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1 |Introduction 

Applications of the TwoFold Algebra in general occur in chemistry for the mixtures of liquids of various 

concentrations, and of immiscible liquids as well, and in any field whose space (set) is made up of 

heterogeneous subspaces (subsets) of elements. 

2 | Neutrosophic TwoFold Algebra 

This is called a TwoFold Algebra because it has two types of algebras: 

(i) The first algebra is with respect to the elements x belonging to a set A (classical type algebra); 

(ii) and the second algebra is with respect to the neutrosophic components  (t, i, f)  of the elements. 

This is a hybrid structure, because a classical algebraic operation is inter-related with a fuzzy (or fuzzy-

extensions) operation.  

In the following we use, as fuzzy-extensions, the neutrosophic set / logic / probability. 

3 | Definition of Neutrosophic TwoFold Algebra 

Let U be a universe of disclosure and a non-empty neutrosophic set A ⊂ U, 

A(T,I,F) = {x(TA(x), IA(x), FA(x)), (TA(x), IA(x), FA(x)) ∈ [0,1]3, x ∈ U},  
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where TA(x), IA(x), FA(x) are degrees of truth-membership, indeterminacy-membership and falsehood-

membership of the generic element x with respect to the set A. 

4 | Definition of Neutrosophic TwoFold Law 

In consequence, we define the Neutrosophic TwoFold Law ∆ as follows: 

∆: A(T,I,F) × A(T,I,F) → A(T,I,F)  

x1(t1,i1,f1)
 ∆ x2(t2,i2,f2)

=
1 1 1 2 2 21 2 ( , , )*( , , )( # ) t i f t i fx x   

The law ∆ is formed by two sub-laws # and ∗ respectively, that may be totally dependent, partially dependent 

and partially independent, or totally independent of each other, in function of the application they are used 

to. 

5 | The Most General Form of Neutrosophic TwoFold Law 

It is defined as below: 

g : A(T,I,F) × A(T,I,F) → A(T,I,F)

1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 21 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 ( ( , , , , , , , ), ( , , , , , , , ), ( , , , , , , , ))( , , , , , , , ) ( , , , , , , , ) T x t i f x t i f I x t i f x t i f F x t i f x t i fg x t i f x t i f h x t i f x t i f

where all five functions g, h, T, I, F are functions of eight variables 1 1 1 1 2 2 2 2, , , , , , ,x t i f x t i f . 

6 | Practical Application of General Neutrosophic TwoFold Algebra 

Applications of the TwoFold Algebra in general occur in chemistry for the mixtures of liquids of various 

concentrations, and of immiscible liquids as well, and in any field whose space (set) is made up of 

heterogeneous subspaces (subsets) of elements. 

Let’s consider: 2 liters of concentrated liquid of three substances that do not mixt with each other 

(immiscible): 2(0.6,0.1,0.3) = (1.2, 0.2, 0.6), because 0.6 of 2 = 60% of 2 = 0.6   2 = 1.2 liters, 0.1 of 2 = 0.1 

  2 = 0.2 liters, and 0.3 of 2 = 0.3   2 = 0.6 liters, with 1.2 + 0.2 + 0.6 = 2. 

Therefore, the space (quantity) of 2 liters is formed of three heterogeneous sub-spaces (sub-quantities) of 1.2, 

0.2, and respectively 0.6 liters. Similarly, the space (quantity) of 3 liters of concentrated liquid is formed of 

three heterogeneous sub-spaces (sub-quantities) of 1.5, 1.2, and 0.3 liters, 3(0.5,0.4,0.1) = (1.5, 1.2, 0.3), 

where 1.5 + 1.2 + 0.3 = 3. 

Therefore, both liquids, mixed together, give: 

(𝑥1 + 𝑥2)
(

𝑥1𝑡1+𝑥2𝑡2
𝑥1+𝑥2

,
𝑥1𝑖1+𝑥2𝑖2

𝑥1+𝑥2
,
𝑥1𝑓1+𝑥2𝑓2

𝑥1+𝑥2
)
 

where x1 = 2 with (t1, i1, f1) = (0.6, 0.1, 0.3), and x2 = 3 with (t2, i2, f2) = (0.5, 0.4, 0.1), whence x1 + x2 = 2 + 3 

= 5 liters of concentrations: and (
𝑥1𝑡1+𝑥2𝑡2

𝑥1+𝑥2
,

𝑥1𝑖1+𝑥2𝑖2

𝑥1+𝑥2
,

𝑥1𝑓1+𝑥2𝑓2

𝑥1+𝑥2
) = (2.7,1.4,0.9), therefore (2.7,1.4,0.9)5 , 

where 2.7 1.4 0.9 5.    

The space of 5 liters is formed by three heterogeneous sub-spaces of 2.7, 1.4, and 0.9 liters. 
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7 | Fuzzy and (Fuzzy-Extensions) TwoFold Algebra 

Applications of the TwoFold Algebra in general occur in chemistry for the mixtures of liquids of various 

concentrations, and of immiscible liquids as well, and in any field whose space (set) is made up of 

heterogeneous subspaces (subsets) of elements. 

The Neutrosophic TwoFold Algebra may be adjusted to any fuzzy-extensions theory. Let U be a universe of 

discourse, and let A be a non-empty set included in U. 

(i) Fuzzy TwoFold Algebra 

Let A(T) = {x(TA), TA ∈ [0,1]; x ∈ U}, where TA is the degree of truth-membership of the generic 

element x with respect to the set A. 

The Fuzzy TwoFold Law is then defined as: 

∆: A(T) × A(T) → A(T)  

x1(t1)∆ x2(t2) = (x1#x2)(t1∗t2)    

Similarly, the Fuzzy TwoFold Law ∆ is formed by two (totally dependent, partially dependent and 

partially independent, or totally independent) sub-laws # and ∗. 

(ii) Intuitionistic Fuzzy TwoFold Algebra 

A(T,F) = {x(TA(x), FA(x)), (TA(x), FA(x)) ∈ [0,1]2, x ∈ U }, where  TA(x) and FA(x) are degrees of 

truth-membership and falsehood-nonmembership of the generic element x with respect to the set A.  

The Intuitionistic TwoFold Law is defined as: 

∆: A(T,F) ×  A(T,F) → A(T,F)  

x1(t1,f1)∆ x2(t2,f2) = (x1#x2)(t1,f1)∗(t2,f2)  

(iii) Similarly, for {any fuzzy-extensions [1] } TwoFold Algebra and Law such as: 

Inconsistent Intuitionistic Fuzzy Set (or Picture Fuzzy Set, or Ternary Fuzzy Set) TwoFold Algebra and 

Law;  

Pythagorean Fuzzy Set (Atanassov’s Intuitionistic Fuzzy Set of second type) TwoFold Algebra and Law;  

q-Rung Orthopair Fuzzy TwoFold Algebra and Law; 

Spherical Fuzzy TwoFold Algebra and Law; 

n-HyperSpherical Fuzzy TwoFold Algebra and Law; 

Refined Neutrosophic and MultiNeutrosophic TwoFold Algebra and Law; 

Plithogenic TwoFold Algebra and Law. 

As future research it would be to develop some of the above new types of TwoFold Algebras and Laws, with 

their real-life applications. 

8 | Single-Valued, Interval-Valued, and Subset-Value Fuzzy (and  

fuzzy-extensions) TwoFold Algebras and Laws 

All previous (fuzzy or fuzzy-extensions) TwoFold Algebras and Laws are Single-Valued, meaning that their 

components (degrees of membership, indeterminacy, nonmembership, etc.) are single numbers included in 

[0, 1].  

But, if the components are interval-valued, or most generally subset-valued, of [0, 1], they are called Interval-

Valued (Fuzzy or fuzzy-extensions) TwoFold Algebras and Laws and respectively Subset-Valued (Fuzzy or 

fuzzy-extensions) TwoFold Algebras and Laws.  
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9 | Numerical Example of Neutrosophic TwoFold Algebra and Law 

Let U be a neutrosophic universal set and A be a non-empty subset of U. 

Let 
( , , )T I FA  = {𝑥𝑗(𝑡𝑗, 𝑖𝑗, 𝑓𝑗), 𝑥𝑗 ∈ 𝑈, 𝑡𝑗, 𝑖𝑗 , 𝑓𝑗 ∈ [0,1]} be a neutrosophic set endowed with the Neutrosophic 

TwoFold Law defined as follows: 𝑥1(𝑡1, 𝑖1, 𝑓1) ∆ 𝑥1(𝑡2, 𝑖2, 𝑓2) = (𝑥1 ∙ 𝑥2)[(𝑡1, 𝑖1, 𝑓1) ∗ (𝑡2, 𝑖2, 𝑓2)]  

where each sub-law is defined respectively as: 

∙ ∶ 𝐴2 → 𝐴 

and  

 ∗: {(𝑡, 𝑖, 𝑓); 𝑡, 𝑖, 𝑓 ∈ [0,1]}2 → {(𝑡, 𝑖, 𝑓); 𝑡, 𝑖, 𝑓 ∈ [0,1]}. 

Let’s assume the classical integer multiplication modulo 3 as first classical sub-operation (sub-law), 𝑥1 ∙ 𝑥2 =

(𝑥1 ∙ 𝑥2)(𝑚𝑜𝑑 3) and the neutrosophic sub-law be 

(𝑡1, 𝑖1, 𝑓𝑖) ∗ (𝑡2, 𝑖2, 𝑓2) = (
𝑡1+𝑡2

2
,

𝑖1+𝑖2

2
,

𝑓1+𝑓2

2
)  

or the averages of t, i, f neutrosophic components respectively.  

Therefore, 𝑥1(𝑡1, 𝑖1, 𝑓𝑖) ∆ 𝑥1(𝑡2, 𝑖2, 𝑓2) =  (𝑥1 ∙ 𝑥2)(𝑚𝑜𝑑 3)
(

𝑡1+𝑡2
2

,
𝑖1+𝑖2

2
,
𝑓1+𝑓2

2
)
  

Let 𝐴 = {0(0.2,0.4,0.6), 1(0.8,0.2,0.0), 2(0.4,0.8,0.6)} be a neutrosophic set. 

Table 1. of the Neutrosophic TwoFold Law ∆. 

∆ 0(0.2,0.4,0.6) 1(0.8,0.2,0.0) 2(0.4,0.8,0.6) 

0(0.2,0.4,0.6) 0(0.2,0.4,0.6) 0(0.5,0.3,0.3) 0(0.3,0.6,0.6) 

1(0.8,0.2,0.0) 0(0.5,0.3,0.3) 1(0.8,0.2,0.0) 2(0.6,0.5,0.3) 

2(0.4,0.8,0.6) 0(0.3,0.6,0.6) 2(0.6,0.5,0.3) 1(0.4,0.8,0.6) 

 

Let 𝐴 = {0(0.2,0.4,0.6), 1(0.8,0.2,0.0), 2(0.4,0.8,0.6)} be a neutrosophic set. 

The Neutrosophic TwoFold Law ∆ is partially inner defined, since for example  

1(0.8,0.2,0.0) ∆ 1(0.8,0.2,0.0) =  1(0.8,0.2,0.0) ∈ 𝐴  

and partially outer-defined, because for example 

2(0.4,0.8,0.6) ∆ 1(0.8,0.2,0.8) =  2(0.6,0.5,0.3) ∉ 𝐴, but 2(0.6,0.5,0.3) ∈ 𝑈\𝐴. 

Anti-commutative: 

because (according to Table 1) for any two elements  

𝑎1(𝑡1, 𝑖1, 𝑓𝑖) and 𝑎2(𝑡2, 𝑖2, 𝑓2) ∈ 𝐴, with 𝑎1 ≠ 𝑎2, one has:  

𝑎1(𝑡1, 𝑖1, 𝑓𝑖) ∆ 𝑎2(𝑡2, 𝑖2, 𝑓2) =  𝑎2(𝑡2, 𝑖2, 𝑓2) ∆ 𝑎1(𝑡1, 𝑖1, 𝑓𝑖) ∉ 𝐴  

Anti-neutral element 

Since there is no neutral element (see the above Table 1). 

Anti-inverse element 

And no element has an inverse, since there is no neutral element. 

We got an unusual hybrid structure!  
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10 | Conclusions 

In this paper we have founded a new type of hybrid algebra, called Neutrosophic TwoFold Algebra and its 

corresponding Neutrosophic TwoFold Law, by combining two algebras:   

the first algebra is a classical algebra of the elements, and the second algebra is an algebra of the elements’ 

components (the degrees of membership / indeterminacy / nonmembership).  

Then we extended it to all Fuzzy (and fuzzy-extensions) sets. The TwoFold Algebras have applications in any 

field whose space is formed by heterogeneous sub-spaces. 
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