 

According to the little bags theory of evolution, 

the life is considered as having evolved from 

organic chemicals that happened to get trapped in 

some tiny vesicles. 

Eigen and Schuster, adepts of the hypercycle 

theory, asserted in 1977 that the precursors of 

single cells were these little bags, and their 

chemical reactions cycles were equivalent to the 

life’s functionality [3]. 

Other theories about the origin of life have been 

proposed in the biology literature, such as: 

primordial soup, dynamic state theory, and 

phenotype theory, but they were later dismissed 

by experiments. 

XIII.7.5. Theories and Ideas about 

Evolution. 

The theory of fixism says that species are fixed, 

they do not evolve or devolve, and therefore the 

today’s species are identical to the past species. 

Of course, the creationism is a fixism theory, 

from a religious point of view. Opposed to the 
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fixism is the theory of transformism, antecedent 

to the evolutionary doctrine, in the pre-Darwinian 

period, which asserts that plants and animals are 

modified and transformed gradually from one 

species into another through many generations 

[22]. 

Jean Baptiste Pierre Antoine de Monet Lamarck 

(1749-1829), in 1801, ahead of Charles Darwin, is 

associated with the theory of inheritance of 

acquired characteristics (or use-inheritance), and 

even of acquired habits. Which is called 

Lamarckism or Lamarckian Evolution. 

If an animal repeatedly stresses in the environ-

ment, its body part under stress will modify in 

order to overcome the environmental stress, and 

the modification will be transmitted to its off-

spring. 

For example: the giraffe having a long neck in 

order to catch the tree leaves [4]. 

Herbert Spencer (1820-1903) used for the first 

time the term evolution in biology, showing that a 

population’s gene pool changes from a generation 
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to another generation, producing new species 

after a time [5].  

Charles Darwin (1809-1882) introduced the 

natural selection, meaning that individuals that 

are more endowed with characteristics for 

reproduction and survival will prevail (“selection 

of the fittest”), while those less endowed would 

perish [6]. 

Darwin had also explained the structure 

similarities of leaving things in genera and 

families, due to the common descent of related 

species [7]. 

In his gradualism (or phyletic gradualism), 

Darwin said that species evolve slowly, rather 

than suddenly. 

The adaptation of an organism means nervous 

response change, after being exposed to a 

permanent stimulus. 

In the modern gradualism, from the genetic 

point of view, the beneficial genes of the 

individuals best adapted to the environment, will 

have a higher frequency into the population over 

a period of time, giving birth to a new species [8]. 
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Herbert Spencer also coined the phrase survival 

of the fittest in 1864, that those individuals the 

best adapted to the environment are the most 

likely to survive and reproduce. 

Alfred Russel Wallace (1823-1913) coined in 

1828 the terms Darwinism (individuals the most 

adapted to environment pass their characteristics 

to their offspring), and Darwinian fitness (the 

better adapted, the better surviving chance) [9]. 

One has upward evolution {anagenesis, coined 

by Alpheus Hyatt (1838-1902) in 1889}, as the 

progressive evolution of the species into another 

[10], and a branching evolution {cladogenesis, 

coined by Sir Julian Sorell Huxley (1887-1975) in 

1953}, when the population diverges and new 

species evolve [11].  

George John Romanes (1848-1894) coined the 

word neo-Darwinism, related to natural selection 

and the theory of genetics that explains the 

synthetic theory of evolution. What counts for the 

natural selection is the gene frequency in the 

population [12]. The Darwinism is put together 
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with the paleontology, systematics, embryology, 

molecular biology, and genetics. 

In the 19
th

 century Gregor Johann Mendel (1822-

1884) set the base of genetics, together with other 

scientists, among them Thomas Hunt Morgan 

(1866-1945). 

The Mendelism is the study of heredity 

according to the chromosome theory: the living 

thing reproductive cells contain factors which 

transmit to their offspring particular 

characteristics [13]. 

August Weismann (1834-1914) in year 1892 

enounced the germ plasm theory, saying that the 

offspring do not inherit the acquired 

characteristics of the parents [14]. 

Hugo de Vries (1848-1935) published a book in 

1901/1903 on mutation theory, considering that 

randomly genetic mutations may produce new 

forms of living things. Therefore, new species 

may occur suddenly [15]. 

Louis Antoine Marie Joseph Dollo (1857-1931) 

enunciated the Dollo’s principle (law or rule) that 

evolution is irreversible, i.e. the lost functions and 
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structures in species are not regained by future 

evolving species. 

In the present, the synergetic theory of 

evolution considers that one has a natural or 

artificial multipolar selection, which occurs at all 

life levels, from the molecule to the ecosystem – 

not only at the population level. 

But nowadays it has been discovered organisms 

that have re-evolved structured similar to those 

lost by their ancestors [16].  

The genetic assimilation {for Baldwin Effect, 

after James Mark Baldwin (1861-1934)} considered 

that an advantageous trait (or phenotype) may 

appear in several individuals of a population in 

response to the environmental cues, which would 

determine the gene responsible for the trait to 

spread through this population [17]. 

The British geneticist Sir Ronald A. Fisher 

(1890-1962) elaborated in 1930 the evolutionary 

or directional determinism, when a trait of 

individuals is preferred for the new generations 

(for example the largest grains to replant, chosen 

by farmers) [18]. 
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The theory of speciation was associated with 

Ernst Mayr (b. 1904) and asserts that because of 

geographic isolation new species arise, that 

diverge genetically from the larger original 

population of sexually reproducing organisms. A 

subgroup becomes new species if its distinct 

characteristics allow it to survive and its genes do 

not mix with other species [19]. 

In the 20
th

 century, Trofim Denisovitch Lysenko 

(1898-1976) revived the Lamarckism to the 

Lysenkoism school of genetics, proclaiming that 

the new characteristics acquired by parents will 

be passed on to the offspring [20]. 

Richard Goldschmidt (1878-1958) in 1940 has 

coined the terms of macroevolution, which means 

evolution from a long timespan (geological) 

perspective, and microevolution, which means 

evolution from a small timespan (a few 

generations) perspective with observable changes 

[1]. 

Sewall Wright (1889-1988), in the mid 20
th

 

century, developed the founders effect of 

principle, that in isolated places population 



Florentin Smarandache 

Neutrosophic Perspectives 

331 

arrived from the continent or from another island, 

becomes little by little distinct from its original 

place population. This is explained because the 

founders are few in number and therefore the 

genetic pool is smaller in diversity, whence their 

offspring are more similar in comparison to the 

offspring of the original place population.  

The founders effect or principle is regarded as 

a particular case of the genetic drift (by the same 

biologist, Sewall Wright), which tells that the 

change in gene occurs by chance [21]. 

The mathematician John Maynard Smith has 

applied the game theory to animal behavior and in 

1976 he stated the evolutionary stable strategy in 

a population. It means that, unless the 

environment changes, the best strategy will 

evolve, and persist for solving problems. 

Other theories related to evolution such as: 

punctuated equilibrium (instantaneous evolution), 

hopeful monsters, and saltation (quantum) 

speciation (that new species suddenly occur; by 

Ernst Mayr) have been criticized by the majority 

of biologists.  
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XIII.7.6. Open Research. 

By genetic engineering it is possible to make 

another combination of genes, within the same 

number of chromosomes. Thus, it is possible to 

mating a species with another closer species, but 

their offspring is sterile (the offspring cannot 

reproduce). 

Despite the tremendous genetic engineering 

development in the last decades, there has not 

been possible to prove by experiments in the 

laboratory that: from an inorganic matter, one can 

make organic matter that may reproduce and 

assimilate energy; nor was possible in the 

laboratory to transform a species into a new 

species that has a number of chromosomes dif-

ferent from the existent species. 

XIII.7.7. Involution. 

According to several online dictionaries, 

involution means: 

— Decay, retrogression or shrinkage in size; or 

return to a former state [Collins Dictionary of 

Medicine, Robert M. Youngson, 2005]; 
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— Returning of an enlarged organ to normal 

size; or turning inward of the edges of a part; 

mental decline associated with advanced age 

(psychiatry) [Medical Dictionary for the Health 

Professions and Nursing, Farlex, 2012]; 

— Having rolled-up margins (for the plant 

organs) [Collins Dictionary of Biology, 3rd edition, 

W. G. Hale, V. A. Saunders, J. P. Margham, 2005]; 

— A retrograde change of the body or of an 

organ [Dorland's Medical Dictionary for Health 

Consumers, Saunders, an imprint of Elsevier, Inc., 

2007]; 

— A progressive decline or degeneration of 

normal physiological functioning [The American 

Heritage, Houghton Mifflin Company, 2007]. 

XIII.7.8. Theory of Neutrosophic Evolution. 

During the process of adaptation of a being 

(plant, animal, or human) B, to a new environment 

η, 

— B partially evolves; 

— B partially devolves (involves, regresses, deg-

enerates); 
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— and B partially remains indeterminate {which 

means neutral (unchanged), or ambiguous – i.e. 

not sure if it is evolution or involution}. 

Any action has a reaction. We see, thank to 

adaptation: evolution, involution, and neutrality 

(indeterminacy), each one of these three neutros-

ophic components in some degree. 

The degrees of evolution / indeterminacy / 

involution are referred to both: the structure of B 

(its body parts), and functionality of B 

(functionality of each part, or inter-functionality 

of the parts among each other, or functionality of 

B as a whole).  

Adaptation to new environment conditions 

means de-adaptation from the old environment 

conditions. 

Evolution in one direction means involution in 

the opposite direction. 

Loosing in one direction, one has to gain in 

another direction in order to survive (for 

equilibrium). And reciprocally.  

A species, with respect to an environment, can 

be: 
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— in equilibrium, disequilibrium, or indeter-

mination; 

— stable, unstable, or indeterminate (amb-

iguous state); 

— optimal, suboptimal, or indeterminate. 

One therefore has a Neutrosophic Theory of 

Evolution, Involution, and Indeterminacy (neut-

rality, or fluctuation between Evolution and 

Involution). The evolution, the involution, and the 

indeterminate-evolution depend not only on 

natural selection, but also on many other factors 

such as: artificial selection, friends and enemies, 

bad luck or good luck, weather change, environ-

ment juncture etc. 

XIII.7.9. Dynamicity of the Species. 

If the species is in indeterminate (unclear, 

vague, ambiguous) state with respect to its 

environment, it tends to converge towards one 

extreme:  

either to equilibrium / stability / optimality, or 

to disequilibrium / instability / suboptimality 

with respect to an environment; 
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therefore, the species either rises up gradually 

or suddenly by mutation towards equilibrium / 

stability / optimality; 

or the species deeps down gradually or 

suddenly by mutation to disequilibrium / 

instability / suboptimality and perish. 

The attraction point in this neutrosophic 

dynamic system is, of course, the state of 

equilibrium / stability / optimality. But even in 

this state, the species is not fixed, it may get, due 

to new conditions or accidents, to a degree of 

disequilibrium / instability / suboptimality, and 

from this new state again the struggle on the long 

way back of the species to its attraction point. 

XIII.7.10. Several Examples of Evolution, 

Involution, and Indeterminacy (Neutrality) 

XIII.7.10.1 Cormorants Example 

Let's take the flightless cormorants 

(Nannopterum harrisi) in Galápagos Islands, their 

wings and tail have atrophied (hence devolved) 

due to their no need to fly (for they are having no 

predators on the land), and because their 
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permanent need to dive on near-shore bottom 

after fish, octopi, eels etc. Their avian breastbone 

vanished (involution), since no flying muscles to 

support were needed. 

But their neck got longer, their legs stronger, 

and their feet got huge webbed in order to catch 

fish underwater (evolution). 

Yet, the flightless cormorants kept several of 

their ancestors' habits (functionality as a whole): 

make nests, hatch the eggs etc. (hence neutrality). 

XIII.7.10.2. Cosmos Example. 

The astronauts, in space, for extended period 

of time get accustomed to low or no gravity 

(evolution), but they lose bone density 

(involution). Yet other body parts do not change, 

or it has not been find out so far (neutrality / 

indeterminacy). 

XIII.7.10.3. Example of Evolution and 

Involution 

The whales evolved with respect to their teeth 

from pig-like teeth to cusped teeth. Afterwards, 

the whales devolved from cusped teeth back to 

conical teeth without cusps. 
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XIII.7.10.4. Penguin Example. 

The Galápagos Penguin (Spheniscus mendiculus) 

evolved from the Humboldt Penguin by shrinking 

its size at 35 cm high (adaptation by involution) in 

order to be able to stay cool in the equatorial sun. 

XIII.7.10.5. Frigate Birds Example. 

The Galápagos Frigate birds are birds that lost 

their ability to dive for food, since their feathers 

are not waterproof (involution), but they became 

masters of faster-and-maneuverable flying by 

stealing food from other birds, called klepto-

parasite feeding (evolution). 

XIII.7.10.6. Example of Darwin's Finches. 

The 13 Galápagos species of Darwin's Finches 

manifest various degrees of evolution upon their 

beak, having different shapes and sizes for each 

species in order to gobble different types of foods 

(hence evolution): 

— for cracking hard seeds, a thick beak (ground 

finch); 

— for insects, flowers and cacti, a long and slim 

beak (another finch species). 
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Besides their beaks, the finches look similar, 

proving they came from a common ancestor 

(hence neutrality). 

If one experiments, let's suppose one moves the 

thick-beak ground finches back to an environment 

with soft seeds, where it is not needed a thick 

beak, then the thick beak will atrophy and, in time, 

since it becomes hard for the finches to use the 

heavy beak, the thin-beak finches will prevail 

(hence involution). 

XIII.7.10.7. El Niño Example. 

Professor of ecology, ethology, and evolution 

Martin Wikelski, from the University of Illinois at 

Urbana – Champaign, has published in the journal 

"Nature" a curious report, regarding data he and 

his team collected about marine iguanas since 

1987.  

During the 1997 – 1998 El Niño, the marine 

algae died, and because the lack of food, on one 

of the Galápagos islands some marine iguanas 

shrank a quarter of their length and lost half of 

their weight (adaptation by involution).  
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After plentiful of food became available again, 

the marine iguanas grew back to their original 

length and weight (re-adaptation by evolution). 

[26] 

XIII.7.10.8. Bat Example. 

The bats are the only mammals capable of 

naturally flying, due to the fact that their fore-

limbs have developed into webbed wings 

(evolution by transformation). But navigating and 

foraging in the darkness, have caused their eyes’ 

functionality to diminish (involution), yet the bats 

“see” with their ears (evolution by transformation) 

using the echolocation (or the bio sonar) in the 

following way: the bats emit sounds by mouth 

(one emitter), and their ears receive echoes (two 

receivers); the time delay (between emission and 

reception of the sound) and the relative intensity 

of the received sound give to the bats information 

about the distance, direction, size and type of 

animal in its environment. 

XIII.7.10.9. Mole Example. 

For the moles, mammals that live underground, 

their eyes and ears have degenerated and become 
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minuscule since their functions are not much 

needed (hence adaptation by involution), yet their 

forelimbs became more powerful and their paws 

larger for better digging (adaptation by evolution).  

XIII.7.11. Neutrosophic Selection  

Neutrosophic Selection with respect to a 

population of a species means that over a specific 

timespan a percentage of its individuals evolve, 

another percentage of individuals devolve, and a 

third category of individuals do not change or 

their change is indeterminate (not knowing if it is 

evolution or involution). We may have a natural or 

artificial neutrosophic selection. 

XIII.7.12. Refined Neutrosophic Theory of 

Evolution  

Refined Neutrosophic Theory of Evolution is an 

extension of the neutrosophic theory of evolution, 

when the degrees of evolution / indeterminacy / 

involution are considered separately with respect 

to each body part, and with respect to each body 

part functionality, and with respect to the whole 

organism functionality. 
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XIII.7.13. Open Questions on Evolution / 

Neutrality / Involution. 

XIII.7.13.1. How to measure the degree of 

evolution, degree of involution, and degree of 

indeterminacy (neutrality) of a species in a given 

environment and a specific timespan? 

XIII.7.13.2. How to compute the degree of 

similarity to ancestors, degree of dissimilarity to 

ancestors, and degree of indeterminate similarity-

dissimilarity to ancestors? 

XIII.7.13.3. Experimental Question. Let's 

suppose that a partial population of species S1 

moves from environment η1 to a different 

environment η2; after a while, a new species S2 

emerges by adaptation to η2; then a partial 

population S2 moves back from η2 to η1; will S2 

evolve back (actually devolve to S1)? 

XIII.7.13.4. Are all species needed by nature, or 

they arrived by accident? 
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XIII.7.14. Conclusion. 

We have introduced for the first time the 

concept of Neutrosophic Theory of Evolution, 

Indeterminacy (or Neutrality), and Involution.  

For each being, during a long timespan, there is 

a process of partial evolution, partial indeter-

minacy or neutrality, and partial involution with 

respect to the being body parts and func-

tionalities.  

The function creates the organ. The lack of 

organ functioning, brings atrophy to the organ. 

In order to survive, the being has to adapt. One 

has adaptation by evolution, or adaptation by 

involution – as many examples have been 

provided in this paper. The being partially 

evolves, partially devolves, and partially remains 

unchanged (fixed) or its process of evolution–

involution is indeterminate. There are species 

partially adapted and partially struggling to 

adapt. 
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XIII.8. Neutrosophic Triplet Structures 

in Practice 

This new field of neutrosophic triplet struc-

tures is important, because it reflects our every-

day life [it is not simple imagination!]. 

The neutrosophic triplets are based on real 

triads: (friend, neutral, enemy), (positive particle, 

neutral particle, negative particle), (yes, un-

decided, no), (pro, neutral, against), and in general 

(<A>, <neutA>, <antiA>) as in neutrosophy. 

These neutrosophic triplet structures will be 

more practical than the classical algebraic 

structures – because the last ones are getting more 

and more abstract and too idealistic. 



Florentin Smarandache 

Neutrosophic Perspectives 

347 

1 

This book is part of the book-series dedicated to the advances of neutros-

ophic theories and their applications, started by the author in 1998. Its aim is 

to present the last developments in the field. 

This is the second extended and improved edition of Neutrosophic 

Perspectives (September 2017; first edition was published in June 2017). 

For the first time, we now introduce: 

— Neutrosophic Duplets and the Neutrosophic Duplet Structures; 

— Neutrosophic Multisets (as an extension of the classical multisets); 

— Neutrosophic Spherical Numbers; 

— Neutrosophic Overnumbers / Undernumbers / Offnumbers;  

— Neutrosophic Indeterminacy of Second Type; 

— Neutrosophic Hybrid Operators (where the heterogeneous t-norms and t-

conorms may be used in designing neutrosophic aggregations); 

— Neutrosophic Triplet Loop; 

— Neutrosophic Triplet Function; 

— Neutrosophic Modal Logic; 

— and Neutrosophic Hedge Algebras. 

The Refined Neutrosophic Set / Logic / Probability were introduced in 2013 

by F. Smarandache. Since year 2016 a new interest has been manifested by 

researchers for the Neutrosophic Triplets and their corresponding Neutros-

ophic Triplet Algebraic Structures (introduced by F. Smarandache & M. Ali). 

Subtraction and Division of Neutrosophic Numbers were introduced by F. 

Smarandache - 2016, and Jun Ye – 2017. 

We also present various new applications in: neutrosophic multi-criteria 

decision-making, neutrosophic psychology, neutrosophic geographical 

function (the equatorial virtual line), neutrosophic probability in target 

identification, neutrosophic dynamic systems, neutrosophic quantum 

computers, neutrosophic theory of evolution, and neutrosophic triplet 

structures in our everyday life. The Author. 




