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Introduction:

The present article explores the possibility of an aether medium, also referred to as a virtual 
inertia/spin superfluid medium, existing to explain certain physical phenomena. While the concept 
of an aether has been historically rejected by mainstream physics, recent findings and 
interpretations offer potential justifications for its reconsideration. After discussions with several 
physicists, notably Robert N. Boyd, PhD and others, we are convinced that aether medium does 
exist, or may be called virtual inertia/spin superfluid medium.

Here, we will delve into three evidence-based models suggesting the existence of such a medium:

1.Refutation of Planck's Constant by Cameron Rebigsol: Rebigsol's work challenges the 
fundamental constant of Planck's constant, suggesting its dependence on the Earth's motion through 
the aether. This implies that the constant might not be truly universal, hinting at the presence of an 
underlying medium influencing physical processes.

2.Aspden's Virtual Inertia: This model proposes a form of inertia inherent to the vacuum itself, 
arising from the interaction of virtual particles. This "virtual inertia" could explain various physical 
phenomena, potentially aligning with the concept of an aether as a medium with inherent properties.

3.Huygens's Pendulum Synchronization and the Kuramoto Model: The classic experiment of 
synchronized pendulums by Huygens has been explained by the Kuramoto model, which requires 
an interaction medium between the pendulums. This could be interpreted as evidence for an aether-
like medium facilitating the synchronization.

Each of these models presents intriguing challenges to the current understanding of physics. While 
alternative explanations and interpretations exist, they cannot be definitively ruled out at this stage. 
Further research and experimentation are crucial to validate or refute these models and their 
implications for the existence of an aether medium.

1 With assistance of bard.google.com



Discussions: 

A. Aspden's Virtual Inertia: A Stepping Stone Towards an Aether Superfluid?

The notion of an aether, a mysterious medium permeating all of space, has captivated physicists for 
centuries. Despite its historical rejection, recent discoveries like Dr. Harold Aspden's virtual inertia 
continue to spark debate and offer intriguing hints towards its potential existence. This article delves 
into Aspden's groundbreaking work and explores how it might pave the way for understanding a 
superfluid aether medium.

Virtual Inertia: A Paradigm Shift?

Aspden's virtual inertia theory proposes a fascinating twist on our understanding of inertia. He 
suggests that the vacuum itself possesses a form of inertia, arising from the dynamic interactions of 
virtual particles constantly popping in and out of existence. This "virtual inertia" exhibits properties 
akin to mass and momentum, even in the absence of any physical matter.

Intriguing Parallels with the Aether:

The concept of virtual inertia bears striking similarities to the classical notion of an aether. Both 
propose a medium permeating all of space, influencing physical phenomena without directly 
interacting with matter. While the aether was historically envisioned as a material substance, virtual 
inertia suggests a more nuanced interaction, mediated by the quantum vacuum's inherent properties.

Potential Implications for an Aether Superfluid:

Superfluids are exotic states of matter characterized by zero viscosity, allowing them to flow 
effortlessly. If the virtual inertia arises from a dynamic interplay of virtual particles, it could be 
interpreted as a superfluid-like aether. This aether wouldn't be a stationary substance but rather a 
constantly fluctuating sea of virtual activity, influencing physical processes through its inherent 
properties.

Challenges and Future Directions:

While Aspden's work is groundbreaking, it's important to acknowledge the challenges it faces. The 
exact nature of virtual inertia and its connection to gravity and other fundamental forces remain 
open questions. Further theoretical and experimental work is crucial to validate the theory and 
explore its implications for an aether superfluid.

B. Synchronization between two pendulums: Unmasking the Dance with an Aether?

From the elegant halls of science museums to the rhythmic sway of metronomes, the synchronized 
swing of two pendulums has mesmerized minds for centuries. This captivating phenomenon, first 
observed by Christiaan Huygens in the 17th century, has continued to intrigue physicists, finding 



new interpretations and explanations throughout history. Today, we delve into the secrets of this 
dance, exploring the intricate connection between synchronization, the Kuramoto model, and the 
possibility of an underlying aether medium.

The Pendulum's Tale: From Observation to Explanation

Huygens's initial observation ignited a wave of research, seeking to understand the unseen forces 
guiding the pendulums' harmonious movement. In 1983, Steven Strogatz, in his renowned book 
"Sync," brought light to the phenomenon through the Kuramoto model. This mathematical 
framework elegantly explained how seemingly independent pendulums, under weak coupling, can 
entrain their swings to achieve mesmerizing synchrony. However, the nature of this coupling 
remained somewhat elusive.

Enter the Intriguing Stage: Can an Aether Play a Role?

While the Kuramoto model provides a powerful theoretical framework, some intriguing questions 
linger. Does this coupling necessitate a physical medium for interaction? This is where the concept 
of an aether, a hypothetical universal medium, enters the stage. By proposing the existence of an 
aether, we could postulate that it acts as a mediator, carrying the subtle influences that nudge the 
pendulums towards synchrony.

C. A Proposed Experiment

To explore this possibility, let's envision a modified experiment. Introduce a thin metal plate 
between the swinging pendulums. If an aether truly exists, its interaction with the plate could alter 
the synchronization dynamics. According to the proposed aether model, the plate might dampen or 
amplify the coupling between the pendulums, affecting their synchronization time or final state. 
Conversely, if no aether exists, the presence of the plate should have minimal impact on the 
synchronization observed through the Kuramoto model.

The Weight of Evidence: Unveiling the Truth

The outcome of this proposed experiment would hold significant weight. If the synchronization 
behavior deviates from the predictions of the unperturbed Kuramoto model, it could lend credence 
to the existence of an aether influencing the interaction. However, it's crucial to remember that 
alternative explanations might also exist, requiring further investigation and potentially more 
complex experimental designs.

Beyond the Pendulums: Implications and Open Questions

While the pendulum experiment offers an intriguing starting point, the implications of an aether 
extend far beyond this specific phenomenon. Its existence could impact our understanding of 
various physical interactions, from gravity to electromagnetism. However, numerous questions 
remain unanswered. What are the properties of this aether? How does it interact with matter and 



other fundamental forces?

A bit discussion of Kuramoto model (while it is not yet including an effect of physical aether 
medium)2

The Kuramoto model is typically used to describe the synchronization of coupled oscillators. It 
doesn't explicitly involve the concept of a physical ether medium. Assuming a standard Kuramoto 
model, where the dynamics of a set of coupled oscillators are described by a system of differential 
equations, here's a general example in Mathematica. 

(* Define the Kuramoto model parameters *)

n = 2; (* Number of oscillators *)

couplingStrength = 0.1; (* Coupling strength *)

(* Define the Kuramoto model equations *)

kuramotoEquations = Table[

   θ'[t, i] == ω[i] + couplingStrength Sum[Sin[θ[t, j] - θ[t, i]], {j, 1, n}] / n,

   {i, 1, n}

];

(* Initial conditions *)

initialConditions = Table[θ[0, i] == RandomReal[{0, 2 π}], {i, 1, n}];

(* Solve the differential equations *)

2 Written by assistance by http://chat.openAI.com



solution = NDSolve[{kuramotoEquations, initialConditions}, Table[θ[t, i], {i, 1, n}], {t, 0, 10}];

(* Plot the solutions *)

Plot[Evaluate[Table[θ[t, i] /. solution, {i, 1, n}]], {t, 0, 10}, 

   PlotLegends -> Table["Pendulum " <> ToString[i], {i, 1, n}], 

   FrameLabel -> {"Time", "Angle"}, 

   PlotLabel -> "Kuramoto Model for Synchronization"]

Conclusion: A Symphony Unfinished

The synchronization of pendulums serves as a captivating case study, reminding us that seemingly 
simple phenomena can harbor profound mysteries. While the proposed experiment presents an 
opportunity to explore the potential role of an aether, it's merely the first note in a larger symphony 
of discovery. The quest to understand the hidden forces governing our universe continues, and the 
pendulum's swing invites us to join the dance, ever curious and ever seeking the truth beyond the 
visible.

D. Illustrations of Proposed experiment set

Illustration 1. Synchronization 
between two pendulums interfered by 
amplified laser pen



Illustration 2. Synchronization between two pendulums, interfered with thin metal plate located in-
between

Illustration 3. Synchronization between 
two pendulums, interfered with a beryl 

crystal located in-between

Key Points:

The article acknowledges the historical rejection of aether but presents recent findings as potential 
justifications for its reconsideration.

Three evidence-based models are outlined: Rebigsol's Planck's constant refutation, Aspden's 
virtual inertia, and Huygens's pendulum synchronization.

The article emphasizes the need for further research and experimentation to validate or refute these 
models and their implications.

Concluding remark

Aspden's discovery of virtual inertia throws open exciting new avenues for exploring the nature of 
space and the possibility of an aether medium. While the path towards definitive proof remains 
long, his work serves as a stepping stone, urging us to reconsider our understanding of the vacuum 
and its potential role in shaping physical phenomena. As we delve deeper into the mysteries of the 
quantum world, the possibility of an aether superfluid might not be as fantastical as it once seemed.

Other than that, the synchronization of pendulums serves as a captivating case study, reminding us 
that seemingly simple phenomena can harbor profound mysteries. While the proposed experiment 
presents an opportunity to explore the potential role of an aether, it's merely the first note in a larger 
symphony of discovery. The quest to understand the hidden forces governing our universe 
continues, and the pendulum's swing invites us to join the dance, ever curious and ever seeking the 
truth beyond the visible.

We also outlined here a number of possible experiments with two pendulums to prove that spin 
superfluid medium is necessary to mediate the effect of synchronization, including interfering the 
space between two-pendulums with amplified laser exposure (to disturb the aether), or with thin 
metal plate, or with beryl crystal.
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Abstract   It has been for more than a century that in the modern physics campus classical physics 

is chided as being incapable of proposing convincing explanation on the photoelectric effect.  

However, to this author, there appears some interesting evidence that witnesses the opposite.  As 

the number one evidence, Fig.01 in the text portion of this article shows many curves defying the 

linearity supposedly entitled on them by the equation 𝐸𝑚𝑎𝑥 = ℎ𝑓 − 𝑊 , which is proposed based 

on the concept of photon, or quantum in explaining the photoelectric effect. Contrary to the chiding 

from the modern physics, as we will see, classical physics, relying on the assumption of existence 

of Aether, can explain the geometry behavior of all these curves, while exposing the self-refutation 

nature of the equation 𝐸𝑚𝑎𝑥 = ℎ𝑓 − 𝑊.   This author believe that classical physics has shown us 

an abundance of credits for it to reclaim its authority in the study of physics. If we ever apply it 

and found it fails us, do not blame classical physics, but reexamine our work! 
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1. The Five Arguments  
 

Argument One   Einstein’s renowned photoelectric equation is challenged by experiment data.   

   
              So far, the theory behind Eq. 01 below, proposed by Einstein, is the most prevalent theory 

in modern physics in explaining the photoelectric phenomenon 

 

𝐾𝑚𝑎𝑥 = ℎ𝑓 − 𝑊                             (𝐸𝑞.       01) 

where 𝐾𝑚𝑎𝑥  is the kinetic energy carried by a photoelectron flying toward the anode, ℎ is the 

Planck’s constant,  𝑓 is frequency, and W is the work function. The Planck’s constant is therefore 

the slope of Eq. 01.  Is this equation universally true?  Fig. 01 gives a negative answer.   
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Every curve in Fig. 01 show drooping more and more toward higher and higher frequency, 

i.e., shorter and short wavelength of the incident light.  Even more severely, at the very high 

frequency end, the supposed kinetic energy of the flying electrons, interpreted from the value of 

current, gets more and more reduced.  Take curve 6 for example.  Its linearity can be said best kept 

only between 360 nm (8.33 × 1014 Hz) and 330 nm (9.09 × 1014 Hz).  Beyond 330 nm, the slope 

begins prominently deviated from the previous slop.  At 260 nm (11.54 × 1014 Hz), the curve 

begins going flat. At 180 nm (11.54 × 1014 Hz), the curve goes downhill, meaning current, or 

equivalently the supposed 𝐾𝑚𝑎𝑥 , rapidly diminishes; the concept of Planck’s constant is made 

completely disappear.  Indeed, even in the segment between 360 nm and 330 nm, the curve’s slope 

shows no constant value but varying, although barely noticeable.   When all these curves show so 

dominantly deviated from what Eq.  01 preaches, how can we accept this equation as having been 

written by a correct theory?   

The theory guiding the establishment of Eq. 01 is not only challenged by experimental data, 

but it also provokes challenges against itself.   let us examine the following few more arguments.  

Argument Two   The theory of relativity fails to support the concept of quantum.  

Overwhelmingly, photon has been advocated in modern physics to exist as quantum, which means 

a certain kind of material that is in the form of pure energy and with zero rest mass.  That material 

can have zero rest mass is promoted and warranted by Einstein’s relativity.  If relativity can be 

shown as being self-refuted, the concept of zero rest mass for material will lose its base to stand.  

Subsequently, the concept of quantum loses its strongest protective umbrella.   So unfortunately 

to this concept, indeed, relativity is self-refuted [1].   

Argument Three   The concept of photon itself is self-refuted.  If photons are said to be 

packets comprising the moving train of light, then, by what a packet means, photons must be 

separated between each other within the train, both timewise and space-wise.  So separated, if true, 

but due to the light’s nature of being a wave, there must be at least one extra wave propagating 

along with this train of light, or train of packets.  This extra wave must have frequency that is 

different from what each light packet carries.  It is such extra wave that plays the role to suppress 

the train of light every so often space-wise and timewise. In other words, the existence of packets 

in a light train can only stir up wave interference.   Interference of waves must produce beat. Has 

the science world ever claimed that beat is inevitable in any beam of pure light?   Someone may 

object to this analysis with an argument that if the packets can randomly distribute themselves in 

the train of light, obvious beat cannot be found in our observation.  However, a laser beam is a 

beam of pure light with well controlled coherence over phase when emitted.  Who has detected 

any beat in laser light? Therefore, with the absence of beat in a light train, no separation within a 

finite light beam can be declared, and subsequently the possibility for packet to be distinguished 

between one and another is removed.   

Argument Four    The explanations proposed by modern physics between photoelectric 

effect and Compton effect fail each other.  According to the popular explanation based on quantum, 

upon absorbing the energy and momentum from a photon from the anode direction, an electron is 

excited to fly away from the cathode toward the anode (Fig. 02).  This explanation literarily gives 
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people an idea that a recipient of certain momentum must move in a direction opposite to what the 

momentum exerts. Why must momentum carried by photon violate Newton’s mechanical principle?  

Either it is the photon itself directly violates the principle, or the electron becomes weird because 

of the influence of the photon.    Maybe someone argues that it is how the electron is destined to 

do because of the bias voltage between the two electrodes.   The problem is that, as witnessed by 

segment b of the curve in Fig. 03, the flying also happens even when the bias voltage in many 

cases is zero or even negative. Besides violating the Newton’s mechanical principle, the theory 

behind Eq. 01 also presents a challenge to the explanation on Compton effect, which also needs 

the concept of quantum to pave the way for people’s acceptance.     

In explaining the secondary wavelength found in the scattered X-rays (Fig. 04), Compton 

first listed the following two equations according to the principle of conservation of momentum 

from Newton’s mechanism theory:  

𝑝0 = 𝑝1 cos 𝜃 + 𝑝 cos ∅                   (𝐸𝑞.   02) 

𝑝1 sin 𝜃 = 𝑝 sin ∅                               (𝐸𝑞.   03) 

where Eq. 02 contains all the momentum components projected on the X- axis and Eq. 03 contains 

all the momentum components projected on the Y-axis and further, all 𝑝 ’s are symbols for 

momentum. 
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 Disregarding Compton’s application of relativity in his further work (omitted here) on this 

topic, at least he felt only Newton’s mechanics principle could warrant him to have these two 

equations correctly established. Obviously, in so pursuing, neither the secondary X-ray photon nor 

the scattered electron was assumed by him to move in the direction against the movement of the 

incident X ray photon.   

The explanations from the photoelectric effect and Compton’s scattering effect share one 

thing in common: an electron is excited by an incoming photon and resulted in a change of its 

location as well as moving state. However, both explanations thus have forced us to select one, 

and one only, from the following choices as a correct conclusion:   

(1) Both explanations are mistaken, 

(2) One of them is mistaken and the other one is correct,  

(3) They both are correct.    

It is obvious that choice (3), a choice for a contradicting pair, cannot be a correct conclusion, 

although it is a choice firmly held by the modern physics. Then, how correct the choice (1) or (2) 

would be?  It is the purpose of this article to find out.      

Argument Five   About a Finite Linear Dimension for a Quantum.  If a light beam has 

finite length, the total energy contained by this beam must be finite.  Then, if the energy carried 

by each quantum is also finite, quantum theory must accept that the number of quanta, or photons, 

in this beam must be finite, regardless of how huge this number can be.  All these must lead to 
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conclude that each quantum must have finite spatial dimension.  So far, this author is unable to 

find article from any authoritative science institution showing firm information regarding the finite 

dimension of a quantum.   When a reader tries to pursue this information, the answer usually is 

vague, such as” do not take it too literarily”.  On the other hand, however, if the contemporary 

popular explanation on the photelectric effect based on quantum is correct, such information is 

indisputably revealed in such explanation.  We will find it out at the end of this article. Sadly, 

though, the finding can only come back to jeopardize the quantum theory’s claim.    

 

      

2.  What Is There Helping the Electron’s Defiance? 

When the atomic structure is explored, the contemporary science dominantly believes that 

all electrons in an atom have high-speed circular orbital movement surrounding a nucleus.  Relying 

on the centrifugal force produced by the orbital movement is how these electrons can successfully 

resist the attractive Coulomb force from the nucleus.   Now, a question cannot help but presents 

itself to us:  How reliable is such force in helping each electron sustain its orbital movement about 

the nucleus?  It is also said that each electron has many different sizes of orbit.  Jumping from one 

orbit to another, the electron releases (or absorbs) energy, which becomes light that gives us 

information about its orbit jumping.  How compatible is such a view of light creation to our 

comprehension on how EM (electromagnetic) waves are created?  We all know that light is EM 

waves with wavelengths in the visible range.   

 

For an electron that jumps back and forth one time between the same two locations in one 

second, we say it would produce an EM pulse of 1 Hz.  If it repeats the same manner of jumping 

multiple times in a longer time, we say it creates an EM wave of 1 Hz.   The same logic would 

lead us to some statement like this: for an electron that jumps back and forth 1 × 1015 time in one 

second between the same two locations, we say it would produce an EM wave of 1 × 1015 Hz.  

Then, here comes the trouble if it is said that a light being produced due to the orbit jumping has 

a frequency of 1 × 1015 Hz.  Concerning such light, which of the following statement is true? 

 

(1) The electron completes the orbit jumping only one time, but instead of producing a 

pulse of 1 Hz, it produces a wave with a rate of certain kind of variations, such as  

1 × 1015 (crest +trough), per second. 

 

(2) The electron completes the back and forth jumping between the same two orbits at a 

rate of 1 × 1015 time/second.  The light is produced on its way between the two orbits, 

but the orbital movement itself produces no light.    

 

Statement (1) is obviously unacceptable because in the one-time pulse we find no source 

that could have driven the happening of certain kind of variation to be repeated 1 × 1015 times per 

second.  Statement (2) obviously fails to include the time needed for the completion of the orbital 

movement in the frequency calculation.  It is unacceptable either.  As a matter of fact, the concept 
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of light produced due to or between orbital jumping is not found having been proven by 

experimental fact even though such claim has been circulating for a century. 

    

So, if the above two statements cannot stand well, but the orbital movement must be 

imagined as the only mechanism to maintain the electron’s independent life in an atom, why not 

just allow the orbital movement itself to possess the capability of light producing? In this way, 

light is given birth in a way more compatible to what we understand how EM wave is agitated to 

appear.   So, after completing one orbit about the nucleus, the electron completes one period of 

movement and comes back to the same orbital starting point.  As it moves, it must cause change 

of electric field in its vicinity.  Subsequently another electron a distance away from this circulating 

one, if close enough, must sense an electric field variance coming at its way.  The frequency it 

senses about the pace of this variation must match the periodical displacement made by the 

circulating electron.   Of course, it is commonly known that nature must couple the change of an 

electric field with a change of magnetic field.  So, with an angular speed of 1 × 1015 (2𝜋)/second 

about the nucleus, this circulating electron lets the other electron at a distance away sense an EM 

radiation of frequency of  1 × 1015 Hz.  Because the variation is caused by a circular movement, 

the variation sensed by the other electron is therefore a wave that can be described by a sinusoidal 

equation. Next, let us further using some data related to a sodium atom to continue our exploration.         

 

 The characteristic wavelength l of sodium-vapor lamp is 589 nm.  The frequency matching 

this wavelength is 5.09 × 1014Hz.   The radius of a sodium atom is 0.227 𝑛𝑚 .  If an electron in 

a sodium atom is to generate a light wave of frequency of 5.09 × 1014Hz, it must complete 

5.09 × 1014  cycles of orbital movement in one second. Assuming the electron having been 

revolving about the nucleus on the biggest orbit in the atom, the linear speed 𝑣𝑒 of the electron so 

moving is 

 

             𝑣𝑒 = 2𝜋 × 0.227 × 5.09 × 1014nm/sec = 726km/ sec                       (𝐸𝑞.     04𝑎)    

 

The centrifugal force 𝐹𝑐 experienced by this electron should be  

 

𝐹𝑐 = 𝑚𝑒 ∙
(726km

𝑠𝑒𝑐⁄ )
2

0.227𝑛𝑚
 

 

                                                 = 2.11 × 10−29 𝑁                            (𝐸𝑞.          04𝑏) 

where 𝑚𝑒 = 9.11 × 10−31𝑘𝑔 is the mass of the electron.  Of course, the force maintaining the 

electron’s orbital movement comes from the Coulomb force 𝐹𝑒  between the electron and the 

nucleus.  Since the number of electrons and the number of protons are always equal in a neutral 

atom regardless of the atomic number, averaged out, we can assume the Coulomb force acting on 

the electron in our attention is from one proton.   So, we have 

 

𝐹𝑒 = −𝑘
𝑞 × 𝑞

𝑟2
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= − (9.0 × 109𝑁 ∙  
𝑚2

𝐶2
)  ∙

(1.6 × 10−19𝐶) × (1.6 × 10−19𝐶)

0.227𝑛𝑚2
 

                = −1.014 × 10−7𝑁                                                                         (𝐸𝑞.    05) 

  

where 𝑘 = 9.0 × 109𝑁 ∙ 
𝑚2

𝐶2  is the Coulomb constant, and 𝑞 = 1.6 × 10−19𝐶  is the charge per 

electron. 

 

 Eq. 05 shows that the force 𝐹𝑒 is way bigger than 𝐹𝑐 shown in Eq. 04b.  This figures plainly 

tell us that no centrifugal force produced by orbital movement can be strong enough to enable the 

electron to defy the Coulomb force from a proton in the nucleus. Something else must be there 

helping.  Then, what is that something?   

  

 In reasoning what causes gravity as well as how the frequency shift equation can be 

concluded from the Ives-Stilwell experiment, a hypothetical substance called Aether no doubt 

satisfactorily helps us solve the mysteries [2][3].  The solutions on these mysteries should therefore 

conversely provide us with a strong inference claiming the existence of Aether.  The inference is 

made on the reliance of the omnipresent permeation of Aether in both the microworld and 

macroworld.  

 

In exploring how Aether as a fluid 

manifests its presence via gravitational 

phenomenon, we reason that with respect to any 

two concentric spherical surfaces of radius 𝑅1 

and 𝑅2, of which the center is identical to the 

center of a solid sphere,  the pressure (force per 

unit area, either pushing in or pushing out) over 

their surfaces maintains the following 

relationship:  

 

𝑃1 (4𝜋𝑅1
2) = 𝐹1 = 𝐹2

= 𝑃2 (4𝜋𝑅2
2)                (𝐸𝑞.   06) 

 

where 𝑃1  is the pressure found on the surface of 

the 𝑅1 sphere, and 𝑃2 is the pressure found on 

that of 𝑅2 (Fig. 05), the 𝐹1 and 𝐹2 represent the 

total force over the complete surface of each 

corresponding sphere.   

From Eq. 06, we further have  

𝑃1

𝑃2
=

𝑅2
2

𝑅1
2                (𝐸𝑞.    07) 
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Then, we can further apply this relationship to write  

 

𝐹1 = 𝐹2 = ⋯ = 𝐹𝑛 = 𝑃𝑛=4𝜋𝑅𝑛
2           (𝐸𝑞.   08) 

 

where 𝑃𝑛 is the pressure on the surface of the sphere of radius 𝑅𝑛.   As 𝑛 → ∞ , 𝑃𝑛 on the surface 

of 𝑅𝑛 is called the intrinsic pressure of Aether, which is a constant.  In exploring the reason of 

gravity, this intrinsic pressure is found to be 𝑃0 = 1.0 × 1012 𝑘𝑔
𝑐𝑚2⁄ .  In the world with a linear 

scale of 1×10―8 m or larger, the Aether pressure is considered displaying its intrinsic pressure. 

With the intrinsic pressure so shown, we can easily find through calculation how the Aether’s 

pressure can rapidly escalate itself in the world of atoms or in the vicinity of a nucleus.      

When chemical elements are in their liquid or solid state, the shortest distance between 

atoms is usually in the order of × 10―10 m. In gas state, the average shortest distance between 

atoms is in the order of × 10―9 m. Since we are studying the sodium vapor light, we can regard the 

distance between the nucleus and the most remote electron in the atom to be in the order of 

1 × 10−9𝑚 . At such a distance, the Coulomb force 𝐹𝑐𝑙−1 between this electron and one of the 

protons from the nucleus can be found as  

𝐹𝑐𝑙−1 = −𝑘
𝑞 × 𝑞

𝑟2
                                                                                                 

= − (9.0 × 109𝑁 ∙  
𝑚2

𝐶2
)  ∙

(1.6 × 10−19𝐶) × (1.6 × 10−19𝐶)

(1 × 10−9𝑚)2
 

 

              = −0.23 × 10−7𝑁                                                                      (𝐸𝑞.      09) 

 

 At the same distance from the nucleus, the out-pushing pressure 𝑃1 of the Aether fluid 

should be  

 

𝑃1 =  
𝑃0 × (1 × 10−8𝑚)2

(1 × 10−9𝑚)2
                                               

 

         = 1.0 × 1019 𝑁
𝑚2⁄                              (𝐸𝑞.     10) 

 

The corresponding out-pushing force 𝐹𝑜𝑢𝑡 of Aether exerted on this electron should be  

 

𝐹𝑜𝑢𝑡 = 𝜎𝑃1∙ = 𝜎 ∙ 1.0 × 1019 𝑁
𝑚2⁄              (𝐸𝑞.            11) 

where 𝜎 is the area of the large circle of an electronic sphere (an assumed shape), and this large 

circle is perpendicular to the radius from the nucleus.  However, the out-pushing force is not the 

floating force for the electron, because, immersed in the fluid, the electron also receives an in-

pushing force from the Aether pressure from the other side, in the direction toward the nucleus.  

The net force difference between the out-pushing force and in-pushing force is the floating force 

this electron experiences.   Detailed calculation of the floating force can be found in Appendix II 
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at the end of this article.  The outcome of Eq. 11 is just to give us an initial idea what can be a 

potential candidate in the scene helping the electron resist the sinking caused by the Coulomb force 

from a nucleus.  Centrifugal force is too weak to be the candidate.  

        

3. The Ward Where Light Is Generated  
 

Since a sodium atom has 11 electrons, we cannot simply take what Eq. 05 portrays as the 

entire scene of the distribution of the Coulomb force interaction between all electrical charge 

particles in this atom.    

 

 In appendix I, there shows an analysis concerning the one electron that is the most remote 

one from the nucleus for each atom at the surface of a material chunk of sodium.   Under the joined 

action from the Coulomb force from 11 protons and the Aether’s out-pushing pressure contributed 

by 23 nucleons, this electron has the weakest force bonding it to the atom. If the most remote 

electron happens to belong to the atoms that form the outmost surface of a material body of sodium, 

this electron should have high chance to drift away from the grip from its atom. But, of course, 

eventually at a distance far bigger than the normal radius of a sodium, the coulomb force still 

catches up and stops it from a spontaneous permanent escape.  However, at that specific distance, 

this electron no longer belongs to the atom which once “claims” owning it.  But instead, it belongs 

to every atom at the outmost surface of the material body.  Each of the atoms at the surface has the 

same fate as the one we just mentioned: their most remote electron drifts away.  All these drifting-

away electrons form a cloud hovering over the entire material body.  The height of their hovering 

depends on the balance between the Aether’s out-pushing force and the Coulomb force summed 

up from all the protons and electrons of the entire material body.   

 

 Besides the atoms that has formed the outmost surface of the material body, no other atoms 

would have its electron drifting away.  It is because the atoms at the outmost surface, also closely 

packed together with a radius of 0.227 nm between each other, already organize an envelope of 

higher pressure of Aether that can present a blockade pushing back any out-drifting electron from 

inside.   

 

With one electron egressing to the cloud, each of the surface atom together would sure 

convert the cathode sheet in the photoelectric experiment into a disk of uniform charge 𝜃  per unit 

area .  Comparing to the size of an electron, such a disk can be considered infinite. The electric 

field 𝐸 over a surface of an infinite charged sheet is given as 

 

𝐸 = 𝜃
2𝜖0

⁄                                  ( 𝐸𝑞.       12)                                

 

where 𝜖0 is the permittivity of the free space.  Therefore, within quite a big distance from the 

surface of the cathode sheet, before any bias voltage appears, each electron in the cloud should 

always experience the same electrical attractive force 𝐹𝑒1 from the cathode, which is  
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𝐹𝑒1 = 𝐸𝑞 =  
𝜃𝑞

2𝜖0
                   (𝐸𝑞.       21𝑎) 

For a cathode sheet made of sodium, we have 𝜃 = +2.11 × 1013𝐶/𝑚2 (See Appendix III).  

Therefore, to this electron, according to Eq. 21a, we have  

𝐹𝑒1 =  
𝜃𝑞

2𝜖0
                                                                                               

=
2.11 ×

1013𝐶
𝑚2 ∙ 1.6 × 10−19𝐶

2 × 8.85 ×
10−12𝐶2

𝑁. 𝑚2

                                                

= 1.9 × 105𝑁                                                  (𝐸𝑞.       21𝑏)     

If we set the floating force 𝐹𝑓𝑙 received by the electron as concluded in 𝐸𝑞 − 𝐼𝐼 − 11 (from 

Appendix II) equal to 𝐹𝑒1, we have   

40𝜋𝑅 

1.0 × 10−8 𝑚 − 𝐻
∙ 𝑁 =  1.9 × 105𝑁      (𝐸𝑞.       21𝑐)  

where 𝑅 is the radius of the electron with an assumed shape of a sphere.  Eq. 21c solved with 

respect to 𝐻, we have  

𝐻 = (1.0 × 10−8  − 6.61 × 10−4𝑅)𝑚                  (𝐸𝑞.      21𝑑) 

Since 1.0 × 10−8 𝑚  is the distance from the nucleus to where the intrinsic pressure 

dominates (Fig-II-01), and H is from the electron to where the intrinsic pressure dominates, so, the 

distance 𝑙𝑒−𝑛 between the electron and the nucleus in the outmost surface of the cathode should be  

𝑙𝑒−𝑛 = 1.0 × 10−8𝑚 − 𝐻 = 6.61 × 10−4𝑅 ∙ 𝑚 = 6.61 × 105𝑅 ∙ 𝑛𝑚            (𝐸𝑞.      21𝑒) 

 It is at about this distance 𝑙𝑒−𝑛  from the cathode that an electron receives a balance 

treatment from two forces acting from opposite direction.   In many ways, this range is like a free 

space to the electron.  If it is to move back and forth because of whatever reason at speed 

726km/sec (Eq. 04a) and at a frequency of 1.0 × 1015 Hz, it can have enough room for the 

freedom.  In doing so, each of its one-way trip is 

726km/sec 

2 × (1.0 × 1015Hz)
= 3.63 × 10−10m = 0.367nm > 0.227nm           (𝐸𝑞.      22)        

  The figure 0.227nm above is the radius of the sodium atom.  In a moving state matching 

all these data, the electron is producing a blue light, but to produce such light, an electron must 

first have enough room to oscillate. Now, the room is provided in space away from the entire 

material chunk.  Of course, conversely, an incident blue light will entice the electron to be in a 

moving state that matches all these data. 
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In deriving the floating force 𝐹𝑓𝑙  shown by 𝐸𝑞 − 𝐼𝐼 − 11, we only use one nucleon for the 

center as a reference for all concentric spheres.  However, in real life, the floating force that an 

electron experiences over the cathode surface is a sum of contribution from all nucleons in the 

entire material body of the cathode although each from different distance.  Given all these 

considerations, 𝑙𝑒−𝑛 in Eq. 21e should have a bigger value. In other words, the point where the 

electron experiences balance between forces should be larger than what Eq. 21e shows.     

While the electrical force near the surface of an infinite plate keeps constant, the out-

pushing pressure of the Aether fluid retains the character of being inversely proportional to 

distance.  Such different behaviors from these two forces lead us to an idea that, at a certain 

distance from the cathode surface, there should exist a point we call equilibrium point, abbreviated 

as EQL, between there two kinds of force.  At this point the floating force and the Coulomb force 

acting on an electron are equal to each in magnitude and opposite in direction (Fig. 06).   It is this 

idea that enables us to assert the establishment of Eq. 21c. 

 

The curves drawn based on the behave shown by Eq. 21a and Eq.II-11 tell us that within 

the space between the EQL and the cathode surface, the 

Aether’s floating force is stronger than the electrical force, 

while in space beyond the EQL and away from the cathode 

surface, the electrical force is stronger than the floating force.      

Let us imagine an electron located at a neutral spot P 

in a space that is free of any foreign interference, and this 

electron is shone by a light ray (Fig. 07). At the completion 

of the first half cycle “a” from a light wave, this electron is 

forced by the electromagnetic force to relocate to spot Q 
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through a distance d.   According to the common knowledge in physics about wave, at the 

completion of the second half cycle “b”, the electron must return to spot P from Q.  Frequency of 

the light waves has no effect on such outcome.  However, if the environment of the space is not 

free, but the electron must overcome certain resistance in its back and forth movement, the 

situation is different.  At the end of the returning trip, the electron should fail to return to spot P. 

Indeed, it may not even have reached Q due to the energy loss in its forward trip. This pattern of 

movement should be true to the electrons in the photoelectric effect experiment when excited by 

light.    

With all preceding preparation, we now can explain several characteristic phenomena 

associated with the photoelectric effect. These phenomena include the following three: 

(A)  The photoelectric current I is in proportion to the frequency of the incident light f, or 

simply 𝐼 ∝ 𝑓 

(B) There exists a threshold frequency 𝑓0  below which no photoelectric current can be 

produced.   

(C) Once the photoelectric current reaching a saturation value, it would fundamentally stop 

increasing regardless of the increase of the bias voltage V across the electrodes. However, 

the current does increase with the intensity of the incident light as V is held constant.  

 

 

4. Regarding 𝐼 ∝ 𝑓  

 

Suppose for some reason (explore a little later) in one complete cycle of the light wave, an 

electron’s outbound (away from the cathode) trip gains an extra distance d more than the inbound 

trip.  Then, if incident light beam A shines on an electron with frequency 𝑓𝐴 will enable the electron 

to gain a total net distance 𝐷𝐴 = 𝑑𝑓𝐴 in one second.  By the same token, another light beam B of 

the same intensity but frequency 𝑓𝐵 would enable this electron to gain a total net distance 𝐷𝐵 =

𝑑𝑓𝐵 in one second.  Because the light intensities of both A and B are the same, both should also 

be able to motivate equal numbers of electrons n in every period of each of these two beams to 

cross the same area that is perpendicular to the line between the two electrodes.  Since the strength 

I of an electrical current is determined by the number of electrons moving across a unit area per 

unit time, we would have  

 

𝐼𝐴 = (
𝑛𝑞

𝑠𝑒𝑐𝑜𝑛𝑑
) 𝑑𝑓𝐴         𝑎𝑛𝑑           𝐼𝐵 = (

𝑛𝑞

𝑠𝑒𝑐𝑜𝑛𝑑
)𝑑𝑓𝐵           (𝐸𝑞.   23) 

 

Consequently, we have 

 

𝐼𝐴

𝐼𝐵
=

𝑓𝐴

𝑓𝐵
  ,    𝑜𝑟     𝐼 ∝ 𝑓        (𝐸𝑞.   24) 

 

Of course, as what has been commented regarding Fig. 01, the relationship shown by Eq. 

24 can only cover a limited range of frequency.   
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5. Why Is There a Threshold Frequency 𝒇𝟎 ? 

 

When the first half cycle a of the light wave happens to have driven an electron at the EQL 

to move toward the cathode,  this electron would simultaneously do four things: (1) absorbing the 

incoming energy 𝐸𝑎 in a sinusoidally progressive manner, (2) storing mechanical potential energy 

𝐸𝑃,𝑎 through building up of floating force in the Aether fluid, (3) releasing electrical potential 

energy 𝐸𝑒,𝑎  with respect to the charge cathodes sheet that is considered infinite,  (4) spending 

energy 𝐸𝑟,𝑎 to overcome dragging force of the Aether fluid.  𝐸𝑟,𝑎 cannot be stored in any manner.  

Once gone, it is gone, no matter what.    

 

In the next half cycle b, the electron is driven to move away from the cathode. During this 

process, the follow four things happen to this electron: (1) absorbing the incoming energy 𝐸𝑏, (2) 

releasing mechanical potential energy 𝐸𝑃,𝑏 through the recoiling action enabled by the Aether’s 

floating force, (3) building up electrical potential energy 𝐸𝑒,𝑏  with respect to the infinite charge 

sheet, (4) spending energy 𝐸𝑟,𝑏 to overcome fluid resistance.  𝐸𝑟,𝑏 cannot be stored in any manner.  

Once gone, it is gone, no matter what.    

 

So, regarding the half cycle a, we can set up the following equation 

 

𝐸𝑎 =  ∫ 𝐵(
𝑀 

𝑠
)𝑑𝑠

𝑠2

𝑠1

+ ∫ −
𝜃𝑞

2𝜖0
𝑑𝑠

𝑠2

𝑠1

 +  𝐸𝑟,𝑎            (𝐸𝑞.     25)           

where 
𝑀 

𝑠
 in the first integral is the floating force of the Aether in the vicinity of a nucleus.  This 

force is written according to Eq-II-11 (from Appendix II), with  𝑀 = 40𝜋𝑅, 𝑠 = 1.0 × 10−8 𝑚 −

𝐻, and 𝐻 is the distance between the electron and where the Aether’s intrinsic pressure begins to 

dominate. As to B, it is a coefficient of constant value.  B is needed because the floating force at 

any point in the space over the cathode is not caused by a single nucleus but a collection of nuclei 

that have been lined up in the cathode.  Each nucleus has different distance from this point.  

Therefore, the floating force at this point is actually a composite force of numerous component 

force, each of which is contributed by a nucleus according to its own location.   This force so 

resulted through superimposition has equipotential characteristics (Fig.08):  It has the same value 

at any point along a line that is parallel to the cathode surface.  But such value is different from 

line to line.  Further, 𝑠1 in the integral is where the electron starts moving, 𝑠2  is where the electron 

is when the first half cycle, named as a, ends.  Both are measured from the cathode surface.    

    

With respect to the half cycle b, we can set up the following equation 

 

𝐸𝑏 =  ∫ −𝐵(
𝑀 

𝑠
)𝑑𝑠

𝑠3

𝑠2

+ ∫
𝜃𝑞

2𝜖0
𝑑𝑠

𝑠3

𝑠2

 +  𝐸𝑟,𝑏               (𝐸𝑞.     26)        

where 𝑠3 is the point that the electron will reach at the end of the half cycle b. 

Since |𝐸𝑎| = |𝐸𝑏|, Eq. 25 and Eq. 26 together give us   
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|∫ 𝐵(
𝑀 

𝑠
)𝑑𝑠

𝑠2

𝑠1

+ ∫ −
𝜃𝑞

2𝜖0
𝑑𝑠

𝑠2

𝑠1

 +  𝐸𝑟,𝑎  | = |∫ −𝐵(
𝑀 

𝑠
)𝑑𝑠

𝑠3

𝑠2

+ ∫
𝜃𝑞

2𝜖0
𝑑𝑠

𝑠3

𝑠2

 +  𝐸𝑟,𝑏  |    (𝐸𝑞. 27) 

Since both 𝐸𝑟,𝑎 and 𝐸𝑟,𝑏 must carry the same sign on each side of the equation, we can have   

|∫ 𝐵(
𝑀 

𝑠
)𝑑𝑠

𝑠2

𝑠1

+ ∫ −
𝜃𝑞

2𝜖0
𝑑𝑠

𝑠2

𝑠1

  | + ( 𝐸𝑟,𝑎  −  𝐸𝑟,𝑏) = |∫ −𝐵(
𝑀 

𝑠
)𝑑𝑠

𝑠3

𝑠2

+ ∫
𝜃𝑞

2𝜖0
𝑑𝑠

𝑠3

𝑠2

 |     (𝐸𝑞. 28) 

If  𝐸𝑟,𝑏 =  𝐸𝑟,𝑎, we will have  

|∫ 𝐵(
𝑀 

𝑠
)𝑑𝑠

𝑠2

𝑠1

+ ∫ −
𝜃𝑞

2𝜖0
𝑑𝑠

𝑠2

𝑠1

  | = |∫ −𝐵(
𝑀 

𝑠
)𝑑𝑠

𝑠3

𝑠2

+ ∫
𝜃𝑞

2𝜖0
𝑑𝑠

𝑠3

𝑠2

  |      (𝐸𝑞. 29)     

Then further, that the following two distances are equal is concluded from Eq. 29: 

|𝑠3 − 𝑠2| = |𝑠2 − 𝑠1|                       (𝐸𝑞.        30𝑎)     
 

If 𝑠1is the point of EQL, Eq. 30a means 𝑠3 is also the EQL. However, will this happen?  

When the electron moves toward the cathode, it must encounter an ever-increasing pressure 

of the Aether, but moving away from the cathode in the second half cycle, b, its environmental 

pressure is ever decreasing.  Therefore, the energy it needs to spend to overcome the drag is 

different in the two opposite trips and results in 𝐸𝑟,𝑎 >  𝐸𝑟,𝑏. Subsequently, Eq. 28 will lead us to 

have  
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|𝑠3 − 𝑠2| > |𝑠2 − 𝑠1|                       (𝐸𝑞.      30𝑏)   

If 𝑠1is the EQL point, Eq. 30b means 𝑠3 is not the EQL, but a point beyond the EQL and further 

away from the cathode as shown in Fig. 09, a diagram with a closer look around the EQL 

 At 𝑠3, the Coulomb force 𝐹𝑒 is stronger than the Aether’s floating force 𝐹𝑓𝑙.  when reaching 

𝑠3, the electron retains some potential energy ∆𝐸 due to 𝐹𝑒 − 𝐹𝑓𝑙 > 0 with respect to the cathode 

surface. If the next cycle of EM wave arrives at the exact time the electron reaches 𝑠3, the electron 

will move toward the cathode again but with an energy batch that is equal to (𝐸𝑎 + ∆𝐸 ).  If this 

batch is big enough, the electron will be able to visit the previous spot 𝑠2 again.  If not, naturally, 

the electron will reach a location 𝑠′2 that is a little more far away from the cathode’s surface than 

𝑠2 (Fig. 09).  Then upon the influence of the next half cycle which carries energy 𝐸𝑏, the electron 

will move away from the cathode again and also reach a new point 𝑠′3  that is a little more far 

away from the EQL than 𝑠3 due to the principle suggested by Eq. 30b.   Mathematically we have   
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|𝑠′3 − 𝑠3| > 0                   (𝐸𝑞.     31𝑎) 

or, 

 |𝑠′3| − |𝑠3| = 𝑑                        (𝐸𝑞.     31𝑏)        

 

Eq. 31b means that the same electron gains an extra distance 𝑑  at the end of the 2nd period 

of the light wave in comparison to what it went through at the completion of the first period.    The 

incessant light excitation from a train of light wave then create an extra distance 𝑑  at the 

completion of every period of the light wave.  All these net distance gain of 𝑑 will accumulate to 

an ever-increasing distance with respect to the cathode (Fig. 10).  Eventually the electron is sent 

far away from the cathode until it reaches the anode and being disposed of there.  This electron is 

called photoelectron.   
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Now, weather we can initially have  |𝑠′2| > |𝑠2|or |𝑠′2| = |𝑠2| , the key depends on the 

quantity of ∆𝐸 .  Only if ∆𝑬 is below a certain value, then(𝐸𝑎 + ∆𝐸 ) cannot be strong enough to 

send the electron back to 𝑠2 but leave it at 𝑠′2, and then can |𝑠′2| > |𝑠2| be guaranteed.    Since 

each trip of the electron’s movement is closely governed by each of the half wavelength of the 

incident ME wave, that a statement “∆𝑬  is below a certain value” means each of the half 

wavelength cannot be bigger than a certain value, which we herein designate as λ0.  Of course, “no 

bigger wavelength” is a direct interpretation of “no lower frequency”. A threshold wavelength  λ0 

therefore sets a threshold frequency 𝒇𝟎, below which, no photoelectric current can appear.     

The above answer for the riddle of a minimum frequency also suggests to us that the true 

nature of the so-called work function should have nothing to do with the atomic bonding energy. 

The energy lost seen accompanied with the production of photoelectron should be more 

appropriately understood as the energy loss caused by the Aether’s fluid dragging resistance, i.e., 

the total  sum of 𝐸𝑟,𝑎  and  𝐸𝑟,𝑏 from all cycles, i.e., ∑(𝐸𝑟,𝑎 +  𝐸𝑟,𝑏) . 

 

 

6. Saturation Current and The Bias Voltage  

 

From all previous description, we can say that photoelectric effect is a spontaneous reaction 

so long as light is available and above a minimum frequency.  What holds the key for the electron 

to get chance to get away from the cathode is the floating force of the Aether fluid.  However, the 

photoelectron’s journey is not completed by one single trip but multiple back-and-forth trips in a 

fluid that has an equipotential characteristic with its pressure, which is getting higher at distance 

closer to the cathode.   When the photoelectrons are in the trip moving toward the cathode and 

must encounter higher force to push them back, they may highly likely move sideways.  Any 

electron drifting sideways means a reduction of number of electrons inside the path covered by the 

light beam, and subsequently a reduction of the strength of the photoelectric current.     To avoid 

such electron loss, of course, a foreign bias voltage is helpful.  With such bias voltage, the sideway 

drifting is restricted because the electrons now can penetrate the equipotential barrier.  The stronger 

is the bias voltage the better.  However, the help of the voltage is only good up to a certain value. 

When the restriction has reached 100% efficiency, the sideway drifting of electron is zero, and 

high bias voltage is just a waste.  When the bias voltage reaches its 100% efficiency, the current 

reaches its saturation value.    

 

The bias voltage is unable to change the electron population in unit space in the cloud 

hovering over the cathode. The availability of such electrons is determined by the nature of the 

cathode material.  On the other hand, the incident light does have another way to increase the 

photoelectric current.  It is its intensity.   A higher intensity of light can entice more electrons in 

the same cloud to move toward the anode and thus increase the current.      

 

In short, the role of the bias voltage is only to help enforce the moving direction of the 

photoelectrons and has nothing to do to change the number of electrons in the cloud and thus has 

no influence on the value of saturation current.    
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7. Why Do Curves in Fig. 01 All Fail the Equation 𝑲𝒎𝒂𝒙 = 𝒉𝒇 − 𝑾 

 

All curves in Fig. 01 must show reduced current after the incident light goes beyond a 

certain frequency.  The higher the frequency goes, the more severe the reduction appears.  The 

relationship of 𝐼 ∝ 𝑓 is completely inapplicable there.   

 

Electrons has mass, which must present inertia against any force that is to change the 

moving state it has been in.  When an electron is summoned to join the photoelectric current by a 

light of frequency, say, 1 × 1015𝑐𝑦𝑐𝑙𝑒𝑠/𝑠𝑒𝑐𝑜𝑛𝑑,  it means this electron has to reverse its moving 

direction 2 × 1015 times every second in the entire of its journey flying toward the anode. One 

reversal of direction means one reversal of momentum carried by the electron.  Gradually, as the 

frequency goes higher and higher, what is illustrated in the following paragraph becomes more 

and more pronounced, particularly at the end of the out-bound trip away from the cathode. Let us 

focus on such situation at the out-bound trip: 

 

At the end of one of the half cycles, the energy impelling the electron is zero. However, at 

that instant, the electron’s kinetic energy still has some nonzero residue, which must motivate the 

electron to move for some distance.  The ever-decreasing pressure of the Aether in the out-bound 

trip even adds some favors to such sliding.   However, before the electron can really come to a full 

stop, the second half cycle shines on, and by nature, it is to goad the electron to move in an opposite 

direction.  To do so, now, this newly arriving cycle needs to spend some energy to curb the electron 

to a full stop before it can carry the electron to move in the way this half cycle intends.  When the 

reversal of movement is mathematically feasible, however, this second half cycle would have 

already become weaker.  The outcome is a slower movement and a shorter distance for the electron 

in the moving back trip.  Slower movement and shorter distance of course result in reduced number 

of electrons crossing the same area in unit time for current calculation.  Now, the electron’s back 

and forth movement and the repetitive renewal of the half cycle of the light are out of 

synchronization.   The higher the light increases its frequency, the more severe is the out of sync 

phenomenon, and each of the light’s half cycle must spend more energy in overcoming the residue 

momentum left by the previous half cycle.  This is what exactly all curves in Fig. 01 tell us.  Clearly, 

the equation 𝐾𝑚𝑎𝑥 = ℎ𝑓 − 𝑊 cannot cover the out-of-synchronization problem in its explanation.  

There is a mystery that the nowadays scientific world still pursues.  It is the time lag 

between the incidence of radiation and the emission of a photoelectron. Someone claims being less 

than 10-9 second [4], while someone else claims being in 45 × 10−18 second [5].  With all that has 

been mentioned, we should say that the emission begins in no time but as soon as the arrival of the 

light.  However, the success of an emission is another matter.  A success of emission is signified 

by the registration of the start of the photoelectric current.    
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8. A Finite Spatial Dimension for Quantum Led by 𝐸𝑚𝑎𝑥 = ℎ𝑓 − 𝑊 

The equation 𝐸𝑚𝑎𝑥 = ℎ𝑓 − 𝑊 is claimed to be established on an idea that quantum has no 

finite spatial dimension.  However, beyond what it is aware of, this equation reveals its nature of 

asserting a finite spatial dimension for a quantum.     

Any light beam must have a finite length and a finite amount of energy.  This means that, 

if light is consisted of quanta, or packets of energy, and the energy content of each quantum is 

finite, the number of quanta embraced by this light beam must be finite. This is an ironclad  logic 

in mathematics. As such, each quantum must be individually identifiable, countable, and 

measurable.  However, preaching no finite 

dimension for quantum is one of the important 

topics of quantum theory.   Now, let us investigate 

how Eq. 01 enables us to determine the finite linear 

dimension of a quantum.   

Fig. 11 shows some physical drawing of a 

photo tube.  If the base of the tube is 23 mm, the 

distance between the cathode and the anode can be 

estimated from the diagram as 8 mm.  For the sake 

of convenience in calculation, let us take it as 10 

mm. In an experiment with this tube, let the 

incident light has a frequency 𝑓 of 1 × 1015𝐻𝑧 , 

and the cathode material be sodium, of which the 

work function ∅  is 2.46 eV.  According to 

conventional understanding, these data would lead 

us to get the energy 𝐾𝑚𝑎𝑥  carried by a 

photoelectron flying toward the anode as 

𝐾𝑚𝑎𝑥 = ℎ𝑓 − ∅ = 1.68𝑒𝑉             (𝐸𝑞.        32) 

 With this kinematic energy, the speed v of 

the flying photoelectron would be  

𝑣 = √
2𝐾𝑚𝑎𝑥

𝑚𝑒
                                                    

= √
2 × 1.68𝑒𝑉

9.1 × 10−31𝑘𝑔
                                                                                                                      

     = 7.6 × 105  𝑚 𝑠⁄                                                                        (𝐸𝑞.     33𝑎)                              

The time ∆𝑡 needed for the photoelectron to fly across the electrodes is  
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∆𝑡 =
10𝑥10−3𝑚

7.6 × 105 𝑚
𝑠⁄

                                               

 = 1.28 × 10−8𝑠𝑒𝑐𝑜𝑛𝑑𝑠       (𝐸𝑞.     33𝑏 ) 

With the same time interval ∆𝑡, the propagating light train would have filled a space with 

a length 𝐿 that is calculate as 

𝐿 = 1.28 × 10−8𝑠𝑒𝑐𝑜𝑛𝑑𝑠 × 3 × 108  𝑚 𝑠⁄                

= 3.84𝑚                                   (𝐸𝑞.       34) 

If the light shining on the cathode is never interrupted, and the space between the two 

electrodes is continuously filled with flying photoelectrons, 𝐸𝑞. 34 would mean that the fulfilment 

of the space between the electrodes with photoelectrons needs the energy from a light train of the 

length of 3.84𝑚. This is so because the first electron now immediately next to the anode has 

consumed the energy of the first photon in the  3.84𝑚 light beam, and at the same instant the last 

electron in line now just starting leaving the cathode has consumed the energy of the last photon 

from the same beam.  Since the wavelength 𝜆 of the beam of 1 × 1015𝐻𝑧 is 3 × 10−7m,   the total 

number of wavelength 𝜆 covered by this 3.84𝑚 light beam should be 1.28 × 107. 

 Since Eq. 01 warrants one quantum producing one photoelectron, we can imagine a scene 

so described in the following:  A single file of straight line of photoelectrons is found between the 

two electrodes.  This line of photoelectrons is made up by electrons lining up one after another.  If 

there are k number of photoelectrons lining up between the two electrodes, there would be k 

number of quanta in the light beam of length of 3 .84𝑚  for the consumption of these 

photoelectrons, and these k quanta also line up one after one in the beam correspondingly.  Then, 

the length or the linear dimension 𝐿𝑞  that each of the k quanta occupies would be    

𝐿𝑞 =
3.84𝑚

𝑘
=

1.28 × 107𝜆

𝑘
                           (𝐸𝑞.    35) 

Fig. 12 shows some saturation currents in certain photoelectric experiment.  For the light 

beam of 1 × 1015𝐻𝑧, the saturation current is 1.6 × 10−6𝐴𝑚𝑝.  Before further investigation on 

this current, it should help to review the definition of current I. Since Eq. 01 is devised on the 

prospect that the photoelectric current is composed of electrons that all move in one smooth 

journey from the cathode to the anode other than multiple back-and-forth trips, the following 

definition of current well matches what Eq. 01 projects  

𝐼 = 𝑛𝑞𝑣𝐴                   (𝐸𝑞.      36𝑎) 

where 𝑛 is the number of mobile charge carriers, or photoelectrons in our case, per unit volume, A 

is the cross-sectional area through which the photoelectrons pass, 𝑣 is the speed at which the 

charge particles pass, and 𝑞 is the electric charge each photoelectron carries. So, in comparison 

with Eq. 36a and since the distance between the two electrodes is 10 mm, the single line of 

photoelectrons between the two electrodes enables us to have  
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𝑛𝐴 = (
𝑘

10 × 10−3𝑚 ∙ 𝐴
)𝐴 =

𝑘 × 102

𝑚
                        (𝐸𝑞.     36𝑏) 

Subsequently, continued from Eq. 36a but with all numerical values in place, we have 

1.6 × 10−6𝐴𝑚𝑝 =
𝑘 × 102

𝑚
∙ (1.60 × 10−19𝐶) ∙ (7.6 × 105  𝑚 𝑠)⁄            (𝐸𝑞.      37)  

Solving Eq. 37 with respect to 𝑘, we have   

𝑘 = 1.32 × 105                         (𝐸𝑞.      38)          

Replacing 𝑘 = 1.32 × 105 in Eq. 35, we have     

𝐿𝑞 =
3.84𝑚

𝑘
=

1.28 × 107𝜆

1.32 × 105
 =≅ 97𝜆 = 97(3 × 10−7)m       (𝐸𝑞.      39)                   

Eq. 39 means that every quantum in the light beam of 1 × 1015  Hz occupies a length of 

97(3 × 10−7)m .  This is a finite length that Eq. 01 entitles each quantum to have because of the 

speed of the electron that is given by this equation and as shown in 𝐸𝑞. 33𝑎.    

According to the quantum theory, a photon’s energy 𝐸𝑝ℎ in the light beam should be  

𝐸𝑝ℎ = ℎ𝑓 = 6.626 × 10−34Js ∙
𝑓(𝑐𝑦𝑐𝑙𝑒𝑠)

𝑠𝑒𝑐
                       (Eq.     40) 
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Then, the energy contained by each cycle of light should be 

𝐸𝑝ℎ

𝑓(𝑐𝑦𝑐𝑙𝑒𝑠)
= 6.626 × 10−34J                     (Eq.     41) 

With 97 cycles for one photon, the photon’s energy 𝐸𝑞 should be   

𝐸𝑞 =
𝐸𝑝ℎ

𝑓(𝑐𝑦𝑐𝑙𝑒𝑠)
∙ 97 𝑐𝑦𝑐𝑙𝑒𝑠 = 6.626 × 10−34J  ∙ 97 = 6.43 × 10−32 J          (Eq.     42)       

However, if we stop reasoning further at Eq. 40 but just directly replace 
𝑓(𝑐𝑦𝑐𝑙𝑒𝑠)

𝑠𝑒𝑐
  with 

1 × 1015𝐻𝑧 in this equation, we will have  

𝐸𝑝ℎ = 6.626 × 10−34Js × 1 × 1015 𝐻𝑧 = 6.626 × 10−19J             (𝐸𝑞.       43) 

Both 𝐸𝑞 from Eq. 42 and 𝐸𝑝ℎ from Eq. 43 are supposed to mean the same thing: the energy 

of one photon, or equivalently, one quantum.  But obviously, they now each shows some 

dramatically different value contradicting to each other.  If quantum theory wants to convince 

people it is a trustworthy theory, it should oblige itself to clarify to people which of these two 

values,  𝐸𝑞 or 𝐸𝑝ℎ, can be genuinely endorsed by nature.   Until then, we have to say: 

One more self-refuted concept is found packed in the library of Modern physics.   

 Without Aether, nature must present us a huge impassible puzzle in explaining 

photoelectric effect.  With Aether and the authority of classical physics, nature hands us a key to 

unlock this puzzle.    

 Now, if we go back to review the 3 questions below Fig. 04 on page 5 regarding argument 

four, we will find answer (1) there should be the right choice.  

 

Appendix I       

―Electrical Force Distribution in An Atom― 

 

Fig. I-01 is drawn for the analysis of Coulomb force that is experienced by the most remote 

electron in a sodium atom.  It is said that, with an atomic number of 11, a sodium atom has two 

layers of electron distribution plus one remotely located from the nucleus.  The first layer, the one 

closest to the nucleus, has two electrons. The second layer, with larger distance from the nucleus, 

has 8.  Then, the last one will stay quite remotely from the second layer. So, from the stand point 

of the most remote electron,  the total pronounced Coulomb force from the nucleus exerting on it 

is from 9 protons, because the Coulomb force from 2 out of the 11 protons in the nucleus can be 

considered nullified by the 2 electrons in the first layer.  Now, what genuinely exerting Coulomb 

force on this remote electron would be the attracting force from 9 protons and the repellent force 

from the eight electrons in the second layer.    
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The upper portion of Fig. I-01 is a 3-D illustration, and the lower portion is a 2D side view 

of the same scene. From this picture, we have the following data: 

 

  |𝐴𝐵|2 = (𝑚𝑅)2 + 𝑅2                                  (𝐸𝑞 − 𝐼 − 01) 

where 𝑚 > 0 is a coefficient that can be any value. 

|𝐴𝐶|2 = [(𝑚 + 2)𝑅]2 + 𝑅2                            (𝐸𝑞 − 𝐼 − 02) 

 

cos 𝛼1 =
𝑚𝑅

√(𝑚𝑅)2 + 𝑅2
                                    (𝐸𝑞. −𝐼 − 03) 
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cos 𝛼2 =
(𝑚 + 2)𝑅

√[(𝑚 + 2)𝑅]2 + 𝑅2
                     (𝐸𝑄. −𝐼 − 04)  

 

 

Then, we set up the following equation for the total Coulomb force𝐹𝑡𝑜𝑡  received by the most 

remote electron as  

 

𝐹𝑡𝑜𝑡 = 𝐾𝑞2{
4

(𝑚𝑅)2 + 𝑅2
∙

𝑚𝑅

√(𝑚𝑅)2 + 𝑅2
−

9

[(𝑚 + 1)𝑅]2
+ 

 
4

[(𝑚 + 2)𝑅]2 + 𝑅2
∙

(𝑚 + 2)𝑅

√[(𝑚 + 2)𝑅]2 + 𝑅2
}                            (𝐸𝑄. −𝐼 − 05)  

   

In the above equation, the first term inside the bracket is for the repellent force from the 4 electrons 

in plane 2, the second term is for the attracting force from the 9 protons in the nucleus, and the 

third term is for the repellent force from the 4 electrons in plane 3. Plane 2 and plane 3 are both 

part of the second layer in which 8 electrons stay.    

𝐹𝑡𝑜𝑡 = 𝐾𝑞2 {
4

𝑅2
∙

𝑚

(𝑚2 + 1)
3

2⁄
−

9

[(𝑚 + 1)𝑅]2
+

4

𝑅2
∙

𝑚 + 2

[(𝑚 + 2)2 + 1]
3

2⁄
}   (𝐸𝑄. −𝐼 − 06)  

 

When m is reasonably large, from Eq.-I-06 we can have  

 

𝐹𝑡𝑜𝑡 = 𝐾𝑞2 {
4

(𝑚𝑅)2
−

9

(𝑚𝑅)2
+

4

(𝑚𝑅)2
}                                             

= −  
𝐾𝑞2

(𝑚𝑅)2
                                                    (𝐸𝑄. −𝐼 − 07) 

 

What 𝐸𝑄 − 𝐼 − 07 shows is a situation compatible to the treatment of what Eq. 05 expresses: the 

Coulomb force between one electron and one proton.    

 

When m is small, such as m=0.5, from Eq.-I-06 we have  

 

𝐹𝑡𝑜𝑡 = 𝐾𝑞2 {
4

𝑅2
∙

0.5

(0.25 + 1)
3

2⁄
−

9

[1.5𝑅]2
+

4

𝑅2
∙

0.5 + 2

(2.52 + 1)
3

2⁄
}   

                       = −
2.05𝐾𝑞2

𝑅2
                                                              (𝐸𝑄. −𝐼 − 08)  

 

 At the first glance, between 𝐸𝑄. −𝐼 − 07 and 𝐸𝑄. −𝐼 − 08, 𝐹𝑡𝑜𝑡 seemingly appears with a 

bigger absolute value with a smaller m.  However, we must notice that the bigger |−2.05| value 

in 𝐸𝑄. −𝐼 − 08 is contributed by 9 protons; the convenience given to the calculation as if there is 

only 1 (=9-8) proton exerting coulomb force on one electron can no longer be applied.    
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 Taking the average of the 𝐹𝑡𝑜𝑡 in 𝐸𝑄. −𝐼 − 08 over 9 protons, we have  

 

𝐹𝑡𝑜𝑡,𝑎𝑣𝑒 = −
2.05𝐾𝑞2

𝑅2
÷ 9 

 

                                                                      = −
0.228𝐾𝑞2

𝑅2
                               (𝐸𝑄. −𝐼 − 09)  

 

𝐹𝑡𝑜𝑡,𝑎𝑣𝑒  above is quite smaller than 𝐹𝑒 = −𝑘
𝑞×𝑞

𝑟2
  shown in Eq. 05, where the force is truly 

contributed by one electron and one proton.  Contrasting to the electrical value shown by 𝐸𝑄 −

𝐼 − 09  at where the most remote electron locates, the Aether’s out-pushing force is genuinely 

caused by 11 protons.  If these protons have separated by a significant distance from each other, 

such an out-pushing force acting on the most remote electron can be easily proven as 11 times 

strong as 1 of them would cause―while what is contributed regarding the Aether pressure by the 

12 neutrons is not even yet mentioned.    

 

According to all up-today pictures that this author can find from authoritative documents, 

nuclei are shown as aggregates of neutrons and protons closely compacted together with skin 

contact; no distinctive space is shown between nucleons.  However, such presentation of skin 

contact should be contradicted by the mass density of neutron stars. The mass of a neutron is 

1.68x10-27 kg, and the densest neutron star found so far has a density of 5.9 x 1017 kg/m3. That 

means the average volume occupied by a neutron in the star has a linear dimension of 3 x 10-13 m, 

a dimension that is at least 100 folds bigger than a nucleus that today’s nuclear science literatures 

commonly speculate today.   If gap must be found between all particles comprising a huge physical 

body like a neutron star, then, gap must also exist between all nucleons within a physical body as 

small as a nucleus found on Earth. Then, gap must also have higher chance to exist between all 

nucleons in the sodium nucleus and therefore, the Aether pressure at a large distance from the 

nucleus can be a simple sum of the pressure caused by each of these nucleons.  

 

Experiencing smaller Coulomb force coming from the nucleus but far bigger out-pushing 

force caused by 11 protons (plus 12 neutrons, too), the most remote electron would have high 

tendence to locate itself far away from the rest of the atom.  It is particularly so for electrons that 

belong to the atoms forming the outmost surface of a material body.      
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Appendix II 

―Floating Force Exerted on An Electron― 

Refer to Fig-II-01.  Because the omnipresence of Aether in the universe [2], it could only 

be natural that an electron bounded by a nucleus in an atom is inevitably immersed in such fluid.  

The broken line “surface” in Fig-II-0 1does not mean a distinctive physical border line but only 

helps to indicate that, in space beyond a certain distance from any material body, this fluid would 

manifest its existence with intrinsic pressure Po everywhere. The material body in our concern and 

is herein referred to is the nucleus in an atom.   

If we assume the electron takes a spherical shape, the total force received from the Aether 

by the lower hemispheres (in black) of this electron sphere is pointing up. We note it as Fup.  

Likewise, the upper hemisphere (in blue) also receives a force from the Aether, but this force is 

pointing down.  We note it as Fdown.    

 

At a randomly chosen point D on the lower hemisphere, let the pressure found there be PD. 

There we also find an infinitesimally small 

strip (in gray) along the peripheral of the 

small circle defined by point D and this 

small circle is parallel to the large circle 

MN. The area ds of this strip can be found in 

the following: 

  

𝑑𝑠 = 2𝜋𝑟 ∙ ∆𝑙                                               

       = 2𝜋𝑅 cos 𝜃 ∙ 𝑅𝑑𝜃  (𝐸𝑞 − 𝐼𝐼 − 01)  
 

The up-pointing force 𝑑𝐹𝐷,𝑢𝑝  

received by this strip is therefore 

𝑑𝐹𝐷,𝑢𝑝 = (𝑃𝐷 sin 𝜃) ∙ 𝑑𝑠                           

= (𝑃𝐷 sin 𝜃) ∙ (2𝜋𝑅 cos 𝜃 ∙ 𝑅𝑑𝜃)  

 

=  2𝜋𝑅2𝑃𝐷 sin 𝜃 cos 𝜃 𝑑𝜃   (𝐸𝑞 − 𝐼𝐼 − 02) 

 

In deriving the Newton’s 

gravitational equation, we take it to be safe 

to assume that the Aether’s intrinsic pressure 

can be found at any distance that is in the 

order of 1 × 10−8 𝑚 and beyond away from 

a nucleus. The intrinsic pressure so found is 

1.0 × 1012 𝐾𝑔 𝑐𝑚2⁄ .  So, according to what 



28 
 

is given by Fig. 05 and Eq. 06, 𝑃𝐷 in 𝐸𝑞 − 𝐼𝐼 − 02 can be found from the following relationship  

 

𝑃𝐷

𝑃𝑜
=

(1.0 × 10−8 𝑚)2

(1.0 × 10−8 𝑚 − 𝐻 − 𝑅 − ℎ)2
     (𝐸𝑞 − 𝐼𝐼 − 03𝑎) 

 

or  

𝑃𝐷 =
(1.0 × 10−8 𝑚)2

(1.0 × 10−8 𝑚 − 𝐻 − 𝑅 − 𝑅 sin 𝜃)2
∙ 𝑃𝑜         (𝐸𝑞 − 𝐼𝐼 − 03𝑏) 

 

To simplify the equation writing, by making 𝐾1 = (1.0 × 10−8 𝑚)2  and 𝐾2 = 1.0 ×

10−8 𝑚 − 𝐻 − 𝑅 , (𝐸𝑞 − 𝐼𝐼 − 02) and (𝐸𝑞 − 𝐼𝐼 − 03𝑏) together will give us  

 

𝑑𝐹𝐷,𝑢𝑝 = 2𝜋𝑅2𝑃𝑜

𝐾1

 (𝐾2 − 𝑅 sin 𝜃)2
sin 𝜃 cos 𝜃 𝑑𝜃                 (𝐸𝑞 − 𝐼𝐼 − 04) 

 

To get the total force of 𝐹𝑢𝑝, we take integral of both sides of (𝐸𝑞 − 𝐼𝐼 − 04) from −𝜋 2⁄  

to 0 then get  

 

𝐹𝑢𝑝 = ∫ 2𝜋𝑅2𝑃𝑜

𝐾1

 (𝐾2 − 𝑅 sin 𝜃)2
sin 𝜃 cos 𝜃 𝑑𝜃                                                 

0

−𝜋/2

 

 = 2𝜋𝑃𝑜𝐾1 [
𝐾2

−𝑅 sin 𝜃 + 𝐾2
+ ln(−𝑅 sin 𝜃 + 𝐾2)]

−𝜋/2

0

                                 

              = 2𝜋𝑃𝑜𝐾1  {(1 + ln 𝐾2)  − [
𝐾2

𝐾2 + 𝑅
+ ln(𝐾2 + 𝑅)]}             (𝐸𝑞 − 𝐼𝐼 − 05)   

 

For the upper hemisphere, the force exerted on it by the Aether is 𝐹𝑑𝑜𝑤𝑛, pointing toward 

the nucleus.   With a similar reasoning but with a force acting on an infinitesimally small strip 

about a small circle defined by point E that is randomly chosen, the differential force element is  

𝑑𝐹𝐸,𝑑𝑜𝑤𝑛 = (𝑃𝐷 sin 𝜃) ∙ ∆𝑠′                                      

 = (𝑃𝐸 sin 𝜃 ′) ∙ (2𝜋𝑅 cos 𝜃′ ∙ 𝑅𝑑𝜃′)                              

          = (𝑃𝐸 sin 𝜃′) ∙ (2𝜋𝑅 cos 𝜃′ ∙ 𝑅𝑑𝜃′)                                        

                  = 2𝜋𝑅2𝑃𝐸 sin 𝜃′ cos 𝜃′ 𝑑𝜃′                                (𝐸𝑞 − 𝐼𝐼 − 06) 

 

Parallel to (𝐸𝑞 − 𝐼𝐼 − 03𝑏), we can similarly write an equation for 𝑃𝐸 with the following 

relationship:  

 

𝑃𝐸

𝑃𝑜
=

(1.0 × 10−8 𝑚)2

(1.0 × 10−8 𝑚 − 𝐻 − 𝑅 + ℎ)2
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or  

𝑃𝐸 =
(1.0 × 10−8 𝑚)2

(1.0 × 10−8 𝑚 − 𝐻 − 𝑅 + 𝑅 sin 𝜃′)2
∙ 𝑃𝑜                 (𝐸𝑞 − 𝐼𝐼 − 07) 

 

We can then have the infinitesimal force element acting on this strip as 

 

𝑑𝐹𝐷,𝑑𝑜𝑤𝑛 = 2𝜋𝑅2𝑃𝑜

𝐾1

 (𝐾2 + 𝑅 sin 𝜃′)2
sin 𝜃′ cos 𝜃′ 𝑑𝜃′             (𝐸𝑞 − 𝐼𝐼 − 08)          

 

Taking integral on both sides of  (𝐸𝑞 − 𝐼𝐼 − 08) from 0 to 𝜋 2⁄  , we have 

𝐹𝑑𝑜𝑤𝑛 = ∫ 2𝜋𝑅2𝑃𝑜

𝐾1

 (𝐾2 + 𝑅 sin 𝜃′)2
sin 𝜃′ cos 𝜃′ 𝑑𝜃′                                                      

0

𝜋 2⁄

 

 = 2𝜋𝑃𝑜𝐾1 [
𝐾2

𝑅sin 𝜃′ + 𝐾2
+ ln (𝑅 sin 𝜃′ + 𝐾2)]

0

𝜋 2⁄

                                         

                                                                

           = 2𝜋𝑃𝑜𝐾1   {[
𝐾2

𝑅 + 𝐾2
+ ln (𝑅 + 𝐾2)] − (1 + ln 𝐾2)}               (𝐸𝑞 − 𝐼𝐼 − 09) 

 

The net floating force 𝐹𝑓𝑙 is then  

 

𝐹𝑓𝑙 = 𝐹𝑢𝑝 − 𝐹𝑑𝑜𝑤𝑛                                                                                                                                           

 = 4𝜋𝑃𝑜𝐾1  {(1 + ln 𝐾2) − [
𝐾2

𝑅 + 𝐾2
+ ln(𝐾2 + 𝑅)]}                                                                          

= 4𝜋𝑃𝑜(1.0 × 10−8 𝑚)2 (
𝑅

𝑅 + 1.0 × 10−8 𝑚 − 𝐻 − 𝑅
+ ln

1.0 × 10−8 𝑚 − 𝐻 − 𝑅

𝑅 + 1.0 × 10−8 𝑚 − 𝐻 − 𝑅
)   

= 4𝜋𝑃𝑜(1.0 × 10−8 𝑚)2 [
𝑅

1.0 × 10−8 𝑚 − 𝐻
+ ln

1.0 × 10−8 𝑚 − (𝐻 + 𝑅)

1.0 × 10−8 𝑚 − 𝐻
]      (𝐸𝑞 − 𝐼𝐼 − 10) 

 

Since R is the radius of an electron, being extremely small compared to H, and therefore 

H+R can be taken directly as H.  We then can rewrite (𝐸𝑞 − 𝐼𝐼 − 10) as    

 

𝐹𝑓𝑙 = 4𝜋𝑃𝑜(1.0 × 10−8 𝑚)2 ∙
𝑅

1.0 × 10−8 𝑚 − 𝐻
                                   

= 4𝜋 ∙  1.0 × 1017
𝑁

𝑚2
∙ 1.0 × 10−16𝑚2 ∙

𝑅

1.0 × 10−8 𝑚 − 𝐻
 

                  =
40𝜋𝑅 

1.0 × 10−8 𝑚 − 𝐻
∙ 𝑁                                                      (𝐸𝑞 − 𝐼𝐼 − 11) 
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At the supposed outer edge of a sodium atom, the most remote electron has a distance of 

0.227𝑛𝑚 from the nucleus.  This give us 𝐻 = 1.0 × 10−8 𝑚 − 0.227𝑛𝑚, and (𝐸𝑞 − 𝐼𝐼 − 11) 

gives us  

 

𝐹𝑓𝑙 =
40𝜋𝑅 

0.227 × 10−9 𝑚
∙ 𝑁 = 5.53 × 1011𝑅 ∙ 𝑁/𝑚                  (𝐸𝑞 − 𝐼𝐼 − 12)          

If we assume the radius of the electron sphere being in the order of × 10−18𝑚, the floating force 

for the electron is still bigger than the Coulomb force it receives from the nucleus.  Therefore, the 

electron, which can have the freedom of repeating the same movement at frequency of 1 × 1015 

times every second and thus generates light, cannot be in the space between atoms, but is pushed 

to space outside of the entire material body of a chunk.   

 

 

Appendix III  

―Surface Charge Density Per Unit Area of a Sodium plate― 

 

Mass density for sodium is 0.968 gm/cm3, and atomic weight is 23.  So, the volume of one mole 

of sodium atom is  

23 𝑔𝑚

0.968 gm
𝑐𝑚3⁄

= 23.76 𝑐𝑚3                      (𝐸𝑞. 𝐼𝐼𝐼 − 01) 

If such a volume is shaped as a cube, each edge of this cube would be 2.87𝑐𝑚 , and the area A of 

each face of this cube would be   

𝐴 = (2.87𝑐𝑚)2 = 8.24 𝑐𝑚2                               (𝐸𝑞. 𝐼𝐼𝐼 − 02) 

 One mole of sodium has 6.022 × 1023 atoms and therefore each atom has a volume of  

23.76 𝑐𝑚3

6.022 × 1023
= 3.95 × 10−23𝑐𝑚3                                     

                                          = 3.95 × 10−27𝑚3                 (𝐸𝑞. 𝐼𝐼𝐼 − 03) 

If each of this little volume is a cube, its edge would be 1.58 × 10−9𝑚 and each face has an area 

of  

𝐴′ = (1.58 × 10−9𝑚)
2

= 2.5 × 10−18𝑚2                 (𝐸𝑞. 𝐼𝐼𝐼 − 04)                   

Suppose the sodium atoms align themselves very orderly and tightly in the surface shown 

by Eq-III-02, the number of sodium atoms filled in A would be  
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8.24𝑐𝑚2

2.5 × 10−18𝑚2
= 3.3 × 1014                           (𝐸𝑞. 𝐼𝐼𝐼 − 05)  

If each atom lying in this surface loses one electron, the area density of charge of this area would 

be  

𝜃 = +
3.3 × 1014𝑞

𝐴′
= +

3.3 × 1014 ∙ 1.6 × 10−19𝐶

2.5 × 10−18𝑚2
= +2.11 × 1013𝐶/𝑚2          (𝐸𝑞. 𝐼𝐼𝐼 − 06) 
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A Parameter-Driven Approach to Synchronize Single and Double
Pendulums Using the Kuramoto Model for Real-World Applications

Kaival Shah∗

Abstract
This paper investigates the relationship between single and double pendulum synchronization
and real-world synchronization. The Kuramoto model was applied to couple single pendulums
and the results were analyzed for implementing double pendulum synchronization. A differen-
tial equation approach was utilized to model N double pendulums, and an ordinary differential
equation solver was implemented in Python. Double pendulum oscillations were modeled using
the Lagrangian equations of motion due to the constraint independent benefits. Investigation
outcomes were utilized to explain synchronization phenomena in real-world dynamical systems:
lockstep, Galilean moons, Centaurus A, Belousov-Zhabotinsky reaction. Single pendulum syn-
chronization was achieved with sufficient coupling power K. Double pendulum synchronization
was achieved with a sufficiently small initial displacement from equilibrium, stable constants for
mass and length, and sufficient coupling strength K. The results yield the possibility of phase-
shifted synchronization for chaotic systems contingent upon the system’s ability to overcome
state-dependent chaos.

1 Introduction
Synchronization is a phenomenon observed throughout nature in fields such as biology, chemistry,
astronomy, electronics, and physics. Studying synchronization in chaotic systems or simplifying sys-
tem variabilities yields a greater understanding or potential generalization of unsolved problems. In
physics, the classical example of synchronization studied by Dutch mathematician Christiaan Huy-
gens and Dutch physicist Balthasar van der Pol is the oscillatory behavior exhibited by a set of
pendulums mechanically connected by a spring or balance beam. The physical connection between
the oscillators enables communication through vibrations. As these vibrations interpose, dominant
waves persist and guide the system. Other instances of synchronization in physics include supercon-
ducting Josephson junctions, microwave oscillators, side-by-side organ pipes, and electrical generator
frequencies. Japanese Physicist Yoshiki Kuramoto formulated the Kuramoto model (Section 4), a
mathematical representation of synchronous behavior for a system consisting of N general oscillators.
In addition to synchrony in stable systems, more relevant examples involve achieving synchrony in
chaotic systems. The double pendulum, studied by Swiss mathematician Daniel Bernoulli, is chaotic
in nature. Chaotic systems are difficult to stabilize, especially systems with large initial displace-
ments from equilibrium. Subtle deviations grow over time and exit simple mechanics. As a result
of managing constraints, modeling double pendulum behavior with ordinary Newtonian mechanics
is difficult. Alternatively, the Lagrangian formulation is useful for constraint-independent models,
involving the kinetic energy and potential energy of the system. Due to high variability in physics
models, these formulations yield a new dimension of useful modeling methods. A computational
approach, involving differential equations and numerical integration, is necessary when modeling
chaotic systems due to the high process time and inefficiency in analytical solutions.

∗Advised by Dr. Andy Haas, Professor of Physics at New York University.
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2 Research Questions
1. How do communicating single pendulums synchronize? What parameters affect how quickly

they synchronize?

2. Do communicating double pendulums synchronize? What parameters affect their synchrony?

3. What do synchronization results imply for real-world phenomena?

3 Methods
Two computational approaches are taken to model single pendulum synchronization and double
pendulum synchronization. Computational approach 1 is preferred for modeling single pendulum
synchronization due to the expected behavior of the underlying system. Computational approach 2
is utilized for single pendulum synchronization due to scalability purposes. Both methods achieve the
same outcome. Method 1 involves classical modeling whereas method 2 involves numerical integration
of differential equations for state position estimation. This method is then scaled to double pendulum
synchronization, which also relies on a differential approach.

3.1 System Initialization
The single pendulum model and double pendulum model rely on arbitrarily defined initial param-
eters. Specific to single pendulum synchronization, initial conditions are defined randomly, which
helps reveal the significance of synchronization. Double pendulum synchronization relies on arbitrar-
ily distinct values such that state-dependent chaos is introduced and events of synchronization are
plausible.

3.2 System Variation
Computational approach 2 is best suited for parameter variation. Parameter variation involves devi-
ating individual parameters and analyzing the effects of those deviations on events of synchronization.
During parameter deviation, the remaining system constraints are fixed. System variation is par-
ticularly important for double pendulum synchronization because subtle deviations generate drastic
outcomes. These subtle deviations often vary system synchronization categorization.

4 The Kuramoto Model
Eq. (1) presents the Kuramoto model, where ωi represents the intrinsic frequency, K represents
the coupling strength of the system, and N represents the number of pendulums in the system. 1

N

is a normalization factor. The method in which each oscillator interacts is sinusoidal. The model
compares the θ of two distinct oscillators N times such that, for each iteration, the coupling function
defined by sin (θj − θi) will either positively or negatively contribute to the ith oscillator’s intrinsic
frequency ωi.

dθi

dt
= ωi + K

N

N∑
j=1

sin (θj − θi), i = 1 . . . N (1)
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If, for instance, the intrinsic frequency ωi for each oscillator is widely spread apart and the coupling
strength K is too weak to impact the intrinsic frequency of each oscillator, the system will either
not synchronize or take more time to synchronize. Three categorizations of synchronized oscillators
exist: nil phase-locking, partial phase-locking, and full phase-locking [GHW17]. This paper attempts
to achieve full phase-locking in orderly and chaotic systems.

5 Simulating Single Pendulum Synchronization

5.1 Parameters Affecting the Communication Between
Synchronizing Single Pendulums

The Kuramoto model (Section 4) can be used to simulate a system of N coupling pendulums with a
coupling strength K. The ability of a given system to synchronize depends on the x_limit. With an
insufficient x-limit, the system may not synchronize in the iteration time provided. As a result, a
sufficiently large x-limit is provided to analyze the affects of variations in the values of parameters.
Across simulations, x-limit is held constant for synchronization investigative purposes.

5.2 Computational Approach 1: Single Pendulum Synchronization
In the computations function presented below, the phase difference for N single pendulums is com-
puted and utilized to regulate the system’s ordinary oscillatory behavior. The computations function
works by computing the phase difference between oscillators, and conducting coupling at the micro-
scale accordingly. The full source code is given by [Sha22].

1 def single_pendulum_computations(t):
2 for oscillator_i in range(0, number_of_pendulums):
3 error = 0
4 for oscillator_j in range(0, number_of_pendulums):
5 if oscillator_j != oscillator_i:
6 error += math.sin(
7 current_positions[oscillator_j] - current_positions[oscillator_i]
8 )
9 new_positions[oscillator_i] = (

10 current_positions[oscillator_i]
11 + (coupling_strength_K * error) / number_of_pendulums
12 )
13 updated_positions.append(new_positions[oscillator_i])
14 position_axis[oscillator_i].append(math.sin(t + new_positions[oscillator_i]))

A model is created with N = 70 single pendulums, coupling strength K = 0.07, and standard devia-
tion threshold σT = 0.008. N and K are arbitrarily determined, and σT is determined experimentally.
A substantially large σT will undermine events of synchronization and a substantially small σT will
rarely isolate events of synchronization. σT must be held constant to adequately analyze events
of synchronization because a state-dependent σT will hinder the deterministic property of modeled
synchronization.
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Figure 1: sin(θ) vs. Time step.

A more systematic approach is taken: incrementing a parameter and determining the approximate
synchronization time.

5.2.1 Approximate Synchronization Point versus K

With a fixed σT , varying the coupling strength K inversely affects the approximate synchronization
time. σT is used because complete synchrony is unachievable. Approximate synchrony is determined
when σi ≤ σT . Varying K enables the examination of optimal synchronization conditions.

Figure 2: Approximate synchronization time vs. K.
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5.3 Computational Approach 2: Single Pendulum Synchronization
Ordinary differential equations and the odeint integrator from SciPy yield a second method to model
single pendulum synchronization [Oli21] [VGO+20]. The initial angular velocity ω of N = 2 single
pendulums is variable, a method which scales from one to two degrees of freedom for double pendu-
lum synchronization (Section 6). Rather than relying merely on the initial angular position of the
the single pendulums, this approach welcomes further variability: initial angular position and initial
angular velocity. The single pendulum can be represented by the non-linear differential equation
θ̈ = − g

L
sin (θ).

To analyze the system’s coupling ability, both single pendulums are defined with different initial
conditions, but the coupling strength is held constant at K = 0.3.

Figure 3: ωi ( rad
s ) vs. θi (rad).

6 Simulating Double Pendulum Synchronization

Table 1: Variables

Variable Name Description
g Acceleration due to gravity
ω Angular velocity
L1 First rod length
θ1 First rod angular displacement
m1 First mass
L2 Second rod length
θ2 Second rod angular displacement
m2 Second mass

5



Figure 4: Double pendulum setup [Jab08].

The Lagrangian equations of motion (2, 3, 4, 5) are used to simulate the motion of a double pendulum.

ω1 = θ̇1 (2)
ω2 = θ̇2 (3)

ω̇1 = 1
L1((cos (θ1 − θ2))2m2 − m1 − m2)

[
L1m2 cos (θ1 − θ2) sin (θ1 − θ2)ω2

1

+ L2m2 sin (θ1 − θ2)ω2
2 − m2g cos (θ1 − θ2) sin θ2 + (m1 + m2)g sin θ1] (4)

ω̇2 = 1
L2((cos (θ1 − θ2))2m2 − m1 − m2)

[
L2m2 cos (θ1 − θ2) sin (θ1 − θ2)ω2

2

+ L1(m1 + m2) sin (θ1 − θ2)ω2
1 + (m1 + m2)g sin θ1 cos (θ1 − θ2) − (m1 + m2)g sin θ2] (5)

The equations are written as four first-order differential equations because the odeint integrator
from scipy supports integration for first-order differential equations [Oli21] [VGO+20].

6.1 Computational Approach 2: Double Pendulum Synchronization
The code below represents the synchronization behavior of two double pendulums, each with four
individually initialized conditions: θ1, ω1, θ2, ω2. These conditions represent the motion of each
double pendulum at time t = 0. The other parameters responsible for the behavior of each double
pendulum are the mass and length: m1, m2, L1, L2. To analyze the impact of the Kuramoto model
on N double pendulums, the lengths L1, L2 and the masses m1, m2 are kept constant. Similar to
the single pendulum model, a coupling strength K is used for the double pendulum simulation. The
full source code is given by [Sha22].
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Christiaan Huygens discovered that two swinging single pendulums connected by a beam commu-
nicate with one another via their physical connection to the beam [PRONA16]. The way Huygens
setup his single pendulum experiment is replicated in this paper for double pendulums; however, the
Kuramoto model will be used instead of conducting double pendulum communication via a beam.
Specifically, θ1 for all N double pendulums will couple with each other and θ2 will not be directly
impacted by the Kuramoto model. This is because, in the classical example that this model repre-
sents, only the primary rod (m1, L1, θ1, ω1) is influenced by the vibration signals of the beam. Thus,
the second half of each double pendulum (m2, L2, θ2, ω2) will change depending on the state of the
first half of the double pendulum, which allows the system to maintain its chaotic attributes.

1 def double_pendulum_computations(z, time, L1_1,
2 L2_1, L1_2, L2_2, m1_1, m2_1,
3 m1_2, m2_2, g, coupling_strength_K,
4 number_of_pendulums):
5 pendulum_values = []
6 return_values = []
7 pendulum_values.extend(z)
8 for oscillator_i in range(0, number_of_pendulums):
9 error = 0

10 for oscillator_j in range(0, number_of_pendulums):
11 if oscillator_i != oscillator_j:
12 error += np.sin(pendulum_values[oscillator_j * 4]
13 - pendulum_values[oscillator_i * 4])
14 pendulum_values[oscillator_i * 4 + 1] += ((coupling_strength_K * error) /
15 number_of_pendulums)
16 for oscillator_i in range(0, number_of_pendulums):
17 L1 = L1_1 if oscillator_i == 0 else L1_2
18 L2 = L2_1 if oscillator_i == 0 else L2_2
19 m1 = m1_1 if oscillator_i == 0 else m1_2
20 m2 = m2_1 if oscillator_i == 0 else m2_2
21 theta1, w1, theta2, w2 = pendulum_values[oscillator_i * 4 : oscillator_i * 4 + 4]
22 xi = np.cos(theta1 - theta2) ** 2 * m2 - m1 - m2
23 w1dot = (L1 * m2 * np.cos(theta1 - theta2) * np.sin(theta1 - theta2) * w1**2
24 + L2 * m2 * np.sin(theta1 - theta2) * w2**2
25 - m2 * g * np.cos(theta1 - theta2) * np.sin(theta2)
26 + (m1 + m2) * g * np.sin(theta1)) / (L1 * xi)
27 w2dot = -(L2 * m2 * np.cos(theta1 - theta2) * np.sin(theta1 - theta2) * w2**2
28 + L1 * (m1 + m2) * np.sin(theta1 - theta2) * w1**2
29 + (m1 + m2) * g * np.sin(theta1) * np.cos(theta1 - theta2)
30 - (m1 + m2) * g * np.sin(theta2)) / (L2 * xi)
31 return_values.extend([w1, w1dot, w2, w2dot])
32 return return_values
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6.2 Computational Analysis
A double pendulum is chaotic in nature and a resulting factor of this chaotic motion is that small
changes in initial conditions can lead to drastic changes in the overall motion of the system. This
phenomenon is known as the butterfly effect, and a simulation of the butterfly effect is given by
[Gus21].

Due to the chaotic nature of a double pendulum, what follows is the impact of changing specific
parameters on the system’s ability to synchronize. To simplify the results, N = 2 double pendulums
are used. A graph comparing the difference between θ1 for both double pendulums and a second
graph comparing the difference between θ2 for both double pendulums are constructed.

6.2.1 The Control

For the control, two double pendulums are initialized with slightly different conditions to ensure
synchronization. The graph on the left represents the ability of θ1 to synchronize for both double
pendulums. The graph on the right represents the ability of θ2 to synchronize for both double
pendulums.

Figure 5: Both pendulums are able to synchronize their θ1 and θ2
with some phase difference. At the start of the system, both double
pendulums exhibit the inherent dynamics of a chaotic system. The
coupling soon reduces this chaotic motion.

For each system, an additional pair of graphs depicting double pendulum position variability is
provided. The graph to the left represents the raw variability and the graph to the right represents a
logarithmic transformation of the double pendulum position variability. Together, both graphs reveal
the categorization of synchronization.
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Figure 6: σi vs. Time (s) and log(σi) vs. Time (s). The variation
between the positions of the double pendulums significantly decreases
within the first 100 seconds as a result of coupling.

Included below (Section 6.2.2) are the notable results for double pendulum synchronization as changes
are made to deviate from the control. Changed parameters include mass, length, angle, and angular
velocity. Further experimentation with the double pendulum source code [Sha22] is encouraged.

6.2.2 Deviating from the Control

Figure 7: After increasing the m11 by a factor of 100, θ11 and θ12 are
still able to synchronize with a phase difference. Although θ21 and
θ22 are also able to synchronize, it takes longer because the Kuramoto
model is only directly coupling θ1 of both double pendulums.
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Figure 8: σi vs. Time (s) and log(σi) vs. Time (s).

Figure 9: After increasing m21 by a factor of 100, θ11 and θ21 are able to
couple and θ21 and θ22 are able to couple. Coupling takes place earlier
for θ2 and both synchronization times are closer to one another than
the former. Hence, increasing m21 impacts the system differently than
increasing m11 .
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Figure 10: σi vs. Time (s) and log(σi) vs. Time (s).

Figure 11: After increasing m2 for both double pendulums by a factor
of 100, θ1 and θ2 synchronize faster.
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Figure 12: σi vs. Time (s) and log(σi) vs. Time (s).

Other results arise when varying θ1, ω1, θ2, and ω2 for each of N double pendulums.

Figure 13: As θ11 starts at π instead of π
5 , the first double pendulum

begins at a location further away from equilibrium. This results in
uncontrollable chaotic swinging, which prevents θ1 and θ2 for both
double pendulums from synchronizing.
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Figure 14: σi vs. Time (s) and log(σi) vs. Time (s).

One way to attempt to return to synchrony is by increasing the angular velocity of θ11 . In the
previous example, ω11 = 0.35. If we set ω11 = 2.35, the increase in angular velocity will allow the
first double pendulum to return to synchrony.

Figure 15: Both double pendulums take more time to approach syn-
chrony. Approaching synchrony in this situation signifies that increas-
ing the angular velocity compensates for an increase in the double
pendulum’s initial disequilibrium.
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Figure 16: σi vs. Time (s) and log(σi) vs. Time (s).

6.3 Synchronization Time versus Increment
Incrementing a parameter and approximating the synchronization time yields a graph comparing the
changing parameter to the approximate synchronization time given σT .

Figure 17: There exists a weak relationship between the value of m11

and the approximate synchronization time.
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Figure 18: As the coupling strength K increases, the time it takes for
the system to synchronize significantly decreases for θ11 and θ12 . Unlike
single pendulum synchronization (Section 5), the chaotic nature of a
double pendulum system prevents any predictable inverse relationship.
Interestingly, as K increases, the synchronization time increases for θ21

and θ22 after initially decreasing.

7 Applications to Real-World Phenomena
In June 2000, when the London Millennium Footbridge first opened to the public, around 90,000
people walked on the bridge. Not long after the bridge was opened, however, people began to realize
a large lateral swaying motion. The bridge was closed a few days later. Architects attributed this
unusual lateral behavior to the positive-feedback loop created by the bridge’s structural resonance.
It is a human tendency to move left and right when taking a step forward. Although the pattern
of steps taken by a group of individuals is inherently random, the subtle lateral movement of the
bridge influenced individuals into lockstep with one another. As time passed, this lockstep further
propagated the bridge’s lateral movement. It was later identified that the bridge’s movement acted
as an external driving force for the system and coupled the steps of individuals walking on the bridge.
This is similar to the single pendulum model because the way people take steps varies from person
to person, similar to the intrinsic frequency of each pendulum. The coupling done by the bridge is
similar to the contributions made by the Kuramoto model in the single pendulum simulation.
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Figure 19: The London Millennium Footbridge [LRP07].

Another example of synchronization in nature is found in astronomy. Understanding the underlying
nature of synchronization phenomena can help scientists further their knowledge about abstract
concepts. In particular, Jupiter’s Io, Europa, and Ganymede moons have a special interaction known
as orbital resonance. In this case, the orbital resonance between Io, Europa, and Ganymede creates
a 4:2:1 orbital ratio where the moons repetitively meet each other in a self-correcting manner. This
situation is only possible if the gravitational forces are stable enough for repetition and the system
is able to self-correct as the moons orbit. This notion of self-correction is similar to the oscillatory
coupling modeled by the Kuramoto model (Section 4).

Figure 20: Jupiter’s Galilean moons: Io, Europa, Ganymede, and
Callisto [Kas13].

A study on another astronomical synchronization phenomenon is Mysterious Coherence in Several-
megaparsec Scales between Galaxy Rotation and Neighbor Motion [LPS+19]. In this paper, the ro-
tational coherence between galaxies is analyzed and experimentation is conducted to determine the
distance galaxies can be from each other to still maintain rotational coherence. The paper furthers
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their findings by proposing a “possible relationship between the long-term motion of a large-scale
structure and the rotations of galaxies in it” [LPS+19]. Once more, parallels can be drawn between
the ability of galaxies to synchronize and the ability of a system of double pendulums to synchronize
under chaotic conditions.

Figure 21: Centaurus A galaxy [Mag18].

An example of synchronization in chemistry is the Belousov–Zhabotinsky (BZ) reaction. In this
experiment, Belousov and Zhabotinskii created a chemical reaction that changes colors in an oscilla-
tory manner. When placed in a Petri dish, the reaction forms bubble-like shapes that slowly grow.
This experiment greatly improved scientists’ ability to conceptualize and simulate many biological
processes such as morphogenesis.

Figure 22: BZ reaction on a Petri dish [Mor04].
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8 Conclusion
The ability of an orderly system to synchronize is possible through a range of initial conditions when
applying the Kuramoto model. In contrast, a chaotic system, such as the double pendulum, only
synchronizes under certain initial conditions such that chaos is kept at a minimum and the coupling
strength has more control over the overall system. The Kuramoto model is applied throughout this
paper because of its applicability for dynamic systems and parameter-driven approach to various sys-
tem configurations. We see examples of this beyond the oscillatory realm where the Kuramoto model
remains applicable and noise in the system can be introduced. In terms of the double pendulum,
the ability of the Kuramoto model to couple N oscillators while resisting the natural communication
between m1 and m2 for each of N oscillators is a similar phenomenon observed in nature. As is true,
four real-world examples of synchronization ranging from architecture to chemistry were analyzed
and parallels were drawn to the behavior of pendulums.
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