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The domain of neutrosophic set theory has been undergoing significant and rapid expansion. 
New approaches, theories, strategies, and optimization techniques are developed at a swift 
rate. An important development in neutrosophic theory is its integration with existing set 
theories, such as soft set theory, rough set theory and more. Neutrosophic set has been 
extended to neutrosophic hyperset which is vast and extends across multiple disciplines 
and problem domains, from decision support and Artificial Intelligence (AI) to data analysis 
and complex systems modelling. A neutrosophic hypersoft set extends the flexibility of 
neutrosophic logic and soft set theory by considering multidimensional or hypersoft sets to 
address real-world complexities where information is incomplete, uncertain, or 
inconsistent. Neutrosophic theories have emerged as essential tools in a diverse range of 
disciplines, including, MCDM, data mining, biomedical research, social studies, and beyond.  

The Book “New Trends in Neutrosophic Theories and Applications, Vol. 4, 2025” focuses on 
theories, strategies, optimizing techniques for MCDM within neutrosophic frameworks. 
Some topics deal with introducing of Pythagorean hypersoft sets with possibility 
degree, quadripartitioned neutrosophic Lie-ideal of Lie-algebra, quadripartitioned 
neutrosophic quasi coincident topological space, neutrosophic supra -open set in 
neutrosophic supra topological 
space and neutrosophic soft matrices. Some topics deal with medical diagnosis, organ 
transplantation success using neutrosophic superhyperstructure and artificial intelligence.  
Some topics deal with revenue management. social situation. Some topics deal with MCDM in  
single valued neutrosophic set environment, rough set environment, and interval trapezoidal 
neutrosophic environment.  

Florentin Smarandache, Surapati Pramanik 
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Aims and Scope 



Professor Florentin Smarandache grounded the neutrosophic set theory (NST) to deal with  uncertainty, 
indeterminacy, and inconsistent information. NSTs represent a powerful extension of traditional set theory, 
providing a more nuanced approach to handling various forms of uncertainty and vagueness. NSTs are 
particularly useful in situations involving indeterminate, imprecise, incomplete, and inconsistent information, 
making them applicable across several fields. 

The key distinction of  NST lies in their ability to model not just truth, but also indeterminacy and falsity—
allowing them to account for situations where the information is not fully clear or is contradictory. This makes 
them highly relevant in areas like Artificial Intelligence (AI), cognitive science, and machine learning, where 
data is often messy and uncertain. 

Applications of NSTs in the fields such as data mining, decision analysis, expert systems, and pattern recognition 
have opened up new possibilities for more robust and flexible systems. In data mining, NSTs can help uncover 
patterns or relationships in data that traditional methods might miss due to inconsistencies or incomplete 
information. Similarly, in decision analysis NSTs allow for better handling of contradictory information when 
making decisions under uncertainty.  Due to their broad relevance, the publication of the Journal “Neutrosophic

Sets and Systems” in 2013 played a key role in sparking global interest and research in NSTs. 

Chapter 1 presents the Single-Valued Quadripartitioned Neutrosophic Lie- Algebra (SVQNLA). of Lie-algebra. 
It explores the Single-Valued Quadripartitioned Neutrosophic Lie ideal (SVQNLI) of SVQNLA. It formulates 
several theorems, and propositions on SVQNLA and SVQNLI.

Chapter 2 investigates the concept of Quadripartitioned Neutrosophic Point (QNP) in a Quadripartitioned 
Neutrosophic Set (QNS), quadripartitioned neutrosophic quasi coincident with quadripartitioned neutrosophic set 
and quadripartitioned neutrosophic point. It establishes various properties of quasi coincident in quadripartitioned 
neutrosophic set relations. It presents  the quasi coincident topological property in which the degree of nearness 
or coincidence between quadripartitioned neutrosophic sets in a Quadripartitioned Neutrosophic Topological 
(QNT) space. 

Chapter 3 presents the Neutrosophic Supra β-Open Set (NS-β-O-S) Via Neutrosophic Supra Topological Space
(NSTS) as an expansion of Neutrosophic Supra α-Open Set (NS-α-O-S). It establishes  several results on NS-β-
O-S via NSTS.

Chapter 4 presents  some special neutrosophic soft matrices. Some operations and some associated properties of 
neutrosophic soft matrices are discussed to make the concept clear. 

Chapter 5  introduces a new algebraic structure, the Interval-Valued Neutrosophic Fuzzy M-Semigroup 
(IVNFMS), by merging the notions of Interval-Valued Fuzzy M-Semigroups(IVFMSs) and Neutrosophic Fuzzy 
Sets (NFSs). It deals with direct product, image and inverse image between two IVNFMSs. It establishes some 
related results. 

Chapter 6 presents the concept of independence and dependence among the indices of fuzzy, intuitionistic fuzzy 
and neutrosophic sets. Further, the degree of dependence is studied that helps to make more informed decisions 
while modeling real-world problems. These concepts are then extended to define linear dependence and 
independence of indices in refined neutrosophic sets. 

Chapter 7 introduces the Neutro-Genetic Hidden Markov Model (NG-HMM) that combines neutrosophic logic 
with Hidden Markov Models (HMM) for genomic analysis. The NG-HMM assigns neutrosophic values to 
genetic states, transition probabilities, and emissions, allowing the model to capture complex genetic interactions 
and uncertain mutations, often encountered in personalized medicine and risk prediction.  

Foreword 
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Chapter 8 introduces a neutrosophic framework to evaluate social situations, highlighting the fluid, subjective, 
and indefinite nature of societal norms and moral assessments. Utilizing  neutrosophic measures and statistics, it 
studies paradoxes in societal norms and argues that the neutrosophic strategy  offers a  more comprehensive way 
of modeling social behaviors and examining the evolving and often conflicting nature of social norms across 
different times, cultures, and populations. 

Chapter 9 presents the alpha cut at different levels, including lower, middle, and higher levels, which control the 
degrees of membership within the neutrosophic set. The distance between the parachute diver and ground level is 
determined using Harfa analysis and pixel profile to determine the distance and how long it takes  to land. 

Chapter 10 presents an analysis of Gaussian neutrosophic sets, a mathematical framework for handling 
uncertainty, Kurtosis which describes the shape of probability distributions especially the tails, and Gaussian 
semantic security ensuring data confidentiality in cryptographic applications within the context of medical 
diagnosis. 

Chapter 11 presents a new framework combining Neutrosophic SuperHyperStructure with artificial intelligence 
methods for improved transplant decision-making. The proposed  model utilizes long short-term memory 
networks for organ rejection prediction and reinforcement learning for dynamic optimization of donor-recipient 
matching. Comparative analysis, and. Sensitivity analysis are presented. 

Chapter12  introduces a new approach to quantifying the inherent uncertainty in pre-PhD anxiety among 
research aspirants using neutrosophic set theory. It develops a neutrosophic anxiety index that captures the 
multidimensional nature of academic uncertainty, imposter syndrome, and research preparedness concerns. The 
developed model demonstrates superior representational capacity compared to traditional fuzzy logic approaches 
when applied to survey data from 245 prospective PhD students across diverse disciplines.  

Chapter 13 develops a ranking algorithm within the neutrosophic domain to identify the optimal An Internet 
Service Provider (ISP).  It proposes a mathematical model to determine the most cost-effective policy for an ISP. 
To validate the model, an illustrative example of an ISP problem is solved.

Chapter 14 conjoins the aspects of Plithogenic hypersoft sets, Pythagorean sets and possibility theory. It 
proposes an integrated decision model  and which is applied to the selection-based decision-making problem 
of waste management.  

Chapter 15 introduces a soft model for supplier selection that integrates multi-attribute decision-making 
(MADM) with mathematical programming. The proposed model offers a practical and adaptable approach 
for supplier selection, with potential applications across various industries.  

Chapter 16 develops the MABAC strategy in a rough neutrosophic numbers environment. which is termed the 
RNN-MABAC strategy. The developed strategy is illustrated by solving an illustrative MADM problem.

Chapter 17 develops the TODIM strategy for Multi Criteria Decision Making (MCDM) in Interval Trapezoidal 
Neutrosophic Number (ITrNN) environment. It defines define a score function and an accuracy function for 
ITrNNs and prove some of their basic properties. It solves a MCDM problem to illustrate the developed TODIM 
strategy in ITrNN environment. 

Florentin Smarandache, Surapati Pramanik 
(Editors) 

10



New Trends in Neutrosophic Theories and Applications, Vol. 4, 2025 

Chapter 1 

Single-Valued Quadripartitioned Neutrosophic Lie-

Ideal of Lie-Algebra

Rakhal Das1, Suman Das2,∗, Surapati Pramanik3, Kalyan Sinha4, and 

Ajoy Kanti Das5 
1Department of Mathematics, The ICFAI University, Agartala-799210, Tripura, India 

2Department of Education (ITEP), NIT Agartala, Jirania-799046, Barjala, Tripura, India 

3Department of Mathematics, Nandalal Ghosh B.T. College, 743126, North 24 Parganas, West 

Bengal, India 

4Department of Mathematics, Durgapur Government College, Durgapur-713214, West 

Bengal, India 

5Department of Mathematics, Tripura University, Agartala-799022 Tripura, India 

E-mail: 1rakhaldas95@gmail.com, 2drsumandas@nita.ac.in, sumandas18842@gmail.com,
dr.suman1995@yahoo.com, 3surapati.math@gmail.com, 4kalyansinha90@gmail.com,

5ajoykantidas@gmail.com 
Corresponding Author’s E-mail: sumandas18842@gmail.com, dr.suman1995@yahoo.com 

ABSTRACT 

 This study aims to procure the notion of Single-Valued Quadripartitioned Neutrosophic Lie algebra 
(SVQNLA). In addition, we explore the Single-Valued Quadripartitioned Neutrosophic Lie ideal (SVQNLI) of 
SVQNLA. Further, we formulate several interesting results in the form of theorem, proposition, etc. on SVQNLA 

and SVQNLI. 

. 

Keywords: SVNS, SVQNS, SVQNLA, SVQNLI. 

INTRODUCTION

Lie groups were first conceptualized in the nineteenth century by Sophus Lie. Lie algebra (LA) 

was developed by Sophus Lie as well. The LA representation theory was introduced by Humphreys [1] 

in 1972. Coelho and Nunes [2] presented a LA application for mobile robot control in 2003. Lie theory 

has applications across various fields, including physics, cosmology, life sciences, mathematics, and 

continuum mechanics. The concept of LA may also be used to solve computer vision difficulties. The 

pioneering work of Zadeh  in 1965 on the Fuzzy Set (FS) [3] theory laid the groundwork for applying 

fuzziness to various mathematical structures. Building on this, Yehia [4] introduced the concepts of 

Fuzzy Lie-Sub-Algebras and Fuzzy Lie-Ideals in the context of LA in 1996, and expanded further by 

examining the adjoint representation of Fuzzy LA [5]. In the years following, Akram [6] explored the 

notion of anti-fuzzy Lie-Ideals in LA, while Akram [7] introduced generalized Fuzzy Lie-Sub-Algebras. 
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Later, Akram [8] advanced the theory of Fuzzy Lie-Ideals by introducing interval-valued membership 

functions. 

In parallel to fuzzy theories, Atanassov [9] introduced the theory of Intuitionistic Fuzzy Sets 

(IFS), which incorporated the idea of non-membership, offering a broader framework for dealing with 

uncertainty in mathematical expressions. This concept was extended to Lie algebra by Akram and Shum 

[10], and later, Akram [11] developed the theory of Intuitionistic (S, T)-Fuzzy Lie-Ideals. In 2000, 

Smarandache [12] introduced the Neutrosophic Set (NS) theory, which includes the idea of 

indeterminacy in membership functions, significantly enhancing the ability to handle uncertainty. 

Wang et al. [13] further expanded this by developing the Single-Valued Neutrosophic Set (SVNS), which 

extended the FS and IFS concepts into a more flexible form. Theoretical advancements and practical 

implementations of NSs [12], SVNSs [13], and associated concepts have been thoroughly explored and 

documented in various studies [14-20].  Several studiers [21-40] leveraged the SVNS environment for 

multi-criteria decision-making, demonstrating its applicability in complex decision processes. 

Following this, Akram et al. [41] proposed the notion of Single-Valued Neutrosophic LA, contributing 

to the further integration of Neutrosophic Sets with algebraic structures. Das  and Khalid [42] also

explored d-ideals within the framework of Neutrosophic Sets, leading to the development of new 

algebraic structures. Chatterjee et al. [43] developed the theory of the Single-Valued Quadripartitioned 

Neutrosophic Set (SVQNS), expanding the range of Neutrosophic Sets even further. More recently, Das 

et al. [44] proposed the Pentapartitioned Neutrosophic Q-Ideal, broadening the scope of Neutrosophic 

algebraic structures in complex environments. 

     This article introduces the novel concept of SVQNLI of SVQNLA, expanding the applications 

of Neutrosophic theory within the framework of Lie algebra. We have formulated several significant 

results about the SVQNLI of SVQNLA, contributing to the growing body of work in this area. 

The layout of this article is given below: 

Section Content 

1 Introduction. 

2 Presents some basic definitions and results on SVNS, SVQNS, LA, Lie-

Ideal, Neutrosophic LA, and Neutrosophic Lie-Ideal. 

3 Presents the concepts of SVQNLA and SVQNLI, and established some 

results on them. 

4 Conclude the article, and states some directions for further research. 

BACKGROUND 

Throughout the section, we discuss several preliminary definitions and findings about SVQNLI that will 
be beneficial when preparing the key findings of this article.     

12
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Definition 1. [1] Let F be a field. Consider a vector space 𝔊 over F on which 𝔊×𝔊→ 𝔊 is defined by (q, r) → [𝒽, 
𝓊] for all 𝒽, 𝓊  𝔊. Then, 𝔊 is said to be Lie Algebra (LA) provided that the following axioms are satisfied: 

(i) [q, r] is a bilinear,

(ii) [q, q] = 0, for all q ∈ 𝔊,

(iii) [[q, r], s] + [[r, s], q] + [[s, q], r] = 0, for all q, r, s ∈ 𝔊.

Remark 1. [1] The associative property was not held in a Lie algebra for the multiplication operation, i.e., [[q, r], 
s] = [q, [r, s]] is not true in general for a Lie algebra. But the Lie algebra is anti-commutative, i.e., [q, r] = − [r, q].
A sub-set N of a Lie algebra 𝔊, which is closed under [·, ·] is referred to as a Lie sub-algebra.

Definition 2. [3] A fuzzy set (FS) Z in the universal set W is expressed as: 

Z = {(, TZ ()) :   W}, 

where TZ () denotes the truth-membership value of  within W, constrained by the condition 0  TZ ()  1. 

Definition 3. [4] A FS Z = {(, TZ ()) :   𝔊} is described as a Fuzzy Lie ideal within a Lie algebra 𝔊 is 

characterized if the subsequent three criteria are satisfied: 

(i) TZ (t + s) ≥ min { TZ (t), TZ (s)};

(ii) TZ (αt) ≥ TZ (t);

(iii) TZ ([t, s]) ≥ TZ (t), ∀ α ∈ F and t, s ∈ 𝔊.

Definition 4. [13] A Single-Valued Neutrosophic Set (SVNS) Z over W is characterized as Z = {(, TZ (), IZ (), 
FZ ()) :   W}, where TZ, IZ, FZ represent the truth, indeterminacy, and falsity membership functions, 
respectively. These functions map each element W to values in the interval [0, 1], indicating the degrees of 
truth, uncertainty, and falsity associated with η in the set Z. The membership values are not mutually exclusive 
and satisfy the condition 0  TZ () + IZ () + FZ ()  3, ∀   W. 

Definition 5. [13] Let Y = {(s, TY(s), IY(s), FY(s)): s  W} represent an SVNS over W. Then, Z(TY, ) = {s  W: 
TY(s)  }, Z(IY, ) = {s  W: IY(s)   }, Z(FY, ) = {s  W : FY(s)  } are respectively referred to as the T-
level, I-level, and F-level -cuts of Y.  

Definition 6. [41] A Single-Valued Neutrosophic Set Z = {(t, TZ (t), IZ (t), FZ (t)) : t  𝔊} on Lie algebra 𝔊 is said 
to be a Single-Valued Neutrosophic Lie algebra if the following condition holds: 

(i) TZ (t + s) ≥ min {TZ (t), TZ (s)}, IZ (t + s) ≥ min {IZ (t), IZ (s)}, and FZ (t + s) ≤ max {FZ (t), FZ (s)};

(ii) TZ (αt) ≥ TZ (t), IZ (αt) ≥ IZ (t), and FZ (αt) ≤ FZ (t);
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(iii) TZ ([t, s]) ≥ min {TZ (t), TZ (s)}, IZ ([t, s]) ≥ min {IZ (t), IZ (s)} and FZ ([t, s]) ≤ max {FZ (t), FZ (s)}, ∀ t, s ∈ 𝔊
and α ∈F.

Definition 7. [41] Let 𝔊 be a LA over a field F. An SVNS Z = {(t, TZ (t), IZ (t), FZ (t)) : t  𝔊} on 𝔊 is said to be 
a single-valued neutrosophic Lie ideal if the following axioms hold: 

(i) TZ (s + t) ≥ min {TZ (s), TZ (t)}, IZ (s + t) ≥ min {IZ (s), IZ (t)}, and FZ (s + t) ≤ max {FZ (s), FZ (t)};

(ii) TZ (αt) ≥ TZ (t), IZ (αt) ≥ IZ (t), and FZ (αt) ≤ FZ (t);

(iii) TZ([s, t]) ≥ TZ (s), IZ ([s, t]) ≥ IZ(s), and FZ ([s, t]) ≤ FZ (s), ∀ s, t ∈ 𝔊.

Remark 2. [41] Let Z = {(𝔡, TZ (𝔡), IZ (𝔡), FZ (𝔡)) : 𝔡  𝔊} be a Single-Valued Neutrosophic LA on a Lie Algebra 
𝔊. Then, 

(i) TZ (0) ≥ TZ (𝔡), IZ (0) ≥ IZ (𝔡), FZ (0) ≤ FZ (𝔡);

(ii) TZ (−𝔡) ≥ TZ (𝔡), IZ (−𝔡) ≥ IZ (𝔡), FZ (−𝔡) ≤ FZ (𝔡), ∀ 𝔡 ∈ 𝔊.

Definition 8. [43] A Single-Valued Quadripartitioned Neutrosophic Set (SVQNS) Z over the universal set W is 
defined as follows: 

Z = {(𝔡, TZ(𝔡), CZ(𝔡), GZ(𝔡), FZ(𝔡)) : 𝔡  W}, 

where TZ(𝔡), CZ(𝔡), GZ(𝔡) and FZ(𝔡) (∈ [0, 1]) are the truth, contradiction, ignorance, and false membership values 
of 𝔡  W. So, 0  TZ(𝔡) + CZ(𝔡) + GZ(𝔡) + FZ(𝔡)   4, ∀ 𝔡  W.

Definition 9. [43] Assume that Z = {(, TZ (), CZ (), GZ (), FZ ()):   W} and Y = {(, TY(), CY(), GY(), 
FY()):   W} are two Single-Valued Quadripartitioned Neutrosophic Sets over W. Then,  

(i) Z  Y if and only if TZ ()  TY (), CZ ()  CY (), GZ ()  GY (), FZ ()  FY (),    W.

(ii) Z Y = {(, max {TZ(), TY()}, max {CZ(), CY()}, min {GZ(), GY()}, min {FZ(), FY ()} :   W}.

(iii) Zc = {(, FZ (), GZ (), CZ (), TZ ()) :   W}.

(iv) Z Y = {(, min {TZ (), TY ()}, min {CZ (), CY ()}, max {GZ (), GY ()}, max {FZ (), FY ()}) :  

W}.

14
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Single-Valued Quadripartitioned Neutrosophic Lie-Ideal  

 
Throughout this section, we grounded the notion of SVQNLI of SVQNLA. Furthermore, we explore 

various properties of SVQNLI and establish multiple results related to it. Let us consider 𝔊 be a Lie Algebra over 
a field F. 

Definition 10. An SVQNS Z = {(, TZ (), CZ (), GZ (), FZ ()) :   W} on 𝔊 is said to be an SVQNLA 
if the subsequent axioms are satisfied: 

(i) TZ ( + ) ≥ min {TZ (), TZ ()}, CZ ( + ) ≥ min {CZ (), CZ ()}, GZ ( + ) ≤ max {GZ (), GZ ()}, 
and FZ ( + ) ≤ max {FZ (), FZ ()}; 

(ii) TZ (α) ≥ TZ (), CZ (α) ≥ CZ (), GZ (α) ≤ GZ (), and FZ (α) ≤ FZ (); 

(iii) TZ ([, ]) ≥ min {TZ (), TZ ()}, CZ ([, ]) ≥ min {CZ (), CZ ()}, GZ ([, ]) ≤ max {GZ (), GZ 

()} and FZ ([, ]) ≤ max {FZ (), FZ ()}, for all ,  ∈ 𝔊 and α ∈ F. 

Definition 11. An SVQNS Z = {(, TZ (), CZ (), GZ (), FZ ()) :   W} on 𝔊 is said to be an SVQNLI 
if the subsequent axioms are satisfied: 

(i) TZ ( + ) ≥ min {TZ (), TZ ()}, CZ ( + ) ≥ min {CZ (), CZ ()}, GZ ( + ) ≤ max {GZ (), GZ ()} 
and FZ( + ) ≤ max {FZ (), FZ ()}; 

(ii) TZ (α) ≥ TZ (), CZ (α) ≥ CZ (), GZ (α) ≤ GZ () and FZ (α) ≤ FZ (); 

(iii) TZ ([, ]) ≥ TZ (), CZ ([, ]) ≥ CZ (), GZ ([, ]) ≤ GZ () and FZ ([, ]) ≤ FZ (), for all ,  ∈ 𝔊.  

Theorem 1. Let {Zi ∶  i ∈  } denote the collection of SVQNLIs over 𝔊. Then, Zi = {(, TNi
(), 

CNi
(), GNi

(), FNi
()) :  𝔊} is also an SVQNLI of 𝔊. 

Proof. Let {Zi ∶  i ∈ } be the collection of SVQNLIs on 𝔊. It is known that, Zi = {(, TNi
(), CNi

(), 
GNi

(), FNi
()) :   𝔊}.  

Now, we have 

(i) TNi
( + )  

= min {TNi
( + ) : i   }  

≥ min {min {TNi
(), TNi

()} : i   }  

≥ min {TNi
(), TNi

()}, 

 

CNi
( + )  

= min {CNi
( + ) : i  }  

≥ min {min {CNi
(), CNi

()} : i  }  

≥ min {CNi
(), CNi

()}, 

GNi
( + )  

= max {GNi
( + ): i} 

≤ max {max {GNi
(), GNi

()}: i  }  

≤ max {GNi
(), GNi

()}, 
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FNi
( + )  

= max {FNi
( + ) : i  }  

≤ max {max {FNi
(), FNi

()} : i  }  

≤ max {FNi
(), FNi

()}. 

(ii) TNi
(α) = min {TNi

(α) : i  } ≥ min {TNi
() : i  } ≥ TNi

(), 

CNi
(α) = min {CNi

(α) : i  } ≥ min {CNi
() : i  } ≥ CNi

(), 

GNi
(α) = max {GNi

(α) : i  } ≤ max {GNi
() : i  } ≤ GNi

(), 

FNi
(α) = max {FNi

(α) : i  } ≤ max {FNi
() : i  } ≤ FNi

(). 

 

(iii) TNi
([, ]) = min {TNi

([, ]) : i  } ≥ min {TNi
() : i  } ≥ TNi

(), 

CNi
([, ]) = min {CNi

([, ]) : i  } ≥ min {CNi
() : i  } ≥ CNi

(), 

GNi
([, ]) = max {GNi

([, ]) : i  } ≤ max {GNi
() : i  } ≤ GNi

(), 

FNi
([, ]) = max {FNi

([, ]) : i  } ≤ max {FNi
() : i  } ≤ FNi

(). 

Therefore, Zi = {(, TNi
(), CNi

(), GNi
(), FNi

()) :   𝔊} is an SVQNLI of 𝔊. 

Theorem 2. Let Z = {(, TZ (), CZ (), GZ(), FZ()) :   𝔊} be an SVQNLA on 𝔊. Then,  

(i) TZ (0) ≥ TZ (), CZ (0) ≥ CZ (), GZ (0) ≤ GZ (), FZ (0) ≤ FZ (); 

(ii) TZ (−) ≥ TZ (), CZ (−) ≥ CZ (), GZ (−) ≤ GZ (), FZ (−) ≤ FZ (), for all  ∈ 𝔊. 

Proof. This follows straightforwardly from Definition 11.  

Remark 3. Every SVQNLI is an SVQNLA. 

Theorem 3. Suppose that Z = {(, TZ (), CZ (), GZ (), FZ ()) :   𝔊} be an SVQNLI of 𝔊. Then, 

(i) TZ ([, ]) ≥ max {TZ (), TZ ()}; 

(ii) CZ ([, ]) ≥ max {CZ(), CZ ()}; 

(iii) GZ ([, ]) ≤ min {GZ (), GZ ()}; 

(iv) FZ ([, ]) ≤ min {FZ (), FZ ()}; 

(v) TZ ([, ]) = TZ (-[, ]) = TZ ([, ]); 

(vi) CZ ([, ]) = CZ (-[, ]) = CZ ([, ]); 

(vii) GZ ([, ]) = GZ (-[, ]) = GZ ([, ]); 

(viii) FZ ([, ]) = FZ (-[, ]) = FZ ([, ]), for all ,  ∈ 𝔊. 

Proof. This follows straightforwardly from Definition 11. 

Definition 12. Let Z = {(, TZ (), CZ (), GZ (), FZ ()) :   𝔊} be an SVQNS over 𝔊 and α1, α2, α3, α4 

∈ [0, 1]. Then, 𝔊(TZ, α1) = {  𝔊 : TZ ()  α1}, 𝔊(CZ, α2) = {  𝔊 : CZ ()  α2}, 𝔊(GZ, α3) = {  𝔊 : GZ () 
 α3}, and 𝔊(FZ, α4) = {  𝔊 : FZ ()  α4} are respectively said to be T-level α1-cut, C-level α2-cut, G-level α3-
cut, F-level α4-cut of Z. 
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Definition 13. Let Z = {(, TZ (), CZ (), GZ (), FZ ()):   𝔊} be an SVQNS over 𝔊 and α1, α2, α3, 
α4 ∈ [0, 1]. Then, (α1, α2, α3, α4)-level subset of Z is defined by: 

(α1, α2, α3, α4) = { ∈  : TZ () ≥ α1, CZ () ≥ α2, GZ () ≤ α3, GZ () ≤ α4}. 

Remark 4. If Z = {(, TZ (), CZ (), GZ (), FZ ()) :   𝔊} be an SVQNS over 𝔊, then 𝔊(α1, α2, α3, 
α4)  =  𝔊(TZ, α1)  𝔊(CZ, α2)  𝔊(GZ, α3)  𝔊(FZ, α4). 

Proposition 1. An SVQNS Z = {(, TZ(), CZ(), GZ(), FZ()) :   𝔊} is an SVQNLI of 𝔊 iff 𝔊(α1, 
α2, α3, α4) is a Lie-Ideal of 𝔊 for each α1, α2, α3, α4 ∈ [0, 1]. 

Proof. This follows straightforwardly from Definitions 11 and113. 

Theorem 4. Assume that Z = {(, TZ (), CZ (), GZ (), FZ ()) :   𝔊} be an SVQNLI of 𝔊. Let α1, 
α2, α3, α4, β1, β2, β3, β4 ∈ [0, 1]. Then, (α1, α2, α3, α4) = (β1, β2, β3, β4) iff α1 = β1, α2 = β2, α3 = β3, α4 = β4. 

Proof. Suppose that 𝔊 be a LA and Z = {(, TZ(), CZ(), GZ(), FZ()) :   𝔊} be an SVQNLI of 𝔊. 
Let α1, α2, α3, α4, β1, β2, β3, β4 ∈ [0, 1] such that (α1, α2, α3, α4) = (β1, β2, β3, β4). Therefore, { ∈ 𝔊: TZ() ≥ α1, 
CZ() ≥ α2, GZ() ≤ α3, GZ() ≤ α4} = { ∈ 𝔊 : TZ() ≥ β1, CZ() ≥ β2, GZ() ≤ β3, GZ() ≤ β4}. This is possible 
only when α1 = β1, α2 = β2, α3 = β3, α4 = β4. Therefore, (α1, α2, α3, α4) = (β1, β2, β3, β4) implies α1 = β1, α2 = β2, α3 = 
β3, α4 = β4. 

Conversely, let α1 = β1, α2 = β2, α3 = β3, α4 = β4.  

Now, (α1, α2, α3, α4)  

= { ∈  : TZ() ≥ α1, CZ() ≥ α2, GZ() ≤ α3, GZ() ≤ α4} 

= { ∈  : TZ() ≥ β1, CZ() ≥ β2, GZ() ≤ β3, GZ() ≤ β4} 

= (β1, β2, β3, β4). 

Therefore, α1 = β1, α2 = β2, α3 = β3, α4 = β4 implies (α1, α2, α3, α4) = (β1, β2, β3, β4). 

Definition 14. Let 𝔊1 and 𝔊2 represent two LAs over a field F and 𝔡 represent a bijective mapping from 
𝔊1 to 𝔊2. If Z = {(, TZ(), CZ(), GZ(), FZ()) :   𝔊2} be an SVQNS in 𝔊2, then 𝔡−1(Z) defined by 𝔡−1(Z) = 
{(, 𝔡−1(TZ()), 𝔡−1(CZ()), 𝔡−1(GZ()), 𝔡−1(FZ())) :   𝔊1} is also an SVQNS in 𝔊1. 

Theorem 5. Let 𝔊1 and 𝔊2 represent two LAs on a field F and 𝔡 be an onto homomorphism from 𝔊1 to 
𝔊2. If Z = {(, TZ(), CZ(), GZ(), FZ()) :   𝔊2} is an SVQNLI of 𝔊2, then 𝔡−1(Z) = {(, 𝔡−1(TZ()), 
𝔡−1(CZ()), 𝔡−1(GZ()), 𝔡−1(FZ())) :   𝔊1} is also an SVQNLI of 𝔊1. 

Proof. This follows straightforwardly from Definitions 11 and 14. By Definition 3.5, 𝔡−1(Z) is an SVQNS 
in 𝔊1 if Z = {(, TZ (), CZ (), GZ (), FZ ()) :   𝔊2} is an SVQNS in 𝔊2. Now, since Z = {(, TZ (), CZ (), 
GZ (), FZ ()) :   𝔊2} is an SVQNLI in 𝔊2 (as per the theorem's hypothesis), it satisfies the conditions specified 
in Definition 11 for 𝔊2. 

Since f is an onto homomorphism: 

1. The operations and scalar multiplication in 𝔊1 are preserved under 𝔡−1, ensuring that the conditions (i), 
(ii), and (iii) in Definition 3.2 hold for 𝔡−1(Z) in 𝔊1. 

2. Specifically: 

   - For condition (i): The inequalities for TZ, CZ, GZ, and FZ under addition are preserved due to the 
homomorphic nature of f. 

   - For condition (ii): The scalar multiplication properties are maintained because 𝔡 maps 𝔊1 to 𝔊2 

consistently. 

   - For condition (iii): The ordering of TZ, CZ, GZ, and FZ is also preserved via 𝔡−1, as 𝔡−1 correctly 
translates the operations in 𝔊2 back to K1. 
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Thus, 𝔡−1(Z) satisfies all the conditions required for it to be an SVQNLI in 𝔊1. Hence proved. 

Proposition 2. Let 𝔊1 and 𝔊2 represent two LAs and 𝔡 be an epimorphism from 𝔊1 to 𝔊2. If Z = {(, 
TZ(), CZ(), GZ(), FZ()) :   𝔊2} be an SVQNLI of 𝔊2, then 𝔡−1(Zc) = ( 𝔡−1(Z))c is also an SVQNLI of 𝔊1 
. 

Proof. This result is derived from Definitions11 and 14. 

Theorem 6. Let 𝔊1 and 𝔊2 represent two LAs and 𝔡 be an epimorphism from 𝔊1 to 𝔊2. If Z = {(, TZ(), 
CZ(), GZ(), FZ()) :   𝔊2} be an SVQNLI of 𝔊2, then 𝔡−1(Z) = {(, 𝔡−1(TZ()), 𝔡−1(CZ()), 𝔡−1(GZ()), 
𝔡−1(FZ())) :   𝔊1} is also an SVQNLI of 𝔊1. 

Proof. This follows straightforwardly from Definitions 11 and 14. 

 

The image of Z = {(, TZ(), CZ(), GZ(), FZ()) :   𝔊2} through the mapping f indicated by f(Z) is 
an SVQNS in 𝔊2, described as follows if Z = {(, TZ(), CZ(), GZ(), FZ()) :   𝔊2} be an SVQNS in 𝔊1. 

Definition 15. Suppose that 𝔊1 and 𝔊2 represent two LAs and f is a mapping from 𝔊1 to 𝔊2. If Z = {(, 
TZ(), CZ(), GZ(), FZ()) :   𝔊1} be an SVQNS in 𝔊1, then the image of Z = {(, TZ(), CZ(), GZ(), FZ()) 
:   𝔊1} under f indicated by f(Z) is an SVQNS in 𝔊2, characterized as follows: 

f(TZ)(t) = {max a∈f−1(t)TZ(a),             when  f −1(t) ≠ Ø 

0,                                                   otherwise
, for every t ∈ 𝔊2 

f(CZ)(t) = {max a∈f−1(t)CZ(a),             when  f −1(t) ≠ Ø 

0,                                                   otherwise
, for every t ∈ 𝔊2 

f(GZ)(t) = {min a∈f−1(t)GZ(a),             when  f −1(t) ≠ Ø 

1,                                                   otherwise
, for every t ∈ 𝔊2, 

f(FZ)(t) = {min a∈f−1(t)FZ(a),             when  f −1(t) ≠ Ø 

1,                                                   otherwise
, for every t ∈ 𝔊2. 

Theorem 7. Suppose that 𝔊1 and 𝔊2 represent two LAs and f : 𝔊1 →𝔊2 is an epimorphism. If Z = {(, 
TZ(), CZ(), GZ(), FZ()) :   𝔊1} is an SVQNLI in 𝔊1, then the image of Z = {(, TZ(), CZ(), GZ(), FZ()) 
:   𝔊1} i.e., f(Z) is also an SVQNLI in 𝔊2. 

Proof. The result follows directly from the properties outlined in Definition 11, which ensures 
that the SVQNS Z = {(, TZ(), CZ(), GZ(), FZ()) :   𝔊1} satisfies the required conditions on TZ, CZ, 
GZ, and FZ. Definition 15 guarantees that these properties are preserved under the mapping f, as the 
image components f(TZ), f(CZ), f(GZ), and f(FZ) are constructed accordingly. 

Definition 16. Suppose that 𝔊1 and 𝔊2 represent two LAs and let f is an onto homomorphism from 𝔊1 
to 𝔊2. Let Z = {(, TZ(), CZ(), GZ(), FZ()) :   𝔊2} be an SVQNS in 𝔊2. Then, we define 𝔊f = 
{(, TZ

f (), CZ
f (), GZ

f (), FZ
f ()) ∶   𝔊1} in 𝔊1 by TZ

f () = TZ(f()),  CZ
f ()  =  CZ(f()), GZ

f ()  =

 GZ(f()), FZ
f ()  =  FZ(f()), ∀  ∈ 𝔊1. Clearly, 𝔊f is an SVQNS in 𝔊1. 

Theorem 8. Suppose that 𝔊1 and 𝔊2 represent two LAs and let f is an onto homomorphism from 𝔊1 to 
𝔊2. If Z = {(, TZ(), CZ(), GZ(), FZ()) :   𝔊2} is an SVQNLI of 𝔊2, then 𝔊f = 
{(, TZ

f (),  CZ
f (), GZ

f (), FZ
f ()) ∶   𝔊1} is also an SVQNLI of 𝔊1. 

Proof. Let 𝔊1 and 𝔊2 represent two LAs on F. Suppose that a ∈ F and ,  ∈ 𝔊1. Then, 

(i) TZ
f( + ) 

= TZ(f( + )) 

= TZ(f() + f()) 
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 min {TZ (f()), TZ (f())} 

= min {TZ
f(), TZ

f()}, 

CZ
f  ( + ) 

= CZ(f( + )) 

= CZ(f() + f()) 

 min {CZ(f()), CZ(f())} 

= min {CZ
f (), CZ

f ()}, 

GZ
f ( + ) 

= GZ(f( + )) 

= GZ(f() + f()) 

 max {GZ(f()), GZ(f())} 

= max {GZ
f (), GZ

f ()}, 

FZ
f ( + ) 

= FZ(f( + )) 

= FZ(f() + f()) 

 max  {FZ(f()), FZ(f())} 

= max {FZ
f (), FZ

f ()}, 

(ii) TZ
f(a) = TZ (f(a)) = TZ (af()) ≥ TZ (f()) = TZ

f(), 

CZ
f (a) = CZ (f(a)) = CZ (af()) ≥ CZ (f()) = CZ

f (), 

GZ
f (a) = GZ (af()) = GZ (af())  GZ (f()) = GZ

f (), 

FZ
f (a) = FZ (af()) = FZ (af()) ≤ FZ (f()) = FZ

f (). 

 

(iii) TZ
f  ([, ]) = TZ (f([, ])) = TZ ([f(), f()]) ≥ TZ (f()) = TZ

f(), 

CZ
f  ([, ]) = CZ (f([, ])) = CZ ([f(), f()]) ≥ CZ (f()) = CZ

f (), 

GZ
f  ([, ]) = GZ (f([, ])) = GZ ([f(), f()]) ≤ GZ (f()) = GZ

f (), 

FZ 
f ([, ]) = FZ (f([, ])) = FZ ( [f(), f()]) ≤ FZ (f()) = FZ

f (). 

Therefore, 𝔊f = {(, TZ
f  (), CZ

f  (), GZ
f  (), FZ

f  ()) ∶   𝔊1} satisfies all the conditions for 
being an SVQNLI of 𝔊1. Hence, 𝔊f is an SVQNLI of 𝔊1.  

Theorem 9. Consider 𝔊1 and 𝔊2 as two LAs and let f is an onto homomorphism from 𝔊1 to 𝔊2. Then, 
𝔊f  = {(z, TZ

f (z), CZ
f (z), GZ

f (z), FZ
f (z)): z  𝔊1} is an SVQNLI of 𝔊1 iff Z = {(z, TZ(z), CZ(z), GZ(z), FZ(z)) : z 

 𝔊2} is an SVQNLI of L2. 

Proof. The preceding theorem directly leads to the sufficiency of this one. We now need to prove 
the theorem's necessity component. Since f is a surjective mapping, there exists z1, y1 ∈ 𝔊2 such that z = f(z1),
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y = f(y1) for every z, y ∈ 𝔊2. Consequently,TZ(z) = TZ
f(z1), TZ(y) = TZ

f(y1), CZ(z) = CZ
f (z1), CZ(y) = CZ

f (y1), 
GZ(z) = GZ

f (z1), GZ(y) = GZ
f (y1), FZ(z) = FZ

f (z1), FZ(y) = FZ
f (y1). 

Now,  

(i) TZ(z + y) 

= TZ(f(z1) + f(y1)) 

= TZ(f(z1 + y1)) 

= TZ
f(z1 + y1) 

 min {TZ
f(z1), TZ

f(y1)} 

= min {TZ(z), TZ(y)}, 

CZ(z + y) 

= CZ(f(z1) + f(y1)) 

= CZ(f(z1 + y1)) 

= CZ
f (z1 + y1) 

 min {CZ
f (z1), CZ

f (y1)} 

= min {CZ(z), CZ(y)}, 

GZ(z + y) 

= GZ(f(z1) + f(y1)) 

= GZ(f(z1 + y1)) 

= GZ
f (z1 + y1) 

 max {GZ
f (z1), GZ

f (y1)} 

= max {GZ(z), GZ(y)}, 

FZ(z + y) 

= FZ(f(z1) + f(y1)) 

= FZ(f(z1 + y1)) 

= FZ
f (z1 + y1) 

 max {FZ
f (z1), FZ

f (y1)} 

= max  {FZ(z), FZ(y)}. 

(ii) TZ(αz) = TZ (αf(z1)) = TZ(f(αz1)) = TZ 
f (f(αz1))  TZ 

f (z1) = TZ (z), 

CZ(αz) = CZ (αf(z1)) = CZ(f(αz1)) = CZ 
f (f(αz1))  CZ 

f (z1) = CZ (z), 

GZ(αz) = GZ (αf(z1)) = GZ(f(αz1)) = GZ 
f (f(αz1))  GZ 

f (z1) = GZ (z), 

FZ(αz) = FZ (αf(z1)) = FZ(f(αz1)) = FZ 
f (f(αz1))  FZ 

f (z1) = FZ (z). 

(iii) TZ([z, y]) = TZ([f(z1), f(y1)]) = TZ (f([z1, y1])) = TZ 
f ([z1, y1])  TZ (z1) = TZ(z), 

20



New Trends in Neutrosophic Theories and Applications, Vol. 4, 2025 

 

CZ([z, y]) = CZ ([f(z1), f(y1)]) = CZ (f([z1, y1])) = CZ 
f ([z1, y1])  CZ (z1) = CZ(z), 

GZ([z, y]) = GZ ([f(z1), f(y1)]) = GZ (f([z1, y1])) = GZ 
f ([z1, y1])  GZ (z1) = GZ(z), 

FZ([z, y]) = FZ ([f(z1), f(y1)]) = FZ(f([z1, y1])) = FZ 
f ([z1, y1])  FZ (z1) = FZ(z). Therefore, 𝔊f = 

{(z, TZ
f  (z), CZ

f  (z), GZ
f  (z), FZ

f  (z)) ∶ z  𝔊1} satisfies all the conditions for being an SVQNLI of 𝔊2. 

 
 

Conclusions 
In this study, we have established the idea of SVQNLI of SVQNLA. Furthermore, we have developed 

numerous interesting results on SVQNLIs and SVQNLAs. In the future, we anticipate the introduction of new 
concepts such as Single-Valued Quadripartitioned Neutrosophic Anti-Lie-Ideal and Single-Valued 
Quadripartitioned Neutrosophic Lie-Topology, building upon the current study of SVQNLA. These new ideas 
would further extend the framework of SVQNLA, enriching the theoretical landscape and potentially offering 
novel approaches for solving problems in related areas of algebra and topology. 
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ABSTRACT 

This chapter investigates the concept of Quadripartitioned Neutrosophic Point (QNP) in a 
Quadripartitioned Neutrosophic Set (QNS), quadripartitioned neutrosophic quasi coincident with 
quadripartitioned neutrosophic set and quadripartitioned neutrosophic point. We have established various 
properties of quasi coincident in quadripartitioned neutrosophic set relations. We also study the quasi coincident 
topological property in which the degree of nearness or coincidence between quadripartitioned neutrosophic sets 
in a Quadripartitioned Neutrosophic Topological (QNT) space. 

Keywords: Quadripartitioned neutrosophic point, Quadripartitioned neutrosophic quasi coincident, 
Quasi coincident topology. 

INTRODUCTION

A generalized version of the fuzzy set [69], intuitionistic fuzzy set was first proposed by Atanassov [4] 
in 1986. Intuitionistic fuzzy points were later presented by Coker and Demirci [14]. Neutrosophic Set (NS) was 
presented and investigated by Smarandache [62, 63, 64]. Later, neutrosophic topology was introduced and 
researched by Salama and Alblowi [59] and Salama et al. [60]. Since then, additional research has been found in 
the following areas: topology[3, 19, 20, 27, 30, 34, 35, 36, 37, 38, 40, 41, 47, 48,  57, 58, 59], minimal structure 
space [18], rough set theory [22], bi-topology [29, 31, 68], infra bi-topology [15],  ideals [21], Quadripartitioned 
Neutrosophic Set (QNS) theory [12, 16, 49],  interval QNS [53], interval pentapartitioned NS [54, 32], 
neutrosophic open set [25], neutrosophic b-open set [26], neutrosophic separation axioms [19] along with hybrid 
models of intervals and soft sets [33]. Over the years, several terms of open functions have been introduced. 
"Relation of quasi-coincidence for neutrosophic sets" was defined by Ray and Dey [55] in 2021. Acikgoz and 
Esenbel [2] investigate neutrosophic connected topological spaces in 2023. Chatterjee et al. [12] defined entropy 
and a few similarity metrics for quadripartitioned single valued neutrosophic sets in 2016. Das et al. [16] defined 
topology on quadripartitioned neutrosophic sets in 2021. Das et al. [18] introduced the single-valued 
quadripartitioned neutrosophic minimal structure space in 2023. Granados et al. [39] established 
quadripartitioned neutrosophic Q-ideals of Q-algebra in 2023. Das et al. [17] presented neutrosophic D- filter of 
D-algebra. Aggregation operators of quadripartitioned single-valued neutrosophic Z-numbers were defined by
Borah and Dutta [11] in 2023.

NS based game theory was used in 2014 by Pramanik and Roy [52] to study the dispute between India 
and Pakistan over Jammu and Kashmir. NS theories have been effectively applied to medical diagnostics [46] 
decision-making issues [1, 5, 7, 8, 9, 10, 42, 45, 51, 61], image processing [13], water quality testing [23, 24], 
social issues [43, 50], teacher selection [44], and project management research [28]. Applications and theoretical 
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developments of NSs were depicted in [6, 65, 66, 67].In the framework of NS theory, Ray and Dey[56] 
investigated the concept of Neutrosophic Points (NPs) and the neighbourhood structure in 2021. A connection of 
quasi coincidence for the NS was later proposed by Ray and Dey [55]. However, the relationship between quasi-
coincidence and QNSs or Quadripartitioned  NPs (QNPs) has not yet been studied. This chapter defines the 
quasi-coincidence relation between two QNSs and a QNP. It also looks at several characteristics derived from 
the quasi-coincidence connection. We then determine a QNP, quadripartitioned  neutrosophic quasi-
neighbourhood and assess a variety of features. Lastly, we examine whether quadripartitioned neutrosophic 
quasi-neighbourhoods can be used to describe Quadripartitioned Neutrosophic Topological Space (QNTS). 

The structure of this chapter is organized as follows:Section-2 presents the preliminaries and essential 
definitions, presenting foundational concepts and theorems instrumental to the core findings of the study. 
Section-3 focuses on the characterization of quadripartitioned neutrosophic quasi neighbourhoods. Section-4 
focuses on the quadripartitioned neutrosophic topological space and open sets. The chapter is finally concluded 
in section 5, which provides a summary of the results and closing thoughts. 

 
BACKGROUND 

  

We go over a few ideas about quadripartitioned neutrosophic sets in this section. 
Definition 2.1. [65] Assume 𝑉 be the universe. A single valued neutrosophic set 𝐴 over 𝑉 is stated as 𝐴 =
{⟨𝜘, 𝒯𝐴(𝜘), ℐ𝐴(𝜘), ℱ𝐴(𝜘)⟩: 𝜘 ∈ 𝑉}, where 𝒯𝐴, ℐ𝐴, ℱ𝐴 are functions from 𝑉 to [0, 1]and 0 ≤ 𝒯𝐴(𝜘) + ℐ𝐴(𝜘) +

ℱ𝐴(𝜘) ≤ 3. The set of all single valued neutrosophic sets over 𝑉 is denoted by 𝒩(𝑉). Throughout this article, a 
single valued neutrosophic set willsimply be called a neutrosophic set (NS, for short). 

Definition 2.2. [12] Assume that 𝑉 be a fixed set. Then, a quadripartitioned neutrosophic set (QPNS) 𝐴 over 𝑉 is 
defined by  𝐴 = {⟨𝜘, 𝒯𝐴(𝜘), 𝒞𝐴(𝜘), 𝒰𝐴(𝜘), ℱ𝐴(𝜘)⟩: 𝜘 ∈ 𝑉},  

where 𝒯𝐴, 𝒞𝐴, 𝒰𝐴 and ℱ𝐴 ∈ [0,1] are the truth, contradiction, ignorance, and falsity membership values of 𝜘 ∈

𝑉.So, 0 ≤ 𝒯𝐴(𝜘) + 𝒞𝐴(𝜘) + 𝒰𝐴(𝜘) + ℱ𝐴(𝜘) ≤ 4. 

Definition 2.3. [12] Let  𝐴, 𝐵 ∈ 𝒩(𝑉). Then 

(1) If  𝒯𝐴(𝜘) ≤ 𝒯𝐵(𝜘), 𝒞𝐴(𝜘) ≤ 𝒞𝐵(𝜘), 𝒰𝐴(𝜘) ≥ 𝒰𝐵(𝜘), ℱ𝐴(𝜘) ≥ ℱ𝐵(𝜘) for all 𝜘 ∈ 𝑉, then 𝐴 is referred to 
as a quadripartitioned neutrosophic sub-set of 𝐵 and which is indicated by 𝐴 ⊆ 𝐵. 

(2) If 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴 then 𝐴 = 𝐵. 

(3) The intersection of 𝐴 and 𝐵, indicated by 𝐴 ∩ 𝐵, is described as 𝐴 ∩ 𝐵 = {⟨𝜘, 𝒯𝐴(𝜘) ∧ 𝒯𝐵(𝜘), 𝒞𝐴(𝜘) ∧
𝒞𝐵(𝜘), 𝒰𝐴(𝜘) ∨ 𝒰𝐵(𝜘), ℱ𝐴(𝜘) ∨ ℱ𝐵(𝜘)⟩: 𝜘 ∈ 𝑉}. 

(4) The union of 𝐴and 𝐵, indicated by 𝐴 ∪ 𝐵, is described as 𝐴 ∪ 𝐵 = {⟨𝜘, 𝒯𝐴(𝜘) ∨ 𝒯𝐵(𝜘), 𝒞𝐴(𝜘) ∨
𝒞𝐵(𝜘), 𝒰𝐴(𝜘) ∧ 𝒰𝐵(𝜘), ℱ𝐴(𝜘) ∧ ℱ𝐵(𝜘)⟩: 𝜘 ∈ 𝑉}. 

(5) The complement of the QPNS 𝐴, indicated by𝐴𝑐, is described as𝐴𝑐 =
{⟨𝜘, ℱ𝐴(𝜘), 𝒰𝐴(𝜘), 𝒞𝐴(𝜘), 𝒯𝐴(𝜘)⟩: 𝜘 ∈ 𝑉} 

(6) If  𝒯𝐴(𝜘) = 1, 𝒞𝐴(𝜘) = 1, 𝒰𝐴(𝜘) = 0, ℱ𝐴(𝜘) = 0 for all 𝜘 ∈ 𝑉 then 𝐴 is referred to as neutrosophic 
universal set and which is indicated by1𝑄𝑁. 

(7) If  𝒯𝐴(𝜘) = 0, 𝒞𝐴(𝜘) = 0, 𝒰𝐴(𝜘) = 1, ℱ𝐴(𝜘) = 1 for all 𝜘 ∈ 𝑉 then 𝐴 is referred to as neutrosophic 
empty set and which is indicated by∅or 𝑂𝑄𝑁. 

 

Definition 2.4. [12] Let {𝐴𝑖: 𝑖 ∈ Δ} ⊆ 𝒩(𝑉), where △ is an index set. Then, 

(1) ∪𝑖∈Δ 𝐴𝑖 = {⟨𝜘,∨𝑖∈Δ 𝒯𝐴𝑖
(𝜘),∨𝑖∈Δ 𝒞𝐴𝑖

(𝜘),∧𝑖∈Δ 𝒰𝐴𝑖
(𝜘),∧𝑖∈Δ ℱ𝐴𝑖

(𝜘)⟩: 𝜘 ∈ 𝑉}. 

(2) ∩𝑖∈Δ 𝐴𝑖 = {⟨𝜘,∧𝑖∈Δ 𝒯𝐴𝑖
(𝜘),∧𝑖∈Δ 𝒞𝐴𝑖

(𝜘),∨𝑖∈Δ 𝒰𝐴𝑖
(𝜘),∨𝑖∈Δ ℱ𝐴𝑖

(𝜘)⟩: 𝜘 ∈ 𝑉}. 

Definition 2.5. [16] Let 𝜏 ⊆ 𝒬𝒫𝒩(𝑉). Then 𝜏 is referred to as a quadripartitioned neutrosophic topology 
(QPNT) on 𝑉 if 
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 (i) 𝑂𝑄𝑁 , 1𝑄𝑁 ∈ 𝜏

 (ii) 𝐺1 ∩ 𝐺2 ∈ 𝜏 for any 𝐺1, 𝐺2 ∈ 𝜏

 (iii) ∪ 𝐺𝑖 ∈ 𝜏 ∀{𝐺𝑖: 𝑖 ∈ 𝐽} ⊆ 𝜏

 

If 𝜏 is a quadripartitioned neutrosophic topology on 𝑉 then the pair (𝑉, 𝜏) is referred to as a quadripartitioned 
neutrosophic topological space (QPNTS) over𝑉. The members of 𝜏 are called quadripartitioned neutrosophic 
open sets in 𝑉. For a quadripartitioned neutrosophic set 𝐴 ∈ 𝜏, 𝐴𝑐  is referred to as a quadripartitioned 
neutrosophic closed set in 𝑉. 

Main Results 
Definition 3.1. A QPNS 𝐴 is referred to as quasi-coincident with a QPNS 𝐵 at 𝜘 ∈ 𝑉 or 𝐴 quasi-coincides with 
𝐵 at𝜘 ∈ 𝑉,indicated by𝐴𝑞𝐵 at 𝜘, iff 𝒯𝐴(𝜘) > 𝒯𝐵𝑐(𝜘) and 𝒞𝐴(𝜘) > 𝒞𝐵𝑐(𝜘) or 𝒰𝐴(𝜘) < 𝒰𝐵𝑐(𝜘) and ℱ𝐴(𝜘) <
ℱ𝐵𝑐(𝜘). We say 𝐴 quasi-coincides with 𝐵 or 𝐴 is quasi-coincident with 𝐵, indicated by𝐴𝑞𝐵, iff 𝐴 quasicoincides 
with 𝐵 at some point 𝜘 ∈ 𝑉. Thus 𝐴 quasi-coincides with 𝐵 or 𝐴 is quasi-coincident with 𝐵 iff there exists an 
element 𝒯𝐴(𝜘) > 𝒯𝐵𝑐(𝜘) and 𝒞𝐴(𝜘) > 𝒞𝐵𝑐(𝜘) or 𝒰𝐴(𝜘) < 𝒰𝐵𝑐(𝜘) and ℱ𝐴(𝜘) < ℱ𝐵𝑐(𝜘), i.e., 𝒯𝐴(𝜘) > ℱ𝐵(𝜘) 
and 𝒞𝐴(𝜘) > 𝒰𝐵(𝜘) or 𝒰𝐴(𝜘) < 𝒞𝐵(𝜘) and ℱ𝐴(𝜘) < 𝒯𝐵(𝜘). 

If a QNSA, represented by 𝜘_(α,β,γ,δ) q ˆA, is not quasi-coincident with the QNP 𝜘_(α,β,γ,δ). 
Likewise, Aq ˆB indicates that the QNS-A is not quasi-coincident with the QNSB. 𝐴𝛺𝐵 will represent 
the set of all the points in X at which AqB occurs, indicating that 𝐴𝛺𝐵 = {𝜘 ∈ 𝑉: 𝐴𝑞𝐵 𝑎𝑡 𝜘}. 

Definition 3.2. Let 𝒬𝒩(𝑉) be the set of all quadripartitioned neutrosophic sets over𝑉. A QPNS 𝑃 =
{⟨𝜘, 𝒯𝑃(𝜘), 𝒞𝑃(𝜘), 𝒰𝑃(𝜘), ℱ𝑃(𝜘)⟩: 𝜘 ∈ 𝑉} is referred to as a quadripartitioned neutrosophic point (QPNP) iff for 
any element 𝜇 ∈ 𝑉, 𝒯𝑃(𝜇) = 𝛼, 𝒞𝑃(𝜇) = 𝛽, 𝒰𝑃(𝜇) = 𝜇, ℱ𝑃(𝜇) = 𝛿 for 𝜇 = 𝜘 and 𝒯𝑃(𝜇) = 0, 𝒞𝑃(𝑦) =
0, 𝒰𝑃(𝜇) = 1, ℱ𝑃(𝜇) = 1for𝜇 ≠ 𝜘, where 0 < 𝛼 ≤ 1,0 ≤ 𝛽 < 1,0 ≤ 𝛾 < 1,0 ≤ 𝛿 < 1. 

A QPNP 𝑃 = {⟨𝜘, 𝒯𝑃(𝜘), 𝒞𝑃(𝜘), 𝒰𝑃(𝜘)ℱ𝑃(𝜘)⟩: 𝜘 ∈ 𝑉} will be indicated by𝑃𝛼,𝛽,𝛾,𝛿
𝜘  or 𝑃 < 𝜘, 𝛼, 𝛽, 𝛾, 𝛿 > or 

simply by 𝜘𝛼,𝛽,𝛾,𝛿 . For the QPNP 𝜘𝛼,𝛽,𝛾,𝛿 , 𝜘 will be called its support. 

The complement of the QPNP 𝑃𝛼,𝛽,𝛾,𝛿
𝜘  will be indicated by(𝑃𝛼,𝛽,𝛾,𝛿

𝜘 )
𝑐
 or by𝜘𝛼,𝛽,𝛾,𝛿

𝑐 . 

Definition 3.3. A QPNP 𝜘𝛼,𝛽,𝛾,𝛿 ∈ 𝒬𝒩(𝑉) is referred to as quasi-coincident with a QPNS 𝐴 ∈ 𝒬𝒩(𝑉) or 
𝜘𝛼,𝛽,𝛾,𝛿 ∈ 𝒬𝒩(𝑉) quasi-coincides with a QPNS 𝐴 ∈ 𝒬𝒩(𝑉), indicated by𝜘𝛼,𝛽,𝛾,𝛿𝑞𝐴, iff 𝛼 > 𝒯𝐴𝑐(𝜘) and 𝛽 >

𝒞𝐴𝑐(𝜘) or 𝛾 < 𝒰𝐴𝑐(𝜘) and 𝛿 < ℱ𝐴𝑐(𝜘), i.e., 𝛼 > ℱ𝐴(𝜘) and 𝛽 > 𝒰𝐴(𝜘) or 𝛾 < 𝒞𝐴(𝜘) and 𝛿 < 𝒯𝐴(𝜘) 

Definition 3.4. Let 𝐴 be a QPNSs over 𝑉. Also let 𝜘𝛼,𝛽,𝛾,𝛿  and 𝜇𝛼′,𝛽′,𝛾′,𝛿′  be two QPNPs in 𝑉. Then 

(1) {𝜘𝛼,𝛽,𝛾,𝛾,𝛿}is referred to as contained in 𝐴, indicated by𝜘𝛼,𝛽,𝛾,𝛿 ⊆ 𝐴, iff 𝛼 ≤ 𝒯𝐴(𝜘), 𝛽 ≤ 𝒞𝐴(𝜘), 𝛾 ≥

𝒰𝐴(𝜘), 𝛿 ≥ ℱ𝐴(𝜘). 

(2) 𝜘𝛼,𝛽,𝛾,𝛾,𝛿is referred to aslong to 𝐴, indicated by𝜘𝛼,𝛽,𝛾,𝛿 ∈ 𝐴, iff 𝛼 ≤ 𝒯𝐴(𝜘), 𝛽 ≤ 𝒞𝐴(𝜘), 𝛾 ≥ 𝒰𝐴(𝜘), 𝛿 ≥

ℱ𝐴(𝜘). 

(3) 𝜘𝛼,𝛽,𝛾,𝛿is referred to as contained in 𝜇𝛼′,𝛽′,𝛾′,𝛿′ , indicated by𝜘𝛼,𝛽,𝛾,𝛿 ⊆ 𝜇𝛼′,𝛽′,𝛾′,𝛿′, iff 𝜘 = 𝜇 and 𝛼 ≤

𝛼′, 𝛽 ≤ 𝛽′, 𝛾 ≥ 𝛾′, 𝛿 ≥ 𝛿′. 

(4) 𝜘𝛼,𝛽,𝛾,𝛿is referred to aslong to 𝜇𝛼′,𝛽′,𝛾′,𝛿′ , indicated by𝜘𝛼,𝛽,𝛾,𝛿 ∈ 𝜇𝛼′,𝛽′,𝛾′,𝛿′ , iff 𝜘 = 𝜇 and 𝛼 ≤ 𝛼′, 𝛽 ≤

𝛽′, 𝛾 ≥ 𝛾′, 𝛿 ≥ 𝛿′. 

Proposition 3.5.Let 𝐴, 𝐵 ∈ 𝒩(𝑉). Then 𝐴 ⊆ 𝐵 ⇔ 𝐵𝑐 ⊆ 𝐴𝑐. 

Proof:𝐴 ⊆ 𝐵 
⇔ 𝒯𝐴(𝜘) ≤ 𝒯𝐵(𝜘), 𝒞𝐴(𝜘) ≤ 𝒞𝐵(𝜘), 𝒰𝐴(𝜘) ≥ 𝒰𝐵(𝜘), ℱ𝐴(𝜘) ≥ ℱ𝐵(𝜘) for all 𝜘 ∈ 𝑉 
⇔ ℱ𝐵(𝜘) ≤ ℱ𝐴(𝜘), 𝒰𝐵(𝜘) ≤ 𝒰𝐴(𝜘), 𝒞𝐵(𝜘) ≥ 𝒞𝐴(𝜘), 𝒯𝐵(𝜘) ≥ 𝒯𝐴(𝜘) for all 𝜘 ∈ 𝑉 
⇔ 𝒯𝐵𝑐(𝜘) ≤ 𝒯𝐴𝑐(𝜘), 𝒞𝐵𝑐(𝜘) ≤ 𝒞𝐴𝑐(𝜘), 𝒰𝐵𝑐(𝜘) ≥ 𝒰𝐴𝑐(𝜘), ℱ𝐵𝑐(𝜘) ≥ ℱ𝐴𝑐(𝜘) for all 𝜘 ∈ 𝑉 ⇔ 𝐵𝑐 ⊆ 𝐴𝑐 

 

 

Proposition 3.6. Let 𝐴, 𝐵, 𝐶 be three 𝑄𝑃𝑁𝑆𝑠, and 𝜘𝛼,𝛽,𝛾,𝛿 be a QPNP in 𝑉. Then, 
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(1) 𝜘𝛼,𝛽,𝛾,𝛿�̂�∅̃. 

(2) 𝜘𝛼,𝛽,𝛾,𝛿𝑞�̃�. 

(3) 𝜘𝛼,𝛽,𝛾,𝛿 ∈ 𝐴 ⇔ 𝜘𝛼,𝛽,𝛾,𝛿�̂�𝐴𝑐. 

(4) 𝜘𝛼,𝛽,𝛾,𝛿𝑞𝐴 ⇔ 𝜘𝛼,𝛽,𝛾,𝛿 ∉ 𝐴𝑐. 

(5) 𝐴 ⊆ 𝐵 ⇔ 𝐴�̂�𝐵𝑐. 

(6) 𝐴𝑞𝐵 ⇔ 𝐴 ⊈ 𝐵𝑐 

(7) 𝜘𝛼,𝛽,𝛾,𝛿𝑞𝐴and𝐴 ⊆ 𝐵 then 𝜘𝛼,𝛽,𝛾,𝛿𝑞𝐵. 

(8) 𝐶𝑞𝐴and𝐴 ⊆ 𝐵 then 𝐶𝑞𝐵. 

(9) 𝐴𝑞𝐵at𝜘 ⇔ 𝐵𝑞𝐴 at 𝜘. 

(10) 𝐴𝑞𝐵 ⇔ 𝐵𝑞𝐴. 

Proof: 

(1) The proof is so easy, so omitted. 
(2) The proof is so easy, so omitted. 
(3) 𝑥𝛼,𝛽,𝛾,𝛿 ∈ 𝐴 

⇔𝛼 ≤ 𝒯𝐴(𝜘), 𝛽 ≤ 𝒞𝐴(𝜘), 𝛾 ≥ 𝒰𝐴(𝜘), 𝛿 ≥ ℱ𝐴(𝜘)

⇔𝛼 ≯ 𝒯𝐴(𝜘), 𝛽 ≯ 𝒞𝐴(𝜘), 𝛾 ≮ 𝒰𝐴(𝜘), 𝛿 ≮ ℱ𝐴(𝜘)

⇔𝛼 ≯ 𝒯(𝐴𝑐)𝑐(𝜘), 𝛽 ≯ 𝒞(𝐴𝑐)𝑐(𝜘), 𝛾 ≮ 𝒰(𝐴𝑐)𝑐(𝜘), 𝛿 ≮ ℱ(𝐴𝑐)𝑐(𝜘)

⇔𝜘𝛼,𝛽,𝛾,𝛿,𝛿�̂�𝐴𝑐

 

(4)  

𝜘𝛼,𝛽,𝛾,𝛿𝑞𝐴

⇔ 𝛼 > 𝒯𝐴𝑐(𝜘) and 𝛽 > 𝒞𝐴𝑐(𝜘) or 𝛾 < 𝒰𝐴𝑐(𝜘) and 𝛿 < ℱ𝐴𝑐(𝜘)

⇔ 𝛼 ≰ 𝒯𝐴𝑐(𝜘) and 𝛽 ≰ 𝒞𝐴𝑐(𝜘) or 𝛾 ⊉ 𝒰𝐴𝑐(𝜘) and 𝛿 ⊉ ℱ𝐴𝑐(𝜘)

⇔ 𝜘𝛼,𝛽,𝛾 ∉ 𝐴𝑐

 

(5)  
𝐴 ⊆ 𝐵

   ⇔𝒯𝐴(𝜘) ≤ 𝒯𝐵(𝜘), 𝒞𝐴(𝜘) ≤ 𝒞𝐵(𝜘), 𝒰𝐴(𝜘) ≥ 𝒰𝐵(𝜘), ℱ𝐴(𝜘) ≥ ℱ𝐵(𝜘)∀𝜘 ∈ 𝑉

⇔𝒯𝐴(𝜘) ≯ 𝒯𝐵(𝜘), 𝒞𝐴(𝜘) ≯ 𝒞𝐵(𝜘), 𝒰𝐴(𝜘) ≮ 𝒰𝐵(𝜘), ℱ𝐴(𝜘) ≮ ℱ𝐵(𝜘)∀𝜘 ∈ 𝑉

⇔𝒯𝐴(𝜘) ≯ 𝒯(𝐵𝑐)𝑐(𝜘), 𝒞𝐴(𝜘) ≯ 𝒞(𝐵𝑐)𝑐(𝜘), 𝒰𝐴(𝜘) ≮ 𝒰(𝐵𝑐)𝑐(𝜘), ℱ𝐴(𝜘) ≮ ℱ(𝐵𝑐)𝑐(𝜘)∀𝜘 ∈ 𝑉

⇔𝐴�̂�𝐵𝑐

 

 
(6)     𝐴𝑞𝐵 

                     ⇔ 𝒯𝐴(𝜘) > 𝒯𝐵𝑐(𝜘)and𝒞𝐴(𝜘) > 𝒞𝐵𝑐(𝜘) or 𝒰𝐴(𝜘) < 𝒰𝐵𝑐(𝜘) and ℱ𝐴(𝜘) < ℱ𝐵𝑐(𝜘) 
                  ⇔ 𝒯𝐴(𝜘) ≰ 𝒯𝐵𝑐(𝜘) and 𝒞𝐴(𝜘) ≰ 𝒞𝐵𝑐(𝜘) or 𝒰𝐴(𝜘) ⊉ 𝒰𝐵𝑐(𝜘) and ℱ𝐴(𝜘) ⊉ ℱ𝐵𝑐(𝜘) ⇔ 𝐴 ⊈ 𝐵𝑐  

(7) Since 𝜘𝛼,𝛽,𝛾𝑞𝐴, so 𝛼 > 𝒯𝐴𝑐(𝜘) and 𝛽 > 𝒞𝐴𝑐(𝜘) or 𝛾 < 𝒰𝐴𝑐(𝜘) and 𝛿 < ℱ𝐴𝑐(𝜘). Now 
𝐴 ⊆ 𝐵 ⇒ 𝐵𝑐 ⊆ 𝐴𝑐 

   ⇒ 𝒯𝐵𝑐(𝜘) ≤ 𝒯𝐴𝑐(𝜘), 𝒞𝐵𝑐(𝜘) ≤ 𝒞𝐴𝑐(𝜘), 𝒰𝐵𝑐(𝜘) ≥ 𝒰𝐴𝑐(𝜘), ℱ𝐵𝑐(𝜘) ≥ ℱ𝐴𝑐(𝜘) for all 𝜘 ∈ 𝑋 
   ⇒ 𝒯𝐴𝑐(𝜘) ≥ 𝒯𝐵𝑐(𝜘), 𝒞𝐴𝑐(𝜘) ≥ 𝒞𝐵𝑐(𝜘), 𝒰𝐴𝑐(𝜘) ≤ 𝒰𝐵𝑐(𝜘), ℱ𝐴𝑐(𝜘) ≤ ℱ𝐵𝑐(𝜘) for all 𝜘 ∈ 𝑉 ⇒ 𝛼 >
   𝒯𝐵𝑐(𝜘) and 𝛽 > 𝒞𝐵𝑐(𝜘) or 𝛾 < 𝒰𝐵𝑐(𝜘) and 𝛿 < ℱ𝐵𝑐(𝜘) for all 𝜘 ∈ 𝑉 ⇒ 𝜘𝛼,𝛽,𝛾,𝛿𝑞𝐵 
 

(8)    𝐶𝑞𝐴 ⇒ 𝐶 ⊈ 𝐴𝑐 ⇒ 𝐶 ⊈ 𝐵𝑐[∵ 𝐴 ⊆ 𝐵 ⇒ 𝐵𝑐 ⊆ 𝐴𝑐] ⇒ 𝐶𝑞𝐵. 
  

(9) 𝐴𝑞𝐵 at 𝜘 
   ⇔ 𝒯𝐴(𝜘) > 𝒯𝐵𝑐(𝜘) and 𝒞𝐴(𝜘) > 𝒞𝐵𝑐(𝜘) or 𝒰𝐴(𝜘) < 𝒰𝐵𝑐(𝜘) and ℱ𝐴(𝜘) < ℱ𝐵𝑐(𝜘) 
   ⇔ 𝒯𝐴(𝜘) > ℱ𝐵(𝜘) and 𝒞𝐴(𝜘) > 𝒰𝐵(𝜘) or 𝒰𝐴(𝜘) < 𝒞𝐵(𝜘) and ℱ𝐴(𝜘) < 𝒯𝐵(𝜘) 
⇔ 𝒯𝐵(𝜘) > ℱ𝐴(𝜘) and 𝒞𝐵(𝜘) > 𝒰𝐴(𝜘) or 𝒰𝐵(𝜘) < 𝒞𝐴(𝜘) and ℱ𝐵(𝜘) < 𝒯𝐴(𝜘) 
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⇔ 𝒯𝐴(𝜘) > 𝒯𝐵𝑐(𝜘) and 𝒞𝐴(𝜘) > 𝒞𝐵𝑐(𝜘) or 𝒰𝐴(𝜘) < 𝒰𝐵𝑐(𝜘) and ℱ𝐴(𝜘) < ℱ𝐵𝑐(𝜘) 
⇔ 𝐵𝑞𝐴 at 𝜘 
 

(10) It is obvious from (9). 

Proposition 3.7. Let 𝜘𝛼,𝛽,𝛾,𝛿  be a 𝑄𝑁𝑃 in 𝑃, 𝐴 ∈ 𝒬𝒩(𝑋) and {𝐴𝑖: 𝑖 ∈ Δ} ⊆ 𝒬𝒩(𝑃), where an index set 
represented by Δ. Then, 

(1) 𝜘𝛼,𝛽,𝛾,𝛿𝑞 ∪𝑖∈Δ 𝐴𝑖 ⇔ 𝜘𝛼,𝛽,𝛾,𝛿𝑞𝐴𝑗 for some 𝑗 ∈ Δ. 

(2) 𝐴𝑞 ∪𝑖∈Δ 𝐴𝑖 ⇔ 𝐴𝑞𝐴𝑗 for some 𝑗 ∈ Δ. 

(3) 𝜘𝛼,𝛽,𝛾,𝛿𝑞 ∩𝑖∈Δ 𝐴𝑖 ⇒ 𝜘𝛼,𝛽,𝛾,𝛿𝑞𝑞𝐴𝑖 for all 𝑖 ∈ Δ. 

(4) 𝐴𝑞 ∩𝑖∈Δ 𝐴𝑖 ⇒ 𝐴𝑞𝐴𝑖 for all 𝑖 ∈△. 

Proof: 

(1) 
𝜘𝛼,𝛽,𝛾,𝛿𝑞 ∪𝑖∈Δ 𝐴𝑖

⇔𝜘𝛼,𝛽,𝛾,𝛿 ∉ (∪𝑖∈Δ 𝐴𝑖)
𝑐

⇔𝜘𝛼,𝛽,𝛾,𝛿 ∉∩𝑖∈Δ 𝐴𝑖
𝑐

⇔𝜘𝛼,𝛽,𝛾,𝛿 ∉ 𝐴𝑗
𝑐 for some 𝑗 ∈ Δ

⇔𝜘𝛼,𝛽,𝛾,𝛿𝑞𝐴𝑗 for some 𝑗 ∈ Δ

 

(2)  
𝐴𝑞 ∪𝑖∈Δ 𝐴𝑖

⇔𝐴 ⊈ (∪𝑖∈Δ 𝐴𝑖)
𝑐

⇔𝐴 ⊈∩𝑖∈Δ 𝐴𝑖
𝑐

⇔𝐴 ⊈ 𝐴𝑗
𝑐 for some 𝑗 ∈△

⇔𝐴𝑞𝐴𝑗 for some 𝑗 ∈△

 

(3) 
𝜘𝛼,𝛽,𝛾,𝛿𝑞 ∩𝑖∈Δ 𝐴𝑖

   ⇒𝜘𝛼,𝛽,𝛾,𝛿 ∉ (∩𝑖∈Δ 𝐴𝑖)
𝑐

⇒𝜘𝛼,𝛽,𝛾,𝛿 ∉∪𝑖∈Δ 𝐴𝑖
𝑐

⇒𝜘𝛼,𝛽,𝛾,𝛿 ∉ 𝐴𝑖
𝑐 for all 𝑖 ∈△

⇒𝜘𝛼,𝛽,𝛾,𝛿𝑞𝐴𝑖 for all 𝑖 ∈△

 

(4)  
𝐴𝑞 ∩𝑖∈Δ 𝐴𝑖

⇒𝐴 ⊈ (∩𝑖∈Δ 𝐴𝑖)
𝑐

   ⇒𝐴 ⊈∪𝑖∈Δ 𝐴𝑖
𝑐

⇒𝐴 ⊈ 𝐴𝑖
𝑐 for all 𝑖 ∈ Δ

⇒𝐴𝑞𝐴𝑖 for all 𝑖 ∈ Δ

 

Proposition 3.8. 

1. 𝐴Ω𝐵 = 𝐵Ω𝐴. 
2. 𝐴𝑞𝐵 ⇔ 𝐴Ω𝐵 ≠ ∅. 
3. 𝐴 ⊆ 𝐵 ⇒ 𝐴Ω𝐶 ⊆ 𝐵Ω𝐶. 
4. 𝐴Ω(∪𝑖∈Δ 𝐴𝑖) =∪𝑖∈Δ (𝐴Ω𝐴𝑖). 
5. 𝐴Ω(∩𝑖∈Δ 𝐴𝑖) ⊆∩𝑖∈Δ (𝐴Ω𝐴𝑖). 

Proof: 

(1) 𝐴Ω𝐵 = {𝜘 ∈ 𝑉: 𝐴𝑞𝐵 at 𝜘} = {𝜘 ∈ 𝑉: 𝐵𝑞𝐴 at 𝜘} = 𝐵Ω𝐴. 

(2) 𝐴𝑞𝐵 ⇔ 𝐴𝑞𝐵 at some 𝜘 ∈ 𝑉 ⇔ 𝜘 ∈ 𝐴Ω𝐵. Therefore 𝐴𝑞𝐵 ⇔ 𝐴Ω𝐵 ≠ ∅. 

(3) 𝐴 ⊆ 𝐵 ⇒ 𝒯𝐴(𝜘) ≤ 𝒯𝐵(𝜘), 𝒞𝐴(𝜘) ≤ 𝒞𝐵(𝜘), 𝒰𝐴(𝜘) ≥ 𝒰𝐵(𝜘), ℱ𝐴(𝜘) ≥ ℱ𝐵(𝜘) for all 𝜘 ∈ 𝑉. Now 
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𝜘 ∈ 𝐴Ω𝐶
⇒𝐴𝑞𝐶 at 𝜘 ∈ 𝑉
⇒𝒯𝐴(𝜘) > 𝒯𝐶𝑐(𝜘) and 𝒞𝐴(𝜘) > 𝒞𝐶𝑐(𝜘) or 𝒰𝐴(𝜘) < 𝒰𝐶𝑐(𝜘) or ℱ𝐴(𝜘) < ℱ𝐶𝑐(𝜘)

⇒𝒯𝐵(𝜘) > 𝒯𝐶𝑐(𝜘) and 𝒞𝐵(𝜘) > 𝒞𝐶𝑐(𝜘) or 𝒰𝐵(𝜘) < 𝒰𝐶𝑐(𝜘) or ℱ𝐵(𝜘) < ℱ𝐶𝑐(𝜘)
⇒𝐵𝑞𝐶 at 𝜘 ∈ 𝑉
⇒𝜘 ∈ 𝐵Ω𝐶
∴𝐴Ω𝐶 ⊆ 𝐵Ω𝐶.

 

 

(4) 

𝜘 ∈ 𝐴Ω(∪𝑖∈Δ 𝐴𝑖)

⇒𝐴𝑞(∪𝑖∈Δ 𝐴𝑖) at 𝜘 ∈ 𝑉
⇒∃𝑗 ∈△  such that 𝐴𝑞𝐴𝑗 at 𝜘 ∈ 𝑉

⇒∃𝑗 ∈△  such that 𝜘 ∈ 𝐴Ω𝐴𝑗

⇒𝜘 ∈∪𝑖∈Δ (𝐴Ω𝐴𝑖)

∴𝐴Ω(∪𝑖∈Δ 𝐴𝑖) ⊆∪𝑖∈Δ (𝐴Ω𝐴𝑖).

 

Again 

𝜘 ∈∪𝑖∈Δ (𝐴Ω𝐴𝑖)

⇒ ⋁  

𝑖∈Δ

  (𝐴𝑞𝐴𝑖 at 𝜘 ∈ 𝑉)

⇒ ⋁  

𝑖∈Δ

  (𝐴𝑖𝑞𝐴 at 𝜘 ∈ 𝑉)

⇒ ⋁  

𝑖∈Δ

  [𝒯𝐴𝑖
(𝜘) > 𝒯𝐴𝑐(𝜘) and 𝒞𝐴𝑖

(𝜘) > 𝒞𝐴𝑐(𝜘) or 𝒰𝐴𝑖
(𝜘) < 𝒰𝐴𝑐(𝜘) or ℱ𝐴𝑖

(𝜘) < ℱ𝐴𝑐(𝜘)]

⇒ sup
𝑖∈Δ

 𝒯𝐴𝑖
(𝜘) > 𝒯𝐴𝑐(𝜘) and sup

𝑖∈Δ
 𝒞𝐴𝑖

(𝜘) > 𝒞𝐴𝑐(𝜘) or inf
𝑖∈Δ

 𝒰𝐴𝑖
(𝜘) < 𝒰𝐴𝑐(𝜘) or inf

𝑖∈Δ
 ℱ𝐴𝑖

(𝜘) < ℱ𝐴𝑐(𝜘)

⇒ 𝒯∪𝐴𝑖
(𝜘) > 𝒯𝐴𝑐(𝜘) and 𝒞∪𝐴𝑖

(𝜘) > 𝒞𝐴𝑐(𝜘) or 𝒰∪𝐴𝑖
(𝜘) < 𝒰𝐴𝑐(𝜘) or ℱ∪𝐴𝑖

(𝜘) < ℱ𝐴𝑐(𝜘)

⇒ (∪𝑖∈Δ 𝐴𝑖)𝑞𝐴 at 𝜘 ∈ 𝑉

⇒ 𝐴𝑞(∪𝑖∈Δ 𝐴𝑖) at 𝜘 ∈ 𝑉

⇒ 𝜘 ∈ 𝐴Ω(∪𝑖∈Δ 𝐴𝑖)

∴∪𝑖∈Δ (𝐴Ω𝐴𝑖) ⊆ 𝐴Ω(∪𝑖∈Δ 𝐴𝑖)

 Hence 𝐴Ω(∪𝑖∈Δ 𝐴𝑖) =∪𝑖∈Δ (𝐴Ω𝐴𝑖).

 

(5)   

𝜘 ∈ 𝐴Ω(∩𝑖∈Δ 𝐴𝑖)

⇒𝐴𝑞(∩𝑖∈Δ 𝐴𝑖) at 𝜘 ∈ 𝑉
⇒𝐴𝑞𝐴𝑖 at 𝜘 ∈ 𝑉 for all 𝑖 ∈△
⇒𝜘 ∈ 𝐴Ω𝐴𝑖 for all 𝑖 ∈△

⇒𝜘 ∈∩𝑖∈Δ (𝐴Ω𝐴𝑖)

∴𝐴Ω(∩𝑖∈Δ 𝐴𝑖) ⊆∩𝑖∈Δ (𝐴Ω𝐴𝑖)

 

Definition 3.9. Assume that (𝑉, 𝜏) be a QNTS. A QNS 𝐴 is referred to as a quadripartitioned neutrosophic 
quasi-neighbourhood or simply Q-neighbourhood (Q-nhbd, for short) of a QNP 𝜘𝛼,𝛽,𝛾,𝛿 iff there exists a QNS 
𝐵 ∈ 𝜏 such that 𝜘𝛼,𝛽,𝛾,𝛿𝑞𝐵 ⊆ 𝐴. 

The system of Q-neighbourhoods, also known as the Q-neighbourhood system of 𝜘_(α,β,γ,δ), is the 
family that includes all of the Q-neighbourhoods of the QNP 𝜘_(α,β,γ,δ). This family is indicated 
byNQ(𝜘𝛼,𝛽,𝛾,𝛿). 

Proposition 3.10. Every neutrosophic open set 𝐴 in a QNTS(𝑉, 𝜏) is a 𝑄-nhbd of every QNP quasi-coincident 
with 𝐴. 

Proof: It is evident because for every QNP 𝜘𝛼,𝛽,𝛾,𝛿𝑞𝐴, we have 𝜘𝛼,𝛽,𝛾,𝛿𝑞𝐴 ⊆ 𝐴. 
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Properties of Quadripartitioned Neutrosophic Q-Neighbourhoods 
Theorem 3.11. Let QNQ(𝜘𝛼,𝛽,𝛾,𝛿) be the collection of all 𝑄-neighbourhoods of the QNP 𝜘𝛼,𝛽,𝛾,𝛿  in a QNTS 
(𝑉, 𝜏). Then, 
(a) QNQ(𝜘𝛼,𝛽,𝛾,𝛿) ≠ ∅ for every 𝑄𝑁𝑃𝜘𝛼,𝛽,𝛾,𝛿∈𝒬𝒫𝒩(𝑋). 
(b) 𝑃 ∈ QNQ(𝜘𝛼,𝛽,𝛾,𝛿) ⇒ 𝜘𝛼,𝛽,𝛾,𝛿𝑞𝑃. 
(c) 𝑃 ∈ QNQ(𝜘𝛼,𝛽,𝛾,𝛿), 𝑃 ⊆ 𝑄 ⇒ 𝑄 ∈ QNQ(𝜘𝛼,𝛽,𝛾,𝛿). 
(d) 𝑃 ∈ QNQ(𝜘𝛼,𝛽,𝛾,𝛿) ⇒ there exists a 𝑄 ∈ QNQ(𝜘𝛼,𝛽,𝛾,𝛿) such that 𝑄 ⊆ 𝑃 and 𝑄 ∈ QNQ(𝜇𝛼′,𝛽′,𝛾′,𝛿′) for every 
QNP 𝜇𝛼′,𝛽′,𝛾′,𝛿′  quasicoincident with 𝑄. 

Proof:(a) Obviously �̃� is a Q-nhbd of every QNP 𝑥𝛼,𝛽,𝛾,𝛿 ∈ 𝒬𝒩(𝑉). Thus there is at least one Q-nhbd for every 
QNP 𝜘𝛼,𝛽,𝛾,𝛿 ∈ 𝒬𝒩(𝑋). Therefore QNQ(𝜘𝛼,𝛽,𝛾,𝛿) ≠ ∅ for every QNP 𝜘𝛼,𝛽,𝛾,𝛿 ∈ 𝒬𝒩(𝑋). 
(b) 𝑃 ∈ QNQ(𝜘𝛼,𝛽,𝛾,𝛿) ⇒ 𝑃 is a Q-nhbd of 𝜘𝛼,𝛽,𝛾,𝛿 ⇒ ∃ a 𝑆 ∈ 𝜏 such that 𝜘𝛼,𝛽,𝛾,𝛿𝑞 ⊆ 𝑃. Therefore 𝜘𝛼,𝛽,𝛾,𝛿𝑞𝑃. 
(c) 𝑃 ∈ QNQ(𝜘𝛼,𝛽,𝛾,𝛿) ⇒ 𝑃 is a Q-nhbd of 𝜘𝛼,𝛽,𝛾,𝛿 ⇒ ∃ an open set 𝐺 such that 𝜘𝛼,𝛽,𝛾,𝛿𝑞𝐺 ⊆ 𝑃 ⇒ ∃ an open set 
𝐺 such that 𝜘𝛼,𝛽,𝛾,𝛿𝑞𝐺 ⊆ 𝑄 ⇒ 𝑄 is a Q-nhbd of 𝜘𝛼,𝛽,𝛾,𝛿 ⇒ 𝑄 ∈ QNQ(𝜘𝛼,𝛽,𝛾). 
(d) Since 𝑃 ∈ QNQ(𝜘𝛼,𝛽,𝛾,𝛿), so there exists a 𝜏-open set 𝑄 such that 𝜘𝛼,𝛽,𝛾,𝛿𝑞𝑄 ⊆ 𝑃. Since 𝑄 is an open set, so 
𝑄 ∈ QNQ(𝜘𝛼,𝛽,𝛾,𝛿). Thus 𝑄 ∈ QNQ(𝜘𝛼,𝛽,𝛾,𝛿) and 𝑄 ⊆ 𝑃. 
Again since 𝑄 is an open set, so 𝑄 is a Q-nhbd of every QNP quasicoincident with Q. Therefore 𝑄 ∈

QNQ(𝜇𝛼′,𝛽′,𝛾′,𝛿′) for every QNP 𝜇𝛼′,𝛽′,𝛾′,𝛿′  quasi-coincident with Q. 
Hence proved. 

Characterization of QNTS in terms of quadripartitioned Neutrosophic Q-

Neighbourhoods 
Theorem 3.12. Suppose that 𝑉 ≠ ∅ is any set. Let 𝑥 ∈ 𝑋. Let QNQ(𝜘𝛼,𝛽,𝛾,𝛿) be a family of all QNSs over 𝑋 
satisfying the following conditions : 
(N1) 𝑃 ∈ QNQ(𝜘𝛼,𝛽,𝛾,𝛿) ⇒ 𝜘𝛼,𝛽,𝛾,𝛿𝑞𝑞𝑃. 
(N2) 𝑃, 𝑄 ∈ QNQ(𝜘𝛼,𝛽,𝛾,𝛿) ⇒ 𝑃 ∩ 𝑄 ∈ QNQ(𝜘𝛼,𝛽,𝛾,𝛿). 
(N3) 𝑃 ∈ QNQ(𝜘𝛼,𝛽,𝛾,𝛿), 𝑃 ⊆ 𝑄 ⇒ 𝑄 ∈ QNQ(𝜘𝛼,𝛽,𝛾,𝛿). 
Then there exists a Quadripartitioned Neutrosophic Topology (QNT)𝜏 on 𝑋. Furthermore, if the subsequent 
condition (N4) is also met then QNQ(𝜘𝛼,𝛽,𝛾,𝛿) is exactly the Q-neighbourhood system of 𝜘𝛼,𝛽,𝛾,𝛿  in the 
QNTS(𝑋, 𝜏). 
(N4) 𝑃 ∈ QNQ(𝜘𝛼,𝛽,𝛾,𝛿) ⇒ there exists a 𝑄 ∈ QNQ(𝜘𝛼,𝛽,𝛾,𝛿) such that 𝑄 ⊆ 𝑃 and 𝑄QNQ(𝜇𝛼′,𝛽′,𝛾′,𝛿′) for every 
NP 𝜇𝛼′,𝛽′,𝛾′,𝛿′ quasicoincident with 𝑄. 

Proof: We construct τ in this way: 
A QNS 𝐺 ∈ 𝜏 iff 𝐺QNQ(𝜘𝛼,𝛽,𝛾,𝛿) whenever 𝜘𝛼,𝛽,𝛾,𝛿𝑞𝐺. 
We claim that 𝜏 is a WNT on 𝑋. 
T1) ∅̃ ∈ 𝜏 as no QNP is quasi-coincident with ∅̃. By (N3), �̃� ∈ 𝜏. Thus ∅̃, �̃� ∈ 𝜏. 

T2) Suppose 𝐺1, 𝐺2 ∈ 𝜏 and 𝜘𝛼,𝛽,𝛾,𝛿𝑞(𝐺1 ∩ 𝐺2). Since 𝜘𝛼,𝛽,𝛾,𝛿𝑞(𝐺1 ∩ 𝐺2), so 𝜘𝛼,𝛽,𝛾,𝛿𝑞𝐺1 and 𝜘𝛼,𝛽,𝛾,𝛿𝑞𝐺2. 
Therefore 𝐺1, 𝐺2 ∈ QNQ(𝜘𝛼,𝛽,𝛾,𝛿) and so, by (N2), 𝐺1 ∩ 𝐺2 ∈ QNQ(𝜘𝛼,𝛽,𝛾,𝛿). 

T3) Suppose {𝐺𝑖: 𝑖 ∈ Δ} ⊆ 𝜏 and 𝜘𝛼,𝛽,𝛾,𝛿𝑞(∪𝑖∈Δ 𝐺𝑖). We show that ∪ {𝐺𝑖: 𝑖 ∈ Δ} ∈ 𝜏. Now 𝑥𝛼,𝛽,𝛾,𝛿𝑞(∪𝑖∈Δ 𝐺𝑖) ⇒

∃a𝑗 ∈ Δ such that 𝜘𝛼,𝛽,𝛾,𝛿𝑞𝐺𝑗 ⇒ ∃a𝑗 ∈ Δ such that 𝐺𝑗 ∈ QNQ(𝜘𝛼,𝛽,𝛾,𝛿) ⇒∪ {𝐺𝑖: 𝑖 ∈ Δ} ∈ N(𝜘𝛼,𝛽,𝛾,𝛿)[ by (N3)] 
⇒∪ {𝐺𝑖: 𝑖 ∈ Δ} ∈ 𝜏. 
Therefore 𝜏 is a QNT on 𝑋. 
Assume that (N4) is fulfilled. Assume that all Q-neighborhoods of the QNP ϰ_(α,β,γ,δ) in (V,τ) belong to the 
family QN_Q^* (ϰ_(α,β,γ,δ)). The equality QN_Q^* (ϰ_(α,β,γ,δ))=QN_Q (ϰ_(α,β,γ,δ)) is demonstrated. 
Let 𝑁 ∈ QNQ(𝜘𝛼,𝛽,𝛾,𝛿). By (N4), then, for each QNP μ_(α^',β^',γ^',δ^') quasi-coincident with M, there exists a 
M∈QN_Q (ϰ_(α,β,γ,δ) ) such that M⊆N and M∈QN_Q (μ_(α^',β^',γ^',δ^' ) ). [by (N1)] Now, M∈QN_Q 
(ϰ_(α,β,γ,δ) )⇒ϰ_(α,β,γ,δ) qM. Consequently, M∈τ. M is therefore a τ-open set in which ϰ_(α,β,γ,δ) qM⊆N. 
Therefore 𝑁 ∈ QNQ

∗ (𝜘𝛼,𝛽,𝛾,𝛿) and so QNQ(𝜘𝛼,𝛽,𝛾,𝛿) ⊆ QNQ
∗ (𝜘𝛼,𝛽,𝛾,𝛿). Conversely let 𝑁 ∈ QNQ

∗ (𝜘𝛼,𝛽,𝛾,𝛿) so that 
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𝑁 is a Q-nhbd of 𝜘𝛼,𝛽,𝛾,𝛿 . Then there exists a 𝜏-open set 𝐺 such that 𝜘𝛼,𝛽,𝛾,𝛿𝑞𝐺 ⊆ 𝑁. Therefore 𝐺 ∈

QNQ(𝜘𝛼,𝛽,𝛾,𝛿).  

But 𝐺 ∈ QNQ(𝜘𝛼,𝛽,𝛾,𝛿) and 𝐺 ⊆ 𝑁 together imply by ( N 3 ) that 𝑁 ∈ QNQ(𝜘𝛼,𝛽,𝛾,𝛿). Therefore QNQ
∗ (𝜘𝛼,𝛽,𝛾,𝛿) ⊆

QNQ(𝜘𝛼,𝛽,𝛾,𝛿). Consequently QNQ(𝜘𝛼,𝛽,𝛾,𝛿) = QNQ
∗ (𝜘𝛼,𝛽,𝛾,𝛿). Thereby, it was demonstrated. 

Definition 3.13. Let 𝜁 ⊆ 𝒬𝒩(𝑋). Then 𝜁 is known as a Quadripartitioned Neutrosophic Quasi Coincident 
Topology (QNQCT)  with 𝐶(∈ 𝑋) on 𝑋 if 

 (i) 𝑂𝑄𝑁𝑞𝐶, 1𝑄𝑁𝑞𝐶

 (ii) (𝐺1 ∩ 𝐺2)𝑞𝐶 for any 𝐺1𝑞𝐶, 𝐺2𝑞𝐶

 (iii) ∪ 𝐺𝑖𝑞𝐶 ∀𝐺𝑖𝑞𝐶

 

If 𝜁 is a QNQCT on 𝑋 then the pair (𝑋, 𝜁) is known as a QNQCT space over 𝑋. 

 

Conclusions 

In this chapter, we have established the notion of quadripartitioned neutrosophic quasi coincident with a 
quadripartitioned neutrosophic set and quadripartitioned neutrosophic quasi coincident with a quadripartitioned 
neutrosophic point. We also define quadripartitioned neutrosophic point. This chapter contains the various 
property of quadripartitioned neutrosophic set with some examples. We have defined quadripartitioned 
neutrosophic quasi coincident topological space. Hopefully, this chapter will helpful for the further investigation 
on various continuous function in quadripartitioned neutrosophic set. 
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ABSTRACT 

This article aims to present the idea of neutrosophic supra -open set (NS--O-S) via neutrosophic supra 
topological space (NSTS) as an expansion of neutrosophic supra -open set (NS--O-S). Besides, we establish 
several results on NS--O-S via NSTS. Furthermore, we provide several appropriate examples to support the 
findings presented in this article. 

Keywords: NSTS; NS--O-S; NS--O-S; Neutrosophic Set 

INTRODUCTION

The principle of fuzzy set (FS) [50] was first established by Prof. L.A. Zadeh in 1965, with every 
component having a membership value lies between zero and one. Atanassov [3] then extended the idea of FS 
through the addition of Intuitionistic FS (IFS), in which each element has both membership and non-membership 
values ranging from 0 to 1. In 1998, Smarandache [45] grounded Neutrosophic Set (NS) theory as a further 
development of FS and IFS theory, with each element having three independent membership values ranging 
from zero to one, namely truth-membership, indeterminacy-membership and falsity-membership. Information on 
new neutrosophic theories and their applications are available in the studies [4, 33, 35-36, 46-48].  

Till now, many researchers around the globe used the notion NSs in algebra [14] as well as decision 
making strategies [10-11, 29]. Salama and Alblowi [41] later developed the idea of neutrosophic topological 
space (NTS) in 2012 as a further development of intuitionistic fuzzy topological space [6]. Salama and Alblowi 
[42] additionally grounded the generalized NTSs. In the year 2016, Iswarya and Bageerathi [27] introduced
neutrosophic semi-open set in NTS. Later, Arokiarani et al. [2]  presented the concept of neutrosophic semi-open
functions and explored various relationships between them via NTSs. Pushpalatha and Nandhini [39] went on to
investigate the neutrosophic generalized closed sets in NTSs. Afterwards, Rao and Srinivasa [40] proposed the
neutrosophic pre-open and neutrosophic pre-closed sets using NTS. As a result, Ebenanjar et al. [26] established
the b-open sets from the standpoint of NTSs. Later on, Maheswari et al. [28] developed the notion of
neutrosophic generalized b-closed set in NTSs. Das and Pramanik [17] went on to investigate the idea of
generalized neutrosophic b-open sets in NTSs. Afterwards, the idea of Φ-open sets and Φ-continuous functions
was grounded by Das and Pramanik [19] via NTSs in the context of NS. Thereafter, Das and Tripathy [22]
proposed the simply b-open sets via NTS. Das et al. [9] established the quadripartitioned neutrosophic topology
in 2021. Later on, Das and Tripathy [21] studied the notion of pentapartitioned NTS as a further development of
NTS. Thereafter, Das and Pramanik [20] presented the notion of neutrosophic tri-topological space in the year
2021.

Mashhour et al. [31] pioneered the ideas of Supra Topology (ST). Devi et al. [23] went on to investigate 
the idea of supra-open sets and supra-continuous functions using supra topological space (STS). In 1987, Abd 
El-Monsef and Ramadan [1] established the concept of fuzzy STSs. Turanl [49] then grounded the idea of 
intuitionistic fuzzy STS (IFSTS). The idea of intuitionistic fuzzy -supra open set and intuitionistic fuzzy -
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supra continuous functions in IFSTS was grounded by Parimala and Indirani [32]. In 2017, Dhavanseelan et al. 
[25] grounded the concept of neutrosophic STS (NSTS) by extending the notion of NTS and IFSTS, and 
presented the idea of neutrosophic supra-semi-open set (NSSO-S), neutrosophic supra-pre-open set (NSPO-S), 
neutrosophic supra-semi continuous function and neutrosophic supra-pre continuous function via NSTSs. The 
concept of neutrosophic supra-α-open set (NS--O-S) and neutrosophic supra-α-continuous functions (NS--C-
function) via NSTSs was first grounded by Dhavanseelan et al. [24]. Later on, the notion of neutrosophic simply 
soft open set via neutrosophic soft topological space was presented by Das and Pramanik [18]. In 2021, Das [7] 
studied the notion of neutrosophic supra simply compactness in the sense of neutrosophic supra simply open set 
via NSTSs. In 2022, the notion of neutrosophic infi-semi-open set was established by Das et al. [15]. In 2023, 
Das et al. [12] grounded the notion of single-valued quadripartitioned neutrosophic minimal structure space. In 
2024, Das and Das [8] introduced the concept of pairwise neutrosophic infra pre-open set in infra neutrosophic 
bitopological space. Later on, Poojary et al. [34] grounded the notion of quadripartitioned neutrosophic pre-open 
set. Thereafter, the notion of neutrosophic supra bitopological spaces was grounded by Das et al. [13]. Recently, 
Das et al. [16] presented the notion of interval-valued NTS.  

In this article, we introduce the concept of NS-β-O-S through NSTS, and derive several results related to 
NSTSS. Further, we provide several appropriate examples to support the findings presented in this article. 

Research Gap: Recent literature lacks research on NS--O-S and neutrosophic supra -continuous function 
(NS--C-function) via NSTS. 

Motivation: To address the gap of research, we procure the idea of NS--O-S and NS--C-function via NSTS, 
and provide several appropriate examples to support the findings presented in this article. 

 
The layout of this article is given below: 
 

Section Content 

1 Introduction 
2 Presents some basic definitions and results on NSTS 
3 Presents the notions of NS--O-S and NS--C-function via NSTS, and established some 

results on them 
4 Conclude the article, and states some directions for further research 

BASIC DEFINITIONS AND RESULTS 

Throughout the section, we discuss several preliminary definitions and findings about NSTSs that will be 
beneficial when preparing the key findings of this article. 

A collection ґ of NSs defined over a universal set ₢ is referred to as a neutrosophic ST (NST) [25] if the 
following two conditions hold: 
(i) 0₢, 1₢ґ; 
(ii) i∆Ci ґ, for every {Ci : i}⊆ґ. 
       If ґ is an NST on ₢, then (₢, ґ) is referred to as a NSTS. If Ŧґ, then Ŧ and Ŧc are referred to as a 
neutrosophic supra open set (NSO-S) and neutrosophic supra closed set (NSC-S) respectively in the NSTS (₢, ґ). 
      The neutrosophic supra interior (Nint

S ) [25] and the neutrosophic supra closure (Ncl
S ) of Ǽ in the NSTS (₢, ґ) 

are defined as follows: 
(i) Nint

S (Ǽ) =  { Ŧ : Ŧ is an NSO-S in (₢, ґ) and Ŧ Ǽ}; 
(ii) Ncl

S (Ǽ) =  { Ŧ : Ŧ is an NSC-S in (₢, ґ) and Ǽ Ŧ }. 
Consider a NSTS (₢, ґ). An NS Ǽ defined over ₢ is referred to as 
(i) NS--O-S [24] in (₢, ґ) if Ǽ  Nint

S (Ncl
S (Nint

S (Ǽ))); 
(ii) NSSO-S [25] in (₢, ґ) if Ǽ  Ncl

S (Nint
S (Ǽ)); 

(iii) NSPO-S [25] in (₢, ґ) if Ǽ  Nint
S (Ncl

S (Ǽ)). 
Theorem 2.1. [25] In a NSTS (₢, ґ), every NS--O-S is NSSO-S (respectively NSPO-S). 
Theorem 2.2. [24] Let (₢, ґ) be a NSTS. 
(i) If Ǽ and Ħ be two NS--O-Ss, then ǼĦ is also a NS--O-S in (₢, ґ); 
(ii) If Ǽ and Ħ be two NS--C-Ss, then ǼĦ is also a NS--C-S in (₢, ґ). 
Remark 2.1. [24] Suppose that (₢, ґ) be a NSTS. 
(i) If Ǽ and Ħ be two NS--O-Ss, then ǼĦ may not be a NS--O-S in (₢, ґ); 
(ii) If Ǽ and Ħ be two NS--C-Ss, then ǼĦ may not be a NS--C-S in (₢, ґ). 
       The neutrosophic supra -closure [24] and the neutrosophic supra -interior of Ǽ in a NSTS (₢, ґ) are 
defined as follows: 
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(i) N−cl
S (Ǽ) =  { Ŧ : Ŧ is a NS--C-S in (₢, ґ) and Ŧ Ǽ}; 

(ii) N−int
S (Ǽ) =  { Ŧ : Ŧ is a NS--O-S in (₢, ґ) and Ŧ Ǽ}. 

       Assume that (₢, ґ) and (Җ, ) be two NSTSs. A bijective function f from (₢, ґ) into (Җ, ) is referred to as a 
neutrosophic supra continuous function [24] if f-1(Ǽ) is a NSO-S in ₢, whenever Ǽ is an NSO-S in Җ. 
       A bijective function f: (₢, ґ)→(Җ, ) is referred to as a neutrosophic supra -continuous function (NS--C-
f) [24] if f-1(Ǽ) is a NS--O-S in ₢, whenever Ǽ is an NSO-S in Җ. 
Theorem 2.3. [24] Every NS-C-f is a NS--C-f. 

Neutrosophic Supra -Open Set and Neutrosophic Supra -Continuous 

Function 

Throughout this section, we grounded the idea of NS--O-S and NS--C-f, and provide several 
appropriate examples to support the findings presented in this article. 

Definition 3.1. A NS Ħ is referred to as a NS--O-S in a NSTS (₢, ґ) if Ħ  Ncl
S (Nint

S (Ncl
S (Ħ))). 

Example 3.1. Suppose that ₢ ={ᾗ, ẳ}. Clearly, ґ={0N, 1N, X, Ǽ} is a NST on ₢, where X={(ᾗ, 0.5, 0.3, 0.1), (ẳ, 
0.7, 0.3, 0.2)} and Ǽ={(ᾗ, 0.5, 0.4, 0.2), (ẳ, 0.7, 0.4, 0.3)} are NSs over ₢. Then, the NS A={(a, 0.6, 0.3, 0.2), (ẳ, 
0.4, 0.2, 0.3)} is a NS--O-S in (₢, ґ). 
Remark 3.1. If G is a NS--O-S in (₢, ґ), then Gc will be referred to as a NS--C-S in (₢, ґ). 
Example 3.2. Let us consider a NSTS (₢, ґ) as shown in Example 3.1. Then, B={(ᾗ, 0.4, 0.7, 0.8), (ẳ, 0.6, 0.8, 
0.7)} is a NS--C-S in (₢, ґ), because Bc=A is a NS--O-S in (₢, ґ). 
Theorem 3.1. Every NSO-S in (₢, ґ) is a NS--O-S in (₢, ґ). 
Proof. Assume that Ǽ be a NSO-S in (₢, ґ). So, ǼNcl

S (Nint
S (Ǽ)). It is known that, Nint

S (Ǽ)  Ǽ and Ǽ  
Ncl

S (Ǽ).  
Now, we have Nint

S (Ǽ)  Nint
S (Ncl

S (Ǽ)) 
 Ncl

S (Nint
S (Ǽ))  Ncl

S (Nint
S (Ncl

S (Ǽ))) 
 Ǽ  Ncl

S (Nint
S (Ǽ))  Ncl

S (Nint
S (Ncl

S (Ǽ))) 
 Ǽ  Ncl

S (Nint
S (Ncl

S (Ǽ))) 
Therefore, Ǽ is a NS--O-S in (₢, ґ). 
Example 3.3. Assume that (₢, ґ) be a NSTS as shown in Example 3.1. Clearly, the NS A={(ᾗ, 0.6, 0.3, 0.2), (ẳ, 
0.4, 0.2, 0.3)} is a NS--O-S in (₢, ґ), but it is not a NSO-S in (₢, ґ). 
Theorem 3.2. If Ǽ is a NS--O-S in the NSTS (₢, ґ), then it is a NS--O-S in (₢, ґ). 
Proof. Assume that Ǽ be a NS--O-S in a NSTS (₢, ґ). So, ǼNint

S (Ncl
S (Nint

S (Ǽ))). It is known that, Nint
S (Ǽ)  

Ǽ and Ǽ  Ncl
S (Ǽ). 

Now, we have Ncl
S (Nint

S (Ǽ))  Ncl
S (Ǽ) 

 Nint
S (Ncl

S (Nint
S (Ǽ)))  Nint

S (Ncl
S (Ǽ)) 

 Ǽ  Nint
S (Ncl

S (Ǽ))                                                                         [Ǽ  Nint
S (Ncl

S (Nint
S (Ǽ)))] 

 Ncl
S (Ǽ)  Ncl

S (Nint
S (Ncl

S (Ǽ))) 
 Ǽ  Ncl

S (Nint
S (Ncl

S (Ǽ)))                                                                 [Ǽ  Ncl
S (Ǽ)] 

Hence, Ǽ is a NS--O-S in (₢, ґ).  
Theorem 3.3. If Ħ is a NSPO-S in the NSTS (₢, ґ), then it is a NS--O-S in (₢, ґ). 
Proof. Suppose that (₢, ґ) be a NSTS. Let Ħ be a NSPO-S in (₢, ґ). Therefore, ĦNint

S (Ncl
S (Ħ)). It is known that, 

ĦNcl
S (Ħ).  

Now, Ħ  Nint
S (Ncl

S (Ħ)) 
 Ncl

S (Ħ)  Ncl
S (Nint

S (Ncl
S (Ħ))) 

 Ħ  Ncl
S (Nint

S (Ncl
S (Ħ)))                                                                   [Ħ  Ncl

S (Ħ)]  
So, Ħ is a NS--O-S. 
Theorem 3.4. Both the NSs 0₢, 1₢ are NS--O-Ss in the NSTS (₢, ґ). 
Proof. Since the proof is straightforward, it was omitted out. 
Theorem 3.5. If Ħ1, Ħ2 be two NS--O-Ss in (₢, ґ), then their union Ħ1Ħ2 is also a NS--O-S. 
Proof. Suppose that Ħ1, Ħ2 be two NS--O-Ss in (₢, ґ). Therefore,  
Ħ1  Ncl

S (Nint
S (Ncl

S (Ħ1))) and Ħ2  Ncl
S (Nint

S (Ncl
S (Ħ2))). 

Now, Ħ1  Ħ2  Ncl
S (Nint

S (Ncl
S (Ħ1)))Ncl

S (Nint
S (Ncl

S (Ħ2))) 
                 Ncl

S (Nint
S (Ncl

S (Ħ1))Nint
S (Ncl

S (Ħ2))) 
                 Ncl

S (Nint
S (Ncl

S (Ħ1)Ncl
S (Ħ2))) 

                   Ncl
S (Nint

S (Ncl
S (Ħ1Ħ2))) 
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Therefore, Ħ1Ħ2 is a NS--O-S in (₢, ґ). 
Remark 3.2. The intersection of any two NS--O-Ss may not be a NS--O-S in general. The example below 
demonstrates this. 
Example 3.4. Suppose that (₢, ґ) be a NSTS as shown in Example 3.1. Clearly, P={(ᾗ, 0.6, 0.7, 0.2), (ẳ, 0.4, 0.7, 
0.3)} and Q={(ᾗ, 0.5, 0.5, 0.9), (ẳ, 0.3, 0.5, 0.8)} are NS--O-Ss in (₢, ґ), but their intersection i.e., PQ is not a 
NS--O-S in (₢, ґ). 
Theorem 3.6. The NS 0₢ is an NS--C-S in (₢, ґ). 
Proof. Let (₢, ґ) be a NSTS. It is known that, (0W)c = 1W, the neutrosophic whole set. By a known result, we can 
say 1W is a NS--O-S. This implies, 0W (complement of 1W) is a NS--C-S in (₢, ґ). 
Theorem 3.7. If V, U be two NS--C-Ss in (₢, ґ), then VU is also a NS--C-S. 
Proof. Assume that V and U be two NS--C-Ss. This implies, Vc and Uc are NS--O-Ss in (₢, ґ). By Theorem 
3.5., it is clear that VcUc = (VU)c is a NS--O-S in (₢, ґ). This implies, VU is a NS--C-S in (₢, ґ). 
Remark 3.3. In a NSTS (₢, ґ), the union of any two NS--C-Ss may not be a NS--C-S in general. The example 
below demonstrates this. 
Example 3.5. Suppose that (₢, ґ) be a NSTS as shown in Example 3.1. Then, R={(ᾗ, 0.3, 0.4, 0.8), (ẳ, 0.7, 0.4, 
0.7)} and S={(ᾗ, 0.5, 0.6, 0.1), (ẳ, 0.7, 0.6, 0.2)} are NS--C-Ss in (₢, ґ), because Rc and Sc are NS--O-Ss in 
(₢, ґ). We have, R∪S={(ᾗ, 0.5, 0.4, 0.1), (ẳ, 0.7, 0.4, 0.2)}. This implies, (R∪S)c={(ᾗ, 0.5, 0.6, 0.9), (ẳ, 0.3, 0.6, 
0.8)}. Clearly, (R∪S)c is not a NS--O-S in (₢, ґ). Hence, R∪S is not a NS--C-S in (₢, ґ).           
Definition 3.2. The neutrosophic supra β-interior (N−int

S ) and neutrosophic supra β-closure (N−cl
S ) of a NS Ǽ 

are defined as follows: 
N−int

S (Ǽ) =  {Ä : Ä is a NS--O-S in ₢ and ÄǼ}, 
and N−cl

S (Ǽ) = { Ŧ: Ŧ is a NS--C-S in ₢ and Ŧ Ǽ}. 
Here, N−int

S (Ǽ) is the smallest NS--C-S in (₢, ґ) which containing Ǽ and N−cl
S (Ǽ) is the largest NS--

O-S in (₢, ґ) which is contained in Ǽ. 
Theorem 3.8. Suppose that (₢, ґ) be an NSTS. Then, 
(i) If Ω̂  Â, then (N−int

S (Ω̂)  (N−int
S (Â) and N−cl

S (Ω̂)  N−cl
S (Â); 

(ii) (N−int
S (Ω̂))c = N−cl

S (Ω̂ c); 
(iii) (N−cl

S (Ω̂))c = (N−int
S (Ω̂ c). 

Proof: The proof is so easy, so omitted. 
Theorem 3.9. In an NSTS (₢, ґ), the following holds: 
(i) the intersection of a NSPO-S and a NS--O-S is a NSPO-S; 
(ii) the intersection of an NSO-S and a NS--O-S is a NS--O-S. 
Proof: The definition of NS-β-O-S clearly indicates this. 
Definition 3.3. Assume that (₢, ґ) and (Җ, ) be two NSTSs. Then, an one to one and onto function f:(₢, 
ґ)→(Җ, ) is referred to as a NS--C-f if f −1(Ħ) is a NS--O-S in ₢, whenever Ħ is a NSO-S in Җ. 
Theorem 3.10. If f:(₢, ґ)→(Җ, ) is a NS-C-f, then it is also a NS-β-C-f. 
Proof: Assume that Ħ be a NSO-S in Җ. By hypothesis, f −1(Ħ) is a NSO-S in ₢. Again since, every NSO-S is a 
NS--O-S, so f −1(Ħ) is a NS--O-S in ₢. Therefore, f:(₢, ґ)→(Җ, ) is a NS-β-C-f. 
Remark 3.4. Every NS-β-C-f may not be a NS-C-f in general. The example below demonstrates this. 
Example 3.6. Suppose that ₢ ={ᾗ, ẳ} and Җ={u, v} be two fixed sets. Then, ґ={0N, 1N, X, Ǽ} and 𝜎={0N, 1N, 
E, L} are NSTs on ₢ and Җ respectively such that X={(ᾗ, 0.5, 0.3, 0.1), (ẳ, 0.7, 0.3, 0.2)}, Ǽ={(ᾗ, 0.5, 0.4, 0.2), 
(ẳ, 0.7, 0.4, 0.3)}, E=(u, 0.6, 0.4, 0.4), (v, 0.7, 0.5, 0.6)} and L={(u, 0.7, 0.3, 0.3), (v, 0.7, 0.4, 0.5)}. Define a one 
to one and onto function f:(₢, ґ)→(Җ, 𝜎) such that f(0N)=0N, f(1N)=1N, f(R)=E, f(S)=L, and so on, where R={(ᾗ, 
0.7, 0.6, 0.2), (ẳ, 0.3, 0.6, 0.3)} and S={(ᾗ, 0.5, 0.4, 0.9), (ẳ, 0.3, 0.4, 0.8)}. Clearly, the inverse image of the 
NSO-Ss E, L in (Җ, 𝜎) are NS-β-O-Ss in (₢, ґ). Therefore, the function f:(₢, ґ)→(Җ, 𝜎) is a NS-β-C-f. But, the 
function f:(₢, ґ)→(Җ, 𝜎) is not a NS-C-f because the NSs R and S are not NSO-Ss in (₢, ґ).   
Theorem 3.11. A bijective function f: (₢, ґ)→(Җ,) is a NS-β-C-f iff the inverse image of each NSC-Ss in Җ is 
a NS-β-C-S in ₢. 
Proof: Assume that f: (₢, ґ)→(Җ, ) be a NS-β-C-f. Suppose that Ω̂ be an arbitrary NSC-S in Җ. Therefore, Ω̂ c 
is an NSO-S in Җ. Since, f is a NS-β-C-f, so f-1(Ω̂ c) = (f-1(Ω̂))c is a NS--O-S in ₢. This implies, f-1(Ω̂) is a NS--
C-S of ₢. 
Conversely, let the inverse image of each NSC-Ss in Җ is also a NS-β-C-S in ₢. Let Ω̂ be an arbitrary NSO-S in 
Җ. Therefore, Ω̂c is an NSC-S in Җ. By the hypothesis, f-1(Ω̂ c) = (f-1(Ω̂))c  is a NS-β-C-S in ₢. This implies, f-1(Ω̂) 
is a NS-β-O-S in ₢. Therefore, f-1(Ω̂) is a NS-β-O-S in ₢, whenever Ω̂ be an arbitrary NSO-S in Җ. Hence, f: (₢, 
ґ)→(Җ, ) is a NS-β-C-f. 
Theorem 3.12. Assume that f: (₢, ґ)→(Җ, ) be a bijective mapping. If the inverse image of each NSC-S in Җ 
is a NS-β-C-S in ₢, then N−cl

S (f-1(Ω̂))  f-1(Ncl
S (Ω̂)), for each NS Ω̂ in Җ. 
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Proof. Assume that f: (₢, ґ)→(Җ,) be a bijective mapping. Suppose that Ω̂ be a neutrosophic subset of Җ. 
Since, Ncl

S (Ω̂) is an NSC-S in Җ, then it follows that f-1(Ncl
S (Ω̂)) is a NS-β-C-S in ₢. Therefore, f-1(Ncl

S (Ω̂)) = 
N−cl

S (f-1(Ncl
S (Ω̂)))  N−cl

S (f-1(Ω̂)). This implies, N−cl
S (f-1(Ω̂))  f-1(Ncl

S (Ω̂)), for each NS Ω̂ over Җ. 
Theorem 3.13. Assume that f: (₢, ґ)→(Җ, ) be a bijective mapping. If N−cl

S (f-1(Ω̂))  f-1(Ncl
S (Ω̂)), for each NS 

Ω̂ in Җ, then f(N−cl
S (Ω̂))  Ncl

S (f(Ω̂)) for each NS Ω̂ in ₢.  
Proof. Assume that f:(₢, ґ)→(Җ, ) be a bijective mapping from a NSTS (₢, ґ) to another NSTS (Җ, ). 
Suppose that V be a neutrosophic subset of ₢. By hypothesis, we have N−cl

S (V)  N−cl
S (f-1(f(V)))  f-

1(Ncl
S (f(V))). This implies, f(N−cl

S (V))  Ncl
S (f(V)). Therefore, f(N−cl

S (V))  Ncl
S (f(V)), for every NS V in ₢. 

Theorem 3.14. For any bijective function f from (₢, ґ) to (Җ, ), if f-1(Nint
S (Ω̂))  N−int

S (f-1(Ω̂)), for each NS Ω̂ 
in Җ, then f is a NS-β-C-f.  
Proof. Suppose that f: (₢, ґ)→(Җ, ) be a bijective function from (₢, ґ) to (Җ, ). Assume that Ω̂ be an NSO-S 
in Җ. It is known that, N−int

S (f-1(Ω̂))  f-1(Ω̂)                      (1) 
Now, by hypothesis f-1(Nint

S (Ω̂))  N−int
S (f-1(Ω̂)). Since, Ω̂ is a NSO-S, so Nint

S (Ω̂) = Ω̂. Therefore, f-1(Ω̂) = f-

1(Nint
S (Ω̂))  N−int

S (f-1(Ω̂)), which implies, f-1(Ω̂)  N−int
S (f-1(Ω̂)).    (2) 

From eq. (1) and eq. (2), we have f-1(Ω̂) = N−int
S (f-1(Ω̂)). Hence, f-1(Ω̂) is a NS-β-O-S. Therefore, the function f is 

a NS-β-C-f. 
Theorem 3.15. If f: (₢, ґ)→(Җ, ) be a NS-β-C-f and g: (Җ, )→(§, ) be a NS-C-f, then gf: (₢, ґ)→(§, ), the 
composition function of f: (₢, ґ)→(Җ, ) and g: (Җ, )→(§, ) is a NS-β-C-f. 
Proof. Suppose that f: (₢, ґ)→(Җ, ) be a NS-β-C-f and g: (Җ, )→(§, ) be a NS-C-f. Assume that Ω̂ be a 
NSO-S in (§, ). Since g: (Җ, )→(§, ) be a NS-C-f, so g-1(Ω̂) is a NSO-S in (Җ, ). Further, since f: (₢, 
ґ)→(Җ,) is a NS-β-C-f, so (gf)-1(Ω̂) = f-1(g-1(Ω̂)) is a NS-β-O-S in (₢, ґ). This implies, the composition 
function gf: (₢, ґ)→(§, ) is a NS-β-C-f.  

Conclusions 

We ground the idea of NS--O-S and NS--C-f via NSTS in this article, and establish several intriguing 
results on NS--O-S and NS--C-f in the form of theorems, remarks, etc. Furthermore, we provide several 
appropriate examples to support the findings. 

Future Research Directions 

In the future, it is hoped that the idea of NS--O-S and NS--C-f can also be generalized in the domain of 
Quadripartitioned Neutrosophic Set (QNS) [5], Quadripartitioned NTS [9], Interval QNS [37], Pentapartitioned 
Neutrosophic Set (PNS) [30], Interval PNS [38], Pentapartitioned NTS [21], Pentapartitioned Neutrosophic 
Bitopology [43], Neutrosophic Soft Topological space [18], Pentapartitioned Neutrosophic Soft Set [44], etc. 
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ABSTRACT 

The main intention of this particular work is to discuss some special neutrosophic soft matrices. These 
matrices are useful and applicable in situations which are full of uncertainties and imprecision. In this article 
different types of neutrosophic soft matrices are studied with a view to get rid of some uncertainties which 
prevails in many cases. Here some operations and some associated properties are discussed to make the concept 
clear. 

Keywords: Neutrosophic sets; neutrosophic soft sets; neutrosophic soft matrix; ToepNSM;   TridNSM. 
 

.INTRODUCTION 

In day-to-day life, many situations are confronted which are full of uncertainties and imprecisions. 
Probability, fuzzy set[1], intuitionistic fuzzy se t[2] etc. were the tools to deal with such uncertainties. But soon it 
was understood that these existing tools are also not sufficient to handle all such situations. 

Later on, Molodtsov [3] in due course of time realized that these theories have difficulties in applications 
and as a result concept of soft set theory was developed. Soft set theory has rich potential for application in 
solving practical problems in various subject areas.  Maji et al. [4], [5] initiated the concept of fuzzy soft set. 
Later on,   intuitionistic fuzzy soft set [6]  has been introduced as an extension of the theory of fuzzy soft set.   

Smarandache [7] conceptualized neutrosophic sets as a logical method for dealing with certain conditions 
involving imprecision, inconsistencies and indeterminacy. The newly introduced set was expected to deal with 
such situations in a more accurate way than those obtained by existing tools such as fuzzy sets or intuitionistic 
fuzzy sets. The theory of neutrosophic set is extended to neutrosophic  soft set [8]by Maji et al. Further Maji et 
al. [9] applied this theory in decision making process. 

Later on many other mathematicians have applied this new concept in various mathematical problems ,as for 
examples Deli et al ([10], [11],[12]). This concept has been further modified by Deli and Broumi [13] and the 
idea of neutrosophic soft matrices come into force by successfully utilizing it in many decision making 
processes. Broumi and Smarandache [14]  has introduced the concept of intuitionistic neutrosophic sets and 
discussed some associated properties therein. Bera and Mahapatra [15] discussed some of the algebraic structure 
of neutrosophic soft set. Many researchers for example [16] have worked on the theory of neutrosophic soft 
matrices and applied neutrosophic sets in decision making processes. New development regarding neutrosophic 
sets and neutrosophic soft matrices can be found in the articles of ([17]-[27] & [29]-[44]). Neutrosophic soft 
block matrices are nothing but a neutrosophic soft matrix which is a collection smaller neutrosophic soft 
matrices. Many other researchers as for example ([28], [29]) have studied neutrosophic soft block matrices to a 
certain extent. 

Here the main points of discussion are concept of various types of neutrosophic soft matrices and thereafter 
few operations on these matrices are carried on. Again, the properties of neutrosophic soft matrices are 
considered for discussion. 

 
 

 

 

42



New Trends in Neutrosophic Theories and Applications, Vol. 4, 2025 

 

BACKGROUND 
 

Definition 1.[7] Neutrosophic sets 

Let the universe of discourse be U . Then the neutrosophic set A on U  is defined as  
{ ( ), ( ), ( ) : }A A AA T u I u F u u U=    , where the characteristic functions , , : [0,1]T I F U →  and  

0 3T I F− + + +  .Here the three component parts T, I, F describes the degree of  membership, 
indeterminacy and non- membership respectively. 

Definition 2.[8] Neutrosophic soft set 

Let the initial universe set be U  and parameters set is   . Let P( ( )P U ) denotes the collection of all 
neutrosophic subsets of U . Let A . Then ( , )

A
F   is called neutrosophic soft set over U  where the 

mapping 
A

F  is defined by : ( )
A

F P U→
 

Definition 3.[10] Neutrosophic soft Matrices 

Let ( , )
A

F   be a neutrosophic soft set over U  . The  mapping 
A

F  defines : ( )
A

F P U→
 

 The relation form of ( , )
A

F  defined by {( , ), , ( )}
A A

R u e e A u F e=    represents uniquely the subsets of ( , )U  .This 

characterizes three functions truth, indeterminacy and falsity by   : [0,1]
A

T U →  , : [0,1]
A

I U → and

: [0,1]
A

F U → respectively. 

Let 1 2 3{ , , ,....... }mU u u u u=  be the universe set and the set of parameters be 1 2 3{ , , ,....... }ne e e e = . Then 
tabular form of 

A
R   is represented by 

NR  1e  2e  ….. ne  

1u   
11 11 11

( , , )A A AT I F

 
11 11 11

( , , )A A AT I F  ….. 
11 11 11

( , , )A A AT I F  

2u  
21 21 21

( , , )A A AT I F  
22 22 22

( , , )A A AT I F  ….. 
2 2 2

( , , )
n n nA A AT I F  

: ……… …… ……  

mu  
1 1 1

( , , )
m m mA A AT I F  

22( , , )
mAm Am AT I F  …….. 

1
( , , )

mn mnAmn A AT I F  

 

Then a neutrosophic soft matrix defined by the above relation can be represented as  

11 12 1

21 22 2

1 2

...

...
: : : :

...

n

n

ij

m m mn

A A A

A A A
A

A A A

 
 
 =
 
 
   

Here  

( ( , ), ( , ), ( , ))ij A i j A i j A i jA T u e I u e F u e=  
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Different Types of Neutrosophic Soft Matrices 

Definition 4:  Trapezoidal neutrosophic soft matrix(TrapNSM) 

A neutrosophic soft matrix C is an upper TNSM if the non zero elements exist only in the upper triangular part 
of the matrix which includes the main diagonal. Then (0,0,1),ijc i j=   

A neutrosophic soft matrix D is called a lower TrapNSM if its non- zero elements are found only in 
the lower triangular part of the matrix in which the main diagonal  is also included. That is 

(0,0,1),ijd i j=   
Neutrosophic soft matrices C and D shown below are the examples of upper and lower TrapNSM 
having order m  n. 
If m n ;  

11 12 13 1

22 23

33

... ...
(0,0,1) ... ... :
(0,0,1) (0,0,1) ... ... :

: : : ... ... :
(0,0,1) : : : (0,0,1)
(0,0,1) : : : (0,0,1)

: : : : :
(0,0,1) : : : (0,0,1)

n

nn

d d d d

d d

u

C
d

 
 
 
 
 
 

=
 
 
 
 
 
  

  

  
11

21 22

31 32 33

1 2

1

(0,0,1) (0,0,1) ... ... (0,0,1)
(0,0,1) ... ... :

... ... :
: : : ... ... :

: : : (0,0,1) (0,0,1)
: :

: : : : :
: : :

n n nn

m mn

l

l l

l l l

D

l l l

l l

 
 
 
 
 
 

=  
 
 
 
 
  

 

Definition 5:  Toeplitz neutrosophic soft matrix(ToepNSM) 

The square neutrosophic soft matrix  is called ToepNSM which takes  the form  

11 11 11 21 21 21 31 31 31 41 41 41

12 12 12 22 22 22 32 32 32 13 13 13

13 13 13 23 23 23 33 33 33 21 21 21

14

( , , ) ( , , ) ( , , ) ( , , )
( , , ) ( , , ) ( , , ) ( , , )
( , , ) ( , , ) ( , , ) ( , , )
(

A A A A A A A A A A A A

A A A A A A A A A A A A

T

A A A A A A A A A A A A

A

T I F T I F T I F T I F

T I F T I F T I F T I F
M

T I F T I F T I F T I F

T

=

14 14 24 24 24 21 21 11 11 11, , ) ( , , ) ( , , ) ( , , )A A A A A A A A A AI F T I F T I F T I F

 
 
 
 
 
    

 

Definition 6:  Zero neutrosophic soft matrix 

 Neutrosophic soft matrix having all the entries of the form (0,0,1) is called the zero neutrosophic soft matrix. 

Definition 7: Sparse Neutrosophic Soft Matrix(SpNSM) 

Neutrosophic soft matrices where  most of the elements are of the form (0,0,1) is defined as SpNSM .For 
example 

11 11 11

11 11 11

21 21 21

21 21 21

( , , ) (0,0,1) (0,0,1)) (0,0,1)
(0.0.1) ( , , ) (0.0.1) (0,0,1)
(0,0,1) (0,0,1) (0,0,1) ( , , )
(0,0,1) (0,0,1) ( , , ) (0,0,1)

A A A

A A A

A A A

A A A

T I F

T I F
A

T I F

T I F

 
 
 =
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Here it is to be mentioned that it is not strictly defined how many elements need to be zero for a matrix to be 
considered as sparse neutrosophic soft matrix though a common method is that the number of non zero elements 
have to be equal to the number of rows or columns.

 Definition 8: Dense Neutrosophic soft matrix 

If in a neutrosophic soft matrix , most of the elements are non -zero then that matrix is defined as the dense 
neutrosophic soft matrix . For example, 

11 11 11 12 12 12 13 13 13 14 14 14

22 22 22 23 23 23

31 31 31 32 32 32 33 33 33 34 34 34

41 41 41

( , , ) ( , , ) ( , , ) ( , , )
(0,0,1) ( , , ) ( , , ) (0.0.1)

( , , ) ( , , ) ( , , ) ( , , )
( , , ) (0.0.1)

A A A A A A A A A A A A

A A A A A A

A A A A A A A A A A A A

A A A

T I F T I F T I F T I F

T I F T I F
A

T I F T I F T I F T I F

T I F

=

21 21 21 11 11 11( , , ) ( , , )A A A A A AT I F T I F

 
 
 
 
 
  

 

Definition 9: Bidiagonal Neutrosophic soft matrix 

 Neutrosophic soft matrix having non zero entries along the main diagonal and either the diagonal above or 
below the main diagonal is called a bidiagonal neutrosophic soft matrix. This states that  there exists exactly two 
non -zero diagonals in the neutrosophic soft matrix. 

If the diagonal above the main diagonal contains non-zero entries, then that type of matrix is called upper 
bidiagonal neutrosophic soft matrix. Similarly, if the diagonal below the main diagonal contains the non- zero 
entries, then that type of matrix is called lower bidiagonal neutrosophic soft matrix. 

 

For example,  

(0.6,0.1,0.3) (0.4,0.2,0.4) (0,0,1) (0,0,1)
(0,0,1) (0.6,0.3,0.1) (0.5,0.2,0.3) (0,0,1)
(0,0,1) (0,0,1) (0.5,0.2,0.1) (0.5,0.2,0.3)
(0,0,1) (0,0,1) (0,0,1) (0.5,0.2,0.1)

A

 
 
 =
 
 
   

is upper triangular neutrosophic  soft matrix and  

(0.4,0.1,0.2) (0,0,1) (0,0,1) (0,0,1)
(0.2,0.6,0.1) (0.6,0.3,0.1) (0,0,1) (0,0,1)

(0,0,1) (0.4,0.5,0.1) (0.5,0.2,0.1) (0,0,1)
(0,0,1) (0,0,1) (0.5,0.4,0.3) (0.5,0.2,0.1)

B

 
 
 =
 
 
   

is lower bidiagonal neutrosophic soft matrix.

 

Theorem 1: If A and B be two (upper or lower)  bidiagonal neutrosophic soft matrices of same order then the 
sum is also an (upper or lower)  bidiagonal neutrosophic soft matrix. 

Definition 10: Banded neutrosophic soft matrix 

A sparse neutrosophic soft matrix  is  called a banded or band neutrosophic soft matrix when non zero entries are 
confined to a diagonal band which comprises of the main diagonal and zero or more diagonals on either side. 

Examples of band neutrosophic soft matrices. 

i. Banded  neutrosophic soft matrix with 1 2 0k k= =  is called a diagonal neutrosophic soft matrix. 
ii. Banded  neutrosophic soft matrix with 1 2 0k k= =  is called a tri diagonal neutrosophic soft matrix. 
iii. Banded neutrosophic soft matrix with 1 2 2k k= =  is called a penta diagonal  neutrosophic soft matrix. 
iv. Triangular neutrosophic soft matrix  

Upper triangular matrix is obtained if 1 20, 1k k n= = − . 
Lower triangular matrix is obtained if 1 21, 0k n k= − = . 
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Here 1 2,k k are  respectively called lower bandwith and upper bandwith. 

Definition 11: Hessenberg Neutrosophic soft matrix 

The Hessenberg neutrosophic soft matrix is a square neutrosophic soft matrix of special kind which is almost 
triangular. These are  mainly of two types. 

i. Upper Hessenberg Neutrosophic Soft  Matrix 
A square neutrosophic soft matrix A of order nxn is called upper Hessenberg form or upper Hessenberg matrix if 

0ija =  for all i, j with 1i j + . 
An unreduced upper Hessenberg neutrosophic soft matrix is the one in which subdiagonal entries are nonzero, 
that is  if 1, 0i ia +  for all {1,2,3,......, 1}i n −  

ii. Lower Hessenberg   Neutrosophic  Soft Matrix 
A square neutrosophic soft matrix A  of order nxn is defined as lower Hessenberg form or lower Hessenberg 
neutrosophic soft matrix if 0ija =  for all i, j with 1j i + . 

Unreduced upper Hessenberg neutrosophic soft matrix is the one in which subdiagonal entries are nonzero. i.e if 
, 1 0i ia +  for all {1,2,3,......, 1}i n −  

 If all entries below the first subdiagonal has zero entries then that neutrosophic soft matrix is called upper 
Hessenberg and a lower Hessenberg matrix contains zero entries above the first super diagonal.  
For example: If the following neutrosophic soft matrices are taken into consideration  

(0.4.0.3,0.1) (0.3,0.1,0.3) (0.6,0.1,0.2) (0.4,0.2,0.6)
(0.5,0.2,0.3) (0.6,0.3,0.1) (0.5,0.2,0.3) (0.3,0.2,0.4)

(0,0,1) (0.5,0.3,0.2) (0.5,0.2,0.1) (0.5,0.2,0.3)
(0,0,1) (0,0,1) (0.8,0.1,0.1) (0.5,0.2,0.1)

A

 

=


 






 

(0.5,0.2,0.2) (0.4,0.2,0.4) (0,0,1) (0,0,1)
(0.5,0.2,0.3) (0.6,0.3,0.1) (0.5,0.2,0.3) (0,0,1)
(0.7,0.2,0.1) (0.5,0.3,0.2) (0.5,0.2,0.1) (0.5,0.2,0.3)
(0.4,0.3,0.3) (0.5,0.3,1) (0.8,0.1,0.1) (0.5,0.2,0.1)

B

 
 
 =


 




  

(0.5,0.2,0.2) (0.4,0.2,0.4) (0,0,1) (0,0,1)
(0.5,0.2,0.3) (0.6,0.3,0.1) (0,0,1) (0,0,1)
(0.7,0.2,0.1) (0.5,0.3,0.2) (0.5,0.2,0.1) (0.5,0.2,0.3)
(0.4,0.3,0.3) (0.5,0.3,1) (0.8,0.1,0.1) (0.5,0.2,0.1)

C

 
 
 =
 
 
   

 Then matrix A is called upper unreduced Hessenberg neutrosopic soft matrix, matrix B is called lower 
unreduced Hessenberg neutrosopic soft matrix and matrix C is  called upper Hessenberg neutrosopic soft matrix 
but is not unreduced. 

 Definition 12: Bandwdith of neurosophic soft matrix 

Let [ ]ijA a= be an n n neutrosophic soft matrix. If all the elements of this neutrosophic soft  matrix is zero 
outside a diagonally bordered band whose range is determined by constants 1k  and 2k  such that 0ija =  if 1j i k −  
or 2j i k + , then the quantities 1 2,k k are called lower bandwith and upper bandwidth respectively. The bandwidth 
of a matrix is maximum of 1 2,k k , in other words it is the number k such  0ija =  whenever i j k−  . More generally 
the number of non-zero diagonal above the main diagonal is called the upper bandwith and the number of non-
zero elements below the main diagonal is called the lower bandwith. 

For example, 

(0.3,0.2,0.1) (0.1,0.4,0.3) (0.4,0.6,0.2) (0,0,1) (0,0,1) ((0,0,1)
(0.4,0.5,0.2) (0.2,0.2,0.6) (0.6,0.2,0.1) (0.3,0.2,0.1) (0,0,1)) (0,0,1)
(0.6,0.2,0.1) (0.3,0.5,0.1) (0.3,0.2,0.4) (0.5,0.2,0.3) (0.4,0.2,0.4) (0,0,

A =
1)

(0,0,1) (0.2,0.2,0.5) (0.7,0.1,0.1) (0.3,0.4,0.3) (0.5,0.2,0.3) (0.6,0.2,0.2)
(0,0,1) (0,0,1) (0.6,0.2,0.2) (0.6,0.2,0.1) (0.6,0.3,0.1) (0.3,0.5,0.1)
(0,0,1) (0,0,1) (0,0,1) (0.3,0.5,0.2) (0.3,0.2,0.3) (0.4,0.2,0.2)
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For k=2, whenever 2i j−   it is seen that 0ija = .The pairs (i,j) with 2i j−   are (1,4),(1,5), 
(1,6),(2,5),(2,6),(3,6),(4,1),(5,1),(5,2),(6,1),(6,2),(6,3). 
 For k=1, whenever 1i j−   it is seen that 0ija  . For example (i, j)=(1,3) and  1 3 1−   but 13 0a  . Hence the 
bandwith of the above matrix is 2. 

Definition 13:  Tri diagonal neutrosophic soft matrix 

Neutrosophic soft matrix is called  tri diagonal neutrosophic soft matrix if non zero entries are found in the lower 
diagonal, main diagonal and upper diagonal and all other entries being (0.0.1). This is a special type of 
neutrosophic soft matrix. Neutrosophic soft  tri diagonal matrix takes the form 

1 1

1 2 2

2 3 3

3 4

... 0
... 0

0
0 0

L M

A L M
A

A L M

A L

 
 
 =
 
 
 

 where , ,i i iL M N  are the non zero entries in the lower, main and upper 

diagonal respectively. 

 
Operations on Neutrosophic Soft Matrices 

 
Here some operations on some  special types of neutrosophic soft matrices are discussed. 
 

 Summation of neutrosophic soft matrices 

If the two neutrosophic soft matrices [( , , )]A A A

ij ij ijM T I F=  and [( , , )]B B B

ij ij ijN T I F= are taken into 

consideration, then the summation of M and N will be denoted as M+N, and  is defined by   

[max( , ),min( , ),min( , )]A B A B A B

ij ij ij ij ij ijM N T T I I F F+ =  for all i and j. 

 max-min operations on neutrosophic soft matrices 

Let [( , , )]A A A

ij ij ijM T I F=  , [( , , )]B B B

ij ij ijN T I F=  be two neutrosophic soft matrices. Then the max-min 

operations on  the two neutrosophic soft matrices M and N is denoted as  .M N  and it is defined by  

. [max min( , ),min max( , ),min max( , )]A B A B A B

ij ij ij ij ij ijM N T T I I F F=  for all i and j. 

 Transpose of neutrosophic soft matrices 

Let [( , , )]A A A

ij ij ijM T I F=   be a neutrosophic soft matrix. Then the transpose of this neutrosophic soft matrix is 

denoted by TM  and will be is defined by [( , , )]T A A A

ji ji jiM T I F=
 

Some results of the neutrosophic soft matrices of special types 

In this section s0me properties of special types of neutrosophic soft matrices of special types discussed in this 
article are provided. 
 

Properties of the Newly Defined Neutrosophic Soft Matrices 

 
 Properties of bidiagonal neutrosophic soft matrices(BdNSM) 
Property 1 
 If two neutrosophic soft upper BdNSMs of same order is added then the resulting matrix  is again a BdNSM. 
Property 2 
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 If two upper BdNSM are multiplied then the resulting matrix is again a upper BdNSM. 
Property 3 
 If two neutrosophic soft lower BdNSMs are added together then the resulting matrix is again a neutrosophic soft 
lower BdNSM. 
Property 4 
If neutrosophic soft lower BdNSMs of same order is multiplied then the resulting matrix is again a neutrosophic 
soft lower BdNSM. 
 

Properties of tridiagonal neutrosophic soft matrices(TridNSM) 

Property  5 

 If two neutrosophic soft upper TridNSM of same order is added together then the resulting matrix is again a 
neutrosophic soft upper TridNSM. 
Property 6 
 If two neutrosophic soft upper TridNSM are multiplied then the resulting matrix is again a TridNSM. 
Property7 
 If two neutrosophic soft lower TridNSM are added together then the resulting matrix is again a upper TridNSM. 
Property8 
 If two TridNSM of same order are multiplied then the resulting matrix is again a TridNSM. 
 

Properties of Hassenburg Neutrosophic soft matrices (HaNSM) 

Property 9 

The product of a neutrosophic soft hassenburgh matrix with a neutrosophic soft triangular matrix is again a 
hassenburgh matrix. To be more precise, if a neutrosophic soft matrix M is upper HaNSM and the neutrosophic 
soft matrix T is upper triangular, then MT and TM are upper HaNSM. 
 
Properties of Toepliz neutrosophic soft matrix 
Property 10 

 Summation of two ToepNSM results in a ToepNSM.  

Property 11 

 The transpose of a ToepNSM results in a ToepNSM. 

If the matrix M written above is considered then 

11 11 11 21 21 21 31 31 31 41 41 41

12 12 12 22 22 22 32 32 32 42 42 42

13 13 13 23 23 23 33 33 33 43 43 43

14

( , , ) ( , , ) ( , , ) ( , , )
( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , ) ( , , )
(

A A A A A A A A A A A A

A A A A A A A A A A A A

T

A A A A A A A A A A A A

A

T I F T I F T I F T I F

T I F T I F T I F T I F
M

T I F T I F T I F T I F

T

=

14 14 24 24 24 34 34 34 44 44 44, , ) ( , , ) ( , , ) ( , , )A A A A A A A A A A AI F T I F T I F T I F

 
 
 
 
 
    

The above matrix obtained is a ToepNSM 

Conclusions 
Here few new types of neutrosophic soft matrices are discussed. Thereafter some operations on such types 

of neutrosophic soft  matrices are discussed with some examples.  It can be seen from the discussion that the 
behavior of the different types of neutrosophic soft matrices under consideration in this work is almost the same 
as those of exists in the literature of matrices. In future works, applications of such neutrosophic soft matrices 
will be studied. 

Future Research Directions   

In future applications of such neutrosophic soft matrices will be studied. 
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S. Sivaramakrishnan1, P. Balaji2*, and S. Saravanan3

1Department of Mathematics, Manakula Vinayagar Institute of Technology, KalitheerthalKuppam, 
Puducherry 605 107, India. 

2* Department of Mathematics, MEASI Academy of Architecture, Royapettah, Chennai 600 014, 
Tamil Nadu, India. (Corresponding Author) 

3Department of Science and Humanities, R.M.D.Engineeringcollege, Kavaraipettai, 
Chennai 601 206, India. 

E-mail:srkmathematics@gmail.com, *balajimphil@gmail.com, mathssaravanan77@gmail.com

ABSTRACT 

This paper introduces a new algebraic structure, the interval-valued neutrosophic fuzzy M-Semigroup (IVNFMS), by 
merging the notions of interval-valued fuzzy M-semigroups(IVFMSs) and Neutrosophic fuzzy sets(NFSs). This study focuses 
on the sociological and biological applications of an interval-valued Neutrosophic fuzzy M-semigroup and numerous 
algebraic features, including intersection and union are examined. Additionally, we explore direct product, image and 
inverse image between two interval-valued Neutrosophic fuzzy M-Semigroups and present some related results. 

Keywords: M-semigroup, fuzzy M-semigroup, interval-valued fuzzy M-semigroup, Neutrosophic fuzzy set, Interval-
valued Neutrosophic fuzzy M-semigroup. 

INTRODUCTION

Zadeh’s idea was to introduce a new way of representing and reasoning about uncertainty, where instead of 
relying on crisp boundaries, fuzzy sets (FSs) [22]allowed for a more nuanced understanding of membership. By 
assigning a membership value between 0 and 1 to each element, fuzzy sets provided a flexible framework for 
capturing the inherent vagueness and ambiguity that often arises in real-world problems. This allowed for a more 
realistic representation of complex systems, where objects or concepts may not fit neatly into predefined categories. 
The introduction of fuzzy sets opened up new possibilities in various fields, including artificial intelligence, control 
systems, pattern recognition, and data analysis. Fuzzy logic, which is based on the principles of fuzzy sets, provided a 
formal language for expressing and manipulating imprecise information. It enabled the development of fuzzy control 
systems, which could handle uncertain and nonlinear systems more effectively than traditional control methods. Over 
the years, fuzzy set theory has been successfully applied to a wide range of fields, including medical diagnosis, image 
processing, natural language processing and financial modeling. This theory has proven to be a powerful tool for 
handling uncertainty and imprecision, offering a more robust and flexible approach to real-world challenges. The 
extension from traditional fuzzy sets to interval-valued fuzzy sets was pioneered by Zadeh [23] in 1975. 

Semigroups provide a fundamental framework for studying the properties and behaviour of binary operations 
[3]. By focusing solely on the associative property, semigroups allow for a simplified analysis of algebraic structures. 
One important application of semigroups is in the study of algebraic structures. By examining the properties of 
semigroups, mathematicians can gain insights into more complex structures such as monoids and groups. Monoids, 
for example, are semigroups that also possess an identity element, while groups are monoids that additionally have 
inverses for every element. Semigroups can be used to represent the behaviour of finite state machines, where the 
binary operation represents the composition of transitions [4]. By studying the properties of semigroups, researchers 
can analyse the behaviour and capabilities of various computational models. 
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Semigroups play a crucial role in the study of automata theory [4], where they are used to model the 
behaviour of finite state machines and formal languages. Semigroup theory has found applications in computer 
science, specifically in the development and analysis of algorithms and data structures [16]. In addition, semigroups 
are associated with multiple fields of mathematics, including group theory, ring theory, and category theory. They 
provide a framework for studying algebraic structures and their properties, leading to deeper insights into the 
underlying mathematical structures. 

 
The algebraic structure known as an M-semigroup indeed lies between a semigroup and a monoid, 

emphasizing the special properties of an identity element. M-semigroup theory extends classical semigroup theory by 
introducing a specific condition on the binary operation within the structure. Lakshmanan’s introduction of the 
concept of M-semigroup [5] was a significant contribution to the field of mathematics. M-semigroups are a 
generalization of semigroups, which are algebraic structures consisting of a set and an associative binary operation. 
Building upon Lakshmanan’s work, Narayanan et al. [6] introduced fuzzy M-semigroup theory, which further 
expanded the scope of M-semigroups. Fuzzy M-semigroups incorporate the concept of fuzziness, which allows for the 
representation of uncertainty and imprecision in mathematical models. 

 
Anti-fuzzy sets capture the degree to which elements are excluded from a set. They are particularly valuable 

when the complement of a set is the primary concern.Combining the concepts of M-semigroups and anti-fuzzy sets, 
anti-fuzzy M-semigroups extend the traditional M-semigroup theory to handle uncertainty and imprecision in the 
semigroup structure. Anti-fuzzy M-semigroup, introduced by Vijayabalji and Sivaramakrishnan [18,19], expand upon 
classical M-semigroup theory by integrating anti-fuzzy sets. They offer a mechanism to address uncertainty and 
imprecision within semigroup structures and they addressed homomorphism between two anti-fuzzy M-semigroups.  
Moreover, Sivaramakrishnan et al. [17] pioneered the concept of an anti Q-fuzzy M-semigroup. 

 
Atanassov's innovative work in 1986 on intuitionistic fuzzy sets (IFSs) [1]revolutionized the field of fuzzy 

logic by providing a more comprehensive and nuanced approach to dealing with uncertainty. By incorporating the 
concepts of membership, non-membership, and hesitation or indeterminacy for each element in a set, IFS allowed for 
a more accurate and flexible representation of real-world problems, leading to significant advancements in decision-
making processes and problem-solving strategies. 

 
Neutrosophic sets (NSs), pioneered by Smarandache [9] in the late 1990s, represent a novel approach to 

extending the traditional notions of classical sets, FSs and IFSs. This new concept aims to capture and represent the 
inherent indeterminacy, ambiguity, and inconsistency that often arise in real-world situations. Since their introduction, 
Neutrosophic sets have undergone significant theoretical development and found numerous applications across 
various fields [10,12,13,14,15]. The fundamental concepts and comprehensive overview of neutrosophic sets have 
been extensively documented [2], leading to several specialized variants. Notable among these are the single-valued 
Neutrosophic sets, which provide a more practical framework for real-world applications [8], and rough Neutrosophic 
sets, which combine the power of rough sets with Neutrosophic theory to handle uncertainty and incompleteness in 
information systems [7]. The continuous evolution and refinement of Neutrosophic theory have established it as a 
robust framework for dealing with uncertain, incomplete, and inconsistent information in various domains of science 
and engineering. 

 
This paper introduces a novel algebraic concept for a IVNFMS by integrating the structures of interval-

valued fuzzy M-semigroup and Neutrosophic fuzzy set (NFS). We explore the sociological and biological 
implications of an interval-valued Neutrosophic fuzzy M-semigroup, examining their potential applications in these 
domains. Additionally, we investigate the direct product of these structures and present some related results. 

 
PRELIMINARIES 

Definition 1.[5] A M-semigroup, denoted as MS, is a M-semigroup that fulfills the following conditions:   

    1.  There is at least one left identity e ∈ 𝑀 such that e 𝑚 = 𝑚, for all 𝑚 ∈ 𝑀.  

    2.  For every 𝑚 ∈ 𝑀, there is a unique left identity, represented as e𝑚, such that m e𝑚 = 𝑚, i.e., e𝑚 
is a two-sided identity for 𝑚.  
 

Definition 2. [6] Consider 𝑀 be a 𝑀-semigroup. Let ϖM: 𝑀 → [0,1] be a fuzzy set. Then the pair (𝑀,ϖM) is referred 
to as a fuzzy 𝑀-semigroup if   

    1.  ϖM(𝑚1𝑚2) ≥  min {ϖM(𝑚1), ϖM(𝑚2)}, for all 𝑚1, 𝑚2 belonging to 𝑀,  
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    2.  ϖM(e) = 1, ∀ e in 𝑀.  

Definition 3.[20] Let 𝑀 be a 𝑀-semigroup and 𝜛𝑀 be an interval-valued fuzzy 𝑀-semigroup. suppose the following 
conditions hold: For all 𝑥, 𝑦 ∈ 𝑀,   

    1.  𝜛𝑀(𝑥𝑦) ≥  𝑚𝑖𝑛 {𝜛𝑀(𝑥),𝜛𝑀(𝑦)},  

    2.  𝜛𝑀(𝑒) = 1 = [1,1], for every left identity 𝑒 in 𝑀.  

Then 𝜛𝑀 is referred to as anIVFMS on 𝑀 and is denoted by (𝑀,𝜛𝑀).  

Definition 4. [11] LetXNS be the universal set.  A NSis a set of the form Ω= {m,ξΩ (m), ΨΩ (m), ζΩ (m) | m ∈XNS } and 
denoted by Ω= (ξΩ (m), ΨΩ (m), ζΩ (m) ), where ξ : XNS→[0,1], Ψ : XNS→[0,1] and ζ: XNS→[0,1] represent the degree of 
truth - membership and indeterminacy - membership and false - membership of the element m ∈XNS in Ω and 0≤ ξΩ (m)+ 
ΨΩ (m)+ ζΩ (m)≤ 3. 

Interval-Valued Neutrosophic Fuzzy M-Semigroup (IVNFMS) 

Definition 3.1.  Suppose that MS. A (NS)  �̅� = (𝜛𝑀, 𝜂𝑀, 𝛿𝑀) is known to be a IVNFMS of MS. If for all m1, m2 ∈

𝑀 it holds. 

(𝑖)𝜛𝑀(𝑚1𝑚2) ≥  𝑚𝑖𝑛 {𝜛𝑀(𝑚1), 𝜛𝑀(𝑚2)}, 

(𝑖𝑖)𝜂
𝑀
(𝑚1𝑚2) ≥  𝑚𝑖𝑛 {𝜂

𝑀
(𝑚1), 𝜂𝑀(𝑚2)}, 

(𝑖𝑖𝑖)𝛿𝑀(𝑚1𝑚2) ≤  𝑚𝑎𝑥 {𝛿𝑀(𝑚1), 𝛿𝑀(𝑚2)}, 

(𝑖𝑣)𝜛𝑀(𝑒) = [1 , 1] = 1̅ for every left identity 𝑒 in 𝑀, 

(𝑣)𝜂
𝑀
(𝑒) = [1 , 1]= 1̅for every left identity 𝑒 in 𝑀, 

(𝑣𝑖)𝛿𝑀(𝑒) = [0, 0] = 0̅ for every left identity 𝑒 in 𝑀.   

Example 3.2.  Consider𝑀 =  {𝑚1, 𝑚2, 𝑚3, 𝑚4} as a MS with the following operation ‘·’ 

Table  1: An illustration of the Cayley table for a Neutrosophic fuzzy 𝑀-semigroup under the operation ‘·’ 

. m1  m2  m3  m4 

m1 m1  m2  m3  m4 

m2 m1  m2  m3  m4 

m3  m3  m4 m1  m2  

m4 m3  m4 m1  m2  

 

Define 𝐼𝑉𝑁𝐹𝑆 𝒜𝑀: 𝑀 → 𝐃[0,1]by 

 𝜛𝑀(𝑚) = {
[1, 1], 𝑖𝑓 m = 𝑚1, 𝑚2

[0.7,0.81], otherwise.
 

 𝜂
𝑀
(𝑚) = {

[1, 1], 𝑖𝑓 𝑚 = 𝑚1, 𝑚2

[0.54,0.69], otherwise.
 

 𝛿𝑀(𝑚) = {
[0,0], 𝑖𝑓 𝑚 = 𝑚1, 𝑚2

[0.4, 0.55], otherwise, 0 < 𝛼 ≤ 1.
 

Then�̅� = (𝜛𝑀 , 𝜂𝑀, 𝛿𝑀) is an IVNFMS. 

Applications of an IVNFMS 
This section delves into two specific instances. The first example examines the correlation between Kinship relations 
(KR) and IVNFMS theory. Kinship systems are structured to recognize and define connections based on marriage and 
other social constructs. For instance, relationships such as “being a father”or “being a mother”can be amalgamated to 
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form more intricate relationships like “being the mother of the father”, commonly referred to as “grandmother on the 
father’s side”. In certain scenarios, kinship relations like “daughter of a mother”and “daughter of a father”may be 
deemed identical. By leveraging these concepts, the theory of Neutrosophic fuzzy M-semigroup can be intertwined 
with Kinship systems. Another example involves the association of DNA sequences with Neutrosophic fuzzy M-
semigroup. In 1953, Watson &Crick [21] unveiled the structure of DNA(Deoxyribonucleic Acid), identifying it as the 
molecule responsible for carrying genetic information across generations. In 2006, Zhang et al. [24]introduced three 
techniques for transforming character-based DNA sequences into numerical sequences, one of which utilizes complex 
number representation. These developments underscore the relevance of Neutrosophic fuzzy M-semigroup in DNA 
analysis, showcasing its potential applicability in this field. 

Example 4.1.  A kinship system is semigroup ℜ𝑺 = [XK, LR], where 

1. XK is a set of kinship relationships, 
2. LRis a relation on XK* LRwhich expresses equality of kinship relationships.  XK* is a free semigroup 

in which all formally combined relationships from XK would be different. 

Assuming FM:= “is father of ”, MM:= “is mother of”, CM:= “is Child of”, (FM)M:= “is father of the mother”, (MF)M:= 
“is mother of the father”, (CF)M:= “is child of the father”. 

Let X = {FM  , MM , CM , ( FM)M, (MF)M ,(CF)M} 

The collection of kinship relationships = L ={(FM FM , FM),((FM)M FM , FM), (MM MM , MM), ((MF)M  MM , MM),((CF)M , 

FM),((CM)M , FM), ((CF)MMM , (FM)M), ((CM)MFM ,(MF)M), ((FM )MMM ,(FM)M), ((FM)M(FM)M,(FM)M)((FM)M (MF)M , 

FM),((MF)M(MF)M, (MF)M ),((MF)M CM , (MF)M )}. 

Using the symbol ◊ to represent the operation of relation product, consider the initial pair of LR,  

where (FMFM,FM) signifies that the relationship “father of the father “ is equivalent to the relationship “father”. 
Hence, FM◊FM equals FM. Similarly, (CM)M= (CF)M,  indicating that the children of the mother are 
identical to the children of the father. 
It is clear that ℜ𝑺 = [XK, LR] constitutes a right M-semigroup. 

Table2: An illustration of IVNFMS can be represented by Cayley table with Kinship relationship under the 
operation ◊. 

◊ FM MM CM (FM)M (MF)M (CF)M 

FM FM (FM)M FM (FM)M FM FM 

MM (MF)M MM MM MM (MF)M (MF)M 

CM FM FM CM (FM)M (MF)M (CF)M 

(FM)M FM (FM)M (FM)M (FM)M FM FM 

(MF)M (MF)M MM (MF)M MM (MF)M (MF)M 

(CF)M (CF)M (MF)M (CF)M (MF)M (MF)M (CF)M 

 

Define the function 𝜛𝑀: ℜ𝑺 → 𝐃[0,1]as follows:  

𝜛𝑀(CM) = [1,1], 

𝜛𝑀(FM) = 𝜛𝑀((CF)M ) = [0.72, 0.87], 

𝜛𝑀(MM) = 𝜛𝑀( (MF)M) = 𝜛𝑀((FM)M) = [0.51, 0.64]. 

Define𝜂
𝑀

: ℜ𝑺 → 𝐃[0,1]by 

𝜂
𝑀

(CM) = [1,1], 

𝜂
𝑀

(FM) = 𝜂
𝑀

((CF)M ) = [0.6,0.72], 

𝜂
𝑀

(MM) = 𝜂
𝑀

( (MF)M) = 𝜂
𝑀

((FM)M) = [0.43, 0.55]. 
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Define 𝛿𝑀: ℜ𝑺 → 𝐃[0,1]by 

𝛿𝑀(CM) = [0,0], 

𝛿𝑀(FM) = 𝛿𝑀((CF)M ) = [0.4, 0.53], 

𝛿𝑀(MM) = 𝛿𝑀( (MF)M) = 𝛿𝑀((FM)M) = [0.71, 0.82]. 

We see that, 𝒜𝑀 = (𝜛𝑀, 𝜂𝑀, 𝛿𝑀)  is anIVNFMS of ℜ𝑺. 

Example 4.2.Zhang et al have defined 𝑓(m) as a function that maps the set 𝑓(𝑚): {𝐴𝑀, 𝐺𝑀, 𝑇𝑀 , 𝐶𝑀} to the 
set{1, −1, 𝑖, −𝑖} as  

 𝑓(𝑚) = {

1, 𝑖𝑓 m = GM
−1, 𝑖𝑓 m = TM
𝑖, 𝑖𝑓 m = AM
−𝑖, 𝑖𝑓 m = CM

 

where 𝐴𝑀- Adenine, 𝐺𝑀-Guanine, 𝐶𝑀-Cytosine and 𝑇𝑀-Thymine and 𝑚 is  one of the four nucleotides. 

We consider 

𝐴𝑀 = [
0 1
−1 0

];  𝑇𝑀 = [
−1 0
0 −1

];  𝐺𝑀 = [
1 0
0 1

];  𝐶𝑀 = [
0 −1
1 0

]. 

Let 𝑀 = {𝐴𝑀, 𝐺𝑀, 𝑇𝑀 , 𝐶𝑀} represent a 𝑀-semigroup with the following operation⋅ 

Table3: An illustration for an IVNFMS: Cayley table with DNA Sequences under the Operation⋅ 

· AM GM TM CM 

AM TM AM CM GM 

GM AM GM TM CM 

TM CM TM GM AM 

CM GM CM AM TM 

 

Define the mapping 𝜛𝑀𝑠
: 𝑀 → 𝐃[0,1] by  

 𝜛(𝑚) = {
[1,1], 𝑖𝑓 𝑚 = 𝐺𝑀

[0.61, 0.72], otherwise.
 

 

Define the mapping 𝜂
𝑀𝑠
: 𝑀 → 𝐃[0,1] by  

 𝜂
𝑀𝑠
(𝑚) = {

[1,1] 𝑖𝑓 𝑚 = 𝐺𝑀
[0.49, 0.5] otherwise,

 

 

Define the mapping 𝛿𝑀𝑠: 𝑀 → 𝐃[0,1] by  

 𝛿𝑀𝑠(𝑚) = {
[0,0], 𝑖𝑓 𝑚 = 𝐺𝑀

[0.2,0.34], otherwise.
 

We see that, 𝒜𝑀 = (𝜛𝑀, 𝜂𝑀, 𝛿𝑀)  is an IVNFMS. 
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Theorem 4.3.  Let 𝒜𝑀1
= (𝑀1, 𝜛𝑀1

, 𝜂
𝑀1
, 𝛿𝑀1) and 𝒜𝑀2

= (𝑀2, 𝜛𝑀2
, 𝜂
𝑀2
, 𝛿𝑀2) be two IVNFMSs.  Then their 

intersection, ( 𝒜𝑀1
 ∩ 𝒜𝑀2

 ) = ( 𝜛𝑀1
∩ 𝜛𝑀2

 , 𝜂
𝑀1
∩ 𝜂

𝑀2
 , 𝛿𝑀1 ∪ 𝛿𝑀2 ) is anIVNFMS. 

Proof.  Given 𝒜𝑀1
= (𝑀1, 𝜛𝑀1

, 𝜂
𝑀1
, 𝛿𝑀1) and 𝒜𝑀2

= (𝑀2, 𝜛𝑀2
, 𝜂
𝑀2
, 𝛿𝑀2) be two IVNFMSs then 

𝒜𝑀1
 ∩ 𝒜𝑀2

 = {〈𝑚,𝑚𝑖𝑛[𝜛𝑀1
(𝑚),𝜛𝑀2

(𝑚)],𝑚𝑖𝑛[𝜂
𝑀1
(𝑚), 𝜂

𝑀2
(𝑚)],𝑚𝑎𝑥[𝛿𝑀1(𝑚), 𝛿𝑀2(𝑚)]〉:𝑚 ∈ 𝑀} 

Define 𝜛𝑀1
∩ 𝜛𝑀2

: 𝑀 → 𝑫[0,1] by (𝜛𝑀1
∩ 𝜛𝑀2

)(𝑚) =  𝑚𝑖𝑛 {𝜛𝑀1
(𝑚),𝜛𝑀2

(𝑚)} for all 𝑚 ∈ 𝑀 

(𝑖)(𝜛𝑀1
∩ 𝜛𝑀2

)(𝑚𝑛) =  𝑚𝑖𝑛 {𝜛𝑀1
(𝑚𝑛),𝜛𝑀2

(𝑚𝑛)} 

                                      ≥  𝑚𝑖𝑛 { 𝑚𝑖𝑛 [𝜛𝑀1
(𝑚),𝜛𝑀1

(𝑛)],𝑚𝑖𝑛 [𝜛𝑀2
(𝑚),𝜛𝑀2

(𝑛)]} 

         =  𝑚𝑖𝑛 { 𝑚𝑖𝑛 [𝜛𝑀1
(𝑚),𝜛𝑀2

(𝑚)],𝑚𝑖𝑛 [𝜛𝑀1
(𝑛),𝜛𝑀2

(𝑛)]} 

        =  𝑚𝑖𝑛 {(𝜛𝑀1
∩ 𝜛𝑀2

)(𝑚), (𝜛𝑀1
∩ 𝜛𝑀2

)(𝑛)} 

⇒ (𝜛𝑀1
∩ 𝜛𝑀2

)(𝑚𝑛) ≥  𝑚𝑖𝑛 {(𝜛𝑀1
∩ 𝜛𝑀2

)(𝑚), (𝜛𝑀1
∩ 𝜛𝑀2

)(𝑛)} 

(𝑖𝑖)(𝜛𝑀1
∩ 𝜛𝑀2

)(𝑒) =  𝑚𝑖𝑛 {𝜛𝑀1
(𝑒), 𝜛𝑀2

(𝑒)} 

      =  𝑚𝑖𝑛 {1̅, 1̅} 

      = 1̅ 

 Define 

𝜂
𝑀1
∩ 𝜂

𝑀2
: 𝑀 → 𝐃[0,1]by (𝜂

𝑀1
∩ 𝜂

𝑀2
)(𝑚) = 𝑚𝑖𝑛{𝜂

𝑀1
(𝑚), 𝜂

𝑀2
(𝑚)} for all 𝑚 ∈ 𝑀.  

(𝑖𝑖𝑖)(𝜂
𝑀1
∩ 𝜂

𝑀2
)(𝑚𝑛) = min{𝜂

𝑀1
(𝑚𝑛), 𝜂

𝑀2
(𝑚𝑛)} 

                                     ≥ min{min[𝜂
𝑀1
(𝑚), 𝜂

𝑀1
(𝑛)],min[𝜂

𝑀2
(𝑚), 𝜂

𝑀2
(𝑛)]} 

       = min{min[𝜂
𝑀1
(𝑚), 𝜂

𝑀2
(𝑚)],min[𝜂

𝑀1
(𝑛), 𝜂

𝑀2
(𝑛)]} 

      = min{(𝜂
𝑀1
∩ 𝜂

𝑀2
)(𝑚), (𝜂

𝑀1
∩ 𝜂

𝑀2
)(𝑛)} 

⇒ (𝜂
𝑀1
∩ 𝜂

𝑀2
)(𝑚𝑛) ≥ min{(𝜂

𝑀1
∩ 𝜂

𝑀2
)(𝑚), (𝜂

𝑀1
∩ 𝜂

𝑀2
)(𝑛)} 

(𝑖𝑣)(𝜂
𝑀1
∩ 𝜂

𝑀2
)(𝐞) = min{𝜂

𝑀1
(𝐞), 𝜂

𝑀2
(𝐞)} 

    = min{1̅, 1̅} 

    = 1̅ 

 Define 

𝛿𝑀1 ∪ 𝛿𝑀2: 𝑀 → 𝐃[0,1] by (𝛿𝑀1 ∪ 𝛿𝑀2)(𝑚) = 𝑚𝑎𝑥{𝛿𝑀1(𝑚), 𝛿𝑀2(𝑚)} for all 𝑚 ∈ 𝑀.  

(𝑣)(𝛿𝑀1 ∪ 𝛿𝑀2)(𝑚𝑛) = max{𝛿𝑀1(𝑚𝑛), 𝛿𝑀2(𝑚𝑛)} 

      ≤ max{max[𝛿𝑀1(𝑚), 𝛿𝑀1(𝑛)],max[𝛿𝑀2(𝑚), 𝛿𝑀2(𝑛)]} 

      = max{max[𝛿𝑀1(𝑚), 𝛿𝑀2(𝑚)],max[𝛿𝑀1(𝑛), 𝛿𝑀2(𝑛)]} 

      = max{(𝛿𝑀1 ∪ 𝛿𝑀2)(𝑚), (𝛿𝑀1 ∪ 𝛿𝑀2)(𝑛)} 

⇒ (𝛿𝑀1 ∪ 𝛿𝑀2)(𝑚𝑛) ≤ max{(𝛿𝑀1 ∪ 𝛿𝑀2)(𝑚), (𝛿𝑀1 ∪ 𝛿𝑀2)(𝑛)}. 

(𝑣𝑖)  (𝛿𝑀1 ∪ 𝛿𝑀2)(e) = max{𝛿𝑀1(𝐞), 𝛿𝑀2(e)} 
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                               = max{0̅, 0̅} 

 = 0̅. 

Next we show that the union of two IVNFMSs need not be an IVNFMS of 𝑀-semigroup by means of a counter 
example. 

Remark 4.4. The union of two IVNFMSs of M-semigroup need not be an IVNFMSof M-semigroup. 

Proof. Let 𝑀 = {𝑒𝑀, 𝑎𝑀 , 𝑏𝑀, (𝑎𝑏)𝑀} be a M-semigroup, where 𝑎𝑀2 = 𝑒𝑀 = 𝑏𝑀
2 = (𝑎𝑏)𝑀

2  and (𝑎𝑏)𝑀 = (𝑏𝑎)𝑀. 

 

Table  4: Example for 𝑀-semigroup - Cayley table under the operation  ⋅ 

⋅ aM bM (ab)M eM 

aM eM (ab)M bM aM 

bM (ab)M eM aM bM 

(ab)M bM aM eM (ab)M 

eM aM bM (ab)M eM 

 

Define 𝜛1𝑀, 𝜛2𝑀 as follows: 

𝜛1𝑀(𝑚) = {

1̅, 𝑖𝑓𝑚 = eM,

[0.71 , 0.8], 𝑖𝑓𝑚 = aM,

[0.3, 0.42] 𝑖𝑓𝑚 = bM , (ab)M

 

𝜛2𝑀(𝑚) = {

1̅, 𝑖𝑓𝑚 = eM
[0.51, 0.6], 𝑖𝑓𝑚 = aM
[0.8, 0.9], 𝑖𝑓𝑚 = bM

, (ab)M 

We note that 𝜛1𝑀 , 𝜛2𝑀 are two IVNFMSs. 

Define ( 𝜛1𝑀 ∪𝜛2𝑀 ) (𝑚) = max { 𝜛1𝑀(𝑚), 𝜛2𝑀(𝑚) } for all 𝑚 ∈ M. 

So,  

( 𝜛1𝑀 ∪ 𝜛2𝑀 ) (𝑚) =

{
 

 
1̅, 𝑖𝑓 𝑚 = eM,

[0.71 , 0.8], 𝑖𝑓 𝑚 = aM,

[0.8, 0.9], 𝑖𝑓 𝑚 = bM,

[0.51, 0.6], 𝑖𝑓𝑚 =  (ab)M

                             (1) 

But  (𝜛1𝑀 ∪ 𝜛2𝑀)((𝑎𝑏)𝑀) ≥  𝑚𝑖𝑛 {(𝜛1𝑀 ∪ 𝜛2𝑀)(𝑎𝑀), (𝜛1𝑀 ∪ 𝜛2𝑀)(𝑏𝑀)} 

=  𝑚𝑖𝑛 {[0.71, 0.8], [0.8, 0.9]} = [0.71, 0.8]. 

  Therefore, (𝜛1𝑀 ∪ 𝜛2𝑀)((𝑎𝑏)𝑀) ≥ [0.71, 0.8]. 

However (𝜛1𝑀 ∪ 𝜛2𝑀)((𝑎𝑏)𝑀) = [0.51, 0.6], by (1) we get [0.51, 0.6] ≥ [0.71, 0.8].  Which is absurd. 

The other inequalities are proven in a similar manner. 

𝜛1𝑀 , 𝜛2𝑀 are two IVNFMSs, whereas,  𝜛1𝑀 ∪𝜛2𝑀 is not an IVNFMS. 

Hence the union of two IVNFMSsof M-semigroup need not be an IVNFMSof M-semigroup. 
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Definition 4.5.Let 𝒜𝑀1
= (𝑀1, 𝜛𝑀1

, 𝜂
𝑀1
, 𝛿𝑀1) and 𝒜𝑀2

= (𝑀2, 𝜛𝑀2
, 𝜂
𝑀2
, 𝛿𝑀2) be two Neutrosophic fuzzy subsets of 

𝑀1 and 𝑀2 respectively. Then the cartesian product of 𝒜𝑀1
 and 𝒜𝑀2

 denoted by 

𝒜𝑀1
×𝒜𝑀2

 = { 𝜛𝑀1
×𝜛𝑀2

 , 𝜂
𝑀1
× 𝜂

𝑀2
 , 𝛿𝑀1 × 𝛿𝑀2 } and is defined by  

1. ( 𝜛𝑀1
×𝜛𝑀2

 ) (m1, m2 ) = min{ 𝜛𝑀1
(m1), 𝜛𝑀2

(m2) }, for all (m1, m2 ) ∈ 𝑀1 ×𝑀2, 
2. ( 𝜛𝑀1

×𝜛𝑀2
 ) (e ,𝑒′) = min { 𝜛𝑀1

(e), 𝜛𝑀2
(𝑒′) }, where e and 𝑒′ are left identities in  𝑀1and 𝑀2, 

3. (𝜂
𝑀1
× 𝜂

𝑀2
 ) (m1, m2 ) = min { 𝜂

𝑀1
(m1), 𝜂𝑀2(m2) }, for all (m1, m2 ) ∈ 𝑀1 ×𝑀2, 

4. (𝜂
𝑀1
× 𝜂

𝑀2
 ) (e ,𝑒′) = min { 𝜂

𝑀1
(e), 𝜂

𝑀2
(𝑒′) }, where e and 𝑒′ are left identities in  𝑀1and 𝑀2, 

5. (𝛿𝑀1 × 𝛿𝑀2 ) (m1, m2 ) = min { 𝛿𝑀1(m1), 𝛿𝑀2(m2) }, for all (m1, m2 ) ∈ 𝑀1 × 𝑀2, 

6. (𝛿𝑀1 × 𝛿𝑀2 ) (e ,𝑒′) = min { 𝛿𝑀1(e), 𝛿𝑀2(𝑒′)  }, where e and 𝑒′ are left identities in  𝑀1and 𝑀2. 

Theorem 4.6. If 𝒜𝑀1
= (𝑀1, 𝜛𝑀1

, 𝜂
𝑀1
, 𝛿𝑀1) and 𝒜𝑀2

= (𝑀2, 𝜛𝑀2
, 𝜂
𝑀2
, 𝛿𝑀2) are IVNFMSsthen    𝒜𝑀1

×𝒜𝑀2
 is an 

IVNFMS. 

Proof.  Let (𝑚1, 𝑚2), (𝑚3, 𝑚4) ∈ 𝑀1 ×𝑀2.  

(𝑖)( 𝜛𝑀1
×𝜛𝑀2

)((𝑚1, 𝑚2), (𝑚3, 𝑚4)) = ( 𝜛𝑀1
×𝜛𝑀2

)(𝑚1𝑚3, 𝑚2𝑚4) 

 =  𝑚𝑖𝑛 { 𝜛𝑀1
(𝑚1𝑚3),  𝜛𝑀2

(𝑚2𝑚4)} 

 ≥  𝑚𝑖𝑛 { 𝑚𝑖𝑛 [ 𝜛𝑀1
(𝑚1),  𝜛𝑀1

(𝑚3)],𝑚𝑖𝑛 [𝜛𝑀2
(𝑚2), 𝜛𝑀2

(𝑚4)]} 

                                  ≥  𝑚𝑖𝑛 { 𝑚𝑖𝑛 [ 𝜛𝑀1
(𝑚1),  𝜛𝑀2

(𝑚2)],𝑚𝑖𝑛 [ 𝜛𝑀1
(𝑚3),  𝜛𝑀2

(𝑚4)]} 

              =  𝑚𝑖𝑛 {( 𝜛𝑀1
×𝜛𝑀2

)(𝑚1, 𝑚2), ( 𝜛𝑀1
×𝜛𝑀2

)(𝑚3, 𝑚4)}, 

 Let 𝑒 and 𝑒′ are left identities in 𝑀1 and 𝑀2.  

(𝑖𝑖)( 𝜛𝑀1
×𝜛𝑀2

)(𝑒, 𝑒′) =  𝑚𝑖𝑛 { 𝜛𝑀1
(𝑒),  𝜛𝑀2

(𝑒′)} 

            = min{1̅, 1̅} 

            = 1̅, 

(𝑖𝑖𝑖)(𝜂
𝑀1
× 𝜂

𝑀2
)((𝑚1, 𝑚2), (𝑚3, 𝑚4)) = (𝜂

𝑀1
× 𝜂

𝑀2
)(𝑚1𝑚3, 𝑚2𝑚4) 

 =  𝑚𝑖𝑛 {𝜂
𝑀1
(𝑚1𝑚3), 𝜂𝑀2

(𝑚2𝑚4)} 

                              ≥  𝑚𝑖𝑛 { 𝑚𝑖𝑛 [𝜂
𝑀1
(𝑚1), 𝜂𝑀1

(𝑚3)],𝑚𝑖𝑛 [𝜂𝑀2
(𝑚2), 𝜂𝑀2

(𝑚4)]} 

                                  ≥  𝑚𝑖𝑛 { 𝑚𝑖𝑛 [𝜂
𝑀1
(𝑚1), 𝜂𝑀2

(𝑚2)],𝑚𝑖𝑛 [𝜂𝑀1
(𝑚3), 𝜂𝑀2

(𝑚4)]} 

                =  𝑚𝑖𝑛 {(𝜂
𝑀1
× 𝜂

𝑀2
)(𝑚1, 𝑚2), (𝜂𝑀1

× 𝜂
𝑀2
)(𝑚3, 𝑚4)}, 

 Let 𝑒 and 𝑒′ are left identities in 𝑀1 and 𝑀2.  

(𝑖𝑣)(𝜂
𝑀1
× 𝜂

𝑀2
)(𝑒, 𝑒′) =  𝑚𝑖𝑛 {𝜂

𝑀1
(𝑒), 𝜂

𝑀2
(𝑒′)} 

 = min{1̅, 1̅} 

 = 1̅, 

(𝑣)(𝛿𝑀1 × 𝛿𝑀2)((𝑚1, 𝑚2), (𝑚3, 𝑚4)) = (𝛿𝑀1 × 𝛿𝑀2)(𝑚1𝑚3, 𝑚2𝑚4) 

 =  𝑚𝑎𝑥 {𝛿𝑀1(𝑚1𝑚3), 𝛿𝑀2(𝑚2𝑚4)} 

 ≤  𝑚𝑎𝑥 {𝑚𝑎𝑥 [𝛿𝑀1(𝑚1), 𝛿𝑀1(𝑚3)],𝑚𝑎𝑥[𝛿𝑀2(𝑚2), 𝛿𝑀2(𝑚4)]} 
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                            ≤  𝑚𝑎𝑥 { 𝑚𝑖𝑛 [𝛿𝑀1(𝑚1), 𝛿𝑀2(𝑚2)],𝑚𝑎𝑥 [𝛿𝑀1(𝑚3), 𝛿𝑀2(𝑚4)]} 

          =  𝑚𝑎𝑥 {(𝛿𝑀1 × 𝛿𝑀2)(𝑚1, 𝑚2), (𝛿𝑀1 × 𝛿𝑀2)(𝑚3, 𝑚4)}, 

 Let 𝑒 and 𝑒′ are left identities in 𝑀1 and 𝑀2.  

(𝑣𝑖)(𝛿𝑀1 × 𝛿𝑀2)(𝑒, 𝑒
′) =  𝑚𝑎𝑥 {𝛿𝑀1(𝑒), 𝛿𝑀1(𝑒

′)} 

                = max {0̅, 0̅} 

         = 0̅. 

Hence  〈𝜛𝑀1
×𝜛𝑀2

 , 𝜂
𝑀1
× 𝜂

𝑀2
 , 𝛿𝑀1 × 𝛿𝑀2〉 is an IVNFMSof 𝑀1 ×𝑀2. 

Definition 4.7. Let 𝑔:𝑀1 → 𝑀2 be a mapping of 𝑀-semigroups. If 𝒜𝑀 is an IVNFMS in 𝑀2 then the inverse image 
of 𝒜𝑀 under 𝑔, denoted by 𝑔−1(𝒜𝑀) is IVNFMS in 𝑀1, defined by 𝑔−1(𝒜𝑀)(𝑚) = 𝒜𝑀(𝑔(𝑚)) for all 𝑚 ∈ 𝑀1.  

Theorem 4.8. Let 𝑔:𝑀1 → 𝑀2 be homomorphism of M-semigroups. If 𝒜M is an IVNFMS in 𝑀2 then the inverse 
image 𝑔−1(𝒜M) of 𝒜M under𝑔 is an IVNFMS of 𝑀1. 

Proof. Assume that 𝒜M is an IVNFMS in 𝑀2 and 𝑚1, 𝑚2 ∈ 𝑀1. 

Then we have 

(i) 𝑔−1(ϖM)(m1m2) = ϖM(𝑔(m1m2)) 

 = ϖM(g(m1)f(m2))   ( since  𝑔  is  homomorphism ) 

                ≥  min {ϖM(𝑔(m1)), ϖM(𝑔(m2))} 

 =  min {𝑔−1(ϖM(m1)), 𝑔
−1(ϖM(m2))} 

⇒ 𝑔−1(ϖM)(m1m2) ≥  min {𝑔−1(ϖM(m1)), 𝑔
−1(ϖM(m2))} 

     (ii)𝑔−1(ϖM)(e) = ϖM(𝑔(e)) = ϖM(e
′) = 1̅, where e′ is a left identity of 𝑀2. 

Therefore 𝑔−1(ϖM) is an IVNFMS of 𝑀1. 

Similarly, we can prove the remaining results.  

Theorem 4.9. Let 𝒜M be an IVNFMS in M and let 𝐠:𝑀 → 𝑀be an onto homomorphism. Then the  

mapping 𝒜M

𝐠
: 𝑀 → 𝐃[0,1], is defined by  𝒜M

𝐠
 (m1) = 𝒜M(𝐠(m1)) for all m1∈ 𝑀 is an IVNFMSin M. 

Proof.  (i)   For any 𝑚1,𝑚2 ∈ 𝑀, 

𝜛𝑀
𝒈
(𝑚1𝑚2) = 𝜛𝑀( 𝒈(𝑚1𝑚2)) 

                     = 𝜛𝑀(𝒈(𝑚1), 𝒈(𝑚2))  (since g is homomorphism) 

                     ≥  min {𝜛𝑀(𝒈(𝑚1)), 𝜛𝑀(𝒈(𝑚2))} 

                    = min { 𝜛𝑀
𝐠 (m1), 𝜛𝑀

𝐠 (m2)} 

⇒ 𝜛𝑀
𝒈
(𝑚1𝑚2) ≥ min { 𝜛𝑀

𝐠 (m1), 𝜛𝑀
𝐠 (m2)} 

 (𝑖𝑖)      𝜛𝑀
𝒈
(𝑒) = 𝜛𝑀(𝒈(𝑒)) = 𝜛𝑀(𝑒

′) = 1̅, where e′ is a left identity of M. 

In the same way, we can prove the other results. 

Theorem 4.10.Let 𝐠:𝑀1 → 𝑀2 be an epimorhism of 𝑀-semigroups. Let 𝒜𝑀 be a 𝐠-invariant IVNFMS of 𝑀1.  Then  
𝐠(𝒜𝑀)  is an IVNFMS of 𝑀2. 
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Proof. (i)   Let m1
′ , m2

′ ∈ 𝑀2. Then there exist m1, m2 ∈ 𝑀1 such that 𝐠(m1) = m1
′  and 𝐠(m2) = m2

′ . 

Also 𝑚1
′𝑚2

′ = 𝐠(𝑚1𝑚2) and let e′ ∈ 𝑀2. Then there exists e ∈ 𝑀1 such that 𝒈(e) = e′, where e and e′ are 
the left identity of 𝑀1 and 𝑀2. 

Since 𝒜M is 𝐠-invariant,  

 𝐠(ϖM)(𝑚1𝑚2) = ϖ𝑀(𝑚1
′𝑚2

′ ) ≥  min {ϖ𝑀(m1
′ ), ϖ𝑀(m2

′ )} 

                           =  𝑚𝑖𝑛 {𝒈(𝜛𝑀)(𝑚1), 𝒈(𝜛𝑀)(𝑚2)} 

           ⇒ 𝒈(𝜛𝑀)(𝑚1𝑚2) ≥  𝑚𝑖𝑛 {𝒈(𝜛𝑀)(𝑚1), 𝒈(𝜛𝑀)(𝑚2)}                                     

  

(ii)          𝑔(𝜛𝑀)(𝑒) = 𝜛𝑀(𝑒
′)               

          ⇒ 𝑔(𝜛𝑀)(𝑒) = 1̅. 

Therefore 𝑔(𝜛𝑀) is an IVNFMS of 𝑀2. 

We can prove the other results in the same manner.  

Conclusions 
This paper focuses on the theory of an IVNFMS, explore its applications in sociology and biology and 

examine numerous algebraic features, including intersection and union. Additionally, we introduce a direct product of 
these IVNFMSs and define the image and inverse between twoIVNFMSs. 

As future directions, we plan to apply this concept to a range of algebraic structures, such as: 

• Neutrosophic cubic 𝑀-semigroup, 

• Neutrosophic cubic modules, 

• Neutrosophic soft modules, 

• Neutrosophic cubic ring, 

• Neutrosophic interval-valued fuzzy metric space. 
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ABSTRACT 

The relationship among the indices of fuzzy sets (FSs) or neutrosophic sets (NSs) is important to analyze how 
different aspects of an element are interrelated and the ability to quantify these relationships helps model 
uncertainty and vagueness amicably. Linear dependence and independence of indices in this context provide 
critical insights into their structural relationships, which in turn influences their applications. Linear dependence 
refers to a situation when the indices of an element are not independent of each other i.e., there exist at least one 
index, which can be articulated as a linear combination of other indices. Whereas, linear independence occurs 
when the indices are not interrelated, and no index can be articulated as a linear combination of other indices. 
This chapter explores the concept of independence and dependence among the indices of fuzzy, intuitionistic 
fuzzy and neutrosophic sets. Further, the degree of dependence is studied that helps to make more informed 
decisions while modeling real-world problems. These concepts are then extended to define linear dependence 
and independence of indices in refined neutrosophic sets. 

Keywords: Fuzzy set, Intuitionistic fuzzy set, Neutrosophic set, Refined Neutrosophic set. 

INTRODUCTION 

In the context of fuzzy sets as well as neutrosophic sets, uncertainty and imprecision are pivotal in the 
analysis and representation of data. These sets extend classical set theory to manage vagueness, ambiguity, and 
incomplete information that often arise in real world problems. The abstraction of fuzzy sets was established by 
L.A. Zadeh [28] to overcome limitations of the classical set theory to encompass impreciseness occurring
because of inevitable circumstances. A FS is described by a membership function that measures the degree of
belongingness or membership of an element in a set unlike the classical set theory where the characteristic or
membership function assumes binary values only (0 or 1). The fuzziness allows for partial membership, which is
essential when dealing with uncertainty.

Although FS allow for partial belongingness, they do not model the non-belongingness explicitly in a 
way that captures the degree of non-membership of an element in the considered set. In certain situations, it may 
be necessary to distinguish between an element being partially in a set and being explicitly excluded from the 
set. In order to address such situations, Atanassov [1] defined the concept of intuitionistic fuzzy sets (IFS). 
Intuitionistic fuzzy set theory extended fuzzy set theory by introducing two indices for each element - 
'membership' and 'non-membership'. An IFS captures the uncertainty and vagueness present in real world 
problems more accurately. 

However, despite the advancements of intuitionistic fuzzy sets, it still had certain limitations especially 
in systems where indeterminacy was not fully represented. In response to these limitations, Smarandache [21] 
introduced neutrosophic set theory, which further generalizes IFS by introducing an additional index - 
indeterminacy. NS handle uncertainty by incorporating - truth, falsity, and indeterminacy indices. This expansion 
allows neutrosophic sets to model situations with incomplete, inconsistent, or contradictory information more 
effectively than either fuzzy or intuitionistic fuzzy sets. 
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The association among the indices of FS (membership), IFS (membership and non-membership) and 
NS (truth, falsity, and indeterminacy) is fundamental for analyzing how the different aspects of an element 
interact. The concept of linear dependence and independence in the context of these sets concern whether 
membership and non-membership (in the case of IFS) or truth, falsity, and indeterminacy (in case of NS) are 
interrelated, or they provide independent information about the element's belongingness to the set. Linear 
dependence refers to a situation when the indices of an element are not independent of each other i.e., there exist 
an index that can be articulated as a linear combination of other indices. Whereas, linear independence occurs 
when the indices are not interrelated, and no index can be articulated as a linear combination of other indices. 
Understanding the linear dependence and independence between these indices is significant in various fields, 
particularly where uncertainty and imprecision are crucial. This chapter explores the idea of independence and 
dependence of the indices of fuzzy, intuitionistic fuzzy and neutrosophic sets. 

BACKGROUND 

Fuzzy set theory is an enhancement of classical set theory, which permits generalization of the concept 
of set membership. In traditional set theory, an element either belongs to a given set or it does not belong to the 
given set, i.e., the membership function is either 1 (if the element belongs to the set) or 0 (if the element does not 
belong to the set). However, in real world, there are sets that do not have a clear boundary. For instance, the set 
containing dates on which the temperature was hot at a particular place does not have a clear boundary as the 
boundary of hot depends upon personal interpretation and can lead to disagreeable discontinuity in deciding the 
dates to be considered in the set. Fuzzy set theory addresses such problems by permitting different degree of 
membership in the interval [0,1]. 

Definition 1. [28] Let the universe of discourse be U. Elements of a fuzzy set �̃� are described by ordered pair 
(𝑥, 𝑚𝐴(𝑥)) for 𝑥 ∈ 𝑈 where 𝑚𝐴: 𝑈 → [0,1] is the membership function of set �̃� and  𝑚𝐴(𝑥) is the degree of
membership or the degree of belongingness of element x in the set �̃�. 

The membership function can be discrete or parametric (analytic or piecewise continuous). The discrete 
membership function is a basic type which can be represented using singleton sets. In contrast, parametric 
memberships are functions that may take many forms including Gaussians, trapezoids and triangular or any 
smooth or piecewise continuous function. 

Figure 1. Some types of membership functions 

Fuzzy set theory dispenses a sturdy framework for modeling and reasoning under uncertainty, 
facilitating more significant interpretation of data and decision-making process through its membership functions 
and several operations. 
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Operations on Fuzzy Sets  

Fuzzy set theory offers various operations [16], which are extension of operations existing in classical set theory. 

1. Equality. Let U be the universe of study. Two fuzzy sets �̃� and �̃� over U are said to be equal if 𝑚𝐴(𝑥) =

𝑚�̃�(𝑥) for all 𝑥 ∈ 𝑈.
2. Union. Let U be the universe of study. Let �̃� and �̃� be two fuzzy sets over U. Union of these fuzzy sets is

denoted by �̃� ∪ �̃� and is given by
�̃� ∪ �̃� = {(𝑥, 𝑚𝐴∪�̃�(𝑥)) | 𝑚𝐴∪�̃�(𝑥) = max {𝑚𝐴(𝑥), 𝑚�̃�(𝑥)}}

3. Intersection. Let U be the universe of study. Let �̃� and �̃� be two fuzzy sets over U. Intersection of these 
fuzzy sets is denoted by �̃� ∩ �̃� and is given by 

�̃� ∩ �̃� = {(𝑥, 𝑚𝐴∩�̃�(𝑥)) | 𝑚𝐴∩�̃�(𝑥) = min {𝑚𝐴(𝑥), 𝑚�̃�(𝑥)}}

4. Complement. Let U be the universe of study. Let �̃� be a fuzzy set over U. Complement of this fuzzy set
is denoted by �̃�𝐶 and is given by

�̃�𝐶 = {(𝑥, 𝑚𝐴𝐶(𝑥)) |  𝑚𝐴𝐶(𝑥) = 1 −  𝑚𝐴(𝑥)}

To depict uncertainty and vagueness in a FS, it is crucial to analyze another index of a FS, which is non-
membership function or the function representing the degree of non-belongingness of an element to a set. The 
membership function 𝑚𝐴(𝑥) gives the degree to which an element belongs to a fuzzy set �̃�, whereas the non-
membership function  𝑛𝐴(𝑥) indicates the degree to which an element x does not belong to �̃�. In a FS, 𝑛𝐴(𝑥) =

1 − 𝑚𝐴(𝑥) i.e., it provides complementary information to the membership function. Collectively they create a
complete picture of an element association to the fuzzy set under consideration. 

Conventional fuzzy set theory only represents membership value or degree. The non-membership value is 
implicitly defined as complement of membership value. Traditional Fuzzy set theory does not account for 
situations where there is degree of hesitation. To overcome this limitation, intuitionistic fuzzy sets were 
proposed. Intuitionistic fuzzy sets refine the concept of degree of membership and non-membership by 
introducing a degree of hesitation or indeterminacy. 

Definition 2. [1] Let U be the universe of discourse. An intuitionistic fuzzy set 𝐴�̃�  is characterized by
(𝑥, 𝑚

𝐴�̃�(𝑥), 𝑛
𝐴�̃�(𝑥)) for 𝑥 ∈ 𝑈, where 𝑚

𝐴�̃�: 𝑈 → [0,1] is the membership function of set 𝐴�̃�  and 𝑚
𝐴�̃�(𝑥) is the 

membership value of element x in set 𝐴�̃�  and 𝑛
𝐴�̃�: 𝑈 → [0,1] is the non-membership function of set 𝐴�̃�and 𝑛

𝐴�̃�(𝑥)

is the non-membership value of element x in set 𝐴�̃�  such that the sum of 𝑚
𝐴�̃�(𝑥) and 𝑛

𝐴�̃�(𝑥) is constrained by
𝑚

𝐴�̃�(𝑥) + 𝑛
𝐴�̃�(𝑥) ≤ 1 with the hesitation value 𝑖

𝐴�̃�(𝑥) implicitly defined as 𝑖
𝐴�̃�(𝑥) = 1 − 𝑚

𝐴�̃�(𝑥) − 𝑛
𝐴�̃�(𝑥).

The relationship between these three parameters is 𝑚
𝐴�̃�(𝑥) + 𝑛

𝐴�̃�(𝑥) + 𝑖
𝐴�̃�(𝑥) = 1, which ensures that 

the total degree of membership, non-membership and hesitation is always equal to 1. Here, 𝑚
𝐴�̃�(𝑥) defines the

degree of certainty about the membership, 𝑛
𝐴�̃�(𝑥) defines the degree of certainty of non-membership, and 𝑖

𝐴�̃�(𝑥)

defines the degree of hesitation, i.e. it captures the situation where the decision maker is unsure about the non-
membership or membership of an element in the intuitionistic fuzzy set 𝐴�̃� . The additional parameter helps to
model a problem more realistically specifically in cases when the relationships between elements are often not 
clear due to vagueness and subjectivity. 

Operations on Intuitionistic Fuzzy Sets 

Like Fuzzy set theory, intuitionistic fuzzy set theory offers several operations extending classical operations 
while incorporating the hesitation margin [2]. 

1. Equality. Two intuitionistic fuzzy sets 𝐴�̃�  and 𝐵�̃�  over the same universe of discourse U are said to be
equal if 𝑚

𝐴�̃�(𝑥) = 𝑚
𝐵�̃�(𝑥) and 𝑛

𝐴�̃�(𝑥) = 𝑛
𝐵�̃�(𝑥) for every 𝑥 ∈ 𝑈.

2. Union. Let 𝐴�̃�  and 𝐵�̃�  be two intuitionistic fuzzy sets over the same universe of discourse U. Union of
these two intuitionistic fuzzy sets is denoted by 𝐴�̃� ∪ 𝐵�̃�  and is given by
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𝐴�̃� ∪ 𝐵�̃� = {(𝑥, 𝑚
𝐴�̃�∪𝐵�̃�(𝑥), 𝑛

𝐴�̃�∪𝐵�̃�(𝑥)) | 𝑥 ∈ 𝑈}

such that 
𝑚

𝐴�̃�∪𝐵�̃�(𝑥) = 𝑚𝑎𝑥{𝑚
𝐴�̃�(𝑥), 𝑚

𝐵�̃�(𝑥)}

and 
𝑛

𝐴�̃�∪𝐵�̃�(𝑥) = 𝑚𝑖𝑛{𝑛
𝐴�̃�(𝑥), 𝑛

𝐵�̃�(𝑥)}

3. Intersection. Let 𝐴�̃�  and 𝐵�̃�  be two intuitionistic fuzzy sets over the same universe of discourse U.
Intersection of these two intuitionistic fuzzy sets is denoted by 𝐴�̃� ∩ 𝐵�̃�  and is given by

𝐴�̃� ∩ 𝐵�̃� = {(𝑥, 𝑚
𝐴�̃�∩𝐵�̃�(𝑥), 𝑛

𝐴�̃�∩𝐵�̃�(𝑥)) | 𝑥 ∈ 𝑈}

such that 
𝑚

𝐴�̃�∩𝐵�̃�(𝑥) = 𝑚𝑖𝑛{𝑚
𝐴�̃�(𝑥), 𝑚

𝐵�̃�(𝑥)}

and 
𝑛

𝐴�̃�∩𝐵�̃�(𝑥) = 𝑚𝑎𝑥{𝑛
𝐴�̃�(𝑥), 𝑛

𝐵�̃�(𝑥)}

4. Complement. Let 𝐴�̃�  be an intuitionistic fuzzy set over the universe of discourse U. Complement of this
intuitionistic fuzzy set is denoted by 𝐴�̃�  𝐶 and is given by

𝐴�̃�
𝐶

= {(𝑥, 𝑚
𝐴�̃�

𝐶(𝑥), 𝑛
𝐴�̃�

𝐶(𝑥)) | 𝑥 ∈ 𝑈} 

such that 
𝑚

𝐴�̃�
𝐶(𝑥) = 𝑛

𝐴�̃�(𝑥) 

and 
𝑛

𝐴�̃�
𝐶(𝑥) = 𝑚

𝐴�̃�(𝑥) 

Though intuitionistic fuzzy set theory provide more flexibility than standard fuzzy set, but it is unable to 
handle indeterminacy explicitly, which led to the extension of this theory to Neutrosophic set theory. 
Neutrosophic set theory is an extension of classical and fuzzy set theory to handle uncertainty, imprecision, 
vagueness and inconsistency in information. 

Definition 3. [22] Let U be the universe of discourse. A neutrosophic set 𝐴�̃�  is characterized by

(𝑥, 𝑚
𝐴�̃�(𝑥), 𝑖

𝐴�̃�(𝑥), 𝑛
𝐴�̃�(𝑥)) for 𝑥 ∈ 𝑈, where 𝑚

𝐴�̃�: 𝑈 → [0,1] represents the truth degree function, and 𝑚
𝐴�̃�(𝑥) 

indicates the degree to which x is true or belongs to the set 𝐴�̃�; 𝑖
𝐴�̃�: 𝑈 → [0,1] represents the indeterminacy

degree function, and 𝑖
𝐴�̃�(𝑥) indicates the degree of uncertainty or hesitation about membership or non-

membership of x in the set 𝐴�̃� ; and 𝑛
𝐴�̃�: 𝑈 → [0,1] represents the falsity degree function, and 𝑛

𝐴�̃�(𝑥) indicates 
the degree to which x is false or does not belong to the set 𝐴�̃�  such that the sum of 𝑚

𝐴�̃�(𝑥), 𝑖
𝐴�̃�(𝑥) and 𝑛

𝐴�̃�(𝑥) is
constrained by 0 ≤ 𝑚

𝐴�̃�(𝑥) + 𝑖
𝐴�̃�(𝑥) + 𝑛

𝐴�̃�(𝑥) ≤ 3. Neutrosophic sets are commonly referred as Single-valued 
Neutrosophic Sets as the indices are single-valued numbers. 

The value of 𝑚
𝐴�̃�(𝑥), 𝑖

𝐴�̃�(𝑥) and 𝑛
𝐴�̃�(𝑥) are usually real in the interval [0,1] but may extend beyond

this range to [0−, 1+] to allow over-estimation or under-estimation. Neutrosophic set theory provides more
flexible approach to handle real world problems where classical and fuzzy set theories may fall short. 

Operations on Neutrosophic Sets 

Neutrosophic set theory offers several operations [22] extending classical operations as in fuzzy set theory. 

1. Equality. Two neutrosophic sets 𝐴�̃� and 𝐵�̃� over the same universe of discourse U are said to be equal
if  𝑚

𝐴�̃�(𝑥) = 𝑚
𝐵�̃�(𝑥), 𝑖

𝐴�̃�(𝑥) = 𝑖
𝐵�̃�(𝑥)  and 𝑛

𝐴�̃�(𝑥) = 𝑛
𝐵�̃�(𝑥) for every 𝑥 ∈ 𝑈.

2. Union. Let 𝐴�̃� and 𝐵�̃� be two neutrosophic sets over the same universe of discourse U. Union of these
two neutrosophic sets is denoted by 𝐴�̃� ∪ 𝐵�̃� and is given by

𝐴�̃� ∪ 𝐵�̃� = {(𝑥, 𝑚
𝐴�̃�∪𝐵�̃�(𝑥), 𝑖

𝐴�̃�∪𝐵�̃�(𝑥), 𝑛
𝐴�̃�∪𝐵�̃�(𝑥)) | 𝑥 ∈ 𝑈} 

such that 
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𝑚
𝐴�̃�∪𝐵�̃�(𝑥) = 𝑚𝑎𝑥{𝑚

𝐴�̃�(𝑥), 𝑚
𝐵�̃�(𝑥)};

𝑖
𝐴�̃�∪𝐵�̃�(𝑥) = 𝑚𝑖𝑛{𝑖

𝐴�̃�(𝑥), 𝑖
𝐵�̃�(𝑥)} 

and 
𝑛

𝐴�̃�∪𝐵�̃�(𝑥) = 𝑚𝑖𝑛{𝑛
𝐴�̃�(𝑥), 𝑛

𝐵�̃�(𝑥)}

3. Intersection. Let 𝐴�̃� and 𝐵�̃� be two neutrosophic sets over the same universe of discourse U.
Intersection of these two neutrosophic sets is denoted by 𝐴�̃� ∩ 𝐵�̃� and is given by

𝐴�̃� ∩ 𝐵�̃� = {(𝑥, 𝑚
𝐴�̃�∩𝐵�̃�(𝑥), 𝑖

𝐴�̃�∩𝐵�̃�(𝑥), 𝑛
𝐴�̃�∩𝐵�̃�(𝑥)) | 𝑥 ∈ 𝑈} 

such that 
𝑚

𝐴�̃�∩𝐵�̃�(𝑥) = 𝑚𝑖𝑛{𝑚
𝐴�̃�(𝑥), 𝑚

𝐵�̃�(𝑥)};

𝑖
𝐴�̃�∩𝐵�̃�(𝑥) = 𝑚𝑎𝑥{𝑖

𝐴�̃�(𝑥), 𝑖
𝐵�̃�(𝑥)}

and 
𝑛

𝐴�̃�∩𝐵�̃�(𝑥) = 𝑚𝑎𝑥{𝑛
𝐴�̃�(𝑥), 𝑛

𝐵�̃�(𝑥)} 

4. Complement. Let 𝐴�̃�  be a neutrosophic set over the universe of discourse U. Complement of this

neutrosophic set is denoted by 𝐴�̃�
𝐶

 and is given by 

𝐴�̃�
𝐶

= {(𝑥, 𝑚
𝐴�̃�

𝐶(𝑥), 𝑖
𝐴�̃�

𝐶(𝑥), 𝑛
𝐴�̃�

𝐶(𝑥)) | 𝑥 ∈ 𝑈} 

such that 
𝑚

𝐴�̃�
𝐶(𝑥) = 𝑛

𝐴�̃�(𝑥);  𝑖
𝐴�̃�

𝐶(𝑥) = 𝑖
𝐴�̃�(𝑥) 

and 
𝑛

𝐴�̃�
𝐶(𝑥) = 𝑚

𝐴�̃�(𝑥) 

Independence and Dependence of Indices in Fuzzy and Neutrosophic Sets 

In classical fuzzy set theory, there is only one index, 𝑚(𝑥) so the concept of independence holds no 
meaning in classical fuzzy set theory. It is presumed that the information about the membership function is 
completely known [7] so the sum 𝑚(𝑥) + 𝑛(𝑥) = 1 is the only dependence relation in classical fuzzy set theory. 
In other words, the degree of non-membership is dependent upon the degree of membership and is given as 
𝑛(𝑥) = 1 − 𝑚(𝑥). 

However, in Intuitionistic Fuzzy Set theory, there are two indices 𝑚(𝑥) and 𝑛(𝑥). The hesitation degree 
or the degree of indeterminacy, 𝑖(𝑥)  is implicitly derived from 𝑚(𝑥) and 𝑛(𝑥) by the relation 𝑖(𝑥) = 1 −

𝑚(𝑥) − n(x). Thus,  𝑖(𝑥)  is not an independent parameter, so there is no explicit control over 𝑖(𝑥)  while 
modeling the problem [3]. 

Subsequently, Neutrosophic set theory overcomes the limitation by explicitly defining the indices of a 
single-valued neutrosophic set 𝑚(𝑥), 𝑖(𝑥) and 𝑛(𝑥). In neutrosophic sets, 𝑚(𝑥), 𝑖(𝑥) and 𝑛(𝑥) are independent 
indices and the sum of the indices are not constrained to be equal to 1. In fact, in a neutrosophic set 0 ≤ 𝑚(𝑥) +

𝑖(𝑥) + 𝑛(𝑥) ≤ 3. Here, each index can take values independently and hence provides greater flexibility for 
complex, real world scenarios involving imprecision, vagueness, or inconsistency [25]. 

Deviating from the classical notion of independence and dependence of indices in intuitionistic fuzzy 
theory, the concept is reiterated below. 

Independence and dependence of indices in an Intuitionistic Fuzzy Set 

Suppose 𝑚(𝑥) and 𝑛(𝑥) are 100% dependent on each other, as in classical intuitionistic fuzzy set theory. Then, 
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0 ≤ 𝑚(𝑥) + 𝑛(𝑥) ≤ 1. 

 In case of 100% dependence of indices when the information on membership and non-membership is complete 
then,  

𝑚(𝑥) + 𝑛(𝑥) = 1. 

In case of 100% dependence of indices when the information on membership and non-membership is incomplete 
then, 

𝑚(𝑥) + 𝑛(𝑥) < 1. 

Now if, 𝑚(𝑥) and 𝑛(𝑥) are 100% independent of each other, then, 

0 ≤ 𝑚(𝑥) + 𝑛(𝑥) ≤ 2. 

 In case of 100% independence of indices when the information on membership and non-membership is 
complete then, 

𝑚(𝑥) + 𝑛(𝑥) = 2. 

In case of 100% independence of indices when the information on membership and non-membership is 
incomplete then, 

𝑚(𝑥) + 𝑛(𝑥) < 2. 

Independence and dependence of indices in a Neutrosophic Set 

In classical Neutrosophic Set Theory, the indices 𝑚(𝑥), 𝑖(𝑥) and 𝑛(𝑥) are assumed to be 100% independent of 
each other. So, 

0 ≤ 𝑚(𝑥) + 𝑖(𝑥) + 𝑛(𝑥) ≤ 3. 

In case of 100% independence of indices when the information on truth, indeterminacy and falsity is complete 
then,  

𝑚(𝑥) + 𝑖(𝑥) + 𝑛(𝑥) = 3. 

In case of 100% independence of indices when the information on truth, indeterminacy and falsity is incomplete 
then,  

𝑚(𝑥) + 𝑖(𝑥) + 𝑛(𝑥) < 3. 

Suppose two indices are independent, while the third one is dependent upon them. Then, 

0 ≤ 𝑚(𝑥) + 𝑖(𝑥) + 𝑛(𝑥) ≤ 2. 

In case two indices are independent, while the third one is dependent and the information on truth, indeterminacy 
and falsity is complete then,  

𝑚(𝑥) + 𝑖(𝑥) + 𝑛(𝑥) = 2. 

In case two indices are independent, while the third one is dependent and the information on truth, indeterminacy 
and falsity is contradictory then,  

1 ≤ 𝑚(𝑥) + 𝑖(𝑥) + 𝑛(𝑥) < 2. 

In case two indices are independent, while the third one is dependent and the information on truth, indeterminacy 
and falsity is incomplete then,  

𝑚(𝑥) + 𝑖(𝑥) + 𝑛(𝑥) < 2. 
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If all the three indices are dependent upon each other, then 

0 ≤ 𝑚(𝑥) + 𝑖(𝑥) + 𝑛(𝑥) ≤ 1. 

In case of 100% dependence of indices when the information on truth, indeterminacy and falsity is complete 
then,  

𝑚(𝑥) + 𝑖(𝑥) + 𝑛(𝑥) = 1. 

In case of 100% dependence of indices when the information on truth, indeterminacy and falsity is incomplete 
then,  

𝑚(𝑥) + 𝑖(𝑥) + 𝑛(𝑥) < 1. 

Bounds of Sum of Indices of Intuitionistic Fuzzy Sets 

The degree of independence between the membership and non-membership functions of an IFS refers to 
how much the two functions vary independently of each other. If 𝑚(𝑥) and 𝑛(𝑥) vary independently, then 
change in any one function does not directly affect the other function. In this case, the sum 𝑚(𝑥) + 𝑛(𝑥) would 
be far from 1, and the indeterminacy 𝑖(𝑥) would be large, which would reflect a high level of uncertainty about 
the classification of elements in the set. It is apparent that in case 𝑚(𝑥) and 𝑛(𝑥) are highly correlated, i.e., 
changes in one function are followed by changes in the other function, then the independence between the 
functions is low. 

It is known that if f and 𝑔 are indices that vary in the unitary interval [0,1], then the sum is in the following 
interval 

0 ≤ 𝑓 + 𝑔 ≤ 2 − 𝑑(𝑓, 𝑔). 

where 𝑑(𝑓, 𝑔) ∈ [0,1] is the degree of dependence between f and g. Independence can be weighed as the inverse 
of dependence, so (1 − 𝑑(𝑓, 𝑔)) is the degree of independence between f and 𝑔. Here, 𝑑(𝑓, 𝑔) = 0 when f and 𝑔 
are 100% independent and 𝑑(𝑓, 𝑔) = 1 when f and 𝑔 are 100% dependent. 

In an IFS, if 𝑚(𝑥) and 𝑛(𝑥) are d % dependent, then 

0 ≤ 𝑚(𝑥) + 𝑛(𝑥) ≤ 2 − 𝑑/100. 

Observe that the indeterminacy 𝐼(𝑥) varies in relation to 𝑚(𝑥) and 𝑛(𝑥). A high level of indeterminacy indicates 
greater independence between the two functions. If 𝑚(𝑥) and 𝑛(𝑥) are nearly uncorrelated, the element would 
exhibit a higher degree of indeterminacy, and the set's uncertainty would be more significant. 

Example 1: Suppose 𝐴�̃�  is an IFS in which the membership and non-membership functions are 0 % dependent,
that is 𝑚(𝑥) and 𝑛(𝑥) are 100% independent, then 0 ≤ 𝑚(𝑥) + 𝑛(𝑥) ≤ 2. Suppose 𝐴�̃�  is an IFS in which the
membership and non-membership functions are 0% dependent, then 0 ≤ 𝑚(𝑥) + 𝑛(𝑥) ≤ 1.5. Suppose 𝐴�̃�  is an
IFS in which the membership and non-membership functions are 75% dependent, that is 𝑚(𝑥) and 𝑛(𝑥) are 25% 
independent, then 0 ≤ 𝑚(𝑥) + 𝑛(𝑥) ≤ 1.25. Suppose 𝐴�̃�  is an IFS in which the membership and non-
membership functions are 100% dependent, that is 𝑚(𝑥) and 𝑛(𝑥) are 0% independent, then 0 ≤ 𝑚(𝑥) +

𝑛(𝑥) ≤ 1. These relations are consistent with the idea of dependence and independence defined in the previous 
section. 
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Bounds of Sum of Indices of Neutrosophic Sets 

The degree of dependence and independence between the three indices truth, indeterminacy, and falsity 
of a NS refers to how these functions relate to each other, i.e., how changes in one affect the other indices. The 
degree of dependence between the three indices 𝑚(𝑥), 𝑖(𝑥) and 𝑛(𝑥) refers to how closely related these 
functions are. If these indices are highly correlated, then we can say that they are dependent on each other. 
Whereas, if the values of one function have little or no impact on the others then it is said that the degree of 
dependence is low. 

If high degree of truth implies a low degree of falsity and vice versa then it is said that there is high dependence 
between the truth, falsity, and indeterminacy functions. However, this is rarely the case in neutrosophic sets 
because the functions are generally independent of each other. 

As above, if f, 𝑔 and h are indices that vary in the unitary interval [0,1], if all of these three indices are 
independent then the sum 𝑓 + 𝑔 + ℎ is in the following interval 

0 ≤ 𝑓 + 𝑔 + ℎ ≤ 3. 

If all of these indices are 100% dependent upon each other, then 

0 ≤ 𝑓 + 𝑔 + ℎ ≤ 1. 

In case of partial dependence, that is in case when f and 𝑔 are 100% dependent but h is independent, that is 0 ≤

𝑓 + 𝑔 ≤ 1 and 0 ≤ ℎ ≤ 1, the sum 𝑓 + 𝑔 + ℎ is in the following interval 

1 ≤ 𝑓 + 𝑔 + ℎ ≤ 2. 

Applying this concept to a NS, in which there are three indices 𝑚(𝑥), 𝑖(𝑥) and 𝑛(𝑥), we get 

0 ≤ 𝑚(𝑥) + 𝑖(𝑥) + 𝑛(𝑥) ≤ 3. 

The information on 𝑚(𝑥), 𝑖(𝑥) and 𝑛(𝑥) are independent if the three sources providing the necessary 
information do not communicate with each other. Therefore, max {𝑚(𝑥) + 𝑖(𝑥) + 𝑛(𝑥)} is in between 1 and 3.  

Example 2: Let 𝐴�̃�  be a NS in which truth, indeterminacy and falsity are 0 % dependent, i.e., 𝑚(𝑥), 𝑖(𝑥) and
𝑛(𝑥) are 100% independent. Then, 𝑑(𝑚(𝑥), 𝑖(𝑥)) = 0; 𝑑(𝑚(𝑥), 𝑛(𝑥)) = 0 and 𝑑(𝑖(𝑥), 𝑛(𝑥)) = 0 so 
𝑚(𝑥) + 𝑖(𝑥) ≤ 2;  𝑚(𝑥) + 𝑛(𝑥) ≤ 2 and 𝑖(𝑥) + 𝑛(𝑥) ≤ 2. Hence, 0 ≤ 𝑚(𝑥) + 𝑖(𝑥) + 𝑛(𝑥) ≤ 3. 

If 𝐴�̃� is a NS in which truth and falsity are 100% dependent and indeterminacy is 100% independent, that is
𝑚(𝑥) and 𝑛(𝑥) are 100% dependent, and 𝑖(𝑥) is 100% independent of them then 0 ≤ 𝑚(𝑥) + 𝑛(𝑥) ≤ 1 and 
0 ≤ 𝑖(𝑥) ≤ 1 so 0 ≤ 𝑚(𝑥) + 𝑖(𝑥) + 𝑛(𝑥) ≤ 2. 

And if, 𝐴�̃� is a NS in which truth, falsity and indeterminacy are 100% dependent on each other, that is 𝑚(𝑥),

𝑖(𝑥) and 𝑛(𝑥) balance each other out, which occurs when an increase in the value of truth implies decrease in 
falsity and the gap is filled with indeterminacy as in the case of intuitionistic fuzzy set theory and hence 0 ≤

𝑚(𝑥) + 𝑖(𝑥) + 𝑛(𝑥) ≤ 1. 

These relations are consistent with the idea of dependence and independence defined in the previous section. 

Example 3: Suppose 𝐴�̃� is a NS in which 𝑚(𝑥) and 𝑛(𝑥) are 20% dependent and 𝑖(𝑥) and 𝑛(𝑥) are 70%
dependent. This is the case of partial dependence and independence and here  max {𝑚(𝑥) + 𝑖(𝑥) + 𝑛(𝑥)} is 
obtained by observing that 𝑚(𝑥) + 𝑛(𝑥) ≤ 2 − 0.2 = 1.8 and 𝑖(𝑥) + 𝑛(𝑥) ≤ 2 − 0.7 = 1.3 and max{𝑚(𝑥) +

𝑖(𝑥) + 𝑛(𝑥)} = 2.3 as maximum occurs when 𝑚(𝑥) = 1, 𝑛(𝑥) = 0.8, 𝑖(𝑥) = 0.5. 
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Example 4: Suppose 𝐴�̃� is a NS in which 𝑚(𝑥) and 𝑖(𝑥) are 100% dependent and 𝑖(𝑥) and 𝑛(𝑥) are 100%
independent. Then, 𝑚(𝑥) + 𝑖(𝑥) ≤ 1 and 𝑖(𝑥) + 𝑛(𝑥) ≤ 2 so, max{𝑚(𝑥) + 𝑖(𝑥) + 𝑛(𝑥)} = 2 as maximum 
occurs when 𝑚(𝑥) = 1, 𝑛(𝑥) = 1, 𝑖(𝑥) = 0.  

Generalizing to Refined Neutrosophic Sets 

A Refined Neutrosophic Set [24] and logic [23] is an extension of traditional Neutrosophic set and logic 
obtained by considering layers of refinement in the indices, truth, indeterminacy, and falsity of a NS. The refined 
approach allows an even more detailed and precise modeling of a complex real-world problem arising in various 
fields of decision making. The refined version often involves introducing multiple sub-degrees of truth, 
indeterminacy, and falsity, breaking them down into refined truth, refined indeterminacy, and refined falsity, 
which gives a more specific or detailed degree of truth, indeterminacy, and falsity respectively. 

Definition 4. [25] Let U be the universe of study. A refined neutrosophic set 𝐴�̃� is characterized by
(𝑥, 𝑚1(𝑥), 𝑚2(𝑥), … , 𝑚𝑝(𝑥), 𝑖1(𝑥), 𝑖2(𝑥), … , 𝑖𝑟(𝑥), 𝑛1(𝑥), 𝑛2(𝑥), … , 𝑛𝑠(𝑥)) for 𝑥 ∈ 𝑈, where 𝑝, 𝑟, 𝑠 ≥ 1 are
integers and 𝑝 + 𝑟 + 𝑠 = 𝑡 ≥ 3, where 𝑚𝑙: 𝑈 → [0,1] represent the 𝑙𝑡ℎ sub-index of truth function and 𝑚𝑙(𝑥) are
called the sub-membership degree for 𝑙 = 1,2, … , 𝑝; 𝑖𝑗 : 𝑈 → [0,1] represent the 𝑗𝑡ℎ  sub-index of indeterminacy
function, and 𝑖𝑗(𝑥) indicates the sub-indeterminacy degree for 𝑗 = 1,2, … , 𝑟; and 𝑛𝑘: 𝑈 → [0,1] represents the
𝑘𝑡ℎ sub-index of falsity function, and 𝑛𝑘(𝑥) indicates the sub-falsity degree for k= 1,2, … , 𝑠. Here, 𝐴�̃�  is called
t-valued refined neutrosophic set as it has t sub-indices.

Observe that a single valued neutrosophic set is a special case of refined neutrosophic set, where 𝑡 = 3. 
In other words, there are only three indices 𝑚(𝑥), 𝑖(𝑥) and 𝑛(𝑥). 

Independence and dependence of sub-indices of a refined neutrosophic set 

Each of the sub-indices - 'sub-truth, sub-indeterminacy and sub-falsity' - are crisp numbers in the interval  [0,1], 
that is 0 ≤ 𝑚𝑙(𝑥) ≤ 1 for 𝑙 = 1,2, … , 𝑝; 0 ≤ 𝑖𝑗(𝑥) ≤ 1 for 𝑗 = 1,2, … , 𝑟 and 0 ≤ 𝑛𝑘(𝑥) ≤ 1 for 𝑘 = 1,2, … , 𝑠.
So, if all these sub-indices are independent, then 

0 ≤ ∑ 𝑚𝑙(𝑥)

𝑝

𝑙=1

+ ∑ 𝑖𝑗(𝑥)

𝑟

𝑗=1

+ ∑ 𝑛𝑘(𝑥)

𝑠

𝑘=1

≤ 𝑡 

In case all these sub-indices are 100% dependent upon each other, then 

0 ≤ ∑ 𝑚𝑙(𝑥)

𝑝

𝑙=1

+ ∑ 𝑖𝑗(𝑥)

𝑟

𝑗=1

+ ∑ 𝑛𝑘(𝑥)

𝑠

𝑘=1

≤ 1 

In case of partial dependence and independence, that is in case u indices are 100% dependent and the remaining 
(t-u) indices are 100% independent, then, 

0 ≤ ∑ 𝑚𝑙(𝑥)

𝑝

𝑙=1

+ ∑ 𝑖𝑗(𝑥)

𝑟

𝑗=1

+ ∑ 𝑛𝑘(𝑥)

𝑠

𝑘=1

≤ 𝑡 − 𝑢 + 1 

as u indices are 100% dependent so the sum of these u indices lies in the interval [0,1] and each of the remaining 
(t-u) independent indices lie in the interval [0,1]. 

Example 5: Suppose 𝐴�̃� is a refined neutrosophic set whose truth function, 𝑚 splits into 𝑚1, 𝑚2; indeterminacy
function, 𝑖 splits into 𝑖1, 𝑖2, 𝑖3; and falsity function, 𝑛 does not split, that is there are 6 indices of refined
neutrosophic set under consideration. If all the indices are 100% independent of each other, then 0 ≤ 𝑚1(𝑥) +

𝑚2(𝑥) + 𝑖1(𝑥) + 𝑖2(𝑥) + 𝑖3(𝑥) + 𝑛(𝑥) ≤ 6.
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In case, the indices 𝑚1, 𝑖1 𝐹 are 100% dependent upon each other, that is 0 ≤ 𝑚1(𝑥) + 𝑖1(𝑥) + 𝑛(𝑥) ≤ 1 while
the rest are totally independent from others that is 0 ≤ 𝑚2(𝑥) ≤ 1, 0 ≤ 𝑖2(𝑥) ≤ 1, 0 ≤ 𝑖3(𝑥) ≤ 1 and hence 0 ≤

𝑚1(𝑥) + 𝑚2(𝑥) + 𝑖1(𝑥) + 𝑖2(𝑥) + 𝑖3(𝑥) + 𝑛(𝑥) ≤ 4.

Example 6: Suppose 𝐴�̃� is a refined neutrosophic set whose truth function, 𝑚 splits into 𝑚1, 𝑚2; indeterminacy
function, 𝑖 splits into 𝑖1, 𝑖2; and falsity function, 𝐹 splits into 𝑛1, 𝑛2, that is there are 6 indices of refined
neutrosophic set under consideration. Suppose 𝑚1 and 𝑖1 are 20% dependent, then 0 ≤ 𝑚1(𝑥) + 𝑖1(𝑥) ≤ 2 −

0.2 = 1.8. If each of the other indices are independent of all others, then 0 ≤ 𝑚2(𝑥) ≤ 1, 0 ≤ 𝑖2(𝑥) ≤ 1, 0 ≤

𝑛1(𝑥) ≤ 1, 0 ≤ 𝑛2(𝑥) ≤ 1 and hence 0 ≤ 𝑚1(𝑥) + 𝑚2(𝑥) + 𝑖1(𝑥) + 𝑖2(𝑥) + 𝑛1(𝑥) + 𝑛2(𝑥) ≤ 4 + 1.8 = 5.8.

Degree of Independence and Dependence of Indices of Fuzzy and 

Neutrosophic Sets 

The degree of independence or dependence among the indices of fuzzy or neutrosophic set can be 
measured by using various statistical or information theoretic methods. Methods like covariance, correlation 
coefficient and graphical methods can be used to examine the dependence between two indices of a fuzzy set or 
a neutrosophic set. To observe how two indices of a neutrosophic set interact with each other while controlling 
the effect of the third index, the concept of partial correlation can be put to test. 

Covariance 

This method enables the decision maker to figure out how the indices vary jointly. The covariance between two 
discrete indices f and 𝑔 is given by 

𝐶𝑜𝑣(𝑓, 𝑔) =
1

𝑁
∑(𝑓(𝑥) − 𝑓)̅(𝑔(𝑥) − �̅�)

𝑥∈𝑈

 

where, 

𝑓̅ =
∑ 𝑓(𝑥)

𝑁
; �̅� =

∑ 𝑔(𝑥)

𝑁

are average of functions f and 𝑔 respectively and N is cardinality of universe of study U. 

And, the covariance between two continuous indices f and 𝑔 is given by 

𝐶𝑜𝑣(𝑓, 𝑔) =
1

𝑏 − 𝑎
∫ (𝑓(𝑥) − 𝑓)̅(𝑔(𝑥) − �̅�)𝑑𝑥

𝑏 

𝑎

 

where, 

𝑓̅ =
1

𝑏 − 𝑎
∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

;  �̅� =
1

𝑏 − 𝑎
∫ 𝑔(𝑥)𝑑𝑥

𝑏

𝑎

 

are average of functions f and 𝑔 respectively and the universe of study, U= (𝑎, 𝑏). 

A high value of 𝐶𝑜𝑣(𝑓, 𝑔) indicates that the two functions under consideration are highly dependent upon each 
other, whereas a value close to zero suggests that the two functions are independent. In case 𝐶𝑜𝑣(𝑓, 𝑔) > 0, then 
f and 𝑔 increase or decrease together i.e., they are in direct relation. If 𝐶𝑜𝑣(𝑓, 𝑔) < 0, then f and 𝑔 are in inverse 
relation i.e., an increase if f suggests a decrease in 𝑔. If 𝐶𝑜𝑣(𝑓, 𝑔) = 0, then there is no linear dependence 
between f and 𝑔 suggesting that they are independent. 

Covariance between membership function, 𝑚(𝑥) and non-membership function, 𝑛(𝑥) of a discrete IFS is given 
by 
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𝐶𝑜𝑣(𝑚, 𝑛) =
1

𝑁
∑(𝑚(𝑥) − �̅�)(𝑛(𝑥) − �̅�)

𝑥∈𝑈

 

where, 

�̅� =
∑ 𝑚(𝑥)

𝑁
; �̅� =

∑ 𝑛(𝑥)

𝑁

are average values of membership and non-membership functions respectively and N is cardinality of universe of 
study U. 

Example 7: Consider the discrete IFS 𝐴�̃� = {(𝑥1, 0.8,0.1), (𝑥2, 0.6,0.3), (𝑥3, 0.2,0.7), (𝑥4, 0.9,0.05)}. The mean
membership value of 𝐴�̃� , �̅� = 0.625 and the mean non-membership value of 𝐴�̃� , �̅� = 0.288. Then, the
covariance between the membership function and non-membership function of 𝐴�̃�  is -0.068 (Refer to Table 1).

Table 1: Calculation table for Covariance of m and n of 𝐴�̃�

𝑚(𝑥) 𝑛(𝑥) 𝑚(𝑥)

− �̅�

𝑛(𝑥) − �̅� (𝑚(𝑥) − �̅�)(𝑛(𝑥) − �̅�) 

0.8 0.1 0.175 -0.188 -0.033
0.6 0.3 -0.025 0.012 -0.0003
0.2 0.7 -0.425 0.412 0.175 
0.9 0.05 0.275 -0.238 -0.065

�̅� = 0.625 �̅� = 0.288 𝐶𝑜𝑣(𝑚, 𝑛) = −0.068 

And, covariance between membership function, 𝑚(𝑥) and non-membership function, 𝑛(𝑥) of a continuous IFS 
is given by 

𝐶𝑜𝑣(𝑚, 𝑛) =
1

𝑏 − 𝑎
∫ (𝑚(𝑥) − �̅�)(𝑛(𝑥) − �̅�)𝑑𝑥

𝑏

𝑎

 

where, 

�̅� =
1

𝑏 − 𝑎
∫ 𝑚(𝑥)𝑑𝑥

𝑏

𝑎

;  �̅� =
1

𝑏 − 𝑎
∫ 𝑛(𝑥)𝑑𝑥

𝑏

𝑎

 

are average values of membership and non-membership functions respectively and the universe of study U=

(𝑎, 𝑏). 

Example 8: Consider the continuous IFS 𝐴�̃� = {(𝑥, 𝑚(𝑥), 𝑛(𝑥)): 𝑥 ∈ [0,1]}, where 𝑚(𝑥) = 1 − 𝑥 and 𝑛(𝑥) =

0.5𝑥. Then, the average membership value and non-membership values are 0.5 and 0.25 respectively and 
covariance between the membership function and non-membership function is -0.04. 

Note that, if 𝐶𝑜𝑣(𝑚, 𝑛) > 0, then m and n increase or decrease together i.e., they are in direct relation. If 
𝐶𝑜𝑣(𝑚, 𝑛) < 0, then m and n are in inverse relation i.e., an increase if m suggests a decrease in n. If 
𝐶𝑜𝑣(𝑚, 𝑛) = 0, then there is no linear dependence between m and n suggesting that they are independent. 

Similarly, covariance between any two discrete neutrosophic indices, say, truth, 𝑚(𝑥) and indeterminacy, 𝑖(𝑥) 
of a neutrosophic set is given by 

𝐶𝑜𝑣(𝑚, 𝑖) =
1

𝑁
∑(𝑚(𝑥) − �̅�)(𝑖(𝑥) − 𝑖)̅

𝑥∈𝑈
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where, 

�̅� =
∑ 𝑚(𝑥)

𝑁
; 𝑖̅ =

∑ 𝑖(𝑥)

𝑁

are average values of truth and indeterminacy functions respectively and N is cardinality of universe of study U. 

Example 9: Consider the NS 𝐴�̃� = {(𝑥1, 0.8,0.1, 0.1), (𝑥2, 0.6,0.3,0.1), (𝑥3, 0.2,0.5,0.3), (𝑥4, 0.9,0.05, 0.05)}.
The mean truth value of 𝐴�̃� , �̅� = 0.625 and the mean indeterminacy value of 𝐴�̃� , 𝑖̅ = 0237. Then, the
covariance between the truth and indeterminacy of 𝐴�̃�  is -0.047. Similarly, the covariance between the truth and
falsity of 𝐴�̃�  is -0.014 and the covariance between the indeterminacy and falsity of 𝐴�̃�  is 0.009.

And, the covariance between any two continuous neutrosophic indices, say, truth, 𝑚(𝑥) and indeterminacy, 𝑖(𝑥) 
of a neutrosophic set is given by 

𝐶𝑜𝑣(𝑚, 𝑖) =
1

𝑏 − 𝑎
∫ (𝑚(𝑥) − �̅�)(𝑖(𝑥) − 𝑖)̅𝑑𝑥

𝑏

𝑎

 

where, 

�̅� =
1

𝑏 − 𝑎
∫ 𝑚(𝑥)𝑑𝑥

𝑏

𝑎

;  𝑖 ̅ =
1

𝑏 − 𝑎
∫ 𝑖(𝑥)𝑑𝑥

𝑏

𝑎

 

are average values of truth and indeterminacy functions respectively and the universe of study U= (𝑎, 𝑏). 

Example 10: Consider the NS 𝐴�̃� = {(𝑥1, 𝑚(𝑥), 𝑖(𝑥), 𝑛(𝑥)): 𝑥 ∈ [0,1]}, where 𝑚(𝑥) = 0.6(1 − 𝑥), 𝑖(𝑥) =

0.3𝑥, and 𝑛(𝑥) = 0.1(1 − 𝑥). The mean truth value of 𝐴�̃� , �̅� = 0.3 and the mean indeterminacy value of 𝐴�̃� , 𝑖̅ =

0.15. Then, the covariance between the truth and indeterminacy of 𝐴�̃�  is -0.015. Similarly, the covariance
between the truth and falsity of 𝐴�̃�  is 0.005, and the covariance between the indeterminacy and falsity of 𝐴�̃�  is -
0.07. 

Note that, if 𝐶𝑜𝑣(𝑚, 𝑖) > 0, then m and i increase or decrease together i.e., they are in direct relation. If 
𝐶𝑜𝑣(𝑚, 𝑖) < 0, then m and i are in inverse relation i.e., an increase if m suggests a decrease in i. If 𝐶𝑜𝑣(𝑚, 𝑖) =

0, then there is no linear dependence between m and i suggesting that they are independent. 

To comprehend the dependence between all the indices of a neutrosophic set, one needs to examine 𝐶𝑜𝑣(𝑇, 𝐹) 
and 𝐶𝑜𝑣(𝐹, 𝐼) as well. 

Correlation Coefficient 

Correlation coefficients are normal forms of covariance that determine the intensity and the direction of the 
association between the two indices under consideration. The correlation coefficient between two indices f and 𝑔 
is given by 

𝜌(𝑓, 𝑔) =
𝐶𝑜𝑣(𝑓, 𝑔)

√𝑉𝑎𝑟(𝑓). 𝑉𝑎𝑟(𝑔)

where, 𝐶𝑜𝑣(𝑓, 𝑔) is the covariance between the indices f and 𝑔; 𝑉𝑎𝑟(𝑓) and 𝑉𝑎𝑟(𝑔) are variance of the indices f 
and 𝑔 respectively, which are obtained as follows 

𝑉𝑎𝑟(𝑓) =
1

𝑁
∑ (𝑓(𝑥) − 𝑓̅)

2
𝑥∈𝑈 ;  𝑉𝑎𝑟(𝑔) =

1

𝑁
∑ (𝑔(𝑥) − �̅�)2

𝑥∈𝑈 , when f and 𝑔 are discrete. 

𝑉𝑎𝑟(𝑓) = ∫ (𝑓(𝑥) − 𝑓)̅
2

𝑑𝑥
 

𝑥∈𝑈
 ;  𝑉𝑎𝑟(𝑔) = ∫ (𝑔(𝑥) − �̅�)2𝑑𝑥

 

𝑥∈𝑈
, when f and 𝑔 are continuous. 
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The correlation coefficient 𝜌 lies between -1 and 1. In case 𝜌(𝑓, 𝑔) > 0 then there is a positive correlation 
between f and 𝑔 i.e., they increase or decrease together. In other words, f and 𝑔 are in direct relation. If 
𝜌(𝑓, 𝑔) < 0 then there is a negative correlation between f and 𝑔 i.e., an increase in f leads to decrease in 𝑔 and 
vice versa. In other words, f and 𝑔 are in inverse relation. If 𝜌(𝑓, 𝑔) = 0 then there no correlation between f and 
𝑔 i.e., they are independent. 

Correlation coefficient between membership function, 𝑚(𝑥) and non-membership function, 𝑛(𝑥) of an IFS is 
given by 

𝜌(𝑚, 𝑛) =
𝐶𝑜𝑣(𝑚, 𝑛)

√𝑉𝑎𝑟(𝑚). 𝑉𝑎𝑟(𝑛)

where, 𝐶𝑜𝑣(𝑚, 𝑛) is the covariance between the indices m and n; 𝑉𝑎𝑟(𝑚) and 𝑉𝑎𝑟(𝑛) are variance of the 
indices m and n respectively, which are obtained as follows 

𝑉𝑎𝑟(𝑚) =
1

𝑁
∑ (𝑚(𝑥) − �̅�)2

𝑥∈𝑈 ;  𝑉𝑎𝑟(𝑛) =
1

𝑁
∑ (𝑛(𝑥) − �̅�)2

𝑥∈𝑈 , when IFS is discrete. 

𝑉𝑎𝑟(𝑚) = ∫ (𝑚(𝑥) − �̅�)2𝑑𝑥
 

𝑥∈𝑈
 ;  𝑉𝑎𝑟(𝑛) = ∫ (𝑛(𝑥) − �̅�)2𝑑𝑥

 

𝑥∈𝑈
, when IFS is continuous. 

The correlation coefficient 𝜌 lies between -1 and 1. If 𝜌(𝑚, 𝑛) > 0 then there is a positive correlation between 
membership function, m and non-membership function n i.e., they increase or decrease together. In other words, 
m and n are in direct relation. If 𝜌(𝑚, 𝑛) < 0 then there is a negative correlation between m and n i.e., an 
increase in m leads to decrease in n and vice versa. In other words, m and n are in inverse relation. If 𝜌(𝑚, 𝑛) =

0 then there no correlation between m and n i.e., they are independent. 

Example 11: Consider the discrete IFS 𝐴�̃� = {(𝑥1, 0.8,0.1), (𝑥2, 0.6,0.3), (𝑥3, 0.2,0.7), (𝑥4, 0.9,0.05)}. The mean
membership value of 𝐴�̃� , �̅� = 0.625; the mean non-membership value of 𝐴�̃� , �̅� = 0.288; the covariance
between the membership function and non-membership function of 𝐴�̃�  is -0.06; the variance of membership
value is 0.071; and the variance of non-membership value is 0.065. So, the correlation coefficient between the 
membership value and non-membership value is -0.99. Thus, the two indices are negatively correlated.  

Example 12: Consider the continuous IFS 𝐴�̃� = {(𝑥, 𝑚(𝑥), 𝑛(𝑥)): 𝑥 ∈ [0,1]}, where 𝑚(𝑥) = 1 − 𝑥 and 𝑛(𝑥) =

0.5𝑥. Then, the average membership value and non-membership values are 0.5 and 0.25 respectively; covariance 
between the membership function and non-membership function is -0.041; and the variance of membership 
value and non-membership value are 0.16 and 0.021 respectively. So, the correlation coefficient between the 
membership value and non-membership value is -0.71.  

Similarly, correlation coefficient between any two neutrosophic indices [27], say truth, 𝑚(𝑥) and indeterminacy, 
𝑖(𝑥) of a neutrosophic set is given by 

𝜌(𝑚, 𝑖) =
𝐶𝑜𝑣(𝑚, 𝑖)

√𝑉𝑎𝑟(𝑚). 𝑉𝑎𝑟(𝑖)

where, 𝐶𝑜𝑣(𝑚, 𝑖) is the covariance between the indices m and i; 𝑉𝑎𝑟(𝑚) and 𝑉𝑎𝑟(𝑖) are variance of the indices 
m and i respectively, which are obtained as follows: 

𝑉𝑎𝑟(𝑚) =
1

𝑁
∑ (𝑚(𝑥) − �̅�)2

𝑥∈𝑈 ;  𝑉𝑎𝑟(𝑖) =
1

𝑁
∑ (𝑖(𝑥) − 𝑖)̅2

𝑥∈𝑈 , when NS is discrete. 

𝑉𝑎𝑟(𝑚) = ∫ (𝑚(𝑥) − �̅�)2𝑑𝑥
 

𝑥∈𝑈
 ;  𝑉𝑎𝑟(𝑖) = ∫ (𝑖(𝑥) − 𝑖)̅2𝑑𝑥

 

𝑥∈𝑈
, when NS is continuous. 

The correlation coefficient 𝜌 lies between -1 and 1. If 𝜌(𝑚, 𝑖) > 0 then there is a positive correlation between m 
and i i.e., they increase or decrease together. In other words, m and i are in direct relation. If 𝜌(𝑚, 𝑖) < 0 then 
there is a negative correlation between m and i i.e., an increase in m leads to decrease in i and vice versa. In other 
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words, m and i are in inverse relation. If 𝜌(𝑚, 𝑖) = 0 then there no correlation between m and i i.e., they are 
independent. 

To comprehend the dependence between all the indices of a neutrosophic set, one needs to examine 𝜌(𝑚, 𝑛) and 
𝜌(𝑛, 𝑖) as well. 

Example 13: Consider the NS 𝐴�̃� = {(𝑥1, 0.8,0.1, 0.1), (𝑥2, 0.6,0.3,0.1), (𝑥3, 0.2,0.5,0.3), (𝑥4, 0.9,0.05, 0.05)}.
The mean truth value of 𝐴�̃� , �̅� = 0.625, the mean indeterminacy value of 𝐴�̃� , 𝑖̅ = 0237, the mean falsity
value𝐴�̃� , �̅� = 0.1125; the covariance between the truth and indeterminacy of 𝐴�̃�  is -0.047, the covariance
between the truth and falsity of 𝐴�̃�  is -0.014, the covariance between the indeterminacy and falsity of 𝐴�̃�  is 0.009;
and variance of truth, indeterminacy and falsity are 0.07, 0.03 and 0.003 respectively. So, the correlation 
coefficient between the truth and indeterminacy is -0.988, the correlation coefficient between truth and falsity is 
-0.963, and the correlation coefficient between indeterminacy and falsity is 0.918.

Graphical Method 

In some instances, visual aids such as scatter plots (for pairs of indices) or graphs with the indices plotted against 
each other, can clarify how the indices relate to one another. A graph like this assumes if there is a strong 
correlation between two sets of data, no correlation or weak correlation. 

Partial Correlation 

Partial correlation helps to measure the relationship between two indices f and 𝑔 while controlling the effect of 
the third index h. It is given by 

𝜌(𝑓, 𝑔|ℎ) =
𝜌(𝑓, 𝑔) − 𝜌(𝑓, ℎ). 𝜌(𝑔, ℎ)

√1 − 𝜌(𝑓, ℎ)2√1 − 𝜌(𝑔, ℎ)2

The value of 𝜌(𝑓, 𝑔|ℎ) gives the strength of dependence between f and 𝑔 when the effect of h is removed. 

Partial correlation between any two indices of a neutrosophic set, say truth 𝑚(𝑥) and indeterminacy 𝑖(𝑥) when 
the effect of falsity 𝑛(𝑥) is removed is given by 

𝜌(𝑚, 𝑖|𝑛) =
𝜌(𝑚, 𝑖) − 𝜌(𝑚, 𝑛). 𝜌(𝑖, 𝑛)

√1 − 𝜌(𝑚, 𝑛)2√1 − 𝜌(𝑖, 𝑛)2

The value of 𝜌(𝑚, 𝑖|𝑛) gives the strength of dependence between truth and indeterminacy when the effect of 
falsity is removed. To get a more vivid picture other coefficients 𝜌(𝑚, 𝑛|𝑖) and 𝜌(𝑛, 𝑖|𝑚) must also be 
examined. 

Example 14: Consider the NS 𝐴�̃� = {(𝑥1, 0.8,0.1, 0.1), (𝑥2, 0.6,0.3,0.1), (𝑥3, 0.2,0.5,0.3), (𝑥4, 0.9,0.05, 0.05)}.
The mean truth value of 𝐴�̃� , �̅� = 0.625, the mean indeterminacy value of 𝐴�̃� , 𝑖̅ = 0237, the mean falsity
value𝐴�̃� , �̅� = 0.1125; the covariance between the truth and indeterminacy of 𝐴�̃�  is -0.047, the covariance
between the truth and falsity of 𝐴�̃�  is -0.014, the covariance between the indeterminacy and falsity of 𝐴�̃�  is 0.009;
the variance of truth, indeterminacy and falsity are 0.07, 0.03 and 0.003 respectively; the correlation coefficient 
between the truth and indeterminacy is -0.988, the correlation coefficient between truth and falsity is -0.963, and 
the correlation coefficient between indeterminacy and falsity is 0.918. So, partial correlation between truth 𝑚(𝑥) 
and indeterminacy 𝑖(𝑥) when the effect of falsity 𝑛(𝑥) is removed is -0.975, partial correlation between truth 
𝑚(𝑥) and falsity 𝑛(𝑥) when the effect of indeterminacy 𝑖(𝑥) is removed is -0.918, and partial correlation 
between indeterminacy 𝑖(𝑥) and falsity 𝑛(𝑥) when the effect of truth value 𝑚(𝑥) is removed is -0.813.  
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Application of Knowledge of Degree of Dependence in Practical Problems 

An insight into the degree of independence and dependence between the indices of fuzzy sets and 
neutrosophic sets helps to accurately model real world complex problems arising in various fields of decision-
making, machine learning, data analysis and control system [4,5,10,11,13,15,18].  

Decision-making 

In decision-making problems, uncertainty and imprecision are often inherent due to incomplete, conflicting, or 
ambiguous information. Fuzzy and neutrosophic sets provide powerful frameworks for representing this 
uncertainty. Zhi and Li [29] introduced a novel approach to solve a multi-attribute decision making problem 
based on intuitionistic fuzzy sets. Mallick et al. [14] proposed a QNN-MAGDM strategy for e-commerce site 
selection by employing quadripartition neutrosophic neutrality aggregative operators. A key aspect of these 
frameworks is understanding the degree of dependence and degree of independence between their indices (e.g., 
membership and non-membership in fuzzy sets, and truth, falsity, and indeterminacy in neutrosophic sets). These 
relationships help model the interaction between various factors in decision-making scenarios. Understanding 
how these indices interact is crucial for improving decision-making accuracy, robustness, and reliability.  

Machine Learning 

Machine learning algorithms are designed to automatically learn patterns and make predictions from data. 
However, real-world data is often noisy, uncertain, and imprecise. This is where fuzzy sets and neutrosophic sets 
come into play. These concepts offer powerful tools for dealing with uncertainty, vagueness, and incompleteness 
in data, which are common challenges in machine learning [9]. Lu et al. [12] gave a thorough review on fuzzy 
machine learning, which discussed fuzzy machine learning approach to application with insights on recent 
achievements in the field of fuzzy machine learning. In machine learning, the degree of dependence and degree 
of independence between the indices of fuzzy and neutrosophic sets can help improve learning algorithms, 
enhance model robustness, and handle uncertain or ambiguous data more effectively. Understanding these 
relationships can make machine learning models more interpretable, adaptive, and accurate, especially when 
dealing with real-world applications where traditional methods fall short. 

Data Analysis 

In data analysis, understanding the relationships between variables is fundamental to uncovering patterns, 
drawing conclusions, and making predictions. The degree of dependence and degree of independence between 
variables (or indices of a dataset) play a crucial role in enhancing the analytical process, especially when the data 
is uncertain, incomplete, or ambiguous. Gomathy et al. [8] discussed data classification by applying deep 
learning model based upon optimal neutrosophic rules. Ravi et al. [19] proposed a deep learning framework 
based on the analysis of e-mail and URLs for cyber threat situational awareness. Thanh et al. [26] gave a novel 
clustering algorithm for medical diagnosis in a neutrosophic recommender system. Fuzzy sets and neutrosophic 
sets provide mathematical frameworks for dealing with uncertainty, making them valuable tools for analyzing 
real-world data [6], where traditional methods may struggle with imprecision. 

Control System 

Control systems are crucial in engineering, automation, robotics, and various industrial applications, where 
maintaining desired outputs (such as temperature, speed, or position) despite changing conditions or 
uncertainties is essential [17]. Control systems need to handle various types of uncertainties, such as 
Measurement errors, Environmental disturbances, Imprecise or ambiguous data from sensors, Model 
uncertainties. In classical control theory, controllers like Proportional-Integral-Derivative work well for systems 
where the variables are well understood and deterministic. However, in systems with uncertain, vague, or 
incomplete data, traditional methods often fall short. This is where the degree of dependence and degree of 
independence between variables, modeled using fuzzy sets and neutrosophic sets, come into play. Said et al. [20] 
enumerated an intelligent traffic control system using fuzzy sets, rough sets, and neutrosophic sets. These 
frameworks provide a more flexible and robust way to handle uncertainty, making them highly useful for 
modern fuzzy control systems and adaptive control systems. 

76



New Trends in Neutrosophic Theories and Applications Volume 4, 2025 

Conclusions 

In both fuzzy sets and neutrosophic sets, the degree of independence and dependence between the indices—
whether membership and non-membership in fuzzy sets, or truth, falsity, and indeterminacy in neutrosophic 
sets—play a crucial role in modeling uncertainty and vagueness. The ability to quantify these relationships 
enables better decision-making, data analysis, and system design. Linear independence and dependence of 
indices in this context provide critical insights into their structural relationships, which in turn influences their 
applications. Linear dependence refers to a situation when the indices of an element are not independent of each 
other i.e., there exist an index that can be articulated as a linear combination of other indices. Whereas, linear 
independence occurs when the indices are not interrelated, and no index can be articulated as a linear 
combination of other indices. By understanding how these functions interact and affect each other, we can gain 
deeper insights into the underlying uncertainty of real-world problems and create more effective solutions. 
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ABSTRACT 

 Neutrosophic logic, which expands classical logic to incorporate truth, falsity, and indeterminacy, offers 
a powerful framework for addressing uncertainty in biomedical research. This chapter explores the integration of 
neutrosophic logic with advanced analytical models to improve uncertainty quantification in fields like genetic 
analysis, disease prediction, and medical imaging. Traditional probabilistic approaches often struggle with 
ambiguity and conflicting information, whereas neutrosophic logic can manage indeterminacy states effectively, 
enabling more accurate biomedical insights. Key applications discussed include neutrosophic-enhanced disease 
prediction models, which improve diagnostic accuracy by considering uncertain inputs, and neutrosophic-based 
image segmentation techniques that enhance sensitivity in detecting irregularities in diagnostic imaging. 

A novel contribution of this chapter is the introduction of the Neutro-Genetic Hidden Markov Model 
(NG-HMM), which combines neutrosophic logic with Hidden Markov Models (HMM) for genomic analysis. The 
NG-HMM assigns neutrosophic values to genetic states, transition probabilities, and emissions, allowing the 
model to capture complex genetic interactions and uncertain mutations, often encountered in personalized 
medicine and risk prediction. This hybrid model provides a more nuanced approach to representing genetic 
variability and ambiguity, improving our understanding of gene expression and mutation effects. By expanding 
the role of indeterminacy in biomedical models, NG-HMM enables better handling of data uncertainties, making 
it a promising tool in personalized medicine and genetic research. 

Future directions include refining neutrosophic methods with machine learning techniques and validating 
these models in clinical settings to enhance their reliability. This chapter demonstrates that neutrosophic logic, 
particularly when integrated with existing frameworks like HMM, holds significant potential for advancing 
uncertainty management in biomedical research and beyond. 

Keywords: Neutrosophic logic, uncertainty quantification,  genetic analysis, hidden Markov model, personalized 
medicine. 

INTRODUCTION TO NEUTROSOPHIC LOGIC

Neutrosophic logic, first introduced by Smarandache, represents a significant evolution in managing 
uncertainty in data [1]. Traditional logic frameworks, such as fuzzy logic, allow partial truths but do not adequately 
address the concept of indeterminacy, which is often crucial in complex, real-world scenarios [2]. Neutrosophic 
logic addresses this limitation by incorporating three distinct components: truth, falsity, and indeterminacy, each 
ranging from 0 to 1[3]. This structure allows for a more nuanced understanding of uncertain data, especially when 
ambiguity and conflicting information are present [4]. 

Neutrosophic logic’s distinct ability to model indeterminacy makes it particularly suitable for fields like 
biomedical research [5], where data complexities and uncertainties are inherent. For instance, in genetic research, 
the presence of genetic mutations or variabilities may be categorized under indeterminacy states rather than strictly 
true or false outcomes [6]. 

To understand how neutrosophic logic can be applied effectively, we begin by exploring its core 
principles and mathematical framework in more detail. 
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Neutrosophic Logic Fundamentals 

Neutrosophic logic extends traditional logic by representing information with three components: 
truth (T), indeterminacy (I), and falsity (F), each with values ranging from 0 to 1 [22]. These components 
enable a more flexible representation of uncertainty, especially in complex fields like biomedical 
research [7] where indeterminacy states frequently arise. The neutrosophic value  N(A)  of any statement  
A  can be represented as: 

N(A) = (T, I, F) 

where  T, I, F ∈ [0, 1]  and  0 ≤ T + I + F ≤ 3 . The conditions  T + I + F ≤ 3  allows for 
overlapping values of truth, falsity, and indeterminacy, a distinguishing feature of neutrosophic logic. 

For example, a genetic mutation could be represented with a neutrosophic triplet  N(mutation) 
= (0.6, 0.3, 0.1) , indicating that the mutation’s presence has a 60% degree of truth, 30% 
indeterminacy, and 10% falsity. This structure supports biomedical contexts where genetic data is 
inherently uncertain. 

Hidden Markov Models (HMMs) 

HMMs are statistical models used to describe systems that transition between hidden states 
over time, based on observed data sequences. HMMs are defined by: 

 • A set of hidden states  S = {s1, s2,…, sn}

 • Transition probabilities between states  aij = P(sj | si)

 • Emission probabilities  bi(o) = P(o | si) , which relate each state to an observed output  o

 • Initial state distribution   π = {πi}  where   πi= P(si)

An HMM can be represented by the triplet  λ = (A, B, π) , where  A  is the transition matrix,  B  
is the emission matrix, and π is the initial state distribution [8]. This work on profile HMMs demonstrates 
how HMMs are applied in bioinformatics to model sequence motifs in protein families, which is highly 
relevant for understanding genetic patterns and biological sequences where states are not directly 
observable [9]. 

Neutro-Genetic Hidden Markov Model (NG-HMM) 

In NG-HMM, we integrate neutrosophic logic into the HMM framework to handle 
indeterminacy states in genetic sequences. NG-HMM modifies the traditional HMM as follows: 

1. Neutrosophic State Representation: Each hidden state  si  in the NG-HMM has an associated
neutrosophic triplet  N(si) = (Ti, Ii, Fi) , enabling the model to account for indeterminacy
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information. For example, a gene’s activation state could be represented as  N(activation) = (0.7, 
0.2, 0.1) . 

 2. Neutrosophic Transition Probabilities: Transitions between states are represented by 
neutrosophic probabilities. For instance, the transition from state si  to state sj  would have a triplet  
aij = (Tij, Iij, Fij) , where each component reflects the truth, indeterminacy, and falsity associated 
with moving between these states. 

 3. Neutrosophic Emission Probabilities: Each emission probability  bi(o)  is also represented by a 
triplet  bi(o) = (Ti(o), Ii(o), Fi(o)) , capturing the uncertainty of observed data relative to the hidden 
states. 

 
Mathematical Formulation of NG-HMM 

 
Given an observed sequence  O = {o1, o2 ,… , oT}  and a sequence of hidden states  S = {s1, 

s2,…, sT} , the probability of the observed sequence in the context of NG-HMM can be expressed as: 

 
                   T 

P(O | λ) = Πbst(ot 
                  t=1 
 
where each  bst (ot)  is a neutrosophic triplet, representing the likelihood of observation  ot  given state  
st with truth, indeterminacy, and falsity components. 
 

The NG-HMM parameters are estimated using an adapted Baum-Welch algorithm that 
iteratively adjusts the neutrosophic values of the transition and emission probabilities to maximize the 
probability of the observed sequence. 

 

Example Application in Genetic Data Analysis 
 

Consider a sequence of gene expressions where each expression level is uncertain due to 
variability in environmental factors or experimental conditions. In NG-HMM, each gene expression 
level could be modeled as a neutrosophic state, with neutrosophic transition and emission probabilities 
reflecting the inherent uncertainty. For example, transitions in gene expression states under different 
conditions might be modeled as: 

aij = (0.5, 0.3, 0.2) 

indicating a 50% chance the transition occurs, with 30% indeterminacy and 20% chance it does 
not occur. Such representation captures the true complexity of genetic interactions, which are often not 
strictly binary but probabilistically uncertain. With a foundational understanding of neutrosophic logic 
and its unique handling of uncertainty, we now examine the biomedical research landscape, where these 
methods address pressing challenges in data complexity and ambiguity. 

 
Biomedical Research Context and Challenges 

 
Biomedical research frequently encounters challenges in managing uncertainty due to high 

biological variability, measurement errors, and the inherent unpredictability of biological systems. 
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Standard probabilistic approaches can quantify variability but fail to capture indeterminacy cases where 
a definitive classification is impossible [10]. For example, diagnostic imaging often yields results that 
cannot be classified as purely positive or negative, leading to “gray areas” in diagnosis. Here, 
neutrosophic logic can serve as a valuable tool, allowing a more flexible categorization of uncertain 
findings [11]. 

In clinical diagnosis, indeterminacy arises in patient symptomatology and diagnostic test results, 
where neutrosophic logic enables handling ambiguous states that fall outside traditional probability 
frameworks [11]. By representing uncertainty more precisely, researchers and clinicians can improve 
decision-making in critical areas like disease diagnosis, treatment planning, and patient monitoring. 
Given these challenges, neutrosophic methods offer promising solutions across several biomedical 
domains, including disease prediction, medical imaging, and genetic research, each of which we explore 
in the following sections. 

 
Neutrosophic Methods in Biomedical Applications 

 
Neutrosophic methods have been effectively applied in several biomedical fields to address 

uncertainty in data interpretation: 

 • Disease Prediction and Diagnosis 

Neutrosophic logic has shown promising applications in disease prediction models, where uncertain 
inputs often lead to mixed diagnoses. For instance, in heart disease prediction, hybrid models that 
combine neutrosophic sets with machine learning algorithms yield better accuracy by accounting for 
both uncertain and indeterminacy cases [12, 23]. Additionally, models developed with neutrosophic 
techniques help minimize diagnostic errors, as they can manage borderline or conflicting data [13]. 

 • Medical Imaging Analysis 

Medical imaging is another area where neutrosophic approaches have significantly impacted data 
interpretation[14]. Neutrosophic set theory has been applied to enhance image segmentation in 
medical scans, where ambiguities in pixel intensity can complicate accurate classification [15]. This 
application of neutrosophic processing has shown improved sensitivity in detecting irregularities in 
MRI and CT scans, particularly in oncological and neurological cases [16]. 

 • Genetic Data Interpretation 

Genetic research deals with the massive complexity of genomic data, where indeterminacy states are 
common due to unknown gene interactions or mutation effects. Neutrosophic models allow 
researchers to categorize ambiguous gene expressions as partially known or indeterminacy, leading 
to more accurate interpretations and predictions [17]. This approach is especially relevant for 
personalized medicine, where indeterminate genetic markers can have significant implications for 
individual risk assessments and targeted therapies [18]. 

 
To further address genetic uncertainties, the Neutro-Genetic Hidden Markov Model (NG-HMM) 
incorporates neutrosophic principles, facilitating a refined approach to analyzing genetic data with 
inherent ambiguity. 
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Integrating Neutrosophic Logic with Hidden Markov Models: The Neutro-

Genetic Hidden Markov Model (NG-HMM) 
 

A novel advancement in neutrosophic approaches to genetic analysis is the Neutro-Genetic 

Hidden Markov Model (NG-HMM), a theoretical framework combining neutrosophic logic with 
Hidden Markov Models (HMM) to address uncertainty in genomic data. NG-HMM is particularly 
suited for representing genetic data with high indeterminacy, such as mutations of uncertain significance 
and variations in gene expression influenced by environmental factors [18]. 

The NG-HMM builds on the strengths of HMMs, which are commonly used to identify patterns 
in genetic sequences, and extends them by integrating neutrosophic parameters. Each state and transition 
in the model is represented by a triplet (T, I, F), enabling states to reflect ambiguous genetic states rather 
than strictly defined ones. This model addresses the following: 

 • Neutrosophic State Representation: Each hidden state in the NG-HMM is expressed as a 
neutrosophic triplet, such as a gene’s activation state represented as 70% true, 20% indeterminacy, 
and 10% false. This framework allows geneticists to model and manage states that contain 
indeterminacy or partially unknown characteristics [19]. 

 • Neutrosophic Transition and Emission Probabilities: NG-HMM assigns neutrosophic values to 
both transitions (probabilities of moving between states) and emissions (likelihood of observed data 
given a state), allowing the model to account for complex transitions that are uncertain or ambiguous. 
This is particularly useful for cases such as gene expression influenced by uncertain environmental 
factors, where standard probabilistic models would be insufficient [20]. 

The NG-HMM approach thus expands the scope of neutrosophic theories by enabling a more 
flexible and realistic analysis of genomic sequences. By combining HMM with neutrosophic logic, 
NG-HMM captures the nuances of genetic data, facilitating more accurate genetic interpretations and 
paving the way for advanced personalized medicine applications [21]. 

While the NG-HMM showcases the strength of neutrosophic logic in genetic analysis, further 
advancements and applications await exploration, as discussed in the following section on future 
directions and open research questions. 

 
Future Directions and Open Research Questions 

 
Advanced Applications in Genomic and Epigenomic Data Analysis 
 

Future research could extend the Neutro-Genetic Hidden Markov Model (NG-HMM) to analyze 
epigenomic data, where regulatory elements and histone modifications introduce additional layers of 
complexity. By expanding the NG-HMM to handle multi-dimensional neutrosophic data, researchers 
could uncover novel insights into gene regulation and expression patterns influenced by both genetic 
and epigenetic factors. Such applications could be particularly valuable for complex diseases where 
gene-environment interactions play a significant role. 

 
Deep Learning with Neutrosophic Logic for Image and Signal Processing 
 

Deep learning is another promising field for neutrosophic logic applications. For example, 
convolutional neural networks (CNNs) applied in medical imaging, such as MRI or CT scans, could 
incorporate neutrosophic logic to better manage uncertain image regions, leading to improved diagnostic 
accuracy. Integrating neutrosophic values could allow CNNs to distinguish between clear and 
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ambiguous regions in medical images, enhancing sensitivity in detecting abnormalities [24]. Similarly, 
in electroencephalography (EEG) signal analysis, neutrosophic deep learning models could help 
differentiate between normal and indeterminate brain activity patterns [25, 26]. 

 
Optimization of Neutrosophic Parameters 
 

One challenge in applying neutrosophic logic broadly is determining optimal parameter values 
for truth, indeterminacy, and falsity in different contexts[27]. Future research could explore dynamic 
parameter optimization methods to automatically adjust these values based on specific dataset 
characteristics. This approach could lead to more effective neutrosophic applications in domains like 
clinical decision-making and bioinformatics, where data variability and indeterminacy are especially 
pronounced [28]. 

 

Validation and Standardization in Clinical Settings 
 

 For neutrosophic logic to gain traction in biomedical research and healthcare, robust 
validation studies are essential. Future studies should focus on comparing neutrosophic-enhanced 
models to traditional probabilistic and fuzzy logic approaches across various datasets and clinical 
conditions. Standardization of neutrosophic logic applications, especially for use in diagnostic tools, 
could also be beneficial in increasing clinical acceptance and ensuring reliability in real-world 
applications [29]. 

 

Conclusions 
In this chapter, we explored the potential of neutrosophic logic to enhance uncertainty 

quantification in biomedical research, particularly in areas where ambiguity and complexity are 
prevalent. Neutrosophic logic, with its unique three-dimensional approach—truth, indeterminacy, and 
falsity—provides a sophisticated framework for managing uncertain data more flexibly than traditional 
probabilistic or fuzzy logic systems. This flexibility makes it particularly suited to handle the 
complexities of genetic analysis, disease prediction, and medical imaging. 

 

The integration of neutrosophic logic with Hidden Markov Models (HMM), resulting in the 
novel Neutro-Genetic Hidden Markov Model (NG-HMM), represents a significant advancement. The 
NG-HMM allows for a more nuanced analysis of genetic sequences, accounting for the indeterminacy 
nature of gene expression and mutation effects in the presence of uncertain environmental influences. 
This hybrid approach holds promise for applications in personalized medicine, where accurate 
prediction and interpretation of genetic data are crucial. 

Additionally, the chapter outlined potential future directions for neutrosophic logic in 
biomedical research. The combination of neutrosophic logic with machine learning and deep learning 
could enable more precise predictive models that account for a range of uncertainties, enhancing 
diagnostic accuracy and treatment customization. Validation and standardization of these models in 
clinical settings will be essential for their adoption in real-world medical decision-making. 

In conclusion, neutrosophic logic offers transformative possibilities for the biomedical field, 
paving the way for more adaptive, reliable, and personalized approaches to complex healthcare 
challenges. By embracing the principles of neutrosophy, researchers and clinicians can develop tools 

84



New Trends in Neutrosophic Theories and Applications, Vol.,4, 2025 

 

better suited to the uncertain and nuanced nature of biological data, ultimately contributing to improved 
patient outcomes. 
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ABSTRACT 

 Professor Florentin Smarandache first coined the term Neutrosophic Sociology (or Neutrosociology), 
which is the study of sociology using neutrosophic scientific methods. His observation that the social data 
encountered in sociology is full of indeterminacy led to the study of neutrosophic methods and tools such as 
neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics, neutrosophic 
analysis, neutrosophic measure, and more. In the complex landscape of social issues, individuals and cultures 
often have differing opinions on what is considered good, bad, or ambiguous. Traditional binary views on social 
situations, which categorize things as either good or evil, do not take into consideration the intricacies and 
contradictions present in social behaviors and cultural standards. This study introduces a neutrosophic 
framework for comprehending and evaluating social situations, highlighting the fluid, subjective, and indefinite 
nature of societal norms and moral assessments. Using neutrosophic measures and statistics, we investigate 
paradoxes in societal norms and argue that the neutrosophic method provides a more comprehensive way of 
modeling social behaviors and examining the evolving and often conflicting nature of social norms across 
different times, cultures, and populations. 

Keywords: Neutrosophic sociology, Neutrosophic sets, Neutrosophic logic, Neutrosophic statistics, Social 
situations, Social variance, Neutrosophic measures, Indeterminacy. 

INTRODUCTION

The term "sociology" was first introduced by French social scientist Auguste Comte (1798-1857). 
Comte formed the word by combining the Latin "socius" meaning society, association, unity, or friendship, with 
the Greek term "logos," which translates to "word" or "to speak about." Though "logos" literally means "word," 
it is commonly understood in this context as "study" or "science" [8]. Hence, the etymological meaning of 
sociology is the "study" or "discussion of society." This term was later expanded upon by prominent theorists 
such as Emile Durkheim, Karl Marx, and Max Weber [22]. 

In sociology, a range of interdisciplinary research methods are employed to examine and interpret the 
causes, meanings, and cultural influences behind various human behavioral trends, particularly in contexts of 
social interaction and shared environments. Yet, the large volumes of social data encountered in sociology are 
often marked by indeterminacy: they may be imprecise, incomplete, contradictory, mixed, biased, uninformed, 
redundant, irrelevant, ambiguous, unclear, or lacking meaningful structure. These qualities make it difficult to 
draw clear conclusions, highlighting the need for methods like neutrosophic sets /logic/probabilities 
/statistics/analysis/measure that can accommodate and interpret the indeterminate aspects of sociological data 
[21].  

For example, let us consider the classical idea of “equality” in the workplace. In conventional 
terminology, saying that a workplace W is equal means that W has complete equality across genders, ethnicities, 
and other social identities, which is regarded as 100% equal. Using neutrosophic notation, we can express this as 
W is (1, 0, 0), indicating that the workplace is 100% equal, 0% indeterminate-equal, and 0% unequal. However, 
additional research reveals that specific departments in W still have a wage difference based on gender, 
impacting around 15% of employees. We then change the description to (0.85, 0, 0.15)-equal, with W being 85% 
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equal and 15% unequal. Further investigation reveals that promotion policies are fairly ambiguous: around 10% 
of employees believe these procedures are fair, while others believe they lead to inequality. This raises 
uncertainty regarding W's equality, therefore we rephrase W's description as (0.75, 0.1, 0.15)-equal, with 75% 
equality, 10% unclear equality, and 15% inequality. This nuanced (T, I, F)-equality represents the complexity of 
equality in W significantly better than the first (1, 0, 0)-equal representation. 

A social situation is a setting in which individuals or groups interact, communicate, and influence one 
another's behaviors, perceptions, and attitudes, which are formed by cultural norms, roles, and social dynamics  
[17]. It is often difficult to determine whether a situation is right or wrong. What may be considered correct by 
one group of people could be viewed as incorrect by another, and unclear from a third perspective. Definitions of 
'right', 'wrong', and 'indeterminate' have evolved throughout time and range from one culture to another. They 
exhibit neutrosophical dynamics. For example we could consider a situation where a city government installs 
cameras in public spaces to enhance security and prevent crime. From the perspective of public safety, this 
action might be viewed as “right” because it helps protect citizens and deter criminal activity. However, from a 
privacy standpoint, many may see it as “wrong” due to the potential for misuse and the erosion of individual 
privacy. Meanwhile, some may view it as "unclear" or indeterminate, as it both protects and intrudes, depending 
on how it is used and regulated. 

Due to the great complexity of modern societies, it is virtually impossible to have accurate data or 
knowledge about any contemporary society. This heterogeneity in social norms often leads to ambiguity, 
indeterminacy, and inconsistencies, which are difficult to address using typical social research methodologies. 
Neutrosophic logic, an extension of fuzzy logic, offers a powerful mathematical framework for dealing with 
these challenges by permitting the representation of truth (T), falsity (F), and indeterminacy (I). In social 
situations, these three components might indicate whether a social rule or behavior is seen as correct, incorrect, 
or confusing. It is the main aim of current chapter to explore and establish the concept of neutrosophic social 
situations and how they can be modeled mathematically within this context. We achieve the aforementioned by 
using neutrosophic sets and appropriate measures and neutrosophic statistics, demonstrating how social rules 
may be described as partial truths, partial falsehoods, and partial indeterminacies. In this manner, we are capable 
of accurately reflecting the complexity and inconsistencies inherent in social reality. Neutrosophic statistics 
provides a way to analyze social data that includes uncertain or conflicting information. Social surveys, for 
instance, often have partial responses or contradictory opinions. Neutrosophic statistics accounts for these 
uncertainties by extending traditional statistical methods. Some researches on neutrosophic statistics can be 
found in [3-4, 16, 24].  

In a neutrosophic social situation, the definitions of right, wrong, and indeterminate are not fixed but 
rather are subject to subjective interpretation. The neutrosophic model allows us to represent these interpretations 
as triplets (T, I, F) or neutrosophic appurtenances. A neutrosophic appurtenance of an element x with respect to a 
given neutrosophic set has the form: x(T, I, F), where T is the degree of truth  of the element x, I is the degree of 
indeterminate-truth of x, and F the degree of x, where T, I, F are independent neutrosophic components, and T, I, 
F are subsets of the interval [0, 1] [21]. Neutrosophy studies triads, where if <A> is an item or a concept then the 
triad is (<A>, <neutA>, <antiA>) [21, 25]. In this context, we could state that Neutrosociology is based on 
triads, e.g. consider the concept <A> = capitalist economy, where the <antiA> = socialist economy, and the 
<neutA> = mixed economy. In this triad, the capitalist economy prioritizes free markets and private ownership, 
the socialist economy emphasizes state ownership and equality, and the neutral, mixed economy combines 
elements of both, balancing market freedoms with social welfare policies. 

The chapter is organized as follows: In section 2, introduces some concepts and basic operations are 
reviewed. In section 3, we present the suggested neutrosophic framework in a controversial social situation like 
polygamy. In section 4, the results obtained from previous section are discussed and interpreted in perspective of 
previous studies and of the working hypotheses. Finally, conclusions and further research are highlighted. 

 
BACKGROUND 

 

Definition 1 [20] Let 𝒰 be a universe. A neutrosophic set 𝒜 over 𝒰 is defined by  

𝒜 = {≺ 𝑢, (𝜇𝒜(𝑢), 𝑣𝒜(𝑢), 𝑤𝒜(𝑢)) ≻: 𝑢 ∈ 𝒰} 
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where, 𝜇𝒜(𝑢), 𝑣𝒜(𝑢) and 𝑤𝒜(𝑢) are called truth-membership function, indeterminacy-membership function and 
falsity- membership function, respectively. They are respectively defined by 

𝜇𝒜: 𝒰 →]−0, 1+[ , 𝑣𝒜: 𝒰 →]−0, 1+[ ,       𝑤𝒜: 𝒰 →]−0, 1+[  

such that 0− ≤ 𝜇𝒜(𝑢)+𝑣𝒜(𝑢)+𝑤𝒜(𝑢) ≤ 3+. 

Definition 2 [25] Let 𝒰 be a universe. An single valued neutrosophic set (SVN-set) over 𝒰 is a neutrosophic set 
over 𝒰, but the truth-membership function, indeterminacy-membership function and falsity- membership 
function are respectively defined by 

𝜇𝒜: 𝒰 → [0,1], 𝑣𝒜: 𝒰 → [0,1] ,       𝑤𝒜: 𝒰 → [0,1]  

such that 0 ≤ 𝜇𝒜(𝑢)+𝑣𝒜(𝑢)+𝑤𝒜(𝑢) ≤ 3. 

Definition 3 Let 𝒳 be a set of social data points representing individuals' opinions on a social issue. Each data 
point can be represented as a neutrosophic set 𝑋𝑖 = (𝑇𝑥𝑖

,𝐼𝑥𝑖
, 𝐹𝑥𝑖

) where 𝑇𝑥𝑖
, 𝐼𝑥𝑖

 and 𝐹𝑥𝑖
 are the truth, 

indeterminacy, and falsehood components of individual 𝑖’s opinion. The mean of these neutrosophic values can 
be computed by: 

𝜇𝛵 = 1

𝑛
 ∑ 𝑇𝑥𝑖

𝑛
𝑖=1                   (1) 

𝜇𝐼 = 1

𝑛
 ∑ 𝐼𝑥𝑖

𝑛
𝑖=1                             (2) 

𝜇𝐹 = 1

𝑛
 ∑ 𝐹𝑥𝑖

𝑛
𝑖=1                      (3) 

where 𝑛 is the number of data points. 

Definition 4 The variance of neutrosophic data, as described in the context of social situations, measures the 
spread or diversity of opinions or perceptions within a population regarding truth, indeterminacy, and falsehood. 
The variance of the neutrosophic data is calculated as: 

Var(𝑇) =  1
𝑛
 ∑ (𝑇𝑥𝑖

𝑛
𝑖=1 −  𝜇𝛵)2                   (4) 

and similarly for 𝐼 and 𝐹. 

Low variance values indicate a group’s cohesive and common perspective. This consistency may be very useful 
for decision-makers since it enables them to address the group's preferences efficiently and confidently. 

Definition 5 (Vector similarity measures for SVN-set) [5] The similarity measure helps assess how closely 
aligned two individuals’ (or groups’) views are on a given topic. In this chapter we propose a vector similarity 
measure in the vein of Jaccard similarity measure similar to the one proposed by Ye for SVN-sets [13].  

𝒮 (𝐴, 𝐵) =  
1

3 
(

𝑇𝐴 ×𝑇𝐵+ 𝐼𝐴 ×𝐼𝐵 + 𝐹𝐴 ×𝐹𝐵

𝑇𝐴 +𝑇𝐵+ 𝐼𝐴 +𝐼𝐵 + 𝐹𝐴 +𝐹𝐵
 )                 (5) 

This measure essentially tells us how closely aligned or similar the two sets of values are, typically resulting in a 
similarity score between 0 (no similarity) and 1 (perfect similarity). It answers the question: “How aligned are 
the views?” 

Definition 6 (Euclidean distance measure) [12] Distance measures can help to assess the divergence between 
social attitudes. Let A and B be two SVNSs in X. Then, the following Euclidean distance measure between A and 
B is defined as follows: 

𝒹(𝐴, 𝐵) =  √(𝑇𝐴−𝑇𝐵)2 + (𝐼𝐴−𝐼𝐵)2 + (𝐹𝐴−𝐹𝐵)2                              (6) 

Instead of suggesting alignment, equation (6) quantifies the degree of difference or separation between two sets 
of data, with a smaller distance indicating closer similarity and a larger distance indicating more divergence. It 
answers the question: “How different are the views?” 
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Assessment of Remote Work Policies Using the Neutrosophic Social 

Situation Framework 
 

Remote work regulations were quickly established during the COVID-19 epidemic, altering many 
traditional workplaces. While some workers see remote work as a beneficial move that boosts productivity, 
decreases commute stress, and enhances work-life balance, others are concerned about isolation, diminished 
cooperation, and work-life boundaries. The objective is to determine the perceived "truthiness," "falsehood," and 
"indeterminacy" of remote work regulations in a business setting. Employees' perspectives on the benefits and 
disadvantages of remote work differ, depending on aspects such as work-life balance, productivity, and team 
dynamics. This application will use neutrosophic values (T, I, and F) to represent employee opinions. The 
current scenario studied is a practical application of Neutrosociology, as it embodies the study of social 
situations involving subjective opinions with inherent uncertainties and partial truths 

In this application, the neutrosophic framework is applied as follows: 

• Truth (T): Measures the proportion of individuals in each department who feel positively about the 
remote work policy. 

• Indeterminacy (I): Captures the level of ambivalence or neutrality, indicating employees who see both 
benefits and drawbacks or who are unsure of their standpoint. 

• Falsehood (F): Quantifies the proportion of employees who feel negatively about the policy. 

Assume we have the following ratings from employees in Departments A, B, and C: 

Table 1. Ratings of employees 

Department Employee Truth (T) Indeterminacy (I) Falsehood (F) 

A 1 0.8 0.1 0.1 
A 2 0.7 0.2 0.1 
A 3 0.9 0.05 0.05 
A 4 0.75 0.15 0.1 
A 5 0.85 0.1 0.05 
B 1 0.6 0.3 0.1 
B 2 0.5 0.4 0.1 
B 3 0.55 0.35 0.1 
B 4 0.65 0.25 0.1 
B 5 0.6 0.3 0.1 
C 1 0.3 0.5 0.2 
C 2 0.4 0.4 0.2 
C 3 0.35 0.45 0.2 
C 4 0.3 0.5 0.2 
C 5 0.4 0.4 0.2 
 

Based on the results shown in Table 1 we calculate the average (mean) values of T, I and F for each 
department of the organization using equations (1), (2) and (3). 

For Department A: 𝜇𝛵 = 0.8+0.7+0.9+0.75+0.85

5
= 0.8 , 𝜇𝐼 = 0.12 and 𝜇𝐹 =0.08.  

Thus, 𝐷𝑒𝑝𝑡𝐴 = (0.8, 0.12, 0.08). 

In the same way we get  𝐷𝑒𝑝𝑡𝐵 = (0.5, 0.32, 0.1) and 𝐷𝑒𝑝𝑡𝐶  = (0.35, 0.45, 0.2). 

Next we calculate the variance values for T, I and F for each department by using equation (4). 

For Department A: Var (T) = (0.8−0.8)2+(0.7−0.8)2 +(0.9−0.8)2  +(0.75−0.8)2 +(0.85−0.8)2   

5
 = 0.006 

Var (I) = 0.0022 
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Var (F) = 0.0012 

The above results show that Department A has low variance, indicating general agreement amongst the 
employees about remote work policies. 

Following the same logic, we get the next results: 

For Department B: Var (T) =0.0026 , Var (I)=0.0026 , and Var (F)=  0.0 

For Department C: Var (T) =0.002 , Var (I)=0.002 , and Var (F)= 0.0  

From the results obtained it can be observed that departments B and C exhibit low and nearly identical variances 
across T, I, and F, indicating a high degree of consensus within each department. 

In order to calculate the alignment of viewpoints of employees between the departments of the 
organization we can calculate their respective similarity measure as expressed in equation (5). 

By applying the aforementioned equation we have the following results: 

𝒮 (𝐴, 𝐵) =0.837 

𝒮 (𝐴, 𝐶) =0.783 

𝒮 (𝐵, 𝐶) =0.789 

Given the high degree of alignment between departments A and B, policies that promote flexibility and 
productivity might be implemented universally between the departments. However, for A and C, as well as B 
and C, policy or collaborative methods may need to be adjusted to suit the different preferences and 
requirements. In this context, understanding the varied levels of similarity within departments enables managers 
to customize their leadership strategies, providing both unity and focused interventions to overcome differences. 

Using the Euclidean distance measure, we can quantify the difference in perceptions between 
departments by calculating the distance between their neutrosophic scores in the three-dimensional space defined 
by Truth (T), Indeterminacy (I), and Falsehood (F). 

In our example:   𝐷𝑒𝑝𝑡𝐴 = (0.8, 0.12, 0.08) 

   𝐷𝑒𝑝𝑡𝐵 = (0.5, 0.32, 0.1) and 

   𝐷𝑒𝑝𝑡𝐶  = (0.35, 0.45, 0.2) 

Now, we can calculate, for example, the Euclidean distance between departments A and B by using 
equation (6): 

𝒹(𝐴, 𝐵) = 0.298 

Next we can calculate the distance measures for departments A and C and B and C respectively: 

𝒹(𝐴, 𝐶) = 0.571 

𝒹(𝐵, 𝐶) = 0.282 

When we apply these findings to different departments' perspectives on remote work, we may conclude 
that departments with closer views, such as departments A and B (with a distance of 0.298) and departments B 
and C (0.282), may be better aligned in their acceptance and implementation of remote work. These departments 
are likely to work together efficiently to design rules that balance remote work with in-office requirements, 
making transfers easier and reducing possible disputes. Managers will need to engage in greater communication 
with departments A and C (0.571), which show more varied perspectives, to address problems such as isolation 
and cooperation challenges.  
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Conclusions 
Sociological studies look at social structures, behaviors, institutions, and interactions within societies. 

They involve examining how social influences including culture, norms, legislation, and technology shape and 
are shaped by individuals and communities. A classical  sociological concept, such as: society, social class, 
social group, religious community, social relationship, principle, law, welfare, government regulation, political 
party, sexuality, family, culture, etc. can be represented as a real world neutrosophic triad 
(<concept>,<neutconcept>,<anticoncept>) and can be neutrosophicated into a (T,I,F)-concept.  

The social environment is very subjective, with several opposing trends and perspectives. There is little 
agreement on social notions, and a significant amount of how-I'd-like-to-be is sadly included into the researcher's 
social model. Neutrosophic social situations are scenarios within social contexts that involve complex and often 
ambiguous interactions that incorporate the concept of neutrosophy which acknowledges the presence of 
indeterminacy, ambiguity, and contradictions in human cognition and perception, recognizing that phenomena 
often exist in states of partial truth, falsehood, and indeterminacy simultaneously. In this book chapter we 
suggest for the first time in related literature a neutrosophic mathematical framework to model, in a rigorous 
way, the complexities present in social interactions. 

The contributions of this book chapter can be summarized as follows: 

1. The chapter suggests a novel framework for analyzing social situations using neutrosophic logic/, which 
includes indeterminacy with truth and falsehood. Our approach demonstrates how neutrosophic 
sets/measures and statistics could be used to model the complexities of social norms and behaviors. The 
suggested framework, which uses mathematical formulations for truth, indeterminacy and falsehood, 
represents more accurately the nuanced nature of social perceptions and interactions than traditional 
sociological models. 

2. The chapter provides a foundation for using neutrosophic approaches in multi-criteria decision-making 
situations in social settings. This is especially effective in circumstances where diverse viewpoints and 
perspectives must be balanced, such as policymaking and organizational decisions. 

3. Contribution to the theoretical foundations of multi-criteria decision making methods by integrating 
neutrosophic sets/measures into the neutrosophic statistics framework, addressing the limitations of 
conventional methods in handling ambiguous and indeterminate information.  

 

Future Research Directions   
Neutrosophic sociological research can assist organisations, enterprises, governments, and policymakers 

make judgements regarding their businesses or groups of individuals. By analyzing the degrees of acceptance, 
rejection, and indifference within societal patterns, neutrosophic models can help anticipate potential conflicts, 
cooperation, or areas of disengagement, offering valuable insights for strategic planning and policy development. 
By studying societal patterns, it may be able to predict (to some extent) potential disputes, cooperation, or 
ignorance among people. 

For example, in conflict resolution observed in organizations, we could employ neutrosophic models 
that could help identify areas of shared understanding and ambiguous beliefs, thus boosting good 
communication, time management, cooperation and organizational productivity [15]. Expanding our framework 
to policy analysis may allow for a better understanding of public opinion, which frequently incorporates 
polarized and unclear perspectives, especially on sensitive matters like healthcare, privacy, and social justice [6, 
14, 18-19]. Integrating neutrosophic concepts into policy modelling could assist decision-makers in balancing 
opposing ideas and making more inclusive judgements that consider uncertain perspectives. Furthermore, 
merging neutrosophic logic with artificial intelligence may result in more advanced algorithms in sentiment 
analysis, social behavior prediction, and other areas where data is inherently uncertain [1-2, 9-11, 13, 23]. This 
fusion could provide a valuable tool for analyzing trends in social media, consumer feedback, and other 
platforms where opinions are multifaceted and contradictory. 
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ABSTRACT 

  The truth membership function, indefiniteness, and falsification represent degrees of membership within 

the Neutrosophic set, offering a nuanced approach to characterizing elements based on their association with 

truth, uncertainty, and falsehood. The Neutrosophic paradox set is introduced as a concept that examines the 

ambiguity of whether a set is true or false, encompassing all three membership functions. It also has interval 

analysis to understand the uncertainty complex. This study calculates the alpha cut at different levels, including 

lower, middle, and higher levels, which control the degrees of membership within the Neutrosophic set. Also, the 

distance between the parachute diver and ground level was determined using Harfa analysis and pixel profile to 

determine the distance and how long it took to land.  

Keywords: Neutrosophic set, Neutrosophic paradox set, Interval analysis, alpha cut.   

AMS classification: 03EXX, 94DXX 

INTRODUCTION 

Neutrosophy, a term coined by Florentin Smarandache, refers to the study of concepts and ideas that 

exist in the real between true and false. It explores contradictory, incomplete, or ambiguous concepts that cannot 

be easily categorized under binary logic [1, 2]. By acknowledging the existence of conflicting, undefined, or 

ambiguous elements, neutrosophy provides a more nuanced approach to understanding complex real-world 

scenarios. The origins of neutrosophy are linked to smarandache's work [3] in the late 20th century, where he 

introduced the concept as a means of addressing the complexities and uncertainties inherent in various fields of 

knowledge [4, 5]  

The crisp logic, fuzzy, and neutrosophic sets are all generalized into pathogenic sets, defined by 

attribute values for each constituent component. An evaluation and description of the indetermination of each 

element in a classical set was not possible [6, 7]. The fuzzy set established by Zadeh [8] has been applied in 

several real-world scenarios to address uncertainty [9]. A powerful and universal formal framework, known as 

the neutrosophic set [3], extends and simplifies the classic, fuzzy [8], and ambiguous set.  This data is frequently 

ambiguous and lacks a precise definition, often manifesting in forms such as natural language imprecise data or 

neuromorphic data. This complexity has led to an increased interest in neutrosophic set theory and has lower and 
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upper levels of alpha cut [10], which excels in handling uncertainty and ambiguity in data. Research in this area 

addresses the challenges of analyzing and interpreting such data accurately [10]. 

Neutrosophic sets have gained considerable attention in various research areas due to their ability to 

address uncertainty, impression, and indeterminacy [11, 12]. Nguyen et al. [13]  provided an extensive survey on 

the applications of neutrosophic sets in biomedical diagnoses, emphasizing their utility in managing uncertainty 

in medical data. Peng and Dai [14] offered a bibliometric analysis that reviewed over two decades of 

neutrosophic set research, identifying key trends and future directions in the field. Pramanik [15] explored the 

integration of a rough set theory [16] with neutrosophic sets [3, 17, 18], presenting a new methodology for 

dealing with vague and imprecise information [19]. The theoretical foundations and applications of neutrosophic 

sets are further explored in edited volumes by Smarandache and Pramanik [20, 21, 22], emphasizing the most 

recent inclinations in neutrosophic theories. These volumes highlighted the board applications of neutrosophic 

sets in areas such as communication, management, and information technology [23].  

Section 2 explains the literature review and preliminaries of the Neutrosophic paradox sets, exploring 

their relevance with examples such as the Parachute dive and voting scenario. In the parachute dive, 

Neutrosophic sets model the uncertainty surrounding factors like wind speed, altitude, and timing, in the voting 

scenario, they address conflicting opinions and undecided voters, offering a more nuanced approach to decision-

making. This section introduces Neutrosophic Interval Analysis, which examines the interval between 

Neutrosophic membership functions in truth, indeterminacy, and falsity. Section 3 explains the analysis supports 

and leads a mid-level of alpha cuts like lower, middle, and higher propositions, also using Harfa software and 

pixel profile to calculate the distance between the diver and the ground level offering a nuanced approach to 

understanding and managing the complexities of this scenario. 

 
BACKGROUND 

 

Definition 1. [23] The Significance of Paradoxicity 

 A suggestion that is both true or false in the same way is termed a paradox. Thus, assume that the 

assertion is true, it follows that it is false; conversely, assume that the statement is false, it follows that is true.  

Definition 2. [23] The Significance of a Semi-Paradox 

A semi-paradox is a statement that, if being true, leads to being false(but not reciprocally) or, given 

being false, leads to being true(but not reciprocally). Accordingly, the statement contains 0.50 (or 50%) of a 

paradox and 0.50 (or 50%) of a non-paradox.  

Definition 3. [24] Neutrosophic Interval Analysis  

Neutrosophic interval analysis is an extension of interval analysis that incorporates neutrosophic 

concepts to handle uncertainty, indeterminacy, and ambiguity. Interval analysis deals with uncertainty by 

representing variables as intervals rather than precise values. Neutrosophic interval analysis further extends this 

framework to accommodate neutrosophic membership degrees, which capture the degrees associated with 

intervals. 
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Definition 4. Neutrosophic Set of Parachute Dive and Voting  

Neutrosophic sets extend classical set theory by incorporating three membership functions: truth, 

indeterminacy, and falsehood. Each function assigns a value to an element in the set, indicating the set (truth), is 

uncertain or ambiguous (indeterminacy), or does not belong to the set (falsehood). This approach provides a 

more nuanced and comprehensive framework for dealing with uncertainty and ambiguity, making neutrosophic 

sets useful in various fields where traditional binary classifications fall short. 

0 ≤ 𝑇𝐴(𝑧) + 𝐼𝐴(𝑧) + 𝐹𝐴(𝑧) ≤ 3 

In the way of the Parachute Dive scenario, let 𝑧 represent the diver’s position at a given time 𝑡. The neutrosophic 

membership functions can model 𝑇𝐴(𝑧) as representing the likelihood that the diver is at the correct altitude for a 

safe landing, 𝐼𝐴(𝑧) is uncertainty due to wind speed, atmospheric conditions, or equipment, 𝐹𝐴(𝑧) as the 

likelihood that the skydiver is not at a safe altitude. In the Voting scenario 𝑧 is represented by the membership 

functions like 𝑇𝐴(𝑧) is the degree of support for a candidate or policy, 𝐼𝐴(𝑧) is the degree of indecision or 

neutrality, 𝐹𝐴(𝑧) is represented as the degree of opposition to the candidate or policy.   

Definition 4.1 Illustration- Diver's Free Fall Calculation 

Consider the Parachute diving scenario where the diver encounters varying uncertainty about the 

direction and intensity of the wind. Also, the terrain below having the irregularities represented by the Siegel 

disc fractals, additionally counts the uncertainty of the landing location. The jumper waits 11.5 seconds before 

deploying the parachute, during which time they experience free fall without any air resistance. Starting with an 

initial vertical velocity (z-axis) of zero, the jumper accelerates due to gravity until deploying the parachute. 

 
Figure 1 Parachute dive 

 

Gravitational force =-9.80 m/𝑠2 

𝑍(𝑡) = 𝑍𝑜 + 𝑉𝑍𝑜
𝑡 + 0.5𝑎𝑍𝑡2 

𝑧(11.5) = 4000 + 0 + 0.5(−9.80) (11.5)2 

=3351.975m.  
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Therefore, the parachute diver distance (interval analysis) between the terrain and the diver is to be 3351.975 

meters/seconds.  

            

Figure 2 Pictorial Representation of the above example 4.1 

Definition 4.2 Illustration- Neutrosophic paradox in voting 

Consider a voting scenario where the truth membership of a candidate engaging in an election is high 

(T), but the indefiniteness membership (I) designates uncertainty due to potential recounts or legal challenges 

and it is said to be Neutrosophic paradox sets. However, the falsity membership (F) recommends that there is a 

possibility of the election outcome being contested. By applying neutrosophic alpha cuts at different levels (e.g 

𝛼1 lower,  𝛼2 medium, and 𝛼3 upper level), it can identify subsets of the neutrosophic set that represent varying 

degrees of certainty or ambiguity in the election outcome, helping to resolve the paradox. 

Definition 4.3 Alpha Cuts of Lower, Middle, and Upper  

• Lower Alpha Cut: For a set P and 𝛼1 ∈ [0,1], the lower alpha cut is denoted L (P, 𝛼1) and includes 

elements x ∈ P for which the membership degree is at least 𝛼1. 

• Middle Alpha Cut: For a set P and 𝛼2 ∈ [0,1], the middle alpha cut is denoted M (P, 𝛼2) and includes 

elements x ∈ P for which the membership degree is at least 𝛼2. 

• Upper Alpha Cut: For a set P and 𝛼3 ∈ [0,1], the upper alpha cut is denoted U (P, 𝛼3 ) and includes 

elements x ∈ P for which the membership degree is at least 𝛼3 [10]. 

 

Methods 

The alpha-cut levels, Harfa fractals, and Pixel profile are used to analyze the distance between the 

parachute diver and the ground. The diver's location concerning the ground may be determined by analyzing the 

lower, middle, and upper alpha levels. Better decision-making and safety precautions are made possible by this 

method's assistance in locating crucial locations and possible hazards throughout the fall. 
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Lower-Level and Upper- Level 𝜶 −  𝑪𝑼𝑻 Neutrosophic Paradox Set 

Let 𝑃 said to be an NS of paradox in a non-void set 𝑋. For any  𝛼1,2,3 ∈ [0,1], then 𝛼1 lower,  𝛼2 medium and 𝛼3 

upper level 𝛼 of 𝑃 be noted by 𝐿(𝑃, 𝛼1) and 𝑀(𝑃, 𝛼2) and 𝑈(𝑃, 𝛼3) are defined as  

   L (P, 𝛼1) = {𝑥 ∈ 𝑋 ∣ 𝑇P (𝑥) ≥ 𝛼1, 𝐼P (𝑥) ≥ 𝛼1, 𝐹𝐴 (𝑥) ≤𝛼1}  and  

M (P, 𝛼2) = {𝑥 ∈ 𝑋 ∣ 𝑇P (𝑥) ≤ 𝛼2, 𝐼P(𝑥) ≤ 𝛼2, 𝐹P (𝑥) ≥ 𝛼2}. 

U (P, 𝛼3) = {𝑥 ∈ 𝑋 ∣ 𝑇P (𝑥) ≤ 𝛼3, 𝐼P(𝑥) ≤ 𝛼3, 𝐹P (𝑥) ≥ 𝛼3}.  

 

Figure 3 Neutrosophic set of membership functions 

Proposition 1  

i) 𝑃 ⊆ 𝑄 ⇒ 𝐿(𝑃, 𝛼1) ⊆ 𝐿(𝑄, 𝛼1) 

ii) 𝑃 ⊆ 𝑄 ⇒ 𝑀(𝑃, 𝛼2) ⊆ 𝑀(𝑄, 𝛼2) 

iii) 𝑃 ⊆ 𝑄 ⇒ 𝑈(𝑃, 𝛼3) ⊆ 𝑈(𝑄, 𝛼3) 

iv) 𝛼3 ≥ 𝛼2 ≥ 𝛼1 ⇒  𝑈(𝑄, 𝛼3)  ⊇ 𝑀(𝑄, 𝛼2) ⊇ 𝐿(𝑃, 𝛼1)   

v) 𝐿(⋂ 𝑃𝑖𝑖𝜖𝐽  𝛼1) =  ⋂ 𝐿( 𝑃𝑖𝑖𝜖𝐽  𝛼1) 

vi) 𝑀(⋂ 𝑃𝑖𝑖𝜖𝐽  𝛼2) =  ⋂ 𝑀 ( 𝑃𝑖𝑖𝜖𝐽  𝛼2) 

vii) 𝑈(⋂ 𝑃𝑖𝑖𝜖𝐽  𝛼3) =  ⋂ 𝐿( 𝑃𝑖𝑖𝜖𝐽  𝛼3) 

viii) Therefore 𝑈(𝑃, 𝛼3) ⊆  𝑀(𝑃, 𝛼2) ⊆  𝐿(𝑃, 𝛼1) 

Proof  

  In set containment, if set P is a subset of Q, then the lower-level alpha cut 𝛼1 of P is also a subset of the 

lower-level alpha cut 𝛼1of Q. This relationship applies consistently across all alpha cut levels, indicating a 

hierarchical structure. In the upper-level alpha cut 𝛼3, the measure of Q is greater than the middle-level 𝛼2 and 

lower level 𝛼1, reflecting an increasing degree of certainty. For the intersection of several sets within the same 

alpha cut level, such as in cases (v), (vi), and (vii), the lower-level intersection will match the intersection of 

individual lower levels. This consistency provides a solid foundation for analysis across different alpha-cut 

levels [10]. 

Proposition 2  

i) 𝐿 (𝑃 ∪ 𝑄, 𝛼1) = 𝐿(𝑃, 𝛼1) ∪ 𝐿(𝑄, 𝛼1) 

ii) 𝑀 (𝑃 ∪ 𝑄, 𝛼2) = 𝑀(𝑃, 𝛼2) ∪ 𝑀(𝑄, 𝛼2) 
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iii) 𝑈 (𝑃 ∪ 𝑄, 𝛼3) = 𝑈(𝑃, 𝛼3) ∪ 𝑈(𝑄, 𝛼3) 

iv) 𝐿 (𝑃 ∩ 𝑄, 𝛼1) = 𝐿(𝑃, 𝛼1) ∩ 𝐿(𝑄, 𝛼1) 

v) 𝑀 (𝑃 ∩ 𝑄, 𝛼2) = 𝑀(𝑃, 𝛼2) ∩ 𝑀(𝑄, 𝛼2) 

vi) 𝑈 (𝑃 ∩ 𝑄, 𝛼3) = 𝑈(𝑃, 𝛼3) ∩ 𝑈(𝑄, 𝛼3) 

vii) 𝑃 = 𝑄 ⇔ 𝐿(𝑃, 𝛼1) =  𝐿(𝑄, 𝛼1), ∀𝛼1 ∈ [0,1]  

viii) 𝑃 = 𝑄 ⇔ 𝑀(𝑃, 𝛼2) =  𝑀(𝑄, 𝛼2), ∀𝛼2 ∈ [0,1] 

ix) 𝑃 = 𝑄 ⇔ 𝑈 (𝑃, 𝛼3) =  𝑈(𝑄, 𝛼3), ∀𝛼3 ∈ [0,1]  

Proof 

(i)L(P⋃Q, 𝛼1) =  {  x ∈  X ∣∣  TP⋃Q (x) ≥  𝛼1, I P⋃Q (x) ≥  𝛼1, F P⋃Q (x) ≤  𝛼1 } 

 =  {  x ∈  X ∣∣  TP (x) ⋁ TQ(x) ≥  𝛼1, I P(x)⋁I Q (x) ≥  𝛼1, F P (x) ⋀ F Q(x) ≤  𝛼1 } 

=  {  x ∈  X ∣∣  TP (x) ≥  𝛼1  ⋃ T Q(x) ≥  𝛼1, IP (x) ≥  𝛼1  ⋃ I Q(x) ≥  𝛼1, F P (x) ≤  𝛼1  ⋃ F Q ≤  𝛼1 } 

=  {  x ∈  X ∣∣  TP (x) ≥  𝛼1, IP (x) ≥  𝛼1, FP (x) ≤  𝛼1 } 

⋃ {  x ∈  X ∣∣  TQ (x) ≥  𝛼1, IQ (x) ≥  𝛼1, FQ (x) ≤  𝛼1 } 

=  L(P, 𝛼1) ⋃ L(Q, 𝛼1) Hence, L(P⋃Q, 𝛼1)  =  L(P, 𝛼1) ⋃ L(Q, 𝛼1). 

In cases (ii) and (iii), as well as in cases (iv), (v), and (vi), the intersections of lower, medium, and upper levels 

of alpha cuts are observed between sets P and Q.  

vi) The variables, 𝑃 = 𝑄 ⇒ 𝑇𝑃(𝑥) = 𝑇𝑄(𝑥), 𝐼𝑃(𝑥) = 𝐼𝑄(𝑥), 𝐹𝑃(𝑥) = 𝐹𝑄(𝑥)∀𝑥 ∈ 𝑋. 

Undoubtedly,  L(P, 𝛼1) =  {  x ∈  X ∣∣  TP (x) ≥   𝛼1, IP (x) ≥   𝛼1, FP (x) ≤   𝛼1 } 

 and L(Q, 𝛼1) =  {  x ∈  X ∣∣  TQ (x) ≥   𝛼1, IQ (x) ≥   𝛼1, FQ (x) ≤   𝛼1 }. 

But  P = Q ∀ x ∈  X. Hence, L(P, 𝛼1)  =  L(Q, 𝛼1), ∀  𝛼1  ∈  [0, 1]. 

On the other hand, if ∀ α1 ∈ [0, 1], then 𝐿 (P, 𝛼1) = 𝐿 (Q, 𝛼1)but P ≠ Q. Furthermore, P ≠ Q only if some 

𝑦 ∈ 𝑋 exists in which case 𝑇P (x) ≠ 𝑇Q (x), 𝐼P (x) ≠ 𝐼Q (x), and 𝐹P (x) ≠ 𝐹Q (x). Let 𝛾 = 𝑇Q (x) = 𝐼Q (x) = 𝐹Q 

(x) and suppose, lacking of scope, that 𝑇P (x) ≤ 𝑇Q (x), 𝐼P (x) ≤ 𝐼Q (x), and 𝐹P (x) ≤ 𝐹Q (x). The case where x ∉ 

𝐿 (P, 𝛾) yet x ∈ 𝐿 (Q, 𝛾) must exist. It is contradictory when 𝐿 (P, 𝛼1) and 𝐿 (Q, 𝛼1)  are the same [10]. 

 

Harfa Fractal Analysis of Parachute Dive 

The HarFA fractal analysis, created by the Technical University of Bino in the Czech Republic, gives unique 

insights into complex systems through the examination of fractal patterns in diverse photographs. In the context 

of a parachute descent, this study is especially valuable for understanding the terrain below and the 

environmental elements influencing the drop. 
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Figure 4 HarFa analysis of parachute dive 

The above image represents the analysis of a parachute dive using HarFA to examine the fractal structure of the 

landscape, revealing abnormalities and details that are difficult to see with the human eye. This knowledge 

allows divers to anticipate probable landing hazards, such as barriers or uneven surfaces, which improves their 

decision-making throughout the descent. 

 

Pixel Profile Using in Parachute Dive 

In a parachute dive, the pixel profile refers to a graphical representation of the diver's altitude and position 

relative to the ground as captured by various imaging technologies, such as drones or ground-based sensors. This 

profile consists of pixel data that provides detailed information about the terrain, wind patterns, and the diver's 

distance from the ground level. Here’s how the pixel profile is used in parachute diving: altitude Measurement, 

Terrain Analysis, Environmental Factors, Data Interpretation, and Safety Enhancements.  

 
 

Figure 5 Distance between the parachute dive to ground level  
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Fig 5 denotes the height of a parachute diver over time, with the x-axis representing time in seconds and the y-

axis indicating height in meters. A curved line shows the diver’s height decreasing as time progresses, starting at 

2300 meters at 𝑡 = 2 seconds, marked as 𝑧(2) = 2300. A dashed horizontal line represents the ground level, 

while another dashed line indicates the parachute deployment time. A vertical red line connects a specific height 

to the ground, highlighting the distance or time interval during the descent, with the calculated value displayed as 

144.0. The tools on the right-hand panel, including Line, select, and Erace, suggest interactive features for 

annotating and measuring points on the graph.  

 
Figure 6 Pixel profile from (191,58) to (194,202) 

Conclusions 
Neutrosophic sets focus on truth, indefiniteness, and falsification, allowing for effective management of 

uncertainty in parachute diving scenarios. By employing alpha cuts at varying confidence levels lower, medium, 

and upper divers can accurately assess their altitude and proximity to the ground, enhancing decision-making 

regarding parachute release and landing tactics. This systematic approach helps resolve the ambiguity inherent in 

determining the safest moment to deploy the parachute. Additionally, incorporating Harfa fractals provides a 

deeper understanding of complex environments by evaluating the terrain's irregularities and wind patterns. This 

combined approach of neutrosophic methods and Harfa fractals equip divers with essential insights, ultimately 

leading to improved safety and effectiveness during dives, enabling them to navigate uncertainties with greater 

precision and confidence. The pixel profile in a parachute dive is a crucial tool for measuring altitude, analyzing 

terrain, and understanding environmental conditions, ultimately enhancing safety and effectiveness during the 

dive. 
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ABSTRACT 

In the rapidly evolving field of medical diagnostics, integrating advanced mathematical models and 

security protocols is paramount for enhancing accuracy and protecting patient data. This paper presents a 

detailed analysis of Gaussian Neutrosophic Sets, a mathematical framework for handling uncertainty, Kurtosis 

which describes the shape of probability distributions especially the tails, and Gaussian Semantic Security 

ensuring data confidentiality in cryptographic applications within the context of medical diagnosis.  Gaussian 

Neutrosophic Sets handle the inherent uncertainty and vagueness in medical data, providing a robust framework 

for more reliable diagnostic outcomes. By getting the result of the graphical representation is the same as the 

kurtosis diagram. So, using the kurtosis measure to calculate the filling, gum cleaning oral checkup and crown in 

medical diagnosis to identify the leptokurtic, mesokurtic, and platykurtic using JASP is a new statistical tool by 

combining these methodologies, to improve diagnostic precision while safeguarding sensitive medical 

information. 

Keywords: Neutrosophic sets, Gaussian neutrosophic sets, Kurtosis, medical diagnosis.  

AMS classification 94DXX, 13PXX 

INTRODUCTION 

In medical diagnostics, uncertainty arising from patient variability, measurement errors, and incomplete 

information presents significant challenges. In particular, Gaussian Neutrosophic Sets (GNS), which efficiently 

characterize uncertainties with Gaussian distributions, offer a potent paradigm for handling this uncertainty [19]. 

To improve diagnosis accuracy in uncertain situations, this study investigates the use of GNS in combination 

with kurtosis, a crucial statistical metric that describes the tails of probability distributions [1, 2]. In 1998, 

Florentin Smarandache proposed a neutrosophic set as a membership function similar to truth, falsehood, and 

indeterminacy [17, 18]. By introducing bipolar single-valued neutrosophic graph theory, Broumi et al. advanced 

this topic and demonstrated the adaptability of neutrosophic sets in graph applications [3, 4].  
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Extensive research on single-valued neutrosophic graphs by Broumi et al. demonstrated their potential 

in diverse decision-making scenarios, further enriched by Das et al. (2020), who provided a comprehensive 

framework for utilizing neutrosophic fuzzy sets in practical decision-making processes. Deli and Subas 

developed a ranking method for single-valued neutrosophic numbers, demonstrating its applicability in various 

contexts, and Dhiman and Sharma illustrated the practical relevance of neutrosophic sets in fuzzy logic inference 

systems for COVID-19 identification and prevention [5, 6, 7]. 

Neutrosophic sets have proven to be effective in dealing with ambiguity, inconsistency, and missing 

knowledge in various domains. Their evolution has been thoroughly chronicled, with Nguyen et al. (2019) 

demonstrating their uses in biomedical diagnosis and Peng and Dai (2020) doing a bibliometric analysis of two 

decades of research [11, 12]. Building on this basis, Pramanik (2020, 2022) proposed novel extensions such as 

rough neutrosophic and single-valued neutrosophic sets, which broadened their applicability. Smarandache and 

Pramanik's edited volumes (2016, 2018) also emphasize advanced approaches and developing developments in 

neutrosophic theory, demonstrating its application to real-world issues [13, 14, 15]. These advancements have 

rendered neutrosophic sets an essential tool in decision-making procedures, notably multi-criteria decision-

making (MCDM). 

Major progress has been made in the MCDM sector in terms of neutrosophic approaches. Liu et al. 

(2014) established generalized neutrosophic number Hamacher aggregation operators for group decision-

making, while Mondal et al. (2018) created a tangent similarity measure to refine decision-making under 

uncertainty [10, 11]. Recent advances have focused on Gaussian neutrosophic sets, with Karaaslan 

demonstrating their usefulness in handling Gaussian distribution data and investigating their correlation 

coefficients [8, 9, 12]. These contributions demonstrate the flexibility of neutrosophic sets and their derivatives 

in dealing with complex, uncertain circumstances. This study extends these basic efforts by highlighting the use 

of Gaussian neutrosophic sets in MCDM frameworks to solve contemporary difficulties. Kurtosis is a statistical 

measure that describes the fatness of the tails in a probability distribution. In many real-world scenarios, 

including medical diagnostics and financial risk assessment, data often exhibit indeterminacy. In the domain of 

medical diagnostics, neutrosophic sets have shown great potential. Research by Şahin and Liu on the correlation 

coefficient of single-valued neutrosophic hesitant fuzzy sets added another dimension to their practical utility. 

  

This paper presents a novel approach to understanding kurtosis, a statistical measure that describes the 

shape of a probability distribution's tails. By integrating the concept of indeterminacy, categorize kurtosis into 

three distinct types: mesokurtic which represents a state of indeterminacy; platykurtic indicating falsity; and 

leptokurtic which signifies truth. This new categorization allows for a more nuanced evaluation of distribution 

characteristics, especially in scenarios where data is uncertain or ambiguous. The statistical programming 

language JASP makes it easy to handle high-level and unpredictable data quickly.   
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BACKGROUND 
 

Definition 1. Gaussian Neutrosophic Set  

A Neutrosophic number is said to be a Gaussian neutrosophic number 𝐺𝑁𝑁(𝜇, 𝜎) 

𝑓(𝑥) =
1

√2𝜋𝜎2

𝑒𝑥𝑝−(𝑥−𝜇)2

2𝜎2
 

The membership functions  

i) truth𝑇(𝑥)~𝑁(𝜇𝑇 , 𝜎𝑇
2) as  

𝑇(𝑥) =
1

√2𝜋𝜎𝑇
2

𝑒𝑥𝑝−(𝑥−𝜇𝑇)2

2𝜎𝑇
2

 

ii) indeterminacy𝐼(𝑥)~𝑁(𝜇𝐼 , 𝜎𝐼
2)as  

𝐼(𝑥) =
1

√2𝜋𝜎𝐼
2

𝑒𝑥𝑝−(𝑥−𝜇𝐼)2

2𝜎𝐼
2

 

iii)  falsity 𝐹(𝑥)~𝑁(𝜇𝐹 , 𝜎𝐹
2) as  

𝐹(𝑥) =
1

√2𝜋𝜎𝐹
2

𝑒𝑥𝑝−(𝑥−𝜇𝐹)2

2𝜎𝐹
2

 

Where 𝜇, , 𝜇𝑇 , 𝜇𝐼 , 𝜇𝐹 denotes mean and 𝜎, 𝜎𝑇 , 𝜎𝐼 , 𝜎𝐹 denotes standard deviations of the distribution. The sample 

values illustrate the variability and randomness captured by the Gaussian Neutrosophic Set approach.  

 

 

Figure 1  Gaussian Neutrosophic sets 

Figure 1 represents the membership functions of truth, indeterminacy, and falsity with the peak values of Truth 

(blue) between (0.0, 0.200), Indeterminacy (green) between (0.0, 0.085), Falsity (red) between (0.0, 0.140).  

TABLE 1 Gaussian Neutrosophic sets 

Let us consider Figure 1 with the case of the peakedness ranges between (-2.5 to 2.5) calculations are given in 

below Table1 as follows  
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Notation  X- values T(x)=(𝝁𝑻 = 𝟎. 𝟎, 𝝈𝑻 =

𝟎. 𝟐𝟎) 

I(x)=(𝝁𝑰 = 𝟎. 𝟎, 𝝈𝑰 =

𝟎. 𝟎𝟖𝟓) 

I(x)=(𝝁𝑰 = 𝟎. 𝟎, 𝝈𝑰 = 𝟎. 𝟎𝟖𝟓) 

−∞ -2.5 4. 68 × 10−34 3.16 × 10−187 4.64 × 10−34 

∞ 2.5 4.68 × 10−34 3.16 × 10−187 4.64 × 10−34 

 

Definition 2.  Semantic Security  

Semantic security in cryptography ensures that a ciphertext reveals no information about the plaintext 

without the decryption key, even if the adversary has unlimited computational resources. To ensure semantic 

security in neutrosophic sets, one must ensure the encryption methods used to protect the data do not reveal 

information about the Neutrosophic sets truth, indeterminacy, or falsity membership functions.  

Definition 3.  Neutrosophic Encryption and Decryption  

Consider encrypting neutrosophic sets of membership functions, such as truth (T), indeterminacy (I), 

and falsity (F), using a cryptographic key and modular arithmetic (mod n). This encryption process generates an 

encrypted neutrosophic set, which enhances security by ensuring that the membership values are kept 

confidential and protected from unauthorized access. 

𝐸(𝑇(𝑥)) = (𝑇(𝑥) + 𝑘𝑇)  𝑚𝑜𝑑 𝑛 

𝐸(𝐼(𝑥)) = (𝐼(𝑥) + 𝑘𝐼)  𝑚𝑜𝑑 𝑛 

𝐸(𝐹(𝑥)) = (𝐹(𝑥) + 𝑘𝐹)  𝑚𝑜𝑑 𝑛 

Where 𝑘𝑇 = 3, 𝑘𝐼 = 4, 𝑘𝐹 = 5 and n=10. Then  

𝐸(𝑇(𝑥)) = (0.7 + 3)  𝑚𝑜𝑑 10 = 3.7 

𝐸(𝐼(𝑥)) = (0.2 + 4)  𝑚𝑜𝑑 10 = 4.2 

𝐸(𝐹(𝑥)) = (0.1 + 5)  𝑚𝑜𝑑 10 = 5.1 

Consider decrypting neutrosophic sets of membership functions, such as truth (T), indeterminacy (I), and falsity 

(F), using modular arithmetic (mod n). This decryption process retrieves the original neutrosophic set, which 

enhances security by membership values to their original state.  

 

𝐷(𝐸(𝑇(𝑥))) = (𝐸(𝑇(𝑥)) − 𝑘𝑇)  𝑚𝑜𝑑 𝑛 

𝐷(𝐸(𝐼(𝑥))) = (𝐸(𝐼(𝑥)) − 𝑘𝐼)  𝑚𝑜𝑑 𝑛 

𝐷(𝐸(𝐹(𝑥))) = (𝐸(𝐹(𝑥)) − 𝑘𝐹)  𝑚𝑜𝑑 𝑛 
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Where 𝑘𝑇 = 3, 𝑘𝐼 = 4, 𝑘𝐹 = 5 and n=10. Then  

𝐷 (𝐸(𝑇(𝑥))) = (3.7 − 3)  𝑚𝑜𝑑 10 = 0.7 

𝐷 (𝐸(𝑇(𝑥))) = (4.2 − 4)  𝑚𝑜𝑑 10 = 0.2 

𝐷 (𝐸(𝑇(𝑥))) = (5.1 − 5)  𝑚𝑜𝑑 10 = 0.1 

 

Methods  

Here Gaussian neutrosophic sets and kurtosis are used to determine medical data that often involves 

uncertainties due to measurement errors, varying patient responses, and incomplete information. Medical data 

often involves uncertainties due to factors like measurement errors, varying patient responses, and incomplete 

information. These membership functions reflect diagnostic indicators such as symptoms and test results, 

providing a probabilistic framework for interpretation. Incorporating kurtosis further refines this analysis by 

capturing the tailedness of data distributions: leptokurtic distributions highlight outlier-prone scenarios, 

platykurtic distributions indicate uniform variability and mesokurtic distributions represent standard conditions.  

Kurtosis in Neutrosophic Sets 

Kurtosis describes the fatness of the tails found in a probability distribution especially that describe the 

fatness of the tails found in a probability distribution. The existing measure of kurtosis, say cannot be applied in 

the presence of indeterminacy. There are three categories of kurtosis mesokurtic (indeterminacy), platykurtic 

(falsity), and leptokurtic (truth). Kurtosis describes the tail risk as a measurement of an investment's price 

moving dramatically. A curve kurtosis characteristic tells you how much kurtosis risk there is for the investment 

is evaluated.  

      

Figure 2 Kurtosis the tails of weakness 

Table 2 Dental Checkup in Kurtosis 
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𝑰𝒏𝒕𝒆𝒓𝒗𝒂𝒍 𝑪𝒂𝒕𝒆𝒈𝒐𝒓𝒊𝒆𝒔 𝑴𝒊𝒅𝒑𝒐𝒊𝒏𝒕

−  𝑿 

𝑵𝒐 𝒐𝒇 

 𝑷𝒂𝒕𝒊𝒆𝒏𝒕

−  𝒇 

𝒅

= 𝒙

−
𝟐𝟎

𝟏𝟎
 

𝒇𝒅 𝒇𝒅𝟐 𝒇𝒅𝟑 𝒇𝒅𝟒 

0-10 Filling 0+10/2=5 16 -1.5 -24 36 -54 81 

10-20 Gum 

cleaning  

10+20/2=15 15 -0.5 -7.5 3.75 -1.87 0.93 

20-30 Oral 

checkup 

20+30/2=25 20 0.5 10 5 2.5 1.25 

30-40 Crown 30+40/2=35 10 1.5 15 22.5 33.75 50.62 

Total   N=61  ∑ 𝒇𝒅 

=-6.5 

∑ 𝒇𝒅𝟐 

=67.25 

∑ 𝒇𝒅𝟑 

=-19.62 

∑ 𝒇𝒅𝟒 

=133.8 

 

Where the midpoint x of the table is 15+25/2 =20, i=10 

   𝜇1
′ =

∑ 𝑓𝑑

𝑁
× 𝑖 = −

6.5

61
× 10 = −1.06                           (1) 

                   𝜇2
′ =

∑ 𝑓𝑑2

𝑁
× 𝑖2 =

67.25

61
× 100 = 110.24                                (2) 

                𝜇3
′ =

∑ 𝑓𝑑3

𝑁
× 𝑖3 = −

19.62

61
× 1000 = −321.63                         (3) 

                    𝜇4
′ =

∑ 𝑓𝑑4

𝑁
× 𝑖4 = 133.8/61 × 10000                           (4) 

To find the kurtosis needs to know about the values of 𝜇2, 𝜇3, 𝜇4 as follows  

A=15+25/2=20 

𝜇2 = 𝜇2
′ − (𝜇1

′ )2 = 110.24 − 1.12 = 109.12 

𝜇3 = 𝜇3
′ − 3𝜇1

′ 𝜇2
′ + 2(𝜇1

′ )2 = −321.63 − 350.56 + 2.24 = −669.95 

𝜇4 = 𝜇4
′ − 4𝜇1

′ 𝜇3
′ + 6𝜇3

′ (𝜇1
′ )2 − 3(𝜇1

′ )4 = 21934 − 1363 + 2161 − 3.78 

= 24095 − 17.41 = 24077 

Kurtosis, which describes the shape of probability distributions, especially the tails of  

𝛽2 = 𝜇4/𝜇2
2 

110



New Trends in Neutrosophic Theories and Applications, Vol. 4, 2025  

 

=
24077

11907.17
= 2.02 𝑝𝑙𝑎𝑡𝑦𝑘𝑢𝑟𝑡𝑖𝑐 

 

Table 3 Dental Checkup in Kurtosis using JASP 

Interval  Mean Std. 

Deviation 

Kurtosis Std. Error 

of Kurtosis 

Minimum Maximum 

𝒅 = 𝒙 −
𝟐𝟎

𝟏𝟎
 0.000 1.291 1.200 2.619 -1.500 1.500 

 

𝒇𝒅 

-2.600 15.538 0.887 2.000 24.000 15.00 

 

𝒇𝒅𝟐 

26.900 26.200 0.423 2.000 3.750 67.250 

 

𝒇𝒅𝟑 

-7.848 32.178 00.818 2.000 54.000 33.750 

 

𝒇𝒅𝟒 

53.520 56.361 0.912 2.000 0.930 133.800 

 

3.2 Gaussian Semantic Security  

These plots provide a visual understanding of how Gaussian SVN numbers characterize truth, indeterminacy, 

and falsity based on their semantic security functions.  

 

 

Figure 3 Gaussian Neutrosophic sets and Gaussian Semantic Security 

Results and Discussions 

Case 1- Gaussian Neutrosophic Set (GNN)  
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The Gaussian Neutrosophic Set (GNN) effectively models uncertainty through Gaussian distributions for truth, 

indeterminacy, and falsity. Membership functions for truth (0.0 to 0.200), indeterminacy (0.0 to 0.085), and 

falsity (0.0 to 0.140) capture variability and randomness. Table 1 provides boundary values at x=±2.5x = \pm 

2.5x=±2.5, showing extremely low probabilities and highlighting the tail characteristics of these distributions. 

• Flexibility: The Gaussian distribution allows for flexible adjustments to capture various scenarios in 

medical diagnosis. 

• Comprehensive Analysis: By incorporating truth, indeterminacy, and falsity, Gaussian neutrosophic sets 

offer a comprehensive framework for analyzing and interpreting medical data, which is essential for 

accurate diagnosis and treatment planning. 

• Decision Support: The approach supports better decision-making by representing the probabilities 

associated with different diagnostic outcomes, which is crucial in medical contexts where uncertainty is 

prevalent. 

Case 2- Kurtosis, which describes the shape of probability distributions, especially the tails in 

Neutrosophic Sets 

Kurtosis, which describes the shape of probability distributions, especially the tails in Neutrosophic Sets 

is categorized into mesokurtic (indeterminacy), platykurtic (falsity), and leptokurtic (truth), describing the 

distribution's tail properties. Table 2, with dental checkup data, demonstrates the application of kurtosis using 

JASP in evaluating different dental procedures. The calculated values are the quantitative measure of the 

distribution's characteristics for these categories. 

Case 3- Gaussian Semantic Security, ensuring data confidentiality in cryptographic applications 

Gaussian Semantic Security, ensuring data confidentiality in cryptographic applications (GSS) provides 

a visual understanding of how Gaussian SVN numbers characterize truth, indeterminacy, and falsity based on 

their semantic security functions. Table 3 compares GSS and GNN, highlighting their purposes, components, 

applications, security focus, flexibility, and implementation complexity.  

Conclusions 
The integration of Gaussian Neutrosophic Sets (GNS), a mathematical framework for handling 

uncertainty, Kurtosis, which describes the shape of probability distributions, especially the tails, and Gaussian 

Semantic Security, ensuring data confidentiality in cryptographic applications presents a novel and effective 

approach to addressing the dual challenges of diagnostic accuracy and data security in medical diagnosis. 

Incorporating kurtosis into Neutrosophic Sets offers a comprehensive understanding of distribution 

characteristics, crucial for data analysis in fields such as medical diagnosis, finance, and engineering. The dental 

checkup example demonstrates the practical application and JASP is a new statistical framework to analyze the 

unpredictable and big data in this program and using these concepts, quantitatively assess different categories for 

their distribution properties.  

Gaussian Neutrosophic Sets (GNS), a mathematical framework for handling uncertainty of graphical 

representation of peak seem to be the result as platykurtic in Table 2 Dental Checkup in Kurtosis, which 

describes the shape of probability distributions, especially the tails is a powerful tool for managing the 
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uncertainty and complexity inherent in medical data, leading to more reliable and precise diagnostic outcomes. 

Concurrently, Gaussian Semantic Security, ensuring data confidentiality in cryptographic applications ensures 

the confidentiality and integrity of sensitive medical information through robust encryption techniques. GSS 

focuses on data security through encryption and decryption processes, ensuring semantic security to prevent 

unauthorized access. 
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APPENDIX - PROGRAM NUMPY 

1) Gaussian Neutrosophic sets  

import numpy as np 

import matplotlib.pyplot as plt 

from scipy.stats import norm 

# Generate data for Gaussian Neutrosophic Sets 

x = np.linspace(-10, 10, 1000) 

truth_membership = norm.pdf(x, 0, 2)   # Gaussian distribution for truth membership 
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indeterminacy_membership = norm.pdf(x, 0, 5)  # Wider Gaussian distribution for indeterminacy 

falsity_membership = norm.pdf(x, 0, 3) # Another Gaussian distribution for falsity 

# Plotting the Gaussian Neutrosophic Sets 

plt.figure(figsize=(10, 6)) 

plt.plot(x, truth_membership, label='Truth Membership (T)', color='blue') 

plt.plot(x, indeterminacy_membership, label='Indeterminacy Membership (I)', color='green') 

plt.plot(x, falsity_membership, label='Falsity Membership (F)', color='red') 

plt.title('Gaussian Neutrosophic Sets for Medical Diagnosis') 

plt.xlabel('Diagnostic Criteria') 

plt.ylabel('Membership Degree') 

plt.legend() 

plt.grid(True) 

plt.show() 

2) Gaussian neutrosophic set vs Gaussian Semantic security  

import numpy as np 

import matplotlib.pyplot as plt 

from scipy.stats import norm 

# Gaussian Neutrosophic Sets (GNS) Data 

x = np.linspace(-10, 10, 1000) 

truth_membership = norm.pdf(x, 0, 2) 

indeterminacy_membership = norm.pdf(x, 0, 5) 

falsity_membership = norm.pdf(x, 0, 3) 

# Encrypt the Neutrosophic Set Data 

def encrypt_data(data, mean, stddev): 

noise = np.random.normal(mean, stddev, data.shape) 

encrypted_data = data + noise 

return encrypted_data 

# Encrypting the neutrosophic sets 
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mean = 0 

stddev = 0.05  # Smaller stddev for minor encryption noise 

encrypted_truth = encrypt_data(truth_membership, mean, stddev) 

encrypted_indeterminacy = encrypt_data(indeterminacy_membership, mean, stddev) 

encrypted_falsity = encrypt_data(falsity_membership, mean, stddev) 

# Plotting the results 

plt.figure(figsize=(10, 6)) 

plt.subplot(2, 1, 1) 

plt.plot(x, truth_membership, label='Truth Membership (T)', color='blue') 

plt.plot(x, indeterminacy_membership, label='Indeterminacy Membership (I)', color='green') 

plt.plot(x, falsity_membership, label='Falsity Membership (F)', color='red') 

plt.title('Gaussian Neutrosophic Sets for Medical Diagnosis') 

plt.xlabel('Diagnostic Criteria') 

plt.ylabel('Membership Degree') 

plt.legend() 

plt.grid(True) 

plt.subplot(2, 1, 2) 

plt.plot(x, encrypted_truth, label='Encrypted Truth Membership (T)', color='blue', linestyle='dashed') 

plt.plot(x, encrypted_indeterminacy, label='Encrypted Indeterminacy Membership (I)', color='green', 

linestyle='dashed') 

plt.plot(x, encrypted_falsity, label='Encrypted Falsity Membership (F)', color='red', linestyle='dashed') 

plt.title('Encrypted Gaussian Neutrosophic Sets for Medical Data') 

plt.xlabel('Diagnostic Criteria') 

plt.ylabel('Membership Degree') 

plt.legend() 

plt.grid(True) 

plt.tight_layout() 

plt.show() 
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ABSTRACT 

 Organ transplantation is a life-critical medical intervention that is dependent on exact donor-recipient 
matching and optimal prediction of organ rejection possibilities. This paper presents a new framework 
combining Neutrosophic SuperHyperStructure with artificial intelligence methods for improved transplant 
decision-making. The model that is applied utilizes long short-term memory networks for organ rejection 
prediction and reinforcement learning for dynamic optimization of donor-recipient matching. Comparative 
analysis demonstrates that Neutrosophic SuperHyperStructure incorporation improves decision-making accuracy 
through the resolution of transplantation uncertainties. Sensitivity analysis supports model robustness with 
significant effects of matching rates and rejection probabilities on transplant success. The findings confirm that 
the system with AI boosts transplant performance, reduces mismatches, and achieves higher overall success 
rates. The work demonstrates the efficacy of mathematical modeling and artificial intelligence integration in 
improving organ transplantation methods and delivering superior patient care. 

Keywords: Organ transplantation, neutrosophic superhyperstructure, machine learning, sensitivity analysis, 
donor-recipient matching, AI-driven decision-making. 

INTRODUCTION 

Organ transplantation is a critical medical intervention that involves the substitution of sick or 
deteriorating organs with healthy organs received as donation from donors. Transplantation success, however, 
hinges on many variables including donor-recipient compatibility, immune response, and transplant monitoring 
post-transplant. In current research, scientists have turned to the application of artificial intelligence (AI) and 
neutrosophic superhyperstructures as a means of optimizing the efficacy and efficiency of transplantation 
protocols. Smarandache [1] developed neutrosophic sets and systems as a universal mathematical system for 
dealing with uncertainty in decision-making. Smarandache [1] introduced neutrosophy, encompassing 
neutrosophic probability, sets, and logic, providing a foundation for handling uncertainty in decision-making 
[14].The theories have been further generalized to superhyperstructures so that complicated relations can be 
expressed in vague medical conditions [2]. Smarandache [3] developed also hyper-uncertain and super-uncertain 
structures which constitute an optimal analysis core of medical data and medical decision-making. 

AI techniques have revolutionized predictive modeling and decision-making in the health sector. Das et 
al. [4] demonstrated the use of batch mode active learning in the examination of challenging medical data that 
are at the core of transplantation research. Further, Hwang et al. [5] discussed the utilization of polynomial 
algorithms to enable optimization of resource allocation, which also implies organs allocation for transplanting. 
Cartocci et al. [6] applied compartmental model methodology to reverse back pandemic data, showing that a 
systematic mathematics solution can contribute to medical decision making. 

Deep learning techniques have also been applied extensively in the field of healthcare. Goodfellow et al. 
[7] emphasized the role of using regularization methods in deep learning, which could be utilized to improve 
predictive accuracy for medical diagnosis. He et al. [8] proposed a series of deep residual learning methods that 
enhance image recognition, which is very important in determining organ compatibility. Li et al. [9] also 
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employed reinforcement learning (RL) to optimize the distribution of healthcare resources and demonstrated 
how AI can enhance efficiency in clinical decision-making. 

Numerous studies have focused on AI-based medical imaging and pattern recognition for disease 
diagnosis. Lei et al. [10] reviewed empirical mode decomposition approaches to fault diagnosis that can be 
generalized to abnormality detection in organ function. Smarandache et al. [11] generalized the application of 
neutrosophic theories in medical decision-making, illustrating the application of superhyperstructures in complex 
healthcare scenarios. 

Further, Chung et al. [12] developed pose-aware instance segmentation techniques for medical imaging, 
which can be beneficial in evaluating organ health before transplantation. Kalantarian et al. [13] emphasized the 
use of AI in facial emotion labeling in pediatric practice, illustrating how machine learning can be beneficial in 
automated diagnosis and patient monitoring. 

Even with all such developments, organ transplantation is a very complex procedure with numerous 
uncertainties regarding organ availability, rejection risk, and prognosis of the patient in the long term. 
Conventional methods are based primarily on statistical modeling and clinical judgment, which, although useful, 
lack the capacity to manage real-time uncertainty as effectively as large data. This lack of accuracy and 
efficiency requires the development of a sound computational paradigm that unifies AI with mathematical 
paradigms with the ability to deal with uncertainty. 

The originality of the paper is in the use of neutrosophic superhyperstructures and AI to attain highest 
organ transplantation success. Neutrosophic superhyperstructures are a stronger platform for the description and 
management of uncertainty compared to conventional models, enabling improved donor-recipient matching, 
rejection prediction, and post-transplant monitoring. Through the use of AI methodologies such as deep learning 
and RL, the present work introduces a novel platform that speeds up transplantation decision-making through 
improved success rates and improved patient outcomes. 

 
MATHEMATICAL MODEL 

Here, we construct a mathematical model for describing the process of transplantation within a 
compartmental model. The purpose of the model is to reach a quantitative and systematic description of 
interactions between various phases of organ transplantation. A phase is assumed as a compartment, and the 
interactions between them are described in terms of a system of differential equations. This model enables us to 
examine prominent determinants of transplant outcomes and enhance the decision-making process for effective 
organ allocation. 

                                     Compartments 
 The transplant process is dissected into various phases, each of which can be modeled as a 

compartment in our system. The compartments assist in tracking the movement of donors and organs from 
earliest availability to post-transplant fate. The first compartment, 𝐷(𝑡), is the number of available donors at 
time 𝑡. The donors can either be alive or dead and are accessible depending on whether they have been 
registered, medically screened, and obtained family consent in the event of death. The number of accessible 
donors varies with regards to time owing to new addition into the system and attrition because of ineligibility or 
withdrawal of donated organs. 

Following the identification of the donor, the next step is to obtain a good match with a recipient. This 
the compartment 𝑀(𝑡) reflects and entails how many donor-recipient matches exist at time t. It is founded on 
match criteria of blood type, Human Leukocyte Antigen (HLA) matching, organ size, and the level of urgency 
for the recipient. However, not all matches proceed to transplantation since a few are excluded due to medical 
incompatibility or logistical concerns. 

The compartment 𝑆(𝑡) measures the number of successful transplants at time 𝑡. A transplant is said to 
be successful if the organ is successfully implanted surgically into the recipient and starts functioning as it 
should. Surgical complications, however, improper handling of the organ, or a patient’s last-minute decline in 
health can keep a transplant from being carried out successfully. 

Not all the organs matched with donors will be transplanted. Some will be rejected for transplantation 
due to incompatibility or medical changes in the recipient’s status. This is accounted for in the compartment 
𝑅(𝑡), where 𝑅(𝑡) denotes the number of organs rejected prior to surgery. Large rejection values reflect 
inefficiencies in the matching process or unavailability of compatible donor-recipient pairs. 

Last, even with a successful transplant, there is also the possibility of failure. The compartment 𝐹(𝑡) is 
the number of graft failures from post-operative complications, immune rejection, or chronic graft failure. The 
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failures can involve putting the recipient back on the waiting list for transplants again, which means additional 
stress for the organ allocation system. 

In order to conceptualize the interactions between these compartments, we present a framework 
diagram (Figure 1) that describes the transplantation process, the transition routes, and the corresponding rates. 

 

Figure  1: Framework of the Transplantation Process 

Attrition and Transition Rates 

The process of transplantation is controlled by a system of differential equations. The equations 
represent how people transition between compartments with respect to time, based on the transition rates. 

Donor-to-Match Transition 

Available donors matched with recipients at a rate given by: 

 𝑑𝑀

𝑑𝑡
= 𝛼𝐷 − 𝛽𝑀                  (1) 

The parameter 𝛼 is the donor-to-match transition rate, which is contingent upon the efficacity of the 
organ allocation system, the supply of compatible recipients, and medical evaluation speed. A larger value of 𝛼 
demonstrates an optimally streamlined system where donors are rapidly matched. 

The notation 𝛽𝑀 is the donor attrition rate, adjusting for situations in which donors leave the system 
because of medical ineligibility, organ expiration while stored, or withdrawal of consent. If 𝛽 is large, it 
indicates that few potential donors make it to the matching stage, perhaps because administrative processes are 
inefficient or eligibility standards are high. 

Match-to-Transplant Transition 

After the donor-recipient match is made, the transplant is then to be done. The progression from 
matching to successful transplant is regulated by: 

 𝑑𝑆

𝑑𝑡
= 𝛾𝑀 − 𝛿𝑆                 (2) 

The parameter 𝛾 is the likelihood that a donor-recipient match goes on to transplantation. It is a function 
of logistical organization, surgical proficiency, and recipient pre-transplant medical stability. The greater the 
value of 𝛾, the larger the proportion of matches that go on to transplantation. 

The variable 𝛿𝑆 is used to quantify transplant rejection at this point. The rejection probability ( 𝛿) 
depends on conditions such as last-minute withdrawal of the donor, the quality of organ preservation, or 
recipient illness prior to surgery. If 𝛿 is high, then pre-surgical screening and preparation need to be improved. 

Organ Rejection Prior to Transplantation 
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Not all organs which are matched go for transplantation. Some are rejected based on medical 
incompatibility or logistical limitations. This is denoted by: 

 𝑑𝑅

𝑑𝑡
= 𝜂𝑀                        (3) 

The parameter 𝜂 is the rate of rejection due to incompatibility, or the fraction of matched organs 
rejected prior to transplant. Large values of 𝜂 suggest substantial hurdles in the matching process, for example, 
suboptimal screening for compatibility or fast organ viability loss. 

A high rate of rejection implies inefficiencies in donor-recipient matching protocols. Reducing 𝜂 can 
involve more efficient computational matching algorithms, improved tissue typing techniques, or relaxing 
compatibility thresholds when medically acceptable. 

Post-Transplant Failure 

Although a transplant can be successful, there is always the chance of graft failure resulting from 
surgical complications, immune rejection, or long-term physiological reactions. The differential equation for 
transplant failures is: 

 𝑑𝐹

𝑑𝑡
= 𝜃𝑆                     (4) 

The parameter 𝜃 is the post-surgical failure rate, which is the probability that a transplanted organ fails 
in the long run. This can happen because of acute rejection, chronic dysfunction, infections, or 
immunosuppressive treatment complications. 

When 𝜃 is large, there is a high rate of transplant failure, indicating the necessity of enhanced post-
transplant care, more effective immunosuppression protocols, and increased patient observation. Some medical 
developments to limit 𝜃 are the implementation of individualized immunosuppressive therapy and new tissue-
engineered organs. 

Overall System Dynamics 

The equations given are a formal mathematical model of the transplantation process. By varying the 
transition rates (𝛼, 𝛽, 𝛾, 𝛿, 𝜂, 𝜃), we can study various situations and optimize transplantation policies. For 
example, if donor attrition (𝛽) is high, policymakers may target enhancing donor retention strategies. If post-
transplant failure (𝜃) is high, focus may be given to enhancing long-term patient care. 

To facilitate a well-rounded understanding of the process of transplantation, Figure 1 schematically 
depicts the various compartments and how they are connected to one another, noting the transitions that control 
system behavior. The framework classifies the overall transplantation process, starting with having available 
potential donors, moving through the matching step, and finally ending with a successful transplant or a failed 
transplant due to organ rejection or post-operative failure. Every step in this system is determined by a range of 
biological, logistical, and procedural variables, and thus it is a complicated and uncertain process. The 
visualization assists in the identification of the most important determinants that influence transplantation 
efficiency, including donor availability, the likelihood of a good match, the chance of organ acceptance, and 
post-operative complications. Through organizing the system in well-demarcated compartments and including 
transition rates, the model gives an unequivocal framework for the estimation and optimization of transplantation 
success.The mathematical model provides the basis for an advanced scheme taking into account uncertainty and 
variation in transplantation outcome in real medical environments. In real medical practice, compatibility 
between donor and recipient and the success of transplantation are based on uncontrollable factors such as 
immune compatibility, health conditions of the donor, viability of the donated organs, and dynamic changes in 
the art of medicine. The classical deterministic models are not capable of dealing with the vagueness and 
paradoxes of such uncertainties. In order to compensate for this shortcoming, we utilize SuperHyperStructures 
and Neutrosophic SuperHyperStructures to extend the model so that more flexible and accurate modeling of the 
inherent uncertainty of the transplantation system is enabled. These higher-order mathematical structures enable 
a more adaptive and sophisticated approach to modeling complex transitions so that multiple factors of 
uncertainty can be aggregated without losing the logical coherence of the system. 

With the inclusion of Neutrosophic SuperHyperStructures, the model addresses indeterminate variables 
like partial donor-recipient compatibility in matching, irregular rates of post-transplant recovery, and variable 
organ availability due to unexpected medical complications. This enhancement fortifies the model its ability to 
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make precise predictions and improved decision-making for doctors, policymakers, and transplant coordinators. 
In addition, implementing AI-based optimization algorithms in this system guarantees the ability to optimize the 
transplantation process in real time based on real-time information and thus achieve higher success rates with 
lower organ wastage.The second part of this dissertation discusses mathematical fundamentals of 
SuperHyperStructures and Neutrosophic SuperHyperStructures and their applications to the enhancement of 
predictability and decision-making optimization for organ transplantation. With this addition, we seek to create a 
more robust, more adaptable, and more effective transplantation system that can address actual problems of 
organ allocation and patient care. 

Superhyperstructures and Neutrosophic Superhyperstructures Extension 

Here, we present the idea of SuperHyperStructures and Neutrosophic SuperHyperStructures and how 
they generalize the transplantation model to include structured and uncertain aspects. 

PowerSets and SuperHyperStructures 

 A SuperHyperStructure is a structure constructed on the 𝑛-th PowerSet of a Set 𝐻, for 𝑛 ≥ 1. In 
practical situations, a set or system 𝐻 (which can be a group of donors, recipients, or medical procedures) is 
made up of subsets that are members of 𝑃(𝐻), which themselves have sub-subsets that are members of 
𝑃(𝑃(𝐻)) = 𝑃2(𝐻), and so on, in such a way that 𝑃𝑛+1(𝐻) = 𝑃(𝑃𝑛(𝐻)). 

Powerset 𝑃(𝐻) is made up of all empty and non-empty subsets of 𝐻, including the empty set ( 𝜙), and 
it symbolizes the indeterminacy that is present in 𝐻. This is synonymous with real-world uncertainties in 
transplanting, with donor-recipient matching results not being certain. 

Whereas 𝑃∗(𝐻) refers to all non-empty subsets of 𝐻, i.e., 𝑃∗(𝐻) = 𝑃(𝐻) − 𝜙, the same can be applied 
to higher-order sets referred to as 𝑃𝑛∗(𝐻). 

A SuperHyperStructure constructed on 𝑃𝑛∗(𝐻) is simply called a SuperHyperStructure and does not 
involve indeterminacy. On the other hand, a structure constructed on 𝑃𝑛(𝐻) is called a Neutrosophic 
SuperHyperStructure, which specifically involves uncertainty in the transplant process. 

SuperHyperStructure and Neutrosophic SuperHyperStructure in 

Transplantation 

Organ transplantation is an interdependent, multi-step process from donor selection to recipient 
matching, surgery, and post-transplant monitoring. There are multiple challenges at every step of the process 
because of medical, biological, and logistical uncertainties. Mathematical modeling in transplantation has, 
however, conventionally been based on deterministic models with pre-defined probabilities of failure or success. 
But real transplantation is subject to factors of the real world that render it uncertain, such as variability of 
immune response, variability of availability of donor organs, and variability of post-operative recovery. In order 
to fight these adversities, the concept of a SuperHyperStructure provides a mathematical formalism for modeling 
and analysis of donor-recipient relationships systematically. 

A SuperHyperStructure is built from the higher-order powerset of a donor-recipient set 𝐻. Powerset 
𝑃(𝐻) signifies all of the subsets of 𝐻, both the non-empty and empty sets. Hierarchical powersets enable further 
levels of categorization, moving from 𝑃(𝐻) to 𝑃2(𝐻), 𝑃3(𝐻), and so on, with 𝑃(𝑛+1)(𝐻) = 𝑃(𝑃𝑛(𝐻)). 
Recursive construction guarantees that all donor-recipient interactions are included within an ordered 
mathematics. The structured form 𝑃∗(𝐻) consists of all non-empty subsets of 𝐻, not including the empty set, and 
is essential for establishing meaningful donor-recipient pairings without confusion. By representing 
transplantation in terms of a SuperHyperStructure, we are able to systematically express all possible interactions 
within the donor population so that no possibility is missed. 

But actual transplantation systems are uncertain in reality because of variables like donor compatibility 
differences, probabilities of organ rejection, and complications following transplantation. To incorporate such 
uncertainties in the mathematical model, we generalize the SuperHyperStructure to a Neutrosophic 
SuperHyperStructure that incorporates indeterminate results in an explicit manner by including neutrosophic 
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transition rates. Donor-recipient compatibility and outcomes of transplantation in this model are assigned to three 
states: successful, indeterminate, and failed. Transition states are represented mathematically as: 

 𝑀𝑁(𝑡) = 𝑀+ +𝑀0 +𝑀−                        (5) 

 𝑆𝑁(𝑡) = 𝑆+ + 𝑆0 + 𝑆−                             (6) 

In this, 𝑀+ and 𝑆+ refer to successful donor-recipient matching and transplantation as confirmed, where 
the process of transplantation goes without a hitch without any complications. 𝑀0 and 𝑆0 are indeterminate 
states where factors like borderline compatibility, unforeseen immune reactions, or logistical hurdles inject 
uncertainty in the process of transplantation. Lastly, 𝑀− and 𝑆− represent unsuccessful matches and transplants 
because of different reasons, like organ rejection, serious post-operative complications, or procedural 
inefficiencies. 

In order to further make this model even more formal, we include transition rates that control the 
dynamics of each compartment over time. These transition rates capture the donor and recipient transitions from 
one to another status according to medical and procedural consideration. The general differential equation 
equations for modeling the transplantation dynamics are (1) - (4). They contain excellent transition parameters 
that describe the transplantation process dynamics. The transition rate between donor and match, given by α, 
regulates how fast available donors become matched with suitable recipients, hence ensuring a proper allocation 
of organs. Not all the donors are available to be used, however, in the process because some will withdraw or 
become disqualified due to medical or logistical complications. This feature is modelled by the donor attrition 
rate β that allows for the probabilities of donors becoming unavailable before they can be given the chance to 
receive transplantation. After the match is found, the likelihood of progressing into a successful transplant is 
quantified by the match-to-success transition rate γ that depends on medical compatibility, organ viability, and 
procedure efficiency. 

In spite of the best attempts to make them compatible, organ rejection is always the greatest transplant 
setback. The rate of rejection by the immune system, symbolized by 𝛿, will establish how much the receiver's 
body can reject the transplanted organ and develop complications or failure. Moreover, there are certain 
instances where medical or logistic mismatches that cannot be done away with can make the transplantation 
futile. This is evidenced by the incompatibility rejection rate 𝜂, including scenarios when an initially compatible 
donor-recipient pair later proves unsuitable due to unforeseen circumstances. Even after a successful transplant, 
postoperative issues may arise, resulting in long-term failure of the transplant. The post-surgical failure rate 𝜃 
characterizes such failures, which may result from infections, immune disorders, or other pathologies affecting 
the survival of the transplanted organ. 

By incorporating these transition parameters into the mathematical model, transplantation can be 
systematically investigated as a process, and the most significant factors influencing success rates can be 
determined. These dynamics are essential to know in order to maximize donor-recipient matching, increase 
transplant success, and maximize overall healthcare policy in organ transplantation. 

A formal objection of the model of transplantation can be seen in Figure 2, where donor-recipient 
interaction process based on the SuperHyperStructure and Neutrosophic SuperHyperStructure paradigms is 
shown. There, it is observable that key compartments of the process of transplantation as well as pathways of 
transition are provided that manage the success or failure of organ transplantation. Incorporating both structured 
modeling deterministic and neutrosophic uncertainty-sensitive augmentation, the framework provides an 
advanced mathematical setup for optimizing and analyzing transplantation logistics. 
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Figure  2: Structured representation of transplantation using SuperHyperStructure and Neutrosophic 
SuperHyperStructure. 

  The graph also identifies important transition states, such as successful, indeterminate, and failed 
instances, and the manner in which transition rates control the course of the transplantation process. Through the 
application of this sophisticated mathematical model, the decision-making process of transplantation can be 
optimized for improved efficiency and increased success rates. AI-based optimization methods that maximize 
transition parameters and lead to better organ allocation and improved transplantation outcomes are the focus of 
the next section. 

AI-Based Optimization for Transplant Success 

Organ transplantation is a challenging medical intervention where compatibility between donor and 
recipient determines the success rate. Success of the transplant relies on several biological factors such as blood 
group, HLA compatibility, and other immunological markers. Conventional transplantation methods utilize pre-
defined scoring systems that do not take into account patient-specific differences. AI integration offers a 
paradigm shift in offering dynamic decision-making based on real-time patient information and maximizing 
transplantation outcomes. AI-based models, such as deep learning and RL, improve donor-recipient matching, 
likelihood of rejection predictions, and continually refine decision-making based on feedback on past and current 
patients.

AI-Driven Donor-Recipient Matching 

Donor-receiver matching has a complex process where many parameters of compatibility should be 
evaluated at the same time. Traditional methods use rigid scoring systems that cannot consider evolving patient 
conditions. AI has an adaptive system that updates compatibility scores at all times by learning from past cases 
of transplantations. The mathematical formulation for AI-based matching is given as 

𝑓(𝐷, 𝑅) = ∑𝑛
𝑖=1 𝑤𝑖𝑥𝑖      (7) 

where 𝑥𝑖 stands for biological and immunological factors of compatibility, and 𝑤𝑖  are dynamically
calculated weights learned via machine learning algorithms. This facilitates a more accurate and personalized 
selection process, hence enhancing transplantation results. 
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Figure  3: AI-driven donor-recipient matching process, where compatibility scores dynamically adjust 
based on real-time patient conditions. 

Figure 3 shows how AI constantly assesses several parameters, optimizing the matching procedure by 
giving different weights to various factors. Unlike fixed-threshold schemes, AI refines its estimation based on 
changing patient conditions, minimizing mismatches and enhancing long-term survival rates in transplants. 

AI-Based Organ Rejection Prediction 

Post-transplant rejection is also one of the major causes of transplantation failure. The body recognizes 
the transplanted organ as a foreign object and attacks it, resulting in organ failure. Fixed immunological 
evaluations are the basis for classical rejection prediction models, which cannot capture the changing health of 
the patient over time. AI-based models, specifically those with the long short-term memory (LSTM) network, 
offer a more robust model by learning continuously from sequential medical data. The likelihood of rejection is 
mathematically defined as  

 𝑃𝑟𝑒𝑗 = 𝑓𝐿𝑆𝑇𝑀(previousrejections, patientmedicalhistory)            (8) 

 where LSTM networks take into consideration historical and real-time patient information to make rejection risk 
predictions. The predictive model makes early intervention possible through the modification of 
immunosuppressive therapy as well as the alteration of post-transplant care strategies.  

 

124



New Trends in Neutrosophic Theories and Applications, Vol. 4, 2025                                               
 

Figure  4: LSTM-based organ rejection prediction model analyzing past rejection data and patient history. 

  Figure 4 shows how patient history data is utilized by LSTM models to predict the probability of 
rejection. The AI system continuously updates the prediction model, identifying early threats of rejection and 
allowing clinicians to make the necessary modifications in treatment. This AI-based approach is a departure 
from the conventional technique relying on constant immunological markers since it adapts to the specific 
immune response of the patient, thereby increasing post-transplant survival rates. 

RL for Optimized Transplantation Decisions 

RL is a growing AI model that adapts transplantation decisions through learning from past examples. 
Unlike standard decision models relying on static rules, RL learns to optimize its method from successful and 
failed transplants. The RL goal function is given by 

 𝑅𝑡 = ∑𝑚
𝑗=1 (𝜆𝑗𝑆𝑗 − 𝜇𝑗𝐹𝑗)               (9) 

 where 𝑆𝑗 denotes successful transplants, 𝐹𝑗 denotes failures, and 𝜆𝑗 and 𝜇𝑗 are dynamically adjusted weight 
parameters. The AI model repeatedly revises these parameters, minimizing transplantation failure rates in the 
long run. 

 

Figure  5: RL model optimizing transplant decisions based on real-time feedback. 

  Figure 5 describes how RL enhances decision-making for transplant. The AI model learns from 
previous transplants, hence its strategy of choosing continues to update and evolve toward higher success rates. 
Contrary to the pre-specified parameters of traditional approaches, RL continues to refresh its model using new 
medical data as well as patient-specific parameters and eventually more adaptable and accurate transplant 
recommendations. 

Impact of AI in Transplantation Medicine 

 Merging transplant medicine with AI involves major advancements in donor-recipient matching, 
predicting organ rejection, and decision-making in transplantation. Personalized matching, in which each donor 
organ can be optimally matched with the recipient using AI systems, is now possible. This dramatically 
decreases the risks from mismatching and dramatically increases the chances of successful transplant outcomes. 
Other deep learning algorithms like LSTM allow prediction of the risk of organ rejection in real time, and timely 
intervention allows for improved post-transplant management. RL further improves decision-making in 
transplantation by learning from experience continuously, resulting in improved long-term patient outcomes. The 
use of AI-based methods is a paradigm shift in transplantation medicine that entails an evidence-based approach 
far better than heuristic-based decision-making. 
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Simulation and Results 
 This part addresses simulation results and performance of the AI-based transplant optimization model 

that is developed. It compares the utility of donor-recipient matching on SuperHyperStructure and Neutrosophic 
SuperHyperStructure structures and the predictive accuracy of AI models in estimating organ rejection 
probabilities. Comparative success rates, performance metrics, and decision-making improvement are used to 
illustrate the effectiveness of these approaches to transplantation. 

Comparison of SuperHyperStructure vs. Neutrosophic 

SuperHyperStructure in Transplant Success 

 In order to analyze the effectiveness of structured mathematical frameworks in matching donors and 
recipients, we contrast the SuperHyperStructure framework with the Neutrosophic SuperHyperStructure 
framework. The SuperHyperStructure framework models compatibility according to stationary biological and 
immunological characteristics such as blood group compatibility, human leukocyte antigen compatibility, and 
underlying medical conditions. It allots deterministic weights to these and selects the optimal match through 
rules given in advance. On the contrary, the Neutrosophic SuperHyperStructure framework surpasses the 
functionality of the SuperHyperStructure framework through the inclusion of uncertainty, hesitation, and degrees 
of truth when matching. This structure is particularly appropriate in health situations where conditions of patients 
alter, and making decisions must accommodate partial information use. With degree inclusion of truths, the 
Neutrosophic SuperHyperStructure structure embraces greater flexibility and is more tolerant in uncertain or 
incomplete medical data situations. 

Figure 6 is a heatmap-based visual comparison of donor-recipient compatibility under the 
SuperHyperStructure and Neutrosophic SuperHyperStructure paradigms. The SuperHyperStructure paradigm 
adopts a strict deterministic approach where the matching process is constrained by pre-defined thresholds, 
whereas the Neutrosophic SuperHyperStructure paradigm introduces a more adaptive decision-making model 
that accounts for uncertainties and allows for a more accurate selection of suitable donors. 

 

Figure  6: Heatmap comparison of donor-recipient compatibility under the SuperHyperStructure and 
Neutrosophic SuperHyperStructure frameworks. 

   The efficiency of the Neutrosophic SuperHyperStructure framework is also contrasted with the 
average transplant success rates achieved under both methodologies. Figure 7 displays that the Neutrosophic 
SuperHyperStructure framework works better than the SuperHyperStructure framework in having successful 
transplant matches overall. The ability of the Neutrosophic SuperHyperStructure framework to manage 
uncertainties in real life provides a better opportunity for selecting compatible donor-recipient pairs, leading to a 
general increase in transplant success rates. 
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Figure  7: Transplant success rates under the SuperHyperStructure and Neutrosophic SuperHyperStructure 
frameworks. 

  As seen from Figure 7, the strictness of the SuperHyperStructure framework results in mismatches 
where there are small variations in medical data. This is unlike the Neutrosophic SuperHyperStructure 
framework, which adjusts donor-recipient matches dynamically through the inclusion of degrees of uncertainty, 
resulting in a better transplant success rate. 

AI Model Performance Evaluation 

 The application of AI in organ transplantation is proposed to maximize donor-recipient matching and 
forecast future organ rejection cases. The work compares two major AI-based models: a LSTM neural network 
to predict organ rejection and a RL model to optimize transplantation. The LSTM neural network model is 
particularly tailored for time-series analysis of patient medical records. The model is trained on historical 
transplantation data, rejection cases, and patient health history data. The model learns patterns in organ rejection 
history and discovers the most significant medical factors responsible for transplant failure. The likelihood of 
transplant rejection is estimated based on the LSTM neural network model, as stated in the equation: 

 𝑃𝑟𝑒𝑗 = 𝑓LSTM(previousrejectioninformation, recipientclinicalhistory)            (10) 

 Performance of the LSTM neural network model is measured with the help of a receiver operating characteristic 
curve, represented in Figure 8. The receiver operating characteristic curve illustrates the model’s effectiveness in 
discriminating between high-risk and low-risk rejection situations. The higher value of area under the curve 
(AUC) represented in the figure depicts strong predictive power and implies that the model can very well detect 
the probability of rejection. 
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Figure  8: Receiver operating characteristic curve for the LSTM neural network-based organ rejection prediction 
model. 

  The RL model is used to repeatedly improve transplantation choices through learning from previous 
results. The RL model works by modifying its strategy for making decisions in accordance with success and 
failure rates in earlier transplant instances. The reward function can be stated as: 

 𝑅𝑡 = ∑𝑚
𝑗=1 (𝜆𝑗𝑆𝑗 − 𝜇𝑗𝐹𝑗)              (11) 

where 𝑆𝑗 is the number of successful transplantations, 𝐹𝑗 is the number of unsuccessful transplants, and 
𝜆𝑗, 𝜇𝑗 are weight parameters that give more importance to successful cases. The RL model updates its parameters 
in an iterative manner to maximize the reward function, hence optimizing transplantation decisions with time. 

The training process of the RL model is represented in Figure 9, which represents the accumulated 
reward over multiple training rounds. With continued learning, the model increasingly improves its 
transplantation suggestions, and thus, donor-recipient pairings become increasingly optimal. 

 

Figure  9: RL model training progression over multiple iterations. 

  The findings suggest that the RL model gradually enhances its decision-making process, thus 
decreasing mismatched transplants and increasing the overall success rate. Moreover, the amalgamation of RL 
with the Neutrosophic SuperHyperStructure framework leads to an adaptive and data-driven transplant 
optimization approach. 
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Key Findings and Summary 

 The comparative study between the SuperHyperStructure and Neutrosophic SuperHyperStructure 
models demonstrates improved transplant results when medical conditions with uncertainties are integrated into 
the decision-making process. The Neutrosophic SuperHyperStructure model is invariably better than the 
traditional SuperHyperStructure model in allowing for more adaptive and accommodating evaluation of donor-
recipient compatibility. Unlike absolute decision-making within SuperHyperStructure purely on the basis of 
predetermined biological criteria, the Neutrosophic SuperHyperStructure method integrates levels of uncertainty 
and doubt in medical data to develop more reliable transplant decisions. This flexibility creates a higher success 
rate in transplanting as it accommodates fluctuating patient conditions and potential differences in biological 
compatibility with time elapsed. Application of AI to predict organ rejection is pivotal in minimizing post-
transplantation complications. 

The LSTM neural network model is highly efficient in analyzing sequential medical information and 
estimating the probability of organ rejection. By utilizing prior patient history, immunological reactions, and 
current real-time medical information, the model continuously updates its prediction, enabling physicians to 
respond before rejection occurs. The excellent precision of the LSTM model, which has been attested to by the 
Receiver Operating Characteristic (ROC) curve, is proof of its efficacy in separating low-risk and high-risk 
transplant cases. This provides an opportunity to carry out life-saving surgery well in advance, enhancing the 
patient's survival rate as well as the longevity of the transplant. The RL model is also a critical component of the 
optimization of donor-recipient matching. Contrary to traditional selection protocols, in which static 
compatibility factors alone are considered, the RL refines its choice-making model through experience with 
every subsequent example in terms of cumulative success and failure rates. Iteration by iteration the learning 
process is demonstrated stepwise on the training progress chart, by which the reader can clearly envisage how 
transplantation outcome is enhanced step by step through iteration. 

As the model gets increasingly more knowledgeable with every run, it optimizes its donor-recipient 
matching to reduce mismatches and improve organ allocation performance overall. It is this real-time 
optimization that results in a more personalized and accurate transplantation process ultimately making a long-
term success with the transplant more likely. Generally, combining AI with mathematical structures like 
Neutrosophic SuperHyperStructure, RL, and LSTM neural networks is a revolutionary technique of organ 
transplantation. Being able to manage medical uncertainties, forecast organ rejection at high accuracy levels, and 
choose donor-recipient pairs dynamically optimally greatly enhances the general rate of transplant success. 
These technologies represent a giant step forward in transplant optimization and personalized medicine and can 
potentially enable more efficient, precise, and life-saving transplant operations. 

Sensitivity Analysis 

 Sensitivity analysis is used to study the impact of variations in input parameters on system performance 
overall. In organ transplantation, it studies the impact of donor-recipient match rate, probability of organ 
rejection, and RL modification to identify their contribution to transplant success. The robustness of the 
suggested AI-based framework is established using such analysis. In performing sensitivity analysis, significant 
parameters such as the match rate, incidence of organ rejection, and adaptation rates of RL are systematically 
manipulated within a prescribed range. Comparison is made upon plotting the outcomes to assess variation in 
transplant success rates. Transplant success sensitivity to different inputs is presented in Figure 10. It can be 
observed that slight changes in the matching rate have a significant influence on overall transplant success, 
substantiating the necessity for precise donor-recipient matching. 
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Figure  10: Sensitivity analysis of transplant success concerning variations in donor-recipient matching rate and 
rejection probability. 

  Additionally, the impact of RL adjustments on donor-recipient matching efficiency is examined. 
Figure 11 depicts how incremental updates in RL enhance prediction accuracy over multiple iterations. The 
results confirm that dynamic learning processes improve transplant success rates by reducing mismatches. 

 

Figure  11: Effect of RL adaptation on donor-recipient matching accuracy. 

Discussion 

 The results point to the success of merging AI with formal mathematical structures for organ 
transplantation optimization. The contrast of SuperHyperStructure versus Neutrosophic SuperHyperStructure 
structures indicates that the inclusion of uncertainty modeling in the latter enhances decision making in 
transplant selection. The Neutrosophic method allows for more thorough analysis of patient compatibility using 
uncertain and imprecise factors, resulting in better prediction of transplant success. The use of LSTM networks 
for predicting organ rejection has indicated encouraging results. The nature of these models as recurrent means 
that they can learn from past transplant data continuously, improving their predictive accuracy in terms of 
rejection probability. From Figure 12, the employment of sequential patient information improves forecasting, 
enabling clinicians to proactively respond to prevent transplant failure. 
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Figure  12: LSTM network-based organ rejection prediction. 

  The incorporation of AI models into transplantation processes offers many advantages, such as real-
time flexibility, better accuracy in donor-recipient matching, and better prediction of rejection risk. 
Computational complexity and data availability are challenges that need to be overcome for the full potential of 
AI-based transplantation models to be achieved. Hybrid models combining several AI methods can be 
researched in the future to achieve higher accuracy and reliability. 

Conclusions 
This study proposes an integrated approach to improving the success of organ transplantation using a 
combination of AI and formal mathematical models. Incorporating Neutrosophic SuperHyperStructure models, 
we handle the inevitable uncertainties in recipient-donor pairing and probabilities of organ rejection. The results 
indicate that the Neutrosophic SuperHyperStructure model has superior performance over the traditional 
SuperHyperStructure model in terms of accuracy in decision-making and success rates in transplant. 

The use of machine learning methods, i.e., LSTM networks, is found to be very efficient in forecasting organ 
rejection chances. The capability of the models to process sequential patient information helps in detecting 
prospective rejection threats early on, hence enabling timely medical interventions. RL methods are also found to 
be significant in streamlining the donor-recipient pairing process. Through real-time feedback and consistent 
adjustment of choice criteria, RL improves transplant decision-making, minimizing mismatches and enhancing 
overall performance. 

Sensitivity analysis also attests to the stability of our proposed framework by testing the influence of the 
variations in important parameters on transplant success rates. The results reaffirm that precision in donor-
recipient matching and probabilities of organ rejection are critical determinants of the success of transplantation, 
justifying the necessity of precise and data-driven decision-making. 

Overall, this study shows the revolutionary potential of AI in the field of organ transplantation. Blending 
advanced mathematical frameworks and AI models not only increases the percentage of successful transplants 
but also offers an adaptive and interactive platform for clinical decision-making. Future research can focus on 
hybrid AI models that combine deep learning and RL to further advance predictive accuracy and decision 
optimization. In addition, empirical clinical validation of our proposed framework can further enhance its 
usability and effectiveness in clinical practice. 
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ABSTRACT 

 This paper introduces a novel approach to quantifying the inherent uncertainty in pre-PhD anxiety among 
research aspirants using neutrosophic set theory. Neutrosophic logic, with its ability to handle indeterminacy 
alongside truth and falsity membership functions, provides a robust framework for modeling the complex 
emotional and psychological states experienced by doctoral program applicants. We develop a neutrosophic 
anxiety index that captures the multidimensional nature of academic uncertainty, imposter syndrome, and research 
preparedness concerns. Our model demonstrates superior representational capacity compared to traditional fuzzy 
logic approaches when applied to survey data from 245 prospective PhD students across diverse disciplines. 
Statistical validation confirms the reliability of our neutrosophic measures, with potential applications in academic 
counseling, doctoral program design, and mental health support systems for early-career researchers. 

Keywords: Neutrosophic anxiety index, Imposter Syndrome, Fuzzy logic, Pre-PhD anxiety. 

MSC(AMS-2020): 03B52, 97B10 

 

 

133



New Trends in Neutrosophic Theories and Applications, Vol. 4, 2025 

INTRODUCTION 

The transition to doctoral studies represents a significant inflection point in academic trajectories, often 
characterized by heightened anxiety and uncertainty. Unlike traditional educational progression, the PhD journey 
introduces unique stressors including research originality demands, advisor relationships, funding insecurity, and 
career path ambiguity [1]. Conventional psychometric approaches to measuring this anxiety frequently employ 
Likert scales and classical statistical methods that inadequately capture the inherent uncertainty and indeterminacy 
in subjective emotional states. This paper applies neutrosophic set theory to develop a more nuanced framework 
for quantifying pre-PhD anxiety. Neutrosophic logic, as formalized by Smarandache [2], extends conventional 
fuzzy logic by introducing an independent indeterminacy component.  Pramanik [3] presented mathematical truth 
based on neutrosophic logic. Pramanik [4] presented neutrosophic view theory of mathematics using neutrosophic 
logic. Neutrosophic set theory  was  used in educational contexts [5, 6, 7]. The three-dimensional approach (truth-
indeterminacy-falsity)  of neutrosophic set [8, 9, 10] allows for a more authentic representation of the 
psychological reality experienced by research aspirants, where certainty about anxiety levels coexists with areas 
of ambivalence and indeterminacy. 

Our contributions include:  

• Development of a neutrosophic anxiety index specifically calibrated for  research aspirants  

• Identification of discipline-specific neutrosophic patterns in anxiety manifestation  

• Statistical validation of neutrosophic measures against established psychological scales  

• Computational algorithms for processing survey data through neutrosophic frameworks  

• Policy recommendations for academic institutions based on neutrosophic insights 

The remainder of this paper is organized as follows:  

Section Content 

2 Provides basic definitions and properties of neutrosophic sets 

3 Provides reviews relevant literature on both pre-PhD anxiety and 

neutrosophic applications in psychological assessment 

4 Presents core lemmas and mathematical foundations 

5 Provides the details about our methodology and main results 

6 concludes with implications and future research directions. 

 
BACKGROUND 

Throughout the section, we discuss several preliminary definitions and findings about Nutrosophic Sets 
that will be beneficial when preparing the key findings of this article.      

Definition 1 (Neutrosophic Set) [2]. A neutrosophic set 𝐴 on a universe of discourse 𝑋 is characterized by a truth-
membership function 𝑇𝐴(𝑥), an indeterminacy-membership function 𝐼𝐴(𝑥), and a falsity-membership function 
𝐹𝐴(𝑥), where 𝑥 ∈  𝑋 and 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)∈ [0, 1]. These functions are independent, and their sum can exceed 
1, i.e., 0 ≤  𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) +𝐹𝐴(𝑥) ≤  3. 
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Definition 2 (Single-Valued Neutrosophic Set) [11]. A single-valued neutrosophic set (SVNS) 𝐴 is a special case 
of a neutrosophic set where 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ∈  [0, 1] and 0 ≤  𝑇𝐴(𝑥) +  𝐼𝐴(𝑥) +  𝐹𝐴(𝑥) ≤  3 for all 𝑥 ∈  𝑋. 

Definition 3 (Neutrosophic Anxiety Vector). For a research aspirant 𝑟, the neutrosophic anxiety vector 𝑁𝐴𝑉 (𝑟) 
is defined as: 𝑁𝐴𝑉 (𝑟) =  {(𝑑𝑖  , 𝑇𝑖(𝑟), 𝐼𝑖(𝑟), 𝐹𝑖(𝑟))|𝑖 =  1, 2, . . . , 𝑛}                                (1) 

where 𝑑𝑖 represents the 𝑖 −th dimension of anxiety (e.g., academic preparedness, research capability, social 
integration), and 𝑇𝑖(𝑟), 𝐼𝑖(𝑟), and 𝐹𝑖(𝑟) represent the truth, indeterminacy, and falsity membership values 
respectively for aspirant 𝑟 along dimension 𝑑𝑖 . 

Definition 4 (Neutrosophic Anxiety Index). The Neutrosophic Anxiety Index (NAI) for research aspirant 𝑟 is 
defined as 

𝑁𝐴𝐼(𝑟) =
1

𝑛
∑[𝑇𝑖(𝑟) + 𝐼𝑖(𝑟)(1 − 𝐹𝑖(𝑟))]

𝑛

𝑖=1

                                (2) 

where n is the number of anxiety dimensions considered. 

Property 1 (Boundary Conditions). The Neutrosophic Anxiety Index satisfies: 0 ≤  𝑁𝐴𝐼(𝑟) ≤  2            (3)  

where 𝑁𝐴𝐼(𝑟) =  0 indicates complete absence of anxiety, and 𝑁𝐴𝐼(𝑟) =  2 indicates maximum anxiety with 
maximum indeterminacy. 

Property 2 (Dimension Weighting). The weighted Neutrosophic Anxiety Index with importance weights 𝜔𝑖 for 
each dimension is defined as:  

𝑁𝐴𝐼𝜔(𝑟) =
∑ 𝜔𝑖[𝑇𝑖(𝑟) + 𝐼𝑖(𝑟)(1 − 𝐹𝑖(𝑟))]𝑛

𝑖=1

∑ 𝜔𝑖
𝑛
𝑖=1

(4) 

where 𝜔𝑖 ∈  [0, 1] represents the relative importance of dimension 𝑑𝑖. 

Definition 5 (Neutrosophic Distance) [12]. The neutrosophic distance between two anxiety states NAV (𝑟1) and 
NAV (𝑟2) is defined as: 

𝑑𝑁𝐷(𝑟1, 𝑟2) =
1

3𝑛
∑ (|𝑇𝑖(𝑟1) − 𝑇𝑖(𝑟2)| + |𝐼𝑖(𝑟1) − 𝐼𝑖(𝑟2)| + |𝐹𝑖(𝑟1) − 𝐹𝑖(𝑟2)|𝑛

𝑖=1 )                                    (5) 

Literature Review 

Pre-PhD Anxiety and Mental Health Research 

 The psychological challenges faced by PhD aspirants and early-stage doctoral students have gained increasing 
attention in recent years. Levecque et al. [13] found that PhD students experience psychological distress at rates 
significantly higher than both the general population and other highly educated cohorts. This trend has been 
attributed to various factors, including academic pressure, uncertain career prospects, and work-life balance 
challenges [14].  

Traditional approaches to measuring academic anxiety have relied predominantly on Classical Test Theory (CTT) 
[15, 16] and Likert-scale instruments [17]  such as the Academic Anxiety Scales  [18, 19, 20]. While these tools 
provide valuable insights, they suffer from fundamental limitations when capturing the inherent uncertainty in 
subjective emotional experiences. 

Recent work [21] has started exploring more nuanced approaches to quantifying academic anxiety, including Item 
Response Theory (IRT) [22] and fuzzy logic applications. However, these approaches still lack the capacity to 
formally represent indeterminacy as distinct from uncertainty. 

Neutrosophic Applications in Psychological Measurement 

Neutrosophic set theory, introduced by Smarandache [2], has seen increasing application in fields requiring the 
formal representation of uncertainty and indeterminacy. The theory’s capacity to handle contradictory and 
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incomplete information makes it particularly suitable for psychological measurement. Smarandache [23]  
presented a neutrophic  mathematical approach to psychology.  Concepción [24]  presented neutrosophic scale to 
measure psychopathic personalities based on triple refined indeterminate neutrosophic sets.  

Despite these advances, the application of neutrosophic logic specifically to pre-PhD anxiety remains unexplored, 
representing a significant research gap that our work addresses. 

Mathematical Foundations and Lemmas 

Lemma 1 (Anxiety Dimension Independence). For any two distinct anxiety dimensions 𝑑𝑖 and 𝑑𝑗 , the correlation 
coefficient 𝜌 between their neutrosophic truth memberships satisfies: 

𝜌(𝑇𝑖 , 𝑇𝑗)| < |𝜌(𝑇𝑖
𝐹 , 𝑇𝑗

𝐹)                                       (6) 

where 𝑇𝑖
𝐹 and 𝑇𝑗

𝐹represent the corresponding fuzzy membership functions. Proof. The neutrosophic truth 
membership Ti incorporates aspects of indeterminacy that are explicitly separated in the neutrosophic framework 
but implicitly folded into fuzzy memberships 𝑇𝑖

𝐹 . This separation reduces spurious correlations between 
dimensions, resulting in lower absolute correlation values in the neutrosophic representation.                              

Lemma 2 (Indeterminacy Amplification). For anxiety dimensions with high inherent ambiguity, the average 
indeterminacy membership value increases monotonically with the cognitive complexity of the dimension: 

If 𝐶(𝑑𝑖)  >  𝐶(𝑑𝑗  ) 𝑡ℎ𝑒𝑛 𝔼[𝐼𝑖  ]  > 𝔼[𝐼𝑗  ] )              (7) 

where 𝐶(𝑑𝑖) represents the cognitive complexity of dimension di and 𝔼[𝐼𝑖] is the expected value of the 
indeterminacy membership across the population.  

Proof. Higher cognitive complexity introduces greater ambiguity in self-assessment, leading to increased 
indeterminacy in membership values. This relationship can be verified empirically through correlation analysis 
between complexity metrics and observed indeterminacy values.                                                                                

Theorem 1 (Neutrosophic Representational Advantage). For a population 𝑃 of research aspirants with anxiety 
states that include significant indeterminacy, the information loss 𝐿 in representation satisfies: 

𝐿𝑁𝑒𝑢𝑡𝑟𝑜𝑠𝑜𝑝ℎ𝑖𝑐  <  𝐿𝐹𝑢𝑧𝑧𝑦 <  𝐿𝐶𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙  

where L is measured by the Kullback-Leibler divergence [25] between the true distribution and the modeled 
distribution.  

Proof. The neutrosophic framework explicitly represents indeterminacy through 𝐼(𝑥), capturing information that 
is lost when projected onto the truth-falsity plane in fuzzy systems or further collapsed to binary or scalar values 
in classical systems. This preservation of information dimensions directly translates to lower Kullback-Leibler 
divergence.     

Methodology and Main Results 

Data Collection and Study Design 
We conducted a cross-sectional survey of 245 research aspirants across diverse disciplines who were in the process 
of applying to PhD programs. Participants were recruited through academic networks and online forums for 
prospective graduate students. The sample included participants from STEM fields (42%), social sciences (31%), 
humanities (18%), and interdisciplinary programs (9%). The survey instrument contained three components: 

 1. Standard psychological measures including the Academic Anxiety Inventory (AAI) [19] and the Clance 
Impostor Phenomenon Scale (CIPS) [26, 27,28] 

2. Neutrosophic self-assessment items explicitly capturing truth, indeterminacy, and falsity for each anxiety 
dimension  

3. Demographic and academic background information 
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Neutrosophic items were structured to capture the three-dimensional nature of anxiety experiences. For example, 
for the dimension ”research capability anxiety,” participants responded to:  

• Truth membership: “I feel anxious about my research capabilities” (0-10 scale)  
• Indeterminacy membership: “My feelings about my research capabilities are ambiguous or fluctuating” 

(0-10 scale)  
• Falsity membership: “I feel confident about my research capabilities” (0-10 scale) Responses were 

normalized to [0,1] for neutrosophic processing. The survey was conducted online using secure 
infrastructure with appropriate ethical approvals.       

Neutrosophic Anxiety Dimensions  

Based on factor analysis and literature review, we identified five key dimensions of pre-PhD anxiety:                                                                                                                                                          

 

 

 

 

 

Main Results 

Neutrosophic Anxiety Distribution  

Analysis of the neutrosophic anxiety vectors revealed distinctive patterns across the population. Figure 1 shows 
the distribution of anxiety components across the five dimensions. The neutrosophic anxiety analysis also followed 
this algorithm: 
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Notable observations include:  

• Career Uncertainty displayed the highest truth membership (T = 0.82) and indeterminacy (I = 0.67), 
reflecting both high anxiety and significant ambivalence about post-PhD trajectories  

• Social Integration showed the lowest truth membership (T = 0.45) and highest falsity membership (F = 
0.59), indicating lower anxiety in this dimension  

• Research Capability exhibited high truth membership (T = 0.78) with substantial indeterminacy (I = 
0.52), reflecting the complex nature of self-assessment in research skills 

Neutrosophic Anxiety Profiles  

Cluster analysis of neutrosophic anxiety vectors identified four distinct profiles among research aspirants, as 
shown in Figure 
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The four profiles were characterized as follows:  

• Confident (NAI=0.43, 18% of sample): Low truth and indeterminacy memberships across dimensions, high 
falsity membership . 

• Ambivalent (NAI=0.94, 31% of sample): Moderate truth membership but high indeterminacy, indicating 
significant uncertainty (NAI=0.94, 31% of sample): Moderate truth membership but high indeterminacy, 
indicating significant uncertainty. 

• Anxious (NAI=1.35, 27% of sample): High truth membership, low falsity membership, moderate indeterminacy 

•Conflicted (NAI=0.87, 24% of sample): Simultaneously high truth and falsity memberships, indicating 
contradictory self-assessment. 

Disciplinary Variations in Neutrosophic Anxiety 

Analysis revealed significant variations in neutrosophic anxiety patterns across academic disciplines, as illustrated 
in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Key findings include: 

• STEM aspirants showed highest anxiety in Financial Security but lowest in Research Capability. 
• Humanities aspirants exhibited highest anxiety in Career Uncertainty (NAI=1.32). 
• Interdisciplinary aspirants consistently showed high anxiety across multiple dimensions. 
• Social Sciences aspirants demonstrated particularly high Research Capability anxiety (NAI=1.12). 

Statistical analysis confirmed that these disciplinary differences were significant (𝑝 <  0.01) and not attributable 
to demographic or background variables. 
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Comparison with Traditional Measures  

We compared the predictive validity of the Neutrosophic Anxiety Index against traditional psychological measures 
using a holdout validation approach. Table 2 shows the correlation of various measures with reported anxiety 
impacts. 

 

 

 

 

 

The Neutrosophic Anxiety Index demonstrated significantly higher correlation with self-reported anxiety impacts 
on academic performance, sleep quality, and social functioning. This superior predictive validity confirms the 
value of the neutrosophic approach in capturing the complex reality of pre-PhD anxiety. 

Visualization of Neutrosophic Anxiety Space 

 To illustrate the three-dimensional nature of neutrosophic anxiety, we developed a visualization of the anxiety 
space for the Research Capability dimension, shown in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

This visualization demonstrates how research aspirants occupy different regions of the neutrosophic space, with 
clustering evident in certain regions. Traditional approaches would project this three-dimensional space onto a 
single dimension, losing significant information about the nature of anxiety experiences. 

Conclusions 

This paper has demonstrated the efficacy of neutrosophic set theory in quantifying the complex and often 
contradictory experiences of anxiety among PhD aspirants. Our results show that: 

1. The neutrosophic framework captures important dimensions of indeterminacy that are not represented in 
traditional anxiety measures.  

2. Pre-PhD anxiety manifests in distinct neutrosophic profiles that have predictive validity for academic 
outcomes. 
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3. Disciplinary differences in anxiety patterns are substantial and can be precisely characterized using 
neutrosophic indices.  

4. The Neutrosophic Anxiety Index outperforms traditional measures in predicting the impact of anxiety on 
aspirants’ functioning.  

The identification of the four profiles—Confident, Ambivalent, Anxious, and Conflicted—provides a more 
nuanced understanding of pre-PhD anxiety than binary classifications of “high anxiety” versus “low anxiety.” In 
particular, the distinction between Ambivalent and Conflicted profiles, which might appear similar in traditional 
frameworks, has important implications for intervention approaches. 

Our work extends the application of neutrosophic logic to psychological measurement, demonstrating its utility in 
capturing the inherent indeterminacy in subjective states. The mathematical framework developed here can be 
adapted to other domains of psychological assessment where traditional approaches fail to adequately represent 
uncertainty and contradiction. The validation of Lemma 1 (Anxiety Dimension Independence) suggests that 
neutrosophic representations may reduce spurious correlations between conceptually distinct anxiety dimensions, 
improving the discriminant validity of anxiety measures. Similarly, the confirmation of Theorem 1 (Neutrosophic 
Representational Advantage) provides empirical support for the theoretical superiority of neutrosophic 
frameworks in contexts involving significant indeterminacy. 

The findings of this study have several practical implications for doctoral programs, academic advisors, and 
aspirants themselves:  

1. Targeted Interventions: Different neutrosophic profiles may benefit from different support approaches. For 
example, Ambivalent aspirants may benefit from information and clarity, while Conflicted aspirants may need 
help resolving contradictory self-assessments. 

 2. Discipline-Specific Support: Our analysis of disciplinary variations suggests that support services should be 
tailored to address the specific anxiety patterns common in different fields. 

 3. Assessment Refinement: Academic institutions could adopt neutrosophic assessment tools to gain more 
nuanced insights into the psychological states of incoming doctoral students. 

4. Computational Implementation: The algorithms developed in this study can be implemented in online 
assessment platforms to provide real-time neutrosophic analysis of anxiety states. 

Our work extends the application of neutrosophic logic to psychological measurement, demonstrating its utility in 
capturing the inherent indeterminacy in subjective states. The mathematical framework developed here can be 
adapted to other domains of psychological assessment where traditional approaches fail to adequately represent 
uncertainty and contradiction. The validation of Lemma 1 (Anxiety Dimension Independence) suggests that 
neutrosophic representations may reduce spurious correlations between conceptually distinct anxiety dimensions, 
improving the discriminant validity of anxiety measures. Similarly, the confirmation of Theorem 1 (Neutrosophic 
Representational Advantage) provides empirical support for the theoretical superiority of neutrosophic 
frameworks in contexts involving significant indeterminacy. 

Future research directions include the development of adaptive interventions based on neutrosophic profiles, 
implementation of neutrosophic algorithms in student support systems, and extension of the neutrosophic 
framework to other domains of academic and career uncertainty. In conclusion, neutrosophic set theory provides 
a robust mathematical framework for representing the complex psychological reality of pre-PhD anxiety. By 
explicitly modeling indeterminacy alongside truth and falsity memberships, this approach offers both theoretical 
and practical advantages over traditional methods. As doctoral education continues to evolve, neutrosophic 
insights can inform more nuanced and effective approaches to supporting the next generation of researchers. 
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ABSTRACT 

An Internet Service Provider (ISP) is an entity that enables internet access by providing network connections 
and related services. ISPs maintain the necessary infrastructure and telecommunications network to establish a 
point of presence in their service regions. Besides internet access, they also offer services such as email hosting, 
domain registration, and website hosting. ISPs typically acquire bandwidth from suppliers and allocate it across 
various services, balancing quality and profitability. Choosing the best ISP involves considering several factors, 
including available providers in the area, broadband connection types, required internet speed, reliability, budget, 
additional features, and customer responsiveness. This article aims to develop a ranking algorithm within the 
neutrosophic domain to identify the optimal ISP. A mathematical model is proposed to determine the most cost-
effective policy for an ISP. To validate the model, a case study is conducted by comparing results with a real ISP 
in India, demonstrating the algorithm’s practical applicability. 

Keywords: Internet Service Provider, costing, geometric optimization, fuzzy mathematical modeling, 

Neutrosophic decision-making, pricing optimization. Optimal pricing plan, revenue management. 

INTRODUCTION 

The internet has become a huge part of our lives, especially after the pandemic has hit us. Now, almost 
everything is being done online, and therefore, the need for the internet has increased in many folds. And 
therefore, having an internet connection at our places has become an important necessity. So, when it comes to 
getting a new internet connection, you may come to the question: which internet service provider will be the best 
for you? In challenging and uncertain markets, Revenue Management (RM) leads remarkable economic 
production in order to maximise the total monetary gain. In 1987, Belobaba [1] and in 1999 McGill, Ryzin [2]  
analysed the basic sources of the Revenue Management (RM) in 1993.  Kim and Lee [3] introduced a blended 
production and marketing model, and further in 1998 [4] they elongated it in fixed and also variable market 
capacity.  In 2005, Sadjadi et al. [5] expanded Lee’s model, and in 2010, Sadjadi et al. [6] developed a new 
pricing and marketing model in a fuzzy environment. In 2021, Ahmadi [7] explored an optimal pricing plan for 
Iran’s IXP services through a fuzzy geometric programming model. A recent study by Pintu Das et al. [13] 
introduced a multi-objective geometric programming model utilizing the intuitionistic fuzzy geometric 
programming approach. Pintu Das and his collaborators have significantly advanced optimization research by 
integrating fuzzy and neutrosophic techniques into geometric programming. Their work focuses on addressing 
complex multi-objective non-linear programming challenges, offering innovative methodologies applicable to 
various engineering problems. In their 2015 study, Das and Tapan Kumar Roy [14] developed a multi-objective 
nonlinear programming model based on the Neutrosophic optimization technique and applied it to the riser 
design problem, introducing a novel approach to neutrosophic optimization. This technique was applied to a riser 
design problem, demonstrating its effectiveness in real-world engineering applications. Geometric Programming 
in an Imprecise Domain with Application has been published by Pintu Das et al. [15]. Please note that there is 
fierce competition in the ISP market and significant technological changes drive the need to develop a well-
considered strategy for pricing ISP services. This paper presents the development of a mathematical model for 
pricing ISP services. Recognizing that real-world problems often occur in uncertain environments, the planned 
model is designed in a neutrosophic domain as a neutrosophic geometric programming model.                                                                                       

144



New Trends in Neutrosophic Theories and Applications, Vol. 4, 2025 

In 1965, Zadeh introduced fuzzy sets (FS) [8], and since then, fuzzy sets and fuzzy logic have seen widespread 
adoption and application to handle uncertainty in various practical applications. In conventional fuzzy sets, the 
truth membership function of a set A, defined over a universe X, is represented by a single real value. However, 
there are cases where it is important to consider both the truth membership supported by evidence and the truth 
membership opposed by evidence. Fuzzy sets and interval-valued fuzzy sets are not capable of handling such 
situations. Additionally, the degree of non-membership in a fuzzy set is often assumed to be the complement of 
the membership degree, but this may not always hold true in scenarios with some degree of hesitation. To 
address these limitations, Atanassov [9], [10] introduced intuitionistic fuzzy sets (IFS) in 1986. IFS consider 
both membership in truth and membership in falsehood, but they are limited to handling incomplete information 
rather than uncertainty or inconsistency. In IFS, the sum of the membership and non-membership degrees for an 
element is less than one, indicating the presence of incomplete or indeterminate information. While IFS provide 
a useful tool, they are not capable of effectively handling all types of uncertainty encountered in real-world 
physical problems. To overcome these limitations, a further generalization of fuzzy sets and intuitionistic fuzzy 
sets is necessary. Neutrosophic sets (NSs) offer this generalization by treating truth, indeterminacy, and falsity 
memberships as independent, allowing for explicit quantification of indeterminacy.  Neutrosophy was introduced 
by Florentin Smarandache in 1995 [11, 12] as a generalization of various types of fuzzy sets (FS) [8, 16, 17] and 
intuitionistic fuzzy sets (IFS) [9, 10, 18, 19]. The term “neutrosophy” means knowledge of neutral thought. This 
neutral concept makes the different between NS and other sets like FS, IFS.                                               

Fuzzy representation is characterized by a single parameter: the degree of truth (μ), while the degree of falsity (ν) 
is determined by the formula ν = 1 - μ. The degree of neutrality (σ) is typically set to 0. 

Intuitionistic fuzzy representation, on the other hand, uses two explicit parameters: the degree of truth (μ) and the 
degree of falsity (ν), with the degree of neutrality (σ) also defaulting to 0. Atanassov's approach accounts for the 
incomplete variant, ensuring that μ + ν ≤ 1. 

In Neutrosophic representation, three parameters are used: the degree of truth (μ), degree of falsity (ν), and 
degree of neutrality (σ), each providing a more nuanced representation of information. 

The proposed framework is characterized by three membership functions: truth, falsity and indeterminacy. As a 
result, neutrosophic sets (NS) are particularly effective for developing models that handle data with 
indeterminacy and inconsistency. 

 The geometric programming method under a neutrosophic environment is applied in several fields, although the 
literature review implies that there is just a little work completed on the revenue management system.  Hence,  
the  study  faces  the  problem,  and  the  goal  of  the article  is  to  fill  up  the  gap  in the literature  survey.                                                                                                                                                                   

This study focuses on developing a ranking algorithm in the neutrosophic domain to select the most suitable 
internet service provider (ISP). A novel mathematical model is introduced to identify the best pricing policy for 
an ISP, formulated as a stochastic geometric programming problem in the neutrosophic domain. To evaluate the 
effectiveness and practical relevance of the proposed algorithm, the results are benchmarked against real-world 
data from a prominent ISP in India, presented as a case study. By applying this method, we are able to determine 
the optimal ISP choice based on cost-effectiveness and service quality. 

Problem Formulation 

The problem involves determining the optimum costing policy for Internet Service Providers (ISPs) under 
uncertainty. Given the dynamic pricing nature of ISP services, a neutrosophic geometric programming (GP) 
approach is formulated to handle vagueness and indeterminacy effectively. The objective is to maximize total 
revenue while considering bandwidth constraints and service demand elasticity. 

The mathematical model is structured as follows: 

Neutrosophic Geometric Programming Formulation 
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Let 

α be the demand-price sensitivity factor 

ᵞ𝒋 be the Service type weight 

𝛽𝑗be the Share ratio 

𝑃𝑗be the Selling price for service j 

𝐷𝑗be the  Service demand for j 

B: Total bandwidth that agency collects per interval 

K: Prearranged constant 

We consider the maximum revenue and optimal price in the Neutrosophic sense. 

Price depends on demand and it has transposed relation with the selling price as  

𝐷 =
𝐾

𝑃𝛼. 

The pricing for ISP services is formulated within the Neutrosophic framework, based on specific notations and 
assumptions. The optimization problem is given by 

𝑀𝑎�̃�N∑ 𝑃𝑗𝐷𝑗
𝑛
𝑗=1  

Subject to ∑
ᵞ𝑗𝐷𝑗

𝛽𝑗

𝑛
𝑗=1  ≤ 𝐵 

Substitute   𝐷 =
𝐾

𝑃𝛼. 

𝑀𝑎�̃�N∑ 𝐾𝑃𝑗
1−𝛼𝑛

𝑗=1  
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 ᵞ𝑗𝐾𝑃𝑗

−𝛼

𝛽𝑗

𝑛
𝑗=1  ≤ 𝐵. 

Solution Approach 

Using neutrosophic membership functions, we express: 

• Truth membership function  
• Falsity membership function 
• Indeterminacy membership function  

The neutrosophic model is transformed into a crisp geometric optimization problem and solved using duality 
techniques. The resulting optimal pricing strategy is derived to maximize revenue under uncertainty conditions. 
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The above three memberships can be transformed into a single one as 

Max (µ𝑗(∑ 𝑃𝑗
1−𝛼𝑛

𝑗=1 ) − �γ�(∑ 𝑃𝑗
1−𝛼𝑛

𝑗=1 ) + 𝜎𝑗(∑ 𝑃𝑗
1−𝛼𝑛

𝑗=1 )) 

Now the neutrosophic geometric optimization problem is converted into a crisp geometric optimization problem 
as  

Min∑
11

6000
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The above problem can be expressed as follows 
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Using duality theorem of geometric programming we get the dual of the primal 
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Using normal, orthogonal, and primal-dual variable relations  
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 ᵞ3𝑃3
−𝛼

𝐵𝛽3

=
𝑤13

𝑤11 + 𝑤12 + 𝑤13
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Solving the above equations  

𝑤11 =
1 − 𝛼

𝛼 [1 + (
 ᵞ2𝛽1

 ᵞ1𝛽2
)

1−𝛼

+ (
 ᵞ3𝛽1

 ᵞ1𝛽3
)

1−𝛼

]
 

 

𝑃1 = (
 ᵞ1

𝐵𝛽1

[1 + (
 ᵞ2𝛽1

 ᵞ1𝛽2

)

1−𝛼

+ (
 ᵞ3𝛽1

 ᵞ1𝛽3

)

1−𝛼

])

1

𝛼

 

 

𝑃2 =
 ᵞ2𝛽1

 ᵞ1𝛽2

𝑃1 

𝑃3 =
 ᵞ3𝛽1

 ᵞ1𝛽3

𝑃1 

 

Illustrative example 

In this article we have executed the projected neutrosophic model for one of the ISP of India that provides 
internet services (using LINGO software). The business recommended three kinds of required services: 128, 256, 
and 512𝑚𝑏/𝑠𝑒𝑐. 

 

Parameters are evaluated as follows: 

𝛽1= 8,  𝛽2 = 10,  𝛽3= 12 

B = 5120𝑚𝑏/𝑠𝑒𝑐 

 ᵞ1 = 128 𝑚𝑏/𝑠𝑒𝑐 

 ᵞ2 = 256 𝑘𝑏/𝑠𝑒𝑐 

 ᵞ3 = 512 𝑘𝑏/𝑠𝑒𝑐 

 

Table: The impact of changes on price elasticity. 

 

  𝛼 𝑃1 𝑃2 𝑃3      Z 
0.5 0.0001477 0.00023632 0.0003928 0.047344 
1 0.009375 0.0150 0.0250 3.00 
2 0.07907 0.1265 0.21034 25.3063 
 

Stability Analysis 

The stability of the proposed neutrosophic model was evaluated by analyzing its performance under different 
scenarios of cost variations, demand fluctuations, and price elasticity changes. The model's robustness was tested 
by introducing perturbations in key parameters, such as service costs, operational expenses, and revenue 
expectations. 
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Results indicate that the neutrosophic approach effectively mitigates uncertainty, providing stable and reliable 
solutions even when input parameters deviate significantly. Compared to traditional crisp or fuzzy models, the 
proposed method exhibits superior adaptability, making it a practical tool for real-world ISP decision-making. 
The sensitivity analysis further validates the model’s resilience, confirming its applicability across dynamic and 
uncertain market conditions. 

 
Conclusions 

In this article, a neutrosophic model was proposed mathematically to solve uncertain costing internet service 
providers (ISP) problems. Model was developed in the neutrosophic environment to increase model’s stability in 
many real-world circumstances. Finally,  the problem is designed as a Neutrosophic geometric optimization and 
the potency of the problem has been demonstrated by one of the ISPs of India. Different selling price with total 
cost for various internet service providers has shown which is effective to select a best policy or company for 
different price elasticity.   
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ABSTRACT 

Plithogenic sets are more robust in decision making. This work conjoins the aspects of Plithogenic 
hypersoft sets, Pythagorean sets and possibility theory. This research work explores the applications of 
Plithogenic based Pythagorean Hypersoft sets with possibility degree in studying on sustainable alternatives. 
This novel integrated decision framework proposed in this work offers more flexibility to the decision makers in 
accommodating intricate data representations. The integrated decision model is applied to the selection-based 
decision-making problem of waste management. The results of the model demonstrate the efficacy and 
robustness of the model. The proposed decision-making architecture shall be dealt with extended plithogenic 
hypersoft sets and combined Plithogenic Hypersoft Sets (PHSs). This integrated model shall be leveraged in 
complex decision-making systems.  

Keywords: Plithogenic sets, possibility degree, Pythagorean sets, hypersoft sets, Sustainability. 
 

INTRODUCTION 

              Plithogenic sets are introduced by Smarandache [1] with the objective of generalizing different kinds of 
set representations. These Plithogenic sets are basically more comprehensive in nature as it accommodates varied 
representations of data with respect to attributes. Plithogenic theory shall be termed as Attribute theory. On other 
hand the soft sets and hypersoft sets also deal with attributes. Smarandache [2] bridged hypersoft theory with 
Plithogeny and initiated the theoretical development of PHSS. The Plithogenic soft sets and PHSS are alike in 
representations and henceforth Smarandache laid a clear differentiation of these two theoretical concepts.  
Researchers have applied Plithogenic hypersoft sets in several domains. Some of the significant contributions are 
described as follows. Rana, Sayeed, et al. [3], and Rana, Qayyum, et al. [4] developed Plithogenic whole 
hypersoft set in a more generalized form and Plithogenic fuzzy whole hypersoft set. Majid et al. [5] discussed the 
applications of Plithogenic multipolar fuzzy hypersoft sets. Martin and Smarandache [6, 7] introduced combined 
PHSS and concentric plithogenic hypergraph structures. Gayen  et al. [8] discoursed plithogenic hypersoft 
subgroup. Basumatary et al. [9]) briefed on the properties of plithogenic neutrosophic hypersoft topological 
group. Dhivya and Lancy [10, 11] briefed on the strong continuity functions in Plithogenic context and also 
initiated near PHSS. Martin et al. [12] leveraged the applications of extended Plithogenic hypersoft sets in 
disease diagnostic model. Ahmadet et al. [13] framed Plithogenic hypersoft based decision model. 

 Researchers have also integrated the theory of PHSS with the theory of possibility. Rahman, Saeed,  
Khalifa,  et al. [14] Rahman, Saeed, Mohammed, Krishnamoorthy, et al. [15] and Rahman, Saeed, Mohammed, 
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Abdulkareem, et al. [16] developed several decision-making techniques, hybrid structures with the implications 
of possibility integrated hypersoft sets and applied the same in site selection of solid waste management, disease 
diagnosis, agri-automobile evaluation. Zhao et al. [17] formulated an intelligent based decision making approach 
in making investment selections.  

Rahman, Saeed, & Garg [18], Rahman, Smarandache, Saeed, et al. [19], and Rahman, Saeed, & Abd El-
WahedKhalifav [20], developed the hypersoft set with possibility degree using multi attribute decision making 
based on aggregation and also provide innovative decisive framework.Saeed, Waheb,  et al. [21] (2023) 
presented an innovative approach of quality assessment with possibility q-rung ortho-pair fuzzy hypersoft set. 
Al-Hijjawi and Alkhazaleh[22] discoursed on possibility neutrosophic hypersoft set. Martin [23] introduced the 
notion of possibility plithogenic soft sets. In addition to this, researchers have also applied Pythagorean kind of 
sets in decision making. These sets are a special kind of intuitionistic sets which satisfies certain conditions. 
Pythagorean kind of hypersoft sets is applied in several decision-making scenario. Zulqarnainet al. [24], Jafar et 
al. [25], Khan et al.[26], and many other contributed to Pythagorean fuzzy hypersoft sets. Martin et al. [27] 
developed a decision model with the integration of Plithogenic Pythagorean hypersoft sets. However, from the 
aforementioned literature it is found that the intersection of PHSS, Pythagorean and Possibility is not found and 
hence this research work coins a decision model which is based on three Ps. The objective of this research work 
is to develop an integrated decision model to make optimal decisions on sustainable waste management. 
However, on other hand the theory of neutrosophy is explored by the researchers in developing decisioning 
models. Ye [28],  Biswas et al. [29], Pramanik  et al. [30] developed multi-criteria decisioning models based on 
single-valued neutrosophic environment. Researchers also developed models based on different decision 
methods and measures. To mention a few, hybrid vector similarity measures by Pramanik et al. [31], CRITIC-
EDAS by Mallick et al. [32]), neutrosophic Delphi by Smarandache et al. [33],  TOPSIS by Biswas et al. [34, 
35], Neutrosophic logic by Mondal et al. [36], Best Worst Method and TOPSIS by Pramanik, Das, et al. [37]. 
The developments and extensions of neutrosophic based decision models is high in comparison with Plithogenic 
based decision models and this research work attempts in augmenting and building more plithogenic based 
decision models. 

 The remaining contents of the paper are structured into the following sections. Section 2 comprises the 
essential preliminaries. Section 3 presents the theoretical developments of Pythagorean Plithogenic Possibility 
Hypersoft sets (PyPlPoHS). Section 4 sketches the applications of PyPlPoHS. Section 5 discusses the results and 
the last section concludes the research work. 

 

PRELIMINARIES 

              This section discusses the fundamental concepts pertinent to this research work. 

Definition 1. Plithogenic Set [1]  

Smarandache [1]  defines Plithogenic set as the generalization of crisp, fuzzy, intuitionistic, and neutrosophic 
soft set. 

The universe of discourse is denoted by U. The plithogenic set is of the form (𝑃, 𝑎, 𝑉, 𝑑, 𝑐)with set  𝑃, the 
attribute a, the set of attribute values V, the degree of appurtenance d, the degree of contradiction c of the 
dominant attribute value with respect to other attribute values subjected to a particular attribute i.e. ∀𝑥 ∈

𝑃, 𝑑: 𝑃 × 𝑉 → 𝜌([0,1]𝑧), 𝑐: 𝑉 × 𝑉 → [0,1]𝑧. 

In this case, if 𝑧 =  1, it is crisp, 𝑧 =  2, it is intuitionistic, 𝑧 =  3, it is neutrosophic. 

Definition 2.  Plithogenic Hypersoft Set [38]  

                A PHSS is of the form(𝑋, 𝐴, 𝐶, 𝑑, 𝑐). For an n-tuple (𝛾1, 𝛾2. . . , 𝛾𝑛) ∈ 𝐶, 𝛾𝑖 ∈ 𝐴𝑖 , 1 ≤ 𝑖 ≤ 𝑛, a 
plithogenic hypersoft set 𝐹 ∶  𝐶 → 𝑃(𝑈) is mathematically written as 

𝐹(𝛾1, 𝛾2. . . , 𝛾𝑛) = {𝑥(𝑑𝑥(𝛾1), 𝑑𝑥(𝛾2), . . . , 𝑑𝑥(𝛾𝑛)), 𝑥 ∈ 𝑋, 𝛾𝑖 ∈ 𝐴𝑖}. 

Definition 3. Plithogenic Possibility Hypersoft set [23]  
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             A Plithogenic Possibility hypersoft set over 𝑈 is a set of ordered pairs of the form   

(𝐹𝑃𝑃
𝑧 , Υ) defined by 𝐹𝑃𝑃

𝑧 : Υ → [0,1]𝑑 × 𝑈𝑧 × 𝐼𝑈, where 𝐼𝑈 is the assortment of all fuzzy subsets of 𝑈. 

This can also be represented as  

𝐹𝑃𝑃
𝑧 =  {(𝑒ℎ, {(

(𝑢𝑙,𝑐𝑑)

𝐹𝑃
𝑧(𝑒ℎ)(𝑢𝑙)

, 𝜇(𝑒ℎ)(𝑢𝑙)) |𝑢𝑙𝜖𝑈}) |𝑒ℎ𝜖Υ}. 

In this expression, 𝜇(𝑒ℎ)(𝑢𝑙) signifies the possibility degree of 𝑢𝑙 with respect to 𝑒ℎ.  

Definition 4. Pythagorean Fuzzy  Set  [39] 

Let 𝑋 the universal set. The Pythagorean fuzzy set 𝐴 is a set of ordered pairs over𝑋, and it is defined by 

 𝐴 = {𝜇𝐴(𝑥), 𝜗𝐴(𝑥)|𝑥 ∈ 𝑋}. 

Where the functions μ
A 

(x): 𝑋 → [0,1]andϑA (x): 𝑋 → [0,1]define the degree of membership and the 
degree of non-membership, respectively of the element 𝑥 ∈ 𝑋to A, which is a subset of 𝑋,and for every 𝑥 ∈

𝑋, 

0 ≤ ((μ
A 

(x))) 2 + ((ϑA (x))) 2 ≤ 1. 

𝜋𝐴(𝑥) = 1 − μ
A 

(x) − ϑA (x) 

is the intuitionistic fuzzy set index or hesitation margin of𝑥in 𝑋.The hesitation margin 𝜋𝐴(𝑥)is the 
extent of non-determinacy of 𝑥 ∈ 𝑋,to the set𝐴 and𝜋𝐴(𝑥)𝜖[0,1].  The hesitation margin is the function that 
expresses lack of knowledge of whether 𝑥 ∈ 𝑋.   

Thus, 

𝜋𝐴(𝑥) + μ
A 

(x) + ϑA (x) = 1. 

Definition 5. Plithogenic Pythagorean Set  [40]  

                          The Plithogenic set is said to be Pythagorean Plithogenic set is the degree of appurtenance d is of 
Pythagorean set.  i.e. d: 𝑃 × 𝑉 → 𝜌([0,1]2𝑝).  In this case if z=2 it is intuitionistic and 2𝑝 stands of Pythagorean 
sets which is a special kind of Pythagorean sets. 

Pythagorean Plithogenic Possibility Hypersoft Set 

                          This section introduces the conceptualization, operations and similarity measures of Pythagorean 
Plithogenic Possibility Hypersoft Set ((PyPlPoHS). 

Definition 6.  PyPlPoHS 

                   A PyPlPoHS over 𝑈 is a set of ordered pairs of the form (𝐹𝑃𝑃
𝑝

, Υ) defined by  

𝐹𝑃𝑃
𝑝

: Υ → [0,1]𝑑 × 𝑈𝑧 × 𝐼𝑈𝑝 . 

Where 𝐼𝑈𝑝  is the pool of all Pythagorean fuzzy subsets of 𝑈. 

This can also be represented as  

𝐹𝑃𝑃
𝑝

=  {(𝑒ℎ, {(
(𝑢𝑙,𝑐𝑑)

𝐹𝑃
𝑝

(𝑒ℎ)(𝑢𝑙)
, 𝜇(𝑒ℎ)(𝑢𝑙)) |𝑢𝑙𝜖𝑈}) | 𝑒ℎ𝜖Υ}. 

In this expression, 𝜇(𝑒ℎ)(𝑢𝑙) signifies the possibility degree of 𝑢𝑙 with respect to 𝑒ℎ.  
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Definition 7. Union and Intersection of Two PyPlPoHSs 

                    Let (𝐹𝑝𝑝
𝑝

, 𝐻) and (𝐺𝑝𝑝
𝑝

, 𝐻) be two Pythagorean plithogenic possibility hypersoft sets the union of two 
Pythagorean plithogenic possibility hypersoft soft set is defined as (𝐹𝑝𝑝

𝑝
 , 𝐻) ∨𝑝

𝑝
 (𝐺𝑝𝑝

𝑝
 , 𝐻) and the intersection of 

two PyPlPoHSs is defined as follows: (𝐹𝑝𝑝
𝑝

 , 𝐻) ∧𝑝
𝑝

 (𝐺𝑝𝑝
𝑝

 , 𝐻). 

The union of a set is defined as 

(𝐹𝑝𝑝
𝑝

 , 𝐻) ∨𝑝
𝑝

 (𝐺𝑝𝑝
𝑝

 , 𝐻)₌{(𝑚𝑎𝑥[𝑀𝑠(𝑥), 𝑁𝑠(𝑥)], 𝑚𝑖𝑛[𝑀𝑣(𝑥), 𝑁𝑣(𝑥)])│𝑥 ∈ 𝑋} 

and the intersection of a set is defined as 

(𝐹𝑝𝑝
𝑝

 , 𝐻) ∧𝑝
𝑝

 (𝐺𝑝𝑝
𝑝

 , 𝐻)₌{(𝑚𝑖𝑛[𝑀𝑠(𝑥), 𝑁𝑠(𝑥)], 𝑚𝑎𝑥[𝑀𝑣(𝑥), 𝑁𝑣(𝑥)])│𝑥 ∈ 𝑋}. 

Let us understand the union and intersection of PyPlPoHSs with a simple example. Let (𝐹𝑃𝑃
𝑃 , H)   and (𝐺𝑃𝑃

𝑃 , H) 
are defined in Tables 1. and2.  

 

Table 1.PyPlPoHS(𝐹𝑃𝑃
𝑃 , 𝐻) 

ℎ1 ℎ2 ℎ3 

(𝑚1, (0.3,0.3,0,0.3)𝑑)

((0.6,0.4), (0.7,0.1), (0.8,0.1))
, 0.7 

(𝑚1, (0,0.4,0,0.4)𝑑)

((0.5,0.4), (0.6,0.2), (0.7,0.1))
, 0.6 

(𝑚1, (0.5,0,0.5,0)𝑑)

((0.7,0.2), (0.6,0.4), (0.8,0.1))
, 0.6 

(𝑚2, 𝑐(0.3,0.3,0,0.3)𝑑)

((0.7,0.1), (0.7,0.2), (0.6,0.3))
, 0.8 

(𝑚2, 𝑐(0,0.4,0,0.4)𝑑)

((0.5,0.3), (0.6,0.3), (0.8,0.1))
, 0.9 

(𝑚2, 𝑐(0.5,0,0.5,0)𝑑)

((0.6,0.4), (0.5,0.4), (0.7,0.1))
, 0.8 

(𝑚3, (0.3,0.3,0,0.3)𝑑)

((0.8,0.1), (0.6,0.1), (0.7,0.1))
, 0.6 

(𝑚3, (0,0.4,0,0.4)𝑑)

((0.7,0.4), (0.5,0.2), (0.6,0.1))
, 0.7 

(𝑚3, (0.5,0,0.5,0)𝑑)

((0.6,0.2), (0.6,0.3), (0.7,0.1))
, 0.7 

(𝑚4, (0.3,0.3,0,0.3)𝑑)

((0.6,0.4), (0.7,0.2), (0.6,0.2))
, 0.9 

(𝑚4, (0,0.4,0,0.4)𝑑)

((0.6,0.3), (0.7,0.1), (0.8,0.1))
, 0.9 

(𝑚4, (0.5,0,0.5,0)𝑑)

((0.5,0.3), (0.7,0.1), (0.5,0.4))
, 0.8 

(𝑚5, (0.3,0.3,0,0.3)𝑑)

((0.7,0.2), (0.7,0.1), (0.8,0.1))
, 0.8 

(𝑚5, (0,0.4,0,0.4)𝑑)

((0.5,0.4), (0.6,0.3), (0.7,0.1))
, 0.8 

(𝑚5, (0.5,0,0.5,0)𝑑)

((0.6,0.2), (0.7,0.1), (0.8,0.1))
, 0.9 

 

Table 2. PyPlPoHS(𝐺𝑃𝑃
𝑃 , 𝐻) 

ℎ1 ℎ2 ℎ3 

(𝑚1, (0.3,0.3,0,0.3)𝑑)

((0.6,0.2), (0.5,0.4), (0.7,0.1))
, 0.9 

(𝑚1, (0,0.4,0,0.4)𝑑)

((0.5,0.4), (0.7,0.2), (0.6,0.1))
, 0.8 

(𝑚1, (0.5,0,0.5,0)𝑑)

((0.7,0.1), (0.5,0.4), (0.6,0.3))
, 0.8 

(𝑚2, 𝑐(0.3,0.3,0,0.3)𝑑)

((0.5,0.3), (0.7,0.2), (0.8,0.1))
, 0.8 

(𝑚2, 𝑐(0,0.4,0,0.4)𝑑)

((0.6,0.2), (0.8,0.1), (0.5,0.3))
, 0.7 

(𝑚2, 𝑐(0,0.4,0,0.4)𝑑)

((0.6,0.2), (0.8,0.1), (0.8,0.1))
, 0.9 

(𝑚3, (0.3,0.3,0,0.3)𝑑)

((0.7,0.2), (0.7,0.1), (0.8,0.1))
, 0.7 

(𝑚3, (0,0.4,0,0.4)𝑑)

((0.6,0.3), (0.5,0.3), (0.7,0.1))
, 0.9 

(𝑚3, (0.5,0,0.5,0)𝑑)

((0.6,0.2), (0.7,0.1), (0.7,0.1))
, 0.8 

(𝑚4, (0.3,0.3,0,0.3)𝑑)

((0.4,0.5), (0.6,0.1), (0.6,0.2))
, 0.9 

(𝑚4, (0,0.4,0,0.4)𝑑)

((0.5,0.4), (0.7,0.2), (0.8,0.1))
, 0.8 

(𝑚4, (0.5,0,0.5,0)𝑑)

((0.6,0.1), (0.7,0.1), (0.7,0.1))
, 0.9 

(𝑚5, (0.3,0.3,0,0.3)𝑑)

((0.6,0.3), (0.8,0.1), (0.5,0.3))
, 0.6 

(𝑚5, (0,0.4,0,0.4)𝑑)

((0.5,0.4), (0.7,0.1), (0.6,0.3))
, 0.7 

(𝑚5, (0.5,0,0.5,0)𝑑)

((0.7,0.1), (0.6,0.2), (0.5,0.4))
, 0.6 
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The union of two PyPlPoHSs of (𝐹𝑝𝑝
𝑝

 , 𝐻) and (𝐺𝑝𝑝
𝑝

 , 𝐻) is (𝑈𝑝𝑝
𝑝

 , 𝐻) and it is obtained in Table 3. 

Table 3. PyPlPoHS(𝑈𝑝𝑝
𝑝

 , 𝐻) 

ℎ1 ℎ2 ℎ3

(𝑚1, (0.3,0.3,0,0.3)𝑑)

((0.6,0.2), (0.7,0.1), (0.8,0.1))
, 0.9 

(𝑚1, (0,0.4,0,0.4)𝑑)

((0.5,0.4), (0.7,0.2), (0.7,0.1))
, 0.8 

(𝑚1, (0.5,0,0.5,0)𝑑)

((0.7,0.1), (0.6,0.4), (0.8,0.1))
, 0.8 

(𝑚2, 𝑐(0.3,0.3,0,0.3)𝑑)

((0.7,0.1), (0.7,0.2), (0.8,0.1))
, 0.8 

(𝑚2, 𝑐(0,0.4,0,0.4)𝑑)

((0.6,0.2), (0.8,0.1), (0.8,0.1))
, 0.9 

(𝑚2, 𝑐(0.5,0,0.5,0)𝑑)

((0.6,0.1), (0.7,0.1), (0.7,0.1))
, 0.8 

(𝑚3, (0.3,0.3,0,0.3)𝑑)

((0.8,0.1), (0.7,0.1), (0.8,0.1))
, 0.7 

(𝑚3, (0,0.4,0,0.4)𝑑)

((0.7,0.3), (0.5,0.2), (0.7,0.1))
, 0.9 

(𝑚3, (0.5,0,0.5,0)𝑑)

((0.6,0.2), (0.7,0.1), (0.7,0.1))
, 0.8 

(𝑚4, (0.3,0.3,0,0.3)𝑑)

((0.6,0.4), (0.7,0.1), (0.6,0.2))
, 0.9 

(𝑚4, (0,0.4,0,0.4)𝑑)

((0.6,0.3), (0.7,0.1), (0.8,0.1))
, 0.9 

(𝑚4, (0.5,0,0.5,0)𝑑)

((0.6,0.1), (0.7,0.1), (0.7,0.1))
, 0.9 

(𝑚5, (0.3,0.3,0,0.3)𝑑)

((0.7,0.2), (0.8,0.1), (0.8,0.1))
, 0.8 

(𝑚5, (0,0.4,0,0.4)𝑑)

((0.5,0.4), (0.7,0.1), (0.7,0.1))
, 0.8 

(𝑚5, (0.5,0,0.5,0)𝑑)

((0.7,0.1), (0.7,0.1), (0.8,0.1))
, 0.9 

To describe the result in the example above let compute 

(
(𝑚1,(0.3,0.3,0,0.3)𝑑)

((0.6,0.2),(0.7,0.1),(0.8,0.1))
, 0.9) ∨𝑝

𝑝
(

(𝑚1,(0.3,0.3,0,0.3)𝑑)

((0.6,0.2),(0.5,0.4),(0.7,0.1))
, 0.9) 

{𝑚𝑎𝑥(0.6,0.6), 𝑚𝑖𝑛(0.2,0.2)} =  (0.6 , 0.2), 

{𝑚𝑎𝑥(0.7,0.5), 𝑚𝑖𝑛(0.1,0.4)} = (0.7, 0.1), 

{𝑚𝑎𝑥(0.8,0.7), 𝑚𝑖𝑛(0.1,0.1)} = (0.8,0.1). 

The intersection of two PyPlPoHSs of (𝐹𝑝𝑝
𝑝

 , 𝐻) and (𝐺𝑝𝑝
𝑝

 , 𝐻) is (𝑉𝑝𝑝
𝑝

 , 𝐻) and it is obtained in Table 4. 

Table 4. PyPlPoHS(𝑉𝑝𝑝
𝑝

 , 𝐻) 

ℎ1 ℎ2 ℎ3

(𝑚1, (0.3,0.3,0,0.3)𝑑)

((0.6,0.4), (0.5,0.4), (0.7,0.1))
, 0.7 

(𝑚1, (0,0.4,0,0.4)𝑑)

((0.5,0.4), (0.6,0.2), (0.6,0.1))
, 0.6 

(𝑚1, (0.5,0,0.5,0)𝑑)

((0.7,0.2), (0.5,0.4), (0.6,0.3))
, 0.6 

(𝑚2, 𝑐(0.3,0.3,0,0.3)𝑑)

((0.5,0.3), (0.7,0.2), (0.6,0.3))
, 0.8 

(𝑚2, 𝑐(0,0.4,0,0.4)𝑑)

((0.5,0.3), (0.6,0.3), (0.5,0.3))
, 0.7 

(𝑚2, 𝑐(0.5,0,0.5,0)𝑑)

((0.6,0.4), (0.5,0.4), (0.5,0.3))
, 0.7 

(𝑚3, (0.3,0.3,0,0.3)𝑑)

((0.7,0.2), (0.6,0.1), (0.7,0.1))
, 0.6 

(𝑚3, (0,0.4,0,0.4)𝑑)

((0.6,0.4), (0.5,0.3), (0.6,0.1))
, 0.7 

(𝑚3, (0.5,0,0.5,0)𝑑)

((0.5,0.4), (0.6,0.3), (0.6,0.2))
, 0.7 

(𝑚4, (0.3,0.3,0,0.3)𝑑)

((0.4,0.5), (0.6,0.2), (0.6,0.2))
, 0.9 

(𝑚4, (0,0.4,0,0.4)𝑑)

((0.5,0.4), (0.7,0.2), (0.8,0.1))
, 0.8 

(𝑚4, (0.5,0,0.5,0)𝑑)

((0.5,0.3), (0.6,0.2), (0.5,0.4))
, 

(𝑚5, (0.3,0.3,0,0.3)𝑑)

((0.6,0.3), (0.7,0.1), (0.5,0.3))
, 0.6 

(𝑚5, (0,0.4,0,0.4)𝑑)

((0.5,0.4), (0.6,0.3), (0.6,0.3))
, 0.7 

(𝑚5, (0.5,0,0.5,0)𝑑)

((0.6,0.2), (0.6,0.2), (0.5,0.4))
, 0.6 
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To describe the result in the example above let compute  

(
(𝑚1, (0.3,0.3,0,0.3)𝑑)

((0.6,0.4), (0.7,0.1), (0.8,0.1))
, 0.9) ˄𝑝

𝑝
(

(𝑚1, (0.3,0.3,0,0.3)𝑑)

((0.6,0.2), (0.5,0.4), (0.7,0.1))
, 0.9) 

 

{𝑚𝑖𝑛(0.6,0.6), 𝑚𝑎𝑥(0.4,0.2)} =  (0.6 , 0.4),  

{𝑚𝑖𝑛(0.7,0.5), 𝑚𝑎𝑥(0.1,0.4)}(0.5, 0.4), 

 

{𝑚𝑖𝑛(0.8,0.7), 𝑚𝑎𝑥(0.1,0.1)} = (0.7,0.1). 

 

 

Definition 8. Similarity Measures between Two PyPlPoHSs 

 Let (𝐹𝑝𝑝
𝑝

, 𝐻) and (𝐺𝑝𝑝
𝑝

, 𝐻) be two PyPlPoHSs. 

The similarity measure between these two sets is defined as  

𝑆𝑝(𝐹𝑝𝑝
𝑝

, 𝐺𝑝𝑝
𝑝

) =
1

𝑛
∑ 𝑤𝑖

│𝑀 (𝑥𝑖) − 𝑁 (𝑥𝑖)│ + │𝑀 (𝑥𝑖) − 𝑁 (𝑥𝑖)│𝑦
2

𝑦
2

𝑠
2

𝑠
2

𝑀 (𝑥𝑖) + 𝑁 (𝑥𝑖) + 𝑀 (𝑥𝑖) + 𝑁 (𝑥𝑖)𝑦
2

𝑦
2

𝑠
2

𝑠
2

𝑛

𝑖=1

 

Where   𝑤𝑖 = 1 −
∑ ∑ │𝜇𝐹𝑝𝑝(𝑒𝑖𝑘)−𝜇𝐹𝑝𝑝(𝑒𝑖𝑘)

│𝑒│

𝑖=1

│𝑢│

𝑗=1
│

∑ ∑ │𝜇𝐹𝑝𝑝(𝑒𝑖𝑘)+𝜇
𝐹𝑝𝑝(𝑒𝑖𝑘)

│
│𝑒│

𝑖=1

│𝑢│

𝑗=1

. 

Let us consider an example. Let (𝐹𝑃𝑃
𝑃 , H) and (𝐺𝑃𝑃

𝑃 , H) are defined in Tables 5 and 6. 

Table 5. PyPlPoHS(𝐹𝑃𝑃
𝑃 , 𝐻) 

ℎ1 ℎ2 ℎ3 

(𝑚1, (0.3,0.3,0,0.3)𝑑)

((0.6,0.4), (0.7,0.1), (0.8,0.1))
, 0.7 

(𝑚1, (0,0.4,0,0.4)𝑑)

((0.5,0.4), (0.6,0.2), (0.7,0.1))
, 0.6 

(𝑚1, (0.5,0,0.5,0)𝑑)

((0.7,0.2), (0.6,0.4), (0.8,0.1))
, 0.6 

(𝑚2, 𝑐(0.3,0.3,0,0.3)𝑑)

((0.7,0.1), (0.7,0.2), (0.6,0.3))
, 0.8 

(𝑚2, 𝑐(0,0.4,0,0.4)𝑑)

((0.5,0.3), (0.6,0.3), (0.8,0.1))
, 0.9 

(𝑚2, 𝑐(0.5,0,0.5,0)𝑑)

((0.6,0.4), (0.5,0.4), (0.7,0.1))
, 0.8 

(𝑚3, (0.3,0.3,0,0.3)𝑑)

((0.8,0.1), (0.6,0.1), (0.7,0.1))
, 0.6 

(𝑚3, (0,0.4,0,0.4)𝑑)

((0.7,0.4), (0.5,0.2), (0.6,0.1))
, 0.7 

(𝑚3, (0.5,0,0.5,0)𝑑)

((0.6,0.2), (0.6,0.3), (0.7,0.1))
, 0.7 

(𝑚4, (0.3,0.3,0,0.3)𝑑)

((0.6,0.4), (0.7,0.2), (0.6,0.2))
, 0.9 

(𝑚4, (0,0.4,0,0.4)𝑑)

((0.6,0.3), (0.7,0.1), (0.8,0.1))
, 0.9 

(𝑚4, (0.5,0,0.5,0)𝑑)

((0.5,0.3), (0.7,0.1), (0.5,0.4))
, 0.8 

(𝑚5, (0.3,0.3,0,0.3)𝑑)

((0.7,0.2), (0.7,0.1), (0.8,0.1))
, 0.8 

(𝑚5, (0,0.4,0,0.4)𝑑)

((0.5,0.4), (0.6,0.3), (0.7,0.1))
, 0.8 

(𝑚5, (0.5,0,0.5,0)𝑑)

((0.6,0.2), (0.7,0.1), (0.8,0.1))
, 0.9 
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Table 6. PyPlPoHS(𝐺𝑃𝑃
𝑃 , 𝐻) 

ℎ1 ℎ2 ℎ3 

(𝑚1, (0.3,0.3,0,0.3)𝑑)

((0.6,0.2), (0.5,0.4), (0.7,0.1))
, 0.9 

(𝑚1, (0,0.4,0,0.4)𝑑)

((0.5,0.4), (0.7,0.2), (0.6,0.1))
, 0.8 

(𝑚1, (0.5,0,0.5,0)𝑑)

((0.7,0.1), (0.5,0.4), (0.6,0.3))
, 0.8 

(𝑚2, 𝑐(0.3,0.3,0,0.3)𝑑)

((0.5,0.3), (0.7,0.2), (0.8,0.1))
, 0.8 

(𝑚2, (0,0.4,0,0.4)𝑑)

((0.5,0.4), (0.7,0.2), (0.6,0.1))
, 0.8 

(𝑚2, 𝑐(0.5,0,0.5,0)𝑑)

((0.6,0.1), (0.7,0.1), (0.5,0.3))
, 0.7 

(𝑚3, (0.3,0.3,0,0.3)𝑑)

((0.7,0.2), (0.7,0.1), (0.8,0.1))
, 0.7 

(𝑚3, (0,0.4,0,0.4)𝑑)

((0.6,0.3), (0.5,0.3), (0.7,0.1))
, 0.9 

(𝑚3, (0.5,0,0.5,0)𝑑)

((0.5,0.4), (0.7,0.1), (0.6,0.2))
, 0.8 

(𝑚4, (0.3,0.3,0,0.3)𝑑)

((0.4,0.5), (0.6,0.1), (0.6,0.2))
, 0.9 

(𝑚4, (0,0.4,0,0.4)𝑑)

((0.5,0.4), (0.7,0.2), (0.8,0.1))
, 0.8 

(𝑚4, (0.5,0,0.5,0)𝑑)

((0.6,0.1), (0.6,0.2), (0.7,0.1))
, 0.9 

(𝑚5, (0.3,0.3,0,0.3)𝑑)

((0.6,0.3), (0.8,0.1), (0.5,0.3))
, 0.6 

(𝑚5, (0,0.4,0,0.4)𝑑)

((0.5,0.4), (0.7,0.1), (0.6,0.3))
, 0.7 

(𝑚5, (0.5,0,0.5,0)𝑑)

((0.7,0.1), (0.6,0.2), (0.5,0.4))
, 0.6 

The similarity between these two PyPlPoHSs is computed as follows: 

𝑤1 = 1 −
0.2+0+0.1+0+0.2

1.6+1.6+1.3+1.8+1.4
 = 0.94, 𝑤2 = 0.90and 𝑤3 = 0.89. 

𝑆𝑝(𝐹𝑝𝑝
𝑝

, 𝐺𝑝𝑝
𝑝

)  =  
1

3
 [0.94 ×

3.36

15.18
 + 0.90 ×

2.26

13.96
 + 0.89 ×

3.56

13.95
 ] = 0.191. 

Application of Pyplpohs in Optimal Decisioning 

                         This section presents the application of PyPlPoHS in making optimal ranking of the suppliers. 
Consider a decision-making problem of choosing optimal suppliers of waste management devices. Every 
industrial sector takes several initiatives in transforming their production process sustainable by using eco-
conscious devices. The attributes which are considered with respect to the waste managing devices are as 
follows: 

𝑎1 – Efficiency A1= {Very High, High, Average} 

𝑎2 – Cost A2= {Expensive, Budgetary, Cheap} 

𝑎3 – Environmental Impact 𝐴3={High, Moderate, Low,Very low} 

𝑎4 – Adaptability 𝐴4 = {Exceptional, Advanced, Intermediate}. 

Let us consider a manufacturing sector using five waste management devices and these devices are considered to 
be sustainable in the perspective of the industrial sectors if it possesses the attribute values of very high 
efficiency, cheap cost, very low environmental impacts and exceptional adaptability. These attribute values are 
considered to be dominant. i. e.𝑑 =  {Very High, Cheap, Very Low, Exceptional}. However, the industrial 
sectors also accept the waste management devices as sustainable if the attribute values belong to the set   

𝐻 = {ℎ1  =  (High, Budgetary, Very Low, Advanced), h2 =  (Very High, Cheap, Low, Advanced), h3 =

 (Very High, Budgetary, Low, Exceptional)}. 

The expected standards of the sustainable waste management devices with respect to the aforementioned 
attribute values is presented with Pythagorean Plithogenic Possibility Hypersoft sets. The decision makers have 
to make optimal ranking of the companies offering different waste management devices. Let(𝐹𝑃𝑃

𝑃 , H) be defined 
in Table 7. 
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Table 7. PyPlPoHS(𝐹𝑃𝑃
𝑃 , 𝐻) 

ℎ1 ℎ2 ℎ3 

(𝑚1, (0.3,0.3,0,0.3)𝑑)

((0.6,0.4), (0.7,0.1), (0.8,0.1))
, 0.7 

(𝑚1, (0,0.4,0,0.4)𝑑)

((0.5,0.4), (0.6,0.2), (0.7,0.1))
, 0.6 

(𝑚1, (0.5,0,0.5,0)𝑑)

((0.7,0.2), (0.6,0.4), (0.8,0.1))
, 0.6 

(𝑚2, 𝑐(0.3,0.3,0,0.3)𝑑)

((0.7,0.1), (0.7,0.2), (0.6,0.3))
, 0.8 

(𝑚2, 𝑐(0,0.4,0,0.4)𝑑)

((0.5,0.3), (0.6,0.3), (0.8,0.1))
, 0.9 

(𝑚2, 𝑐(0.5,0,0.5,0)𝑑)

((0.6,0.4), (0.5,0.4), (0.7,0.1))
, 0.8 

(𝑚3, (0.3,0.3,0,0.3)𝑑)

((0.8,0.1), (0.6,0.1), (0.7,0.1))
, 0.6 

(𝑚3, (0,0.4,0,0.4)𝑑)

((0.7,0.4), (0.5,0.2), (0.6,0.1))
, 0.7 

(𝑚3, (0.5,0,0.5,0)𝑑)

((0.6,0.2), (0.6,0.3), (0.7,0.1))
, 0.7 

(𝑚4, (0.3,0.3,0,0.3)𝑑)

((0.6,0.4), (0.7,0.2), (0.6,0.2))
, 0.9 

(𝑚4, (0,0.4,0,0.4)𝑑)

((0.6,0.3), (0.7,0.1), (0.8,0.1))
, 0.9 

(𝑚4, (0.5,0,0.5,0)𝑑)

((0.5,0.3), (0.7,0.1), (0.5,0.4))
, 0.8 

(𝑚5, (0.3,0.3,0,0.3)𝑑)

((0.7,0.2), (0.7,0.1), (0.8,0.1))
, 0.8 

(𝑚5, (0,0.4,0,0.4)𝑑)

((0.5,0.4), (0.6,0.3), (0.7,0.1))
, 0.8 

(𝑚5, (0.5,0,0.5,0)𝑑)

((0.6,0.2), (0.7,0.1), (0.8,0.1))
, 0.9 

The manufacturing sector receives proposals from different companies and they are also represented as 
Pythagorean Possibility Plithogenic Hypersoft sets as given below. Now the problem is to choose the optimal 
suppliers who offers waste management devices meeting the standards of the manufacturing sector.  The 
following Tables are related to (SiPP

P , H), for 𝑖 ∈ {1, … ,5}. 

Table 8. PyPlPoHS(𝑆1𝑃𝑃
𝑃 , 𝐻) 

ℎ1 ℎ2 ℎ3 

(𝑚1, (0.3,0.3,0,0.3)𝑑)

((0.5,0.4), (0.5,0.3), (0.8,0.2))
, 0.8 

(𝑚1, (0,0.4,0,0.4)𝑑)

((0.5,0.3), (0.6,0.1), (0.8,0.1))
, 0.7 

(𝑚1, (0.5,0,0.5,0)𝑑)

((0.6,0.2), (0.7,0.2), (0.8,0.3))
, 0.9 

(𝑚2, 𝑐(0.3,0.3,0,0.3)𝑑)

((0.7,0.2), (0.6,0.2), (0.6,0.3))
, 0.7 

(𝑚2, 𝑐(0,0.4,0,0.4)𝑑)

((0.6,0.3), (0.7,0.3), (0.5,0.4))
, 0.8 

(𝑚2, 𝑐(0.5,0,0.5,0)𝑑)

((0.5,0.4), (0.6,0.1), (0.8,0.1))
, 0.7 

(𝑚3, (0.3,0.3,0,0.3)𝑑)

((0.5,0.3), (0.6,0.3), (0.7,0.1))
, 0.8 

(𝑚3, (0,0.4,0,0.4)𝑑)

((0.7,0.3), (0.7,0.1), (0.6,0.3))
, 0.9 

(𝑚3, (0.5,0,0.5,0)𝑑)

((0.5,0.4), (0.6,0.2), (0.7,0.1))
, 0.6 

(𝑚4, (0.3,0.3,0,0.3)𝑑)

((0.6,0.3), (0.7,0.1), (0.5,0.3))
, 0.9 

(𝑚4, (0,0.4,0,0.4)𝑑)

((0.5,0.4), (0.7,0.2), (0.6,0.2))
, 0.6 

(𝑚4, (0.5,0,0.5,0)𝑑)

((0.4,0.3), (0.5,0.1), (0.5,0.2))
, 0.9 

(𝑚5, (0.3,0.3,0,0.3)𝑑)

((0.6,0.2), (0.7,0.1), (0.8,0.3))
, 0.8 

(𝑚5, (0,0.4,0,0.4)𝑑)

((0.7,0.4), (0.5,0.3), (0.6,0.1))
, 0.7 

(𝑚5, (0.5,0,0.5,0)𝑑)

((0.5,0.2), (0.6,0.1), (0.7,0.1))
, 0.8 
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Table 9. PyPlPoHS(𝑆2𝑃𝑃
𝑃 , 𝐻) 

ℎ1 ℎ2 ℎ3 

(𝑚1, (0.3,0.3,0,0.3)𝑑)

((0.6,0.3), (0.7,0.2), (0.8,0.1))
, 0.5 

(𝑚1, (0,0.4,0,0.4)𝑑)

((0.5,0.4), (0.6,0.1), (0.5,0.1))
, 0.7 

(𝑚1, (0.5,0,0.5,0)𝑑)

((0.5,0.2), (0.6,0.1), (0.7,0.2))
, 0.7 

(𝑚2, 𝑐(0.3,0.3,0,0.3)𝑑)

((0.5,0.1), (0.6,0.2), (0.6,0.3))
, 0.6 

(𝑚2, 𝑐(0,0.4,0,0.4)𝑑)

((0.6,0.3), (0.5,0.6), (0.7,0.1))
, 0.8 

(𝑚2, 𝑐(0.5,0,0.5,0)𝑑)

((0.5,0.4), (0.6,0.4), (0.5,0.2))
, 0.5 

(𝑚3, (0.3,0.3,0,0.3)𝑑)

((0.5,0.3), (0.4,0.5), (0.6,0.3))
, 0.7 

(𝑚3, (0,0.4,0,0.4)𝑑)

((0.5,0.4), (0.5,0.2), (0.7,0.1))
, 0.6 

(𝑚3, (0.5,0,0.5,0)𝑑)

((0.4,0.2), (0.5,0.3), (0.6,0.1))
, 0.6 

(𝑚4, (0.3,0.3,0,0.3)𝑑)

((0.5,0.4), (0.6,0.1), (0.7,0.1))
, 0.5 

(𝑚4, (0,0.4,0,0.4)𝑑)

((0.8,0.2), (0.6,0.1), (0.5,0.3))
, 0.9 

(𝑚4, (0.5,0,0.5,0)𝑑)

((0.5,0.3), (0.6,0.2), (0.7,0.1))
, 0.5 

(𝑚5, (0.3,0.3,0,0.3)𝑑)

((0.4,0.3), (0.6,0.1), (0.5,0.2))
, 0.8 

(𝑚5, (0,0.4,0,0.4)𝑑)

((0.6,0.4), (0.5,0.3), (0.6,0.1))
, 0.5 

(𝑚5, (0.5,0,0.5,0)𝑑)

((0.5,0.1), (0.4,0.3), (0.6,0.1))
, 0.6 

 

 

Table 10. PyPlPoHS(𝑆3𝑃𝑃
𝑃 , 𝐻) 

ℎ1 ℎ2 ℎ3 

(𝑚1, (0.3,0.3,0,0.3)𝑑)

((0.5,0.2), (0.7,0.2), (0.6,0.1))
, 0.6 

(𝑚1, (0,0.4,0,0.4)𝑑)

((0.4,0.3), (0.5,0.2), (0.6,0.1))
, 0.7 

(𝑚1, (0.5,0,0.5,0)𝑑)

((0.5,0.2), (0.6,0.1), (0.7,0.2))
, 0.8 

(𝑚2, 𝑐(0.3,0.3,0,0.3)𝑑)

((0.5,0.4), (0.6,0.4), (0.5,0.3))
, 0.8 

(𝑚2, 𝑐(0,0.4,0,0.4)𝑑)

((0.5,0.2), (0.4,0.2), (0.6,0.1))
, 0.8 

(𝑚2, 𝑐(0.5,0,0.5,0)𝑑)

((0.3,0.4), (0.5,0.2), (0.6,0.2))
, 0.9 

(𝑚3, (0.3,0.3,0,0.3)𝑑)

((0.7,0.1), (0.5,0.2), (0.6,0.1))
, 0.7 

(𝑚3, (0,0.4,0,0.4)𝑑)

((0.5,0.4), (0.6,0.2), (0.7,0.1))
, 0.7 

(𝑚3, (0.5,0,0.5,0)𝑑)

((0.5,0.2), (0.4,0.3), (0.6,0.1))
, 0.6 

(𝑚4, (0.3,0.3,0,0.3)𝑑)

((0.6,0.2), (0.8,0.2), (0.4,0.2))
, 0.8 

(𝑚4, (0,0.4,0,0.4)𝑑)

((0.5,0.3), (0.4,0.2), (0.7,0.1))
, 0.6 

(𝑚4, (0.5,0,0.5,0)𝑑)

((0.5,0.2), (0.6,0.1), (0.5,0.2))
, 0.7 

(𝑚5, (0.3,0.3,0,0.3)𝑑)

((0.6,0.2), (0.8,0.1), (0.7,0.2))
, 0.9 

(𝑚5, (0,0.4,0,0.4)𝑑)

((0.5,0.2), (0.5,0.3), (0.6,0.1))
, 0.8 

(𝑚5, (0.5,0,0.5,0)𝑑)

((0.5,0.3), (0.7,0.2), (0.6,0.1))
, 0.6 
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Table 11. PyPlPoHS(𝑆4𝑃𝑃
𝑃 , 𝐻) 

ℎ1 ℎ2 ℎ3 

(𝑚1, (0.3,0.3,0,0.3)𝑑)

((0.7,0.2), (0.4,0.3), (0.5,0.3))
, 0.5 

(𝑚1, (0,0.4,0,0.4)𝑑)

((0.4,0.3), (0.5,0.2), (0.6,0.1))
, 0.6 

(𝑚1, (0.5,0,0.5,0)𝑑)

((0.5,0.2), (0.3,0.4), (0.6,0.1))
, 0.5 

(𝑚2, 𝑐(0.3,0.3,0,0.3)𝑑)

((0.6,0.1), (0.5,0.2), (0.4,0.3))
, 0.6 

(𝑚2, 𝑐(0,0.4,0,0.4)𝑑)

((0.4,0.3), (0.5,0.3), (0.6,0.1))
, 0.8 

(𝑚2, 𝑐(0.5,0,0.5,0)𝑑)

((0.5,0.3), (0.6,0.2), (0.3,0.2))
, 0.4 

(𝑚3, (0.3,0.3,0,0.3)𝑑)

((0.7,0.2), (0.5,0.2), (0.6,0.1))
, 0.7 

(𝑚3, (0,0.4,0,0.4)𝑑)

((0.6,0.4), (0.4,0.1), (0.5,0.1))
, 0.5 

(𝑚3, (0.5,0,0.5,0)𝑑)

((0.4,0.2), (0.5,0.3), (0.6,0.1))
, 0.3 

(𝑚4, (0.3,0.3,0,0.3)𝑑)

((0.5,0.4), (0.6,0.2), (0.5,0.2))
, 0.6 

(𝑚4, (0,0.4,0,0.4)𝑑)

((0.5,0.3), (0.6,0.1), (0.4,0.2))
, 0.7 

(𝑚4, (0.5,0,0.5,0)𝑑)

((0.4,0.3), (0.6,0.1), (0.5,0.3))
, 0.5 

(𝑚5, (0.3,0.3,0,0.3)𝑑)

((0.6,0.2), (0.8,0.1), (0.4,0.2))
, 0.5 

(𝑚5, (0,0.4,0,0.4)𝑑)

((0.4,0.2), (0.6,0.1), (0.4,0.3))
, 0.6 

(𝑚5, (0.5,0,0.5,0)𝑑)

((0.5,0.2), (0.6,0.1), (0.7,0.1))
, 0.6 

 

Table 12. PyPlPoHS(𝑆5𝑃𝑃
𝑃 , 𝐻) 

ℎ1 ℎ2 ℎ3 

(𝑚1, (0.3,0.3,0,0.3)𝑑)

((0.4,0.5), (0.6,0.1), (0.7,0.1))
, 0.5 

(𝑚1, (0,0.4,0,0.4)𝑑)

((0.6,0.2), (0.5,0.2), (0.6,0.1))
, 0.7 

(𝑚1, (0.5,0,0.5,0)𝑑)

((0.5,0.2), (0.5,0.4), (0.4,0.3))
, 0.4 

(𝑚2, 𝑐(0.3,0.3,0,0.3)𝑑)

((0.5,0.1), (0.5,0.2), (0.5,0.3))
, 0.4 

(𝑚2, 𝑐(0,0.4,0,0.4)𝑑)

((0.5,0.2), (0.5,0.3), (0.6,0.1))
, 0.8 

(𝑚2, 𝑐(0.5,0,0.5,0)𝑑)

((0.5,0.2), (0.4,0.3), (0.6,0.1))
, 0.5 

(𝑚3, (0.3,0.3,0,0.3)𝑑)

((0.6,0.2), (0.5,0.3), (0.6,0.1))
, 0.3 

(𝑚3, (0,0.4,0,0.4)𝑑)

((0.5,0.4), (0.5,0.2), (0.6,0.1))
, 0.5 

(𝑚3, (0.5,0,0.5,0)𝑑)

((0.5,0.2), (0.4,0.3), (0.6,0.1))
, 0.6 

(𝑚4, (0.3,0.3,0,0.3)𝑑)

((0.5,0.4), (0.6,0.2), (0.5,0.2))
, 0.6 

(𝑚4, (0,0.4,0,0.4)𝑑)

((0.5,0.3), (0.6,0.1), (0.7,0.1))
, 0.6 

(𝑚4, (0.5,0,0.5,0)𝑑)

((0.6,0.3), (0.7,0.2), (0.4,0.3))
, 0.7 

(𝑚5, (0.3,0.3,0,0.3)𝑑)

((0.6,0.2), (0.5,0.2), (0.6,0.1))
, 0.5 

(𝑚5, (0,0.4,0,0.4)𝑑)

((0.6,0.2), (0.5,0.3), (0.6,0.1))
, 0.7 

(𝑚5, (0.5,0,0.5,0)𝑑)

((0.4,0.2), (0.6,0.1), (0.7,0.1))
, 0.5 

 
𝑆𝑝 (𝐹𝑝𝑝

𝑝
, 𝑆1𝑝𝑝

𝑝 )  = 0.1336 

𝑆𝑝 (𝐹𝑝𝑝
𝑝

, 𝑆2𝑝𝑝
𝑝 )  = 0.1926 

𝑆𝑝 (𝐹𝑝𝑝
𝑝

, 𝑆3𝑝𝑝
𝑝 )  = 0.1713 

𝑆𝑝 (𝐹𝑝𝑝
𝑝

, 𝑆4𝑝𝑝
𝑝 )  = 0.2024 

𝑆𝑝 (𝐹𝑝𝑝
𝑝

, 𝑆5𝑝𝑝
𝑝 )  = 0.1610. 

From the similarity measures the suppliers𝑆1, 𝑆2, 𝑆3, 𝑆4and𝑆5 are ranked accordingly: 
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𝑆4 > 𝑆2 > 𝑆3 > 𝑆5 > 𝑆1 

 RESULTS AND DISCUSSIONS 

The above ranking results is presented graphically in Fig 

 

 

 

 

 

 

 

 

 

 

Fig. 1.PyPlPoHS ranking score values of the alternatives 

From the ranking results, it is very evident that the supplier 𝑆4 is ranked first and 𝑆1 is ranked last. As 
Pythagorean sets are competent in facilitating data representations, the ranking result obtained using PyPlPoHS 
is more comprehensive than fuzzy representations.  The same problem is subjected to fuzzy based data 
representations and the ranking results obtained are same with different score values. The graphical 
representation of the score value of fuzzy based PlPoHS is presented in Fig.2. and the combined comparison is 
presented in Fig.3. 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Fuzzy PlPoHSranking score values of the alternative 
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The combined representations of the scores are presented in Fig.3. 

 

 

 

 

 

 

 

  
   

 

Fig. 3.Comparisons of score values 

 

        Conclusions 

 This paper introduces a novel decision-making method based on PyPlPoHS. The basic operations and 
the similarity measures are also discussed together with its applications. The efficacy of this representation is 
validated with PyPlPoHSS and the results are also compared with fuzzy representations. This kind of decision-
making method is more comprehensive and henceforth this research work suggests this method for other 
industrial applications. This work shall be further augmented with other kinds of representations. 
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ABSTRACT 

Supplier selection (SS) is a crucial element in the effective management of supply chains, playing a pivotal role in 
ensuring smooth operations. This paper introduces a robust soft model for supplier selection that integrates multi-attribute 
decision-making (MADM) with mathematical programming. The proposed model offers a practical and adaptable approach 
for supplier selection, with potential applications across various industries. By combining these methodologies, the model 
enables comprehensive evaluation of suppliers based on multiple criteria, addressing the complexities and challenges inherent 
in real-world supply chain decisions. This study aims to enhance decision-making in supplier selection by utilizing appropriate 
qualitative techniques. The findings of the proposed model highlight the significance of evaluating and ranking supplier 
selection criteria, emphasizing that selecting the best supplier is a critical decision for the purchasing department. This process 
plays a vital role in fostering a sustainable manufacturing environment, demonstrating the importance of a systematic approach 
to supplier selection in achieving long-term operational success. This chapter presents a novel methodology MADM based on 
Single-Valued Neutrosophic Sets (SVNS), a specialized extension of Neutrosophic sets that incorporates three distinct 
membership functions: truth, indeterminacy, and falsehood. The objective is to develop an advanced decision-making 
framework that improves supplier selection, particularly when handling imprecise, uncertain, and inconsistent information 
commonly encountered in real-world applications. The proposed method integrates the conversion of crisp and fuzzy data into 
SVNS and employs an advanced entropy weight approach to enhance the selection process. The effectiveness of the approach 
is demonstrated through case studies drawn from existing literature on supplier selection, showing that the new methodology 
yields more accurate results with reduced computational effort when compared to traditional MADM methods. The results 
validate the superiority of the proposed approach in addressing indeterminacies and uncertainties, offering more reliable and 
precise decision-making outcomes in complex environments. 

Keywords: Multi-Attribute Decision Making (MADM), Single-Valued Neutrosophic Sets (SVNS), Supplier 
Selection, Entropy Weighting, Uncertainty, Fuzzy Sets, Indeterminacy, Decision Support Systems. 

INTRODUCTION 

Supplier selection has long been a central topic in the fields of purchasing and supply chain management, 
with significant contributions from early works in the literature [1], [2], [3, 4] they have insighted empirical study 
identified 23 key criteria to be considered when selecting suppliers. Further research aimed at determining the 
weight of these criteria based on the specific needs of suppliers. In the same year, studies focused on three primary 
criteria—net price, delivery, and quality—highlighting them as the most frequently discussed factors in supplier 
selection. Additionally, these studies reviewed the use of quantitative methods in vendor selection, with the "linear 
weighting scheme" being widely discussed. However, only 10 articles incorporated mathematical programming 
techniques for supplier evaluation.  [5] extended the supplier selection framework by examining 85 criteria. Using 
Grey Analysis and T-Tests, they identified 21 key criteria, ranking them based on mean values, T-test results, and 
grey numbers. Their research showed that in the early 1980s, price was the dominant selection criterion, while by 
the early 1990s, time management and customer sensitivity had become important factors alongside product and 
service cost. By the late 1990s and early 2000s, flexibility emerged as a critical factor, and expert opinions and 
other variables gained prominence in the decision-making process.  Given the complexity of supplier selection, it 
is not feasible to consider every possible criterion in all situations. Therefore, the most important criteria are often 
determined through expert judgment. In the literature, supplier selection has primarily been treated as a multi-
attribute decision-making (MCDM) problem, with various mathematical methods employed to provide more 

165



New Trends in neutrosophic Theories and Applications, VOL. 4, 2025  

accurate and effective solutions [5] has shown that combining different multi-attribute decision methods (MADM) 
enhances ranking accuracy. 

EXISTING LITERATURE SURVEY ON SUPPLIER SELECTION PROCESS RANKING 

USING MULTI ATTRIBUTE DECISION MAKING (MADM) 

Analytical hierarchy Process (AHP) method developed by [6] employs a normalization approach that 
treats both beneficial and non-beneficial criteria in the same manner. It utilizes the Euclidean distance principle 
for decision-making, but one of its limitations is that it does not account for the potential correlation between 
attributes. Additionally, this method requires expert or research-based input to determine the weights for each 
attribute, which can lead to variations in the rankings, particularly if the weightings assigned to the attributes differ. 
[7] had tried to implement interactive supplier selection model using AHP. [8] had developed the supplier selection 
model for automotive industry using AHP method. [9] imparted intervalued fuzzy AHP based green supply chain 
resilience evaluation methodology in post covid era. [10], [11], [12], [13] imparted fuzzy inference system for 
selection of vendors (Suppliers) for lathe machines bed selection, planner machine bed, shaper machine arm, radial 
drilling column supplier selection cases respectively  to find the effective ranking solution.  

VlseKriterijuska OptimizacijaI Komoromisno Resenje (VIKOR) method developed by [14] for 
outranking method. [15] investigated hierarchical VIKOR methodology with incomplete information for selection 
of supplier. This method, when extended with linguistic information, helps to address uncertainties and 
imprecision in evaluating suppliers, making it particularly useful in the highly regulated and risk-sensitive nuclear 
power sector by [16]. [17] explores sustainable supplier selection using the VIKOR method, integrated with single-
valued Neutrosophic sets. This approach addresses uncertainties and imprecision in decision-making, offering a 
more robust and flexible solution for selecting suppliers in a sustainable context. An interval-valued intuitionistic 
fuzzy model based on the extended VIKOR and MARCOS methods for sustainable supplier selection in organ 
transplantation networks investigated by [18].  

COmplex PRoportional ASsessment (COPRAS) investigated by [19]. In particular, the focus on wiper 
insert geometry has garnered attention as it plays a pivotal role in achieving superior surface integrity and 
minimizing thermal and mechanical stresses during the cutting process. The findings from various studies highlight 
the effectiveness of the COPRAS method in tailoring these geometries to optimize the overall machining process 
for OHNS steel. These advances contribute significantly to the understanding and optimization of hard turning 
processes, making it a promising solution for high-precision machining of hardened steels. Supplier selection using 
multiple criteria group decision-making based on the COPRAS method with interval type-2 fuzzy sets investigated 
by [20]. [21] utilized the IFS-TOPSIS method to support supplier selection in a sustainable supply chain. [21] 
explored the application of An ELECTRE-based multiple criteria decision-making approach for supplier selection 
utilizing Dempster-Shafer theory. [22] addressed the supplier selection problem using the ELECTRE-I method. 
[23] worked on novel interval-valued hesitant fuzzy group outranking approach for green supplier evaluation in 
manufacturing systems. [24] has insighted Neutrosophic set works better in MADM selection methodology.  

[25] authors have tried to extend the TOPSIS (Technique for Order Preference by Similarity to Ideal 
Solution) method to address multi-attribute group decision-making problems in environments characterized by 
single-valued Neutrosophic sets (SVNS) and interval Neutrosophic sets (INNS). A hybrid approach combining 
Neutrosophic sets and the DEMATEL method for developing supplier selection criteria carried out by [26].  [27] 
investigated smart TOPSIS works with a neural network-driven TOPSIS approach using Neutrosophic triplets for 
green supplier selection in sustainable manufacturing. [28] derived entropy based grey relational analysis method 
using Neutrosophic set MADM technique. Hybrid vector similarity measures and their applications to multi-
attribute decision making under Neutrosophic environment carried out by [29]. 

 [30] derived multi-criteria decision-making for supplier selection under a single-valued Neutrosophic set 
environment. [31] The TOPSIS method for multi-attribute group decision-making under a single-valued 
Neutrosophic environment is proposed to effectively handle decision problems characterized by uncertainty and 
imprecision. In this context, each attribute of an alternative is represented using a single-valued Neutrosophic set, 
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which includes truth, indeterminacy, and falsity membership functions. This extended approach enables the 
incorporation of ambiguous or incomplete information, allowing for a more comprehensive and flexible decision-
making process. 

Proposed Methodology Fuzzy-Single Valued Neutrosophic Set 

Entropy Weight Based Multi Attribute Decision Making Technique (F-

SVNS AEW-MADM) 

The Fuzzy Single-Valued Neutrosophic Set Advanced Entropy Weight-based Multi-Attribute Decision 
Making (F-SVNS AEW-MADM) methodology follows a structured approach to decision-making. The key steps 
involved in this process are outlined below: 

Step 1: Define the objective of the selection process, clearly establishing the goal or desired outcome for the 
decision-making task. 

Step 2: Identify the various alternatives available for selection, along with the relevant attributes (criteria) that will 
influence the decision. This step involves determining the factors that will be used to evaluate and compare the 
alternatives in the context of the selection problem. 

Step 3: All alternatives and attributes (criteria) in matrix form with comparative performance are known as 
decision matrix. Let us consider set of alternatives as A = {Ai , i = 1, 2, 3, . . m} & set of criteria as C =

{Cj , j = 1, 2, 3, . . n}, Xij is the performance of alternatives Ai  for relative criteria Cj . Xij are having qualitative/ 
quantitative values. The structure of decision matrix is illustrated in Table 1. 

Table 1: Decision Matrix for F-SVNS AEW-MADM 
Alternatives 𝐂𝟏 𝐂𝟐 𝐂𝟑 ….. 𝐂𝐧 

A1 X11 X12 X13 ….. X1n 
A2 X21 X22 X23 ….. X2n 
A3 X31 X32 X33 ….. X3n 
…. ….. ….. ….. ….. ….. 
Am Xm1 Xm2 Xm3 ….. Xmn 

 

Step 4: Conversion of Qualitative Data to Quantitative Data 

The qualitative (linguistic) information is systematically transformed into quantitative (crisp) values, as 
outlined in Table 2. This process enables the representation of subjective, descriptive information in a 
measurable form, facilitating more precise analysis and interpretation 

Table 2. Conversion of Linguistic Terms in to Classic (Crisp) Set 
Linguistic terms of selection attributes Fuzzy number Crisp value of selection attribute 
Exceptionally low M1 0.045 
Extremely low M2 0.135 
Very low M3 0.255 
Low M4 0.335 
Below average M5 0.410 
Average M6 0.500 
Above average M7 0.590 
High M8 0.665 
Very high M9 0.745 
Extremely high M10 0.865 

 

Data collected from sources [13], [14], [16], [17], and [18] were utilized. If the input matrix consists 
solely of quantitative data, this conversion step can be omitted. 

Step 5. Generalization/ normalization of matrix 
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 As outlined in sources [13] and [14], each attribute associated with the alternatives presents distinct 
values. To ensure consistency, the data is standardized within the range [0, 1] through the application of the Vector 
Normalization Method (VNM). For beneficial criteria, where higher values are advantageous (such as quality and 
profit), normalization is achieved using Eq. (1). 

Rij =  
Xij

√∑ Xij
2m

i=1

;  ∀ i, j                 

     (1) 

For non-beneficial criteria, where lower values are preferable (e.g., price, lead time), normalization is 
conducted using Eq. (2). 

𝑅𝑖𝑗 =  1 −
𝑋𝑖𝑗

√∑ 𝑋𝑖𝑗
2𝑚

𝑖=1

;  ∀ 𝑖, j                 

     (2)  

Normalized decision matrix is shown in Table 3. 

Table 3. Normalized Decision Matrix for F-SVNS AEW-MADM 
Alternative 𝐂𝟏 𝐂𝟐 𝐂𝟑 ….. 𝐂𝐧 

A1 R11 R12 R13 ….. R1n 
A2 R21 R22 R23 ….. R2n 
A3 R31 R32 R33 ….. R3n 

…. ….. ….. ….. ….. ….. 
Am Rm1 Rm2 Rm3 ….. Rmn 

 

Step 6: Conversion of Classic Set/Fuzzy Set to Single-Valued Neutrosophic Set (SVNS) 

The normalized decision matrix for F-SVNS AEW-MADM is presented in Table 4, where classic or fuzzy 
sets are converted into a Single-Valued Neutrosophic Set (SVNS). This transformation allows for a more 
comprehensive representation of uncertainty in decision-making scenarios. 

Table 4.  SVNS Normalized Decision Matrix for F-SVNS AEW-MADM 

Alternative C1 C2 ….. Cn 

A1 < T11(x), I11(x), F11(x)
> 

< T12(x), I12(x), F12(x)
> ….. < T1n(x), I1n(x), F1n(x)

> 

A2 < T21(x), I21(x), F21(x)
> 

< T22(x), I22(x), F22(x)
> ….. < T2n(x), I2n(x), F2n(x)

> 

A3 < T31(x), I31(x), F31(x)
> 

< T32(x), I32(x), F32(x)
> ….. < T3n(x), I3n(x), F3n(x)

> 
…. ….. ….. ….. ….. 

Am < Tm1(x), Im1(x), Fm1(x)
> 

< Tm2(x), Im2(x), Fm2(x)
> ….. < Tmn(x), Imn(x), Fmn(x)

> 
 

According to sources [13], [14], and [21], the conversion rules for transforming classic or fuzzy sets to 
Single-Valued Neutrosophic Sets (SVNS) for both beneficial and non-beneficial criteria are outlined in [14]. For 
beneficial criteria, where higher values of performance measures are desirable (e.g., profit, quality), the Positive 
Ideal Solution (PIS) is defined as < Tmax

∗(x), Imin
∗
(x), Fmin

∗(x) > In this context, the normalized input matrix 
treats the beneficial criteria as the degree of truthfulness, while the degree of indeterminacy and degree of 
falsehood are represented as IA(x) = FA(x) = 1 − TA(x) respectively. The SVNS conversion is performed using 
Eq. (3). 

〈𝑇𝑖𝑗(𝑥), 𝐼𝑖𝑗(𝑥), 𝐹𝑖𝑗(𝑥)〉 =  〈𝑅𝑖𝑗(𝑥), (1 − 𝑅𝑖𝑗(𝑥)), (1 − 𝑅𝑖𝑗(𝑥))〉                                                                         (3) 

Step 7: Identification of Ideal Solution for Beneficial and Non-Beneficial Attributes 
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According to sources [13], [14], and [21], the ideal solution for beneficial attributes—where higher 
values are advantageous (e.g., quality, profit)—is identified by determining the Positive Ideal Solution (PIS). 
Eqs. (3,4) 

 𝐵𝐴𝐼𝑆 = 〈𝑇𝑚𝑎𝑥
∗ (𝑥), 𝐼𝑚𝑖𝑛

∗ (𝑥), 𝐹𝑚𝑖𝑛
∗ (𝑥)〉  =  〈1, 0, 0〉                                                                

  (4) 

Non beneficial attributes ideal solution  

𝑁𝐵𝐴𝐼𝑆 = 〈𝑇𝑚𝑖𝑛
∗ (𝑥), 𝐼𝑚𝑎𝑥

∗ (𝑥), 𝐹𝑚𝑎𝑥
∗ (𝑥)〉  =  〈0, 1, 1〉                                                               

  (5) 

Step 8:  Calculation of the entropy value of attribute Ej 

Find the entropy value for attribute with Eq. (6). 

Ej = 1 − 1
n⁄ ∑ (Tij(xi) + Fij(xi)) |2 (Iij(xi)) − 1|

m

i=1

                                                                                              (6) 

Step 9:  Calculation of the entropy weight of attribute Wj 

Find the entropy weight of attribute by Eq. (7). 

Wj =  
1 − Ej

∑ (1 − Ej )
n
j=1

                                                                                
              (7) 

Here, we get weight vector 𝑊 = (𝑤1, 𝑤2,𝑤3,…………………𝑤𝑛)𝑇 of attributes, 𝐶 =

{𝐶𝑗;  𝑓𝑜𝑟 𝑗 = 1, 2, 3, … … . . 𝑛} with 𝑊𝑗 ≥ 0 and∑ 𝑊𝑗 = 1 
𝑛

𝑗=1
. 

Step 10:  Calculate the entropy weight of alterative Aw 

Find the alternative weight by Eq. (8). 

Aw = ∑ Wj ∗  ((Tij(x) ∗ Tij
∗(x)) + (Iij(x) ∗ Iij

∗(x) + (Fij(x) ∗ Fij
∗(x))

n

j=1

 
   (8) 

Here, for beneficial attributes PIS = 〈Tmax
∗ (x), Imin

∗ (x), Fmin
∗ (x)〉  =  〈1, 0, 0〉 and for non-beneficial 

attributes NIS = 〈Tmin
∗ (x), Imax

∗ (x), Fmax
∗ (x)〉  =  〈0, 1, 1〉. 

Step 11:  Ranking of Alternatives 

Upon the calculation of alternative weight Aw, the alternatives are ranked in descending order. The 
alternative with the highest correlation coefficient Aw is assigned the first rank, while the alternative with the 
lowest Aw is assigned the last rank. This ranking method ensures that alternatives are ordered based on their relative 
performance and suitability according to the calculated weights. 

Collected Case Example of Supplier Selection 

Step 1. One case example of supplier selection was adopted and demonstrate by [32] with DEA. The same 
case example was further calculated by [33] with DEA non-parametric approach. [34] was calculated the same 
matrix with GTMA, SAW, WPM, AHP, TOPSIS and modified TOPSIS methodology. 

 
Step 2. Here, [34] explained that in input matrix contains eighteen different alternatives with five attributes. 
As per [34] attributes measures are C1: supply variety, means the company first listed all parts supplied by each 
vendor to obtained the supply variety. [34] explained that, if a vendor supplies more than one commodity group, 
then the supply variety of this vendor in each group is the sum of the number of part in the entire group. C2: 
aggregate quality with their weighted percentage of non-defective parts supplied by the supplier with regard to 
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alternatives, C3: Distance (in Mile), C4: delivery is represented by percentage of purchase order within the delivery 
window according to purchase order, C5: price index, average prices were assigned to each part by the material 
department of the company. Where, [34] considered that beneficial attributes are C1 (Supply variety), C2 
(aggregate quality), C4 (delivery) and C5 (price index) are the desirable criteria; whereas Non-beneficial attribute 
is C3 (distance) is non-desirable/ non beneficial criteria. 

 
Step 3. Decision matrix is collected [32], [33], [34] and [35] shown in Table 5. 

 
Table 5:  Supplier Selection Input Matrix (Collected Case Example) 

Alternatives (Sr. No.) C1 (+) C2 (+) C3 (-) C4 (+) C5 (+) 
A1 2 100 249 90 100 
A2 13 99.79 643 80 100 
A3 3 100 714 90 100 
A4 3 100 1809 90 100 
A5 24 99.83 238 90 100 
A6 28 96.59 241 90 100 
A7 1 100 1404 85 100 
A8 24 100 984 97 100 
A9 11 99.91 641 90 100 

A10 53 97.54 588 100 100 
A11 10 99.95 241 95 100 
A12 7 99.85 567 98 100 
A13 19 99.97 567 90 100 
A14 12 91.89 967 90 100 
A15 33 99.99 635 95 80 
A16 2 100 795 95 100 
A17 34 99.99 689 95 80 
A18 9 99.36 913 85 100 

Collected from the Source: [32], [33], [34], [35] 
 
Step 4. Conversion of qualitative data in to quantitative data 

Here, the input information contains quantitative information only, so there is no need to convert qualitative value 
in to quantitative value. So, this step is eliminated in the current case example.  

Step 5. Normalization of Table 5 s carried out with the Eq. (1)/ Eq. (2). Supplier selection normalized matrix 
is shown in Table 6. 

Table 6: Supplier Selection Normalized Matrix using VNM 
Alternatives (Sr. No.) C1 (+) C2 (+) C3 (-) C4 (+) C5 (+) 

A1 0.0223 0.2377 0.9283 0.2318 0.2406 
A2 0.1450 0.2372 0.8148 0.2060 0.2406 
A3 0.0335 0.2377 0.7943 0.2318 0.2406 
A4 0.0335 0.2377 0.4788 0.2318 0.2406 
A5 0.2676 0.2373 0.9314 0.2318 0.2406 
A6 0.3122 0.2296 0.9306 0.2318 0.2406 
A7 0.0112 0.2377 0.5955 0.2189 0.2406 
A8 0.2676 0.2377 0.7165 0.2498 0.2406 
A9 0.1227 0.2375 0.8153 0.2318 0.2406 

A10 0.5910 0.2318 0.8306 0.2575 0.2406 
A11 0.1115 0.2376 0.9306 0.2447 0.2406 
A12 0.0781 0.2373 0.8366 0.2524 0.2406 
A13 0.2119 0.2376 0.8366 0.2318 0.2406 
A14 0.1338 0.2184 0.7214 0.2318 0.2406 
A15 0.3680 0.2377 0.8171 0.2447 0.1925 
A16 0.0223 0.2377 0.7710 0.2447 0.2406 
A17 0.3791 0.2377 0.8015 0.2447 0.1925 
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A18 0.1004 0.2362 0.7370 0.2189 0.2406 
 
Step 6. Convert crisp normalized matrix into SVNS decision matrix: Crisp data is converted in SVNS <
Tij(x), Iij(x), Fij(x) > degree of truthness, indeterminate and falsehood form by using Eqs. (3)/ (4). 

• Beneficial attributes i.e. Alternative A1 and attribute C1 having value 0.0223 converted in SVNS gives 
the value 〈0.0223, (1 − 0.0223), (1 − 0.0223)〉 =  〈0.0223, 0.9777, 0.9777〉. The same calculation is 
also carried out for attribute C2, C4 and C5. 

• Non-beneficial attributes i.e. Alternative A1 and attribute C3 having value 0.9283 converted in SVNS 
gives the value 〈(1 − 0.9283), 0.9283, 0.9283〉 = 〈0.0717, 0.9283, 0.9283〉.  

• Find the beneficial attribute ideal solution and non-beneficial attribute ideal solution. 

Beneficial attribute ideal solution and non-beneficial attribute ideal solution is discovered with Equation 
(4)/ Equation (5), where 𝐵𝐴𝐼𝑆 (𝐴∗) =  〈𝑇𝑚𝑎𝑥

∗ (𝑥), 𝐼𝑚𝑖𝑛
∗ (𝑥),  𝐹𝑚𝑖𝑛

∗ (𝑥)〉  =  〈1, 0, 0〉 and 𝑁𝐵𝐴𝐼𝑆 (𝐴∗) =
〈𝑇𝑚𝑖𝑛

∗ (𝑥),  𝐼𝑚𝑎𝑥
∗ (𝑥),  𝐹𝑚𝑎𝑥

∗ (𝑥)〉  =  〈0, 1, 1〉.  

The rank is calculated with F-SVNS-EW-MADM is as shown in Table 7. 

Table 7: F-SVNS EW-MADM Ranking for Supplier Selection 

Sr. No. C1 (+) C2 (+) C3 (-) C4 (+) C5 (+) Aw Rank 

A1 
<0.0223, 
0.9777, 
0.9777> 

<0.2377, 
0.7623, 
0.7623> 

<0.0717, 
0.9283, 
0.9283> 

<0.2318, 
0.7682, 
0.7682> 

<0.2406, 
0.7594, 
0.7594> 

0.5241 8 

A2 
<0.1450, 
0.8550, 
0.8550> 

<0.2372, 
0.7628, 
0.7628> 

<0.1852, 
0.8148, 
0.8148> 

<0.2060, 
0.7940, 
0.7940> 

<0.2406, 
0.7594, 
0.7594> 

0.5005 10 

A3 
<0.0335, 
0.9665, 
0.9665> 

<0.2377, 
0.7623, 
0.7623> 

<0.2057, 
0.7943, 
0.7943> 

<0.2318, 
0.7682, 
0.7682> 

<0.2406, 
0.7594, 
0.7594> 

0.4709 13 

A4 
<0.0335, 
0.9665, 
0.9665> 

<0.2377, 
0.7623, 
0.7623> 

<0.5212, 
0.4788, 
0.4788> 

<0.2318, 
0.7682, 
0.7682> 

<0.2406, 
0.7594, 
0.7594> 

0.3394 18 

A5 
<0.2676, 
0.7324, 
0.7324> 

<0.2373, 
0.7627, 
0.7627> 

<0.0686, 
0.9314, 
0.9314> 

<0.2318, 
0.7682, 
0.7682> 

<0.2406, 
0.7594, 
0.7594> 

0.5826 3 

A6 
<0.3122, 
0.6878, 
0.6878> 

<0.2296, 
0.7704, 
0.7704> 

<0.0694, 
0.9306, 
0.9306> 

<0.2318, 
0.7682, 
0.7682> 

<0.2406, 
0.7594, 
0.7594> 

0.5912 2 

A7 
<0.0112, 
0.9888, 
0.9888> 

<0.2377, 
0.7623, 
0.7623> 

<0.4045, 
0.5955, 
0.5955> 

<0.2189, 
0.7811, 
0.7811> 

<0.2406, 
0.7594, 
0.7594> 

0.3805 17 

A8 
<0.2676, 
0.7324, 
0.7324> 

<0.2377, 
0.7623, 
0.7623> 

<0.2835, 
0.7165, 
0.7165> 

<0.2498, 
0.7502, 
0.7502> 

<0.2406, 
0.7594, 
0.7594> 

0.4965 12 

A9 
<0.1227, 
0.8773, 
0.8773> 

<0.2375, 
0.7625, 
0.7625> 

<0.1847, 
0.8153, 
0.8153> 

<0.2318, 
0.7682, 
0.7682> 

<0.2406, 
0.7594, 
0.7594> 

0.5004 11 

A10 
<0.5910, 
0.4090, 
0.4090> 

<0.2318, 
0.7682, 
0.7682> 

<0.1694, 
0.8306, 
0.8306> 

<0.2575, 
0.7425, 
0.7425> 

<0.2406, 
0.7594, 
0.7594> 

0.6198 1 

A11 
<0.1115, 
0.8885, 
0.8885> 

<0.2376, 
0.7624, 
0.7624> 

<0.0694, 
0.9306, 
0.9306> 

<0.2447, 
0.7553, 
0.7553> 

<0.2406, 
0.7594, 
0.7594> 

0.5482 5 

A12 
<0.0781, 
0.9219, 
0.9219> 

<0.2373, 
0.7627, 
0.7627> 

<0.1634, 
0.8366, 
0.8366> 

<0.2524, 
0.7476, 
0.7476> 

<0.2406, 
0.7594, 
0.7594> 

0.5027 9 

A13 
<0.2119, 
0.7881, 
0.7881> 

<0.2376, 
0.7624, 
0.7624> 

<0.1634, 
0.8366, 
0.8366> 

<0.2318, 
0.7682, 
0.7682> 

<0.2406, 
0.7594, 
0.7594> 

0.5301 7 
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A14 
<0.1338, 
0.8662, 
0.8662> 

<0.2184, 
0.7816, 
0.7816> 

<0.2786, 
0.7214, 
0.7214> 

<0.2318, 
0.7682, 
0.7682> 

<0.2406, 
0.7594, 
0.7594> 

0.4603 15 

A15 
<0.3680, 
0.6320, 
0.6320> 

<0.2377, 
0.7623, 
0.7623> 

<0.1829, 
0.8171, 
0.8171> 

<0.2447, 
0.7553, 
0.7553> 

<0.1925, 
0.8075, 
0.8075> 

0.5518 4 

A16 
<0.0223, 
0.9777, 
0.9777> 

<0.2377, 
0.7623, 
0.7623> 

<0.2290, 
0.7710, 
0.7710> 

<0.2447, 
0.7553, 
0.7553> 

<0.2406, 
0.7594, 
0.7594> 

0.4609 14 

A17 
<0.3791, 
0.6209, 
0.6209> 

<0.2377, 
0.7623, 
0.7623> 

<0.1985, 
0.8015, 
0.8015> 

<0.2447, 
0.7553, 
0.7553> 

<0.1925, 
0.8075, 
0.8075> 

0.5480 6 

A18 
<0.1004, 
0.8996, 
0.8996> 

<0.2362, 
0.7638, 
0.7638> 

<0.2630, 
0.7370, 
0.7370> 

<0.2189, 
0.7811, 
0.7811> 

<0.2406, 
0.7594, 
0.7594> 

0.4599 16 

A∗ <1.0000,0.000
0, 0.0000> 

<0.0000, 
1.0000, 
1.0000> 

<0.0000, 
1.0000, 
1.0000> 

<1.0000, 
0.0000, 
0.0000> 

<1.0000, 
0.0000, 
0.0000>  

Ej 0.3366 0.4713 0.4078 0.4707 0.4704 
Wj 0.2333 0.1860 0.2083 0.1862 0.1862 1 

 

Performance Measures Comparison: Supplier Selection Ranking 

The result of proposed three methodologies is compared with the published results to validate them for 
supplier selection. To compare the result, all supplier alternatives are ranked according to alternatives weight 
values is as shown in Table 8. The supplier alternatives are ranked first whose alternative weight value is highest; 
supplier alternative is ranked second whose alternatives weight values is second highest. Finally, the ranking order 
obtained by the proposed three methodologies is compared with the ranking order published in the literature and 
result comparisons are shown in Table 8. 

Table 8:  Supplier Selection Performance Measures Comparison 

Alternatives  
 (Sr. No.) 

F-SVNS 
MADM 

Advance 
Entropy Weight 

Ranking Solution 
Collected from [36]  

Ranking Solution 
Collected from [34] [37] 

DEA* GTMA TOPSIS 

A1 8 9 7 12 
A2 10 10 12 11 
A3 13 14 15 15 
A4 18 15 17 17 
A5 3 3 2 5 
A6 2 7 1 4 
A7 17 17 18 18 
A8 12 6 9 6 
A9 11 11 11 10 

A10 1 1 3 1 
A11 5 5 6 8 
A12 9 12 10 9 
A13 7 8 8 7 
A14 15 18 13 14 
A15 4 4 4 3 
A16 14 16 16 13 
A17 6 2 5 2 
A18 16 13 14 16 

 
 
The result comparisons presented in Table 8 shows that the result obtained from the proposed 

methodologies are quite similar to the result of reported in the literature.  The proposed method suggesting the 
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supplier alternative A10 as the best supplier, which is same as suggests by [36] tried to solve same supplier 
selection problem by using DEA mathematical technique.  

Further, 2nd rank is calculated by proposed methods doesn’t match with all published results. While 4 th 
rank is calculated by F-SVVNS AEW-MADM and modified TOPSIS methodologies published results their selves 
not match among each other, due to different weight criteria calculation/ assumption/ expert opinion or same 
equation of normalization/ without normalization. 4th rank of proposed F-SVNS AEW-MADM shows A15 which 
is matched with DEA, GTMA. It shows that the weight criteria and normalization equation/ method make change 
in rank position in further ranking result, but it holds well for the first ranking purpose. 

The proposed methodology is characterized by minimal computational complexity, as they do not require 
the calculation of attribute weights or resizing of the assignment matrix. Additionally, they offer the flexibility to 
convert simple sets or linguistic sets into the F-SVNS (Fuzzy Single-Valued Neutrosophic Set) technique, unlike 
the DEA (Data Envelopment Analysis) approach. In a comparative study, [27] [34] [37] applied the GTMA 
(Generalized TOPSIS Methodology for Assessment) and TOPSIS methods to the same supplier selection problem. 
While TOPSIS ranked alternative 10 as the best supplier, the GTMA methodology identified alternative 6 as the 
best. The difference in rankings was primarily due to the variation in attribute weights.  

The proposed methodology, however, operates with minimal calculations, does not require attribute 
weight determination, and does not need resizing of the assignment matrix. It also offers the advantage of 
converting simple or linguistic sets into F-SVNS. On the other hand, the F-SVNS EW-MADM method involves 
the calculation of attribute weights. When compared with other published results, the proposed methods 
demonstrate their validity, applicability, and reliability in supplier selection for manufacturing environments, 
ultimately leading to improvements in manufacturing functions. 

Conclusions 

The proposed methodology offers a streamlined approach with minimal computational complexity, 
eliminating the need to calculate the relative importance of attributes. It does not require resizing the assignment 
matrix and is capable of converting simple or linguistic sets into F-SVNS. Furthermore, the suggested 
methodology outperforms established methods such as GTMA, SAW, WPM, AHP, TOPSIS, Modified TOPSIS, 
and VIKOR. This chapter introduces the F-SVNS AEW-MADM technique, developed and implemented to 
evaluate its feasibility in the selection and ranking of supplier selection processes. The key conclusions of the 
proposed method are as follows: 

• The methodology effectively converts both crisp data and fuzzy information provided by the decision 
maker into SVNS form, resulting in more efficient and reliable ranking solutions. 

• It is robust in handling decision-making scenarios involving inconsistent, incomplete, and indeterminate 
information. 

• The proposed approach facilitates more efficient negotiation and selection of the best alternative with 
reduced computational effort. 

• The calculation and normalization process ensures no loss of information, and no attribute value is 
reduced to zero during the process. 

• The F-SVNS AEW-MADM technique incorporates attribute weight calculation, and comparison with 
existing published results demonstrates its validity, applicability, and reliability in supplier selection for 
manufacturing environments. This leads to enhanced manufacturing performance and function. 

The proposed methodology offers a significant contribution to enhancing decision-making processes for 
selection methodology, particularly in the context of supplier selection. 
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ABSTRACT 

 The purpose of the study is to extend the Complex Proportional Assessment (COPRAS) strategy to the 
Rough  Neutrosophic Number (RNN) setting that we name the RNN-COPRAS strategy. The RNN is the hybrid 
structure of rough number and neutrosophic number that has emerged as a tool to deal with  MCDM problems. In 
this paper, the COPRAS strategy for MCDM  in the RNN setting is developed. To show the applicability of the 
developed strategy an illustrative MCDM problem is solved and compared with existing method. 

Keywords: Neutrosophic set, rough neutrosophic set,  MCDM,   COPRAS. 

INTRODUCTION 

Smarandache [1] grounded  the Neutrosophic Sets (NSs), building upon the concepts of Fuzzy Sets (FSs) 
[2] and Intuitionistic FSs (IFSs) [3]. NS provides a more generalized framework for addressing uncertainty and  
indeterminacy. To make NS more applicable in real-world scenarios, Wang et al. [4] introduced Single-Valued 
NS (SVNS), a specialized subclass of NSs. Over the years, numerous studies explored theoretical advancements 
and practical applications of NSs [5-12]. SVNSs  and their extensions have been used in decision making [13-31], 
conflict theory [32] , educational issues [33, 34, 35], social issues [36, 37] and so on.  

Pawlak [38] introduced the Rough Set (RS) as a mathematical tool to manage uncertain and incomplete 
information. To further enhance the ability to handle both incompleteness and uncertainty, Broumi et al. [39, 40]  
proposed the Rough Neutrosophic Set (RNS), which integrated the principles of RSs and NSs. Recent studies, 
such as those by Pramanik [41] and Zhang et al. [42]  provided comprehensive overviews of RNSs and their 
extensions and applications.  Different MCDM strategies have been grounded under Rough Neutrosophic Number 
(RNN) environments for handling MCDM problems such as GRA [43], accuracy score-based strategy [44], 
similarity measure-based strategies [45, 46, 47, 48, 49], TOPSIS [50],  aggregation operator-based strategy [51], 
correlation coefficient -based strategy [52], on projection measures- based strategy [53].   

COPRAS (Complex Proportional Assessment)  [54] was grounded in 1994. The COPRAS method relies on 
integrating both the ideal solution and the worst-ideal solution. Bekar et al. [55] developed the COPRAS strategy 
under FS environment in 2016. Mahdiraji et al. [56] grounded the hybrid BWM-COPRAS strategy in the FS 
environment in 2018. Using parametric measures for IFSs. Kumari and Mishra [57] proposed the  COPRAS 
strategy using parametric measures for IFSs setting.  Hajiagha et al. [58] used COPRAS strategy to interval IFS 
setting.   Sahin [59] presented the COPRAS strategy in interval neutrosophic number  [60] setting.   

 

176



New Trends in Neutrosophic Theories and Applications, Vol. 4, 2025  

 

BACKGROUND 
 

Definition 1.  Let ( , , )i i i ip q r =  be a SVNN with  , , [0,1]i i ip q r  , ( ) [0,3]i i ip q r+ +  , i= 1, 2. 

The following operations [11] hold. 

i. 1 2 1 2 1 2 1 2 1 2( , , , )p p p p q q rr  = + − [Summation]                                     (1) 

ii. 1 2 1 2 1 2 1 2 1 2 1 2( , , )p p q q q q r r rr  = + − + −  [Multiplication]                 (2) 

iii. 1 11 11 (1 ) , )( ,a aaa p q r − −= , 0a   [ Scalar multiplication]    (3) 

iv. 1 11 11 (1 ) ,1 0( (1 ) )), ,a aa a q arp −= − − −       (4) 
 

Definition 2.  Euclidean distance function. Euclidean distance [21]  between 1 1 1 1( , , )   =  and  

2 2 2 2( , , )   = is defined as: 

 
1
22 2 2

1 2 1 2 1 2
1 ( ) ( ) ( ) )
3ed
 

= − + − + − 
 

                                                           (5) 

3. Score function. 
 

Score function  [61] denoted by 1( )Sc   of an SVNN 1 1 2 3( , , )   =   is defined as 

1 1 2 3( ) (2 0.3 0.4 ) / 3Sc    = + −  −                 (6) 

Definition 3.  RNS [39] 

Let Θ be a universe of discourse and R  be an equivalence relation over Θ .  For a  NS Φ  , two 
approximation of Φ are presented as: 

 

( )ν Φ =
ν(Φ) ν(Φ) ν(Φ)θ,δ (θ),ε (θ),κ (θ) / ζ [θ] ,θ Θ

R
                                     

(7)
  
 

( )ν Φ =
ν(Φ) ν(Φ) ν(Φ)θ,δ (θ),ε (θ), κ (θ) / ζ [θ] ,θ Θ

R
   

                                 
(8)

  
 

ν(Φ) Φζδ (θ) [θ] δ (ζ)
R

=  , ν(Φ) Φζε (θ) [θ] ε (ζ)
R

=  , ν(Φ) Φζκ (θ) [θ] κ (ζ)
R

=   

Φζν(Φ)δ (θ) [θ] δ (ζ)
R

=  , Φζν(Φ)ε (θ) [θ] ε (ζ)
R

=  , Φζν(Φ)κ (θ) [θ] κ (ζ)
R

=   

So, ν(Φ) ν(Φ) ν(Φ)0 δ (θ) ε (θ) κ (θ) 3 + +   

ν(Φ) ν(Φ) ν(Φ)0 δ (θ) ε (θ) κ (θ) 3 + +  . 
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Here,   and    present respectively  the max and min operator. Φ Φδ (ζ),ε (ζ) ,and Φκ (ζ) are the truth 

Membership Function (MF), indeterminacy MF and falsity MF  of ζ  w.r.t. Φ . Clearly,  ν(Φ) and ν(Φ) are 

NSs in Φ . 

The NS mapping ( )ν, ν : ν Φ ν(Φ)→ presents as the lower and upper RNS approximation operators. The pair 

( ) ( )(ν Φ , ν Φ ) is termed as the RNS in ( Θ, R ). 

 
 

RNN-COPRAS Strategy in RNN Settings 
 

Consider an MADM problem with n attributes, and m alternatives. Assume that   1 2, ,..., nC C C C=  and 

1 2, ,..., mA A A A= present respectively the set of attributes, and alternatives.  Weight jw  is allocated to jC  with 

1 , 1  .1, 0n
j j jw tow j n=

 = =  
 

 
RNN-COPRAS strategy is developed  utilizing the following steps (see Fig. 1): 
 

Step 1.  Formulate the RNN Decision Matrix (RNN-DM) 
 

Utilizing the rating values provided by the expert, RNN-DM 
R

 is constructed as:
   

1 2

1 11 11 12 12 1 1

2 21 21 22 22 2 2

1 1 2 2

ij ij m nR

n

n n

n n

m m m m m mn mn

,

C C C

A , , ... ,

A , , ... ,

... ... ... ... ...

A , , ... ,

 =   =

     

     

     

                                                (9)

 
Here,  

ij ij m n ij ij ij ij ij ij
m n

, t , , , t , ,


       =     indicates the rating value of jA w.r.t. jC . 

Step 2.  Utilizing the Accumulated Geometric Operator (AGO), 
 
transform the RNN-DM  into a SVNN 

Decision Matrix (SVNN-DM) 
 

We convert the RNNs into SVNNs by the AGO [51] as follows:   

 

( ) ( ) ( )

0

1 2 1 2 1 2

ij ij ij ij ij ij ij ijAGO AG

/
/ /

ij ij ij ij ij ij

ij ij ij

, t , , , t , ,

t .t , . , .

t , ,

       =    

     =    

=  

           (10)               

The RNN-DM  
R

 is converted into  the SVNN-DM  
N
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1 2

1 11 11 11 12 12 12 1 1 1

2 21 21 21 22 22 22 2 2 2

2 1 1 1 2 2 2

ij ij ijN

n

n n n

n n n

m m m m m m m

t , ,

C C ... C

A t , , t , , ... t , ,

A t , , t , , ... t , ,

. ... ... ... ...

. ... ... ...
...

. ... ... ...

A t , , t , , ... t

 =  

     

     

=

    n mn mn, , 

                      
(11)

 

Step 3.   Standardize the SVNN-DM  

We standardize 
N

  using the  formula  (12) [21].   

1

ij

ij

ij ij j

ij ij j

t , , if C is a positivecriterion

, ,t if C is a negative criterion


  
 = 

 −

                          (12) 

Then the standardized SVNN-DM  appears of the form: 

ij ij iijj m nN
t , , 
   =                               (13) 

Step 4 . Compute the weighted SVNN-DM    

( )1 1 1 2 1 2
''' ''' '''
j j j

ij

'''

ij iijj m n j ij ij iiiijjjN
t , , t , , ,i , ,...,m; j , ,...,n

  



       =    = − −   = = 
 

                     

(14) 

Step 5. Convert the weighted SVNN-DM into Crisp Decision Matrix (CDM) using score values  

Using the formula  (6), the CDM C is constructed as follows:  .         

1 2

1 11 12 1

2 21 22 2

2 1 2

n

n

n

C

m m mn

C C ... C

A s s ... s

A s s ... s
. ... ... ... ...
. ... ... ...

...
. ... ... ...

A s s ... s

 =     (15) 

where ijs = ( ) ( )1 1 2 1 1 0 3 0 4 3
''' '''''' ''' ''' '''
j jj j j j

ij ij iiiijjj ij ij iiiijjjSc t , , ( t . . ) /
    

     − −   = + − − −  −   (16) 

Step 6.  Calculate the maximizing  and minimizing indices       

Utilizing the formula (17) and (18), we obtain the   maximizing and minimizing indices of each attribute. 

 

i ij
j 1

s , i 1,2,...,m


+
=

= =              (17) 

n

i ij
j 1

s , i 1, 2,..., m−
=+

= =              (18) 
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where   indicates the number of benefit  attributes and n-g indicates the number of cost (negative) attributes. 

Here i+ and i−  indicates respectively the maximizing and the minimizing indices of ith  alternative.  
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Step 7.  Calculate the  ‘relative significance value’ 

 

The ‘relative significance value of each alternative  is calculated  utilizing the formula (18) or (19). 

m

i ii i 1
i

i i
m ii

i
i 1 i

min

min

− −
=

+
−

−
=

−



 = +



 (19) 

m

i
i 1

i
i i m

i
i 1 i

1

−
=

+

−
=

−



 = +



      (20) 

Step 8. Rank the options/alternatives 

The alternatives are ranked based on their relative significance values, listed in descending order. The alternative 
having the highest final value receives the best rank. 

The most desirable alternative is the one with the highest value i . 

. 

Step 9 End. 

Illustrative Example 
 

An expert seeks to purchase the most appropriate smartphone from the initially chosen models 1 2, ,A A and 3A .  

The chosen attributes are namely, characteristics 1C , cost 2C , customer care 3C  , and  safety factor 4C .   

The weights assigned to the four attributes are 0.3, .03, 0.3, 0.1 respectively.  

Using RNN-COPRAS strategy, we solve  the problem. 

Step 1.  

The RNN-DM (refer to Table 1) is constructed based on expert’s rating values of alternatives across each 

criterion 

Table 1: RNN-DM 

( )

( )

( )

( )

( )

( )

( )

( )
( )

( )

( )

( )

( )

( )

1 2 3 4

1

2

.6,.3,.3 , .6,.4,.4 , .6,.4,.4 , .7,.4,.7 ,

0.8,0.1,0.1 0.8,0.2,0.2 0.8,0.2,0.4 0.9,0.2,0.1
0.7,0.3,0.3 , 0.6,0.3,0.3 , 0.6,0.2,0.2 , 0.

0.9,0.1,0.3 0.8,0.3,0.3 0.8,0.4,0.2

C C C C
positve negative positive negative

A

A
( )

( )
( )

( )

( )

( )

( )

( )

( )

( )
2

7,0.3,0.2 ,

0.9,0.3,0.3
0.6,0.2,0.2 , 0.7,0.3,0.2 , 0.7,0.4,0.6 , 0.6, 0.3,0.2 ,

0.8,0.0,0.2 0.9,0.1,0.1 0.9,0.2,0.4 0.8,0.1,0.1
A
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Step 2. 
 By applying formula (10), the RNN- DM is transformed into the SVNN-DM 

Table 2: SVNN-DM   

1 2 3 4

1

2

0 69282 0 1732051 0 173205 0 69282 0 282843 0 282843 0 69282 0 282843 0 4 0 793725 0 282843 0 264575
0 793725 0 1732051 0 244949 0 69282 0 3 0 3 0 69282 0

. , . , . . , . , . . , . , . . , . , .

. , . , . . , . , . . , .

C C C C
popsitive negative positive negative

A

A

3

282843 0 2 0 793725 0 3 0 244949
0 69282 0 0 2 0 793725 0 173205 0 141421 0 793725 0 282843 0 489898 0 69282 0 173205 0 141421

, . . , . , .

. , , . . , . , . . , . , . . ,A . , .

 

 

Step 3.    

The SVNN-DM is normalized (refer to Table 3) by applying formula (12). 

Table 3: Standardized SVNN-DM 

1 2 3 4

1

2

0 69282 0 1732051 0 173205 0 282843 0 717157 0 69282 0 69282 0 282843 0 4 0 264575 0 717157 0 793725
0 793725 0 1732051 0 244949 0 3 0 7 0 69282 0 69282 0 282843

. , . , . . . . . , . , . . . .

. , . , . . . . . , . ,

C C C C
positive negative positive negative

A

A

3

0 2 0 264575 0 717157 0 793725
0 69282 0 0 2 0 141421 0 826795 0 793725 0 793725 0 282843 0 489898 0 141421 0 826795 0 69282

. . . .

. , , . . . . . , . , . . .A .

 

Step 4.  

Using the formula (12),  the weighted SVNN-DM is formulated (refer to Table 4). 

Table 4: Weighted SVNN-DM 

1 2 3 4

2

0 298192922 0 590974 0 590974 0 094925509 0 905074 0 895749 0 298193 0 684642 0 759658 0 030263 0 967301 0 977163
0 377221329 0 590974 0 655726 0 101476558 0 898523 0 8
. . . . . . . . . . .

s
C C C C

positive negative po itive negative
A

A

.

. . . . . .

3

95749 0 298193 0 684642 0 617034 0 027706 0 964961 0 977163
0 298192922 0 0 617034 0 044712655 0 944538 0 933042 0 377221 0 684642 0 807294 0 015132 0 98116 0 963967

. . . . . .

. . . . . . . . . . .A

 

 Step 5.  

Calculate the score values for the weighted SVNN-DM and construct the CDM (refer to Table 5). 

 Table 5: CDM  

 

1 2 3 4

1

2

0 62817 0 488368 0 596312 0 449736
0 64588 0 491207 0 615329 0 449117
0 683793 0 462712 0 616304 0 4450663

o
. . . .

. .

i

.

C C C C
posiitve nega

.

t ve p sitve ne

.

.

gative
A

A

. .A

 

 

Step 6. 

We obtain the maximizing  and minimizing indices as follows:            

1 2 31.224482841, 0.215971.261208477 1.300096851,+ + + =  =  =  

1 2 30.938104, 0.940324 , 0.907777,− − − =  =  =  

Step 7.  Calculate the  relative significance value 

1 2 310.82078326, 10.83485022, 11.21698534 =  =  =   

Step 8. Ranking of the alternatives 

Since 3 2 1   ,  we obtain 3 2 1A A A  
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So,  3A  is the most desirable smartphone.  

The problem is solved with RNN-MABAC and we obtain  the same ranking order ( see table 6).   

Table 6: Comparison table 

Strategy  Ranking order  Best alternative  

RNN-MABAC [62]  3 2 1A A A  3A  

RNN-COPRAS ( proposed ) 3 2 1A A A  3A  

 

Conclusions 
In this study, the RNN-COPRAS approach is developed within the RNN framework. To demonstrate its 
practicality, an illustrative MCDM problem is solved using the proposed RNN-COPRAS approach. RNN-
COPRAS approach  suitable to handle  other MCDM problems in RNN environments. Furthermore, the RNN-
COPRAS strategy has potential for extension into group decision making using suitable aggregation operators. 

 
Future Research Directions   

The proposed RNN-COPRAS approach can be utilized to handle  different  MCDM problems such as clustering 
analysis [63], green supplier selection [64], E-commerce site selection [65], vaccine selection [66], risk 
assessment [67], seismic soil liquefaction analysis [68] and so on.  
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ABSTRACT 

The main purpose of this paper is to develop a TODIM (TOmada de Decisao Interativa Multicriterio) 

strategy for Multi Criteria Decision Making (MCDM) in Interval Trapezoidal Neutrosophic Number 

(ITrNN) environment, which we call ITrNN- TODIM. To extend this new MCDM-TODIM strategy, 

we define a score function and an accuracy function for ITrNNs and prove some of their basic 

properties. The decision maker evaluates the alternatives with respect to the prescribed criteria and 

provides his/her rating in terms of ITrNNs. We solve a MCDM problem to reflect the developed 

TODIM strategy in ITrNN environment. 

. 

Keywords: Trapezoidal Neutrosophic Number, Interval Trapezoidal Neutrosophic Number, Score 

function, Accuracy Function, Hamming Distance. 

INTRODUCTION

Multi-Criteria Decision Making (MCDM) is a significant known branch in decision making analysis. 

Also, MCDM strategies are very useful on those situations where some alternatives are ranked w.r.t to 

some conflicting criteria.  

Neutrosophic Sets (NSs) [1] offer a robust approach for handling uncertainty involving inconsistent, 

and indeterminate information. Wang et al. [2] introduced the Single Valued NS (SVNS), where the 

values of each membership function are confined to the range [0,1]. Interval NS (INS) was presented by 

Wang et al. [3] by extending NSs. Theoretical developments, as well as practical applications of NSs [4], 

SVNSs [2], and related concepts, have been extensively studied and documented in the works  [5], [6], 

[7], [8], [9], and [10]. Additionally, several extensions and hybrid versions of NSs have been introduced, 

including the Quadripartitioned Neutrosophic Set (QNS) [11], Interval QNS (IQNS) [12], 

Pentapartitioned NS (PNS) [13], Interval PNS (IPNS) [14], Rough NS (RNS) [15], Interval RNS [16], 

Rough Bipolar NS [17],  Tri-complex RNS [18], etc. 
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 Ye [19] and Subas [20] presented the Trapezoidal Neutrosophic Number (TrNN) by extending 

intuitionistic fuzzy number. On the basis of TrNN, different MCDM strategies have been proposed such 

as  TOPSIS [21],  MADM based on expected value of TrNNs [22], VIKOR [23],  MULTIMOORA[24],  

GRA [25], EDAS [26], ARAS [27], etc.   

Biswas et al. [28] proposed Interval Trapezoidal Neutrosophic Number (ITrNN) in 2018. In this same 

paper Biswas et al. developed some operational rules of ITrNN, and developed a new MCDM strategy. 

Later on, Giri et al. [29] developed the TOPSIS strategy for ITrNN environment.  Mallick and Pramanik 

[30] developed VIKOR strategy in the ItrNN environment.

Here, we explore the development of the TODIM strategy across various environments. Initially, Gomes 

and Lima [31, 32] introduced the TODIM strategy, which was grounded in prospect theory [33]. The 

primary aim of TODIM is to establish an optimal ranking order for alternatives. Subsequently, Gomes 

and Rangel [34] applied the TODIM strategy to assess multicriteria rental evaluations for residential 

properties. In 2013, Fan et al. [35] extended the TODIM strategy to address hybrid MADM problems. 

Following this, Wang [36] adapted the TODIM strategy for decision-making under NS environment. In 

2016, Zhang et al. [37] advanced the TODIM strategy for Multi-Criteria Group Decision Making 

(MCGDM) within a Neutrosophic Number (NN) setting. Pramanik et al. [38] introduced the NC-

TODIM strategy for MCGDM in a neutrosophic cubic set setting, and in a subsequent study [39], they 

developed the TODIM approach for MCGDM within a bipolar NS setting. In 2019, Pramanik and 

Mallick [40] further enhanced the MCGDM-TODIM strategy for the TrNN environment. 

Research gap: The TODIM strategy in the ITrNN environment has not been explored in the literature. 

This approach serves as a broader extension of the TrNN-TODIM method. 

Motivation: To take the challenge to develop an ITrNN-TODIM strategy in ITrNN environment. 

To demonstrate the proposed TODIM strategy in ITrNN environment, we solve an illustrative MCDM 

problem. 

This paper is structured as follows: The background section presents a brief overview of key definitions, 

including TrNN, ITrNN, and the Hamming distance between two ITrNNs. The subsequent section 

introduces the score and accuracy functions. Following that, we discuss the standardization of the 

decision matrix. In the next section, we present the development of the ITrNN-TODIM strategy within 

the ITrNN environment. The subsequent section illustrates the proposed TODIM strategy through a 

numerical example of an MCDM problem. Finally, the paper concludes with a summary of the findings 

and future research direction. 

BACKGROUND 

This section presents a brief overview of key definitions, including TrNN, ITrNN, and the Hamming 

distance between two ITrNNs,   

Definition 1: [19, 20] Suppose that   is an TrNN. Its truth membership, indeterminacy membership 

and falsity membership functions are defined as: 
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Here 0 ( ) 1, 0 ( ) 1T v I v     , and 0 ( ) 1F v  and 1 2 3 40 ( ) ( ) ( ) 3; , , ,T v I v F v c c c c R   + +   .Then TrNN 

is presented as  1 2 3 4( , , , ; , , )c c c c p q r     = .  

Definition 2: [28] Assume that [ , ], [ , ]p p p q q q 
     = = and [ , ]r r r

  = . Then an ITrNN denoted by

 1 2 3 4( , , , ; , , )c c c c p q r     = is defined as: 
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where the truth, indeterminacy and falsity membership function are ,T I  and F respectively. Here, 

, ,p q r  
   are subsets of [0, 1] and 0 sup( ) sup( ) sup( ) 3p q r  

   + +  and

 1 2 3 4( , , , ;[ , ],[ , ],[ , ])c c c c p p q q r r      = is said to be positive ITrNN if 0   and one of 1 2 3 4, , ,c c c c  is not 

equal to zero. 

Definition 3:   Let  ( )1 11 12 13 14 1 1 1 1 1 1, , , ;[ , ],[ , ],[ , ]h c c c c p p q q r r     = and

 2 21 22 23 24 2 2 2 2 2 2( , , , ;[ , ],[ , ],[ , ])h c c c c p p q q r r     = be any two ITrNNs and 0  . Then the following 

operations hold [28] .

 1 2 11 21 12 22 13 23 14 24 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 21. ( , , , ;[ , ],[ , ],[ , ])h h c c c c c c c c p p p p p p p p q q q q r r r r                = + + + + + − + −

 1 2 11 21 12 22 13 31 14 24 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 22. ( , , , ;[ , ],[ , ],[ , ])h h c c c c c c c c p p p p q q q q q q q q r r r r r r r r                    = + − + − + − + −

 1 11 12 13 14 1 1 1 1 1 13. ( , , , ;[1 (1 ) ,1 (1 ) ],[( ) ,( ) ],[( ) ,( ) ])h c c c c p p q q r r               = − − − −

( ) ( ) ( ) ( )1 11 12 13 14 1 1 1 1 1 14.( ) ( , , , ;[( ) , ( ) ],[1 (1 ) ,1 (1 ) ],[1 (1 ) ,1 (1 ) ])h c c c c p p q q r r
                = − − − − − − − −

 

Definition 7. Hamming distance between two ITrNNs: 

Assume that  1 11 12 13 14 1 1 1 1 1 1( , , , ;[ , ],[ , ],[ , ])h c c c c p p q q r r     = and  2 21 22 23 24 2 2 2 2 2 2( , , , ;[ , ],[ , ],[ , ])h c c c c p p q q r r     =

are any two ITrNNs. Then the Hamming distance 1 2( , )d h h [28] between them is defined as: 

11 1 1 1 11 1 1 1 21 2 2 2 21 2 2 2

12 1 1 1 12 1 1 1 22 2 2 2 22 2 2 2

1 2

13 1 1 1 13 1 1 1

(2 ) (2 ) (2 ) (2 )

(2 ) (2 ) (2 ) (2 )1( , )
24 (2 ) (2

c p q r c p q r c p q r c p q r

c p q r c p q r c p q r c p q r
d h h

c p q r c p q r

           + − − + + − − − + − − − + − −

           + + − − + + − − − + − − − + − −
=

     + + − − + + − − 23 2 2 2 23 2 2 2

14 1 1 1 14 1 1 1 24 2 2 2 24 2 2 2

(7)
) (2 ) (2 )

( ) (2 ) (2 ) (2 )

c p q r c p q r

c p q r c p q r c p q r c p q r

 
 
 
 
      − + − − − + − −
 
             + − − + + − − − + − − − + − −
 

Some important function of ITrNNs 

Definition 4: The score function of an ITrNN  1 2 3 4( , , , ;[ , ],[ , ],[ , ])c c c c p p q q r r      = is defined by 

( )  1 2 3 4
1( ) (2 ), ( ) 0,1 (8)
24

Sc c c c c p p q q r r Sc      = + + + + + + + − − 

Here, we take 1 2 3 40 1c c c c     , , ,p q r  
   are subsets of [0, 1] where [ , ], [ , ]p p p q q q 

     = = and

[ , ]r r r
  = . 

Property 1: Score function ( )Sc   is bounded on [0, 1]. 

Proof: Assume that  1 2 3 4( , , , ;[ , ],[ , ],[ , ])c c c c p p q q r r      = be a ITrNN. The value of 1 2 3 4, , ,c c c c lies 

between [0,1]. Therefore, we can write 
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 1 2 3 40 1c c c c      

1 2 3 40 4 (9)c c c c + + + 

Now, 

2 4p p q q r r     −  + + + − − 

2 2 2 2 4p p q q r r     = −  + + + + − −  +

0 2 6 (10)p p q q r r     =  + + + + − − 

Multiplying (9) and (10) we obtain, 

1 2 3 40 ( )(2 ) 24c c c c p p q q r r      + + + + + + + − − 

1 2 3 4
10 ( )(2 ) 1
24

c c c c p p q q r r     =  + + + + + + + − − 

0 ( ) 1Sc =  

So, ( )Sc  is bounded. 

Example 1: Let ([0.1,0.2,0.3,0.4];[0.1,0.2],[0.2,0.3],[0.4,0.5]) = . Then  

1( ) (0.1 0.2 0.3 0.4)(2 0.1 0.2 0.2 0.3 0.4 0.5)
24

Sc  = + + + + + + + − −

0.0792=

Definition 5: The accuracy function of  1 2 3 4( , , , ;[ , ],[ , ],[ , ])c c c c p p q q r r      = is defined by 

( )  3 4 1 2
1( ) (2 ) ( ) 0,1 (11)
8

Ac c c c c p p r r Ac    = + − − + + − − 

Here, we consider 1 2 3 40 1c c c c     , , ,p q r  
   are subsets of [0, 1] where [ , ], [ , ]p p p q q q 

     = = and

[ , ]r r r
  = .  

Property 2: Accuracy function ( )Ac   is bounded on [0, 1]. 

Proof:  Since 1 2 3 4, , ,c c c c lies between [0,1] therefore

1 2 3 40 1c c c c    

3 4 1 22 2 (12)c c c c= −  + − − 

Here, 2 2p p r r   −  + − −   

2 2 2 2 2p p r r   = −  + + − −  +  

0 2 4 (13)p p r r   =  + + − − 

Multiplying (12) and (13) we obtain, 

( )3 4 1 20 (2 ) 8c c c c p p r r    + − − + + − − 
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( )3 4 1 2
10 (2 ) 1
8

c c c c p p r r   =  + − − + + − − 

0 ( ) 1Ac =  

Therefore, ( )Ac  is bounded. 

Example 2: Let        ( )0.5,0.6,0.6,0.7 ; 0.7,0.8 , 0.3,0.4 , 0.2,0.3 = be an ITrNNs. Then

1( ) (0.6 0.7 0.5 0.6)(2 0.7 0.8 0.2 0.3)
8
0.075

Ac  = + − − + + − −

=

Definition 6:   Let 1 2,  be two ITrNN and 1 2 1 2( ), ( ), ( ) and ( )Sc Sc Ac Ac    are the scores and accuracy 

function of 1 2and  respectively. 

1. If 1 2( ) ( )Sc Sc  , then 1 2 

2. If 1 2( ) ( )Sc Sc = and

(a) If 1 2( ) ( )Ac Ac  , then 1 2 

(b) (a) If 1 2( ) ( )Ac Ac = then 1 2 = ; 

Example 3: Let,        ( )1 0.4,0.5,0.7,0.7 ; 0.7,0.8 , 0.3,0.4 , 0.2,0.3 = and

       ( )2 0.5,0.6,0.6,0.7 ; 0.6,0.7 , 0.3,0.4 , 0.2,0.3 = be two ITrNNs. Then we obtain 

1 2( ) 0.35, ( ) 0.35Sc Sc = =

1 2( ) 0.19, ( ) 0.07Ac Ac = =

Since 1 2( ) ( )Sc Sc = and 1 2( ) ( )Ac Ac 

Therefore, we conclude that 1 2  .  

Standardize the decision matrix 

We consider the following method [30] to obtain the standardized matrix ( )ij yz
T t= , where 

1 2 3 4([ , , , ];[ , ],[ , ],[ , ])yz yz yz yz yz yz yz yz yz yz yzt c c c c p p q q r r=  is an ITrNN. 

1 2 3 4

([ , , , ];[ , ],[ , ],[ , ]) (14)yz yz yz yz

yz yz yz yz yz yz yz

z z z z

c c c c
t p p q q r r

g g g g+ + + +
=

4 3 2 1([ , , , ];[ , ],[ , ],[ , ]) (15)z z z z

yz yz yz yz yz yz yz

yz yz yz yz

g g g g
t p p q q r r

c c c c

− − − −

=

Here, 
yzt and 

yzt are respectively benefit type and cost type criteria and 

4max{ : 1,2,...., }z yzg c y m+ = = and 1min{ : 1,2,...., }z yzg c y m− = =  for v = 1, 2, ...., n. 

TODIM strategy for solving MCDM problem ITrNN environment 
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Assume that  1 2, ,..., pC C C C=  is a set of p alternatives and 1 2{ , ,..., }rE E E E=  be a set of r-criteria and 

1 2{ , ,..., }rV V V V= be the weight vector of the criteria in an MCDM problem. The Decision Maker (DM) 

ranks the alternatives with respect to (w. r. t.) the criteria.  We introduce the ITrNN-TODIM strategy 

(as illustrated in Figure 1) through the following steps.  

Step -1:  Assume that prq  is the rating value provided by the DM for the alternative p w. r. t. the 

criterion
rE . Then, the decision matrix p rQ  is constructed as: 

  

1 2
1 11 12 1
2 21 22 2

1 2

(16)

r

r

rp r

p p p pr

E E E
C q q q
C q q qQ

C q q q



 
 
 =
 
 
 

Step-2: Decision matrix (16) is standardized using equations (14) and (15). 

Standardized decision matrix is presented as: 

1 2
1 11 12 1
2 21 22 2

1 2

( ) (17)

r

r

rp r

P p p pr

E E E
C q q q
C q q qQ

C q q q



 
 
 =
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Step-3: Calculate the weights of the criteria using entropy. 

The criterion vector 
jV is expressed in terms of ITrNNs as: 

( )1 2 3 4, , , ; , , , , , 1,2,..., .j j j j j j j j j j jV v v v v t t i i f f j r     = =       

Distance vector ( , )jd V I + is presented as 

1 2( ) ( ( , ), ( , ),...., ( , ))rd V d V I d V I d V I+ + +=

where

1 1 2 2
1 1 1 1 1 1 1 1 1 1 1 1

3 3 4 4
1 1 1 1 1 1 1 1 1 1 1 1

(2 ) (2 ) 6 (2 ) (2 ) 61( , ) (18)
24 (2 ) (2 ) 6 (2 ) (2 ) 6

j j j j

j

j j j j

v t i f v t i f v t i f v t i f
d V I

v t i f v t i f v t i f v t i f

+

 + − − + + − − − + + − − + + − − −
 =
 + + − − + + − − − + + − − + + − − −
 

The normalized distance vector is presented as: 

1 2( ( , ), ( , ),...., ( , )) (19)rd d V I d V I d V I+ + +=

where 1

( , )
( , ) , 1,2,...,

( , )max
j

j

j

d V I
d V I j r

d V I

+

+

+

 
 

= = 
  

The measure of the j-th criterion 
jE for p feasible alternatives is obtained from 

1 1

( , ) ( , )1 ln , 1,2,..., (20)
ln( ) ( , ) ( , )

j j

j n n

j j

j j

d V I d V I
e j r

m
d V I d V I

+ +

+ +

= =

  
  
  = − =
  
  

  
 

The normalized weight 
jV of the j-th criterion is obtained as: 

where 0 1, 1,2,..., .rV j r  =

Step-4: Evaluate the relative weight Rei
V of each criterion by the formula: 

Re (22)
i

i

C

V
V

V
=

Here 1 2{ , ,...., }i rV V V V= and  1 2max , ,....,C rV V V V= , is called reference criterion which is chosen by the 

decision maker. 

Step -5: Evaluate  the score value for each alternative by applying  formula (7) with respect to each 

criterion in the decision matrix (17). 

Step-6: Using equation (10), we evaluate accuracy value of each alternative w. r. t. each criterion. 

Step-7: By the following equation, we evaluate the dominance degree 
jC of each alternative 

kC w. r. t. 

the criterion 
tE

1

1
(21)

(1 )

j

j n

j

j

e
V

e
=

−
=

−
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Re

Re
1

Re
1

Re

( , ) ( , ),

0, (23)

1 ( , ),

t

t

t

t

t j k jt kt jt ktr

t

jt kt

r

t

jt kt jt kt

V
C C d q q if q q

V

if q q

V

d q q if q q
V





=

=


= 





= = 




= −  






where   denotes the decay factor of losses and 0  . If 1  , losses are diminished, whereas if a 1 

t, losses are magnified Decision maker ranks the alternatives based on  i.e. according to the gains

and the losses.  Two cases are to be considered.  

Case 1: For higher values of , the most favourable alternatives are those that generate the greatest

gains. 

Case 2:  When   takes on smaller values, the most favourable alternatives are those that minimize

losses. 

Step 8: Derive the individual final dominance matrix by applying the equation below: 

1
( , ) ( , ) (24)

r

j k t j k

t

C C C C 
=

=

Step-9: Using equation (18), we evaluate global value of each alternative, 

11 1

11 1 1

( , ) min( ( , ))
(25)

max( ( , )) min( ( , ))

 
= =

  
= =

−

=

−

 

 

p p

l m l m
i r

m m

l p p

l m l m
l rl r

m m

C C C C

C C C C

 



 

Step-10: Sort the alternatives in descending order according to their global values, where the 

alternative with the highest global value is ranked as the best. 

Illustrative Example 

We discuss a numerical example to visualize the applicability and utility of the developed ITrNN-

TODIM strategy. To illustrate the developed ITrNN-TODIM, we solve an MCDM problem adapted 

from [19]. A man wants to buy a new laptop. Assume that there are four laptop companies 1 2 3, ,C C C

and 4C , each company has to consider three criteria, namely quality, warranty and cost. We consider 1E

for quality, 2E for warranty and 3E for cost. The expert or DM assesses the rating values of alternatives 

( 1,2,3,4)iC i = w. r. t. attributes ( 1,2,3)jE j = . Now we solve the problem employing the developed 

TODIM strategy. 

Step-1: Construct the decision matrix with four alternatives namely 1 2 3, ,C C C and 4C , and three criteria 

1 2,E E and 3E . 

Matrix 1 
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1

1

2

3

4

([50,60,70,80];[0.1,0.2],[0.2,0.3],[0.4,0.5])
([30,40,50,60];[0.3,0.4],[0.2,0.3],[0.1,0.2])
([70,80,90,100];[0.6,0.7],[0.2,0.3],[0.4,0.3])
([40,50,60,70];[0.4,0.5],[0.6,0.7],[0.2,0.3])

E

C

C

C

C

 
















2

1

2

3

4

([30,40,50,60];[0.2,0.3],[0.4,0.5],[0.6,0.7])
([10,20,30,40];[0.1,0.2],[0.3,0.4],[0.6,0.7])
([50,60,70,80];[0.1,0.2],[0.3,0.4],[0.6,0.7])
([70,80,90,100];[0.2,0.3],[0.4,0.5],[0.6,0.8])

E

C

C

C

C

 
















3

1

2

3

4

([40,50,60,70];[0.4,0.5],[0.6,0.7],[0.7,0.8])
([20,30,40,50];[0.1,0.2],[0.3,0.4],[0.8,0.9])
([70,80,90,100];[0.3,0.5],[0.4,0.6],[0.7,0.8])
([30,40,50,60];[0.4,0.5],[0.6,0.7],[0.7,0.8])

E

C

C

C

C

 
















The importance of attribute 
jE is given by 

       ( )        ( )

       ( )

0.2,0.3,0.3,0.4 ; 0.4,0.5 , 0.2,0.3 , 0.1,0.2 , 0.4,0.4,0.5,0.6 ; 0.6,0.7 , 0.2,0.3 , 0.2,0.3 ,

0.6,0.7,0.8,0.8 , 0.3,0.4 , 0.1,0.2 , 0.1,0.2
V

  
=  
  

Step-2: First and second criteria are benefit type criteria, and third criterion is cost type criterion. To 

obtain the standardized decision matrix we use formula (14) and formula (15). 

Matrix 2 

1

1

2

3

4

([0.38,0.43,0.50,0.60];[0.1,0.2],[0.2,0.3],[0.4,0.5])
([0.50,0.60,0.75,1];[0.3,0.4],[0.2,0.3],[0.1,0.2])

([0.30,0.33,0.38,0.43];[0.6,0.7],[0.2,0.3],[0.4,0.3])
([0.43,0.50,0.60,0.75];[0.4,0.5],[

E

C

C

C

C 0.6,0.7],[0.2,0.3])

 
 
 
 
 
 
 
 

2

1

2

3

4

([0.30,0.40,0.50,0.60];[0.2,0.3],[0.4,0.5],[0.6,0.7])
([0.10,0.20,0.30,0.40];[0.1,0.2],[0.3,0.4],[0.6,0.7])
([0.50,0.60,0.70,0.80];[0.1,0.2],[0.3,0.4],[0.6,0.7])

([0.70,0.80,0.90,1];[0.2,0.3],[

E

C

C

C

C 0.4,0.5],[0.6,0.8])

 
 
 
 
 
 
 
 

3

1

2

3

4

([0.40,0.50,0.60,0.70];[0.4,0.5],[0.6,0.7],[0.7,0.8])
([0.20,0.30,0.40,0.50];[0.1,0.2],[0.3,0.4],[0.8,0.9])

([0.70,0.80,0.90,1];[0.3,0.5],[0.4,0.6],[0.7,0.8])
([0.30,0.40,0.50,0.60];[0.4,0.5],[

E

C

C

C

C 0.6,0.7],[0.7,0.8])

 
 
 
 
 
 
 
 

Step-3: Using equation (19) we obtain (0.795,0.6596,0.5046), (1,0.8297,0.6347)d d= =  

Using equation (20) we calculate entropy (0.2640,0.2644,0.2520)e =
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Using formula (21) we obtain the normalized weight vector of the criteria as 

(0.3316,0.3314,0.3370)V =

Step-4: To obtain relative weight for each criterion, we use formula (22) and the obtained relative 

weights are: 

1 2 3Re Re Re0.984, 0.9834, 1V V V= = = . 

Step-5: We evaluate score value of each alternative w. r. t. each criterion using equation (8). 

Matrix 3 represents the score values. 

Matrix 3: Score value for M1

1 2 3

1

2

3

4

0.1512 0.1575 0.2475
0.3444 0.0708 0.0758
0.174 0.1845 0.3258
0.3515 0.2833 0.2025

E E E

C

C

C

C

 
 
 
 
 
 
 
 

Step-6: To evaluate accuracy value, we use equation (11). Matrix 4 presents accuracy values for M1. 

Matrix 4: Accuracy value for M1

1 2 3

1

2

3

4

0.0508 0.06 0.07
0.195 0.05 0.03
0.054 0.05 0.065
0.126 0.055 0.07

E E E

C

C

C

C

 
 
 
 
 
 
 
 

Step-7:  We calculate the dominance matrices (Matrices 5-7) (considering  =1) using equation (23).

Matrix 5: Dominance matrix 1
1

1 2 3 4

1
1
1 2

3

4

0 0.8370 0.3438 0.4383
0.2775 0 0.2530 0.7631
0.1140 0.7631 0 0.2795
0.1453 0.2530 0.0293 0

C C C C

C

C

C

C



 
 

− − − 
 = −
 

− − 
 
 

Matrix 6: Dominance matrix 1
2

1 2 3 4

1
1
2 2

3

4

0 0.1594 0.4811 0.6481
0.4811 0 0.6801 0.8070

0.1594 0.2254 0 0.4343
0.2148 0.2674 0.1439 0

C C C C

C

C

C

C



 
 

− − 
 = − − −
 

− 
 
 

Matrix 7: Dominance matrix 1
3
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1 2 3 4

1
1
3 2

3

4

0 0.1659 0.6289 0.1086
0.4923 0 0.7987 0.3723

0.2119 0.2692 0 0.2382
0.3223 0.1254 0.7067 0

C C C C

C

C

C

C



 
 

− 
 = − − −
 
 
 − − 

Step-8: We determine the final dominance matrix (Matrices 8) using formula (24). 

Matrix 8: Final dominance matrix   

1 2 3 4

1

2

3

4

0 0.5117 1.4538 0.9778
0.6959 0 1.2258 1.9424

0.4853 0.2685 0 0.4756
0.0378 0.6458 0.5335 0

C C C C

C

C

C

C

 
 

− − − 
 − − −
 

− − 
 − 

Step-9: Using formula (25), we calculate global value . 

1 2 3 40.2294, 0, 0.8981, 1   = = = =  

Step-10:  Arranging the global values, we obtain 4 3 1 2      . 

Therefore, the ranking order of the alternatives is 

4 3 1 2C C C C    

Therefore, forth alternative 4C is the best alternative to invest.

Conclusions 

To develop the ITrNN-TODIM strategy, we introduced a novel score function and an accuracy function 

for ITrNNs, and demonstrated their fundamental properties. The steps for applying the extended 

TODIM strategy were then presented in a simplified manner. As an illustration of the newly developed 

strategy, a numerical example of an MCDM problem for selecting the best laptop was solved. 

The key advantage of this proposed strategy is its effectiveness in addressing MCDM problems 

involving interval trapezoidal neutrosophic information. Interval trapezoidal neutrosophic numbers 

are capable of handling indeterminate and inconsistent data, and they represent an extension of both 

trapezoidal intuitionistic fuzzy numbers and interval neutrosophic numbers. A notable limitation of 

this MCDM strategy is that, while it is well-suited for the given environment, there is always the 

potential for developing a more advanced strategy that could outperform the current one. 

The proposed strategy can be applied to investigate various MCDM problems, potentially leading to 

new avenues for research. The ITrNN-TODIM strategy can be utilized to solve MCDM problems such 

as personnel selection [41, 42], medical diagnosis [43], data mining [44],  renewable energy selection 

[45], green supplier selection [46], E-commerce site selection [47], determining the key water quality 

parameters in aquaponic systems [48], information retrieval [49], vaccine selection [50], identification of 

influential parameters in soil liquefaction [51] and so on. 
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osophic soft set, single valued neutrosophic 
hesitant fuzzy sets, among others, have been proposed in a short period.

ering, medical 

The field of neutrosophic set theory and its applications has been rapidly 
expanding, particularly since the introduction of the journal "Neutrosophic Sets 
and Sys

 
tems." New theories, techniques, and algorithms are being developed at a 

very high rate. One of the most notable trends in neutrosophic theory is its 
hybridization with other set theories such as rough set theory, bipolar set theory, 
soft set theory, hesitant fuzzy set theory, and more. 

Neutrosophic sets have proven to be crucial tools across a wide array of fields 
including data mining, decision making, e-learning, engine diagnosis, 
social sciences, and beyond.  

Volume IV

The fourth volume of New Trends in Neutrosophic Theories and Applications focuses on theories, strategies, optimizing 
techniques for MCDM within neutrosophic frameworks. Some topics deal with introducing of Pythagorean 
hypersoft sets with possibility degree, quadripartitioned neutrosophic Lie-ideal of Lie-algebra, quadripartitioned 
neutrosophic quasi coincident topological space, neutrosophic supra-open set in neutrosophic supra topological 
space and neutrosophic soft matrices. Some topics deal with medical diagnosis, organ transplantation success 
using neutrosophic superhyperstructure and artificial intelligence. Some topics deal with revenue management, 
social situation. Some topics deal with MCDM in single valued neutrosophic set environment, rough set 
environment, and interval trapezoidal neutrosophic environment.
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